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ABSTRACT 

 

Type 1 diabetes (T1D) is characterised by pancreatic  cell autoimmunity and 

inflammation, resulting in  cell islet destruction and insulin deficiency. Prospective 

studies from different continents have shown that insulin resistance is independently 

associated with risk for the development of T1D. We wanted to investigate the role of 

adiponectin in mediating this link. Adiponectin is a circulating adipokine whose anti-

inflammatory and insulin sensitising actions appear to be mediated via two related 

receptors, AdipoR1 and AdipoR2. We began by characterising adiponectin receptor 

expression on PBMC by flow cytometry. We showed that monocytes express both 

receptors abundantly, that this expression correlates with insulin sensitivity in both 

health and diabetes. Furthermore, expression can be increased with lifestyle 

intervention. Adiponectin receptor expression on monocytes is reduced in T1D, and we 

demonstrate this leads to an apparent resistance in the ability of adiponectin to inhibit 

the stimulatory capacity of antigen presenting cells (APC). Specifically, we show that 

adiponectin inhibits the stimulatory capacity of APCs through down-regulation of CD86 

expression, and that this effect is decreased in T1D. In this way, the release from the 

regulatory effects of adiponectin is one potential mechanism by which immune 

tolerance is lost in T1D.   

 

(197 words) 
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For Elisha and Joshua, 

 

“I saw her. Your mother! 

Your mother is near! 

So, as fast as you can, 

Think of something to do! 

You will have to get rid of 

Thing One and Thing Two!” 

 



 iv  

Acknowledgments 

 

Firstly, my heartfelt gratitude goes to my supervisor, Parth Narendran, for his 

unwavering support and mentoring during my time in research. I would also like to 

thank Prof Steve Gough, who inspired my interest in academic diabetology when I was 

a junior doctor on his firm.  

 

I thank Drs Suzy Eldershaw, Claire Manzotti and Olly Brand, Dave Sansom and Lucy 

Walker for their practical laboratory advice. I am grateful to Keri Weaver, Ed Goble, 

Myriam Chimem for their assistance in running replicate experiments for the Early 

ACTID, receptor expression in T1D and DC studies respectively. Many thanks also to 

the invaluable contribution made to this work by our collaborators Dr Rob Andrews at 

the University of Bristol, and Dr Dylan Thompson at the University of Bath.    

 

Thank you Junny for your love. Thank you also to Mum, Dad, Mum-in-law and Dad-in-

law for all your help and support. Thank you God, for your blessings upon my family.    

 



 v  

TABLE OF CONTENTS 

1. INTRODUCTION 

1.1 The costs of T1D 1 

1.2 Pathogenesis 2 

1.3 Natural history 9 

1.4 Overview of current concepts in the autoimmunity of T1D 13 

1.4.1  The NOD mouse 13 

1.4.2  The MHC and cytokines 16 

1.4.3  Central and peripheral tolerance 16 

1.4.4  Dendritic cells and Treg 18 

1.5 Insulin resistance is a propellant of T1D autoimmunity in susceptible 

individuals 

21 

1.6 Adipose tissue and immunity 26 

1.7  Adiponectin biology 29 

1.7.1 The adiponectin gene (ADIPOQ) and protein structure 29 

1.7.2 The adiponectin receptors AdipoR1 and AdipoR2 31 

1.7.3 Regulation of adiponectin production 35 

1.7.3.1 Negative regulators 35 

1.7.3.2 Positive reuglatiors 36 

1.7.4 Physiological functions of adiponectin 37 

1.7.4.1 Glucose and lipid metabolism 37 

1.7.4.2 Inflammation 40 

1.8 Adiponectin in pre-T1D and autoimmunity 47 

1.9 Summary 49 

2. HYPOTHESIS AND AIMS          51 

3. MATERIALS AND MATERIALS 

3.1 Subjects 52 

3.1.1  Cross sectional clinical study 52 

3.1.2  Lifestyle interventional studies  54 

3.1.2.1  Early ACTID 54 

3.1.2.2  Exercise Intensity Study 55 



 vi  

3.1.2.3  Exercise and Overfeeding Study 56 

3.2 Materials 57 

3.2.1  Culture reagents, antigens and mitogens 57 

3.2.2  Antibodies 58 

3.3 Buffers, gels and media 59 

3.4 Extraction of peripheral blood mononuclear cells 61 

3.5 Magnetic cell sorting 63 

3.6  Flow cytometry 64 

3.6.1  AdipoR1 and AdipoR2 staining 64 

3.7 Cell culture 65 

3.7.1  DC generation 66 

3.8 Measurement of cell proliferation by CFSE 66 

3.9 Reverse transcriptional PCR 68 

3.10 Immunoblotting and immunoprecipitation 72 

3.10.1  Covalent coupling of antibody to protein A Sepharose 74 

3.10.2  Coomassie staining and in gel digestion 74 

3.11 Serum adiponectin measurement by ELISA 75 

3.12 Statistics 76 

4. EXPRESSION ANALYSIS OF ADIPONECTIN 

RECEPTORS AND ADIPONECTIN ON 

PERIPHERAL BLOOD MONONUCLEAR CELLS  

4.1 Introduction 77 

4.2 Expression of adiponectin receptor mRNA on PBMC 78 

4.3 Characterising the surface expression of adiponectin receptor on 

PBMC by flow cytometry 

81 

4.4 Quantification of AdipoR1 & AdipoR2 expression by FACS and 

determining intra-assay variability 

86 

4.5 Distribution of adiponectin receptor expression on PBMC subsets 88 

4.6 Expression of adiponectin receptors on Tregs and non-monocytic 

CD11c+ cells 

93 

4.7 Effect of activation on the expression of adiponectin receptors on T 

cells 

101 

4.8 Expression of adiponectin by PBMC 105 



 ii  

4.9 Discussion 111 

4.10 Summary of findings 115 

5. THE EFFECT OF T1D ON CIRCULATING 

ADIPONECTIN AND PBMC ADIPONECTIN 

RECEPTOR EXPRESSION 

5.1 Introduction 116 

5.2 Assessing variability of AdipoR1 & AdipoR2 expression with feeding 

state and different sampling times 

117 

5.3 Clinical characteristics of the study groups 119 

5.4 Serum adiponectin levels in T1D 121 

5.5 Measurement of AdipoR expression by FACS and qPCR 122 

5.6 Relationship of AdipoR expression with indices of insulin resistance 123 

5.7 Effect of T1D on AdipoR expression 127 

5.8 In vitro effects of glucose and insulin on PBMC AdipoR expression 135 

5.9 In vitro effects of adiponectin on PBMC AdipoR expression 135 

5.10 Discussion 139 

5.11 Summary of findings 145 

6. EFFECT OF LIFESTYLE INTERVENTION ON 

ADIPONECTIN RECEPTOR EXPRESSION BY 

PBMC 

6.1 Introduction 146 

6.2 The Early ACTID 146 

6.2.1  Clinical parameters at baseline and 6 months 146 

6.2.2  Changes in adiponectin receptor gene expression on PBMC 147 

6.2.3  Subjects with latent autoimmune diabetes of adulthood 

(LADA) 

154 

6.3 The relative importance of exercise as a component of lifestyle 

interventions 

155 

6.4 The effect of moderate vs vigorous exercise on receptor expression 161 

6.5  Discussion 165 

6.6 Summary of findings 169 



 ii  

7. EFFECT OF ADIPONECTIN ON PBMC 

PROLIFERATION AND DC FUNCTION 

7.1 Introduction 170 

7.2 Optimisation serum free media for testing effect of adiponectin on 

immune function 

170 

7.3 Adiponectin decreases T cell proliferation in healthy subjects 181 

7.4 Adiponectin decreases dendritic cell function 187 

7.4.1  Adiponectin decreases expression CD86 on monocyte 

derived DC (mDC) 

187 

7.4.2   Adiponectin reduces mDC stimulation of T cell proliferation 190 

7.5 Suppression of DC function by adiponectin is released in T1D 195 

7.6 Discussion 206 

7.7 Summary of results 211 

8. DISCUSSION AND CONCLUSIONS 212 

8.1 Summary of key findings and a model for adiponectin in T1D 212 

8.2 Critique of key findings 214 

8.3 Further refinements to proposed model 216 

9. REFERENCES 220 

10. SUPPLEMENTARY DATA 264 

 

11. PUBLICATIONS AND PRESENTATION 

ABSTRACTS 271 

 

 
 

 

 



 iii  

LIST OF FIGURES 
 

 
1.1 Normal pancreatic islet 2 

1.2 Putative functions of non-HLA genes that contribute to genetic risk of type 1A 

diabetes 

4 

1.3 Insulitis 5 

1.4 Natural history of T1D  12 

1.5 Working model of T1D autoimmunity 21 

1.6 Kaplan-Meier analysis of increasing quartiles of IR on incidence of diabetes in the 

Melbourne Prediabetes Study  

27 

1.7 ADIPOQ gene (A) and primary protein structure of adiponectin (B) 30 

1.8 Adiponectin and its receptors AdipoR1 & AdipoR2 34 

1.9 Adiponectin levels in pre-type 1 diabetes 49 

4.1 AdipoR1 & AdipoR2 mRNA on PBMC  78 

4.2 Validation of Taqman duplex rt-qPCR  79 

4.3 Optimisation of antibodies for the labeling of AdipoR1 & AdipoR2 82 

4.4 Effect on AdipoR1 & AdipoR2 labeling when the primary antibody is co-incubated 

with its immunising peptide 

83 

4.5 Inhibition of staining is receptor subtype specific 83 

4.6 Sorting PBMC according to AdipoR1 & AdipoR2 expression  84 

4.7 Gene expression of cells sorted according to AdipoR expression 85 

4.8 Example gating for the determination of AdipoR expression on PBMC subsets 86 

4.9 Distribution of AdipoR1 & AdipoR2 surface expression on PBMC- representative 

example 

89 

4.10 Distribution of AdipoR1 & AdipoR2 expression on PBMC by flow cytometry 90 

4.11 Purity of PBMC subset sorts 91 

4.12 AdipoR1 & AdipoR2 mRNA expression on PBMC subsets 92 

4.13 Relative gene expression of AdipoR in PBMC subsets 93 

4.14 Expression of AdipoR on FoxP3+ T cells 95 

4.15 AdipoR on CD4+CD25
high

CD127
low

 Tregs 96 

4.16 Gene expression of AdipoR on CD4+CD25
high

CD127
low

 Tregs 97 

4.17 AdipoR on PBDC 98 

4.18 Phenotype of mDC 99 

4.19 AdipoR on mDC 100 

4.20 AdipoR on T cells activated by PHA 102 

4.21 AdipoR on T cells activated by CD3+CD28+ Dynabeads 103 

4.22 Effect of T cell activation upon AdipoR expression 104 

4.23 Gene expression of adiponectin on PBMC 107 



 iv  

4.24 Immunoblot for human adiponectin in PBMC lysates 108 

4.25 Non-specificity of the 35kDa band oin immunoblots for adiponectin 109 

4.26 Specificity of the 30kDa band in PBMC lysates following IP for adiponectin 110 

5.1 Effect of fasting and sampling time on AdipoR gene expression 118 

5.2 Serum total adiponectin 121 

5.3 Gating analysis of FACS data from clinical study 122 

5.4 Surface expression of AdipoR1 & AdipoR2 is closely correlated with gene 

expression 

124 

5.5 Correlation of AdipoR1 & AdipoR2 expression with indices of insulin resistance in 

health and T1D 

126 

5.6 Representative dot plots of PBMC from T1D subjects against age & BMI-matched 

healthy controls 

129 

5.7 AdipoR1 & AdipoR2 surface expression on all PBMC, lymphocytes and CD14+ 

monocytes 

130 

5.8 Gene expression of AdipoR1 & AdipoR2 of the three study groups 131 

5.9 Inverse correlation of serum adiponectin with total PBMC expression of AdipoR1 

and AdipoR2  

132 

5.10 The effect of glucose in vitro 136 

5.11 The effect of insulin in vitro 137 

5.12 Effect of adiponectin on AdipoR expression on PBMC 138 

6.1 Correlation analysis of AdipoR1 & AdipoR2 gene expression at baseline 150 

6.2 Gene expression changes of AdipoR1 & AdipoR2 on PBMC in the Early ACTID 151 

6.3 Evaluating mRNA degradation of archived samples from Early ACTID 152 

6.4 Correlation of AdipoR1 & AdipoR2 gene expression change with insulin 

resistance across whole cohort 

153 

6.5 Changes in HOMA-IR in the Exercise & Over-eating Study 157 

6.6 AdipoR1 expression on monocytes in the Exercise & Over-eating Study 159 

6.7 Changes on AdipoR1 expression on lymphocytes 160 

6.8 Changes in mRNA levels of AdipoR1 & AdipoR2 in the Exericse Intensity Study 163 

6.9 Changes in AdipoR1 & AdipoR2 expression on FACS in the Exercise Intensity 

Study 

164 

7.1 Immunblot for adiponectin in cellgro SCGM 172 

7.2 Example gating for enumerating proliferating T cells to TTC 173 

7.3 Comparison of cellgro SCGM vs serum based culture in PHA stimulation 174 

7.4 Comparison of cellgro SCGM vs serum based culture in antigen stimulated whole 

PBMC cultures 

174 

7.5 Effect of adding 1% FCS to cellgro SCGM in whole PBMC cultures 175 

7.6 Titrating PHA dose for PBMC stimulation in cellgro SCGM 175 



 v  

7.7 Changes in SI of whole PBMC to TTC with time 177 

7.8 Testing for LPS contamination in recombinant adiponectin used. 178 

7.9 Transformation of CD14+ monocytes to mDC in Cellgro DC media 179 

7.10  Comparison of mDC grown in serum based media vs Cellgro DC 180 

7.11 Effect of adiponectin on PHA stimulated PBMC proliferation 182 

7.12 Effect of adiponectin on TTC stimulated PBMC proliferation 183 

7.13 Adiponectin promotes apoptosis of PBMC during culture 184 

7.14  Adiponectin is pro-apoptotic 185 

7.15 Adiponectin increases CD4+ CD25
high

 cells. 186 

7.16 Adiponectin suppresses the upregulation of CD86 during transformation of 

monocytes to DC 

188 

7.17 Effect of adiponectin on co-stimulatory molecules of DC 189 

7.18 Time course of the CD86 suppression on DC by adiponectin 191 

7.19 Reduction of CD86 expression on mDC by adiponectin is dose dependent 192 

7.20 LPS overcomes the inhibition of CD86 expression on DC by adiponectin 193 

7.21 Adiponectin treated DC have reduced stimulatory capacity 194 

7.22 Reduced stimulatory capacity of Q DC is related to degree of CD86 suppression 197 

7.23 Stimulatory capacity of Q DC in T1D 198 

7.24 Reduced suppression of TTC driven T cell proliferation in T1D 199 

7.25 Dose response curve of CD86 suppression in T1D   200 

7.26 AdipoR expression of CD14+ precursors from HC and T1D subjects 201 

7.27 Effect of adiponectin on expression of costimulatory molecules on mDC in T1D 202 

7.28 Correlation of AdipoR1 expression with the reduction of CD86 expression on 

mDC following adiponectin treatment 

204 

7.29 Absence of significant correlation between AdipoR1 expression on monocytes 

with HLA-DR and CD80 on mDC 

205 

8.1 Summary diagram for the putative role of adiponectin signalling in immune 

tolerance of T1D. 

213 

App 

1 

Autoflurescence of activated T cells 264 

App 

2 

Standard curve for Taqman AdipoQ rt-qPCR assay 265 

App 

7 

Standard curve of ELISA for total serum adiponectin 270 



 vi  

LIST OF TABLES 
 
1.1 Type 1 Diabetes Risk Stratification by T1D Family History and HLA Genotyping 10 

1.2 Prospective studies evaluating the effect of IR in development of T1D 25 

1.3 Effects of polymorphisms of ADIPOQ and serum adiponectin levels on T2D 

risk, from meta-analysis 

39 

1.4 Immune effects of adiponectin  

 

44 

3.1 Anti-Adiponectin and anti-AdipoR1/AdipoR2 antibodies. 58 

3.2 Antibodies used in flow cytometry. 59 

3.3 Tubes set for quantification of AdipoR1 & AdipoR2 expression by flow 

cytometry 

64 

3.4 Primers used in conventional PCR 70 

3.5 Conditions for conventional PCR 71 

3.6 Taqman probes and primers used in real time qPCR 71 

4.1  Intra-assay variability for AdipoR1 expression measurement 88 

4.2 Coefficient of variation for AdipoR2 expression measurement of PBMC by 

FACS 

88 

5.1 Clinical characteristics of study group  120 

5.2 Pearson correlation coefficients of AdipoR expression with surrogate measures 

of insulin resistance in healthy subjects 

125 

5.3 Pearson correlation coefficients of AdipoR expression with surrogate measures 

of insulin resistance in T1D subjects 

125 

5.4 Pearson correlation coefficients of AdipoR expression with surrogate measures 

of insulin resistance in subjects with T2D 

125 

5.5 Linear regression modelling for AdipoR expression in diabetic subjects (T1D + 

T2D) 

134 

6.1 Baseline and 6 month results of Early ACTID 148 

6.2 Pearson correlation of AdipoR1 & AdipoR2 gene expression changes at 6 

month with absolute changes in weight and HOMA-IR 

154 

6.3 Changes at 6 months for subjects positive for GADA 155 

6.4 Clinical data from the Exercise and Over-eating Study 156 

6.5 Changes in AdipoR expression between the exercise (EXE) and sedentary 

(SED) arms of the trial 

158 

6.6 Clinical parameters at entry and on completion of the Exercise Intensity Study 161 

7.1 MFI of DC surface markers of adiponectin treated DC relative to control in 10 

normal weight healthy subjects 

187 

App 3 Testing normal distribution 266 



 vii  

App 4 Correlation matrix of FACS data and monocyte count 267 

App 5 Correlation matrix of glycaemic parameters against AdipoR MFI values for 

subjects with T1D 

268 

App 6 Effect of diabetic complications on AdipoR expression in T1D 268 

 



 viii  

 

=Abbreviations 
  
18s Ribosomal 18S RNA 

ACEI Angiotensin converting enzyme inhibitor 

AdipoQ Adiponectin Gene 

AdipoR Adiponectin Receptor 

AdipoR Adiponectin receptors  

AdipoR1 Adiponectin Receptor 1 

AdipoR2 Adiponectin Receptor 2 

AF488 Alexa Fluor 488 

AMP kinase Adenosine monophosphate-activated protein kinase  

ANOVA Analysis of variance 

APC Allophycocyanin 

ARB Angiotensin II receptor blocker 

AT Adipose tissue 

ATF3 Activating transcription factor 3 

BMI Body mass index 

Cat # Catalog number 

CD Cluster of differentiation 

CFSE Carboxyfluorescein succinimidyl ester 

CI Confidence interval 

CON Conventional arm (Early-ACTID) 

Ct Threshold cycle 

CREB cAMP response element-binding 

CTLA-4 Cytotoxic T-lymphocyte Antigen 4 

CV Coefficient of variation 

DC Dendritic cells 

DCCT Diabetes Control and Complications Trial 

DC-SIGN 

Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non- integrin 

(CD 209) 

DI Division index 

DPT-1 Diabetes prevention trial-1 

EDIC Epidemiology of Diabetes Interventions and Complications Study 

eGDR Estimated glucose disposal rate 

ELISA Enzyme linked immunosorbent assay 

ENDIT European Nicotinamide Diabetes Intervention Trial 

ERK Extracellular Signal-Regulated Kinase 

EXE Exercise Arm (Exercise & Overeating Study) 



 ix  

FCS Foetal calf serum 

FiTC Fluorescein isothiocyanate 

FPIR First phase insulin release 

gAd Globular adiponectin 

GAD65 Glutamic acid decarboxylase isoform 65kDa 

GADA Anti-GAD antibodies 

GITR Glucocorticoid-induced TNF receptor related protein 

GM CSF Granulocyte macrophage colony-stimulating factor 

HbA1C glycated haemoglobin 

HC Healthy Control 

HLA Human leucocyte antigen 

HMW High molecular weight 

HOMA-B Homeostatic model assessment of  cell function 

HOMA-IR Homeostatic model assessment of insulin resistance 

HR Hazard ratio 

HRP horseradish peroxidase 

IA-2 Tyrosine phophatase 

Ig  Immunoglobulin 

IGRP Islet-specific glucose-6-phosphatase catalytic subunit related protein  

IL Interleukin 

IL-2R Interleukin 2 receptor 

INT Intensive arm (Early ACTID) 

IP Immunoprecipitation 

IR Insulin resistance 

IVGTT Intravenous glucose tolerance test 

JNK  c-Jun-N-terminal kinase 

LMW Low molecular weight 

LPS Lipopolysaccharide  

MABP Mean artierial blood pressure 

mDC Monocyte derived dendritic cells 

MFI Mean flurescence index 

MHC Major histocompatbility complex 

MODY Maturity-onset diabetes of the young (monogenic diabetes) 

NF kB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NHS National Health Service 

NYHA New York Heart Association 

OGTT Oral glucose tolerance test 

PBDC Peripheral blood dendritic cells 



 x  

PBMC Peripheral blood mononuclear cells 

PBS Phosphate buffered saline 

PE R-phycoerythrin 

PHA Phytohaemagglutinin 

PI Propidium iodide 

PPAR  Peroxisome proliferator-activated receptor 

PTPN 22 Protein tyrosine phosphatase, non-receptor 22 (lymphoid) 

PWM Pokeweed mitogen 

Q {number} Adiponectin at dose ug/ml 

Q DC Adiponectin treated monocyte derived dendritic cells 

rt qPCR Reverse transcriptional quantitative polymerase chain reaction 

rt-ve Reverse transcriptase negative control 

SD Standard deviation 

SED Sedantary Arm (Exercise & Overeating Study) 

SF Serum free 

SI Stimulation index 

SM Moderate intensity arm (Exercise Intensity Study) 

SV Vigorous Intensity Arm (Exercise Intensity Study) 

T1D Type 1 Diabetes 

T2D Type 2 Diabetes 

TNF Tumour necrosis factor 

Treg Regulatory T cells 

TTC Tetanus toxoid 

VO2 max Maximal oxygen consumption 

WHR Waist hip ratio 

 



 1  

1. INTRODUCTION 
 

1.1 The costs of T1D 

 

Type 1 diabetes (T1D) is a chronic disease of hyperglycaemia caused by insulin 

deficiency. Typical onset is in childhood and adolescence, at which point, the initiation 

of insulin replacement by injection is continued for life. The aims of insulin treatment 

are not only to prevent potentially fatal ketoacidosis and dehydration, but to also 

achieve near normal glycaemia. The clinical benefits were proven in the Diabetes 

Control and Complications Trial (DCCT). In this landmark multi-centre randomised 

controlled trial, intensive insulin treatment to maintain pre-meal glucose at 70-120 

mg/dl (3.9 – 6.7 mmol l-1) and <180mg/dl (10 mmol l-1) postprandially decreased 

microvascular complications by as much as 76% (The Diabetes Control and 

Complications Trial Research Group, 1993). This reduction, including those in 

cardiovascular disease, persisted in the 10 year post-trial observational period (The 

Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and 

Complications Study Research,Group 2005).  

 

However, achieving tight glycaemic control is complex for patients. Precise insulin 

dosing for normoglycaemia needs to account for meals, lifestyle and pharmacokinetics 

of the different insulin preparations. Furthermore, tight glucose control is associated 

with risk of hypoglycaemia, some of which may be sufficiently serious to warrant third 

party assistance (The Diabetes Control and Complications Trial Research Group, 

1993). Fear of hypoglycaemia is common among patients and their carers, and the 

associated avoidance behaviour can hinder the optimisation of metabolic control (Wild, 

von Maltzahn et al. 2007).   
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T1D also impacts on our national health. The latest estimates suggest that it is 

associated with a 23 year reduction in life expectancy (Department of Health 2007), 

and mortality rates of up to 11 fold in certain populations (Soedamah-Muthu, Fuller et 

al. 2006). In addition, it is a major drain on healthcare costs to the NHS. The latest 

estimate stands at £2.5 billion, which accounts for 4% of its annual budget (Juvenile 

Diabetes Research Foundation. 2004). The costs of disease are projected to escalate 

further, as a direct consequence of the increasing incidence of T1D. In 2003, 

standardised incidence in the UK was 22-30 per 100 000, and the projected rise year-

on-year is 3-4% (Patterson, Dahlquist et al. 2009). These problems have added further 

impetus to understanding the natural history of T1D, in order to facilitate new 

approaches in preventing or ameliorating this disease. 

 

1.2 The pathogenesis of T1D 

 
Figure 1.1. Normal pancreatic islet. Insulin is labelled in green, glucagons in red and the 

nuclei in blue. Freely licensed media, courtesy of Süß C et al, University of Technology, 

Dresden, Germany.  

 

Insulin is produced by the  cells in the islet of Langerhans in the endocrine pancreas 

(figure 1.1). It is formed from post-translational cleavage of the prohormone proinsulin 
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(Sanger 1959), which is encoded by the INS gene at the position 11p15.5 (Genbank 

NM_000207). The destruction of  cells is the hallmark of T1D. In type 1B diabetes, the 

cause is idiopathic. A variant characterised by fuliminant onset and subacute 

pancreatitis has been described in Japanese patients (Imagawa, Hanafusa et al. 2000). 

In this thesis we will focus our discussion on type 1A diabetes. The immune mediated 

nature of type 1A diabetes is evidenced by its following characteristics, expanded 

further below:  

1) Association of immune genes with risk for T1D  

2) Chronic inflammation seen on islet histology in affected individuals      

3) Serum autoantibodies predate and predict disease 

4) Presence of auto-reactive T cells in affected individual 

5) Transference of disease by the transfer of diabetogenic immune cells in 

humans and in animal models. 

6) Preservation of  cell function by immunomodulatory therapies  

 

T1D is heritable, and susceptibility for disease is associated with genes encoding 

proteins with immunoregulatory functions. The largest contribution comes from MHC 

class II haplotypes HLA-DR and DQ (Concannon, Erlich et al. 2005). Recent studies 

have identified other immune genes in HLA class 1 and non-HLA regions conferring 

additional risk (figure 1.2). These include CTLA4, PTPN22 and IL2RA (Nejentsev, 

Howson et al. 2007, Concannon, Rich et al. 2009) (figure 1.2). This complex 

polygenicity indicates that multiple immune mechanisms lead to  cell destruction. 

 

Histologically, the pathognomonic lesion in T1D is insulitis (figure 1.3), which can be 

seen before clinical onset and consistently in established disease (In't Veld, Lievens et 

al. 2007, Foulis, Liddle et al. 1986) . The islets are infiltrated by immune cells, 
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Figure 1.2:  Putative functions of non-HLA genes that contribute to genetic risk of type 

1A diabetes. Adapted from Concannon et al (Concannon, Rich et al. 2009). In contrast the 

odds ratio for the HLA region 6p21 is 15. Reproduced with permission from the Massachusetts 

Medical Society. (ref PS-2011-0393).  

 

composing largely of CD8+ T cells and CD68+ macrophages, with a minority of CD4+ 

T cells and CD20+ B cells (Willcox, Richardson et al. 2009, Itoh, Hanafusa et al. 1993, 

Uno, Imagawa et al. 2007). Their cytotoxicity appears to be confined to  cells only 

(Rohane, Shimada et al. 1995), as neighbouring  and  cells are preserved (Foulis, 

Liddle et al. 1986, Hanafusa, Miyazaki et al. 1990). As disease progresses, insulin 

staining in the islets is replaced by an increasing infiltrate of of CD8+ T cells and 

CD20+ B cells (Rowe, Campbell-Thompson et al. 2010). Across the whole pancreas 

however, insulitis in patchy (Rowe, Campbell-Thompson et al. 2010). This 

hetereogeneity may be explained by pancreatic anatomy and differences in insulin 

content of the islets. Islets in the pancreatic head and body were more likely to be 

affected relative to the tail (Bottazzo, Dean et al. 1985), and this may relate to their 

more extensive lymphatic drainage(Donatini, Hidden et al. 1992). Also in support of -
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cell specificity, insulitis is seen much more frequently in islets rich in insulin content 

compared to relatively insulin-deficient ones (Foulis, Liddle et al. 1986).       

 

Further demonstration of the immune specificity is the presence of autoantibodies to  

cell proteins. Targeting the glutamic acid decarboxylase isoform of molecular weight 65 

kDa (GAD65) (Hagopian, Michelsen et al. 1993), tyrosine phosphatase (IA-2) 

(Lampasona, Bearzatto et al. 1996), proinsulin/insulin (Yu, Robles et al. 2000), these 

major autoantibodies are present in serum before and at the time of diagnosis (Bingley, 

Christie et al. 1994, Wenzlau, Juhl et al. 2007, Achenbach, Bonifacio et al. 2005). The 

assays for these autoantibodies are standardised in the Diabetes Antibody 

Standardisation Programme (DASP) (Torn, Mueller et al. 2008) and are used to stratify 

risk for T1D in genetically susceptible individuals (Sherry, Tsai et al. 2005). Other  cell 

autoantibodies can also be detected (Lieberman, DiLorenzo 2003), including the 

recently identified zinc transporter ZnT8 (Slc30A8) (Wenzlau, Juhl et al. 2007), which 

appears to further improve risk estimation.  

 

 

Figure 1.3 Insulitis. The normal distribution of  cells (insulin in red) is lost and replaced by an 

infiltrate of T cells (green). Courtesy of Anne Cooke, University of Cambridge. Reproduced 

from,(Narendran, Estella et al. 2005) with permission of the author.   
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Circulating T lymphocytes reactive to the autoantigens GAD65, IA-2, insulin, as well as 

to islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP), can be 

detected in patients with human T1D (Roep, Arden et al. 1990, Atkinson, Kaufman et 

al. 1992, Honeyman, Stone et al. 1997, Harrison, Chu et al. 1992, Hawkes, Schloot et 

al. 2000, Yang, Danke et al. 2006). Whilst each clone may have limited pathogenicity 

on its own (Burton, Vincent et al. 2008), collectively, these autoreactive cells are 

thought to be responsible for transferring diabetes in animal models (Wicker, Miller et 

al. 1986, Hanafusa, Sugihara et al. 1988, Bendelac, Carnaud et al. 1987). Analogously 

in humans, there are case reports of T1D transmission by bone marrow allograft 

(Lampeter, Homberg et al. 1993, Lampeter, McCann et al. 1998). The recipients, who 

were negative for islet autoantibodies,  developed T1D two to four years following the 

transplant from HLA-matched donors with T1D.  The duration is in keeping with the 

insidious course of islet autoimmunity, and there was no clinical evidence for 

generalised graft versus host disease. A contention is that the recipients could have 

developed T1D because of exposure to an environmental trigger, given that they 

possessed high risk HLA haplotypes.   

 

Lastly, the immunomodulatory therapies can counter the natural decline in  cell 

function. Treatments tried include immunosuppressants, stem cell transplant, biological 

immunomodulators and vaccines against islet autoantigens. Cyclosporine, a 

calcineurin inhibitor, has been shown in two multicentre RCT to induce remission in 

newly diagnosed T1D (Assan, Feutren et al. 1990, The Canadian-European 

Randomized Control Trial Group 1988). The treatment was associated with 

nephrotoxicity, although the increase in serum creatinine was reversible upon lowering 

of dosage and did not result in participant withdrawal. Encouragingly, there was a 
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24.1% complete remission rate in the treatment group at nine months, compared with 

5.8% in the placebo group. However, insulin independence rarely lasted beyond 12 

months (Bougneres, Landais et al. 1990). Azathioprine, the pro-drug of 5-

mercaptopurine which inhibits DNA synthesis, has also been tested in newly diagnosed 

patients in RCT setting. In adults, azathioprine at a dose of 2mg kg-1 d-1 was associated 

with increased insulin-free remission after 12 months of treatment (azathioprine: 7 out 

of 13 subjects, versus 1 of 11 placebo), but 5 subjects in the active arm withdrew and 

two because of side effects (Harrison, Colman et al. 1985). Bone marrow suppression, 

a recognised severe adverse event, was not seen. However, the remission was not 

sustained in the post-treatment follow-up period. In contrast, azathioprine in children 

had no significant impact on complete remission rates, metabolic control or  cell 

function (Cook, Hudson et al. 1989) , although adjuvant prednisolone in the early phase 

may be of benefit, with 3 out of 20 treated patients achieving insulin independence 

versus none in the control group (Silverstein, Maclaren et al. 1988).   

 

Remission of up to 58 months has been reported with autologous non-myeloablative 

haemopoietic stem cell transplant (Voltarelli, Couri et al. 2007, Couri, Oliveira et al. 

2009). 20 out 23 study patients became insulin free and 12 of these maintained 

remission for a mean of 31 months. Eight patients relapsed but maintained 

endogenous  cell function at 48 months. However this required high dose 

immunosuppression which carried serious risks of infection (two developed bilateral 

nosocomial pneumonia) and endocrine gland dysfunction (9 patients developed 

oligospermia).   

 

More recent clinical trials have employed interventions with much fewer adverse 

effects. A short treatment course of humanised anti-CD3 monoclonal antibody, 
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modified to prevent Fc receptor binding, preserved   cell function and reduce insulin 

dosage in newly diagnosed patients, for up to 18 months (Keymeulen, 

Vandemeulebroucke et al. 2005, Herold, Hagopian et al. 2002). During treatment, 75% 

of patients experienced a transient infectious mononucleosis-like syndrome and 

increased parameters of Epstein-Barr virus immunity, as well as a reduction of 

circulating lymphocytes. Complete recovery was seen two weeks after the last infusion. 

Pre-clinical studies suggest the mechanism of the anti-CD3 treatment relates to a shift 

in pathogenic Th1 responses (interferon-  and IL-2) in favour of Th2 (IL-10) (Smith, 

Tang et al. 1998). However, in the larger clinical trial, the temporary changes in 

cytokine levels and lymphocyte counts did not predict primary outcome (Keymeulen, 

Vandemeulebroucke et al. 2005). Additionally, the rise in titres for anti-idiotype 

antibodies during treatment phase may counteract its efficacy.      

 

Rituximab is an anti-CD20 monoclonal antibody. It cross links cell surface CD20 and 

selectively depletes B lymphocytes through antibody-mediated and complement-

dependent cytotoxicity (Bour-Jordan, Bluestone 2007).  A four-dose course of the 

antibody in patients within 3 months of diagnosis ameliorated the decline in  cell 

function at 1 year (Pescovitz, Greenbaum et al. 2009). The intervention group had 

lower levels of HbA1C and required less insulin. The depletion of B cells persisted at 

12 months (69% of baseline) but was not associated with increased infections. These 

results confirm the relevance of B cells in T1D, which can modify local production of 

cytokines at sites of autoimmunity and function as specialised antigen presenting cells 

for T lymphocyte action. Their roles are further discussed in Section 1.4.1.    

 

Treatments discussed so far are not antigen specific, and thus can result in 

immunocompromise with a potential for opportunistic infections and neoplasia. 
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Vaccination using autoantigens is a realistic alternative for inducing specific 

immunologic tolerance. The effects of 65 kDa isoform of glutamic acid decarboxylase 

(GAD), a recognised autoantigen in T1D, have been reported in a phase 2 study 

(Ludvigsson, Faresjö et al. 2008). Combined with the adjvuvant alum, GAD vaccination 

in children within 18 months of diagnosis resulted in a slower decline in   cell function 

against placebo, for up to 30 months. There were no differences in frequency of 

adverse events between the two groups. Active treatment was associated with higher 

GAD antibodies, GAD-induced cytokines (interferon- , TNF , interleukins 5, 10, 13 17) 

and expression of FoxP3 and TGF-  in whole PBMC. Larger confirmatory trials are in 

progress (NCT00723411 & NCT00751842).    

 

1.3 Natural history of T1D 

 

Follow-up studies of at-risk subjects show the loss of  cell function is insidious (figure 

1.4). Family history and HLA class II genes determine genetic risk (Ziegler, Nepom 

2010). Children with an affected first degree relative will have a 10 times increased risk 

compared to those without family history (Table 1.1). HLA class II genes have a 

comparable impact. The genotypes HLA DRB1*03, *04 and DQB1*0302 confer the 

highest risk (odds ratio for T1D = 17). In contrast, HLA-DQB alleles are protective. For 

example, the HLA-DQB1*0602 haplotype reduces lifetime risk in those with first degree 

family history from 5-8% to ~1% (Baisch, Weeks et al. 1990).  
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Table 1.1 Type 1 Diabetes Risk Stratification by T1D Family History and HLA 

Genotyping  

Population Type 1 Diabetes Risk (%) 

Low Risk 

No affected FDR plus HLA protective genes 0.01 

No affected FDR 0.4 

Affected FDR plus HLA protective genes 0.3 

Intermediate Risk 

No affected FDR plus HLA risk genes 4 

One affected FDR 5 

 Mother with T1D 3 

 Father with T1D 5 

 Sibling with T1D 8 

High Risk 

One affected FDR plus HLA high risk genes 10–20 

Multiple affected FDRs 20–25 

Very High Risk 

Identical twin affected 30–70 

Multiple affected FDRs plus HLA risk genes 50 

Sibling affected plus HLA risk genes, identical by descent 30–70 

FDR, first-degree relative; HLA risk genes, HLA DRB1
*
03,

*
04;DQB1

*
0302; HLA protective 

genes, HLA DQB1
*
0602. Type 1 diabetes risk (%) refers to lifetime risk of develop disease. 

Table reproduced from (Ziegler, Nepom 2010) with permission from the publisher (Elsevier 

License number 2550221424517). 

 

 

The development of autoantibodies compounds the baseline genetic risk. Rarely 

present before the age of 6 months, their detection signals initiation of islet 

autoimmunity (Bingley, Christie et al. 1994, Achenbach, Warncke et al. 2006). 

Autoantibodies used for risk prediction are insulin/proinsulin, GAD65/GAD67, IA-2 and 

the recently identified ZnT8 (Wenzlau, Juhl et al. 2007). Incremental risk is seen with 

multiple positive antibodies, as well as the presence of higher titre and greater affinity 

antibodies.   

 

Thus, genetic and immunological factors can stratify an individual‟s risk for T1D. This 

strategy has been successfully used to identify high risk cohorts, with a predicted 

incidence of >25% in 5 years, for prevention studies (Diabetes Prevention Trial–Type 1 
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Diabetes Study Group 2002, Gale 2004). In these subjects with pre-clinical T1D, the 

rate of decline in  cell function in the pre-T1D period can be tracked by glucose 

challenge and mixed meal tolerance tests. The loss of first phase insulin secretion 

(FPIR) and impaired glucose tolerance identify subjects with accelerated progression to 

diabetes (Barker, McFann et al. 2007). Approximately 10-20% residual  cell function 

remains at diagnosis (Komulainen, Knip et al. 1997). In a proportion of patients, there is 

partial or complete clinical remission, resulting in insulin independence. This period, 

called a „honeymoon‟ period, can last a number of years. However, all patients will 

inevitably relapse to requiring insulin therapy as the continuing autoimmune process 

proceeds to destroy surviving  cells. Therefore, after a number of years of diabetes 

there is minimal amount of  cell function, and this has traditionally been estimated 

using the technique of C-peptide measurement following a hyperglycaemic stimulus 

(Sherry, Tsai et al. 2005). Analysis of the DCCT shows that even at the time of 

presentation with diabetes, the small amounts of endogenous insulin secretion reduces 

the risk of vascular complications and severe hypoglycaemia (Steffes, Sibley et al. 

2003). Hence, measures that dampen islet autoimmunity and sustain  cell function will 

be of clinical benefit to patients at the time of, as well as before, diagnosis with T1D.  
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Figure 1.4: Natural history of type 1 diabetes. After birth,  cell mass may still increase with 

linear growth and increased metabolic demand from obesity or pregnancy (Sherry, Tsai et al. 

2005). In pre-T1D (a),  cell mass declines because of autoimmune attrition. Glucose 

intolerance can be identified on dynamic testing. Symptomatic presentation (b) of T1D occurs 

when  cell mass falls below a threshold for required glucose homeostasis (dotted line). 

Honeymoon remission (c), characterised by a period of insulin independence, may occur in 

some patients following initial insulin treatment. However, in all patients this does not last and  

cell mass declines and again falls below the threshold (d). Nevertheless, functional  cells can 

be isolated in patients with longstanding T1D (>10 years) (Walker, Johnson et al. 2010).  cell 

function is measured by a C-peptide response to a hyperglycaemic stimulus such as a mixed 

meal challenge.    

 

a 

b 

c 

d 

Beta cell 
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time 
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1.4 Overview of current concepts in the immunopathogenesis of T1D   

1.4.1 The non-obese diabetic (NOD) mouse 

 

Understanding the immune dysregulation in human T1D is limited by the availability of 

tissue, and the slow progression of disease. Much of our knowledge is attributed to the 

non-obese diabetic (NOD) mouse model, an inbred strain that exhibits spontaneous 

autoimmune diabetes, usually within 12-16 weeks of birth (Adorini, Gregori et al. 2002, 

Anderson, Bluestone 2005). It mimics some features of human T1D. The genetic 

susceptibility for disease in NOD mice is largely determined by the single functionally 

homologous MHC class II allele H2g7. A similar panel of autoantigens, GAD, 

proinsulin, IA-2 and IGRP is targeted in both. NOD diabetes is preceded by a short 

prodrome of increasing glucose intolerance with parallel insulitis. The major advantage 

of the NOD mouse is that it allows the controlled interrogation of an immune 

mechanism. Techniques such as adoptive transfer, where cells from diseased mouse 

are injected into a healthy coisogenic and immunodeficient host, allow apportion of 

each cellular component in the autoimmune response. Genetic manipulations through 

transgenes and selective gene targeting can dissect the relevance of specific molecular 

pathways. 

 

CD4+ and CD8+ T cells are obligate effectors in the aetiology of T1D (Wicker, Miller et 

al. 1986, Hanafusa, Sugihara et al. 1988, Bendelac, Carnaud et al. 1987, Miller, Appel 

et al. 1988, Christianson, Shultz et al. 1993). Their individual MHC-class restricted 

clones, generated from leucocytic infiltrates of insulitic lesions, transfer disease (Wong, 

Visintin et al. 1996, Graser, DiLorenzo et al. 2000, Haskins, Wegmann 1996). In 

addition, anti-CD3, CD4, and CD8 monoclonal antibodies confer protection and can 

induce disease remission (Chatenoud, Thervet et al. 1994, Koike, Itoh et al. 1987, 
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Herold, Montag et al. 1987, Makhlouf, Grey et al. 2004, Shizuru, Taylor-Edwards et al. 

1988, Herold, Bluestone et al. 1992, Wang, Gonzalez et al. 1996, Parish, Cooke 2005). 

For activation, naive autoreactive T cells require the presentation of a processed 

cognate antigenic peptide complexed to the MHC class II molecule by an antigen-

presenting cell (APC) (Itano, Jenkins 2003, Hoglund, Mintern et al. 1999, Gagnerault, 

Luan et al. 2002). This process initially takes place at the pancreatic lymph node 

(Gagnerault, Luan et al. 2002). Dendritic cells (DC) are a group of diverse and 

specialised APC found in tissues, blood and secondary lymphoid organs (Banchereau, 

Briere et al. 2000). They can be expanded ex vivo from myeloid or lymphoid 

progenitors, in peripheral blood and bone marrow. They are classified according to 

their maturation, phenotype and secretory profile (Penna, Vulcano et al. 2002). DC and 

also macrophages and monocytes, can perform the antigen presentation role and their 

introduction to the diabetes-prone NOD mouse can initiate disease (Saxena, Ondr et 

al. 2007, Jun, Yoon et al. 1999, Serreze, Fleming et al. 1998).  

 

The B lymphocyte can also function as APC. Autoreactive B cells have constitutive 

HLA class II expression and surface-bound autoantibodies efficiently capture self-

antigens (Falcone, Lee et al. 1998). In the NOD mouse, B cell deficiency ameliorated 

spontaneous diabetes and adoptive transfer of B cells from diabetic mice restored islet 

autoimmunity (Serreze, Fleming et al. 1998, Hämäläinen, Savola et al. 2001).  

 

The pathogenicity of the B lymphocytes was not dependent on their antibody secretory 

capacity, as seen in an IgM transgene model which retained antibodies on the cell 

surface (Wong FS, Wen et al. 2004). Rather it is their antigen presenting function that 

is crucial, as selective inhibition of HLA expression on B cells prevented diabetes 

(Noorchashm, Lieu et al. 1999). There is also evidence to suggest B lymphocytes can 

modify autoimmunity in the NOD mouse in a paracrine fashion. B lymphocytes 
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activated by anti-IgM F(ab')2 antibodies could skew cytokine expression in T cells 

towards Th2 phenotype, attenuate insulitis and delay diabetes (Hussain, Delovitch 

2007), and this regulatory effect was fully dependent upon IL-10 expression. In 

contrast, islet autoantibodies are not believed to be pathogenic, as they do not bind to 

the cell surface or matrix antigens, or form immune complexes (Wong, Wen 2005). 

Furthermore, their transplacental transfer in humans did not initiate  cell autoimmunity 

(Serreze, Fleming et al. 1998, Hämäläinen, Savola et al. 2001). 

 

In humans, B lymphocytes are present in human insulitic lesions and their numbers 

increase with progression (Willcox, Richardson et al. 2009). Their depletion by the anti-

CD20 monoclonal antibody rituximab resulted in preservation of  cell function in 

clinical trials (Pescovitz, Greenbaum et al. 2009), This positive result confirms the 

importance of B lymphocytes in human T1D, although their role is not absolutely 

critical, as disease can occur in X-linked agammaglobulinemia, where tyrosine kinase 

mutation results in B cell deficiency (Martin, Wolf-Eichbaum et al. 2001).    

 

NK lymphocytes are another cell type that can influence disease course. They are 

cytotoxic to  cells in co-cultures, and are a rich source of the pro-inflammatory 

cytokine IFN-  (Nakamura, Woda et al. 1990). In corroboration they promote insulitis 

and diabetes in transgenic models (Poirot, Benoist et al. 2004, Alba, Planas et al. 

2008). However, the picture in human T1D is less clear cut. NK cell counts are reduced 

at the time of disease onset and their induced IFN-  expression does not correlate with 

more aggressive disease (Rodacki, Svoren et al. 2007).    
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1.4.2 The MHC and cytokines 

 

Direct cytotoxicity by autoreactive CD8+ T cells is an important cause of  cell loss in 

T1D (Mathis, Vence et al. 2001). MHC-class 1 expression on the  cell target is critical, 

as molecular knockout prevents diabetes in NOD mouse (Serreze, Chapman et al. 

1997). CD8+ T cells, recognising antigen-MHC class 1 complex, kill  cells via perforin, 

granzyme B and Fas ligand mechanisms (Mathis, Vence et al. 2001). This process 

may be enhanced by elevated glucose, which can increase proinsulin presentation 

(Skowera, Ellis et al. 2009). Inflammatory cytokines such as IL-1  and IFN- , secreted 

by immune cells, act in synergism in effecting  cell death (Cnop, Welsh et al. 2005). 

However, no single cytokine is an absolute requirement for autoimmune diabetes, as 

sole knockout strains remain susceptible to disease, albeit with delayed onset 

(Hultgren, Huang et al. 1996, Kagi, Ho et al. 1999, Thomas, Irawaty et al. 2004). This 

may simply highlight the redundancy common in cytokine networks. Collectively they 

switch on pathways that lead to increased presentation of antigens ( MHC class 1 and 

proteasome components), chemokine expression (IL-15, IP-10, MCP-1 and ICAM-1) 

and apoptosis, which perpetuate immune process and  cell loss (Zhang, O'Brien et al. 

2002). 

 

1.4.3 Central and peripheral tolerance 

 

Important questions in understanding T1D pathogenesis therefore include how islet 

reactive T cells develop and are later primed to action. Self-reactive T cells are thought 

to undergo negative selection during thymic development because of their strong 

affinity to self antigens (Hogquist, Baldwin et al. 2005), a process called central 

tolerance. Again the NOD mouse provides clues on how this process can be 
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compromised (Lesage, Hartley et al. 2002). Firstly, differences in the expression of 

MHC-class 2 molecules are important (Kanagawa, Martin et al. 1998). Attempts to alter 

MHC class II expression by transgenes are successful in preventing insulitis 

(Nishimoto, Kikutani et al. 1987, Lund, O'Reilly et al. 1990). It has been suggested that 

the single NOD I-Ag7 has an unstable tertiary structure, resulting in poor peptide 

binding (Kanagawa, Martin et al. 1998). However, this may be oversimplified, as the 

clonal deletion of diabetogenic thymocytes in transgenic class-II NOD mice appears to 

be autoantigen independent (Bohme, Schuhbaur et al. 1990, Schmidt, Amrani et al. 

1999). Secondly, the ectopic expression of self-antigens may also account for disease 

susceptibility. The importance of this is shown by defects in the Aire gene (Liston, 

Lesage et al. 2003). Aire controls the expression of a number of self proteins in thymic 

medullary epithelial cells and its silencing creates the clinical syndrome APECED 

(autoimmune polyendocrinopathy, candidiasis and ectodermal dysplasia) characterised 

by spontaneous endocrine autommune diseases, including T1D. Whilst the Aire gene 

is not defective in NOD mice, measures that alter autoantigen expression in the 

thymus, such as proinsulin and GAD65, can modify disease (Tisch, Yang et al. 1993, 

Thébault-Baumont, Dubois-Laforgue et al. 2003). In corroboration, decreased thymic  

expression of insulin in humans, associated with alleles in the VNTR element of the 

insulin gene promoter, negatively correlates with T1D risk (Pugliese, Zeller et al. 1997).  

Lastly, diabetogenic thymocytes in the NOD mouse may be more resistant to apoptotic 

elimination, possibly through the upregulation of anti-apoptotic proteins (Lamhamedi-

Cherradi, Luan et al. 1998, O'Brien, Geng et al. 2006).     

 

The process of central tolerance is incomplete and circulating autoreactive T cells are 

detectable in health. Peripheral tolerogenic mchanisms keep these cells in check 

(Lohmann, Leslie et al. 1996, Semana, Gausling et al. 1999, Arif, Tree et al. 2004, 
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Mannering, Morris et al. 2004). The best characterised of these center on DC and 

regulatory T cells (Tregs).  

 

1.4.4 Dendritic cells and regulatory T cells  

 

Myeloid DC, defined by CD11c expression, are some of the first cells to infiltrate islets 

in the autoimmune diabetes in the NOD mouse, and are involved in the priming of 

autoreactive T cells (Rosmalen, Leenen et al. 1997, Turley, Poirot et al. 2003, Jansen, 

Homo-Delarche et al. 1994). In addition, they secrete abundant levels of IL-12 which 

skew effector T cells towards a Th1 phenotype (Trembleau, Penna et al. 1995, 

Weaver, Poligone et al. 2001, Trembleau, Penna et al. 2003). This response appears 

to be critical in the development of insulitis in the NOD mouse (Nitta, Kawamoto et al. 

2001). Th1 type cytokines include IFN- , IL-2, and IL-21, promote inflammatory 

responses of effector cells (Hultgren, Huang et al. 1996, Allison, McClive et al. 1994, 

Sutherland, Van Belle et al. 2009). In particular, IL-21 may be especially potent, as the 

transgenic overexpression of IL-21 in islets can trigger diabetes in a normally diabetes 

resistant strain (Sutherland, Van Belle et al. 2009). This preferential expression of Th1 

cytokines by T cells on encountering autoantigens appears to also apply in human T1D 

(Arif, Tree et al. 2004). In contrast, immature DCs are adept in antigen presentation 

and have reduced allo-stimulatory capacity (Lutz, Schuler 2002). They are identified by 

their low expression levels of MHC Class 2 and co-stimulatory molecules. Propagated 

from bone marrow cells and pulsed with autoantigenic peptides, these cells can delay 

disease onset in the NOD mouse (Feili-Hariri, Dong et al. 1999, Clare-Salzler, Brooks 

et al. 1992), and are the subject of current immunotherapy trials in human T1D (Lo, 

Clare-Salzler 2006). 
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Naïve T cells require a second signal in addition to the TCR-MHC-Class II-antigen 

complex for activation. This is provided by the binding of CD80 or CD86 on APC to 

CD28 on T cells (Sperling, Auger et al. 1996). In addition, CTLA-4 on the surface of T 

cells is an alternative ligand for CD80/86 (Walunas, Lenschow et al. 1994). This 

engagement produces an opposing inhibitory signal. Interventions on this pathway 

have complex effects on diabetes incidence on the NOD mouse. In keeping with its 

priming role, anti-CD86 antibodies can prevent diabetes onset only if administered 

before 10 weeks of age (Lenschow, Ho et al. 1995). However, antagonism of CD80/86 

with a soluble CTLA-4 antibody, as well as gene knockouts of CD28, CD80 and CD86, 

all produced paradoxical acceleration of diabetes (Anderson, Bluestone 2005). This 

finding may potentially be explained by the finding that these models have significantly 

reduced population of cells called Treg. CD80/86 – CD28 stimulation is required for the 

maintenance of Treg (Salomon, Lenschow et al. 2000, Tang, Henriksen et al. 2003).  

 

Treg police diabetogenic T cell responses in the NOD mouse by cell-contact and TGF-

 dependent mechanisms (Bluestone, Tang et al. 2008).  They possess CD62L, CTLA-

4, GITR on their surface, and can be also be identified also by its low CD127 

expression (Hartigan-O'Connor, Poon et al. 2007). Crucial to Treg function are 

transcription of the nuclear factor FoxP3 (Fontenot, Gavin et al. 2003), expression of 

CTLA-4 (Schmidt, Wang et al. 2009), and the cytokines IL-2 and TGF  (Setoguchi, 

Hori et al. 2005, Peng, Laouar et al. 2004) . Their numbers are reduced in NOD mice, 

and inversely correlate with rate of  cell destruction (Salomon, Lenschow et al. 2000, 

Chen, Herman et al. 2005). Whilst anergic to antigenic and polyclonal stimulation 

(Setoguchi, Hori et al. 2005, Gavin, Clarke et al. 2002), Treg numbers can be 

expanded in vitro with anti-CD3, anti-CD28 and IL-2 (Tang, Henriksen et al. 2004)  or 

using DC exposed to IL-10 and TGF-  (Rutella, Danese et al. 2006). Their subsequent 
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transfer to NOD mouse can curtail insulitis and reverse disease (Tang, Henriksen et al. 

2004, Lepault, Gagnerault 2000, Stephens, Mason 2000, Bresson, Togher et al. 2006).  

 

Whether defects in tolerance described in the NOD mouse are relevant to human T1D 

is open to debate (Bresson, von Herrath 2009, Atkinson, Leiter 1999). For example, a 

meta-analysis of Treg in human T1D found variable reports of functional impairments 

(Tree, Roep et al. 2006), and this is partly attributable to differences in stimulatory  

conditions. In positive studies, Tregs were tested against the stimulatory effects of anti-

CD3 (Brusko, Wasserfall et al. 2005, Lindley, Dayan et al. 2005). Adaptive Tregs are a 

subset of antigen-specific Treg that had developed from mature T cells under certain 

conditions of antigen stimulation (Bluestone, Abbas 2003). Using an in vitro culture 

system with APC and peptides, GAD- and IGRP- specific Treg in T1D were found to 

have similar function compared to other adaptive Treg in the same subject (Long, 

Walker et al. 2009). 

 

Moreover, DC from T1D patients and those at risk do not have an inflammatory 

phenotype (Takahashi, Honeyman et al. 1998, Zacher, Knerr et al. 2002, Angelini, 

Duca et al. 2005, Summers, Marleau et al. 2006). Adding complexity to the issue is that 

diabetogenic T cells may in fact be resistant to Treg suppression (D'Alise, Auyeung et 

al. 2008, Schneider, Rieck et al. 2008). This may be attributable to cytokines such as 

IL-21 and activation signals from the Toll-like receptor and the TNF receptor families 

(Walker 2009).        

 

A working model of the immunopathogenesis of T1D is presented in figure 1.5.  
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Figure 1.5: Working model of T1D autoimmunity. Antigen presenting cells (APC), in this case 

CD11c+ dendritic cells, process and traffick  cell antigens in the pancreatic lymph node. They 

activate naïve diabetogenic CD4+ T cells via MHC Class 2-antigen-T cell receptor synapse. 

Important co-stimulatory signals come from CD80/86-CD28 pathway and IL-12 secreted by DC. 

The CD4 T cells secrete predominantly Th1 type cytokines (IFN , IL-2 and IL21) in their 

recruitment of islet reactive CD8+ cytotoxic T cells and local macrophages. These cells effect  

cell killing through Fas ligand, TNF, IL-1  and reactive oxygen species (ROS). Treg, defined by 

the phenotype markers CD4+CD25+FoxP3+, is able to suppress diabetogenic T cells via cell 

contact and TGF-  dependent mechanisms. 

 

1.5 Insulin resistance is a propellant of T1D autoimmunity in susceptible 

individuals 

 

The discordance for disease in monozygotic twins has previously been cited as 

evidence for the environment in the pathogenesis of T1D (Redondo, Yu et al. 2001). 

Studies showing the negative impact in genetic risk in causing the worldwide increase 
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in T1D incidence (Gillespie, Bain et al., Fourlanos, Varney et al. 2008) have drawn 

further interest into the area.   

 

Insulin resistance (IR) refers to a fall in the biological activity of insulin at a given dose 

(Pang, Narendran 2008a). It manifests clinically as the metabolic syndrome (Reaven 

1988). Its prevalence is rising because of our obesity pandemic (Ford, Giles et al. 

2002, Mattsson, Ronnemaa et al. 2007). The gold standard in measurement of IR is 

the euglycaemic hyperinsulinaemic clamp (DeFronzo, Tobin et al. 1979). However this 

is time consuming and not suited to large scale clinical studies. Alternative validated 

measures include the HOMA-IR index (Wallace, Levy et al. 2004), which utilises paired 

fasting glucose and insulin, and the minimal model, based on insulin response at the 

IVGTT (Saad, Anderson et al. 1994).  

 

In the accelerator hypothesis, Wilkin proposed diabetes is the result of three processes 

contributing to  cell apoptosis (Wilkin 2001). These are constitution (genetic factors), 

autoimmunity and IR. Based on the increasing obesity rate, IR has been proposed as a 

likely environmental factor in driving the increasing incidence of T1D. If this is true, then 

a cohort of recent new cases would have a higher pre-morbid body mass index 

compared to an older group. Also adjusting for other known risk factors, the more 

aggressive islet autoimmunity would lead to an earlier age of diagnosis. Several groups 

have now reported these associations (Betts, Mulligan et al. 2005, Kibirige, Metcalf et 

al. 2003, Knerr, Wolf et al. 2005, Libman, Pietropaolo et al. 2003), but there are 

disagreements (Porter, Barrett 2004, Dabelea, B. et al. 2006). Others have attempted 

to examine the relationship between weight gain and positivity for autoantibodies, but 

again there is conflicting data (Couper, Beresford et al. 2009, Cambuli, Incani et al. 

2010). Despite this, stronger evidence can be found from prospective studies of 
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subjects with high-risk pre-T1D (Table 1) (Greenbaum, Sears et al. 1999, Fourlanos, 

Narendran et al. 2004, Mrena, Virtanen et al. 2006, Xu, Cuthbertson et al. 2007, 

Bingley, Mahon et al. 2008).  

 

The Melbourne Prediabetes Study first reported on the deleterious effect of insulin 

resistance on the development of T1D (Fourlanos, Narendran et al. 2004). The authors 

had employed an earlier version of HOMA-IR, standardised against FPIR, a surrogate 

of insulin secretary function. This adjustment compensates for the systematic 

underestimate by the natural decline in  cell function. Adjusting for known 

immunogenetic risk factors, HOMA-IR:FPIR at baseline was a powerful and 

independent predictor of diabetes (hazard ratio (HR) 2.14, 95% CI 1.39 – 3.29). 

Conversely, subjects who were relatively insulin sensitive were protected from disease. 

These findings were consistent with later studies conducted on different continents 

(Mrena, Virtanen et al. 2006, Xu, Cuthbertson et al. 2007, Bingley, Mahon et al. 2008). 

In particular, investigators for the DPT-1 found this relationship to apply to high and 

intermediate risk groups (Xu, Cuthbertson et al. 2007). Additionally they reported 

further increases of IR relative to baseline 6-12 months before diabetes onset. In 

contrast, two other studies recorded neutral effects (Greenbaum, Sears et al. 1999, 

Bingley, Mahon et al. 2008). However, posthoc analysis of ENDIT suggested the effect 

is dependent on baseline  cell reserve. The strong predictive power of IR remains in 

those with low FPIR and thus at high risk of progression (HR for low FPIR 3.67, p<0.05 

versus 1.27 ns for preserved insulin secretion) (Bingley, Mahon et al. 2008). Thus, the 

negative findings from the earlier Seattle Family Study could be explained by its lower 

risk study population (Greenbaum, Sears et al. 1999). Overall, the main effect of IR on 

diabetes onset is on those at high genetic risk (constitution) and those already with low 
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insulin reserve, because of autoimmunity. This is in keeping with its proposed role as 

an environmental modifier of disease risk in the accelerator hypothesis.       

 

Confirming the environmental origin of the IR, genome wide scan studies of T1D have 

not shown any loci known to modify insulin sensitivity to be associated with disease 

(Barrett, Clayton et al. 2009). Further supporting evidence comes from the British 

Diabetic Twins Study, which prospectively followed non-diabetic identical twins whose 

co-twin has T1D (Hawa, Bonfanti et al. 2005). Despite sharing the same genetic risk, 

twins who later developed diabetes were more insulin resistant than their control twins 

who maintained normal glucose tolerance.  
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Table 1.2: Prospective studies evaluating the effect of IR in development of T1D  

(in order of the year of publication) 

Study  N Median 
duration 
of follow-
up (years) 
 

Progression 
to clinical 
diabetes   
(%) 

Measure of IR Adjusted 
hazard ratio 
(95% CI) 

Seattle Family 
Study (1999) 
(Greenbaum, Sears 
et al. 1999) 

85 2.8 11.8 Minimal model 
of glucose 
kinetics from 
IVGTT 

1.0 (NS)  

Melbourne Pre-
Diabetes Family 
Study (2004) 
(Fourlanos, 
Narendran et al. 
2004) 
 

104 4.0 41.3 HOMA1-
IR:FPIR 

2.14  
(1.39 – 
3.29) 

Childhood Diabetes 
in Finland study 
(2006) (Mrena, 
Virtanen et al. 2006) 
 

77 15.0 40.3 HOMA1-
IR:FRIR 

2.4  
(1.2 – 5.0) 

Diabetes Prevention 
Trial- Type 1 
(moderate risk 
group) (2007) (Xu, 
Cuthbertson et al. 
2007) 
 

186 4.3 28.5 HOMA1-IR  2.70  
(1.45 – 
5.06) 

Diabetes Prevention 
Trial- Type 1 (high 
risk group) (2007) 
(Xu, Cuthbertson et 
al. 2007) 
 

170 3.7 41.2 HOMA1-IR 1.83  
(1.19 -2.82) 

European 
Nicotinamide 
Diabetes Intervetion 
Trial (2008) 
(Bingley, Mahon et 
al. 2008) 
 

213 4.2 49.3 HOMA2-IR 1.43  
(0.99 – 
2.06) 

DPT-1 Moderate risk group – 25-50% 5 year risk of developing T1D 
DPT-1 High Risk group - ≥ 50% 5 year risk of developing T1D 
HOMA1-IR – measure of IR at steady state based on the formula: fasting insulin (mU/L) × fasting glucose 
(mmol/l) / 22.5 
HOMA2-IR – refined model of HOMA1-IR, taking into account steady state changes in glucose and insulin 
at higher levels of fasting glucose and interference of insulin assays by proinsulin 
FPIR – sum of serum insulin concentration at 1 and 3 minutes after glucose injection in the IVGTT 

 - calculation based on insulin sensitivity index (× 10
-5

 min
-1

/[pmol/l]) from frequently sampled IVGTT 
between progressors (4.47 ± 0.584) and non-progressors (4.48 ± 0.443) 
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1.6 Adipose tissue and immunity  

 

How can we explain the association between IR and the accelerated development of 

T1D? Diabetes may be revealed earlier as the higher IR overloads the compromised  

cell (Dahlquist 2006). But data exists to suggest IR may also directly modulate islet 

autoimmunity. In the Melbourne Prediabetes Study, the effect of increasing IR on 

diabetes incidence was analysed in a post hoc Kaplan Meier analysis (figure 1.6). 

Subjects, controlled for family history, HLA haplotype and autoantibody profile, were 

divided into four quartiles based on their IR on entry. Of interest is the divergence in the 

Kaplan Meier curves and the relative protection from disease in subjects who were 

insulin sensitive. If IR is to only have an overload effect, then the pattern seen would be 

that of a divergent-convergent curve, ie disease onset is delayed in the insulin sensitive 

quartile but eventually all four groups will develop disease because of the same rate in 

 cell mass loss. This analysis suggests IR is a modifier of  cell autoimmunity, and 

there is evidence to support such a link is biologically plausible. 
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Figure 1.6 Kaplan-Meier analysis of increasing quartiles of IR on incidence of diabetes in 

the Melbourne Prediabetes Study (Fourlanos, Narendran et al. 2004). Reproduced with 

permission (Springer licence number: 2551431389203). HOMA-R denotes HOMA IR. Subjects 

controlled for known risk factors of T1D were stratified into quartiles according to their HOMA-

IR, standardised to FPIR, on entry. The divergence in Kaplan-Meier curves and low diabetes 

incidence in the insulin sensitive quartiles (0-25
th
 and 26

th
-50

th
 percentiles) indicate IR is a 

modifier in the pathophysiology of T1D.  

 

In animal models,  cells triggered to apoptose because of gluco- and lipotoxicity 

display increased autoantigens (Bjork, Kampe et al. 1992), and this in turn can activate 

DC and CD8+ T cells (Bjork, Kampe et al. 1992, Trudeau, Dutz et al. 2000). 

Alternatively, the association may be attributed to effects of adipose tissue (AT). AT 

decreases on whole body insulin sensitivity (Kahn, Hull et al. 2006), and recent studies 

show that it has the capability to direct T cell immunity. 
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Fat accretion shifts the balance of resident T cells in AT (Nishimura, Manabe et al. 

2009, Winer, Chan et al. 2009, Feuerer, Herrero et al. 2009). Wild type mice on high 

chow diet had an overall higher number of T cells in their visceral adipose tissue. T cell 

numbers in cutaneous fat, which has a much lower proportion of white adipose tissue 

implicated in the metabolic syndrome, were unchanged (Winer, Chan et al. 2009). The 

infiltrate was largely CD8+ (Nishimura, Manabe et al. 2009) and IFN-  expressing 

(Winer, Chan et al. 2009), with diminished numbers of CD4+FoxP3+ cells (Feuerer, 

Herrero et al. 2009). The mechanism for T cell influx is not clear, although intriguingly, 

analysis of TCR rearrangements of these shows the T cells were of limited repertoire, 

suggesting antigenic stimulation plays a role (Winer, Chan et al. 2009, Feuerer, 

Herrero et al. 2009, Feuerer, Herrero et al. 2009). Similar changes in the balance in 

favour of pro-inflammatory effector T cells over FoxP3+ cells are seen in ob/ob mice 

(Feuerer, Herrero et al. 2009), a model of genetic IR and also in obese human subjects 

(Winer, Chan et al. 2009, Feuerer, Herrero et al. 2009). These T cells appear to be 

important in modulating AT inflammation and IR. In mice fed with high fat diet, 

expanding FoxP3 numbers using recombinant IL-2 and a particular–IL-2–specific 

monoclonal antibody (Feuerer, Herrero et al. 2009), or mitogenic CD3 antibody (Winer, 

Zern et al. 2006) ameliorated IR. The selective removal of CD8+ T cells using 

neutralising CD8 antibodies mitigated the recruitment of macrophage into AT and 

downregulated IL-6 and TNF  expression in AT.  

 

Moreover, the immunomodulatory potential of perinodal fat is recognised (Knight 2008) 

where adipocytes are in close proximity to DC. Here, crosstalk is likely to involve 

adipokines. Discovered by gene expression profiling of adipocytes, adipokines have 

paracrine and endocrine functions in energy metabolism and inflammation (Zhang, 

Proenca et al. 1994, Maeda, Okubo et al. 1996). Examples of adipokines include the 
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archetypal leptin, resistin, TNF , as well as the adipokine that is the subject of this 

thesis, adiponectin. It is by far the highest expressed adipokine and has attracted the 

most research interest as a putative modulator of obesity-associated disease. 

  

1.7 Adiponectin biology 

1.7.1 The adiponectin gene (ADIPOQ) and protein structure 

 

Adiponectin is encoded by the ADIPOQ gene on chromosome 3q21 (Kissebah, 

Sonnenberg et al. 2000, Takahashi, Arita et al. 2000), which spans 17kb. It consists of 

three exons and two introns (figure 1.7A). Its mRNA transcripts were previously 

believed to be restricted to AT and in mature adipocytes (Maeda, Okubo et al. 1996, 

Scherer, Williams et al. 1995, Maeda, Okubo et al. 1996). In the 3T3-L1 cell line, a 

widely used model in studies of adipocyte biology, ADIPOQ transcripts were absent in 

pre-adipocyte cultures, but is induced 100-fold upon maturation (Scherer, Williams et 

al. 1995). Recent studies have found ADIPOQ expression in extra-adipose tissues can 

be induced in inflammatory states, in exocrine glands (Katsiougiannis, Kapsogeorgou 

et al. 2006), heart muscle (Guo, Xia et al. 2007) and respiratory epithelium (Miller, Cho 

et al. 2009).  

 

It is a 30 kDa monomeric protein, consisting of 244 amino acid residues (figure 1.7B). It 

has a N-terminal signal sequence, a domain containing 22 Gly-X-Pro repeats which 

forms the straight collagen stalk, and a globular domain at the carboxyl terminal that 

has sequence homology to the complement factor C1q (Scherer, Williams et al. 1995). 

The tertiary structure of the protein is similar to TNF  (Kadowaki, Yamauchi 2005).  
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1  MLLLGAVLLL LALPGHDQET TTQGPGVLLP LPKGACTGWM 

41  AGIPGHPGHN GAPGRDGRDG TPGEKGEKGD PGLIGPKGDI 

81  GETGVPGAEG PRGFPGIQGR KGEPGEGAYV YRSAFSVGLE      

121  TYVTIPNMPI RFTKIFYNQQ NHYDGSTGKF HCNIPGLYYF 

161 AYHI  TVYMKD VKVSLFKKDK  AMLFTYDQYQ ENNVDQASGS 

201    VLLHLEVGDQ VWLQVYGEGE RNGLYADNDN DSTFTGFLLY      

241 HDTN

a

b

c

Figure 1.7 ADIPOQ gene (A) and primary protein structure of adiponectin (B) 

A. Obesity decreases expression of adiponectin RNA. Increased TNF , ER stress 

and associated increase in CREB levels act in concert to alter balance of promoter 

(PPAR and FoxO1) and repressor (ATF3 and NCAT) activity on ADIPOQ 

transcription. B. Primary structure of adiponectin (244 aa). Box a indicates the signal 

sequence. Box b is a region containing short collagen like motif Gly-X-Y triplets. Box 

c shows sequence homology to C1q.
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Through non-covalent associations between the collagenous domains, adiponectin can 

form dimers and trimers. These can further polymerise via disulphide bonds and other 

post-translational modifications to form low and high molecular weight species in 

circulation (Waki, Yamauchi et al. 2003, Tsao, Tomas et al. 2003, Richards, Stephens 

et al. 2006). The ability to form multimeric adiponectin appears to be confined to 

mammalian cells and is dependent on the glycosylation of lysine residues in the 

collagenous domain (Richards, Stephens et al. 2006). Together, adiponectin multimers 

circulate at concentrations of 10 ug ml-1 in plasma. Globular adiponectin (gAd), a 

fragment of full length adiponectin following cleavage of the collagenous tail by 

leucocyte elastase (Waki, Yamauchi et al. 2005), is present in small amounts but has 

recognised biological functions (Fruebis, Tsao et al. 2001).     

 

1.7.2 The adiponectin Receptors AdipoR1 and AdipoR2 

 

Using expression cloning, where binding of recombinant adiponectin was screened 

against proteins made from a human skeletal muscle cDNA library, Yamauchi et al 

were the first to describe specific surface receptors for adiponectin, termed AdipoR1 

and AdipoR2 (Yamauchi, Kamon et al. 2003). The receptors belong to the G-protein 

related receptor superfamily and have an inverted topology, such that the C-terminus is 

on the external surface. They have similarities on crystallography to the TNF  receptor 

(Yamauchi, Kamon et al. 2003, Kupchak, Garitaonandia et al. 2009). Whereas 

AdipoR1 is exclusively expressed on mice skeletal muscle, both receptors are 

ubiquitously expressed in human tissues (Kadowaki, Yamauchi 2005). 

 

Despite sharing 67% protein sequence homology, the two isoforms are distinguished 

by their genetic origin, affinity profile for adiponectin multimers and signal transduction. 
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The AdipoR1 gene lies on chromosome 1 (Genbank NM_015999) and the AdipoR2 

gene is on chromosome 12 (Genbank NM_024551). AdipoR1 is a high affinity receptor 

for gAD and a low affinity receptor for full length adiponectin, whereas AdipoR2 exhibits 

intermediate avidity for all forms.  

 

Although the full signal transduction pathway following agonist-receptor binding is 

unknown, both receptors activate PPAR  and ERK 1/2, key intermediaries in lipid 

metabolism and cell growth respectively (Yamauchi, Nio et al. 2007, Lee, Klein et al. 

2008). However there are also key differences (fig 1.8). In the liver, selective 

manipulation of each receptor subtype resulted in a different phenotype (Yamauchi, Nio 

et al. 2007). Upregulation of AdipoR1 by adenovirus vector activated AMP kinase and 

reduced endogenous glucose production. The converse was seen with AdipoR1 

knockout, but these changes were not seen with genetic manipulation of AdipoR2 

expression. In contrast, AdipoR2 expression was found to have exclusive effects on 

PPAR  targeted genes and glucose uptake by the liver. In human synovial fibroblasts 

which also express both receptors, it is the selective siRNA knockdown of AdipoR1, not 

AdipoR2, that resulted in the dissociation of AMP kinase, p38 MAPK and NF B 

signalling with adiponectin (Tang, Chiu et al. 2007). In support of these downstream 

differences, upstream events critical to AdipoR1 signalling, such as clarthrin- and Rab 

5- dependent endocytosis of agonist receptor complex, and interaction with signalling 

adaptor proteins APPL1 and ERp46, have not been shown to be of functional 

relevance for AdipoR2 (Charlton, Webster et al. 2010, Mao, Kikani et al. 2006, Ding, 

Wang et al. 2009). Thus, although both AdipoR1 and AdipoR2 can bind full length 

adiponectin, the differences in signalling argue against redundancy commonly seen in 

cytokine pathways. Hence, deficiency of one receptor isotype would not be 

compensated by the other. However, in combination, AdipoR1 & AdipoR2 signalling 
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accounted for the metabolic actions of adiponectin. Double receptor knockdown 

recapitulated the metabolic phenotype of the adiponectin-deficient mice (Yamauchi, Nio 

et al. 2007, Yamauchi, Kamon et al. 2001). When fed on a high fat diet, these animals 

develop diabetes with marked insulin resistance. Changes at the tissue level include 

increased triglyceride content and expression markers of inflammation and oxidative 

stress.    

 

Mammalian high molecular weight adiponectin has also been reported to bind T-

cadherin in vitro, a glycosylphosphatidylinositol-anchored extracellular protein 

expressed on endothelial and smooth muscle cells (Hug, Wang et al. 2004). The 

biological significance of this had been questioned, as T-cadherin lacks a cytoplasmic 

domain for intracellular signal transduction (Takeuchi, Adachi et al. 2007). However, 

recent studies have demonstrated co-localisation of adiponectin and T-cadherin in 

tissue and via the T-cadherin deficient model, the interaction is important in mediating 

adaptive changes of cardiac muscle to insult (Denzel, Scimia et al. 2010). 

 

Interactions of adiponectin with LPS (Peake, Shen et al. 2006), C1q (Peake, Shen et 

al. 2008), C1q receptor (Yokota, Oritani et al. 2000), chemokines such as monocyte 

chemoattractant protein-1 and macrophage-inflammatory-protein 1  (Masaie, Oritani et 

al. 2007), and calreticulin receptor (Takemura, Ouchi et al. 2007) have also been 

described in vitro. However, criticisms against these studies, which include use of non-

mammalian sourced adiponectin (Peake, Shen et al. 2006, Peake, Shen et al. 2008), 

pharmacological concentration of reagents (Yokota, Oritani et al. 2000, Takemura, 

Ouchi et al. 2007) and lack of supporting functional data (Peake, Shen et al. 2006, 

Masaie, Oritani et al. 2007), cast doubt on their physiological relevance. 
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AdipoR1 AdipoR2

Figure 1.8 Adiponectin and its receptors AdipoR1 & AdipoR2. Monomeric adiponectin has a 

globular head and a collagenous tail. Circulating adiponectin is multimeric. Low molecular weight 

(LMW) and HMW adiponectin are formed through non-covalent bonds and disulphide linkage 

between the tails. The collagenous tail is cleaved in globular adiponectin (gAd). AdipoR1 binds gAd

preferentially and has low affinity to LMW and HMW adiponectin (dotted arrow), whilst AdipoR2 

binds all species equally. AdipoR1-agonist complex is endocytosed via a clathrin- and Rab5-

dependent mechanism, and interacts with the chaperone protein ERp46 and the signal transducer 

APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding (PTB) 

domain and leucine zipper motif) {{692 Mao,Xuming 2006}}. Various downstream intracellular 

kinases and nuclear transcription factors are activated () or inhibited   (         )  
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1.7.3. Regulation of adiponectin production 

1.7.3.1 Negative regulators 

 

Serum and mRNA adiponectin levels are reduced in obesity (Kern, Di Gregorio et al. 

2003, Weyer, Funahashi et al. 2001, Lihn, Bruun et al. 2004, Hu, Liang et al. 1996). 

With weight gain, the hypoxic microenvironment and increased production pro-

inflammatory cytokines are thought to be the main factors that drive the suppression of 

adiponectin expression (Ye 2009, Hotamisligil 2006, Bruun, Lihn et al. 2003, Hosogai, 

Fukuhara et al. 2007). Obesity leads to ER stress (Gregor, Hotamisligil 2007) and 

consequent activation of JNK (c-Jun-N-terminal kinase) and ATF3 (activating 

transcription factor 3), two repressors of ADIPOQ transcription (Koh, Park et al. 2007). 

Other repressor proteins induced in obesity include CREB and NFAT (nuclear factor of 

activated T-cells) (Liu, Liu 2009). Fat accretion also results in the increased production 

of TNF  from adipocytes (Kern, Ranganathan et al. 2001) and also the influx of 

activated lymphocytes and macrophages (Nishimura, Manabe et al. 2009, Winer, Chan 

et al. 2009). One mechanism by which TNF  suppresses adiponectin expression is 

through PPAR . TNF  inhibits PPAR  expression on adipocytes by a protein kinase C 

dependent mechanism (Lim, Kim et al. 2008). The promoter activity of PPAR  on 

ADIPOQ transcription (Yu, Javorschi et al. 2002, Kanatani, Usui et al. 2007) is lost 

upon phosphorylation (Zhang, Berger et al. 1996). In addition, synthesis of ER 

chaperones involved in secretion of multimeric adiponectin, namely DsbA-L (disulfide-

bond A oxidoreductase-like protein) and Ero1 (ER membrane-associated 

oxidoreductase)-L  (Wang, Schraw et al. 2007, Liu, Zhou et al. 2008), is reduced by 

the inactivation of PPAR  by TNF  (Liu, Liu 2009). 
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1.7.3.2 Positive regulators  

 

As discussed, PPAR  is a known inducer of adiponectin expression and secretion.  The 

promoter region of ADIPOQ was also found to contain response elements to FoxO1, a 

member of the forkhead box O transcription factor family involved in cell differentiation. 

Changes in adiponectin production following FoxO1 over-expression and knockdown 

are consistent with FoxO1 being a positive transcriptional regulator (Nakae, Cao et al. 

2008). FoxO1 mRNA can be increased in human inflammatory states (Valenti, Rametta 

et al. 2008). Also, post-translational modifications of FoxO1 can also influence its 

cellular localisation and activity. Sirt1, a NAD-dependent deacetylase promotes its 

nuclear translocation (Qiao, Shao 2006), and Sirt1 protein levels are increased with 

caloric restriction . This may be a mechanism for accounting the rise in serum 

adiponectin following lifestyle intervention (Mather, Funahashi et al. 2008, Cambuli, 

Musiu et al. 2008, Esposito, Pontillo et al. 2003, Monzillo, Hamdy et al. 2003).  

 

Increased adiponectin expression is seen in some inflammatory conditions (Šenolt, 

Pavelka et al. 2006, Rovin, Song et al. 2005, Yamamoto, Kiyohara et al. 2005, Leth, 

Andersen et al. 2008); (Tsatsanis, Zacharioudaki et al. 2005, Ehling, Schaffler et al. 

2006, Ehling, Schaffler et al. 2006, Haugen, Drevon 2007). This could relate to the 

induction of adiponectin in extra-adipose tissue (Katsiougiannis, Kapsogeorgou et al. 

2006, Guo, Xia et al. 2007, Miller, Cho et al. 2009), and include skeletal muscle 

(Krause, Liu et al. 2008). Injection of LPS and TNF  increased expression of 

adiponectin in skeletal muscle by 10-fold (Delaigle, Jonas et al. 2004). The combination 

of TNF  and interferon-  was also effective in inducing skeletal muscle adiponectin 

RNA and protein in vitro, in a dose dependent manner. This was dependent on 

stimulated nitric oxide production, as expression of inducibe nitric oxide (NO) synthase 
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preceded the rise in adiponectin mRNA, and that inhibitors of NO synthesis, L-NNMA, 

suppressed the inducive effect. The mechanism of how NO affect ADIPOQ 

transcription is not clear. 

 

1.7.4 Physiological functions of adiponectin 

1.7.4.1 Glucose and lipid metabolism 

 

The functional relevance of adiponectin in energy metabolism is best demonstrated in 

the ADIPOQ knockout mice. These mice had normal features on normal caloric intake. 

However, when place on a high fat diet, the animals developed marked insulin 

resistance, despite comparable weight gain in wild type controls  (Maeda, Shimomura 

et al. 2002, Kubota, Terauchi et al. 2002). Clamp studies showed increased hepatic 

glucose output and reduced peripheral glucose uptake. Tracer studies demonstrated 

impaired  oxidation, and in keeping with this, increased tissue triglyceride and 

appearance of ectopic intramyocellular fat. Moreover, insulin receptor substrate-1 

activity was reduced and TNF  levels were markedly increased. Adiponectin 

replacement reversed this phenotype, through increased activation of AMP kinase, 

PPAR  and p38 MAPK. This was followed by increased phosphorylation of acetyl 

coenzyme A carboxylase and  oxidation at both the liver and skeletal muscle. At the 

liver, there was also decreased expression of enzymes involved in gluconeogenesis, 

namely glucose-6-phosphatase and phosphoenolpyruvate carboxylkinase, with 

resultant decrease in hepatic glucose output. In skeletal muscle, increased glucose 

uptake was facilitated by increased expression of glucose transporter GLUT4. Plasma 

TNF  was reduced. Adiponectin treatment of the ob/ob mice, whose genetic leptin 

deficiency was associated with hyperphagia and exaggerated weight gain, was 

effective in ameliorating IR (Berg, Combs et al. 2001). In vitro testing showed 
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adiponectin allowed suppression of glucose output by hepatocytes at sub-physiological 

doses. These activities were dependent on AdipoR1 and AdipoR2 signalling 

(Yamauchi, Nio et al. 2007), through which AMP kinase and PPAR /  are activated.  

 

In agreement with a role in human physiology, polymorphisms in ADIPOQ (Gong, Long 

et al. 2010.Hivert, Sullivan et al. 2008, Menzaghi, Trischitta et al. 2007), as well as 

reduced serum adiponectin levels (Li, Shin et al. 2009) are independent predictors of 

glucose intolerance and type 2 diabetes (Table . The genomic region in which ADIPOQ 

lies was found to be strongly associated with insulin resistance (Kissebah, Sonnenberg 

et al. 2000). The effect of two single nucleotide polymorphisms in the ADIPOQ 

promoter region (rs17360539 & rs266729) has been evaluated in case-control studies 

across the world. In a fixed effects modelling meta-analysis of these studies, G at 

position 11391 in place of A was associated with an odds ratio (OR) of 1.09 (p = 0.046) 

for T2D (Gong, Long et al. 2010). G in place of C at the 11377 position was associated 

with an OR of 1.08 (p = 0.03). There was some heterogeneity in the studies, and the 

authors cited ethnicity of the study group as a contributor. Neither SNP were found to 

be associated with T2D in a pooled analysis of studies of East Asians. The significance 

in the overall analysis was largely attributed to the estimates from studies of Caucasian 

subjects. In contrast, meta-analysis of the effect of adiponectin on T2D risk in 

prospective observational trial found a consistent protective effect of adiponectin, 

regardless of sex, age, BMI and ethnicity. A one log ug ml-1 increase was associated 

with an OR of 0.72 (95% CI 0.67-0.78), ie a 28% reduction in disease incidence (Li, 

Shin et al. 2009).   
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 No of studies OR for T2D (95% CI) 

ADIPOQ rs17360539 6 1.09 (1.00 – 1.19) 

ADIPOQ rs266729 

       Caucasian 

       East Asians 

13 

6 

7 

1.08 (1.01 – 1.15) 

1.06 (1.00-1.12) 

1.09 (0.95 – 1.24)  

   

Log serum adiponectin 

increase (overall) 

14 0.72 (0.67 – 0.78) 

       Caucasian 6 0.71 (0.65 – 0.78) 

       East Asians 3 0.70 (0.61 – 0.80) 

       Asian Indians 1 0.74 (0.59 – 0.93) 

       Age < 50 3 0.51 (0.28 – 0.94) 

       Age > 60 6 0.77 (0.70 – 0.84) 

       BMI < 25 3 0.70 (0.61 – 0.80) 

       BMI  > 25 11 0.74 (0.67 – 0.81) 

 

Table 1.3 Effects of polymorphisms of ADIPOQ and serum adiponectin levels on T2D 

risk, from meta-analysis (Gong, Long et al. 2010, Li, Shin et al. 2009). OR derived from fixed 

effects modelling, which assumes the effect of the dependent variable is the same across 

studies. As a result, the weighting for each study in the pooled analysis is based on sample size 

and the SD of the estimate. A large study with a small SD of the point estimate will thus have a 

greater weighting. 

 

Consistent with findings in the ADIPOQ knockout mice, normoglycaemic subjects with 

ADIPOQ polymorphisms associated with decreased adiponectin expression were of 

normal BMI (Kondo, Shimomura et al. 2002). This suggests that adiponectin does not 

determine constitutional fat mass, but rather it is an adaptive mechanism of restoring 

insulin sensitivity in an otherwise insulin resistant state. In support, adiponectin 

expression is upregulated in animals made insulin resistant by silencing insulin 

receptor expression (Lin, Kim et al. 2007).  
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1.7.4.2 Inflammation 

 

Adiponectin has been widely reported to be anti-inflammatory. Population studies show 

an inverse correlation of serum adiponectin against TNF  (Hivert, Sullivan et al. 2008, 

Krakoff, Funahashi et al. 2003), IL-6 (Engeli, Feldpausch et al. 2003, Hung, McQuillan 

et al. 2008) and CRP (Winer, Zern et al. 2006, Monzillo, Hamdy et al. 2003, Ouchi, 

Kihara et al. 2003, Mantzoros, Li et al. 2005, Schulze, Rimm et al. 2004). Consistent 

with a causative association is the reduction of these inflammatory cytokines in insulin 

resistant animals with adiponectin treatment (Maeda, Shimomura et al. 2002, Uji, 

Yamamoto et al. 2009, Xu, Wang et al. 2003). In support, adiponectin has the ability to 

suppress expression of NF- B, an essential transcription factor for inflammation-related 

proteins (Haugen, Drevon 2007, Maeda, Shimomura et al. 2002, Ouchi, Kihara et al. 

2000, Ajuwon, Spurlock 2005). Recent studies suggest this inhibitory effect is specific 

to AdipoR1 signalling, and is cyclic AMP dependent (Tang, Chiu et al. 2007, Ouchi, 

Kihara et al. 2000). 

 

At the cellular level, adiponectin has been shown to have anti-inflammatory effects on 

monocyte-macrophages, NK lymphocytes and neutrophils (Yokota, Oritani et al. 2000, 

Tsatsanis, Zacharioudaki et al. 2005, Chinetti, Zawadski et al. 2004, Wolf, Wolf et al. 

2004, Wulster-Radcliffe, Ajuwon et al. 2004, Saijo, Nagata et al. 2005, Kim, Kim et al. 

2006, Magalang, Rajappan et al. 2006, Neumeier, Weigert et al. 2006, Okamoto, Folco 

et al. 2008, Weigert, Neumeier et al. 2008, Turner, Smolinska et al. 2009, Kumada, 

Kihara et al. 2004, Wulster-Radcliffe, Ajuwon et al. 2004) (Table 1.2). Yokota et al were 

the first to describe anti-inflammatory effects of adiponectin on myeloid macrophages, 

grown ex vivo from primary monocytes in RPMI supplemented with 10% human type 

AB serum. The addition of recombinant adiponectin (10 ug ml-1) at the beginning of 
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culture did not impair viability and differentiation of the monocytes. The macrophages 

were re-fed adiponectin for 24 hours before functional assays. Adiponectin treated 

macrophages had reduced phagocytic activity when incubated with fluorescent 

microspheres. Following brief LPS stimulation, these cells also had reduced TNF  

mRNA and protein in the supernatant, compared human serum albumin control. A 

limitation of the paper is the bacterial source of recombinant adiponectin used. 

Recombinant adiponectin from non-mammalian sources are purely monomeric, as they 

lack post-translational modifications required for oligomerisation (Turner, Smolinska et 

al. 2009). Thus their action here may not be representative of human physiology.  Wolf 

et al used a similar protocol to generate macrophages, but 10% FCS and a higher dose 

of adiponectin (20ug ml-1) from a non-specified source were used instead. They found 

adiponectin treated macrophages expressed increased levels of IL-10 and IL-1RA in 

the culture supernatant, compared to a solvent control treatment. When stimulated with 

LPS, these cells secreted significantly less interferon- . The authors also demonstrated 

the adiponectin treated macrophages had reduced stimulatory capacity when tested 

with [3H] thymidine labelled allogeneic T cells. They ascribed this to reduced phagocytic 

activity using a FiTC-dextran assay, although the raw data for this was not presented in 

the paper. No changes in costimulatory molecules on adiponectin treated macrophages 

were detected by flow cytometry. A strength of the paper is the investigation into the 

mechanism for anti-inflammatory cytokine production. The authors tested a range of 

kinase inhibitors against the effect of adiponectin stimulated IL-10 release. They found 

a selective inhibitor of PI3-kinase abrogated the effect. PI3 kinase is known to be 

modulated by APPL-1 dependent AMP kinase activity (Chandrasekar, Boylston et al. 

2008) , which in turn, is an important downstream transducer of AdipoR1 (Mao, Kikani 

et al. 2006). AdipoR1 RNA expression has been described on macrophages (Chinetti, 

Zawadski et al. 2004), thus we speculate that macrophage functions are mediated by 
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the adiponectin receptors. Testing this requires the application of specific receptor 

agonist/antagonist, or means of genetic knockout, of the adiponectin receptor on the 

functional assay.     

 

Adiponectin appears to inhibit leucocyte migration. In the atheroma model, adiponectin 

treatment inhibits inflammatory infiltrates of vascular plaques. The decreased 

recruitment of immune cells from the circulation is thought to be due to reduced 

expression of integrins on endothelial cells (Ouchi, Kihara et al. 1999), and attenuated 

function of chemokines (Masaie, Oritani et al. 2007, Okamoto, Folco et al. 2008). At 

sites of inflammation, cells undergoing apoptosis can be pro-inflammatory and trigger 

autoimmunity (Savill, Dransfield et al. 2002). Here adiponectin is thought to facilitate 

the phagocytosis of early apoptotic bodies (Takemura, Ouchi et al. 2007). Takemura et 

al found  marked persistence of apoptotic bodies in thymi of adiponectin knockout 

mice, upon challenge with dexamethasone. Treatment with adiponectin reversed this 

phenotype. As further confirmation, the authors found adiponectin pre-incubation 

coated the surface of  apoptotic Jurkat T cells and this facilitated their uptake by 

macrophages. This effect was thought to occur independently of the adiponectin 

receptors AdipoR1, AdipoR2 and T-cadherin, as their siRNA knockdown on 

macrophages did not affect phagocytosis. Instead the effect was attributed to the 

calreticulin receptor, as its knockdown and neutralisation by specific antibody (anti 

CD91), abrogated the enhanced phagocytosis.  The case for the calreticulin receptor 

could be further strengthened if the effect of the anti-CD91 is studied in the in vivo 

model.  

 

Furthermore, cytotoxicity of neutrophils and NK lymphocytes is inhibited (Kim, Kim et 

al. 2006, Magalang, Rajappan et al. 2006). Kim et al found adiponectin to inhibit IL-2 

mediated activation of NF- B and consequent cytotoxicity, tested in vitro using the 
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51Chromium release assay with labelled YAC-1 lymphoma cells. The supra-

physiological dose (30ug ml-1) and source of NK cells (mouse primary) are limitations to 

the data‟s applicability to human subjects. Adiponectin also appears to be a potent 

inhibitor of hydrogen peroxide generation by neutrophils (Magalang, Rajappan et al. 

2006). However this effect did not apply across all pharmacological stimuli and the 

paper did not append any mechanistic data to explain the discrepancy. 

 

Collectively, these functions are protective in inflammatory diseases associated with 

insulin resistance, such as atherosclerosis and steatohepatitis (Shimada, Miyazaki et 

al. 2004, Schaffler, Scholmerich et al. 2005). Thus, it has been proposed that the 

reduced synthesis of adiponectin with weight gain has a permissive effect on 

inflammation in obesity (Fantuzzi 2008).  

 

However, the paradigm that adiponectin is anti-inflammatory has come under scrutiny. 

Controlling for body mass index, raised local and serum levels of adiponectin has been 

reported in chronic inflammatory and autoimmune diseases, including SLE, rheumatoid 

arthritis, Crohns disease and type 1 diabetes (Šenolt, Pavelka et al. 2006, Rovin, Song 

et al. 2005, Yamamoto, Kiyohara et al. 2005, Leth, Andersen et al. 2008). In support, 

adiponectin can be pro-inflammatory  (Tsatsanis, Zacharioudaki et al. 2005, Ehling, 

Schaffler et al. 2006, Ehling, Schaffler et al. 2006, Haugen, Drevon 2007) (Table 1.4), 

and activate classical complement cascade (Peake, Shen et al. 2008) (Table 1.3). 

 



 44  

Table 1.4 immune effects of adiponectin  

Function Source of 
adiponectin 
tested 
 

Culture system Reference 

Anti-inflammatory    

(-) TNF  Full length, 
bacterial 
 
Not stated 

LPS-stimulated, primary 
macrophage 
 
LPS-stimulated porcine 
macrophage 

(Wulster-Radcliffe, 
Ajuwon et al. 2004) 
 
(Neumeier, Weigert 
et al. 2006) 
 

(-) IL-6 LMW, insect 
 
Not stated 

Monocytic cell line THP-1 
 
LPS-stimulated porcine 
macrophage 

(Wulster-Radcliffe, 
Ajuwon et al. 2004) 
 
 
(Saijo, Nagata et al. 
2005) 

(-) IL-8 
 

HMW, plasma 
derived 

Primary macrophage (Wolf, Wolf et al. 
2004) 

(-) IFN  
 

Not stated LPS-activated primary 
macrophage 

(Wolf, Wolf et al. 
2004) 
 

(+) IL-10 Not stated 
 
 
Full length, 
bacterial 
 
 
Not stated 

LPS-activated human 
monocytes 
 
Primary macrophage 
 
 
 
LPS-stimulated porcine 
macrophage 

(Kumada, Kihara et 
al. 2004) 
 
(Wulster-Radcliffe, 
Ajuwon et al. 2004) 
 
(Wolf, Wolf et al. 
2004) 
 

(+) IL-1RA 
 

Not stated LPS-activated human 
monocytes 

(Yokota, Oritani et 
al. 2000, Chinetti, 
Zawadski et al. 
2004) 
 

(-) phagocytosis by 
macrophage 

Full length, 
bacterial 
 
Full length, 
bacterial 
 
Not stated 
 
HMW adiponectin 
plasma derived 

Primary macrophage 
 
 
Primary macrophage 
 
 
Primary macrophage 
 
Primary macrophage 
 

(Wolf, Wolf et al. 
2004) 
 
(Saijo, Nagata et al. 
2005) 
 
(Wolf, Wolf et al. 
2004) 

(-) T cell stimulatory 
capacity of 
macrophage 
 

Not stated Primary macrophage  (Okamoto, Folco et 
al. 2008) 

(-) CXCR3 on 
macrophage & T cell 
chemotaxis 
 
 
 

Full length, insect 
cell 

Primary macrophage (Kim, Kim et al. 
2006) 
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(-) NK cell 
cytotoxicity 

Full length, 
bacterial  

Mice C57BL/6 NK cells (Magalang, 
Rajappan et al. 
2006) 

(-) neutrophil 
superoxide 
generation  
 

Full length, 
bacterial 

Primary neutrophils (Peake, Shen et al. 
2008) 

Pro-inflammatory    

Complement 
activation 
Classical pathway 
 

Full length, 
bacterial 
 

Human serum (Peake, Shen et al.) 

(+) TNF   gAd, bacterial 
 

Macrophages derived from 
THP-1 monocytic cell line 

(Tsatsanis, 
Zacharioudaki et al. 
2005) 
 

(+) IL-6 gAd, bacterial 
 
HMW, mouse 
 
Full length, 
mammalian 
 
Full length, 
bacterial 

Macrophages derived from 
THP-1 monocytic cell line 
Primary monocytes 
 
Primary monocytes 
 
 
Primary synovial 
fibroblasts 

(Neumeier, Weigert 
et al. 2006) 
(Weigert, Neumeier 
et al. 2008) 
(Ehling, Schaffler et 
al. 2006) 
(Weigert, Neumeier 
et al. 2008) 

(+) IL-8 Full length, 
mammalian 

Primary monocytes (Haugen, Drevon 
2007) 

(+) NF- kB 
   

Full length, 
mammalian 

Monocytic cells lines THP-
1 and U937 

{{397 Haugen,Fred 
2007}} 

 

Notwithstanding, I believe adiponectin to be chiefly anti-inflammatory. The 

heterogeneity from the in vitro studies (Table 1.3) can be explained by differences in 

experimental conditions. How the cells were prepared is an important variable. 

Adiponectin added to macrophages differentiated in its absence induced IL-6 and 

TNF  in a dose dependent manner (Tsao, Tomas et al. 2003, Haugen, Drevon 2007, 

Neumeier, Weigert et al. 2006, Palmer, Hampartzoumian et al. 2008). However, after 

24 hours of adiponectin exposure, pro-inflammatory cytokine output following LPS or 

further adiponectin dosage did not increase further, compared to placebo control. Also, 

pre-treatment of macrophages with LPS can affect the readout. Adiponectin treated 

macrophages nascent to LPS had reduced IL-8 expression and phagocytic ability 

(Saijo, Nagata et al. 2005), but the converse was seen when the macrophages were 

exposed to LPS before adiponectin treatment. 
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The source used may also be relevant, as there appears to be functional differences 

between multimers. The most direct demonstration of this comes from the paper by 

Neumeier et al (Neumeier, Weigert et al. 2006), where the actions of LMW and HMW 

adipnectin were compared in the same culture system with primary monocytes. The 

authors had used the same cDNA sequence and vector, but two different host cell lines  

to express recombinant adiponectin. But adiponectin from the insect cell source were 

of LMW multimers, as non-mammalians cells are not capable of the post-translational 

modifications required for HMW adiponectin formation (Richards, Stephens et al. 

2006). HMW adiponectin, but not LMW species, induced IL-6 release from primary 

monocytes and the THP-1 cell line. In contrast LMW adiponectin selectively 

suppressed LPS-induced IL-6 production, and enhanced IL-10 release. In support of 

this, there were differences in intracellular signalling between the multimers. LMW 

adiponectin reduced, whereas HMW adiponectin increased nuclear NF- B protein 

levels. This difference has been confirmed independently by another group, using 

monocytic cell lines and NF- B activity was measured by a luciferase reporter system 

(Haugen, Drevon 2007). 

 

Further confounding may be attributed to LPS contamination in commercially available 

adiponectin (Aprahamian, Bonegio et al. 2009). Adiponectin was used in doses of at 

least 10ug ml-1 in cell culture systems. The minimum amount of LPS contamination was 

reported to be 1-5%, and hence this translated to a potential exposure of 0.1-0.5ug ml-1 

of LPS to macrophages rich in Toll-like receptor 4 expression. Only one study 

(Tsatsanis, Zacharioudaki et al. 2005) reporting had attempted to counteract this 

potential source of confounder by the use of polymyxin B, a LPS antagonist .  
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On the other hand, evidence from in vivo studies is overwhelmingly supportive of the 

anti-inflammatory role for adiponectin. Using gene silencing and then induced gene 

upregulation, adiponectin expression was shown to ameliorate pathology in a disease 

model of lupoid glomerulonephritis (Aprahamian, Bonegio et al. 2009). Similarly, 

overexpression of adiponectin by gene transfer can attenuate autoimmune arthritis in 

another in vivo model (Ebina, Oshima et al. 2009). Also, the increase in extra-adipose 

adiponectin expression following inflammatory stress is potentially protective (Jortay, 

Senou et al. 2010). LPS injection into skeletal muscle of the adiponectin knockout mice 

caused exaggerated inflammatory response, with marked NF B and TNF  

expression. This effect was attenuated with electrotransfer of the ADIPOQ gene to the 

study muscle. It is plausible therefore that increased levels of adiponectin seen in 

autoimmune diseases reflect an attempt by the body to mitigate the inflammatory 

response. The mechanism of this may involve NO, FoxO1 and PPAR   (Section 1.7.4). 

The increased adiponectin may also be a consequence of more advanced disease. In 

T1D, glycaemia, residual  cell function, microangiopathy and renal reserve are 

determinants of serum adiponectin levels (Maahs, Ogden et al. 2007). The 

mechanisms of how these factors drive up adiponectin levels and in turn, how the 

raised adiponectin influence disease course, are not clear. 

 

1.8 Adiponectin in pre-T1D and autoimmunity 

 

Evidence supporting a pathogenic role for adiponectin in T1D can be found in the 

Belgian Diabetes Registry (Truyen, De Grijse et al. 2007). Relatives of patients with 

T1D were followed up for a median duration of 81 months. The overall T1D risk for the 

antibody positive cohort is low at 18%, compared to the other studies of pre-T1D and 

insulin resistance. But in those subjects who developed T1D, serum adiponectin levels 
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for each subject fell significantly in the two years prior to onset, compared to matched 

controls whose levels at -1 and -2 years were similar to the last sample drawn at the 

close of follow-up (fig 1.9). Possibly because of the wide confidence interval (5-25 ug), 

there were no significant differences in adiponectin levels between the groups at each 

timepoint. In keeping with epidemiological studies, adiponectin had a significant inverse 

correlation with adiposity, and in a smaller group, with HOMA-IR. Overall, this study 

suggests in the later stages of pre-T1D, falling adiponectin levels in an individual is a 

risk factor for T1D onset.  

  

The immunomodulatory potential of adiponectin has not been tested in the NOD 

mouse, although there are encouraging results from another murine model of 

autoimmunity. The lpr mouse has a single gene defect in Fas, resulting in impaired 

clearance of cell debris. This gives rise to development of multiple autoantibodies and 

lymphoproliferation, and leads to a clinical phenotype similar to human systemic lupus 

erythematosis. With the additional knockout of ADIPOQ, these mice displayed more 

pronounced autoimmunity, along with marked joint inflammation and glomerulonephritis 

(Takemura, Ouchi et al. 2007). These features were ameliorated upon genetic 

overexpression of ADIPOQ. The authors attributed this to the facilitation of apoptotic 

body clearance by adiponectin. 
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Figure 1.9. Adiponectin levels in pre-type 1 diabetes. (a) Serum levels in subjects (n=28) 

who developed diabetes (overall p<0.001; *p=0.029 vs onset –1 year; ‡p=0.028 and †p<0.001 

vs clinical onset), (b) age and sex-matched subjects (n=28) at high risk (autoantibody positive) 

but remained non-diabetic in the follow-up period (overall p=0.113). Each box shows the median 

(solid black line) and IQR (box length) of adiponectin levels at a given time-point; the whiskers 

indicate extreme values within 1.5 box lengths from the upper and lower edge of the box. 

Adiponectin levels at onset of disease (a) were not significantly different from the last sampling 

drawn in high risk subjects who remained non-diabetic (b).Adapted from (Truyen, De Grijse et 

al. 2007) electronic supplementary material, with permission from Springer (license 

2482151204744) 

 

1.9  Summary 

 

T1D is a costly disease with complex management issues. The destruction of the 

insulin producing  cell is the culmination of multiple breaches in immune tolerance. 

Immunogenetic factors contribute to risk. From prospective studies, IR is an additional 

predictor for progression in the most susceptible pre-T1D subjects. Obesity is the 

commonest cause of IR and its increased prevalence may explain the current rise in 

T1D incidence worldwide. The biological basis for this contention may lie with adipose 
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tissue, and in particular the adipokines it secretes. Adiponectin is an anti-inflammatory 

and insulin-sensitising adipokine whose functions are mediated by the specific 

receptors AdipoR1 and AdipoR2. Its levels appear to be reduced before development 

of T1D. This may be of significance in the maintenance of tolerance, as adiponectin 

appears to have the capability to downregulate autoimmunity in other disease models.   
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2. HYPOTHESIS AND AIMS 
 

Given that adiponectin has anti-inflammatory and insulin-sensitising actions, we 

hypothesise that changes in the adiponectin signalling explains the association 

between insulin resistance and progression to T1D. If proven, there are clear benefits 

in augmenting adiponectin action in delaying onset of this disease.   

 

Our aims are: 

 

1) To characterise adiponectin and its receptor expression on PBMC.  

2) To investigate effects of insulin resistance and T1D on adiponectin signalling to 

PBMC.  

3) To investigate effects of modifying insulin resistance through exercise on adiponecin 

receptor expression.  

4) To demonstrate effects of adiponectin on antigen-driven T cell responses 

 

This experimental approach was chosen to explicitly test predictions based on our 

hypothesis. The adiponectin receptor should be expressed on immune cells for 

adiponectin to have immunomodulatory functions. Secondly, the adiponectin signalling 

to immune cells should respond to changes in insulin sensitivity, so to account for the 

accelerated disease onset with increasing insulin resistance. Crucially, adiponectin 

should have the capacity to direct antigen-driven T cell responses, as they are central 

to the immunopathogenesis of T1D.   
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3.MATERIALS AND METHODS  
 
 

3.1 Subjects 

3.1.1 Cross sectional clinical study 

 

Male Caucasian subjects with T1D and T2D were recruited from diabetic outpatient 

clinics following informed consent. Patients with T1D had been diagnosed on clinical 

grounds that indicate -cell destruction, as per 1999 World Health Organisation 

classification. These include presentation with osmotic symptoms, weight loss, ketosis 

and requirement for insulin within 3 months of diagnosis, or by the presence of the 

above with positive islet antibodies. Diabetic subjects were assumed to have T2D if 

they did not have the above features, together with the absence of a family history of 

maturity onset diabetes of the young (MODY), or a diagnosis of diabetes before the 

age of 30. All T2D subjects were insulin treated. Islet autoantibodies were not 

measured in this cohort for the definitive exclusion of LADA (Fourlanos, Dotta et al. 

2005). Nevertheless, we believed this was unlikely, given the absence of associated 

clinical features in our study patients. They were diagnosed at an older age (>40 

years), and did not have autoimmune diseases in their past medical history (Fourlanos, 

Dotta et al. 2005). Furthermore, insulin treatment was not initiated within six years of 

diagnosis (Turner, Stratton et al. 1997).    

 

Exclusion criteria were:  

1) acute illness and infection  

2) poorly controlled diabetes (HbA1C >10)  
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3) presence of cardiac (NYHA grade 3 or above), liver (raised liver enzymes > 3 

times of upper normal limit) or renal disease (estimated GFR from MDRD 

formula < 30 ml/min (Levey, Bosch et al. 1999))  

4) use of thiazolidinediones or fibrates, whose PPAR /  agonistic activity is known 

to increase AdipoR1 & AdipoR2 expression on monocytes (Chinetti, Zawadski 

et al. 2004) 

5) use of exenatide or gliptins, as their effect on AdipoR1 and AdipoR2 expression 

on tissues is unknown.      

 

Body mass index (BMI), blood pressure and point of care testing HbA1C were taken 

from clinic records on the day of recruitment. Waist circumference was taken as the 

transverse diameter at the level of the midpoint between costal cartiliage and iliac 

crest, after maximal exhalation. The hip circumference is the maximal transverse 

diameter across the buttocks. These measurements were done either by myself, or Dr 

Ed Goble, academic FY1 medical house officer. For T1D subjects, the estimated 

glucose disposal rate (eGDR), in mg kg-1 min-1, was calculated using the formula: 

24.31- (12.22  WHR) – (3.29  HT) – (0.57  HbA1C) (Williams, Erbey et al. 2000). HT 

is a binary variable and refers to the hypertension status (140/90 mm Hg or on anti-

hypertensives). eGDR was derived from linear regression using components of the 

metabolic syndrome, with the glucose disposal rate from the last 30 minutes of the 

euglycaemic clamp, as the dependent variable. It remains the only clinical estimate of 

IR to be validated against the gold standard of the euglycaemic clamp in T1D, and is 

an accepted surrogate measure in epidemiological studies (Chillaron, Goday et al. 

2009, Kilpatrick, Rigby et al. 2007, Pambianco, Costacou et al. 2007, Orchard, Olson et 

al. 2003, Olson, Erbey et al. 2002). However, limitations of eGDR include the relatively 
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small validation set (n=24) used in the original study from which the model was derived 

(Williams, Erbey et al. 2000), and the lack of external replication.  

 

Healthy volunteers were age and BMI matched to the T1D cohort. Their normal 

glucose tolerance was confirmed by random capillary glucose values < 6.0 mmol l-1.  

Full ethical approval was obtained for this study (University Hospitals Birmingham NHS 

Foundation Trust research ethics committee, reference number 06/Q2703/47).   

 

3.1.2   Lifestyle Intervention studies  

3.1.2.1 Early ACTID –in collaboration with University of Bristol 

 

Sixty-six consecutive participants enrolled in the Early ACTID trial 

(www.bristol.ac.uk/earlyactid) were studied. Subjects recruited into Early ACTID had 

been diagnosed with T2D within 6 months of entry. They were subsequently 

randomised to lifestyle interventions consisting of diet and exercise advice through 

monthly appointments with diabetic specialist nurses and dieticians, or to standard 

care. Venous blood samples in EDTA, taken at entry and at 6 months were stored at -

80°C. Samples were transported on dry ice to the laboratories of the University of 

Birmingham, and RNA extracted for study. The recovery of RNA in frozen blood stored 

in EDTA has been previously described, although lower yields were to be expected 

because of degradation during storage (Theophilus 1998, Rainen, Oelmueller et al. 

2002). We verified the quality the RNA using the Nanodrop spectrophotometer (Section 

3.9) before rt-qPCR. In addition, we analysed the correlation between the date of 

sampling and gene expression values as a means of uncovering the potential 

confounding of frozen storage (fig 6.3). All samples were fully analysed, by intention-to-

treat, before unblinding of trial data. We also examined nine subjects in the exercise 

http://www.bristol.ac.uk/earlyactid
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arm of the trial who had latent autoimmune diabetes of adulthood (LADA), a subtype of 

diabetes characterised by insidious progression to insulin dependency and the 

presence of antibodies to GAD65 at levels >14 WHO IU/ml (Tuomi, Groop et al. 1993). 

The DASP-validated radioimmunoassay for GAD65 was performed by Mr AJK Williams 

at the Medical School Unit, Southmead Hospitial, Bristol. Clinical parameters including 

estimated VO2 max based on six-minute walk, and measurements of fasting insulin, 

glucose values, and HbA1C were kindly provided by Dr R Andrews, Principal 

Investigator of the Early ACTID trial, University of Bristol. Basal insulin resistance was 

estimated by HOMA-IR modeling (Wallace, Levy et al. 2004). 

 

3.1.2.2  Exercise intensity study – in collaboration with University of Bath 

 

Study participants were 45-64 years old, non-smokers, had a BMI of 25-35 kg m-2, and 

not on medication. Female subjects were all post-menopausal. Prior to the study, they 

performed no regular structured exercise, defined as 30 minutes of activity for more 

than 5 days a week. All subjects followed a hypocaloric diet (5000 kCal/week) and had 

five supervised treadmill sessions per week for three weeks. The two arms were 

differentiated by exercise intensity, whilst the amount of energy expended per session 

(600kCa) was controlled. In the moderate intensity group (MOD), subjects were asked 

to perform at 50% VO2 max, estimated based on target heart rate. In the vigorous 

intensity arm (VIG), prescribed exercise was executed at 70% VO2 max. Expressed in 

terms of time for exercise completion, subjects in the MOD cohort would stop after 75 

minutes versus 45 minutes in the VIG group. Subjects were allocated to one of the two 

groups using a sealed envelope. The envelopes were numbered with the sequence 

generated and known only by a third party. 
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The treadmill studies were supervised by Miss N Dixon, at the University of Bath. 

 

Venous peripheral blood samples were collected with full informed consent, in the 

fasting state, on the morning of day 1 (start) and day 22 (completion). They were 

posted for over-night delivery to the laboratories of the University of Birmingham. The 

samples were processed on the day of arrival – no more than 24 hours after 

venesection.  Thus, possible effects of diurnal variation, fed/fast state and transit on 

PBMC counts and distribution, as well as adiponectin receptor expression were 

controlled.  

 

This study was conducted in collaboration with Dr D Thompson, Health and Science 

School for Health, University of Bath. 

 

3.1.2.3 Exercise and overfeeding study – in collaboration with University of Bath 

 

Lean (BMI < 25) male recruits of age 21-37 years were randomised to 1 of 2 arms. In 

the control arm (SED), subjects were asked to remain sedentary and increase caloric 

intake by 50%. In the interventional group (EXE), subjects consumed the equivalent 

hypercaloric diet in addition to supervised running sessions at 70% VO2 max for 45 

minutes everyday for 1 week. Again, randomisation was done using sealed envelopes 

and venous blood drawn in the fasting state on the morning of day 1 and day 8 of the 

study. The running sessions were supervised by Mr JP Wahlin, at the University of 

Bath. 
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In both studies, anthropometric data and laboratory values regarding serum 

adiponectin, fasting insulin and glucose were kindly provided by Miss N Dixon and Mr 

JP Wahlin, research fellows to Dr D Thompson.   

 

3.2 Materials 

3.2.1 Culture reagents, antigens and mitogens 

 

Human recombinant adiponectin (Cat #: ALX-522-063-C050) was purchased from 

Alexis Biochemicals (Exeter, UK). It is produced from the human embryonic kidney 293 

cell line. The manufacturer reports endotoxin content of < 0.1EU/ug of the purified 

protein by the LAL test. In addition the product data sheet states that the reconstituted 

preparation contains multimeric adiponectin. It mimics activation of AMP activated 

protein kinase in skeletal muscle (Suzuki, Okamoto et al. 2007) and stimulates islet 

insulin secretion (Okamoto, Ohara-Imaizumi et al. 2008).  

 

Cellgro SCGM (product no: 2001) and Cellgro DC (product no: 2005) were obtained 

from Cellgenix (Freiburg, Germany), who discloses plasma derived human albumin, 

recombinant human insulin and transferrin as the only protein content in the media. 

They confirm specifically the absence of adiponectin in the media. GM-CSF (Cat # 300-

03) and IL-4 (Cat # 200-04) were from Peprotech (Hamburg, Germany). Tetanus toxoid 

(Cat # 582231) was purchased from Calbiochem (San Diego, USA).  

 

PHA (Cat # L8902), LPS (Cat # L2654) and PWM (Cat # L8777) were from Sigma 

(Dorset, UK). Dynabeads CD3/CD28 for T cell activation (Cat # 111-31D) were from 

Invitrogen (Paisley, UK). The stimulatory monoclonal OKT3 antibody was a kind gift 

from Dr David Sansom, University of Birmingham. 
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3.2.2 Antibodies 

 

The details of primary anti-adiponectin, AdipoR1 and AdipoR2 and their secondary 

antibodies are presented in Table 3.1. Antibodies used in flow cytometry are listed in 

3.2. Blocking goat and rabbit sera were from Sigma, and Fc receptor blocker 

purchased from Miltenyi (Church Lane Bisley, UK).  

 

Antibody Source Supplier Cat # Use 

Anti-human adiponectin 
IgG 

Mouse 
monoclonal 19F1 

Abcam ab22554 WB 

HRP-conjugated anti-
mouse IgG 

Rabbit polyclonal Dako P 0161 WB 

Anti-human adiponectin 
IgG 

Rabbit polyclonal Abcam ab18839 IP 

Anti-AdipoR1 IgG Rabbit polyclonal Phoenix Peptides G-001-044 FACS, 
sorting 

Anti-AdipoR2 IgG Rabbit polyclonal Phoenix Peptides G-001-023 FACS, 
sorting 

AdipoR1 immunising 
peptide (357-375) 

Chemical 
synthesis 

Phoenix Peptides 001-044 Blocking 

AdipoR2 immunising 
peptide (374-386) 

Chemical 
synthesis 

Phoenix Peptides 001-023 Blocking 

Anti-rabbit IgG (H + L), 
conjugated to Alexa Fluor 
488 

Goat polyclonal Invitrogen A11034 FACS 

Table 3.1 Anti-Adiponectin and anti-AdipoR1/AdipoR2 antibodies.  

WB – Western blotting; IP – immunoprecipitation; FACS- flow cytometry 

Abcam (Cambridge, UK); Phoenix Peptides (Karlsruhe, Germany); Dako (Ely, UK); Invitrogen (Paisley, UK) 
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Antigen – 
fluorochrome 
conjugate 

   Clone Isotype Supplier Cat.No. Optimised 
volume /10

6
 

cells (ul) 

CD1a-PE HI149 IgG1 eBiosciences 12-0019 5 

CD3-APC UCHT1 IgG1 eBiosciences 17-0038 2.5 

CD4-FITC OKT-4 IgG2b eBiosciences 11-0048 4 

CD4-PE RPA-T4 IgG1 BD Pharmingen 555347 3 

CD4-APC OKT-4 IgG2b eBiosciences 17-0048 4 

CD4-PerCP SK3 IgG1 BD Pharmingen 345770 4 

CD11c-PE B-ly6 IgG1 BD Pharmingen 555392 5 

CD11c-APC B-ly6 IgG1 BD Pharmingen 559877 8 

CD14-PE 61D3 IgG1 eBiosciences 12-0149 2.5 

CD14-APC 61D3 IgG1 eBiosciences 17-0149 2.5 

CD19-PE HIB19 IgG1 BD Pharmingen 555413 5 

CD25-PE 4E3 IgG2b Miltenyi 130-091-
024 

5 

CD25-APC M-A251 IgG1 BD Pharmingen 555434 5 

CD56-PE B159 IgG1 BD Pharmingen 555516 5 

CD80-FitC L307.4 IgG1 BD Pharmingen 557226 3 

CD86-PE FUN-1 IgG1 BD Pharmingen 555657 3 

CD86-PE/ 
CD209-PERCP-
Cy5.5/CD83-APC 

FUN-1/ 
DCN46/ 
HB15e 

IgG1/IgG
2b 

BD Pharmingen 334098 6 

HLA-DR FitC L243 IgG2a BD Pharmingen 555811 3 

FoxP3-APC 
 

3G3 IgG1 Miltenyi 130-093-
013 

20 

IFN -PE 26723.11 IgG2b BD Biosciences 554707 3 

IL10-APC JES3-
19F1 

IgG2a BD Pharmingen 340452 5 

Isotype 
 

Mouse IgG1-FITC MOPC-
21 

IgG1 BD Pharmingen 555748 3 

Mouse IgG1-PE  IgG1 eBiosciences 12-4714 2 

Mouse IgG1-APC  IgG1 eBiosciences 17-4714 3 

Mouse IgG2a-PE  IgG2a eBiosciences 12-4724 3 

Mouse IgG2b-PE 27-35 IgG2b BD Pharmingen 555743 3 

Table 3.2: Antibodies used in flow cytometry. 

3.3 Buffers, gels, and media 

 

All chemicals were obtained from Sigma unless otherwise stated. The ingredients of 

buffers and gels used in the experiments are listed in alphabetical order. All buffers and 

media were stored at 4 C. 
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Agarose gel 2%: 1g of agarose (Bioline) was dissolved in 50ml of heated Bionic buffer 

1 . Ethidium bromide 5ul was then added to the cooled solution in a fume cupboard.  

 

Complete culture media: RPMI supplemented with 10% foetal calf serum, 2mM 

glutamine, penicillin 100 units/ml and streptomycin 100ug/ml.  

 

HNET lysis buffer: HEPES 25mM, Sodium Chloride 150mM, EDTA 5mM, Triton X 1% 

pH 8.0, with ice cold protease inhibitor cocktail 1  (Sigma, Cat No: P8340) added 

immediately before use. 

 

MACS buffer: PBS, 0.5% BSA and 2mM EDTA 

 

PBS Tween (0.1%): 5 PBS tablets and 1ml of Tween 20% were mixed with 1L of 

deionised water using a magnetic stirrer 

 

Reagent A (2L): under magnetic stirrer, 275g sucrose, 2.5ml 1.0M Tris HCl pH8.0, 

2.55ml 4.9M MgCl, 25ml Triton X added to 2L distilled water.  

 

RIPA wash buffer (50ml): Sodium deoxycholate 0.25g, NP40 0.5ml, SDS 10% 0.5ml, 

Sodium chloride 5M 1.5ml, Tris HCl 1M pH8.0 2.5ml, deionised water 45ml.  

 

Serum free culture media: Cellgro SCGM supplemented with 2mM glutamine, penicillin 

100 units/ml and streptomycin 100ug/ml.  

 

SDS-PAGE resolving gel 12%: Protogel (30:0.8) 2.4ml, Tris Hcl 1.5M pH 8.8, 

Deionised water 2.0ml, SDS 10% 60ul, APS 10% 21ul, TEMED 9ul  
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Stacking gel 6%: Protogel (30:0.8) 0.4ml, Tris HCl 0.5M pH 6.8 0.75ml, deionised water 

1.85ml, SDS 10% 30ul, APS 10% 15ul. 

 

3.4 Extraction of peripheral blood mononuclear cells (PBMC) 

 

Venous blood collected in EDTA was diluted 1:1 with RPMI at room temperature. Up to 

25ml of the diluted blood was layered on 15ml Lympholyte-H (Cederlane, Burlington, 

NC, USA, Cat # CL-5016) at room temperature. After centrifugation at 800G for 25 

minutes (brake off) PBMC were removed from the interface using pastettes and 

transferred into a new 50ml Falcon tube. The cell pellet was washed twice in RPMI, 

and then centrifuged at 800G for 10 minutes. A similar procedure was used for 

processing buffy coats but this was diluted 1:2 with RPMI, and the PBMC were washed 

in at least four 600G cycles to remove platelets. The cell pellets were then suspended 

in 10ml of RPMI and counted by light microscopy. 

 

Cryopreserved blood samples from the Early ACTID trial were thawed on ice, 

transferred into a 50ml falcon tube, into which Reagent A (recipe in 3.3) was added to 

achieve a total volume of 20ml. The tube was shaken manually for 15 seconds and 

then on an orbital shaker for 5 minutes at maximum speed. The pellet containing 

leucocytes, acquired after a 15 minute 1500g centrifuge, was washed two more times 

with 10ml of reagent A before RNA extraction. 
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3.5 Magnetic cell sorting       

 

PBMC were passed over a 30um nylon mesh to remove clumps. All washing steps 

were done in MACS buffer followed by centrifugation at 600G for 10 minutes.  

 

PBMC subsets for AdipoR1 and AdipoR2 mRNA expression were obtained by positive 

selection. 107 PBMC were incubated in 100ul of MACS buffer with 10ul PE-conjugated 

anti-CD3, CD14, CD19 or CD56 antibodies (BD Biosciences) for 15 minutes in the dark 

at 4°C. After washing, the cells were resuspended in 80ul per 107 cells and incubated 

for 15 minutes at 4°C with 20ul of anti-PE microbeads (Cat # 120-000-294, Miltenyi), 

before a further wash and re-suspension in 500ul of MACS buffer. The cells were then 

passed over a magnetic field in a MS column (Miltenyi Cat # 130-042-201).  

 

For isolation of cells expressing AdipoR1 and AdipoR2 surface receptors,107 PBMC in 

100ul MACS buffer were incubated with 10ug (at 1ug/ul) of receptor antibody for 30 

minutes at 4°C in the dark. After washing, 20ul of anti-rabbit antibody microbeads 

(Miltenyi, Cat # 120-000-292) were added to cells in 80ul of MACS buffer and 

incubated for a further 15 minutes at 4°C. After a 10 minute 400G wash in MACS 

buffer, the beads and cells mixture in 500ul of MACS buffer, was passed through the 

MS column once. The pre-passage mixture was labelled as “pre-sort”. The flow through 

was labelled as the “receptor negative” fraction. The fraction retained in the column 

was subsequently flushed out by a sterile plunger and labelled as “receptor positive”. 

We did not find that a second passage of the “receptor positive” fraction through the 

MS column, as recommended by the manufacturer, improved purity when AdipoR 

staining was checked on flow cytometry. CD14 microbeads (Miltenyi, Cat # 120-000-

305) were used to extract monocytes for DC generation. CD4+CD25- effector cells 

were obtained from whole PBMC by initial negative selection of CD4+ cells (Human 
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CD4+ T cell enrichment kit, Cat # 19052, Stemcell Technologies SARL, Grenoble, 

France). This was followed by CD25+ depletion using anti-CD25 microbeads (Miltenyi 

Cat # 130-092-983) and LD columns (Miltenyi Cat # 130-042-901). Sort purity was 

assessed by flow cytometry. 

   

3.6 Flow cytometry 

 

Between 5  105 to 106 cells were suspended in 100ul PBS in a 5ml polypropylene 

tube. They were incubated with antibodies of choice (see Table 3.2) for 30 minutes on 

ice and in the dark, then washed in 4ml of PBS and pelleted at 400G for 6 mins. The 

cells were re-suspended in a final volume of at least 400ul PBS. Isotype control 

antibodies matched in species, isotype, flurochrome and protein quantity to the staining 

antibody were used for negative control. Gain adjustments and compensation settings 

of the flow cytometer were made using unstained cells, cells stained in single colour 

CD4 FitC, PE, PerCP and APC.  With the exception of cells stained for intracellular 

antigens, PI at 3 ul (0.5ug/ml working solution) was added after the final wash to 

exclude dead cells. The manufactuer‟s protocol for the FoxP3 staining buffer kit (Cat 

No: 130-093-042, Miltenyi) was followed for intracellular FoxP3 labelling.  

 

The FACSCalibur 4-colour flow cytometer was used, with Cellquest Pro version 4.0 

(BD Biosciences) as the acquisition software. On average, 20000 events were 

recorded in the gate for viable cells, defined by forward/side scatter and negative PI 

staining. Analysis was performed using Flowjo version 8.8.6 (Treestar, Ashland, OR, 

USA). 
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3.6.1 AdipoR1 and AdipoR2 staining 

 

We prepared 7 tubes for each clinical sample as follows.  

 

Tube Primary antibodies Phenotyping antibodies 

1 Pre-immune Rabbit serum APC mouse IgG1 isotype 

2 AdipoR1 CD11c APC, CD14 PE 

3 AdipoR1 CD3 APC, CD19PE 

4 AdipoR1 CD4 APC, CD56 PE 

5 AdipoR2 CD11c APC, CD14 PE 

6 AdipoR2 CD3 APC, CD19PE 

7 AdipoR2 CD4 APC, CD56 PE 

Table 3.3 Tubes set for quantification of AdipoR1 & AdipoR2 expression by flow cytometry 

 

Tube 1 served as the internal negative control for each subject. It was the standard for 

background fluorescence from which net MFI values for AdipoR1 and AdipoR2 staining 

were calculated. For the exercise and cross-sectional clinical studies, we ensured that 

the batches of adiponectin receptor antibodies shared the same lot number (Lot no: 

02301 & 04005 respectively). As a means of internally controlling for variations in 

experiments done on different days in the cross-sectional study, at least two each of 

healthy controls and diabetic subjects were analysed on the same run. This however, 

was not possible for the exercise studies done in collaboration with the University of 

Bath, where samples arrived singularly. Cells (106 in 100ul PBS) were pre-incubated 

with 3ul of FcR blocker for 10 minutes on ice. They were then exposed to 

AdipoR1/AdipoR2 antibodies at 1ug in 100ul of PBS for 30 minutes on ice and in the 

dark. After washing in PBS the cells were blocked with 5ul of goat serum for 15 

minutes on ice and then incubated with secondary goat anti-rabbit antibody conjugated 
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to AF488 (100ul of a 1:250 dilution) for a further 30 minutes. The negative control (tube 

1) was treated with isotype APC-conjugated mouse IgG1 antibodies (control for CD11c 

APC), goat and rabbit sera (5ul each), followed by secondary antibody.  

    

Gates set for all viable PBMC, lymphocytes, monocytes (by scatter and CD14 labelling) 

and positive AdipoR1/AdipoR2 cells were set using the negative control tube (tube 1). 

They were then applied to the tubes 2-7 from the same donor. The net percentage of 

positive cells and the net MFI (geometric mean fluorescence of all cells in the FL-1 

channel) for AdipoR1 (tubes 2-4) and AdipoR2 (tubes 5-7) was obtained by deducting 

the background staining of tube 1 (negative control).  

 

3.7 Cell culture 

 

All cultures were performed under aseptic conditions with sterile filtering of all media. 

The incubation conditions were controlled at 37 C and 5% humidified CO2. In studies of 

AdipoR1 and AdipoR2 expression on PBMC, unsorted PBMC were grown in RPMI-

1640 complete media on 24-well plates for 72 hours, at 106 cells ml-1. Culture grade 

human insulin (Cat # I9278) and dextrose 10% solutions (Cat # G8644) were from 

Sigma and added at the beginning of culture. 

 

For antigen and mitogen stimulation, 2  105 CFSE-labelled whole PBMC in 100ul of 

complete Cellgro SCGM media were cultured on 96-well round bottom plates for 5-8 

days. Tetanus toxoid at 3ug ml-1 or PHA at 5ug ml-1 was added at the start of culture.  

The cells were fed a further 50ul of complete media on day 4.   
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3.7.1  DC generation 

 

Monocytes were positively selected using CD14+ microbeads from PBMC extracted 

from venous blood of healthy and T1D subjects. They were of 85-93% purity on flow 

cytometry. Two million CD14+ monocytes were suspended in 2ml of Cellgro DC and 

seeded onto 6-well plates. They were stimulated with GM-CSF and IL-4 (both at 1ug 

ml-1). The cells were re-fed GM-CSF and IL-4 (final concentration 1ug ml-1) in complete 

media on day 3.  

 

The cells were harvested on day 6 by cooling the culture plate on ice and using a cell 

scapper. After confirming surface phenotype on flow cytometry, the immature DCs 

were co-cultured, at ratio of 1:10, with 2  105 CFSE-labelled CD4+ CD25- responder 

cells in a total volume of 200ul of complete Cellgro SCGM on 96-well round bottomed 

plates for up to 7 days. Responder cells were retrieved on the day of the co-culture. 

Autogeneic T cells were used when tetanus toxoid (3 ug ml-1) was the stimulus, and 

allogeneic T cells in co-cultures with OKT3 (0.5 ug ml-1). Both stimuli were diluted in the 

suspension of the effector cells and then immediately added to the DC. Negative 

controls of responder cells without DC and stimuli were set up in parallel. To minimise 

variation, samples from at least three donors were processed in each run.  

 

To attain mature DC, LPS at 1ug ml-1 was added to immature DC on day 6 and 

harvested after 24 hours. 
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3.8  Measurement of cell proliferation by CFSE 

 

CFSE (carboxyfluorescein succinimidyl ester) dilution is a technique for measuring 

lymphocyte proliferation in vitro. The non-fluorescent and freely permeable precursor 

CFDA-SE (carboxyfluorescein diacetate succinimidyl ester) is cleaved by intracellular 

esterases to form the active moiety. This is then retained within cells and stablised by 

covalent linkage with protein thiols. Upon cell division, the dye is shared equally 

between the two daughter cells, such that successive generations of proliferating cells 

can be tracked by the exponential decrease in fluorescence. Advantages over the 

traditional radioactive labeling methodology are the increased sensitivity and capability 

of immuno-phenotyping responding cells.   

 

Recognised parameters for quantifying proliferation are the division index (DI), and the 

stimulation index (SI) (Fulcher, Wong 1999, Mannering, Morris et al. 2003). When the 

majority of cells proliferate with stimulation, DI is believed to be the more representative 

measure and conceptually this is the average number of cell divisions undergone by 

the responding cell. It is calculated from curve fitting of data assuming CFSE dilutional 

kinetics. For rare proliferating events, such as the response of unsorted PBMC to 

antigen stimulation, SI is more sensitive. SI is calculated by the formula: 

 

SI = % CFSE low antigen / % CFSE low no antigen 

 

CFSE low cells were defined as viable cells (scatter and PI negative) that have lower 

fluorescence in relation to the parent cells. This was determined from wells in the plate 

http://en.wikipedia.org/wiki/Carboxyfluorescein
http://en.wikipedia.org/wiki/Ester
http://en.wikipedia.org/wiki/CFDA-SE
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containing unstimulated CFSE labelled cells, on the day of reading. The gating for this 

population was drawn based on the unstimulated control (figs 7.2 & 7.4).   

 

Significant proliferation above background is taken when SI is  2. 

 

Method 

 

Cells to be labeled are washed in PBS to remove traces of protein and resuspended at 

2  107 cells ml -1 of PBS.  CFDA-SE (cat # 1157, Invitrogen) was diluted with DMSO to 

give a stock solution at 10mM and stored at -20 C. The working solution was prepared 

by dissolving a 2ul aliquot in 8ml of PBS. An equal volume of the working solution was 

added to the cell suspension and mixed by pulse vortex. After incubation for 10 

minutes at room temperature, under agitation and light protection, FCS at half total 

volume was added to quench the reaction. After one minute of standing, the cells were 

washed for three times in complete media, counted and resuspended at 2  106 cells 

ml-1 for stimulation. I found the final concentration of CFDA-SE at 1.25 uM adequately 

labeled daughter generations above autofluorescence without inhibiting blastogenesis.  

   

3.9  Reverse transcriptional polymerase chain reaction (rt-PCR) 

 

Total RNA was extracted from a maximum of 107 cells using the RNeasy Mini Kit (Cat 

#: 74404, Qiagen, Hilden, Germany) as per manufacturer‟s instructions, using 350ul of 

RLT lysis buffer and the 30ul of nuclease free water for the final elution. Precautions for 

RNAse free conditions were the use of vinyl gloves, nuclease free tips and collection 

tubes, as well as the use of RNaseZap Decontamination solution (Cat # AM 9780, 

Applied Biosystems, Warrington, UK) on the work bench and pipettes. Purity and 
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concentration of the sample was assessed by the Nanodrop spectrophotometer (Model 

ND-1000, Thermo Scientific, Wilmington DL USA). All samples had 260/280 >1.8. 

One microgram of total RNA was reverse transcribed into cDNA by first annealing to 

1.5ul of random primers at 500ug/ul (Cat # C118A, Promega, Southampton, UK) in a 

total volume of 16.5ul, at 95 C for 5 minutes. After cooling to room temperature and 

centrifuging at 8000G for 10s centrifuge, a mastermix was added. This contained 1ul of 

SuperScript II reverse transcriptase (Invitrogen), 1.5ul of RNAout RNAase inhibitor 

(Invitrogen), 6ul of 5  first strand buffer, 3ul of 10mM dNTP and 2ul nuclease free 

water. Using a thermal cycler (Tetrad PTC-225, MJ Research, Waltham, 

Massachusetts, USA), the total mix was incubated at 37 C for 1 hour and the reaction 

terminated by boiling at 95 C for 5 minutes. A reverse transcriptase negative control 

was made using 1ug of RNA diluted to the same total volume of 30ul with nuclease 

free water. It was subjected to the same heating conditions.   

 

NTERA cells, a human cell line with phenotype similar to committed neuronal cells 

(Pleasure, Lee 1993), were used as a negative control for adiponectin rt-PCR 

(Spranger, Verma et al. 2006). These were donated by Dr S Chan, University of 

Birmingham. RNA from differentiated ChubS7 cells, which have characteristics similar 

to primary human adipocytes, was used as positive control (Gathercole, Bujalska et al. 

2007). These cells were a kind gift from Dr J Tomlinson, University of Birmingham. 

Human pancreatic RNA, cloned from autopsy specimen, was purchased from AMS 

Biotechnology (Europe), Abingdon, UK.  

 

For conventional PCR, 2ul of the cDNA sample and their negative control was 

amplified using BioTaq 0.2ul (Promega), 4mM of MgCl2, dNTP (0.4ul of 10mM stock) 

and 0.125 uM of sequence specific, intron-spanning primers in a 20ul reaction. 
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Sequences of the primers are listed in Table 3.4. Optimised PCR conditions are listed 

in Table 3.5. BLAST and GenBank were used to check the primers were gene specific 

and intron spanning.  Standard PCR conditions were 95°C for 5 minutes, followed by 

30-35 cycles at 94°C for 1 minute, annealing for 1 minute and 72°C 1 minute and then 

a termination step of 72°C for 2 minutes. For amplification of the adiponectin gene, the 

conditions were modified to 96°C for 6 minutes, followed by 35 cycles of 94°C, 64 C 

and 72°C at 45s each.  Amplicons were resolved on a 3% agarose gel, stained with 

ethidium bromide.  

 

Real-time quantitative PCR of the samples was performed, in triplicate, on the 

Strategene thermocycler with Taqman 2  Universal PCR Mastermix (Cat #: 58003365-

1, Applied Biosystems) on nuclease free 96-well plates, sealed with optically 

translucent covers. The cycling conditions were 50°C for 2 minutes, then 95°C for 10 

minutes followed by 40 cycles of 95°C for 15s and 60°C for 1 minute. 

 

Relative quantification of adiponectin and AdipoR1/R2 gene expression (Table 3.6), 

was calculated by the comparative Ct method (Livak, Schmittgen 2001). 18S was 

the internal control. The relative efficiencies of amplification in the duplex reaction was 

validated in a standard curve. Samples were repeated if the Ct SD of the triplicate is > 

0.5. Samples with a target gene Ct value of >37 were excluded because it laid outside 

the dynamic range of our calibrator standard curve. Significant genomic DNA 

contamination was assessed by target gene amplification in the rt-ve control. cDNA 

samples were excluded if the Ct of their rt-ve control was <5.5, as this implied >2% of 

the PCR products in log phase originated from a genomic DNA template.  
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Table 3.4: Primers used in conventional PCR 
 Forward (5’-3’) Reverse (5’-3’) Predicted 

bp 

-actin GCTCCGGCATGTGCAA 
 

AGGATCTTCATGAGGTAGT 541  

Adiponectin 
(ADIPOQ) 

AGGGTGAGAAAGGAGATCCA
G 

GGGCATGTTGGGGATAGTAA 194  

Adiponectin 
receptor 1 
(AdipoR1) 

TGCCCTCCTTTCGGGCTTGC GCCTTGACAAAGCCCTCAGCGATAG 526  

Adiponectin 
receptor 2 
(AdipoR2) 

GGAGCCATTCTCTGCCTTTC  ACCAGATGTCACATTTGCCA  467 

 

 
Table 3.5: Conditions for conventional PCR 

Primers Magnesium 
Volume of 50mM stock in 
a 20ul reaction (ul) 

Annealing 
temperature 
°C 

-actin 1.6 58 

Adiponectin 
(ADIPOQ) 

1.4 64 

Adiponectin receptor 
1 (AdipoR1) 

1.8 58 

Adiponectin receptor 
2 (AdipoR2) 

1.8 60 

 

Table 3.6: Taqman probes and primers used in real time qPCR 

 Forward Reverse Probe 

AdipoR1 TTCTTCCTCATGGCT
GTGATGT 

AAGAAGCGCTCAGGAA
TTCG 

TCACTGGAGCTGGCCTT
TATGCTGC 
 

AdipoR2 ATAGGGCAGATAGG
CTGGTTGA 
 

GGATCCGGGCAGCATA
CA 

CTGATGGCCAGCCTCTA
CATCACAGGA 
 

ADIPOQ CTATGATGGCTCCAC
TGGTA 

GAGCATAGCCTTGTCC
TTCT 

CTGTACTACTTTGCCTAC
CACATCACAGTCT 
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3.10  Immunoblotting and immunoprecipitation 

 

Up to 2  107 PBMC were lysed in 500ul ice cold RIPA lysis buffer containing 1  

protease inhibitor cocktail (Sigma, Cat# P2714) for 15 minutes. The mixture was 

subjected to maximum speed centrifuge for 10 minutes at 4°C. Protein content of the 

supernatant was quantified using Bradford reagent (Sigma, Cat# B6916). Briefly, 5ul of 

the supernatant was incubated with 250ul of Bradford reagent for 30 minutes and 

absorbance shift from 460nm to 595nm was measured by photometer. These values 

were referenced against a standard curve constructed from serial dilutions of 1ug ml-1 

of BSA. Twenty micrograms of protein was added to Novex Tris-Glycine sample buffer 

(Invitrogen Cat# LC2676) and Nupage Sample Reducing Agent (Invitrogen Cat# 

NP0009), as per manufacturer‟s instructions. The samples were then heated to 70°C 

for 10 minutes before loading onto wells on the 12% SDS Bis-Tris gel, alongside 

SeeBlue Plus 2 pre-stained standard ladder (7ul, Cat# LC5925, Invitrogen). Human 

serum, precleared with protein A-Sepharose beads, and diluted at 1 in 20 with PBS 

was used as the positive control in immunoblots for adiponectin. The gel was resolved 

with the Xcell Surelock Electrophoresis Cell (Invitrogen) at 160°C and the proteins 

transferred onto nitrocellulose using the iBlot system (Invitrogen), for 7 minutes. The 

membranes were blocked with 5% Marvel in PBS Tween at room temperature for 1 

hour, before incubation overnight with anti-adiponectin antibody (Abcam Cat# 

ab22554), diluted at 1:1000 with blocking solution, at 4°C under agitation. After three 

washes with PBS Tween for 10 minutes on an orbital shaker, the membranes were 

exposed to secondary anti-mouse antibody conjugated to HRP (Dako Cat# P0161) for 

1 hour at RT on a rocker. The secondary antibody was diluted 1:2500 in blocking 

solution. 
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The membranes were washed three times before chemiflurorescent detection with ECL 

Plus and autoradiography with Amersham Hyperfilm ECL (GE Healthcare Cat# 

RN2132 & 28906832, respectively). With ECL Plus, 2ml of solution A was mixed with 

50ul of solution B (40:1). The mix was applied drop-wise to a membrane of 2cm2 and 

left to stand for 3 minutes. To confirm specificity of the bands, immunoblotting was 

performed on a duplicate membrane with a) secondary antibody alone b) primary 

antibody blocked overnight with recombinant adiponectin, at a ratio of 1:4 by mass, 

before application to the transfer membrane.  

 

For immunoprecipitation, rabbit polyclonal antibodies to adiponectin (Abcam, Cat# 

ab18851) were used as the capture antibody, and protein A sepharose beads (GE 

Healthcare Cat# 17-0780-01) were used to isolate the immune complexes. The 

lyophilised beads were prepared by swelling in MilliQ water (0.4g in 8ml) for 30 minutes 

and collected by centrifugation (2000 RPM 7 minutes at 4C). They were then 

equilibrated in successive 12ml of Tris-HCl buffers at concentrations 1M, 0.1M and 

0.05M (all pH 8) for 30 minutes before storage in an equal volume of 0.01M Tris pH 7.5 

to form a 50% slurry.  

 

Lysates were pre-cleared by incubating with pre-immune rabbit serum for 2 hours and 

then adding protein A (50ul 50% slurry to 500ul of lysate). The mixture was left to stand 

for another hour at 4°C. The lysates were quantified by Bradford reagent, and at least 

500ug of total protein was incubated with the capture antibody, at 10ug ml-1, overnight 

at 4 C under gentle agitation. Protein A slurry (50ul 50% slurry to 500ul) was then 

added and the mix was incubated for a further 2 hours on a rotary mixer. The beads 

were then collected by centrifuge (10000g for 30s), washed in RIPA twice and proteins 
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were eluted by addition of 50ul SDS sample buffer 2  and boiling at 95C for 5 minutes. 

The supernatant from a 16000g 5 minute spin was then loaded onto resolving gel. 

 

3.10.1 Covalent coupling of antibody to protein A Sepharose 

 

Fifty micrograms of the IP capture antibody was incubated with 500ul of 50% protein A 

sepharose slurry for 1 hour with gentle mixing at room temperature. The beads were 

washed 3 times with 0.1M sodium borate pH9.0, and collected after a 30 second 

10000g spin. Re-suspended in 1ml of sodium borate, 5.184mg of dimethylpimelimidate 

(Mr 259.2, final concentration 20mM) was added to the mixture and incubated for a 

further 40 minutes at room temperature. The beads were then washed twice with 0.2M 

ethanolamine pH 8.0 and left to stand overnight in this solution at 4 C. For storage at 

4 C, the beads were washed twice with PBS and sodium azide added at 0.02%.   

 

3.10.2 Coomassie staining and in gel digestion 

 

The SDS-polyacrylamide gel containing resolved proteins was rinsed with MilliQ water 

before immersion in 50ml of SimplyBlue Safestain (Cat# LC6060, Invitrogen), a 

Coomassie G250 based stain, for 1 hour. The gel was destained overnight in MilliQ 

water.   

 

Steps for in gel digestion were carried out in a negative pressure hood to avoid keratin 

contamination. The band corresponding to molecular weight of 30-36 kDa was excised 

with a sterile scalpel and cut into smaller pieces. It was then washed twice in 100ul of 

50% acetonitrile in 50mM ammonium bicarbonate for 45 minutes at 37 C. After drying 

the band in a dessicator, the sample was incubated in 50ul of 50mM dithiothreitol, 
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made up in 10% acetonitrile/50mM ammonium bicarbonate at 56 C for 1 hour. After 

spinning, the pellet was then incubated with 50ul of 100mM lodoacetamide (in 10% 

acetonitrile/50mM ammonium bicarbonate) at room temperature in the dark for 30 

minutes. Again the sample was spun and supernatant discarded, followed by 3 washes 

in 10% acetonitrile in 50mM ammonium bicarbonate for 15 minutes under agitation. 

After drying for 1 hour, the sample was rehydrated in 20ul of 12.5ug ml-1 sequence 

grade modified trypsin (Cat# V5111, Promega) in 10% acetonitrile/ 50mM ammonium 

nitrate, for 1 hour at room temperature. Twenty microlitres of 10% acetonitrile/50mM 

ammonium nitrate was added and the mixture was incubated at 37 C overnight.   

 

On the next day the sample was spun. This supernatant was pooled with that obtained 

from two further washes with 30ul 3% formic acid in water, each lasting 1 hour. The 

final sample containing trypsinised peptides, of volume 70-90ul, was submitted for 

mass spectrometry. The resultant spectra was searched against the National Center 

for Biotechnology non-redundant database (released April 2004) using the 

TurboSequest (3.1) search algorithm (ThermoFinnigan).  

 

3.11 Serum adiponectin measurement by ELISA 

 

Serum adiponectin levels were measured using the Quantikine Human Total 

Adiponectin Immunoassay (Cat # DRP300, R & D, Abingdon, UK). Standard curves 

and pre-dilution of serum samples were done according to manufacturer‟s protocol 

(appendix 7). Maximum CV for total adiponectin is reported at 6.9% and detection limit 

is 0.246 ng ml-1. Absorbance was measured at 492nm for 0.1s by the Wallac Victor 4 

plate reader.  
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3.12 Statistics 

  

Statistical analysis and graphical composition were carried out using Excel 2003 

(Microsoft), SPSS 15.0 (SPSS Inc, Chicago, USA) and Graphpad Prism 5.0 for 

Windows (GraphPad Software, San Diego, USA). Continuous variables were 

expressed as mean +/- SD and categorical data as percentage of cases. The 

Kolmogorov–Smirnov test was used to test for normal distribution of raw data. 

Residuals plots were used to see if logarithmic transformation yielded a Gaussian 

population.  

  

Log transformed gene expression values, net percentage positive cells and 

proliferation indices from flow cytometry were compared using the two tailed student t-

test or ANOVA with Bonferroni post-test when there are more than two groups. When 

distribution of test data did not conform to normal distribution, the non-parametric 

Wilcoxon signed rank test was used to test significance when there were two groups, 

and the Kruskal-Wallis statistic with Dunn's correction for multiple testing was applied 

for comparisons between three groups. The Fisher exact test was used for categorical 

data. p values of less than 0.05 were considered significant.  

 

Two-tailed Pearson correlation analysis and scatterplots were used to determine 

relationships between serum adiponectin, AdipoR1 and AdipoR2 expression, as well as 

clinical parameters. The significant variables were entered into a forward stepwise 

linear regression model to assess their independent influence on AdipoR1 & AdipoR2 

expression.  
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4. EXPRESSION ANALYSIS OF ADIPONECTIN 

RECEPTORS AND ADIPONECTIN ON PERIPHERAL 

BLOOD MONONUCLEAR CELLS  

 

4.1 Introduction 

 

The adiponectin receptors, AdipoR1 & AdipoR2, modulate at least in part, the insulin 

sensitising and anti-inflammatory functions of adiponectin (Kadowaki, Yamauchi 2005). 

The isoforms share 66.7% primary sequence homology and are differentiated by their 

affinities to adiponectin multimers. AdipoR1 has preferential avidity for globular 

adiponectin, whereas AdipoR2 is promiscuous for all multimers (Yamauchi, Kamon et 

al. 2003). Recent studies suggest that there are also differences in signal transduction 

following agonist binding ( Xu, Wang et al. 2009. Charlton, Webster et al. 2010).    

 

Evidence for AdipoR1 & AdipoR2 expression on cell types known to mediate tolerance 

in T1D would support our hypothesis. Their gene expression has been described on 

PBMC (Weigert, Neumeier et al. 2008, Palmer, Hampartzoumian et al. 2008, Sohn, 

Kwak et al. 2010, Shen, Charlesworth et al. 2007, Alberti, Gilardini et al. 2007, Tan, 

Wang et al. 2009). In this series of studies, we aimed to extend this current knowledge 

by first demonstrating their expression at the protein level by flow cytometry. We then 

used this method to characterise their relative expression on PBMC subsets. Lastly, we 

investigated whether PBMC themselves express adiponectin, as the secretion of other 

adipokines by PBMC can have important autocrine/paracrine immunoregulatory effects 

(De Rosa, Procaccini et al. 2007).   
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4.2 Expression of adiponectin receptor mRNA on PBMC 

 

We first confirmed the presence of AdipoR1 & AdipoR2 mRNA (fig 4.1) on PBMC by 

conventional PCR, using intron-spanning primers. Amplicon size was consistent with 

the predicted base pair length on electrophoresis. Next, we validated our rt-qPCR 

assay for relative quantification of AdipoR1 & AdipoR2 mRNA by the Ct method 

(Livak, Schmittgen 2001) (fig 4.2). We derived standard curves of serial template 

dilutions against Ct (Ct target gene – Ct endogenous control) in duplex reactions. The 

reliability of 18S as a normalising control is demonstrated by the standard curve 

gradients of <0.1 (Applied Biosystems 2004)  

Figure 4.1: AdipoR1 & AdipoR2 mRNA on PBMC . Lanes A-D: AdipoR1 32 cycles. Lanes E-G 

AdipoR2 35 cycles. Predicted amplicon size AdipoR1 526bp; AdipoR2 467bp. 

A & E- Whole human pancreas RNA; B & F- rt-ve pancreas 

C & G- PBMC; D & H- rt-ve PBMC.
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A      B      C     D      E       F     G    H
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Figure 4.2: Validation of Taqman duplex rt-qPCR . Ct values and Ct values (Ct target 

gene – Ct 18S) are shown following serial template dilutions for AdipoR1 (A&B) & AdipoR2 

(C&D). Best fit lines based on the linear regression model y=mx+C are shown. Error bars 

indicate SD.
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4.3 Characterising the surface expression of adiponectin receptor on PBMC by 

flow cytometry 

 

Having optimised the concentration of primary and secondary antibodies (fig 4.3), we 

checked for the specificity of AdipoR1 & AdipoR2 labelling on PBMC. The staining for 

both AdipoR1 & AdipoR2 was inhibited when the primary antibody, raised from a rabbit 

host, was pre-incubated with the specific immunising peptides (fig 4.4). Because of the 

primary sequence homology between the two receptors, we then asked whether the 

antibody labelling was specific to the receptor isotype. The blocking peptide of AdipoR1 

did not have significant inhibitory effect of labelling by the AdipoR2 antibody, and vice 

versa (fig 4.5). In addition, we looked for differences in gene expression levels in 

PBMC sorted according to their AdipoR1 & AdipoR2 labelling. Using anti-rabbit 

microbeads, the yield of positive cells was increased by 2.5 fold (fig 4.6). Second 

passage over the column reduced the yield without significantly improving purity. By rt-

qPCR, AdipoR1 & AdipoR2 gene expression was significantly higher in the respective 

positive fractions, relative to pre-sorted PBMC (Fold change AdipoR1+: 4.02 95%CI 

2.39 – 6.76; AdipoR2+: 2.08, 95% CI 1.44 - 7.23) (fig 4.7). Gene expression in the 

negative fraction was similar to pre-sort. Conversely, AdipoR1 expression in the 

AdipoR2+ fraction was not significantly increased compared to the pre-sort (fold 

change = 1.64, 95% CI 0.97-2.75), as was AdipoR2 expression in AdipoR1+ fraction 

(fold change = 2.08, 95% CI 0.93 – 4.67). Thus, although limited by possible receptor 

co-expression and sort purity, these gene expression findings nonetheless support our 

antibody labelling as being relatively isotype specific. 
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Figure 4.3: Optimisation of antibodies for the labelling of AdipoR1 & AdipoR2 (A) 

Secondary antibody only. The smaller peak on the right of the histogram is due to higher auto-

fluorescence of CD14+ monocytes (B). The primary antibody was suspended in 0.01ug ml-1

PBS. Differences in fluorescent labelling following addition of the primary antibody to AdipoR1 

(C) & AdipoR2 (D) at 0, 20, 50 & 100ul. The amount of secondary antibody was fixed at 100ul 

of a 0.008ug ml-1 suspension. (E) Titrating secondary (2y) antibody. Primary AdipoR1 antibody 

was fixed at 100ul.
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Figure 4.5: Inhibition of staining is receptor subtype specific. Numbers in legend denote 

MFI. AdipoR1 immunising peptide (AdipoR1p) inhibited AdipoR1 staining (a) but not AdipoR2 

(b). The vice versa was seen with AdipoR2p. 50ul of the primary antibody at 0.01 ugml-1 was 

used. 
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Figure 4.4: Effect on AdipoR1 (A) & AdipoR2 (B) labelling when the primary antibody is 

co-incubated with its immunising peptide, at a ratio of 1:5. 
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Figure 4.6: Sorting PBMC according to AdipoR1 & AdipoR2 expression. Gates are set 

against isotype. Numbers denote percentage frequency of positive cells among all viable 

PBMC. Presort expression levels of AdipoR1 (a) & AdipoR2 (c) are shown. Note that the 

majority of monocytes (higher forward scatter) stain positive for AdipoR1 & AdipoR2. b & d-

staining of cells positively selected for AdipoR1 & AdipoR2.
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A

B

Figure 4.7: Gene expression of cells sorted according to AdipoR

expression. Each sort was performed twice and the mean Ct values were 
calculated from the 2 triplicates. Error bars denote SD. 
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4.4 Quantification of AdipoR1 & AdipoR2 expression on FACS and determining 

intra-subject variability 

 

The geometric mean fluorescence intensity (MFI) and the percentage of positively 

labelled cells (%pos), relative to isotype, are two conventional measures for quantifying 

surface receptor expression by FACS. The gating strategy for determining AdipoR1 & 

AdipoR2 is outlined in figure 4.8. Briefly, viable PBMC were defined according to 

scatter and propidium iodide staining. We found that monocytes have consistently 

higher auto-fluorescence compared to lymphocytes, hence 2 sets of gates for each cell 

type, accounting for 99% of events, were drawn to delineate negative staining in the 

isotype control. 
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Figure 4.8: Example gating for the determination of AdipoR expression on PBMC 

subsets. Viable lymphocytes were defined by their scatter characteristics (A) and 

propidium iodide staining (B). Quadrant gates were determined against isotype (C), such 

that at least 99% of cells are in the lower left quadrant. In this example, the percentage of 

CD3+ T cells expressing AdipoR1 (D) is 5.5% (4.01/(69.3+4.01)). 
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Next, we qualified the intra-subject variability of our assay. We calculated the CV based 

on independently stained replicates from 3 healthy subjects (Table 4.1 & 4.2). 

Lymphocytes and monocytes were defined according to scatter. The maximum CV for 

the assay was 13.2%. 

 
Table 4.1: Intra-assay variability for AdipoR1 expression measurement  

 Lymphocytes Monocytes 

Subject 1 2 3 1 2 3 

 MFI %pos MFI %pos MFI %pos MFI %pos MFI %pos MFI %pos 

N 
 

6 6 4 4 3 3 6 6 4 4 3 3 

Mean 
 

5.30 38.2 3.45 15.95 6.19 22.44 129.8 90.8 84.45 85.8 98.2 78.8 

SD 
 

0.51 2.22 0.46 0.58 0.68 0.85 12.2 3.64 8.69 8.28 7.40 4.62 

CV (%) 
 

9.71 7.87 13.23 3.64 10.99 3.79 9.40 4.02 10.2 9.65 7.54 5.86 

 
 
Table 4.2: Coefficient of variation for AdipoR2 expression measurement of PBMC 
by FACS 

 Lymphocytes Monocytes 

Subject 1 2 3 1 2 3 

 MFI %pos MFI %pos MFI %pos MFI %pos MFI %pos MFI %pos 

N 
 

6 6 4 4 3 3 6 6 4 4 3 3 

Mean 
 

5.82 19.45 3.54 
 

12.3 6.24 18.32 148.8 53.8 87.4 79.4 98.6 65.5 

SD 
 

0.43 1.88 0.38 1.19 0.56 0.67 16.22 6.29 10.44 9.69 7.10 4.21 

CV (%) 
 

7.48 9.7 10.68 9.7 8.97 3.7 10.90 11.7 11.96 12.2 7.20 6.4 

 

4.5 Distribution of adiponectin receptor expression on PBMC subsets 

 

As the first step in elucidating the immunoregulatory potential of adiponectin, we 

examined the relative expression of its specific receptors on PBMC subsets, at both the 

protein and mRNA level. PBMC were classified as monocytes, T cells, B cells and NK 

lymphocytes, using the phenotypic markers, CD14, CD3, CD19 and CD56 respectively. 

We also labelled PBMC for AdipoR1 or AdipoR2 (fig 4.9), and derived our estimates for 

relative protein expression of the receptors from the frequency of the “double positive” 

population. Over 10 independent experiments (fig 4.10), the percentage of cells 
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staining positive (%pos) for AdipoR1 are as follow (mean ± SD): CD3+: 4.7 ± 0.9; 

CD14+: 84.6± 2.0; CD19+: 55.6 ± 5.4; CD56+: 34.7 ± 3.4.  For AdipoR2, %pos values 

were: CD3+: 6.2 ± 1.4; CD14+: 80.2 ± 3.4; CD19+: 48.6 ± 8.6; CD56+: 36.8 ± 

4.2.

Figure 4.9: Distribution of AdipoR1 & AdipoR2 surface expression on 

PBMC. Representative example. Numbers denote percentage frequencies of 

gates. A & E) All PBMC analysed. Higher autofluorescence accounts for the 

difference in thresholds set for positive receptor staining in CD14 positive cells. 

For B-D, F-H, analyses are confined to lymphocytes only. In this example, the 

percentage of CD14+ cells expressing AdipoR1 is 77% (7.57/9.74) (A) and 67% 

(6.67/10) for AdipoR2(E).For CD3+ cells, AdipoR1: 10.3% (B), AdipoR2: 6.1% 

(F). For CD19+ cells, AdipoR1: 71%; AdipoR2: 45%. For CD56+, AdipoR1: 

48%; AdipoR2: 35%.
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Figure 4.10: Distribution of AdipoR1 & AdipoR2 expression on PBMC by flow cytometry.

(n=8) Error bars indicate SD.
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For the characterisation of AdipoR1 & AdipoR2 gene expression, we extracted RNA 

from positively selected CD3+, CD14+, CD19+ and CD56+ cells. The MACS sorts 

(n=4) were performed simultaneously from the same donor buffy coat, and had purities 

approaching 90% or over (figure 4.11). On conventional rt-PCR, AdipoR1 & AdipoR2 

gene expression was confirmed on all 4 subsets. By densitometry of the amplicon 

bands, expression of both receptors appeared to be highest on monocytes (figure 

4.12). We then proceeded to accurately quantify relative gene expressions by rt-qPCR. 

Relative to autologous CD3+ T cells (figure 4.13), AdipoR1 expression on CD14+ 

monocytes was 9.1 (95% CI: 8.0-10.2) times higher. The ratio for CD19+ was 6.9 (6.0-

7.9) and for CD56+, 5.8 (5.0-6.8). AdipoR2 gene expression was also the highest on 
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monocytes (fold change: 4.5, 95% CI: 4.5-5.6) and CD19+ B cells (fold change: 4.6 

95% CI: 3.8-5.4). This pattern of predominant expression on CD14+ monocytes and 

CD19+ B cells was in agreement with protein expression data from flow cytometry.  

Figure 4.11: Purity of PBMC subset sorts. Numbers denote gate frequencies (%). A) Presort

B) Following positive selection for CD3 C) Presort. D) Positive selection for CD14. E) Presort F) 

CD19 sort G) Presort H) CD56 sort.
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Figure 4.12: AdipoR1 & 

AdipoR2 mRNA 

expression on PBMC 

subsets.

(top) AdipoR1 (predicted 

amplicon size 526bp) 

L- ladder 

A-human pancreas RNA. B&C: 

CD3+ cells & rt-ve control. 

D&E: CD14+ & rt-ve. 

F&G: CD19+ & rt-ve. 

H&I: CD56+ & rt-ve. 

(middle) AdipoR2 (predicted 

size 467): A: water blank. 

A-D: CD3+, CD14+ CD19+ & 

CD56+. 

F-I: respective rt-ve control. 

(bottom) beta-actin

(predicted bp: 541bp). L-

ladder. 

A, C, E, H- CD3+, CD14+, CD19+ 

and CD56+ cells with rt-ve controls 

in lanes to the righ (B, D, F, I). 
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Figure 4.13: Relative gene expression of AdipoR1 & AdipoR2 in sorted PBMC, by rt-qPCR.

n =4. Expression levels in CD3 cells from each sort was used as reference in the calculation of 

relative gene expression level of the sorted population. Error bars indicate SD.
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4.6 Expression of adiponectin receptors on Tregs and non-monocytic CD11c+ 

cells 

 

Myeloid dendritic cells and Tregs are important in conferring tolerance in animal 

models of  cell autoimmunity (Bluestone, Tang et al. 2008, Saxena, Ondr et al. 2007). 

In particular CD11c+ antigen presenting cells are dominant in infiltrates of early insulitis 

(Uno, Imagawa et al. 2007, Shinomiya, Nadano et al. 2000). To address whether 

adiponectin signalling could influence function of these cells, we sought evidence of 

AdipoR1 & AdipoR2 expression, again at both mRNA and protein levels.  
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We identified naturally occurring Tregs in circulation using CD4+CD25highFoxP3+ 

phenotype (Fontenot, Gavin et al. 2003, Hori, Nomura et al. 2003). Recent studies 

have demonstrated that low IL-7 receptor expression (CD127) could be used as a 

discriminator for Tregs (Seddiki, Santner-Nanan et al. 2006, Liu, Putnam et al. 2006, 

Hartigan-O'Connor, Poon et al. 2007). This has the advantage of allowing live sorting 

(Hartigan-O'Connor, Poon et al. 2007). Using both these criteria on flow cytometry, we 

found 5-10% of Tregs express AdipoR1 & AdipoR2 (figure 4.14 & 4.15). This is of 

similar magnitude with expression levels on all resting CD3+ cells. Following the 

CD4+CD25+CD127low sort, we attained a Treg fraction of at least 80% purity (fig 4.16). 

AdipoR1 & AdipoR2 gene expression was demonstrated in these cells, and on rt-

qPCR, their levels were similar to whole PBMC (fig 4.16E).  

  

CD1a bears homology to MHC and is involved in the regulation of T cell responses to 

glycolipid antigens (Banchereau, Briere et al. 2000). It is expressed on myeloid DC (Ito, 

Inaba et al. 1999), and also on monocytes of healthy individuals (Gregory, Zilber et al. 

2000). We used CD1a and high forward scatter to enumerate circulating DC, with 

CD14 as the exclusion marker. Using these criteria, we found that peripheral blood DC 

amount to 0.5% of PBMC (fig 4.17) and that 50% of these cells express AdipoR1 & 

AdipoR2. DC can also be generated by differentiating peripheral blood monocytes 

using GM-CSF and IL-4 (fig 4.18). These monocyte derived DC (mDC) have increased 

costimulatory molecules (CD80, CD86, CD1a, DC SIGN) but have lost CD14 

expression. They express both AdipoR1 & AdipoR2, at both the protein (fig 4.19) and 

mRNA level (fig 4.16E), but both methods of quantification point to a reduced level of 

expression in comparison to peripheral blood monocytes.   
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Figure 4.14: Expression of AdipoR on FoxP3+ T cells. Representative example. 

CD4+CD25high cells (A) express high levels of Fox P3 (B) relative to CD4 CD25- cells (C). 

AdipoR1 (D) and AdipoR2 (E) is expressed on 6% of CD4+FoxP3+ cells. Expression of AdipoR1& 

AdipoR2 on CD4+FoxP3- cells is 7.4% and 8.4% respectively. The low numbers of co-expressers 

for AdipoR and FoxP3 is in keeping with the overall sparse expression of AdipoR on resting T cells, 

at both the protein (fig 4.10), and mRNA level (fig 4.13).
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Figure 4.15: AdipoR on CD4+CD25highCD127low Tregs. A & B. Representative gating of 

CD4+CD25highCD127low cells. C & D. Numbers denote percentage of cells exhibiting positive 

staining for the receptor, against isotype.
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Fig 4.16: Gene expression of AdipoR on CD4+CD25highCD127low Tregs. (A-C). Purity of 

positively selected fraction. 85% of cells were positive for CD4 & CD25, of which >90% were 

also CD127 low. Overall purity was 80%. In cells expressing the highest level CD25,(A) there 

was markedly reduced expression of CD127(C) . 

D. Conventional rt-PCR of RNA from CD4+CD25highCD127low cells and monocyte derived 

dendritic cells. 

1&6-PBMC; 2&3, 7&9 - CD4+CD25highCD127low and rt-ve; 4&5, 8&10- mDC & rt-ve. 

E. Quantification by rt-qPCR. Fold change relative to pre-sorted PBMC. Error bars indicate SD.
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Figure 4.17: AdipoR on peripheral blood dendritic cells (PBDC). Representative 

example. Viable PBDC were identified by (A) lack of propidium iodide staining, (B) 

high forward scatter, as well as positive CD1a and negative CD14 labelling. We used 

CD1a expressing monocytes as an internal comparison for AdipoR1 & AdipoR2 

staining (D&E). Numbers denote gate frequencies. (D&E). Cell counts for each 

subpopulation are appended in the legends.

Event Count: 145086

FL3-H

F
S

C
-H

70.8

B
FSC-H

S
S

C
-H 3.65

C
CD1a PE

C
D

1
4
a
p
c

13.7

25.5

D
AdipoR1 AF488

C
D

1
4
 a

p
c

CD1a+ CD14+ 957

CD1a+ CD14- 515

E
AdipoR2 AF488

C
D

1
4
 a

p
c

CD1a+ CD14+ 1105

CD1a+ CD14- 569

A

80.6

54.6

81.8

52.4



 99  

CD80 FitC

C
D

1
4

 a
p

c

0.61 0.19

19.579.7

B

CD80 FitC

C
D

1
4

 A
P

C

85.5 2.07

0.3312.1

A

CD86 FitC

C
D

1
a

 P
E

0.015 1.2

97.11.66

C D

CD86 FitC

C
D

1
a

 P
E

37.8 22.9

25.314

CD83 apc

D
C

-S
IG

N
 P

e
rC

P
 C

y
 5

.5

E F

CD83 apc

D
C

 S
IG

N
 P

e
rC

P
 C

y
 5

.5

98.3 0.87

0.0890.73

CD14+ monocytes mDC

Figure 4.18: Phenotype of 

monocyte derived 

dendritic cells (mDC). The 

method of their generation is 

decribed in 3.7.1. CD14+ 

precurosrs were negative in 

their expression of CD80 (A), 

CD1a (C) and DC-SIGN (E). 

Following ex vivo expansion, 

mDC had increased 

expression of these markers 

(B, C, F). They had an 

immature phenotype (CD83-

ve) and had lost CD14 

expression (B).



 100  

Figure 4.19: AdipoR on mDC. Surface staining for AdipoR1 & AdipoR2  was quantified on mDC

gated on high CD1a (A) as well as double positive staining for DC-SIGN and CD86.
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4.7 Expression of adiponectin receptors on activated T cells 

 

We then asked whether the relatively low expression of AdipoR1 & AdipoR2 on T cells 

could be altered by activation. Positively selected CD3+ cells (>97% purity) were 

activated using CD3+CD28+ Dynabeads or PHA, for 48-72 hours. Both means of 

activation resulted in a trend for AdipoR1 & AdipoR2 surface expression to decrease 

(fig 4.20 & 4.21). In particular, the fall in AdipoR2 expression following PHA was 

significant (fig 4.22). This change was also observed at the gene expression level (fig 

4,22D). In addition, we found that the upregulation of CD25 on PHA activation strongly 

and significantly correlated with the reduction in both AdipoR1 & AdipoR2 expression 

(fig 4.22C) (AdipoR1 r = -0.92 p<0.01, AdipoR2 r=-0.76 p<0.05).   
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Figure 4.20:AdipoR on T cells activated by PHA. MACS sorted CD3+ cells were treated with PHA. 

After 72 hours, harvested cells were costained with CD25 and AdipoR1 or AdipoR2. Representative 

example. Numbers denote quadrant frequencies. Gates were set based on isotype, such that 99% of 

cells were bracketed in the left lower double negative quadrant. Differences in isotype gate setting 

between resting and activated T cells were due to autofluorescence (appendix 1).
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Figure 4.21: AdipoR on T cells activated by CD3+CD28+ Dynabeads. A & 

C: negative controls. B & D: treated. Expression of AdipoR1 (B) and AdipoR2 

(D) were quantified alongside CD25 staining. Numbers denote gate

frequencies. E & F. Comparison of AdipoR1 & AdipoR2 expression between 

Dynabeads treated T cells and control (n=4).
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Figure 4.22: Effect of T cell activation on AdipoR expression. (A & B) 

Changes in AdipoR1 & AdipoR2 MFI with PHA stimulation for up to 72 

hours. The paired experiments were from the same donor. (C) T cells from a 

single subject was exposed to increasing doses of PHA (0,1,2,5,10,20, 25 

ug/ml). A significant inverse correlation is demonstrated for both AdipoR1 & 

AdipoR2 against the activation marker CD25 (IL-2 receptor). (D) Gene 

expression of T cells for AdipoR1 & AdipoR2 following activation
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4.8 Expression of adiponectin by PBMC 

 

Next, we asked whether PBMC express adiponectin, as its secretion has been 

documented in non-adipose tissue (Katsiougiannis, Kapsogeorgou et al. 2006, Chen, 

Tan et al. 2006, Ding, Qin et al. 2007), as well as in primary osteocytes which share a 

common ontogeny with myeloid cells (Berner, Lyngstadaas et al. 2004, Shinoda, 

Yamaguchi et al. 2006). We discovered that PBMC do express adiponectin mRNA (fig 

4.23A), albeit at low levels when compared to mature adipocytes (figure 4.23B). Its 

gene expression was comparatively higher in CD19+ and CD56+ lymphocytes (fig 

4.23C) among the PBMC subpopulations.  

 

We then sought evidence of adiponectin protein expression on immunoblotting of 

PBMC lysates (Methods section 3.10), from buffy coats of healthy blood donors (fig 

4.24). Following immunoprecipitation (IP) with a rabbit anti-adiponectin antibody, 

immunoblotting revealed a band corresponding to the reported molecular weight of 

adiponectin (28kDa). This was also present in our human serum positive control and in 

the pre-IP PBMC lysate. However, its situation also approximated to the molecular 

mass of the IgG light chain, cleaved from the whole antibody during the final elution 

steps. Indeed, a fainter but similar sized band was seen in the supernatant sample 

following IP with pre-immune rabbit serum. We addressed the possibility of a tandem 

band by covalently coupling the IP antibody (Methods section 3.10.1), as well as the 

irrelevant antibody control. Indeed, the contaminating light chain signal was now lost in 

the negative control (lane 7), whilst the band of interest was preserved (lane 8). A 

further complication in the interpretation of blots was the consistent appearance of 

bands at 34-36kDa. We confirmed its non-specificity by demonstrating its persistence 

when the membrane was only exposed to the secondary HRP-conjugated antibody. 
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The band at 28kDa was absent in the secondary antibody only blots (figure 4.25), and 

its luminescence abrogated when the probing primary antibody was pre-incubated with 

recombinant adiponectin (fig 4.26). 

 

We attempted to isolate this band on Coomassie staining for further qualification on 

mass spectrometry (Methods section 3.10.2). However, only one band was visible in 

the 22-36 kDa range and this was excised and subjected to in-gel trypsinisation. The 

resultant spectra were a match for the IgG light chain.  

 

We had also cultured whole PBMC in complete media, supplemented by 10% FCS. By 

ELISA, the level of adiponectin in supernatants after 3 days of culture was below the 

detection limit.   
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Figure 4.23: gene expression of adiponectin on PBMC. A. conventional rt-PCR (37 cycles). a. 

whole pancreas RNA b. Ntera cells c & d. differentiated Chub S7 adipocytes and rt-ve control e & f. 

PBMC RNA & rt-ve control. B. rt qPCR of adiponectin mRNA in whole PBMC, from 3 independent 

samples for each cell type/tissue tested. C. MACS-sorted subpopulations of PBMC. Standard 

curve for the adiponectin/18S duplex rt-qPCR is shown in appendix 2. 
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1. Recombinant adiponectin (FLAG tag)

2. Human serum

3. Rabbit serum

4. PBMC lysate

5-8 supernatant post IP of PBMC lysate

5. anti-adiponectin Ig

6. Rabbit serum

7. Covalent coupled rabbit anti-AdipoR2 Ig

8. Covalent coupled rabbit anti-adiponectin Ig

1    2   3     4    5   6         7    8

Figure 4.24 Immunoblot for human adiponectin (28kDa) in PBMC lysates.

Recombinant adiponectin (with FLAG tag) and human serum were used as positive 

controls (lanes 1 & 2). A band at 28kDa can be seen in pre-IP PBMC lysate (lane 4) 

and is intensified following IP using anti-adiponectin antibodies (lane 5). However, 

this band is also seen in the negative IP control where rabbit serum was used (lane 

6). We postulated this was due to antibody light chain contamination (~25kDa). The 

28kDa band of interest persists after covalent coupling of the anti-adiponectin IP 

antibody (lane 8), but is absent in the control, where an irrelevant antibody was 

covalently coupled to Sepharose beads. The non-specificity of the larger 35 kDa

band in lanes 3-8 is investigated in figure 4.25.
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36

22

1  2   – 3   4   – 5   6  ¦ 3   5

Probing antibodies:

Primary & secondary                ¦ secondary only

1. human serum

2. Recombinant adiponectin (FLAG tag)

3-6 supernatants following IP of PBMC 

lysates

3. Protein G covalently coupled rabbit 

anti-adiponectin IgG antibody [run 1]

4. Protein G covalently coupled rabbit 

anti-AdipoR2 IgG antibody

5. Protein G covalently coupled rabbit 

anti-adiponectin IgG antibody [run 2]

6. Protein G covalent coupled to rabbit 

pre-immune serum

Figure 4.25 Non-specificity of the 35kDa band on immunoblots for adiponectin.

Shown on the left of the blot (lanes 1-6) are two more replicate experiments for 

adiponectin following IP with covalently coupled antibodies. Again, human serum and 

recombinant adiponectin were positive controls (lanes 1 & 2). Bands at ~30kDa, 

corresponding to the Mr of adiponectin, are seen in supernatants from PBMC lysates

following IP (lanes 3 & 5). These are absent in the negative controls (4 & 6). The 

bands at 35kDa are seen when the membrane is exposed only to the secondary 

antibody (to the right), whilst the intensity of bands at 30kDa are visibly reduced.
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36

22

A – recombinant adiponectin (FLAG tag)

B- human serum

C & E- supernatant post-IP using anti-adiponectin Ig

D- supernatant post IP using rabbit serum

Figure 4.26 Specificity of the 30kDa band in PBMC lysates following IP for 

adiponectin. The intensity of the band, following IP for adiponectin of PBMC lysates

(lane C), is attenuated when the primary probing antibody is pre-adsorbed with 

recombinant adiponectin (lane E). Here, the primary probing antibody (1ug) was 

incubated with 5ug of recombinant human adiponectin (Cat # ALX-522-063-C050, 

Alexis) overnight at 4 C before application to the membrane. Again, the 30kDa band 

is just barely visible with the negative control IP of the PBMC lysate (lane D).
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4.9 Discussion 

 

Previous studies have shown AdipoR1 & AdipoR2 gene expression on PBMC (Weigert, 

Neumeier et al. 2008, Palmer, Hampartzoumian et al. 2008, Sohn, Kwak et al. 2010, 

Shen, Charlesworth et al. 2007, Alberti, Gilardini et al. 2007, Tan, Wang et al. 2009). In 

a novel finding, we identified AdipoR1 & AdipoR2 expression on PBMC at the protein 

level by flow cytometry. We have taken precautions in our methodology to avoid non-

specific labelling, including the use of blocking serums, FcR blockade, as well as the 

optimisation of primary and secondary antibody concentrations. We have validated the 

specificity of receptor labelling by demonstrating its inhibition with a specific antibody 

blocking peptide. In addition, the increased gene expression for AdipoR1 & AdipoR2 in 

the positive sort using the labelling antibody was in proportion to increased purity of the 

fraction. Also in later experiments, there was general concordance in the level of gene 

and protein expression by the independent techniques. Furthermore, FACS labelling of 

AdipoR1 & AdipoR2 appeared to be exclusive, as the blocking peptide for one receptor 

isotype had negligible inhibition on the other. In support, the positively sorted cells for 

one isotype did not have increased gene expression for the other. This was an 

important question to address, given the structural homology of the receptors and their 

similar distributions on PBMC subsets.  

 

The advantage of our flow cytometric technique is the ability for quantification of 

receptor expression at both the protein and cellular levels. For quality control we have 

developed an explicit experimental protocol, as well as a preset method of data 

analysis. Over 3 subjects, our assays have a CV ranging from 3-13%. This compares 

favourably to other methods of quantification based on FACS (Gratama, D'hautcourt et 

al. 1998, Faint, Pilling et al. 1999), despite the inherent variability that comes from the 

use of polyclonal antibodies. At the time of writing, no monoclonal antibodies to 
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AdipoR1 or AdipoR2 were available commercially. We recognised that a further 

contributor to the variability is our analogue flow cytometer, as its optical and 

compensation settings have to be calibrated manually before each run. Whilst this is 

not a factor in single day experiments, this variability could significantly undermine 

validity in longitudinal studies. To control for this, we would standardise MFI values by 

subtracting against that in the isotype sample. In addition, we would seek corroborative 

evidence at the mRNA level in all future experiments.   

 

AdipoR1 & AdipoR2 was expressed in all PBMC, but there were significant differences 

in their distribution among subsets. We found the highest expression on monocytes, 

followed by B cells and then NK cells, with sparse expression seen on T cells. There 

was agreement of relative expression data acquired on FACS and rt-qPCR. In an 

earlier publication, we had found the high receptor expression on monocytes measured 

on FACS was not replicated at the gene expression level (Pang, Narendran 2008b). 

This could be reconciled by the increased purity of the monocyte sorts. For the 

presented set of experiments, we switched to using anti-CD14 microbeads, as opposed 

to the sequential application of PE-conjugated CD14 and anti-PE microbeads. The 

resultant purity of the positive fractions was consistently at 90%, as opposed to the 

85% previously.  

 

AdipoR1 & AdipoR2 mRNA in monocytes had been described by other groups 

(Chinetti, Zawadski et al. 2004, Weigert, Neumeier et al. 2008). We have extended this 

knowledge by demonstrating their expression at the protein level. We found reduced 

receptor expression on DC compared to their monocyte precursors, through direct 

comparison in peripheral blood and by the ex-vivo differentiation of primary monocytes. 

This is consistent with findings from Chinetti et al (Chinetti, Zawadski et al. 2004), who 

described reduced AdipoR1 & AdipoR2 in monocyte derived macrophages that 
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represent terminal differentiation of a myeloid antigen presenting cell. The time course 

for this decrease had occurred as early as the third day of culture, when cells are 

expected to acquire a DC phenotype.  

 

A shortcoming of our characterisation work on DC is that we have used relatively crude 

markers (high FSC, CD1a+CD14-) for their definition in peripheral blood. Older studies 

had used a more extensive panel of costimulatory molecules (Zacher, Knerr et al. 

2002, Vuckovic, Withers et al. 2007). More recent studies focused on the BDCA group 

of markers for delineating DC subtypes in circulation (Dzionek, Fuchs et al. 2000). Our 

approach had the benefit of co-identifying CD14+ monocytes, that served as an 

internal positive control for adiponectin receptor quantification on DC. However, not all 

human DC with antigen presenting capacity express CD1a (Chang, Wright et al. 2000, 

Gogolak, Rethi et al. 2007). Furthermore, we could not comment on the distribution of 

AdipoR1 & AdipoR2 on DC subsets. This may be relevant in context of in the early 

stages of islet autoimmunity, where a relatively expanded population of BDCA 2+ 

(CD303) plasmacytoid DC may have a pathogenic role (Allen, Pang et al. 2009).    

 

The expression of AdipoR1 & AdipoR2 on T cells has been reported by others (Palmer, 

Hampartzoumian et al. 2008). Our quantitative experiments found this to be at 

relatively low levels, with no preferential expression on Tregs. This suggests that for 

adiponectin to modulate T cell responses, accessory cells with high adiponectin 

receptor expression such as monocytes, B cells and NK cells are required. This is 

supported by an in vitro model of hepatitis C immunity, where the abrogation of 

interferon-  by T cells by adiponectin is dependent on the presence of NK cells 

(Palmer, Hampartzoumian et al. 2008). Our postulation does not contradict recent 

findings of adiponectin downregulation T cell responses to anti-CD3 antibodies, as 
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whole mice splenocytes were used in the initial stimulation (Okamoto, Christen et al. 

2009).     

 

We found that T cells upon activation had reduced AdipoR1 & AdipoR2 expression. 

The functional significance of this is limited by the relatively low expression at the 

outset. Notwithstanding, this observation is in agreement with findings of reduced 

adiponectin receptor expression on cells exposed to inflammatory stimuli (Rahman, 

Qadri et al. 2009, Ajuwon, Banz et al. 2009), and the increased expression with anti-

inflammatory treatments (Chinetti, Zawadski et al. 2004, Ding, Qin et al. 2007, Sun, 

Han et al. 2006). However, we recognised that this is an area of controversy, with 

reports of reduced adiponectin receptors with inflammation in some primary human 

tissues (Kaser, Moschen et al. 2005, Nannipieri, Bonotti et al. 2007), but not seen at 

other sites (Miller, Cho et al. 2009, Shen, Charlesworth et al. 2007, Tan, Wang et al. 

2009).  

 

We accept two major limitations to this series of studies. Our data regarding the 

expression of adiponectin on PBMC requires validation. We had aimed to confirm our 

rt-qPCR and immunoblotting data via qualitative analysis by mass spectrometry. Our 

failure was due to inadequate yield of the purified protein following immunoblotting. A 

future strategy could involve immunomagnetic pooling of CD19+ and CD56+ cells 

before lysis, as these cells had higher adiponectin gene expression. Another switch 

would be the use of protein G affinity interaction chromatography columns that allow a 

more efficient scale-up. Other groups have used alternative means of demonstrating 

the non-adipose expression of adiponectin, by immunohistology (Katsiougiannis, 

Kapsogeorgou et al. 2006, Miller, Cho et al. 2009, Tan, Wang et al. 2009) and by 

ELISA of culture supernatants from tissue explants (Chen, Tan et al. 2006). 

Nevertheless, as the relative gene expression of adiponectin was low and the secretion 
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of adiponectin by PBMC was undetectable, we concluded any autocrine/paracrine 

effects in an in vitro system would be negligible.  

 

Secondly, our investigation into the immune repertoire of adiponectin assumes 

AdipoR1 & AdipoR2 are the major mediators of its immune function. This may not be 

the case, as at least some of these effects are attributed to alternative pathways 

(Masaie, Oritani et al. 2007, Takemura, Ouchi et al. 2007, Peake, Shen et al. 2006). 

Furthermore, a third receptor of adiponectin, T-cadherin, has been described and is 

thought to have biological activity despite the lack of an intracellular domain (Hug, 

Wang et al. 2004, Takeuchi, Adachi et al. 2007).  

 

4.10 Summary of findings 

 

We have optimised and validated a novel method for the flow cytometric quantification 

of AdipoR1 & AdipoR2 surface expression on PBMC. We found on rt-qPCR and flow 

cytometry, that cells which have antigen presenting function for T cell priming and 

activation, such as DC, monocytes and B cells, have the highest expression of 

AdipoR1 & AdipoR2. The levels of expression on T cells, both resting and activated, 

are low in comparison. Adiponectin mRNA can be found in PBMC, however, its 

significance needs to be confirmed at the protein level.   

  

 

 

 



5. THE EFFECT OF T1D ON CIRCULATING 

ADIPONECTIN AND ITS RECEPTOR EXPRESSION ON 

PBMC 

 

5.1 Introduction 

 

We proceeded to assess the effect of T1D on circulating adiponectin and its receptor 

(AdipoR) expression of PBMC. This is an important question to address in the testing 

of our hypothesis. For adiponectin to contribute to mediating in the relationship 

between insulin resistance and  cell autoimmunity, we would expect adiponectin 

signalling to immune cells to correlate with insulin sensitivity. The association between 

insulin sensitivity and serum adiponectin is seen in pre-T1D and in adolescents with 

early disease (Truyen, De Grijse et al. 2007, Diabetes Research in Children Network 

(DirecNet) Study Group 2008) , However, with age and progression, other factors 

including glycaemic control, renal function and presence of complications are more 

important determinants of serum adiponectin (Maahs, Ogden et al. 2007, Pfleger, 

Mortensen et al. 2008, Saraheimo, Forsblom et al. 2008, Frystyk, Tarnow et al. 2005, 

Barnes, Curran-Everett et al. 2008). There is evidence to support the association of 

reduced AdipoR1 & AdipoR2 expression on immune cells with obesity (Weigert, 

Neumeier et al. 2008, Sohn, Kwak et al. 2010, Alberti, Gilardini et al. 2007), but 

whether this extrapolates to T1D, where insulin resistance is also a feature (Pang, 

Narendran 2008), is not known.  

 

In this chapter, we report on the results of a cross-sectional study looking at PBMC 

adiponectin receptor expression in T1D, with healthy and T2D subjects serving as 

controls. 
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5.2 Assessing variability of AdipoR1 & AdipoR2 expression with circadian clock 

and feeding state 

 

Gene expression for AdipoR1 & AdipoR2 on visceral fat follows a diurnal variation with 

a nocturnal trough, and is increased with fasting (Tsuchida, Yamauchi et al. 2004, 

Gomez-Abellan, Gomez-Santos et al. 2010, Blüher, Fasshauer et al. 2005)Therefore, 

we asked whether feeding state and the time of venepuncture would alter adiponectin 

receptor expression on PBMC. Our approach was to measure AdipoR1 & AdipoR2 

expression by rt-qPCR, using fasting blood samples at 0900 hours, and at 1530 (2 

hours postprandial). These times would also approximate with the sampling times for 

subjects recruited from outpatient clinics. The samples were processed within an hour 

of venepuncture. There were no significant differences in AdipoR1 & AdipoR2 gene 

expression in PBMC from the 2 sampling times (figure 5.1) (n=6). We conclude that 

differences in sampling times between morning and afternoon subject catchments 

would not confound our study. 
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Figure 5.1: Effect of fasting and sampling time on AdipoR gene expression. 6 

healthy volunteers were studied. By 2-way ANOVA and Bonferroni post-tests, there 

were no significant differences in normalised gene expression of AdipoR1 (top 

panel) and AdipoR2 (bottom) between the 2 sampling times: 0900 hours (fasting), 

1530 ( 2hours post meal).
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5.3 Clinical characteristics of our study group 

 

Seventy six subjects were recruited. Only male Caucasian volunteers were enrolled to 

control for the possible effects of sex and ethnicity on adiponectin receptor expression 

(Barnes, Curran-Everett et al. 2008, Mente, Razak et al.). Their clinical parameters are 

described in Table 5.1. There were no significant differences in age, BMI and WHR 

between healthy (HC) and T1D subjects. We recruited a second comparator cohort 

with insulin treated T2D. Although they were older and more obese relative to subjects 

with T1D, they had similar HbA1C and duration of diabetes. Statin and ACE 

inhibitor/ARB use was higher in the T2D group.    
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  Healthy Control 
n = 22 

T1D 
n = 29 

T2D 
N = 25 

Age (yrs) 32.6 ± 5.7 35.2 ± 10.7 54.8 ± 11.5*** 

BMI (kg m-2) 25.2 ± 2.8 25.1 ± 4.1 35.3 ± 7.3*** 

WHR 0.90 ± 0.06 0.91 ± 0.09 1.00 ± 0.08** 

Systolic BP (mmHg) 112 ± 11 137 ± 17 141 ± 15 

Diastolic BP 75 ± 12 85 ± 10 85 ± 9 

Duration of Diabetes (yrs) n/a 15 ± 10 10 ± 7 

HbA1C (%) n/a 9.0 ± 1.4 8.8 ± 1.9 

Total cholesterol (mmol) n/a 4.4 ± 0.7 4.1 ± 0.9 

Triglycerides 
(mmol) 

n/a 1.6 ± 1.0 2.3 ± 1.4 

Insulin dose  
(total daily units/ kg) 

n/a 0.85 ± 0.24 1.08 ± 0.15 

Statin Use (%) n/a 31 100* 

ACE inhibitor or ARB use 
(%) 

n/a 52 80* 

Fibrate use (%) n/a 0 4 

Vascular complications 
(%) 

n/a 52 50 

 
Table 5.1: Clinical characteristics of study group. Mean ± SD values are 

represented for continuous variables. By t-test, there were no significant differences in 
age, BMI and WHR between T1D and HC groups. HbA1C, duration of diabetes, lipids 
and rates of vascular complications were similar between T1D and T2D groups. The  
T2D subjects were older and had greater BMI and WHR compared to both HC and 
T1D subjects (*** p <0.0001, ** p<0.01). By chi-square test, ACEI/ARB and statin use 
was significantly higher (p < 0.05*) in the T2D group, compared to T1D subjects. 
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5.4 Serum adiponectin levels in T1D 

 

Serum total adiponectin between T1D subjects and matched HC was not significantly 

different (T1D: 9.6 ± 6.3 ug ml-1; HC: 7.6 ± 2.3 ug ml-1 p = 0.17) (figure 5.2) . In 

contrast, levels in T2D were significantly reduced (T2D: 4.2 ± 2.8 ug ml-1, p = 0.0003). 

Across all subjects, there were expected correlations between serum adiponectin and 

age (r = -0.333 p = 0.005), BMI (r = -0.461, p = 0.0005) and WHR (r =-0.273, p =0.026). 

In T1D, the inverse association with BMI was preserved ( r = -0.397 p = 0.033 ), and in 

addition, HbA1C was a significant correlate ( r = 0.442, p =0.016). There were no 

significant correlations were observed between WHR or eGDR with serum adiponectin. 

Levels in those with vascular complications compared to those without were not 

different (appendix 6).  
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Figure 5.2: Serum total adiponectin. All sample values are depicted by aligned dot plots. 

Mean values are represented by bar. 

*** p < 0.001; * p<0.05 by Bonferroni post test



 122  

   

5.5  Measurement of AdipoR expression by FACS and qPCR 

 

We used MFI as a measure of AdipoR1 & AdipoR2 surface expression on PBMC (fig 

5.3). We then confirmed normal distribution of our qPCR and FACS data, as well as 

serum adiponectin measurements, using the one-sample Kolmogorov-Smirnov test 

(appendix 3). As further validation for our FACS and qPCR AdipoR expression assays, 

we found that MFI for both AdipoR1 (r = -0.84 p<0.0001) and AdipoR2 (r = -0.79 

p<0.0001) significantly and closely correlated with Ct (fig 5.4).In addition, the 

Figure 5.3: Gating analysis of FACS data from clinical study. Viable cells were identified 

based on propidium iodide staining (A) and scatter characteristics (B). PBMC were then 

further classified into lymphocytes and monocytes (C), which were co-stained with CD14 (D). 

Geometric mean fluroescence intensity (MFI) was calculated by subtraction against negative 

control (E). In this example (F), AdipoR1 MFI for monocytes is 107.8 (143-35.2). Numbers 

denote percentage frequencies of gates.
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expression of both receptor isotypes significantly correlated with each other (r = 0.86 

p<0.0001). Variations in monocyte count did not significantly affect MFI of both 

receptors in all PBMC or the CD14+ fraction (appendix 4).  

 

5.6 Correlation of AdipoR expression with indices of insulin resistance  

 

We then investigated whether insulin resistance is related to AdipoR expression in the 

three groups by correlation analysis (Tables 5.2-5.4). We used BMI and WHR as 

clinical surrogates of insulin resistance. For subjects with T1D, we also employed 

eGDR, a validated measure of insulin sensitivity calculated using HbA1C, blood 

pressure and WHR (Williams, Erbey et al. 2000).  

 

In healthy subjects we found that AdipoR1 expression on all cells correlated inversely 

with BMI (r = -0.70 p<0.01) and WHR (r = -0.53 p<0.01) (figs 5.5A & 5.5B). There were 

no significant clinical correlates to AdipoR2 expression (figs 5.5C & 5.5D). BMI also 

followed a significant inverse correlation with both AdipoR1 and AdipoR2 expression on 

monocytes in T2D, but this relationship was not present for „all cells‟ (AdipoR1: r = -

0.38; AdipoR2: r=-0.38 p<0.05).  

 

In T1D, eGDR significantly correlated with monocytic AdipoR expression (AdipoR1: r = 

0.42 p<0.05; AdipoR2: r = 0.49 p<0.01) (figs 5.5E & 5.5F). However, the clinical 

parameters used to derive eGDR, namely HbA1C, BP and WHR, did not share 

significant correlation with AdipoR expression. 
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Figure 5.4: Surface expression of AdipoR1 & AdipoR2 is closely correlated with gene 

expression. We investigated this relationship by Pearson correlation analysis. MFI of AdipoR

on all cells were analysed against normalised Ct values of AdipoR from qPCR. A. AdipoR1 B. 

AdipoR2. C. The level of AdipoR1 & AdipoR2 expression were also closely correlated with each 

other.
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Table 5.2: Pearson correlation coefficients of AdipoR expression with surrogate 
measures of insulin resistance in healthy subjects 
Healthy controls Age BMI WHR 

AdipoR1 Total 
P 

-.565 
.103 

-.702** 
.003 

-.526* 
.005 

Lymphocytes 
P 

-.251 
.226 

-.270 
.192 

-.114 
.586 

Monocytes 
P 

.021 

.922 
.088 
.675 

.015 

.942 

AdipoR2 Total 
P 

-.356 
.081 

-.059 
.779 

.171 

.413 

Lymphocytes 
P 

-.284 
.169 

.135 

.520 
.376 
.064 

Monocytes 
P 

-.149 
.477 

-.245 
.238 

-.258 
.212 

 
 
Table 5.3: Pearson correlation coefficients of AdipoR expression with surrogate 
measures of insulin resistance in T1D subjects 
T1D Age BMI WHR eGDR 

AdipoR1 Total 
P 

.402 

.102 
-.177 
.240 

.096 

.472 
.250 
.068 

Lymphocytes 
P 

.417 

.201 
-.104 
.493 

.114 

.394 
.207 
.132 

Monocytes 
P 

.247 

.161 
-.149 
.322 

.111 

.409 
.418* 
.024 

AdipoR2 Total 
P 

.387 

.203 
-.145 
.337 

.041 

.759 
.388** 
.004 

Lymphocytes 
P 

.403 

.102 
-.090 
.554 

.078 

.563 
.293* 
.031 

Monocytes 
P 

.175 

.189 
-.125 
.407 

.033 

.806 
.494** 
.006 

 
 
Table 5.4: Pearson correlation coefficients of AdipoR expression with surrogate 
measures of insulin resistance in subjects with T2D 
T2D Age BMI WHR 

AdipoR1 Total 
P 

-.052 
.804 

.061 

.773 
-.187 
.371 

Lymphocytes 
P 

-.007 
.974 

.074 

.724 
-.179 
.392 

Monocytes 
P 

.050 

.812 
-.375* 
.045 

-.309 
.133 

AdipoR2 Total 
P 

-.060 
.777 

.068 

.747 
-.166 
.427 

Lymphocytes 
P 

-.019 
.930 

.086 

.684 
-.176 
.400 

Monocytes 
P 

.236 

.257 
-.373* 
.019 

-.173 
.409 
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Figure 5.5: Correlation of AdipoR1 & AdipoR2 expression with indices of insulin 

resistance in health and T1D. In healthy individuals, BMI (A) and WHR (B) inversely 

correlated with AdipoR1 expression, but not AdipoR2 (C & D) on all PBMC. In T1D, AdipoR1 & 

AdipoR2 expression of monocytes significantly correlated with eGDR (E &F).

eGDR U ml-1

M
F

I 
A

d
ip

o
R

1
 m

o
n

o
c

y
te

s

4 6 8 10
0

10

20

30

40

50 r = 0.4180
p = 0.0240

eGDR U ml-1

M
F

I 
A

d
ip

o
R

2
 m

o
n

o
c

y
te

s

4 6 8 10
0

10

20

30

40

50 r = 0.4949
p = 0.0063

 



 127  

5.7 Effect of T1D on AdipoR expression  

 

The most striking finding is the lower protein expression of both AdipoR1 & AdipoR2 in 

T1D (fig 5.6), by approximately 40% when compared to matched healthy controls (fig 

5.7). This reduction is observed on both lymphocytes (MFI AdipoR1, HC= 3.42 ± 1.40; 

T1D=1.80 ± 1.70 p <0.01; AdipoR2, HC=3.04 ± 1.47; T1D= 1.34 ± 1.30 p<0.01) and 

monocytes (MFI AdipoR1, HC= 34.58 ± 18.47, T1D 19.46 ± 11.16 p<0.01; AdipoR2, 

HC= 23.14 ± 10.63, T1D= 11.12 ± 9.36 p<0.01). These changes at a protein level were 

confirmed at an RNA level through rt-qPCR (AdipoR1 relative gene expression =0.27, 

p <0.01; AdipoR2 = 0.55, p<0.05) (fig 5.8).  

 

Subgroup analysis showed the reduction in AdipoR expression in T1D was not biased 

towards those with longer duration of diabetes (appendix 5) or vascular complications 

(appendix 6) as has previously been reported (Soccio, Zhang et al. 2006). In addition, 

neither insulin dose per weight in kg nor HbA1C correlated with AdipoR expression 

(appendix 5). 

 

To explain the apparent reduction in AdipoR expression in T1D, we identified 

unadjusted parameters which have been reported to be associated with their 

expression. These include: hyperglycaemia (Fang, Palanivel et al. 2005, Guo, Xia et al. 

2007), exogenous insulin (Tsuchida, Yamauchi et al. 2004), statins (Saito, Fujioka et al. 

2007), lipids (Nannipieri, Bonotti et al. 2007, Staiger, Kaltenbach et al. 2004), serum 

adiponectin (Alberti, Gilardini et al. 2007, Civitarese, Jenkinson et al. 2004, Bauche, Ait 

El Mkadem et al. 2006) and vasculopathy (Soccio, Zhang et al. 2006). In addition, ACE 

inhibitors and ARB may directly modify AdipoR expression (Zhang, Li et al. 2009), or 

indirectly via the modulation of adiponectin signalling (Makita, Abiko et al. 2008, 

Clasen, Schupp et al. 2005, Pscherer, Heemann et al. 2010).  Our cohort of subjects 
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with insulin treated T2D were controlled for some of these factors (Table 5.1), although 

significant differences were observed with age, BMI, serum adiponectin, statin and 

ACEI use. Notwithstanding, AdipoR expression in T1D was also lower compared to 

T2D, at both protein and mRNA levels (figs 5.7 & 5.8). Post-hoc analysis showed the 

level of AdipoR expression in T2D for each PBMC subpopulation to be similar to HC. 

As discussed previously, serum adiponectin in T2D was significantly lower, compared 

to both T1D and HC (fig 5.2). Incorporating all subjects, we found a modest but 

significant inverse relationship between serum adiponectin and AdipoR1 (r = -0.29 

p<0.05), as well as AdipoR2 expression on all PBMC (r=-0.34 p<0.01) (fig 5.9). This 

association however did not hold within the three subgroups. 
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Figure 5.8: Gene expression of AdipoR1 (top) & AdipoR2 (bottom) of the three 

study groups. ANOVA testing was done on Ct values, before transformation to give 

fold change values. * p<0.05, *** p<0.001 by Bonferroni post test.
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Figure 5.9: Inverse correlation of serum adiponectin with total PBMC expression 

of AdipoR1 (top panel) and AdipoR2 (bottom). All subjects were included for this 

analysis.
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We employed multivariate linear regression to adjust for confounding between our 

diabetic subjects. AdipoR MFI on all PBMC, lymphocytes and monocytes were the 

dependent variables. We entered the following independent variables in a stepwise 

forward manner: age, BMI, WHR, HbA1C, total cholesterol, triglycerides, adiponectin, 

percentage of monocytes. The binary parameters were: presence of T1D, vascular 

complications, use of ACEI and statins. Variables with a p value of > 10% were 

removed from the model. Table 5.5 summarises results of the computation. We found 

that for AdipoR1 expression on all PBMC, presence of T1D and ACEI use were 

independent predictors. Age and presence of vascular complications were 

independently correlated with AdipoR1 expression for monocytes. For other measures 

of AdipoR expression, the presence of T1D was the only independent variable. Thus 

insofar as this analysis, the reduced expression of AdipoR in T1D appears to be 

disease specific, although the younger age, prevalence of vascular complications and 

absence of ACEI use in the group are also accountable. 
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Table 5.5: Linear regression modelling for AdipoR expression in diabetic 

subjects (T1D + T2D). R squared measures the proportion of variability of 

the dependent variable accounted by the model. For example, our model for 

AdipoR1 MFI on all PBMC accounts for 26% of the observed variation. 

Standardised coefficients measure the relative importance of the independent 

variable in predicting the dependent outcome. 

 

Dependent variable R 
square 

Independent 
variable 

Standardised 
coefficients 

P 

1. AdipoR1 
(all PBMC) 
 

0.255 T1D -0.329 0.024 

  ACEI 0.304 0.036 
 

2. AdipoR1 
(lymphocytes) 
 

0.215 T1D -0.463 0.002 

3. AdipoR1 
(monocytes) 
 

0.253 Age 0.447 0.003 

  Vasculopathy - 0.397 0.008 
 

4. AdipoR2 
(all PBMC) 
 

0.355 T1D -0.596 0.000 

5. AdipoR2 
(lymphocytes) 
 

0.337 T1D -0.580 0.000 

6. AdipoR2 
(monocytes) 

0.325 T1D -0.570 0.000 
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5.8 In vitro effects of glucose and insulin on PBMC AdipoR expression 

 

To further evaluate the effect of glucose and insulin on AdipoR expression, and to 

determine if this may contribute to the lower expression seen in T1D, we exposed 

whole PBMC to a gradient of glucose and insulin concentrations. These experiments 

were conducted in serum free media, and AdipoR expression was measured at 48-72 

hours by FACS because our preliminary experiments had shown readouts at later time 

points were affected by monocyte loss. For the glucose experiments, we recruited 6 

healthy subjects at different times. In each subject, AdipoR MFI was expressed as a 

ratio against untreated control for standardisation (fig 5.10). PBMC from 3 healthy 

subjects were used for the insulin dose-response experiments (fig 5.11), which were 

conducted simultaneously, and so unadjusted MFI values were used for comparison. 

Pearson correlation analyses of AdipoR1 & AdipoR2 MFI for both lymphocytes and 

monocytes, against logarithm of insulin and glucose did not uncover significant 

relationships.       

 

5.9 In vitro effects of adiponectin on PBMC AdipoR expression 

 

We then asked whether adponectin can modulate its receptor expression on PBMC, 

because of the significant albeit modest association between them in our clinical study. 

To test this, we performed dose response curves (n = 8) by adding back recombinant 

adiponectin to serum free media at concentrations of 0, 1, 2, 5 and 10 ug ml-1.  We did 

not find significant changes in AdipoR expression on monocytes or lymphocytes after 

48 hours of culture (fig 5.12).   
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Figure 5.10: The effect of glucose in vitro. MFI are measured on day 2 following 

addition of glucose on day 0, with starting concentrations 5.6, 11.2 and 27.8 mmol/L 

(A). These values are then standardised as a ratio against the measures on cells 

incubated in media only (untreated). By Pearson correlation(n=6), MFI of AdipoR1 

and AdipoR2 on lymphocytes (B) and monocytes (C) were not significantly different 

following exposure to increasing glucose. 
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Figure 5.11: The effect of insulin in vitro (Above) Representative example. PBMC were 

incubated in media containing increasing amount of recombinant human insulin and expression 

levels were measured by FACS after 48 hours (coloured histogram). Grey histograms indicate 

fluorescence of negative control. Numbers in legend depict MFI values. (Below) By Pearson 

correlation, expression levels of both receptors on monocytes and lymphocytes were not 

significantly related to insulin concentration.
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Figure 5.12: Effect of adiponectin on AdipoR expression on PBMC (n=8).

(Above) Whole PBMC were incubated for 48 hours in serum free media with 

adiponectin added back at 0, 1, 2, 5 and 10ug/ml. There were no significant

correlations between adiponectin and AdipoR1 (A & C) and AdipoR2 (B & D) 

expression on lymphocytes (A&B) and monocytes (C&D). 

(Below): Overlaid histograms of AdipoR1 (A) & AdipoR2 (B) staining on 

lymphocytes at the different concentrations, from one subject.
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5.10 Discussion 

 

To our knowledge, this is the first study to assess AdipoR protein expression on PBMC 

in T1D and T2D. Our sample size (n= 76) is comparable to that of previous studies 

(range 33-82) that investigated AdipoR gene expression of PBMC in insulin resistant 

states (Weigert, Neumeier et al. 2008, Sohn, Kwak et al. 2010, Shen, Charlesworth et 

al. 2007, Alberti, Gilardini et al. 2007). We achieved the desired matching of the pre-

determined parameters in the two control groups. These were age, BMI and WHR for 

HC; HbA1C, duration of diabetes, insulin treatment, lipid profile and prevalence of 

vascular complications. A further strength is the significant intra-subject agreement of 

AdipoR protein and gene expression levels. This allowed the independent validation of 

group trends seen from the FACS measures against data acquired from qPCR. In 

agreement with other studies of AdipoR expression in primary tissues (Weigert, 

Neumeier et al. 2008, Sohn, Kwak et al. 2010, Shen, Charlesworth et al. 2007, 

Nannipieri, Bonotti et al. 2007, Alberti, Gilardini et al. 2007, Civitarese, Jenkinson et al. 

2004, Bluher, Williams et al. 2007), we found that a strong interrelationship between 

the levels of expression of the two receptor isotypes.     

 

Our first important finding is evidence for an inverse relationship between AdipoR 

expression on PBMC and insulin resistance in health, T1D and T2D (fig 5.5). The 

strongest evidence for this appears to be on the monocyte subpopulation (tables 5.3 & 

5.4), cells which express the highest level of adiponectin receptors. BMI is a simple 

clinical surrogate of insulin sensitivity for the general population (MacKay, Haffner et al. 

2009, Vazquez, Duval et al. 2007, Stern, Williams et al. 2005), as well as T2D 

(Inchiostro 2005). eGDR has been validated against the euglycaemic clamp in T1D 

(Williams, Erbey et al. 2000), and has been widely used in epidemiological studies as a 

measure of insulin sensitivity (Chillaron, Goday et al. 2009, Kilpatrick, Rigby et al. 
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2007, Pambianco, Costacou et al. 2007, Orchard, Olson et al. 2003). Other groups 

have reported on the negative correlation of BMI or HOMA-IR with AdipoR1 & AdipoR2 

gene expression on PBMC (Weigert, Neumeier et al. 2008, Sohn, Kwak et al. 2010, 

Alberti, Gilardini et al. 2007), skeletal muscle (Civitarese, Jenkinson et al. 2004) and 

adipose tissue (Nannipieri, Bonotti et al. 2007, Bluher, Williams et al. 2007, 

Rasmussen, Lihn et al. 2006) of mostly non-diabetic individuals. Our data extends this 

literature by demonstrating the correlation at the level of protein expression, and also in 

diabetes. In the respective papers by Weigert and Alberti (Weigert, Neumeier et al. 

2008, Alberti, Gilardini et al. 2007), only 11 (33%) and 12 (15%) of the study subjects 

had T2D. We attribute our finding of a significant correlation between monocytic 

expression of AdipoR1 & AdipoR2 to eGDR in T1D and BMI in T2D as the 

consequence of a larger sample size. We did not detect significant correlations 

between lymphocytic expression of AdipoR with indices of IR. Lymphocytes are low 

expressors of AdipoR1 and AdipoR2 (figures 4.10 & 4.13). Against the CV of the assay 

(3-9%, Tables 4.1 & 4.2), our study was underpowered to detect differences against 

the small range of IR in our subjects at the 5% significance level. In healthy subjects, 

we did not find AdipoR2 expression to correlate with BMI or WHR (Table 5.2). This has 

been described previously (Staiger, Kaltenbach et al 2004, Zhang, Holt et al. 2005,) 

and reflects the existence of factors other than IR,  such as  cell function, lipids and 

truncal fat as independent modulators of expression.           

 

Is the reduction of AdipoR expression on PBMC a cause or effect of insulin resistance? 

In the landmark paper by Yamauchi et al (Yamauchi, Kamon et al. 2003), the silencing 

of AdipoR1 & AdipoR2 gene expression suppressed insulin-stimulated glucose uptake 

on C2C12 myocytes. The same group has recently extended their findings to in vivo, 

using skeletal muscle specific AdipoR1 knockout mice (Iwabu, Yamauchi et al. 2010). 
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The corollary is the finding of reduced AdipoR expression in animals of insulin 

resistance, such as the ob/ob strain and the insulin receptor knockout mouse 

(Tsuchida, Yamauchi et al. 2004, Lin, Kim et al. 2007). Further support for the 

counterargument is the increased AdipoR expression in human peripheral tissues that 

follows the amelioration of insulin resistance (Bluher, Williams et al. 2007, Vu, Riddell 

et al. 2007). It is therefore possible for expression of AdipoR to be regulated in a 

bidirectional feedback manner according to the prevalent level of insulin sensitivity. 

Such a mechanism has been proposed for the modulation of adiponectin production 

(Cook, Semple 2010). 

 

Our other significant and novel finding is the reduced expression of AdipoR by PBMC 

in T1D (fig 5.7). Indirect evidence to support this comes from Abke et al (Abke, 

Neumeier et al. 2006), who showed adiponectin stimulated release of cytokines on 

monocytes is impaired in T1D. We excluded feeding state and diurnal rhythm as 

confounders by demonstrating the absence of gene expression changes between 

morning fasting and afternoon postprandial sampling times (fig 5.1). Insulinisation had 

been shown to reduce AdipoR expression in the liver and skeletal muscle (Tsuchida, 

Yamauchi et al. 2004). However this was an unlikely explanation for our observations 

for a number or reasons. Firstly, there was no clinical evidence for over-insulinisation in 

our T1D cohort. They were not hypoglycaemic at the time of blood sampling, and the 

group‟s HbA1C (mean 9.0%, SD 1.4) was well above the level (<7.0%) where frequent 

hypoglycaemia would be suspected with intensive insulin therapy (The Diabetes 

Control and Complications Trial Research Group, 1993). As further support, insulin 

dose per unit weight did not correlate with AdipoR1 or AdipoR2 expression in T1D 

subgroup analysis (appendix 5). The observed reduction persisted when contrasting 

against our T2D cohort, where hyperglycaemia, duration of disease and exogenous 

insulin use were controlled. Lastly, our in vitro data showed changes in insulin did not 
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alter AdipoR expression on PBMC (fig 5.10) , and this is consistent with findings from 

skeletal muscle explants (Staiger, Kaltenbach et al. 2004). Using the same triple 

assessment (T1D subgroup correlation analysis, comparison with T2D and in vitro 

testing), we concluded that hyperglycaemia did not play a critical role in the modulation 

of AdipoR expression on human PBMC. We believe that species differences in 

receptor distribution (Kadowaki, Yamauchi 2005) and variations in expression 

regulation between tissues (Blüher, Fasshauer et al. 2005) 

 to account for the apparent contradiction against a previous report (Fang, Palanivel et 

al. 2005), which studied rat muscle cells where AdipoR1 is the predominant isotype.    

 

Our regression analysis showed the reduction in AdipoR expression in T1D is disease 

specific (Table 5.5), although the relatively modest R2 values of the models suggest a 

large proportion of the variability remains unaccounted for. The independent predictive 

value of serum adiponectin, suggested by its inverse association on univariate 

analysis, was lost. In any case, it was not sufficient to explain the reduced AdipoR 

expression in T1D, given the similar levels with HC group. We further confirmed its 

neutral effects in vitro. We recognise the results are at odds with reports from 

transgenic models where adiponectin negatively regulates expression of AdipoR2 on 

adipose tissue (Bauche, Ait El Mkadem et al. 2006). However, their findings did not 

apply to AdipoR1 expression. 

 

Nonetheless, our regression modeling identified vascular complications as an 

independent predictor of reduced AdipoR1 expression on monocytes. This has 

previously been described (Soccio, Zhang et al. 2006).  Although not significant, T1D 

subjects with vascular complications tended to have lower expression of AdipoR1 & 

AdipoR2 on monocytes. Vasculopathy in T1D is associated with subclinical 

inflammation (Schram, Chaturvedi et al. 2005, Lin, Glynn et al. 2008, Devaraj, Cheung 
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et al. 2007, van Hecke, Dekker et al. 2005). We propose therefore that the reduced 

AdipoR expression in T1D reflects the broad activation of innate immunity associated 

with this disease (Schaumberg, Glynn et al. 2005). Such a state of adiponectin 

resistance has been described in experimental models of diabetes, and in the setting of 

systemic inflammation that stems from chronic heart failure (Guo, Xia et al. 2007, Van 

Berendoncks, Garnier et al. 2010). Further measurements of serum inflammatory 

markers, such as IL-6, hsCRP and TNF , can address this issue. 

 

There were two unexpected findings from the clinical study. Firstly, older obese T2D 

subjects had similar AdipoR1 & AdipoR2 expression levels compared to young lean 

healthy controls (fig 5.7). This is however in agreement with two previous studies 

(Weigert, Neumeier et al. 2008, Debard, Laville et al. 2004). In contrast to its title, 

Weigert et al showed AdipoR gene expression levels on monocytes were not 

significantly different between T2D subjects and their obese non-diabetic controls. 

From our regression analysis, the older age and blockade of the renin-angiotensin 

system in T2D subjects may offset the reduced AdipoR expression associated with 

greater insulin resistance.  

 

Secondly, we did not find the increased serum adiponectin widely reported for T1D (fig 

5.2), when compared against age and BMI matched non-diabetic controls (Leth, 

Andersen et al. 2008, Maahs, Ogden et al. 2007, Barnes, Curran-Everett et al. 2008, 

Celi, Bini et al. 2006, Imagawa, Funahashi et al. 2002). These studies had employed a 

commericial radioimmunoassay for adiponectin measurement, but the ELISA method 

used is a validated alternative (Suominen 2004). In agreement with these studies, we 

found an inverse correlation of serum adiponectin with BMI and a positive association 

with HbA1C in T1D (Diabetes Research in Children Network (DirecNet) Study Group 
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2008, Barnes, Curran-Everett et al. 2008, Celi, Bini et al. 2006). Thus, we believe our 

study was underpowered to detect the difference between HC and T1D (posthoc power 

calculation 33.3%). Furthermore, the lower than expected absolute difference between 

the groups may be accounted for by the majority of T1D subjects having normal 

albumin excretion rate, normal renal function and a favourable lipid profile (Maahs, 

Ogden et al. 2007, Schalkwijk, Chaturvedi et al. 2006). 

 

The higher adiponectin associated with poor glycaemic control in T1D may represent 

metabolic adaptation, given that adiponectin levels fall after the initiation of insulin 

treatment at diagnosis (Martos-Moreno, Barrios et al. 2006). We, and others, did not 

find total serum adiponectin levels in T1D to be associated with eGDR (Costacou, 

Zgibor et al. 2005), or IR as determined by the euglycaemic clamp (Perseghin, 

Lattuada et al. 2003). Nevertheless, HMW adiponectin may be more reflective for 

changes in insulin sensitivity (Pajvani, Hawkins et al. 2004). There had been one study 

reporting its increased levels in T1D (Leth, Andersen et al. 2008). We had attempted to 

measure HMW adiponectin in our subjects using a validated ELISA (Aso, Yamamoto et 

al. 2006), but in our hands, the intra-subject CV was unacceptably high. We had 

identified the initial protease digestion of the LMW adiponectin to be the source of the 

poor reproduciblity between duplicates. 

 

We accept the following limitations. The case for insulin sensitivity correlating with 

AdipoR expression across health and diabetes would be strengthened if a universal 

laboratory measure of insulin sensitivity was applied in all 3 groups. HOMA-IR requires 

endogenous insulin secretion, and so is not applicable for subjects with established 

T1D. We believe our strategy of outpatient recruitment would have a low subject 

consent rate if the insulin tolerance test or the euglycaemic clamp were adopted. 

Secondly, both insulin and glucose are obligate ingredients of culture media. Further 
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addition of glucose and insulin could conceivably have only a marginal effect on 

AdipoR expression, if the control experiment was conducted at near the plateau of the 

dose-response range. In our defence, we applied wide ranging concentrations of 

insulin and glucose to PBMC from different subjects, and the results were consistent 

across replicates.  

 

In conclusion, AdipoR expression on PBMC is reduced in T1D, with the lowest 

expression seen in the most insulin resistant. This data supports our working 

hypothesis that reduced adiponectin signaling to immune cells is a mechanism by 

which insulin resistance could drive islet autoimmunity. 

 

5.11 Summary of findings 

 

This is the first study to demonstrate differences in adiponectin receptor expression at 

the protein level in a pathophysiological state. AdipoR1 & AdipoR2 expression on 

PBMC significantly correlated with indices of insulin sensitivity in health, T1D and T2D. 

In addition, we found a global reduction of AdipoR expression on PBMC from T1D 

subjects, relative to matched controls, and this was most marked in the CD14+ 

monocyte population. We explored reasons for this by studying the effects of 

glycaemia, insulin and serum adiponectin, in vitro and by comparison with a cohort of 

HbA1C-matched subjects with insulin-treated T2D. However, these established 

regulators of AdipoR expression did not appear to play a critical role.  
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6. EFFECT OF LIFESTYLE INTERVENTION ON 

ADIPONECTIN RECEPTOR EXPRESSION BY PBMC 

 

6.1 Introduction 

 

In the previous chapter, we demonstrated the correlation of AdipoR expression on 

PBMC with insulin sensitivity in an observational study. To establish causality, we 

assessed the relationship between these variables in interventional trials. Lifestyle 

interventions, which include structured exercise and dietary counselling, are safe and 

have proven efficacy in ameliorating insulin resistance (Diabetes Prevention Program 

Research 2002, Tuomilehto, Lindstrom et al. 2001, Pan, Li et al. 1997). In the following, 

we assessed the effect of lifestyle interventions on the expression of AdipoR on PBMC 

in three independent, investigator-blinded, randomised controlled studies.  

 

6.2  The Early ACTID 

 

The Early ACTID study is a 12 month study based at the University of Bristol (principal 

investigator - Dr Rob Andrews) which examined the effects of diet and exercise in 

patients newly diagnosed with T2D. 

 

6.2.1 Clinical parameters at baseline and at 6 months 

 

In a collaborative sub-study with Dr Andrews, we tested whether the delivery of an 

educational lifestyle package would increase AdipoR expression over and above that of 

conventional T2D care. Subjects with newly diagnosed T2D were randomised to 

conventional care or intensive lifestyle interventions for 6 months. At the time of the 
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study, 349 subjects had been enrolled. We studied samples from 66 consecutively 

recruited subjects from the Early ACTID, as well as the 12 subjects who were positive 

for anti-GAD antibody (titres > 14 units/ml, WHO 97.5 centile) (Bingley, Christie et al. 

1994). The total sample size of 78 subjects had previously been shown to be sufficient 

in demonstrating a significant increase of at least 50% in AdipoR expression of skeletal 

muscle (Bluher, Williams et al. 2007, Christiansen, Paulsen et al. 2010). All subjects 

were within 6 months of their diagnosis with T2D. Before unblinding of clinical data, we 

had excluded 21 subjects for further analysis, because at least 1 of 2 paired samples 

contained significant genomic DNA contamination. After unblinding, a further 4 subjects 

were excluded because of thiazolidinedione use, whose PPAR  agonistic activity 

independently increases AdipoR expression on monocytes (Chinetti, Zawadski et al. 

2004). The final number of subjects included in the analysis was 53, with 19 in the 

conventional care arm (CON) and 34 in the diet and exercise interventional arm (INT). 

Baseline and 6 month data are shown in Table 1. 

 

At baseline, subjects from both arms were matched for age, sex, BMI, WHR, VO2 max, 

MABP, glycaemia and fasting insulin. In the setting of a new diagnosis of non-insulin 

dependent diabetes over age of 35, anti-GAD antibodies (GADA) identifies patients 

with latent autoimmune diabetes of adulthood (Tuomi, Groop et al. 1993). The 

proportion of subjects positive for GADA was similar in both arms (CON: 16%, INT 

18%). 
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Table 6.1: Baseline and 6 month results of Early ACTID. Conventional (CON) and intensive 

(INT) arms are shown. Data expressed as mean ± SEM. Two-tailed unpaired t-test was applied 

for continuous data between the arms at baseline and 6 months, paired t-test for intra-group 

comparsions, and Fisher‟s exact test for categorical data.  

** p <0.01 intragroup  * p <0.05 intragroup 

 

 CON (n=19)  INT (n=34)  

 Baseline 6 months Baseline 6 months 

Age  57.1 ± 3.5  60.8 ± 1.7  

Male sex (n) 13 (68%)  20 (59%)  

BMI (kg m-2) 32.6 ± 1.2  31.1 ± 0.9  

WHR 0.95 ± 0.01  0.95 ± 0.01  

Weight (kg) 89.2 ± 3.4 89.5 ± 3.4 87.8 ± 2.4 87.4 ± 2.5 

WC (cm) 104.3 ± 2.4 103.4 ± 2.1 105.3 ± 2.2 104.7 ± 1.6 

VO2 max (L min-1) 26.5 ± 2.6 27.2 ± 2.5 25.1 ± 1.8 27.3 ± 1.7* 

HbA1C (%) 6.67 ± 0.18 6.95 ± 0.20 6.61 ± 0.20 6.60 ± 0.14 

MABP (mmHg) 101.6 ± 2.0 90.9 ± 2.9* 97.7 ± 1.6 92.9 ± 1.7** 

Fasting glucose 
(mmol-1) 

7.9 ± 0.3  7.2 ± 0.3*  7.9 ± 0.3 7.2 ± 0.2* 

Fasting insulin 
(mU L-1) 

15.6 ± 1.9 18.1 ± 3.0 15.8 ± 2.0 17.8 ± 2.8 

HOMA-B (%) 72.1 ± 8.1 98.6 ± 15.6 74.0 ± 9.3 100.1 ± 15.7 

HOMA IR 5.66 ± 0.81 4.95 ± 1.16 5.69 ± 0.85 4.93 ± 1.07 

Medications at  
6 months (n, %) 

Metformin  15 (79%)  21 (62%) 

ACEi/ARB  7 (37%)  13 (38%) 

Statin  11 (58%)  18 (53%) 

GADA + (n) 3  6  

 
 

Use of metformin, drugs which block renin-angiotensin system and statins were not 

different between the arms at 6 months. On paired t-testing, no significant weight loss 

was detected with either treatments. However in both arms, MABP fell at 6 months, but 

the difference in MABP decrease between the arms were similar. There was also a 

small but significant intra-group increase in VO2 max in the INT arm (baseline: 25.1 ± 

1.8, 6 months: 27.3 ± 1.7 paired t-test = 0.011). In both arms, there was a significant 

fall of the 6-month fasting glucose from baseline (CON: baseline 7.9 ± 0.3, 6 month 7.2 

± 0.3 p = 0.050; INT: baseline 7.9 ± 0.3, 6 month 7.2 ± 0.2, p = 0.048), but the 

difference in values between groups was similar. There was a non-significant trend for 
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subjects assigned to conventional care to have a higher HbA1C at 6 months (CON: 

6.95 ± 0.20; INT: 6.60 ± 0.14; p = 0.14). Otherwise, no other differences in the 

metabolic parameters at 6 months, within and between arms were detected.  

 

6.2.2 Changes in adiponectin receptor gene expression on PBMC  

 

Consistent with our cross-sectional study, we found baseline AdipoR1 & AdipoR2 gene 

expression to be significantly inter-correlated (r = 0.687 p<0.001) and with HOMA-IR 

respectively (AdipoR1: r = -0.308 p = 0.025; AdipoR2: r = -0.363 p = 0.008) (fig 6.1). In 

addition, AdipoR2 gene expression was inversely related to fasting insulin levels          

(r = -0.322 p = 0.019). There were no significant correlations with other clinical 

parameters. 

 

At 6 months, subjects randomised to the INT arm had a significant increase of AdipoR1 

& AdipoR2 expression, compared to those in CON (fig 6.2). Expressed as fold change 

relative to baseline values, the average increase in the INT arm was 1.73 ± 0.42 for 

AdipoR1, and 5.57 ± 2.77 for AdipoR2. In subjects assigned to conventional care, 

AdipoR1 expression decreased, whereas AdipoR2 levels did not alter from baseline 

(AdipoR1: 0.64 ± 0.17; AdipoR2: 1.04 ± 0.37). We excluded the possibility of mRNA 

degradation during storage as a confounder by demonstrating the absence of a 

significant correlation between the normalised gene expression values against the date 

of sample collection (fig 6.3).   
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Figure 6.1: Correlation 

analysis of AdipoR1 & 

AdipoR2 gene 

expression at baseline. 

AdipoR expression was 

normalised against r18S 

by the Ct method, such 

that a low numerical value 

reflects high expression.  

(Top) AdipoR1 & AdipoR2 

gene expression levels 

significantly inter-

correlated and with 

HOMA-IR (middle and 

bottom panels). The 

correlations of AdipoR1 & 

AdipoR2 with HOMA-IR 

retained significance 

despite removal of the 

three outliers ( ) to the 

right.

*p < 0.05

**p < 0.01
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Figure 6.2: Gene expression changes of AdipoR1 and AdipoR2 on PBMC in the 

Early ACTID. Relative change at 6 months to baseline was calculated for each

subject using the - Ct method. t-testing between the arms was done following 
logarithmic transformation.

The apparent reduction in HOMA-IR between 6 months and baseline for both groups 

did not reach statistical significance. Thus given that in both arms an appreciable 

proportion of subjects experienced improved insulin sensitivity, we performed a 

posthoc correlation analysis accounting all subjects, to investigate the association of 

HOMA-IR with AdipoR expression. We found the change in AdipoR1 & AdipoR2 

expression, transformed to logarithm and normality, correlated inversely with absolute 

changes in HOMA-IR and weight (Table 6.2 & fig 6.4). Also, changes in AdipoR1 and 

AdipoR2 expression were inter-correlated (r = 0.707, p <0.0001).       

 



 152  

0

5

10

15

20
INT

CON

Date of sample

 C
t 

(A
d

ip
o

R
2
 -

 1
8

S
)

Figure 6. 3: Evaluating mRNA degradation of archived samples from Early ACTID.

There was no significant correlation between Ct AdipoR1 (top) & AdipoR2 (bottom) 
from both arms with the date of sample.
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Figure 6.4: correlation of AdipoR1 & AdipoR2 gene expression change with insulin 

resistance across whole cohort (n = 53). Absolute HOMA-IR change was derived by 

subtracting HOMA IR at 6 months to baseline value. Gene expression change at 6 

months relative to baseline for each subject was calculated by the Ct method. 

Logarithmic transformation was done so to allow for Pearson correlation analysis 

between the variables. The significance of the correlations persists despite removal of 

the outlier ( ) from the analysis. 

* p < 0.05, **p<0.01 
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Table 6.2: Pearson correlation of AdipoR1 & AdipoR2 gene expression changes at 6 

month with absolute changes in weight and HOMA-IR (n=53). For this analysis,  AdipoR1 
was the logarithm of fold change in gene expression at 6 months, compared to baseline. The 
transformed distribution approximates to normal, by KS testing. 

 
  AdipoR1   AdipoR2 

Weight                    r 

                                p 
-0.114 
0.416 

-0.345 
0.011 
 

HOMA-IR                r 

                                p 
-0.328 
0.016 

-0.356 
0.009 

  
 

6.2.3 Subjects with latent autoimmune diabetes of adulthood (LADA) 

 

We were interested in whether the changes in AdipoR expression with exercise, weight 

loss or improved insulin sensitivity in T2D could extend to autoimmune diabetes. LADA 

is a slowly progressive form of autoimmune diabetes (Fourlanos, Dotta et al. 2005). It is 

distinguished from T1D by the absence of insulin dependence at initial presentation. In 

the 9 subjects with LADA, there were significant decreases in weight, fasting glucose, 

together with a rise in VO2 max at 6 months (Table 6.3). As demonstrated for patients 

with T2D, these metabolic changes were accompanied by a significant upregulation in 

AdipoR1 gene expression (2.63 fold, p = 0.017), with borderline increase in AdipoR2 

expression (1.50, p = 0.07). 
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Table 6.3: Changes at 6 months for subjects positive for GADA. 

Data presented as mean ± SEM. Fold change at months for AdipoR1 (  

AdipoR1) & AdipoR2 (  AdipoR2) expressed as 95%CI.  

 Baseline 6 months 

Age (yrs) 60.3 ± 3.0  

Male sex (n) 7  

Weight (kg) 81.5 ± 3.9 78.3 ± 3.7** 

WC (cm) 99.1 ± 3.2 99.4 ± 3.4 

VO2 max (L min-1) 30.2 ± 2.7 32.1 ± 2.4* 

MABP (mmHg) 96.1 ± 2.5 96.2 ± 3.2 

HbA1C (%) 6.3 ± 0.3 7.2 ± 0.7 

Fasting glucose 
(mmol-1) 

7.5 ± 0.6 7.3 ± 0.5* 

Fasting insulin 
(mU L-1) 

10.6 ± 2.1 10.3 ± 1.8 

HOMA-B (%) 61.0 ± 17.3 62.4 ± 16.3 

HOMA-IR  3.70 ± 0.78 3.22 ± 0.62 

 AdipoR1  1.0 2.63  (1.00 – 6.89) 

 AdipoR2 1.0 1.50  (0.84 – 2.70) 

       ** p <0.01  *p <0.05 paired t-test        

         p <0.05 single two-tailed t-test against inferential value of 0 (no  
 change), following  logarithmic transformation 
         p =0.07  

 
 

6.3 The relative importance of exercise as a component of lifestyle interventions 

 

As lifestyle change consists of both exercise and diet, we then asked whether the 

component of exercise alone is sufficient in modulating changes in AdipoR expression. 

The Exercise and Over-eating Study from the University of Bath is a study of one week 

duration and included 11 healthy non-diabetic subjects (Principal Investigator: Dr Dylan 

Thompson). In this collaborative sub-study, we compared the effect of intensive 

exercise (EXE) (45 minutes of supervised exercise at 70% of maximum heart rate) 

versus activity restriction (SED) (<4000 steps/d). In both arms, subjects followed a 

hypercaloric diet, with energy intake increased by 50%. With the acquisition of live 

PBMC, we were able to quantify expression at both the mRNA and protein levels.  
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Table 6.4 Clinical data from the Exercise and Over-eating Study. Mean ± SD 

values shown. 

 SED  EXE  

 Day 0 Day 7 Day 0 Day 7 

n 4  7  

Age (yrs) 25.5 ± 5.4  27.9 ± 7.7   

BMI (kg m-2) 22.9 ± 1.7  24.7 ± 2.9  

Weight (kg) 77.1 ± 2.9 79.5 ± 3.7* 77.8 ± 11.4 79.2 ± 12.1* 

Fasting glucose (mmol-1) 4.80 ± 0.28 4.81 ± 0.33 5.03 ± 0.33 4.95 ± 0.18 

Fasting insulin (mU l-1) 4.03 ± 3.09 6.13 ± 3.68* 4.83 ± 2.97 6.37 ± 4.09 

HOMA-IR  0.87 ± 0.70 1.29 ± 0.74* 1.09 ± 0.68 1.41 ± 0.92 

Serum adiponectin (ug ml-1) 5.5 ± 1.6 7.5 ± 2.3* 7.0 ± 4.7 8.2 ± 4.9 

 
* p < 0.05 paired t-test (within group d7 vs d0) 

  
 

The metabolic changes of the subjects are described in Table 6.4.  There were no 

significant differences between the groups at baseline or on day 7. In the SED arm, 

there were significant intra-subject increases in weight (1.9% p = 0.017), fasting insulin 

(52% p = 0.037) and HOMA-IR (48% p = 0.024) at the end of the study. Unexpectedly, 

serum adiponectin also increased (p = 0.034). In the EXE arm, there was significant 

weight gain (p=0.018). Interestingly, two of the seven subjects did not follow the 

increase in insulin resistance from weight gain seen in the rest of the group (fig  6.5).   
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Figure 6.5. Changes in HOMA-IR in the Exercise & Over-

eating Study.

* P < 0.05 paired t-test

 

Monocyte numbers, as a percentage of total PBMC count, were similar between 

groups, at baseline and at the end of study. AdipoR1 mRNA levels in the SED group 

were significantly reduced from baseline (fold change: 0.6, p = 0.03), but not in the 

EXE group. There were no significant changes for AdipoR2 mRNA in either group on 

completion of the trial. Change in protein expression was standardised using the ratio 

of MFI on day 7 relative to day 0. The transformed measure passed the KS normality 

test. In both arms, there was heterogeneity in response between subjects, such that 

the confidence of the group mean estimates was wide. Consequently, a consistent 

change, in the direction of reduction, was observed only for AdipoR1 expression in both 

lymphocytes and monocytes for SED (95% CI, lymphocytes: 0.02-0.74; monocytes: 

0.02-0.88). This is in keeping with the uniform reduction in gene expression for all 

subjects in SED. Of interest is the significant inter-group difference in monocytic 
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expression for AdipoR1 (fig 6.6), but not for lymphocytes (fig 6.7). Our data here 

suggests overeating alone can significantly suppress AdipoR1 expression across all 

PBMC in just 1 week. However, concurrent intensive exercise can negate part of this 

reduction, especially on monocytes. No significant changes in AdipoR2 expression in 

both arms were detected at entry or exit of the trial.  

 

Table 6.5: Changes in AdipoR expression between the exercise (EXE) 

and sedentary (SED) arms of the trial. All subjects were on a hypercaloric 

diet (150% of normal intake) for 7 days.  

 SED  EXE  

 Day 0 Day 7 Day 0 Day 7 

Monocyte (%) 2.0 ± 0.8 3.4 ± 0.9 3.1 ± 1.4 3.2 ± 0.9 

mRNA   

 AdipoR1 

  

0.6 ± 0.1  

  

1.2 ± 0.6 

 AdipoR2  0.7 ± 0.3  1.6 ± 0.5 

Protein 

MFI   

AdipoR1(D7 :D0)  

lymphocytes 

Monocytes 

  

 

 

0.4 ± 0.1  

0.4 ± 0.1 * 

 

 

 

 

 

0.9 ± 0.4 

1.0 ± 0.2* 

MFI  

AdipoR2(D7:D0) 

lymphocytes 

Monocytes 

  

 

0.7 ± 0.5 

0.6 ± 0.2 

  

 

1.1 ± 0.6 

1.6 ± 0.6 

 - p < 0.01   - p <0.05 by one sample t-test against inferential value of 1.0  (no 

change) 

* - p < 0.05 by t-test between groups 
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Figure 6.6: (top) AdipoR1 expression on monocytes in a 1 week study where subjects were 

randomised either to intensive exercise (INT: n=6) or sedentary activity (CON; n=5) against a 

hypercaloric diet. AdipoR1 MFI on CD14+ monocytes were measured at 1 week and 

standardised against values obtained at entry. (bottom) Representative calculation from dot 

plots. For subject 22 (CON), MFI AdipoR1 is 62.8/94.5 = 0.66; for subject 25 (EXE), this is 1.0.

Gates shown define positive cells and numbers denote percentage frequencies * p = 0.016, 2 

tailed t-test. 
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difference in the mean 

change of AdipoR1 on 
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6.4 The effect of moderate vs vigorous exercise on receptor expression 

 

Next, we asked whether exercise intensity has differential effects on AdipoR 

expression. The Exercise Intensity Study is a three week study conducted at the 

University of Bath with Dr Dylan Thompson as the principal investigator. In this trial with 

a total of 13 healthy non-diabetic but overweight subjects, we compared the effects of 

vigorous (SV) against moderate (SM) exercise. In the SV group, subjects exercised on 

a treadmill at 70% VO2 max, as opposed to 50% VO2 max in the SM group. The total 

energy expenditure (600kCal), the frequency of exercise (5 times a week for 3 weeks), 

and dietary intake (714 kCal) were controlled. 

 
Table 6.6: Clinical parameters at entry and on completion of the Exercise 
Intensity Study.   

 SM (n=6) SV (n=7) 

 Baseline 3 weeks Baseline 3 weeks 

Age (yrs) 49.7 ± 1.3  54.7 ± 2.1  

Male sex (n) 4  4  

BMI kg m-2 29.0 ± 1.0  32.3 ± 0.9*  

Weight (kg) 89.0 ± 6.1 86.8 ± 6.1* 94.9 ± 4.8 92.3 ± 4.7** 

WC (cm) 100.7 ± 4.0  97.4 ± 2.6* 105.0 ± 2.6 103.0 ± 3.0 

Fasting glucose 

(mmol-1) 

6.0 ± 0.8 5.7 ± 0.1 5.9 ± 0.6 5.98 ± 0.3 

Fasting insulin 

(mU L-1) 

9.7 ± 2.9 7.2 ± 1.4* 8.1 ± 2.3 6.5 ± 1.3 

HOMA-IR 3.1 ± 1.5 2.1 ± 0.4 2.1 ± 1.0 1.6 ± 0.4 

Adiponectin  

g ml-1 

9.6 ± 2.5 9.0 ± 1.7 9.4 ± 2.6 8.6 ± 1.7 

        
  ** p <0.01          *  p <0.05  

 
 

At baseline, age, sex, fasting glucose and insulin were equally distributed between the 

groups. Subjects from the SV arm had a significantly higher BMI, but starting weight 
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and WC were similar. At 3 weeks, subjects in both groups achieved significant weight 

loss (95% CI: SM: 0.7-3.6kg; SV: 1.3-3.9kg) but final weight was not different. In the 

SM arm there was also a significant decline in WC and fasting insulin. No significant 

changes in serum adiponectin or HOMA-IR were observed in either interventional 

arms.   

 

At the mRNA level there was no significant change with AdipoR1 & AdipoR2 from 

baseline for either group (fig 6.8). At the protein level (fig 6.9), there was marked 

heterogeneity in response within each group and  AdipoR1 &  AdipoR2 values did 

not conform to normality. Using the non-parametric Wilcoxon signed rank test, there 

was significant change from unity for AdipoR1 & 2 expression on monocytes for 

subjects in the SM arm (median: AdipoR1 2.2; AdipoR2 2.3) and AdipoR2 on 

lymphocytes in the SV arm (median AdipoR2 1.9). The application of Kruskal-Wallis 

test with Dunn‟s correction for multiple testing showed significant change in AdipoR1 

protein expression with monocytes only (median AdipoR1 SM 2.2, SV 0.7). 
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Figure 6.8: Changes in mRNA levels of AdipoR1 & AdipoR2 at completion of 

the trial. Fold change was calculated by the Ct method using Ct at d21 - Ct 
at d0. Following logarithmic transmformation, no significant group changes were 

observed for the gene expression of both receptors, by two-tailed one sample t-

test against the inferential value of 0. 
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Figure 6.9: (top) representative 

examples of  AdipoR1 & AdipoR2 

protein expression changes n the 

exercise intensity study. For 

comparision, gates were drawn 

against isotype control. For subject 

SM17 at d0 (A), MFI of AdipoR1 for 

lymphocytes (CD14- cells) is 5.13 

and for monocytes (CD14+) 114. At 

day 21 (B), the correponding values 

are 6.27 and 195 respectively. 

Hence the ratio of AdipoR1 for 

lymphocytes is 1.22 and 1.71 for 

monocytes. For SV14, AdipoR1 for 

monocytes is 1.08 and 1.27 for 

monocytes. 

(bottom) Changes in AdipoR

expression in the exercise intensity 

study. Median and range plotted. 

p <0.05 by Wilcoxon signed rank 

test, against inferential median value 

of 1.0 (no change).

* p <0.05 by Dunns post test
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6.5 Discussion 

 

Three large multi-centred trials have demonstrated that lifestyle interventions reduce 

insulin resistance and can prevent T2D in high risk groups (Diabetes Prevention 

Program Research 2002, Tuomilehto, Lindstrom et al. 2001, Pan, Li et al. 1997). 

Impressively, despite the relatively short duration of intervention in these studies, the 

metabolic benefits are maintained for at least 10 years (Lindström, Ilanne-Parikka et al. 

2006, Diabetes Prevention Program Research Group 2009, Li, Zhang et al. 2008) 

The combination of exercise and diet is also effective in raising serum adiponectin 

levels in insulin resistant individuals (Mather, Funahashi et al. 2008, Cambuli, Musiu et 

al. 2008, Esposito, Pontillo et al. 2003, Monzillo, Hamdy et al. 2003). In other studies, 

this is also accompanied by increased adiponectin receptor gene expression on 

adipose tissue and skeletal muscle (Bluher, Williams et al. 2007, Christiansen, Paulsen 

et al. 2010, Kim, Maachi et al. 2006, O'Leary, Jorett et al. 2007). However, two 

systematic reviews of exercise studies have found an overall inconsistent effect on 

adiponectin signalling (Vu, Riddell et al. 2007, Simpson, Singh 2008). In addition, the 

authors noted that many studies in the area were observational only, and also the 

majority of interventional trials were uncontrolled. 

 

In this series of controlled studies, we showed the upregulation of AdipoR expression 

by exercise can be achieved on immune cells in normal weight, obese and diabetic 

subjects. In the Early ACTID, both AdipoR1 & AdipoR2 gene expression is increased in 

the intensive interventional arm in early T2D and LADA. In the second study of 

exercise vs sedentary activity in young healthy subjects, we found that intensive 

exercise can compensate for the fall in AdipoR1 expression on monocytes brought on 

by overeating. In the final study of exercise intensity in overweight individuals, we found 
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regular moderate exercise intensity to be effective in augmenting AdipoR1 expression 

of monocytes. We attribute the variations in the response of AdipoR expression to 

lifestyle measures in these trials to be the result of differences in study group, design 

and duration, as well as number of patients studied. Such discrepancies have 

previously been reported. Subjects who are glucose intolerant appear to be more 

responsive when given the same treatment, and increase in AdipoR on adipose tissue 

was independent of the reduction in body weight (Bluher, Williams et al. 2007, Kim, 

Maachi et al. 2006). Furthermore, short term exercise interventions (< 1 week) have not 

been successful in upregulating AdipoR (Zeng, Isobe et al. 2007, Punyadeera, Zorenc 

et al. 2005, Zeng, Fu et al. 2007). Lastly, differences in the amount of prescribed 

exercise can affect the degree of AdipoR1 change (Zeng, Isobe et al. 2007).   

 

Nevertheless, the three studies are unanimous in demonstrating the importance of 

exercise in the regulation of AdipoR on PBMC. In the Early ACTID, where the 

intervention was motivational only, the increased VO2 max in the INT arm was 

consistent with increased exercise objective for the group. The difference in AdipoR 

expression change between groups had occurred despite the absence of significant 

change in weight, HOMA-IR and similar falls in fasting glucose. We justified our 

posthoc analysis because of probable dilutional effect in the benefits of intensive 

exercise between the groups. Subjects in CON arm were aiming for the same 

metabolic targets and were not restricted in the pursuit of lifestyle changes. Here, the 

finding of weight loss as a significant independent predictor of AdipoR change is 

consistent with the upregulation on at least part of the PBMC subset in the exercise 

intensity study. It appears that reduction of central obesity, measured by the fall in WC 

in the SM arm, is a potent stimulus for AdipoR expression change on monocytes.   
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Our second study illustrates the profound effect of diet, that one week of hypercaloric 

intake can suppress AdipoR1 expression, at both the gene and protein expression 

levels. This is a novel finding, and is consistent with the converse evidence where the 

sole institution of a very low caloric diet for 3-8 weeks promotes AdipoR expression on 

adipose tissue and skeletal muscle (Christiansen, Paulsen et al. 2010, Kim, Maachi et 

al. 2006). However, the significance of the reduced expression may be diminished by 

the increase in serum adiponectin with overeating. This rise is paradoxical to the 

change in insulin resistance, but has been observed in binge eating disorders 

(Monteleone, Fabrazzo et al. 2003). Given its insulin sensitising action, the increased 

adiponectin here may represent compensation against hyperinsulinaemia from a 

hypercaloric meal (Taylor, Hubbard et al. 1999).  

 

One way of elucidating a mechanism for the exercise induced AdipoR upregulation is 

through correlation analysis with changes in other variables. Some studies have shown 

changes in serum adiponectin levels, AdipoR1 and AdipoR2 expression levels to 

coordinate (Bluher, Williams et al. 2007, Kim, Maachi et al. 2006, O'Leary, Jorett et al. 

2007, Punyadeera, Zorenc et al. 2005), but this is not a universal finding (Christiansen, 

Paulsen et al. 2010, Kim, Maachi et al. 2006, Punyadeera, Zorenc et al. 2005). More 

consistent across these studies is the link with changes in insulin sensitivity and we 

have demonstrated this using posthoc analysis of our Early ACTID data. Myokines, of 

which a prototypical example is IL-6, are cytokines released by contracting skeletal 

muscle fibres and thus increased with exercise (Petersen, Pedersen 2005). They have 

endocrine effects on fuel metabolism and inflammatory cytokine profile and thus offer a 

possible molecular explanation.    

 

The strengths of these studies are their controlled design and blinding during 

acquisition of AdipoR expression data. However there are a number of weakneses. 
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The differences in BMI between SM and SV arms in the exercise intensity study could 

be a source of bias in the interpretation of our results. Statistical adjustments could not 

be done because of the relatively small sample size. Secondly, a significant number of 

subjects were primarily excluded in the Early ACTID because of genomic DNA 

contamination of the samples. However the baseline characteristics of subjects from 

both groups remained similar. Also, serum adiponectin levels from the Early ACTID 

were unavailable for analysis at the time of writing. I will arrange an addendum analysis 

as soon as I am in receipt of these from our collaborators. Lastly, we did not perform an 

internal validation assay of 18S as a housekeeping gene on PBMC for exercise 

studies, nor did we use multiple internal controls for adjustment. Whilst ribosomal RNA 

is an accepted normalising gene for rt-qPCR of PBMC (Bas, Forsberg et al. 2004) and 

has been used in some exercise studies (Richardson, Wagner et al. 2000, Kim, Cross 

et al. 2005), its expression on skeletal muscle fibre following exercise can increase 

(Jemiolo, Trappe 2004), thereby introduce a bias toward elevation when used as 

loading control for AdipoR expression level. In defence, there was relative concordance 

in the fold change values between mRNA of whole PBMC and lymphocytic (accounting 

for >95% of PBMC) AdipoR expression by FACS from the second study. We recognise 

the reported changes for monocytes could be strengthened by confirmation at the 

mRNA level following CD14+ sorting. 

 

In conclusion, these studies confirm that exercise upregulates AdipoR expression on 

PBMC. The positive effects seen in patients with LADA suggest applicability to the 

setting of pre-T1D. Here, increased signalling may augment the putative anti-

inflammatory functions of adiponectin. Our working hypothesis is that this is beneficial 

in the containment of islet autoimmunity and prevention of disease. 
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6.6 Summary of findings 

 

We studied the effect of lifestyle intervention on AdipoR expression of PBMC via three 

independent, investigator-blinded controlled trials. In the Early ACTID, diabetic subjects 

in the intensive arm had a significant upregulation of both AdipoR1 & AdipoR2 gene 

expression, and these were accompanied by increases in VO2 max, fasting glucose, as 

well as improvements in insulin sensitivity. Both exercise and dietary restriction are 

likely to be important components in mediating this change. Overeating for just 1 week 

can significantly downregulate AdipoR1 expression at both gene expression and 

protein levels, whilst intensive aerobic exercise in parallel can offset, at least in part, 

the decreased expression on monocytes. In the final study, a structured program 

employing moderate intensity exercise was more effective in reducing central obesity 

and fasting insulin, and increasing AdipoR1 expression on monocytes. Taken together, 

these studies demonstrate an increase in AdipoR expression can be achieved through 

lifestyle intervention, although its impact varies according to treatment group, duration, 

exercise intensity and degree of weight loss. 
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7. EFFECT OF ADIPONECTIN ON PBMC 

PROLIFERATION AND DC FUNCTION 

 
 

7.1 Introduction 

 

As proof of concept that adiponectin can modulate autoimmune diabetes, in this 

chapter we present studies describing effects of adiponectin on the function of cells 

involved in T-cell mediated immunity.   

 

7.2 Optimisation of serum free (SF) conditions for testing effect of adiponectin 

on immune function 

 

We developed a serum free (SF) culture system for assessing T cell proliferation to 

mitogens and antigens, as well as the transformation of DC from monocytes. FCS 

contains biologically active adiponectin (Wang, Lu et al. 2004). Given its high 

concentration in serum, the standard practice of 10% supplementation would result in 

the presence of adiponectin at 1-2 ug ml-1 in the complete media of control 

experiments. In addition, its constituents are largely unknown and the presentation of 

bystander antigens in FCS during DC maturation may affect interpretation of their 

antigen-specific effects on T cells (Lutz, Rößner 2008). There can also be  

batch-to-batch differences in FCS contributing to significant interculture variations 

(Witte, Kincade et al. 1986). Our methodology therefore has benefits in standardising 

culture conditions, and allows testing of exogenous adiponectin at physiological doses. 
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After verifying that the SF media contain no significant adiponectin as per 

manufacturer‟s disclosure (fig 7.1), we compared its efficacy in supporting proliferation 

of PBMC with serum based complete media. To ensure specificity in the enumeration 

of proliferating T cells to tetanus toxoid (TTC), we gated for cells that were PI negative, 

CD3 positive, CFSE dim, and increasing in CD25 expression (IL-2 receptor) and 

forward scatter in successive generations (fig 7.2). Derived from ratio CFSE dim cells 

under stimulation against unstimulated control, the stimulation indices (SI) of PBMC 

cultured in the two media with PHA (fig 7.3), PPD and TTC (fig 7.4) were similar. We 

confirmed that the level of proliferation in SF media was optimal by demonstrating no 

further increase in SI upon addition of 1% FCS (fig 7.5).   
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A   B   C   D   E  F   G   H   I  J   K 

Immunblot for adiponectin in cellgro SCGM (predicted Mr = 
30kDa) in cellgro SCGM media. A: recombinant adiponectin at 
0.01ug. B to J, 1 in 2 serial dilutions of cellgro media. K: human 
serum (diluted 1 in 100 in PBS). 
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Figure 7.2: Example gating for enumerating proliferating T cells to TTC. This population is 
first gated according to scatter (A) and propidium iodide staining (B), followed by the 
simultaneous gain in forward scatter and loss in CFSE fluorescence (C). Proliferating T cells are 
then identified by CD3 and CD25 (IL-2 receptor) staining. Numbers denote percentage 
frequencies of gated cells.   
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Figure 7.3: comparison of cellgro SCGM (A) vs serum based system (B) (RPMI + 10% 

human AB- serum) in whole PBMC culture stimulated by PHA. Gate denotes percentage of 

proliferating cells.

Figure 7.4: comparison of cellgro SCGM (D,E,F) vs serum based media (A,B,C) in whole 
PBMC cultures stimulated by the antigens purified protein derivative (PPD) (B&E) and TTC 
(C&E). Quadrant gates were set against undivided cells and APC isotype control (A&D), such 
that cells in top left quadrant are proliferating T cells proliferating. SI of PBMC for PPD and TT 
in serum based media are 2.5 ((10.2 + 5.86)/6.46) and 1.9; corresponding values in SF media 
are 5.8 and 4.8.
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Figure 7.5: Effect of adding 1% FCS to cellgro SCGM in whole PBMC cultures. (A-C) 
cellgro media alone (D-F) addition of 1% FCS. (A,D) unstimulated (B,E) tetanus toxoid at 
3ug/ml (C&F) PHA at 3 ug/ml. SI in cellgro SCGM alone, TTC 2.32 ((4.7+7.68)/(1.85+3.47)), 
PHA 15.2; addition of 1% FCS, TTC 2.6, PHA 10.1.

Figure 7.6: Titrating PHA dose in for PBMC stimulation in cellgro SCGM. (A) 

3ug/ml (B) 5ug/ml (C) 10ug/ml. Gate denotes percentage of CD3+ cells that are 

CFSEdim after 3 days of culture. 
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Further optimisations were performed regarding the dose of mitogen stimulation and 

the duration of TTC culture. We found PHA at 3ug ml-1 to be the lowest dose producing 

consistent T cell proliferation at 3 days (fig 7.6). It had previously been reported that SI 

to TTC in a CFSE proliferation assay in serum based culture was maximal on day 10 

(Mannering, Morris et al. 2003). In our system we found that SI were comparable 

between days 7 & 10 (fig 7.7).  

 

Commercially available adiponectin had been reported to contain significant endotoxin 

contamination (Turner, Smolinska et al. 2009), in the order of 2-5%. This may be 

attributable to its binding avidity to LPS (Peake, Shen et al. 2006). We tested for this 

possibility with our batch of adiponectin by culturing with CFSE labelled PBMC (fig 7.8) 

and found no significant increase in SI compared to background. Spiking SF cultures 

with LPS at 0.1ug ml-1 (equivalent to a 1% contamination of 10ug adiponectin dose), 

produced marked proliferation of PBMC at 3 days and this response was ameliorated 

by the LPS antagonist polymyxin B.  

 

Lastly, we confirmed monocyte derived DC (mDC) could be effectively generated from 

CD14+ monocytes in SF media under the influence of GM-CSF and IL-4 (fig 7.9). The 

cells after 5 days of culture had an immature DC phenotype, with a modest increase in 

CD80 and CD86, and were positive for DC-SIGN but negative for the mature DC 

marker CD83. As will be demonstrated in a subsequent section, they are functionally 

effective in stimulating T cells in the presence of antigen (TTC) and anti-CD3 antibody 

(OKT3) (figs 7.21 & 7.22). Compared to DC generated in serum-based media, 

expression of the co-stimulatory ligands CD80, CD86, DC-SIGN and the antigen 

presenting molecule HLA-DR were similar (fig 7.10). However, the yield of CD1a 

positive DC in SF culture was lower (92 vs 65% n=3 p<0.05).  
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Figure 7.7: Changes in SI of 
whole PBMC to TTC with time. 
Gates represent percentage of 
CFSE -dim proliferating cells on 
day 7 (A) and day 10 (E). 
Respective background counts 
are shown in B & F. Stimulation 
index is the ratio of proliferating 
cells exposed by antigen relative 
to the unstimulated control. On 
day 7 this is 8.7 (11.7/1.35) and 
on day 10 this is 6.0 (21.8/3.61). 
On day 7 (C), approximately 70% 
(16.1/(16.1+6.88)) of proliferating 
cells are CD3+ T cells. D is the 
no antigen control for C.  
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Figure 7.8 Testing for LPS contamination in the recombinant adiponectin used. A. To mimic 

1% contamination of recombinant adiponectin, LPS at 0.1 ug ml-1 was added to CFSE labelled 

whole PBMC. On day 7, 88% of cells had undergone division (CFSE low). In particular, up to 75% of 

CD4+ T cells had proliferated. B. CD4+ T cells did not proliferate in response to LPS if CD14+ 

monocytes were magnetically depleted (C) using anti-CD14 microbeads and MS columns. D. The 

positive fraction from the same sort after a single passage, showing purity of CD14+ cells to be at 

91.8%. E. The proliferation of CD4+ T cells to LPS was antagonised by the addition of polymyxin B 

(10 ug ml-1). F. Adiponectin at 10 ug ml-1 did not stimulate whole PBMC above background. 

Alternatives to a cell based system for LPS contamination include the in vitro Limulus amoebocyte

lysate (LAL) assay and the in vivo rabbit pyrogen test. The LAL test is based on the coagulation of 

blood cells from the horseshoe crab upon LPS contact. 
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Figure 7.9: Transformation of CD14+ monocytes to mDC in Cellgro DC media. Positively selected 

CD14+ cells (A) with low CD1a (C) and DC SIGN expression (E) were cultured in the presence of GM-

CSF and IL-4 for 5 days. The yield of mDC are deficient in CD14 expression (A). In keeping with their 

immature phenotype, they are also low in CD80 (A) and CD83 (F) expression, whilst acquiring DC-SIGN 

(F) and CD86 (D). About 60% of these are also CD1a positive.
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Figure 7.10.  Comparison of mDC (day 6) grown in  serum based media (A,C,E) 
(RPMI + 10% FCS) vs Cellgro DC (B,D,F).

Numbers denote percentage frequency of gated cells and quadrants defined against 
isotype control. mDC grown in cellgro DC are lower in their expression of CD80 and 
CD1a (A & B), whilst levels of DC SIGN, HLA-DR and CD86 are similar (C – F).  
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7.3 Adiponectin decreases T cell proliferation in healthy subjects 

 

We modelled T cell immunity using PBMC responses to PHA and tetanus toxoid (TTC). 

TTC is a recall antigen to most young adults because of the UK immunisation 

schedule. We tested the effect of adiponectin by comparing SI with and without its 

addition (figs 7.11a & 7.11b) from the same subject. Over 8 healthy subjects, we found 

a physiological dose of adiponectin of 10ug ml-1 has a modest but significant effect in 

dampening PHA-stimulated T cell proliferation (mean change in SI = -9.5%, p < 0.05). 

More impressive is the reduction in SI by adiponectin in the TTC assay (figs 7.12a & 

7.12b; mean suppression in SI = 46.9%, p < 0.01).  

 

We next investigated the cellular mechanism of this reduced T cell stimulation. 

Adiponectin has been described to cause growth inhibition by promoting apoptosis in 

human cell lines (Yokota, Oritani et al. 2000, Dieudonne, Bussiere et al. 2006, Cong, 

Gasser et al. 2007, Konturek, Burnat et al. 2008, Bråkenhielm, Veitonmäki et al. 2004) 

We found that the proportion of cells staining for annexin V, a marker for early 

apoptosis, was significantly increased with adiponectin replacement (figs 7.13 & 7.14) 

in TTC and PHA stimulated cultures.  

 

Our expression analysis of AdipoR had shown sparse distribution on resting and 

activated T cells. On this basis, we predicted the effect of adiponectin on dampening T 

cell immunity to be mediated via accessory cells. Tregs are potent suppressors of T 

cell proliferation. We found that the proportion of CD4+CD25high cells, which include the 

Treg subset, was increased with adiponectin replacement over 48 hours (fig 7.15), in a 

dose-dependent manner.  
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Figure 7.11b: Reduction in stimulation index of CD4+ T cells by adiponectin
when whole PBMC are stimulated by PHA (3ug/ml) (n=8). Mean reduction = 
9.5% p = 0.0476 by paired t-test.

Figure 7.11a: Representative experiment showing reduction in proliferation of 
CD4 T cells (A) by adiponectin when whole PBMC are stimulated by PHA (B).  
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Figure 7.12a: Representative experiment showing reduction in proliferation of CD3+ T 

cells (A) by adiponectin when whole PBMC are stimulated by tetanus toxoid (B). SI 

without adiponectin is 19.7/2.42 = 8.14; SI with adiponectin = 12/2.42 = 4.96. 

Figure 7.12b: Adiponectin suppresses proliferation of TTC stimulated CD3 T cells 

(n=8) in healthy controls . Mean suppression is 46.9% p = 0.0085, by two tailed paired 

t-test.
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Figure 7.13: Adiponectin promotes apoptosis of PBMC during culture with TTC 
and PHA. Bars represent percentage cells staining positive for annexin V, relative to 
isotype. Cells staining positive for propidium iodide were excluded. Representative 
samples. 
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Figure 7.14: Adiponectin is pro-apoptotic. Whole PBMC stimulated by TTC and PHA 
had a higher proportion of annexin V positive, PI-ve cells when adiponectin in present.

**  p <0.01 by Bonferroni's post-test correction for multiple testing.
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Figure 7.15: Adiponectin increases CD4+CD25high cells. Whole PBMC were cultured in 

serum free media with adiponectin added back at 0 (A), 1(B), 2(C), 5(D), and 10ug/ml(E). 

CD4+CD25+ counts as a percentage of lymphocytes were assessed on day 2. (below) 

summary of experiments (8) with PBMC from 3 donors showing a significant positive 

correlation. 
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7.4 Adiponectin decreases dendritic cell function  

 

Monocytes are also important in regulating the T cell responses studied. The induction 

of T cell proliferation by PHA in whole PBMC is monocyte-dependent. They also serve 

as APC for the antigen mediated T cell responses (Randolph, Jakubzick et al. 2008). 

Because monocytes express the highest level of AdipoR, we wanted to determine the 

effect of adiponectin on APC function. We chose the most potent monocyte derived 

APC, the DC.  

 

7.4.1 Adiponectin decreases expression of CD86 on mDC 

 

CD86 on APC is a ligand to CD28 on T cells and provides the critical secondary signal 

for T cell activation (Salomon, Bluestone 2001, Greenwald, Freeman et al. 2005).  

Adiponectin replacement at 10ug ml-1 to the SF generation of mDC resulted in a 

significant reduction of CD86 at both protein and mRNA levels by approximately 50-

70% (fig 7.16). On FACS, the reduction of CD86 occurred in both CD1a positive and 

CD1a negative DC. Expression of HLA-DR, CD80, and DC-SIGN was similar between 

adiponectin treated DC and their control (Table 7.1 and figs 7.17, 7.26). The proportion 

of CD1a positive DC was also unchanged. 

 Ratio MFI  

Adiponectin DC: control DC  

CD1a 1.02 ± 0.21 

CD86  0.40 ± 0.11** 

CD80 1.00 ± 0.20 

HLA-DR 1.09 ± 0.20 

Table 7.1: MFI of DC surface markers of adiponectin treated DC relative to control in 10 
normal weight healthy subjects. Ratio expressed as mean ± SD.  
** p < 0.0001 by one sample two-tailed t-test against inferential mean of 1.0 (no change)  
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Figure 7.16: Adiponectin suppresses the upregulation of CD86 during 

transformation of monocytes to DC. This is demonostrated at the protein level by 

FACS (above) and at the RNA level by qPCR (below). Significant reduction in CD86 RNA 

levels in adiponectin treated mDC (n=5). Error bars represent SD of fold change, which is 

calculated by Ct method. 
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Figure 7.17: Effect of adiponectin on costimulatory molecules of DC. (A) A significant 

reduction in CD86 is seen DC SIGN positive DC (red – adiponectin treated DC, blue – control; 

numbers in legend denote CD86 MFI. In comparison, the change in CD80 (B) and HLA-DR (C-

control; D- adiponectin-treated DC) is marginal. The reduction in CD86 expression is seen on 

both CD1a+ and CD1a- DC (E- control, F-adiponectin treated DC).
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We followed the kinetics of the CD86 downregulation by adiponectin in time course 

experiments (fig 7.18, n=5). The ratio of CD86 MFI on CD1a positive cells of 

adiponectin treated DC to its negative control was 0.45 ± 0.09 at 0 hours. This was not 

significantly different to 6 hours (0.69 ± 0.06). However, this difference was completely 

abolished when adiponectin was added at 18 and 24 hours.  

 

We discovered also that the inhibition of CD86 expression upon adiponectin 

replacement was dose-dependent and followed sigmoidal dose-response modelling (fig 

7.19). It was overcome by the addition of LPS to DC, following transformation to mature 

DC phenotype (fig 7.20)  

 

7.4.2  Adiponectin reduces mDC stimulated T cell proliferation    

 

We next asked whether the inhibition of CD86 on DC by adiponectin translated to 

changes in stimulatory capacity. The synapsing of CD86 to CD28 and CTLA-4 on 

CD4+CD25high Tregs is essential in the initiation maintenance of their immunoregulatory 

function (Salomon, Lenschow et al. 2000, Zheng, Manzotti et al. 2004). In our system 

however, this would complicate the interpretation of overall T cell proliferation as a 

measure of DC stimulation capacity. For this reason, we sorted responder cells 

according to the phenotype CD4+CD25-. We compared stimulatory capacity in two 

CFSE-based assays, using (1) autogeneic responder cells with TTC, and (2) allogeneic 

responder cells with OKT3 antibody. We found that adiponectin treatment of mDC 

reduced T cell proliferation by an average of 43.2% with TTC (three donors, see fig 

7.21), and 39.4% with OKT3 (5 donors, fig 7.22). 
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Figure 7.18: Time course of the CD86 suppression on DC by 

adiponectin. Adiponectin at 10ug/ml were added to cultures at 0, 6, 18 

and 24h. (top) Histograms of CD86 expression on CD1a+ DC at the 

different timepoints. (bottom) Summary of 5 experiments  demonstrating 

the effect of CD86 suppression occurred within 18h. CD86 MFI was

standardised against untreated DC from the the same subject.
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dependent. (top) Adiponectin at 0,1,2,5 & 10ug/ml was added at the beginning of 

culture. (bottom) Dose response curve derived from 3 independent experiments and 

fitted using standard log(inhibitor) vs response model*. IC50 (dose of adiponectin

eliciting 50% inhibition) is shown at 95% CI. 

*Y=Bottom + (Top-Bottom)/(1+10^((X-LogIC50))) .     

0 5 10 15
0.0

0.5

1.0

IC50

1.277 to 1.869

Adiponectin ug ml-1

C
D

8
6

 M
F

I 
tr

e
a

tm
e

n
t:

C
D

8
6

 M
F

I 
u

n
tr

e
a

te
d



 193  

Figure 7.20: LPS overcomes inhibition of CD86 expression on DC by adiponectin.

CD83 is a marker of mature DC. mDC harvested on day 5 have an immature phenotype 

(A). Q DC (C) have significantly lower CD86 expression compared to control DC (B). DC 

harvested one day after addition of LPS are high on CD83 expression (D). Both control 

DC (E) and Q DC (F) have increased and comparable expression of CD86. 
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Figure 7.21: Adiponectin treated DC (Q DC) have reduced stimulatory capacity 
compared to DC grown in its absence (control DC). Both Q DC and control DC were 
washed twice in cold PBS after harvest and then co-cultured with effector
CFSE+CD4CD25- T cells and tetanus toxoid (TTC). (top) representative example, gate 
represents frequency of CFSE dim, CD25+ cells. 

* p < 0.05 by Bonferroni's Multiple Comparison Test.
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7.5 Suppression of DC function by adiponectin is released in T1D 

 

We then asked whether the effects of adiponectin on PBMC responses and DC 

function would be altered in T1D because of the reduction in AdipoR expression. We 

show this to be the case in a number of ways.  

 

Firstly and most directly, there is a trend for reduced mDC stimulation of T cell 

proliferation in T1D (n=5), compared to non-diabetic controls (n=5) (figs 7.22 & 7.23) 

(HC = 39.4%, T1D = 9.6% p = 0.0556).  

 

Secondly the reduction of PBMC proliferation to TTC by adiponectin is significantly 

reduced in T1D (fig 7.24 ) compared to HC (mean reduction in SI, HC = 47 (n=8) vs 

T1D = 26% (n=4) p<0.05).  

 

Furthermore, the dose response curve of CD86 inhibition on mDC with adiponectin 

replacement in T1D is consistent with the effect of reduced AdipoR expression and not 

changes in agonist-receptor kinetics (fig 7.25). Maximal inhibition of CD86 was reduced 

(T1D: -61% HC: -71% p<0.05), whilst no significant change in IC50 was seen (95% CI: 

T1D = 0.6 - 2.1; HC =1.3-1.9).  

 

In attributing the release of adiponectin-mediated suppression of APC driven T cell 

proliferation in T1D as the result of reduced AdipoR, we compared the degree of CD86 

inhibition on mDC by adiponectin to the expression of AdipoR on precursor monocytes 

in healthy and T1D individuals. The same dose of adiponectin replacement at 10ug/ml 

was used at the start of culture. We justified not adding adiponectin in the re-feeding 

media on day 2 from findings in our time course experiment. We recruited T1D subjects 

(n=11) whose clinical features predicted low monocytic AdipoR expression. 
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Consequently, they had features of insulin resistance (mean HbA1C 8.5 ± 0.8, 

presence of hypertension and WHR 0.85 ± 0.08), presence of vascular complications 

(8 / 11), and were older than our healthy controls (HC – mean age: 28 ± 4; T1D: 35 ± 

7).  

 

Our T1D subjects had lower AdipoR1 expression approaching significance (MFI 

AdipoR1 T1D: 35.5 ± 5.3; HC 62.8 ± 13.0, p = 0.0579) but AdipoR2 expression levels 

were not significantly different (T1D = 33.4 ± 4.0, HC 51.7 ± 12.3 p = 0.190) (fig 7.26). 

Similar yields of CD1a positive DC were achieved at the end of culture in both groups, 

with or without adiponectin (HC 39.3 ± 5.0%, T1D 43.8 ± 5.5%). Importantly, we found 

that the degree of CD86 inhibition on mDC in T1D was significantly reduced (HC = -

60.0 ± 3.0%; T1D = -40.8 ± 5.8%, p = 0.011), whilst expression of HLA-DR and CD80 

was unchanged (figs 7.27a & 7.27b).  

 

Consistent with our hypothesis that AdipoR signalling mediates CD86 expression on 

mDC (fig 7.28), AdipoR1 expression on CD14+ precursors negatively correlated with 

the degree of CD86 inhibition with adiponectin replacement (r = -0.53, p = 0.013). The 

correlation between AdipoR2 expression with adiponectin-mediated CD86 inhibition 

was not significant (r=-0.411 p=0.064). Changes in HLA-DR and CD80 expression did 

not appear to be associated with AdipoR expression (figure 7.29). We had previously 

shown AdipoR1 & AdipoR2 expression was unaffected by adiponectin replacement in 

SF media, thus excluding its possible confounding influence on our results (fig 5.11). 
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Figure 7.22: The reduced stimulatory capacity of Q DC is related to the degree of CD86 

suppression. Subject 1 (A) had higher AdipoR1 expression on CD14 precursor cells compared to 

subject 2 (E), who has T1D. The suppression of CD86 by the same 10ug ml-1 adiponectin is greater (Q 

DC –red histogram, control DC- blue) on subject 1 (C) compared to 2 (F). The stimulatory capacity of the 

DC were tested in co-cultures with CFSE+CD4+CD25- effector cells. Bar indicates % of divided cells, In 

HC, Q DC stimulated fewer cells to proliferate (D) compared to control DC (C). In contrast, the difference 

between Q DC (H) versus control DC (G) in the T1D subject is marginal. (Bottom) summary of replicates 

for these two subjects. The difference in stimulatory capacity between control DC and Q DC, as a 

percentage, is 29.8 for subject 1, and 3.8% for subject 2.

* p = 0.0105 by Bonferroni‟s post-test  
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Figure 7.25: dose response curve of CD86 suppression on mDC in T1D (n = 3) (above). Error bars 

denote SD. IC50 was not significantly different compared to HC, although the level maximum inhibition was 

less than that seen with HC. (below) representative example from one donor. CD14+ monocytes were 
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Figure 7.26: AdipoR expression of CD14+ precursors from HC (n=10) and 

T1D subjects (n=11). Subjects with T1D were chosen based on the prediction 

that their monocytes would have reduced AdipoR expression (older age and 

presence of vascular complications). There was a non-significant trend of 

reduced AdipoR1 expression (p = 0.06), whilst expression of AdipoR2 was not 

significantly different (p = 0.19).  
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Figure 7.28: correlation of AdipoR1 expression with the reduction of 

CD86 expression of mDC following adiponectin treatment. All subjects 

(HC and T1D) were included for this analysis.
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Figure 7.29: Absence of significant correlation between AdipoR1 expression of CD14+ 

precursors and expression of HLA-DR (bottom) and CD80 (top) following adiponectin

treatment.
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 7.6 Discussion 

 

Adiponectin has previously been shown to modulate cytokine secretion of 

macrophages, T cells and their recruitment to inflammatory loci (Wolf, Wolf et al. 2004, 

Okamoto, Folco et al. 2008, Palmer, Hampartzoumian et al. 2008). In this chapter, we 

present novel data describing its dampening effects on APC-dependent T cell 

immunity. Adiponectin treated DC had reduced CD86 expression and stimulatory 

capacity on T cells. This function appears to be diminished in T1D, resulting in 

relatively preserved CD86 expression despite equivalent adiponectin replacement. 

Reduced AdipoR expression of precursor monocytes in T1D may explain the 

difference, given the significant negative correlation between AdipoR1 expression and 

the degree of CD86 suppression on mDC.   

Our in vitro tests were performed in SF conditions and with recombinant human 

adiponectin that can mimic physiological oligomeric distribution. We believe these 

factors explain the apparent disagreement between our findings and that of Wolf et al, 

who reported that despite treatment with adiponectin at 20ug/ml, no changes of 

monocyte derived DC phenotype or function were detected (Wolf, Wolf et al. 2004). In 

that paper, FCS was added at 10%, without prior removal of bovine adiponectin by 

affinity columns (Luo, Guo et al. 2005). As a result, we believed that the “negative 

control” experiments for mDC phenotype were conducted with active adiponectin levels 

close to the IC50 values of 1-2 ug/ml we had determined in SF conditions. Clearly, this 

would obscure any potential changes, whereas the improved sensitivity in our SF 

system allowed significant differences to be detected with physiological adiponectin 

replacement. Furthermore, the source of adiponectin used by Wolf et al was not 

disclosed in their paper. Variations in biological function of recombinant adiponectin 

have been reported because of differences in host species, ability to form high 
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molecular weight oligomers and LPS contamination (Richards, Stephens et al. 2006, 

Neumeier, Weigert et al. 2006, Turner, Smolinska et al. 2009). The adiponectin 

sourced (Alexis, Cat #: ALX-522-063) was derived from mammalian HEK cells and can 

form high molecular oligomers analogous to the circulating distribution (manufacturer‟s 

product information sheet). An independent group had reported that adiponectin can 

contain significant LPS contamination if used at ug ml-1, contrary to manufacturer‟s 

internal validations (Turner, Smolinska et al. 2009). However, we believe that this was 

not a factor in influencing our findings given that cultures spiked with LPS had opposing 

effects to that of adiponectin. 

We found the suppression of T cell proliferation by adiponectin in whole PBMC assays 

to be moderate with TTC ( 50%) and modest with PHA ( 10%). This is in keeping with 

the degree of monocyte participation in each reaction. We expected monocytes to be 

the main effector of adiponectin-mediated immunomodulation, given that they have 

highest receptor expression among all PBMC. Monocyte helper activity is critical for the 

initial activation of T cells by PHA stimulation (de Vries Caviles et al. 1979). Both cell 

contact and monocytic secretion of cytokines such as IL-1 and IL-6 are thought to be 

important in the induction of IL-2 and IL-2 receptor expression (Ceuppens, Baroja et al. 

1988, Wakasugi, Bertoglio et al. 1985, Williams, Ransil et al. 1984, Manger, Weiss et 

al. 1985). After which, propagation of activated T cells escapes monocytic modulation 

(Manger, Weiss et al. 1985) and here we had expected adiponectin to have only 

modest effect given their relative paucity of AdipoR expression. In TTC stimulation, 

monocytes function as APC.  

 

Our data indicate the effect of adiponectin on APC function, lymphocyte apoptosis and 

Treg induction may contribute to the overall dampening of antigen driven T cell 

immunity. Our finding that adiponectin increases lymphocyte apoptosis is consistent 
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with its effects on cell lines (Yokota, Oritani et al. 2000, Dieudonne, Bussiere et al. 

2006, Cong, Gasser et al. 2007, Konturek, Burnat et al. 2008, Bråkenhielm, Veitonmäki 

et al. 2004).  There is however lack of consensus in these studies regarding a common 

molecular mechanism. The demonstration of increased apoptosis of activated T cells 

with adiponectin in experiments of PHA stimulation suggests AdipoR signalling is not a 

requirement.  

 

In vitro and ex vivo expansion of the CD4+CD25high Treg has been proposed as means 

of immunotherapy (Tang, Henriksen et al. 2004, Peters, Hilbrands et al. 2008). We 

have shown adiponectin increases their proportion in whole PBMC culture in a dose 

dependent manner. This is consistent with recent studies demonstrating an in vivo role 

of adipose tissue in negatively regulating resident Treg numbers (Feuerer, Herrero et 

al. 2009, Winer, Chan et al. 2009). Furthermore, other adipokines, such as leptin, have 

also been shown to have similarly potent, albeit opposite effects (De Rosa, Procaccini 

et al. 2007).  

 

We studied the effect of adiponectin on APC function using the mDC. Impressively, 

relatively physiological doses of adiponectin replacement brought a significant 

reduction in CD86 expression. This effect was dose-dependent, occurred within 18 

hours of culture, reversible with LPS, and correlated with AdipoR1 expression on 

precursor monocytes. This data is consistent with a model of adiponectin, possibly via 

AdipoR1, in modulating CD86 expression. We believe the absence of significant 

change in other co-stimulatory markers excludes the effect on CD86 expression as a 

consequence of a global inhibition on DC maturation, in contrast to another example of 

a humoral factor, vitamin D (Griffin, Lutz et al. 2001, Penna, Adorini 2000). Indeed 

adiponectin treated mDC were able to antigen present TTC to stimulate responder 

cells, at a level well above that of the no antigen control. In the same co-culture 
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experiments we demonstrated lone CD86 suppression on DC resulted in reduced 

stimulatory capacity. This is in agreement with other in vitro studies (Lanier, O'Fallon et 

al. 1995, McLellan, Starling et al. 1995).  

 

In contrast, AdipoR2 expression on monocytes did not follow the inverse correlation 

AdipoR1 had with CD86 inhibition on mDC. Our previous data had shown the 

expression of the two receptor isotypes on PBMC to be interrelated and co-regulated 

by insulin sensitivity. However, AdipoR1 and AdipoR2 may have distinct functions. 

Consistent with this are the differences in downstream signalling pathways. For 

example in the liver, AdipoR1 activates AMP kinase whilst AdipoR2 activates PPAR  

(Yamauchi, Nio et al. 2007). In immune cells, signal transduction via AMP kinase and 

p38 MAP kinase is important in mediating function (Tang, Chiu et al. 2007, Wolf, Wolf 

et al. 2004, Crawford, Peake et al. 2010), and the triggering of these secondary 

messengers is attributable to AdipoR1, and not AdipoR2 (Tang, Chiu et al. 2007). The 

molecular basis for specificity lies in interaction between AdipoR1 with the endoplasmic 

reticular protein ERp46 (Charlton, Webster et al., 2010). Thus, it is biologically 

plausible that AdipoR1 is more important in suppressing CD86 expression on mDC and 

hence the stronger association.  

 

Following our clinical study, we wanted to define the functional significance of the 

reduced AdipoR expression in T1D. Accepting the borderline significant reduction in 

AdipoR1 expression for this new cohort, our data imply that in T1D, there is a partial 

release from the inhibitory effects of adiponectin. In other words, there is greater T cell 

proliferation than expected for the same dose of adiponectin compared to healthy 

individuals. Further studies are needed to define the pathologic importance of these in 

vitro effects in T1D.   
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Collectively, these studies demonstrate the potential for adiponectin to modulate T cell 

immunity. We recognised the case for causation and AdipoR mediation would be 

strengthened if the observed responses were abrogated by inhibitors of adiponectin 

signalling. We had attempted the adiponectin and mDC phenotype experiments using 

our existing stock of anti-adiponectin, and anti-AdipoR1/R2 antibodies, but saw no 

significant change. We believed further optimisations would be required regarding the 

choice of neutralising antibodies. The indicated use for our anti-adiponectin antibody 

was immunoblotting, as such it would be raised to recognise solubilised proteins. 

AdipoR1 & AdipoR2 receptors have recently been shown to undergo endocytic cycling 

between cell surface and endoplasmic reticulum by clathrin and Rab-5 dependent 

pathways (Ding, Wang et al. 2009). Blocking antibodies may thus only have short-lived 

effects during cell culture.  

 

Ideally, we would also test the function of mDC from T1D in a TTC assay to confirm the 

changes seen with OKT3. However, antigen based mDC tests would require 

autogeneic responder cells and our attempts to re-stimulate after 5 days in culture were 

not successful. In the OKT3 assay, fresh allogeneic responder cells were used. 

 

We accept also that as memory T cells were not depleted from our responders, some 

of their proliferation in the mDC stimulation assay with TTC would have occurred 

independently of APC. In defence, the percentage of divided cells from the responder 

cells and TTC only experiment was well below that of mDC and responder cells with no 

antigen. Hence we concluded that APC-independent activation was not a significant 

contributor to background proliferation levels used to derive SI.  
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7.7 Summary of results 

 
 

We demonstrate adiponectin dampened T cell proliferative response to mitogens and 

antigens in an optimised serum free CFSE-based assay. The expansion of the 

CD4+CD25high subset and the promotion of apoptosis upon adiponectin replacement 

may contribute. In addition, adiponectin can modulate the phenotype and stimulatory 

function of monocyte derived DC, by downregulating expression of CD86. This 

inhibitory effect on CD86 was dose dependent, occurred within 18 hours of culture and 

correlated with AdipoR1 expression on monocyte precursors. The expression of other 

costimulatory molecules (HLA-DR, DC SIGN, CD80 and CD1a) were unaffected. The 

reduced expression of AdipoR in T1D may be functionally relevant, given that immune 

cells were released from the inhibitory effects of adiponectin replacement.   
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8. DISCUSSION AND CONCLUSIONS 

 

8.1 Summary of key findings and a model for adiponectin in T1D 

 

I have shown that AdipoR1 and AdipoR2 are expressed by peripheral blood myeloid 

cells, and that the level of expression of these receptors modulates T cell proliferation 

through adiponectin mediated inhibition of CD86 expression. There is release of this 

suppression in T1D attributable to the reduced AdipoR expression. We found that  

receptor expression was inversely related to insulin resistance, and that intervention 

could upregulate expression.     

 

Figure 8.1 depicts these findings applied to our hypothesis. It defines a mechanism of 

how insulin sensitivity can modulate autoimmunity of T1D through adiponectin 

signalling in individuals with a predicted disease incidence of at least 20% in 10 years. 

Adiponectin synthesis by adipocytes is reduced by weight gain, and both these factors 

act in tandem to increase IR. The associated reduction of AdipoR on monocytes 

attenuates the inhibition of CD86 expression on DC exposed to adiponectin.The 

increased costimulation of CD4+ T cells favours the recruitment and maintenance of 

diabetogenic T cells. We speculate that this escape of T cell immunoregulation, in 

conjunction with other immune aberrations (Lesage, Hartley et al. 2002, Brusko, 

Wasserfall et al. 2005, Schneider, Rieck et al. 2008, Allen, Pang et al. 2009, Kukreja, 

Cost et al. 2002), predisposes the breakdown of peripheral tolerance in T1D and 

hastens the development of diabetes. CD86 expression on APC has a critical role in 

priming of diabetogenic CD4+ T cells and its knockout in the NOD mouse is effective in 

preventing diabetes (Yadav, Judkowski et al. 2004). However, the effect of CD86 , and 

hence that of adiponectin, is not antigen specific. Nevertheless, as LPS can override 
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the inhibitory effects of adiponectin, I believe this system would not lead to a state of 

immunocompromise.  
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Figure 8.1 Summary diagram for the putative role of adiponectin signalling in 

immune tolerance of T1D. See sections 8.1 & 8.3 for commentary. 

8.2 Critique of key findings 

 

There are several weaknesses to our studies. Firstly, the quantification of AdipoR 

expression on PBMC by flow cytometry had a high intra-assay CV (up to 14%). As 

such, it could be prone to type 2 (false negative) errors. Therefore the findings of 

neutral effect of glucose, insulin and adiponectin on AdipoR expression in vitro need 

further validation, particularly since conflicting animal model data exists (Tsuchida, 

Yamauchi et al. 2004, Bauche, Ait El Mkadem et al. 2006). Furthermore from our own 

clinical study, adiponectin had a significant but modest inverse correlation with 

AdipoR1 and AdipoR2 expression when examined across all subjects (T1D and 

controls). Secondly, the strongest evidence for insulin resistance as a modulator of 

AdipoR expression on PBMC came from data in the early ACTID. However, as 

monocytes have the highest expression of AdipoR among PBMC, a simple increase in 

relative monocyte count from lifestyle intervention could explain the apparent increase 

in AdipoR gene expression of whole PBMC in the interventional arm. Nevertheless, a 

specific effect on monocyte counts by lifestyle changes had not been reported 

(Timmerman, Flynn et al. 2008, Shephard, Shek 1994), nor observed in our two 

smaller exercise studies. Lastly, unequivocal evidence for the mediatory role of AdipoR 

on the inhibition of CD86 expression on APC is lacking. As previously outlined, 

adiponectin can exert its immune effects independently of AdipoR (Takeuchi, Adachi et 

al. 2007, Peake, Shen et al. 2006, Masaie, Oritani et al. 2007, Takemura, Ouchi et al. 

2007,). To clarify this issue, recent papers citing novel biological functions of 

adiponectin have included data describing the abrogation of effect through siRNA 

knockdown of AdipoR gene expression (Miller, Cho et al. 2009, Yamauchi, Kamon et 

al. 2003, Tang, Chiu et al. 2007, Iwabu, Yamauchi et al. 2010). In our case and as a 
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further project, similar AdipoR1 RNA interference can be achieved on CD34+ primary 

haemopoietic stem cells before their transformation to DC (Martino, di Girolamo et al. 

2009).  

 

Nevertheless, our data is consistent with what is already known about regulation of 

adiponectin receptor expression and the anti-inflammatory effects of adiponectin. We 

validated previous studies that reported mRNA of AdipoR on PBMC by showing 

expression at the protein level (Palmer, Hampartzoumian et al. 2008, Sohn, Kwak et al. 

2010, Shen, Charlesworth et al. 2007, Alberti, Gilardini et al. 2007). Similar to skeletal 

muscle and adipose tissue, the expression on PBMC is also correlated to insulin 

sensitivity and can be increased with exercise (Nannipieri, Bonotti et al. 2007, Bluher, 

Williams et al. 2007, Christiansen, Paulsen et al. 2010, O'Leary, Jorett et al. 2007). The 

reduced APC-dependent T cell proliferation fits with the reported anti-inflammatory 

effects of adiponectin in models of T cell driven hepatitis (Palmer, Hampartzoumian et 

al. 2008, Kaser, Moschen et al. 2005, Sennello, Fayad et al. 2005). As previously 

elaborated, we attributed the discrepancy between our study and that of Wolf et al 

regarding co-stimulatory molecules on APC by the differences in culture conditions 

(Wolf, Wolf et al. 2004).       

 

The functional significance of the high AdipoR expression on NK and B cells deserves 

investigation. Adiponectin may yet have further influence on disease pathogenesis, as 

these cells are known to have important accessory roles (Alba, Planas et al. 2008, 

Rodacki, Svoren et al. 2007, Brodie, Wallberg et al. 2008). In particular, B cell depletion 

by the anti-CD20 monoclonal antibody rituxamab preserves  cell function in patients 

with newly diagnosed T1D (Pescovitz, Greenbaum et al. 2009) 
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We have only studied a small number of functional readouts. The full immunoregulatory 

potential of adiponectin on APC function would be comprehensively documented using 

gene expression microarray approach. It would be intriguing to see if adiponectin 

activates the trancriptional repressor cyclic AMP response element modulator , which  

has been recently been shown to be an important and specific negative regulator of 

CD86 expression in APC (Ahlmann, Varga et al. 2009). Apart from proliferation, other 

effects of APC-CD4 interaction arising from adiponectin treatment, such as the 

development of effector phenotype and cytokine production, would also be of interest. 

The data showing an increase of CD4CD25+ proportion following adiponectin 

replacement is preliminary, and further Treg phenotype characterisation, using markers 

such as FoxP3 CTLA-4 and CD127 low which confer protection from autoimmune 

diabetes (Schmidt, Wang et al. 2009, Liu, Putnam et al. 2006, Lundsgaard, Holm et al. 

2005), should be performed. 

 

8.3 Further refinements to proposed model 

 

There are gaps in the model that require further elucidation. I have not accounted for 

how weight gain can inhibit AdipoR expression on PBMC. The level of control is likely 

to be at gene transcription, given the changes in AdipoR protein expression are also 

seen with mRNA. The AdipoR1 gene promoter region contains binding sites for ATF3 

(activating transcription factor 3) (Park, Kang et al. 2010), a negative transcriptional 

factor that is upregulated with obesity-associated ER stress. Using a mouse myotube 

model, Park et al have shown that ATF3 is a physiologically relevant regulator.   

 

The mechanism of how lifestyle interventions can modulate AdipoR expression is not 

clear. I have shown that achieving weight loss and improvements in IR are necessary 
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for AdipoR expression to increase. The ATF3-AdipoR1 gene promoter interaction is 

potentially relevant as weight loss is associated with reduced ER stress and ATF3 

expression levels (Gregor, Yang et al 2009).  

 

Next, the cause for the reduced AdipoR expression in T1D, relative to HC and T2D, is 

not known. Genetic factors were unlikely to be responsible, as polymorphisms in both 

AdipoR1 and AdipoR2 genes were not found to be associated with increased incidence 

of T1D (Barrett, Clayton et al 2009). Neither was IR or hyperglycaemia, two known 

modulators of AdipoR expression matched for in the clinical study. Notwithstanding, IR 

accounted for some of the variation in AdipoR expression (figure 5.5). 

 

We propose two alternative explanations for the difference between the groups.  

The reduced AdipoR expression in T1D could be the result of inflammatory stress. We 

had found AdipoR expression to reduce with T cell activation and was inversely related 

to that of CD25 (figure 4.22). In testing this, investigating for possible correlations 

between AdipoR expression with serum levels of inflammatory cytokines, such as 

TNF , IL-6 and hsCRP, would be a useful first step.  

 

The differences in  cell function between the groups may be important. Skeletal 

muscle AdipoR1 mRNA, whose levels are correlated with those on PBMC (Shen, 

Charlesworth et al. 2007), is independently associated with first phase insulin secretion 

(Staiger, Kaltenbach et al. 2004). However, despite AdipoR expression on  cells 

(Kharroubi, Rasschaert et al. 2003), a direct facilitative role for adiponectin signalling 

on insulin secretion is controversial (Okamoto, Ohara-Imaizumi et al. 2008, Staiger, 

Stefan et al. 2005, Winzell, Nogueiras et al. 2004). Nevertheless, the corollary is that 

low AdipoR expression in our cohort of longstanding T1D would relate to the presumed 
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absence of residual endogenous insulin secretion, and vice versa in healthy controls. A 

similar inverse correlation has been described for serum adiponectin levels with fasting 

C-peptide across the spectrum of non-obese healthy controls, T2D and T1D (Furuta, 

Tamai et al. 2006, Behre, Brohall et al. 2006). Thus, to further examine the temporal 

relationship and control for genetic confounders, a study of AdipoR expression on 

stored PBMC from pre-diabetic subjects developing disease could be done. An 

analogous study from animal models of autoimmune diabetes would also be 

supportive.   

 

Whether lifestyle change, by increasing AdipoR expression, would ameliorate 

resistance to adiponectin inhibition on APC function is another area for study. CD86 

expression on mDC following adiponectin replacement would be a suitable primary 

readout. If proven, then there would a possibility that the immune sequelae of reduced 

AdipoR expression in T1D is subject to therapy. 

 

Importantly, we would need to confirm the tolerogenic effects of adiponectin at the level 

of islet autoimmunity. Our experiments of APC cocultured with effector CD4+ T cells 

could be repeated using clones reactive to  cell autoantigens (Mannering, Morris et al. 

2004). Another approach would be to look for adiponectin receptor expression by 

immunohistochemistry in pancreatic nodes of patients with T1D by 

immunohistochemistry, with non-pancreatic lymph nodes from the same subject as 

control. Suitable tissue sample could be attained from the Network for Pancreatic 

Organ Donors with diabetes (www.jdrfnpod.org), a project funded by JDRF where 

pancreatic tissue is harvested from cadaveric organ donors with T1D. 

 

http://www.jdrfnpod.org/
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Although circulating adiponectin can bind to both AdipoR1 and AdipoR2, there are 

differences in signal transduction downstream to both receptors (Section 1.7.2). We 

have identified that AdipoR1 expression on precursor monocytes may be more 

important in determinng the attenuating effect on CD86 of DC (figure 7.2.8).  Thus a 

deficiency of AdipoR1 may not be simply compensated for by AdipoR2 on the same 

cell. Furthermore, we (figure 5.4) and others have found that the expression of both 

receptors appear to be under co-regulation (Staiger Kaltenbach et al 2004. Bluher, 

Williams et al. 2007. Shen, Charlesworth et al. 2007). Thus, it is unlikely under 

physiological conditions that a human subject would have reduced AdipoR1, but 

normal expression levels of AdipoR2.  

 

In summary, our data supports adiponectin to be a molecular mediator of the link 

between insulin resistance and immunity in T1D. Further investigation is merited given 

the potential application in disease prevention, preservation of  cell function in LADA, 

islet allografts and early T1D.  
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10. SUPPLEMENTARY DATA 

Appendix 1: Autofluorescence of activated T cells. Positively selected CD3+ cells 

were activated with (A) PHA or (B) CD3+CD28+ Dynabeads. After 48-72 hours, they 

were then stained using the secondary AF-488 conjugated goat antib-rabbit antibody 

only, read on the FL-1 channel. Activated cells are larger (by forward scatter) and are 

higher in expression for CD25 (C &D). They also have higher background fluroescence, 

before addition of the primary labelling adiponectin receptor antibody.
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Appendix 2: standard curve for Taqman ADIPOQ rt-qPCR assay.

Ct (Ct ADIPOQ – Ct 18S) is plotted for serial dilutions of whole 

pancreas RNA template. The plot shows that Ct for the sample is 

unaffected by dilution, thus validating the application of the Ct 

method in the calculation of relative gene expressions.
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Appendix 3: Testing normal distribution of data. We applied the one-sample Kolmogorov-

Smirnov test procedure to assess whether our FACS data, as well as serum adiponectin

values, conform to Gaussian distribution. In this test, a p value of <0.05 indicates the observed 

distribution does not follow normality. Our data, allR1 (MFI AdipoR1 on all cells), lymphR1 

(MFI AdipoR1 on lymphocytes), monoR1 (MFI AdipoR1 on monocytes), allR2, lymphR2, 

monoR2 and adiponectin (serum adiponectin by ELISA) passed this test, thus validating the 

subsequent application of ANOVA testing for group differences.

One-Sample Kolmogorov-Smirnov Test

76 76 76 76 76 76 76

3.4877 3.0402 28.6487 2.9791 2.7492 21.6690 7.1469

2.14489 2.08204 18.66972 2.27769 2.14650 18.37408 5.16318

.106 .105 .152 .111 .129 .149 .148

.106 .105 .152 .111 .129 .149 .148

-.086 -.080 -.084 -.100 -.101 -.143 -.111

.877 .876 1.266 .922 1.069 1.234 1.229

.425 .427 .081 .364 .203 .095 .098

N

Mean

Std. Deviation

Normal Parameters a,b

Absolute

Positive

Negative

Most Extreme
Dif ferences

Kolmogorov-Smirnov Z

Asymp. Sig. (2-tailed)

allR1 lymphR1 monoR1 allR2 lymphR2 monoR2 adiponectin

Test distribution is Normal.a. 

Calculated f rom data.b. 
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Appendix 4: Correlation matrix of FACS data and monocyte count. AllR1 (MFI AdipoR1 on 

all PBMC). LymphR1 (MFI of AdipoR1 on lymphocytes). MonoR1 (MFI of AdipoR1 staining on 

CD14+monocytes). “Monocytes” denotes the percentage of viable monocytes in the sample.

Correlations

1 .863** .224 .854** .787** .258* .201

.000 .065 .000 .000 .033 .098

.863** 1 .116 .796** .924** .314** .059

.000 .341 .000 .000 .009 .630

.224 .116 1 .140 .110 .638** .112

.065 .341 .252 .370 .000 .359

.854** .796** .140 1 .907** .436** .032

.000 .000 .252 .000 .000 .797

.787** .924** .110 .907** 1 .457** -.012

.000 .000 .370 .000 .000 .925

.258* .314** .638** .436** .457** 1 -.011

.033 .009 .000 .000 .000 .931

.201 .059 .112 .032 -.012 -.011 1

.098 .630 .359 .797 .925 .931

Pearson Correlation

Sig. (2-tailed)

Pearson Correlation

Sig. (2-tailed)

Pearson Correlation

Sig. (2-tailed)

Pearson Correlation

Sig. (2-tailed)

Pearson Correlation

Sig. (2-tailed)

Pearson Correlation

Sig. (2-tailed)

Pearson Correlation

Sig. (2-tailed)

allR1

lymphR1

monoR1

allR2

lymphR2

monoR2

monocyte

allR1 lymphR1 monoR1 allR2 lymphR2 monoR2 monocyte

Correlation is signif icant at the 0.01 level (2-tailed).**. 

Correlation is signif icant at the 0.05 level (2-tailed).*. 
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Appendix 5: correlation matrix of glycaemic parameters against AdipoR MFI values 

for subjects with T1D. Insulin dose (total daily dose), insulinperwgt (total daily dose per 

kg), HbA1C and duration of disease did not bear significant correlations with AdipoR MFI 

values on all PBMC, lymphocytes or monocytes. 
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Appendix 6: effect of diabetic complications on AdipoR expression in T1D. We found no 

significant differences in AdipoR MFI values of subjects with (1) and without micro- and 

macrovascular complications (0) by the paired t-test.
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Appendix 7: Standard curve of ELISA for total serum adiponectin (Cat # DRP 300, 

R&D Systems, Abingdon, UK). We made serial dilutions of the adiponectin standard 
solution  (250ng ml-1). The lowest dilution was at 3.9 ng ml-1. Each concentration was 
assayed in duplicate wells. Absorbance values for each well was recorded at 450nm 
and then at 540nm. The reading at the 540nm wavelength corrects for optical 
imperfections in the plate. The linear regression plot between the logarthithms of 
adiponectin concentration and corrected absorbance values is shown.       
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11. PUBLICATIONS AND ABSTRACTS AT 

NATIONAL AND INTERNATIONAL MEETINGS 

 

Publications 

1) Diabet Med. 2008 Sep;25(9):1015-24. 

Addressing insulin resistance in Type 1 diabetes. 

Pang TT, Narendran P. 

Division of Medical Sciences, Medical School, University of Birmingham, Birmingham, 
UK. 

Abstract 

Type 1 diabetes is recognised to include an element of insulin resistance. 

Insulin resistance is an independent risk factor for the development of macro- 

and microvascular complications of Type 1 diabetes and may also contribute to 

the development of the disease. This understanding comes at a time when the 

incidence of Type 1 diabetes appears to be rising and the public health burden 

from its vascular complications is high. A variety of safe and efficacious 

manoeuvres are available to redress insulin resistance in Type 2 diabetes. So 

far however, clinical trials addressing insulin resistance in Type 1 diabetes have 

been small with only short periods of follow-up. Regardless, these trials have 

yielded promising results. This review examines the evidence for insulin 

resistance in the pathophysiology of Type 1 diabetes and its complications, the 

problems associated with its measurement, and summarizes the trials aimed at 

reducing insulin resistance in Type 1 diabetes. This includes a meta-analysis of 

controlled trials of adjuvant metformin in Type 1 diabetes. 

PMID: 19183305 [PubMed - indexed for MEDLINE] 
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2) Ann N Y Acad Sci. 2008 Dec;1150:143-5. 

The distribution of adiponectin receptors on human peripheral 

blood mononuclear cells. 

Pang TT, Narendran P. 

Division of Medical Sciences, Medical School, University of Birmingham, Birmingham, 
England, United Kingdom. t.t.pang@bham.ac.uk 

Abstract 

Adiponectin, an adipocytokine with anti-inflammatory and insulin-sensitizing 

properties, may provide a mechanism by which insulin resistance accelerates 

autoimmunity in type 1 diabetes (T1D). Its actions are mediated by two 

receptors, adiponectin receptors 1 (ADIPOR1) and 2 (ADIPOR2). In this study, 

we measured their distribution on human peripheral mononuclear cells by flow 

cytometry. ADIPOR1 is present approximately on 1% of T cells, 93% of 

monocytes, 47% of B cells, and 21% of NK cells (P < 0.01 for difference 

between subsets). The distribution of ADIPOR2 was found to be similar (r= 

0.992, P < 0.01), and staining could be blocked in an antigen-specific manner. 

We were also able to confirm our finding at an RNA level by PCR using 

sequence-specific primers. Our data are consistent with an immunoregulatory 

role for adiponectin in T1D. 

PMID: 19120283 [PubMed - indexed for MEDLINE] 
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Presentation abstracts  

1) Diabetes UK 2008, British Society of Immunology 2008, FOCIS 2008, Endocrine 
Society 2008 
 

Adiponectin gene expression in peripheral blood mononuclear 
cells is modulated by activation, and by diet and exercise in 
patients with type 2 diabetes  
 
Pang TTL1, Boora U1, Gough SCL1, Andrews R2, Narendran P1. 
 
1 Division of Medical Sciences, Medical School, University of Birmingham 
2 Early ACTID office, Joint Clinical Research Unit, University of Bristol 
 
Background and aims: Circulating adiponectin and skeletal-tissue expression of its 
receptors is reduced in obesity and increases following lifestyle intervention.  We asked 
whether adiponectin and its receptors were also expressed by peripheral blood 
mononuclear cells (PBMC) and if so, whether expression was modulated by cell 
activation or lifestyle changes.  
 
Method: Adiponectin expression was studied by real-time PCR in freshly isolated 
PBMC from healthy volunteers, and following activation with phytohaemagglutinin or 
lipopolysaccharide.  Expression was also measured at baseline and following lifestyle 
intervention in 10 subjects from the Early ACTID trial, a randomised controlled study of 
exercise in newly-diagnosed type 2 diabetes. Adiponectin receptor 1 & 2 (ADIPOR1 & 
2) expression was measured by flow cytometry.  
 
Results:  The adiponectin gene was expressed by PBMC in all healthy and diabetic 
subjects, at a level comparable to the pancreas. Following in-vitro stimulation, it 
decreased by 90.9 - 92.7% (95% CI), whilst the surface expression of its receptor was 
upregulated (1.8-2.7× 95% CI). In Early ACTID, adiponectin expression was increased 
at 6 months in subjects achieving moderate weight loss (mean= -2% of baseline), 
compared to those who did not (+52% vs  -47%, p<0.05%). There was also a trend for 
increased receptor gene expression (ADIPOR1: +13% vs -16% p=, ADIPOR2 +15% vs 
-8% p=0.2) 
  
Conclusions: Adiponectin and adiponectin receptor expression by PBMCs may be 
influenced by obesity, analogous to that described for circulating and peripheral tissue 
receptor levels. This may be an important mechanism by which lifestyle intervention 
modulates the inflammatory response associated with insulin-insensitivity. 
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2) Diabetes UK 2009 

Lifestyle intervention increases adiponectin receptor 
expression by peripheral blood cells (PBC) in type-2-diabetes 
(T2D) 
 
Pang TTL1, Weaver K1, Norcross A2, Gough SCL1, Andrews R2, Narendran P1. 

 
1 Division of Medical Sciences, Medical School, University of Birmingham 
2 Early ACTID office, Joint Clinical Research Unit, University of Bristol 
 
Background: PBC express the adiponectin receptors AdipoR1 and AdipoR2. In T2D, 
low levels of receptor expression on PBC are associated with obesity, insulin 
resistance and coronary artery disease. We have previously shown that weight loss 
increases the PBC expression of AdipoR1 and AdipoR2 in a small cohort of patients 
with T2D. 
 
Aims: To assess the effect of lifestyle interventions, over and above that of weight loss, 
on the expression of adiponectin receptors by PBCs in T2D  
 
Method: 71 consecutive subjects were recruited from early-ACTID, a blinded 
randomised controlled trial of lifestyle interventions in newly diagnosed T2D. AdipoR1 
& AdipoR2 expression was measured by real-time quantitative PCR at baseline and at 
6 months following intervention. Insulin resistance was measured by HOMA-IR using 2 
pairs of fasting glucose and insulin.  
 
Results: At baseline, subjects had a mean BMI of 31.6+/-1.3kgm{sup}-2{/sup} and a 
HbA1C of 6.6+/-0.2%. By intention-to-treat analysis, AdipoR1 was significantly 
upregulated in the lifestyle intervention arm (fold change 2.02 vs 0.64 in the standard 
care arm, p=0.02). There was a trend for AdipoR2 to increase (fold change: 7.44 vs 
1.08 p=0.06). Post-hoc analysis including all subjects showed a fall in HOMA-IR 
(mean+/-SEM = -26+/-4% vs +32%+/-7%) was associated with a significant increase 
(p<0.05) in AdipoR1 and log(AdipoR2), as well as improvements in HbA1C (-0.3% vs  
+0.5% p<0.05). 
 
Conclusion: Lifestyle interventions and improved insulin sensitivity increase adiponectin 
receptor expression on PBC, and this could be a mechanism by which the glycaemic 
and cardiovascular benefits of diet and exercise are achieved. 
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3) EASD 2009 
 

Adiponectin receptor expression on peripheral blood 
mononuclear cells is reduced in autoimmune diabetes and can 
be upregulated with lifestyle intervention 
 
T.T.L. Pang1, E. Goble1, K. Weaver1, M. Chinem1, S.A. Eldershaw1, S.C. Gough1, R. 
Andrews2, P. Narendran1;  
1School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, 
United Kingdom, 2Joint Clinical Research Unit, University of Bristol, Bristol, United 
Kingdom. 
 
Background and aims: Studies of patients with genetic predisposition for T1D show 
that insulin resistance (IR) is an independent risk factor for T1D. We are interested in 
defining the mechanisms that link IR with progression to T1D, and in particular the 
potential role of adipocytokines such as adiponectin. Adiponectin is an anti-
inflammatory and insulin sensitising cytokine whose levels are inversely associated 
with IR. It signals through receptors AdipoR1 & AdipoR2, whose expression levels are 
increased by manoevres that reduce IR. These receptors have previously been found 
on peripheral blood mononuclear cells (PBMC) where stimulation reduces their 
proliferation and cytotoxicity, and increases their secretion of anti-inflammatory 
cytokines. We hypothesise that adiponectin has an anti-inflammatory effect on human 
islet autoimmunity. Our initial aim was to assess the expression of adiponectin 
receptors on PBMC in healthy and T1D subjects, and whether these expression levels 
could be modulated by exercise. 
Materials and methods: PBMC expression of AdipoR1 & AdipoR2 was quantified by 

flow cytometry and qPCR on 26 T1D subjects and 14 age and anthropometrically 
matched healthy male Caucasian volunteers. The proportion of cells expressing each 
receptor, and the mean fluorescence intensity (MFI) were calculated by subtracting 
from subject-specific isotype control staining. The estimated glucose disposal rate 
(eGDR) of T1D subjects was calculated using waist hip ratio, blood pressure and 
HbA1C as previously described. In addition, we measured the effect of 6 months of diet 
and exercise training on adiponectin receptor expression by PBMC using qPCR, in 9 
subjects with autoimmune diabetes. 
Results: AdipoR1 & AdipoR2 are expressed on monocytes and lymphocytes in both 

healthy and T1D subjects. On average, 47% of monocytes and 11% of lymphocytes 
expressed AdipoR1 and AdipoR2. AdipoR1 & AdipoR2 expression is decreased on 
monocytes (with a tendency to decrease in lymphocytes) in T1D compared to healthy 
subjects (figure). AdipoR1 & AdipoR2 expression by both monocytes and lymphcytes, 
measured by MFI, correlated significantly with eGDR in subjects with T1D (monocytes 
AdipoR1 r = 0.475, AdipoR2 r = 0.512; lymphocytes AdipoR1 r = 0.292, AdipoR2 r = 
0.420). Lifestyle intervention increases AdipoR1 & AdipoR2 gene expression at 6 
months (Fold change: AdipoR1 2.6 p = 0.02, AdipoR2 1.5, p = 0.07). 
Conclusion: Adiponectin receptor expression is decreased on PBMC from T1D 
subjects. These findings are consistent with adiponectin playing an anti-inflammatory 
role on islet autoimmunity, and may explain the association between insulin resistance 
and the development of T1D. Furthermore, therapies that reduce IR may also modulate 
the development of this disease.  
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4) American Diabetes Association 2010, EASD 2010 
 

T cell function is released from the anti-inflammatory effects of 
adiponectin (apM1) in type 1 diabetes (T1D): a potential link 
between insulin resistance (IR) and T1D. 
 
Pang TTL, Chimem M, Eldershaw SA, Gough SC, Narendran P 
 
School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, 
United Kingdom 
 
IR is independently associated with the development of T1D, though the mechanism 
for this is not clear. ApM1 is an insulin sensitizing and anti-inflammatory adipokine 
whose serum levels are reduced with IR. We hypothesized that changes in apM1 and 
its receptors may mediate the link between IR and T1D. We have previously shown 
that receptors for apM1, AdipoR1 & AdipoR2, are expressed by peripheral blood 
mononuclear cells (PBMC), and in particular by monocytes and CD14-, CD11c+ 
CD1a+ dendritic cells (DC). In a cross-sectional study (n=86), we also found that 
patients with T1D have reduced AdipoR1 & AdipoR2 expression on monocytes, 
compared to matched healthy controls as well as subjects with insulin treated type 2 
diabetes.  
 
DC are key regulators T cell immunity in T1D. To determine the effect of apM1 on DC 
function, we optimized the serum-free generation of DC from CD14+ monocytes. We 
found that the addition of apM1 decreased the expression of the co-stimulatory 
molecule CD86 on DC at both RNA and protein level by 39-64%. This inhibitory effect 
was dose dependent (IC50 = 1.3-1.9 ug/ml) and was maintained despite LPS 
stimulation. The expression of HLA-DR & CD80 did not alter. DC generated in the 
presence of apM1 showed reduced stimulatory capacity when tested on CD4CD25- 
effector T cells in CFSE proliferation assays. To determine the significance of the lower 
PBMC AdipoR expression in T1D, we compared the effect of addition of fixed doses of 
10ug/ml apM1 to monocytes from T1D and healthy subjects in the DC generation 
culture (n=12). ApM1 induced suppression of CD86 expression was significantly 
decreased in T1D by up to 31%, and the degree of inhibition significantly correlated 
with AdipoR1 protein expression of the monocyte precursors (r = -0.69 p <0.05). 
Moreover, the suppression of PBMC proliferation to the common antigen tetanus toxoid 
by the 10ug/ml apM1 dose was also significantly reduced in T1D. 
 
In conclusion, T cells are released from the anti-inflammatory effects of apM1 in 
patients with T1D. This mechanism may contribute to the association between IR and 
the development of T1D. 
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