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ABSTRACT 

The application of nanoscience in various scientific fields is introduced in 

Chapter 1 by outlining some of the major drivers of this rapidly evolving field. 

Methods of nanoscale fabrication, utilizing both 'top-down' and 'bottom-up' 

approaches, are also introduced in this chapter. Nanoscale characterization 

techniques that allow the visualization of the 'nanoworld' are introduced in 

Chapter 2. 

 

Chapter 3 is concerned with the modification of Si3N4 substrates with self-

assembled monolayers (SAMs) of 3-aminopropyltrimethoxysilane (APTMS) via a 

vapour deposition method. This investigation was carried out by forming APTMS 

SAMs, from the solution phase, on both SiO2 and Si3N4 substrates and 

comparing them to provide a model with which to compare SAMs formed by a 

novel vapour phase methodology. 

 

Chapter 4 further develops the work from Chapter 3 by chemically modifying 

Si3N4 resonators with APTMS SAMs via vapour deposition. The chemically 

modified resonators were then used for the mass detection of citrate passivated 

Au nanoparticles and the results were compared to AFM and XPS studies of the 

same system but on planar substrates. 

 

Chapter 5 is concerned with the fabrication of a bioarray for the patterned 

immobilization of human spermatozoa cells. Such arrays would allow for the 
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investigation of specific individual sperm cells. This could have a use in the field 

of artificial insemination. 

 

Chapter 6 utilizes citrate passivated Au nanoparticles to prepare composite 

PEO/Au nanoparticle solutions for the formation of sub-micron diameter 

electrospinning. Such fibres are electrospun from solutions of 4 different 

concentrations of PEO and then subsequently characterized by optical 

microscopy, AFM, TEM and DSC.  
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Figure 80. TEM images of fibres electrospun from 5 wt% PEO solutions containing Au                    
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                  in UHQ H2O 
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CHAPTER 1 

Nanotechnology: the appliance of nanoscience 

 

The microcontact printing and DPN sections of Chapter 1 has been published as part of a book chapter 

entitled 'Integrating nanolithography with nanoassembly using soft lithographic methods' in the book 

entitled 'Bottom-up nanofabrication: Supramolecules, Self-Assemblies and Organized Films' (2007) edited 

by K. Ariga and H. S. Nalwa1 and has also been published as part of the review: Diegoli et al Proc. IMechE. 

221 589-629 (2007)2 

 

ABSTRACT: Nanotechnology is the commercialisation of nanoscience, which is the 

study of systems in the sub 100 nm size regime. Nanotechnology is already beginning 

to revolutionise many aspects of our daily lives and this chapter introduces some of the 

main drivers of nanotechnology and some of the approaches which have been 

investigated to achieve this goal. The fabrication of nanoscale structures and devices 

can be achieved using two different approaches, namely the top-down and bottom-up 

methodologies, which will be introduced in this chapter. 

 

   1.1. What is nanotechnology? 

 

 Nanotechnology is the application and commercialisation of knowledge 

gleaned from nanoscientific research, which is the study of systems which have 

at least one dimension in the sub 100 nm regime. Nanoscience is highly 

interdisciplinary and represents the overlap of knowledge from many 
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(bio)scientific and engineering disciplines.  In 1959 Richard Feynman delivered 

his famous speech, entitled 'There's plenty of room at the bottom',3 in which he 

envisaged the entirety of the Encyclopaedia Britannica being written on a pin 

head using atomic manipulation. It is Feynman's speech that is widely regarded 

as providing the impetus and early insights into the possibility of nanoscale 

fabrication. 

 

 The potential importance of nanotechnology is massive and, as predicted 

by Merrill Lynch economist Norman Poire,4 will impact our daily lives to the same 

extent as the motor car or personal computer, a prediction illustrated in Figure 1. 
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Figure 1. The predicted outlook for nanotechnology compared to other major technological  

                 evolutions by Norman Poire (Economist, Merrill Lynch)5  
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   1.2. Driving forces of nanotechnology 

  

 1.2.1. Moore's Law 

 

 The introduction and widespread use of the personal computer has 

revolutionized modern day life. The constant requirements of computers to 

perform ever more complex operations demands computer chips with 

increasingly better performance. To date, the rate of increase of the processing 

power of computer chips has followed 'Moore's Law' which is named after 

Gordon Moore (a chemist) who, in 1965,6 predicted the number of transistors 

present on a computer chip to double every 18 to 24 months. Figure 2 shows 

that the rate of growth of the number of transistors per computer chip has indeed 

followed the trend described by Moore's Law up to the present day. However, in 

order for computer chips to continue to follow Moore's Law, transistors must be 

made smaller and smaller. Therefore, fabrication methodologies must continually 

improve in order to allow the manufacture of increasingly smaller transistors. This 

need for the continuation of Moore's Law is a huge driving force behind the 

development of both nanofabrication techniques and nanostructured materials. 

Currently the smallest transistors have a gate length of 45 nm7 using Intel's       

45 nm logic technology.  
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Figure 2. A graph depicting the number of transistors per computer chip increasing with a trend  

                described by Moore's law (redrawn from8) 

 

 1.2.2. Nanomedicine 

 

 Medical science is another area in which nanotechnology is being 

extensively researched. For example, it is hoped that nanotechnology may 

provide improved diagnostic techniques, such as bioarrays.9 Bioarrays can be 

used for the detection of biological species, such as proteins, which will improve 

the early detection of diseases, such as cancers.10 Drug delivery11-13 is another 

area of medicine that may be revolutionised by nanotechnology. Gene therapy is 

one example of a site specific drug delivery method that is the subject of intense 

research and relies upon nanoparticulate carriers.14, 15 It involves the delivery of 

genetic information to specific cells and transferring genetic information directly 

to the nucleus of cells. Research into the remote guidance of drugs to specific 
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sites in the body includes the use of magnetic fields to control a magnetic 

nanoparticle constituent of the drug delivery device.16, 17  

 

 1.2.3. Nanomaterials 

 

 The frontiers of materials science can be pushed forward by careful 

structural control on the nanoscale in a wide variety of ways. For example, the 

mechanical properties of materials can be tailored by control of atomic 

arrangement on the nanoscale. An example being that the reduction of the grain 

size of a given metal can result in the hardness of a material increasing.18-20 

Similarly, the nanostructuring of materials, for example, by the control of surface 

morphology, can allow the manipulation of, for example, the optical21, 22 or 

wetting23-25 properties of a material.  

  

   1.3. Fabrication on the nanoscale 

 

 Nanoscale fabrication processes can be divided into two distinct 

methodologies, these being 'top-down' and 'bottom-up' approaches. Top-down 

techniques involve the removal of material in order to form nanoscale 

architectures, whilst bottom-up approaches utilizing molecular and nanoscale 

'building blocks' to build up nanostructures. Such nanoscale building blocks 

include particles26, 27 and biological entities, such as DNA28, 29 and proteins.30 
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This section introduces an example of both types of nanoscale approach by 

discussing  

 (i) Microelectromechanical systems (MEMS), and  

 (ii) Self-assembled monolayers (SAMs)  

 

 1.3.1. Top-down approaches 

 

 Top-down approaches, as mentioned above, are nanofabrication methods 

that involve the removal of material in order to form structures and devices. This 

section will introduce the field of microelectromechanical systems (MEMS) and 

two of the top-down fabrication techniques used in this field. 

 

 The field of microelectromechanical systems (MEMS) is concerned with 

the integration of mechanical components, in the micrometre regime, and 

microelectronic components with a view to the fabrication of functional devices 

on both the micron and sub-micron scale.31 The main material used in MEMS is 

monocrystalline Si due to its excellent mechanical and conductive properties32  

and, hence, many fabrication techniques used in the microelectronic industry are 

exploited in the manufacture of MEMS devices.33 The favourable properties of 

monocrystalline Si as a material for MEMS fabrication are that it is flexible with 

good fatigue strength. Thus, it can be used as a material for moving parts and 

can perform such tasks over many cycles without significant degradation, whilst 

its semiconductive properties allows it's use in integrated circuits.34  
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 Much of the research into MEMS devices is directed towards the 

fabrication and integration of micron, and sub micron, scale functional devices35-

38, such as actuators and switches, and sensors39-46, for both chemical and 

physical detection. Figure 3 shows a MEMS clutch system and is an example of 

the complex MEMS devices that have been fabricated. 

 

50µm50µm
 

Figure 3. Example of a MEMS clutch system47 (Scale bar added to 47) 
 
 

 MEMS devices are typically fabricated using 'top-down' processing 

techniques with two methods used to manufacture MEMS devices being 

photolithography and focused ion beam (FIB) milling.  
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  1.3.1.1. Photolithography 

 

 Photolithography, as depicted in Figure 4, is a well-established fabrication 

technique in the microelectronics industry and is also used for the fabrication of 

MEMS devices.48 This process involves the application of a photoresist to the 

substrate (Figure 4a). The photoresist is a radiation-sensitive polymer whose 

solubility changes upon exposure to the light source used in the 

photolithographic process.49 In the presence of a photomask (Figure 4b) the 

resist-covered substrate is irradiated with light (Figure 4c). The resist can 

respond in one of two ways to the incident irradiation: 

 

 (i) Positive tone resist  

 

 In this case the resist becomes more soluble upon photo irradiation, via 

fragmentation, to an organic developer (Figure 4e) and is removed leaving the 

un-irradiated areas of resist on the substrate. Application of a Si etchant then 

etches the exposed Si from where the resist was removed (Figure 4f).  

 

 (ii) Negative tone resist 

 

 In this case the resist becomes less soluble upon photo irradiation, via 

cross linking, to an organic developer (Figure 4g) and is not removed. Instead 
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the un-irradiated areas of resist are removed by the developer and subsequent 

application of a Si etchant removes the exposed Si (Figure 4h).  
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Figure 4. A schematic representation of a photolithography process  
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  1.3.1.2. Focused Ion Beam (FIB) 

 

Another fabrication technique used in MEMS is focused ion beam (FIB). 

The FIB uses a beam of Ga+ ions, which is focused to less than 10 nm in 

diameter, which can be used for precision milling under UHV conditions (Figure 

5a) to create features with lateral resolutions of the order of 10 nm.50  
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Figure 5. The use of a FIB for a) milling and b) metal deposition (figure redrawn from 51) 

 

FIB can also be used for the deposition of metals (Figure 5b) and 

insulators by the injection of organometallic precursor molecules near the 

substrate surface to create features of the order of 10 nm in size.52 The precursor 

molecules adsorb to the substrate and decompose upon exposure to the gallium 

ion beam. The decomposition of the precursor molecules results in the volatile 

fragments of the molecule being removed by the UHV, leaving the desired 
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species, which are the non-volatile fragments, on the surface of the substrate. 

The deposited material is not pure due to the presence of organic contaminants 

that are present as a result of residual carbonaceous material from the precursor 

molecules.53 Ga+ ions from the ion beam are also present in the deposited 

material.53 Examples of species that are deposited using FIB include platinum, 

using (methylcyclopentadientyl)trimethyl platinum as the precursor molecule54, 

and tungsten, the precursor molecule being W(CO)6.55 SiO2 can also be 

deposited by the decomposition of 1,3,5,7-tetramethylcyclotetrasiloxane 

(TMCTS) in the presence of either O2 or H2O.53 

 

 1.3.2. Bottom up approaches 

 

 The bottom-up approach to nanofabrication involves the assembly of 

nanoscale 'building blocks', which include nanoparticles and individual 

molecules, to form nanostructures. Self-assembled monolayers (SAMs) 

represent an example of a bottom-up approach to the chemical functionalization 

of surfaces. This section will discuss the formation of SAMs on both metallic and 

Si surfaces and techniques used to create patterned SAMs will be introduced. 

 

 Self-assembled monolayers (SAMs) are ultra-thin, quasi-crystalline layers 

of surfactant molecules that form when surfactant molecules (Figure 6) 

spontaneously adsorb to the surface of a substrate. The first report in the 

literature for SAMs was by Bigelow et al. in 194656 when it was found that polar 
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organic molecules form monolayers on clean metal surfaces. However, it was not 

until 1983 when Nuzzo et al.57 showed that monolayers of disulfides readily form 

on Au substrates, that research in this area of surface science gathered pace. 

 

 The head group of the surfactant molecules (Figure 6) must be of a 

specific chemical functionality to facilitate binding to the substrate. Such 

substrate, surfactant systems include surfactants with -SH head groups on 

metallic substrates, such as Au,57-67 Ag,59, 61, 68-71 and molecules with silane 

headgroups forming SAMs on SiO2 surfaces.62, 72-84 

Tail group

Backbone

Head group

Tail group

Backbone

Head group  

Figure 6. A cartoon representation of a surfactant molecule 

 

 The tail group of the adsorbed surfactants governs the chemical nature of 

the surface after the SAM is formed as it represents the chemical functionality 

that the surface presents to the surrounding environment. The fact that SAMs 

can be used to alter the chemistry of a surface represents a route to tailor the 

behaviour of surfaces. For example, a hydrophilic surface (e.g. silica) can be 

made to be hydrophobic upon the formation of a SAM that presents a 

hydrophobic surface (e.g. -CH3 groups) to the surrounding environment. The 

backbone of the surfactant molecule can help to promote long range order of the 
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SAM via van der Waals interactions between adjacent surfactant molecules 

within the SAM.85 

 

 As previously mentioned SAMs can be formed from various surfactants on 

a range of substrates with two commonly utilised systems being surfactants with 

S containing head groups on metal substrates and alkyl silanes on hydroxylated 

surfaces. The mechanisms by which SAMs are formed on these different 

substrates are significantly different and therefore, will be discussed separately.  

  

 i) SAMs on metallic substrates 

 

 Surfactants possessing a S-based head group, for example thiol (R-SH) 

and disulfide (R-S-S-R) groups, readily form SAMs on Au57-67, Ag59, 61, 68-71 and 

other metal surfaces.59, 61, 86-93 The driving force of the adsorption of the 

alkanethiols to Au surfaces is the formation of the highly stable (~167 kJ.mol-1 62) 

S-Au bond between the surfactant and the Au substrate. 

 

 The mechanism by which alkanethiolates form SAMs on Au is shown in 

Figure 7. The substrate is immersed in a solution of alkanethiolates which 

weakly physisorb onto the substrate94 (Figure 7a) allowing the S-containing head 

group to chemisorb on the substrate surface forming the Au-S bond (represented 

by the molecules standing perpendicular to the surface in Figure 7b). As more 

alkanethiolate molecules adsorb on the surface, islands of surfactant molecules 
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form as a result of attractive intermolecular van der Waals forces95 (Figure 7b). 

These surfactant islands continue to grow until the substrate surface is covered 

by a layer of surfactants of monomolecular thickness (Figure 7c). In order to 

minimise the free energy of the system, and to maximise intramolecular van der 

Waal forces, the surfactant molecules tilt at an angle which is commonly ~30 ° to 

the surface of the substrate96 (Figure 7d).  

 

 The initial adsorption steps, both physisorption and chemisorption of the 

surfactants to the substrate occur relatively quickly, of the order of minutes.64 

Conversely, the ordering of the chains and reorientation of the chains, in order to 

maximise intermolecular van der Waals forces, can take several hours.97 The 

chemistry of the backbone influences the rate of SAM formation63 which is 

highlighted by the fact that alkanethiols with a long chain alkyl backbone form 

SAMs at a faster rate than those consisting of a shorter alkyl backbone.98 This 

difference in the rate of SAM formation is due to the attractive van der Waals 

forces between adjacent molecules increasing as a function of chain length.97 



 16 

Where:
Tail group

Backbone

S atom

SUBSTRATE
H

H

H H

H H

H H

H

H

H

H

H

H

a) Immersion of substrate in thiol solution

SUBSTRATE
H

H

H H

H H

H H

H

H

b) Islands of chemisorb thiol molecules formed

SUBSTRATE

H

H

H

H

H

H H

c) Substrate covered with monolayer of alkanethiols

SUBSTRATE

H

H

H

H

H

HH

d) Thiol monolayer tilts to maximise intramolecular forces

Where:
Tail group

Backbone

S atom

SUBSTRATE
H

H

H H

H H

H H

H

H

H

H

H

H

SUBSTRATESUBSTRATE
H

H

H H

H H

H H

H

H

H

H

H

H

a) Immersion of substrate in thiol solution

SUBSTRATE
H

H

H H

H H

H H

H

H

SUBSTRATE
H

H

H H

H H

H H

H

H

b) Islands of chemisorb thiol molecules formed

SUBSTRATE

H

H

H

H

H

H H

SUBSTRATE

H

H

H

H

H

H H

c) Substrate covered with monolayer of alkanethiols

SUBSTRATE

H

H

H

H

H

HH

d) Thiol monolayer tilts to maximise intramolecular forces

 

Figure 7. Cartoon representation of the formation of a self-assembled monolayer (SAM) of  

                 alkanethiols on metal substrates showing a) physisorption of surfactants onto a  

                 substrate, b) the formation of islands of chemisorbed surfactants, c) full surface  

                 coverage of substrate by surfactants and d) the tilt of surfactants  
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 ii) SAMs formed on hydroxylated  Si substrates 

 

 SAMs of organosilane derivatives, surfactants possessing -SiX3 

headgroups (where X = Cl or OR), can be formed on SiO2 surfaces62, 72-84 with 

the driving force being the formation of the Si-O covalent bond (~360 kJ.mol-1 99).  

Substrates such as glass and silica can be hydroxylated by wet chemical 

methods, such as immersion in piranha solution100, 101 (7:3 solution of 

concentrated sulphuric acid and hydrogen peroxide) and an RCA solution100 

(1:1:5 solution of ammonium hydroxide, hydrogen peroxide and water), or dry 

methods, such as exposure of the substrate to UV light in the presence of an O3 

plasma.102  

 

 The mechanism of SAM formation from silane derivatives (Figure 8) 

proceeds when the surfactant molecules physisorb to the hydrophilic substrate in 

the presence of a physisorbed water layer103, which is of the order of a few 

molecules thick (Figure 8a). This water layer provides a reaction medium for the 

hydrolysis of the headgroup (Figure 8b) which then covalently cross links to the 

exposed -OH groups on the surface via condensation reactions104, 105 (Figure 

8c). The headgroups of adjacent surfactant molecules can also cross-link, via 

condensation reactions, (Figure 8c) resulting in a highly stable monolayer.105  
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Figure 8. Cartoon representation of the formation of silane SAMs on hydroxylated surfaces         
                (where X = Cl or OR)   
   

 One of the most important issues in producing high quality alkylsilane 

SAMs is the amount of water present in the system. It has been shown that the 

presence of some water is critical for SAM formation with the absence of water 
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resulting in incomplete monolayers.106  However, if there is excess water in the 

system the silane groups of separate surfactant molecules have been shown to 

cross-link in solution, which leads to the formation of polysiloxane particles in 

solution, which then deposit on the surface.107 Other factors such as 

temperature83 and the concentration of the surfactant solution108, 109 have been 

shown to influence the quality of the SAMs. 

 

  1.3.2.1. Patterned SAMs        

   

 Patterned SAMs can be employed as chemically selective templates on a 

substrate to allow further modification of the substrate at specific locations by 

several post-patterning processes (Figure 9). Such post-patterning techniques 

include the selective adsorption of particles,27, 110 or other nanoscale 'building 

blocks' (Figure 9a),111-113 backfilling with a second surfactant, which presents a 

different chemical functionality to that of the original patterned SAM (Figure 9b), 

or by selective etching of the exposed substrate114-116 (Figure 9c).  
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Figure 9. A cartoon depiction of post pattern processing of a chemically-patterned substrate by a) 

                preferential adsorption, b) backfilling and c) preferential etching  
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 This section will introduce the formation of patterned SAMs by i) energetic 

irradiation, ii) soft lithography and iii) mechanical methods. 

 

 i)  Energetic irradiation 

 

 The exposure to energetic irradiation, such as UV irradiation, X-ray 

photons and electron beams, can induce specific chemical reaction117, 118  or 

degradation of the SAM.117, 119  For example, it has been shown that SAMs 

presenting nitro (-NO2) groups, formed on either Au118 or SiO2
120, 121 surfaces, 

have had their terminal group converted to an amino (-NH2) functionality upon 

irradiation of electrons121 and X-rays.120 Mendes et al.121 utilised this conversion 

chemistry, termed 'precision chemical engineering',119 by using e-beam 

irradiation to fabricate patterned areas of -NH2 terminal groups on -NO2 

terminated SAMs in order to selectively adsorb Au nanoparticles to the surface 

as shown in Figure 10.  

 

Figure 10. AFM image of citrate-passivated Au nanoparticles preferentially adsorbed to binary  

                 SAMs patterned by e-beam irradiation (image edited from121) 
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 Sun et al.122-124 utilized scanning near field microscopy (SNOM), using 

light with a wavelength of 244 nm, to oxidise Au-S bonds in SAMs attached to Au 

surfaces. Areas of the SAM in which the Au-S bond was cleaved were then 

removed and feature sizes of 20 nm124 have been achieved using this method, 

which is significantly less than the diffraction limit, that is limiting to the minimum 

feature size attainable using other, more conventional, optical patterning 

methods. 

 

 ii)  Soft lithographies 

 

 As opposed to the modification of self-assembled monolayers with 

energetic irradiation, soft lithographies rely on diffusion of surfactants from a 

surfactant source to a substrate to form a chemical pattern. This section 

introduces two such soft lithographical techniques. 

 

  Microcontact printing (µcp) 

  

 Microcontact printing125-128 utilizes an elastomeric stamp that is prepared 

by casting a pre-polymer against a patterned master, commonly prepared by 

conventional photolithographic techniques129. This pre-polymer is subsequently 

cured allowing it to be peeled from the master130 as an elastomeric polymer with 

the 'negative' features of the master. 

 



 22 

 The stamp (Figure 11a) is then inked (Figure 11b) with a solution of a 

given surfactant and applied to a substrate of choice (Figure 11c). The surface 

of the inked stamp features deforms slightly to conform to the roughness of the 

substrate giving so-called 'conformal contact'.131, 132 Whilst in conformal contact 

with the substrate the ink molecules diffuse from the stamp to the substrate. It 

has been shown that the inked stamp can be used for multiple printing runs 

without the need for re-inking.133 After a given printing time the stamp is removed 

from the substrate resulting in a chemically patterned SAM on the substrate 

(Figure 11d). 
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Figure 11. An outline of the microcontact printing process showing a) patterned stamp, b) inked   

                  stamp, c) the inked stamp is placed on the substrate and d) the stamp is removed  

                  leaving a patterned SAM on the substrate  

  

 Microcontact printing has been investigated for use in many applications. 

In the biological sciences, microcontact printing has been used for the formation 

of bioarrays134-136 (Figure 12a) and the controlled patterning of cells137-139 
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(Figure 12b). In the field of materials science, arrays of silica dots27 have been 

created (Figure 12c) which can be used for optical applications, whilst patterns 

of carbon nanotubes140, that exhibit unique electrical properties, have been 

grown on templates defined by microcontact printing (Figure 12d).  
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Figure 12. Images showing both biological and materials science applications of microcontact  

                  printing applications: a) tethering of bacteria on a bioarray 141 and b) controlled cell  

                  growth142 c) array of silica dots27, 143 and d) controlled, patterned growth of carbon  

                  nanotubes140 (inset: cross section of a carbon nanotube)  
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 A more in depth description of microcontact printing will be presented in 

Chapter 5.  

 

  Dip-Pen Nanolithography (DPN)  

 

 Dip-Pen Nanolithography (DPN)144, 145 involves the inking of an AFM tip 

(Figure 13a), either by immersing the AFM cantilever in the ink or by bringing the 

AFM tip in contact with an inkpad impregnated with the desired ink. The inked 

AFM tip is then brought into contact with the substrate where, in most cases, a 

water meniscus spontaneously forms (Figure 13b) due to atmospheric water. 

The water meniscus presents a diffusion pathway from the tip to the substrate 

(Figure 13c). Upon contact with the substrate the AFM can either dwell on the 

surface before being removed, to form dots of ink on the substrate surface 

(Figure 13d), or scanned across the surface (Figure 13f) before being removed, 

to form line patterns of ink on the surface of the substrate (Figure 13g). The 

inked AFM tip is most commonly scanned across the substrate in contact 

mode144, although there have been reports of the AFM tip being scanned in 

tapping mode146  to form chemical patterns. 
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Figure 13. An outline of the DPN process showing a) an AFM tip inked with surfactant molecules,  

                  b) the application of an inked tip to a substrate, the formation of dot structures, c) and  

                  d). e) represents a lateral force microscopy (LFM) image of a dot structure showing  

      well ordered, densely packed surfactant molecules in the centre of the dot (dark  

      areas) and surfactant molecules lying prone on the surface at the periphery of the dot  

      (lighter areas)147 and the formation of line structures, f) and g) 
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 The chemical pattern formed by DPN can then be developed by either 

etching or particle adsorption, while the exposed surface of the underlying 

substrate can be backfilled by immersion in a different surfactant to that of the 

pattern as shown in Figure 9. The use of a single AFM tip makes DPN an 

inherently serial technique, but arrays of AFM tips have been used to transform it 

into a highly parallel technique capable of producing nanostructures over areas 

on the square centimetre scale in a matter of minutes.148  

 

 DPN is a very versatile technique because not only can it be used to form 

complex chemical patterns on surfaces (Figure 14a and b) it can also be used to 

deposit material in precise locations, such as at specific points along a single 

strand of DNA149 (Figure 14c). Figure 14d is an image of two electrodes 

connected by an indium wire deposited by using a DPN based technique called 

thermal DPN150, 151 in which the AFM tip is heated in order to melt a solid 'ink' 

which wets the AFM tip. The AFM tip then deposits the indium at a desired 

location which solidifies upon cooling, thus using the AFM tip is used as a 'nano-

soldering iron'.151 
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Figure 14. Images showing both the complex patterns which can be formed by DPN the precision  

                  deposition of material achievable DPN. The images are a) polypyrolle drawn on Si  

                  wafers,152 b) a kangaroo drawn using MHA on Au,153 c) dots of Cy3-antibody  

                  deposited on a stretched strand of DNA149 and d) Two Au electrodes connected by  

                  indium oxide deposited by thermal DPN. 151  
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  iii) Mechanical methods  

 

 DPN is not the only instance where AFM tips can be used to create 

patterned SAMs. The AFM tip has been shown to alter SAMs using mechanical 

forces.154 An example of such a technique is nanoshaving,155, 156 in which shear 

forces, exerted by the AFM tip, displace the surfactant molecules from the SAM. 

Nanografting,157, 158 another mechanical method of patterning SAMs, involves 

performing a nanoshaving operation in the presence of a solution containing 

secondary surfactants which functionalise the bare substrate exposed by the 

nanoshaving process. 

 

   1.4. Conclusions 

 

 This chapter has introduced some of the main drivers of nanotechnology 

and the two main approaches to nanoscale fabrication, namely the top down and 

bottom up approaches. Top down approaches are employed in this thesis in the 

form of FIB, to fabricate the microresonators used in Chapter 4, and 

photolithography, to fabricate the master used for the microcontact printing 

process in Chapter 5. Bottom up approaches are employed in the form of SAMs 

on both Si (Chapters 3 and 4) and Au (Chapter 5) surfaces for the attachment of 

nanoparticulate and biological species respectively. Chapter 5 also employs 

microcontact printing to fabricate pattered SAMs on Au and glass for use as 

bioarrays. 
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CHAPTER 2 

Nanoscale characterisation techniques: seeing the small 

 

ABSTRACT: There are many characterisation techniques that are employed in 

nanoscience to visualise the nanoworld by investigating various properties of a 

nanostructure. This chapter the various microscopies, spectroscopies and other 

characterization techniques used in this thesis will be introduced. 

    

   2.1. Nanoscale characterization techniques 

 

 This chapter gives a brief overview of atomic force microscopy (AFM), 

scanning electron microscopy (SEM), transmission electron microscopy (TEM) 

which have been used, in this thesis, to visualise the micron and sub-micron 

regimes. The spectroscopic methods used in this thesis, namely UV-vis 

spectroscopy, X-ray photoelectron spectroscopy (XPS) and spectroscopic 

ellipsometry, are outlined. The other techniques used, namely contact angle 

analysis and differential scanning calorimetry (DSC), were used to investigate the 

wettability and structure of samples respectively and are also outlined in this 

chapter. 
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   2.2. Microscopies 

 

 2.2.1. Atomic Force Microscopy  

 

 The Atomic Force Microscope (AFM), introduced by Binnig et al.1 in 1986, 

measures the attractive and repulsive forces between a sharp tip, mounted on a 

Si3N4 cantilever, and the surface of a sample. Unlike STM, the AFM can be used 

to study the surface of insulating materials2 in addition to conductive samples as 

it is not reliant on electrical conduction between the tip and sample surface. An 

AFM (Figure 15) uses a photodiode to detect the position of a reflected laser 

beam from the top side of the cantilever. The position of the laser on the 

photodiode is recorded by the controller electronics, via a feedback loop, which 

can then be converted into a map of interactions between the tip and the 

substrate surface.  

 

Figure 15. Schematic diagram of the layout of an Atomic Force Microscope (based on a diagram  

                from3) 



 46 

 AFM measurements can be performed in two different modes and these 

are contact and or tapping mode. Contact mode involves the tip and the 

substrate being kept in constant contact and the tip being rastered across the 

surface with the resultant deflection of the cantilever monitored by the position of 

the laser on the photodiode. During tapping mode AFM the cantilever is vibrated 

close to its resonant frequency and the change of oscillation of the cantilever is 

detected upon interaction between the tip and surface.1  

 

 2.2.2. Electron microscopies 

 

 Electron microscopies rely on the interaction of electron beams with a 

sample. Two common electron microscopies, scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM), will be outlined in this 

section. 

 

  2.2.2.1. Scanning Electron Microscopy  

 

 Scanning electron microscopy (SEM) involves the irradiating a surface 

with electrons in a raster pattern.2 These incident electrons result in the 

backscattering of electrons from the surface of the sample or induce secondary 

electrons to be emitted from the sample surface.4 The detection of backscattered 

or secondary electrons allows the topography of the surface to be mapped. The 
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SEM can also be used for chemical analysis of the sample by analysis of the 

energy of characteristic X-rays emitted from the sample.4 

 

  2.2.2.2. Transmission Electron Microscopy 

 

 Transmission electron microscopy (TEM) involves a beam of electrons 

being passed through a sample (less than ~30 nm thick5) onto a fluorescent 

screen.6 The scattering of the electron beam as it passes through the sample, 

due to the interaction with inhomogeneities such as defect or structural changes, 

produces contrasts in the acquired image.6 

 

   2.3. Spectroscopies 

 

 Spectroscopies measure the interaction of a sample with a range of 

radiation. Spectroscopic methods used in this thesis are introduced in this 

section and other spectroscopies used for nanoscale characterisation are 

outlined. 

 

 2.3.1. UV-vis spectroscopy 

 

 UV-visible spectroscopy is a method of measuring the absorbance of 

electromagnetic radiation by visible and long wavelength UV light being passed 

through a solution of interest and measuring the extent to which the radiation is 
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absorbed at each wavelength. UV-vis spectroscopy can be used to give rapid 

assessment of the concentration and particle size of metallic nanoparticles.7 

Metallic nanoparticles absorb the UV-vis radiation at specific energies due to the 

oscillations of the electron cloud of the nanoparticle at the surface of the particle, 

which is known as the Plasmon absorbance.8 

 

 2.3.2. X-ray photoelectron spectroscopy 

 

 X-ray photoelectron spectroscopy (XPS) is a method for determining the 

chemical composition of a materials' surface and involves the irradiation of the 

sample with X-rays. The X-rays, with energy hv, interact with the surface atoms 

by exciting core electrons within the atoms.9 If the electrons are excited enough, 

to overcome the electron binding energy within their atomic orbital (EB), they are 

ejected from the atom in the form of a photoelectron with energy (EK) as shown in 

(Figure 16). The energy of the photoelectrons are measured and a spectrum of 

photoelectron energies is recorded.  
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Figure 16. A cartoon representation of photoelectron emission 
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 The electron binding energy is dependant on the chemical environment of 

the electron, thus the electron binding energy is characteristic of the electronic 

orbital and element in which it exists.9 Knowledge of the kinetic energy of the 

ejected photoelectron and the energy of the incident X-ray radiation upon the 

sample allows the electron binding energy to be determined by use of Equation 

1.10 

   EK = hν - EB    (Equation 1) 

 

 2.3.3. Ellipsometry 

 

 Ellipsometry is a method of measuring the optical properties of thin films 

by measuring changes of an elliptically polarised light beam due to interaction 

with the sample. Elliptically polarised light occurs as a result of the combination 

of two or more polarised light beams (represented as linearly polarised light 

beams 1 and 2 in Figure 17a) having the same frequency and amplitude, as 

shown in Figure 17a.11 Upon transmission through a thin film, and subsequent 

reflection from the underlying substrate as shown in Figure 17b, the amplitudes 

of both the electric and magnetic vectors of the elliptical polarisation of the light 

are altered due to refraction through the thin film and this information can be 

used to calculate the thickness of the thin film.12  



 50 

y

x

z

= Resultant polarised light

= Linearly polarised light beam 1

= Linearly polarised light beam 2

Thin film

Underlying substrate

Light source 
and polariser Detector 

and analyser

= Incident light

= Reflected light

a) Elliptically polarised light

b) Setup of an ellipsometric experiment

y

x

z

y

x

z

= Resultant polarised light

= Linearly polarised light beam 1

= Linearly polarised light beam 2

= Resultant polarised light

= Linearly polarised light beam 1

= Linearly polarised light beam 2

Thin film

Underlying substrate

Light source 
and polariser Detector 

and analyser

= Incident light

= Reflected light

= Incident light

= Reflected light

a) Elliptically polarised light

b) Setup of an ellipsometric experiment

 

Figure 17.a) Elliptically polarised light as a result of magnetic and electrical components being   

     out of phase (redrawn from 12) and b) a cartoon representation of the configuration of   

     an ellipsometric experiment  

 

 Ellipsometry measures the phase shift (Δ) and the ratio of the magnitudes 

of the total reflection coefficients (tan Ψ) of the reflected light, as a result of 

interaction with the thin film.11 The experimental data is then compared to a 

computer model, which incorporates the refraction index and extinction 
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coefficient of the thin film, and a 'best fit' thickness of the film can be elucidated.11 

The spectroscopic element of ellipsometry is introduced by the use of a 

spectroscopic ellipsometer that measure the film thickness using light over a 

range of wavelengths.  

 

   2.4. Other characterisation techniques 

 

 2.4.1. Contact angle analysis 

 

 Contact angle analysis measures the wettability of a surface5, 13 by the 

application of a liquid drop and measuring the angle of the drop to the surface at 

the boundary of the surface, substrate and surrounding atmosphere (the three-

phase point) as shown in Figure 18. This angle can be measured either by 

simply placing a liquid drop on the sample surface and measuring the angle 

(sessile drop method) or by measuring the angle by increasing and decreasing 

the volume of the drop to determine the advancing and receding contact angles, 

respectively.5 The difference between the advancing and receding angles 

(contact angle hysteresis) gives an indication of the smoothness and quality of 

the self-assembled monolayer. Rough surfaces yield higher hysteresis than 

smooth surfaces. The chemical composition of the surface is critical to the value 

of the contact angle. For example, the water contact angle of hydrophobic 

surfaces is much higher than that of hydrophilic surfaces. 

 



 52 

SUBSTRATESUBSTRATE
θa

θr

Direction of 
liquid flow

Syringe

a) Increasing drop volume 
(advancing angle, θa)

b) Decreasing drop volume 
(receding angle, θr)

SUBSTRATESUBSTRATE
θa

θr

Direction of 
liquid flow

Syringe

a) Increasing drop volume 
(advancing angle, θa)

b) Decreasing drop volume 
(receding angle, θr)

 

Figure 18. Dynamic contact angle analysis which measures a) advancing contact angle (θa) and   

      b) receding contact angle (θr) 

 

 2.4.2. Differential Scanning Calorimetry (DSC) 

 

 Differential scanning calorimetry (DSC) is a method of measuring 

temperature dependant events, such as phase changes, and is achieved by 

increasing the temperature of both the sample and a reference in such a manner 

as to keep them both at the same temperature as each other. The reference 

sample is fabricated from a material which undergoes no thermal events in the 

temperature range over which the experiment will be conducted. The difference 

in energy required to heat the sample, compared to the reference, compensates 

for thermal events with extra heat required for endothermic events and less heat 

required for exothermic events.14 
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CHAPTER 3 

Formation of amino terminated self-assembled monolayers on 

silicon nitride from the vapour phase 

 

The work presented in Chapter 3 has been published in the following research article: Hamlett et al. 

Surface Science 602 2724-2733 (2008).1 

  

ABSTRACT: Self-assembled monolayer (SAM) formation of silanes on SiO2 surfaces 

is well known. However, SAMs formed on silicon nitride (Si3N4) surfaces are less well-

known, but are of technological interest with a view to the chemical modification of 

microelectromechanical systems (MEMS) devices formed from this material. Therefore, 

this chapter presents the formation and characterisation of 3-aminopropyltrimethoxy 

silane (APTMS) SAMs on Si3N4 substrates from both the solution and vapour phase. As 

a comparison the well characterised APTMS SAM is formed on SiO2 surfaces. 

    

   3.1. Introduction 

 

 SAMs, as introduced in Chapter 1 (section 1.3.2.), are ordered, quasi-

crystalline structures which are formed when surfactant molecules, with 

specifically functionalised headgroups, adsorb onto substrates.2 The use of 

SAMs provides a facile method of chemically-modifying surfaces, and they are 
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commonly formed on a solid substrate via adsorption of surfactant molecules 

from the solution phase.  

 

 The formation of SAMs of surfactants containing silane headgroups on Si 

containing substrates has been widely studied3-8 and is presented in Chapter 1 

(section 1.3.2.ii.). SiO2 is the most widely researched Si based substrate for 

SAM formation.3-5, 7, 9-13 However, there are relatively fewer investigations into 

using SAMs to chemically modify Si3N4 substrates.6, 14-16 Microelectromechanical 

systems (MEMS) devices are commonly fabricated from Si3N4, thus the ability to 

form SAMs on MEMS devices allows control of the surface chemical properties 

of MEMS devices. SAMs have been studied as coatings for MEMS devices for 

both their anti-stiction16, 17 and chemical immobilization5 properties.  

 

 Formation from the solution phase is by far the most common method of 

preparing SAMs.4, 5, 7 However, there have been studies in which vapour phase 

methods have been employed to form SAMs on both Au18, 19 and SiO2 surfaces.3, 

20, 21 The formation of SAMs from the vapour phase has been studied with a view 

to using a solvent free system20 which has environmental benefits due to a 

reduction of waste solvents. SAM formation from the vapour phase has also 

been studied in an attempt to reduce the formation of polymeric aggregates 

which can be problematic when forming SAMs from solution.22 The problem of 

aggregation occurs due to condensation reactions between organosilane 
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molecules in solution that can form inverse micelle structures,22 which then 

subsequently adsorb on the substrate.  

 

   3.2. Aims and objectives  

 

 The work in this chapter describes a technique to chemically modify Si3N4 

substrates with a view to using the technique to chemically modify Si3N4 MEMS 

microresonators in order to create a mass sensitive detector for the adsorption of 

specific species. It was found that the MEMS devices were so delicate that the 

use of a sonic bath for the formation of SAMs from the solution phase destroyed 

the devices. Therefore, the objective of this chapter is to investigate a 

methodology, for the chemical modification of Si3N4 substrates that does not 

involve a sonic bath. The approach will be to initially form APTMS SAMs on SiO2 

(a well studied system) and Si3N4 substrates (a less well studied system) in order 

to establish a model system for the chemical modification of Si3N4 substrates. A 

vapour phase methodology will then be used to chemically modify Si3N4 

substrates with APTMS, the morphology of which will then be compared to that of 

the model system.  

  

   3.3. Results and discussion 

 

 This section investigates the modification of SiO2 and Si3N4 surfaces with 

APTMS from the solution phase. These results will subsequently be used as a 
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reference for the characterisation of Si3N4 surface modified by APTMS via a 

vapour deposition method. The surface of the Si3N4 substrates is hydroxylated 

prior to SAM formation as described by Wei et al.23 thus a -OH functionalised 

surface is formed on the Si3N4 substrates allowing similar surface reactions to 

that of the SiO2 substrates. The hydroxylated surface of the Si3N4 substrates is 

made possible by the formation of a SiO2 layer on the surface of the Si3N4 

substrates during cleaning which can be seen in Figure 19. The Si3N4 

substrates, prior to the cleaning procedure, exhibit a single Si2p peak (Figure 

19b) however, upon cleaning using the method described by Wei et al.23 , this 

peak broadens (Figure 19d). This broadening is due to splitting of the Si2p peak 

(Figure 19e) upon cleaning of the substrate and the peaks are assigned as the 

Si2p peaks for Si present in Si3N4 (~103.0 eV24) and SiO2 (~104.5 eV24) thus the 

hydroxylation of the Si3N4 surface is confirmed.  Further evidence for the 

formation of a SiO2 layer on the Si3N4 surface is due to an increase in the ratio of 

O1s to N1s peaks upon cleaning (Figure 19a and Figure 19c). The SiO2 layer 

was estimated to be of the order of 2 nm thick as this value provided a good 

model with which to fit the ellipsometric data of the bare substrate. 

 

 Along with the Si2s, Si2p, O1s and N1s peaks, which are due to the 

elements which constitute both the Si3N4 substrate and the SiO2 formed by the 

cleaning method, a C1s peak can be seen in the survey spectra of Si3N4 before 

(Figure 19a) and after (Figure 19c) cleaning. This C1s peak is due to the 
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adsorption of volatile organic species which rapidly adsorb on the substrate upon 

exposure to air. 
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Figure 19. XPS spectra of Si3N4 substrates a) before and c) after the cleaning process. b) and d)  
                are high resolution spectra of the Si2p peaks of the Si3N4 substrates before and after  
                cleaning respectively and e) shows the Si2p peak splitting as a result of the cleaning  
                process 
 
 
      3.3.1. Comparison of APTMS SAMs formed from solution phase on SiO2 and      

                Si3N4 surfaces 

 

 This section presents the characterisation of both SiO2 and Si3N4 surfaces 

modified by the immersion of substrates in APTMS solution (0.5 mM in EtOH) for 

three different immersion times (30, 60 and 120 min). 
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  3.3.1.1. Contact angle 

 

 A dynamic contact angle analysis method was used to measure the water 

contact angle of both SiO2 and Si3N4 surfaces before and after immersion in 

ethanolic APTMS solution and the results are shown in Figure 20. 
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Figure 20. Contact angle data of Si/SiO2 and Si/Si3N4 substrates immersed in APTMS solution   
      (0.5mM in EtOH) for various times  
 

 The bare hydroxylated SiO2 and Si3N4 substrates are both hydrophilic (θa 

and θr ~10 °), whereas, after immersion in APTMS solution, the surface becomes 

significantly less hydrophilic (θa and θr <60 °). The literature value for APTMS 

SAMs on SiO2 is ~68 °.9, 10 Therefore, the contact angle data (Figure 20) 

suggests that APTMS SAMs are formed on both substrates. However, the 

degree of formation and structure of the SAMs needs to be probed, see sections 

3.3.1.2. and 3.3.1.3. 
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   3.3.1.2. AFM 

 

 AFM images of SiO2 (Figure 21) and Si3N4 (Figure 22), surfaces modified 

by solution phase APTMS at different immersion times are presented in this 

section along with a comparison of roughness data of these systems (Figure 23). 
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Figure 21. AFM images of a) bare Si/SiO2 substrate and b-d) Si/SiO2 substrates immersed in  

                  APTMS solution (0.5 mM in EtOH) 
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Figure 22. AFM images of a) bare Si3N4 substrate and b-d) Si3N4 substrates immersed in APTMS  

                  solution (0.5 mM in EtOH) 

 

 Visual inspection of Figure 21 and Figure 22 shows that the SAMs 

formed on SiO2 substrates are smoother than those formed on Si3N4, which is 

quantitatively born out by the RMS data recorded in Table 1 and represented by 

the graph in Figure 23. However, it should be noted that the bare Si3N4 substrate 

is rougher (RMS roughness = 0.770 nm) than the SiO2 substrate (RMS 

roughness = 0.430 nm). The RMS roughness (whole image) roughly doubles 

after immersion of both substrates for 30 min, and after 60 min immersion the 

RMS roughness reduces and subsequently increases again after an immersion 

time of 120 min. It can be seen that the RMS roughness of the SAM on SiO2 after 
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60 min immersion in APTMS solution is smoother than the original bare 

substrate. Such smoothing has been previously observed25, and is rationalised in 

terms of a "carpet effect". This "carpet effect" is due to the SAM being bound to 

the substrate at relatively few points, and thus masks the roughness of the 

underlying substrate.25 At longer immersion times (120 min), in both cases, the 

roughness increases as polysiloxane particulates, formed in solution, are 

deposited. 

 

Table 1. RMS roughness data of Si/SiO2 and Si/Si3N4 substrates immersed in APTMS solution at  
               various immersion times 

SUBSTRATE 

Si/SiO2 Si/Si3N4 

Immersion time 

(min) 

RMS roughness 

(nm) 

Error (nm) RMS roughness 

(nm) 

Error (nm) 

0 0.430 ±0.056 0.770 ±0.329 

30 0.916 ±0.329 1.405 ±0.404 

60 0.297 ±0.022 1.270 ±0.223 

120 0.598 ±0.298 1.312 ±0.250 
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Figure 23. RMS roughness data of Si/SiO2 and Si/Si3N4 substrates immersed in APTMS solution   
      (0.5 mM in EtOH) for various times 
 
 In summary, an immersion time of 60 min results in the minimum 

roughness of both Si/SiO2 and Si/Si3N4 substrates immersed in APTMS solution 

(Figure 23). The occurrence of a minimum roughness at 60 min immersion can 

be explained by the presence of fewer aggregates on the surface, when 

compared to immersion times of 30 min and 120 min of both types of substrate, 

which results in smoother surfaces.  

 

  3.3.1.3. Ellipsometry 

 

 Modelling the molecular structure of APTMS (Figure 24) reveals that the 

distance between the N atom, from the -NH2 group, and the methoxy O atoms is 
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~0.56 nm. Thus, it is expected that a well-formed SAM would have a thickness of 

the order of 0.5 - 0.6 nm. 
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Figure 24. The structure of APTMS with the O-N distance being shown. (This distance was  

                  calculated using Chem3D Ultra 7.0 software.)  

 
 The ellipsometric thickness of both Si/SiO2 and Si3N4 substrates after 

immersion in APTMS solution is shown in Table 2 and Figure 25. Satisfyingly 

the ellipsometric thickness data for 60 min immersion time of both Si/SiO2 and 

Si/Si3N4 substrates in APTMS solution are 0.546 nm and 0.557 nm, Table 2 and 

Figure 25 respectively, whilst at shorter and longer immersion times the 

thickness is greater. This increase of thickness at shorter and larger immersion 

times is in agreement with RMS roughness data (Table 1, Figure 23 and Figure 

28). 
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Table 2. Ellipsometric thickness data of Si/SiO2 and Si3N4 surfaces immersed in APTMS solution      
               for various immersion times 

Substrate 

Si/SiO2 Si/Si3N4 

 

Immersion time 

(min) Thickness (nm) Error (nm) Thickness (nm) Error (nm) 

30 1.242 ± 0.288 0.933 
 

± 0.523 
 

60 0.546 ± 0.132 0.557 
 

± 0.312 
 

120 1.769 ± 0.383 0.993 
 

± 0.476 
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Figure 25. Ellipsometric SAM thicknesses of Si/SiO2 and Si/Si3N4 substrates after immersion in  
                  APTMS solution (0.5 mM in EtOH) 
 
 
  3.3.1.4. XPS 

 

 XPS spectra were recorded for bare Si/SiO2 before and after immersion in 

APTMS solution for 60 min (Figure 26) and for Si/Si3N4 substrates before and 

after immersion in APTMS solution for 60 min (Figure 27). XPS spectra were 

obtained for 60 min immersion because the AFM data showed this immersion 

time resulted in the smoothest surfaces of the immersion times studied and 
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ellipsometric measurements suggested that at 60 min immersion time monolayer 

coverage of APTMS was achieved. 
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Figure 26. XPS spectra of Si/SiO2 substrates before and after immersion in APTMS solution.  
                  a) Survey spectrum of bare Si/SiO2 substrate with inset b) being a high resolution   
      spectrum of the energy range where N1s peak would be found. c) survey spectrum of   
      Si/SiO2 after 60 min immersion in APTMS solution for 60 min with inset d) being a  
      high resolution spectrum of N1s peak 
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Figure 27. XPS spectra of a) bare Si/Si3N4 with inset b) being a high resolution spectrum of the   
     N1s peak and c) Si/Si3N4 after immersion in APTMS solution for 60 min with inset d)   
     being a high resolution spectrum of the N1s peak  
 
 
 The XPS survey spectrum of bare SiO2 (Figure 26a) reveals the presence 

of Si2p, Si2s and O1s peaks, which are due to the elemental composition of the 

SiO2 substrate. A C1s peak occurs due to the presence of carbon on the surface 

of the clean substrate due to the adsorption of volatile organic compounds on the 
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surface upon exposure of the substrate to air. Immersion of the Si/SiO2 substrate 

in APTMS solution results in the appearance of a N1s peak (Figure 26c and d). 

This peak represents the N1s photoelectron, thus confirming the presence of 

nitrogen which correspond to the adsorption of APTMS.11  

 

 Bare Si/Si3N4 substrates, as discussed in section 3.3., display Si2p, Si2s, 

C1s, N1s and O1s peaks (Figure 27). These peaks correspond to the presence 

of Si and N in Si3N4 (Si2p, Si2s and N1s peaks), the formation of a ~2 nm layer 

of SiO2 during the cleaning procedure (O1s peak) and the adsorption of volatile 

organic compounds upon exposure to air (C1s peak). The Si2p, Si2s, C1s, N1s 

and O1s peaks, present in the XPS spectra of the bare substrate, are also the 

peaks that correspond to the adsorption of APTMS molecules. Therefore, XPS 

cannot be used to verify the formation of APTMS SAMs on Si3N4 substrates 

because the peaks expected for APTMS SAMs are already present in the XPS 

spectra of the bare substrate. 

 

  3.3.1.5. Comparison of APTMS SAMs formed from solution phase   

      on both SiO2 and Si3N4 surfaces 

  

 The results presented so far show that, upon exposure to APTMS 

solution, both Si/SiO2 and Si/Si3N4 substrates exhibit contact angles similar to 

that found in the literature for fully formed APTMS SAMs. The AFM and 

ellipsometric data support the formation of fully formed APTMS SAMs at 60 min 
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immersion times (Figure 28b) due to a decrease in RMS roughness (carpet 

effect) and the thickness is consistent with that of a fully formed APTMS SAM. 

However, at 30 min and 120 min immersion times the formation of smooth 

APTMS SAMs does not occur due to both RMS roughness values and 

ellipsometric thicknesses being significantly different than those expected for a 

fully formed SAM. At 30 min immersion (Figure 28a) the APTMS molecules may 

form physisorbed bilayers due to the RMS roughness being greater than that of 

the bare substrate and the thickness being approximately twice the length of an 

APTMS molecule. At 120 min (Figure 28c) the RMS roughness is greater than 

that of both a fully formed SAM and the bare substrate due to the presence of 

polysiloxane aggregates adsorbed on the surface (Figure 21 and Figure 22). 

The presence of such aggregates also leads to a greater ellipsometric thickness 

than that of a fully formed APTMS SAM. XPS data (Figure 26 and Figure 27) 

confirm the adsorption of APTMS on SiO2 substrates due to the appearance of 

the N1s peak upon immersion of the substrate in APTMS solution. However, a 

similar observation cannot made for the adsorption of APTMS on the Si3N4 

substrates because the XPS spectrum of bare Si3N4 substrates shows the same 

peaks that correspond to the constituent atoms of an APTMS molecule. 
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AFM: 
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Figure 28. Models of APTMS formation on surface of Si/SiO2 and Si/Si3N4 substrates at three  
                  different immersion times. (The RMS roughness and ellipsometric thickness are  
                  included for comparison to the models)  
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      3.3.2. APTMS SAMs on Si3N4 from vapour phase 

 

 Vapour phase modification of Si3N4 substrates is studied here with a view 

to using such a system for the surface modification of MEMS device. The vapour 

deposition process used for Si3N4 modification (Figure 29a-g) involves the use of 

a glass vapour chamber (Figure 29h). The vapour chamber consists of two parts 

(Figure 29a) with the top section consisting of a gas tap. The bottom section of 

the chamber consists of an Al gauze, on which the substrates are placed, and an 

inlet, in which a SubasealTM stopper is placed allowing for the injection of 

APTMS. After the substrates have been placed in the chamber, and the top 

section attached, the chamber is purged with N2(g) (Figure 29b) to displace 

atmospheric water from within the chamber. The chamber is then heated under 

vacuum, using a heat gun, to encourage desorption of water adsorbed from the 

inside of the chamber which is subsequently removed by the vacuum (Figure 

29c). After the chamber has cooled to room temperature APTMS liquid (2 ml) is 

injected through the SubasealTM (Figure 29d) whilst the chamber is continuously 

evacuated for a further 30 min (Figure 29e). The choice of vacuum pump used 

determines the pressure at which the deposition takes place and is referred to as 

the deposition pressure (Pdep). The gas tap is then closed leaving the substrates 

in an atmosphere of APTMS vapour (Figure 29f) and after a further 30 min the 

vacuum is released (Figure 29g) and the substrates removed from the chamber.  
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Figure 29. a-g) Cartoon representations of the vapour deposition process and h) a photograph of  
                  the vapour chamber 



 74 

 The following sections show the characterisation of Si3N4 substrate 

modified by the method described using four different deposition pressures (Pdep) 

which are 0.1 mbar, 1.15 mbar, 30 mbar and 168 mbar. 

 
 
  3.3.2.1. Contact angle 

  

 Figure 30 shows that the surfaces are significantly more hydrophobic than 

the bare, clean Si3N4 surfaces. At Pdep = 0.1 mbar and 1.15 mbar the contact 

angles are larger than those obtained by solution deposition which could be due 

to the presence of a rough surface (see section 2.3.2.2.) as this can increase the 

contact angle.26, 27 At Pdep = 30 mbar the contact angles are significantly less 

than those obtained from the solution phase suggesting that the hydrophilic 

substrate is not completely covered by APTMS molecules. At Pdep = 168 mbar 

the resultant surface exhibits contact angles comparable to that of fully formed 

APTMS SAMs on Si3N4 substrates modified by immersion in APTMS solution for 

60 min (Figure 20) thus indicates -NH2 functionality of the surface (section 

3.3.1). 
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Figure 30. Contact angle data of Si/Si3N4 substrates exposed to APTMS vapour for 60 min at                   
       four different pressures 
 
 
  3.3.2.2. AFM 

 

 AFM images were taken for Si3N4 surfaces which were modified with 

APTMS at four different pressures (Pdep = 0.1 mbar, 1.15 mbar, 30 mbar and  

168 mbar), as shown in Figure 31. 
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Figure 31. AFM images of Si/Si3N4 substrates exposed to APTMS vapour for 60 min at various  

                deposition pressures (Pdep)  

 
 Figure 31 shows Si3N4 substrates modified at Pdep = 0.1 mbar exhibit a 

greater amount of adsorbed aggregates than those modified at 1.15 mbar,        

30 mbar and 168 mbar. 
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Figure 32. RMS roughness values of Si/Si3N4 exposed to APTMS vapour for 60 min at four   
      different pressures 
 

 At 0.1 mbar the boiling point of APTMS is ~25 °C thus, at room 

temperature, the vapour will be saturated with APTMS leading to a high 

deposition rate of the molecules on the substrate, which is born out in its high 

RMS roughness (Figure 32).  

 

  3.3.2.3. Ellipsometry 

 

 Ellipsometric data obtained for Si3N4 substrates modified with APTMS 

vapour at different pressures is presented in Figure 33, ellipsometric data is not 

presented for surfaces modified at Pdep = 0.1 mbar due to the large RMS 
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roughness (Figure 32) of the surfaces obtained by AFM leading to ellipsometric 

data yielding unreliable thickness measurements. In the case of ellipsometry 

unreliable thicknesses implies that the error obtained by the modelling is greater 

than the actual thickness value obtained. 
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Figure 33. Ellipsometric thickness of Si/Si3N4 substrates exposed to APTMS vapour for 60 min at  
                  three different pressures  
 
 
 The ellipsometric thickness of Si3N4 substrates exposed to APTMS vapour 

at Pdep = 1.15 mbar, 30 mbar and 168 mbar is approximately twice that of 

monomolecular thickness. This increase of thickness (comparing Figure 33 to 

Figure 25) is probably due to the presence of aggregates on the surface (Figure 

31) and the formation of multilayers (Figure 34b). 
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Figure 34. Schematic diagrams depicting a) an ideal APTMS SAM and b) a multilayer of APTMS  
 

  3.3.2.4. XPS 

 

 Si3N4 substrates exposed to APTMS vapour (Figure 35b) show the 

presence of the constituent atomic species of an APTMS molecule, however, 

these peaks also appear in the spectrum for bare Si/Si3N4 (Figure 35a) due to 

reasons discussed in section 2.3.1.3. 
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Figure 35. XPS survey spectra of Si/Si3N4 substrates a) before and b) after exposure to APTMS  
                  vapour for 60 min. XPS spectrum 17b) is of a sample prepared at Pdep = 168 mbar and  
                  is representative of survey spectra of Si/Si3N4 substrates exposed to APTMS vapour  
                  at all pressures studied 
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   3.4. Conclusions 

 

 The formation of APTMS SAMs on SiO2 and Si3N4 substrates from both 

the solution (SiO2 and Si3N4) and vapour (Si3N4) phases have been studied. 

Contact angle data of SiO2 and Si3N4 immersed in APTMS solution is consistent 

with that of a fully formed APTMS SAM found in the literature. However, upon 

investigation with AFM and ellipsometry immersion times of 30 min and 120 min 

for both substrates yielded surfaces of greater roughness and thickness than that 

expected of a fully formed SAM. The AFM and ellipsometric results for immersion 

times of 30 min and 120 min are consistent with either physisorbed bilayer 

structures (30 min immersion, Figure 28a) or surfaces on which polysiloxane 

aggregates adsorb (120 min immersion, Figure 28c). AFM and ellipsometric data 

do support the formation of fully formed APTMS SAMs on both SiO2 and Si3N4 

substrates after 60 min immersion in APTMS solution (Figure 28b). XPS data 

confirmed the adsorption of APTMS on the SiO2 substrates but could not be used 

to confirm the presence of APTMS on the Si3N4 substrates. Therefore, APTMS 

structures form on SiO2 and Si3N4 substrates but only 60 min immersion times 

result in the formation of fully formed SAMs. 

 

 The characterisation of Si3N4 substrates exposed to APTMS vapour show 

that the contact angle of substrates modified at 0.1 mbar and 1.15 mbar are 

significantly greater than that of a fully formed SAM formed in the solution phase 

due to an increase of surface roughness. The lower than expected contact angle 
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observed at a deposition pressure of 30 mbar is due to incomplete coverage of 

the underlying hydrophilic substrate by APTMS. After modification at 168 mbar 

the contact angle is comparable to that of a fully formed SAM thus confirming      

-NH2 functionality of the surface. AFM data shows that deposition of APTMS at 

0.1 mbar yields significantly rougher surfaces than at the other pressures 

studied. The greater roughness at Pdep = 0.1 mbar is due to the adsorption of a 

greater number of aggregates to the surface at 0.1 mbar compared to other 

deposition pressure due to the reduced boiling point of APTMS at 0.1 mbar being 

comparable to room temperature. Therefore, the boiling of APTMS at 0.1 mbar 

leads to a saturated atmosphere of APTMS molecules within the chamber 

increasing the chance of cross linking of APTMS molecules hence a greater 

chance of polysiloxane aggregate formation. The ellipsometric data for 1.15 

mbar, 30 mbar and 168 mbar deposition pressure is greater than that of a fully 

formed SAM which suggests the formation of multilayered structures.  

 

 This work has shown that fully formed SAMs can be formed from solution 

on both SiO2 and Si3N4 substrates after 60 min immersion and that the vapour 

phase technique described in this chapter yields multilayer structures on Si3N4 

substrates which present -NH2 functionality. 

 

 The work presented in this chapter confirms that the vapour phase 

deposition technique described in this chapter can be used to successfully 

modify Si3N4 substrates with APTMS. The increase of contact angle data upon 
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exposure to APTMS vapour confirms that chemical modification of Si3N4 

substrates is successful. AFM images show that the modified substrates are 

much rougher at Pdep = 0.1 mbar than at greater pressures (Pdep = 1.15 mbar, 30 

mbar and 168 mbar). Ellipsometric measurements suggest monolayer formation 

after exposure of Si3N4 to APTMS solution for 60 min but, upon exposure to 

APTMS vapour, the formation of multilayers of APTMS may occur. 

 

   3.5. Future work 

 

 This objective of this work was to chemically modify Si3N4 substrates with 

a view to the modification of MEMS devices. Thus, the next step of this work is to 

modify MEMS devices using this method and this will be described in Chapter 4. 

 

   3.6. Experimental 

 

 All chemicals were obtained from Aldrich unless stated. 

 

      3.6.1. Cleaning of substrates 

 

  3.6.1.1. Cleaning of SiO2 

 

 SiO2 coated Si substrates (Compart Technology LTD) were immersed in 

piranha solution (70% H2SO4 (98%, Fisher Scientific):30% H2O2 (30%, Fisher 
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Scientific) at 90 - 100 °C for 60 min, rinsed with UHQ water (resistivity =              

18 MΩcm) and immersed in RCA solution (UHQ H2O : H2O2 (30%) : NH4OH  in a 

ratio of 5:1:1) in a sonic bath for 60 min at room temperature. The substrates 

were rinsed and stored in UHQ water until use. 

 

  3.6.1.2. Cleaning of Si3N4 

 

Si/Si3N4 (500 nm thick Si3N4, Silson Ltd, Northampton, UK) were cleaned 

and hydroxylated using a method described by Wei et al.23 The substrates were 

rinsed well in EtOH then ultra high quality (UHQ) water (resistivity = 18MΩcm). 

The substrates were then immersed in Piranha solution (7 parts H2SO4 (98%): 3 

parts H2O2 (30%)) at 90 - 100 °C for 30 min and then rinsed thoroughly with UHQ 

water. 

 

The substrates were then immersed in NaOH (0.5 M) for 20 min, HCl   

(0.1 M) for 10 min and NaOH (0.5 M) for 10 min and rinsed with UHQ water 

between each immersion. The substrates were then rinsed with HCl (0.1 M), 

water and then purged with N2(g) for 30 min. 

 

      3.6.2. Formation of SAMs 

 

  3.6.2.1. Formation of SAMs from solution phase 

 

 The first step in preparing SAMs on SiO2 and Si3N4 substrates from the 

solution phase involved the exchange of surface water on the substrate with 
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anhydrous EtOH. This exchange process involves the immersion of the substrate 

in vials containing various ratios of EtOH and UHQ H2O. Initially the substrate 

was immersed in pure UHQ water, then in water/EtOH ratios of 3:1, 1:1, 1:3, pure 

solvent and, finally, anhydrous EtOH.  

 

 The substrate is then immersed in a glass vial containing a 0.5 mM 

solution of APTMS in anhydrous EtOH under a N2 atmosphere and placed in a 

water cooled sonic bath.  After immersion for a given time the substrate was 

immediately rinsed in EtOH and then rinsed in toluene, EtOH, then placed in a 

clean vial containing fresh EtOH and placed in a sonic bath for 5 min. This rinsing 

and sonication process was repeated and then the substrate was rinsed 

sequentially in EtOH, chloroform and EtOH and cured in a vacuum oven at     

120 °C for 30 min.  

 

  3.6.2.2. Formation of SAMs from vapour phase 

 

 The vapour deposition steps used for the formation of APTMS SAMs on 

Si3N4 is described in section 3.2.2. After the vapour deposition the substrates 

were removed from the chamber and rinsed sequentially in EtOH, chloroform and 

EtOH then cured in a vacuum oven at 120 °C for 30 min. 
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      3.6.3. Characterisation of SAMs 

 

  3.6.3.1. Contact angle analysis 

 

 Contact angle measurements were carried out using a home built contact 

angle goniometer and the images processed using Camtel FTA200 software. 

UHQ water was applied to the surface using a 25 l syringe. The volume of the 

drop was increased and decreased in order to obtain information about the 

advancing (θa) and receding (θr) contact angles, respectively. 

 

  3.6.3.2. AFM 

 

 AFM images were obtained using a Dimension D3100 Scanning Probe 

Microscope (Veeco) and the images analysed using Nanoscope III v5.12r 

software. All AFM images were obtained by operating the AFM in tapping mode 

with the use of RTESP – Tap300 Metrology Probes (Veeco) (nominal spring 

constant = 20 - 80 Nm-1, nominal resonant frequency = 288 - 328 kHz). 

 

  3.6.3.3. Ellipsometry 

 

 Ellipsometry measurements were taken using a Jobin-Yvon UVISEL 

ellipsometer with a He-Ne laser light source at an angle of incidence of 70 °C 
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using a wavelength range of 450 – 800 nm. SAMs were formed. DeltaPsi 

software was used to record and model the ellipsometric parameters Δ and ψ, for 

bare and modified substrates. 

 

  3.6.3.4. XPS 

 

 XPS measurements were performed using a VG ESCALab 250 equipped 

with an Al K x-ray source (1486.68 eV) which was operated at 15 kV. Peak 

fitting and analysis of the data was carried out using Avantage software. 
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CHAPTER 4 

Mass sensing using a chemically-modified microresonator: 

SAMs meets MEMS 

 

ABSTRACT: Micro-Electromechanical Systems (MEMS) are devices whereby mechanical and 

electrical components in the micrometre regime have been integrated. Such devices show 

promise in a wide variety of sensing applications. Self-assembled monolayers (SAMs) can be 

used to functionalise the surface of MEMS devices in order to fabricate chemically specific mass 

sensing devices. 

 

This work investigates the pH-dependent adsorption of citrate passivated Au nanoparticles on 

silicon nitride surfaces modified with 3-aminopropyltrimethoxysilane (APTMS) SAMs using both 

atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) analysis. The AFM 

and XPS results are used as a comparison for mass adsorption data of the citrate passivated Au 

nanoparticles adsorbed on MEMS resonators modified using SAMs. 

 

   4.1. Introduction 

 

 Microelectromechanical systems (MEMS), as introduced in Chapter 1 

(section 1.3.1.), are  formed by the integration of electrical and mechanical 

components for production of functional micron-scale devices.1 Examples of the 

use of MEMS devices include actuators2, 3 and sensors.4-16  
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 MEMS devices can be used as chemical sensors using two different 

approaches. One approach is by mass detection,7, 13, 17, 18 whereby the resonant 

frequency of a MEMS resonator is altered upon the adsorption of chemical 

species. The resultant change of resonant frequency is directly proportional to 

the mass adsorbed on its surface, hence the mass of the adsorbed species can 

be calculated using knowledge of the mass sensitivity of the device. Such 

devices operate on a similar principle to both quartz crystal microbalances 

(QCM)19, 20 and surface acoustic wave (SAW) devices.21, 22 The species 

adsorbed on the surface of MEMS mass detection devices is dictated by the 

surface chemistry of the resonators. SAMs have been used in an attempt to 

immobilize specific species to the surface of MEMS sensors.5, 9, 11, 12, 14  

 

 Another approach to chemical detection, using MEMS devices, exploits 

the change of the electrical properties of the device upon adsorption of specific 

chemical species.8, 9, 11, 12, 16 Electronic properties, for example the electrical 

resistance, can be altered by the adsorption of analytes. Therefore, this allows 

MEMS sensors to be integrated into electrical circuits in order to monitor the 

change of electronic properties of the device over a period of time.  

 

   4.2. Aims and objectives 

 

 The aim of the research described in this chapter is to demonstrate that 

the vapour phase methodology described in chapter 3 can be used to modify 
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microresonators for their application as mass-sensing devices. Chemical 

functionalization of microresonators could have applications in determining the 

abundance of specific species in local environments, for example in local urban 

environments. Citrate passivated Au nanoparticles have been shown to exhibit 

pH dependent adsorption to -NH2 terminated SAMs.23 Therefore, the work 

presented in this chapter is aimed at showing how the adsorption of citrate 

passivated Au nanoparticles on 3-aminopropyltrimethoxysilane (APTMS) 

modified Si3N4 resonators changes as a function of the pH of the nanoparticle 

solution. Upon immersion in an acidic solution of citrate passivated Au 

nanoparticles the -NH2 terminus of the monolayer becomes protonated. 

Therefore, a positive surface is presented to the local environment allowing the 

electrostatic attraction of the negatively charged Au nanoparticles (Figure 36).  
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Figure 36. Cartoon representations of a) the electrostatic adsorption of citrate passivated Au                

      nanoparticles to a protonated APTMS SAM, and b) the negatively charged citrate            

      passivated nanoparticle 
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 By using both AFM and XPS analysis to study the adsorption of citrate 

passivated Au nanoparticles to APTMS modified Si3N4 substrates over a range of 

pH values, the trend of nanoparticle adsorption for this particular system can be 

evaluated. Thus, providing both a reference of the pH dependent adsorption of 

citrate passivated Au nanoparticles to Si3N4 resonators modified with APTMS 

SAMs and a proof-of-principle experiment that modified microresonators can be 

used as mass sensors for nanoparticles. 

 

   4.3. Results and discussion 

 

 This section presents data on the adsorption of citrate passivated Au 

nanoparticles from solution to chemically modified Si3N4 substrates investigated 

by both AFM and XPS analysis. Resonance experiments were also performed in 

order to investigate the adsorption of citrate passivated Au nanoparticles on 

APTMS modified Si3N4 resonators with a view to using such a system as a mass 

sensitive detector. 

 

 4.3.1. Au nanoparticle adsorption studies 

 

  4.3.1.1. AFM 

 

 AFM images were obtained of Si3N4 substrates, modified with APTMS 

SAMs, after immersion for 2 hr in aqueous solutions of citrate passivated Au 
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nanoparticles at five different values (3, 4, 5, 6, and 7) of pH (Figure 37a-e) and 

a graph of nanoparticle density vs the pH is shown in Figure 38. 

 

 After immersion of APTMS modified Si3N4 substrates in citrate passivated 

Au nanoparticles at pH values of 3 and 4 (Figure 37a and b) it can be seen that 

the occurrence of Au nanoparticle aggregates adsorbed on the surface is more 

pronounced than at higher values of pH (Figure 37c-e). Presumably the 

occurrence of a higher degree of nanoparticulate aggregates at pH values of 3 

and 4, compared to pH values 5 - 7, is due to a higher degree of protonation of 

the passivating citrate anions thus, a lower degree of electrostatic repulsion 

between the particles. The maximum adsorption of citrate passivated Au 

nanoparticles occurs at pH 5 (Figure 37c and Figure 38) which is consistent 

with previous work in optimal adsorption of citrate passivated Au nanoparticles 

occurs at pH 4.5.23  
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Figure 37. AFM images of pH dependent adsorption of citrate passivated nanoparticles on   

      APTMS modified Si3N4 substrates at five different values of pH 
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Figure 38. Graph showing particle density vs pH of citrate passivated Au nanoparticles adsorbed  

                  onto APTMS modified Si3N4 substrates 

  
 It was observed that the maximum adsorption of citrate passivated Au 

nanoparticle occurs at pH 5 (Figure 37 and Figure 38). The pKa of aliphatic 

amine groups is 8 - 11 in free solution,24 however when attached to a surface the 

pKa decreases to 6 - 8.25 The pKa of COOH groups in free solution is ~4.8.26 

Therefore, over the range of pH values studied (pH 3 - 7) the APTMS SAM will 

be fully protonated in the pH range of 3 - 6 and partially protonated at pH 7. The 

citrate passivated Au nanoparticles display COOH moieties on their surfaces and 

therefore the majority of the particles will be deprotonated in the pH range of 5 - 

7. At pH values of 3 and 4 the COOH groups will not be fully deprotonated 

hence, the repulsive electrostatic forces no longer exist between the particles, 

leading to aggregation of the nanoparticles as observed by AFM (Figure 37). 
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The protonated Au nanoparticles do not lend themselves to electrostatic 

attachment to the protonated APTMS SAMs, although hydrogen bonding will 

occur, and hence there is low nanoparticle adsorption at pH values of 3 and 4. 

The maximum adsorption of Au nanoparticles occurs at pH 5, which is due to the 

citrate passivated nanoparticles being negatively charged at this pH and 

therefore binding to the protonated -+NH3 surface. However, at pH 6 and 7 

nanoparticle adsorption is not as high as that observed at pH 5. This observation 

is due to the Au nanoparticle becoming increasingly deprotonated as the pH 

increases, so nanoparticles adsorbed to the APTMS SAM could hinder other 

negatively charged particles from adsorbing to the surface due to electrostatic 

repulsion. 

 

  4.3.2.2. XPS 

 

 In this chapter the AFM is used to probe an area of 5 µm x 5 µm. XPS 

spectroscopy analyses a spot size of approximately 0.5 mm in size and hence, is 

a much more accurate method of determining the structure of a surface. 

However, AFM analysis yields images of the surface. Therefore, the XPS 

analysis presented in this chapter is used to corroborate the AFM data. 

 

 XPS spectra were recorded of APTMS modified Si3N4 substrates after 

immersion in solutions of citrate passivated Au nanoparticles over the pH range 3 

- 7. The Au4f spectra (Figure 39) and Si2p spectra, shown in Appendix B2, 
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were used to calculate the Au/Si ratio in order to determine the relative change of 

nanoparticle adsorption. The Au/Si ratios were used to study the adsorption of Au 

nanoparticles using the Si substrate as an internal standard, assuming that this is 

constant.  
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d) pH = 6
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e) pH = 7
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Figure 39. Au4f XPS spectra of APTMS modified Si3N4 substrates with citrate passivated Au                
     nanoparticles adsorbed at a) pH 3, b) pH 4, c) pH 5, d) pH 6 and e) pH 7. Insets in   
     each image shows the peak fitting.  
 
 



 101 

Table 3. Binding energies of Au4f5/2 and Au4f7/2 peaks for the adsorption of citrate passivated              
   Au nanoparticles on APTMS SAMs at 5 different values of pH. (Also shown is the               
   average binding energy for the Au4f5/2 and Au4f7/2 peaks of bulk Au from the NIST               
   database27) 

Binding energy (eV)  

pH Au4f5/2 Au4f7/2 

3 93.7 95.1 90.2 91.5 

4 93.8 95.6 90.4 91.6 

5 94.8 91.1 

6 93.7 90.1 

7 93.6 89.8 

Bulk Au27 84.0 87.7 

 

 Figure 39 shows the Au4f spectra at each value of pH at which 

nanoparticle adsorption was carried out and shows a maximum Au intensity at 

pH 5 (Figure 39c). A splitting of the Au4f5/2 and Au4f7/2 peaks can be seen at pH 

values of 3 and 4 (Figure 39a and Figure 39b, respectively). However, this peak 

splitting is not evident at higher values of pH. Table 3 shows that both the Au4f5/2 

and Au4f7/2 peaks show an increased binding energy compared to that of bulk Au 

which can be explained by surface charging during the XPS measurement due to 

the substrate, Si3N4, being a poor conductor. During the XPS measurements 

photoelectrons are ejected from the sample resulting in the sample becoming 

slightly positively charged. As the substrate is a poor conductor the surface 

charge cannot dissipate. Therefore, the surface becomes positively charged and 

leads to a shift in the binding energy towards higher values, as greater energy is 

required for a photoelectron to leave the surface.28 
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 Peak splitting has been shown to occur due to charging of the surface.29 

Therefore, the extra positive charge of the surfaces immersed in low pH solutions 

(pH 3 and 4) will have a more positively charged surface than those immersed in 

solutions of higher values of pH (i.e. 5, 6 and 7). Therefore, this extra charging 

may induce peak splitting.  Another factor that could induce peak splitting is the 

presence of nanoparticulate aggregates. These aggregates can be seen 

adsorbed to the APTMS SAMs after the immersion was performed at pH 3 and 4 

(Figure 37a and b) and concur with the splitting of the Au4f peaks in the XPS 

spectra (Figure 39a and b). A possible explanation for the formation of such 

aggregates is that at pH values below 5 the citrate passivants could become 

protonated, hence negating the repulsive force between the nanoparticles. The 

binding energy of discrete Au nanoparticles has been shown to be slightly higher 

(a few eV) than bulk Au.30 The formation of nanoparticulate aggregates may 

result in the presence of 'bulk' Au in the system. Thus, the splitting of the Au4f 

peaks reflects the presence of 'bulk' Au (aggregates) and nanoparticulate Au 

(discrete nanoparticles). 

 

 Figure 40 shows that the maximum Au/Si ratio occurs at pH ~ 5 which 

shows that the maximum nanoparticle adsorption occurs at pH ~ 5. This result 

concurs with the AFM data (Figure 38).  
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Figure 40. Graph showing the Au/Si ratio vs pH of citrate passivated Au nanoparticles adsorbed  

                 onto APTMS modified Si3N4 substrates  

 
 
  4.3.2.3. Mass adsorption measurements 

 

 Initial mass adsorption measurements were made by measuring the 

frequency shift of simple 'flap' type resonators (Figure 41) at three different pH 

values. These devices were excited by mounting the device to a piezoelectric 

chip in an SEM which was connected to a vibrometer. Careful tuning of the drive 

frequency, coupled with real time observation under the SEM, of the piezoelectric 

crystal allowed the resonant frequency to be found once the edge of the flap 

became blurred.  
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a) SEM image of flap resonator

b) Bare resonator c) SAM formed on resonator d) Nanoparticles adsorbed on 
.....resonator

Resonant frequency = FR1 Resonant frequency = FR2 Resonant frequency = FR3

100µm

a) SEM image of flap resonator

b) Bare resonator c) SAM formed on resonator d) Nanoparticles adsorbed on 
.....resonator

Resonant frequency = FR1 Resonant frequency = FR2 Resonant frequency = FR3

100µm

 

Figure 41. a) An SEM image of the 'flap' type resonator and b) - d) the frequencies measured in  

                   order to calculate mass adsorption  

 

 The devices were calculated to have a frequency shift of 590 Hz/10-8g. 

Therefore, this value was used to calculate the masses adsorbed on the 

resonators once the frequency shift was determined. Figure 42 indicates 

maximum nanoparticle adsorption at pH 5, in agreement with the AFM and XPS 

data (Figure 38 and Figure 40 respectively) though the difference in absorbance 

between pH 5 and 6 is not as pronounced as shown in Figure 38 and Figure 40.  
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Figure 42. Graph showing the mass of citrate passivated Au nanoparticles adsorbed on APTMS  

                  modified Si3N4 'flap' resonators vs pH.  

 

   4.4. Conclusions  

 

 The aim of this chapter was to show that the pH dependent adsorption of 

citrate passivated Au nanoparticles can be used as a model system for the 

development of MEMS nanoparticulate mass sensors. The work presented in this 

chapter shows that the degree of adsorption of citrate passivated Au 

nanoparticles to APTMS SAMs, formed on Si3N4 substrates, changes as a 

function of pH. AFM investigations shows that maximum adsorption of 

nanoparticles occurs at pH 5 with nanoparticle aggregation common at pH 3 and 

4 (Figure 37 and Figure 38). XPS investigations show that the Au 4f spectrum 

follows the aggregation of Au nanoparticles by the presence of two distinct peaks 
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(pH 5, 6 and 7) which then split upon aggregation of Au nanoparticles at pH 3 

and 4 (Figure 39). XPS analysis was also used to obtain a graph of the Au/Si 

ratio as a function of pH (Figure 40) which shows that maximum Au nanoparticle 

coverage of an APTMS SAM occurs at pH 5. This result is in agreement with the 

AFM data and provides a model with which to compare the results of mass 

adsorption experiments. The mass adsorption experiments (Figure 41) were 

carried out on chemically modified Si3N4 cantilevers by measuring the resonant 

frequencies of the devices before and after immersion in aqueous solutions of 

citrate passivated Au nanoparticles at different values of pH. The results of the 

mass adsorption experiments (Figure 42) confirmed maximum adsorption of the 

Au nanoparticles at pH 5 which is in good agreement with both the AFM and XPS 

data. Therefore, the nanoparticle / SAM system, studied in this chapter, shows 

potential for use as a proof-of-principle system for the development of a MEMS 

nanoparticle mass sensing device.  

 

   4.5. Future Work 

 

 The work presented in this chapter has shown that simple resonators 

(Figure 41), with a 'flap' type architecture, can be successfully functionalised with 

APTMS SAMs and shown to act as mass-sensing devices. However, the next 

stage of this project will be to use a similar methodology in order to modify 

resonators with a high Q-factor, in order to fabricate highly sensitive mass-

detecting MEMS devices. The Q-factor is a measure of the damping of the 
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oscillation of a MEMS device and relates to energy loss due to friction, from both 

internal and external influences, upon resonance. Resonators with high Q-factors 

exhibit a clear resonance signal that is easily recognisable from the background 

noise.31 A paddle resonator (Figure 43a), fabricated using a FIB and comprising 

of a Si3N4 paddle resonator with a platinum wire around its periphery (Figure 

43b), has been shown to exhibit a high Q-factor.32, 33 Therefore, such a device 

will be chemically modified with APTMS SAMs and used to detect citrate 

passivated Au nanoparticles and the results compared to those presented in this 

chapter. 

a)

1µm

b)

1000nm

1000nm

200nm

100nm

= chemically sensitive surface
= Pt wire

a)

1µm

a)

1µm

b)

1000nm

1000nm

200nm

100nm

= chemically sensitive surface
= Pt wire  

Figure 43.  a) an SEM image of the proposed device for mass detection and b) a cartoon 

        representation of the architecture and dimensions of the proposed device  
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 The use of the paddle resonators to detect gaseous species could be 

performed by modifying the resonators with SAMs other than APTMS. For 

example SAMs of phthalocyanines (Pc) derivatives could be investigated for the 

detection of gaseous NO2, a common pollutant. Previous work by Simpson et 

al.34, 35 has shown that Pc derivatives can be used to detect NO2 by either 

surface plasmon resonance34 or evanescent wave excited fluorescence.35 

Therefore, Pc derivatives could be attached to the paddle resonators in order to 

detect NO2 by mass detection. 

 

   4.6. Experimental 

 

 All chemicals were obtained from Aldrich unless stated. 

 

 4.6.1. Preparation of citrate passivated Au nanoparticles 

 

 An aqueous solution of citrate passivated Au nanoparticles was prepared 

by the method described by Frens36 to yield particles with a diameter of 16 nm.36  

Chloroauric acid (0.01 g, 2.5 mmol) was dissolved in UHQ water (100 ml) and 

heated to reflux. Sodium citrate tribasic dihydrate (0.023 g, 0.15 mol) was added 

to the chloroauric acid solution at reflux.  The system was left at reflux until there 

was no further colour change. The solution was allowed to cool to room 

temperature, centrifuged (at 3500 rpm) and the supernatant retained.  
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 4.6.2. Adsorption studies 

 

  4.6.2.1. Changing the pH of the solutions 

 

 Aqueous solutions of NaOH (1 mM) (Fisher Scientific) and HCl (1 mM) (37 

%, Fisher Scientific) were prepared and used as stock solutions for the pH 

adjustment of the citrate passivated Au nanoparticle solutions. The pH values of 

the solutions were adjusted by adding minimal amounts of the stock solutions to 

citrate passivated Au nanoparticle solution (4 ml) with the use of a micropipette. 

The pH values of the solutions were monitored using a digital pH meter (IQ 

Scientific Instruments). 

 

  4.6.2.2. Adsorption of Au nanoparticles 

 

 The APTMS modified silicon nitride surfaces were immersed in one of the 

pH altered citrate passivated Au nanoparticle solutions for 2 hr and rinsed well 

with UHQ water and dried under a stream of N2(g). 

 

 4.6.3. Characterisation 

 

  4.6.3.1. AFM 

 

 AFM images were obtained using a MultiMode Scanning Probe 

Microscope (Veeco) and the images analysed using Nanoscope III v5.12r 

software. All AFM images were obtained by operating the AFM in non contact 
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mode with the use of RTESP – Tap300 Metrology Probes (Veeco) (nominal 

spring constant = 20 - 80 Nm-1, nominal resonant frequency = 288 - 328 kHz). 

 

  4.6.3.2. XPS 

 

 XPS measurements were performed using a VG ESCALab 250 equipped 

with an Al K x-ray source (1486.68 eV) which was operated at 15 kV. Peak 

fitting and analysis of the data was carried out using Avantage software. 
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CHAPTER 5 

Sticky SAMs for sperm arrays 

The microcontact printing section Chapter 5 (section 5.1) has been published as part of a book chapter 

entitled 'Integrating nanolithography with nanoassembly using soft lithographic methods' in the book 

entitled 'Bottom-up nanofabrication: Supramolecules, Self-Assemblies and Organized Films' (2007) edited 

by K. Ariga and H. S. Nalwa1 and has also been published as part of the review: Diegoli et al Proc. IMechE. 

221 589-629 (2007)2 

 

ABSTRACT: Bioarrays are an approach to high throughput screening of various biological 

species and can be used to investigate the behaviour of a large number of individual cells in a 

parallel fashion.3-5 This work utilises microcontact printing for the fabrication of a bioarray in 

order to immobilize human spermatozoa cells allowing specific sperm cells to be individually 

addressed. Such an array could have an impact in the field of artificial insemination.  

 

   5.1. Introduction 

 

 Nanotechnology promises great advances in medicine, as outlined in 

Chapter 1 (section 1.2.2.). Bioarrays are one of the methods in which much 

research has been carried out to advance the understanding of biomolecular 

interactions. Bioarrays, often referred to as 'microarrays', are patterns of specific 

chemical functionality that allow the specific adsorption of biological species, 

such as proteins6, 7 or cells,8, 9 in order to analyse biological interactions. The 

patterned adsorption of cells also enables specific cells to be addressed and 
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investigated. A variety of patterning methodologies have been employed for the 

fabrication of bioarrays such as photolithography10 and patterning using electron 

beams.11 Soft lithographic methods,12 for example microcontact printing, have 

also been utilized for bioarray fabrication.7, 13 Microcontact printing, introduced in 

Chapter 1 (section 1.3.2.1.ii), will now be discussed in greater detail because it 

is utilised in this chapter for the fabrication of a bioarray. 

 

 5.1.1. Microcontact printing (µcp) 

 

 Microcontact printing is the formation of chemical patterns from a pre-

fabricated master on a substrate via an inked stamp. There are many factors that 

influence the definition and feature size of patterns created by microcontact 

printing and these will be discussed in this section. There are several ways in 

which the stamp itself can distort (Figure 44) all of which significantly affect the 

transferred pattern. Roof collapse (Figure 44b) occurs when the distance 

between features (r) is too large and the height of the features (h) is relatively 

small. This can result in the roof of the stamp collapsing and making conformal 

contact with the substrate that can result in masking of the desired pattern.  

 

 Figure 44c shows the pairing of features that can occur due to 

mechanical instabilities of adjacent features with high aspect ratios (h/w), and 

relatively narrow roofs (r) resulting in interfacial adhesion, due to capillary forces, 

between such features. This feature pairing results in inaccurate replication of the 
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desired pattern upon printing. PDMS has been shown to trap solvent molecules14 

within the polymeric network which results in swelling of the stamp (Figure 44d). 

Therefore, the swelling of the stamp results in inaccurate replication of the 

desired pattern.   
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Figure 44. Cartoon representations of stamp distortions in microcontact printing, a) the   

      dimensions of the original, undistorted stamp, b) roof collapse (inset: optical    

      microscope image from15), c) the pairing of features (inset from16), and d) swelling of   

       stamp 

   

 The process of inking the stamp is a fundamental step in microcontact 

printing, and can also affect the lateral resolution of features formed by 

microcontact printing. A widely used method of inking the stamp is wet inking 

which is the application of the ink solution to the entire patterned surface of the 

stamp and subsequent drying of the stamp to remove excess ink resulting in a 

uniform layer of ink over the entire patterned surface17 (Figure 45a). This method 
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results in the inking of not only the areas of the stamp that will be in contact with 

the substrate, but also of the surfaces of the sidewalls, raised features and roofs 

of the pattern on the stamp. Such indiscriminate inking of the stamp can have a 

deleterious effect on the printed pattern as ink molecules can be transferred from 

the sidewalls and roofs of the stamp to the substrate via vapour phase 

diffusion.18 

 

 A permanently inked stamp19 can be obtained by either using a stamp with 

an inkwell on the back of the stamp (Figure 45b) or by immersing the entire 

stamp in ink solution in order for the entire stamp to be impregnated with ink,20 

and then drying it prior to stamping. Both of these methods (to achieve 

permanent inking) rely on ink diffusion through the bulk of the stamp. As the 

entire stamp is inked the roofs and sidewalls of the raised features are inked and, 

therefore, similar problems to wet inking apply with regard to vapour phase 

diffusion from roofs and sidewalls to the substrate. 

INK WELL

INK PAD

INK DROP

PDMS STAMP

Blow dry                                 Ink diffuses through stamp       Remove stamp from ink pad

a) Wet inking                            b) Permanent inking                                c) Contact inking
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INK PAD

INK DROP

PDMS STAMP

Blow dry                                 Ink diffuses through stamp       Remove stamp from ink pad

a) Wet inking                            b) Permanent inking                                c) Contact inking  

Figure 45. Cartoon representation of three different inking methods of stamps for microcontact  

                 printing, a) Wet inking, b) permanently inked stamp, and c) contact inking.  
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 Contact inking21 involves placing the stamp patterned side down onto an 

ink pad. The ink pad is a featureless block of PDMS that is immersed in ink 

solution then dried. This method of inking allows only the areas in contact with 

the pad to be inked (Figure 45c). As only the areas of the stamp in contact with 

the ink pad are inked the problems of vapour phase diffusion of ink from the side 

walls and roofs to the substrate are negated.  

 

 In order to minimize stamp distortions, due to mechanical instabilities 

associated with soft PDMS, stiff polymers and composite stamps have been the 

subject of much research. When stiffer materials are used they must still be soft 

enough to ensure conformal contact between the stamp and the substrate 

because, if conformal contact is not achieved, poor transfer of the ink can 

result.19, 22, 23 Blends of vinyl-terminated polydimethylsiloxanes with both 

vinylmethylsiloxane-dimethylsiloxane and methylhydrosilane-dimethylsiloxane 

have been investigated by Schmidt et al.23 to produce stiffer stamps. A composite 

stamp was made using these siloxane blends impregnated with glass beads as 

the materials for the patterned face of the stamp, which was supported by a layer 

of 'soft' PDMS attached to a glass back plate. These composite stamps were 

used to produce patterns with sub 100 nm lateral resolution.23 A stiff composite 

PDMS, referred to in the literature as 'material C', is a custom synthesized PDMS 

which is 4 - 5 times harder than the Sylgard 184 due to a higher cross-link 

density. Delamarche et al.22, 24 have used material C to print 120 nm wide lines 

as templates for the formation of sub-micron wires.22 
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   5.2. Aims and objectives 

 

 The aim of the research described in this chapter is to create a bioarray in 

order to immobilize individual human spermatozoa cells in such a way as to 

enable the cells to be individually addressed. This could allow removal of genetic 

material from individual sperm cells or the removal of specific sperm cells for the 

use in artificial insemination techniques. 

  

 The bioarray 'spots' will consist of an -NH2 terminated SAM which, when 

protonated, will present a cationic surface to the surrounding environment. The 

sperm head consists of fatty acids,25 which present anionic carboxylate terminal 

groups. The resultant electrostatic attraction between the sperm head and the     

-+NH3 terminated array will result in the immobilization of the sperm cells on the 

bioarray (Figure 46). 

SUBSTRATE

NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2


NH3


NH3


NH3


NH3


NH3


NH3


NH3


NH3

SUBSTRATE


NH3


NH3


NH3


NH3


NH3


NH3


NH3


NH3

SUBSTRATE

O

O

a) Amino terminated SAM b) Protonated SAM

H+
Expose to 
sperm cells

c) Electrostatic attachment of sperm cell

SUBSTRATE

NH2 NH2NH2NH2 NH2NH2 NH2 NH2NH2NH2 NH2NH2 NH2 NH2NH2NH2 NH2NH2 NH2 NH2NH2NH2 NH2NH2


NH3


NH3


NH3


NH3


NH3


NH3


NH3


NH3

SUBSTRATE


NH3


NH3


NH3


NH3


NH3


NH3


NH3


NH3

SUBSTRATE

O

O

a) Amino terminated SAM b) Protonated SAM

H+
Expose to 
sperm cells

c) Electrostatic attachment of sperm cell  

Figure 46. Interaction between a sperm cell and -NH2 terminated SAM  

 
 The approach to forming the array is to microcontact print 2-

aminoethanethiol (AET) in order to fabricate an array of -NH2 terminated dots 
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(Figure 47). The patterned array of dots will allow the preferential adsorption of 

sperm cells to the dots using the electrostatic interaction described in Figure 46. 
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Figure 47. Approach to the formation of a bioarray 

 

   5.3. Results and discussion 

 

 5.3.1. Array design 

 

 A typical sperm consists of a head and tail. The head is roughly elliptical 

with dimension 2 µm x 1 µm and the tail 30 µm long. Thus, to surface immobilize 

individual sperm cells an array of circular dots (2 µm in diameter) separated by 

55 µm on a square grid was formulated (Figure 48). Therefore, in principle only 

one head group can be attached to one dot, which negates crowding of the tails. 
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Figure 48. Design of the array pattern 

  

 5.3.2. Array formation 

 

  5.3.2.1 Pattern transfer from master to stamp 

 

 A photomask, Cr on glass (purchased from Delta Mask VOF, The 

Netherlands) was used in combination with standard photolithographic 

techniques in order to create a patterned master. The master consists of holes, 

etched into a resist, on a Si substrate (Figure 49). 
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Figure 49. a) Optical micrograph of master bearing the array pattern. b) an AFM image of 4 dots    

       of the array pattern and c) cross section of two dots (as indicated by the dotted blue   

        line on Figure 49b)  

 

 PDMS was cast against the master (depicted in Figure 49), cured and 

then peeled from the master in order to fabricate the stamp. The optical system 

of the AFM was used to investigate the surface of the stamp and it was found 

that the pattern consists of a square array of circular dots 55 µm apart (Figure 

50). Therefore, the array pattern was successfully transferred from the master to 

the stamp. 



 124 

55µm

0                          100                         200      300                         400             µm

400

300

200

100

0

55µm55µm

0                          100                         200      300                         400             µm

400

300

200

100

0

 

Figure 50. Optical micrograph of a PDMS stamp cast against an array patterned master 

 

  5.3.2.2. Pattern transfer from stamp to substrate 

 

   Microcontact printing of AET on Au 

 

 In order to form the desired bioarray, AET was microcontact printed onto 

Au substrates. However, AFM imaging (Figure 51) reveals no transfer of the 

array pattern from the PDMS stamp to the Au substrate, which may have been 

the result of AET not transferring well from the stamp to the substrate. Poor 

transfer of AET from the stamp to the substrate may be due to AET being such a 

small molecule which could diffuse into the stamp rather than remaining on the 

surface of the stamp. Thus, a system was investigated in which transfer is known 

and this is the microcontact printing of long chain alkanethiols on Au.26-28 
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Figure 51. AFM image of AET microcontact printed onto Au 

 

   Microcontact printing of dodecanethiol (DDT) on Au 

 

  Microcontact printing of DDT followed by etching 

 

 Microcontact printing of the array pattern was carried out by applying 

dodecanethiol (DDT) ink (1 µM in EtOH) to a patterned PDMS stamp by wet 

inking using a cotton Q-tip. The inked PDMS stamp was then brought into 

conformal contact with the Au substrate and left for 1 min. Again, no pattern 

transfer was observed. However, this may have been due to the small height 

contrast of the patterned DDT SAM. Therefore, the printed substrate was 

immersed for 7 - 8 min in an etching solution in order to develop the pattern by 

the removal of the areas of bare Au. The etching solution used was a cyanide 

etchant developed by Xia et al.29  
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 As can be seen in Figure 52 the array pattern still could not be seen even 

after immersion in the cyanide etchant. This failure of pattern transfer could be 

due to roof collapse of the stamp (Figure 44b) upon printing30 given the large 

aspect ratio of the gap in between features compared to the feature size. The 

feature sizes are 2 µm diameter circular dots that are 55 µm apart. 

100 µm100 µm
 

Figure 52. Optical micrograph of Au substrate after microcontact printing of the array pattern  

                  

  'Submerged' microcontact printing 

 

 Bessueille et al.15 have shown that the problem of roof collapse can be 

overcome by performing the microcontact printing operation under water. This 

variation of the basic microcontact printing technique is known as 'submerged' 

microcontact printing (sµCP)15 and overcomes the problem of roof collapse of the 

PDMS stamp due to the presence of an incompressible liquid (Figure 53). It has 

been shown that PDMS stamps displaying features with aspect ratios (r/w) up to 

100:1 have been successfully used for microcontact printing.15 
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Figure 53. Cartoon of a) a PDMS stamp undergoing roof collapse during b) a 'conventional'  

                  microcontact printing process whilst being stable during c) a 'submerged' microcontact  

                  printing process  

 

 The array pattern was printed onto Au substrates, again using DDT as ink 

and a contact time of 1min with the printing operation performed under ~1 cm 

depth of UHQ H2O. After subsequent etching, using a cyanide etch,29 the array 

pattern was shown to be successfully transferred from the stamp to the Au 

substrate (Figure 54). 
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Figure 54. a) Optical micrograph of the array pattern successfully transferred using submerged  

                  microcontact printing. b) AFM image of 4 dots in the array and c) cross section of 2  

      dots (as indicated by dotted blue line on Figure 54b)  

 
 5.3.3. The functionalization of Au islands 

 

 The sequential use of submerged microcontact printing and etching has 

been shown to fabricate an array of Au islands passivated with DDT SAMs 

(Figure 54). The removal/exchange of the DDT SAM could allow the modification 

of the resultant (unpassivated) Au islands to be modified with alkanethiol SAMs 

by self-assembly from the solution phase. Thus, such a methodology (Figure 55) 
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was investigated in order to form the bioarray for the patterned immobilization of 

sperm cells. 
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Figure 55. Schematic outline of the methodology for bioarray fabrication using Au islands. 
 
  

  5.3.3.1. Removal of DDT SAMs and AET functionalization of Au  

      substrates 

 

 XPS analysis was used to investigate the removal of unpatterned DDT 

SAMs from Au substrates. These experiments were carried out by immersing 

clean Au/glass substrates into DDT solution (1 µM in EtOH) for 24 hr. After 

immersion the DDT SAMs were immersed in piranha solution, which was left to 

cool to room temperature after preparation, for 10 min. After removal from 
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piranha solution the substrates were rinsed well with UHQ H2O then immersed in 

AET solution (1 µM in EtOH) for 24 hr. 

 

 XPS spectra indicate the removal of DDT from the Au/glass substrate 

upon immersion in piranha solution due to a decrease in the counts of both the 

doublet at ~ 159 eV and ~157 eV, in the S2p spectra (comparing Figure 56a(i) 

and Figure 56a(ii)), and the peak, at ~281 eV, in the C1s spectra (Figure 56b(i) 

and Figure 56b(ii)).  

 

 Upon immersion of substrates, from which DDT SAMs were removed, into 

AET solution the doublet peak at ~159 eV and ~157 eV reappears (Figure 56a) 

indicating the adsorption of a species containing S on the surface. The peak at 

~280 eV in the C1s spectrum (Figure 56b) indicates the increase of the amount 

of C on the surface. The appearance of a peak at ~397 eV in the N1s spectrum 

(Figure 57(ii)) indicates the presence of a species containing N adsorbed on the 

surface. The presence of both groups containing S and N on the surface, 

coupled with an increase in the C1s peak, indicates the successful adsorption of 

AET on the substrate indicating successful functionalization of the Au substrate 

after removal of a DDT SAM using piranha solution. 
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Figure 56. a) S2p XPS spectra and b) C1s XPS spectra of DDT SAM, DDT SAM after immersion   
       in piranha solution and Au substrates (after removal of DDT SAM) in AET solution  
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Figure 57. N1s XPS spectra of DDT SAM and that of immersion of Au substrates (after removal   
      of DDT) in AET solution 
 

  5.3.3.2. Stability of Au islands 

 

 The submerged microcontact printing and etching process, described in 

section 5.3.2.2., was carried out and the pattern subsequently immersed in 

piranha solution at room temperature for 10 min. This process was carried out in 

order to investigate the stability of the Au islands in piranha solution which 

needed to be assessed in order to facilitate the subsequent functionalization of 

the islands with alkanethiols. Optical microscopy and AFM images were obtained 

of Au islands, passivated with DDT, before and after immersion in piranha 

solution (Figure 58). It can be seen that the Au islands are present both before 

and after immersion in piranha solution and this shows that the Au islands are 

stable in piranha solution. Thus, this observation allows the possible further 

functionalization of the Au islands with alkanethiols.  
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Figure 58. a) Optical and b) AFM images of DDT passivated Au islands before immersion in   
      piranha solution. c) Optical and d) AFM images of Au islands after immersion in   
      piranha solution  
 
  

 5.3.4. Characterisation of amino terminated SAMs on Au 

 

 In order to assess the stability of the sperm cells to -NH2 terminated 

surfaces experiments were first carried out on non-patterned surfaces.Two -NH2 

terminated thiolated surfactants were investigated for their use as immobilization 

platforms for sperm adsorption. These surfactants were 2-aminoethanethiol 

(AET) (Figure 59a) and the polypeptide CL3K4 (Figure 59b).  
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a) Aminoethanethiol (AET)

b) CL3K4

cysteine (C) leucine (L) lysine (K)

a) Aminoethanethiol (AET)

b) CL3K4

cysteine (C) leucine (L) lysine (K)

 

Figure 59. Structures of a) 2-aminoethanethiol (AET) and b) the polypeptide CL3K4 (where the  

                   cysteine, leucine and lysine residues are indicated)  

 
 The polypeptide consists of a cysteine residue, three leucine residue and 

four lysine residues (CL3K4). The rationale behind using this polypeptide was to 

terminate the molecule with a cysteine residue. Thus, providing a -SH group to 

facilitate binding to the Au substrate. The lysine residues provide -NH2 groups to 

facilitate immobilization of the sperm cells to the modified surfaces. The leucine 

backbone provides a hydrocarbon chain to increase the van der Waals 

intermolecular interactions between adjacent polypeptide molecules on the 

surface,31 thus encouraging the formation of a dense SAM.  

 

 

 

 

 

 

 



 135 

  5.3.4.1. AET 

 

   Contact angle 

 

 Contact angle data shows that Au substrates, immersed in AET solution  

(1 µM in EtOH), become significantly more hydrophilic after an immersion time of 

1200 min (Figure 60). This is due to the AET molecules displacing volatile 

organic compounds, which adsorb to the Au upon exposure of the clean 

substrate to air and replace them, forming a much more hydrophilic -NH2 

terminated surface. By comparing the contact angle data with the literature value 

of AET SAMs on Au, which is of the range 20 - 40 °,32 it can be seen that 

complete AET SAM formation occurs after 1200 min immersion. 
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Figure 60. Contact angle analysis of immersion of Au substrates immersed in AET solution  

                 (1 µM in EtOH)  
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   Ellipsometry 

 

 Ellipsometric data is not presented for AET because the error for each 

individual measurement was greater than ellipsometric thickness obtained for 

each reading. Therefore, the ellipsometric measurements were unreliable. The 

fact that unreliable ellipsometric data were obtained could be due to the fact that 

AET is a very short molecule (~0.4 nm) meaning that is could be 'masked' by the 

roughness of the underlying Au substrate (~1.8 nm).  

 

   XPS 

 

 XPS was used to track the N/Au ratio of Au surfaces immersed in AET 

solution (1 µM in EtOH) (Figure 61) and it can be seen that the N/Au ratio 

increases as a function of immersion time. Figure 61 indicates that the highest 

density of AET coverage of the substrate occurs after 1200 min immersion of the 

Au substrate in AET solution, which is consistent with the contact angle data 

(Figure 60).  
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Figure 61. Ratio of N1s and Au4f XPS peaks of AET adsorbed on Au surfaces as a function of  

                   immersion time of Au in AET solution (1 µM in EtOH) 

 

 In summary, the contact angle of Au substrates after immersion for 1200 

mins (23.3 °+ 1.7 °) in ethanolic AET solution (1 µM) is comparable to that in the 

literature (20 - 40 °)32 and the N/Au ratio, as determined by XPS, appears to level 

out at 1200 mins. These results indicate formation of AET SAMs on Au after 

1200 min immersion in ethanolic AET solution (1 µM). However, it was not 

possible to obtain ellipsometric data for this system given that the AET molecule 

is shorter than the RMS roughness of the underlying Au. Therefore, it is not 

possible to determine whether monomolecular coverage of AET on Au sybstrates 

has been obtained. 
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  5.3.4.2. CL3K4 

 

   Contact angle 

 

 Contact angle data of Au substrates immersed in CL3K4 solutions (1 µM in 

EtOH) for various immersion times (Figure 62) shows that the contact angle 

increases to an advancing angle of 102.3 + 1.1 ° after an immersion time of 1200 

min. The literature value for the contact angle of poly-l-lysine, supported on a 

metallic substrate, varies from 51 - 72 º.33 Therefore, a contact angle of 102.3 + 

1.1 ° of the CL3K4 modified Au substrate indicates a significantly higher contact 

angle than that reported in the literature. Such an obervation may be due to the 

exposure of hydrophobic leucine groups at the surface, rather than hydrophillic 

lysine groups. 
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Figure 62. Contact angle analysis of Au substrates after immersion in CL3K4 solution (1 µM  

                  in EtOH)  
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    Ellipsometry 

 

 The ellipsometric thicknesses of CL3K4 modified Au substrates was 

measured for different immersion times of Au substrates immersed in CL3K4 

solution (1 µM in EtOH) as shown in Figure 63. It can be seen that the 

ellipsometric thickness increases for immersion times up to 1200 min (Figure 

63). The length of a fully extended CL3K4 molecule is ~2.7 nm from the S atom to 

the N atom of the -NH2 group furthest from the S atom. Therefore, after 1200 min 

immersion the ellipsometric thickness is significantly less than that of a fully 

extended CL3K4 molecule. Thus, this thickness measurement indicates that 

either i) the CL3K4 molecules on the Au surface are not fully elongated, ii) the Au 

substrate is not fully covered by CL3K4 molecules or iii) the immobilized CL3K4 

molecules are tilted. 

2.5

2.0

1.5

1.0

0.5

0
1                           5                 15                        60                       240  720                      960                1200

Immersion time (min)

E
llip

so
m

et
ric

 th
ic

kn
es

s 
(n

m
)

2.5

2.0

1.5

1.0

0.5

0
1                           5                 15                        60                       240  720                      960                1200

Immersion time (min)

E
llip

so
m

et
ric

 th
ic

kn
es

s 
(n

m
)

 

Figure 63. Graph showing the ellipsometric thickness of CL3K4 SAMs after immersion of Au  

                  substrates in CL3K4 solutions (1 µM in EtOH) for various immersion times 
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   XPS  

 

 XPS spectra confirm that C, N, O and S are present on the Au substrate 

after an immersion time of 1200 min. 

 

Figure 64. XPS survey spectrum of Au substrate immersed in CL3K4 solution (1µM in EtOH)  

                  for 1200 min  

  

 In summary, the contact angle of Au substrates immersed in ethanolic 

CL3K4 solution (1µM) for 1200 min is 102.3 + 1.1 ° with an ellipsometric thickness 

of 1.9 + 0.3 nm. XPS analysis of Au substrates immersed in ethanolic CL3K4 

solution for 1200 min confirms the presence of sulphur which indicates the 

attachment of CL3K4 to the Au substrate. A combination of a high contact angle 

and a low ellipsometric thickness, in comparison to a fully extended CL3K4 

molecule, suggests that the CL3K4 molecules on the surface may be bent, thus 

exposing hydrophobic leucine groups to the surrounding environment. 
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  5.3.4.3. Sperm adsorption experiments on unpatterned SAMs 

 

 Sperm adsorption experiments were carried out on unpatterned SAMs of 

either AET or Cl3K4 by placing the modified Au/glass substrate in a flow cell 

(Figure 65a and b). Earle's balanced salt solution (EBSS), containing sperm 

cells, was injected into the flow cell and the flow cell was then incubated at 37 °C 

for 25 min under a 5 % CO2 atmosphere (Figure 65c). The flow cell was then 

placed under an optical microscope (Figure 65a) and EBSS was pumped 

through the flow cell in order to remove unattached sperm cells from the SAM 

(Figure 65d). 

SAM 

Rinse with EBSSUnattached sperm removed

Attached sperm remain on SAM

a) Setup of microscope

b) SAM placed in flow cell

c) Sperm injected in to flow cell

d) Flow cell flushed with saline solution

SAM 

Rinse with EBSSUnattached sperm removed

Attached sperm remain on SAM

a) Setup of microscope

b) SAM placed in flow cell

c) Sperm injected in to flow cell

d) Flow cell flushed with saline solution

 

Figure 65. a) Photograph showing the setup of the flow cell and microscope and cartoon        
      representation of sperm adsorption experiments. b) SAM placed in flow cell, c)   
      sperm injected into flow cell and incubated, d) flow cell flushed with EBSS 
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 Immobilization of sperm cells on Au substrates modified with either AET or 

CL3K4 was investigated by placing the substrates in a flow cell containing sperm 

cells. EBS solution was then passed through the flow cell in order to wash off any 

sperm that were unattached to the substrate. This method is described in 

section 5.6.3. and optical microscope images from these experiments are shown 

in Figure 66. Sperm adsorption experiments were also performed on bare Au 

substrates and optical microscope images of these can be seen in Appendix C. 

a) AET b) CL3K4

c) Bare Au

a) AET b) CL3K4

c) Bare Au

 

Figure 66. Optical images showing the degree of sperm adhesion on Au substrates modified by  

       immersion in solutions of a) AET, b) CL3K4 and, c) bare Au after flowing EBS through   

       the flow cell 
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 Sperm adsorption studies (Figure 66) indicate that there is little, or no, 

sperm adsorption to either AET or CL3K4 SAMs. These results show that neither 

AET nor CL3K4 can be used to chemically functionalise the Au islands (see 

Figure 55) in order to create a functional bioarray for the immobilization of sperm 

cells. Therefore, a different methodology to forming the array was utilised by 

using poly-l-lysine and the results are described in the next section. 

 

 5.3.5. Pattern formation using poly-l-lysine 

 

 Poly-l-lysine has previously been used to facilitate sperm adsorption.34 

Therefore, the submerged microcontact printing of poly-l-lysine onto glass 

microscope slides was investigated as a method of fabricating the bioarrays in 

order to facilitate the sperm array (Figure 67). The submerged microcontact 

printing of poly-l-lysine was performed under heptane due to poly-l-lysine being 

soluble in H2O. 

µcp poly-l-lysine

Expose to sperm cells

poly-l-lysine dots

a) Glass substrate b) Array of poly-l-lysine dots 

c) Sperm cells adsorbed on poly-l-lysine dots

Sperm cells

µcp poly-l-lysine

Expose to sperm cells

poly-l-lysine dots

a) Glass substrate b) Array of poly-l-lysine dots 

c) Sperm cells adsorbed on poly-l-lysine dots

Sperm cells

 

Figure 67. Microcontact printing of poly-l-lysine for formation of bioarray  
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 Sperm adsorption experiments (Figure 65) were performed on both bare 

glass slides and on unpatterned poly-l-lysine modified glass slides (Figure 68). 

The experiment show that the sperm adsorption to bare glass slides (Figure 68a 

and b) is poor due to most of the sperm cells removed upon washing EBS 

through the flow cell. Sperm adsorption experiments were also performed on 

glass slides modified by applying drops of poly-l-lysine solution to the glass slide 

and allowing it to air dry. These experiments show that the glass slides modified 

with, poly-l-lysine, exhibit a greater capacity to immobilise sperm cells than both 

bare glass slides (Figure 68a and b) and the two thiols studied in this chapter 

(Figure 66). Videos taken from these experiments can be found on the CD 

attached to this thesis (see Appendix C1). 

c) Unpatterned poly-l-lysine before washing d) Unpatterned poly-l-lysine after washing

a) Bare glass slide before washing b) Bare glass slide after washing

c) Unpatterned poly-l-lysine before washing d) Unpatterned poly-l-lysine after washingc) Unpatterned poly-l-lysine before washing d) Unpatterned poly-l-lysine after washing

a) Bare glass slide before washing b) Bare glass slide after washinga) Bare glass slide before washing b) Bare glass slide after washing

 

Figure 68. Optical microscope images of sperm adsorption experiments performed on bare glass 
       substrates, a) and b), and glass substrates modified with poly-l-lysine (unpatterned),   
       c) and d) before and after washing with EBS 
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 Optical microscope images of sperm adsorption experiments carried out 

on glass slides after the submerged microcontact printing of poly-l-lysine are 

shown in Figure 69. The PDMS stamp used for the submerged microcontact 

printing was peeled from a silicon master exhibiting an array pattern of 2 µm 

diameter dots which are 55 µm apart (see Figure 49).  

a) PLL sµcp: no wash b) PLL sµcp: 1.5ml wash 

c) PLL sµcp: 4ml wash

a) PLL sµcp: no wash b) PLL sµcp: 1.5ml wash 

c) PLL sµcp: 4ml wash

 

Figure 69. Optical images of sperm adsorption experiments performed on array pattern after   
       sµcp of poly-l-lysine on a glass microscope slide (red square indicated array of   
       sperm cells) after a) before washing and after washing b) 1.5ml and c) 4ml of EBS   
       through the flow cell 
 
 Figure 69 suggests that the array pattern may have been successfully 

transferred to the glass slide given that the 'square' array of sperm cells (as 

indicated by the red square in Figure 69a) is still evident after washing the 

surface with either 1.5 ml (Figure 69b) or 4 ml (Figure 69c) of EBSS. Individual 
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sperm cells can be seen rotating around a single spot on the surface as if 

tethered to a single point which could be a poly-l-lysine dot. This observation can 

be seen in the file 'Movie 3 (PLLdots).avi' located on the CD attached to this 

thesis. However, the microcontact printing of poly-l-lysine does result in a surface 

which facilitates the non-specific binding of discrete sperm cells (Figure 69). This 

observation may be due to the sperm cells attaching to secondary species, such 

as antibodies, which may be present in the donated sperm sample. Such 

secondary species may attach to the unpatterned areas of the glass slide and 

mask the printed array pattern. The microcontact printing poly-l-lysine surface 

(Figure 69) also shows much better sperm immobilisation than glass slides 

modified with unpatterned poly-l-lysine (Figure 68c and d). This observation may 

indicate that the unpatterned poly-l-lysine glass slide, prepared by simply 

dropping poly-l-lysine onto the surface and allowing it to dry, may not be the ideal 

control to use for this system. A better control would have been to use a 

featureless PDMS stamp to print an unpatterned surface of poly-l-lysine onto the 

glass slide. 

 
   5.4. Conclusions 

 

 The aim of the work presented in this chapter was to form a bioarray on a 

Au coated microscope slide via the microcontact printing of an array pattern of 

AET onto a Au glass substrate. No AET pattern transfer of the array pattern from 

the PDMS stamp could be seen on the Au/glass substrate by AFM imaging 

(Figure 51). Therefore, the pattern transfer was investigated by microcontact 
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printing DDT onto Au/glass substrates, a well studied system. AFM indicated no 

pattern transfer of the array pattern using DDT. Therefore, the Au/glass 

substrate, on which the pattern was printed, was immersed in a cyanide etchant, 

in order to remove the unprotected Au, and still no pattern could be seen by AFM 

(Figure 52). This observation was shown to be due to roof collapse of the stamp 

due to the pattern being visible by AFM (Figure 54) after using submerged 

microcontact printing of DDT on the Au/glass substrate and subsequent etching 

of the substrate to develop the pattern. The formation of DDT passivated Au 

'islands', formed by printing the array pattern using DDT and then subsequent 

etching, then opened up the possibility of an alternative methodology for 

fabricating the bioarray. This alternative approach was to form the DDT 

passivated Au islands and then remove the DDT passivating layer, from the 

islands, and forming AET SAMs on the exposed Au (Figure 55). This method 

was shown to be viable by XPS analysis confirming the removal of unpatterned 

SAMs of DDT formed on Au/glass substrates (Figure 56) upon immersion of 

DDT SAMs in piranha solution. XPS was also used to confirm the subsequent 

adsorption of AET on the Au surface exposed by the removal of DDT SAMs 

(Figure 57).  The Au islands were also been shown to be stable upon their 

immersion in piranha solution (Figure 58). Therefore, such a methodology 

looked promising for the construction of a bioarray by forming AET SAMs on 

unpassivated Au islands.  
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 SAMs of both AET and CL3K4 (a polypeptide) were characterised by 

contact angle, XPS and, in the case of CL3K4, ellipsometry. The characterisation 

confirmed the formation of SAMs of both AET and CL3K4 on Au surfaces after 

immersion of Au substrates in solution of the respective thiol for 20 hr. However, 

sperm adsorption experiments, performed on SAMs of both AET and CL3K4, 

showed that neither of these SAMs were suitable to immobilise sperm cells 

(Figure 66). Therefore, neither AET nor CL3K4 are suitable for the passivation of 

Au islands in order to form the bioarray for sperm immobilization.  

 

 Therefore, poly-l-lysine was used to modify glass substrates in order to 

form the bioarray. Sperm adsorption experiments showed that unpatterned poly-

l-lysine modified glass substrates immobilized sperm cells (Figure 68). Poly-l-

lysine was patterned onto glass substrates using submerged microcontact 

printing and subsequent sperm adsorption experiments indicated that the array 

pattern was successfully transferred to the glass substrate. The sperm 

adsorption experiments showed areas of sperm cells which replicated the array 

pattern (Figure 69). However, non-specific adsorption of the sperm cells to the 

glass substrate masked the pattern. the work presented in this chapter has 

shown that the microcontact printing of poly-l-lysine on glass microscope slides 

can be used to fabricate a surface to which sperm cells can be immobilised in 

such a way that individual sperm cells can be individually addressed which could 

have applications in the area of artificial insemination.  
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   5.5. Future work 

  

 The work carried presented in this chapter has shown that Au islands, 

defined by the submerged microcontact printing of DDT on Au/glass substrates 

and subsequent etching, are stable to the removal of the DDT passivant upon 

immersion in piranha solution. Therefore, the immersion of these islands in a thiol 

solution could provide an interesting route in to fabricate Au islands of a desired 

functionality using thiols with specifically functionalised head groups. This 

approach could provide templates for further bottom-up nanofabrication 

methodologies.  

 

 This work has shown the ability to capture individual sperm cells with the 

use of a bioarray. The next step will be to successfully release the desired sperm 

cell from the array without damaging it. One approach might be to briefly, and 

locally, change the pH of the environment surrounding the desired cell which 

would cause the protonated -NH3
+ surface, immobilising the sperm cell, to 

deprotonate thus, releasing the sperm cell. 

 

   5.6. Experimental 

 

 All chemicals were obtained from Aldrich unless stated. 
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 5.6.1. SAMs 

 

   5.6.1.1. Preparation of Au substrates 

 

Glass coverslips (22 x 50 mm, BDH - Cat. No: 406/0188/44) were cleaned 

by immersion in piranha solution (70 % H2SO4 (98 %):30 % H2O2 (30 %)) for 30 

min at room temperature. The coverslips were then removed from the piranha 

solution then rinsed well with UHQ H2O (resistivity = 18 MΩcm) and stored in 

UHQ H2O until use. 

 

A thermal evaporator (Edwards Auto 306) was used to evaporate Cr,        

~ 5 nm thickness onto clean glass coverslips (22 x 50 mm, BDH - Cat. No: 

406/0188/44) in order to facilitate subsequent Au adhesion to the glass. Au was 

subsequently evaporated onto the Cr layer. The thickness of the Au layer was 

either ~20 nm thick, in order to allow light to pass through the film for optical 

microscopy for sperm adsorption experiments, or ~100 nm, in order to fabricate 

films reflective to light in the wavelength range 280 - 800 nm allowing 

ellipsometric measurements to be performed. 

 

  5.6.1.2. Cleaning of Au substrates 

 

Au substrates were immersed in piranha solution (70 % H2SO4 (98 %, 

Fisher Scientific):30 % H2O2 (30 %, Fisher Scientific) for 10 min at room 
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temperature. The samples were then rinsed with UHQ water and EtOH (Fisher 

Scientific, HPLC grade) and used ‘wet’, for immersion in surfactant solution, or 

dried under a stream of N2(g), for microcontact printing. 

 

  5.6.1.3. Preparation of surfactant solutions 

 

Surfactant solutions were prepared by diluting the respective surfactant in 

EtOH (HPLC grade) in a 250 ml Duran flask and swirled by hand before 

immersion of the flask in a sonic bath for 10 min. The solutions were stored at 

ambient temperature in the Duran flask until use. 

 

  5.6.1.4. Preparation of SAMs 

 

 SAMs of thiols on Au were prepared by immersing a clean Au substrate in 

a specified surfactant solution (~25 ml) in a glass Petri dish which was then 

covered and left for the desired immersion time. After removal from the solution 

the substrate was rinsed in EtOH (~100 ml, HPLC grade) and dried under a 

stream of N2(g). 2-aminoethanethiol (AET) was used as received and CL3K4 (Alta 

Bioscience) was purified by a colleague using preparative RP-HPLC 

(Phenomenex), C18 with 250 mm  21.2 mm ID and 10 m pore size. Crude 

CL3K4 (20 mg) was dissolved with 700 l water and injected onto a column using 

MeCN/H2O (in a ratio of 3:7) plus 0.05% TFA as an elution solvent at a flow rate 

of 10 ml/min. Pure CL3K4 was obtained after a retention time of 4.9 min. 
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  5.6.1.5. Removal of DDT SAMs from Au substrates 

 

 DDT SAMs were removed from Au substrates by the immersion of DDT 

SAMs, formed on Au/glass substrates, in piranha solution (70 % H2SO4 (98 %, 

Fisher Scientific):30 % H2O2 (30 %, Fisher Scientific) for 10min at room 

temperature. The Au/glass substrates were then rinsed with UHQ water and 

dried under a stream of N2(g). 

 

  5.6.1.6. Preparation of glass slides coated with poly-l-lysine 

 

 Glass  microscope slides were cleaned by rinsing with acetone and then 

immersed in EtOH in a sonic bath for 10 min. The slide was then dried using 

N2(g) and then poly-l-lysine solution (~4 ml, 0.01 wt%)was applied to the slide in 

order as to just cover the surface. The slide was then allowed to dry under 

ambient laboratory conditions. 

 

 5.6.2. Microcontact printing 

 

  5.6.2.1. Stamp preparation 

 

 A photolithographically defined master, of a resist on a Si wafer, was 

cleaned by rinsing with copious amount of UHQ water then drying under a 

stream of N2(g).  
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 Sylgard 184 silicone elastomer (Dow Corning) was prepared by vigorously 

stirring, by hand, Sylgard 184 parts A and B (in a 10:1 ratio) with a wooden 

stirring stick in a plastic cup for 10 min.  The liquid polymer was poured over the 

clean master in a plastic Petri dish and left to stand under ambient conditions for 

90 min in order for the liquid polymer to degas. The Petri dish, containing the 

master and liquid polymer mixture, was then put into an oven and cured at 65 °C 

for 90 min. The cured polymer was then peeled away from the master and 

trimmed, using a scalpel, to form stamps of about 1 cm x 1 cm in size. The stamp 

was then cleaned by rinsing with EtOH (~100 ml, HPLC grade), heptane (~100 

ml, HPLC grade) then, again, with EtOH (~100 ml, HPLC grade) and dried under 

a stream of N2(g). 

 

  5.6.2.2. Printing - 'conventional' microcontact printing 

 

 A clean silicone stamp, fabricated as described in section 3.6.2.1., was 

inked by soaking a cotton bud (or Q-tip) in a surfactant ink solution then brushed 

over the patterned surface of the stamp several times. The stamp was then dried 

under a stream of N2(g) and placed, inked side down, on a clean Au substrate, 

cleaned as described in section 3.6.1.2. Light hand pressure was used to ensure 

that the stamp made conformal contact with the substrate. After the desired 

printing time, the inked stamp was then removed from the Au substrate which 

was then rinsed with EtOH (~100 ml, HPLC grade) then dried under a stream of 

N2(g). 
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  5.6.2.3. Printing - 'submerged' µcp 

 

 The protocol for submerged printing technique was the same as that 

described in section 5.6.2.2. for 'conventional' µcp, with the exception that the 

clean Au substrate was placed in a glass Petri dish containing enough UHQ 

water to completely submerge the stamp when on top of the substrate. The inked 

stamp was then placed on the submerged Au substrate using light hand pressure 

to ensure conformal contact between the stamp and the Au substrate. The stamp 

was left in contact with the substrate for the desired printing time before being 

removed from the substrate which was then rinsed with EtOH (~100 ml, HPLC 

grade) and dried under a stream of N2(g). For the submerged contact printing of 

poly-l-lysine arrays heptane, rather than UHQ H2O, as a printing medium due to 

the poly-l-lysine being soluble in H2O. 

 

  5.6.2.4. Etching of microcontact printed pattern 

 

The cyanide etchant, as described in reference29, consisted of KOH (5.6 g, 

1.0 M, Fisher Scientific), K2S2O3 (1.9 g, 0.1 M), K3FeIII(CN)6 (0.34 g, 10 mM) and 

K4FeIV(CN)6 (0.038 g, 1 mM) which were weighed out into glass vials and 

transferred to a 400 ml glass crystallization basin and the vials rinsed with 100 ml 

UHQ H2O (resistivity = 18 MΩcm) and the washing placed in the crystallization 

basin. The solution was then placed in a sonic bath and sonicated for 20 min to 

ensure complete mixing of the components. The Au substrates were then placed 
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in the etchant about 8 min with the basin being swirled by hand approximately 

every 2 min. The substrates were then rinsed with UHQ H2O and blown dry 

under a stream of N2(g). 

 

 5.6.3. Sperm adhesion experiments 

 

Au substrates, modified with a given surfactant solution, were placed in a 

flow cell and incubated in a suspension of sperm cells in Earle’s balanced salt 

(EBS) solution  at 37 °C for 20 - 25 min in a 5% CO2 atmosphere. Earle’s 

balanced salt solution is made up of NaCl (116.4 mM), KCl (5.4 mM), CaCl2 (1.8 

mM), MgCl2 (1 mM), glucose (5.5 mM), NaHCO3 (25 mm), Na pyruvate (2.5 mM), 

Na lactate (19 mm), MgSO4 (0.81 mM); also BSA at 0.3 % w/v. pH: 7.4. Each 

flow cell was connected to syringe filled with EBS soltuion, and EBS solution was 

then pumped through the cell at about 0.5 ml.min-1. This was used to move the 

sperm cells which were not bound to the surface of the slides. The flow cell 

experiments were conducted at a temperature of 26 - 27 °C and at a relative 

humidity at 44 - 46 %. 
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CHAPTER 6 

Formation of sub-micron fibres from aqueous PEO/Au 

nanoparticle composite solutions via electrospinning 

 

The work presented in Chapter 6 has been published in the following research article: Hamlett et al. 

Tetrahedron 64 8476-8483 (2008).1 

 

ABSTRACT: Electrospinning is a method used for the formation of polymeric fibres and relies 

on repulsive electrostatic forces on the surfaces of a polymeric solution held in a metallic syringe 

(spinneret). The use of polymeric solutions containing nanoparticles is an interesting route to the 

fabrication of composite nanofibres. This work investigates the electrospinning of composite 

sub-micron fibres from aqueous solutions of polyethylene oxide (PEO) containing citrate 

passivated Au nanoparticles. The organisation of such composite nanofibres could provide 

templates for subsequent self-assembled nanostructures. 

 

   6.1. Introduction 

 

 Electrospinning is a method of fabricating fibres from a wide range of 

polymeric solutions2-5 and relies on the electrostatic repulsion of charges on the 

surface of the electrospinning solution. The first patent concerning 

electrospinning was filed in 1934 by Anton Formhals.6 Figure 70a represents the 

basic setup of an electrospinning procedure and shows a metallic syringe 

(spinneret) in electrical contact with a collecting plate. The spinneret is filled with 
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a solution of the desired polymer, from which the fibres will be fabricated. Upon 

application of a direct electrical current (Figure 70b) the surface of the polymeric 

solution, exposed to the atmosphere, becomes positively charged. It is the 

repulsion of the positive charges that imposes a stretching force on the polymeric 

solution and results in an increase of the area of the interface between the 

exposed polymeric solution and the atmosphere (Figure 70c). When the 

repulsive electrostatic forces overcome the surface tension of the polymeric 

solution, jetting of the polymeric solution occurs (Figure 70d). Instabilities cause 

the jet (Figure 70e) to whip and 'spin'7-9 which further expands the interface 

between the polymeric solution and the atmosphere. Stretching of the polymer 

solution results in both the thinning of the fibres and evaporation of the solvent 

from the polymeric solution. The polymer fibres are then deposited onto a 

collecting plate (Figure 70d).  
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Figure 70. Schematic representation of the electrospinning process showing a) the basic setup of 

an electrospinning process, b) application of an electric current and resultant 

charging of solution/air interface, c) increase of surface area of solution/air interface 

and d) jetting of the polymeric solution. Figure e) shows  a high-speed camera image 

of the jet formed during an electrospinning process.8  

 
 Electrospinning is not exclusively used to form fibres from polymeric 

solutions. Composites10-13 and melts14 have also been used for electrospinning. 

Polymeric composite fibres have been fabricated by the electrospinning of 

polymeric solutions containing a wide variety of inclusions such as 

nanoparticles12 and nanotubes.10, 11, 13 The formation of composite nanofibres 

has been studied with a view for applications such as catalysis,15, 16  

electronics17, 18  and scaffolds for tissue engineering.19-21  
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 One of the most important properties of the electrospinning solution 

affecting the morphology of the electrospun fibres is its viscosity. Viscosity affects 

the manner by which the jet is stretched by the repulsive forces induced by the 

applied current. Lower viscosities provide less resistance to stretching forces 

than solutions exhibiting higher viscosity, with solutions of lower viscosity 

allowing finer fibres to be electrospun.22 Entanglement of the polymeric chains is 

the major influence on the viscosity of polymeric solutions.  Chain entanglement 

is primarily determined by molecular weight, branching and the concentration of 

the polymeric solution. Temperature is another factor that affects the viscosity of 

the solution with high temperatures acting as to lower the viscosity of polymeric 

solutions.23 

 
 The conductivity of the solution influences the amount of charge that can 

be sustained on the surface. Solutions of higher conductivity result in more 

charges on the surface of the solution, and therefore increases the repulsive 

forces which, upon jetting, leads to the formation of smoother, finer fibres.24 The 

applied voltage dictates the charging of the surface of the electrospinning 

solution with higher applied voltages resulting in greater charging, hence greater 

repulsive forces.25, 26 Thus, finer, straighter wires result upon increasing the 

applied voltage.25, 26 The feed rate of the polymer solution through the spinneret 

also influences the final fibres, with higher feed rates resulting in thicker fibres 

simply due to more material being drawn through the tip of the spinneret.24  
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 The distance between the tip and collector affects both the length of time 

between the jet leaving the tip and contacting the collecting plate and the electric 

field strength. By decreasing the distance between the tip and collecting plate the 

time available for the solvent to evaporate from the solution decreases, thus 

thicker fibres, or even meshes, result due to more solvent being retained by the 

polymeric solution.26 The electric field strength decreases upon increasing the 

distance between the tip and collecting plate which leads to less of a stretching 

force upon the polymeric solution, thus thicker fibres can occur as a result of 

increasing this distance.25 Therefore, increasing the tip and collecting plate 

distance either results in finer fibres, due to more time being available for 

evaporation of the solvent, or thicker fibres, due to lower electric field strength. 

Therefore, the optimal distance between the tip and collecting plate differs from 

system to system. 

 

   6.2. Aims and objectives 

 

 The aim of the research described in this chapter is to characterise the 

morphology of fibres electrospun from aqueous solutions of PEO at different 

concentrations, both with and without the inclusion of citrate passivated Au 

nanoparticles. Optical micrographs and AFM will be used to characterise the 

morphology of the fibres, and TEM will be used to determine the arrangement of 

Au nanoparticles within the electrospun fibres. DSC will also be used to 

investigate the crystallinity of the fibres. The inclusion of Au nanoparticles within 
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the fibres, coupled with the subsequent removal of the PEO matrix after 

electrospinning, could allow the formation of Au patterns. Such Au patterns could 

then be used as templates for the formation of alkanethiol SAMs.  

 

   6.3. Results and Discussion 

 

 6.3.1. Characterization of citrate passivated Au nanoparticles 

  

 Citrate passivated Au nanoparticles were synthesised using the Frens 

method,27 described in section 6.6.1.1., and were characterised by UV-vis 

spectroscopy and TEM. In order to obtain a sufficient volume of Au nanoparticle 

solution, from which to make four separate batches of PEO solutions, 100 ml of 

nanoparticle solution was required. However, when 100 ml of solution was made 

in a single synthesis the resultant nanoparticle solution was blue in colour, an 

indication of aggregation of Au nanoparticles.28 Therefore, in order to obtain    

100 ml of Au nanoparticle solution, the nanoparticles were synthesized in two 

batches of 50 ml and then subsequently combined. This method allowed the use 

of identical solutions of Au nanoparticles for all batches of PEO/Au nanoparticle 

solution. The UV-vis spectra of the citrate passivated Au nanoparticles before 

and after mixing the two batches of solution is shown in Figure 71. The 

maximum absorbance of the nanoparticle solution, at 524 nm wavelength, is 

consistent with that in the literature for a solution of discrete citrate passivated Au 

nanoparticles.29 
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Figure 71. UV-vis spectra of the two separate batches of citrate passivated Au nanoparticles and  

                  of a sample when the two batches are mixed 

 

 TEM images were obtained of citrate passivated Au nanoparticles by 

placing a drop of the aqueous nanoparticle solution on TEM grids and allowing 

them to air dry under ambient conditions. A histogram showing the size 

distribution of the citrate passivated Au nanoparticles (Figure 72a) was obtained 

from the TEM images (an example of which is shown in Figure 72b). 
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Figure 72. a) Histogram showing the size distribution of citrate passivated Au nanoparticles and   

      b) TEM image of citrate passivated Au nanoparticles 

 

 The citrate passivated Au nanoparticle solution contains nanoparticles of 

7.8 nm + 0.1 nm in diameter (Figure 72a and b). Knowledge of the volume of the 

nanoparticle solution, and the size of both the TEM images and the TEM grid, 

allow a nanoparticle concentration of 1.2x109 particles.ml-1 to be calculated. The 

calculation for this approximate nanoparticle concentration is shown in Appendix 

D1.  
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 6.3.2. Characterization of fibres electrospun from PEO solutions   

  

 PEO solutions, of varying concentrations, were prepared by the vigorous 

stirring of PEO with either UHQ H2O or aqueous dispersions of citrate passivated 

Au nanoparticles (see section 6.6.1.2.). The viscosities of the solutions (Table 4) 

were measured using a rotary viscosity meter. The viscosity, as expected, 

increases as the PEO concentration of the solutions is increased. The PEO 

solutions were then electrospun onto glass collecting plates. The resultant fibres 

were then characterised by optical microscopy, AFM, TEM and DSC. 

 

Table 4. Viscosity data for the electrospinning solution  
Viscosity (mPa.s) wt% PEO 

Aqueous PEO solution Aqueous PEO/Au 

nanoparticle solution 

2 1921 1894  

3 5132 4966 

4 7328 7210 

5 10230 9534 

 

  6.3.2.1. Fibre morphology  

 

 Fibres were electrospun from aqueous PEO solutions onto glass collecting 

plates. The fibres consisted of three predominant structures, straight fibres and 

fibres with either beaded (Figure 73a and b) or branched (Figure 73c and d) 

morphologies were observed. 
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Figure 73. Optical micrographs showing a) and b) branched and c) and d) beaded structures of   
       fibres electrospun from aqueous PEO solutions  
 
 Branched fibres (Figure 73a and b and Figure 74a-d) form when 

localised fluctuations of charge density (Figure 74b), on a primary jet, result in 

the repulsive forces of the surface charges overcoming the surface tension of the 

jet.23 As a result of the localised repulsive force of the surface charges (Figure 

74b) overcoming the local surface tension of the solution, the primary jet can 

either split (Figure 74c) or emit a smaller, secondary jet (Figure 74d) resulting in 

fibre morphologies depicted in Figure 73a and Figure 73b respectively. 
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 Beaded fibres (Figure 73c and Figure 74e-g) form as a result of the 

surface tension (Figure 74f) of the electrospinning jet causing beads favouring 

the formation of spherical structures (Figure 74g) in order to reduce the surface 

area of the polymer solution. However, unlike fibres which consist of many beads 

(straight) fibres were found protruding from a single, large bead (Figure 73d and 

Figure 74h-k). Such structures are due to the surface tension forces causing 

large spherical beads to form at the tip of the spinneret, (Figure 74i) which 

subsequently detach from the needle tip and deposit on the collecting plate. 

When the repulsive force, of the surface charges on the surface of the bead, 

overcome the surface tension forces jetting occurs from the large beads. This 

jetting either occurs during the dwell time for the bead on the needle tip (Figure 

74j) or during its travel from the needle tip to the collecting plate (Figure 74k) 

after its detachment from the spinneret. 
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Figure 74. Cartoon representation of the formation of branched (a-d) and beaded (e-g) fibres   
      during the electrospinning process.  
  

  6.3.2.2. Fibre dimensions 

 

 Optical microscopy and AFM were used to measure the widths of fibres 

electrospun from 2 wt%, 3 wt%, 4 wt% and 5 wt% aqueous solutions of PEO and 

PEO/Au nanoparticle composite. Histograms of the distribution of fibre widths are 

shown separately for fibre widths determined by either optical microscopy or 

AFM in Figure 75 (2 wt% PEO), Figure 76 (3 wt% PEO), Figure 77 (4 wt% 

PEO) and Figure 78 (5 wt% PEO). The optical micrographs and AFM images, 

recorded for the histograms concerning the width ranges 0 - 200+ µm and           

0 - 2 µm respectively, are shown in appendix D2. 
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Figure 75. Histograms showing the widths of fibres electrospun from aqueous solutions of a)   
    2 wt% PEO and b) 2 wt% PEO/Au nanoparticle solutions (Inserts in both histograms   
    show the fibre width distribution of sub 2 µm fibres). 
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Figure 76. Histograms showing the widths of fibres electrospun from aqueous solutions of a)   
    3 wt% PEO and b) 3 wt% PEO/Au nanoparticle solutions (Inserts in both histograms   
    show the fibre width distribution of sub 2 µm fibres). 
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Figure 77. Histograms showing the widths of fibres electrospun from aqueous solutions of a)   
    4 wt% PEO and b) 4 wt% PEO/Au nanoparticle solutions (Inserts in both histograms   
    show the fibre width distribution of sub 2 µm fibres). 
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Figure 78. Histograms showing the widths of fibres electrospun from aqueous solutions of a) 5    
      wt% PEO and b) 5 wt% PEO/Au nanoparticle solutions (Inserts in both         
      histograms show the fibre width distribution of sub 2 µm fibres). 
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 The histograms obtained from optical micrographs (Figure 75a, Figure 

76a, Figure 77a and Figure 78a) exhibit a bimodal distribution for fibres 

electrospun from aqueous PEO solutions. Upon the inclusion of citrate 

passivated Au nanoparticles in the PEO solution the distribution changes from 

bimodal to a unimodal distribution (Figure 75b, Figure 76b, Figure 77b and 

Figure 78b). The histograms obtained from AFM images for both aqueous 

solutions of PEO (insets in Figure 75a, Figure 76a, Figure 77a and Figure 78a) 

and PEO/Au nanoparticles (insets in Figure 75b, Figure 76b, Figure 77b and 

Figure 78b) show a unimodal distribution. 

  

 Upon plotting the fibre widths, obtained from both optical micrographs and 

AFM images, against wt% PEO of the solutions it can be seen that the standard 

error bars are too large to determine a conclusive trend of fibre widths as a 

function of wt% PEO of the electrospinning solutions (Figure 79a and b). 

Therefore, further fibre diameter measurements are required in order to reduce 

the error bars and provide a conclusive trend of the fibre widths of fibres 

electrospun from PEO solutions.   
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Figure 79. Graphs showing average width of fibres electrospun from all wt% PEO solutions  
      studied both with and without nanoparticles a) represents fibre widths from all fibre   
      widths and b) represents fibre widths in the sub  2 µm regime (at 2 wt% PEO the   
      average fibre widths for fibres electrospun from PEO and PEO/Au solutions are   
      0.601 µm and 0.603 µm, respectively)  
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  6.3.2.3. Nanoparticles within fibres 

 

 In order to investigate the organisation of Au nanoparticles within the 

electrospun fibres TEM images (Figure 80) were obtained of fibres electrospun 

directly onto TEM Cu slot grids. 
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Figure 80. TEM images of fibres electrospun from 5 wt% PEO solutions containing Au                    

         nanoparticles. a) and b) show the presence of Au nanoparticles in 'beads' and c)   

         the presence of Au nanoparticles within 'threads'. d) shows the EDX spectra of both           

         fibres electrospun from solutions of PEO either with or without the presence of Au   

         nanoparticles  
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 EDX spectra (Figure 80a) confirmed both the presence and absence of 

Au within fibres electrospun from PEO solutions in which the PEO is dissolved in 

Au nanoparticle solution and UHQ H2O, respectively. TEM images (Figure 80b-

d) show that nanoparticles can be found in both the beads and threads of the 

electrospun fibres. However, the nanoparticles are more concentrated in the 

beads (~4.3x1013 particles.ml-1) than in the threads (~3.5x1012 particles.ml-1) and 

the concentration calculations can be found in Appendix D3. This observation 

may be due to turbulence within the PEO solution during bead formation with 

PEO solution flowing faster in the areas while the solution is thinning (i.e. at the 

threads). Therefore, the flow of PEO solution will be slower in the beads. Thus, 

allowing for the build up of nanoparticles within the beads. However, the 

difference in nanoparticle concentration within the threads, compared to within 

the beads, may also be due to a possible inhomogeneous distribution of Au 

nanoparticles within the polymeric solution.  

 

  6.3.2.4. Crystallization of electrospun fibres 

 

 The electrospinning process has been shown to have an effect on the 

crystallinity of electrospun fibres with areas of crystallinity being visible in the 

AFM phase images as lamellar structures.12 Such lamellar structures cannot be 

seen in AFM height images but are clearly visible in the phase images (Figure 

81).  
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Figure 81. AFM height a) and phase b) images of a fibre electrospun from 4 wt% PEO solution  

                  in UHQ H2O.  

 

 AFM phase imaging gives only a local view of the degree of crystallinity of 

the fibres, therefore differential scanning calorimetry (DSC) was used to 

determine the enthalpy of fusion of fibres spun from each solution. The DSC 

curves can be found in Appendix D4. The enthalpy of fusion for each wt% PEO 

solution (Table 5) was compared to the enthalpy of fusion of 100 % crystalline 

PEO, which is 205 J.g-1,30 in order to determine the degree of crystallinity of the 

fibres (Table 5 and Figure 82).  
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Table 5. Enthalpy of fusion (ΔHf ) and % crystallinity of fibres electrospun from PEO solutions  
               either with or without the presence of Au nanoparticles 

 Without nanoparticles With nanoparticles 

wt% PEO ΔHf (J.g-1) % crystallinity ΔHf (J.g-1) % crystallinitya) 

2 33.51 
 

16.35 
 

55.88 
 

27.26 
 

3 70.66 
 

34.47 
 

91.20 
 

44.49 
 

4 86.02 
 

41.96 
 

111.29 
 

54.29 
 

5 89.23 
 

43.53 
 

111.37 
 

54.32 
 

a) % crystallinity is calculated by dividing ΔHf (measured) by ΔHf (from literature for 100 %  
crystalline PEO then multiplying by 100. The literature value for 100% crystalline PEO                  
is 205 J.g-1.30  
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Figure 82. Graph showing the %crystallinity of fibres electrospun from aqueous PEO solutions  
                  either with or without the presence of citrate passivated Au nanoparticles 
 
 Table 5 shows that both the enthalpy of fusion and the %crystallinity, 

increase as the wt% PEO of the solutions is increased. The %crystallinity also 

appears to increase upon the introduction of Au nanoparticles into the solution 

(Figure 82). The increase of crystallinity, upon the inclusion of Au nanoparticles, 
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could be due to the nanoparticles acting as heterogeneous nucleation sites for 

polymer crystallisation.31, 32  

 

   6.4. Conclusions 

 

 The aim of this chapter was to characterise aqueous solutions of different 

concentrations of both PEO and PEO/citrate passivated Au nanoparticles in 

order to investigate the effect of the inclusion of citrate passivated Au 

nanoparticles on the electrospun fibres. The work presented in this chapter 

shows that aqueous solutions of citrate passivated Au nanoparticles were 

prepared by using the Frens method27 and characterised using both UV-vis 

spectroscopy and TEM. UV-vis spectroscopy was used to show that the 

nanoparticle solution consisted of discrete Au nanoparticles (Figure 71) and 

TEM was used to evaluate both the size of the nanoparticles (Figure 72) and the 

approximate concentration of nanoparticles in the solution. 

 

 AFM was used to investigate the morphology of the fibres and it could be 

seen that the fibres were present in three different morphologies, these being 

straight fibres and fibres with both beaded and branched structures (Figure 73). 

The fibre width distribution of the fibres showed that, upon the inclusion of Au 

nanoparticles in the solution, the fibre width distribution changes from a bimodal 

distribution to one displaying a unimodal distribution at all concentrations of PEO 

(Figure 75, Figure 76, Figure 77 and Figure 78). The distribution of citrate 
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passivated Au nanoparticles, within the fibres, was studied by TEM (Figure 80) 

and if could be seen that, in beaded fibres, the concentration of nanoparticles 

was greater in the beads compared to the threads. The presence of Au 

nanoparticles was also found to affect the crystallinity of the fibres electrospun 

from PEO solutions as shown by DSC analysis (Figure 82). This observation 

could be due to the Au nanoparticles acting as nucleation sites for PEO 

crystallization.  

  

   6.5. Future work 

  

 The work presented in this chapter shows that Au nanoparticles can be 

successfully incorporated into PEO fibres. The next stage of this project will be to 

form Au structures using the methodology outlined in Figure 83. Patterned 

arrays of electrospun fibres (Figure 83b) could be produced by electrospinning 

onto a rotating collection plate in order to obtain aligned fibres, which has 

previously been shown.33-35 The PEO matrix could be removed using selective 

etching methods which will result in an Au pattern. This Au pattern could be used 

as a template on which to assemble nanostructures using alkanethiol self 

assembly techniques. 
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a) Substrate b) Patterns of composite fibres electrospun 
....onto substrate

c) Removal of PEO matrix to leave Au pattern

Au nanoparticle inclusions

PEO matrix

a) Substrate b) Patterns of composite fibres electrospun 
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PEO matrix

 

Figure 83. Formation of Au patterns from electrospun fibres. a) bare substrate b) PEO/Au fibres  
                  electrospun on substrate in a patterned manner. c) bare Au patterns remaining after  
                  removal of PEO 
 

6.6. Experimental 

 

 All chemicals were obtained from Aldrich unless stated. 

 

 6.6.1. Fabrication of fibres 

 

  6.6.1.1. Preparation of citrate passivated Au nanoparticles 

 

 An aqueous solution of citrate passivated Au nanoparticles were prepared 

by the method described by Frens.27 Chloroauric acid (0.01 g, 2.5 mmol) was 

dissolved in UHQ water (100 ml) and heated to reflux. Sodium citrate tribasic 
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dihydrate (0.023 g, 0.15 mol) was added to the refluxing chloroauric acid solution 

and heated under reflux continued until there was no further colour change. The 

solution was allowed to cool to room temperature and centrifuged (at 3500 rpm) 

and the supernatant retained. 

 

  6.6.1.2. Preparation of PEO solutions 

 

 Polyethylene oxide (PEO) solutions were prepared by adding PEO (2 000 

000 MWt) to either UHQ H2O (resistivity = 18 MΩ.cm) or a solution of citrate 

passivated Au nanoparticles. The PEO was added slowly to either the UHQ H2O 

or nanoparticle solution under vigorous stirring in a 100 ml glass Duran flask and 

continuously stirred for 24 hr. The mass of PEO and the volume of either UHQ 

H2O or Au nanoparticle solution used for each wt% solution is shown in Table 6. 

 

Table 6. The composition of each aqueous PEO (2 000 000 MWt) solution 
wt% PEO solution Mass of PEO added (g) Volume of UHQ H2O OR citrate 

passivated Au nanoparticle solution (ml) 

2 0.80 39.2 

3 1.20 38.8 

4 1.44 34.6 

5 1.80 34.2 
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  6.6.1.3. Electrospinning of fibres 

 

 The fibres were electrospun at a voltage of 12 kV between the tip of a 

metallic syringe and a glass collecting plate which was at a distance of 10 cm 

from the tip of the syringe at a flow rate of 10-9 m3s-1. The electrospinning process 

was performed for 10 min per sample. 

 

 6.6.2. Characterisation 

 

 UV-vis spectroscopy and TEM was used for the characterisation of the 

citrate passivated Au nanoparticles whilst AFM, DSC and TEM were used to 

characterise the electrospun fibres and the parameters used for each technique 

are described in this section. 

 

  6.6.2.1. UV-visible absorption spectroscopy 

 

 UV-vis spectra were obtained using a Hewlett-Packard 8452A 

spectrometer operated at wavelengths between 350 nm and 850 nm with a 2 nm 

band width at 240 nm.min-1. 
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  6.6.2.2. Atomic Force Microscopy 

 

 AFM images were obtained by using either a Nanoscope 3100 Dimension 

AFM (Veeco) or a PicoScan AFM (Molecular Imaging) and these images were 

analysed using either Nanoscope III software (version 5.12r3) or PicoScan 5 

software, respectively. AFM images were obtained in tapping mode with the use 

of an etched Si tip (Veeco model: RTESP). Before engaging the AFM tip the 

surface of the sample was observed using the optical system of the microscope 

in order to find areas on the surface where PEO had been deposited. The AFM 

tip was engaged with the surface and the images were obtained in tapping mode 

at a frequency of 1 Hz and the images were made up of 512 lines with 512 

samples per line. 

 

  6.6.2.3. Differential Scanning Calorimetry 

 

 DSC measurements were recorded by placing ~1 mg of PEO fibres into 

an Al pan onto which a lid was placed, crimped closed and placed into a 

differential scanning calorimeter (Perkins Elmer Pyris with Pyris control software) 

along with an empty pan which was used as a reference. The pan was held at  

25 °C for 1 min then heated to 120 °C at 5 °C.min-1 then held at 120 °C for 1 min 

before being cooled to 25 °C at -5 °C.min-1. 
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  6.6.2.4. TEM and EDX 

 

 TEM specimens of citrate passivated Au nanoparticles were prepared by 

placing a drop of aqueous citrate passivated Au nanoparticle solution (~3 ml) on 

a Formvar coated Cu TEM grid (Agar) and allowed to air-dry. TEM 

characterisation of citrate passivated Au nanoparticles was performed using a 

JEOL 1200ex TEM operated at 80 kV.  

 

 Electrospun fibres were prepared for characterisation by TEM by 

electrospinning the fibres directly onto copper slot TEM grids (Agar Scientific). 

TEM characterisation of the electrospun fibres was carried out using a Technai 

F20 FEG TEM (Philips) operated at 200 kV. EDX spectra were obtained in situ in 

the Technai F20 FEG TEM and analysed by using ISIS 300 EDX software 

(Oxford Instruments). 
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Appendix 

Appendix A: Formation of amino terminated self-assembled monolayers on 

silicon nitride from the vapour phase 

 

Appendix A1 - Reduced boiling point of APTMS 

 

 The boiling point of APTMS is 91-92 °C at 15 mmHg.1 At reduced 

pressure the boiling point decreases and an online conversion program was used 

to calculate the boiling point of APTMS at the pressures used for SAM 

formation.2 The reduced boiling points at each pressure are as follows (by taking 

the boiling point as 91.5 °C at 15 mmHg): 

 

Table 7. Reduced boiling points of 3-aminopropyltrimethoxysilane (APTMS) 

Pdep / mbar Boiling point / °C 

0.1 14.3 

1.15 43.3 

30 99.3 

168 141.7 
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Appendix A2 - SAMs of APTMS on SiO2 by solution deposition (XPS) 
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Figure 84. a) survey spectrum and b-e) high resolution spectra XPS spectra of Si/SiO2 substrates 

      immersed in APTMS solution (0.5 mmol in EtOH) for 1 hr.  
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Appendix A3 - SAMs of APTMS on Si3N4 by solution deposition (XPS) 

 

 XPS spectra were recorded after immersion of Si3N4 substrates in APTMS 

solution (0.5 mM in EtOH) for three different immersion times: 
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Figure 85. a) survey spectrum and b-e) high resolution spectra XPS spectra of Si3N4 substrates   

     immersed in APTMS solution (0.5 mmol in EtOH) for 30 min. 
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Figure 86. a) survey spectrum and b-e) high resolution spectra XPS spectra of Si3N4 substrates   

     immersed in APTMS solution (0.5 mmol in EtOH) for 1 hr. 
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Figure 87. a) survey spectrum and b-e) high resolution spectra XPS spectra of Si3N4 substrates   

     immersed in APTMS solution (0.5 mmol in EtOH) for 2 hr. 
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Appendix A4 - 'SAMs' of APTMS on Si3N4 by vapour deposition (XPS) 

 

 XPS spectra (both a survey spectrum and C1s, Si2p, O1s and N1s high 

resolution spectra) are shown of APTMS SAMs formed on Si3N4 substrates via 

vapour deposition at four different deposition pressures (Pdep). 

 

Figure 88. XPS spectra of Si3N4 substrates exposed to APTMS vapour at 0.1 mbar. a) survey   

    spectrum and b-e) high resolution spectra 
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Figure 89. XPS spectra of Si3N4 substrates exposed to APTMS vapour at 1.15 mbar. a) survey   

    spectrum and b-e) high resolution spectra 

 

 

 



 201 

 

Figure 90. XPS spectra of Si3N4 substrates exposed to APTMS vapour at 30 mbar. a) survey   

     spectrum and b-e) high resolution spectra 
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Figure 91. XPS spectra of Si3N4 substrates exposed to APTMS vapour at 168 mbar. a) survey   

     spectrum and b-e) high resolution spectra 
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Appendix B - Mass sensing using a chemically modified microresonator: SAMs 

meets MEMS 

 

Appendix B1: UV-vis spectrum of citrate passivated Au nanoparticles used for 

adsorption studies 
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Figure 92. UV-vis spectrum of citrate passivated Au nanoparticles used for pH dependent   

      adsorption experiments 

 

 

 

 

 



 204 

Appendix B2: - XPS spectra of citrate passivated Au nanoparticles on APTMS 

SAMs at 5 different values of pH 

 

 The survey and Si2p spectra for APTMS SAMs formed on Si3N4 and 

subsequently immersed in citrate passivated Au nanoparticle solutions at five 

different values of pH (3, 4, 5, 6 and 7) are shown in Figure 93 and Figure 94. 
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Figure 93. XPS survey spectra of  APTMS SAMs on Si3N4 substrates after immersion in citrate   
      passivated Au nanoparticles at five different values of pH 
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Figure 94. High resolution XPS spectra of Si2p peaks of APTMS SAMs on Si3N4 substrates after          
      immersion in citrate passivated Au nanoparticles at five different values of pH 
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Appendix C - Sticky SAMs for sperm arrays 

 

Appendix C1 - Sperm adsorption to glass and poly-l-lysine 

 

 The videos of sperm adsorption to glass, unpatterned poly-l-lysine and the 

poly-l-lysine dot array pattern can be found on the CD attached to this thesis. The 

videos can be found in the files as outlined in Table 8. 

Table 8. Video file names of videos showing sperm adsorption to three different surfaces. Files   

   can be found in the folder named 'Appendix C - videos' on the CD attached to this thesis  

Video file name Surface 

Movie1(Glass).avi Bare glass 

Movie2(UnpatternedPLL).avi Unpatterned poly-l-lysine 

Movie3(PLLdots).avi Poly-l-lysine dot array 
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Appendix D - Formation of sub-micron fibres from PEO/Au nanoparticle 

composite solutions via electrospinning 

 

Appendix D1 - TEM characterisation of citrate passivated Au nanoparticles 

 

 TEM images were obtained of the citrate passivated Au nanoparticles 

prepared using the Frens method3 by placing a drop of solution onto a TEM grid. 

The TEM images shown were used to calculate both the mean nanoparticle 

diameter and the concentration of Au nanoparticles. 
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Figure 95. TEM images of citrate passivated Au nanoparticles (Lower of the two magnifications   

    used) 
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Figure 96. TEM images of citrate passivated Au nanoparticles (Higher of the two magnifications   

       used) 

 

 Table 9 summarises the diameters of the citrate passivated Au 

nanoparticles shown in Figure 95 and Figure 96. 
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Table 9. Citrate passivated Au nanoparticle diameters extrapolated from TEM images 

Particle diameter (nm) Number of particles 

0-2 0 

2-4 9 

4-6 62 

6-8 713 

8-10 135 

10-12 108 

12-14 13 

14-16 27 

16-18 2 

18-20 0 

20+ 0 

 

Calculation of nanoparticle concentration: 

 The concentration of citrate passivated Au nanoparticles were calculated 

from the above TEM images as follows: 

 Area of TEM image:   Low mag: 5.69x10-13 m2 

     High mag: 4.97x10-14 m2 

 Area of TEM grid: 1.41 x 10-5 m2  

             Total area of TEM images: 4.13 x 10-12 m2 

 Number of particles in TEM images: 1069 

 Estimated number of particles on grid: 3.66 x 109 

 Volume of citrate passivated Au nanoparticle solution on grid: 3 ml 

 Approximate concentration or particles: 1.22x109 particles.ml-1  
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Appendix D2: - Fibre widths  

 

 All optical and AFM images recorded of fibres electrospun from 2 wt%,     

3 wt%, 4 wt% and 5 wt% of aqueous solutions of both PEO and PEO/Au 

nanoparticle solutions can be found in the folder entitled 'Appendix D2' on the 

CD attached to this thesis. 
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Appendix D3: - Nanoparticle concentration within electrospun fibres 

 

 The average nanoparticle concentration within fibres electrospun from      

5 wt% PEO/Au nanoparticle solutions were calculated by modelling the threads 

as cylinders and the beads as spheres.  

 

Bead

Thread 1

Thread 2

3.9x101309.7x1012Conc. of particles 
(particles.ml-1)

2302Number of particles

5.9x10-133.9x10-152.0x10-13Volume (ml)

-5001360Length (nm)

1040100440Diameter (nm)

BeadThread 2Thread 1 

3.9x101309.7x1012Conc. of particles 
(particles.ml-1)

2302Number of particles
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-5001360Length (nm)
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(particles.ml-1)
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660260220Diameter (nm)

BeadThread 2Thread 1 

Thread 1

Thread 2

Bead
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Thread

2.1x1012Conc. of particles 
(particles.ml-1)

2Number of particles

9.7x10-13Volume (ml)

3440Length (nm)

600Diameter (nm)

Thread
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2Number of particles
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Thread
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Thread

2.7x1012Conc. of particles 
(particles.ml-1)
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 The concentrations within individual fibres are outlined above and the 

overall concentrations (4.3x1013 particles.ml-1 in beads; 3.5x1012 particles.ml-1 for 

threads) were calculated by taking an average of the concentrations outlined 

above.  
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   Appendix D4: - DSC curves of PEO fibres: 

a) 2wt% PEO
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b) 2wt% PEO / Au nanoparticles
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b) 2wt% PEO / Au nanoparticles
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Figure 97. DSC curves of fibres electrospun from aqueous solutions of a) 2 wt% PEO and    

       b) 2 wt% PEO/Au nanoparticles 
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a) 3 wt% PEO
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b) 3 wt% PEO / Au nanoparticles
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b) 3 wt% PEO / Au nanoparticles
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Figure 98. DSC curves of fibres electrospun from aqueous solutions of a) 3 wt% PEO and   

      b) 3 wt% PEO/Au nanoparticles 
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a) 4 wt% PEO
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b) 4 wt% PEO / Au nanoparticles
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b) 4 wt% PEO / Au nanoparticles
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Figure 99. DSC curves of fibres electrospun from aqueous solutions of a) 4 wt% PEO and  

      b) 4 wt% PEO/Au nanoparticles 
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a) 5 wt% PEO
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b) 5 wt% PEO / Au nanoparticles
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b) 5 wt% PEO / Au nanoparticles
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Figure 100. DSC curves of fibres electrospun from aqueous solutions of a) 5 wt% PEO and  

        b) 5wt% PEO/Au nanoparticles 
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Table 10. Data obtained from DSC curves 

  ENDOTHERMIC PEAK EXOTHERMIC PEAK 

wt% Particles? 

Temp 

(°C) 

Area of peak 

(mJ) 

ΔH 

(J/g) 

Temp 

(°C) 

Area of peak 

(mJ) ΔH (J/g) 

2 no 59.436 33.514 33.514 44.255 0.007 0.007 

2 yes 58.967 50.288 55.876 44.594 -0.055 -0.061 

3 no 59.825 77.722 70.656 44.502 -0.262 -0.238 

3 yes 59.444 82.082 91.202 44.748 -0.175 -0.195 

4 no 60.164 103.222 86.019 43.248 -0.202 -0.168 

4 yes 59.691 100.158 111.287 45.175 -0.222 -0.247 

5 no 59.649 89.229 89.229 43.999 -0.086 -0.086 

5 yes 59.685 111.365 111.365 45.651 -0.503 -0.503 
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