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Abstract

This thesis concerns M-finite groups and a notion of discrete measure in models of

Peano Arithmetic.

First we look at a measure construction for arbitrary non-M-finite sets via suprema

and infima of appropriate M-finite sets. The basic properties of the measures are cov-

ered, along with non-measurable sets and the use of end-extensions.

Next we look at nonstandard finite permutations, introducing nonstandard symmet-

ric and alternating groups. We show that the standard cut being strong is necessary and

sufficient for coding of the cycle shape in the standard system to be equivalent to the

cycle being contained within the external normal closure of the nonstandard symmetric

group.

Subsequently the normal subgroup structure of nonstandard symmetric and alternat-

ing groups is given as a result analogous to the result of Baer, Schreier and Ulam for

infinite symmetric groups.

The external structure of nonstandard cyclic groups of prime order is identified as

that of infinite dimensional rational vector spaces and the normal subgroup structure of

nonstandard projective special linear groups is given for models elementarily extending

the standard model.

Finally we discuss some applications of our measure to nonstandard finite groups.
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Chapter 1

Preliminaries

1.1 Introduction

Numbers capture the common intuition of size, groups do likewise for symmetry. Non-

standard models of arithmetic provide an interesting setting in which to explore these

notions. This thesis presents an attempt to bring these three themes together: measure,

groups and nonstandard models.

The main theme is the investigation of the notion of nonstandard finite groups con-

structed within nonstandard models of Peano arithmetic considered as groups in their

own right. Subordinate to this are a number of other themes, some more related to

this main theme than others. The first of these looks at a generalisation of the idea

of counting finite sets, generalising so as to measure the size of arbitrary subsets of a

nonstandard model, following up an idea of Kaye[23, 22]. Next we proceed to look at

nonstandard permutations and basic properties of nonstandard groups. We then come

to the main chapters of the thesis, looking at the normal subgroup structure of some

groups which are simple within their parent model, yet lose simplicity when looked at
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through the eyes of the metatheory. Finally we collect together other related aspects of

the author’s research before concluding the work in the traditional way.

The target audience consists of mathematicians and mathematical logicians with

a background in both logic and reasonably elementary group theory. The reader will

need a basic familiarity with models of Peano arithmetic, for which Kaye’s book[21]

is more than enough and elementary techniques of logic and model theory, for which

the contents of an introductory course in logic together with Chang and Keisler[11] will

suffice. Also required are a basic familiarity with permutations, permutation groups and

the classical groups.

The main aim is to look at nonstandard analogues of well known families of finite

groups as infinite groups in their own right. Of particular interest is the normal subgroup

structure of these groups.

We begin our investigation into nonstandard groups with a discussion of nonstandard

finite permutations on a nonstandard finite set X and their relation to external permuta-

tions on X . With this in hand, the opportunity for a preliminary discussion of symmetric

and alternating groups presents itself, and these topics are covered in chapter 4.

Following on from this, in chapter 5, we give a complete classification of the nor-

mal subgroup structure of nonstandard symmetric and alternating groups for arbitrary

models of Peano arithmetic. The observation that these normal subgroups are linearly

ordered in the case of nonstandard alternating groups and nearly linearly ordered for

nonstandard symmetric groups gives rise to obvious questions regarding the normal

subgroup structure of other nonstandard analogues of well known finite groups. In par-

ticular we begin to focus on analogues to the non-alternating nonabelian finite simple

groups, namely the families of simple groups of Lie type, for coverage of which the
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reader may refer to Carter[10]. From the Classification of finite simple groups, we

know all the families of finite simple groups, and we do not address the question of

whether other nonstandard finite simple groups exist outside of these families. Thus

we may approach the question of the normal subgroup structure of these groups by ap-

proaching each family of finite simple groups. The cyclic groups of prime order present

no difficulty and we proceed to apply results of Lev to classify the normal subgroups

of nonstandard projective special linear groups, and give a brief look at the nonstandard

projective symplectic case.

Throughout the results concerning these nonstandard groups, initial segments (which

here mean convex subsets of a model M containing 0) play a central rôle, capturing as

they do, a certain intuition of size. Thus in our first nonintroductory chapter we consider

a ‘discrete measure’ of subsets of M, using definable sets in much the same way that

Lebesgue measure uses unions of open intervals. We comment that this measuring con-

cept has much in common with Lebesgue measure on the real line, in particular with the

phenomemon of non-measurable and universally non-measurable sets. In a later chapter

we show how the ideas introduced may be applied in the context of nonstandard finite

groups, in particular to properties such as indices of one group inside another. There are

also analogues between these measures and the Loeb measure construction, which in

particular allows the Lebesgue measure on the real line to be recovered from a discrete

hyperfinite measure, though we leave such matters out of the material under discussion.

Nonstandard models of arithmetic and nonstandard analysis

The study of nonstandard models of arithmetic, and hence the use of nonstandard meth-

ods, began in the 1930s with the work of Skolem. The mindset of nonstandard methods
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gave rise to a markedly different view of the foundations of analysis with the work of

Robinson[34], making rigorous the use of actual infinitesimals that was prevalent in

Newton and Leibnitz’s early development of calculus (see also Hurd and Loeb[20]).

One of the overtones of the themes in this thesis is that of taking the point of view

and mindset of nonstandard analysis and applying it within the context of nonstandard

models of arithmetic—in other words, considerations of internal and external properties

of objects and the use of first order formulae and first order results about the standard

model (and structures interpreted within it) in order to transfer some results to other first

order models of arithmetic.

Whilst much of the literature of nonstandard models of arithmetic concerns various

notions of provability and definability, some of the more recent trends have tended to

think about actually doing things with and within models of arithmetic. This thesis falls

into the latter category and to reiterate, the attitude behind much of what we do is found

more in nonstandard analysis than in nonstandard models of arithmetic. Thus the ten-

dency is to ‘do maths’ using nonstandard methods and combinatorial ideas marshalled

through them.

As such then, the nomenclature employed at different stages will draw from many

camps. For example, in nonstandard analysis we have internal objects in a nonstandard

model ∗R of the reals that are the ∗-transform of corresponding objects in the standard

reals R, other objects are then called external (Lindstrøm[29] is another point of refer-

ence for this). Analogous to internal objects are the M-finite objects in a nonstandard

model of arithmetic, which are in some way bounded and definable with parameters

(and can be represented by individual elements of the model via some suitable method

of coding.) At times, then, it will be convenient to talk in terms of internal vs. external,
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and in others it will be convenient to talk of M-finite, coding, etc. We shall try to gravi-

tate towards nonstandard models of Peano arithmetic, but in any case a basic familiarity

with the background material should be enough to prevent confusion arising.

Infinite groups

Examples of infinite groups pervade mathematics at almost every level. They range in

familiarity from structures such as Z and R, with which the average mathematics student

is well acquaited long before he is ever told what a group is, through to the numerous

esoteric examples present in the modern day literature.

To study the totality of infinite groups is impractical, and yields very little in the way

of uniformly applicable machinery: the infinite groups are too numerous, and only too

willing to conspire in the creation of nasty counterexamples unless various assumptions

and restrictions are made in order to rein in their behaviour. As is usual, mathematicians

approach this totality with a divide and conquer methodology, defining useful classes of

infinite groups, studying these classes, often classifying their constituents further.

Among the classes of infinite groups studied in the literature, many arise from ‘finite-

ness’ conditions of one form or another. For example, there are the locally finite groups

(a group being locally finite if every element lies in a finite subgroup), finitary per-

mutation groups (whose elements move only a finite number of elements), cofinitary

permutation groups (whose nonidentity elements fix finitely many points) and many

more.

One of the main subjects of this thesis is the notion of nonstandard finite groups.

That is, infinite groups that are finite in the sense of some model M of Peano arithmetic.

To the reader familiar with the nomenclature of nonstandard analysis, ‘hyperfinite’ may
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be a more descriptive term.

The question of which groups occur as nonstandard finite groups is natural to ask,

though we do not go into depth on this topic, preferring to look at analogues of well

known families of finite groups.

Different perspectives on familiar families of groups

Different perspectives tend to emphasise different aspects of a given area of study, and

nonstandard analogues of finite groups are no different in this regard.

Consideration of the normal subgroup structure of nonstandard groups leads to ques-

tions regarding covering normal closures of subgroups by conjugacy classes and this in

turn gives a concrete realisation of the effects of results concerning such covering.

Along different lines, but with similar tendencies, are ultraproducts of finite groups.

These yield models of the theory of finite groups, and by selecting the family of groups

constituting the ultraproduct, various aspects of finite groups can be both emphasised

and hidden. Of course, a well known construction of a nonstandard model of the reals

is via an ultrapower construction—in fact this is often given as the construction of the

nonstandard reals for those that aren’t too interested in logic (e.g. as in Lindstrøm[29]).

In addition, Skolem’s original construction of a nonstandard model is a reduced product

that is similar in many ways to an ultrapower construction.

As we have noted earlier, provability and its related notions are not the main themes

of this thesis, our interest being mainly in doing things inside nonstandard models. That

said, from the considerations of nonstandard groups and families of groups we speak of,

come good intuitive pictures of what is needed in certain proofs. A good example here

is the result of Baer, Schreier and Ulam classifying the normal subgroups of infinite
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symmetric groups. Furthermore, taking the product of infinite sequences that are finite

in the sense of a given model allows us to consider, from the external point of view,

closure properties of subgroups of nonstandard groups that are slightly stronger than

the usual properties of the groups from an external point of view, whilst not as strong as

the usual group closure in the sense of the model.

A note on consistency of notation

From time to time along the duration of this thesis, certain notational devices will be

used and reused for different purposes. The author has taken the trouble to ensure that

otherwise ambiguous notations are separated by either the context within which they

appear, or else are separated geographically and introduced separately in the context in

which they are used. Much of this is due to reasons of practicality and the aesthetic

desires of the author.

Mathematics is, in a certain sense, an abbreviated and condensed form of written

language which has evolved through the ages for the purpose of communicating abstract

ideas. In this sense, it has much in common with music, though the ideas communicated

are different in nature. Furthermore, the need for aesthetic beauty is not, and should

not be diminished by the scientific appearance of proceedings: good mathematics is

an art. Thus in our exposition we aim to present interesting, attractive mathematics,

resorting to rigid, complex and ultimately unattractive notational entities only where it

aids communication or else is rendered necessary by the nature of the material being

discussed. The author begs the reader’s forgiveness for any lack of artistic talent in this

regard.
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1.2 Literature survey

There is much in the literature under the heading of models of arithmetic, and much

more under the heading of group theory. The literature survey of this section thus aims

only to place the current work amongst that which already exists.

A brief history of Peano arithmetic

The subject of models of Peano arithmetic began in 1933 with the discovery by Skolem

of nonstandard models of Peano’s axioms. Early on, much interest lay in those models

which elementarily extended the standard model, so called ‘strong’ nonstandard models.

Later it was found that Peano arithmetic was strong enough as a theory in its own right,

in particular being able to prove various coding properties. The reader may refer to

Smorynski[38] for a more thorough history of the subject.

Coding of sequences of elements of a model of arithmetic first appeared in the work

of Gödel in the form of the following lemma. (The form of the lemma quoted here is

taken from Kaye[21].)

Gödel’s Lemma. There is a ∆0 formula β (x,y,z) such that

N � ∀xy∃!zβ (x,y,z)

and for all k ∈ N and all z0,z1, . . . ,zk−1 ∈ N, there is x ∈ N such that

N � β (x, i,zi)

for all i < k.

There are many formulae which will suffice to prove this result. Our method, as

Gödel’s did, relies on the Chinese remainder theorem. Coding of sets follows easily
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from that of sequences, though this can also be accomplished in other ways. The impor-

tance of coding of sets arose with, amongst other things, the significance of the standard

system of a model.

Work on initial segments began with Friedman and continued with the work of Paris

and Kirby[25]. Their development of indicators lead to the discovery of independence

results of ‘mathematical interest’ such as the celebrated Paris-Harrington theorem[33].

The investigation by Paris and Kirby[25] of analogies between initial segments and

cardinals, in particular regular cardinals, led to their development of the notions of semi-

regular, regular and strong initial segments of a model. Of these strong initial segments

have turned out to be of interest in the modern literature, for example in their connec-

tions with arithmetical saturation. It was shown by Paris and Kirby that strong initial

segments of models of Peano arithmetic are themselves models of Peano arithmetic,

though it is known that the converse of this is false.

More recently, the study of recursively and arithmetically saturated models of Peano

arithmetic has gained popularity. Recursive saturation arose with the work of Barwise

and Schlipf[5] and, independently, Ressayre. Models of arithmetic were known to have

a fair amount of saturation, though recursive saturation adds further richness to the mod-

els, especially when one is concerned with the automorphism groups of these structures.

Smorynski’s paper[37] gives a good overview of the basic results concerning recursively

saturated models of arithmetic, namely embeddability criteria and uniqueness results. It

is from ideas arising in later work on automorphism groups of recursively saturated

models of Peano arithmetic that much of the inspiration for the ideas of measure ex-

plored in this thesis are drawn.
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Connections between model theory and group theory

There are many different connections between model theory and group theory that have

been explored in the literature. We take a brief look at some here.

The study of automorphisms of models provides a rich source of permutation groups,

as covered in, for example, the collection Automorphisms of First Order Structures

edited by Kaye and Macpherson[24].

Among other interesting connections between models and groups is the result (see

e.g. Cameron[9]) that the theory of a model M is ω-categorical iff Aut(M) is oligomor-

phic, that is, iff for each k ∈ N there are only finitely many orbits of Aut(M) on the set

of k-tuples of elements of M.

Closer to our area of study is the work of Kaye, Kossak and Kotlarski[23] on auto-

morphisms of recursively saturated models of Peano arithmetic, in particular their work

on the normal subgroup structure of these automorphism groups and their relationship

with initial segments of models of Peano arithmetic. It is in this work, and a later follow-

up article by Kaye[22] that the idea of initial segments as measure that we explore in

chapter 3 emerges.

A notion drawn up in analogy to the pseudofinite fields introduced by Ax[3] is the

idea of pseudofinite groups. Pseudofinite groups being infinite models of the theory

of finite groups, an interesting question arises as to where and how much this notion

coincides with the notion of M-finite groups explored in this thesis. Drawing on the

classification and the theory of Chevalley groups, Wilson[41] shows that the simple

pseudofinite groups are all elementarily equivalent to Chevalley groups over pseudofi-

nite fields, leaving the question of whether this can be strengthened to isomorphism

unanswered.
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Finally, the work of Lascar on automorphisms of strongly minimal structures[27] is

employed by Gardener[15] to give results pertaining to the normal subgroup structure of

classical groups of countably infinite dimension. This thesis looks at the situation when

the dimension is nonstandard rather than countably infinite in the sense of set theory.
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Chapter 2

Background

The setting for this thesis is nonstandard models of Peano Arithmetic, with an emphasis

on algebraic and combinatorial constructions within them. In this chapter we exposit

and develop the necessary background material for the rest of the thesis. We assume

that the reader is familiar with the requisite logic and set theory: only the basics are

essential.

As for notational convention, logical symbols such as formal variables (such as v0),

predicates (for example Perm) and theories (like PA) will be set in sans serif. Models

will be set in gothic capitals. All else, such as informal variables, will be set in a serif

typeface.

2.1 Model Theory

For a good overall view of the subject of Model Theory we refer the reader to Chang

and Keisler[11] or Hodges[18]. Also of note is Hodges’[17] game theoretic slant on the

construction of models.
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We fix our precise choice of notation and definitions here. The notion of a model is

standard within the literature and the reader may supply his own references, though our

precise choice of notation is approximately that of Kaye and Macpherson[24].

Definition 2.1.1. A model with domain M is a tuple

M = (M ; . . .Ri . . . ; . . .Fj . . . ; . . .ck . . .)i∈I, j∈J,k∈K

where R = {Ri : i ∈ I} is a family of ni-ary relations on M, F =
{

Fj : j ∈ J
}

is a

family of m j-ary functions on M and C = {ck : k ∈ K} is a family of constants ck ∈M.

We denote the cardinality of a model M (in the sense of our metatheory or metauni-

verse) by cardM and try to follow standard notation hereon. Each model is associated

with a formal language that describes it. This language has symbols for

1. variables v0,v1, . . .;

2. logical operations =,∨,∧,→,¬,↔;

3. relation symbols Ri for each i ∈ I representing an mi-ary relation;

4. function symbols Fi for each j ∈ J representing a n j-ary function; and

5. constant symbols ck for each k ∈ K.

The tuple (I,J,K,α,β ), where α : i 7→mi and β : j 7→ n j, is called the similarity type of

the language, which we denote by

L (. . .Ri . . . ; . . .Fj . . . ; . . .ck . . .)i∈I, j∈J,k∈K

though in practice this convention is far less cumbersome than we end up writing here,

for example the statement of the language of arithmetic becomes, for example, LPA =

L (<;S,+, ·;0,1).
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Having stated this formally, we tend to relax things a great deal, for example blurring

the distinction between relation symbols and the relations they represent. The reader

should be able to work out what is meant, and formalise without difficulty to his or her

heart’s content.

2.2 Peano arithmetic

The subject of Peano Arithmetic is all about first order models for the language LPA =

L (<;S,+, ·;0,1). This is covered extensively in Kaye[21]. The natural numbers N

provide us with the standard model for this language, and the subject investigates how it

relates to other models for this language. The word ‘true’ in context of models of Peano

Arithmetic will be taken to mean ‘true in N’, this N capturing our intuitive notion of

what the counting numbers are (with the proviso that 0 is one of them.) The reader may

prefer to substitute this intuitive N with a concrete construction, it makes little difference

to the content of this thesis.

2.3 Initial segments and ordering of models of Peano

arithmetic

Models of PA have a natural ordering < which is usually given explicitly as part of the

structure. This immediately yields the notion of an initial segment of a model, which

here are taken to be convex subsets containing 0. Initial segments of models of PA will

figure greatly in this thesis, giving as they do a notion of size allowing one to divide the

elements of a model into the ‘small’ ones and the ‘large’ ones. It is in this rôle that they
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figure the most, with the deeper relations with structure of a model taking a back seat in

the following proceedings.

We use this order to define the following relation between subsets of a model M of

PA:

A⊆e B iff (M,A,B) � ∀x∈A∀y∈B (y < x→ y ∈ A) .

When A ⊆e M we say that A is an initial segment of M. An initial segment of M

closed under successor is called a cut. When M and N are models of PA and M ⊆e N

then we say that N is an end-extension of M and write M ⊆e N. The careful reader

should note that we effectively have two relations, one between subsets of a model

and one between models, usually the one meant in this thesis is the relation between

subsets. We shall often, especially during the material on M-measures, identify a with

{x ∈M : (M,a) � x < a}, the latter being an initial segment of M. When we wish to

name the set {x ∈M : (M,a) � x < a} explicitly, we shall use the notation <a.

The supremum and infimum of a subset of a model are central to our definitions of

measure in the sequel. For these we have the definitions

supA = {x ∈M : (M,A) � ∃y∈Ax < y} and

infA = {x ∈M : (M,A) � ∀y∈Ax < y}

following those of Kaye et al.[23], though we use < rather than ≤ for consistency with

the identification a = {x ∈M : x < a} assumed above. The reader should note that

sup∅ = ∅ and inf∅ = M with the above definitions.

Three interesting properties of initial segments, roughly analogous to the property of

a cardinal being regular, were introduced by Kirby and Paris[25] and are the following.

We say that a cut I of a model M is semi-regular if for every a ∈ M and every M-
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finite1 function f : a→M, f (<a)∩ I is bounded in I; we call I regular if every M-finite

function f whose domain includes I is constant on a cofinal subset of I; and we say that

I is strong if given an M-finite function f , there is a ∈ M r I such that for all x ∈ I,

f (x) > I if, and only if, f (x) > a.

The need to express the notions: ‘the largest initial segment closed under addition

not containing a’ and ‘the smallest initial segment closed under addition containing a’

arise often in this thesis. To this end we define

a ·N = sup{an : n ∈ N} ,

that is, the smallest initial segment closed under addition containing a, and

a/N = inf{a/n : n ∈ N}= inf{b : bn < a,n ∈ N} ,

which is the largest initial segment closed under addition not containing a. Various

notational defices have been defined from time to time to express similar notions, for

example the M(a) and M[a] of Kaye, Kossak and Kotlarski[23], though none is standard

in the literature. Thus we introduce here the most convenient notational mechanism

for our purposes. A more general and more verbatim notation system for such initial

segments was defined in the author’s MPhil. Qual. thesis.[1]

2.4 Coding sequences, sets and structures

Central to the work of this thesis is the notion of a number coding a finite set or a finite

sequence. For the general discussion of this topic we refer the reader to the literature,

for example Kaye[21], though we give a brief development of the basic machinery here.

1Note that our definition of M-finite will be defined later in this chapter.
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The reader should note that there are many ways in which the following may be accom-

plished: we pick one for the purpose of being definite.

Coding sequences

Following chapter 5 of Kaye’s book[21], where the reader may refer for a more detailed

introduction to our coding mechanism, we recall the pairing function

〈,〉 : (x,y) 7−→ (x+ y)(x+ y+1)
2

+ y

and extend this to arbitrary n-tuples via the recursive definition

〈x1,x2, . . . ,xn〉= 〈x1,〈x2, . . . ,xn〉〉 .

We define hd(〈x,y〉) = x, which we call2 the head of the pair 〈x,y〉, and tl(〈x,y〉) = y

which we call the tail of the pair. Note that in the case of n-tuples we have

tl(〈x1,x2, . . . ,xn〉) = 〈x2, . . . ,xn〉 .

We may now define our coding mechanism via

(x)y = rem(hd(x),1+(y+1)tl(x))

where rem(x,y) denotes the remainder of x upon division by y. (The reader may refer

to Kaye chapter 5 for a more detailed introduction of this coding system.) We thus have

2The names ‘head’ and ‘tail’ come from the modern literature of functional programming among other

places. This author believes this, along with the logic programming literature, to be a useful source of

organisational methods for the long strings of logical symbols that one must deal with when formalising

the work that occurs later in this thesis. Bird[8] is but one good introductory text in the area of functional

programming.
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∆0-formulae for “z is the yth element of the sequence coded by x” and “y is the length

of the sequence coded by x” such that PA proves the following:3

∀x,y∃!z(x)y = z, (2.4.1)

∀x,y(x)y ≤ x, (2.4.2)

∀x∃y(y)0 = x, and (2.4.3)

∀x,y,z∃w(∀i<y(x)i = (w)i ∧ (w)y = z) . (2.4.4)

We wish our coding mechanism to uniformly encode the length of a sequence, so

we follow the development of chapter 9 of Kaye[21] in defining

len(x) = (x)0 (2.4.5)

[x]y =


(x)y+1 for y < len(x); and

0 otherwise.
(2.4.6)

We call such sequences M-finite sequences and think of the canonical code for a given

sequence to be the least element of M (with respect to the ordering of M) that codes the

sequence. The following defines the empty sequence, singleton sequence and concate-

nation of sequences:

[] = µx len(x) = 0, (2.4.7)

[x] = µy (len(y) = 1 ∧ [y]0 = x) , (2.4.8)

x_y = µz (len(x)+ len(y) = len(z) ∧

∀w<len(x)([x]w = [z]w) ∧

∀w<len(y)([y]w = [z]w+len(x)
)
. (2.4.9)

3We wish to refer back to these properties from chapter 5, hence the numbering of the expressions.

18



The well known ‘is an element of’ symbol ∈ may be defined between elements of M

via

x ∈ y iff ∃z<len(y) [y]z = x

and the complementary relation 6∈ is defined in the obvious way.

Now we add three useful tools for extracting subsequences from a given sequence.

The first is the restriction of a sequence, the second is a general tool known as replace-

ment and the third is known as comprehension (the latter two echoing the terminology

from set theory.) The first two are given by

x�y = µz(len(z) = y ∧ ∀w<y [z]i = [x]i)

[ f (r, ā) : r← x] = µz(len(x) = len(z) ∧ ∀w<len(x) [z]w = f ([x]w, ā))

where f denotes some function f (x, ȳ) and ā is some tuple of parameters. In the above, r

is a formal variable. Essentially [ f (r, ā) : r← x] refers to the algorithmic process: ‘Take

an element from the start of the input list and call it r; append f (r, ā) to the output list.’

The third is defined inductively by

[r : r← c,φ(r, ā)] = ψφ (c, ā,x)

where

ψφ (c, ā,0) = []

and

ψφ (c, ā,x) =


ψφ (c, ā,x−1) if ¬φ(x−1, ā); and

ψφ (c, ā,x−1)_[x−1] if φ(x−1, ā)
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so that [r : r← c,φ(r, ā)] is the subsequence of the sequence coded by c consisting of

all those x ∈M that satisfy φ(x, ā) in the order that they appear in the sequence coded

by c, including any repeats. We then unify sequence comprehension and replacement

notation by defining

[ f (r, ā) : r← x, φ(r, b̄)] = [ f (r, ā) : r← [s← x : φ(s, b̄)]].

The reader will notice that we use ‘←’ where traditional notation would use ‘∈’. The

reasons for this are twofold: firstly we wish to define ∈ in the context of M-finite sets

and secondly, there is the question of the sequence from which the order of the new se-

quence is inherited. For example, for different sequences coded by c and d respectively,

the sequences [x : x← c : x ∈ d] and [x : x← d : x ∈ c] are not equal in general, yet the

notation [x : x ∈ c : x ∈ d] could be construed to suggest this. Thus we use← to show

where the order of the new sequence is inherited from. For a final piece of shorthand,

we permit writing [x← c : x ∈ d] where it is formally meant [x : x← c : x ∈ d].

Set-like operations on sequences

We need a notion of coding sets, and the material immediately preceding this gives

us just the machinery we need to implement such a notion. Much of the machinery

applies readily to the sequences defined above, and so we introduce it in this context

first, showing how we formalise the notion of an M-finite set in the next subsection.

The definition of ∈ was given earlier, and we turn our attention to the other symbols in

the language employed in set theory.

We identify union with concatenation and define intersection and set difference us-
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ing comprehension thus:

x∪ y = x_y,

x∩ y = [r← x : r ∈ y], and

x r y = [r← x : r 6∈ y].

The reader should be aware from the discussion at the end of the previous subsection

that x∩ y is not in general the same as y∩ x when talking about sequences. We use

primitive recursion to define the ‘union’ and ‘intersection’ of a sequence of sequences.

Informally, we define

⋃
[x0,x1,x2, . . . ] =

⋃
[x0∪ x1,x2, . . . ]⋂

[x0,x1,x2, . . . ] =
⋂

[x0∩ x1,x2, . . . ]

and for a more formal definition we consider M-finite sequences such as

[x0∪ x1,(x0∪ x1)∪ x2, . . . ]

which are defined using primitive recursion. This process of applying a binary function

to a sequence of nonstandard length, associating to the left or right as desired may be

readily formalised, but we leave the details of this to the reader.

Coding sets and structures

It is now opportune to fix our method and notation for the notion of M-finite sets. We

also introduce a few shorthand mechanisms to simplify what will otherwise become

ungainly notation.

Firstly, we identify M-finite sets with minimal codes for strictly increasing M-finite

sequences. The reader may use this as an effective definition of a set being M-finite.
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We use [[c]] to denote the set coded by c. Strictly, [[c]] is defined to be the unique c′ ∈M

satisfying

(M,c,c′) � c′ = µx<c (∀y<len(c)∃z<len(x) [c]y = [x]z ∧

∀y<len(x)∃z<len(c) [x]y = [c]z ∧

∀y<(len(x)−1) [x]y < [x]y+1 )

We then define the cardinality of an M-finite set (in the sense of M) by |c|= len([[c]]).

The notation cardX is used for cardinals in the set theoretic sense so as to keep these

two notions distinct. We use

[[ f (r, ā) : r← c,φ(r, b̄)]]

as shorthand for

[[[ f (r, ā) : r← c,φ(r, b̄)]]].

(The reader should note that the parameters to the function f need not be the same as

the parameters to the formula φ .) This is in turn used to formalise the usual informal

set notation, which we use where convenient, for example we shall happily talk of ‘the

M-finite set {1,2,3}.’

We say that a subset X ⊆ M is M-finite if there is c ∈ M with [[c]] = X and write

|X | = |c| when this is the case. We use P to denote the M-finite power set of a given

M-finite set X and Pn(X) to denote the (necessarily M-finite) set of M-finite n-subsets

of X .

There is an alternative approach to coding sets that is to be found in the literature.

This revolves around defining x ∈ y to be ‘the xth digit in the binary expansion of y is

1.’ It is easy to verify that this gives the same set of M-finite sets, and that both give a

model of set theory with the negation of the axiom of infinity.
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We thus have a robust notion for coding sets and sequences. Our choice of system

for coding sets makes these two notions reasonably interchangable: we can use M-

finite sequences in lieu of ordered sets. We consider M-finite functions and relations

to be coded sets of tuples and define predicates IsFunction and IsRelation with obvious

intended meanings.

Finally, M-finite languages and structures may be defined by interpreting the usual

definitions via the M-finite sets, functions and relations introduced above.
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Chapter 3

Measuring subsets of a model of

arithmetic

The ideas expounded here have their roots in the work of Kaye et al.[23], in particular

the utilisation of the infimum of the number of elements satisfying the first n elements

of a recursive type, and showing that the initial segment formed is fixed pointwise by

an automorphism of the model M if, and only if, the set of elements satisfying the type

is also fixed pointwise. This showed a nontrivial relation between initial segments of a

model and more subtle structures in a model. In a certain sense this echoed the earlier

developments in the area of models of Peano arithmetic, where connections were sought

between initial segments of models and other interesting aspects of the models.

In the development here, however, we focus on initial segments as a generalisation

of the notion of counting rather than any particular application. Actual applications are

not addressed in this chapter, this being a place to introduce potential new avenues for

thought, rather than specific discoveries in current areas of thinking.

Returning to the roots of this chapter in the work of Kaye, the set of elements satis-
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fying a type is either definable, or else very near to being definable. There are, however,

many subsets of M for which we are not so lucky. We wish to generalise this notion

of counting to arbitrary subsets of a model of Peano arithmetic. Thus, we begin with a

reasonably natural approach to the ‘counting’ of such subsets. This approach was sug-

gested by the author’s supervisor at the outset of, and investigated in, the author’s M.

Phil. Qual. thesis[1]. Our exposition here is an abridged version of that work, though

we endeavour to include the important points.

3.1 The M-measure of a subset of a model of PA

For the purposes of this section, M will denote some arbitrary model of PA with domain

M. Let X be some subset of M and let us consider the question of how the structure of

M may be used to measure the size of X . To this end we begin by defining the following

two complementary notions of measure.

Definition 3.1.1. Let X and M be as in the above paragraph. If X is M-finite then we

define µ(X) = ν(X) = |X |. Otherwise we define

µ(X) = sup{|x| : x ∈M, (M,X ,x) � [[x]]⊆ X} and

ν(X) = inf{|x| : x ∈M, (M,X ,x) � X ⊆ [[x]]} .

We call µ(X) and ν(X) the inner and outer M-measures of X respectively. We say that

X is M-measurable precisely when we have µ(X) = ν(X).

We will look to generalisations of these definitions of measure in later sections. It

is intuitively clear that µ will always underestimate and ν will always overestimate (in

the non-strict sense), but by how much? We will begin to address this question after

covering the basic facts concerning µ and ν .
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Lemma 3.1.2. Let X be a subset of M. If a ∈ µ(X) then there is c ∈ M with [[c]] ⊆ X

and |c|= a. If a≥ ν(X) then there is c ∈M with [[c]]⊇ X and |c|= a.

Proof. Suppose that a ∈ µ(X). Then there is c′ ∈M with a≤ |c′| and [[c]]⊆ X . But we

can obtain the required c ∈M by deleting the last |c′|− a elements from the sequence

coded by c′. Suppose now that a≥ ν(X). Then there is c′ ∈M with |c′| ≤ a and X ⊆ [[c′]].

But then the set

[[c′]]∪
{

c′, . . . ,c′+(a−
∣∣c′∣∣−1)

}
is clearly M-finite and we need only take a code c for this set to complete the proof.

Lemma 3.1.3. For any set X ⊆M we have µ(X)⊆ ν(X).

Proof. Take any d ∈M such that X ⊆ [[d]] and take any a ∈ µ(X). For any c ∈M with

|c| = a and [[c]] ⊆ X (there are such c by the previous lemma) we have [[c]] ⊆ [[d]] and

so immediately we have a≤ |d|. Since a was arbitrary we have µ(X)⊆ |d| and since d

was arbitrary subject to X ⊆ [[d]] the result follows.

Lemma 3.1.4. For all initial segments I we have µ(I) = ν(I) = I.

Proof. For a ∈ I we have <a⊆ I and hence a ∈ µ(I). When a 6∈ I we have I ⊆ <a and

hence µ(I)≤ a. The result then follows by lemma 3.1.3.

It is not always most convenient to talk of M-finite sets in terms of codes for them.

In the next lemma we deal with M-finite sets more directly.

Lemma 3.1.5. Let X be an M-measurable subset of M and let Y be an M-finite set

disjoint from X. Then X ∪Y is measurable and

µ(X)+ |Y |= µ(X ∪Y ) and ν(X ∪Y ) = ν(X)+ |Y | .
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Proof. Let Z be an M-finite subset of X . Then Y ∩ Z = ∅ and X ∪ Z is an M-finite

subset of X ∪Y . If Z is an M-finite superset of X then so is Z rY , so assume without

loss that Z∩Y = ∅. Then Z∪Y is an M-finite superset of X ∪Y with |Z∪Y |= |Z|+ |Y |.

Thus for a ∈ µ(X) = ν(X) we have a + |Y | ∈ µ(X ∪Y ) and for a ≥ µ(X) we have

a+ |Y | ≥ ν(X ∪Y ). The result then follows.

Lemma 3.1.6. Let X and Y be disjoint. Then

µ(X)+ µ(Y )⊆ µ(X ∪Y ) and ν(X ∪Y )⊆ ν(X)+ν(Y ).

Proof. First we show the result for µ . Take some a∈ µ(X)+µ(Y ) and write a = aX +aY

where aX ∈ µ(X) and aY ∈ µ(Y ). Then there are cX and cY in M with len(cX) = aX ,

[[cX ]] ⊆ X , len(cY ) = aY and [[cY ]] ⊆ Y . But then we may take [[c]] = [[cX ∪ cY ]] with

len(c) = a and this suffices to show that a ∈ µ(X ∪Y ).

We prove the result for ν in a similar fashion. Take any a ≥ ν(X) + ν(Y ) and

write a = aX + aY where aX ≥ ν(X) and aY ≥ ν(Y ). Then there are cX and cY in M

with len(cX) = aX , X ⊆ [[cX ]], len(cY ) = aY and Y ⊆ [[cY ]]. But then len(cX ∪ cY ) ≤

len(cX)+ len(cY ) and so a≥ ν(X ∪Y ) as required.

There is a significant corollary to the above.

Corollary 3.1.7. Let X and Y be disjoint M-measurable sets. Then X ∪Y is M-

measurable.

It should be noted that the later result, Theorem 3.2.9, giving the existence of non-

M-measurable sets may be used to show that we cannot do much better than the above.

As a generalisation of this lemma we have the following.
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Lemma 3.1.8. Let X and Y be bounded subsets (not necessarily M-measurable) of

M such that there is a formula φ(x, ȳ) and ā ∈ M such that M � φ(x, ā) if x ∈ X and

M � ¬φ(x, ā) if x ∈ Y . Then µ(X)+ µ(Y ) = µ(X ∪Y ) and ν(X ∪Y ) = ν(X)+ν(Y ).

Proof. First we have µ(X)+ µ(Y ) ⊆ µ(X ∪Y ) from Lemma 3.1.6. Then take any b ∈

µ(X ∪Y ) and some M-finite C ⊆ X ∪Y with |C|= b. It follows that

A = {x ∈C : (M, ā,x) � φ(x, ā)}

B = {x ∈C : (M, ā,x) � ¬φ(x, ā)}

are two disjoint M-finite subsets of X ∪Y with A ⊆ X , B ⊆ Y and |A|+ |B| = |C|. But

then |A|+ |B| ∈ µ(X)+ µ(Y ) and it follows that µ(X ∪Y )⊆ µ(X)+ µ(Y ) as required.

We also have ν(X ∪Y ) ⊆ ν(X)+ ν(Y ) from Lemma 3.1.6. Let C be any M-finite

superset of X ∪Y and let A and B be as before. Then |C|= |A|+ |B| ≥ ν(X)+ν(Y ) and

thus we have ν(X ∪Y )⊇ ν(X)+ν(Y ) as required to complete the proof.

Of more importance and interest is the question of whether the M-measurable sets

form an algebra of sets. That is, if X and Y are M-measurable then what about X ∪Y

and X ∩Y . This author suspects that the notion of M-measurability looked at here may

well be too weak for this, but cannot come up with a better refinement of this notion.

3.2 Non-M-measurable sets of a model of PA

We begin with the following observation. Essentially, a set has infinite measure if,

and only if, it is unbounded. In contradistinction, on the real line it is possible for an

unbounded set to have zero measure (for example the rational numbers.)

Lemma 3.2.1. For any subset X ⊆M, we have ν(X) = M if, and only if X is a cofinal

subset of M.
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Proof. Since any element of the set coded by c, say, is bounded by c, it immediately

follows that no M-finite set can contain a cofinal subset of M.

Conversely, if a subset of X ⊆M is bounded by a, say, then clearly

X ⊆ {x ∈M : x < a}

and so ν(X)≤ a.

In a model of cofinality ℵ0, a cofinal ω-sequence then yields an example of how

much µ and ν may differ, µ giving the smallest possible value for a non-M-finite set,

namely N and ν giving the maximum, namely M. In this particular case it is clearly

ν that is held at fault, its definition having to default to M for lack of codes to choose

from. We approach this problem with generalisations of the measures introduced in a

later section.

As a more interesting example (or family of examples), and as an introduction to the

systematic construction of non-M-measurable sets we give the following.

Question 3.2.2. Let J be a proper cut of M. There is a natural order isomorphism

f : J→ N+Z ·Q

for some dense linear order Q with no initial endpoint. Let

X = f−1(N+N ·Q).

Then what are µ(X) and ν(X)?

A partial answer was presented in the author’s M. Phil. Qual. thesis, but is included

here more as food for thought. The answer, as it turns out, really is ‘it depends.’ In

this case, the answer depends upon the precise choice of order isomorphism, and in

particular what gets mapped to the zeroes of the Z’s.
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We now look briefly at a couple of constructions of non-M-measurable sets. For this

first example, which we present as the following lemma, bJ+cwill be used to denote the

largest initial segment I ⊆ J such that J is closed under addition with I, that is J + I ⊆ J.

Essentially this picks up on the point that for an initial segment J not closed under

addition, there are many x ∈ J such that x + J = J: we use bJ+c, for which there is no

standard notation, to denote the initial segment consisting of all such x.

Lemma 3.2.3. Let J be a proper cut in M. Then for any ω-sequence X = (xi) cofinal in

J we have µ(X) = N and ν(X)⊆ bJ+c .

Proof. In case J is not closed under addition take a,b ∈ J with a+b > J. Let n ∈ N so

that {x0, . . . ,xn} is the set containing the first n+1 elements of X and observe that

X ⊆ {x0, . . . ,xn}∪{x ∈ X : a≤ x < a+b− (n+1)} .

Now {x0, . . . ,xn} is actually finite and {x ∈ X : a≤ x < a+b− (n+1)} is contained

in an M-finite set with cardinality b−n−1 in the sense of M. The proof then follows

from this observation.

We leave as an exercise in diagonalisation, similar to the proof of the next lemma,

that this bound can be attained. It is trivial to show that the bound needn’t be attained.

We next show how µ and ν can be systematically moved apart in a countable model.

The difficulties obtained by trying to generalise this result to uncountable models are

not addressed here. In the proof of the following results we use the notion of a Z-block

from chapter 6 of Kaye[21]. Specifically we mean the following.

Definition 3.2.4. Let M be a nonstandard model of PA and let a ∈M. By the Z-block

around a we mean the set {x ∈M : |x−a| is finite} and we denote this set by [a].
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Recall that this notion arises naturally from consideration of the order type of M,

which is ω +(ω∗+ω) ·Q for some dense linear order Q without endpoints. The theorem

that follows is broken down into a short series of lemmas which elucidate the various

cases.

Lemma 3.2.5. Let I and J be proper cuts of a countable model M � PA such that J rI is

order isomorphic to Z. Then there is a subset X of M such that µ(X) = I and ν(X) = J.

Proof. Suppose that J r I is order isomorphic to Z, that is, it is a single Z-block. Let

{dn : n ∈ N} enumerate the set {a ∈M : (M, I,J,a) � |a| ∈ J r I}.

We construct X inductively, beginning with X0 = I and x0 some arbitary element

of J r I. At stage n we assume that Xn has been constructed in accordance with this

procedure. If Xn 6⊆ [[dn]] then we simply take xn+1 = xn + 1. If not, then observe that

since I ⊆ Xn ⊆ [[dn]] then by overspill we have that (M,dn,a) � ∀x<a x ∈ [[dn]] for some

a ∈ J r I. But then |dn|− a is finite, so [[dn]] has a maximum mn in J r I. In this case

we take xn+1 = max(xn +1,mn +1). In either case we then define Xn+1 = Xn∪{xn+1}.

Finally we take X =
⋃

n∈N Xn.

It is evident that the resulting X is the union of I and a strictly increasing ω-sequence

contained within J r I. We claim that µ(X) = I. To see this, let us write X = U ∪X ′

where X ′ and I are disjoint. Then µ(I) = ν(I) = I and any M-finite subset of X ′ is

actually finite. But I is closed under successor and so it follows that µ(I) ≤ µ(X) ≤

µ(I)+N = µ(I) which proves the claim.

Furthermore, for every d ∈ M with |d| ∈ J either I 6⊆ [[d]] whence X 6⊆ [[d]] or else

|d| ∈ J r I and the construction then guarantees that X 6⊆ [[d]]. Since this is true for every

d ∈M with |d| ∈ J we cannot possibly have d > ν(X). Thus ν(X)⊆ J and the proof is

complete.
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Lemma 3.2.6. Let I and J be proper cuts of a countable model M � PA. Suppose that

for all a ∈ J there is b ∈ J with b > a and b−a nonstandard. Then there is a subset X

of M such that µ(X) = I, ν(X) = J, µ(J r X)⊆ I and ν(J r X) = J. In fact, there are

2ℵ0 such subsets.

Proof. Suppose that for all a ∈ J there is b ∈ J with b > a and b−a nonstandard. Then

there are countably many Z-blocks in J r I and no topmost Z-block.

Since the model is countable, we may let {dn : n ∈ N} enumerate the set

{a ∈M : (M, I,a) � |a| 6∈ I and (M,J,a) � |a| ∈ J} .

We proceed by constructing a descending chain {Xn} of subsets of J such that X =⋂
n∈N Xn is the required subset. Before we begin, fix some t ∈ J r I so that we may use

the elements of the Z-block of t to get the 2ℵ0 subsets desired.

Now, let X0 = J and proceed inductively. At stage n we assume that Xn has been

constructed in accordance with this procedure. Pick, and consider touched, four distinct

Z-blocks, say [rn], [r′n], [sn] and [s′n] in J r I which have not been touched at a previous

stage (and by this we mean to include [t]), such that:

1. there is some bn ∈ [rn]r [[dn]], which is possible since |dn| ∈ J and J has no topmost

Z-block;

2. there is some b′n ∈ [[dn]]r [r′n], which is possible since |dn| 6∈ I;

3. there is some cn ∈ [sn]r [[dn]]; and

4. there is some c′n ∈ [[dn]]r [s′n].

One can see that this process never runs into difficulties, for given any d ∈ M with

|d| ∈ J r I, it follows that [[d]]r I intersects countably many Z-blocks, as does J r [[d]].
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Now we construct Xn+1 by defining Xn+1 = Xn r ([b′n]∪ [cn]) and observe that:

1. Xn+1 6⊆ [[dn]] since bn ∈ Xn+1 r [[dn]];

2. [[dn]] 6⊆ Xn+1 since b′n ∈ [[dn]]r Xn+1;

3. J r Xn+1 6⊆ [[dn]] since cn ∈ (J r Xn+1)r [[dn]];

4. [[dn]] 6⊆ J r Xn+1 since c′n ∈ [[dn]]r (J r Xn+1).

Do this procedure for each n ∈ N and define X =
⋂

n∈N Xn. This resulting X clearly

satisfies the statement of the theorem. Furthermore, we can replace the Z-block [t] with

any subset of [t] and the rest of the argument runs through essentially unchanged. Thus

there are 2ℵ0 subsets of J satisfying the requirements of the theorem.

Corollary 3.2.7. Let I, J and M be as in the statement of Lemma 3.2.6. Suppose that I

is closed under addition. Then X may be taken such that µ(J rX)⊆ I. As before, there

are 2ℵ0 such subsets.

Proof. Take X ′ to be the X obtained above and define X = X ′r{2x : x ∈ I}.

Lemma 3.2.8. Let I and J be proper cuts of a countable model M � PA. Suppose that

there is a ∈ J such that for no b ∈ J with b > a is it the case that b−a nonstandard, but

that J r I is not order isomorphic to Z, that is, J has an uppermost Z-block but I does

not so that J r I is not a single Z-block. Let J′ = inf{a−n : n ∈ N}. Then there is a

subset X of M such that µ(X) = I, ν(X) = J, µ(J r X)⊆ I and J′ ⊆ ν(J r X). In fact,

there are 2ℵ0 such subsets.

Proof. Apply Lemma 3.2.6 to I and J′ to get a subset X ′ of J′ (in fact, to get 2ℵ0 subsets).

For any particular X ′ among these 2ℵ0 subsets we may do the following.
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Let {dn : n ∈ N} enumerate the set {a ∈M : (M,J′,J,a) � |a| ∈ J r J′}. Let x0

be some arbitrary element of J r J′. At stage n we assume that Xn has been constructed

in accordance with this procedure. If Xn 6⊆ [[dn]] then take xn+1 = xn +1 and we are done.

If not then consider [[dn]]∩ [0,xn]. Since this intersection contains X ′ we have

|[[dn]]∩ [0,xn]| 6∈ J′

from the construction of X ′ and so

|[[dn]]∩ [0,xn]| ∈ J r J′.

But then [[dn]]r [0,xn] is finite. Thus we may take xn+1 to be some element of J r [0,xn]

not contained in [[dn]]. Now take X = X ′∪{xn : n ∈ N}.

Observe that any M-finite superset of X must have outer M-measure greater than

any element of J since such a superset contains X ′ and cannot be any of the dn from

above. But X ⊆ J and so ν(X) = J. Also, ν(J r X) contains J′ since we constructed X ′

using Lemma 3.2.6.

Now we may apply Lemma 3.1.8 with φ(x,x0) = x < x0 to get

µ(X) = µ(X ′)+ µ(X ′′) = I +N = I

where X ′′ = {xn : n ∈ N}. Finally, µ(J r I) follows from the application of Lemma

3.2.6.

Collecting the above together, we see that we can prove the following.
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Theorem 3.2.9. Let M be a countable nonstandard model of PA and let I and J be

proper cuts of M with I ⊆ J. Then the following are true.

1. There is a subset X of M such that µ(X) = I and ν(X) = J.

2. Further, if J r I is not order isomorphic to Z then there are 2ℵ0 subsets X of M

such that µ(X) = I and ν(X) = J.

3. Further still, if for all a ∈ J there is b ∈ J with b > a and b−a nonstandard then

X can be taken such that µ(J r X)⊆ I and ν(J r X) = J.

4. Finally, if we also have that I is closed under addition then X can be taken such

that µ(J r X) = I.

It is instructive to compare this measure with the Lebesgue construction on the real

line. Recall that the Lebesgue measure may be constructed as a standard part of a hyper-

finite measure, as explained in Lindstrøm[29]. There exist non-Lebesgue-measurable

subsets of the real line (for example a set of coset representatives of the rationals in the

reals taken between 0 and 1.) There also exist universally nonmeasurable subsets of the

interval {0≤ x≤ 1} as explained in Fremlin[14] and Ciesielski[12]. (The reader may

recall that a subset X of the real interval [0,1] is universally nonmeasurable if, and only

if the inner Lebesgue measure of both X and its complement in [0,1] is 0 whilst both

outer Lebesgue measures are 1.)

As such, then, the pathological examples exist similarly for both these measures on

nonstandard models and the Lebesgue measure on the real line. It is known that to show

the existence of non-measurable sets requires the axiom of choice and it would be an

interesting question as to what happens in this case, though an investigation of this goes

beyond the scope of this thesis.
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3.3 Measuring using end-extensions

We saw in the previous section that our outer measure falls into difficulty in the case of

cofinal subsets of the model. The purpose of this section is to show how this matter may

be rectified by temporarily end-extending the model.

We begin by recalling some relevant definitions. The reader may refer to Kossak

and Paris[26] for an overview of what are termed extensional sets. Note that our notion

of ‘coded in’ is a slight generalisation of that usually found in the literature.

Definition 3.3.1. Let M be a model of PA and let V be a subset of M. A subset X of V

is said to be coded in a subset Y of M if there is c ∈ Y such that

(M,V,X ,c) � ∀x (x ∈ X ↔ x ∈V ∧ x ∈ [[c]])

that is, such that X = V ∩ [[c]]. Usually V is taken to be some initial segment, often a

model of PA as will be the case in the sequel.

Definition 3.3.2. Let M be a model of PA and let X be a subset of M. We say that X is

extensional if X is coded in some end-extension N of M and elementarily extensional

if N can be taken such that M≺e N.

The reader may verify that in the above definition, nothing is lost by insisting that

cardN = cardM (essentially by considering the extension of M within N ‘generated’

by the code for X .)

The ease with which [[c]]∩M may be measured for c ∈ N motivates the following

definition.
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Definition 3.3.3. Let M and N be models of PA, N an end-extension of M. Let νN

denote the outer measure of the previous section, taken in the sense of N. We define the

N-extended outer measure on M by

ν
M
N (X) = M∩ν

N(X).

We say that a subset X of M is N-measurable in M if µM(X) = νM
N where µM denotes

the inner measure on M introduced in the previous section. Where context allows we

omit annotations on µ and ν , preferring to write just µ , ν and νN.

The measures just introduced were motivated by the problems caused to the outer

measure defined earlier in the case of cofinal subsets of the model. Moving to end exten-

sions will only help this case, as the next lemma illustrates. The proof is straightforward.

Lemma 3.3.4. Let M be a model of PA and let X be a bounded subset of M. Then for

any end-extension N of M we have νN = νM(X).

It is evident from the following lemma that extensional sets are the right generalisa-

tion of M-finite sets.

Lemma 3.3.5. Let X be coded in an end-extension N of M. Then µ(X) = νN(X).

Thus, given a cofinal subset X of M, one would be inclined to look for extensional

supersets Y of X and end extensions N of M coding them. We conclude this section

with a result on constructions of non-extended-measurable sets.

Lemma 3.3.6. Let I and J be cuts of M with I ⊆e J. Let N be an end-extension of

M coding a cofinal ω-sequence. Then there is a subset X of M such that µ(X) = I,

ν(X) = M and νN(X) = J.
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Proof. Apply Theorem 3.2.9 to get Y ⊆M with µ(Y ) = I and ν(Y ) = J. Let W be the

cofinal ω-sequence coded in N and take X = W ∪Y .

This last result can be generalised a little without much effort, but we leave that to

the interested reader.

3.4 Summation and approximation of external functions

The purpose of this section is to introduce a possible area of application of the preceding

material. As such, we outline the basic idea and leave things there. One is motivated by

the question of how well one can approximate a given function on a given subset of a

model by an M-finite function or a system of functions. The need to evaluate accuracy

leads to the need to be able to sum the values of an external function over a possibly

non-M-finite set and this requires the ideas of measure explored earlier in this chapter.

Just as the measure constructions of before had similarities with Lebesgue measure,

these summation ideas have similarities with Lebesgue and Riemann integration. This

motivates the following definition.

Definition 3.4.1. Let f : M→M be defined on a set X ⊆M. We define the lower and

upper integrals of f (x) over X as follows.

∫
x∈X

f (x)d̄µ = sup

{
∑

x∈[[c]]
[d]x : (M,X , f ,c,d) � [[c]]⊆ X ∧ ∀x∈[[c]] ([d]x ≤ f (x))

}
∫

x∈X
f (x)dν = inf

{
∑

x∈[[c]]
[d]x : (M,X , f ,c,d) � X ⊆ [[c]] ∧ ∀x∈[[c]] ([d]x ≥ f (x))

}

Note that the dµ and d̄ν is used to indicate how X is to be measured and the location of

the underline or overline indicates how f (x) is to be approximated. When these integrals
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agree we may omit the bar and just write ‘dx’. In fact,
∫

x∈X f (x)dx will also be used to

represent the integral or sum that we wish to approximate and measure.

Importantly, given an external function f : M→M we may consider the integral

∫
x∈X

[ f (x)− [c]x]
2

and use this as a means to determine when one approximation is more exact than an-

other. The reader should also note that minimising the square of the error is not the only

way of finding a best approximation, and analogies to other statistical methods may be

worthwhile investigating.
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Chapter 4

Nonstandard finite permutations

4.1 Nonstandard permutations in models of PA

Any permutation on a finite subset of M is necessarily an M-finite bijection. It follows

immediately that there are nonstandard M-finite permutations acting on infinite M-

finite sets. To simplify the definitions, we identify M-finite permutations with their

images coded as M-finite sequences (e.g. the permutation of [0,n] represented in cycle

notation as (1,2,3) will be identified with the sequence [0,2,3,1,4,5, . . . ,n]). We shall

write Ωn for the set [0,n−1].

We begin by fixing some formula Perm(n,g) with the intended meaning: g is a

minimal code for an M-finite bijection Ωn→ Ωn. We define the nth symmetric group

Sn to be the set {x ∈M : Perm(n,x)} together with the obvious definition for the group

operation. We denote the identity element by 1n. This group should be distinguished

from the full symmetric group on the subset [0,n−1] of the domain of M. We write this

full symmetric group as Symn (though strictly it may be more correct to use notation

such as Sym(X) where X = {x ∈M : x < n}).
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We adopt standard notation for the action of Sn upon Ωn, writing xg for the image of

x under the action of g, and defining composition of permutations in the natural way so

that (xg)h = xgh.

Permutations have cycle shapes and may be written in disjoint cycle notation and

we need to briefly explain what this means for nonstandard permutations; essentially

we are aiming to capture what happens with finite permutations.

Definition 4.1.1. Let g ∈ Sn. We define κg to be the sequence of elements of Sn cor-

responding to the disjoint cycles, ordered by the least point moved for each respective

cycle. We define κ∗g to be the sequence of sequences representing those cycles. That is,

if g = (1,2,3)(4,5,6) then κg = [(1,2,3),(4,5,6)] and κ∗g = [[1,2,3], [4,5,6]].

By σg(i) we mean the number of i-cycles in the disjoint cycle form of g. Thus

σg is a function that is definable (with parameters) for each g ∈ Sn and which satisfies

∑i∈M iσg(i) = n.

Now identify Sn with its natural embedding in Symn and let g ∈ Symn. By τg(i)

we mean the number of i-cycles in g where i is a finite cardinal or ℵ0 and τg(i) is a

(possibly finite) cardinal.

To clarify the last of the above definitions with an explicit example, let

g = (0,1,2)(3,4)(5,6)(7,8) . . .(2a−1,2a)

where a ∈ M is nonstandard with card [0,2a] = ℵ0. Then with the above definition,

τg(2) = ℵ0, τg(3) = 1 and τg(i) = 0 for all other values of i. Note that by τg(ℵ0) we

mean the number of cycles with order type ω∗+ω .

Two notions central to the work of the next chapter are the support and degree of a

permutation.
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Definition 4.1.2. Let g ∈ Sn. We define the support and degree of g via

supp(g) = {x ∈ [0,n−1] : x is moved by g}

and

deg(g) = |supp(g)|

respectively.

Like finite permutations, and unlike permutations of infinite support in the usual

case of infinite permutation groups, M-finite permutations are either odd or even. There

are a number of ways of defining this, such as according to whether the product

∏
i6= j

ig− jg

i− j

is +1 or−1. Probably the most convenient in terms of arithmetical concepts required is

to say that g is even if, and only if the sum ∑2≤i<n(i−1)σg(i) is even, which essentially

amounts to counting transpositions. This allows us to define the nth alternating group

in the obvious way, via An = {g ∈ Sn : g is even}.

One should be aware that a permutation on Ωn is never a permutation on a different

set (since with our definitions, the set acted on may be recovered directly from the

permutation.) As would be expected, given a subset X of Ωn, the set of all permutations

on X is isomorphic to a subgroup of Sn, and we denote the image of this isomorphism as

Sn(X), though the reader may be aware that this image is simply the pointwise stabiliser

(Sn)(ΩnrX) of the complement of X in Ωn. In practice, this issue causes little difficulty

and is easily addressed.
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4.2 Conjugates of M-finite permutations inside Symn

It is clear that, as abstract groups, Symn
∼= Sym(κ) where κ = card {x ∈M : x < n}.

Of course there are many isomorphisms between these two groups, and the image of

Sn ≤ Symn will vary from isomorphism to isomorphism. The union of all such images

is the image of the normal closure of Sn within Symn. In this section we offer a charac-

terisation of this normal closure for certain models of PA and a partial characterisation

for arbitrary models of PA. Fix and arbitary model M of PA, and choose some fixed

nonstandard n ∈M.

Lemma 4.2.1. Let g ∈ Symn be conjugate in Symn to some h ∈ Sn. Then either τg(ℵ0)

is infinite or else the size of the cycles in g has a finite bound.

Proof. Suppose τg(ℵ0) 6= 0. Then g has a cycle of nonstandard order. Let this cycle

be (a0,a1, . . . ,ak) and consider the order type of the initial segment [0,k]. This must be

ω +(ω∗+ ω) ·Q + ω∗ where ∗ indicates reverse ordering and Q is a densely linearly

ordered set. From here it is clear that there must be infinitely many Z-cycles — one Z-

cycle per Z-block. That the order of cycles must have a finite bound in case τg(ℵ0) = 0

follows from an easy overspill argument: if the order of cycles does not have a finite

bound, there will be a cycle of nonstandard length by overspill.

Now for simplicity, we let M be a countable model. There are a number of ways of

trying to code the external cycle shape of a permutation in Symn, though it is not difficult

to see that the notion of a cycle shape having a code does not depend in a sensitive way

upon the definition. We use the following.
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Definition 4.2.2. We say that τg is coded if, and only if there is some c ∈M such that

[c]0 =


0 τg(ℵ0) = 0

1 τg(ℵ0) = ℵ0

[c]i =


0 τg(i) = ℵ0

τg(i)+1 otherwise

for all i > 0.

Lemma 4.2.3. Suppose that n ∈M, g ∈ Symn and either there is a nonstandard cycle

in g or else there is a finite bound to the lengths of cycles in g. Suppose further that τg

is coded. Then there is h ∈ Sn such that h is conjugate to g in Symn.

Proof. It suffices to construct h ∈ Sn with τg = τh. This is straightforward given a code

for τg and we leave the details to the reader.

The reader will recall from chapter 2 that an initial segment I of a model M is strong

if, and only if given an M-finite function f , there is a∈M such that for all x∈ I, f (x) > I

if, and only if f (x) > a.

Theorem 4.2.4. A necessary and sufficient condition for N to be strong in M is the

following: g ∈ SSymn
n only if τg is coded.

Proof. First we prove necessity. Take any g ∈ SSymn
n and assume without loss that in

fact g∈ Sn. Since N is strong, there is kg ∈M such that for all finite i, either τg(i)∈N or

τg(i) > kg. Now choose some sufficiently small nonstandard a ∈M and choose c such

that for all i > 0 we have [c]i = σg(i) when σg(i) < kg and [c]i = a otherwise. We can

use the fact that N is strong in a similar manner to determine whether the order of g is

finite and set [c]0 = 0 or [c]0 = 1 accordingly. Then τg is coded.
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Now we prove sufficiency. Let f : M→M be a definable function. Choose a ∈M r

N such that ∑
a
i=1 i f (i) < n. Let g ∈ Sn have internal cycle type σg where σg(i) = f (i)

for all i < a and σg(i) = 0 for all i≥ a. By hypothesis, τg is coded, so

m : r 7→min
i<r

{
σg(i) : τg(i) = ℵ0

}
is definable. Then {m(r) : r ∈ N} is a coded decreasing ω-sequence which cannot

converge to N by overspill. Thus there is some k f ∈M such that

N < k f < inf{ f (i) : f (i) 6∈ N} .

This suffices to complete the proof.

45



Chapter 5

Normal subgroups of some

nonstandard permutation groups

The classification of normal subgroups of finite symmetric and alternating groups is

a well known undergraduate exercise. The corresponding classification for countable

symmetric groups was obtained by Schreier and Ulam[36] and improved to a classifi-

cation for infinite groups by Baer[4], the latter often being referred to as the theorem of

Baer, Schreier and Ulam, a convention that we shall echo in the sequel. The main sub-

ject of this chapter is the corresponding results for the group structures obtained from

nonstandard finite symmetric groups in models of Peano arithmetic.

5.1 Normal subgroups of nonstandard symmetric groups

The purpose of this section is to show the analogue of the following theorem(s) of

Baer, Schreier and Ulam for nonstandard symmetric groups. Later we will show the

necessary modifications to obtain a similar result for nonstandard alternating groups.
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The statement of the theorem is taken from Bhattarcharjee et al.[6], the notation

BS(X ,λ ) = {g ∈ Sym(X) : deg(g) < λ}

is common in the modern literature, though we shall introduce and use a more general

and flexible notational mechanism for this shortly.

Theorem 5.1.1. Let Ω be a set of cardinality κ and let H be a normal subgroup of

Sym(Ω). Then H is one of the groups in the chain

1CAlt(κ)CBS(Ω,ℵ0)C . . .CBS(Ω,κ)CSym(Ω).

Furthermore, all of these normal subgroups do occur.

Analogous to the subgroups of bounded support that appear in the above theorem,

we define the following. (The different notation is motivated by the need, in this chapter

and the next, to be able to talk of bounded subgroups of different classes of group: not

merely bounded subgroups of a symmetric group.)

Definition 5.1.2. Let G be an arbitrary M-finite permutation group acting on an M-

finite set Ω and let I be an arbitrary initial segment of M. We define

G[I] = {g ∈ G : deg(g) ∈ I} .

One should note that the proof, found for example in Stewart[40], of the fact that An

is simple for all n ≥ 5 is easily translated into the language of PA, so that there are no

nontrivial M-finite normal subgroups of An: the normal subgroups we are interested in

are the non-M-finite ones. The analogue of Baer, Schreier and Ulam’s theorem that we

will prove is the following.
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Theorem 5.1.3. Let n∈M be nonstandard and let I be a cut of n closed under addition.

Then S[I]
n CSn, A[I]

n CSn and together with An these comprise all the normal subgroups

of Sn. Furthermore, distinct cuts closed under addition yield distinct normal subgroups

and all of these possible subgroups do occur.

We will prove the analogue for alternating groups in the next section. We begin the

demonstration of this result with a few lemmas.

Lemma 5.1.4. Let g∈ Sn be a k-cycle with k≥ 3 and let t ≤ bk/3c. Then there is h∈ Sn

such that supp(h)⊆ supp(g), deg(ggh) = 3t and ggh has order 3.

Proof. Let a code the cycle so that

g = ([a]0, [a]1, . . . , [a]k−1).

Let

h′ = ([a]1, [a]k−1) . . .([a]r, [a]k−r)

where 2r ∈ {k−2,k−3}. We know that such h′ exists in Sn by the following inductive

construction. Construct the sequence

[([a]1, [a]k−1),([a]2, [a]k−2), . . . ,([a]r, [a]k−r−1)]

using induction and basic properties of coding, that is, applying sentence 2.4.3 to start

the sequence and sentence 2.4.4 to add elements to the sequence at each step of the

induction. One can then form the sequence

[([a]1, [a]k−1),([a]1, [a]k−1)([a]2, [a]k−2), . . . ,([a]1, [a]k−1) . . .([a]r, [a]k−r−1)],

again using induction and sentences 2.4.3 and 2.4.4, and the desired element of Sn is the

(r−1)st element of this sequence. We leave subsequent applications of such arguments

to the reader.
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Now let

h′′ = ([a]k−1, [a]k−2)([a]k−4, [a]k−5) . . .([a]k−3t+2[a]k−3t+1),

employing a similar construction to that just applied, and observe that h = h′h′′ is the

required element of Sn, for

ggh = ([a]0, [a]1, . . . , [a]k−1)([a]0, [a]1, . . . , [a]k−1)h′h′′

= ([a]0, . . . , [a]k−1)([a]0, [a]k−1, [a]k−2, . . . , [a]1)h′′

= ([a]0, . . . , [a]k−1)([a]0, [a]k−2, [a]k−1, . . . , [a]1)h′′

= ([a]k−3t , [a]k−3t+2, [a]k−3t+1) . . .([a]k−3, [a]k−1, [a]k−2)

and this has supp(ggh)⊆ supp(g) and deg(ggh) = 3t as required.

To illustrate with finite permutations: if

g = (0,1,2,3,4,5,6,7,8,9,10,11,12)

then (with h′ as given in the above proof)

gh′ = g−1 = (0,12,11,10,9,8,7,6,5,4,3,2,1).

For t = 1, we take h′′ = (11,12) so that

gh′h′′ = (0,11,12,10,9,8,7,6,5,4,3,2,1).

and

ggh′h′′ = (10,12,11).

On the other hand, for t = 3 we take

h′′ = (11,12)(8,9)(5,6)
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whence

gh′h′′ = (0,11,12,10,8,9,7,5,6,4,3,2,1).

and

ggh′h′′ = (4,6,5)(7,9,8)(10,12,11).

We now proceed by applying the above result to each cycle in the disjoint cycle notation

of an element g ∈ Sn. First we define notation for the maximum number of 3-cycles

possible in the resulting element of Sn.

Definition 5.1.5. We define the 3-cycle capacity χ(g) of an element g of Sn via

χ(g) =
n

∑
i=3
bi/3cσi(g).

Lemma 5.1.6. Let g ∈ Sn r{1n} satisfy supp(g) = supp(g2) and let t ≤ χ(g). Then

there is h ∈ Sn such that supp(h)⊆ supp(g), ggh has order 3 and deg(ggh) = 3t.

Proof. The first step is to write g = g1g2g3 where g2 is a single cycle and g1 and g3 are

possibly the identity, such that χ(g1) < t but t ≤ χ(g1g2). We can easily prove

PA ` ∀n
(
n < 2∨∀g∈Sn∃x

(
|x|=

∣∣κg
∣∣∧ [x]0 = 1n∧∀y <

∣∣κg
∣∣([x]y+1 = [x]y · [κg]y

)))
by induction so that

(M,g,n) � ∃x
(
|x|=

∣∣κg
∣∣∧ [x]0 = 1n∧∀y <

∣∣κg
∣∣([x]y+1 = [x]y · [κg]y

))
.

Let c ∈M be a witness to this existential statement. We can then take g1 = [c]a where

a+1 = (µx < n)(χ ([c]x)≥ t) .

Then we take g2 = [κg]a+1 and take g3 = g−1
2 g−1

1 g.
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The second step is to process g1. Form the sequence of length a, coded by d, such

that for each i < a, [d]i is the ‘h’ obtained by applying Lemma 5.1.4 to [κg]i such that,

where k = [κg]i and l = [d]i, deg(kkl) = 3χ(k). (Each ‘h’ exists by Lemma 5.1.4 and

sentences 2.1.3 and 2.1.4 permit us to form the sequence via an easy inductive argu-

ment.) Let h1 be the product of the elements of the (M-finite) sequence coded by d.

Next we apply Lemma 5.1.4 to g2 to get h2 such that

deg(g2gh2
2 ) = 3(t−χ(g1)) .

The reader should take note that t−χ(g1) is the remaining number of 3-cycles required

after g1 has been processed.

Now let h3 take g3 to g−1
3 and be chosen such that supp(h3)⊆ supp(g3) and finally

observe that h = h1h2h3 is the required element of Sn.

Lemma 5.1.7. Let g ∈ Sn have order 3 and suppose 4deg(g) ≤ 3n. Let X be any M-

finite subset of [0,n− 1] disjoint from supp(g) such that 3 |X | = deg(g). Then there is

h ∈ Sn such that ggh has order 2, 3deg(ggh) = 4deg(g), supp(h) ⊆ supp(g)∪X and

supp(ggh) = supp(g)∪X.

Proof. Let x be a code for X . Observe that for any a,b,c,d ∈ Sn pairwise distinct we

have (a,b,c)(a,b,d) = (a,d)(b,c). Let {(ai,bi,ci) : 0≤ i < deg(g)/3} be an M-finite

enumeration of the 3-cycles of g. Take

h = (c0, [x]0)(c1, [x]1) · · ·(cr, [x]r)

where r = deg(g)/3. Then supp(h)⊆ supp(g)∪X and

ggh = (a0, [x]0)(b0,c0)(a1, [x]1)(b1,c1) . . .(ar, [x]r)(br,cr)
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whereupon ggh has order 2 and

supp(ggh) = supp(g)∪X

which completes the proof.

Lemma 5.1.8. Let g ∈ Sn have order 2. Then for every t ≤ bdeg(g)/4c there is h ∈ Sn

with supp(h)⊆ supp(g) such that ggh is of order 2 with deg(ggh) = 4t and supp(ggh)⊆

supp(g).

Proof. First recall that

(a,b)(c,d)((a,b)(c,d))(b,c) = (a,d)(b,c)

whereas ((a,b)(c,d))2 = 1. We use this fact inductively.

Let t ≤ bdeg(g)/4c and let {(ai,bi) : 2i≤ deg(g)} be an enumeration of the 2-

cycles in g. But then

h = (b0,a1)(b2,a3) · · ·(b2t ,a2t+1)

is the required element of Sn.

These lemmas are then brought together in the main lemma of this section. It is

this lemma that does the work for the main theorem, which we will come to shortly.

(The ‘g2g′2’ notation utilised in the following is roughly analogous to the gp,g′p notation

for the p and p-prime parts of an element of a group, a notational mechanism that is

reasonably common in group theory. Here g2 represents the ‘involution part’, that is the

collection of 2-cycles in the disjoint cycle form of g and g′2 represents everything else.)
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Lemma 5.1.9. Let g∈ Sn and let g = g2g′2 where g2 has order 2, g2 and g′2 have disjoint

support and supp(g′2) = supp(g′2
2). Then there are h2,h′2,k2,k′2 ∈ Sn such that, where

l2 = g2gh2
2 and l′2 = g′2g′2

h′2 , we have that:

1. supp(h2),supp(k2)⊆ supp(g2); supp(h′2)⊆ supp(g′2); supp(k′2)∩ supp(g2) = ∅;

2. deg(l2lk2
2 ) = 4bdeg(g2)/4c;

3. deg(l′2l′2
k′2) = min

(
4
⌊

n−deg(g2)
4

⌋
,4χ(g′2)

)
; and

4. l2lk2
2 and l′2l′2

k′2 are involutions.

Thus, where h = h2h′2, k = k2k′2 and l = l2l′2, llk = (ggh)(ggh)k is an involution with

deg(llk) = 4
⌊

deg(g2)
4

⌋
+min

(
4
⌊

n−deg(g2)
4

⌋
,4χ(g′2)

)
.

Proof. Apply Lemma 5.1.8 to g2 to obtain h2 and then to g2gh2
2 to obtain k2 such that

deg(l2) = 4bdeg(g2)/4c. (The importance of this step is to maximise the degree of the

resulting permutation t by preventing all but possibly one of the 2-cycles from being

cancelled when taking the product of the conjugates of g.)

Now apply Lemma 5.1.6 to g′2 to obtain h′2 such that l′2 has order 3 and deg(l′2) = 3t

where t is maximal subject to 4t ≤ n−deg(g2). This last condition allows us to choose

an M-finite subset X of [0,n− 1] of the appropriate size which is disjoint from both

supp(g2) and supp(l′2).

Then apply Lemma 5.1.7, with the X chosen as in the previous paragraph, to l′2 to

get k′2. One may then check that taking h = h2h′2 and k = k2k′2 suffices to prove the

result. That

deg(llk) = 4
⌊

deg(g2)
4

⌋
+min

(
4
⌊

n−deg(g2)
4

⌋
,4χ(g′2)

)
follows from the choice of t in the application of Lemma 5.1.7.
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It should be noted that any permutation resulting from the above lemma is neces-

sarily an even permutation. Now we come to the proof of the main theorem of this

section.

Proof of Theorem 5.1.3. That A[I]
n CSn and S[I]

n CSn is due to the fact that acting upon a

set does not change its cardinality. Thus if deg(g) ∈ I then deg(gh) ∈ I for all h ∈ H.

It is clear that every normal subgroup listed does indeed occur: for consider a k-

cycle of the appropriate size. Thus it remains to show that there can be no other normal

subgroups.

Let H CSn be nontrivial and let g ∈ H. By Lemma 5.1.9 there is an even involution

t ∈ H. Furthermore, if deg(g) is nonstandard then we necessarily have

4bdeg(g)/5c−2≤ deg(t).

The bound in the above inequality is attained precisely in case g has cycle type 5a ·2 for

some a ∈M.

By conjugating and multiplying t and applying Lemma 5.1.8 as necessary we see

that H contains all even involutions u ∈ Sn subject to deg(u) ∈ deg(g) ·N. Now any

even permutation in Sn is a product of at worst 3 even involutions: every element and

hence every even element is a product of two involutions and if these two involutions

happen to be odd then we write

g = (g1(a,b))((a,b)(c,d))((c,d)g2)

where either a,b,c,d 6∈ supp(g1)∪ supp(g2) or else (a,b) is a cycle in g1 and (c,d) is a

cycle in g2. Thus

A[deg(g)·N]
n ⊆ H
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and if H contains any odd permutations then also

S[deg(g)·N]
n ⊆ H.

But then

H =
⋃

h∈H

S[deg(h)·N]
n

or else

H =
⋃

h∈H

A[deg(h)·N]
n

according to whether H contains odd permutations or not and this suffices to complete

the proof.

5.2 Normal subgroups of nonstandard alternating groups

The purpose of this section is to show how the arguments of the previous section may

be modified to produce an analogous result for nonstandard alternating groups. The

analogous theorem is as follows.

Theorem 5.2.1. Let n ∈M be nonstandard and let I be a cut of [0,n−1] closed under

addition. Then A[I]
n CAn and these comprise all the normal subgroups of An. Fur-

thermore, distinct cuts closed under addition yield distinct normal subgroups and all of

these possible subgroups do occur.

The main difficulty in adapting the lemmas is dealing with the parity of the various

conjugating elements. As we shall see, these can be fixed reasonably systematically.

Lemma 5.2.2. Let g ∈ An be a nonidentity element such that supp(g) = supp(g2) and

let t ≤ χ(g). Then there is h ∈ An and ε ∈ {0,1} such that supp(h)⊆ supp(g), ggh has

order 3 and supp(ggh) = 3(t− ε).
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Proof. Recall the proof of Lemma 5.1.6. We construct involutions h′ and h′′ such that

h = h′h′′ has the required property. If the resulting h is odd, simply remove one of the

2-cycles from h′′ and this will suffice.

The following lemmas are modifications of the ones in the previous section. The

inequality in the first of what follows has been replaced with 4deg(g)≤ 3n−2 so as to

ensure that we have two ‘spare’ points a and b so as to be able to use the transposition

(a,b) to fix any parity problems.

Lemma 5.2.3. Let g ∈ An have order 3 and suppose that 4deg(g)/3 ≤ n− 2. Let X

be any M-finite subset of [0,n− 1] disjoint from supp(g) such that 3 |X | = deg(g) and

let Y be any 2-element subset of [0,n− 1] disjoint from supp(g)∪ X. Then there is

h ∈An such that ggh has order 2, deg(ggh) = 4deg(g)/3, supp(ggh)⊆ supp(g)∪X and

supp(h)⊆ supp(g)∪X ∪Y .

Proof. Apply Lemma 5.1.7 to get some possibly odd h′ ∈ Sn which, apart from being

possibly odd, has the required property. If h′ is even we take h = h′ and we are done. If

not, let the two elements of Y be c and d and take h = h′(c,d). The reader may check

that this suffices.

Lemma 5.2.4. Let g ∈ An have order 2. Then for every t ≤ bdeg(g)/8c there is h ∈ An

with supp(h)⊆ supp(g) such that ggh is of order 2 with deg(g) = 8t.

Proof. Again use the fact that ((a,b)(c,d))2 = 1n whereas

(a,b)(c,d)((a,b)(c,d))(b,c) = (a,d)(b,c).

This time, however, we must preserve 2-cycles four at a time to ensure that h is even.

The main lemma of the previous section then becomes the following.
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Lemma 5.2.5. Let g ∈ An and let g = g2g′2 where g2 has order 2 and g′2 has no 2-

cycles. Then there are permutations h2,h′2,k2,k′2 ∈ An such that, where l2 = g2gh2
2 and

l′2 = g′2g′2
h′2 , we have:

1. supp(h2),supp(k2)⊆ supp(g2); supp(h′2),⊆ supp(g′2); and supp(k′2)∩supp(g2) =

∅;

2. deg(l2l2k2) = 8bdeg(g2)/8c;

3. deg(l′2l′2
k′2) = min

(
8
⌊

n−deg(g2)
8

⌋
,8
⌊

χ(g′2)
2

⌋)
; and

4. l2lk2
2 and l′2l′2

k′2 are involutions with disjoint support.

Thus, where h = h2h′2, k = k2k′2 and l = l2l′2, llk = (ggh)(ggh)k is an involution with

deg(llk) = 8
⌊

deg(g2)
8

⌋
+min

(
8
⌊

n−deg(g2)
8

⌋
,8
⌊

χ(g′2)
2

⌋)
.

Proof. Apply Lemma 5.2.4 to g2 to get h2 and again to g2gh2
2 to get k2. Apply Lemma

5.2.2 to g′2 within Sn(Ωn r supp(g2)) to obtain h′2, choosing t maximal subject to 12t ≤

3n−deg(g2)−2. Then apply Lemma 5.2.3 to the resulting g′2g′2
h′2 to obtain k′2. One can

then check that this suffices.

Now we come to the proof of the theorem. As the reader will observe, the required

modifications to the proof of the theorem of the previous section are minimal.

Proof of Theorem 5.2.1. We know that A[I]
n CAn and that all these normal subgroups are

distinct. To see that there are no others, let H be a nontrivial normal subgroup of An.

By Lemma 5.2.5 there is an even involution t ∈ H such that

4
⌊

deg(g)
5

⌋
−2≤ deg(t).
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Importantly, deg(t) ·N = deg(g) ·N. By conjugating, multiplying and applying Lemma

5.2.4 as necessary we see that H contains all even involutions u ∈ An subject only to

deg(u) ∈ deg(g) ·N. But every element of An is a product of at most 3 even involutions,

whence

A[deg(h)·N]
n ≤ H

and thus we may write

H =
⋃

h∈H

A[deg(h)·N]
n

which suffices to complete the proof.

5.3 Supplements of normal subgroups of nonstandard

symmetric groups

Supplements of bounded subgroups of infinite symmetric groups Sym(κ) were studied

by Macpherson and Neumann[30] as part of a study of the subgroup structure of infinite

symmetric groups. In the paper just cited they claim a proof of the following result

(though as Bigelow[7] points out, Macpherson and Neumann’s proof makes certain

tacit assumptions regarding cardinals.) We denote by G∆ the permutation group on ∆

induced by G{∆} and for g ∈ G{∆} we denote by g∆ the permutation induced on ∆ by

g. For the purposes of this section let Ω be a set of cardinality κ where κ ≥ℵ0 and let

S = Sym(Ω). We adopt the notation for bounded subgroups introduced earlier in this

chapter, adapting it to full symmetric groups by writing Sym[λ ](X) for the group of all

permutations on X with support of cardinality less than λ and S[λ ] when X = Ω.
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Theorem 5.3.1 (Theorem 1.2 of Macpherson and Neumann[30]). Suppose that ℵ0 ≤

λ ≤ κ and that G is a subgroup of S. Then S[λ ]G = S if, and only if there exists ∆ ≤ Ω

such that card∆ < λ and

G(Ωr∆) = Sym(Ω r ∆).

Their proof relies on infinite combinatorics and does not readily adapt to the non-

standard case and it is the purpose of this section to see what may be salvaged for non-

standard symmetric groups. As such, we shall break down the proof into steps, looking

at adapting each step in turn. The proof relies on the following two lemmas.

Lemma 5.3.2 (Theorem 1.1 of Macpherson and Neumann[30]). If (H j) j∈J is a chain of

proper subgroups of S such that ⋃
j∈J

H j = S

then card(J) > κ.

Lemma 5.3.3 (Lemma 2.1 of the same paper). If Γ1,Γ2 ⊆ Ω and card(Γ1 ∩ Γ2) =

min{card(Γ1),card(Γ2)} then

Sym(Γ1∪Γ2) = 〈Sym(Γ1),Sym(Γ2)〉 .

Whether or not (and how) Sn can be expressed as a union of a chain of proper

subgroups is a good question. In any case, one should not hold out hope of an analogous

result.

The ‘if’ part of the proof of Theorem 5.3.1 is the easy direction and is covered by the

first paragraph of Macpherson and Neumann’s proof. The proof of the hard direction

is given in steps and we shall dissect these steps later. (The steps are taken from the

version of the proof given in lecture notes on infinite permutation groups taken by my

supervisor from lectures given by P. M. Neumann.) We denote B = S[λ ].
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Proof of Theorem 5.3.1 in easy direction. Suppose that ∆ exists as in the assertion. Let

x ∈ S. Since card(∆) < λ there exists g1 ∈ B such that g1 � ∆ = x � ∆. Then xg−1
1 fixes

∆ pointwise. By assumption there exists g2 ∈ G{∆} such that

g2 � (Ω r ∆) = xg−1
1 � (Ω r ∆).

Then xg−1
1 g−1

2 fixes Ω r ∆ pointwise so g3 = xg−1
1 g−1

2 ∈ B and

x = g3g2g1 ∈ BGB = BG

since B is a normal subgroup of S.

Note that the final step of the above proof is where we require that B is closed under

composition and hence that B is a subgroup. We do not require the assumption that G

is actually a subgroup and this should be borne in mind: it may be possible to prove

a related result for some class of subsets in place of G and then deduce facts about

subgroups subsequently.

Definition 5.3.4. An infinite subset X of Y is a moiety iff both X and Y r X have the

same cardinality as Y itself.

Proof in hard direction. Suppose that S = BG.

Step 1. There exists a moiety Σ0 on Ω such that

GΣ0 = Sym(Σ0).

Proof of step 1. Let (Σ j) j∈J be a family of κ pairwise disjoint moieties of Ω. Sup-

pose, seeking a contradiction, that

GΣ j 6= Sym(Σ j) for all j.
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Choose z j ∈ Sym(Σ j) not induced by G. Let z = ∏ j z j. Since S = BG there exists x ∈ B

and y ∈G such that z = xy. But deg(x) < λ and so Σ j ⊆ fix(x) for all but at most deg(x)

members of J. Choose j0 ∈ J such that Σ j0 ⊆ fix(x). Then

zΣ j0 = yΣ j0 = z j0 ∈ GΣ j0

contradicting the fact that z j0 is not induced by G.

Comments on proof of step 1. The proof above does not actually require that Ω (or

some subset of it) is partitioned into as many as n = card(Ω) moieties, only that there

are more than deg(x) < λ moieties.

It is important that we can both choose z j ∈ Sym(Σ j) not induced by G and that

we can then multiply the z j together. In any adaptation to the nonstandard case we

would require that the sequence of z j be M-finite if any progress is to be made. This

places certain conditions upon G further to BG = S in order for this proof strategy to

proceed. Note that we do not require that G is actually a group here, so one could

potentially replace G by some M-finite superset, or even some M-finite subset provided

that S = BG.

Step 2. There exists a moiety Σ1 of Ω and a subgroup H ≤ G{Σ1} such that

HΣ1 = Sym(Σ1)

and

H(ΩrΣ1) ≤ Sym[λ ](Ω r Σ1).

Proof of step 2. Let Σ0 be as in step 1. Let t ∈ Sym(Σ0)≤ S with t having cycle type

2κ on Σ0. Since S = BG there exists x ∈ B and y ∈ G such that t = xy. Let

Γ0 = supp(x)∪ (supp(x) · t).
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Then card(Γ0)≤ 2deg(x) < κ and Γ0t = Γ0 since t is an involution.

Define Σ1 = Σ0 r Γ0. Then Σ1 is a moiety and Σ1 ⊆ Σ0 so

GΣ1 = Sym(Σ1)

since GΣ0 = Sym(Σ0). Also x fixes Σ1 pointwise, since supp(x) is disjoint from Σ1 by

the choice of Σ1. Thus y ∈ G{Σ1} and

yΣ1 = xΣ1yΣ1 = tΣ1.

So yΣ1 is of cycle type 2κ (in Sym(Σ1)) and so the conjugates of yΣ1 under Sym(Σ1)

generate Sym(Σ1).

Let

H = 〈y〉G{Σ1} .

Then HΣ1 = Sym(Σ1) since GΣ1
{Σ1} = Sym(Σ1) and the involutions of Sym(Σ1) of cycle

type 2κ generate Sym(Σ1). But H(ΩrΣ1) is generated by conjugates of y(ΩrΣ1) and so

H(ΩrΣ1) ≤ Sym[λ ](Ω r Σ1)

as required.

Comments on the proof of step 2. The cycle type of t needs to be 2κ and not that of

any smaller involution to ensure that its conjugates generate the full symmetric group

on Σ1 rather than some bounded subgroup; the correct cycle type for the nonstandard

case is unclear. The definition of Γ0 in terms of the support of x ensures that Γ0 is small

with respect to the bound on the degree of elements of B.

The fact that conjugates of yΣ1 , being involutions of maximal degree, generate the

full symmetric on Σ1 is crucial in the proof. In an adaption to the nonstandard setting

we must bear in mind the implications of this, namely that there are such generators for
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the group analogous to Sym(Σ1). This is equivalent to the condition that there is a ∈M

such that µ(Σ1) = a ·N, that is, the inner measure of Σ1 is closed under nothing stronger

than addition. This requirement is trivially satisfied by the requiring that Σ1 is M-finite.

Finally note that the fact that

H(ΩrΣ1) ≤ Sym[λ ](Ω r Σ1)

follows because

deg(y(ΩrΣ1))≤ card(Γ0)+deg(x)≤ 3deg(x) < λ .

If the boundedness condition is replaced by deg(x) ∈ I as would happen in the nonstan-

dard setting, the closure of I under addition, necessary to make S[I]
n into a subgroup, is

sufficient to ensure that

deg(y(ΩrΣ1)) ∈ I.

Thus far, if we assume that B = S[I]
n and that G is an M-finite set such that BG = Sn

then these first two steps may be readily adapted. It is at this stage, however, that things

will get a little more difficult so far as adapting the current proof is concerned. The main

result of Macpherson and Neumann’s paper is used at this step and, as such, it represents

the point that the nature of infinite combinatorics draws away from the behaviour in the

nonstandard case. Let us proceed.

Step 3. There exists a moiety Σ1 of Ω and a subgroup K ≤ G{Σ1} such that

KΣ1 = Sym(Σ1)

and

card((Ω r Σ1)∩ supp(K)) < λ .
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Proof of step 3. Let Σ1 be as in step 2. Consider subsets Γ of Ω r Σ1 such that there

exists K ≤ G{Σ1}, with K depending on Γ, with

KΣ1 = Sym(Σ1)

supp(K)≤ Σ1∪Γ

KΓ ≤ Sym[λ ](Γ).

Note that Γ = Ω r Σ1 is such a subset, so this class of subsets is not vacuous and hence

we may choose Γ of least cardinality µ . Suppose, seeking a contradiction, that µ ≥ λ .

Identify µ with the appropriate initial ordinal and express Γ as a union

⋃
ξ<µ

Γξ

where

cardΓξ < µ

and

Γξ1
⊆ Γξ2

iff ξ1 ≤ ξ2.

Define Kξ =
{

f ∈ K : supp( f )⊆ Σ1∪Γξ

}
. Then (Kξ )ξ<µ is a chain of subgroups of

K. Also we have K =
⋃

ξ<µ Kξ . Therefore KΣ1 =
⋃

ξ<µ(KΣ1
ξ

). By Lemma 5.3.2 there

exists η < µ such that

KΣ1
η = Sym(Σ1).

Then Γη contradicts the minimality of µ . Hence µ < λ and so

card ((Ω r Σ1)∩ supp(K)) = card
(
supp(KΓ)

)
≤ µ < λ

as required.
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Comments on the proof of step 3. Here we find the first major obstacle to an adap-

tation of the proof. In the original proof, as we see, this step sets up the application

of Lemma 5.3.2, a lemma which does not carry through to the nonstandard setting in

any reasonably straightforward way. Thus, if this were the only major sticking point,

we would need to supply a fresh approach to proving a corresponding result in the non-

standard setting. The precise nature of the adapted step would be determined by the

requirements of subsequent steps and, as we shall shortly see, these latter steps raise

problems with the overall strategy so far as a result for nonstandard symmetric groups

is concerned.

Step 4. If Σ′ is any moiety then there exists Σ such that Σ has the property described

in step 3, Σ⊆ Σ′ and card(Σ′r Σ) < λ .

Proof of step 4. Choose z ∈ S such that Σ1z = Σ′. Then z = xy for suitable x ∈ B

and y ∈ G. If Σ = Σ′r supp(x) then Σ = Σ′′y for some Σ′′ ⊆ Σ1 and card(Σ1 rΣ′′) < λ .

Then y−1K{Σ′′}y is a suitable ‘K’ for Σ.

Comments on the proof of step 4 This step relies on the fact that there are permuta-

tions in S moving any moiety onto any other. As such, moieties provide a useful class

of subsets of Ω to which there is no analogous class of subsets of a nonstandard set Ωn,

for consider the necessary conditions for two nonstandard sets X ,Y ⊆ Ωn to have an

M-finite bijection between them.

Proof of theorem. Let Σ′1 and Σ′2 be moieties of Ω such that Σ′1∩Σ′2 is still a moiety

and card(Ω r (Σ′1∪Σ′2)) < λ .

Choose

Σ
′′
1 ⊆ Σ

′
1

Σ
′′
2 ⊆ Σ

′
2

65



such that

card(Σ′i r Σ
′′
i ) < λ for i ∈ {1,2}

and there are groups K1 and K2 as in step 3.

Choose

Σ1 = Σ
′
1 r (supp(K2)∩ (Ω r Σ2))

Σ2 = Σ
′
2 r (supp(K1)∩ (Ω r Σ1))

so that, by taking Li = (Ki)(Σ′irΣi) for i ∈ {1,2}, there are subgroups L1 and L2 such that

L1 fixes Σ2 r Σ1 pointwise

L2 fixes Σ1 r Σ2 pointwise

LΣ1
1 =Sym(Σ1)

LΣ2
2 =Sym(Σ2).

By Lemma 5.3.3 we have that

〈L1,L2〉 � (Σ1∪Σ2) = Sym(Σ1∪Σ2)

and

card(Ω r (Σ1∪Σ2)) < λ

as required.

Comments on the proof of the theorem. This final step is where, in the context of a

desired result for nonstandard symmetric groups, the strategy employed here falls apart.

If X and Y are any subsets of Ωn such that |Ωn r (X ∪Y )| ∈ I for an initial segment

I < n closed under addition then at least one of X and Y is too large: step 1 requires the

partition of Ω into a large number of moieties whereas here we require that the union
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of just two moieties covers most of Ω and the application of step 4 requires that there

are bijections between these subsets of apparently disparate sizes (as indeed there are

in the infinite case). As such this incompatibility between the various steps indicates

that a different strategy is probably required for an analogous result in the nonstandard

setting.

We shall see in due course what results in the nonstandard case can be lifted from

the proof above. We introduce a little more notation first.

Definition 5.3.5. Let Ω be an M-finite set with n = |Ω|. By SΩ we mean the set of

all M-finite bijections from Ω to itself. Let ∆ be some subset of Ω. By SΩ(∆) we

mean the subset of SΩ that fixes Ω r ∆ pointwise. The notation S[I]
Ω

(∆) is defined to be

{g ∈ SΩ(∆) : deg(g) ∈ I}.

In what follows, I will be an initial segment of M closed under addition, n will be

some arbitrary nonstandard element of M and Ω will be some arbitrary subset of M with

|Ω|= n.

Proposition 5.3.6. Let S = SΩ, G ⊆ SΩ and B = S[I]
Ω

. Suppose that there exists an

M-finite subset ∆⊆Ω with |∆| ∈ I and

G(Ωr∆) = SΩ(Ω r ∆).

Then S = BG.

This is a straightforward adaptation of the proof from the infinite case, but we give

it nonetheless—it illustrates the first thing we look to in adapting a proof to the nonstan-

dard case: replacing cardinal bounds by suitably closed initial segments.
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Proof. Let x ∈ S. Then since |∆| ∈ I there exists g1 ∈ B such that g1 � ∆ = x � ∆. Then

xg−1
1 fixes ∆ pointwise. By assumption there exists g2 ∈ G∆ such that

g2 � (Ω r ∆) = xg−1
1 � (Ω r ∆).

Then xg−1
1 g−1

2 fixes Ω r ∆ pointwise, so is an element of B. Let g3 = xg−1
1 g−1

2 and

observe that

x = g3g2g1 ∈ BGB = BBG = BG

since B is a normal subgroup of S.

Now we have the adaptation of step 1. The reader should observe that it is in the

statement of the proposition that most of the adaptation takes place, things then running

through much like the earlier proof.

Proposition 5.3.7. Let S, B and G be as in the previous proposition. Suppose that

S = BG and that G is M-finite. Let a be any element of M such that ab < n for some

b ∈M r I. Then there is an M-finite subset Σ0 ⊆Ω such that |Σ0|= a and

GΣ0 = SΩ(Σ0).

Proof. Partition Ω, M-finitely, into b a-subsets and one other subset. Call these a-

subsets Σ j with J = [0,b−1] as the index set. Suppose, seeking a contradiction, that

GΣ j 6= SΩ(Σ j)

for all j ∈ J. Choose z j ∈ SΩ(Σ j) not induced by G for each i such that the sequence

(z j) j∈J is M-finite. This is possible since the partition is M-finite, as is G. Let

z = ∏
j∈J

z j
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which is necessarily an element of S since the sequence of multiplicands is M-finite.

(We only need that the sequence is M-finite to take this product.) Since S = BG there is

x ∈ B and y ∈G with z = xy. But deg(x) ∈ I whence not all Σ j have elements moved by

x since there are at least b 6∈ I subsets Σ j in the partition. Let Σ j0 be fixed pointwise by

x. Then y ∈ G induces z j0 on Σ j0 , the desired contradiction.

Note that, in the above proof, we do not necessarily have to partition the entirety of

Ω, merely a subset of cardinality ab. Requiring that G is M-finite is necessary in the

above for the sequence to be M-finite. This alone prevents a result such as Theorem

5.3.1 from being proved using this strategy, but we shall continue a little further.

In the adaptation of step 2 we do not need the M-finiteness assumption, so we just

require that G be any subset of S subject to S = BG.

In what follows we wish to show that if the Σ0 found by the above proposition is

large with respect to I then we can refine it to another subset Σ1 ⊆ Ω that is also large

with respect to I and has another useful property.

Proposition 5.3.8. Let S and B be as in the previous proposition and suppose that G

is some subset of S such that S = BG and there is an M-finite subset Σ0 of Ω with

|Σ0| 6∈ I and GΣ0 = SΩ(Σ0). Then there is an M-finite subset Σ1 of Ω with |Σ1| 6∈ I and

a subgroup H ⊆ G{Σ1} such that HΣ1 = SΩ(Σ1) and HΩrΣ1 ≤ S[I]
Ω

(Ω r Σ1).

Proof. Let t ∈ SΩ(Σ0) be an involution of maximal degree. (Such t exists because

SΩ(Σ0) is M-finite.) Since S = BG there are x ∈ B and y ∈ G such that t = xy. Let

Γ0 = supp(x)∪ (supp(x) · t). Then Γ0 is M-finite and |Γ0| ∈ I since deg(x) ∈ I, I is

closed under addition and Γ0t = Γ0 since t is an involution. Define

Σ1 = Σ0 r Γ0.
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Then Σ1 is also M-finite and Σ1 ⊆ Σ0. Also |Σ1| 6∈ I since I is closed under addition

(otherwise if |Σ1| ∈ I then |Σ0|= |Σ1|+ |Γ0| ∈ I.) Furthermore, since

GΣ0 = SΩ(Σ0)

it follows that

GΣ1 = SΩ(Σ1).

Now x fixes Σ1 pointwise, so y ∈ G{Σ1} and

yΣ1 = tΣ1.

So y acts as an involution with |Σ1− supp(y)| ≤ deg(x), since t was an involution of

maximal degree acting on Σ0. Since deg(x) ∈ I and I is closed under addition, the

conjugates of yΣ1 in SΩ(Σ1) still generate SΩ(Σ1) (for observe that |Σ1| is contained in

the smallest initial segment of M containing deg(yΣ1) and closed under addition—the

issue here is that we need to ensure that deg(yΣ1) isn’t too small.) Let

H = 〈y〉G{Σ1} .

Then

HΣ1 = SΩ(Σ1)

and since deg(yΩrΣ1) ≤ 3deg(x) ∈ I we see that HΩrΣ1 is generated by conjugates of

elements of degree contained in I, whence

HΩrΣ1 ≤ S[I]
Ω

(Ω r Σ1).

Note that the H obtained above need not be M-finite, and most probably will not

be. At issue here is the fact that H is generated externally rather than internally, so is
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unlikely to be M-finite. The final proposition that can be lifted from the earlier proof is

an adaptation of step 4.

Proposition 5.3.9. Suppose that S and B are as before and that G is any subset of S

such that S = BG and that there is an M-finite subset Σ1 ⊆Ω such that |Σ1| ∈M r I and

that there is a (M-finite) subset/subgroup K1 of G{Σ1} such that

KΣ1
1 = SΩ(Σ1)

and

ν ((Ω r Σ1)∩ supp(K1)) ∈ I.

Suppose that Σ′ is any M-finite subset of Ω such that |Σ′| ≤ |Σ1| and |Σ1| − |Σ′| ∈ I.

Then there exists a subset Σ of Σ′ such that there is a (M-finite) subset/subgroup K of

G{Σ1} such that

KΣ = SΩ(Σ)

and

ν ((Ω r Σ)∩ supp(K)) ∈ I.

Proof. Since |Σ′| ≤ |Σ1| we can take z ∈ SΩ such that Σ′ ⊆ Σ1z. Then since S = BG we

can find x ∈ B and y ∈ G such that z = xy. Let

Σ = Σ
′r supp(x).

Then

Σ = Σ
′′y for some Σ

′′ ⊆ Σ1

and ∣∣Σ1 r Σ
′′∣∣ ∈ I
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since deg(x) ∈ I. Then K = y−1K1{Σ′′}y suffices, for clearly we have

((K1)Σ′′)
Σ′′ = SΩ(Σ′′)

whence (
y−1(K1)Σ′′y

)Σ
= SΩ(Σ)

and

ν ((Ω r Σ)∩ supp(K))≤ ν (Ω r Σ1)∩ supp(K1))+ |Σ1 r Σ| ∈ I

as required.

As such, we have now reached the limits of what can be readily adapted from the

proof reproduced earlier.

5.4 The nature of Sn as an extension of its bounded sub-

groups

This section raises a question that is, in part, motivated by the result looked at in the pre-

vious section. As such there are two interrelated questions concerning normal subgroups

of nonstandard symmetric groups that we wish to consider here. As in the previous sec-

tion, let B = S[I]
n and S = Sn.

1. Is S a split extension of B? That is to say, does there exist G≤ S such that BG = S

and B∩S = 1?

2. If BG = S, what can be said about G?

As a beginning observation, it seems unlikely that Sn is actually a split extension of B

because of the number of involutions necessarily present in G. To see this suppose that
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B∩G = 1 and let t ∈ S be some involution with deg(t) 6∈ I. We can write t = xy where

x ∈ B and y ∈ G. Now

y2 = x−1tx−1t = x−1x′t2 = x−1x′

for some x′ ∈ B since B is a normal subgroup. Thus y2 ∈ B∩G and so y is an involution.

But deg(t) 6∈ I, and so deg(y) 6∈ I. Furthermore, yt−1 = x−1 ∈ B so that y has the same

action as t almost everywhere. We see immediately that G must contain a large number

of involutions. Bearing in mind that every element of S is a product of two involutions

it seems likely that a nonidentity element of B will turn up in G.

Recently, Kaye[2] has shown that if BG = S and B∩G = 1 then G cannot be a

monotone limit (a limit of a definable increasing or decreasing sequence of subsets of

M.) This result precludes the possiblity of G being M-finite.
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Chapter 6

Normal subgroups of some other

nonstandard finite simple groups

The previous chapter covered the normal subgroup structure of nonstandard symmetric

and alternating groups. We saw that the initial segment structure of a model M of Peano

arithmetic underlies the external normal subgroup structure of nonstandard symmetric

and alternating groups constructed within M in a clearly explicable way. Of particular

note was the structure of nonstandard alternating groups, the normal subgroups of which

were linearly ordered by inclusion.

These results inspired a search for similar patterns among other nonstandard groups

and our search began with nonstandard analogues of other finite simple groups. Af-

ter elucidating the structure of nonstandard cyclic groups of prime order we proceed to

look at the structure of nonstandard projective special linear groups and nonstandard

projective symplectic groups. The linear algebra literature enables us to give some use-

ful results for nonstandard special linear and projective linear groups and we conclude

this chapter with a brief note on the case of nonstandard projective symplectic groups.

74



Recall that, in terms of matrix groups, the special linear group of dimension n over

a field K is the set of all n× n matrices over K of determinant 1. The space V = Kn

may be equipped with a symplectic form (,) : V 2 → K, which is a bilinear alternating

form, making V into a symplectic space. Recall that this space necessarily has even

dimension, so in context of symplectic spaces we write 2n rather than n. The symplectic

group Sp2n(K) is the subgroup of GL2n(K), or equivalently of SL2n(K), that preserves

this form. The reader should be aware that the two parameters n and K determine these

groups up to isomorphism.

For more details about special linear groups, the reader may refer to O’Meara[31],

for example, and for coverage of the symplectic groups, O’Meara’s excellent book[32]

will more than suffice.

For the reader unacquainted with the importance of these groups, we offer a brief

explanation. The Classification of finite simple groups states that every finite simple

group is one of the following:

1. a cyclic group of prime order;

2. an alternating group of degree ≥ 5;

3. a classical group PSLn(K), PSp2n(K), PSUn(K) or PΩ
ε
n(K);

4. an exceptional twisted group of Lie type; or

5. a sporadic simple group, of which there are 26.

The reader may refer to Solomon[39] for an overview of the result. Now, of the above:

(1) is a straightforward case, the cyclic groups of nonstandard prime order being infinite

dimensional rational vector spaces (2) has been dealt with by the authors; for actually
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finite dimension, the groups in (3) are simple; the groups in (4) are all simple, always

having finite dimension; and one can reasonably assume, as we do, that no nonstandard

sporadic groups exist. Thus, after the nonstandard cyclic groups of prime order, we are

left with the classical groups of nonstandard dimension. The main thrust of this chapter

is to begin work on this latter class of nonstandard groups.

6.1 Nonstandard cyclic groups of prime order

The internally simple nonstandard cyclic groups are amongst the easiest to classify

structurally. As this brief section notes, externally they are simply rational vector spaces.

Proposition 6.1.1. Let p be a nonstandard prime. Then Cp has the structure of a vector

space over Q of dimension card(<p).

Proof. For any n ∈ N we have (p,n) = 1. Thus by the well known result of Euclid

there are x and y in M with either xp− yn = 1 or else yn− xp = 1. We assume that

xp− yn = 1, the other case being treated in a virtually identical way. In this case we

have yn = xp−1 and hence n(rp− y)≡ 1 (mod p) for the r such that 0≤ rp− y≤ p.

Then n has a multiplicative inverse mod p and it follows that Cp is a divisible abelian

group. Divisibility ensures that Cp admits a scalar multiplication by elements of Q and

thus Cp has the structure of a rational vector space.

Now we need to show that the dimension of such a group cannot be finite. Without

loss identify Cp with the initial segment of M with top element p− 1. Suppose that

{x1,x2, . . . ,xk} is a finite set of generators. Then every element of Cp is of the form

λ1x1 +λ2x2 + · · ·+λkxk and thus for every nonstandard l (since the coefficients must be
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standard rationals) we have

M � ∀y<p ∃a1,b1, . . . ,ak,bk<l y =
a1

b1
x1 +

a2

b2
x2 + · · ·+ ak

bk
xk

and by underspill there is l ∈ N such that

M � ∀y<p ∃a1,b1, . . . ,ak,bk<l y =
a1

b1
x1 +

a2

b2
x2 + · · ·+ ak

bk
xk

but there are only finitely many ai,bi < l and hence only finitely many linear combi-

nations possible given the bound on the numerators and denominators, which is the

required contradiction.

Finally, observe that for any X ⊆ Cp with ℵ0 ≤ λ = card(X) we have

λ ≤ card(spanQX)≤ λ ·ℵ0 = λ .

Thus cardX = card(spanQX) and so dimQ(Cp) = card(Cp) = card(<p).

It should be observed that we used the fact that (p,n) = 1 for all n ∈ N in the above

proof, and not the fact that p is a nonstandard prime. Thus we can immediately gener-

alise the previous result to the following, utilising essentially the same proof.

Proposition 6.1.2. Let q be an element of M with no standard prime divisors. Then,

externally, Cq has the structure of a vector space over Q of dimension card<q.

6.2 Normal subgroups of nonstandard projective spe-

cial linear groups

The normal subgroups of An were precisely those of bounded support. We shall show

in this section that analogous normal subgroups of PSLn and SLn exist. Indeed such

normal subgroups must arise by considering SLn as a group of permutations on Kn.
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We assume we have fixed a method of coding M-finite fields and vector spaces,

essentially considering vector spaces as Kn with standard bases. There will be various

assertions that things can be stated in the language of PA, for which we shall only give

occasional hints as to how the actual formulae and sentences in question are formed. In

practice these depend on the precise way in which we interpret groups, fields and vector

spaces.

For the remainder of this section, fix a possibly nonstandard prime power q ∈ M.

We will mention explicitly if any other conditions are required to be placed upon q. Let

n ∈ M be nonstandard, let K be the M-finite field of order q and let V be an M-finite

vector space of dimension n over K. Denote by K× the multiplicative group of non-zero

elements of K.

Let GL(V ), PSL(V ) and SL(V ) denote the general linear group, projective special

linear group and special linear group respectively, of dimension n over K. Identify

these with the matrix groups GLn(K), PSLn(K) and SLn(K) and again fix some coding

apparatus to make everything work (i.e. so that the domains, composition and inversion

functions are all M-finite.) Since the field is fixed and only the dimension will need to

vary here we abbreviate these to GLn, PSLn and SLn respectively.

A transvection is an element of GLn that is as close as possible to being the identity.

Definition 6.2.1. A transvection is an element of GLn that is conjugate to

B1,2(1) =



1 1 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1


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An elementary transvection (with respect to the standard basis) is an element of GLn of

the form

B1,2(λ ) =



1 λ 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1


where λ ∈ K×.

It is well known that SLn is generated by transvections (see e.g. Rotman[35].) The

proof there involves nothing more than Gaussian elimination, and can be proved by in-

duction on n. In fact, for g∈ SLn, g is a product of dim{g(x)− x : x ∈V} transvections

(see Hahn and O’Meara[16], 2.1.15 for this.) Thus we see that

M � “SLn is generated by transvections”

but it is not the case that (externally), SLn is generated by transvections. To see this

observe that

M � “the product of 2 transvections fixes

a subspace of codimension ≤ 2”

and by an obvious induction we see that

M � “the product of n transvections fixes

a subspace of codimension ≤ n”

so the product of an actually finite number of transvections fixes a subspace of actually

finite codimension. Furthermore, by considering the natural embedding of finite dimen-

sional special linear groups in SLn and its conjugates, every element of SLn that fixes a
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subspace of finite codimension is expressible as a finite product of transvections. It is

easy to see that if g∈ SLn fixes a subspace of codimension m, then so does hgh−1 for ev-

ery h ∈ SLn. Thus we have an example of a proper nontrivial normal subgroup, namely

the set of elements of SLn expressible as an actually finite product of transvections.

Following the obvious generalisation of ‘finite codimension’ to ‘small codimension’ we

see the following.

Proposition 6.2.2. Let I ⊆e n be closed under addition and define

SLn
(I) =

{
g ∈ SLn : g fixes a subspace of Kn

of codimension m ∈ I
}

.

Then SL(I)
n CSLn.

Proof. If g ∈ SLn fixes X pointwise then hgh−1 fixes hX pointwise. Thus g ∈ SL(I)
n if,

and only if, hgh−1 ∈ SL(I)
n for all h ∈ SLn and so we have closure under conjugation.

Now let g,h ∈ SL(I)
n and observe that h−1 has the same fixed space as h and thus it

suffices to check that gh ∈ SL(I)
n . But

dim(fix(gh))≥ dim(fix(g)∩fix(h))

≥ dim(fix(g))+dim(fix(h))−dim(fix(g)+fix(h))

≥ n− (codim(fix(g))+ codim(fix(h)))

(where fix(·) denotes the fixed space.) Thus

codim(fix(gh)) = n−dim(fix(gh))

≤ codim(fix(g))+ codim(fix(h)) ∈ I

so gh ∈ SL(I)
n as required.
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We see, then, that we have a chain,

1CSLn
(N) C · · ·CSLn

(I) C · · ·CSLn
(n/N) CSLn,

of normal subgroups of SLn where I represents an arbitrary initial segment of n closed

under addition and, as defined in section 2.3, n/N is the greatest initial segment of [0,n]

closed under addition. Factoring by the centre, SZn, of SLn we obtain a similar chain of

normal subgroups of PSLn.

Definition 6.2.3. We denote the map from subgroups and elements of SLn to the corre-

sponding elements of PSLn by P and, for an arbitrary initial segment I of M containing

n, we define

PSL(I)
n = P(SLn

(I)).

It is conceivable, for example when |K|− 1 divides n, that these are all the normal

subgroups of PSLn, but this is generally not the case. The motivation here is the result of

Gardener[15] that for a countably infinite dimensional symplectic space V the following

is a composition series for Aut(V ):

1CFCECAut(V ), (6.2.1)

where F is the subgroup of elements possessing a fixed space of finite codimension and

E is the subgroup of all elements possessing an eigenspace of finite codimension. As

with the nonstandard symmetric and alternating groups from earlier, we find normal

subgroups of nonstandard special linear groups by generalising finite codimension to

small codimension, small being meant in the sense that the codimension is contained in

some fixed initial segment I of M.
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Definition 6.2.4. Let I be an arbitrary initial segment of n and let K′ ≤ K×. We define

SL(I,K′)
n =

{
g ∈ SLn :g has an eigenspace Eg

of codimension mg ∈ I

and eigenvalue λg ∈ K′
}

.

If K′ is generated by a single element α we write SL(I,α)
n for SL(I,〈α〉)

n

Lemma 6.2.5. Suppose that I ⊆e [0,n] is closed under addition and K′ ≤ K×. Then

SL(I,K′)
n CSLn.

Proof. Suppose that g ∈ SL(I,K′)
n and h ∈ SLn. Then hEg is the required eigenspace for

hgh−1, so SL(I,K′)
n is closed under conjugation in SLn.

To see that SL(I,K′)
n is also closed under composition take any g,h ∈ SL(I,K′)

n . Then

λgλh is an eigenvalue for gh with Eg∩Eh contained in its eigenspace. But

dim(Eg∩Eh) = dim(Eg)+dim(Eh)−dim(Eg +Eh)

≥ n− (codim(Eg)− codim(Eh)) ,

so codim(Eg∩Eh) ∈ I as needed.

Since closure under inverses is trivial to show, our proof is complete.

Definition 6.2.6. Where g ∈ SLn has an eigenvalue λg with eigenspace Eg of codimen-

sion mg ∈ n/N we call λg the large eigenvalue and Eg the large eigenspace of g.

We leave it to the reader to observe that an element of SLn can have at most one

large eigenvalue.

Now, given distinct initial segments I, I′ ⊆e n closed under addition it is easy enough

to see that we get distinct normal subgroups of SL(I,K′)
n . It is similarly easy to see
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that distinct subgroups of K× will likewise give us distinct normal subgroups. But

what happens when we factor everything by SZn to get to the PSLn case that we were

originally interested in? We adapt the notation from earlier, recalling that P is defined

in Definition 6.2.3 to be the projection map.

Definition 6.2.7. Let I ⊆e n be an arbitrary initial segment and let K′ ≤ K×. We define

PSL(I,K′)
n = P(SLn

(I,K′)).

Exactly what happens when we take quotients depends upon the interaction of n with

the characteristic of K, as one might imagine. It is possible that every normal subgroup

of PSLn of this form is already of the form PSL(I)
n for some initial segment I ⊆e n. More

precisely, we have

PSL(I,KZ)
n = PSL(I)

n (6.2.2)

where KZ = {α ∈ K× : αIn ∈ SZn} and, more generally,

PSL(I,K′)
n = PSL(I,K′′)

n whenever K′KZ = K′′KZ. (6.2.3)

To see that equation 6.2.2 holds take any g ∈ SL(I,K′)
n and let g = αg1 where g1 ∈ SL(I)

n .

We leave it to the reader to write out explicit matrix expressions. But since P(SL(I)
n ) =

P(SL(I)
n SZn) we get that P(g) ∈ PSL(I)

n and equation 6.2.2 follows.

Now, suppose that K′KZ = K′′KZ and take any g ∈ SL(I,K′)
n . Let g = αg1, where

g1 ∈ SL(I)
n , and let β ∈ K′′ and γ1,γ2 ∈ KZ such that αγ1 = βγ2. Then

g = αg1 = βγ2γ
−1
1 = βg2

where g2 ∈ SL(I)
n . Then PSL(I,K′)

n ⊆ PSL(I,K′′)
n and a similar argument gives the reverse

inclusion so that equation 6.2.3 holds also.
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Of particular interest is the case where the normal subgroups of PSLn are linearly

ordered. Combining this with the assumption that there are no other families of normal

subgroups we have the following summary of the situation. The proof is straightfor-

ward, and is left to the reader.

Proposition 6.2.8. The following are equivalent:

1. the normal subgroups of PSLn of the form PSL(I,K′)
n are linearly ordered;

2. KZ = K×;

3. |K|−1 divides n.

The question of whether these are the only normal subgroups is partially answered

in the next section, though it is opportune to make the following conjecture.

Conjecture 6.2.9. Let n ∈M � PA and let K be an M-finite field. Suppose that H is a

proper nontrivial normal subgroup of PSLn. Then there is a subgroup K′ ≤ K× and an

initial segment I of n such that H = PSL(I,K′)
n .

6.3 Normal subgroup structure of certain nonstandard

projective special linear groups

In models elementarily extending the standard model we can show that the list of sub-

groups of SLn and PSLn obtained in the previous section is complete. We proceed to

do this in the current section, leaving open the question of how this hypothesis may be

weakened.
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A good notion for this task is that of a cyclic block in a matrix, taken from the

linear algebra literature. Introductory material on cyclic subspaces and vectors may be

found in Hoffman and Kunze[19], chapter 7, though our terminology and notation more

closely follows that of Lev[28].

For the purposes of this section, n will denote some nonstandard element of M and

K will denote some (standard or nonstandard) M-finite field.

Definition 6.3.1. An n×n matrix A over a field K is cyclic if there is x ∈ Kn such that

the set {
x,Ax, . . . ,An−1x

}
is linearly independent. We call A 1-cyclic if it is similar to a block diagonal matrix

diag(A1,A2, . . . ,Ar)

where each Ai is cyclic and at most one Ai is 1×1. We say that A is strictly 1-cyclic if

none of the Ai are 1×1. The reader should be aware that a cyclic matrix is 1-cyclic and

any 2×2 or larger cyclic matrix is strictly 1-cyclic.

The following are well known and again the reader is referred to Hoffman and Kunze

for the details.

Lemma 6.3.2. Let A be an n×n matrix. Then the following are equivalent:

1. A is cyclic;

2. the characteristic polynomial of A coincides with the minimum polynomial of A;

3. the Jordan normal form of A, taken over the algebraic closure of K, contains one

Jordan block per eigenvalue.
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Definition 6.3.3. Let T be a linear transformation on a vector space V of dimension

n. For v ∈ V the T -cyclic subspace generated by v, denoted Z(T ;v) is the subspace

span
{

T k(v) : k ≥ 0
}

. The T -annihilator of v is the (unique) monic generator for the

ideal of F [x] of polynomials f such that f (T )[v] = 0.

Theorem 6.3.4 (Rational decomposition theorem). Let T be a linear transformation on

a vector space V of dimension n. Then there are vectors v1, . . . ,vk ∈ V with respective

T -annihilators p1, . . . , pk such that:

1. V = Z(T ;v1)⊕Z(T ;v2)⊕·· ·⊕Z(T ;vk);

2. for each 1≤ i≤ k, pi+1 divides pi.

Furthermore, k and the pi are uniquely determined by these requirements.

In matrix terms this theorem states that every invertible matrix A is similar over K

to a matrix in block diagonal form

A1

A2

. . .

Ak


where each Ai is cyclic1. We restrict our attention to models of PA in which the above

theorem holds for groups of nonstandard dimension. Note that if any Ai in the above is

1× 1 then similarity coincides with SLn-conjugacy. By rearranging the blocks we see

the following.

1Actually, as the reader will observe, it states slightly more than this.

86



Lemma 6.3.5. Let A ∈ GLn(K). Then A is similar to a matrix of the form αIn−l

A′


where A′ is a strictly 1-cyclic l× l matrix.

Definition 6.3.6. We denote by `(A) the greatest l ∈M such that A is similar to a matrix

of the form above and call this the cyclic rank of A.

Most of the work in classifying the normal subgroups of PSLn is done by the fol-

lowing theorem of Lev. Here, as in Lev’s paper[28], C 4 refers to the set of all products

of four elements of C .

Theorem 6.3.7 (Lev). Let n≥ 2, q≥ 4 and let C be a 1-cyclic SLn-conjugacy class of

GLn. Denote

A =
{

A ∈ GLn rZ(GLn) : detA = (detC )4} .

Then A ⊆ C 4. In particular, if C ⊆ SLn then SLn rSZn ⊆ C 4.

What is important here is the uniformity with which the elements of SLn may be

expressed as products of conjugates of 1-cyclic elements of SLn. It is this result which

makes 1-cyclic matrices so useful in the current context. The proofs of the above result

are long, complicated and spread over multiple papers and this author has not verified

all of the claims. The interested reader may try to work out what extension of PA, if

any, is needed to prove the above results. We can however check that the statement of

the above theorem can be stated in the language of arithmetic, given suitable apparatus

for coding and defining the underlying algebraic notions.

We now proceed to show how to determine that there are no normal subgroups other

than those of the previous section, given that Lev’s result holds within a model M of PA

87



(and the models for which this is the case must include those that elementarily extend

the standard model by the discussion of the previous paragraph.)

Lemma 6.3.8. Suppose that |K| ≥ 4 and H CSLn . Let A ∈ H be a matrix of the formαIn−l

A′


where A′ is 1-cyclic and α ∈ K×. Then for every B′ ∈ SLl we haveIn−l

B′

 ∈ H.

Proof. Let C denote the conjugacy class of A and take any B′ ∈ SLl . Let A1,A2,A3,A4 ∈

C such that B′A′1A′2A′3A′4 is nonscalar. Now, by applying Theorem 6.3.7 to the 1-cyclic

block A′ and using the fact that det(B′A′1A′2A′3A′4) = det(A′)4, it follows thatα4In−l

B′A′1A′2A′3A′4

 ∈ C 4 ⊆ H.

But H is a normal subgroup soα4In−l

B′A′1A′2A′3A′4


αIn−l

A′4


−1

· · ·

αIn−l

A′1


−1

=

In−l

B′

 ∈ H

as required.
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Lemma 6.3.9. Suppose that |K| ≥ 4 and H CSLn . Let A ∈ H be a matrix of the formαIn−l

A′


where A′ is strictly 1-cyclic and α ∈ K×. Then the following holds.

1. If l > n/N then H = SLn .

2. If l ∈ n/N then for all m ∈ l ·N and all B′ ∈ SLm we have thatIn−m

B′

 ∈ H.

Proof. We prove only (1) since (2) follows by similar reasoning. We begin by showing

that if l ≥
⌊n

2

⌋
then H = SLn . Let k = n− l and observe that by the previous lemma we

may assume that α = 1. Furthermore, by the same lemma, a rearrangement of rows and

columns and the fact that k ≤ l, it follows that for any B′ ∈ SLk
B′

Il−k

Ik

=

B′

Il

 ∈ H.

Let B′ be cyclic and observe thatB′

A′

=

B′

Il


Ik

A′

 ∈ H

and that this matrix is 1-cyclic, and strictly 1-cyclic except in case k = 1. In this case

we are done by the normality of H and Theorem 6.3.7.

Suppose now that l <
⌊n

2

⌋
but l > n/N. Then
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
In−2l

A′

Il


In−l

A′

=


In−2l

A′

A′

 ∈ H

and A′

A′


is a strictly 1-cyclic matrix since A′ is. Repeating this process until l >

⌊n
2

⌋
we finish in

the case of the previous argument and hence we are done here also.

Lemma 6.3.10. Suppose that |K| ≥ 4. Let H CSLn contain a matrix A of the formαIn−l

A′


where A′ is strictly 1-cyclic and l ∈ n/N. Let K′ = 〈α〉 and I = l ·N. Then SL(I,K′)

n ≤H.

Proof. It follows from the second case of the previous lemma and the normality of H

that SL(I,1)
n ≤ H. Now take any 0 6= r ∈ Z and any matrix B ∈ SLn of the formαrIn−k

B′

 .

In a similar fashion to the proof of the previous lemma we may replace A by some

product of conjugates of A so as to assume without loss that k ≤ l. Then BA−r is of the

form 
In−l Il−k

B′

A′−r


so is contained in H. Thus B = (BA−r)Ar ∈ H and the proof is complete.
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The theorem is then straightforward from the above lemmas and the fact that any ma-

trix that is not strictly 1-cyclic is SLn-conjugate to a matrix of the form diag(αIn−l,A′)

where A′ is strictly 1-cyclic. We state the theorem only for the case where M elementar-

ily extends the standard model, leaving the more general case for the interested reader

to investigate.

Theorem 6.3.11. Let M be a nonstandard model of PA with domain M, elementarily

extending the standard model. Let n ∈M be nonstandard and let K be an M-finite field

with |K| ≥ 4. Suppose that H CPSLn(K) is a proper nontrivial normal subgroup. Then

there is I ⊆e n closed under addition and K′ ≤ K× such that H = PSL(I,K′)
n (K).

Proof. Let H CPSLn(K) and lift this to a normal subgroup H SZn of SLn . By lemma

6.3.10 we have

H SZn =
⋃

A∈H SZn

SL(`(A)·N,αA)
n

and it suffices now to observe that

⋃
A∈H SZn

SL(`(A)·N,αA)
n = SL(I,K′)

n

where I =
⋃

A∈H SZn
`(A) ·N and K′ = 〈αA : A ∈ H SZn〉 where `(A) is the cyclic rank

of A from Definition 6.3.6.

6.4 Nonstandard projective symplectic groups

Less is known about the cases of the nonstandard analogues of other classical groups.

Here we give some comments on the symplectic case.

We begin with a brief discussion of the countably infinite case covered by Gardener

in his paper on infinite dimensional classical groups[15]. Gardener’s main result is that
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for a symplectic space V of countably infinite dimension, Aut(V )/E is simple, where

E is the subgroup of Aut(V ) consisting of those elements that possess an eigenspace

of finite codimension. Gardener uses this to deduce the composition series for Aut(V ),

namely

1CFCECAut(V )

where F is the subgroup of Aut(V ) of elements possessing a fixed space of finite codi-

mension and E is the subgroup of elements possessing an eigenspace of finite codimen-

sion.

That there are no more normal subgroups (like those in the previous sections where

there were a nontrivial restricted choice of eigenvalues) and why this does not depend

upon the field as the special linear case does, follows from the following result which is

standard in the area of symplectic groups.

Lemma 6.4.1. Let g ∈ Sp2n(K) and suppose that λ ∈ K is an eigenvalue for g of multi-

plicity m. Then λ−1 is also an eigenvalue for g of multiplicity m.

The composition series result follows from this since if λ is the eigenvalue for g with

an eigenspace of finite codimension, then λ−1 is an eigenvalue for g with an eigenspace

of finite codimension. It then follows that these eigenspaces have nontrivial intersection

whence λv = λ−1v for some nonzero vector v so that λ = λ−1 and hence λ = 1 or else

λ =−1.

A similar argument runs through in the nonstandard case, at which point factoring

through by the centre of the symplectic group yields the result that the normal sub-

groups of PSp2n(K) corresponding to subgroups of Sp2n(K) of the form Sp2n(K)(I,K
′)

are necessarily linearly ordered. We thus have the following conjecture (recalling that

the center of Sp2n(K) is {1,−1}.)
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Conjecture 6.4.2. Let M be a nonstandard model of PA and let n be a nonstandard

element of M. If H CPSp2n(K) then there is I ⊆e M closed under addition such that

H = P(Sp2n(K)(I,−1)).

The result in the earlier material allowing for us to answer the question in the case

of the nonstandard special linear groups in models elementarily extending the standard

model was a uniformity result stating effectively that any ‘smaller’ element of SLn could

be constructed as a product of four conjugates of any given ‘larger’ element, where

‘larger’ and ‘smaller’ were defined formally in terms of the cyclic rank, which is the

dimension of the nontrivial part of the expression of the matrix of the group element in

block diagonal form (by nontrivial here we mean the part of the block diagonal matrix

that differs from a scalar matrix.) Essentially the result, due to Lev for special linear

groups, took the form: for all groups G of a family G tthere is k ∈ N and a partial

ordering � of each G ∈ G such that whenever g and h are elements of G with g � h

there is a sequence of up to k conjugates of h whose product is g. Unfortunately there

is little in the literature that helps towards the production of such a result for symplectic

groups, and it is unlikely that the normal subgroup structure conjecture above can be

proved without one.
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Chapter 7

Nonstandard measure of nonstandard

finite groups

7.1 Measure of Sn and its bounded subgroups

One may verify, as we shall do shortly, by internalising the argument for finite sym-

metric groups, that the order of Sn in the sense of M is n!. The order of the bounded

subgroups of Sn, in the sense of the measures defined in chapter 3 is the subject of the

subsequent proposition. It should be clear to the reader how to adapt these arguments to

the alternating groups as well as a few others.

Recall that, as defined in chapter 4, Sn contains precisely the minimal codes for

sequences of length n whose elements are pairwise distinct and less than n. Thus we

need to count these (minimal codes for) sequences.

Let MinCode(x) have the intended meaning ‘x is a minimal code for the sequence

it codes’ and let Distinct(x) have the intended meaning ‘the elements coded by x are
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pairwise distinct.’ Define

Perm(x,n) = |x|= n ∧ ∀y<|x|([x]y < n) ∧ Distinct(x) ∧ MinCode(x).

This can be taken to be the formula referred to in chapter 4: it is true precisely if x is a

minimal code for a permutation on the first n elements of M. The reader should identify

x ∈ Sn with the more formal M � Perm(x,n), but the former notation makes things a

little clearer.

Proposition 7.1.1. Let n ∈M. Then |Sn|= n!.

Proof. Let φ(x) be the formula |Sx| = x! and observe that M � φ(0) ∧ φ(1) trivially.

Suppose that M � φ(k) for some k∈M and take any x∈M such that M � Perm(x,k+1).

Then there is precisely one x′ such that M � Perm(x′,k) and (thought of as a sequence) x′

is obtained from x by deleting the single instance of k. Let ψ(x) be the Skolem function

yielding x′ given x as its sole parameter. That is,

ψ(x) = x′⇔def∀y<
∣∣x′∣∣((

(∃z≤y [x]z = k)∧
(
[x]y+1 = [x′]y

))
∨(

(∀z≤y [x]z 6= k)∧
(
[x]y = [x′]y

)))
.

Then there are k + 1 elements z ∈ M with M � Perm(z,k + 1) ∧ x′ = ψ(z), one for

each of the places where we can insert k. But then since ψ is a function it follows

that |{x ∈M : M � Perm(x,k +1)}| = |Sk+1| = (k + 1) |Sk| and the result follows by

induction.
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Proposition 7.1.2. Let n ∈M be nonstandard and let I ⊆e n be closed under addition.

Then

µ(S[I]
n ) = ν(S[I]

n ) = sup
{⌊

n!
(n− k)!

⌋
: k ∈ I

}
= inf

{⌊
n!

(n− k)!

⌋
: k < n,k 6∈ I

}
Proof. By a standard inclusion-exclusion argument we know that the number of r-

permutations having no fixed points is

r!
r

∑
k=0

(−1)k

k!
.

It is evident from this that the number of r-permutations with support of cardinality r is(
n
r

)
r!

r

∑
k=0

(−1)k

k!

=
n!

(n− r)!

r

∑
k=0

(−1)k

k!
.

These results may be readily internalised in PA by the use of suitable inductive argu-

ments, but we do not do so here. Thus there are

r

∑
j=0

n!
(n− j)!

j

∑
k=0

(−1)k

k!

n-permutations having support of cardinality at most r.

Observe that for j ≥ 2 we have

1
3
≤

j

∑
k=0

(−1)k

k!
≤ 1 (7.1.1)

and by explicit calculation we have

0

∑
k=0

(−1)k

k!
= 1 and

1

∑
k=0

(−1)k

k!
= 0
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. so we see that, for r ≥ 2,
r

∑
j=0

⌊
n!

3(n− j)!

⌋

≤
r

∑
j=0

(
n!

(n− j)!

j

∑
k=0

(−1)k

k!

)

≤
r

∑
j=0

n!
(n− j)!

.

The reader should be aware that the cases r = 0 and r = 1 may be handled by explicit

calculation.

Now, take any nonzero k ∈ I. Then 2k ∈ I by closure under addition. Thus there are

at least
2k

∑
j=0

n!
3(n− j)!

distinct permutations in S[I]
n .

We then have
2k

∑
j=0

n!
3(n− j)!

≥ 3
k

∑
j=0

n!
3(n− j)!

≥ n!
(n− k)!

so that there are at least
n!

(n− k)!

distinct permutations in S[I]
n (the last inequality being produced by taking a single term

of the sum.) Hence

µ(S[I]
n )⊇ sup

{
n!

(n− k)!
: k ∈ I

}
.

We now deal with the outer measure. Take any k ∈ nr I. Then
⌊ k

2

⌋
∈ nr I. Observe

that

ν(S[I]
n )⊆

bk/2c

∑
j=0

n!
(n− j)!
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since permutations in S[I]
n have support of cardinality less than

⌊ k
2

⌋
. Also

bk/2c

∑
j=0

n!
(n− j)!

≤
⌊

k
2

⌋
n!

(n−
⌊ k

2

⌋
)!

≤ n!
(n− k)!

since ⌊
k
2

⌋
≤

(n−
⌊ k

2

⌋
)!

(n− k)!
.

Thus we have

ν(S[I]
n )⊆ inf

{
n!

(n− k)!
: k ∈ n r I

}
which completes the proof since straightforward overspill and underspill arguments

show that

sup
{

n!
(n− k)!

: k ∈ I
}

= inf
{

n!
(n− k)!

: k ∈ n r I
}

.

7.2 Internal indices: Measure of transversals of exter-

nal subgroups

When a subgroup of Sn, say, is not M-finite, it is not possible to define the index in

the usual way, since this will not evaluate to an element of M. Thus we look to using

our measure construction from chapter 3 for this purpose. The definition we take here

is essentially that of chapter 3 with the exception that we are restricting the M-finite

subsets to those contained by a transversal and the M-finite supersets to those containing

a transversal.
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Definition 7.2.1. We define the measures of the index of a subgroup H within a group

G by the following.

µ(G : H) = sup
{
|x| : x ∈M, [[x]]⊆ G,∀g,h∈[[x]]

(
g−1h ∈ H→ g = h

)}
ν(G : H) = inf

{
|x| : x ∈M, [[x]]⊆ G,∀g∈G∃h∈[[x]]

(
g−1h ∈ H

)}
We leave open the question as to whether this is equivalent to measuring a transver-

sal. If there exists a measurable transversal then it follows easily that these two measures

above agree, though the more general questions such as whether measurability in terms

of the above definition implies the existence of a measurable transversal are left open.

The reader should also see that these measures of index agree with the expected values

on any M-finite quotient. For example µ(Sn : An) = ν(Sn : An) = 2. (Note that an

M-finite quotient always gives rise to an M-finite and hence measurable transversal.)

In what follows we often need to talk about an M-finite set contained within a pos-

sibly external transversal and an M-finite superset of such a transversal. We define two

pieces of terminology for these.

Definition 7.2.2. We call a subset of a transversal a subtransversal and a supserset of a

transversal a supertransversal, prepending the adjective M-finite as applicable.

This allows us to measure the indices of one bounded subgroup within another.

Again, the arguments applied here to the symmetric group case are easily adapted to the

alternating group case.
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Proposition 7.2.3. The index of any bounded subgroup of Sn within Sn is measurable

and

µ(Sn : S[I]
n ) = ν(Sn : S[I]

n ) = sup{(n− k)! : k < n,k 6∈ I}

= inf{(n− k)! : k ∈ I}

for any initial segment I of M closed under addition.

Proof. Standard underspill and overspill arguments show that

sup{(n− k)! : k ∈ <n r I}= inf{(n− k)! : k ∈ I}

so we need only check that

µ(Sn : S[I]
n )⊇ sup{(n− k)! : k ∈ <n r I}

and

ν(Sn : S[I]
n )⊆ sup{(n− k)! : k ∈ <n r I} .

We begin with µ . Take any k ∈ <n r I. We need to show that there exists an M-

finite subtransversal of S[I]
n in Sn of cardinality at least (n− k)!. To do this we begin

by showing that any M-finite subset, say X, of cardinality less than (n− k)! can be

extended with an element x such that for all y ∈ X we have deg(x−1y) ≥
⌊ k

2

⌋
: this is

then used inductively to obtain the required M-finite subtransversal.

Let φ(l,k,n) be the following formula capturing the required meaning from the

above paragraph:

l < (n− k)!→∀c((|c| ≤ l ∧ [[c]]⊆ Sn)

∃x∈Sn ∀y∈[[c]]
(
deg(x−1y)≥

⌊ k
2

⌋))
.
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We wish to prove that (M,k,n) � ∀l φ(l,k,n). To do this fix n and k and suppose that

l < (n− k)!. Take any M-finite subset [[c]] of Sn of cardinality l and observe that for

g ∈ [[c]] there are at most
bk/2c

∑
j=0

n!
(n− j)!

<
n!

(n− k)!

elements h of Sn with deg(h−1g) ≤
⌊ k

2

⌋
, this being an application of the right hand

inequality of 7.1.1. Thus there are at most

|c| n!
(n− k)!

elements h of Sn with deg(h−1g) ≤
⌊ k

2

⌋
for some g ∈ [[c]]. Since [[c]] ≤ l < (n− k)! it

follows that

|c| n!
(n− k)!

< n!

so these elements do not exhaust Sn. Thus there is x ∈ Sn satisfying the existential

subformula of φ .

Now, starting with the empty set and applying φ at the inductive step we see that we

can construct a subtransversal of S[I]
n in Sn of cardinality (n− k)! as is required to prove

the containment involving µ .

For the ν containment take any k ∈ I. We need to show that that there is no transver-

sal containing an M-finite subset of cardinality (n− k)!. (This being sufficient to show

that ν(Sn : S[I]
n ) < (n− k)!.) We can achieve this by showing that given any subset X of

Sn of cardinality (n− k)! there are x and y in X such that deg(x−1y) ∈ I. Let l 6∈ I (for

otherwise we are done). Then, by the left hand inequality of 7.1.1, for each x ∈ X there

are at least
b l−1

2 c
∑
r=0

n!
3(n− r)!
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elements y with deg(x−1y) < l/2. (Intuitively these are the elements closest to x with

respect to a permutation metric.) Then there are at least

(n− k)!
b l−1

2 c
∑
r=0

n!
3(n− r)!

≥(n− k)!
(

n!
3(n− k)!

+
n!

3(n− k−1)!
+

n!
3(n− k−2)!

)
>(n− k)!

n!
(n− k)!

= n!

elements in X , using the observation that we necessarily have l > 2(k + 2) in this case

since k ∈ I < l. This is the required contradiction and we conclude that no transversal

of S[I]
n within Sn can contain a subset of cardinality (n−k)!, which suffices to prove that

ν(Sn : S[I]
n )⊆ sup{(n− k)! : k ∈ <n r I}

and this completes the proof.

We conclude this section with a conjecture of a generalisation of the above result

and a more general question.

Conjecture 7.2.4. The index of any bounded subgroup of Sn within another such bounded

subgroup is measurable and

µ(S[J]
n : S[I]

n ) = ν(S[J]
n : S[I]

n ) = sup{(l− k)! : k < l, l ∈ J,k 6∈ I}

= inf{(n− k)! : k ∈ I, l > J, l < n}

for any initial segments I ⊆ J of M closed under addition.

Question 7.2.5. Let H < K ≤ Sn be measurable. Then is it the case that

µ(K : H) = ν(K : H) = sup{bx/yc : |H|< y < x < |K|}

= inf{dx/ye : y < |H| and |K|< x}?
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7.3 Non measurable groups

The purpose of this section is a brief discussion of non-measurable groups. We begin

with a construction of a non-measurable group. This construction has much in common

with those of chapter 3.

Proposition 7.3.1. Let n ∈M be nonstandard. There exists a non-measurable subgroup

G of Sn.

Proof. Let I ⊆e n be closed under addition. Let (dn)n∈N enumerate the codes of M-

finite sets with N < |dn| < I. Let G0 = 1, the group consisting of just the identity. We

proceed to inductively construct a group generated by 2-cycles with disjoint support.

At stage n we assume that Gn has been constructed. Now, since |dn| < I, there is a

2-cycle (k,k + 1) in Sn with k + 1 ∈ I (which is assured by the previous stages of the

induction) and k > x for any x in the support of Gn. Let Gn+1 = 〈Gn,{(k,k +1)}〉 and

let G =
⋃

n∈N Gn. Then µ(G) = N since every M-finite subset of G is necessarily finite

by the above construction and ν(G) > I, again by the construction above.

Clearly the group constructed above has non-measurable support. This immediately

opens the following question, which time did not permit the author to address.

Question 7.3.2. Is there a subgroup G of Sn, for some nonstandard n, such that G is

non-measurable but supp(G) is measurable? Is it further possible to ensure that G has

M-finite support, for example Ωn?

The author’s suspicions are that the answer to both questions is yes, though there is

no evidence of substance in either direction. A related question concerns transversals.

Question 7.3.3. Let H be a measurable subgroup of a measurable group G. Then is it

necessary that any transversal of H in G be measurable?
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Here this author suspects that there exist non-measurable transversals, especially in

the case where the index of H in G is nonstandard, for one has much choice of coset

representatives and there should be sufficient for a diagonalisation construction to go

through.
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Chapter 8

Conclusion

The purpose of this thesis has been to look at the intuition of size given by initial seg-

ments of a model of Peano arithmetic both in its own right and in the context of non-

standard finite groups and at the normal subgroup structure of some nonstandard groups,

giving some illustration of what happens when the notions of measure and finite groups

are brought together in nonstandard models. As such the work has mainly been of an

exploratory nature and there are many questions and loose ends remaining. Many ap-

proaches to problems raised in this thesis drew blanks and did not result in material

worthy of inclusion. Thus this thesis is mainly a compendium of what did work and

ideas of where future progress may be made. Now we bring proceedings to a close.

8.1 A brief recapitulation of the thesis

Having dealt with preliminary material in chapters 1 and 2, we began our investigation

in earnest with a look at initial segments as a measure of size in their own right, consid-

ering measures of non-M-finite sets via initial segments constructed as limits of sizes
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of included or including M-finite sets.

The constructions are looked upon as analogues to the Lebesgue construction on

the real line and a few similarities emerged. For bounded sets these measure construc-

tions appear to work reasonably well, the only known counterexamples where the two

measures µ and ν disagree being the pathological diagonalisation constructions of sec-

tion 3.2. The non-Lebesgue measurable sets require the axiom of choice to construct

and it appears likely that something similar can be said of the non-M-measurable sets

constructed, though such questions go beyond the scope of this thesis: choice is near

universally assumed in model theory and questions relating to its absence would require

certain foundational investigations before analysis of the implications for the measure

construction could be attempted.

For unbounded sets, in particular the cofinal ω-sequences, we looked briefly at the

idea of temporarily end-extending the model to allow bounds to be adjoined whilst

the set in question is gauged by sets coded in the end-extension. This allowed for the

outer measure construction to be refined so as to agree with the inner measure in some

cases, especially extensional sets and those close to being extensional. Questions of how

extensional sets and unbounded extended-measurable sets are related, whilst interesting,

appeared to be a difficult proposition, especially in light of the nature of open questions

regarding whether a model contains extensional or elementary extensional ω-sequences

at all.

The measures chapter concluded with a brief look at a possible future direction for

the measures work, namely measuring and approximating non-M-finite functions on

bounded subsets of models of arithmetic, this being related to the measures discussed in

an analogous fashion to the relation between Lebesgue measure and integration (hence
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the proposed integral notation.)

We then began our investigations into nonstandard finite groups by looking at non-

standard permutations on M-finite sets, explaining what they are and proceeding to give

an interesting result that a necessary and sufficient condition for N to be strong in M

is that g ∈ SSymn
n only if τg is coded in the sense of the standard system of M. This

set the scene for our results concerning the normal subgroup structure of nonstandard

symmetric and alternating groups. We gave a classification of the normal subgroup

structure of all nonstandard alternating and symmetric groups, echoing the results of

Baer[4], Schreier and Ulam[36] from the early 20th century regarding infinite symmet-

ric groups. Our proof had a number of similarities to the proof of the result in the infinite

case, again relying on the fact that every permutation is a product of two involutions.

We concluded the chapter on the normal subgroup structure of nonstandard sym-

metric and alternating groups with a look at a result due to Macpherson and Neumann

regarding supplements of normal subgroups of symmetric groups, with a view to pro-

ducing similar results in the nonstandard case. Time did not permit a proper investiga-

tion beyond examining the possibility of a reasonably direct adaptation of the result in

question. This direct adaptation proved, as one would suspect, not to be possible.

The normal subgroup structure results inspired a search for similar results concern-

ing normal subgroups of other nonstandard groups. Our findings were presented in

chapter 6. It was quickly evident that the normal subgroup structure of the nonstan-

dard analogues of other finite simple groups would be important and necessary to look

at first. The cyclic groups of nonstandard prime order presented little difficulty, so the

work then proceeded to look at the nonstandard nonabelian finite simple groups. A

cursory look at the theory of Lie groups as expounded by Carter[10] gave little to aid a
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uniform approach to this problem (as is possible to the simplicity of finite simple groups

of Lie type.) Thus we began with an attempt to classify the normal subgroup structure

of special linear groups. As such this was a difficult task and, whilst much effort was

expended in the search for concrete results, little of substance could be found, though

we did manage to apply a result of Lev in the case that model M elementary extends the

standard model N. The generalisation of this result to arbitrary models and the similar

result for symplectic groups were left as conjectures.

We concluded the material of the thesis with a brief look at an application of the

measures of chapter 3 to properties of groups such as measuring indices of the normal

subgroups of Sn.

8.2 Future Research

With regards to the measures work, there is much that can be done in this new area. The

analogy to Lebesgue integration is one suggestion and there are a plethora of founda-

tional questions that may be asked such as the following.

Question 8.2.1. Is AC necessary to construct a non-M-measurable subset of M?

This question is motivated by the well known situation regarding Lebesgue measure

on the real line. On another front, one is obliged to ask the following.

Question 8.2.2. What properties are necessary for a subset X of M to be M-measurable?

What properties form a sufficient condition for M-measurability?

There are also analogous questions for the notation of measure utilising end exten-

sions.

The work on nonstandard symmetric and alternating groups, and also the prelim-

108



inary work on nonstandard permuations, presents what could be considered the best

starting point for future research. There is much in the literature regarding infinite per-

mutation groups and the natural next step is to investigate the possibility of analogous

results in the nonstandard case, as we have attempted with the results classifying sup-

plements of bounded subgroups of infinite symmetric groups. This area will also give

motivation to questions regarding the differences between finite, nonstandard and infi-

nite combinatorics.

Nonstandard cyclic groups present objects worthy of investigation, in particular one

would like to elucidate the structure of nonstandard cyclic groups whose order is a

nonstandard power of a standard prime.

In addition, the question of how the external normal subgroup structure of an arbi-

trary (composite) M-finite group is related to that of the M-finite composition factors

is possibly worthy of further investigation.

However, the difficulties experienced with the nonstandard classical groups can be

taken to indicate that the possible gains in terms of achievable results may well be

outweighed by the difficulty of obtaining and proving them. Whilst the normal subgroup

structure of nonstandard classical groups presented an interesting question, it appears

that there is little to justify further effort in this area: the results that were obtained in

the course of this thesis relied on results concerning finite groups and added little to

what is already known. Of course the questions themselves are left open and indeed a

different slant upon the research may provide inroads, but this author can see little at

present to merit a sustained assault upon these problems.

On a final, related note, there is the question regarding how these groups are related

to the pseudofinite groups studied by Felgner[13] and Wilson[41], which we phrase as
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follows.

Question 8.2.3. Given a pseudofinite group G, does there exist a model M � PA and an

M-finite group G′ such that G∼= G′?

As such, this question is intended to help place the current work with respect to the

current related literature, as needs to be done with regards the notion of nonstandard

finite groups considered as infinite groups in their own right.
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[36] J. Schreier and S. Ulam. Über die Permutationsgruppe der natürlichen Zahlen-

folge. Studia Math., 4:134–141, 1933.
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