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Abstract

Let A = (aij) be an n× n matrix with entries from R ∪ {−∞} and k ∈ {1, . . . , n}.
The best principal submatrix problem (BPSM) is: Given matrix A and constant k,

find the biggest assignment problem value from all k×k principal submatrices of A.

This is equivalent to finding the (n− k)’th coefficient of the max-algebraic char-

acteristic polynomial of A. It has been shown that any coefficient can be found in

polynomial time if it belongs to an essential term.

One application of BPSM is the job rotation problem: Given workers performing

a total of n jobs, where aij is the benefit of the worker currently performing job i to

instead perform job j, find the maximum total benefit of rotating any k jobs round.

In general, no polynomial time algorithm is known for solving BPSM (or the

other two equivalent problems). BPSM and related problems will be investigated.

Existing and new results will be discussed for solving special cases of BPSM in

polynomial time, such as when A is a generalised permutation matrix.
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Chapter 1

Introduction

1.1 Background

The assignment problem is a classical problem in discrete optimisation. It is the

task of finding the maximum sum of any n elements of an n × n matrix, with no

two elements in the same row or column. This is a well known problem with many

practical applications. For example, it can be used to find the optimal assignment

of n workers to n jobs (one job each), where it is known how well each worker will

perform each job.

The assignment problem can be solved in polynomial time, for example by the

Hungarian method. It has many variants, such as the bottleneck assignment prob-

lem, quadratic assignment problem and parity assignment problem. Some variants

of the assignment problem do not currently have a polynomial time solution method.

One such variant is the best principal submatrix problem (BPSM): Given an

n× n matrix A = (aij) with entries from R ∪ {−∞} and a constant k ∈ {1, . . . , n},
find the biggest assignment problem value from all k × k principal submatrices of

A. For this choice of A and k, we refer to this problem as BPSM(A, k).

No polynomial algorithm is known to solve BPSM, and NP -completeness seems

not to have been proven. However, if we remove the word “principal” from the

definition of BPSM, we obtain an other variant of the assignment problem called the
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best submatrix problem (BSM), which has been shown to be polynomially solvable.

Max-algebra is the structure that arises when we replace the operations of mul-

tiplication and addition of two numbers in conventional algebra by addition and

maximum of two numbers. We are able to formulate many concepts in max-algebra,

several of which are analogous to concepts in conventional algebra. One such concept

is the max-algebraic characteristic polynomial (or characteristic max-polynomial)

(see Section 4.3).

Given an n × n matrix A = (aij) and a k ∈ N , it has been shown that solving

BPSM(A, k) is very closely linked to calculating the characteristic max-polynomial

of A, which is the optimal assignment problem value of the following parameterised

matrix: 


max(a11, x) a12 . . . a1n

a21 max(a22, x) . . . a2n

...
...

. . .
...

an1 an2 . . . max(ann, x)




.

This value will be a max-algebraic polynomial function of x. Its graph is formed

by taking the upper envelope of n + 1 linear functions. It has been shown that

finding the (n − k)’th coefficient of the characteristic max-polynomial (i.e. where

the function with slope n − k will cross the vertical axis) is equivalent to solving

BPSM(A, k). A polynomial time algorithm has been given to calculate any coeffi-

cient that belongs to an essential term (which is a term that appears in the graph

of the characteristic max-polynomial as a function). In general, is not known how

to polynomially calculate coefficients of terms that are not essential.

One application of BPSM is the job rotation problem: Given workers performing

a total of n jobs, where aij is the benefit of the worker currently performing job i to

instead perform job j, find the maximum total benefit of rotating any k jobs round.

We may also wish to find the assignment that gives this maximum total benefit.
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The job rotation problem may be useful if some jobs need to be reassigned to

reduce the boredom of employees repeating monotonous tasks (which may occur in

places like factory assembly lines) but for the stability of the process only want to

swap a limited number of workers. More on the possible applications in Section 5.3.

1.2 Overview of chapters

This thesis will investigate the best principal submatrix problem. The work is split

into several chapters:

In Chapter 2 we introduce max-algebra. Throughout the thesis we will use con-

cepts from this, together with graph theory and permutations. We provide notations

and definitions for these areas.

In Chapter 3 we summarise the max-algebraic eigenproblem of a matrix A. We

will see that the eigenvalue is always unique (unlike in conventional algebra) and is

equal to the maximum elementary cycle mean of the digraph of A. This result and

others are used later to help provide upper bounds to the optimal solution value of

BPSM(A, k).

In Chapter 4 we state the result that the max-algebraic permanent (which is

defined as an analogue of the classical one) is the optimal value of the assignment

problem. We define general max-polynomials and characteristic max-polynomials.

We define what essential terms of a characteristic max-polynomial are, and state a

result that we can calculate these in polynomial time.

In Chapter 5 we define the best principal submatrix problem. We review how

it is related to the characteristic max-polynomial. We give examples of possible

situations that BPSM could be applied to, one of which is the job rotation problem.

We look at related problems, which are interesting in their own right, but some of

which provide us with bounds or other useful results for BPSM. We investigate the

complexity of these problems compared to BPSM.
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In Chapter 6 we provide several bounds or other results for BPSM that can be

obtained from BSM and similar problems as well as the eigenproblem. We look at

existing special cases of BPSM that can be solved in polynomial time. Such cases

include where the matrix is diagonally dominant, a Monge matrix, amongst some

forms of Hankel matrix or a permutation matrix.

We will note that BPSM can be solved by a randomised polynomial algorithm if

the entries of the matrix are polynomially bounded in the dimension of the matrix.

We give some existing and new results for BPSM with a symmetric matrix having

elements equal to 0 or −∞.

We provide a polynomial algorithm to solve BPSM for generalised permutation

matrices. We show that BPSM can be solved in polynomial time for any matrix

A, if we can solve BPSM in polynomial time for all submatrices corresponding to

connected components in the digraph of A.

Finally in this chapter, we give a method using simplex and branch and bound,

that will solve BPSM. If terminated before completion, we can obtain upper and

lower bounds for the optimal solution of BPSM from the last performed iteration of

the algorithm.

In Chapter 7 we conclude the results obtained in the previous chapters and give

some comments on future areas of research.
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Chapter 2

Basic definitions

2.1 Max-algebra

2.1.1 Introduction

In max-algebra, we replace addition and multiplication, the binary operations in

conventional linear algebra, by maximum and addition respectively.

For any problem that involves adding numbers together and taking the maximum

of numbers, it may be possible to describe it in max-algebra. A problem that is non-

linear when described in conventional linear algebra may convert to a max-algebraic

problem that is linear with respect to max-algebra.

There are many similarities between max-algebra and conventional linear alge-

bra, with many properties holding in both. There are also links with combinatorics

and combinatorial optimisation [11]. The max-algebraic versions of many concepts

in conventional linear algebra have been formulated and explored. These include the

max-algebraic versions of the eigenproblem and characteristic polynomial, which we

will look at in detail later.

Min-algebra and minimax-algebra have also been defined. Min-algebra is analo-

gous to max-algebra with the operation maximum replaced by minimum. Minimax-

algebra has both the operations maximum and minimum. We will not use these
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structures in this thesis, but for precise definitions and more details about them, see

[18, 20].

There are many applications of max-algebra covering a wide range of areas.

Cuninghame-Green [18, 20] has contributed greatly to the theory of max-algebra and

has provided many practical applications. Max-algebra can be used to formulate

(and in some cases solve) problems involving transportation networks, discrete-event

dynamic systems, machine scheduling, parallel processing and others.

Much of this thesis has or can be formulated in max-algebra. The main uses of

max-algebra are in the definition and use of: the max-algebraic eigenproblem (page

17), the max-algebraic permanent (page 30) and max-algebraic similar matrices

(page 75). To enable us to freely use max-algebraic notation when needed, we

will now state the max-algebraic definitions we will need, both for scalars and for

matrices.

2.1.2 Max-algebraic operations on numbers

We will often use the set of real numbers together with −∞. We will denote this

by R = R ∪ {−∞}. On numbers from R, will use the binary operations ⊕ and ⊗,

referred to as the max-algebraic sum and max-algebraic product. These are defined

as follows:

Definition 2.1. For a, b ∈ R,

a⊕ b = max(a, b)

a⊗ b = a + b.

Example 2.1.

4⊕ (−7) = max(4,−7) = 4

4⊗ (−7) = 4 + (−7) = −3.
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Proposition 2.2. The following properties hold for all x, y, z ∈ R.

x⊕ (y ⊕ z) = (x⊕ y)⊕ z

x⊕ y = y ⊕ x

x⊗ (y ⊗ z) = (x⊗ y)⊗ z

x⊗ y = y ⊗ x

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)

x⊗−∞ = −∞

x⊕−∞ = x

x⊗ 0 = x

x⊕ x = x.

Proof. We can easily verify these properties, by substituting from the definitions of

⊗ and ⊕.

Powers use repeated multiplication:

Definition 2.3. For x ∈ R, r ∈ N,

x(r) = x⊗ x⊗ . . .⊗ x︸ ︷︷ ︸
r−times

.

Remark. Note that the brackets around the power indicate we are taking the max-

algebraic power as opposed to the conventional power. Note also that this definition

means x(r) = rx, for r ∈ N. We extend the definition of x(r) = rx, for all (x, r) ∈
(R × R) ∪ (R × R+). For example 5(−2) = −10. Conventional inverses will not be

used, so as an exception, we denote the max-algebraic inverse −x by x−1.
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We may also note that for x, r ∈ R,

x(r) = rx = r(x),

and

x⊗ x−1 = 0.

The notation N = {1, 2, . . . , n},M = {1, 2, . . . , m} and K = {1, 2, . . . , k} will be

used throughout this thesis. We denote the addition of several numbers as follows:

Definition 2.4. For x1, x2, . . . , xn ∈ R, n ∈ N,

∑⊕

i∈N

xi = x1 ⊕ x2 ⊕ . . .⊕ xn.

We use the following notation to denote the multiplication of several numbers:

Definition 2.5. For x1, x2, . . . , xn ∈ R, n ∈ N,

∏⊗

i∈N

xi = x1 ⊗ x2 ⊗ . . .⊗ xn.

2.1.3 Max-algebraic operations on matrices

From now on, we let A = (aij), B = (bij) and C = (cij) unless stated otherwise.

We can multiply a matrix by a constant. This is performed elementwise as

follows:

Definition 2.6. For α ∈ R, A ∈ Rm×n
,

α⊗ A = (α⊗ aij).
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Example 2.2.

6⊗



−5 3

0 −10


 =




1 9

6 −4


 .

The sum of two matrices is defined elementwise as follows:

Definition 2.7. For A,B,C ∈ Rm×n
, C = A⊕B, if and only if

cij = aij ⊕ bij

∀i ∈ M, ∀j ∈ N .

Example 2.3.




3 −1

4 0


⊕




2 6

3 1


 =




3 6

4 1


 .

Remark. Note that for A ∈ Rm×n
,

A = A⊕ A⊕ . . .⊕ A︸ ︷︷ ︸
any finite number of times

.

The product of two matrices is defined elementwise as follows:

Definition 2.8. For A ∈ Rm×l
, B ∈ Rl×n

, and C ∈ Rm×n
, C = A⊗B, if and only

if

cij =

l∑⊕

k=1

(aik ⊗ bkj)

for ∀i ∈ M, ∀j ∈ N .
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Example 2.4.




3 −1

4 0


⊗




2 6

3 1


 =




(3⊗ 2)⊕ (−1⊗ 3) (3⊗ 6)⊕ (−1⊗ 1)

(4⊗ 2)⊕ (0⊗ 3) (4⊗ 6)⊕ (0⊗ 1)




=




5 9

6 10




For square matrices, we define the powers of matrices as follows.

Definition 2.9. For A ∈ Rn×n
and r ∈ N,

A(r) = A⊗ A⊗ . . .⊗ A︸ ︷︷ ︸
r−times

.

Remark. The process of matrix powering in max-algebra is similar to conventional

linear algebra matrix powering: We can (max-algebraically) square matrix A to get

A(2). We can square A(2) to get A(4), without calculating A(3). We can use this

technique to find a power of a matrix, using less computational effort, (even with

the matrix multiplication operations used to obtain the final result).

Example 2.5.

13 = 23 + 22 + 20,

so

A(13) = A(8) ⊗ A(4) ⊗ A

can be found by calculating only A(2), A(4) and A(8).

Definition 2.10. Let ak
ij denote the (i, j)’th element of A(k) (k = 1, 2, . . .).

Proposition 2.11. The following properties hold for all real values α and β and all

matrices A,B and C, with suitable dimensions:
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A⊕B = B ⊕ A

α⊗ (A⊕B) = (α⊗ A)⊕ (α⊗B)

A⊗ (B ⊕ C) = (A⊗B)⊕ (A⊗ C)

A⊗ (B ⊗ C) = (A⊗B)⊗ C

A⊗ (α⊗B) = (α⊗ A)⊗B

α⊗ (β ⊗ A) = β ⊗ (α⊗ A).

Proof. We can check the above easily from the definitions.

Remark. Note that as in conventional algebra, A ⊗ B = B ⊗ A does not hold in

general.

Definition 2.12. If d = (d1, d2, . . . , dn) ∈ Rn
, then

diag(d) =




d1 −∞
. . .

−∞ dn




.

If d ∈ Rn, then diag(d) is called a diagonal matrix.

Definition 2.13. We define the identity matrix I as follows:

I = diag(0, 0, . . . , 0).

Remark. Note that for any square matrix A, and I of the same size, we have

A⊗ I = I ⊗ A = A.

Definition 2.14. Any matrix that can be obtained from the identity matrix by

permuting the rows and/or columns is called a permutation matrix.
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Example 2.6. The matrix




−∞ 0 −∞ −∞
−∞ −∞ 0 −∞

0 −∞ −∞ −∞
−∞ −∞ −∞ 0




is an example of a permutation matrix.

Definition 2.15. Any matrix that can be obtained by multiplying a diagonal matrix

and a permutation matrix is called a generalised permutation matrix.

Example 2.7. The matrix




−∞ 2 −∞ −∞
−∞ −∞ −7 −∞

0 −∞ −∞ −∞
−∞ −∞ −∞ 4




=




2 −∞ −∞ −∞
−∞ −7 −∞ −∞
−∞ −∞ 0 −∞
−∞ −∞ −∞ 4



⊗




−∞ 0 −∞ −∞
−∞ −∞ 0 −∞

0 −∞ −∞ −∞
−∞ −∞ −∞ 0




is an example of a generalised permutation matrix.

2.2 Basic concepts of graph theory

Often it is easier to work with digraphs rather than matrices. For example, a

permutation matrix could be converted to a digraph with disjoint cycles. We could

then use graph theory to manipulate the digraph instead of working with the matrix.

We now define digraphs (also known as directed graphs) and briefly list the

definitions of other graph theoretical terms which will be used throughout this thesis.
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Definition 2.16. A digraph is a pair (V,E), where V 6= ∅ is a finite set called the

set of nodes, and E ⊆ V × V = {(u, v) : u, v ∈ V } is called the set of arcs.

Definition 2.17. If D = (V,E) is a digraph, with v0, v1, . . . , vk ∈ V and (vi, vi+1) ∈
E (for i = 0, 1, . . . , k − 1), then p = (v0, v1, . . . , vk) is called a path in D. A single

node is a path.

Definition 2.18. The length of a path p = (v0, v1, . . . , vk) is defined as l(p) = k.

Definition 2.19. For a path p = (i1, i2, . . . , ik), we define V (p) = {i1, i2, . . . , ik}.

Definition 2.20. For a digraph D, we define paths p1, p2, . . . , ps in D to be pairwise

node disjoint (PND) if V (pi) ∩ V (pj) = ∅ for i, j = 1, ..., s, i 6= j.

Definition 2.21. If p = (v0, v1, . . . , vk) is a path in a digraph D, and vi 6= vj (for

i, j = 0, 1, . . . , k, i 6= j), then p is called an elementary path in D.

Definition 2.22. If the sequence of nodes of a path q is a subsequence of the nodes

of a path p, then q is called a sub-path of p.

Definition 2.23. If p = (v0, v1, . . . , vk) is a path of a digraph D with v0 = vk, then

p is called a cycle of D. A single node is a cycle.

Definition 2.24. Let D = (V, E) be a digraph. If (v, v) ∈ E then (v, v) is called

an elementary cycle of D. For k ≥ 2, if (v0, v1, . . . , vk−1) and (v1, v2, . . . , vk) are

elementary paths of D, with v0 = vk, then (v0, v1, . . . , vk) is called an elementary

cycle of D.

Definition 2.25. If q = (vr, . . . , vs) is a sub-path of p, with vr = vs, then q is called

a sub-cycle of p.

Definition 2.26. Given a digraph (V, E) and a function w : E → R, then (V,E, w)

is called a weighted digraph.

13



Definition 2.27. Given a weighted digraph D = (V,E, w), if (vi, vj) ∈ E, then the

weight of arc (vi, vj) is defined as w((vi, vj)) or simply w(vi, vj).

Definition 2.28. Given a weighted digraph D = (V,E, w), if p = (v0, v1, . . . , vk) is

a path in D, then the (total) weight of path p is defined as w(p) =
k−1∑
i=0

w(vi, vi+1).

Definition 2.29. Given a weighted digraph D = (V,E, w), if p = (v0, v1, . . . , vk) is

a path in D, then the mean weight of path p is defined as µ(p) =
w(p)

l(p)
.

Definition 2.30. Let σ be a cycle in a weighted digraph D = (V, E, w). If w(σ) = 0,

then σ is a zero cycle. If w(σ) > 0, then σ is a positive cycle. If w(σ) < 0, then σ is

a negative cycle. If w(σ) ≥ 0, then σ is a non-negative cycle. If w(σ) ≤ 0, then σ is

a non-positive cycle.

Definition 2.31. Given a weighted digraph D = (V,E, w), we say D is strongly

connected if ∀u, v ∈ V , there exists both a path (u, . . . , v) in D, and a path (v, . . . , u)

in D.

Definition 2.32. For A = (aij) ∈ Rn×n
, the digraph associated with A is the

weighted digraph D(A) = (V,E, w), where V = {v1, v2, . . . , vn}, E = {(vi, vj) :

aij ∈ R} and w(vi, vj) = aij, for all (vi, vj) ∈ E.

Definition 2.33. For A = (aij) ∈ Rn×n
, the complete digraph associated with A is

a weighted digraph DC(A) = (V, E, w), where V = {v1, v2, . . . , vn}, E = {(vi, vj) :

vi, vj ∈ V } and w(vi, vj) = aij, for all (vi, vj) ∈ E.

N.B.: Exceptionally, we use a function w : E → R here. (For all other weighted

digraphs, we use a function w : E → R.)

Definition 2.34. A matrix A ∈ Rn×n
is called irreducible if D(A) is strongly con-

nected or n = 1. A is called reducible if it is not irreducible.
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Definition 2.35. An (undirected) bipartite graph is a triple (U, V, E), where U, V 6=
∅ are finite sets, and E ⊆ (U × V ) = {(x, y) : x ∈ U and y ∈ V }.

Definition 2.36. Given an (undirected) bipartite graph (U, V, E) and a function

w : E → R, then (U, V, E,w) is called an (undirected) weighted bipartite graph.

Definition 2.37. A bipartite digraph is a triple (U, V, E), where U, V 6= ∅ are finite

sets, and E ⊆ (U×V )∪(V ×U) = {(x, y) : x ∈ U and y ∈ V, or, x ∈ V and y ∈ U}.

Definition 2.38. Given a bipartite digraph (U, V, E) and a function w : E → R,

then (U, V,E, w) is called a weighted bipartite digraph.

2.3 Permutations

An alternative to working with (elementary) cycles in digraphs is to use (cyclic)

permutations. These are now explained, along with associated definitions such as

length and weight.

Recall N = {1, . . . , n} and K = {1, . . . , k}.

Definition 2.39. A cyclic permutation of length k on the set N is any σ =

(i1, . . . , ik) that satisfies (∀r ∈ K) ir ∈ N and (∀r ∈ K)(∀s ∈ K) ir 6= is for

r 6= s. Let l(σ) = k denote the length of σ. Let Cn denote the set of all cyclic

permutations of any length on the set N . Let Ck
n denote the set of all cyclic permu-

tations of length k on the set N . We define σ(ir) = ir+1 for r = 1, . . . , k − 1, and

σ(ik) = i1.

Definition 2.40. If σ1 = (i1, . . . , ir), σ2 = (ir+1, . . . , is), . . . , σp = (it+1, . . . , in)

satisfies (∀j ∈ N) ij ∈ N and (∀j ∈ N)(∀k ∈ N) ij 6= ik for j 6= k, then π =

(i1, . . . , ir)(ir+1, . . . , is) · · · (it+1, . . . , in) or simply π = σ1 ◦ σ2 ◦ · · · ◦ σp is called a

permutation of length n. Let l(π) = n denote the length of π. Let Pn denote the

set of all permutations of length n. If ij lies in cyclic permutation σl, then we define

π(ij) = σl(ij).
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Definition 2.41. Let A = (aij) ∈ Rn×n
. For a cyclic permutation σ ∈ Cn, we

define w(A, σ) (or simply w(σ)) as the weight of σ with respect to A, and µ(A, σ)

(or simply µ(σ)) as the mean weight of σ with respect to A, where

w(A, σ) =

l(σ)∑
i=1

ai,σ(i) and µ(A, σ) =
w(A, σ)

l(σ)
.

Definition 2.42. Let A = (aij) ∈ Rn×n
. For a permutation π ∈ Pn, we define

w(A, π) (or simply w(π)) as the weight of π with respect to A, and µ(A, π) (or

simply µ(π)) as the mean weight of π with respect to A, where

w(A, π) =
∑
i∈N

ai,π(i) and µ(A, π) =
w(A, π)

l(π)
.

Definition 2.43. Let the identity permutation of length n be defined as id =

(1)(2) · · · (n).

Remark. A cyclic permutation σ = (i1, i2, . . . , ik) ∈ Ck
n, used in conjunction with

a matrix A, corresponds to an elementary cycle σ′ = (vi1 , vi2 , . . . , vik , vi1) in the

digraph D(A). In particular, w(A, σ) = ai1i2 + ai2i3 + · · ·+ aiki1 = w(σ′).

We will define or prove statements either in terms of elements of matrices, or

digraphs, or in terms of permutations, depending on which seems easiest to work

with. All results that are formulated in one of these forms will automatically hold

when formulated in one of the two alternative forms.
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Chapter 3

The max-algebraic eigenproblem

We will use the max-algebraic version of the eigenproblem as defined in [20]:

Definition 3.1. For a square matrix A, the eigenproblem is the task of finding x

and λ, such that

A⊗ x = λ⊗ x.

We call λ an eigenvalue of A, and x an eigenvector of A.

We will assume that A ∈ Rn×n
and has at least one finite element in each row

and column, x ∈ Rn and λ ∈ R.

We will use some of the results from this chapter on the eigenproblem later in

this thesis (Section 6.2 in particular).

In this chapter, we will discuss what the eigenvalues and eigenvectors are and

how to find them. We initially restrict A to have all elements finite, and show that

the eigenvalue always exists, is unique and equals the maximum elementary cycle

mean in the digraph of A. We will present Karp’s Algorithm, which is an efficient

way of calculating the eigenvalue. Finally, we state that we can extend the results

of this chapter to cover some matrices (irreducible ones) that have some non-finite

elements. Much has been written on the eigenproblem, see for example [18], [20]

and [26]
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3.1 The eigenvalue

First we show that the eigenvalue (assuming it exists) is equal to the mean weight,

with respect to A, of some cyclic permutation in Cn.

Lemma 3.2 ([20]). If ∃λ satisfying the eigenproblem for a matrix A = (aij) ∈ Rn×n,

then ∃σ ∈ Cn such that λ = µ(A, σ).

Proof.

A⊗ x = λ⊗ x

⇐⇒
∑⊕

j∈N

aij ⊗ xj = λ⊗ xi (∀i ∈ N)

⇐⇒ max
j∈N

(aij + xj) = λ + xi (∀i ∈ N) (3.1.1)

⇐⇒ max(ai1 + x1, ai2 + x2, . . . , ain + xn) = λ + xi (∀i ∈ N) (3.1.2)

This implies at least one of the values we are maximising over will be equal to

the RHS of (3.1.2). This is true for each i. Therefore we have:

(∀i ∈ N)(∃j ∈ N) aij + xj = λ + xi (3.1.3)

Now (3.1.3) holds for i = 1, therefore:

(∃j1 ∈ N) a1j1 + xj1 = λ + x1

where j1 must be an integer between 1 and n, so (3.1.3) must also hold for i = j1:

(∃j2 ∈ N) aj1j2 + xj2 = λ + xj1
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Similarly for i = j2 we get:

(∃j3 ∈ N) aj2j3 + xj3 = λ + xj2

and so on.

As there are only n values that i can take, we will eventually obtain a value of i

that we have previously obtained. Let i1 be the first such index, and if we set i = i1

in (3.1.3), we obtain i2, say, for the next value of i, and so on until we reach ik,

where the next value on from this is i1 again. Therefore σ = (i1, i2, . . . , ik) ∈ Cn.

Writing (3.1.3), with i set to i1, i2, . . . , ik, we obtain:

ai1i2 + xi2 = λ + xi1

ai2i3 + xi3 = λ + xi2

...

aik−1ik + xik = λ + xik−1

aiki1 + xi1 = λ + xik

Summing these k equations, we obtain:

∑
r∈K

airir+1 +
∑
r∈K

xir = kλ +
∑
r∈K

xir

where
∑

denotes conventional summation, and we define ik+1 = i1.

Therefore, on cancelling and rearrangement of the above equation, we arrive at:

λ =
1

k

∑
r∈K

airir+1

= µ(A, σ)

which completes the proof.
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Now we show that the eigenvalue (assuming it exists) is equal to the maximum

mean weight, with respect to A, of all cyclic permutations in Cn.

Theorem 3.3 ([20]). If ∃λ satisfying the eigenproblem for a matrix A = (aij) ∈
Rn×n, then λ = max

σ∈Cn

µ(A, σ).

Proof. For an arbitrary σ = (r1, r2, . . . , rs) ∈ Cn of A, we have

ariri+1
+ xri+1

≤ max
j=1,...,n

(arij + xj) (3.1.4)

for 1 ≤ i ≤ s, where we let rs+1 = r1. Note that (3.1.4) only holds because s ≤ n,

due to the fact that r1, . . . , rs are all different values from N .

We also have that

max
j=1,...,n

(arij + xj) = λ + xri
(3.1.5)

for 1 ≤ i ≤ s. This arises by replacing i in (3.1.1) with ri.

By combining (3.1.4) and (3.1.5), and setting i = 1, . . . , s, we obtain:

ar1r2 + xr2 ≤ λ + xr1

ar2r3 + xr3 ≤ λ + xr2

...

ars−1rs + xrs ≤ λ + xrs−1

arsr1 + xr1 ≤ λ + xrs

Summing these s equations, we obtain:

s∑
i=1

ariri+1
+

s∑
i=1

xri
≤ sλ +

s∑
i=1

xri

where
∑

denotes conventional summation, and we let rs+1 = rs.

Therefore, cancelling, rearranging and using the fact that by Lemma 3.2, ∃σ′ ∈
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Cn such that λ = µ(A, σ′), we obtain:

µ(A, σ′) = λ

≥ 1

s

s∑
i=1

ariri+1

= µ(A, σ).

Therefore, as σ was arbitrary we have (∀σ ∈ Cn) µ(A, σ′) ≥ µ(A, σ). Therefore

λ = µ(A, σ′) = max
σ∈Cn

µ(A, σ).

Remark. As max
σ∈Cn

µ(A, σ) is unique, if there is an eigenvalue that satisfies the

eigenproblem, then it must be also be unique.

We now formulate Theorem 3.3 in an alternative form:

Corollary 3.4. If ∃λ satisfying the eigenproblem for a matrix A = (aij) ∈ Rn×n,

then λ equals the greatest cycle mean of all elementary cycles in D(A).

Definition 3.5. For A ∈ Rn×n
with D(A) containing at least one cycle, we define

λ(A) to be the greatest cycle mean of all elementary cycles in D(A).

Example 3.1.

Let A =




3 4 3

2 1 −3

3 7 2




,

then λ(A) = max

{
3

1
,

1

1
,

2

1
,

︸ ︷︷ ︸
means of elementary

cycles of length 1

2 + 4

2
,
3 + 3

2
,
7− 3

2
,

︸ ︷︷ ︸
means of elementary

cycles of length 2

3 + 7 + 2

3
,
4− 3 + 3

3︸ ︷︷ ︸
means of elementary

cycles of length 3

}

= max

{
3, 1, 2, 3, 2, 3, 4,

4

3

}

= 4.
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Therefore if the eigenproblem is solvable for A, then the eigenvalue will be λ(A) = 4.

3.2 The eigenvectors

In this section, we will show that there does exist an eigenvalue and eigenvector(s)

satisfying the eigenproblem for all matrices. We will also find eigenvectors satisfying

the eigenproblem.

Let A ∈ Rn×n
. In DC(A) we have that aij is the weight of the (only) path of

length 1 from vi to vj. The weight of the heaviest path (heaviest meaning having

largest weight) of length 2 from vi to vj is written

max
k=1,...,n

(aik + akj).

Converting to max-algebraic notation and using Definition 2.10, we see that

∑⊕

k∈N

(aik ⊗ akj) = a2
ij.

Similarly, we can show that the weight of the heaviest path of length r from vi

to vj is ar
ij.

Definition 3.6. For A ∈ Rn×n
, we define

∆(A) =
∑⊕

i∈N

A(i) = A(1) ⊕ A(2) ⊕ . . .⊕ A(n).

Let ∆j(A) be the j’th column of ∆(A), and ∆ij(A) the (i, j)’th element of ∆(A).

We observe that the weight of the heaviest path with length up to n from vi to

vj is ∆ij(A). Any path p of length greater than n in DC(A) will not be elementary.

This means there will be one or more sub-cycles in p. We delete these until we

are left with an elementary path p′, with l(p′) ≤ n. If λ(A) ≤ 0, then we will
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have w(p) ≤ w(p′), as the sub-cycles we have deleted had non-positive weight. This

means a
l(σ)
ij ≤ a

l(σ′)
ij ≤ ∆ij(A). So provided that λ(A) ≤ 0, ∆ij(A) is equal to the

weight of the heaviest path of any length from vi to vj.

If A = (aij) ∈ Rn×n, and we define B = (bij) ∈ Rn×n by bij = aij − λ(A), or

equivalently B = λ(A)−1 ⊗ A or A = λ(A)⊗B, then λ(B) = 0.

Consider the following quantity:

∑⊕

k∈N

(bik ⊗∆kj(B)).

This is simply the weight of the heaviest path of length greater than one from vi to

vj. The weight of the (only) path of length 1 from vi to vj is bij, and so

(∃j ∈ N)(∀i ∈ N)
∑⊕

k∈N

(bik ⊗∆kj(B)) ≥ bij

⇐⇒ (∃j ∈ N)(∀i ∈ N)
∑⊕

k∈N

(bik ⊗∆kj(B)) = ∆ij(B)

⇐⇒ (∃j ∈ N) B ⊗∆j(B) = ∆j(B)

⇐⇒ (∃j ∈ N) B ⊗∆j(B) = 0⊗∆j(B).

The last line states that 0 is the eigenvalue and ∆j(B) is an eigenvector that

satisfy the eigenproblem for matrix B.

Therefore we have proved the following:

Lemma 3.7 ([3]). For B = (bij) ∈ Rn×n and λ(B) = 0, we have that 0 is an

eigenvalue and ∆j(B) is an eigenvector satisfying the eigenproblem for matrix B if

and only if (∃j ∈ N)(∀i ∈ N) bij ≤
∑⊕

k∈N

(bik ⊗∆kj(B)).

Definition 3.8. Assume that D(B) = (V,E, w) has a maximum cycle weight of 0.

An eigennode of B is a node v ∈ V that lies on a zero cycle of D(B). The set of all

eigennodes of B is denoted E(B).
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Remark. If λ(B) = 0, then vj ∈ E(B) if and only if ∆jj(B) = 0.

Now if we let vj ∈ E(B), then there is a zero cycle (vj, . . . , vj) in D(B), and

bij = w(vi, vj)

= w(vi, vj, . . . , vj)

≤
∑⊕

k∈N

(bik ⊗∆kj(B)).

Therefore, using Lemma 3.7, we have proved for any vj ∈ E(B),

B ⊗∆j(B) = 0⊗∆j(B).

We can pre-multiply by λ(A) to obtain

λ(A)⊗B ⊗∆j(B) = λ(A)⊗∆j(B),

which is equivalent to

A⊗∆j(λ(A)−1 ⊗ A)) = λ(A)⊗∆j(λ(A)−1 ⊗ A)),

and so we have proved:

Theorem 3.9 ([18]). If A = (aij) ∈ Rn×n, then λ = λ(A) is the unique eigenvalue

of A and every column of ∆(λ−1⊗A) with a zero diagonal element is an eigenvector

of A.

Example 3.2. Let B = λ(A)−1 ⊗ A, where A is as in Example 3.1.

Then B =




−1 0 −1

−2 −3 −7

−1 3 −2




= B(1)
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B(2) =




−1 0 −1

−2 −3 −7

−1 3 −2



⊗




−1 0 −1

−2 −3 −7

−1 3 −2




=




−2 2 −2

−3 −2 −3

1 1 −2




B(3) =




−1 0 −1

−2 −3 −7

−1 3 −2



⊗




−2 2 −2

−3 −2 −3

1 1 −2




=




0 1 −3

−4 0 −4

0 1 0




.

So ∆(B) = B(1) ⊕B(2) ⊕B(3)

=




−1 0 −1

−2 −3 −7

−1 3 −2



⊕




−2 2 −2

−3 −2 −3

1 1 −2



⊕




0 1 −3

−4 0 −4

0 1 0




=




0 2 −1

−2 0 −3

1 3 0




.

Let ∆j = ∆j(λ(A)−1 ⊗A). All diagonal elements of ∆(λ(A)−1 ⊗A) are zero, so

all the columns are eigenvectors. So for example, letting x = ∆2 in Definition 3.1,

we have: 


3 4 3

2 1 −3

3 7 2



⊗




2

0

3




=




6

4

7




= 4⊗




2

0

3




Note that in this example, all the eigenvectors of A are (max-algebraic) multiples

of each other. i.e.

∆2 = 2⊗∆1

and

∆3 = −1⊗∆1.
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Note that while every column of ∆(λ−1 ⊗A) with a zero diagonal element is an

eigenvector of A, as stated in Theorem 3.9, there may be many more eigenvectors

of A that do not have a zero diagonal element.

Definition 3.10. Let the set of all eigenvectors of A be defined as

sp(A) = {x ∈ Rn : A⊗ x = λ⊗ x}.

Any (max-algebraic) linear combination of eigenvectors of A, is also an eigenvec-

tor of A:

Theorem 3.11. If x, y ∈ sp(A), and α, β ∈ R then ((α⊗ x)⊕ (β ⊗ y)) ∈ sp(A)

Proof. We have that

A⊗ ((α⊗ x)⊕ (β ⊗ y)) = (A⊗ (α⊗ x))⊕ (A⊗ (β ⊗ y))

= (α⊗ (A⊗ x))⊕ (β ⊗ (A⊗ y))

= (α⊗ (λ⊗ x))⊕ (β ⊗ (λ⊗ y))

= (λ⊗ (α⊗ x))⊕ (λ⊗ (β ⊗ y))

= λ⊗ ((α⊗ x)⊕ (β ⊗ y))

which completes the proof.

3.3 Karp’s algorithm for finding the eigenvalue

Karp’s algorithm will allow us to efficiently find the eigenvalue by calculating the

greatest elementary cycle mean in the digraph of A.

Before we come to Karp’s algorithm, we first need to consider the following

lemma.
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Lemma 3.12 ([20]). If B = (bij) ∈ Rn×n, λ(B) = 0 and D(B) = (V,E, w), then by

setting (∆ij) = ∆(B), we have

(∀vj ∈ V )(∃vi ∈ E(B)) ∆ij = bn+1
ij .

Proof. For any vj ∈ V , choose an arbitrary eigennode vk ∈ V . Now choose an

elementary path p = (vk, . . . , vj) in D(B) of maximal weight starting at vk and

ending at vj and having length up to n. Node vk lies on some cycle σ of weight zero,

by Definition 3.8. We can form a new path p′ = (vk, . . . , vj) of maximal weight, by

attaching σ to the start of p enough times so that the length of p′ is ≥ n + 1.

Form a new path, p′′ by removing enough nodes from the start of p′, so that the

length of p′′ is exactly n + 1. As the length of p′′ is greater than the length of p, we

must have that some (eigen)nodes (from one or more of the σ cycles we added) are

at the start of p′′. In particular, the first node of p′′, say vi, must be an eigennode.

If vi = vk, then ∆ij = w(p) = w(p′′) = bn+1
ij . If vi 6= vk, then we split σ into

two paths; τ = (vi, . . . , vk) and τ ′ = (vk, . . . , vi). Let p′′′ = (vi, . . . , vk, . . . , vj) be the

path formed from joining τ and p. Note that l(p′′′) ≤ n.

If there exists a path q = (vi, . . . , vj) with w(q) > w(p′′), then by setting q′ =

(vk, . . . , vi, . . . , vj) to be the path formed from joining τ ′ and q, we have that

w(q′) = w(τ ′) + w(q)

> w(τ ′) + w(p′′)

= w(τ ′) + w(τ) + w(p)

= w(p)

≥ w(q′).

Therefore q does not exist and we have ∆ij = w(p′′′) = w(p′′) = bn+1
ij .
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It is extremely time consuming to find all possible elementary cycle means in the

digraph of a matrix. The following algorithm, developed by Karp, uses a different

approach to finding the eigenvalue, which is much faster, finding λ in O(n3). (Further

details of this time bound can be found in [20].)

Theorem 3.13 ([28, 20]). For A = (aij) ∈ Rn×n,

λ(A) = max
i∈N

(
min
k∈N

(
an+1

i1 − ak
i1

n + 1− k

))
.

Proof. Let B be defined by subtracting the (unknown) finite number λ from every

element of A. Clearly, all cycle means are thereby also reduced by λ, so λ(B) = 0.

Let bk
ij denote the (i, j)’th element of B(k) (k = 1, 2, . . .). Then ak

i1 and bk
i1 denote

the greatest weight of a path of length k from vi to v1 in A and B, respectively, so

ak
i1 = bk

i1 + kλ

and hence, for all i ∈ N ,

(an+1
i1 − (n + 1)λ)− (ak

i1 − kλ) = bn+1
i1 − bk

i1.

Thus for all k 6= n + 1,

an+1
i1 − ak

i1

n + 1− k
− λ =

bn+1
i1 − bk

i1

n + 1− k
. (3.3.1)

If ∆ = (∆ij) = ∆(B), then by Definition 2.1 and Definition 3.6, we have that

the (i, j)’th element of ∆ is greater than or equal to the (i, j)’th element of B(k), for

all k, and equal to the (i, j)’th element of B(r), for some r ∈ N . Hence we have:

For each i, ∆i1 ≥ bk
i1 for all k ≥ 1. (3.3.2)

For each i, ∆i1 = br
i1 for some r ∈ N. (3.3.3)
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If we set k in (3.3.1) to be the r of (3.3.3), then the denominator of the RHS of

(3.3.1) is ≥ 0. Also we have bn+1
i1 ≤ ∆i1 from (3.3.2), and br

i1 = ∆i1 by (3.3.3). So

the RHS of (3.3.1) is ≤ 0 for at least one k ∈ N . Therefore:

min
k∈N

an+1
i1 − ak

i1

n + 1− k
− λ ≤ 0 (3.3.4)

If we set j = 1 in Lemma 3.12 we get the following:

For some i ∈ N, ∆i1 = bn+1
i1 (3.3.5)

Using (3.3.2) and (3.3.5), we have that bn+1
i1 ≥ bk

i1, for some i ∈ N . Therefore

the RHS of (3.3.1) is ≥ 0 for at least one i ∈ N . Hence we have:

max
i∈N

min
k∈N

an+1
i1 − ak

i1

n + 1− k
− λ = 0,

and the result follows.

3.4 The eigenproblem for non-finite matrices

It is straightforward to show the results of this chapter extend to irreducible matrices

in Rn×n
. In particular:

Theorem 3.14 ([18, 20]). Let A ∈ Rn×n
be an irreducible matrix. The eigenvalue

exists, is finite, unique and is given by λ = λ(A). Every column of ∆(λ−1⊗A) with

a zero diagonal element is a finite eigenvector of A.

We could consider reducible matrices in the eigenproblem. However, this is

slightly more complicated and we will not need to solve the eigenproblem for re-

ducible matrices as explained later (Section 6.4.8).
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Chapter 4

The max-algebraic

characteristic polynomial

In this chapter we define the max-algebraic characteristic polynomial (or charac-

teristic max-polynomial). As the name suggests, a max-polynomial, which we will

introduce shortly, is a polynomial in the max-algebra setting. The characteris-

tic max-polynomial is a specific type of max-polynomial, defined using maper, the

max-algebraic permanent. We will discuss the max-algebraic permanent and its

relationship to the classical assignment problem in the next section.

It is not known how to efficiently calculate all terms of the characteristic max-

polynomial. We can calculate some terms (called essential terms) in polynomial

time. We will describe the graph of the characteristic max-polynomial, and will show

why only essential terms are needed to describe the characteristic max-polynomial

as a function.

4.1 The max-algebraic permanent

Recall that N = {1, . . . , n} and Pn is set of all permutations of length n (Definition

2.40). Let A = (aij) ∈ Rn×n
, then we define the max-algebraic permanent of A as

30



maper(A) =
∑⊕

π∈Pn

∏⊗

i∈N

ai,π(i),

which in conventional notation is

maper(A) = max
π∈Pn

∑
i∈N

ai,π(i).

Note in particular, that
∏⊗

i∈N

ai,π(i) in conventional algebra is
∑
i∈N

ai,π(i), which we

recall, for π ∈ Pn, was defined as the weight w(A, π) of permutation π with respect

to matrix A. Hence,

maper(A) = max
π∈Pn

w(A, π)

is the maximum weight of permutations π ∈ Pn with respect to matrix A. This is also

known as the optimal assignment problem value for the matrix A. The assignment

problem is to find n independent entries in an n× n matrix with maximum sum.

There are a number of efficient solution methods for solving the assignment

problem. One of the best known is the Hungarian method, which will solve the

assignment problem with computational complexity O(n3). Orlin and Ahuja [36]

produced an algorithm that will solve the assignment problem by combining the

auction algorithm and the shortest path algorithm, in O(
√

nm log(nAmax)), where

m is the number of finite entries in A, and Amax is the maximum entry in A. If

all entries of the matrix are finite and bounded by a polynomial in n, then the

complexity of their algorithm simplifies to O(n2.5 log n).

If w(A, π) = maper(A), then π is known as an optimal permutation (or optimal

solution) for the assignment problem of matrix A. There may be more than one

optimal permutation. We define ap(A) to be the set of all optimal permutations:

ap(A) =
{
π ∈ Pn : w(A, π) = maper(A)

}
.
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4.2 Max-polynomials

A max-polynomial has the form

p(x) =

n∑⊕

r=0

ar ⊗ x(r)

= max
r=0,...,n

(ar + rx),

for coefficients a0, a1, . . . , an ∈ R.

Obviously, the graph of a max-polynomial is a piecewise linear convex function,

whose slopes are from the set {0, 1, . . . , n}. All max-polynomials can be factorised

into max-algebraic linear factors:

Proposition 4.1 ([21]). Any max-polynomial can be written as the product of a

constant and n linear factors

p(x) = a⊗ (x⊕ b1)⊗ (x⊕ b2)⊗ . . .⊗ (x⊕ bn),

where a, b1, b2, . . . , bn ∈ R.

In conventional notation,

p(x) = a + max(x, b1) + max(x, b2) + . . . + max(x, bn).

The constants br, for r ∈ N , are called the corners of p(x). Some corners may be

equal, but the set of corners of p(x) is uniquely determined.

4.3 The characteristic max-polynomial

There are several ways to define the max-algebraic characteristic polynomial (also

called the characteristic max-polynomial) of a square matrix A = (aij) ∈ Rn×n
. (See
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[35, 25] for details of these, and also the related concepts of characteristic equation

and characteristic bi-polynomial in max-algebra.)

We will use the definition given in [19], which states that the characteristic max-

polynomial is

χA(x) = maper(A⊕ x⊗ I).

In other words, it is the max-algebraic permanent of the matrix




a11 ⊕ x a12 . . . a1n

a21 a22 ⊕ x . . . a2n

...
...

. . .
...

an1 an2 . . . ann ⊕ x




.

This means that

χA(x) = δ0 ⊕ (δ1 ⊗ x)⊕ · · · ⊕ (δn−1 ⊗ x(n−1))⊕ x(n)

=

n∑⊕

i=0

δi ⊗ x(i)

for some δ0, . . . δn−1 ∈ R, and we set δn = 0 and x(0) = 0. Where we use more than

one matrix, we shall write δk(A) to refer to the max-algebraic coefficient of x(k) in

the characteristic max-polynomial of matrix A. Written in conventional notation

we have

χA(x) = max(δ0, δ1 + x, . . . , δn−1 + (n− 1)x, nx). (4.3.1)

Viewed as a function of x, this is obviously a piecewise linear convex function whose

slopes are from the set {0, 1, . . . , n}.
If for some k ∈ {0, 1, . . . , n} the inequality

δk ⊗ x(k) ≤
∑⊕

i∈{0,...,n}−{k}
δi ⊗ x(i) (4.3.2)
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holds for every real x, then the term δk ⊗ x(k) is called inessential, otherwise it is

called essential. The term x(n) is always essential. If δk ⊗ x(k) is inessential then

χA(x) =
∑⊕

i∈{0,...,n}−{k}
δi ⊗ x(i)

holds for every real x. Therefore inessential terms are not needed to describe χA(x)

as a function of x.

Where the gradient of χA(x) changes, we define x as a breakpoint:

Definition 4.2. If y1(x) and y2(x) are two different essential terms of χA(x), and

∃x′ such that y1(x
′) = y2(x

′) = χA(x′), then x′ is called a breakpoint of χA(x).

Theorem 4.3. The set of breakpoints of χA(x) is equal to the set of corners of

χA(x).

Proof. We have

χA(x) = δ0 ⊕ (δ1 ⊗ x)⊕ · · · ⊕ (δn−1 ⊗ x(n−1))⊕ x(n)

= max(δ0, δ1 + x, . . . , δn−1 + (n− 1)x, nx) (4.3.3)

and

χA(x) = a⊗ (x⊕ b1)⊗ (x⊕ b2)⊗ · · · ⊗ (x⊕ bn)

= a + max(x, b1) + max(x, b2) + · · ·+ max(x, bn)

and may assume that b1 ≤ b2 ≤ · · · ≤ bn. Some of these may be −∞. Assume that

b1 = · · · = br = −∞ and −∞ < br+1 ≤ · · · ≤ bn. This enables us to write

χA(x) = a + rx + max(x, br+1) + max(x, br+2) + . . . + max(x, bn) (4.3.4)
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for 0 ≤ r ≤ n.

If a linear piece of the graph has slope k, then by (4.3.3), the equation of this

piece must be given by

y = δk + kx. (4.3.5)

Note that ∀i ∈ {r + 1, . . . , n}, by using (4.3.4), we see that in (4.3.5):

If x < bi then k < i

If x > bi then k ≥ i.

Therefore the slope of χA(x) changes immediately before and after bi. Hence

each corner bi is also a breakpoint.

Also note that ∀i ∈ {r + 1, . . . , n − 1}, ∀x ∈ (bi, bi+1), k remains unchanged.

Hence the slope of χA(x) remains unchanged between corners. This is also true for

x < br+1 and for x > bn. So each breakpoint must occur at a corner of χA(x).

This tells us that where the graph of χA(x) changes gradient, the x coordi-

nate at this (break)point is equal to a corner, that is value from the set of corners

{br+1, . . . , bn} (where br+1, . . . , bn are as in (4.3.4)).

We shall use corners later (Section 6.2), to find bounds on the coefficient of the

characteristic max-polynomial. There is no need to find a bound for a coefficient of

an essential term though, as we can efficiently calculate these:

Theorem 4.4 ([7]). If A ∈ Rn×n
, then as a function, (the essential terms of) χA(x)

can be found in O(n2(m + n log n)) steps, where A has m finite entries.

The method contained within [7] is based on ideas from computational geometry

combined with solving the assignment problem. It finds all essential terms but none

of the inessential terms. It is not known how to efficiently calculate the coefficient

values of inessential terms.
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The complexity has recently been improved by a factor of n to O(n(m+n log n))

steps [24].
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Chapter 5

The best principal submatrix

problem and its variants

This chapter will include the following. We will define the best principal submatrix

problem (BPSM). This problem is to find the maximum assignment problem value

of principal submatrices of A. BPSM is important, as it is very closely linked to

finding the characteristic max-polynomial. We know of no polynomial method to

solve this problem in general.

Possible applications of BPSM will be given. One such application is the job

rotation problem, which involves reassigning jobs, maximising the total benefit of

the job swaps.

A more general version of BPSM is given, where submatrices need not be prin-

cipal. It is called the best submatrix problem (BSM). We will show that BSM is

polynomially solvable.

Other problems related to BPSM will be given. Some of these help us find

bounds to the optimal solution value of BPSM. We will explore the complexity of

these related problems compared to BPSM.
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5.1 The best submatrix problem (BSM)

Definition 5.1. Let A = (aij) ∈ Rn×n
. A matrix of the form




ai1j1 ai1j2 . . . ai1jk

ai2j1 ai2j2 . . . ai2jk

...
...

. . .
...

aikj1 aikj2 . . . aikjk




,

with 1 ≤ i1 < i2 < · · · < ik ≤ n and 1 ≤ j1 < j2 < · · · < jk ≤ n, is called a k × k

submatrix of A.

Problem 1. Given a matrix A = (aij) ∈ Rn×n
and an integer k ∈ N , find the

greatest max-algebraic permanent of all k × k submatrices of A.

Problem 1 will be referred to as the best submatrix problem (BSM). It is equiva-

lent to the task of finding the maximum sum of k independent elements of A (where

independent means in a different row and column).

Let BSM(A, k) denote the problem of solving BSM for matrix A and a particular

value of k.

Definition 5.2. For A ∈ Rn×n
and k ∈ N , the optimal solution value of BSM(A, k)

will be denoted as γn−k(A), or γn−k for short.

Theorem 5.3 ([16]). Given A = (aij) ∈ Rn×n
and k ∈ N , BSM(A, k) can be solved

(i.e. we can calculate γn−k(A)) in O(n3) time.

BSM(A, k) can be solved by constructing a new matrix B = (bij) ∈ R(2n−k)×(2n−k)

defined by
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bij =





aij, for i = 1, . . . , n and j = 1, . . . , n

0, for i = 1, . . . , n and j = n + 1, . . . , 2n− k

0, for i = n + 1, . . . , 2n− k and j = 1, . . . , n

−∞, for i = n + 1, . . . , 2n− k and j = n + 1, . . . , 2n− k.

So

B =




a11 . . . a1n 0 . . . 0

...
. . .

...
...

. . .
...

an1 . . . ann 0 . . . 0

0 . . . 0 −∞ . . . −∞
...

. . .
...

...
. . .

...

0 . . . 0 −∞ . . . −∞




.

We can then apply the Hungarian method on B in O((2n− k)3) = O(n3) time,

to find the biggest weight, with respect to B, of all permutations in Pn. Due to the

construction of B, this is equal to the greatest sum of k independent entries of A,

i.e. γn−k(A).

For a full proof, the reader is referred to [16].

It is useful not only to calculate the value of γn−k(A), but also to know which

submatrix of A the optimal assignment is in, or which elements of A add together

to give γn−k(A). Both of these can be found from the above method.

An alternative version of BSM is the following:

Problem 2. Given a matrix A = (aij) ∈ Rn×n
and an integer k ∈ N , find the lowest

max-algebraic permanent of all k × k submatrices of A.

Clearly, if any element of A is −∞, then the lowest sum of any k independent

elements will be −∞. Otherwise, define −A = (−aij). In this case, the optimal

solution value is simply −γn−k(−A).
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As any problem of this kind can be converted to the first kind, we shall look only

at problems of the first kind.

5.2 The best principal submatrix problem (BPSM)

Definition 5.4. Let A = (aij) ∈ Rn×n
. A matrix of the form




ai1i1 ai1i2 . . . ai1ik

ai2i1 ai2i2 . . . ai2ik

...
...

. . .
...

aiki1 aiki2 . . . aikik




,

with 1 ≤ i1 < i2 < · · · < ik ≤ n, is called a k × k principal submatrix of A.

Definition 5.5. Let A(k) be the set of all k × k principal submatrices of A.

Problem 3. Given a matrix A = (aij) ∈ Rn×n
and an integer k ∈ N , find

max
B∈A(k)

maper(B).

Problem 3 will be referred to as the best principal submatrix problem (BPSM).

Let BPSM(A, k) denote the problem of solving BPSM for matrix A and a particular

value of k, and let BPSM(A) denote the problem of solving BPSM for matrix A

and all values of k ∈ N . Unlike BSM, in general, BPSM has no known polynomial

solution method.

Solving BPSM(A) and finding the characteristic max-polynomial of A are closely

related, as can be seen from the following theorem and discussion.

Theorem 5.6 ([19]). If A ∈ Rn×n
, then (∀k ∈ N) δn−k(A) = max

B∈A(k)
maper(B).

This means that δn−k(A) is the optimal solution value of BPSM(A, k).

We will test Theorem 5.6 with the following example.
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Example 5.1. Let

A =




5 9 6

1 4 3

8 7 2


 .

Then

max
B∈A(1)

maper(B) = 5,

max
B∈A(2)

maper(B) = 6 + 8 = 14,

max
B∈A(3)

maper(B) = maper(A) = 9 + 3 + 8 = 20.

Also,

χA(x) = maper




5⊕ x 9 6

1 4⊕ x 3

8 7 2⊕ x




= ((5⊕ x)⊗ (4⊕ x)⊗ (2⊕ x))⊕ ((5⊕ x)⊗ 3⊗ 7)

⊕ (6⊗ (4⊕ x)⊗ 8)⊕ (9⊗ 1⊗ (2⊕ x))

⊕ (9⊗ 3⊗ 8)⊕ (6⊗ 1⊗ 7)

= x(3) ⊕ 5⊗ x(2) ⊕ 14⊗ x⊕ 20.

Therefore,

δ2(A) = δ3−1(A) = 5 = max
B∈A(1)

maper(B)

δ1(A) = δ3−2(A) = 14 = max
B∈A(2)

maper(B)

δ0(A) = δ3−3(A) = 20 = max
B∈A(3)

maper(B).

So Theorem 5.6 does indeed hold for this example.
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Solving BPSM(A) allows us to find χA(x). However, we do not need to solve

BPSM for all values of k ∈ N , because if for a particular k, say k′ we have that

δn−k′(A)⊗x(n−k′) is an inessential term, it is not needed for the description of χA(x)

as a function, so we do not need to calculate BPSM(A, k′).

We have that δn−k(A) = −∞ is equivalent to finding that maper(B) = −∞ for

all B ∈ A(k). If this is the case, δn−k(A) ⊗ x(n−k) = −∞, hence δn−k(A) ⊗ x(n−k)

is inessential, and by convention we can remove this term if considering χA(x) as a

function.

From Theorem 5.6 we can easily compute δ0(A) = maper(A) in O(n3) steps and

δn−1(A) = max(a11, a22, . . . , ann) in O(n) steps. In general δn−k(A) can be computed

by solving and comparing the assignment problem values for every k × k principal

submatrix of A. There are
(

n
k

)
matrices in A(k), so this can be done in O

(
k3 · (n

k

))

steps. If k is a fixed constant (independent of n), then δn−k(A) can be computed

within a polynomial of n steps. But in general, this does not provide us with an

efficient solution method.

If we had a polynomial method for solving BPSM, then we could find all co-

efficients of the max-algebraic characteristic polynomial, not just coefficients that

belong to essential terms.

However, in general, it is not known how to polynomially solve BPSM, or if it is

possible to do so. As we know how to find χA(x) (as a function) in O(n(m+n log n))

steps, (where A has m finite entries), by calculating all essential terms of χA(x), we

can polynomially solve BPSM(A, k) for all essential k. If all terms of χA(x) are

essential, then this polynomially solves BPSM(A). For some other special cases of

matrix A, it is possible to solve BPSM(A) in polynomial time, as will be shown later

(in Section 6.4).

It is useful not only to calculate the value of δn−k(A), but also to know which

principal submatrix of A the optimal assignment is in, or which elements of A add

42



together to give δn−k(A). Any method that finds δn−k(A), will need to check that

there do exist k elements in a principal submatrix of A with sum equal to δn−k(A).

So any method for solving BPSM can easily be adapted to find these extra pieces

of information.

An alternative version of BPSM is the following:

Problem 4. Given a matrix A = (aij) ∈ Rn×n
and an integer k ∈ N , find

min
B∈A(k)

maper(B).

Clearly, if any element of A is −∞, then the lowest sum of any k independent

elements of any principal submatrix of A will be −∞. Otherwise, Define −A =

(−aij). In this case, the optimal solution value of this problem is simply −δn−k(−A).

Again, as any problem of this kind can be converted to one from Problem 3, we

shall look only at Problem 3.

5.3 Applications of BPSM

Now we give some examples of possible applications of BPSM.

5.3.1 The job rotation problem

The first application we give is the job rotation problem. We will explain this with

the help of two examples:

Example 5.2. A theme park has n staff. To avoid boredom (which may reduce

concentration and therefore decrease safety levels) it wants k staff to swap jobs

amongst each other. Each person should still have one job afterwards.

They choose a k ∈ N so that it is not too high, which may cause too much

disruption, or be difficult or expensive to retrain so many people at once. Also, if

they set k too low, then there may not have much effect on boredom, morale and

safety levels.
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The benefit of person i taking over person j’s job has been calculated for each

person based on the estimated increase in concentration levels and retraining costs.

Which jobs should be assigned to each member of staff to maximise the combined

benefit of the job swaps?

We define an n×n matrix A = (aij), by setting aij equal to the benefit of person

i taking over the job of person j. To avoid a person i swapping jobs with themselves,

we set aii to −∞. If we solve BPSM(A, k) and element aij is selected then person i

should now do person j’s old job, (with those not selected remaining with the same

job). The total benefit of the job swaps will be δn−k(A).

Example 5.3. A Mathematics department wishes to swap teaching duties of some

lecturers. They think it is important to keep some stability in the department, so

not all courses should have a new lecturer.

If each lecturer teaches exactly one course each, then to maximise total teaching

effectiveness, we could use a similar approach to Example 5.2, with each entry of A

related to a particular lecturer’s interest (to teach) and ability (to prepare quickly /

teach) in a particular course.

In the case where some lecturers have more than one course to teach, we proceed

by defining A = (aij) as follows: If course i and course j are taught by different

lecturers, then set aij to be course i’s current lecturer’s interest and ability to now

teach course j instead. If course i and course j are taught by the same lecturer,

then set aij to −∞ (to ensure a lecturer can’t swap teaching a course with himself).

If we solve BPSM(A, k) and element aij is selected then lecturer of course i

should now teach course j (with courses not selected remaining being taught by the

old lecturer). The total effect of the re-allocation of teaching duties will be δn−k(A).

The above will cause the number of courses a lecturer teaches to be the same as

before the re-allocation of teaching duties. This is not always desired. A lecturer

may want the number of courses he teaches to be decreased so that he can have
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more time to research. So we need to adapt this process slightly to cope with this.

The way we do this is by including “dummy courses”. A dummy course requires

no teaching, so if a lecturer is assigned to one of these, then he can use this time for

research.

These are examples of the job rotation problem. In general this is where we have

employees doing a total of n jobs between them, and we want to know the maximum

benefit of re-assigning / rotating k jobs between the employees, (k ∈ N), given that

the benefit is known of each person being assigned each of the jobs.

There are similar examples where we may want to minimise total costs from a

cost matrix. In this case, we simply define a benefit matrix to be the negative of

the cost matrix and try to maximise the total benefit. This idea also applies to the

other applications that we will give.

5.3.2 Other applications

Swapping jobs is not the only application. In general if we have a cost / benefit

matrix A = (aij), where aij is the cost / benefit of i performing some action asso-

ciated with j, then we may be able to use BPSM to find the total cost / benefit

of k such actions. Such actions could be “perform j’s current job” as in the case

of the job rotation problem, or may be “play a football match at home to team

j” or “e-mail person j”. The optimal permutation for BPSM selects exactly one

element in each row and column of a principal submatrix. Therefore we must also

have that there exist a j that i performs an action on if and only if there exist a k

that performs an action on i. This means we will have “chains” of actions between

people / objects, with each performing an action on the next. More precisely, these

“chains” are actually cycles.

Example 5.4. An Art teacher has n students, and wants them to practise drawing

portraits of each other. Only k of the students can draw portraits, due to constraints
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on equipment, time, etc. She decides that each of the k portrait takers should also

have their portraits taken, so that the rest of the class can do other work. Each

person should take no more than one portrait, and have no more than one portrait

of themselves taken.

Due to past experience with the students, the teacher knows the strengths and

weaknesses of each student, and in particular, can rate how successful each student

will be at drawing each of the faces. She wants to assign k students so that the sum

of the ratings of the students selected is as high as possible. She needs to know who

should draw whom.

We define an n × n matrix A = (aij), by setting aij equal to student i’s rating

for drawing the portrait of student j. If self-portraits are not allowed, we may set

aii to −∞ for all i. If we solve BPSM(A, k), then element aij will be selected if and

only if student i should draw student j’s portrait. The total rating of the drawings

will be given by δn−k(A).

Example 5.5. A company manager decides to hold an internal assessment of some

of its staff. To avoid increasing workloads too much, it is decided to select k of its

n staff to assess each other. There should be at most one assessment done by a

person, and at most one assessment done on a person.

Each person is better at assessing the work of another if they are working (or

have worked) in a similar area of the company, doing similar tasks. For that reason,

the manager has judged how well each member of staff will be at assessing every

other member of staff. He wants to choose k staff, so that the total assessment is as

accurate as possible. Which staff should he choose to assess who?

We define an n×n matrix A = (aij), by setting aij equal to person i’s ability for

assessing the work of person j. If self-assessments are not allowed, we may set aii to

−∞ for all i. If we solve BPSM(A, k), then element aij will be selected if and only

if person i should assess person j’s work. The manager can have some indication to
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how accurate the total assessment of the k staff is by looking at how high the value

of δn−k(A) is.

5.4 Similar problems to BPSM

The aim of this section is to investigate some interesting problems that are closely

related to BPSM. We shall look at whether these similar problems can help us solve

BPSM (or vise versa).

We have already seen the BSM problem, for which we maximise the assignment

problem value over all submatrices (not just principal ones). This change causes

BSM to be polynomially solvable, where as BPSM may not be polynomially solvable.

BSM immediately gives us an upper bound for BPSM. Some of the similar problems

will also provide us with upper bounds for BPSM.

We will consider the problem of finding the greatest cyclic permutation mean of

fixed or variable length. Other problems are where we allow the size of the principal

submatrix to be between 1 and k, or between k and n, or between kmin and kmax,

instead of just having k × k submatrices.

We shall also look at bottleneck versions of some of these problems, where instead

of maximising the total of the elements given by some permutation, we maximise

the smallest of these elements.

Recall N = {1, 2, . . . , n} and K = {1, 2, . . . , k} and the section on permutations

(Section 2.3, page 15).

5.4.1 The greatest cyclic permutation mean of length k

Consider the following problems:

Problem 5. Given A ∈ Rn×n
and k ∈ N , find max

σ∈Ck
n

µ(A, σ).

Problem 5 seeks to find the greatest mean weight, with respect to A, of all cyclic

permutations in Ck
n (i.e. of all cyclic permutations in Cn of length k).
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Problem 6. Given A ∈ Rn×n
and k ∈ N , find max

σ∈Ck
n

w(A, σ).

Problem 6 seeks to find the greatest weight, with respect to A, of all cyclic

permutations in Ck
n.

Theorem 5.7. If we can solve Problem 5 then we can solve Problem 6 and vice

versa.

Proof. In both problems, all cyclic permutations have a fixed length of k, so it

follows that the optimal solution to Problem 6 is k times the optimal solution of

Problem 5.

Theorem 5.8. The optimal solution to Problem 6 acts as a lower bound to δn−k(A).

Proof. We have

max
σ∈Ck

n

w(A, σ) = max
B∈A(k)

max
σ′∈Ck

k

w(B, σ′)

≤ max
B∈A(k)

max
π∈Pk

w(B, π)

= δn−k(A),

as Ck
k ⊆ Pk. Hence result.

Remark. If w(B, σ) = δn−k for some B ∈ A(k) and some cyclic permutation σ ∈
Ck

k , then the optimal solution to Problem 6 is δn−k and the optimal solution to

Problem 5 is δn−k/k.

Remark. Unfortunately, Problem 6 (and 5) are NP -complete. To see this, set k

to n. We are then trying to find the maximum weight of a cyclic permutation that

includes all integers from 1 to n. This is equivalent to the Travelling Salesman

Problem, which is well known to be NP -complete.
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5.4.2 The greatest cyclic permutation mean of length k or

less

Now we look at a modified version of Problem 5:

Problem 7. Given A ∈ Rn×n
and k ∈ N , find max

i∈K
max
σ∈Ci

n

µ(A, σ).

Problem 7 seeks to find the greatest mean weight, with respect to A, of all cyclic

permutations on N of length k or less.

Problem 8. Given A ∈ Rn×n
and k ∈ N , find max

B∈A(k)
λ(B).

Problem 8 seeks to find the greatest elementary cycle mean from all digraphs of

k × k principal submatrices of A.

Theorem 5.9. Problem 7 and Problem 8 are equivalent.

Proof. We have

max
i∈K

max
σ∈Ci

n

µ(A, σ) = max
i∈K

max
B∈A(i)

max
σ′∈Ci

i

µ(B, σ′)

= max
B∈A(k)

max
σ′′∈Ck

µ(B, σ′′)

= max
B∈A(k)

λ(B),

hence the result follows.

Lemma 5.10. If A ∈ Rn×n
, k ∈ N and π = σ1 ◦ σ2 ◦ · · · ◦ σs ∈ Pk, then µ(A, π) ≤

max
i=1,...,s

µ(A, σi).

Proof. Let µ(A, σ∗) = max
i=1,...,s

µ(A, σi). Then
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µ(A, π) = µ(A, σ1 ◦ σ2 ◦ · · · ◦ σs)

=
w(A, σ1 ◦ σ2 ◦ · · · ◦ σs)

k

=
w(A, σ1) + w(A, σ2) + · · ·+ w(A, σs)

k

=
µ(A, σ1)l(σ1) + µ(A, σ2)l(σ2) + · · ·+ µ(A, σs)l(σs)

k

≤ µ(A, σ∗)l(σ1) + µ(A, σ∗)l(σ2) + · · ·+ µ(A, σ∗)l(σs)

k

= µ(A, σ∗)
l(σ1) + l(σ2) + · · ·+ l(σs)

k

= µ(A, σ∗),

which completes the proof.

Theorem 5.11. The optimal solution to Problem 7 (and 8) equals

max
r∈K

δn−r(A)

r
. (5.4.1)

Proof. Note that max
B∈A(k)

λ(B) is the greatest cyclic permutation mean, with respect

to r × r principal submatrices of A (for all r ≤ k), from all cyclic permutations

of length r. Also note that max
r∈K

δn−r(A)

r
is the greatest permutation mean, with

respect to r × r principal submatrices of A (for all r ≤ k), from all permutations of

length r. Therefore, we have the following equations.

max
B∈A(k)

λ(B) = max
r∈K

max
B∈A(r)

max
σ∈Cr

r

µ(B, σ),

max
r∈K

δn−r(A)

r
= max

r∈K
max

B∈A(r)
max
π∈Pr

µ(B, π) = µ(B∗, π∗) say,

where π∗ = σ1 ◦ σ2 ◦ · · · ◦ σs.

Then by applying Lemma 5.10, we have

µ(B∗, π∗) ≤ max
i=1,...,s

µ(B∗, σi) = µ(B∗, σ∗) say.
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However, as

µ(B∗, σ∗) ≤ δn−l(σ∗)(A)

l(σ∗)
≤ max

r∈K

δn−r(A)

r
= µ(B∗, π∗),

we must have that µ(B∗, π∗) = µ(B∗, σ∗). Also, because Cr
r ⊆ Pr, we have that

µ(B∗, σ∗) = max
r∈K

max
B∈A(r)

max
σ∈Cr

r

µ(B, σ), so

max
r∈K

δn−r(A)

r
= max

r∈K
max

B∈A(r)
max
π∈Pr

µ(B, π)

= µ(B∗, π∗)

= µ(B∗, σ∗)

= max
r∈K

max
B∈A(r)

max
σ∈Cr

r

µ(B, σ)

= max
B∈A(k)

λ(B),

which completes the proof.

Unfortunately, we do not know how to find δn−r in general, so we need to use a

different approach to solve Problem 7 (and 8):

Theorem 5.12. The optimal solution to Problem 7 (and 8) equals

max
i∈N

max
j∈K

aj
ii

j
, (5.4.2)

(where as before, A(r) = (ar
ij)).

Proof. Observe that max
i∈N

aj
ii

j
is the maximum mean weight of all (not necessarily

elementary) cycles of length j in D(A). So max
i∈N

max
j∈K

aj
ii

j
is the maximum mean

weight of all (not necessarily elementary) cycles of length no more than k in D(A).

Let the maximum mean weight of all cycles of length no more than k in D(A)

be given by λk. Let σopt(k) = {σ : l(σ) ≤ k, µ(A, σ) = λk}. If there is an elementary

cycle in σopt(k), then the result holds.
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Assume this is not the case. Then let σ be a cycle of smallest length in σopt(k).

We can decompose σ into elementary cycles. If any of these elementary cycles (say

σ′) has a cycle mean greater than λk, i.e. µ(σ′) > λk, then this would contradict

the definition of λk. If any of these elementary cycles has a cycle mean equal to λk,

then we may remove this elementary cycle from σ and have a shorter cycle σ′′ with

µ(σ′′) = λk, which contradicts the definition of σ.

If any of these elementary cycles (say θ) has a cycle mean less than λk, then

removing this θ from σ forms a cycle σ′′′ of length less than k. Let

λk =
w(σ1) + · · ·+ w(σs) + w(θ)

l(σ1) + · · ·+ l(σs) + l(θ)
.

Then as µ(θ) =
w(θ)

l(θ)
< λk, we have

λk <
w(σ1) + · · ·+ w(σs) + l(θ)λk

l(σ1) + · · ·+ l(σs) + l(θ)

⇐⇒ λk(l(σ1) + · · ·+ l(σs) + l(θ)) < w(σ1) + · · ·+ w(σs) + l(θ)λk

⇐⇒ λk(l(σ1) + · · ·+ l(σs)) < w(σ1) + · · ·+ w(σs)

⇐⇒ λk <
w(σ1) + · · ·+ w(σs)

l(σ1) + · · ·+ l(σs)

= µ(σ′′′).

So we have µ(σ′′′) > λk, which contradicts the definition of λk.

Hence there is an elementary cycle in σopt(k) and so the result holds.

Remark. Note that (5.4.1) and (5.4.2) allow us to find an upper bound for δn−k(A)

of k max
i∈N

max
j∈K

aj
ii

j
, which can be found in polynomial time.

In the next two problems, we generalise Problem 7 (and 8) by removing the

principality constraint:
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Problem 9. Given A ∈ Rn×n
and k ∈ N , find the greatest cycle mean from all

elementary cycles of digraphs of submatrices of A of length no greater than k.

Problem 10. Given A ∈ Rn×n
and k ∈ N , maximise λ(B) over all k×k submatrices

B of A.

Theorem 5.13. Problem 9 and Problem 10 are equivalent.

Proof. Problem 10 looks for the greatest cycle mean of elementary cycles in the

digraphs of all k × k submatrices of A. Note that, σ is an elementary cycle in the

digraph of a k × k submatrix of A, if and only if, σ is an elementary cycle in the

digraph of an l(σ)× l(σ) submatrix of A with l(σ) ≤ k. Hence result.

Recall that the optimal solution value of BSM(A, r) is denoted as γn−r(A), or

γn−r for short.

Theorem 5.14. The optimal solution to Problem 9 (and 10) equals

max
r∈K

γn−r

r
.

Proof. Note that max
r∈K

γn−r

r
is the greatest permutation mean, with respect to B,

from all permutations π ∈ Pr, where B is an r × r submatrix of A, and r ∈ K. Let

s ∈ K be the smallest value of r such that

γn−s

s
= max

r∈K

γn−r

r
.

Then since s is smallest, we must have (by Lemma 5.10) that γn−s = w(B, σ′), where

σ′ ∈ Cs
s is some cyclic permutation and B is some s× s submatrix of A, (for some

s ∈ K). Therefore
γn−s

s
is the greatest cyclic permutation mean, with respect to

B, from all cyclic permutations σ ∈ C l
r, where B is an r × r submatrix of A and

1 ≤ l ≤ r ≤ k. This is equivalent to the value Problem 9 (and therefore also to

Problem 10) is looking for. Hence result.
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As we can find γn−r in polynomial time (by Theorem 5.3), we can also solve

Problem 9 (and 10) in polynomial time.

5.4.3 BPSM≤(A, k)

BPSM finds the biggest sum of exactly k independent elements of all k×k principal

submatrices of A. We have already shown that the job rotation problem is an

application of this, where we swap k jobs round. It may be more useful to swap up

to k jobs. This is equivalent to finding the biggest sum of l independent elements of

all l × l principal submatrices of A, where 1 ≤ l ≤ k.

Formally, it is the following problem:

Problem 11. Given A ∈ Rn×n
and k ∈ N , find

max
l∈K

max
B∈A(l)

maper(B).

We refer to this problem as BPSM≤(A, k). It is not known how to polynomially

solve it in general.

Remark. Note that for A ∈ Rn×n
and k ∈ N ,

max
l∈K

max
B∈A(l)

maper(B) = max
l∈K

δn−l(A).

So if we know δn−l(A) for all l ≤ k, (for example when δn−l(A)⊗ x(n−l) are essential

terms of χA(x), for all l ≤ k), then we can polynomially solve BPSM≤(A, k).

We can also solve BPSM≤(A, k) if A has no positive cycles in DC(A):

Theorem 5.15. If λ(A) ∈ [−∞, 0], the optimal solution to BPSM≤(A, k) is given

by

max
l∈K

max
B∈A(l)

maper(B) = max
l∈K

max
i∈N

al
ii. (5.4.3)
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Proof. Assume the optimal solution is max
l∈K

max
B∈A(l)

maper(B) = w(C, π), for some

C ∈ A(l), (l ∈ K) and π = σ1 ◦ · · · ◦ σt ∈ Pl. As there are no positive cycles

in DC(A), we have w(C, σi) ≤ 0, for 1 ≤ i ≤ t. Without loss of generality let

w(C, σ1) = max
1≤i≤t

w(C, σi), then as (for 2 ≤ i ≤ t) w(C, σi) ≤ 0, we have

w(C, π) = w(C, σ1) + · · ·+ w(C, σt)

≤ w(C, σ1)

≤ max
l∈K

max
B∈A(l)

max
σ∈Cl

l

w(B, σ)

≤ max
l∈K

max
B∈A(l)

max
π′∈Pl

w(B, π′)

= max
l∈K

max
B∈A(l)

maper(B)

= w(C, π).

Therefore we can change all “≤” to “=” in the above. So,

max
l∈K

max
B∈A(l)

maper(B) = max
l∈K

max
B∈A(l)

max
σ∈Cl

l

w(B, σ)

= max
l∈K

max
σ∈Cl

n

w(A, σ).

This means that max
l∈K

max
B∈A(l)

maper(B) = max
l∈K

max
σ∈Cl

n

w(A, σ) equals the maximum

weight, with respect to some A, of all cyclic permutations on N of length no more

than k.

We have that al
ii is the maximum weight of all (not necessarily elementary) cycles

of DC(A) of length l that pass through node i. This is equal to the sum of weights

of elementary cycles of DC(A) that form such a cycle, say σ
′
1, . . . , σ

′
t′ . So without

loss of generality let al
ii = w(A, σ

′
1) + · · · + w(A, σ

′
t′) with σ

′
1 containing node i.

Elementary cycle σ
′
1 has length no more than l and passes through node i. So
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al
ii = w(A, σ

′
1) + · · ·+ w(A, σ

′
t′)

≤ w(A, σ
′
1)

as all elementary cycles σ
′
2, . . . , σ

′
t′ have non-positive weight. We know al

ii 6< w(A, σ
′
1)

(by the definition of al
ii, as σ

′
1 is a cycle of length no more than l that passes through

node i), so therefore we must have al
ii = w(A, σ

′
1). This means al

ii is the maximum

weight of all elementary cycles of DC(A) of length l that pass through node i.

Therefore max
l∈K

max
i∈N

al
ii will be the maximum weight over all elementary cycles of

DC(A) of length no more than k. This will give the same value as max
l∈K

max
σ∈Cl

n

w(A, σ).

Hence result.

Remark. If λ(A) ∈ [−∞, 0] and l∗ is the minimum length of all the (elementary)

cycles that have the maximum weight w∗, then for k ≥ l∗,

max
l∈K

max
B∈A(l)

maper(B) = max
l∈K

max
i∈N

al
ii

= max
1≤l≤l∗

max
i∈N

al
ii

= max
i∈N

al∗
ii

= w∗.

Thus if l∗ and w∗ are already known, λ(A) ∈ [−∞, 0] and k ≥ l∗, then we have

max
l∈K

max
B∈A(l)

maper(B) = w∗ (without needing to calculate max
l∈K

max
i∈N

al
ii). So

w∗ = max
l∈{1,...,l∗}

max
B∈A(l)

maper(B)

= max
l∈{1,...,l∗+1}

max
B∈A(l)

maper(B)

= . . .

= max
l∈{1,...,n}

max
B∈A(l)

maper(B) = max
l∈N

δn−l(A).
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Remark. If there are no positive cycles in D(A), we can find max
l∈N

δn−l(A), the

maximum value of coefficients in the characteristic max-polynomial, by calculating

max
l∈K

max
i∈N

al
ii, the optimal value of BPSM≤(A, n). (This also means max

l∈K
max
i∈N

al
ii is

an upper bound for any δn−k(A) if there are no positive cycles in D(A).)

If instead there is at least one non-negative cycle in D(A), then by (4.3.1),

χA(0) = max

(
max
l∈N

δn−l(A), 0

)

= max
l∈N

δn−l(A)

will be the maximum value of coefficients in the characteristic max-polynomial.

(This also means χA(0) is an upper bound for any δn−k(A) if there is at least one

non-negative cycle in D(A).)

Definition 5.16. Let T be the set {0,−∞}, and Tn×n be the set of n× n matrices

with entries from T.

We will now look at the following problem and show how this problem is related

to BPSM≤(A, k).

Problem 12. Given A ∈ Tn×n and k ∈ N , does there exists an (elementary) cycle

in D(A) of length no more than k?

Remark. If A ∈ Tn×n then λ(A) ∈ [−∞, 0] and we can use BPSM≤(A, k) to solve

Problem 12:

Corollary 5.17. The answer to Problem 12 is “yes” if the result given by (5.4.3)

is 0, and “no” if it is −∞.

Remark. If the words “no more than” are removed from Problem 12, then we

do not know how to polynomially solve this problem. In fact, setting k to n and

removing the words “no more than” would result in an equivalent problem to the

Hamiltonian cycle problem, which is well known to be NP -complete.
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Here is a more general version of Problem 12, which turns out to be useful in

finding δn−k(A) for some values of k.

Problem 13. Given A ∈ Rn×n
and k ∈ N , does there exists an (elementary) cycle

in D(A) of length no more than k?

Remark. If A′ = (a′ij) ∈ Tn×n is defined by a′ij = 0 if aij ∈ R and a′ij = −∞
otherwise, then we may use the solution method of Problem 12 on A′ and k to solve

Problem 13 on A and k.

Remark. Alternatively, using the solution method to the shortest cycle problem

[31], we can calculate the shortest finite cycle in A ∈ Rn×n
, of, say, length lmin.

We let kmin be the smallest value of k such that there exists k independent finite

elements that lie within a k × k principal submatrix of A. We shall assume kmin

exists, else it is trivial. So kmin = lmin.

For k < kmin, the answer to Problem 13 is “no”. For k ≥ kmin, the answer to

Problem 13 is “yes”. Hence δn−k(A) = −∞ for 1 ≤ k < kmin.

The value of δn−kmin
(A) is finite, and we can easily find this by calculating the

value of max
i∈N

akmin
ii .

It is easily seen that Problem 13 is equivalent to the following.

Problem 14. Given A ∈ Rn×n
and k ∈ N , decide if there exists l finite independent

entries in any B ∈ A(l), for any l ∈ {1, . . . , k}.

5.4.4 BPSM≥(A, k)

In a similar way to BPSM≤(A, k), it may be more useful to swap at least k jobs in

the job rotation problem (and less than the maximum number of jobs, which is n).

This is equivalent to finding the biggest sum of l independent elements of all l × l

principal submatrices of A, where k ≤ l ≤ n.

Formally, it is the following problem:
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Problem 15. Given A ∈ Rn×n
and k ∈ N , find

max
k≤l≤n

max
B∈A(l)

maper(B).

We refer to this problem as BPSM≥(A, k). It is not known how to solve it in

general. It may be helpful to consider the following restricted problem (Problem 16).

In particular, if A ∈ Tn×n, then we can use Problem 16 to solve BPSM≥(A, k) for

this type of matrix.

Problem 16. Given A ∈ Rn×n
and k ∈ N , decide if there exists l finite independent

entries in any B ∈ A(l), for any l ∈ {k, . . . , n}.

Remark. If A′ = (a′ij) ∈ Tn×n is defined by a′ij = 0 if aij ∈ R and a′ij = −∞
otherwise, then by [13], we can find the maximum number of independent finite

entries in A′ ∈ Tn×n, say, kmax, that form disjoint cycle(s) in A′. This states that

kmax = n + χA′(−1).

Note that lmax, the longest elementary cycle in D(A), is not necessarily equal to

kmax (unlike kmin = lmin always being true).

For k > kmax, the answer to Problem 16 is “no”. For k ≤ kmax, the answer to

Problem 16 is “yes”. Hence δn−k(A) = −∞ for kmax < k ≤ n, and δn−kmax(A) is

finite, and can easily be found as follows.

Let

x0 = −n max(0, Amax,−Amin, Amax − Amin),

where Amax and Amin are the maximum and minimum finite entries of A respectively.

Then due to a result in [16] which uses the fact that δn−kmax(A) is the first finite

term in χA(x), so will always be visible, and can be found using small enough x, we
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have

δn−kmax(A) = χA(x0)− kmaxx0.

5.4.5 BPSMRange(A, kmin, kmax)

BPSM finds the biggest sum of exactly k independent elements of all k×k principal

submatrices of A. We have already shown that the job rotation problem is an

application of this, where we swap exactly k jobs round. It may be more useful to

swap k jobs round, where k is no longer a fixed number, but can lie anywhere in a

range, say between kmin and kmax. This is equivalent to finding the biggest sum of k

independent elements of all k×k principal submatrices of A, where kmin ≤ k ≤ kmax.

Formally, it is the following problem:

Problem 17. Given A ∈ Rn×n
and kmin, kmax ∈ N , kmin ≤ kmax, find

max
k∈[kmin,kmax]

max
B∈A(k)

maper(B).

We refer to this problem as BPSMRange(A, kmin, kmax). It is not known how to

polynomially solve it in general. However, we have the following result:

Theorem 5.18. BPSM(A, k) and BPSMRange(A, kmin, kmax) are polynomially equiv-

alent problems.

Proof. If we can solve BPSMRange(A, kmin, kmax) in polynomial time then by set-

ting kmin and kmax equal to k, we can solve BPSM(A, k) in polynomial time, as

BPSMRange(A, kmin, kmax) becomes identical to BPSM(A, k).

If we can solve BPSM(A, k) in polynomial time, then solve BPSM(A, k) for

k = kmin, . . . , kmax. As we do kmax − kmin + 1 ≤ n repetitions, we can solve

BPSMRange(A, kmin, kmax) in polynomial time.

60



5.4.6 Bottleneck BPSM (BBPSM)

Example 5.6. In Example 5.3 (an application of BPSM), we set aij to be lecturer

i’s ability to take over lecturer j’s course. We had to find k elements of a k × k

principal submatrix of A = (aij) with maximum sum. So the sum of these k elements

was the total ability of the lecturers who swapped teaching duties.

If instead of this, the department decides that the minimum standard of teaching

should be as high as possible, then we must look for k elements of a k× k principal

submatrix of A = (aij) with the smallest of these k elements being as big as possible.

From these elements, we would then be able to assign lecturers to courses maximising

the worst lecturer’s ability.

This is an example of the Bottleneck BPSM problem, which we will refer to as

BBPSM(A, k). It is defined formally as follows:

Problem 18. Given A = (aij) ∈ Rn×n
and k ∈ N , find

max
(bij)∈A(k)

max
π∈Pk

min
r∈K

br,π(r).

No method is known to solve BBPSM in polynomial time. However, the following

discussion provides us with an upper bound.

Define A′
d = (a′ij(d)) ∈ Rn×n

by

a′ij(d) =





aij, for aij ≥ d

−∞, otherwise

If we can find a d∗ such that there are k finite independent entries in a k × k

principal submatrix of A′
d∗ , and there are not k finite independent entries in a k× k
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principal submatrix of A′
d for any d > d∗, then we will have

d∗ = max
(bij)∈A(k)

max
π∈Pk

min
r∈K

br,π(r),

the optimal solution value to BBPSM(A, k).

Unfortunately, it is not known how to do this in polynomial time. However, it

is possible to use Problem 14 to find an upper bound d1 for d∗ and Problem 16 to

find another upper bound d2 for d∗, so that we can say

max
(bij)∈A(k)

max
π∈Pk

min
r∈K

br,π(r) ≤ min(d1, d2).

It would be nice to find a lower bound for d∗, but it may not be that easy. If

we found a lower bound other than −∞ in polynomial time, then this would mean

there are k finite independent entries within a k× k principal submatrix of A. This

would mean we could solve BPSM for matrices in Tn×n in polynomial time. No such

method is currently known to exist.

Remark. If we could solve BPSM(A, k) in polynomial time, then we could solve

BPSM(A′
d, k) for various values of d, and complete the above method. Hence for

A ∈ Rn×n
, if we can solve BPSM(A, k), then we can also solve BBPSM(A, k). Later,

we will go on to polynomially solve BPSM for some special types of matrix, and it

follows that BBPSM is also polynomially solvable for the same types of matrix.

Also note, if we restrict A to be in Tn×n, then BBPSM(A, k) becomes equivalent

to BPSM(A, k).

5.4.7 BBPSM≤(A, k)

If in Example 5.6 we wish to maximise the worst lecturer’s ability, but have up to

k job swaps taking place, then we would have an example of the BBPSM≤(A, k)

problem, defined as follows:
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Problem 19. Given A = (aij) ∈ Rn×n
and k ∈ N , find

max
l∈K

max
(bij)∈A(l)

max
π∈Pl

min
1≤r≤l

br,π(r).

Again, define A′
d = (a′ij(d)) ∈ Rn×n

by

a′ij(d) =





aij, for aij ≥ d

−∞, otherwise

If we can find a d∗ such that there are l finite independent entries in a l× l prin-

cipal submatrix of A′
d∗ , for some l = 1, . . . , k, and there are not l finite independent

entries in a l× l principal submatrix of A′
d for any l = 1, . . . , k and d > d∗, then we

will have

d∗ = max
l∈K

max
(bij)∈A(l)

max
π∈Pl

min
1≤r≤l

br,π(r),

the optimal solution value to BBPSM≤(A, k).

Unlike in the BBPSM case, we can do this. We can use Problem 14 to test if

the above holds for some value of d∗, changing it up or down depending on which of

the two parts of the statement fail to hold. This means we can polynomially solve

BBPSM≤(A, k).

Remark. If we restrict A to be in Tn×n, then BBPSM≤(A, k) becomes equivalent

to BPSM≤(A, k). This gives us an alternative method to solve BPSM≤(A, k) for

A ∈ Tn×n than the one given before.

5.4.8 BBPSM≥(A, k)

We define BBPSM≥(A, k) as follows:

Problem 20. Given A = (aij) ∈ Rn×n
and k ∈ N , find

max
k≤l≤n

max
(bij)∈A(l)

max
π∈Pl

min
1≤r≤l

br,π(r).
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Again, define A′
d = (a′ij(d)) ∈ Rn×n

by

a′ij(d) =





aij, for aij ≥ d

−∞, otherwise

If we can find a d∗ such that there are l finite independent entries in a l× l prin-

cipal submatrix of A′
d∗ , for any l = k, . . . , n, and there are not l finite independent

entries in a l× l principal submatrix of A′
d for any l = k, . . . , n and d > d∗, then we

will have

d∗ = max
k≤l≤n

max
(bij)∈A(l)

max
π∈Pl

min
1≤r≤l

br,π(r),

the optimal solution value to BBPSM≥(A, k).

Like in the BBPSM≤(A, k) case, but unlike in the BBPSM case, we can do this.

We can use Problem 16 to test if the above holds for some value of d∗, changing it

up or down depending on which of the two parts of the statement fail to hold. This

means we can polynomially solve BBPSM≥(A, k).

Remark. If we restrict A to be in Tn×n, then Problem 20 becomes equivalent

to BPSM≥(A, k). This gives us an alternative method to solve BPSM≥(A, k) for

A ∈ Tn×n than the one given before.

5.4.9 Complexity of BPSM and its variants

We will now show how BPSM, BPSM≤ and BPSM≥ are polynomially equivalent

problems. We will need to use the following lemmas. Note that for any sets X and

Y and constant M , that Y = X + M means y ∈ Y if and only if y −M ∈ X.

Under certain conditions we can guarantee that adding a larger amount of num-

bers together will result in a bigger total:

Lemma 5.19. If we have a set X ⊆ R, (∃x ∈ X) x 6= −∞, |X| ≥ n, Xmin =

min
finite x∈X

x, Xmax = max
x∈X

x, M = n|Xmin|+n|Xmax|, Y = X +M and 1 ≤ r < s ≤ n,
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then
r∑

i=1

yi <
s∑

i=1

y′i for any y1, y2, . . . , yr ∈ Y and any finite y′1, y
′
2, . . . , y

′
s ∈ Y .

Proof. Let y1, y2, . . . , yr ∈ Y be arbitrary and let y′1, y
′
2, . . . , y

′
s ∈ Y be arbitrary and

finite. Then

r∑
i=1

yi ≤ rXmax + rM

= rXmax + r(n|Xmin|+ n|Xmax|)

= rXmax + rn|Xmin|+ rn|Xmax|

≤ rn|Xmin|+ (rn + r)|Xmax|

< (rn + n− r − 1)|Xmin|+ (rn + n)|Xmax|

= ((r + 1)n− (r + 1))|Xmin|+ (r + 1)n|Xmax|

≤ (sn− s)|Xmin|+ sn|Xmax|

≤ sXmin + sn|Xmin|+ sn|Xmax|

= sXmin + s(n|Xmin|+ n|Xmax|)

= sXmin + sM

≤
s∑

i=1

y′i.

Similarly, we have the following result that under certain conditions adding a

larger amount of numbers together will result in a smaller total:

Lemma 5.20. If we have a set X ⊆ R, (∃x ∈ X) x 6= −∞, |X| ≥ n, Xmin =

min
finite x∈X

x, Xmax = max
x∈X

x, M = n|Xmin|+n|Xmax|, Y = X −M and 1 ≤ r < s ≤ n,

then
r∑

i=1

yi >
s∑

i=1

y′i for any finite y1, y2, . . . , yr ∈ Y and any y′1, y
′
2, . . . , y

′
s ∈ Y .

Proof. Let y1, y2, . . . , yr ∈ Y be arbitrary and finite and let y′1, y
′
2, . . . , y

′
s ∈ Y be
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arbitrary. Then

s∑
i=1

y′i ≤ sXmax − sM

= sXmax − s(n|Xmin|+ n|Xmax|)

= sXmax − sn|Xmin| − sn|Xmax|

≤ −sn|Xmin| − (sn− s)|Xmax|

< −(sn− n + s− 1)|Xmin| − (sn− n)|Xmax|

= −((s− 1)n + (s− 1))|Xmin| − (s− 1)n|Xmax|

≤ −(rn + r)|Xmin| − rn|Xmax|

≤ rXmin − rn|Xmin| − rn|Xmax|

= rXmin − r(n|Xmin|+ n|Xmax|)

= rXmin − rM

≤
r∑

i=1

yi.

Theorem 5.21. For any A = (aij) ∈ Rn×n
and k ∈ N , BPSM(A, k) and BPSM≤(A, k)

are polynomially equivalent problems.

Proof. The case where k = 1 is trivial, so assume k > 1.

If we assume that we can solve BPSM(A, l) in polynomial time for any l ∈ N ,

then we can solve BPSM(A, 1), BPSM(A, 2), . . . , BPSM(A, k), to give us the values

δn−1(A), δn−2(A), . . . , δn−k(A) in polynomial time. We can then find max
1≤l≤k

δn−l(A),

the optimal value of BPSM≤(A, k) in polynomial time.

Let Amin = min
finite aij∈A

aij, Amax = max
aij∈A

aij, M = n|Amin|+n|Amax|, and B = (bij),

where bij = aij +M . To prove the other way, we assume we can solve BPSM≤(A′, k′)

in polynomial time for any A′ ∈ Rn×n
and k′ ∈ N . In particular, we could solve
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BPSM≤(B, k) and BPSM≤(B, k − 1) in polynomial time. Let the optimal values of

these be θ and θ′ respectively.

We know that θ = max{θ′, δn−k(B)}. So δn−k(B) is finite if θ′ < θ.

We know that θ′ is formed by adding together l entries from some matrix in B(l),

for some l < k. If δn−k(B) is finite, then there are k independent finite numbers in

a principal submatrix of B. In this case then θ would be finite and made up from

adding together l′ independent finite entries from some matrix in B(l′), for some

l′ ≤ k.

Assume that θ is formed by adding together strictly less than k entries from

B. Then by Lemma 5.19 with the numbers used to form θ and δn−k(B), we have

θ < δn−k(B), which is not true as θ = max{θ′, δn−k(B)}. Therefore θ is formed by

adding together exactly k independent entries from some matrix in B(k). Then by

Lemma 5.19 with the numbers used to form θ′ and θ, we have θ′ < θ.

Therefore we have shown that δn−k(B) is finite if and only if θ′ < θ, and as

θ = max{θ′, δn−k(B)}, if θ′ < θ, then θ = δn−k(B) = δn−k(A) + kM = δn−k(A) +

kn|Amin|+ kn|Amax| and δn−k(A) = θ − kn|Amin| − kn|Amax|.
Therefore we can solve BPSM≤(B, k) and BPSM≤(B, k − 1) to find θ and θ′

respectively, in polynomial time. We can then state that δn−k(A) = θ− kn|Amin| −
kn|Amax| if θ′ < θ, or δn−k(A) = −∞ if θ′ = θ.

Therefore both problems are polynomially equivalent.

A similar theorem and proof for BPSM≥(A, k) are now presented:

Theorem 5.22. For any A = (aij) ∈ Rn×n
and k ∈ N , BPSM(A, k) and BPSM≥(A, k)

are polynomially equivalent problems.

Proof. The case where k = n is trivial, so assume k < n.

If we assume that we can solve BPSM(A, l) in polynomial time for any l ∈
N , then we can solve BPSM(A, k), BPSM(A, k + 1), . . . , BPSM(A, n), to give us
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the values δn−k(A), δn−k−1(A), . . . , δn−n(A) in polynomial time. We can then find

max
k≤l≤n

δn−l(A), the optimal value of BPSM≥(A, k) in polynomial time.

Let Amin = min
finite aij∈A

aij, Amax = max
aij∈A

aij, M = n|Amin|+n|Amax|, and B = (bij),

where bij = aij−M . To prove the other way, we assume we can solve BPSM≥(A′, k′)

in polynomial time for any A′ ∈ Rn×n
and k′ ∈ N . In particular we can solve

BPSM≥(B, k) and BPSM≥(B, k + 1) in polynomial time. Let the optimal values of

these be θ and θ′ respectively.

We know that θ = max{θ′, δn−k(B)}. So δn−k(B) is finite if θ′ < θ.

We know that θ′ is formed by adding together l entries from some matrix in B(l),

for some l > k. If δn−k(B) is finite, then there are k independent finite numbers in

a principal submatrix of B. In this case then θ would be finite and made up from

adding together l′ independent finite entries from some matrix in B(l′), for some

l′ ≥ k.

Assume that θ is formed by adding together strictly more than k entries from

B. Then by Lemma 5.20 with the numbers used to form θ and δn−k(B), we have

θ < δn−k(B), which is not true as θ = max{θ′, δn−k(B)}. Therefore θ is formed by

adding together exactly k independent entries from some matrix in B(k). Then by

Lemma 5.20 with the numbers used to form θ′ and θ, we have θ′ < θ.

Therefore we have shown that δn−k(B) is finite if and only if θ′ < θ, and as

θ = max{θ′, δn−k(B)}, if θ′ < θ, then θ = δn−k(B) = δn−k(A) − kM = δn−k(A) −
kn|Amin| − kn|Amax| and δn−k(A) = θ + kn|Amin|+ kn|Amax|.

Therefore we can solve BPSM≥(B, k) and BPSM≥(B, k + 1) to find θ and θ′

respectively, in polynomial time. We can then state that δn−k(A) = θ + kn|Amin|+
kn|Amax| if θ′ < θ, or δn−k(A) = −∞ if θ′ = θ.

Therefore both problems are polynomially equivalent.

From the above Theorems and Theorem 5.18, it immediately follows that:

Corollary 5.23. For any A ∈ Rn×n
and any k, kmin, kmax ∈ N , BPSM(A, k),
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BPSM≤(A, k), BPSM≥(A, k) and BPSMRange(A, kmin, kmax) are polynomially equiv-

alent problems.

Later (in Section 6.5.2), we shall look at another variant of BPSM called BPSMFrac.

We shall see that BPSMFrac is polynomially solvable.

Summary

The following table summarises the complexity of the problems investigated in this

thesis.

A ‘P’ means the problem is polynomially solvable. An ‘NPC’ means the problem

is NP -complete. A ‘?’ means it is unknown if the problem is polynomially solvable

or NP -complete. If a problem is later proven to be polynomially solvable and is

labelled as a numbered question mark, then all problems with the same numbered

question mark are polynomially solvable. If a problem is later proven to be NP -

complete and is labelled as a numbered question mark, then all problems with the

same numbered question mark are NP -complete. Also T ⊆ [−∞, 0] ⊆ R, so we can

note that:

• If any ?1 = NPC then all ?1 = NPC.

• If any ?2 = P then all ?2 = P.

• If any ?1 = P then all ?1 = P and all ?2 = P.

• If any ?2 = NPC then all ?1 = NPC and all ?2 = NPC.
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Problem Name Page aij ∈ R aij ≤ 0 aij ∈ T
1 BSM(A, k) 38 P P P

2 39 P P P

3 BPSM(A, k) 40 ?1 ?1 ?2

4 43 ?1 ?1 P

5 47 NPC NPC NPC

6 48 NPC NPC NPC

7 49 P P P

8 49 P P P

9 52 P P P

10 53 P P P

11 BPSM≤(A, k) 54 ?1 P P

12 57 - - P

13 58 P P P

14 58 P P P

15 BPSM≥(A, k) 59 ?1 ?1 P

16 59 P P P

17 BPSMRange(A, kmin, kmax) 60 ?1 ?1 ?2

18 BBPSM(A, k) 61 ?2 ?2 ?2

19 BBPSM≤(A, k) 63 P P P

20 BBPSM≥(A, k) 63 P P P

21 BPSMFrac(A, k) 128 P P P

Table 5.1: A table showing whether investigated problems are known to be polyno-

mially solvable or are NP -complete for various types of matrix A = (aij).
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Chapter 6

Estimating or solving BPSM

As we discussed in Section 5.2, in general there is no polynomial method known for

solving BPSM(A, k) for A ∈ Rn×n
and k ∈ N . Calculating the optimal assignment

problem value for each principal submatrix of A (complete enumeration) is not an

efficient method.

It may not always be necessary to find the exact value of δn−k(A), the optimal

value of BPSM(A, k). We will look at how to estimate this value in polynomial time.

We will look at the BPSM related results that we have obtained from the previous

section, as well as results we can deduce using the eigenproblem and BSM.

There are some special cases that can be solved in polynomial time (if encoded

in the right way). We will present existing polynomially solvable cases, and some

new results.

A branch and bound method will also be presented later, which will find the

optimal solution value of BPSM (although maybe not in polynomial time). If it is

terminated before it finds the value of δn−k(A), then it can at least give lower and

upper bounds that δn−k(A) lies between.

6.1 Using similar problems to estimate BPSM

We derived a number of results for BPSM in Section 5.4. We now summarise these

results here.
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From Section 5.4.2 we obtained the following result:

(∀k ∈ N) δn−k(A) ≤ k max
i∈N

max
j∈K

aj
ii

j
.

From Section 5.4.3 we obtained the following results, assuming there are no

positive cycles in D(A):

max
k∈N

δn−k(A) = max
i∈N

max
j∈N

aj
ii,

and as max
l∈K

max
B∈A(l)

maper(B) = max
i∈N

max
j∈K

aj
ii, we have

(∀k ∈ N) δn−k(A) ≤ max
i∈N

max
j∈K

aj
ii. (6.1.1)

From Section 5.4.3 we obtained the following results, assuming there is at least

one non-negative cycle in D(A):

max
k∈N

δn−k(A) = χA(0),

so

(∀k ∈ N) δn−k(A) ≤ χA(0). (6.1.2)

We may be able to improve these bounds as follows. For any A = (aij) ∈ R and

k ∈ N , let B = (bij) = (aij −M) for some M ∈ R. Then δn−k(A) = δn−k(B) + kM .

Let M = M1 be such that B has no positive cycles. Therefore

(∀k ∈ N) δn−k(A) = δn−k(B) + kM

≤ max
i∈N

max
j∈K

bj
ii + kM. (6.1.3)
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Let M = M2 be such that B has at least one non-negative cycle. Therefore

(∀k ∈ N) δn−k(A) = δn−k(B) + kM

≤ χB(0) + kM. (6.1.4)

Let M = M3 be as small as possible such that B has no positive cycles. Therefore

B has at least one zero cycle, both statements hold and χB(0) = 0. Putting this all

together, for M = M3 we therefore have

(∀k ∈ N) δn−k(A) ≤ min

(
max
i∈N

max
j∈K

bj
ii , 0

)
+ kM.

As max
i∈N

max
j∈K

bj
ii ≤ 0 for M = M3, we have

(∀k ∈ N) δn−k(A) ≤ max
i∈N

max
j∈K

bj
ii + kM. (6.1.5)

Note that for each unit increase in M , the amount kM increases by is at least

as great as the amount max
i∈N

max
j∈K

bj
ii decreases by. Therefore the value of M that

results in the tightest bound for Equation 6.1.3 is M = M3.

For M = M3, we have seen from Equation 6.1.5 that Equation 6.1.3 is a better

bound than Equation 6.1.4. However it is possible that Equation 6.1.4 for some

value of M lower than M3 could give a better bound than 6.1.3 for M = M3. For

each unit decrease of M , χB(0) may or may not increase more than kM decreases.

For a value of M low enough, χB(0) will equal maper(B), so further decreases in M

will not change the bound. Between this value of M and M3 some sort of bisection

method could be used to find the best value of M (say M4) to give the tightest

bound for Equation 6.1.4. This new bound (with M set to M4), plus the one given

by Equation 6.1.5 (with M set to M3) are at least as good as the bounds given by

Equation 6.1.2 and Equation 6.1.1 respectively.
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Also from Section 5.4.3 we let kmin be the lowest k such that there is k finite

independent entries of any k × k principal submatrix of A. We stated that this can

be found by solving the shortest cycle problem [31]. We then gave these results:

δn−1(A) = δn−2(A) = · · · = δn−kmin+1(A) = −∞,

and

δn−kmin
(A) = max

i∈N
akmin

ii .

From Section 5.4.4 we let kmax be the maximum number of finite independent

entries (of any principal submatrix) of A. We stated that this was equal to n +

χA′(−1), where A′ = (a′ij) is defined by (a′ij) = 0 if (aij) ∈ R and (a′ij) = −∞
otherwise. We let x0 = −n max(0, Amax,−Amin, Amax − Amin). We then gave these

results:

δ0(A) = δ1(A) = · · · = δn−kmax−1(A) = −∞,

and

δn−kmax(A) = χA(x0)− kmaxx0.

6.2 Using the eigenproblem to estimate BPSM

There are interesting links between BPSM(A, k) and the eigenproblem. We shall

investigate how the eigenproblem (in particular, the eigenvalue and eigenvectors)

can help us estimate δn−k(A).

We will define what similar matrices are and describe BPSM related properties

that such matrices have. One property is that if A and B are similar, then δn−k(A) =

δn−k(B). We will show, using the eigenvector, that every matrix (with a strongly

connected digraph) is similar to a matrix in which every element is no greater than

the eigenvalue. We shall also see that the maximum value of the corners of the

characteristic max-polynomial is equal to the eigenvalue. We then deduce some
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bounds for δn−k(A).

Recall the definition of diag(d) (Definition 2.12, page 11). We now introduce

similar matrices.

Definition 6.1. If d = (d1, d2, . . . , dn) ∈ Rn and D = diag(d), then let D−1 denote

the matrix diag(d−1
1 , d−1

2 , . . . , d−1
n ).

Obviously, D ⊗D−1 = I = D−1 ⊗D for any diagonal matrix D ∈ Rn×n
.

If A ∈ Rn×n
, d = (d1, d2, . . . , dn) ∈ Rn and D = diag(d), then A⊗D is the matrix

that arises from adding constants d1, d2, . . . , dn to the columns of A. Similarly, D⊗A

is the matrix that arises from adding constants d1, d2, . . . , dn to the rows of A. Hence

in conventional notation, D−1 ⊗ A⊗D = (−di + aij + dj).

Definition 6.2. If A,B ∈ Rn×n
and there exists a diagonal matrix D such that

B = D−1 ⊗ A⊗D then we say that A is similar to B, and denote this by A ∼ B.

Theorem 6.3. The relation ∼ is an equivalence relation.

Proof. Let A,B,C ∈ Rn×n
. A = I−1 ⊗ A⊗ I, so ∼ is reflexive.

If A ∼ B, then there exists a diagonal matrix D ∈ Rn×n
such that

B = D−1 ⊗ A⊗D.

Pre-multiplying by D and post-multiplying by D−1, we have

D ⊗B ⊗D−1 = D ⊗D−1 ⊗ A⊗D ⊗D−1,

which simplifies to

D ⊗B ⊗D−1 = A

or

(D−1)−1 ⊗B ⊗ (D−1) = A,
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so B ∼ A and ∼ is symmetric.

If A ∼ B and B ∼ C, then there exists diagonal matrices D, D′ ∈ Rn×n
such

that

B = D−1 ⊗ A⊗D

and

C = D′−1 ⊗B ⊗D′.

So

C = D′−1 ⊗D−1 ⊗ A⊗D ⊗D′.

Letting D′′ = D ⊗D′ (which is a diagonal matrix), we have

C = D′′−1 ⊗ A⊗D′′,

so A ∼ C and ∼ is transitive.

Hence ∼ is an equivalence relation.

We now look at some properties of similar matrices.

Theorem 6.4. If A = (aij) ∈ Rn×n
, B = (bij) ∈ Rn×n

and A ∼ B, then (∀σ ∈ Cn)

w(B, σ) = w(A, σ).

Proof. If A = (aij) ∈ Rn×n
and σ = (i1, i2, . . . , ik) ∈ Cn is an arbitrary cyclic

permutation of length k, then

w(A, σ) = ai1,i2 + ai2,i3 + · · ·+ aik−1,ik + aik,i1 ,

and as A ∼ B, there exists a diagonal matrix D = diag(d1, d2, . . . , dn) such that

B = (bij) = (−di + aij + dj). Therefore
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w(B, σ) = bi1,i2 + bi2,i3 + · · ·+ bik−1,ik + bik,i1

= (−di1 + ai1,i2 + di2) + (−di2 + ai2,i3 + di3) + · · ·+

+ (−dik−1
+ aik−1,ik + dik) + (−dik + aik,i1 + di1)

= ai1,i2 + ai2,i3 + · · ·+ aik−1,ik + aik,i1

= w(A, σ)

which completes the proof.

Corollary 6.5. If A = (aij) ∈ Rn×n
, B = (bij) ∈ Rn×n

and A ∼ B, then (∀σ ∈ Cn)

µ(B, σ) = µ(A, σ).

Theorem 6.6. If A = (aij) ∈ Rn×n
, B = (bij) ∈ Rn×n

and A ∼ B, then (∀π ∈ Pn)

w(B, π) = w(A, π).

Proof. Let π = σ1 ◦ σ2 ◦ · · · ◦ σs ∈ Pn, where σ1, σ2, . . . , σs ∈ Cn. By Theorem 6.4,

w(B, σi) = w(A, σi) for i = 1, . . . , s. As w(σ1 ◦ σ2 ◦ · · · ◦ σs) = w(σ1) + w(σ2) + · · ·+
w(σs), we have w(B, π) = w(A, π).

Corollary 6.7. If A = (aij) ∈ Rn×n
, B = (bij) ∈ Rn×n

and A ∼ B, then (∀π ∈ Pn)

µ(B, π) = µ(A, π).

Corollary 6.8. If A = (aij) ∈ Rn×n
, B = (bij) ∈ Rn×n

and A ∼ B, then λ(B) =

λ(A).

Proof. Let σ ∈ Cn be a cyclic permutation satisfying µ(A, σ) = λ(A). By Corollary

6.5, we see that the relation A ∼ B requires the mean weight of cyclic permutations

to be preserved between A and B. Therefore µ(B, σ) = µ(A, σ). Hence λ(B) =

µ(B, σ) = µ(A, σ) = λ(A).

Definition 6.9. If A ∈ Rn×n
and S ⊆ N , then let A(S) be the matrix formed from

A by deleting rows and columns of A with indices from N − S.
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Corollary 6.10. If A = (aij) ∈ Rn×n
, B = (bij) ∈ Rn×n

and A ∼ B, then (∀k ∈ N)

δn−k(B) = δn−k(A).

Proof. Let C = B(S) and D = A(S), where S ⊆ N is a set with k elements. Note

that C ∈ B(k), D ∈ A(k) and C ∼ D. By Theorem 6.6, (∀π ∈ Pk) w(D, π) =

w(C, π), so

δn−k(B) = max
C∈B(k)

max
π∈Pk

w(C, π)

= max
D∈A(k)

max
π∈Pk

w(D, π)

= δn−k(A)

which completes the proof.

Remark. Note that if A = (aij) ∈ Rn×n
, B = (bij) ∈ Rn×n

and A ∼ B, then by

setting k = n in Corollary 6.10, we obtain that maper(B) = maper(A).

Now we show any irreducible matrix is similar to a matrix in which every element

is no greater than the eigenvalue, and in each row, at least one element is equal to

the eigenvalue:

Theorem 6.11. If A = (aij) ∈ Rn×n
is an irreducible matrix, x ∈ sp(A), D =

diag(x) is a diagonal matrix and B = (bij) = D−1⊗A⊗D, then (∀i ∈ N) (∀j ∈ N)

bij ≤ λ(A) and (∀i ∈ N)(∃j ∈ N) bij = λ(A).

Proof. Let λ = λ(A), then we have

A⊗ x = λ⊗ x,

or equivalently

(∀i ∈ N) max
j∈N

(aij + xj) = λ + xi,
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therefore

(∀i ∈ N) max
j∈N

(aij + xj − xi) = λ,

hence

(∀i ∈ N) max
j∈N

bij = λ,

which completes the proof.

For an irreducible matrix A, this enables us to find an upper bound for δk, the

optimal value of BPSM(A, n− k):

Corollary 6.12. If A = (aij) ∈ Rn×n
is an irreducible matrix and 0 ≤ k ≤ n, then

δk(A) ≤ (n− k)λ(A). (6.2.1)

Proof. Let B be as in Theorem 6.11. Then the maximum element in B is λ(A),

so for 0 ≤ k < n, the sum of any n − k elements of B is less than or equal to

(n− k)λ(B). As λ(A) = λ(B), we have

δk(A) = δk(B)

≤ (n− k)λ(B)

= (n− k)λ(A).

By definition δn(A) = 0, so the k = n case is automatically satisfied.

We now show that δk(A) = (n− k)λ(A), for at least one k, 0 ≤ k < n.

Theorem 6.13 ([19]). If A ∈ Rn×n
is an irreducible matrix, then λ(A) is equal to

the maximum of the corners of χA(x).

We now give an alternative proof to the one in [19].

Proof. Let the maximum of all corners be b∗. This is equal to the x co-ordinate of the

intersection point between two essential linear pieces of χA(x). One of these pieces
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has equation y = nx, the other has equation, say, y = δs + sx. The intersection

point is therefore when δs + sx = nx, i.e. at b∗ = δs/(n − s). As we are assuming

that all other terms cross y = nx at x ≤ b∗, we have b∗ = max
k=0,...,n−1

(δk/(n− k)).

Using Theorem 5.6, we see that δs = w(B, π), for some B ∈ A(n − s) and

some π = σ1 ◦ σ2 ◦ · · · ◦ σr ∈ Pn−s, where σ1, σ2, . . . , σr ∈ Cn−s. Let µ(B, σ∗) =

max
i=1...,r

µ(B, σi), where σ∗ ∈ {σ1, σ2, . . . , σr}. Let t = n− l(σ∗) and d∗t = w(B, σ∗).

Now ∀k, we define dk = max
σ∈Cn−k

n

w(A, σ). Note that dk/(n − k) = max
σ∈Cn−k

n

µ(A, σ),

and dk ≤ δk. Also note that λ(A) = max
k=0,...,n−1

(dk/(n− k)). Thus

d∗t /(n− t) ≥ δs/(n− s)

= b∗

= max
k=0,...,n−1

(δk/(n− k))

≥ max
k=0,...,n−1

(dk/(n− k))

≥ dt/(n− t)

≥ d∗t /(n− t).

with the first inequality due to Lemma 5.10.

Hence we have

b∗ = max
k=0,...,n−1

(δk/(n− k)) = max
k=0,...,n−1

(dk/(n− k)) = λ(A),

which completes the proof.

We now give another upper bound for δk:

Theorem 6.14. For A ∈ Rn×n
, if δr + rx and δs + sx are essential terms of χA(x),

where 0 ≤ r < s ≤ n, and δk + kx is inessential for k = r + 1, r + 2, . . . , s− 1, then
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for k = r + 1, r + 2, . . . , s− 1,

δk ≤ (s− k)δr + (k − r)δs

s− r
, (6.2.2)

with equality holding if and only if χA(x) = δk + kx for a unique value of x.

Proof. Let x1 be the point where immediately prior to it, χA(x) has slope r, and

χA(x) has slope s, immediately after it. Let k ∈ {r +1, r +2, . . . , s− 1}. As δk + kx

is inessential, we have that

δk + kx1 ≤ χA(x1)

= δr + rx1

= δs + sx1.

Therefore

x1 =
δr − δs

s− r
,

and

δk ≤ (s− k)x1 + δs

= (s− k)
δr − δs

s− r
+ δs

=
(s− k)δr + (k − r)δs

s− r
.

If δk + kx = χA(x) at some point, it must be at x = x1. If this is the case then

all the inequalities above that involve δk will turn to equalities.

Theorem 6.15. The upper bound for δk given by (6.2.2) is as good (and in some

cases better) than the one given by (6.2.1).
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Proof. We have that

δk ≤ (s− k)δr + (k − r)δs

(s− r)

=
(s− k)(n− r)δr

(s− r)(n− r)
+

(k − r)(n− s)δs

(s− r)(n− s)

≤ (s− k)(n− r)λ

(s− r)
+

(k − r)(n− s)λ

(s− r)

=
(
(s− k)(n− r) + (k − r)(n− s)

) λ

(s− r)

= (sn− sr − kn + kr + kn− ks− rn + rs)
λ

(s− r)

= (sn + kr − ks− rn)
λ

(s− r)

= (n− k)(s− r)
λ

(s− r)

= (n− k)λ,

which completes the proof.

6.3 Using BSM to estimate BPSM

We know that δ0(A) = γ0(A) = maper(A) and δn(A) = γn(A) = 0 (by definition).

However for k ∈ {1, . . . , n− 1}, it is not always true that δk(A) = γk(A).

Example 6.1. Let

A =




0 −1

−1 0


 .

Here we have δ1(A) = γ1(A) = 0.

Example 6.2. Let

A =




0 1

−1 0


 .

Here we have δ1(A) = 0, but γ1(A) = 1.
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For k ∈ {1, . . . , n− 1}, γk(A) is an upper bound for δk(A). However, it may not

be a very good upper bound:

Remark. For A = (aij) ∈ Rn×n
and k ∈ {1, . . . , n − 1}, γk(A) can be arbitrarily

bigger than δk(A).

We can show this as follows. Let B = (bij), where (∀i)(∀j) bij = 0. Let D =

diag(0, . . . , 0, θ) be an n× n diagonal matrix. Let

A = D−1 ⊗B ⊗D

=




0 . . . 0 θ

...
. . .

...
...

0 . . . 0 θ

−θ . . . −θ 0




. (6.3.1)

where θ is an arbitrary non-negative real number.

As A ∼ B, by Corollary 6.10, we have that (∀k ∈ {1, . . . , n − 1}) δk(A) =

δk(B) = 0.

However, (∀k ∈ {1, . . . , n− 1}) γn−k(A) = max(0, θ− θ,−θ, θ) = θ. As θ was an

arbitrary non-negative real number, γk(A) can be arbitrarily bigger than δk(A).

Definition 6.16. For A ∈ Rn×n
, k ∈ {1, . . . , n − 1}, A will be called an Sk matrix

if δk(A) = γk(A).

This means it is easy to find δk(A) if A is an Sk matrix, because we just need to

calculate γk(A), which we can do so in O(n3) time (see Section 5.1 for details).

Example 6.1 has an S1 matrix. Example 6.2 and Example 6.3 have matrices that

are not S1 matrices.

Definition 6.17. For A ∈ Rn×n
, k ∈ {1, . . . , n−1}, A will be called Sk transformable

if there exists an Sk matrix B such that A ∼ B.
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Example 6.2 is S1 transformable, as A ∼




0 0

0 0


 .

So for all k ∈ {1, . . . , n − 1} and all Sk transformable matrices, δk(A) = γk(A).

This means that we can polynomially solve BPSM(A, k) for any Sk transformable

matrix A, after finding a Sk matrix similar to A.

Example 6.3. Let

A =




0 1

0 0


 .

Here we have δ1(A) = 0, but γ1(A) = 1. If there exists an S1 matrix B such that

A ∼ B = (bij), then b12 + b21 = a12 + a21 = 1, so max(b12, b21) > 0, therefore

γ1(B) > 0 = δ1(B). This contradicts B being an S1 matrix and so there is no S1

matrix B ∼ A, and A is not S1 transformable.

If the matrix is not Sk transformable, then we may want to obtain a γ value as low

as possible. The transformation in Theorem 6.11 (page 78) is often useful in finding

a similar matrix that may have a lower γ value. If we applied this transformation

to the matrix in 6.3.1 then we would not only get a lower γ value, we transform it

to an Sk matrix.

However this transformation may not give the lowest γ value of all matrices

similar to our matrix, as in fact this transformation may make the value of γ increase,

as in the following example:

Example 6.4. Let

A =




0 2 1

0 2 1

1 −1 0




.

Here we have γ2(A) = 3. This is our current estimate for δ2(A).
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Let

B =




0 2 0

0 2 0

2 0 0




.

Observe that A ∼ B, with λ(B) = 2 being the highest entry appearing on each row.

So the transformation in Theorem 6.11 has been applied correctly. Here γ2(B) = 4.

The exact value of δ2(B) is 2, so in this case γ2(A) is a better approximation to

δ2(B) than γ2(B) is.

6.4 Solving BPSM in special cases

For a general matrix A ∈ Rn×n
and k ∈ N , no polynomial time algorithm is known

for solving BPSM(A, k). However, for some special types of matrix A with some (or

all) values of k, we can solve BPSM(A, k) in polynomial time.

We will start by stating some existing results for polynomially solving BPSM: We

will comment on the importance of essential terms. We give a result that allows us

to solve BPSM with a randomised polynomial algorithm if entries of the matrix are

bounded by n. Then we will state that BPSM is polynomially solvable for diagonally

dominant matrices, Monge matrices and bi-diagonal matrices. We give results for

Hankel matrices with strictly concave sequences, as well as for permutation matrices.

We will then give some new results. We will define pyramidal matrices (in which

all elements satisfy a constraint given later), and show that we can polynomially

solve BPSM(A, k) for a pyramidal matrix A.

We shall then consider symmetric matrices in Tn×n, i.e. symmetric matrices with

elements equal to 0 or −∞. Some results have already been obtained. We will review

these and give some more results.

We give a polynomial time algorithm to solve BPSM for generalised permutation

matrices (defined in Definition 2.15 on page 12). We will discuss how important the

85



form of the encoding of the input is (for example as a matrix, or as a list of constitute

cycles) in determining whether this algorithm is polynomial or pseudopolynomial.

We will give a similar polynomial time algorithm to solve BPSM for block diag-

onal matrices. We will explain how this helps towards solving BPSM for reducible

matrices.

6.4.1 Some previously known special cases

Essential terms

For A ∈ Rn×n
, Theorem 4.4 states that essential terms of the χA(x) can be found

in O(n2(m + n log n)) steps, where A has m finite entries. This means that if

δn−k⊗x(n−k) is an essential term, then by Theorem 5.6, δn−k(A) = max
B∈A(k)

maper(B),

the optimal value of BPSM(A, k) can be found in O(n2(m + n log n)) steps. Hence

BPSM(A) can be completely solved in polynomial time if all terms of χA(x) are

essential.

The complexity has recently been improved by a factor of n to O(n(m+n log n))

steps [24].

Bounded matrix elements

Remark ([8]). If the finite entries of A ∈ Rn×n
are integer and polynomially

bounded by n, then BPSM(A, k) can be solved by a randomised polynomial time

algorithm.

Diagonally dominant matrices

Theorem 6.18. If A = (aij) ∈ Rn×n
satisfies

(∀i ∈ N) (∀j ∈ N) aii ≥ aij, (6.4.1)

then we can solve BPSM(A, k) in polynomial time.
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Proof. As a diagonal element is the greatest in its row, and all diagonal elements

are in different rows and columns, id(A) = (1)(2) . . . (n) is an optimal permutation

to the assignment problem for A, i.e. id(A) ∈ ap(A).

Similarly, for B ∈ A(k), id(B) ∈ ap(B). Therefore if C ∈ A(k) is a principal

submatrix of A such that maper(C) = δn−k then id(C) ∈ ap(C).

If we simultaneously re-order the rows and columns of A so that the diagonal

elements of A are in non-ascending order, then the optimal principal submatrix of

A will be A(K). Then

δn−k(A) = a11 + a22 + · · ·+ akk

=
∏⊗

i∈K

aii

which we can calculate in polynomial time (including re-ordering).

A more general matrix than one satisfying (6.4.1) is a diagonally dominant ma-

trix.

Definition 6.19. A matrix A ∈ Rn×n
is diagonally dominant if id ∈ ap(A).

Theorem 6.20 ([34]). For a diagonally dominant matrix A ∈ Rn×n
, we can solve

BPSM(A, k) in polynomial time.

Bi-diagonal matrices

Definition 6.21. If A = (aij) ∈ Rn×n
and ∃c ∈ [1, . . . , n − 1] such that aij = −∞

for |i− j| 6= c, then A is called a bi-diagonal matrix.

Theorem 6.22 ([34]). For a bi-diagonal matrix A ∈ Rn×n
, BPSM(A, k) can be

solved in O(n3) time.

Monge matrices

Definition 6.23. If A = (aij) ∈ Rn×n
satisfies aij +akl ≥ ail+akj for all i < k, j < l,

then A is called a Monge matrix.
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Theorem 6.24 ([34]). A Monge matrix A ∈ Rn×n
is diagonally dominant, so

BPSM(A, k) can be solved in polynomial time.

Hankel matrices

Definition 6.25. For a given sequence {gr ∈ R : r = 1, . . . , 2n − 1}, the Hankel

matrix is the matrix A = (aij) ∈ Rn×n
where aij = gi+j−1.

It is not known how to solve BPSM(A) efficiently for a general Hankel matrix

A, however we can solve it for some special cases of Hankel matrix as follows.

Definition 6.26. A sequence {gr ∈ R : r = 1, . . . , n}, is said to be strictly concave

if gr+2 − gr+1 < gr+1 − gr for r = 1, . . . , n− 2.

Theorem 6.27 ([34]). For a Hankel matrix A ∈ Rn×n
, formed from a strictly

concave sequence, BPSM(A, k) can be solved in polynomial time.

Definition 6.28. A sequence {gr ∈ R : r = 1, . . . , n}, is said to be convex if

gr+2 − gr+1 ≥ gr+1 − gr for r = 1, . . . , n− 2.

Theorem 6.29 ([14]). A Hankel matrix A ∈ Rn×n
, formed from a convex sequence

is a Monge matrix, hence BPSM(A, k) can be solved in polynomial time.

Some new results are given in Section 6.4.5 on the finiteness of δn−k(A) for any

Hankel matrix A.

Permutation matrices

Recall the definition of a permutation matrix (Definition 2.14 on Page 11). The

digraph associated with a permutation matrix consists only of disjoint elementary

cycles, with all arc weights equal to zero.

Theorem 6.30 ([13]). If A ∈ Rn×n
is a permutation matrix, then BPSM(A, k) can

be solved in a polynomial of n time.
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Remark. This means we can solve BPSM for permutation matrices if the size of

input is of order n. For example if we encode the input as the sequence of nodes

that form the disjoint elementary cycles in D(A), and the value of k, then the input

has a size of order n, so we can polynomially solve BPSM(A, k). Another encoding

could be the elements of A and the value of k. This also has a input size of order n,

so we can polynomially solve BPSM(A, k) for this encoding as well.

If we encoded the input as the lengths of the disjoint elementary cycles in D(A)

and the value of k, then the input size is of order p. As p 6= O(n) in general, we

cannot polynomially solve BPSM for permutation matrices with this input. In fact,

with this input, the problem is NP -complete. This issue will be looked at in the

section on generalised permutation matrices (Section 6.4.6, page 104).

6.4.2 Pyramidal matrices

Definition 6.31. Let A = (aij). If for all i, j, r, s ∈ N

max(i, j) < max(r, s) =⇒ aij ≥ ars, (6.4.2)

then A is called pyramidal.

Theorem 6.32. If A = (aij) ∈ Rn×n
is pyramidal then A(K) will be the optimal

principal submatrix for BPSM(A, k) with δn−k(A) = maper(A(K)). Hence we can

solve BPSM(A, k) in polynomial time.

Proof. Let A({l1, . . . lk}) be an arbitrary principal submatrix with 1 ≤ l1 < · · · <

lk ≤ n. Note that

i ≤ li, for all i ∈ K.

Therefore

max(i, j) ≤ max(li, lj), for i, j ∈ K.
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If equality does not hold for some i and j, then by (6.4.2) we have,

aij ≥ alilj .

If equality does hold for some i and j, then let lt = max(li, lj). Note that

i < j ⇔ li < lj. So we have t = max(i, j) and therefore lt = t. This must mean

lt−1 = t− 1, . . . , l1 = 1. In this case

aij = alilj .

Either way, aij ≥ alilj holds. Therefore

maper(A({l1, . . . lk})) ≤ maper(A({1, . . . k}))

= maper(A(K))

= δn−k(A),

as A({l1, . . . lk}) was arbitrary. Hence result.

Example 6.5. Consider the matrix

A =




9 8 4 3

8 6 5 4

5 4 4 3

3 2 3 1




.

The indicated lines help to check that A is pyramidal, i.e. we can see that:

9 is greater or equal to 8, 6 and 8,

which in turn are greater or equal to 5, 4, 4, 5 and 4,

which in turn are greater or equal to 3, 2, 3, 1, 3, 4 and 3.
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Therefore we can use Theorem 6.32 to easily find:

δ3(A) = δ4−1(A) = maper(A({1})) = 9

δ2(A) = δ4−2(A) = maper(A({1, 2})) = 16

δ1(A) = δ4−3(A) = maper(A({1, 2, 3})) = 20

δ0(A) = δ4−4(A) = maper(A({1, 2, 3, 4})) = maper(A) = 22.

Remark. Matrices that are not pyramidal, may become such after simultaneously

permuting rows and columns. It follows from (6.4.2) that the diagonal entries of the

matrix must be in descending order for (6.4.2) to be satisfied.

Once rows and columns have been simultaneously permuted in this way, addi-

tional simultaneous row and column permutations may be needed between rows and

columns which have a diagonal entry equal to another diagonal entry. This is fairly

simple, as if a matrix can be transformed to a pyramidal matrix by way of simul-

taneous row and column permutations, then at most two rows and columns that

have the same diagonal entry can have elements in them that are not equal to the

diagonal entry.

Thus it is possible to check if any matrix can or cannot be transformed to a pyra-

midal matrix in this way, and to carry out this transformation quickly (polynomial

time).

6.4.3 Symmetric matrices in Tn×n

In this section we show that BPSM(A, k), for a symmetric matrix A ∈ Tn×n =

{0,−∞}n×n, and k even, can be solved in O(1) time, after finding kmax. We also

describe some cases when this is true for odd values of k. These results can imme-

diately be applied to the question of finiteness of δn−k(A) for symmetric matrices

A ∈ Rn×n
.

Recall the definition for PND paths (Definition 2.20, Page 13). For all k, the
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unique finite value for δn−k(A) is 0. Also, δn−k(A) = 0 if and only if there exist PND

cycles in D(A) covering a total of k nodes. Hence, deciding if δn−k(A) = 0 for some

matrix A ∈ Tn×n is equivalent to deciding whether there exist PND cycles in D(A)

covering exactly k nodes.

Definition 6.33. Let A ∈ Rn×n
be a symmetric matrix and σ be an arbitrary cycle

of length p in D(A). By symmetry, for each arc (i, j) in D(A), (j, i) is also an

arc (”counterarc”). If p is even, we define the operation of splitting σ as removing

alternate arcs from σ, and adding counterarcs (j, i) for each (i, j) that remains from

σ, resulting in a collection of p
2

PND cycles in D(A) that cover all p nodes from V (σ).

If σ is a loop, we define the operation of splitting σ as removing the arc. If p ≥ 3

is odd, we define the operation of splitting σ− v as removing alternate arcs from σ,

starting with an incident arc to node v and ending with the other incident arc to

node v, and adding counterarcs (j, i) for each (i, j) that remains from σ, resulting in

a collection of p−1
2

PND cycles in D(A) that cover p−1 nodes from V (σ), with node

v not being covered. We define splitting a path with p arcs as deleting alternate arcs

on that path starting from the second arc and adding counterarcs to the remaining

arcs, to form a collection of p
2

2-cycles if p was even, or p+1
2

2-cycles if p was odd.

Definition 6.34. For A ∈ Rn×n
, we define F = {k ∈ N : δn−k(A) 6= −∞} and so

kmax = max(F ).

The task of finding kmax for a general matrix can be solved in O(n3) time [13],

however we can do better for symmetric matrices:

Theorem 6.35. [9] The task of finding kmax for a symmetric matrix A ∈ Rn×n

is equivalent to the maximum cardinality matching problem in a bipartite digraph

with 2n nodes and can therefore be solved in O(n2.5/
√

log n) time.

Proof. Let B(A) be the bipartite digraph (U, V, E), where U = {u1, ..., un}, V =

{v1, ..., vn} and E = {(ui, vj) : aij > −∞}.
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Figure 6.1: An illustration for the proof of Theorem 6.35.

Let M be a matching of maximum cardinality in B(A), |M | = m. Obviously

kmax ≤ m because if k = kmax then there are k finite entries in A, no two in the

same row or column, say airπ(ir), r = 1, ..., k, and so there is a matching of cardinality

k in B(A), namely, {(uir , vπ(ir)) : r = 1, ..., k}.
We now prove kmax ≥ m. The set of arcs H = {(i, j) : (ui, vj) ∈ M} in D(A)

consists of directed PND elementary paths or cycles, since both the outdegree and

indegree of each node in (N,H) is at most one. We will call a path proper if it is

not a cycle.

Construct from H another set H ′ as follows (see Figure 6.1): If all paths in H are

cycles then set H ′ = H. Now suppose that at least one proper path exists. Splitting

every proper path in (N,H), we obtain a digraph (N, H ′) which consists of original
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cycles in (N,H) and a number of cycles of length 2. All cycles in (N, H ′) are PND.

Each set of PND cycles in D(A) determines a matching in B(A) whose cardinality

is equal to the total number of arcs of these cycles. Thus none of the proper paths

in (N, H) could have been of odd length, say s, as otherwise the total number of

arcs on cycles constructed from this path would be s + 1, a contradiction with the

maximality of M . Hence |H ′| = m and thus kmax ≥ m.

The complexity statement now follows from [5].

Theorem 6.36. If A ∈ Tn×n is a symmetric matrix and δn−l(A) = 0 for some l ∈ N ,

then δn−k(A) = 0 for all even k ≤ l, and δn−k(A) = 0 for all k = l − r, . . . , l, where

r is the number of odd cycles in a collection of PND cycles in D(A) that cover l

nodes.

Proof. Let {σ1, . . . , σt} be a collection of PND cycles in D(A) covering l nodes with

σi having odd length for i = 1, . . . , r and even length otherwise. By splitting the

cycles σi for i = r + 1, . . . , t if needed, we may assume that all these cycles are

2-cycles. By splitting one by one the cycles σi − vi for vi ∈ V (σi) and i = 1, . . . , r,

we get that δl−i = 0 for i = 1, . . . , r. After these splittings, all remaining cycles are

2-cycles and removing them one by one proves the result.

Corollary 6.37. Let A ∈ Tn×n be a symmetric matrix. For all even k ≤ kmax,

δn−k(A) = 0, and if δn−k(A) = 0 for some odd k ∈ N then δn−k+1(A) = 0.

If A has at least one zero on the main diagonal, (or equivalently, if the digraph

D(A) has at least one cycle of length one (alternatively known as a loop)), then we

can derive a number of properties:

Theorem 6.38. If A ∈ Tn×n is a symmetric matrix, and there exists a collection

of PND cycles in D(A) covering l nodes, at least one of which is a loop, then

δn−k(A) = 0 for all k ≤ l.
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Proof. Let {σ1, . . . , σt} be a collection of PND cycles in D(A) covering kmax nodes

with σi having odd length for i = 1, . . . , r and even length otherwise. Assume σr is

a loop. By splitting the cycles σi for i = r + 1, . . . , t if needed, we may assume that

all these cycles are 2-cycles. By splitting one by one the cycles σi− vi for vi ∈ V (σi)

and i = 1, . . . , r−1, we get that δn−l+i = 0 for i = 1, . . . , r−1. After these splittings,

all remaining cycles except σr are 2-cycles. Removing the 2-cycles one by one gives

us δn−l+i = 0 for odd i ∈ {r + 1, . . . , l − 1}. Removing σr and the 2-cycles one by

one gives us δn−l+i = 0 for even i ∈ {r, . . . , l}.

If l ∈ {kmax, kmax− 1} in Theorem 6.38, then we can completely solve BPSM for

this type of matrix:

Theorem 6.39. If A ∈ Tn×n is a symmetric matrix, l ∈ {kmax, kmax− 1} and there

exists a collection of PND cycles in D(A) covering l nodes, at least one of which is

a loop, then δn−k(A) = 0 for all k ≤ kmax.

Proof. The statement immediately follows from Theorem 6.38 and the fact that

δn−kmax(A) = 0.

Theorem 6.40. If A = (aij) ∈ Tn×n is a symmetric matrix and D(A) contains a

loop, then δn−k(A) = 0 for all k ≤ kmax.

Proof. We assume that (j, j) is a loop in D(A). As δn−kmax(A) = 0, there exist PND

cycles in D(A) σ1, σ2, . . . , σt in D(A) covering kmax nodes. We need to show there

exist PND cycles σ′1, σ
′
2, . . . , σ

′
t′ in D(A), at least one being a loop, that cover kmax

or kmax − 1 nodes.

Clearly if (j, j) ∈ {σ1, σ2, . . . , σt} then we can use Theorem 6.39 and we are done,

so assume not. Then j is covered by these cycles, as otherwise, (j, j) together with

σ1, σ2, . . . , σt would form PND cycles in D(A) covering kmax+1 nodes, which contra-

dicts the definition of kmax. Hence there exists one cycle σr = (j, i2, i3, . . . , ip, j) ∈
{σ1, σ2, . . . , σt}.
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If p is odd, then we can split σr− j, and add (j, j) to the resulting cycles to form

PND cycles in D(A) covering kmax nodes. If instead p is even, then we can split σr,

remove the 2-cycle that contains p, and add (j, j) to the remaining cycles to form

PND cycles in D(A) covering kmax−1 nodes. The result then follows from Theorem

6.39.

Recall that we have previously defined F = {k ∈ N : δn−k(A) 6= −∞}.

Definition 6.41. For A ∈ Rn×n
, let koddmin = min

odd k
F .

By Corollary 6.37, for symmetric matrices, unless kmax = 1, the smallest even

k ∈ F is 2. However, koddmin, the smallest odd value in F is more tricky.

Remark. If there exist PND cycles σ1, σ2, . . . , σt in D(A) such that an odd number

of nodes is covered, then at least one of the cycles is odd. Hence koddmin is the length

of a shortest odd cycle in D(A). This cycle can be found polynomially [31]. (By

calculating powers of A, we can determine the value of koddmin as the smallest odd k

such that max
i∈N

ak
ii is finite.) Note that koddmin does not exist if there is no odd cycle

in D(A), and if this is the case, then δn−k = −∞ for all odd k. So for the remainder

of this section, we shall assume that koddmin exists.

Theorem 6.42. Let A ∈ Tn×n be a symmetric matrix, σ1, σ2, . . . , σt be a collection

of PND cycles in D(A) covering k′ nodes, with at least one having odd length. Then

δn−k(A) = 0 for all odd k ∈ {l′, . . . , k′}, where l′ is the minimum length of the odd

cycles in this collection.

Proof. Without loss of generality, assume the length of σt is l′. Then the PND cycles

σ1, σ2, . . . , σt−1 in D(A) cover k′ − l′ nodes, hence δn−k′+l′(A) = 0. By Corollary

6.37, δn−k(A) = 0 for all even k ∈ {0, . . . , k′ − l′}. Take an arbitrary even k ∈
{0, . . . , k′ − l′}. So k + l′ ∈ {l′, . . . , k′}. There exist PND cycles σ′1, σ

′
2, . . . , σ

′
t′ in

D(A) covering k nodes other than those in V (σt). Therefore, σ′1, σ
′
2, . . . , σ

′
t′ and σt

are PND cycles in D(A) covering k + l′ nodes. Hence the result.
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Corollary 6.43. Let A ∈ Tn×n be a symmetric matrix, σ1, σ2, . . . , σt be a collection

of PND cycles in D(A) covering kmax or kmax − 1 nodes, with at least one having

length koddmin. Then we can decide whether δn−k(A) is 0 or −∞ for all k in linear

time, after finding kmax and koddmin.

Proof. The result follows from Corollary 6.37 and Theorem 6.42.

Theorem 6.44. If A ∈ Tn×n is a symmetric matrix, then δn−k(A) = 0 for all odd

k ∈ {koddmin, . . . , kmax − koddmin}.

Proof. As δn−kmax(A) = 0, there exist PND cycles σ1, σ2, . . . , σt in D(A) that cover

kmax nodes. There exists a cycle σ in D(A) of length koddmin.

Delete all nodes in V (σ) from σ1, σ2, . . . , σt, as well as incident arcs. As the

cycles were PND and each node was incident to precisely two arcs, up to 2koddmin

arcs have been deleted. Therefore this leaves a total of at least kmax− 2koddmin arcs

within the remaining PND cycles and paths that have arisen from deleting the arcs

from the cycles. Split any paths into 2-cycles. We now have PND cycles in D(A)

covering at least kmax − 2koddmin arcs, and therefore at least kmax − 2koddmin nodes,

none of which are nodes on σ.

Therefore, by Corollary 6.37, for all even i ≤ kmax − 2koddmin, there exist PND

cycles σ′1, σ
′
2, . . . , σ

′
t′ in D(A) covering i nodes, but none on σ. So for all even

i ≤ kmax − 2koddmin, we have PND cycles σ′1, σ
′
2, . . . , σ

′
t′ and σ in D(A) which cover

i + koddmin nodes. Hence the result.

Remark. Note that {koddmin, . . . , kmax − koddmin} 6= ∅ ⇐⇒ koddmin ≤ kmax

2
.

Corollary 6.45. Let A ∈ Tn×n be a symmetric matrix, with PND cycles in D(A)

covering kmax or kmax − 1 nodes, one having odd length of at most kmax − koddmin.

Then we can decide whether δn−k(A) is 0 or −∞ for all k in linear time, after finding

kmax and koddmin.

Proof. The result follows from Corollary 6.37, Theorem 6.42 and Theorem 6.44.
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Corollary 6.46. Let A ∈ Tn×n be a symmetric matrix, with PND cycles in D(A)

covering kmax or kmax − 1 nodes, one having odd length of at most
kmax

2
. Then we

can decide whether δn−k(A) is 0 or −∞ for all k in linear time, after finding kmax.

Proof. The result follows from Corollary 6.45 as kmax

2
≤ kmax − koddmin.

Corollary 6.47. Let A ∈ Tn×n be a symmetric matrix, with PND cycles in D(A)

covering kmax or kmax−1 nodes, two having odd length. Then we can decide whether

δk(A) is 0 or −∞ for all k in linear time, after finding kmax.

Proof. The result follows from Corollary 6.46.

Remark. Note that solving an assignment problem for A = (aij) ∈ Tn×n is equiva-

lent to deciding whether the classical permanent of the matrix B = (bij) is positive

where B is defined by bij = 1 if aij = 0 and bij = 0 otherwise. Therefore the

statements in Section 6.4.3 solve in special cases the question: Given A ∈ {0, 1}n×n,

and k ≤ n, is there a k × k principal submatrix of A whose classical permanent is

positive?

6.4.4 Symmetric matrices with no odd cycles

This section will show that if the digraph of a symmetric matrix A has no cycles of

odd length, then we can solve BPSM(A) in polynomial time.

Definition 6.48. For BPSM(A, 2k), we will let a symmetric solution be a set S

of pairs of indices of 2k independent entries of an 2k × 2k principal submatrix of

A = (aij) in which (i, i) 6∈ S for any i, and if (i, j) ∈ S then (j, i) ∈ S. Let

w(A, S) =
∑

(i,j)∈S

aij. We will let a symmetric optimal solution be one in which

w(A, S) = δn−2k(A).

Note that if δn−2k(A) is finite, then a symmetric solution for BPSM(A, 2k) is

equivalent to a composition of k cycles of length 2 in D(A). If δn−2k(A) = −∞,
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then a symmetric solution for BPSM(A, 2k) is equivalent to a composition of k cycles

of length 2 in DC(A) (see Definition 2.33 on Page 14 for the definition of DC(A)).

Lemma 6.49. For even n, a symmetric matrix A = (aij) ∈ Rn×n
corresponding to

a graph D(A) with no odd cycles (or equally, corresponding to a bipartite digraph)

and an elementary cycle σ = (i1, i2, . . . , in, i1) in D(A), there is a symmetric solution

S for BPSM(A, n) with w(A, S) ≥ w(A, σ).

Proof. We can assume n > 2, otherwise it is trivial. Let

π1 = (i1i2) ◦ (i3i4) ◦ · · · ◦ (in−1, in)

and

π2 = (i2, i3) ◦ (i4, i5) ◦ · · · ◦ (in, i1).

Then

w(A, σ) = ai1i2 + ai2i3 + · · ·+ ain−1in + aini1

w(A, π1) = ai1i2 + ai2i1 + · · ·+ ain−1in + ainin−1

= 2(ai1i2 + ai3i4 + · · ·+ ain−1in)

w(A, π2) = ai2i3 + ai3i2 + · · ·+ aini1 + ai1in

= 2(ai2i3 + ai4i5 + · · ·+ aini1).
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Assume wlog that w(A, π1) ≥ w(A, π2), then

w(A, σ) = ai1i2 + ai2i3 + · · ·+ ain−1in + aini1

=
1

2
(w(A, π1) + w(A, π2))

≤ 1

2
(w(A, π1) + w(A, π1))

= w(A, π1).

So let S = {(i1, i2), (i2, i1), . . . , (in−1, in), (in, in−1)} and the result holds.

Theorem 6.50. Given a symmetric matrix A ∈ Rn×n
, with D(A) having no odd

cycles (or equally, corresponding to a bipartite digraph), and given 2k ∈ N , there

always exists a symmetric optimal solution to BPSM(A, 2k).

Proof. There is a π = σ1 ◦ σ2 ◦ · · · ◦ σp such that w(A, π) = δn−2k(A). Take any

of these cycles σ1, σ2, . . . , σp, say σ = (i1, i2, . . . , ir, i1), for which r > 2. Let B =

A(i1, i2, . . . , ir, i1). Then using Lemma 6.49 with B and σ, we can replace σ with

cycles of length 2, and have at least as much weight. (In fact we will have the same

weight, as otherwise we would have a greater weight than δn−2k(A), which isn’t

possible.) Repeat this for all such elementary cycles that have a length greater than

2.

We then have a composition of cycles of the form π′ = σ′1 ◦σ′2 ◦ · · · ◦σ′p′ such that

w(A, π′) = δn−2k(A), and each σ ∈ {σ′1, σ′2, . . . , σ′p′} has length 2. So this corresponds

to a symmetric optimal solution.

Theorem 6.51. Given a symmetric matrix A ∈ Rn×n
, with D(A) having no odd

cycles, we can solve BPSM(A, 2k) for all k in polynomial time.

Proof. We can assume there is a symmetric optimal solution by Theorem 6.50. Let

D = D(A) = (V,E, w) be the weighted digraph associated with A = (aij). As A is

symmetric, if arc (i, j) ∈ E, then (j, i) ∈ E as well, and we may form an equivalent
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weighted undirected graph G = (V,E ′, w), where (i, j) ∈ E ′ for all pair of pairs

(i, j), (j, i) ∈ E. As there are no odd cycles in D, and hence none in G, we know

that G must be a weighted (undirected) bipartite graph, say G = (U,W,E,w),

where |U | = n1, |W | = n2 and n = n1 + n2 = |U ∪W |. If n1 6= n2, then WLOG

we can assume n1 > n2, and so add n1 − n2 nodes to W without adding additional

edges. Whether or not we extended the graph, we will call this undirected weighted

digraph G′ and its associated matrix B.

We wish to find a symmetric optimal solution set with 2k elements. This is equiv-

alent to finding a set of k disjoint pairs of arcs in D(A) with greatest weight. This is

in turn equivalent to finding a matching in G′ of k arcs with greatest weight. This

problem is equivalent to BSM(B, k), which we can polynomially solve. For all r and

s, if brs is an element of the optimum matrix for BSM(B, k), then the corresponding

elements aij and aji are elements of the optimum matrix for BPSM(A, 2k).

So which types of matrix are symmetric and have a digraph without odd cycles?

Well consider an arbitrary undirected graph G of the form described in the proof

above. Wlog, we may set U = {v1, v2, . . . , vn1} and W = {vn1+1, vn1+2, . . . , vn}. For

all (x, y) ∈ E, x ∈ U and y ∈ W (or x ∈ W and y ∈ U), but never x, y ∈ U and

never x, y ∈ W . Creating an equivalent digraph D as described in the above proof,

and the matrix A such that D = D(A), then we see A is of the following form:



−∞ C

CT −∞


 ,

where C = (cij) = w(i, j), and CT is the transpose of C. The weight function w

was arbitrary, hence we have the following result:
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Theorem 6.52. For any matrix

A =



−∞ C

CT −∞


 ∈ Rn×n

,

where C = (cij) and cij ∈ R, we can solve BPSM(A) in polynomial time.

Note that C does not need to be a square matrix, but if it is, then we can

simultaneously rearrange the rows and columns of A to give us a chessboard type

matrix as described in the next section (page 103).

6.4.5 Hankel matrices

Recall the definition of a Hankel matrix, as given in section 6.4.1. In this section

we show that finiteness of δn−k(H) can be easily decided for any Hankel matrix H.

Since Hankel matrices are symmetric, we can use some of the results of Section 6.4.3.

Theorem 6.53. If {gr ∈ R : r = 1, . . . , 2n − 1} is the sequence generating Hankel

matrix H = (hij) ∈ Rn×n
and gr 6= −∞ for some odd r, then δn−k(H) 6= −∞ for all

k ≤ kmax.

Proof. Let C = (cij) be defined by cij = 0 if hij 6= −∞ and cij = −∞ otherwise.

Assume gr 6= −∞ for some odd r. So (∃i) cii 6= −∞, i.e. (∃i) cii = 0. We now use

Theorem 6.40 to give us δn−k(C) = 0 for all k ≤ kmax. Then as δn−k(C) = 0 if and

only if δn−k(H) 6= −∞, the theorem follows.

Theorem 6.54. If a matrix A = (aij) ∈ Rn×n
is any matrix such that aij = −∞ if

i + j is even, then δn−k(A) = −∞ for all odd k.

Proof. Assume A = (aij) is a matrix such that aij = −∞ if i + j is even. If aij is

finite then i + j is odd. So i and j must be of different parities.

Let σ = (i1, i2, . . . , ip) ∈ Cn be any cyclic permutation of arbitrary length p such

that w(A, σ) 6= −∞.
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As w(A, σ) 6= −∞, then aij ,ij+1
6= −∞. So ij and ij+1 must be of different

parities. This means elements in the sequence i1, i2, . . . , ip, i1 alternate between

even and odd. This means p must be an even number, i.e. there are no cyclic

permutations σ of odd length of finite weight. Hence result.

If A is symmetric, then together with Corollary 6.37, this gives us:

Theorem 6.55. If A = (aij) ∈ Rn×n
is a symmetric matrix such that aij = −∞ if

i + j is even, then δn−k(A) 6= −∞ for all even k ≤ kmax, and δn−k(A) = −∞ for all

odd k.

The type of matrix that satisfies Theorem 6.55 is like a chessboard. We can

reformulate this for Hankel matrices:

Theorem 6.56. If {gr ∈ R : r = 1, . . . , 2n − 1} is the sequence generating Hankel

matrix H and gr = −∞ for all odd r, then δn−k(H) 6= −∞ for all even k ≤ kmax

and δn−k(H) = −∞ for all odd k.

Combining Theorem 6.53 and Theorem 6.56 enables us to decide whether δn−k(H)

is finite or not for any Hankel matrix H.

Theorem 6.57. If {gr ∈ R : r = 1, . . . , 2n − 1} is the sequence generating Hankel

matrix H then

1. δn−k(H) 6= −∞ for all even k ≤ kmax,

2. δn−k(H) = −∞ for all odd k if gr = −∞ for all odd r, and

3. δn−k(H) 6= −∞ for all odd k ≤ kmax if gr 6= −∞ for some odd r.

We can use this result to solve BPSM(H) for any Hankel matrix H ∈ Tn×n:

Corollary 6.58. If {gr ∈ T : r = 1, . . . , 2n− 1} is the sequence generating Hankel

matrix H then
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1. δn−k(H) = 0 for all even k ≤ kmax,

2. δn−k(H) = −∞ for all odd k if gr = −∞ for all odd r, and

3. δn−k(H) = 0 for all odd k ≤ kmax if gr 6= −∞ for some odd r.

6.4.6 Generalised permutation matrices

Recall the definition of a generalised permutation matrix (Definition 2.15 on Page 12).

The digraph associated with a generalised permutation matrix consists only of dis-

joint elementary cycles, with all arc weights finite (instead of zero in the case of

permutation matrices).

We will give an algorithm to solve BPSM(A, k) for a generalised permutation

matrix A. We will explain how this algorithm can be adapted to solve BPSM(A)

more efficiently than just repeating the algorithm for BPSM(A, k) for each value of k.

We will then discuss why the type of input (in particular, the length of the input) is

important in determining the complexity (and polynomiality) of the algorithm. We

shall explain why encoding the input in one way allows us to construct a polynomial

time algorithm for solving BPSM, and encoding the input in another way means

BPSM becomes NP -complete.

Solving BPSM(A, k)

If we want to solve BPSM(A, k) for a generalised permutation matrix, we can do

the following (which leads to the formation of an algorithm to solve BPSM for

generalised permutation matrices).

Suppose we are given a generalised permutation matrix A ∈ Rn×n
and k ∈ N .

From A, we can calculate the number of (disjoint) elementary cycles in D(A), say

p. So we have cycle 1, cycle 2, . . . , cycle p. We can calculate the length and weight

of cycle j, say lj and wj respectively, for j = 1, . . . , p.

The aim is to select a set of cycles that will maximise the sum of selected cycle
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weights, with the total length of selected cycles equal to k. The sum of selected cycle

weights will then equal δn−k(A). We can also select elements of A that correspond

to arcs in selected cycles. These elements lie in a k × k principal submatrix of A

and have the maximum sum (equal to δn−k(A)) of any such elements. Therefore we

would have solved BPSM(A, k).

It is more convenient to refer to a cycle’s index rather than the cycle itself. If we

do this, to keep track of which cycles, when selected, give a total weight w, and total

length l, we will use a cycle index set S ⊆ {1, . . . , p}. So if we selected elements of

A corresponding to arcs of cycles with cycle indices in S, and added them up, the

total would be w, and we would select l elements of A.

We let the set S and values w and l form a triple (S, w, l). From all such triples,

to be able to solve BPSM for generalised permutation matrices, we want S to be

any set of cycle indices from {1, . . . , p} such that w is as big as possible and l = k.

To find a triple that satisfies these properties, it is best to work systematically.

One way to do this is by doing the following. We start by considering (∅, 0, 0) in

stage 0. Then we consider all triples (S, w, l) with S = {1} (in stage 1). Then we

consider all triples with S ⊆ {1, 2} (in stage 2). Then we consider all triples with

S ⊆ {1, . . . , 3} (in stage 3). Until finally we consider all triples with S ⊆ {1, . . . , p}
(in stage p).

In stage 0, M0 = {(∅, 0, 0)}. The triple (∅, 0, 0) means if we select no entries

from any block, then we have total length 0 and total weight 0.

In stage j, j = 1, . . . , p, for each l = 1, . . . , k, we store in a set Mj, the triple

(S, w, l) with S ⊆ {1, . . . , j} that has w is as big as possible and has l as its third

components (if such a triple exists). This triple is chosen as follows.

In stage j, we start by copying all previous triples from Mj−1 by setting Mj =

Mj−1. We have S ⊆ {1, . . . , j}. For each (S, w, l) ∈ Mj−1 with l + lj ≤ k, we

then update Mj by doing the following. If there is no (S ′, w′, l + lj) ∈ Mj, then
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let Mj = Mj ∪ {(S ∪ {j}, w + wj, l + lj)}. If there is a (S ′, w′, l + lj) ∈ Mj with

w′ < w + wj, then let Mj = Mj − {(S ′, w′, l + lj)} ∪ {(S ∪ {j}, w + wj, l + lj)}.
By updating in this way, we ensure that the second coordinate of (S, w, l) (where

S ⊆ {1, . . . , j} and l ∈ K) is the biggest possible sum of any selection of the first j

cycle weights with total length l.

By the end of stage p, we simply have to select the (S∗, w∗, k) triple from the set

Mp, and we can select k independent elements (which are the elements of A given

by arcs of cycles with cycle indices in S∗) that lie in a k × k principal submatrix of

A with total sum of δn−k(A) = w∗ (which is the maximum possible). If there was

no (S∗, w∗, k) in Mp, then no finite solution exists, i.e. δn−k(A) = −∞.

In Figure 6.2 we give algorithm BPSMGENPERM for solving BPSM(A, k) for

a generalised permutation matrix A ∈ Rn×n
and k ∈ N . It formalises the above

discussion, and was partly based on an algorithm from [38, page 422]. We then

formally prove that BPSMGENPERM correctly and polynomially solves BPSM for

a generalised permutation matrix.
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Algorithm BPSMGENPERM

Input: Generalised permutation matrix A ∈ Rn×n
and k ∈ N .

Output: Returns δn−k(A), and if δn−k(A) is finite, then also k independent entries

of a k × k principal submatrix of A whose total is δn−k(A).

1. Set p equal to the number of distinct elementary cycles in D(A).

2. Set M0 = {(∅, 0, 0)}

3. For j = 1 to p :

(a) Set wj equal to the j’th cycle weight

(b) Set lj equal to the j’th cycle length

(c) Set Mj = Mj−1

(d) For each element (S,w, l) ∈ Mj−1 with l + lj ≤ k :

i. If @(S ′, w′, l + lj) ∈ Mj, then add (S ∪ {j}, w + wj, l + lj) to Mj.

ii. If ∃(S ′, w′, l + lj) ∈ Mj and w′ < w + wj, then remove (S ′, w′, l + lj)

from Mj and add (S ∪ {j}, w + wj, l + lj) to Mj.

4. If ∃(S, w, k) ∈ Mp, then return δn−k(A) = w and ∀j ∈ S select ast for all arcs

(vs, vt) in cycle j. Else return δn−k(A) = −∞.

Figure 6.2: An algorithm for solving BPSM(A, k) for a generalised permutation

matrix A and integer k.

Lemma 6.59.

1. If (S,w, l) ∈ Mj at Step 4 of the algorithm, then

(a) S ⊆ {1, . . . , j},

(b)
∑
i∈S

wi = w,

(c)
∑
i∈S

li = l ≤ k,

(d) If (S ′, w′, l) ∈ Mj, then S ′ = S and w′ = w,

(e) If S ′ ⊆ {1, . . . , j}, w′ =
∑
i∈S′

wi and
∑
i∈S′

li = l then w′ ≤ w.
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2. If S ⊆ {1, . . . , j}, ∑
i∈S

wi = w, and
∑
i∈S

li = l ≤ k, then at Step 4 of the algorithm,

∃(S ′, w′, l) ∈ Mj where w ≤ w′.

Proof. Statements 1(a)-1(c) are proved by induction on j, and hold automatically

for j = 0. For j > 0, assume (S, w, l) ∈ Mj. We have two cases to consider:

Case 1: If j 6∈ S, then (S, w, l) ∈ Mj−1, so 1(a)-1(c) follow by induction.

Case 2: If j ∈ S, then (S−{j}, w−wj, l− lj) ∈ Mj−1. Note that lj ≤ l ≤ k, as the

third coordinate of this lies between 0 and k− lj. So again 1(a)-1(c) follow by

induction.

To prove 1(d), we use the fact that each element of Mj has a unique third

component due to the way Step 3(d) of the algorithm was constructed.

To prove 2, we use induction on max
j′∈S

j′. It holds for S = ∅, and for the in-

ductive step, assume t = max
j′∈S

j′. Note that t ≤ j, so t − 1 ≤ j − 1. There-

fore ∃(S ′, w − wt, l − lt) ∈ Mt−1 by induction. Thus in Step 3(d) of the construc-

tion of Mt, (S ′ ∪ {t}, w, l) was added to Mt. Then either (S ′ ∪ {t}, w, l) ∈ Mj or

∃(S ′′, w′′, l) ∈ Mj with w < w′′. Either way, 2 holds.

To prove 1(e), note that by 2, ∃(S ′′, w′′, l) ∈ Mj, with w′ ≤ w′′. By 1(d), we see

that S ′′ = S and w′′ = w, therefore w′ ≤ w, and 1(e) follows.

Remark. From 2, we see that if we have a set of cycle indices S ⊆ {1, . . . , p} with the

total lengths of these cycles equal to k (and total weight w), then ∃(S∗, w∗, k) ∈ Mp

(which gives at least as much total weight w∗ as w does). Then from 1(e), we see

that if (S∗, w∗, k) ∈ Mp, then no other cycle index set, with corresponding cycle

lengths totaling k, will provide a bigger total weight than w∗. Selecting elements of

A corresponding to arcs of cycles of D(A) that have indices in S∗ and adding them

up will give w∗, which is the highest possible value, so w = δn−k(A).

Theorem 6.60. The algorithm BPSMGENPERM correctly solves BPSM(A, k) for

any generalised permutation matrix A ∈ Rn×n
and k ∈ N , in O(n2) time.
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Proof. Correctness follows from Lemma 6.59: Step 4 of the algorithm chooses an

element (S,w, k) from Mp (assuming Mp 6= ∅) with third component k. Thus it

follows that the solution generated from S is feasible (i.e. if we select all elements of

A corresponding to arcs of cycles in D(A) that have cycle indices in the set S, then

k finite elements of A will be selected, resulting in a finite total weight) (by 1(a)

and 1(c)), its total weight is w (by 1(b)), and there is no better solution (by 1(e)).

By part 2 of the lemma, it follows that if Mp = ∅ at Step 4 of the algorithm, then

there is no feasible cycle index set, i.e. δn−k(A) = −∞.

For the time bound, notice that the size of each set Mj−1 is no greater than k,

because there is at most one element in Mj−1 with the same third component (by

1(d)). Each update operation of Step 3(d) can be done in constant time, and must

be repeated for all O(k) elements of Mj−1. In Step 1, we can move from one element

of a cycle to the next element, until we are back to the start of the cycle, then move

on to the next cycle, counting the number of cycles as we go. This can be done in

O(n) time. Step 4 can be done in O(k) time. Steps 2, 3(a), 3(b) and 3(c) require

one operation each and so can be performed in constant time. The whole of Step 3

is repeated p times, so algorithm BPSMGENPERM runs in O(n + pk) time. As p

and n are O(n), this becomes O(n2) time.

Solving BPSM(A)

For a generalised permutation matrix A, the algorithm BPSMGENPERM solves

BPSM(A, k) for one particular value of k only. If we want to solve BPSM(A, k) for

all values of k (i.e. solve BPSM(A)), then we could repeat the algorithm n times,

changing the value of k each time. This means we could solve BPSM(A) in O(n3)

time.

However, we can modify BPSMGENPERM slightly so that it can solve BPSM(A)

more quickly than just repeating for all k: Create a modified algorithm of BPSM-

GENPERM called BPSMGENPERM2 by replacing k by n in Step 3(d) of BPSM-
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Algorithm BPSMGENPERM2

Input: Generalised permutation matrix A ∈ Rn×n
.

Output: For k = 1, . . . , n, returns δn−k(A), and if δn−k(A) is finite, then also k

independent entries of a k × k principal submatrix of A whose total is δn−k(A).

1. Set p equal to the number of distinct elementary cycles in D(A).

2. Set M0 = {(∅, 0, 0)}

3. For j = 1 to p :

(a) Set wj equal to the j’th cycle weight

(b) Set lj equal to the j’th cycle length

(c) Set Mj = Mj−1

(d) For each element (S,w, l) ∈ Mj−1 with l + lj ≤ n :

i. If @(S ′, w′, l + lj) ∈ Mj, then add (S ∪ {j}, w + wj, l + lj) to Mj.

ii. If ∃(S ′, w′, l + lj) ∈ Mj and w′ < w + wj, then remove (S ′, w′, l + lj)

from Mj and add (S ∪ {j}, w + wj, l + lj) to Mj.

4. For k = 1 to n :

If ∃(S, w, k) ∈ Mp, then return δn−k(A) = w and ∀j ∈ S select ast for all arcs

(vs, vt) in cycle j. Else return δn−k(A) = −∞.

Figure 6.3: An algorithm for solving BPSM(A) for a generalised permutation
matrix A.

GENPERM and repeating Step 4 of BPSMGENPERM for all k ∈ N . This would

solve BPSM(A) in O(n2) time.

This works because in Step 4 of BPSMGENPERM, we can solve BPSM(A, k′)

for any k′ ≤ k because of the way each of the Mj sets (j = 1, . . . , p) are created. The

l + lj ≤ k condition in Step 3(d) of BPSMGENPERM is simply to stop unnecessary

calculations being performed. Changing this to l + lj ≤ n means that in Step 4, we

can solve BPSM(A, k′) for any k′ ≤ n. So by repeating this step for all values of

k′ ∈ N , we can solve BPSM(A).

By making these changes to BPSMGENPERM, Step 3 now takes O(n2) time
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instead of O(nk) time and Step 4 now takes O(n2) time instead of O(k) time. All

other steps are unchanged, meaning the modified algorithm runs in O(n2) time,

which is an improvement on O(n3) time. The algorithm is shown in Figure 6.3.

Length of input

The BPSMGENPERM algorithm runs in O(n2) time. As the length of the input is

2n + 1 = O(n), this algorithm has a polynomial time complexity.

However, if the input for the algorithm BPSMGENPERM had been the lengths

and weights of the p cycles with the value of k (i.e. (l1, . . . , lp, w1, . . . , wp, k)), then

the input would have length 2p + 1 = O(p). Step 1 could then be found in constant

time because the input would have length 2p + 1. Steps 3(a) and 3(b) would be

redundant and could be removed.

With this input, BPSMGENPERM would run in O(pk) time. As in general, k

is not a polynomial in p, we cannot say that BPSMGENPERM is polynomial in the

new input length.

In fact we will now show that if it has this input then BPSMGENPERM is

NP -complete. It can be formulated as the following problem:

Given an input (l1, . . . , lp, w1, . . . , wp, k) with integer entries, maximise
∑
j∈S

wj over

all subsets S ⊆ {1, . . . , p} satisfying
∑
j∈S

lj = k, if such an S exists.

If we restrict this problem to have w1, . . . , wp = 0 (i.e. the generalised permuta-

tion matrix is restricted to be a permutation matrix), then the answer is simply 0

whenever such an S exists. So we just have to work out if S exists, i.e. the following

problem: Given an input (l1, . . . , lp, k) with integer entries, does there exist a subset

S ⊆ {1, . . . , p} such that
∑
j∈S

lj = k?

However, this is precisely the definition of the 0-1 KNAPSACK problem, which

is well known to be NP -complete. Therefore with (l1, . . . , lp, w1, . . . , wp, k) as our

input, BPSM becomes NP -complete.

So for generalised permutation matrices, it is important to have length of the
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input an order of n, to have a polynomial algorithm that solves BPSM.

Let the generalised permutation matrix A have p cycles, σ1, . . . , σp, where σj =

(ij1 , . . . , ijl(σj)
). An alternative input encoding that would still have a polynomial

algorithm that solves it would be the following:

(σ1, . . . , σp, w(σ1), . . . , w(σp), k).

It is straightforward to work out l1, . . . , lp from this input. The length of this input

is n + p + 1, which is of order n. So if BPSMGENPERM had an input of this

form (instead of the whole matrix A and the value of k), then it would still solve

BPSM(A, k) in polynomial time.

6.4.7 Block diagonal matrices

We will define a block diagonal matrix, provide a polynomial algorithm BPSM-

BLOCKDIAG to solve BPSM(A, k) for some block diagonal matrix A, and comment

on how this could be modified to polynomially solve BPSM(A) for some block di-

agonal matrix A more efficiently than repeating BPSMBLOCKDIAG for each value

of k.

Definition 6.61. Given square matrices A1, A2, . . . , Ap, we define the block diagonal

matrix of (A1, A2, . . . , Ap) as

blockdiag(A1, A2, . . . , Ap) =




A1 −∞
A2

. . .

−∞ Ap




.

Let A = blockdiag(A1, A2, . . . , Ap) be a block diagonal matrix. Any block of

A (i.e. A1, A2, . . . , or Ap) has a corresponding subgraph D(Ai) of D(A) for every

i = 1, . . . , p. Every D(Ai) is disjoint from any D(Aj), j 6= i. So any cycle in D(A)
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has nodes entirely within one of these disjoint subgraphs, and it is not possible to

have a cycle in D(A) with arcs corresponding to elements from more than one of

the matrices A1, . . . , Ap.

Solving BPSM(A, k)

A generalised permutation matrix is a special case of block diagonal matrix. Sim-

ilarly to the way we solved BPSM for a generalised permutation matrix, we can

also solve BPSM(A, k) for block diagonal matrix A = blockdiag(A1, A2, . . . , Ap)

(in polynomial time, as long as we can solve BPSM(Aj, k) in polynomial time, for

j = 1, . . . , p).

We will now show how to solve BPSM(A) for a block diagonal matrix A =

blockdiag(A1, A2, . . . , Ap) in polynomial time, as long as we can solve BPSM(Aj)

in polynomial time, for j = 1, . . . , p. This is shown in an algorithm called BPSM-

BLOCKDIAG (see Figure 6.4). The BPSMBLOCKDIAG algorithm is a generalisa-

tion of the BPSMGENPERM algorithm from Figure 6.2.

Let n(j) be the order of Aj, j = 1, . . . , p. If a block diagonal matrix is a

generalised permutation matrix (i.e. as in Section 6.4.6), then the digraph Dj of

each block Aj contains exactly one elementary cycle, say of length lj and of weight

wj (or equivalently, δn(j)−lj(Aj) = wj and for all r = 1, 2, . . . , lj−1, lj+1, . . . , n(j),

δn(j)−r(Aj) = −∞). In Section 6.4.6, the triple ({j}, wj, lj) meant if we select all

elements of A corresponding to arcs in cycle i, then we would select lj elements and

the total weight of these would be wj.

For general block diagonal matrices, we want to select elements of A correspond-

ing to some of the entries of block Aj (instead of the elements of A corresponding

to all arcs of cycle j). There is not one total length and weight in a block - there

are many.

Assume that we solve BPSM(Aj), for j = 1, . . . , p. This may be done in polyno-

mial time if Aj is one of the special types of matrix in this chapter. Else, it may be
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solved by a randomised polynomial algorithm, by complete enumeration, or by the

branch and bound method presented later in Section 6.5.

So for j = 1, . . . p and r = 1, . . . , k we would be able to find δn(j)−r(Aj) and also a

principal submatrix Bjr ∈ Aj(r) and permutation πjr ∈ Pr such that w(Bjr, πjr) =

δn(j)−r(Aj). Finding this information is one step of the algorithm, so if we can’t find

it in polynomial time then the algorithm will not run in polynomial time.

Let Dj = D(Aj). Compared to the previous section, for each block Aj (instead

of cycle j) we have the following information. For r = 1, . . . , k (instead of a single

value of lj), the permutation πjr in Dj gives cycles of total length r (instead of just a

single value of lj) and total weight δn(j)−r(Aj) (instead of wj). For r = 1, . . . , k, the

elements to be selected to give δn(j)−r(Aj) are now found from Bjr and πjr (instead

of from cycle j).

Finally, instead of S telling us which cycle indices to select, we will use S, a

set of pairs to tell us which submatrix to select and which elements from within it

to select. We do this by assigning pairs (j, r) to S. A pair (j, r) tells us that by

choosing Bjr and πjr we select a total of r elements from Bjr and give a total sum

of δn(j)−r(Aj).

There are p stages to the algorithm. At each stage information is collected and

then stored within a set of triples called Mj. Each triple has the form (S, w, k),

where S is as described above, w is the total weight of elements selected by using

the information in S, and k is the total number of elements selected by using the

information in S.

M0 is set to {(∅, 0, 0)} at Stage 0. For j = 1, . . . , p, at Stage j, the information

found from Aj (i.e. δn(j)−1(Aj), δn(j)−2(Aj), . . . , δ0(Aj)) and the information from

Stage j − 1 (i.e. Mj−1) is combined to produce Mj. We start by copying all triples

from Mj−1 to Mj. Next, if we can find a triple (S, w, k) (of the form described

above) by combining the information found from Aj and Mj−1 that is not in Mj−1,
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then we add (S, w, k) to Mj. Otherwise, if w is larger than the second coordinate of

any triple in Mj−1 having third component equal to k, then we replace that triple

with (S,w, k) in Mj.

Using the above discussion, we now create the algorithm, called BPSMBLOCK-

DIAG, that works in a similar way to BPSMGENPERM. The main changes are

mainly notational, to deal with the extra information we have in a block diagonal

matrix compared to a generalised permutation matrix. We will then discuss the

correctness and complexity of this algorithm.
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Algorithm BPSMBLOCKDIAG

Input: A = blockdiag(A1, A2, . . . , Ap) ∈ Rn×n
, k ∈ N .

Output: Returns δn−k(A), and if δn−k(A) is finite, then also k independent entries

of a k × k principal submatrix of A whose total is δn−k(A).

1. Set M0 = {(∅, 0, 0)}

2. For j = 1 to p :

(a) For r = 1 to min(n(j), k) :

i. Find δn(j)−r(Aj).

ii. Find Bjr ∈ Aj(r) and πjr ∈ Pr such that w(Bjr, πjr) = δn(j)−r(Aj).

(b) Set Mj = Mj−1

(c) For each element (S,w, l) ∈ Mj−1 :

For each r = 1 to min(
j∑

t=1

n(t)− l, k − l, n(j)) with δn(j)−r(Aj) finite :

i. If @(S ′, w′, l + r) ∈ Mj, then add (S ∪ {(j, r)}, w + δn(j)−r(Aj), l + r)

to Mj.

ii. If ∃(S ′, w′, l + r) ∈ Mj and w′ < w + δn(j)−r(Aj), then remove

(S ′, w′, l + r) from Mj and add (S ∪{(j, r)}, w + δn(j)−r(Aj), l + r) to

Mj.

3. If ∃(S, w, k) ∈ Mp, then return δn−k(A) = w, and for i = 1, . . . , r and all

(j, r) ∈ S, return the element of A that corresponds to the (i, πjr(i)) entry of

Bjr. Else return δn−k(A) = −∞.

Figure 6.4: An algorithm for solving BPSM(A, k) for a block diagonal matrix A

and integer k.

Lemma 6.62.

1. If (S,w, k) ∈ Mj in Step 3 of the algorithm, then

(a) S ⊆ {1, . . . , p} × {1, . . . , n},

(b)
∑

(i,s)∈S

δn(i)−s(Ai) = w,

(c)
∑

(i,s)∈S

s = k,
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(d) If (S ′, w′, k) ∈ Mj, then S ′ = S and w′ = w,

(e) If S ′ ⊆ {1, . . . , p} × {1, . . . , n}, w′ =
∑

(i,s)∈S′
δn(i)−s(Ai) and

∑
(i,s)∈S′

s = k

then w′ ≤ w.

2. If S ⊆ {1, . . . , p} × {1, . . . , n}, and
∑

(i,s)∈S

s = k ≤ n, then in Step 3 of the

algorithm, ∃(S ′, w′, k) ∈ Mj where w ≤ w′.

Proof. Statements 1(a)-1(c) are proved by induction on j, and hold automatically

for j = 0. For j > 0, assume (S, w, k) ∈ Mj. We have two cases to consider:

Case 1: If @(j, r) ∈ S, then (S, w, k) ∈ Mj−1, so 1(a)-1(c) follow by induction.

Case 2: If ∃(j, r) ∈ S, then (S − {(j, r)}, w − δn(j)−r(Aj), k − r) ∈ Mj−1. Note

that r ≤ n, as the third coordinate of this lies between 0 and n− r. So again

1(a)-1(c) follow by induction.

To prove 1(d), we use the fact that each element of Mj has a unique third

component due to the way Step 2(c) of the algorithm was constructed.

To prove 2, we use induction on max
(h,s)∈S

h. It holds for S = ∅, and for the

inductive step, assume i = max
(h,s)∈S

h, and let (i, r) ∈ S. Note that i ≤ j, so

i − 1 ≤ j − 1. Therefore ∃(S ′, w − δn(j)−r(Aj), k − r) ∈ Mi−1 by induction. Thus

in Step 2(c) of the construction of Mi, (S ′ ∪ {(i, r)}, w, k) was added to Mi. Then

either (S ′ ∪ {(i, r)}, w, k) ∈ Mj or ∃(S ′′, w′′, k) ∈ Mj with w < w′′. Either way, 2

holds.

To prove 1(e), note that by 2, ∃(S ′′, w′′, k) ∈ Mj, with w′ ≤ w′′. By 1(d), we see

that S ′′ = S and w′′ = w, therefore w′ ≤ w, and 1(e) follows.

Remark. From part 2 of Lemma 6.62, we see that if we have an S ⊆ {1, . . . , p} ×
{1, . . . , k} with

∑
(i,s)∈S

s = k and
∑

(i,s)∈S

δn(i)−s(Ai) = w, then ∃(S∗, w∗, k) ∈ Mp

(which gives at least as much total weight w∗ as w does). Then from part 1(e) of

Lemma 6.62, we see that if (S∗, w∗, k) ∈ Mp, then no other first coordinate satisfying
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∑
(i,s)∈S

s = k will provide a bigger total weight than w∗. Selecting elements of A that

correspond to the (i, πjr(i)) entry of Bjr for all i = 1, . . . , r and all (j, r) ∈ S and

adding them up will give w∗, which is the highest possible value, so w = δn−k(A).

Theorem 6.63. If A = blockdiag(A1, A2, . . . , Ap) ∈ Rn×n
, k ∈ N and we can solve

BPSM(Ai, k
′) in O(t) time, for all i = 1, . . . , p and k′ = 1, . . . , k, then we can solve

BPSM(A, k) in O(n(n + t)) time.

Proof. Correctness follows from Lemma 6.62: Step 3 of the algorithm chooses an

element (S,w, k) from Mp (assuming Mp 6= ∅) with third component k. Thus it

follows (from 1(a) and 1(c) of Lemma 6.62) that the solution generated from S is

feasible (i.e. if we select the elements of A that corresponds to the (i, πjr(i)) entries

of Bjr for all i = 1, . . . , r and all (j, r) ∈ S, then k finite elements of A will be

selected, resulting in a finite total weight). It also follows that its total weight is w

(by 1(b) of Lemma 6.62), and there is no better solution (by 1(e) of Lemma 6.62).

By part 2 of Lemma 6.62, it follows that if Mp = ∅ at Step 4 of the algorithm, then

δn−k(A) = −∞.

For the time bound, notice that the size of each set Mj−1 is no greater than n,

because there is at most one element in Mj−1 with the same third component (by

1(d) of Lemma 6.62). Each update operation of Step 2(c) can be done in constant

time for each r and each Mj−1, and must be repeated for all O(n) elements of Mj−1

and O(n(j)) times for the r loop. Steps 1, and 2(b) require one operation each so can

be performed in constant time. Assume that for each r, Step 2(a) can be performed

in O(t) time. The whole of Step 2 is carried out for j = 1, . . . , p. It is easily seen

that Step 3 can be done in O(k) time. So algorithm BPSMBLOCKDIAG runs in

time
∑p

j=1 O(n(j))t +
∑p

j=1 O(n)O(n(j)) + O(k) = O(n(n + t)).

Corollary 6.64. If in Theorem 6.63, t is polynomial in n, that is, if we can solve

BPSM(Ai, k
′) in polynomial time, for all i = 1, . . . , p and k′ = 1, . . . , k, then for a

block diagonal matrix A, we can solve BPSM(A, k) in polynomial time.

118



Solving BPSM(A)

For a generalised permutation matrix A, the algorithm BPSMBLOCKDIAG solves

BPSM(A, k) for one particular value of k only. If we want to solve BPSM(A, k)

for all values of k (i.e. solve BPSM(A)), then we could repeat the algorithm n

times, changing the value of k each time. This means we could solve BPSM(A) in

O(n2(n + t)) time.

However, we can modify BPSMBLOCKDIAG slightly so it can solve BPSM(A)

more quickly than just repeating for all k: Create a modified algorithm of BPSM-

BLOCKDIAG called BPSMBLOCKDIAG2 by replacing k by n in Step 2(a) and

2(c) of BPSMBLOCKDIAG and repeating Step 3 of BPSMBLOCKDIAG for all

k ∈ N . This would solve BPSM(A) in O(n(n + t)) time.

This works because in Step 3 of BPSMBLOCKDIAG, we can solve BPSM(A, k′)

for any k′ ≤ k because of the way each of the Mj sets (j = 1, . . . , p) are created.

The “r = 1 to min(n(j), k)” condition in Step 2(a) and the “r = 1 to min(
j∑

t=1

n(t)−
l, k − l, n(j))” condition in Step 2(c) of BPSMBLOCKDIAG are mainly to stop

unnecessary calculations being performed. Changing these to “r = 1 to n(j)” and

“r = 1 to min(
j∑

t=1

n(t) − l, n(j))” respectively means that in Step 3, we can solve

BPSM(A, k′) for any k′ ≤ n. So by repeating this step for all values of k′ ∈ N , we

can solve BPSM(A).

By making these changes to BPSMBLOCKDIAG, the complexity of the steps

remains unchanged, except for Step 3 which now takes O(n2) time instead of O(k)

time. All other steps are unchanged, meaning the modified algorithm runs in time
∑p

j=1 O(n(j))t +
∑p

j=1 O(n)O(n(j)) + O(n2) = O(n(n + t)), which is the same as

the time complexity for solving BPSM for a single fixed k. The algorithm is shown

in Figure 6.5.
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Algorithm BPSMBLOCKDIAG2

Input: A = blockdiag(A1, A2, . . . , Ap) ∈ Rn×n
.

Output: For k = 1, . . . , n, returns δn−k(A), and if δn−k(A) is finite, then also k

independent entries of a k × k principal submatrix of A whose total is δn−k(A).

1. Set M0 = {(∅, 0, 0)}

2. For j = 1 to p :

(a) For r = 1 to n(j) :

i. Find δn(j)−r(Aj).

ii. Find Bjr ∈ Aj(r) and πjr ∈ Pr such that w(Bjr, πjr) = δn(j)−r(Aj).

(b) Set Mj = Mj−1

(c) For each element (S,w, l) ∈ Mj−1 :

For each r = 1 to min(
j∑

t=1

n(t)− l, n(j)) with δn(j)−r(Aj) finite :

i. If @(S ′, w′, l + r) ∈ Mj, then add (S ∪ {(j, r)}, w + δn(j)−r(Aj), l + r)

to Mj.

ii. If ∃(S ′, w′, l + r) ∈ Mj and w′ < w + δn(j)−r(Aj), then remove

(S ′, w′, l + r) from Mj and add (S ∪{(j, r)}, w + δn(j)−r(Aj), l + r) to

Mj.

3. For k = 1 to n :

If ∃(S, w, k) ∈ Mp, then return δn−k(A) = w, and for i = 1, . . . , r and all

(j, r) ∈ S, return the element of A that corresponds to the (i, πjr(i)) entry of

Bjr. Else return δn−k(A) = −∞.

Figure 6.5: An algorithm for solving BPSM(A) for a block diagonal matrix A.

6.4.8 Reducible Matrices

We will state that the digraph of any reducible matrix A consists of strongly con-

nected components. Using this fact we can convert A to a block diagonal matrix

with each block being irreducible. If we can solve BPSM for each block in polyno-

mial time, we can show that we can use the algorithm BPSMBLOCKDIAG from

Section 6.4.7 to solve BPSM(A, k) in polynomial time.
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Remark. Let A ∈ Rn×n
. If each entry of A is −∞, then obviously δn−k(A) = −∞,

for all k ∈ N . So now assume at least one element of A is finite. If any row or

column i of A contains only −∞’s, then removing both row and column i, will form

a smaller matrix A′ ∈ Rn−1×n−1
. Applying this process iteratively will form a matrix

A′′ ∈ Rr×r
that has no rows or columns consisting entirely of −∞’s.

For k > r, there does not exist k independent elements of A′′, therefore δn−k(A) =

−∞. For k ≤ r, there exists an optimal assignment over all k × k submatrices of A

which does not include any elements in the rows or columns of A that we deleted to

form A′′. Hence, for k ≤ r, we have δn−k(A) = δr−k(A
′′).

So to summarise, we can determine whether δn−k(A) = δr−k(A
′′) (which may or

may not be finite) for some matrix A′′ (which we can easily find) with no row or

column consisting entirely of −∞’s and k ≤ r, or else that δn−k(A) = −∞. Hence

from now on we will assume that all matrices have no rows or columns containing

only −∞’s.

Definition 6.65. A matrix B ∈ Rn×n
is in Frobenius normal form, if

B =




B11 B12 . . . B1p

B22 . . . B2p

. . .
...

−∞ Bpp




,

where all diagonal blocks Bii are irreducible.

Theorem 6.66 ([39]). Every matrix A ∈ Rn×n
can be transformed in linear time

to a similar matrix B ∈ Rn×n
in Frobenius normal form.

Because A ∼ B, we have that (∀k ∈ N) δn−k(B) = δn−k(A), by Corollary 6.10.

Remark. For any matrix A ∈ Rn×n
, any arc in DC(A) that does not lie on a finite

cycle may have its weight (or the corresponding element in A) set to −∞ without

121



affecting δn−k for any k ∈ N .

This means we may set all elements of off-diagonal blocks in B to −∞, as arcs in

DC(A) corresponding to elements in off-diagonal blocks do not belong to any finite

cycle. Therefore if we define Ci = Bii, for i = 1, . . . , p, we have

C =




C1 −∞
C2

. . .

−∞ Cp




,

This is a block diagonal matrix, i.e.

C = blockdiag(C1, C2, . . . , Cp),

and we have δn−k(C) = δn−k(A) for all k ∈ N . Therefore we have shown the

following:

Theorem 6.67. For A ∈ Rn×n
there exists C = blockdiag(C1, C2, . . . , Cp) ∈ Rn×n

such that each diagonal block Ci, (i = 1, . . . , p) is irreducible, and δn−k(C) = δn−k(A)

for all k ∈ N .

Corollary 6.68. For any A ∈ Rn×n
, k ∈ N , if we can solve BPSM in polynomial

time for each matrix associated with a strongly connected component of D(A), then

we can solve BPSM(A, k) in polynomial time (by converting A to a block diagonal

matrices and using the BPSMBLOCKDIAG algorithm of Figure 6.4).

6.5 A branch and bound method to solve BPSM

If A and k do not form one of the special cases in Section 6.4 for solving BPSM(A, k),

then in general we do not know how to solve BPSM(A, k) in polynomial time. We

could use a branch and bound method (presented later in this section) to solve
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BPSM(A, k). This may not run in polynomial time, but will at least provide an al-

ternative to complete enumeration. If the algorithm is terminated before completion,

we can also obtain upper and lower bounds to the optimal solution to BPSM(A, k)

from the most recent iteration of the algorithm.

6.5.1 BPSM as an integer program

Linear programming and integer linear programming have been well documented,

see for example [27]. The assignment problem for a matrix A = (aij) ∈ Rn×n
can be

described as an integer linear program (ILP) as follows:

max
∑
i∈N

∑
j∈N

aijxij (6.5.1a)

s.t.
∑
i∈N

xij = 1 for all j ∈ N (6.5.1b)

∑
j∈N

xij = 1 for all i ∈ N (6.5.1c)

xij ∈ {0, 1} for all i, j ∈ N (6.5.1d)

The n variables xij that equal 1 correspond to n elements of the matrix A that

belong to an optimal solution to the assignment problem.

We can adapt (6.5.1) so that BPSM(A, k) can be formulated as an ILP by adding
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n binary variables yi, i ∈ N as follows:

max
∑
i∈N

∑
j∈N

aijxij (6.5.2a)

s.t. yj +
∑
i∈N

xij = 1 for all j ∈ N (6.5.2b)

yi +
∑
j∈N

xij = 1 for all i ∈ N (6.5.2c)

∑
i∈N

yi = n− k (6.5.2d)

xij ∈ {0, 1} for all i, j ∈ N (6.5.2e)

yi ∈ {0, 1} for all i ∈ N (6.5.2f)

This ILP ensures that exactly k variables xij equal 1. It also ensures that there

is at most one element selected from each row and each column. Also, the inclusion

of yi ensures that an element from a row i is chosen if and only if an element from

the column i is chosen, because

xij = 1 =⇒ (∀l 6= i) xlj = 0

xij = 1 =⇒ (∀l 6= j) xil = 0

xij = 1 =⇒ (∃l) xjl = 1

hold for all i, j ∈ N . This ensures principality. If xij = 1, then aij = w(i, j) is

the weight of an arc on a cycle in D(A). Together these arcs will complete cycles

in D(A) that are disjoint from each other. All corresponding elements aij will thus

be contained within a principal submatrix of A size k, which has a set of row and

column indices equal to {i ∈ N : xij = 1}.
We can relax the BPSM(A, k) ILP (6.5.2) by removing the integrality constraints

in (6.5.2e) and (6.5.2f) that xij and yi be 0 or 1, and replace them with closed interval
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constraints given by (6.5.3e) and (6.5.3f) in the following LP:

max
∑
i∈N

∑
j∈N

aijxij (6.5.3a)

s.t. yj +
∑
i∈N

xij = 1 for all j ∈ N (6.5.3b)

yi +
∑
j∈N

xij = 1 for all i ∈ N (6.5.3c)

∑
i∈N

yi = n− k (6.5.3d)

xij ∈ [0, 1] for all i, j ∈ N (6.5.3e)

yi ∈ [0, 1] for all i ∈ N (6.5.3f)

In fact we can relax the constraints on the variables even further:

max
∑
i∈N

∑
j∈N

aijxij (6.5.4a)

s.t. yj +
∑
i∈N

xij = 1 for all j ∈ N (6.5.4b)

yi +
∑
j∈N

xij = 1 for all i ∈ N (6.5.4c)

∑
i∈N

yi = n− k (6.5.4d)

xij ≥ 0 for all i, j ∈ N (6.5.4e)

yi ≥ 0 for all i ∈ N (6.5.4f)

As xij and yi are non negative, if any of the variables are greater than 1, then

constraints (6.5.3b) and (6.5.3c) will not be met, so this does not extend the range

of the variables, merely remove the redundant constraints xij ≤ 1 and yi ≤ 1, for all

i, j ∈ N .

This relaxation (6.5.4) is now not an ILP, but a linear program (LP), and can
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be solved, for example by the simplex method. (The simplex method is technically

not polynomial in complexity, but is usually fairly quick to run in practice. Other

methods exist that do polynomially solve LPs.)

If by doing this, (6.5.4) results in an optimal solution with integer variables,

then this is also an optimal solution to the original integer problem (6.5.2), i.e.

solves BPSM for those choices of A and k. However for alternative choices of A and

k, the optimal solution to (6.5.4) may not provide integer variables. Sometimes the

solution has variable(s) with fractional value(s). This solution would not be feasible

in (6.5.2). However it does provide us with a useful upper bound (in the case of

maximisation) to the optimal objective function value (6.5.2a), and a solution for

which (6.5.2) may be “close” to optimal in some way in.

If an integral solution exists that maximises the objective function (6.5.4a), will

the simplex method applied to (6.5.4) return an integral solution? Consider the

following example: Let

A = (aij) =




6 9 9 3 9 5

9 0 1 1 1 5

9 1 8 2 0 9

3 1 2 9 8 7

9 1 0 8 7 9

5 5 9 7 9 7




, k = 4.

The simplex method can be used to solve (6.5.4). The built in simplex method

of Maple 8 was applied to this matrix. The optimal solution obtained was (with yi

variables omitted):
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x4,4 = 1

x5,1 = 1

x3,6 = 1/2

x1,3 = 1/2

x6,5 = 1/2

x1,5 = 1/2

Other xij = 0

This is indeed a feasible solution to (6.5.4). The sum of xij’s is 4, and row and

column sums are between 0 and 1. However, because some variables are not integer,

this is not an optimal solution to (6.5.2). In this case the objective function value

is 9 + 9 + 1/2 ∗ 9 + 1/2 ∗ 9 + 1/2 ∗ 9 + 1/2 ∗ 9 = 36. Thus this is an upper bound for

what any integer optimal solution to (6.5.2) could give us. Is it possible to match

this bound, with integer variables? The answer to this is yes. For example, consider

the following solution which has integer variables:

x1,2 = 1

x2,1 = 1

x5,6 = 1

x6,5 = 1

Other xij = 0

This is feasible, and has objective function value of 9 + 9 + 9 + 9 = 36, and

therefore is also optimal. So even though one simplex iteration did not find an

integral solution, there may still be one.

I believe Maple’s Simplex pivot rule is partially randomised, so repeating the
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above process may generate slightly different results, (in particular, may yield an

integer solution).

6.5.2 BPSMFrac

We have shown in the Section 6.5.1 how to formulate BPSM as an integer program,

and how to adapt this to a linear program, that will solve BPSM if the x and y

variables happen to be integer. We now define a variant of the BPSM problem that

will allow fractional values:

Problem 21. For A ∈ Rn×n
and real k ∈ [0, n], solve LP 6.5.4.

We will refer to this problem as BPSMFrac(A, k). Note that we have allowed k

to be a real number, as there isn’t any real need to restrict it to be an integer here.

Example 6.6.

A = (aij) =




5 0 0

0 1 3

0 1 0


 , k = 2.

For this example, it is easily seen that the optimal solution for BPSMFrac(A, k)

is

x1,1 = 1

x2,3 = 1/2

x3,2 = 1/2

Objective function value = 7

The optimal solution for BSM(A, k) is

x1,1 = 1

x2,3 = 1

Objective function value = 8 > 7
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The optimal solution for BPSM(A, k) is

x1,1 = 1

x2,2 = 1

Objective function value = 6 < 7 < 8

It is clear that the optimal solution value for BPSMFrac(A, k) is at least the

optimal solution value for BPSM(A, k), for all A ∈ Rn×n
and k ∈ N . And when

the solution is integer for BPSMFrac(A, k), the same solution will solve BPSM(A, k),

thus BPSM(A, k) and BPSMFrac(A, k) would have the same optimal solution value.

It is also true that the optimal solution value for BSM(A, k) is at least the optimal

solution value for BPSMFrac(A, k), for all A ∈ Rn×n
and k ∈ N , as the solution set

for BPSMFrac(A, k) is a subset of the solution set for BSM(A, k). (Note here that it

can be shown that there will always be an optimal integer solution for BSM however,

due to total unimodularity.) Also, when the solution for BSM(A, k) is principal,

the same solution will solve BPSM(A, k) and BPSMFrac(A, k), thus BPSM(A, k),

BPSMFrac(A, k) and BSM(A, k), problems would have the same optimal solution

value.

This means it is better to use BPSMFrac(A, k) rather than BSM(A, k) to find

an upper bound to BPSM(A, k), as the optimal solution value of BSM(A, k) will be

no closer to δn−k than the optimal solution value of BPSMFrac(A, k). Example 6.6

illustrates the fact that it is possible that BPSMFrac(A, k) can give a better upper

bound to BPSM(A, k) than BSM(A, k) can.

BPSMFrac is polynomially solvable, as linear programs (and in particular, LP

6.5.4) can be solved in polynomial time.

Now we give an example of a possible application of BPSMFrac.

Example 6.7. At a beer festival, the organiser wants to let some of the n contrib-

utors of the various beers to sample each others produce for free before the general
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public arrive. Based on previous years experience, he knows how likely they are to

like each of the types of beer. He wants to fix the total amount sampled by the

contributors to be T litres so that there is plenty to be bought by other people later

on. He doesn’t want any one contributor drinking more than D litres. Also, he feels

it only fair, that if the total amount sampled by a contributor is to be x litres, then

the total amount to be sampled of that particular contributor’s beer should be x

litres. The amount sampled by each contributor need not be in whole litres.

This can be solved using BPSMFrac(A, k) as follows. Let A = (aij) ∈ Rn×n
be a

matrix where aij is a rating of how much contributor i will enjoy contributor j’s beer.

He can set aij = −∞ if he does not want contributor i to sample contributor j’s beer.

Let k = T/D. We can then be solve BPSMFrac(A, k) using the simplex method (or

an alternative method) on the LP 6.5.4. The quantity Dxij will correspond to how

many litres of beer contributor i should drink from contributor j.

This example can be extended to other examples with continuous items that can

be split into any fraction, like liquids and gases can or fine solids such as flour or

sugar for example.

6.5.3 Branch and bound: worked example

Consider the following 10×10 matrix, which has entries randomly generated between

0 and 99:
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A =




21 21 98 72 88 13 53 24 97 65

0 15 18 64 5 98 11 73 55 40

7 11 10 23 59 90 69 22 30 45

84 57 78 33 35 70 67 41 27 43

88 76 73 53 32 81 32 15 84 3

54 4 13 77 13 45 55 92 13 49

57 51 83 30 49 89 30 67 23 31

13 15 94 39 3 17 76 1 88 53

93 23 44 54 92 82 71 4 89 98

57 45 94 74 34 53 85 69 59 12




We now try to solve BPSM(A, k), for k = 4, using a branch and bound technique.

We summarise this example at the end (see Figure 6.6 on page 140).

Solving the problem (P) - BPSMFrac(A, k), the relaxation of BPSM(A, k), (i.e.

LP 6.5.4 applied to matrix A with k = 4), using simplex, we obtain the following

solution. (For simplicity, we omit the yi variables and any xij variables that are

equal to zero.)

x1,9 = 1

x9,1 = 1

x8,3 = 2/3

x3,6 = 2/3

x6,8 = 2/3

Objective function value = 374.

Unfortunately we do not have an integer solution, and so this solution is not

feasible for the BPSM ILP (6.5.2). However, we do now have an upper bound of 374

to its objective function value (6.5.2a). Adding together the four highest diagonal

elements of A would give a lower estimate, that can be calculated in O(n log n). In
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this case the lower estimate is 33 + 32 + 45 + 89 = 199. So the optimal objective

function value lies in [199, 374].

We now branch our problem by setting one of the non-integer variables to zero

(for problem (P0)) and to one (for problem (P1)) to create two new problems. It

is not clear which variable we should choose (from x8,3, x3,6 and x6,8) in order to

terminate the algorithm fastest, so we randomly choose x3,6.

(P0) = (P ) ∪ {x3,6 = 0}
(P1) = (P ) ∪ {x3,6 = 1}

We call (P0) and (P1) the child problems of parent (P). Thus the objective

function values of both child problems will be no bigger than the parent.

For (P0), we solve using the simplex method, and obtain this solution:

x7,6 = 2/5

x5,1 = 2/5

x9,10 = 2/5

x1,9 = 3/5

x8,9 = 2/5

x6,8 = 2/5

x1,5 = 2/5

x10,7 = 2/5

x9,1 = 3/5

Objective function value = 365.2.

For (P1), we solve using the simplex method, and obtain this solution:
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x3,6 = 1

x1,9 = 1/2

x9,1 = 1/2

x8,3 = 1

x6,8 = 1

Objective function value = 371.

Problem (P) is of no further use, so we remove it from consideration.

We remove any child problems from consideration if their objective function val-

ues are less the lower bound, as the objective function values of future children

cannot rise back above the lower bound. Remaining child problems will have objec-

tive function values that are between the lower bound and upper bound.

If one child problem has an integer optimal solution, then its objective function

value now becomes the new lower bound, and we can remove this problem from

consideration. If both child problems have integer optimal solutions, then the great-

est of the two child problems’ objective function values now becomes the new lower

bound, and we can remove both problems from consideration.

Otherwise, we keep remaining child problems for later consideration.

If there are no more problems to consider, the lower bound we have will be the

optimal objective function value, so we end the process.

Otherwise, we then take a new parent problem with the biggest objective function

value, from all the problems we are considering, and set our new upper bound to

be its objective function value. Remaining problems will have objective function

values between the lower and upper bounds (inclusive). We then branch this parent

problem on one of its non-integer variables, and remove it from consideration.

In this example, both (P0) and (P1) have non-integer optimal solutions, so the

lower bound remains the same. The objective function values of 365.2 and 371
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are both above the lower bound of 199, so both (P0) and (P1) remain for further

consideration.

We set the new upper bound to max(365.2, 371) = 371, given by (P1). The

optimal objective function value now lies in [199, 371]. We remove (P1) from con-

sideration after branching on, say x9,1, to form (P10) and (P11).

(P10) = (P1) ∪ {x9,1 = 0}
(P11) = (P1) ∪ {x9,1 = 1}

For (P10), we solve using the simplex method, and obtain this solution:

x3,6 = 1

x10,3 = 1/2

x8,3 = 1/2

x9,10 = 1/2

x8,9 = 1/2

x6,8 = 1

Objective function value = 369.

For (P11), we solve using the simplex method, and obtain this solution:

x3,6 = 1

x9,1 = 1

x1,3 = 1

x6,9 = 1

Objective function value = 281.
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Note that (P11) has an integer optimal solution. Its objective function value of

281 is greater than the current lower bound of 199, so the new lower bound is set to

281, and we remove (P11) from consideration.

We now consider (P0) and (P10).

Both problems currently in consideration have objective function values no less

than the lower bound, so they both remain in consideration.

We have that (P0) and (P10) have non-integer solutions, so there may still be

a better integer solution that can be found from branching one of these. (Even if

there is no better integer solution, branching from these would allow us to be sure.)

The greatest objective function value is given by (P10). The new upper bound

is thus set to 369. The optimal objective function value now lies in [281, 369]. We

now branch (P10) on x8,9, and remove (P10) from consideration.

(P100) = (P10) ∪ {x8,9 = 0}
(P101) = (P10) ∪ {x8,9 = 1}

For (P100), we solve using the simplex method, and obtain this solution:

x3,6 = 1

x1,9 = 1/3

x5,1 = 1/3

x9,5 = 1/3

x8,3 = 1

x6,8 = 1

Objective function value = 368.3̇.
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For (P101), we solve using the simplex method, and obtain this solution:

x3,6 = 1

x8,9 = 1

x6,8 = 1

x9,3 = 1

Objective function value = 314

We have that (P101) has an integer optimal solution with objective function

value of 314. Thus the lower bound becomes 314, and we remove (P101) from

consideration.

We now consider (P0) and (P100).

The upper bound decreases to 368.3̇ given by (P100), as it has a bigger objec-

tive function value than (P0). The optimal objective function value now lies in

[314, 368.3̇].

We now branch (P100) on x1,9, and remove (P100) from consideration.

(P1000) = (P100) ∪ {x1,9 = 0}
(P1001) = (P100) ∪ {x1,9 = 1}

For (P1000), we solve using the simplex method, and obtain this solution:

x3,6 = 1

x9,9 = 1

x8,3 = 1

x6,8 = 1

Objective function value = 365
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For (P1001), we solve using the simplex method, and obtain this solution:

x3,6 = 1

x1,9 = 1

x6,1 = 1

x9,3 = 1

Objective function value = 285

Both these child problems have integer optimal solutions, with the greatest ob-

jective function value of 365 coming from (P1000). Hence the lower bound becomes

365, and we remove both (P1000) and (P1001) from consideration.

We only have (P0) to consider now.

The new upper bound becomes 365.2 from (P0), and so the optimal objective

function value lies in [365, 365.2].

We now branch (P0) on x5,1, and remove (P0) from consideration.

(P00) = (P0) ∪ {x5,1 = 0}
(P01) = (P0) ∪ {x5,1 = 1}

For (P00), we solve using the simplex method, and obtain this solution:

x6,8 = 2/3

x8,9 = 2/3

x1,9 = 1/3

x9,1 = 1/3

x9,10 = 2/3
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x10,7 = 2/3

x7,6 = 2/3

Objective function value = 364.6̇

For (P01), we solve using the simplex method, and obtain this solution:

x5,1 = 1

x9,5 = 3/4

x1,5 = 1/4

x1,9 = 3/4

x8,9 = 1/4

x7,6 = 1/4

x10,7 = 1/4

x6,8 = 1/4

x9,10 = 1/4

Objective function value = 364.75

Both (P00) and (P01) have objective function values less than the lower bound

and are removed from consideration.

We have no more problems to consider, so (P1000) resulted in an optimal (inte-

ger) solution with an objective function value of 365.

Therefore a3,6, a9,9, a8,3 and a6,8 should be selected from matrix A, adding to a

total of 90 + 89 + 94 + 92 = 365. This means BPSM(A, 4)=365.

See Figure 6.6 for a summary of this example.

Remark. In this particular example, all entries were integer values. This means

that the optimal objective function value must also be an integer. At one stage we

knew that the optimal objective function value lay in the range [365, 365.2]. As only
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one integer value lies in that range, namely 365, we could have concluded at that

point, with no further calculations, that BPSM(A, 4)=365.
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374 - New U Bound
Non-integer solution
(Branch on x3,6)

¼ j
P0

365.2
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(Carry forward)

P1

371 - New U Bound
Non-integer solution
(Branch on x9,1)

? = ^
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365.2
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(Carry forward)
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369 - New U Bound
Non-integer solution
(Branch on x8,9)
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Integer solution
—————————
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Non-integer solution
(Carry forward)

P100

368.3̇ - New U Bound
Non-integer solution
(Branch on x1,9)

P101

314 - New L Bound
Integer solution
—————————

? ° j
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365.2 - New U Bound
Non-integer solution
(Branch on x5,1)
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365 - New L Bound
Integer solution
—————————

P1001
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Integer solution
—————————
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364.6̇
Below L Bound
—————————

P01

364.75
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—————————

Figure 6.6: A branch and bound example of solving BPSM
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6.5.4 Formalisation of the branch and bound method

We now formalise the branch and bound method for solving BPSM based on the

example given in the last section. We give an algorithm BPSMBAB (see Figure 6.7)

for solving BPSM by the branch and bound method.

Algorithm BPSMBAB

Input: A ∈ Rn×n
and k ∈ N .

Output: Returns the optimal value δn−k(A) for BPSM(A, k), and selects k optimal

elements of A.

1. Set currentbest := the set of k biggest diagonal elements of A.

2. Set L := sum of elements in currentbest.

3. Set P to be the LP of (6.5.4) for A and k.

4. Set activeset := {P}.

5. Generate U , the optimal objective function value of P .

6. If activeset is not empty :

(a) Remove from activeset: a Ps ∈ activeset which has the greatest Us value.

(b) If Us < L then goto 7.

(c) Set U := Us.

(d) Generate from problem Ps: the children Ps0 and Ps1, and optimal objec-

tive function values Us0 and Us1.

(e) For each i = 0, 1 with L ≤ Usi :

If Psi has an integer optimal solution then :

Set L := Usi.

Generate currentbest from Psi.

Else :

Add Psi to activeset.

7. Return δn−k(A) = L, and select elements of A in currentbest.

Figure 6.7: A branch and bound algorithm for solving BPSM
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We now comment on each of the steps of the algorithm:

Step 1 currentbest is a set of k independent elements that lie in a k × k principal

submatrix of A (and add to L). currentbest is initially set to be the set of k

biggest diagonal elements of A. We could initially set currentbest to a different

set of k elements of A (especially if we knew they had a bigger sum). When

currentbest is updated, it will be obtained from an optimal integer solution

to an LP (i.e. where all xij are 0 or 1).

Step 2 L is the sum of elements in currentbest, which is the current lower bound

for δn−k(A). It is initially set to be the sum of the k biggest diagonal elements

(which may be −∞).

Step 3 The initial problem P is BPSMFrac(A, k), the relaxation of BPSM(A, k),

i.e. (6.5.4) applied to the matrix A ∈ Rn×n
and constant k.

Step 4 activeset is a set of LP problems for which we may obtain a higher lower

bound than L. It is initially set to {P}.

Steps 5 and 6(d) optimal objective function values Us, of Ps, can be generated

by solving Ps with the simplex method.

Steps 6(a) and 6(b) By removing the Ps from activeset that has the greatest Us

value, any other problem Pr in activeset will have Ur ≤ Us. So if Us ≤ L, then

Ur ≤ L. In other words if it is not possible for Ps to produce a higher lower

bound L for δn−k(A) then it is not possible for any of the remaining problems

in activeset to produce a higher lower bound L for δn−k(A). This is why in

step 6(b), if this happens we go to the last step of the algorithm.

Step 6(c) The maximum value δn−k(A) could be is Us, as Ps was chosen from the

remaining problems to be the one with the highest Us value. Therefore we
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set U , the current upper bound for δn−k(A), to Us. U will always be obtained

from a non-integer optimal solution to an LP (i.e. where not all xij are 0 or 1).

Step 6(d) After solving Ps (by the simplex method), we generate the children of Ps

by selecting a non integer variable xij from the optimal solution, and adding

the constraints {xij = 0} to Ps to form Ps0, and {xij = 1} to Ps to form Ps1.

If there is an optimal integer solution satisfying Ps with a bigger lower bound

than the current value of L that, then there will be one satisfying Ps0 or Ps1.

Note that the “s” in Ps is a string of 0’s and 1’s. So the “si” from Psi is the

same string of 0’s and 1’s, with an added digit (equal to i) at the end. We

also allow s to be the empty string, for the initial LP P .

Step 6(e) Assuming it is possible to obtain from Psi a higher lower bound for

δn−k(A) than the current value of L (i.e. L ≤ Usi), we check if Psi has an

integer solution. If Psi does have optimal integer solution, then Usi becomes

the new lower bound, so we set L = Usi, and generate currentbest from Ps.

We generate currentbest from Ps by setting {aij} ∈ currentbest if and only if

xij = 1 is in the solution of Ps. If Psi does not have optimal integer solution,

then we may be able to get a higher lower bound by branching from Psi, so

we add Psi to activeset.

Step 7 At the end of the algorithm, we are given δn−k(A) = L (the optimal solution

value to BPSM) and elements in currentbest are selected (the sum of these

elements totals δn−k(A)).

We can terminate the algorithm before it finishes and have L as a lower bound

to δn−k(A) and U as an upper bound to δn−k(A). This is useful if we don’t need the

exact value of δn−k(A), but need to know when it is within a certain percentage of

optimality. After each iteration of the algorithm, we can check L and U and when

they are close together enough, we can terminate the algorithm.
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This is useful as the branch and bound method is unlikely to be polynomial in its

complexity. Sometimes it may terminate very quickly, possibly with BPSMFrac(A, k)

immediately giving an integer solution without the need to branch. But at other

times, it may not terminate quickly, and we will not know how much longer it will

continue for. However, the closeness of the lower and upper bounds may indicate

approximately how much longer we need to terminate the algorithm.

This branch and bound algorithm has been translated into Maple. The code for

this can be found in Appendix A. The algorithm and code is not intended to be

especially efficient. As no method was known other than complete enumeration, the

intention was to help in the formulating and initial testing of conjectures. Sample

output and explanation can be found in Appendix B.
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Chapter 7

Conclusions and future

research

We have obtained a number of useful results for BPSM. However, we still do not

know if BPSM is polynomially solvable or not. There are also several questions that

remain unanswered. Trying to solve these questions is left for future research.

We showed that if an algorithm polynomially solves BPSM for any irreducible

matrix, then we can solve BPSM for all matrices. So whilst trying solve BPSM, we

can restrict our attention to irreducible matrices. However, questions remain: Can

we find a polynomial algorithm to solve BPSM? Will it ever be possible to do so? -

Is BPSM NP -complete?

If it is possible to polynomially solve BPSM, then we can polynomially solve the

job rotation problem, and can find the characteristic max-polynomial in polynomial

time.

We gave several cases where we could solve BPSM in polynomial time. Can we

find more special cases, or extend the current results? Can we use these results to

help solve BPSM in general?

We looked at similar problems to BPSM. These included BSM and BBPSM. We

polynomially solved some in polynomial time or stated they were NP -complete. We
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solved some of the others in special cases. We showed how the problems are related,

specifically that unresolved problems identified seem to be as hard as either the

BPSM problem, or the existence version of BPSM (i.e. BPSM(A, k) for A ∈ Tn×n).

Table 5.1 on page 70 summarised the results. The problems are very much linked.

Proving any of the ?1’s are NP -complete would mean all ?1 problems (including

BPSM) are NP -complete. Proving any of the ?2’s are polynomially solvable would

mean all ?2 problems including are polynomially solvable. Proving any of the ?2’s

are NP -complete would mean all remaining unresolved problems (including BPSM)

are NP -complete. Proving any of the ?1’s are polynomially solvable would mean

all remaining problems (including BPSM) are polynomially solvable. Can we make

further progress with any of these problems? Are ?1 problems and ?2 problems as

hard as each other?

We gave several bounds for the optimal value of BPSM, indicating how they

compared against each other. When are these bounds met? It is hard to find a

lower bound without also finding a k × k principal submatrix with k independent

entries as well. For the latter we have no known efficient solution method in general.

Is it ever possible to squeeze the upper and lower bounds together giving the same

value?

We gave a branch and bound algorithm to solve BPSM. How efficient is this

algorithm? Can we improve it? Instead of branching on a single element, would it

be more efficient to branch on whether a particular row (and column) belongs in an

optimal submatrix?

BPSMFrac, the relaxation of the BPSM linear program given by (6.5.4) where we

allow fractional values was studied and shown to be polynomially solvable. Is there

an alternative (perhaps combinatorial) method to the use instead of the simplex

method or ellipsoid method to solve the problem and to find the complexity? Can

we determine a class of matrix for which BPSMFrac solves BPSM?
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We defined an Sk matrix. This is a matrix A for which the optimal solution

to BSM(A, k) is equal to the optimal solution of BPSM(A, k). (Recall the optimal

solution of BSM is always greater or equal to the optimal solution of BPSM(A, k).)

Can we provide a condition for a matrix to be an Sk matrix? Can we determine when

a matrix A is Sk transformable? (i.e. can we find when there exists an Sk matrix

similar to A?) For any A and k, can we find a matrix B similar to A, where the

optimal solution to BSM(B, k) is as low as possible? Similarly, can we find a matrix

B similar to A, where the optimal solution to BSM(B, k) is equal to the optimal

solution for BPSMFrac(B, k) for all A and k? If so, we would have an alternative

method for solving BPSMFrac(A, k).

Is it possible to find inessential terms that satisfy (4.3.2) with equality for some

isolated value of x. If so, we would be able to solve BPSM for matrices with entries

from {0,−∞}, as all but the first and last terms are inessential. If so, this would

then mean that all ?2 problems are polynomially solvable.

As we discussed, a method that found δn−k can probably be adapted to also give

an optimal principal submatrix as well. However, if we are just given the value of

δn−k, can we find an optimal principal submatrix from this? If we could, then again

we could solve BPSM for matrices with entries from {0,−∞}, as we could “guess”

δn−k = 0 and try to find an optimal principal submatrix. If we can, then we confirm

that δn−k = 0, if we can’t, then δn−k = −∞. If we could do this, then again this

would then mean that all ?2 problems are polynomially solvable.

Parameterisations may be useful in answering some of these questions. We could

set an element of a matrix to a parameter and see what effect changing the parameter

had on the optimal solution to BPSM, or when inessential terms become essential,

etc. It may be possible to identify elements that will play no part in the solution to

BPSM, and so for such elements, we could set them to −∞. Or if some elements of a

matrix are −∞, we could set them to an extremely negative (finite) number. Would
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either of these approaches help simplify the problem, or give us any new results?

So there are many more areas to research and questions to answer. In particular,

can we find a polynomial algorithm to solve BPSM, or is it NP -complete?
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Chapter A

Program Code

Here is the Maple code to solve BPSM(A, k) by using a branch and bound approach:

> ###################################################################################

> # Seth Lewis 30/05/06 #

> # Solves BPSM(A,k) using simplex and branch an bound. #

> # Given a matrix A and constant k, bpsm(A,k,cyclelist,optval) will return #

> # cyclelist: an optimal list of cycles, and optval: equal to delta_{n-k}. #

> # Given integers n, lo, percfin, randmat(n,lo,hi,percfin,A) will generate #

> # a random n*n matrix A with approximately percfin% finite integer elements #

> # with values between lo and hi, and all other entries will be -infinity. #

> ###################################################################################

> with(simplex):with(LinearAlgebra):with(ListTools):

> interface(rtablesize=infinity):Seed:=randomize():

> comat := proc(n,InMat,M1) local i,j,M:

> M := Matrix(2*n+1,n^2+n): for i from 1 to n

> do M[2*n+1,n^2+i]:=1: M[i,n^2+i]:=1: M[i+n,n^2+i]:=1:

> for j from 1 to n do if InMat[i,j]=-infinity then

> M[i,j+(i-1)*n]:=0:

> else M[i,j+(i-1)*n]:=1: fi:

> if InMat[j,i]=-infinity then M[i+n,i+(j-1)*n]:=0: else

> M[i+n,i+(j-1)*n]:=1: fi: od: od: M1:=M:

> end proc:

> vars := proc(n,X1) local i,j,X:

> X := Vector(n^2+n):

> for i from 1 to n do X[n^2+i]:=y[i]; for j from 1 to n do

> X[j+(i-1)*n]:=x[i,j] od od: X1:=X:

> end proc:
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> Combine := proc(n,k,MX,Combined1) local i,Combined:

> Combined := Vector(2*n+1): for i from 1 to n do

> Combined[i]:=(MX)[i]=1: Combined[i+n]:=(MX)[i+n]=1: od:

> Combined[2*n+1]:=(MX)[2*n+1]=n-k: Combined1:=Combined:

> end proc:

> dispcosts:=proc(n,Cvec,Cmat) local i,j:

> Cmat:=Matrix(n,n): for i from 1 to n do for j from 1 to n do

> Cmat[i,j]:=Cvec[j+(i-1)*n]: od od end proc:

> costs:= proc(n,lono,hino,percfin,costs) local r, r2, costscoeff, i:

> r:=rand(lono..hino): r2:=rand(1..100): costscoeff := Vector[row](n^2+n):

> for i from 1 to n^2 do if r2()<=percfin then

> costscoeff[i]:=r() else costscoeff[i]:=-infinity: fi: od:

> for i from n^2+1 to n^2+n do costscoeff[i]:=0: od:

> costs:=costscoeff: end proc:

> settocycles := proc(n,inset,outlist)

> local varset,cycleset,cyclelist,tempcycle,ordtempcycle,i,j,xx,xxii,xxi,xxj,tempcyclecomplete:

> varset:=inset: userinfo(3,seth,lprint(’varset’),print(varset)); #---

> cycleset:={}: userinfo(3,seth,lprint(’cycleset’),print(cycleset)); #---

> while not varset={} do

> xx:=varset[1]: userinfo(4,seth,lprint(’xx’),print(xx)); #----

> varset:=varset minus {xx};
> tempcycle:=[]: userinfo(4,seth,lprint(’tempcycle’),print(tempcycle)); #----

> for i from 1 to n do

> for j from 1 to n do

> if xx=(x[i,j]=1) then xxii:=i; xxi:=i; xxj:=j;

> fi; od; od; userinfo(4,seth,lprint(’xxii’),print(xxii)); #----

> userinfo(5,seth,lprint(’xxi’),print(xxi)); #-----

> userinfo(5,seth,lprint(’xxj’),print(xxj)); #-----

> tempcyclecomplete:=false;

> userinfo(4,seth,lprint(’tempcyclecomplete’),print(tempcyclecomplete)); #----

> while not tempcyclecomplete do

> tempcycle:= [op(tempcycle),xxi]; userinfo(5,seth,lprint(’tempcycle’),print(tempcycle)); #-----

> if xxj=xxi or xxj=xxii then tempcyclecomplete:=true;

> userinfo(4,seth,lprint(’tempcyclecomplete’),print(tempcyclecomplete)); #----

> userinfo(4,seth,lprint(’tempcycle’),print(tempcycle)); #---

> unassign(’ordtempcycle’):orderlist(tempcycle,ordtempcycle);

> userinfo(3,seth,lprint(’ordtempcycle’),print(ordtempcycle)); #---

> userinfo(3,seth,lprint(’varset’),print(varset)); #---

> else xxi:=xxj; userinfo(5,seth,lprint(’xxi’),print(xxi)); #-----
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> for j from 1 to n do

> if member((x[xxi,j]=1), inset) then xxj:=j; fi; od;

> userinfo(5,seth,lprint(’xxj’),print(xxj)); #-----

> varset:=varset minus {(x[xxi,xxj]=1)}; userinfo(5,seth,lprint(’varset’),print(varset)); #-----

> fi; od:

> cycleset:=cycleset union {ordtempcycle};
> userinfo(3,seth,lprint(’cycleset’),print(cycleset)); #---

> od: userinfo(3,seth,lprint(’cycleset’),print(cycleset)); #---

> cyclelist:=convert(cycleset,list);

> orderlistlist(cyclelist,outlist);

> end proc:

> orderlist:=proc(Lin,Lout)

> local l,i,j,endi:

> l:=nops(Lin);

> endi:=1;for i from 1 to l while not Lin[i]=min(seq( Lin[j], j=1..l )) do endi:=i+1 od;

> Lout:=Rotate(Lin,endi-1);

> end proc:

> orderlistlist:=proc(Lin,Lout)

> local L,x,l,M:

> L:=Lin: M:=[L[1]];

> L:=subsop(1=NULL,L);

> while not L=[] do x:=L[1];

> L:=subsop(1=NULL,L);

> l:=BinaryPlace(M,x, proc(x,y) op(1,x)<op(1,y) end proc);

> M:=[op( 1..l, M ), x, op( l+1..-1, M )]; od;

> Lout:=M:

> end proc:

> ## This is an ILP algorithm by Anu Pathria, pathria@arpa.berkeley.edu, Jan/90

> ## for maximizing a linear objective function "obj" over linear constraints

> ## "const", with integer variables, using a branch and bound method,

> ## branching on the greatest objective value. An optional third argument

> ## "sgn" specifies NONNEGATIVE or UNRESTRICTED variables. Output : An optimal

> ## assignment, or NULL if unbounded, or {} if infeasible.

> ilp := proc(obj,const)

> local dummy,sgn,val,lower,incumb,sol,t,i,lp,c,lps,bestbound;

> if nargs = 2 then sgn := UNRESTRICTED

> elif nargs = 3 then sgn := args[3]

> else ERROR(‘Wrong number of arguments‘) fi;

> incumb := {};#incumbent solution

> lower := -infinity;#lower bound on optimal value
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> #with(simplex,[]); # Put here or before algorithm

> sol := simplex[maximize](obj,const,sgn);

> #If LP is unbounded, then ILP is infeasible or unbounded.

> #Because simplex[maximize] doesn’t recognize a constant as a linear

> #objective function, the test is as shown here.

> if sol = NULL then sol := ilp(dummy,{dummy=0} union const,sgn);

> if sol = {} then RETURN({}) else RETURN(NULL) fi

> elif sol = {} or ‘ilp/intsol‘(sol) then RETURN(sol) fi;

> # Boolean function for best-bound branching rule.

> bestbound := proc(x,y) evalb(x[3] <= y[3]) end:

> lps := heap[new](bestbound,[const,sol,subs(sol,obj)]);# branch prique

> while not(heap[empty](lps)) do

> lp := heap[extract](lps);#lp to branch from

> if lower = -infinity or lp[3] > lower then

> t := ‘ilp/intsol‘(lp[2]);

> c[1] := lp[1] union {op(1,t) <= trunc(op(2,t))};
> c[2] := lp[1] union {op(1,t) >= trunc(op(2,t))+1};

> # Consider 2 branches

> for i from 1 to 2 do

> sol := simplex[maximize](obj,c[i],sgn);

> if sol <> {} then

> t := ‘ilp/intsol‘(sol);

> val := subs(sol,obj);

> if lower = -infinity or val > lower

> then if t then incumb := sol ; lower := val;

> else heap[insert]([c[i],sol,val],lps) fi; fi; fi; od; fi; od;

> incumb;#final incumbent solution is optimal

> end proc:

> # Returns assignment S if any variables non-integer, else true.

> ‘ilp/intsol‘ := proc(S)

> local i;

> for i in S do if not(type(op(2,i),integer)) then RETURN(i) fi od;

> true; end proc:
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> bpsm :=proc(InMat,k,cyclelist,optval)

> local n,MX,cnsts,C,Ctrue,i,j,obj,solset,allone,opt,smallsolset,cyclelist1:

> n:=RowDimension(InMat):

> unassign(’M’):comat(n,InMat,M): userinfo(5,seth,lprint(’M’),print(M)); #-----

> unassign(’X’):vars(n,X): userinfo(5,seth,lprint(’X’),print(X)); #-----

> MX:=M.X: userinfo(5,seth,lprint(’MX’),print(MX)); #-----

> unassign(’cnstsmat’):Combine(n,k,MX,cnstsmat):

> userinfo(4,seth,lprint(’cnstsmat’),print(cnstsmat)); #----

> cnsts:=convert(cnstsmat,set): userinfo(3,seth,lprint(’cnsts’),print(cnsts)); #---

> unassign(’C’):C := Vector[row](n^2+n):

> unassign(’Ctrue’):Ctrue := Vector[row](n^2+n):

> for j from 1 to n do

> for i from 1 to n do

> Ctrue[j+n*(i-1)]:=InMat[i,j];

> if InMat[i,j]=-infinity then C[j+n*(i-1)]=0

> else C[j+n*(i-1)]:=InMat[i,j]; fi;

> od od; userinfo(5,seth,lprint(’Ctrue’),print(Ctrue)); #-----

> userinfo(5,seth,lprint(’C’),print(C)); #-----

> obj:=C.X: userinfo(3,seth,lprint(’obj’),print(obj)); #---

> unassign(’Costs’):dispcosts(n,Ctrue,Costs): userinfo(5,seth,lprint(’Costs’),print(Costs)); #-----

> solset:=ilp(obj,cnsts,NONNEGATIVE): userinfo(5,seth,lprint(’solset’),print(solset)); #-----

> if solset={} then smallsolset:=’id’;

> cyclelist:=smallsolset;

> opt:=-infinity;

> else

> allone:={}:
> for i from 1 to n do

> for j from 1 to n do

> allone:=allone union {x[i,j]=1}; od; od; userinfo(5,seth,lprint(’allone’),print(allone)); #-----

> smallsolset:=solset intersect allone;

> opt:=subs(solset,obj):

> unassign(’cyclelist1’):settocycles(n,smallsolset,cyclelist1):

> cyclelist:=cyclelist1;

> fi;

> userinfo(4,seth,lprint(’smallsolset’),print(smallsolset)); #----

> userinfo(2,seth,lprint(’cyclelist1’),print(cyclelist1)); #----

> userinfo(2,seth,lprint(’opt’),print(opt)); #--

> optval:=opt:

> end proc:

> randmat := proc(n,lono,hino,percfin,A)

> unassign(’C’):costs(n,lono,hino,percfin,C): userinfo(5,seth,lprint(’C’),print(C)); #-----

> unassign(’Costs’):dispcosts(n,C,Costs): userinfo(2,seth,lprint(’Costs’),print(Costs)); #--

> A:=Costs:

> end proc:

> ####################################################################################
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Chapter B

Sample Output

Here is some sample output of the program code:

Example 1

> A:=Matrix(7, 7,

> [[-infinity,0,-infinity,-infinity,-infinity,-infinity,-infinity],

> [-infinity,-infinity,0,-infinity,-infinity,-infinity,-infinity],

> [-infinity,-infinity,-infinity,0,-infinity,-infinity,-infinity],

> [0,-infinity,-infinity,-infinity,0,-infinity,-infinity],

> [0,-infinity,-infinity,-infinity,0,-infinity,-infinity],

> [-infinity,-infinity,-infinity,0,-infinity,-infinity,0],

> [-infinity,-infinity,-infinity,-infinity,0,-infinity,-infinity]]);

> n:=RowDimension(A):

> for k from 1 to n do unassign(’cyclelist’):unassign(’optval’):bpsm(A,k,cyclelist,optval):

> print(’k’=k,’cyclelist’=cyclelist,’optval’=optval); od:

A :=

266666666666666664

−∞ 0 −∞ −∞ −∞ −∞ −∞
−∞ −∞ 0 −∞ −∞ −∞ −∞
−∞ −∞ −∞ 0 −∞ −∞ −∞
0 −∞ −∞ −∞ 0 −∞ −∞
0 −∞ −∞ −∞ 0 −∞ −∞
−∞ −∞ −∞ 0 −∞ −∞ 0

−∞ −∞ −∞ −∞ 0 −∞ −∞

377777777777777775
k = 1, cyclelist = [[5]], optval = 0

k = 2, cyclelist = id , optval = −∞

k = 3, cyclelist = id , optval = −∞

k = 4, cyclelist = [[1, 2, 3, 4]], optval = 0

k = 5, cyclelist = [[1, 2, 3, 4, 5]], optval = 0

k = 6, cyclelist = id , optval = −∞
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k = 7, cyclelist = id , optval = −∞

The output here solves BPSM(A) for a preset matrix

A =




−∞ 0 −∞ −∞ −∞ −∞ −∞
−∞ −∞ 0 −∞ −∞ −∞ −∞
−∞ −∞ −∞ 0 −∞ −∞ −∞
0 −∞ −∞ −∞ 0 −∞ −∞
0 −∞ −∞ −∞ 0 −∞ −∞
−∞ −∞ −∞ 0 −∞ −∞ 0

−∞ −∞ −∞ −∞ 0 −∞ −∞




.

It tells us for instance that for k = 1, selecting the loop (v5, v5) or element a55 will

give us the optimal solution value of 0.

Note that here id means the identity of length k, i.e. the first k diagonal entries,

so for k = 2 we could select a11 and a22 to get an optimal solution value of −∞. In

fact if δn−k(A) = −∞, then any assignment within a principal submatrix would be

optimal, giving −∞ as the optimal solution value.

For k = 4, we see that cycle (v1, v2, v3, v4, v1) is optimal leading to an optimal

solution value of 0. The optimal principal submatrix would be A({1, 2, 3, 4}).

Example 2

> n:=7;lo:=0;hi:=0;percfin:=30; #rand no.s between lo and hi,

> #percfin = approx percentage (between 0 and 100) of finite values

> unassign(’A’):randmat(n,lo,hi,percfin,A): print(’A’=A); for k from 1 to n do

> unassign(’cyclelist’):unassign(’optval’):bpsm(A,k,cyclelist,optval):

> print(’k’=k,’cyclelist’=cyclelist,’optval’=optval); od:

n := 7

lo := 0
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hi := 0

percfin := 30

A =

266666666666666664

−∞ 0 −∞ −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞ −∞ 0

−∞ −∞ −∞ −∞ 0 −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ 0

−∞ −∞ −∞ 0 −∞ −∞ −∞
−∞ −∞ −∞ 0 −∞ −∞ 0

−∞ −∞ −∞ −∞ 0 −∞ −∞

377777777777777775
k = 1, cyclelist = id , optval = −∞

k = 2, cyclelist = [[1, 2]], optval = 0

k = 3, cyclelist = [[4, 7, 5]], optval = 0

k = 4, cyclelist = id , optval = −∞

k = 5, cyclelist = [[1, 2], [4, 7, 5]], optval = 0

k = 6, cyclelist = id , optval = −∞

k = 7, cyclelist = id , optval = −∞

Here we create a random matrix of dimension 7 × 7 and with approximately 30%

of entries having finite entries between 0 and 0 (i.e. equal to 0), and the rest being

−∞.

Here we see that for k = 5 for instance, the optimal principal submatrix is

A({1, 2, 4, 7, 5}), the optimal solution value being 0, arising from the cycle weights

from (v1, v2, v1) and (v4, v7, v5, v4), or elements a12, a21, a47, a75 and a54.

Example 3

> n:=7;lo:=-9;hi:=9;percfin:=80; #rand no.s between lo and hi,

> #percfin = approx percentage (between 0 and 100) of finite values

> unassign(’A’):randmat(n,lo,hi,percfin,A): print(’A’=A); for k from 1 to n do

> unassign(’cyclelist’):unassign(’optval’):bpsm(A,k,cyclelist,optval):

> print(’k’=k,’cyclelist’=cyclelist,’optval’=optval); od:

n := 7

lo := −9

hi := 9
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percfin := 80

A =

266666666666666664

0 −8 0 1 6 −3 2

4 −∞ −7 2 4 −∞ 8

−∞ −4 −5 −5 8 5 5

7 −2 −8 7 7 −6 6

4 −8 7 −2 −∞ −4 −6

−∞ −∞ −2 4 −8 0 3

−3 −2 2 0 4 8 9

377777777777777775
k = 1, cyclelist = [[7]], optval = 9

k = 2, cyclelist = [[4], [7]], optval = 16

k = 3, cyclelist = [[3, 5], [7]], optval = 24

k = 4, cyclelist = [[3, 5], [4], [7]], optval = 31

k = 5, cyclelist = [[3, 5], [4, 7, 6]], optval = 33

k = 6, cyclelist = [[1, 5, 3, 6, 4], [7]], optval = 38

k = 7, cyclelist = [[1, 5, 3, 2, 7, 6, 4]], optval = 36

The past two examples considered 0,−∞ matrices. Here we generate a more general

matrix in Rn×n
, with approximately 80% of the entries having a finite value between

-9 and 9, and the rest being −∞.

Here we can see that the optimal solution value tends to increase as k increase

(probably due to adding more numbers together as k increases). However this is

a general trend rather than a rule (comparing for k = 6 and 7 we see the optimal

solution value decreases).

Using this maple code on several examples can help to check if conjectures appear

to be true or not, before attempting to prove them.
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Chapter C

Paper: On the Job Rotation

Problem

Here is a pre-print of a paper co-written by myself and Dr. P Butkovič called On

the Job Rotation Problem [15], which at the time of writing is unpublished, but has

been accepted for publication in Discrete Optimization.
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