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         Abstract 

Abstract 

 

Placental growth factor (PlGF) is a pro-angiogenic and inflammatory mediator that 

promotes many pathological conditions including, diabetes, atherosclerosis and cancer.  

In mouse models, the loss of PlGF or inhibition of vascular endothelial growth factor 

receptor-1 (VEGFR-1) activity suppresses these disorders.  Hyperglycaemia plays a 

fundamental role in the pathogenesis of type-2 diabetes and associated conditions, 

resulting in a loss of PI3 kinase (PI3K) signalling and dysfunction in endothelial cells.  

Using pharmacological inhibitors, siRNA, and adenoviral constructs to modulate the 

PI3K/Akt signalling activity, I found that the induction of PlGF expression in human 

umbilical vein endothelial cells (HUVEC) by hyperglycaemia is PI3K/Akt-dependent.  

Using similar approaches, the FOXO1 transcription factor was identified as the 

downstream target of Akt involved in the regulation of both PlGF and VEGFR-1 

expression.  FOXO1 was found to interact directly with the VEGFR-1 gene promoter in 

vitro, and over-expression of constitutively-active FOXO1 promotes PlGF expression in 

vivo.  Although VEGF activates PI3K/Akt, it stimulates robust PlGF release in 

endothelial cells.  Here I show that this effect is both VEGFR-2 and PKC-dependent, 

but independent of PI3K/Akt.  The PI3K/Akt/FOXO1 axis is an important regulator of 

vascular homeostasis and stress responses and the identification of its involvement in 

PlGF expression may provide new therapeutic targets for disorders characterised by 

endothelial dysfunction. 
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1.1. Angiogenesis 

 

In mammals, the vascular system is the main supplier of oxygen and nutrients required 

for growth and survival.  The formation and development of new blood vessels are 

essential during embryogenesis and throughout life for normal physiological processes 

such as wound healing, organ regeneration and in the female reproductive system 

during ovulation, menstruation and the formation of the placenta (Folkman, 1995).  

Abnormal growth of blood vessels has been linked to several disorders including 

proliferative diabetic retinopathy, cancer, rheumatoid arthritis, atherosclerosis, reviewed 

in (Folkman, 1971, Folkman, 1995, and Ross, 1999).  Understanding the molecular 

mechanisms underpinning this process and how they are regulated would provide an 

ideal target to treat these diseases. 

 

Formation and development of blood vessel networks differs throughout life.  During 

embryogenesis, endothelial cell progenitors ‘angioblasts’, induced by fibroblast growth 

factor (FGF), coalesce to form some of the major vessels such as the aorta.  This 

process is known as vasculogenesis (Flamme and Risau, 1992; Patz, 1978; Risau, 

1997).  The maturation and expansion of the primitive network is maintained by 

angiogenesis.  Through this process, new vessels are formed from pre-existing ones by 

vessel splitting (termed sprouting angiogenesis), or develop by intussusception and 

vessel elongation, also known as (a.k.a), non-sprouting angiogenesis.  These vessels 

undergo pruning and remodelling until a functional adult cardiovascular system is 

developed, reviewed in (Yancopoulos et al., 2000). 
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Angiogenesis is a multi-step process that is tightly co-ordinated by the fine balance 

between pro-angiogenic and anti-angiogenic factors.  It involves endothelial cell 

division, degradation of the basement membrane and the surrounding extracellular 

matrix, endothelial cell migration and the formation of blood vessels.  Angiogenesis is 

initiated in response to hypoxia through vascular relaxation which is mediated by nitric 

oxide (NO) (Carmeliet and Storkebaum, 2002; Folkman, 1997).  Vascular endothelial 

factor (VEGF) activation of endothelial cells increases NO and the release of proteases 

such as, plasminogen activators and matrix metalloproteinases.  These proteases loosen 

inter-endothelial contacts; promote detachment of smooth muscle cells as well as the 

degradation of the basement membrane of the existing vessels (Heymans et al., 1999).  

With the path cleared, the increased release of growth factors such as FGF-2, VEGF, 

and insulin-like growth factor-I (IGF-I) promotes endothelial cell proliferation and 

migration guided by the angiogenic stimuli.  This step is followed by the formation of 

the blood vessel lumen (Risau, 1995).  Platelet-derived growth factor (PDGF) released 

by endothelial cells, functions in a paracrine manner as a mitogen and chemoattractant 

for a variety of mesenchymal mural cells (pericytes in small vessels and smooth muscle 

cells in large vessels), which provide structural support, stability and maintain vessel 

integrity (Hirschi and D'Amore, 1997; Sims, 1986).  Angiopoietins 1 & 2 and their 

receptors, Tie1 and 2, are required in the later stages of angiogenesis, as they play a 

major role in the communication between endothelial cells and mesenchyme in the 

surrounding microenvironment, hence, establishing stable cellular and biochemical 

interactions (Yancopoulos et al., 2000).  Growth factors, cytokines and their receptors 

can function to regulate angiogenesis independently, collectively, or co-operate with 

environmental, or mechanical stimuli, to invoke a response to any physiological 

changes in the microenvironment (Pepper et al., 1998). 
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1.2. Vascular endothelial growth factor family 

 

Since the breakthrough made by Folkman in the early 1970s implicating ‘angiogenesis’ 

in the development and spread of tumours (Folkman, 1971; Folkman et al., 1971), 

extensive work has been undertaken to identify the molecules and the mechanisms 

regulating this dynamic and complex process.  These collective efforts led to the 

discovery of the VEGF family of growth factors (Ferrara and Henzel, 1989; Senger et 

al., 1990; Senger et al., 1983).  These factors are secreted by several cell types as freely 

soluble or extracellular matrix (ECM), or cell membrane bound forms, and play a 

fundamental role in modulating angiogenesis in many species’ in both physiology and 

pathology.  The VEGF family members, placenta growth factor (PlGF) (Maglione et al., 

1993; Maglione et al., 1991), VEGF-B (Olofsson et al., 1996), VEGF-C (Joukov et al., 

1996; Lee et al., 1996), VEGF-D (Achen et al., 1998; Orlandini et al., 1996) and 

VEGF-E (Lyttle et al., 1994) are structurally related and belong to the platelet-derived 

growth factor PDGF/ VEGF super family.  VEGF, a.k.a VEGF-A, has received the 

most attention and is a major regulator of both physiological and pathological 

angiogenesis. 

 

1.2.1. Vascular endothelial growth factor  

 

1.2.1.1. Structure and functional properties 

 

The crystal structure of VEGF showed that it is comprised of two monomers organised 

in anti-parallel fashion to form a dimer with receptor–binding sites located at each pole 

(Keck et al., 1989; Muller et al., 1997).  VEGF is a heparin-binding glycoprotein of 34-
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42 kDa located at chromosome 6p21.3 and exists in at least seven homodimeric 

isoforms (121, 145, 148, 165, 183, 189 and 206) encoded by 8 exons separated by 7 

introns (Houck et al., 1991; Tischer et al., 1991).  Exons 1 to 5 and 8 are conserved in 

all isoforms except VEGF148.  VEGF isoforms differ by the presence or absence of 

sequences encoded by exons 6 and 7 through alternative mRNA splicing.  The heparin-

binding domain encoded by exon 6, determines the degree of binding to extracellular 

matrix (ECM).  Therefore, VEGF121 which lacks exon 6 does not bind to heparin or 

ECM and is freely soluble (Houck et al., 1992).  VEGF165, the predominant isoform, 

has a moderate heparin binding ability, whereas VEGF145, VEGF189 and VEGF206 are 

the least diffusible and hence are completely sequestered in the ECM (Park et al., 

1993).  Recently, a new group of VEGF-A isoforms generated by alternative splicing at 

a more distal splice site in exon 8 have been identified. These isoforms are the same 

length as the classic VEGF isoforms but differ in their C-terminal 6 amino acids.  They 

were assigned with the name VEGF xxx b, where xxx denoting the amino-acid number 

of the mature protein.  Early studies on this family indicated that VEGF xxx b inhibits 

most of the pro-angiogenic functions of VEGF (Bates et al., 2002), a feature that could 

be exploited for anti-angiogenic therapeutic purposes. More studies are required to fully 

determine the precise biological function of this family. 

 

1.2.1.2. Regulation of VEGF gene expression 

 

The hypoxia inducible factor-1 (HIF-1) transcription factor is the major regulator of 

VEGF expression in various pathologies (Dor et al., 2001; Safran and Kaelin, 2003).  

The HIF family plays a role in the adaptive response to hypoxia in embryo development 

and the adult (Berra et al., 2006; Zhou et al., 2006).  HIF-1 is a basic heterodimeric 
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helix-loop-helix protein consisting of two subunits (HIF-1α, HIF-1β) that binds an 

enhancer sequence on the 5’-promoter of the VEGF gene resulting in the up-regulation 

and enhanced stability of the VEGF mRNA (Liu et al., 1995; Wang and Semenza, 

1995).  In some cancers, such as cerebellar hemangioblastomas and human renal 

carcinomas, inactivating mutations in the von Hippel-Lindau (VHL) tumour suppressor 

gene were reported to be the cause of the high VEGF expression in these tumours 

(Lonser et al., 2003).  VHL targets the degradation of HIF subunits; hence, the loss of 

VHL results in increased levels of HIF1α (Ivan et al., 2001; Jaakkola et al., 2001).  

Zundel et al (2000) showed that the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) 

signalling pathway is involved in the regulation of HIF-mediated responses outside the 

context of the hypoxic microenvironment.  The sustained activity of PI3K/Akt axis 

resulting from a mutation in phosphatase and tensin homolog on chromosome 10 

(PTEN) acting upstream of this pathway led to increased activity of HIF-1 and 

enhanced VEGF production.  Several growth factors i.e. IGF-I also up-regulate VEGF 

mRNA expression in a paracrine or autocrine manner independently of hypoxia in the 

microenvironment (Warren et al., 1996).  Pro-inflammatory cytokines such as 

interlukin-1α (IL-1α) in human synovial fibroblasts, and interleukin-6 (IL-6) in tumour 

cell lines have also been shown to stimulate VEGF production in a wide range of 

inflammatory disorders (Ben-Av et al., 1995). 
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1.2.2. Biological functions of VEGF 

 

1.2.2.1. Endothelial cell mitogenesis, angiogenesis and survival  

 

The loss of a single VEGF allele during embryonic development is lethal.  The 

heterozygous (VEGF
+/-

) mouse embryos die between day 11 and 12, exhibit significant 

defects in the vasculature of several organs and tissues such as placenta, the nervous 

system, and markedly reduced number of nucleated red blood cells within blood islands 

in the yolk sac (Carmeliet et al., 1996; Ferrara et al., 1996).  VEGF over-expression in 

mice hearts results in severe abnormalities in heart development and lethality at 

embryonic days 12.5 and 14 (Miquerol et al., 2000).  This demonstrates the importance 

of tight regulation of VEGF levels during development.  The selective knockout of the 

VEGF 
120/120

 isoform is also lethal, as most mice die in utero or soon after birth 

(Carmeliet et al., 1999).  It has been established that VEGF promotes the growth and 

proliferation of endothelial cells, and promotes angiogenesis by inducing cell migration, 

tube formation and sprouting from aortic rings in vitro (Nicosia et al., 1994; Pepper et 

al., 1992).  VEGF has also been shown to enhance lymph angiogenesis in vivo (Nagy et 

al., 2002) 

 

VEGF plays an important role in endothelial cell survival.  VEGF can maintain the 

viability of endothelial cells in the absence of serum by activating the PI3K/Akt 

survival signalling pathway (Fujio and Walsh, 1999), leading to induction of pro-

survival proteins such as Bcl-2  (Gerber et al., 1998a) and the suppression of proteins 

that promote cell apoptosis and cell cycle arrest such as forkhead boxO1 (FOXO1) and 

forkhead boxO3a (FOXO-3a) in cultured endothelial cells (Potente et al., 2005). 
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1.2.2.2. Enhancement of vascular permeability and haemodynamic effects 

 

VEGF was discovered due to its ability to induce vascular leakage (Dvorak et al., 1995; 

Senger et al., 1983).  NO is an essential mediator of this process (Morbidelli et al., 

1996; Parenti et al., 1998).  Fukumura et al, 2001 showed that processes such as 

angiogenesis, vessel diameter, blood flow rate and vascular permeability are all NO-

dependent and proportionate to NO levels produced.  These processes are impaired in 

endothelial nitric oxide synthase (eNOS) knockout mice.  VEGF is implicated in 

monocyte chemotaxis, which plays an important role in VEGF-mediated promotion of 

angiogenic processes such as collateral growth and arteriogeneis (Clauss et al., 1990).  

VEGF administration to adult mice blocks the development of dendritic cells and this 

was shown to promote tumour evasion of the host’s immune system.  VEGF also plays 

a role in vascular smooth muscle cell proliferation and migration (Bhardwaj et al., 

2005).  Interestingly, VEGF was also shown to mediate the proliferation and migration 

of blood cells in Drosophila (Cho et al., 2002). 

 

1.3. Vascular endothelial growth factor receptors 

 

The receptors for VEGF family members are three high affinity receptor tyrosine 

kinases (RTKs), VEGFR-1, a.k.a. Fms-like tyrosine kinase-1 (Flt-1), VEGFR-2 a.k.a. 

kinase insert domain receptor (KDR) and VEGFR-3 a.k.a. Fms-like tyrosine kinase-4 

(Flt-4), and two accessory, non-enzymatic receptors, neuropilin-1 and -2 (NP-1) and 

(NP-2).  As shown in Figure 1.1, VEGF-A binds VEGFR-1 and VEGFR-2, whereas 

PlGF and VEGF-B only binds VEGFR-1.  Both VEGF-C and VEGF-D bind VEGFR-2 

and VEGFR-3 (Karkkainen et al., 2002; Pajusola et al., 1992).  NP-1 and NP-2 are 



      Chapter 1-Introduction 

9 
 

members of the semaphorin family and implicated in neuronal development and 

angiogenesis (Klagsbrun et al., 2002; Neufeld et al., 2002).  NP-1 binds VEGF165, 

VEGF-B and PlGF, but fails to bind VEGF121; whereas, NP-2 binds VEGF165, VEGF-C 

and PlGF. 

 

VEGFR-1 and VEGFR-2 were first identified on vascular endothelial cells in vitro 

(Plouet and Moukadiri, 1990; Vaisman et al., 1990) and in vivo (Jakeman et al., 1993; 

Jakeman et al., 1992).  These receptors are not exclusively expressed on endothelial 

cells, but are also present on other cell types such as bone marrow-derived cells, 

monocytes (Shen et al., 1993), vascular smooth muscle cells (VSMCs) (Ishida et al., 

2001) and cancer cells (Skobe et al., 1997).  VEGFR-1 and VEGFR-2 are highly related 

RTKs that consist of a seven immunoglobulin IgG-like domains in the extracellular 

domain, a single transmembrane region, and tyrosine kinase domain that is interrupted 

by a 70 amino-acid kinase–insert domain, and a C-terminal tail (Matthews et al., 1991; 

Shibuya et al., 1990; Terman et al., 1991).  Mutation studies have shown that the second 

and third IgG-like domains constitute the ligand-binding domains, whereas the fourth 

IgG-like domain is responsible for dimerisation (Davis-Smyth et al., 1998; Fuh et al., 

1998; Shinkai et al., 1998).  Differences in the VEGFR domain structure underpins the 

variance in their biological activities.  The VEGF family members show different 

affinities for neuropilins (NPs) and heparin sulfate proteoglycans, which are also 

implicated in the modulation of VEGFR-functions. 
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1.3.1. Vascular endothelial growth factor receptor-1 (VEGFR-1)  

 

VEGFR-1 is 180 kDa glycoprotein and product of the human flt-1 gene which is located 

on chromosome 13q12 (de Vries et al., 1992; Rosnet et al., 1991). VEGFR-1 is 

predominantly expressed on endothelial cells, but it is also detected on placental 

trophoblasts, osteoblasts, monocytes, macrophages, renal mesangial, thyroid cells and 

in some hematopoietic stem cells (Ahmed et al., 1995; Barleon et al., 1996; Susarla et 

al., 2007; Takahashi et al., 1995).  VEGFR-1 binds VEGF-A, VEGF-B and PlGF with 

high affinity. This receptor is essential for development during embryogenesis as mice 

lacking VEGFR-1, as shown in Figure 1.2, die at E8.5 as a result of overgrowth of 

endothelial cells and vasculature (Fong et al., 1995), however, mice expressing 

 

Figure 1.1:  The interactions of the VEGFs with their high-affinity tyrosine kinase receptors Flt-1, 

s-Flt-1, KDR, Flt-4, and accessory receptors, neuropilin-1 and –2 (NP-1/-2).  VEGFR-1/Flt-1, 

VEGFR-2/KDR and VEGFR-3/Flt-4 possess 7 immunoglobulin-like loops in the extracellular domain 

and an intracellular split tyrosine kinase domain and bind VEGFs selectively.  NP-1 and NP-2 bind 

VEGF and PlGF in an isoform-specific manner and interact with Flt-1, KDR and Flt-4 to modulate 

their activity.  Signalling diversity is increased further by the expression of VEGF heterodimers and 

formation of heterodimeric receptor complexes (kindly provided by Dr PW Hewett).  
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VEGFR-1 lacking the tyrosine kinase domain survive, suggesting that VEGFR-1 

signalling is not essential, and acts as decoy receptor for VEGF during development 

(Hiratsuka et al., 1998). 

 

 

 

 

 

 

 

 

 

 

VEGFR-1 has a higher affinity (over 10-fold) for VEGF-A than VEGFR-2 does, but is 

only weakly phosphorylated generating a very weak kinase signal, and is unable to 

elicit a mitogenic response in endothelial cells (Waltenberger et al., 1994), indicating 

that VEGFR-1 may not primarily function as a signalling receptor, but rather as a decoy 

receptor that negatively regulates VEGF activities on the endothelium by sequestration.  

It later became clear that VEGFR-1 is also capable of transmitting signals in its own 

right as well as forming heterodimers with VEGFR-2 that have strong signalling 

properties (Autiero et al., 2003a; Huang et al., 2001).  VEGFR-1 activation by PlGF 

 

 

Figure 1.2.  Role of VEGFR-1 in the regulation of angiogenesis.  VEGFR-1 has a very low 

tyrosine activity.  Mouse embryos lacking VEGFR-1 die as a result of vascular defects, whereas, 

mice expressing VEGFR-1 without the tyrosine kinase domain survive, suggesting that VEGFR-1 

signalling is not essential, and acts as a decoy receptor for VEGF during development. However, 

the truncation of tyrosine kinase domains or down-regulation of VEGFR-1 suppresses tumour 

growth and abrogates VEGF-induced angiogenesis (kindly provided by Dr PW Hewett).  
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promotes angiogenesis either independently or through intracellular crosstalk with 

VEGFR-2 (Autiero et al., 2003a).  Moreover, VEGFR-1 is essential for VEGF as well 

as PlGF-mediated monocyte chemotaxis and in the recruitment and survival of bone 

marrow-derived progenitor cells (Barleon et al., 1996; Hattori et al., 2002).  Recently, a 

role for VEGFR-1 in the regulation of metabolism was identified.  VEGFR-1 binding to 

VEGF-B was shown to mediate the induction of fatty acid up-take in endothelial cells 

(Hagberg et al., 2010).  Growth factor binding to the extracellular domain of an RTK 

triggers homo-dimerisation, or heterodimerisation with other adjacent RTKs, leading to 

rapid activation of the receptor and auto-phosphorylation of multiple specific 

intracellular tyrosine residues in the cytoplasmic kinase domain.  VEGFR-1 is 

autophosphorylated at Y 1169, 1213, 1242, 1327 (Cunningham et al., 1995; Ito et al., 

2001; Sawano et al., 1997).  PlGF binding to VEGFR-1 activates PI3K/Akt and 

promotes survival in endothelial cells and monocytes (Cai et al., 2003b), and NO 

production by inducing the phosphorylation of eNOS on serine 1177 (Ahmad et al., 

2006).  Insights into the role of VEGFR-1 in vivo have been shown by inhibiting its 

function. The inhibition of VEGFR-1 using a specific VEGFR-1 antibody suppressed 

neovascularisation in tumours, inflammation in arthritis and plaque formation and 

rupture in atherosclerosis in mice (Luttun et al., 2002). 

 

A soluble form of VEGFR-1 (sVEGFR-1; a.k.a sFlt-1) results from alternative splicing 

of VEGFR-1 gene and consists only of the extracellular domain of VEGFR-1.  As 

shown in Figure 1.3, s-VEGFR-1 has the ability to A) inhibit the actions of VEGF and 

PlGF by preventing their interaction with their respective RTKs.  It can also interact 

with itself and VEGFR-2 forming homo/heterodimers formation and 

transphosphorylation/activation (B and C) (Kendall et al., 1996).  In humans and mice, 
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s-VEGFR-1 has been linked to preeclampsia and inhibition of wound healing (Ahmad 

and Ahmed, 2004; Carmeliet et al., 2001; Maynard et al., 2003).  To sum up, VEGFR-1 

may act as a positive or a negative regulator of angiogenesis depending on the 

circumstances. 

 

 

 

 

 

 

 

 

 

 

1.3.2. Vascular endothelial growth factor receptor-2 (VEGFR-2)  

 

VEGFR-2 is a.k.a. KDR in human (Terman et al., 1992b) and fetal liver kinase receptor 

(Flk-1) in mice.  Human VEGFR-2 was first cloned from a human endothelial cell 

cDNA library (Terman et al., 1991; Terman et al., 1992a).  VEGFR-2 is primarily 

expressed on endothelial cells, but is also detected in hematopoietic stem cells, 

megakaryocytes, retinal progenitor cells and tumour cells (Katoh et al., 1995; Thieme et 

al., 1995; Yang and Cepko, 1996).  The expression of VEGFR-2 is first detected at E 

7.5 in mesodermal cells (Kaipainen et al., 1993; Shalaby et al., 1995).  VEGFR-2 

 

 

Figure 1.3: s-VEGFR-1/sFlt-1 regulates VEGF availability and activity: A It acts as sink, 

sequestering its ligands, VEGF, PlGF and VEGF-B preventing binding to Flt and KDR.  B sFlt-1 

also acts in a dominant-negative manner to block the formation of Flt-1 and KDR homo- and 

heterodimers and so prevent C their transphorylation/activation (Kendall et al., 1996(Hewett, 

2006) 
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knockout mice die in utero between 8.5 and 9.5 days due to impaired development of 

haematopoietic, endothelial cells and failure to develop blood islands and organised 

blood vessels (Shalaby et al., 1995) 

 

 

 

 

 

 

 

 

 

 

Although VEGFR-2 binding affinity to VEGF is lower than that of VEGFR-1, the 

majority of VEGF biological functions, including mitogenic, angiogenic, and 

permeability-enhancing effects in physiological and pathological angiogenesis, are 

elicited through VEGFR-2. 

 

VEGFR-2 is highly expressed in tumour vasculature compared to normal vasculature 

(Plate et al., 1994).  Upon stimulation with VEGF, VEGFR-2 undergoes dimerisation 

and auto-phosphorylation of its tyrosines in the intracellular domain in a ligand-
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eNOS
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VEGFR-1

Figure 1.4.  VEGFR-1 and VEGFR-2 signal transduction pathways in endothelial cells.  In 

endothelial cells growth factor activation of the PI3K/Akt promotes cell survival and nitric oxide 

(NO) generation via phosphorylation of eNOS.  The activation of the MAPK/ERK signalling 

cascade, via PLCγ and PKC controls cell proliferation via VEGFR-2.  VEGFR-2–mediated 

activation of PLCγ of PKC can also promote NO production via phosphorylation of eNOS.  eNOS, 

endothelial nitric oxide synthase; MAPK, mitogen-activated protein kinase; MEK, MAPK; PI3K, 

phosphatidylinositol 3′ kinase; PKC, protein kinase C; PLCγ, phospholipase Cγ, DAG, 

diacylglycerol, Ca 
2+

,calcium. 
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dependent manner.  Tyrosine residues at 951,1054,1059,1175 and 1214 are 

phosphorylated in human VEGFR-2 (Shibuya and Claesson-Welsh, 2006).  Y1175 and 

Y1214 are the two major VEGF–dependent auto-phosphorylation sites in VEGFR-2. 

Auto-phosphorylation of Y1175 is essential for VEGF-dependent endothelial cell 

proliferation (Takahashi et al., 2001).  As shown in Figure 1.4, VEGF induces the 

phosphorylation and activation of phospholipase Cγ (PLCγ) resulting in diacylglycerol 

formation and thus the activation of protein kinase C (PKC) (Takahashi et al., 2001).  

Unlike other conventional RTKs, VEGFR2-mediated mitogen-activated-protein kinase 

(MAPK) activation is not thought to be coupled to Ras.  Instead, MAPK is stimulated 

but via phospholipase Cγ (PLCγ) and PKC activation of Raf (Takahashi et al., 1999).  

In this study, Ras is poorly activated by VEGFR-2 activation, and p42/44 MAPK 

stimulation is Raf-mediated via PKC following PLCγ activation in endothelial cells of 

the rat liver.  Control of proliferation and growth by other growth factors is mediated by 

the Ras/MAP-kinase pathway.  Binding of growth factors e.g. EGF to their respective 

RTKs causes the recruitment of SH2 domain-containing adaptor proteins such as Grb2, 

the formation of this complex triggers the translocation of the son of sevenless (SOS) 

into close proximity of Ras plasma membrane, this promotes the conversion of the 

inactive GDP-associated with Ras into active GTP.  This initiates a phosphorylation 

cascade involving Raf, mitogen-activated protein kinase (MAPK)/extracellular signal-

regulated kinase kinase (MEK) and MAPK (Stokoe et al., 1994).  Endothelial cell 

survival and chemotaxis is mediated via the PI3K/Akt pathway (Byzova et al., 2000; 

Gerber et al., 1998b).  Other pathways activated by VEGF via VEGFR-2 include Ras 

GTPase activating protein (Guo et al., 1995). 
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1.4. Placental growth factor (PlGF) 

 

1.4.1. Structure and functional properties 

 

PlGF was first discovered by Persico et al., (1991) in a human placenta cDNA library; 

hence its name.  It is a homodimeric glycoprotein that shares 42% amino acid sequence 

identity with VEGF and has a very similar tertiary structure (Iyer et al., 2001; Maglione 

et al., 1991).  The human PlGF gene is located on chromosome 14 and encodes seven 

exons.  In humans, alternative mRNA splicing yields four PlGF (1-4) isoforms of 131, 

152, 203 and 224 amino-acid chain length.  Whereas, the mouse only expresses PlGF-2.  

PlGF has been detected in many human tissues, including, breast (Parr et al., 2005), 

stomach (Chen et al., 2004), prostate (Matsumoto et al., 2003a), heart (Iwama et al., 

2006), lung (Persico et al., 1999), retina (Feeney et al., 2003), thyroid (Viglietto et al., 

1995), and skin (Failla et al., 2000; Odorisio et al., 2006).  PlGF is expressed by several 

cell types including, endothelial cells, thyroid epithelial cells, VSMC, pro-inflammatory 

cells (i,e monocytes and macrophages), bone marrow cells, neurons and keratinocytes 

(Failla et al., 2000) and trophoblasts (Khaliq et al., 1996; Shore et al., 1997; Vuorela et 

al., 1997), in particular when these cells are stressed, or activated (Beck et al., 2002; 

Iyer and Acharya, 2002; Luttun et al., 2002).  Although tumours respond to PlGF and 

some tumour cells such as choriocarcinoma cells produce it; whether tumour cells 

actually secrete significant amounts of PlGF is controversial as conditioned-medium 

from various cancer cell lines were devoid of PlGF (PWH unpublished data).  This 

suggests that the source of PlGF detected in certain cancers is produced by the stromal 

cells, such as endothelial and inflammatory cells. 
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PlGF-1 is a dimeric protein with a molecular weight of 46 kDa and is composed of 131 

amino acid residues per monomer, whereas PlGF-2 and 4 contain additional 21 basic 

residues that confer ability to bind negatively charged heparan sulfate proteoglycans.  

PlGF-3 is structurally similar to PlGF-4 but lacks the heparin binding domain (Yang et 

al., 2003).  Little is known about PlGF isoforms and the differences in their function.  

PlGF can naturally form heterodimers with VEGF (DiSalvo et al., 1995).  VEGF:PlGF 

heterodimers were detected in tumour cell supernatants and their activity has 

controversially been reported to be less effective than VEGF165 homodimers (Cao et al., 

1996; Eriksson et al., 2002; Xu et al., 2006). These heterodimers promote the formation 

of VEGFR1:VEGFR2 heterodimers to which they preferentially bind (Autiero et al., 

2003a), they also bind VEGFR1:VEGFR1, but not VEGFR-2:VEGFR-2 (Eriksson et 

al., 2002) 

 

Although the role of PlGF in pathology has been extensively studied, there is very 

limited information on its transcriptional regulation, in particular, in endothelial cells.  

In preeclampsia, a pregnancy disorder characterised by placental hypoxia and 

deficiency in vascularisation.  There has been a reported to be a decrease in PlGF 

secretion by placental trophoblasts in the serum of preeclamptic women (Levine et al., 

2006).  In recent years several transcription factors binding sites have been identified in 

the PlGF promoter.  The metal-responsive transcription factor (MTF-1), has been 

implicated in the hypoxia stimulated up-regulation of PlGF expression in fibroblasts 

and human choriocarcinoma cell lines (Green et al., 2001; Nishimoto et al., 2009).  

Promoter deletion analysis demonstrated the existence of multiple MTF-1 binding sites 

in the PlGF promoter which have been shown to be important for the hypoxic 

regulation of PlGF in the BeWo choriocarcinoma cell line.   The binding of MTF-1 to 
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the PlGF promoter has been shown using ChIP analysis (Nishimoto et al., 2009).  The 

5’UTR of the PlGF gene contains a number of nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) sites which are reported to be of significance in 

the regulation of PlGF gene activity in response to inflammatory cytokines in 

fibroblasts (Cramer et al., 2005).  PlGF is also reported to be selectively switched on for 

a short period during the development in the embryonic kidney by the epithelium-

specific BF-2 (FoxD1) transcription factor in mesenchymal cells (Zhang et al., 2003).  

In a very recent report, two functional cAMP responsive elements (CRE) in the PlGF 

promoter have been identified which bind the CRE binding protein, CREB, and 

contribute to cAMP mediate regulation of gene expression (Depoix et al., 2011). 

 

1.4.2. PlGF and receptor interactions 

 

Unlike VEGF, PlGF binds only to VEGFR-1 and NP-1 and NP-2 (Migdal et al., 1998; 

Persico et al., 1999).  The binding of PlGF to VEGFR-1 has been shown to lead to the 

phosphorylation of alternative tyrosine residues in VEGFR-1 and gene activation 

distinct from those elicited by VEGF (Autiero et al., 2003b).  In addition, as shown 

Figure 1.5, PlGF can induce signals though VEGFR-1 independently of VEGF (Ahmad 

et al., 2006; Cai et al., 2003b).  As shown in Figure 1.6, PlGF binding to VEGFR-1 and 

s-VEGFR-1 prevents VEGF from binding to or displaces already bound VEGF from 

VEGFR-1, thereby, increasing the concentration of VEGF available to activate 

VEGFR-2 and enhance VEGF-driven angiogenesis (displacement theory) (Park et al., 

1994). Furthermore, the binding of PlGF to VEGFR-1 triggers VEGFR-1 and VEGFR-

2 molecular crosstalk, consequently enhancing VEGFR-2 signalling and VEGF-driven 

angiogenesis, as shown in Figure 1.7 (Autiero et al., 2003a) 
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Figure 1.5.  PlGF enhances angiogenesis directly.  PlGF can elicit its biological functions 

through its direct interaction/activation of VEGFR-1 in endothelial cells and VEGFR-1-expressing 

cells.  PlGF was shown to induce the phosphorylation of tyrosines distinct from the ones induced by 

VEGF in VEGFR-1, indicating that PlGF, in its own right, transmits angiogenic signals via 

VEGFR-1 distinct from those of VEGF (Autiero et al., 2003a) (kindly provided by Dr PW Hewett).  
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Figure 1.6.  PlGF enhances VEGF-driven angiogenesis. By preferentially binding to VEGFR-1, 

PlGF displaces VEGF from VEGFR-1, thereby making more VEGF available to bind and induce 

VEGFR-2 signalling (kindly provided by Dr PW Hewett).  
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1.4.3. PlGF biological functions 

 

PlGF knockout mice are viable and fertile without major vascular defects.  This 

indicates a minor role for PlGF during embryonic development (Carmeliet et al., 2001).  

PlGF plays an essential role in angiogenesis-associated pathologies throughout 

adulthood and induces a wide range of biological effects in vivo and in vitro through 

various cell types.  PlGF enhances angiogenesis by acting directly or through pro-

angiogenic mediators (Cai et al., 2003b; Khaliq et al., 1996), stimulates migration and 

survival of endothelial cells (Adini et al., 2002; Cai et al., 2003b; Fischer et al., 2007; 

Ziche et al., 1997), induces vasodilatation and stimulates collateral vessel growth 

(Bellik et al., 2005; Yonekura et al., 1999).  PlGF can also directly contribute to the 

maturation of newly formed blood vessels by promoting the recruitment and 

 

 

Figure 1.7.  PlGF can also co-operate with VEGF to promote angiogenesis.  Activation of 

VEGFR-1 by PlGF triggers intermolecular cross-talk between VEGFR-1 and VEGFR-2, thereby 

inducing the VEGF angiogenic VEGR-2-mediated signals (kindly provided by Dr PW Hewett). 
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mobilisation of VEGFR-1-expressing endothelial progenitor cells (EPC) and stem cells 

(Hattori et al., 2002; Luttun et al., 2002; Pipp et al., 2003).  

 

1.5. The role of PlGF in pathology 

 

1.5.1. PlGF and VEGFR-1 in inflammatory disorders 

 

Atherosclerosis and rheumatoid arthritis (RA) are chronic inflammatory disorders 

characterized by angiogenesis.  Adenoviral delivery of PlGF-2 into apolipoprotein-E-

deficient (ApoE
–/–

) mice increased intimal thickening and macrophage accumulation 

compared with ApoE
–/– 

and PlGF
–/– 

mice, suggesting a role for PlGF in the promotion 

of atherosclerosis (Khurana et al., 2005).  In addition, the inhibition of VEGFR-1 

significantly reduced the size of atherosclerotic lesions in ApoE
–/–

 mice.  These mice 

are susceptible to developing atherosclerosis due to accumulation of lipids and 

increased inflammation in the proximal aorta when fed high fat diet (Luttun et al., 

2002).  The blockade of VEGFR-1 had a dramatic effect on the cellular content of the 

plaques, as up to 40% of macrophage transmigration was reduced, whereas anti-

VEGFR-2 had no effect, indicating that the increase in the atherosclerotic plaque size is 

attributed to inflammation rather than angiogenesis, thus, it was concluded that the 

suppression of inflammatory cell infiltration by blocking VEGFR-1 confers 

atheroprotection.  In addition, the elevation of PlGF expression in patients with 

atherosclerosis is correlated with inflammation, vascularisation and plaque instability 

(Pilarczyk et al., 2008).  In rheumatoid arthritis (RA) growth factors, cytokines, 

chemokines as well as adhesion molecules and matrix-degrading proteases have been 

detected in the inflamed synovium (Bodolay et al., 2002).  Synoviocyte proliferation, 
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infiltration of inflammatory cells and cartilage destruction are all hallmarks of this 

disease (Lee and Weinblatt, 2001; Szekanecz and Koch, 2007; Weber and De Bandt, 

2000).  In an animal model mimicking human arthritis (Courtenay et al., 1980), 

VEGFR-1 and PlGF were detected on inflammatory and endothelial cells in the 

inflamed synovium in the affected joints.  The inhibition of VEGFR-1 led to a 60% 

decrease in the incidence of the joint disease, suppressed the development of clinical 

symptoms by up to 85% and protected against bone destruction compared with anti-

VEGFR-2 treatment, which was ineffective.  All these effects can be explained by the 

fact that inhibition of VEGFR-1, which is expressed by inflammatory cells such as 

monocytes and macrophages, blocked PlGF-stimulated inflammatory cell infiltration 

and activation of leucocytes.  Taken together, the failure of anti-VEGFR-2 to block 

atherosclerosis and arthritis independently of angiogenesis indicates that it is PlGF 

acting via VEGFR-1 to promote inflammation (Luttun et al., 2002).  Furthermore, anti-

VEGFR-1 blocked the recruitment of bone marrow-derived cells into atherosclerotic 

plaques and arthritic joints (Luttun et al., 2002).  The lack of leukocyte accumulation 

was partly due to the inhibition of myeloid cell transmigration, differentiation and 

reduced mobilisation from the bone marrow into the peripheral blood.  Also, anti-

VEGFR-1 suppressed the mobilization of hematopoietic progenitors into the peripheral 

blood by 75% (Luttun et al., 2002).  PlGF has also been reported to drive VEGFR-1-

dependent mobilization of haematopoietic stem and progenitor cells to reconstitute 

haematopoiesis (Hattori et al., 2002; Heissig et al., 2002). 
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1.5.2. The Role of PlGF in Cancer 

 

That tumours grown in PlGF knockout mice were small and avascular compared with 

tumours implanted in wild-type counterparts, was the first evidence presented linking 

PlGF to cancer promotion (Luttun et al., 2002).  PlGF has been implicated in the 

promotion of tumour growth by enhancing angiogenesis and conferring resistance to 

anti-tumour treatment (Escudero-Esparza et al., 2009; Fischer et al., 2007; Luttun et al., 

2002; Zhang et al., 2005),  but, there are conflicting reports regarding the types of 

tumours that express PlGF.  PlGF mRNA and protein levels are increased in gastric 

cancer (Chen et al., 2004), correlate with disease progression and survival in colorectal 

cancer (Wei et al., 2005), tumour stage in lung cancer (Zhang et al., 2005) and 

recurrence and mortality in breast cancer  (Parr et al., 2005).  In renal cancer, PlGF 

plasma levels correlate with tumour stage and survival (Matsumoto et al., 2003b).  In 

contrast, PlGF is not detectable in some cancers, i.e. ovarian cancer (Sowter et al., 

1997) and is reduced in thyroid cancer (Viglietto et al., 1995).  In recent reports, PlGF 

was proposed as a potential prognostic marker for certain types of cancers (Zhang et al., 

2005). 

 

The development of anti-PlGF antibody was proposed as a therapy for some, but not all 

tumours. Previous studies showed that anti-PlGF antibody inhibited tumour 

neovascularisation and the pre-existing tumour vasculature, and suppressed 

inflammation through it is ability to block the recruitment of inflammatory cells to 

tumour microenvironment (Fischer et al., 2007; Van de Veire et al., 2010).  A key 

feature of anti-PlGF therapy is its safety profile, as it does not affect healthy vessels and 

it was claimed that it did not cause side effects associated with anti-VEGF therapy 
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(hypoxia).  These findings have recently been contested by Bais et al (2010) who found 

that anti-PlGF therapy had no effect on 15 types of tumours tested.  Furthermore, anti-

PlGF did not have an additive effect to anti-VEGF therapy (Fischer et al., 2007).  In a 

very recent report host-produced histidine-rich glycoprotein (HRG) was shown to 

inhibit tumour growth and metastasis by induction of macrophage polarisation and 

vessel normalisation through down-regulation of PlGF (Rolny et al., 2011). 

 

Increased levels of VEGFR-1 are reported in various types of cancers by 

immunohistochemistry in breast cancer, oesophageal cancer and prostate cancer 

(Fragoso et al., 2008; Jackson et al., 2002; Kato et al., 2002).  The contribution of PlGF 

to tumour growth and progression is primarily via its ability to directly recruit and 

promote the proliferation and migration of VEGFR-1-expressing tumour cells (Fischer 

et al., 2007), and suppression of the immune system by blocking the maturation of 

myeloid dendritic cells (Dikov et al., 2005).  In addition, PlGF can induce the growth of 

tumour blood vessels and influence the tumour microenvironment.  PlGF also recruits 

VEGFR-1-expressing bone marrow stem cells which contribute to the growing sprouts 

of blood vessels by direct incorporation into the vessel wall, or indirectly, by secreting 

pro-angiogenic growth factors (Hattori et al., 2002; Luttun et al., 2002; Pipp et al., 

2003).  PlGF stimulates the recruitment of pericytes, smooth muscle cells and 

inflammatory cells such as macrophages to tumour sites (Adini et al., 2002; Fischer et 

al., 2008).  The angiogenic switch during VEGFR-1 inhibition results in direct PlGF up-

regulation in mice and cancer patients (Casanovas et al., 2005; Fischer et al., 2007; 

Willett et al., 2004).  Taken together, PlGF and its receptor may provide an excellent 

target for therapies aimed at treating cancer, and clinical trials are ongoing for the 

proposed anti-PlGF therapy.  The findings of these trials will ultimately help address 



      Chapter 1-Introduction 

25 
 

the unanswered questions about the role of PlGF in the promotion/progression of cancer 

in humans. 

 

1.5.3. The role of PlGF in diabetic complications. 

 

Abnormal endothelium function, a.k.a. endothelial dysfunction, resulting in loss of 

vascular integrity is a hallmark of diseases characterised by hyperglycaemia such as 

diabetes mellitus (Song et al., 2007).  Clinical trials aimed at rigorous control of glucose 

levels showed reduced the risk of diabetes-associated complications such as 

retinopathy, neuropathy,
 

nephropathy and atherosclerosis, thus providing evidence 

linking hyperglycaemia to the progression or the exacerbation, of micro- and 

macrovascular disorders (Nathan et al., 2003).  

 

Vascular and neural systems in the human body are interlinked, and microvascular 

impairment in diabetes has been associated with the progression of neural dysfunction.  

It was demonstrated that endothelial dysfunction characterised by reduced NO 

production was associated with the development of foot ulceration in diabetic patients 

(Veves et al., 1998).  Diabetic retinopathy is the major cause of impairment of visual 

function, leading to blindness (Engerman and Kern, 1995). Pathological retinal 

neovascularisation occurs in up to 20% of diabetic patients, resulting from an imbalance 

between pro- and anti-angiogenic factors (Adamis et al., 1994; Aiello et al., 1994; 

Arfken et al., 1998).  PlGF is elevated during development of proliferative diabetic 

retinopathy (Khaliq et al., 1998; Mitamura et al., 2002) and PlGF immunoreactivity is 

localised in the vitreous of diabetic patients, but was absent in healthy controls (Khaliq 
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et al., 1998).  In diabetic retinopathy, PlGF mRNA was up-regulated in the retina 

(Spirin et al., 1999), and PlGF deficiency prevented the development of experimental 

choroidal neovascularisation (Rakic et al., 2003).  Furthermore, Holborn et al (2006) 

showed that retinal pigment epithelium cells (RPE) express both, PlGF, VEGFR-1 and 

neuropilins, which were found to regulate the chemotaxis of RPE cells.  PlGF is a major 

factor in the induction of RPE-blood–retinal barrier disruption in a VEGFR-1-

dependent manner in diabetic retinopathy (Miyamoto et al., 2007).  

 

Inflammation is implicated in the molecular pathophysiology of diabetic retinopathy 

(Adamis, 2002), vascular endothelial dysfunction and endothelial cell death in diabetes 

(Mizutani et al., 1996; Song et al., 2007).  In these inflammatory disorders the 

PI3K/Akt signalling pathway, which functions as a link between the forkhead 

transcription factors, insulin and IGF-1 receptors is significantly suppressed (Kops et 

al., 1999; Song et al., 2007). 

 

1.6. Insulin/IGF-I metabolic signalling pathway 

 

1.6.1. Insulin/IGF-I receptors 

 

The Insulin and insulin-like growth factor-I (IGF-I) receptor tyrosine kinases (RTKs) 

are tetrameric proteins consisting of two glycosylated and crosslinked alpha and beta 

subunits.  The α chains are extracellular and bind their respective ligands (insulin or 

IGF-I) while the β subunits span the membrane and are responsible for intracellular 

signal transduction upon ligand stimulation (LeRoith et al., 1995; Seino et al., 1989).  
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There is a 60% amino-acid homology between IGF-1R and the insulin receptor (IR), 

and under certain physiological conditions they form functional heterodimers (Butler 

and LeRoith, 2001).  Both receptors are expressed on micro- and macrovascular 

endothelial cells (Jialal et al., 1985).  In human endothelial cells the expression ratio of 

IGF-IR to IR expression on the cell surface is 10 to 1, approximately 400,000 IGF-IR to 

40,000 IR per cell (Zeng and Quon, 1996).  IGFR-1:IR heterodimer affinity is low for 

insulin (Nitert et al., 2005).  The physiological concentration of insulin (100-500 pM) 

activates IR signalling, but fails to stimulate IGF-1R and IGF-1R:IR heterodimer 

signalling (Li et al., 2005; Zeng and Quon, 1996).  The concentration of insulin required 

to produce the same amount of NO in HUVEC is twice of that of IGF-1 (Zeng and 

Quon, 1996).  Inhibitory insulin and IGF-1 mutant receptors have been implicated in 

the development of diabetes, insulin resistance and atherosclerosis (Saltiel and Kahn, 

2001).  Insulin/IGF-I receptor signalling activity is limited by tyrosine phosphatases 

(PTPases) which dephosphorylate key tyrosine residues (Elchebly et al., 1999). 

Signalling is also inhibited by suppressor of cytokine signalling-1 and 3 (SOCS1 and 

SOCS3) (Emanuelli et al., 2001; Ueki et al., 2004).  SOCS1 and SOCS3 expression is 

increased in insulin-resistant states and obesity suggesting that these inhibitors might 

play role in the pathology of diabetes.  The insulin-like growth factor-binding proteins 

(IGFPB) are proteins that form complexes with IGF.  The formation of these complexes 

enhances or attenuates the function of IGF by prolonging the half-life of IGFs 

circulating in plasma and interfering with IGF binding to their receptors, reviewed in 

(Baxter and Twigg, 2009). 
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1.6.2. Insulin/IGF-I receptor substrates (IRS) 

Unlike other RTK, insulin and IGF-I receptors do not interact directly with effectors, 

but in the majority of cases signal through insulin/IGF-I receptor substrates (IRS).  The 

family of IRS is comprised of six members (IRS1-6) (Cai et al., 2003a; Fantin et al., 

1998; Lavan et al., 1997; Sun et al., 1991; Sun et al., 1995).  IRS1 and IRS2 have been 

studied extensively and were shown to be expressed by numerous cells and tissues, IRS 

3-6 show limited tissue distribution and their role in signalling is not fully elucidated 

(Cai et al., 2003a).  Phosphorylated tyrosines in activated IRS interact with (SH2) 

domain-containing enzymes and adaptor proteins such as the p85 regulatory unit of 

PI3K (Myers et al., 1992).  IRS1 and 2 proteins have been implicated in various 

insulin/IGF-I-mediated physiological and pathological processes.  The loss of IRS2 

caused insulin resistance and diabetes, whereas the loss of IRS3 and 4 in mice had no 

effect on growth or metabolism (Fantin et al., 2000; Withers et al., 1998).  The loss of 

IRS1 caused only mild insulin resistance in peripheral tissues, glucose intolerance and 

impaired growth (Araki et al., 1994; Tamemoto et al., 1994).  Interestingly, in mice, 

liver-specific ablation using short hairpin RNAs against IRS1 enhanced the expression 

of genes involved in gluconeogenesis.  Whereas, IRS2 ablation promoted the 

expression of genes involved in lipogenesis (Taniguchi et al., 2005), indicating that in 

the liver, at least, IRS1 and 2 have complementary, but not redundant roles in 

insulin/IGF-1 signalling.  IRS activity, like that of insulin/IGF-I receptors, is inhibited 

by tyrosine phosphatases, such as SHP2 which binds to two phosphotyrosines on IRS1 

C-terminus (Myers et al., 1998).  Insulin elicits its biological effects through two major 

intracellular signalling pathways, the MAPK pathway (a.k.a. growth pathway) and the 

PI3K/Akt pathway, the so-called, metabolic pathway as shown in Figure 1.8.  The 

MAPK/PKC pathway generally regulates insulin-mediated cell growth and mitogenesis.  
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The PI3K/Akt pathway mediates insulin metabolic effects.  In the metabolic syndrome, 

the imbalance between these two pathways (suppression of PI3K/Akt and activation of 

MAPK and PKC) is considered the major cause of pro-inflammatory signalling up-

regulation and reduced NO production, a hallmark of endothelial dysfunction (Kim et 

al., 2006).  It was, however, postulated that insulin-activation of atypical isoforms of 

protein kinase C (aPKC) i.e. aPKCδ, acting downstream of PI3K are essential for the 

regulation of glucose transport in adipose and skeletal muscle tissues.  Compromised 

activation of these enzymes has been reported to contribute to the development of 

insulin resistance (Standaert et al., 1997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8.  Insulin signalling pathways.  The binding of insulin to the extracellular domain of the 

insulin receptor elicits a conformational change, which in turn leads to receptor autophosphorylation 

and tyrosine phosphorylation of intracellular protein substrates. Two main branching pathways are 

activated by insulin: A, The MAPK signalling cascade, in which Grb2/Sos leads to activation of Ras 

signalling, affecting, particularly cell proliferation.  B, The IRS pathway, which leads to activation of 

kinases dependent upon the PI3K, such as Akt; Akt modulates enzyme activities that control glucose, 

lipid, and protein metabolism. PIP2, phosphoinositide 4,5 di-phosphate; PIP3, phosphoinositide 3,4,5 

tri-phosphate; PDK1, phosphoinositide–dependent kinase–1; MEK, Mitogen-activated protein kinase 

kinase, ERK, extracellular-signal-regulated kinase.  FOXO1, forkhead boxO1. 
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1.6.3. Phosphoinositide 3-kinase (PI3K) pathway. 

Phosphatidylinositol 3-kinases (PI3K) are members of a conserved family of 

intracellular lipid kinases that phosphorylate the 3’hydroxyl group of membrane 

phosphatidylinositol (PtdIns).  They have been shown to play a key role in diverse array 

of cellular processes, most notably cell proliferation, survival, growth, migration and 

metabolism induced by insulin/IGF-I and various other growth factors.  PI3K are 

divided into three classes (I-III) according to their in vitro substrate specificity and 

sequence similarity.  Class I PI3K have received the most attention, while relatively 

little is known about the other two classes.  The class I PI3K are further divided into 

two subclasses IA and IB and exist as heterodimers.  The class IA consist of a p110 

(p110α, β, or δ) catalytic subunit and a p85 regulatory subunit (p85α, p55α, p50α, p85β, 

or p55γ), whereas, the class IB comprise the regulatory p101 and p100γ subunits. The 

regulatory subunits contain two SH2 domains that facilitate the high affinity 

interactions with tyrosine-phosphorylated pYMXM and pYXXM motifs in IRS proteins 

(Myers et al., 1992; Songyang et al., 1993; Yoakim et al., 1994).  Class I PI3K are 

responsible for the production of phosphatidylinositol (3,4,5)-trisphosphate 

PtdIns(3,4,5)P3, which is the major product resulting from growth factor–mediated 

activation of PI3K by RTKs (Cheatham et al., 1994; Nave et al., 1996) (Figure 1.9). 

(PtdIns(3,4,5)P3) bind to pleckstrin homology (PH) domains of various signalling 

molecules, thus facilitating their recruitment to cellular membrane for activation 

(Lietzke et al., 2000).  In the insulin/IGF-I metabolic pathway the phosphoinositide-

dependent protein kinase 1 (PDK1) is a major downstream effector of PI3K and is 

essential for the activation of Akt/PKB (Alessi et al., 1997).  PTEN, an endogenous 

phospholipid phosphatase, negatively regulates PI3K activity by inactivating 

PtdIns(3,4,5)P3 through the dephosphorylation of the phosphoinositide ring on the 

http://en.wikipedia.org/wiki/Phosphatidylinositol_(3,4,5)-trisphosphate
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3’position (Maehama and Dixon, 1999) (Figure 1.9).  The SH2-containing inositol 5’ 

phosphatase-2 (SHIP2) acts in a similar manner as PTEN, but at the 5’ position (Wada 

et al., 1999).  Deletion of PTEN in vivo improves insulin sensitivity (Tang et al., 2005) 

and the loss of SHIP2 rescues mice from obesity-induced insulin resistance (Sleeman et 

al., 2005).  The pharmacological inhibitors, Wortmannin (Ui et al., 1995) and 

LY294002 (Vlahos et al., 1994), or over-expression of PI3K mutants subunit or PTEN 

can all be used to block all metabolic actions of insulin. 

 

 

 

 

  

 

 

 

1.6.4. Protein kinase B PKB/Akt 

Protein kinase B or Akt (PKB/Akt) is a serine/threonine protein kinase that is the major 

downstream target of the PI3K and plays a key role in multiple cellular processes, such 

as glucose metabolism (Zisman et al., 2000), cell survival (Cai et al., 2003b; Datta et 

al., 1997), and apoptosis (Cardone et al., 1998).  Akt was originally identified as the 

oncogene in the transforming retrovirus, vAKT8 (Bellacosa et al., 1991).  In humans 

 

 

Figure 1.9. PTEN & 5’phophatases block the PI3K/Akt signalling pathway.  The synthesis of 

PtdIns(3,4,5)P3 from PtdIns(4,5)P2 via phosphorylation at the third position of the inositol ring by 

PI3K. PTEN blocks by catalysing the conversion of PtdInsP3 back to PtdIns(4,5)P2, whereas 5-

phosphatases, such as the SHIP proteins, convert PtdInsP3 to PtdIns(3,4)P2.  These two PI3K-dependent 

signals, PtdInsP3 and PtdIns(3,4)P2, share several downstream binding targets, including Akt. 
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there are three Akt genes that encode Akt-1/PKBα, Akt-2/PKBβ, and Akt-3/PKBγ.  All 

three isozymes have similar structure and size, but are expressed differentially both at 

the mRNA and protein level (Altomare et al., 1998; Bellacosa et al., 1991; Okano et al., 

2000).  Akt-1 is the major isoform expressed in endothelial cells and is heavily 

implicated in the regulation of angiogenesis.  Although deficiency of Akt-1 in mice 

inhibited physiological angiogenesis, it enhanced pathological angiogenesis (Chen et 

al., 2005; Somanath et al., 2006).  The loss of Akt-1 function in the mouse leads to 

retarded growth, but does not impair metabolism (Cho et al., 2001b), whereas, Akt-2 

knockout mice develop diabetes and exhibit insulin resistance due in part to inhibition 

of insulin-dependent gluconeogenesis (Cho et al., 2001a).  Mutations in the Akt-2 

kinase domain in humans cause severe insulin resistance and diabetes (George et al., 

2004).  Akt-3 is predominantly expressed in the brain and has no role in glucose 

metabolism (Tschopp et al., 2005). 

 

The Akt family proteins contain a central kinase domain with specificity for 

serine/threonine residues in substrate proteins (Bellacosa et al., 1991).  At the N-

terminus of Akt there is the pleckstrin homology (PH) domain, which binds 

PtdIns(3,4,5)P3 and mediates its recruitment lipids and other signalling molecules.  This 

allows Akt translocation to cell membranes and its phosphorylation by phosphoinositide 

dependent kinase 1 (PDK1) at threonine 308 (Datta et al., 1996; Franke et al., 1997).  

Full activation of Akt requires a second phosphorylation on serine 473 by mammalian 

target of rapamycin complex 2 (mTORC2) (Sarbassov et al., 2005).  The carboxyl 

terminus contains a hydrophobic and proline-rich domain (Datta et al., 1999).  Upon 

activation by insulin or IGF-I, Akt mediates most of the metabolic actions of PI3K 

http://en.wikipedia.org/wiki/Akt1
http://en.wikipedia.org/wiki/Akt3
http://en.wikipedia.org/wiki/Angiogenesis
http://en.wikipedia.org/wiki/PDPK1
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through the phosphorylation of various effectors, including other signalling proteins and 

transcription factors such as glucose transporter 4 (GLUT4), NF- κB, forkhead 

transcription factors (Birnbaum, 1989; Brunet et al., 1999).  In endothelial cells, there 

are a number of effectors that mediate cellular processes downstream of Akt, including 

protein synthesis via mTOR, and cell survival and metabolism though NF- κB and 

FOXOs (Manning and Cantley, 2007). 

 

1.6.5. Forkhead transcription factors  

 

1.6.5.1. Origin and structure 

 

Forkhead transcription factors are a superfamily of proteins that play a major role in 

regulating the expression of genes involved in physiological processes such as the cell 

growth, proliferation, apoptosis, differentiation, longevity, embryonic development and 

stress resistance.  The forkhead (fkh) gene was first discovered in Drosophila 

melanogaster, and there are now a large superfamily of >100 structurally-related genes 

(Weigel et al., 1989), which in humans consists of at least 143 members (Burgering, 

2008).  In recent years a consensus has been reached regarding the nomenclature 

leading to the classification of these proteins as forkhead box (Fox) transcription factors 

(Kaestner et al., 2000).  For mouse, only the first letter should be capitalised i.e. FoxO1, 

for all other chordates the initial and subclass letters are in uppercase i.e FOXA3 

(Kaestner et al., 2000).  FoxO proteins were initially identified as tumour suppressor 

genes in certain cancers (Anderson et al., 1998; Davis et al., 1994; Galili et al., 1993).  

Due to sequence differences in the DNA binding domain, mammalian FoxO proteins 

are the most divergent subfamily of the FoxO proteins (Barthel et al., 2005; Kaestner et 

http://en.wikipedia.org/wiki/Longevity
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al., 2000).  These comprise FOXO1 (FKHR), FOXO3a (FKHRL1), FOXO4 (AFX) and 

FOXO6.  FOXO1, FOXO3, and FOXO6 contain ~ 650 amino-acids, whereas the 

FOXO4 sequence is shorter ~ 500 amino-acids (Obsil and Obsilova, 2008).  Despite the 

fact that these proteins are ubiquitously detected in various tissues, including the 

reproductive system, heart, lung, liver, skeletal muscle, pancreas, spleen, thymus and 

nervous system (Maiese et al., 2009), their distribution and function are tissue-

dependent, suggesting specific functions for each FOXO in different cell types 

(Burgering, 2008).  For example, FOXO1 is highly expressed in adipose tissue; FOXO4 

is predominantly in skeletal muscle, FoxO3a in liver (Furuyama et al., 2000) and 

FOXO6 is selectively expressed in the brain (Hoekman et al., 2006). 

 

As shown in Figure 1.10, FoxO proteins contain four domains a highly conserved 

forkhead DNA-Binding-Domain (DBD) located in the N-terminal region, a nuclear 

localisation signal (NLS) located just downstream of the DBD, a nuclear export 

sequence (NES) and a transactivation (TA) domain in C-terminal region.  FOX proteins 

regulate transcription of target gene expression (suppression or activation) by binding to 

DNA through the structurally compact 100 amino-acid DBD, (a.k.a.forkhead domain; 

FKH).  The hepatocyte nucleofactor 3γ (HNF3γ), contains a typical FKH consisting of 

three major α-helices, three beta sheets and two large, wing-like protein loops (Clark et 

al., 1993; Jin et al., 1998), thus conferring the name winged helix transcription factors.  

High affinity DNA binding studies have identified a consensus FOXO-recognition 

element (FRE) TT-(G/A)-T-T-(G/T)-(G/A)-(C/T) (Overdier et al., 1994; Pierrou et al., 

1994).  The optimal DNA-binding site for the FOXO proteins is 5’TTGTTTAC3’.  

More recently studies have shown FoxO recognition of more diverse DNA binding 

motifs (Gao et al., 2010). 
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1.6.5.2. Post-translational modifications of FoxO proteins 

 

FOXO activity is tightly controlled by very complex signalling networks.  FOXO 

function is regulated by their subcellular localisation, which can be modulated by 

phosphorylation, ubiquitylation and acetylation in response to different stimuli.   

 

 

 

 

 

 

 

1.6.5.2.1. Phosphorylation 

 

A hallmark of the mammalian FOXO family is the presence of highly conserved sites 

for phosphorylation by Akt within and adjacent to their DBD (Biggs et al., 1999; Brunet 

et al., 1999; Kops et al., 1999).  The PI3K/Akt signalling pathway is conserved between 

worms and mammals, and FOXO1, FOXO3, and FOXO4 are all targets of insulin, IGF-

I and growth factor mediated PI3K/Akt phosphorylations.  For FoxO1 these are at Thr 

24, Ser 256, and Ser 319.  FoxO phosphorylation by PI3/Akt can be blocked by 

LY294002, and expression of dominant-negative mutant forms of PI3K and Akt (Biggs 

et al., 1999; Brunet et al., 1999).  In response to growth factors, the PI3K/Akt pathway 

inhibits FOXO-dependent transcription through the phosphorylation and subsequent 

 

Figure 1.10.  FoxO transcription factor domains and phosphorylation sites. The FoxO factors 

comprise a forkhead domain (FKH, the DNA binding domain), a nuclear localisation signal (NLS), a 

nuclear export sequence (NES) and a transactivation domain (TA).  Modified residues after 

phosphorylation are indicated and amino–acid numbers are given for the individual isoforms.  Adapted 

from (Van der Horst et al, 2007). 
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sequestration of FOXO factors in the cytoplasm (Figure 1.11) (Biggs et al., 1999; 

Brunet et al., 1999).  Mutation of Akt phosphorylation sites on FOXO or inhibition of 

PI3K/Akt leads to stable nuclear localisation of FOXO (Biggs et al., 1999; Brunet et al., 

1999).   

FOXO proteins can also be phosphorylated by the serum and glucocorticoid-induced 

kinase 1 (SGK1) (Brunet et al., 2001), which translocates to the nucleus upon activation 

by PI3K in a similar fashion to Akt.  Although SGK and Akt phosphorylate common 

sites on FOXO proteins, Akt phosphorylates Ser 256 on FoxO3a, whereas SGK1 

favours Ser 319.  SGK-1 was shown to mediate glucocorticoid cellular cell survival 

through the inhibition of FoxO3a activity (Mikosz et al., 2001; Wu et al., 2006), and 

SGK3 also directly phosphorylates and inactivates FoxO1 (Liu et al., 2000) 

 

Unlike PI3K/Akt, the c-Jun-N-terminal-Kinase (JNK) phosphorylates FOXOs on 

alternative residues to induce their activation and promote their nuclear localisation, in 

response to oxidative stress, even in the presence of growth factors (Essers et al., 2004).  

Treatment of cells with hydrogen peroxide (H2O2) triggers the activation of JNK 

pathway leading to the phosphorylation of Thr 447 and Thr 451, activation and nuclear 

retention of FoxO4 resulting in the induction of anti-oxidative genes such as manganese 

superoxide dismutase (MnSOD) (Essers et al., 2004). 

 

Other pathways that have been implicated in the phosphorylation of FoxO proteins are 

the oxidative-stress-regulated mammalian sterile 20-like (MST1), and another kinase 

and JNK activator, which was also shown to bind and phosphorylate FoxO3a on serine 
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207 directly, or through JNK both in vitro and in vivo (Graves et al., 1998; Henderson 

and Johnson, 2001).  The cyclin-dependent kinase-2 (CDK2) phosphorylates of FOXO1 

on Ser 249 and 298 leading to its exclusion from the nucleus, hence, inhibition of its 

activity. This was considered as an apoptotic response to DNA damage that can be 

blocked by oxidative stress, which was shown to inhibit CDK2 activity (Huang et al., 

2006).  In addition, casein kinase 1 (CK1), which is a serine/threonine kinase has also 

been shown to phosphorylate FoxO proteins. This effect was shown to be Akt-

dependent (Seol and Kim, 2003).  More recently, the retention of FOXO3a in the 

nucleus, in some cancers, led to the discovery that IκB Kinase (IKK) phosphorylates 

FOXO3a at serine 644 in an Akt-independent fashion (Hu et al., 2004).  Furthermore, 

the dual-specifictiy tyrosine–phosphorylated and regulated kinase (DYRK), which 

plays a role in the neural proliferation in central nervous development also 

phosphorylates FoxO1 on serine 329 in vitro thereby promoting its nuclear exclusion 

and inhibiting its transcription activity (Woods et al., 2001) 

 

1.6.5.2.2. Acetylation 

 

Oxidative stress increases FoxO acetylation by the CREB-binding protein (CBP) and 

p300 (Brunet et al., 2004; Frescas et al., 2005).  FoxO1 interaction with proteins with 

intrinsic histone acetyl-transferase (HAT) activity such as the co-activators p300 and 

CBP enhanced their activity (Perrot and Rechler, 2005), while disruption of these 

interactions with mutant CBP lacking acetyl-transferase activity inhibits FOXO1 

activity (Daitoku et al., 2004; Nasrin et al., 2000).  Furthermore, the NAD-dependent 

histone deacetylase SIRT1 (silent mating type information regulation 2 homologue 1), 

deacetylates FoxO proteins in the nucleus under stress conditions to induce the 
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transcription of anti-oxidative genes (Brunet et al., 2004; Kitamura et al., 2005).  The 

expression of SIRT1 shifts the balance in FoxO function from apoptosis to survival 

(Brunet et al., 2004; Motta et al., 2004). 

 

1.6.5.2.3. Ubiquitylation 

 

The proteasome are protein complexes that exist in the cytoplasm and nucleus of 

eukaryotic cells.  The function of these proteins is the degradation of unneeded or 

misfolded proteins by proteolysis.  The process of degradation by ubiquitin proteins 

involves the binding of multiple ubiquitin molecules to the target protein; and 

degradation of the tagged protein by the 26S proteasome or lysosomes (Ciechanover, 

1998).  FoxO proteins expulsion from the nucleus to the cytoplasm subjects them to 

ubiquitination-dependent proteosomal degradation.  FoxO1 and FoxO3 degradation by 

ubiquitylation and subsequent degradation by proteosomes is promoted by activated 

Akt (Plas and Thompson, 2003).  The use of lactacystin, a proteosome inhibitor, 

prevents PDGF stimulated inactivation of FoxO1 and exclusion from the nucleus in 

fibroblasts.  The PI3K inhibitor, LY294002, has similar effects indicating that 

proteosome-mediated degradation of FoxO1 is Akt-dependent as FoxO1 degradation 

requires the phosphorylation on Ser 256 by Akt (Aoki et al., 2004).  Interestingly, 

FoxO3a poly-ubiquitination through murine double minute (MDM2) oncogene is 

promoted by FoxO3a phosphorylation by ERK.  

 

 

http://en.wikipedia.org/wiki/Double_minute
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Figure 1.11.  FOXO regulation by growth factors and stress stimuli.  A, In response to growth 

factors, the PI3K/Akt pathway inhibits FOXO-dependent transcription through the phosphorylation 

and subsequent sequestration of FOXO factors in the cytoplasm.  B, Stress stimuli are sufficient to 

overcome the cytoplasmic sequestration of FOXO factors. In response to stress stimuli, JNK 

phosphorylates FOXO factors, which causes the nuclear translocation of FOXO proteins. Although 

FOXO phosphorylation by JNK does not directly inhibit the binding of 14-3-3 proteins, JNK can 

phosphorylate 14-3-3 directly, thus releasing 14-3-3 substrates.  Adapted from El Greer et al, 2005 

 

 

Target genes
DBE

FOXO Target genes
DBE

PP
P

Akt

FOXO

Growth FactorsGrowth Factors

X

X

Target genes
DBE

JNK

P
P

FOXO

P
P

FOXO

Target genes
DBE

JNKAkt

P

P
P

P
P

P

FOXO

14-3-3

P
P

P
P

P

FOXO

Stress Stimuli and Growth FactorsStress Stimuli 



      Chapter 1-Introduction 

40 
 

1.7. FoxO in the regulation of angiogenesis and endothelial cell biology. 

 

The role of FoxO factors in the regulation of angiogenesis and endothelial cell function 

has been determined in mice using gene loss or gain of function approaches in the 

whole genome or strictly in the endothelial lineage.  FoxO1-deficient mice die on 

embryonic day 10.5 as a result of poorly developed blood vessels, pointing to the 

indispensible role that FoxO1 plays in the formation of functional vascular system 

(Furuyama et al., 2004; Hosaka et al., 2004).  Conversely, FoxO3a
-/- 

mice are viable and 

exhibit abnormal ovarian follicular development leading to age-dependent reduced 

infertility (Castrillon et al., 2003). Whilst, FoxO4
-/- 

mice
 
show no obvious phenotype 

(Castrillon et al., 2003; Hosaka et al., 2004).  Conditional combined FoxO1, FoxO3a 

and FoxO4 knockout mice exhibit excessive endothelial cell proliferation, tissue-

selective haemangioma and premature death (Paik et al., 2007), suggesting that these 

transcription factors function as angiogenesis inhibitors and tumour suppressors.  In 

another study (Potente et al., 2005), the deletion of FoxO3a enhanced angiogenesis and 

rescued hind limb ischemia by abrogating the suppressive effects of FoxO3a on eNOS 

expression.  Both FoxO1 and FoxO3a, but not FoxO4, bind directly to the eNOS 

promoter and siRNA-mediated silencing of FoxO1 and FoxO3a enhanced VEGF-

mediated tube formation on growth factor-reduced Matrigel and migration of 

endothelial cells (Potente et al., 2005).  In line with these observations, over-expression 

of mutant FoxO1 and FoxO3a inhibited blood vessel formation and endothelial cell 

migration (Potente et al., 2005).  Interestingly, angiopoietin-1 (Ang-1), another 

endothelial cell survival factor and a regulator of vascular maturation and stability, 

inactivates FoxO1 via its receptor Tie2 and downstream activation of Akt.  

Constitutively-active FoxO1 induces expression of the Ang-1 antagonist, Ang-2, which 

blocks the activation of PI3K/Akt leading to blood vessel destabilisation and 
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remodelling (Daly et al., 2006).  This positive feedback loop is another way through 

which FoxO regulates its own activity and tightly modulates expression of genes 

involved in angiogenesis.  Taken together, FoxO factors and in particular FoxO1, are 

major regulators of angiogenesis. 

 

1.8. FoxO regulation of metabolism  

 

Insulin acts as the primary regulator of the glucose and energy homeostasis by 

stimulating the uptake of glucose and its subsequent metabolism (glycolysis and 

glycogen synthesis).  FOXO1 was identified as the major transcription factor mediating 

metabolic-regulatory effects of insulin (Accili and Arden, 2004).  FOXO1 is the most 

abundant isoform expressed in insulin–responsive tissues and negatively regulates 

insulin insensitivity in liver, adipose tissue and in pancreas by mediating insulin-

induced changes in gluconeogenic enzymes (Barthel et al., 2005; Nakae et al., 2001). 

 

1.8.1. FoxO1 in the liver 

 

When energy in abundant, the liver is the major organ for glucose up-take and storage.  

When energy levels are low, glucose synthesis is induced by the up-regulation of 

gluconeogenic enzymes, glucose-6-phosphatase (G6Pase) (Nakae et al., 2001; Schmoll 

et al., 2000) and phosphoenolpyruvate carboxykinase (PEPCK) (Yeagley et al., 2001).  

FOXO1 promotes gluconeogenesis. Over-expression of constitutively-active FoxO1 in 

the liver results in the up-regulation of gluconeogenesis genes (G6Pase, PEPCK) 

(Zhang et al., 2006), whereas liver-specific FoxO1 knockout, or injection of FoxO1 
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antisense oligonucleotides in the liver and adipose tissue improved insulin sensitivity 

and glucose tolerance in both lean and diet-induced obese mice. 

 

FOXO1 also modulates triglyceride metabolism through the up-regulation of 

apoliproprotein CIII (apoCIII). ApoCIII is a very low density aliproprotein 

predominantly found in the liver and its main function is as an endogenous inhibitor of 

lipoprotein lipase (LPL) mediated hydrolysis of lipids into free fatty acids and 

monoacylglycerol. Transgenic mice over-expressing apoCIII develop 

hypertriglyceridemia, one of the main causes of atherosclerosis, due to the blockade of 

triglyceride-rich particles uptake in the liver, which promotes diet-induced obesity and 

insulin resistance (Duivenvoorden et al., 2005; Ito et al., 1990).  Mice transduced with 

constitutively-active FoxO1 adenovirus exhibit increased levels of apoCIII and develop 

hypertriglyceridemia (Altomonte et al., 2004).  Taken together, these data show that 

FoxO1 is focal point at which several pathways regulating metabolism converge in the 

liver. 

 

1.8.2. FoxO1 in adipose tissue 

 

Obesity-induced insulin resistance is a major contributor to the development of diabetes 

mellitus and atherosclerosis (Saltiel and Kahn, 2001).  FoxO1 is highly expressed in 

both white and brown adipose tissue and is a major target for insulin-mediated 

regulation of metabolism in these tissues (Nakae et al., 2003).  FoxO1 plays an essential 

role in adipocyte differentiation and the knockout of any of the insulin signalling 

pathways resulted in impaired FoxO1-mediated pre-adipocyte differentiation (Accili 
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and Taylor, 1991; Miki et al., 2001; Tseng et al., 2004; Xu and Liao, 2004; Yun et al., 

2008).  Constitutively-active FoxO1 over-expression blocks this differentiation, while, 

dominant-negative FoxO1 restored pre-adipocyte differentiation in IR knockout mice 

(Nakae et al., 2003). FoxO1 control of pre-adipocyte differentiation is mediated by the 

cell cycle inhibitor p21 and peroxisome proliferator-activated receptor (PPARγ), a 

nuclear receptor protein that acts as a transcription factor (Dowell et al., 2003), FoxO1 

binding to PPARγ decreases insulin sensitivity (Armoni et al., 2006; Armoni et al., 

2003).  SIRT2, the predominant sirtuin family member expressed in adipocytes, 

activates FoxO1 enhancing its phosphorylation and nuclear exclusion, thus promoting 

adipocyte differentiation (Jing et al., 2007).   

 

1.8.3. FoxO1 in skeletal muscle 

 

FoxO1 inactivation enhances skeletal muscle growth and differentiation through the 

increase in fusion of monucleated myotubes into myoblasts (Bois and Grosveld, 2003; 

Hribal et al., 2003; Tureckova et al., 2001).  Disruption of IGF-I/PI3K/Akt signalling 

pathway in muscle inhibits protein synthesis and causes atrophy (Bodine et al., 2001).  

Mice expressing constitutively-active FoxO1 in skeletal muscle are underweight, with 

smaller skeletal muscles (Kamei et al., 2004). 
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1.8.4. FoxO1 in pancreatic β-cells 

 

β-cell development, proliferation and function are regulated by the insulin/IGF-

I/PI3K/Akt signalling pathway through FoxO1, the most abundant forkhead 

transcription factor expressed in pancreatic β-cells (Kitamura et al., 2002).  In IRS2
-/- 

transgenic mice, failure of β-cells leads to increased glucose levels combined with 

peripheral insulin resistance and diabetes (Kubota et al., 2000; Withers et al., 1998), 

which can be rescued by the deletion of a FoxO1 allele (Kitamura et al., 2002).  

FOXO1 also regulates β-cell proliferation through suppression of PFDX-1 transcription 

which mediates β-cell survival and insulin-coding gene, Ins2 expression in response to 

oxidative stress in insulin resistance (Kitamura et al., 2002; Kitamura et al., 2005). 

 

 

1.9. The metabolic syndrome (MBS) 

 

Metabolic syndrome, a.k.a syndrome X, is a disorder that encompasses diabetes, 

glucose intolerance, obesity, dyslipidemia and hypertension (Reaven, 2005).  

Individuals with metabolic syndrome are more susceptible to developing cardiovascular 

disease (CVD) and type 2 diabetes (Dekker et al., 2005; Lorenzo et al., 2003).  Insulin 

resistance in liver and adipose tissues is considered the chief underlying cause of most 

of the aforementioned disorders (Grundy et al., 2004).  In metabolic tissues, the loss of 

insulin responsiveness results in continuous secretion of insulin by pancreatic β-cells 

causing hyperinsulinemia, combined with failure to suppress glucose levels over time, 

this leads to hyperglycaemia and overt type 2 diabetes (Petersen and Shulman, 2006).  
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Several mechanisms have been postulated for insulin resistance, including inadequate 

insulin secretion, mutation of the insulin receptor or one of the IRS proteins, but the 

general consensus is that defective insulin signalling downstream of insulin receptor in 

insulin-sensitive tissues is the main cause.  The suppression of the PI3K/Akt signalling 

pathway has been shown in the skeletal muscle of obese patients (Bjornholm et al., 

1997; Goodyear et al., 1995), skeletal muscle and liver tissues of obese and 

hyperglycaemic ob/ob mice (Folli et al., 1993; Kerouz et al., 1997).  The ablation of the 

hepatic insulin receptor causes severe hyperglycaemia and glucose intolerance in mice 

(Michael et al., 2000).  In cardiovascular disorders, such as hypertension, coronary 

artery disease and atherosclerosis, insulin resistance is a common finding (Ford, 2005).  

In addition to its essential role in glucose and lipid metabolism, insulin has other 

important vascular functions, the impairment of which causes endothelial dysfunction, a 

prominent component of all the aforementioned cardiovascular disorders.  

 

1.10. Endothelial dysfunction  

 

Endothelial dysfunction is a key factor in the pathogenesis of vascular disease in 

metabolic disorders i.e. diabetes mellitus and obesity (De Caterina, 2000).  As shown in 

Figure 1.12, under normal physiological conditions, in endothelial cells, insulin 

activation of the PI3K/Akt pathway induces NO production, which promotes 

vasodilatation, this leads to increased blood flow and glucose uptake by skeletal muscle 

(Baron and Clark, 1997).  In hyperglycaemia, impaired insulin signalling leads to 

reduction in NO bioavailability, disruption of blood flow, and increase in vascular 

permeability, resulting in the loss of endothelial integrity and function.  The activation 

of the PKC pathway by insulin leads to the over-expression of adhesion and pro-
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inflammatory molecules such as ICAM-1, VCAM-1, E-selectin and vasoconstrictor 

endothelin 1 (ET-1) (Montagnani et al., 2002; Potenza et al., 2005).  This shift tips the 

endothelium into a vasoconstrictor, pro-thombotic and pro-inflammatory state (Potenza 

et al., 2009b).  

 

 

 

 

 

 

 

 

 

 

1.11. Mechanisms of hyperglycaemia-induced endothelial dysfunction 

 

The association between hyperglycaemia and endothelial dysfunction in diabetic 

vascular complications such as diabetic retinopathy, nephropathy and atherosclerosis is 

well established (De Caterina, 2000).  Hyperglycaemia-induced endothelial dysfunction 

is thought to be a consequence of oxidative stress due to an increased production of 

reactive oxygen species in the mitochondria.  As shown in Figure 1.13, there are 4 

pathways by which hyperglycaemia induces oxidative stress. 
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Figure 1.12.  Mechanisms of endothelial dysfunction in vascular tissues and insulin resistance in 

metabolic tissues.  PI3K-dependent insulin signalling pathways in metabolic and vascular tissues 

synergistically marry metabolic and vascular physiology under healthy conditions and contribute to 

synergistic coupling of inulin resistance and endothelial dysfunction (Adapted from Kim et al, 2006). 

 



      Chapter 1-Introduction 

47 
 

1.11.1. The polyol/sorbitol/aldose reductase pathway 

 

In most cells under normoglycaemic conditions, non-metabolised excess glucose enters 

the polyol pathway where aldose reductase reduces it to sorbitol.  This is later 

metabolised to fructose by sorbitol dehydrogenase.  This reaction also oxidises NADPH 

to NADP+ and reduces NAD+ to NADH.  NADP+ and NAD+ are essential cofactors 

for NO synthesis (Dagher et al., 2004).  In the hyperglycaemic state, increased glucose 

levels combined with the increased affinity of aldose reductase for glucose result in 

sorbitol accumulation and decreased NADP+ and NAD+ available for NO production, 

culminating in increased oxidative stress and cell death (Gabbay, 1975).  This pathway 

has been implicated in diabetic retinopathy in humans and rats (Dagher et al., 2004). 

 

1.11.2. Increased hexosamine pathway activity  

 

Hyperglycaemia-induced activation of the hexosamine pathway has been shown to 

contribute to the complications of diabetes.  In this pathway, fructose 6-phosphate is 

diverted from the glycolysis pathway into a signalling pathway where it is converted 

into UDP-N-acetylglucosamine by glutamine:fructose 6-phosphate amidotransfeRase 

(NGFAT). The addition of UDP-N-acetylglucosamine onto serine and threonine 

residues results in altered enzyme function i.e. the inhibition of Akt phosphorylation in 

human endothelial cells causes reduction in insulin-mediated NO production, thus 

endothelial dysfunction (Federici et al., 2002). 
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1.11.3. Increased intracellular production of advanced glycation end products 

(AGE). 

 

In diabetes, hyperglycaemia is the main trigger of the production of advanced glycation 

end products (AGE) through non-enzymatic reactions between glucose, or its 

derivatives, with proteins (Stevens et al., 1977). Over-production of these molecules 

can cause cell damage and induce inflammation though their ability to alter the function 

of intracellular (i.e. transcription factors), extracellular (i.e. receptors and integrins) or 

blood-born proteins (i.e. albumin) (Giardino et al., 1994; Li et al., 1996; McLellan et 

al., 1994).  Increased accumulation of AGE has been shown in the vitreous of the eye of 

diabetic patients (Stitt et al., 1998), and in the retinal vasculature of diabetic and AGE-

infused rats (Stitt et al., 1997). 

 

Figure 1.13. Mechanisms of hyperglycaemia-induced endothelial dysfunction.  Excessive 

glucose enters endothelial cells via GLUT1 in an insulin-independent manner, this lead to 

activation of the polyol pathway, hexoamine pathway, AGE pathway, and PKC pathway.  Glucose 

transporter 1 (GLUT1).  Advanced glycation products (AGE). 
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1.11.4. The DAG/PKC pathway 

 

Induction of de novo diacylglycerol (DAG) synthesis by [chronic] hyperglycaemia, 

which positively regulates PKC activity, has been associated with vascular 

complications of diabetes.  DAG up-regulation and PKC activation has been shown in 

tissues from heart, aorta, retina from diabetic patients and  animal models of diabetes, 

and in cultured endothelial cells exposed to hyperglycaemia (Inoguchi et al., 1992; 

Shiba et al., 1993).  Endothelial dysfunction in vascular injuries is believed to result 

through the disruption of blood flow by decreasing NO activity and up-regulation of the 

expression of pro-inflammatory factors, such as ET-1 and adhesion molecules ICAM-1, 

VCAM-1, E-selectin and various pro-inflammatory cytokines.  

 

1.12. Hyperglycaemia and oxidative stress  

 

Hyperglycaemia-induced over-production of superoxide by mitochondrial electron 

transport chain has been recognised as the unifying mechanism that acts upstream of all 

the aforementioned pathways (Figure 1.14) (Nishikawa et al., 2000).  Diabetic rats have 

increased levels of superoxide (Sartoretto et al., 2007) a highly reactive molecule that 

contributes to oxidative stress generation.  Oxidative stress is a prominent feature of 

endothelial dysfunction.  Inhibition of hyperglycaemia-induced ROS blocked the 

activation of polyol, hexosamine and PKC pathways and AGE formation (Guzik et al., 

2002).  In endothelial cells ROS induce cell apoptosis, senescence, activation of the 

pro-atherogenic inflammatory pathways and abrogation of NO bioavailability 

(Madamanchi et al., 2005), all key features of endothelial dysfunction. 

 

http://en.wikipedia.org/wiki/Oxidative_stress
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1.13. Mouse models of diabetes and obesity 

 

Several mouse models of diabetes and obesity have been established.  The tubby mouse 

model develops late onset obesity with insulin resistance, but how it is developed, the 

mechanism for it is still unknown (Kleyn et al., 1996).  In the carboxypeptidase E 

mouse model, the disruption of this enzyme’s function blunts the melanocortin 

responsiveness to leptin leading to the development of hyperglycaemia and the onset of 

obesity (Naggert et al., 1995). Another model of animal model of diabetes is the 

C57BL/KsJ mice (db/db) mouse which is characterised by autosomal recessive leptin 

receptor deficiency (Leibel et al., 1997). This mouse has metabolic abnormalities that 

culminate in systemic hyperglycaemia, insulin resistance and phenotypic obesity 

 

Figure 1.14.  Mechanisms of hyperglycaemia–induced endothelial dysfunction and in the end 

diabetic complications. Adapted from (Van den Oever et al., 2010) 
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(Garris, 1989; Garris and Garris, 2003).  The leptin-deficient ob/ob mouse has been 

used extensively as a model for obesity, insulin resistance, lipotoxicty and type-2 

diabetes (Lindstrom, 2007). The ob/ob phenotype was identified in an out bred colony 

of mice in 1949 (Ingalls et al., 1950), and backcrossed onto the C57Bl/6 background. 

Ob/ob mice have a mutation in the leptin gene that was identified by positional cloning, 

(Zhang et al., 1994) and prevents its expression.  The mice are highly leptin sensitive 

and the ob/ob phenotype can be completely reversed through transfer of the leptin gene, 

or administration of leptin (Pelleymounter et al., 1995).  Initially ob/ob mice are 

indistinguishable from their lean littermates, but within two weeks they grow rapidly 

and start to develop severe obesity through uncontrolled food intake leading to 

excessive adipose accumulation, hyperlipidaemia, steatosis, severe hyperglycaemia 

(despite hyperinsulinaemia) and inflammation. They show a dramatic increase in the 

numbers of insulin producing -cells driven by the increased demand for insulin. Ob/ob 

-cells produce large quantities of insulin, as they lack the inhibitory effect of leptin, 

which leads to hyperinsulinaemia. However, insulin production is thought to be 

insufficient as the mice start to develop hyperglycaemia at four weeks of age which 

peaks at between 3-6 months before declining in old age (Westman, 1968). The severe 

insulin resistance which results in reduced PI3 kinase activity particularly in muscle 

(Folli et al., 1993) and leads to elevated FOXO1 activity (Behl et al., 2009).   
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1.14. Rationale 

 

Evidence from both patients and animal studies clearly supports the role of PlGF and 

VEGFR-1 in the promotion of pathologies including atherosclerosis, diabetic 

retinopathy, arthritis, metabolic syndrome and cancer. Although considerable work has 

been undertaken to understand to role of PlGF in pathology, little is known about the 

mechanisms underpinning the regulation of its expression in these disorders.  

Unravelling these mechanisms/pathways will increase our knowledge of the biology of 

the ligand and its receptor, and may be beneficial for developing novel therapies.  The 

overall aim of my studies was to identify the mechanisms involved in the up-regulation 

of PlGF and VEGFR-1 expression both in growth factor-driven angiogenesis and in 

pathologies. 

 

The specific objectives of this thesis were to: 

 Determine the effect of insulin-like growth factor-I and hyperglycaemia on 

PlGF expression in endothelial cells.  

 

 Delineate signalling pathways, in particular PI3K/Akt, important for the 

regulation of PlGF expression under these conditions. 

 

 Identify transcription factors regulating PlGF and VEGFR-1 gene expression. 

 

 

 Determine the effect of hyperglycaemia in a mouse model of insulin resistance, 

on PlGF expression.  
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Investigations in vitro were performed on primary cultures of HUVEC isolated in-house 

and human aortic endothelial cells (HAEC) from commercial sources.  These are 

normal human endothelial cells that can be passaged four times without losing 

expression of endothelial cell markers (Jaffe et al., 1973).  HUVEC have been used in 

many in vitro studies examining cell signalling in the endothelium and regulation of 

VEGFR function and expression.  Bovine aortic endothelial cells (BAEC) are primary 

endothelial cells that can be cultured more readily and passaged many times before 

losing their phenotype and were prepared as described in Sattar et al., (1994). 

 

To examine the link between PI3K/Akt activity and PlGF expression, pharmacological 

inhibitors such as LY294002, complementary methods were also employed, as 

inhibitors are rarely complete specificity. Recombinant, replication defective 

adenoviruses were used to transduce HUVEC with dominant-negative or constitutively-

active forms of Akt, PTEN and FOXO1.  With this method of gene transfer up to 100% 

efficiency can be obtained in non-dividing cell populations.  Akt activation was also 

achieved with IGF-I, which mimics insulin activities in vitro.   siRNA gene silencing is 

a very specific, efficient and easy way to block protein synthesis and has been 

optimised in our laboratory for use in HUVEC (Al-Ani et al., 2010).  siRNA was used 

to silence Akt-1, the predominant Akt isozyme expressed in endothelial cells.  To 

examine the effect of hyperglycaemia on PlGF expression in vivo, ob/ob mice at 16-19 

weeks of age, which are severely hyperglycaemic and insulin-resistant, were used 

(Garthwaite et al., 1980; Mayer et al., 1953).  These are reported to show reduced PI3K 

/Akt activity (Folli et al., 1993; Kerouz et al., 1997). 
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The apparent involvement of PI3K/Akt and the overwhelming evidence implicating 

FOXO1 in the regulation of metabolism (Accili and Arden, 2004) provided a rationale 

to test the role of FOXO1 in PlGF expression in HUVEC.  siRNA to silence FOXO1 

was used in studies examining the effects of hyperglycaemia in vitro (Tanaka et al., 

2009).  In vivo studies to examine FOXO1 regulation of PlGF expression were 

performed using FVB/N mice, injected with adenovirus expressing constitutively-active 

FOXO1 (Nakae et al., 2003).  In addition to assessing circulating levels of PlGF in 

plasma, the livers of these mice were examined by qPCR and ELISA as the majority of 

systematically delivered adenovirus is filtered out by the liver.  To examine whether 

FOXO1 binds directly to PlGF and/or VEGFR-1 genes, chromatin immunoprecipitation 

(ChIP) assays have been employed.  PCR amplification of immunoprecipitated DNA 

fragments bound to the relevant transcription factor can provide direct evidence of the 

transcription factor binding to the promoter of gene of interest.  VEGFR-1 promoter 

constructs encoding the identified FOXO1 binding site were used to demonstrate the 

ability of FOXO1 to activate VEGFR-1 expression.  HUVEC are difficult to transfect 

with plasmids, therefore, BAEC were used with plasmid constructs expressing 

constitutively-active FOXO1, and FOXO3a to test the selectiveness of FOXO1 in the 

regulation of VEGFR-1 expression in endothelial cells 

 

The up-regulation of PlGF expression following VEGF stimulation in endothelial cells 

was demonstrated previously (Yao et al., 2005; Zhao et al., 2004), but the pathways and 

mechanism(s) regulating this process have not been fully elucidated.  The roles of 

endogenous (autocrine) and exogenous (paracrine) VEGF and the naturally occurring 

PlGF:VEGF heterodimer in the regulation of PlGF release  have been explored, using 
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siRNA-mediated knockdown and recombinant adenoviruses over-expressing mouse 

VEGF164 and PlGF-2. 

  

 



       Chapter 2-Materials & Methods   

 

56 
 

 

 

 

 

 

 

 

Chapter 2 

Materials & Methods 



       Chapter 2-Materials & Methods   

 

57 
 

2.1. Materials 

 

The suppliers of all purchased chemicals, reagents used are detailed in Appendix I.  

Details of antibodies and suppliers are in Appendix II.  Equipment and suppliers are 

listed in Appendix III.  Protocols for preparation of solutions and buffers are present in 

Appendix IV.  

 

2.2. Methods 

 

2.2. Tissue and cell culture 

 

All cell and tissue culture medium and supplements were purchased sterile or filtered 

through a 0.22 μm filter.  Distilled water and calcium and magnesium [Ca
2+

 and Mg
2+

] 

free Dulbecco’s phosphate buffered saline (PBS – formula in APPENDIX IV) were 

autoclaved before use. Tissue culture-treated plastics were purchased sterile.  Glassware 

was washed and autoclaved prior to use. Cell culture medium was stored at 4
o
C and 

used within 3 months. 

 

2.2.1. General maintenance of primary cells and cell lines 

 

Routine maintenance of cell cultures was carried out in sterile class II cabinet. Cell 

cultures were maintained in humidified incubators in an atmosphere of 95% air, 5% 

CO2 at 37
o
C.  Cells were grown in 75 cm

2
 tissue culture flasks containing relevant 

medium supplemented with 5%, 10%, or 20% foetal bovine serum (FBS) and 2 mM L-
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glutamine, 10 U/ml Penicillin and 0.1 µg/ml Streptomycin (GPS).  The medium was 

changed every 2-3 days and on reaching confluence, cells were subcultured by 

aspiration of the medium from the cell monolayer followed by two washes with 10 ml 

of PBS to remove FBS.  Cells were detached by 2-5 minute incubation with 1 ml of 0.5 

g/l porcine trypsin and 0.2 g/l ethylenediaminetetraacetic acid (EDTA) in Hanks′ 

balanced salt solution with phenol red (HBSS) at 37
o
C.  Once detached, 10 ml of 

growth medium was added to inactivate trypsin.  The cell suspension was transferred to 

a sterile 15 ml conical tube and centrifuged at 100 x g for 5 minutes to pellet the cells.  

Cell pellet was resuspended in 10 ml of growth medium.  Cells were then either split 

between new culture flasks, as required to maintain stocks, or counted using 

haemocytometer in preparation for experiments requiring a defined number of cells per 

well (cpw) prior to seeding in 25 cm
2
 flasks or 6, 12 or 24 well tissue culture plates.  

Details of cell seeding densities for human umbilical vein endothelial cells (HUVEC), 

the most commonly used cell type in this study, are shown in Table 2.1.  Each time cells 

were subcultured they were assigned an ascending passage number. 

Plates/ 

flasks 

Surface 

area (mm2) 

Cell number 

Approximate cell number  at 

confluency 

Trypsin/EDTA 

vol (ml) 

Volume of 

medium (ml) 

T-25 2500 250 x 10
3
 1 x 10

6
 0.5 3-5 

T-75 7500 1 x 10
6
 2.5 x 10

6
 1 10-15 

T-150 15000 2 x 10
6
 5 x 10

6
 2 15-30 

6-well 962 0.32 x 10
6
 1 x 10

6
 0.3 1-3 

12-well 401 0.16 x 10
6
 0.25 x 10

6
 0.2 1-2 

24-well 200 0.08 x 10
6
 0.12 x 10

6
 0.1 0.5-1 

96-well 50 0.02 x 10
6
 0.05 x 10

6
 0.05 0.1-0.2 

 

Table 2.1.  Plating density of HUVEC used for experimental procedures. 

http://medical-dictionary.thefreedictionary.com/ethylenediaminetetraacetic+acid
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2.2.2. Cell cryopreservation 

 

Reserve stocks of each cell type used was maintained through cryopreservation.  

Confluent monolayer of cells to be preserved were trypsinised and cell pellet 

resuspended at 1x10
6
 cells/ml in pre-cooled culture medium containing GPS, 45% (v/v) 

FBS and 10% (v/v) dimethyl sulphoxide (DMSO).  Cell suspension was transferred to 

sterile cryovials labelled with cell type, passage number, and the date of storage.  

Freezing of cells was carried out at a rate of 1
o
C/minute using ‘MrFrosty’ containing 

isopropyl alcohol placed in a -80
o
C freezer prior to long-term storage in liquid nitrogen 

at -196
o
C.  To retrieve the cryopreserved cells, cryovials were thawed immediately in a 

water bath at 37
o
C, transferred to a 15 ml tube and centrifuged for 5 mins at 100 x g and 

the pellet resuspended in complete growth medium and transferred to tissue culture 

flasks containing the appropriate growth medium.  Cells were incubated for 16 hours to 

allow cell attachment followed by a wash with PBS to remove all traces of DMSO and 

fresh growth medium was added. 

 

2.3. Details of primary cells and cell lines used 

  

2.3.1. Human umbilical vein endothelial cell isolation and culture 

 

Human umbilical vein endothelial cells culture Informed consent was obtained from 

healthy pregnant women undergoing elective caesarean section at Birmingham 

women’s hospital under  ethical approval obtained by Dr Peter Hewett [RCS10-

0546.APP/N10-014].  Cords were collected on the day of surgery and washed with PBS 

to remove excessive blood and a 15-20 cm long section with no obvious clamp trauma 
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selected.  The umbilical vein was identified, cannulated with a glass cannula at one end 

prior to flushing the vein with PBS to remove any blood clots.  The cord was then 

perfused with 20 ml of type V collagenase (1 mg/ml) in HBSS and clamped at both 

ends.  After a 20 minute incubation at 37
o
C, detached endothelial cells were collected 

by flushing the collagenase solution through the umbilical vein with HUVEC complete 

growth medium 199 (M199) containing GPS, 20 ng/ml epidermal growth factor (EGF), 

2.5 ng/ml FGF-2 and 20% FBS.  The cell suspension was then centrifuged at 100 x g 

for 5-10 minutes and the resulting cell pellet resuspended in 12 ml of HUVEC complete 

growth medium.  Cells were seeded in 0.2% gelatin-coated tissues culture flasks and 

allowed to attach overnight at 37
o
C in a humidified incubator with an atmosphere of 

95% air, 5% CO2.  Medium was replaced the following day to remove erythrocytes and 

cells were grown to confluence for 2-3 days.  Immunofluorescent staining for human 

von-Willebrand (vWF) factor was employed to confirm the endothelial phenotype of 

cells.  The cells were split 1 in 3 on reaching confluence and experiments were 

performed on second or third passage HUVEC.  

 

2.3.2. Human aortic endothelial cells (HAEC). 

 

Cryopreserved primary human aortic endothelial cells (HAEC) obtained from Lonza 

(Slough, UK) were maintained in HUVEC complete M199 medium containing 20% 

FBS.  Cells were split 1 in 3 on reaching confluence and experiments performed on 

second or third passage. 
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2.3.3. Bovine aortic endothelial cells (BAEC) 

 

Primary bovine aortic endothelial cells (BAEC) were a gift from Dr Shant Kumar 

(University of Manchester, UK).  Cells were prepared as described by Sattar et al., 

(1994).  BAEC were cultured in RPMI 1640 containing 10% FBS supplemented with 

GPS and split 1 in 3 on reaching confluence. 

 

2.3.4. Human embryonic kidney 293 cells (HEK 293) 

 

Human embryonic kidney (HEK 293) cells transformed by exposing them to sheared 

fragments of adenovirus type 5 DNA (Graham et al., 1977).  Cells were used to expand 

adenoviral stocks.  HEK 293 were grown in Dulbecco's modified eagle medium 

(DMEM) containing GPS and 10% FBS.  Cells were subcultured 1 in 10-20 once 

confluent. 

 

2.4. Recombinant Adenoviruses 

 

2.4.1. Amplification and purification of adenoviruses 

 

HEK 293 cells were grown to ~ 70% confluence in DMEM containing 10% FBS and 

GPS, and then infected with appropriate adenovirus in DMEM containing 2% FBS and 

GPS.  After 2-7 days, when cytopathic effects (medium colour change to yellow and 

cell detachment) were observed, the supernatant and cells were harvested.  The 

supernatant was aliquoted and stored at -80
 o

C.  The cell pellet was lysed by 4 cycles of 

freezing (2-3 mins) in liquid nitrogen and thawing in 37
o
C water bath (5 mins) to 
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release their contents.  Adenoviruses were purified by equilibrium density gradient 

centrifugation using caesium chloride gradients prepared as shown in Figure 2.1.  Tubes 

were then centrifuged at 32,000 rpm overnight (12-14 hours).  Extracted pure 

adenovirus (thin white layer located second from the bottom of the tube) was purified 

by dialysis into optimal buffer (see APPENDIX IV) (Nyberg-Hoffman and Aguilar-

Cordova, 1999). 

 

 

Figure 2.1.  Caesium chloride density gradient prepared for adenovirus purification 

by equilibrium density gradient centrifugation. 

 

2.4.2. Titration of adenoviruses. 

 

Adenovirus titres were determined by infecting 5x10
5
 HEK 293 cpw in 12-well plate 

with serial dilutions of adenoviral stock (0, 10
-2

, 10
-3

, 10
-4

, 10
-5

 and 10
-6

) in 1 ml/well of 

2 ml 40% glycerol 

2 ml 1.45 g/l CsCl  

2 ml 1.32 g/l CsCl 

Cell lysates 
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DMEM supplemented with 10% FBS and GPS.  After 48 hours, the medium was 

aspirated and cells were fixed immediately with 1 ml of ice-cold 100% methanol.  

Following a 10 minute incubation at -20
o
C, cells were rinsed three times with 1 ml of 

1% (w/v) bovine serum albumin (BSA) in PBS and 500 μl of mouse anti-Hexon 

antibody diluted 1:250 in 1% BSA in PBS was added to each well and incubated for 1 

hour at 37
o
C.  After another rinsing step, 500 μl of horseradish peroxidise IgG, (HRP-

IgG) conjugate diluted 1:500 in 1% BSA in PBS was added to each well, incubated for 

1 hour at 37
o
C and followed by another rinsing step.  At this stage, 500 μl of working 

solution of 3,3'-diaminobenzidine in chromogen solution (DAB) was added to each well 

and incubated at RT for 10-20 minutes.  After the removal of DAB, 1 ml of PBS was 

added to each well and at least 3 fields of brown/black positive cells were counted using 

an inverted-phase contrast microscope with 200 x magnification. The number of 

infectious unit (ifu) per ml was calculated using the following equation. 

 

 

 

2.5. Adenoviral infection of HUVEC 

 

HUVEC were grown to ~ 80% confluence before being infected with adenoviruses at a 

optimal multiplicity of infection (MOI) of 50  (previously determined in-house) for 

approximately 14 hours in HUVEC growth medium M199 containing 5% FBS.  

Adenovirus-containing medium was removed and replaced with a fresh MCDB 131 

medium containing 10% FBS and GPS and cells were then stimulated in this for the 
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appropriate time periods.  HUVEC require growth factor support and high levels (20%) 

of FBS for long-term culture.  Therefore, to maintain good cell viability during 

experiments HUVEC were grown in MCDB 131 medium containing 10% FBS, which 

was originally developed to support the growth of microvascular endothelial cells when 

supplemented with lower concentrations of serum (Knedler and Ham, 1987).  Infection 

was verified by subjecting protein lysates of infected HUVEC to sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE).   

Adenovirus Mutations Source/Reference 

h -gal - (Fujio et al., 1999) 

 hCMV 
CMV promoter without an 

insert 
(Huang and Kontos, 2002) 

hPTEN - (Huang and Kontos, 2002) 

hPTEN-C/S Cysteine 124 to Serine (Huang and Kontos, 2002) 

hdn-Akt 
Serine 473 and Threonine 

308 to Alanine 
(Fujio et al., 1999) 

hmyr-Akt Myristoylated Akt (Fujio et al., 1999) 

hdn-IκK 
Serine 177 and Ser181 to 

Alanine 
(Miyazaki et al., 2000) 

mFoxO1-ADA 

Serine 256 and  319 to 

Alanine, Threonine  24 to 

Aspartic acid 

(Nakae et al., 2001) 

mVEGF164 - (Bergmann et al., 2010) 

mPlGF-2 - (Luttun et al., 2002) 

 

Table 2.2.  Description and source of adenoviruses used in this study.  h = human, m 

= murine. 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide_gel
http://en.wikipedia.org/wiki/Electrophoresis
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Western blotting was performed with appropriate antibodies diluted in 5% BSA/0.1% 

(v/v) Tween
TM 

in tris-buffered saline (TBS-T) (see appendix II for antibody source and 

dilution used).  All adenoviruses used in this study and their source are detailed in Table 

2.2. 

 

2.6. Cellular transfections 

 

2.6.1. Small interfering RNA (siRNA) electroporation 

 

RNA interference (RNAi) is a system within living cells that plays a role in controlling 

gene expression in i.e. development and protection against viral infections.  Small 

interfering RNA (siRNA), which are central to this system, can bind specifically to 

target gene messenger RNAs (mRNA) and prevent protein synthesis.  As shown in 

Figure 2.2, the RNAi pathway, which is found in many eukaryotes, is triggered in the 

cell nucleus by the processing of gene-encoded primary microRNA (miRNA) 

transcripts to miRNA precursors by the RNase-III-like enzyme Drosha.  The miRNA 

precursor is subsequently exported to the cytoplasm where it is further cleaved by Dicer 

into short fragments of ~ 20 nucleotides, known as siRNAs (duplex-like intermediates).  

Each siRNA is unwound while incorporating into the RNA-induced silencing complex 

(RISC).  The most well-studied outcome of RNA interference is post-transcriptional 

gene silencing, which occurs when a mature siRNA strand pairs with a complementary 

sequence of a mRNA molecule and induces cleavage by argonaute proteins, the 

catalytic component of the RISC complex (Fire et al., 1998). 
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HUVEC were electroporated using an AMAXA nucleofector essentially as described 

by the manufacturer in HUVEC kit I.  Fresh MCDB 131 medium containing 10% FBS 

was pre-warmed to 37
o
C.  Five µl of 100 µM siRNA was used for each condition added 

in 50 µl of freshly prepared HUVEC nucleofector solution prepared by adding 9 µl of 

supplement to 41 µl of nucleofector solution and mixed briefly.  HUVEC (2x10
6
) were 

pelleted and resuspended in the nucleofector solution.   HUVEC were then transfected 

with the siRNA using an AMAXA electroporator machine using the A034 programme.  

The cells were immediately transferred to 1 ml of medium at 37
o
C for 2 mins before 

seeding onto 6-well plates and incubated overnight in MCDB 131 containing 10% FBS 

and GPS.  Cells were then stimulated as appropriate. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Model of small interfering RNA biogenesis and guided post-transcriptional 

regulation of gene expression.  Primary miRNA are processed to miRNA precursors in the 

nucleus by Drosha. The miRNA precursor is then processed by Dicer to siRNA duplex-like 

intermediates assisted by the RNA helicase Armitage and R2D2 in the cytoplasm. The siRNA 

duplex is then incorporated into RNA-induced silencing complex (RISC). Mature siRNAs repress 

mRNA translation by binding to argonaute proteins.  The stability of the siRNA and its 

recognition by Dicer can be regulated by specific adenosine deaminases (ADARs) and the 

exoribonuclease (ERI-1).  Taken from (Meister and Tuschl, 2004). 
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HEK293 (2x10
6
) cells were electroporated with siRNA as described above using 

AMAXA kit V.  Cells were pelleted and programme A069 was applied and cells were 

plated overnight in 1:1 mix of RPMI 1640 and M199 containing 10% FBS and GPS.  

The medium was then changed to a fresh DMEM containing 10% FBS and GPS and 

cells stimulated as appropriate.  All siRNA sequences used in this study are listed in 

(Table 2.3), siRNA sequences were either obtained from published literature, or in-

house designed using Dharmacon siDESIGN Software 

(http://www.dharmacon.com/PopUpTemplate.aspx?id=2078) and sequences generated 

with the highest score were selected and tested empirically. 

siRNA Sequence Source 

siControl 
F:5’-UACCCCAUGGCAUUGUCAUtt-3’ 

R:5’-AUGACAAUGCCAUGGGGUAtt-3’ 

Dharmacon universal control 

siPlGF 
F:5’-CCGGCUCGUGUAUUUAUUAtt-3’ 

R:5’-UAAUAAAUACACGAGCCGGtt-3’ 

In-house designed  

siVEGF 
F:5’-GGAGUACCCUGAUGAGAUCtt-3’ 

R:5’-GAUCUCAUCAGGGUACUCCtt-3’ 

(Takei et al., 2004) 

siVEGFR-1 
F:5’-UGAUGGCCUUACACUGAAAtt-3’ 

R:5’-UUUCAGUGUAAGGCCAUCAtt-3’ 

In-house designed 

siVEGFR-2 
F:5’-GGAAAUCUCUUGCAAGCUAtt-3’ 

R:5’-UAGCUUGCAAGAGAUUUCCtt-3’ 

In-house designed 

siFOXO1 
F:5'-GAGCGUGCCCUACUUCAAGGAtt-3' 

R:5’-UCCUUGAAGUAGGGCACGCUCtt-3’ 

(Potente et al., 2005) 

siAkt-1 
F:5'-GGAGGGUUGGCUGCACAAAtt-3' 

R:5'-UUUGUGCAGCCAACC CUCCtt-3’ 

(Jiang et al., 2007) 

 

Table 2.3.  Details for siRNA sequences used in this study. 

http://www.dharmacon.com/PopUpTemplate.aspx?id=2078
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2.6.2. Transfection 

 

BAEC were transfected with plasmids using EX-GEN 500 transfection reagent in 

RPMI 1640 medium.  BAEC cells were plated onto 6-well plates and grown to ~ 70% 

confluence.  Complexes of plasmid DNA and transfection reagent were prepared by 

mixing and brief vortexing 3 μg of DNA with 10 μl of EX-GEN 500 transfection 

reagent in 100 μl of medium per well and incubation at RT for 20 mins.  The 

transfection mix was added into each well containing 300 μl medium.  After 3 hour 

incubation at 37
o
C, 500 μl of medium containing 10% FBS was added and incubated 

for a further 24 hours.  Medium was changed and cells stimulated as appropriate for 

another 24 hours. 

 

2.7. Gene reporter assay 

Luciferase is used as a reporter to assess the transcriptional activity in cells that are 

transfected with a plasmid construct containing the luciferase gene under the control of 

the promoter of interest.  In luminescent reactions, light is produced by the oxidation of  

luciferin. 

luciferin + O2 → oxyluciferin + light 

Luciferase reporter assays were performed using the Promega dual luciferase reporter 

assay system according to manufacturer’s guidelines.  BAEC grown to ~ 80% 

confluence were co-transfected overnight using EX-GEN 500 with 2 μg of plasmid 

expressing the firefly luciferase gene under the control of the gene promoter of interest 

(VEGFR-1) and 50 ng of CMV promoter driven control plasmid expressing the renilla 

http://en.wikipedia.org/wiki/Transcription_(genetics)
http://en.wikipedia.org/wiki/Promoter_(biology)
http://en.wikipedia.org/wiki/Oxidation
http://en.wikipedia.org/wiki/Luciferin
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/w/index.php?title=Oxyluciferin&action=edit&redlink=1
http://en.wikipedia.org/wiki/Promoter_(biology)
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luciferase gene.  After 24 hours, cells were lysed using the luciferase cell lysis buffer, 

and gene reporter activity was assayed using the Promega dual-luciferase gene reporter 

assay kit, essentially as described by the manufacturer.  Briefly, 10 μl of cell lysate was 

added to 25 μl of luciferase reagent II in a polycarbonate luminometer tube, the reagents 

were mixed by brief vortexing and placed in the Berthold luminometer.  Luminescence 

was counted and averaged over 2 periods of 10 seconds.  Renilla lucifirase 

quantification was accomplished by adding 25 μl of Stop & Glow reagent to the same 

sample tube immediately after quantification of firefly luciferase reaction and 

luminescence was read again as described above.  Luciferase activity in each cell lysate 

was measured in relative light units (RLU) on a luminometer and Firefly luciferase 

activity was normalised to Renilla activity for each experiment to control for 

transfection efficiency. 

 

2.8. RNA extraction 

 

Total RNA was extracted using Norgen cytoplasmic & nuclear RNA purification Kit 

according to the manufacturer’s instructions for cells growing in a monolayer.  Cells 

were washed twice with ice-cold PBS and lysed with 350 µl of lysis buffer per well 

with gentle tapping and swirling for 5 minutes.  Cell lysates were then transferred to a 

microcentrifuge tube and 200 µl of 95-100% ethanol was added to the lysate.  After 

vortexing for 10 seconds, the lysate was applied onto a mini spin column and 

centrifuged for 1 minute.  The column was washed with 400 µl of washing buffer, 

centrifuged for 1 minute and the flow through discarded.  This step was repeated 3 

times.  RNA was eluted in 50 µl sterile RNAse-free water.  RNA concentrations and 

purity were estimated using OD 260/280 nm measurement on a spectrophotometer. 
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2.9. cDNA Synthesis  

 

cDNA synthesis was performed using a Promega reverse transcription kit according to 

the manufacturer’s instructions.  20 µl reactions were prepared by adding the following 

reagents in the order listed in Table 2.4. 

The reaction mix was incubated at 50
o
C for 1.5 hour.  The resultant cDNA was diluted 

and aliquotted and stored at -80
o
C for PCR.  

Component Amount Final concentration 

MgCl2 (25 mM) 4µl 5 mM 

Reverse transcription 10X 

buffer 
2µl X1 

dNTP mixture (10 mM) 2µl 1mM 

RNase inhibitor 0.5µl - 

AMV Reverse transcriptase  15 u (0.6 µl) - 

Oligo(dt)15 primer, or random 

primers 
0.5µl - 

Total RNA 1µg - 

Nuclease free water to a final 

volume of 
20 µl - 

  

Table 2.4.  cDNA synthesis reaction constituent volumes and concentrations. 

 

2.10. Polymerase chain reaction (PCR) 

 

For standard PCR, a Sunquest thermo-cycler (Arizona, USA) was used for 

amplification.  Biotaq
TM

 DNA polymerase (Bioline Kit) was used following the 
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manufacturer’s instructions.  25 μl reaction mixtures were prepared as described in the 

Table 2.5.  Each reaction was amplified for 35 cycles and PCR products were visualised 

following agarose gel electrophoresis.  For PCR running conditions (see section 2.18.4). 

Component Volume (μl) 
Final concentration 

2X Reaction buffer 2.5 1x 

MgCl2 (50 mM) 2 4mM 

dNTP (100 mM) 1 4mM 

DNA Polymerase (5 u/μl) 1 0.2u/μl 

Primers (100 μM) 0.5 2 μM 

Template cDNA The equivalent of 2 μg - 

Distilled H2O Up to 25 - 

 

Table 2.5.  PCR reaction constituents’ volumes and concentrations details. 

 

 

2.11. Agarose gel electrophoresis 

 

DNA products resulting from PCR were visualised in 1 or 2% (w/v) agarose gels 

electrophoresis. Agarose gels were prepared in 0.5% Tris-borate-EDTA buffer (TBE) 

with 1 µg/ml ethidium bromide.  DNA samples were loaded using 1:5 (v/v) sample to 

loading buffer.  Gels were run at 100 V for approximately 30 minutes and DNA bands 

were visualised by illumination with UV light at 300 nm. 
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2.12. Quantitative polymerase chain reaction (qPCR) 

 

SYBR green qPCR was performed using Corbett Rotor-Gene 6000 PCR machine.  

qPCR reactions were prepared in a total volume of 15 µl using the SensiMix Plus 

SYBR Kit according to the manufacturer’s instructions (see Table 2.6).  Primer 

sequences specific for each target gene are listed in (Table 2.7) were either obtained 

from published literature, or in-house designed using Primer 3 Sofatware 

(http://frodo.wi.mit.edu/primer3) and were tested before use ensuring the amplicon is 

the right size, or by sequencing when necessary.  The reactions were performed in 

triplicate using the following conditions, an initial denaturation step at 95
o
C for 10 

minutes followed by 40 cycles of, denaturation at 94
o
C for 1 minute; annealing at 60

o
C 

for 15 seconds; extension at 72
o
C for 30 seconds and the fluorescence is read at 78

o
C 

after 15 seconds.  At the end of the PCR run melt curve analysis was performed 

between 68
o
C and 90

o
C to ensure that a single amplicon was detected.  In a real time 

PCR assay, a positive reaction is detected by accumulation of a fluorescent signal.  The 

Ct (cycle threshold) is defined as the number of cycles required for the fluorescent 

signal to cross a defined threshold that exceeds the background level.  The threshold 

was set in the exponential phase of the amplification curve for each reaction.  The cycle 

value for each reaction was established by the cycle number at which each logarithmic 

PCR plot crossed the threshold line.  The Ct value for each gene of interest was 

normalised using the β-actin Ct value for the same sample.  Difference in fold change 

was then calculated using the equation 2
-ΔΔct

 where ΔΔCt was the ΔCt value from the 

treated cells minus the ΔCt value for the control. 

 

 

http://frodo.wi.mit.edu/primer3
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Component  Volume (μl) 

Sensi mix reaction buffer 7.5 

MgCl2 (50 mM) 0.6 

SYBR green 0.3 

Primers (100 μM) 0.06 

Template 1 

Distilled H2O 5.54 

 

Table.2.6.  qPCR reaction constituents’ volumes details. 

 

Gene Primer Sequence source 

hβ-actin 

5’-TCACCCACACTGTGCCCATCTACGA-3’ 

5’-CAGCGGAACCGCTCATTGCCAATGG-3’ 
(Malarstig et al., 2003) 

mβ-actin 

5’-GTATGCCTCGGTCGTACCA-3’ 

5’-CTTCTGCATCCTGTCAGCAA-3’ 
In-house designed 

hPlGF 

5’-GCGATGAGAATCTGCACTGT-3’ 

5’-CTTTAGGAGCTGCATGGTGA-3’ 
In-house designed 

mPlGF 

5'-GAAGTGGAAGTGGTGCCTTT-3' 

5'-CGACTCAGAAGGACACAGGA-3' 
In-house designed 

hVEGFR-1 

5’-AGGAGATGCTCCTCCCAAA-3’ 

5’-GTGCAGGGATCCTCCAAAT-3’ 
In-house designed 

hVEGF 

5'-GCCTCGCCTTGCTGCTCTACC-3' 

5'-CACACTCCAGGCCCTCGTCATTG-3' 

Jayaraman, Padma-Sheela 

(University of 

Birmingham, UK) 

 

Table 2.7.  qPCR primer sequences. h = human, m = murine. 
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2.14. Protein biochemistry techniques 

 

2.14.1. Estimation of protein concentration (protein assay) 

 

The amount of protein present in culture medium, or cell protein samples was measured 

prior to SDS-PAGE using the Bio-Rad protein assay.  This colorimetric assay is based 

on the Lowry protocol and modified to allow estimation of protein concentration in 

detergents and reducing buffers (Lowry et al., 1951).  Protein standards were prepared 

from a stock solution of 10 mg/ml BSA (w/v) in distilled water and diluted in RIPA 

buffer to give a range of concentrations from 0.2 to 1.4 mg/ml.  Thawed protein 

samples were diluted 1:5 in RIPA buffer and 5 µl of each sample and the BSA 

standards aliquotted to duplicate wells (96 well plates).  20 μl of Reagent S added per 

ml of Reagent A and 25 μl of the mixture added to each well.  200 μl of Reagent B was 

added to each well and the colour was allowed to develop for 15 minutes and read 

within 60 minutes in a multiscan ascent 96-well plate reader at 690 nm.  Results were 

obtained by plotting of the BSA standard concentration against optical density (OD).  

 

2.14.2. SDS-PAGE 

 

Equal amounts of protein were diluted in reducing buffer and the samples were heated 

at 95
o
C for 10 minutes.  Appropriate percentage SDS-polyacrylamide gels (8-15%), 

dependent on the size of the protein of interest (see Appendix IV).  Samples were 

electrophoresed through the stacking gel at 60 V for 30 minutes and the running gel at 

120 V for approximately 2 hours. 
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2.14.3. Western blotting 

 

After SDS-PAGE, the separated proteins were transferred to nitrocellulose membranes 

using semi-dry transfer Biorad machine applying 0.8 mA/cm
2
 in transfer buffer.  Non-

specific protein binding on the membrane was blocked by 1 hour incubation with 8% 

(w/v) fat-free Marvel milk in TBS-T.  The membranes were incubated with primary 

antibody in 5% (w/v) BSA/TBS-T with agitation overnight at 4
o
C.  After thorough 

washing with TBS-T, the membranes were incubated with the secondary HRP-

conjugated antibody diluted in 8% fat-free milk/TBS-T solution with agitation for 1 

hour at RT.  After washing with TBS-T, antibody binding was visualised using 

enhanced chemiluminescent detection (ECL).  The band detection process was carried 

out in the dark room by exposing the membrane to a sheet of autoradiography Kodak 

film for various time points to achieve the best result for each blot. The films were 

developed using automated Xograph developer. 

 

2.14.4. Stripping membranes 

 

To re-probe the same membrane with different antibodies, the membrane was stripped 

by incubation in 30 ml of 0.2 M NaOH at RT for 20 minutes.  After washing twice with 

dH2O for 5 minutes, the membrane was then blocked again for 30 minutes before 

incubation with primary antibody.  
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2.15. PlGF and VEGF Enzyme-Linked Immunosorbent Assay (ELISA) 

 

Enzyme-linked immunosorbent assay (ELISA) for human and mouse PlGF, and VEGF 

were performed on cell supernatants following the manufacturer’s instructions (R&D 

systems).  Each 96-well ELISA microplate was coated using an aliquot of 100 µl of 

capture antibody diluted in 10 ml of PBS (working concentration) and incubated 

overnight at RT.  The following day, each microplate was washed three times using 250 

μl of washing buffer per well.  The microplate was then blocked using 250 µl of 

blocking buffer per well and incubated for two hours at RT.  The plate was washed 

again as described above (3x 250 μl/well).  Standard curve was prepared using eight 

serial dilutions of standard in diluent buffer.  Both standards and samples (100 µl/well) 

were added to the microplate in duplicate and incubated for 2 hours at RT. After 

another washing step, 100 µl/well of detection antibody diluted in reagent diluent was 

added and incubated for 2 hours at RT.  Following another washing step, 100 µl/well of 

working dilution of streptavidin-HRP was added and the microplate was incubated for 

20 minutes at RT.  The plate was washed again, and 100 µl/well of substrate solution 

was added and incubated at RT for 20 minutes in the dark.  The reaction was then 

stopped by the addition of 50 µl of stop solution.  Optical density of each well was 

measured using a microplate reader at 450 nm and the background at 540 nm 

subtracted.  PlGF or VEGF concentration was determined from the standard curve. 

These assays are highly specific and sensitive with reported detection limits of 7 pg/ml 

for PlGF, and 5 pg/ml for VEGF.  The PlGF ELISA shows no cross-reactivity or 

interference with recombinant human PDGF, VEGF121, VEGF165 and mouse PlGF-2 

prepared at 50 ng/ml.  For the VEGF ELISA, R&D systems report that recombinant 
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human PlGF, VEGF-C, VEGF-D, and mouse PlGF-2, VEGF120, VEGF164 prepared at 

50 ng/ml showed no cross-reactivity or interference with the assay. 

 

2.16. VEGFR-2 ELISA. 

A VEGFR-2 sandwich ELISA was developed and optimised in-house by Dr Melissa 

Cudmore to measure VEGFR-2 in cell lysates.  An immobilized capture antibody 

specific for VEGFR-2 binds both tyrosine-phosphorylated and unphosphorylated  

VEGFR-2.  After washing away unbound material, a biotinylated detection antibody 

specific for VEGFR-2 is used to detect captured receptor, utilizing a standard  

Streptavidin-HRP format. The assay was performed essentially as described for VEGF 

and PlGF ELISA.  Briefly, 96-well plates were coated with a 100 μl/well of a VEGFR-2 

antibody (R&D systems) reconstituted in PBS at a final concentration of 4 μg/ml.  For 

detection, biotinylated anti-VEGFR-2 antibody was reconstituted in reagent diluent 

buffer at a final concentration of 200 ng/ml and 100 μl/well was added.  A VEGFR-2 

standard curve was prepared by serial dilutions of recombinant VEGFR-2 in reagent 

diluent (50-0.781 ng/ml). 

 

2.17. PlGF:VEGF heterodimer ELISA. 

The human PlGF:VEGF heterodimer ELISA (R&D systems) was designed to measure 

human PlGF:VEGF heterodimer in cell-conditioned medium, serum, and plasma.  The 

assay was performed essentially as described for VEGF and PlGF.  Briefly, 96-well 

plates were coated with a 100 μl/well of a PlGF:VEGF heterodimer antibody 
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reconstituted in PBS at a final concentration of 4 μg/ml/well.  For detection, a 

biotinylated anti-VEGF-A detection antibody (R&D systems) was reconstituted in 

reagent diluent buffer at a final concentration of 100 ng/ml/well and 100 μl was added.  

PlGF:VEGF standard curve was prepared by serial dilutions of recombinant 

PlGF:VEGF in reagent diluent (4000-31.25 pg/ml). 

 

2.18. Chromatin immunoprecipitation (ChIP) 

Chromatin Immunoprecipitation (ChIP) is an immunoprecipitation-based experimental 

technique that is used mainly to investigate the interaction (binding) between DNA and 

proteins (mapping the DNA target of transcription factors or other chromatin-associated 

proteins) in the cell.  The principle of the technique is outlined in Figure 2.3.  Briefly, 

chromatin bound to DNA in cells is reversibly cross-linked by formaldehyde.  The 

cross-linked chromatin is then sheared by sonication, providing fragments of 200–800 

base pairs (bp) in length.  Chromatin fragments of 400-500 bp are ideal for for ChIP 

assays as they encompass two to three nucleosomes.  Cell debris in the sheared cell 

lysate is then cleared by sedimentation and protein–DNA complexes are selectively 

immunoprecipitated using specific antibodies to the protein/transcription factor of 

interest of interest.  The antibodies are commonly coupled to agarose, sepharose, or 

more recently magnetic beads. The immunoprecipitated complexes (the bead–antibody–

protein–target DNA sequence complex) are then collected and washed to remove non-

specifically bound chromatin. The protein–DNA cross-link is reversed and proteins and 

RNAs are removed by digestion with proteinase-K and RNAse A, respectively.  The 

DNA associated with the complex is then purified and identified by (PCR), 

microarrays, or direct high-throughput sequencing (ChIP-seq). 
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To examine the direct binding of FoxO1 to the PlGF and VEGFR-1 gene promoters in 

endothelial cells, ChIP assay was performed according to manufacturer’s instructions 

on HUVEC grown to ~ 80% confluence in 75 cm
2
 flasks.  Cells were transduced with 

HA-tagged, constitutively-active FoxO1 (FoxO1-ADA) and Ad-CMV adenoviral vector 

with CMV promoter but no insert at (MOI=50) overnight in 12 ml/per flask in HUVEC 

complete medium containing 5% FBS. The medium was then changed to fresh MCDB 

131 medium containing GPS and 10% FBS and incubated for 48 hours at 37 
o
C.  

 

2.18.1. Histone cross-linking to DNA 

Histones were cross linked to DNA by adding formaldehyde (final concentration 1% 

v/v) directly to the culture medium and incubated for 10 minutes at 37
o
C.  Medium was 

then aspirated and cells were thoroughly washed twice using ice-cold PBS containing a 

cocktail of protease inhibitors containing 1 mM phenylmethylsulfonyl fluoride (PMSF), 

1 µg/ml aprotinin, and 1 µg/ml pepstatin A.  After scraping cells into a conical tube, 

cells were pelleted for 4 minutes at 2000 rpm at 4
o
C.  Cell pellets were resuspended in 

warmed SDS lysis buffer containing protease inhibitors cocktail (250 µl of SDS lysis 

buffer per 1 x 10
6
 cells) for 15 minutes before the DNA was sheared. 
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Figure 2.3. Chromatin immunoprecipitation (ChIP) experimental technique procedure. 

Chromatin bound to DNA are cross-linked linked followed by nuclease digestion.  The cross-linked 

chromatin is then sheared by sonication, providing fragments of 200–800 base pairs (bp) in length.  

protein–DNA complexes are selectively immunoprecipitated using protein-specific antibodies. The 

immunoprecipitated complexes are then collected and washed to remove non-specifically bound 

chromatin, the protein–DNA cross-link is reversed and proteins and RNAs are removed by 

digestion with proteinase-K RNAse A, respectively.  The DNA associated with the complex is then 

purified and identified by (PCR), microarrays, or direct high-throughput sequencing (ChIP-seq).  

Taken from (Collas and Dahl, 2008). 
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2.18.2. DNA shearing/sonication 

 

Cell lysates in SDS lysis buffer were sonicated to shear DNA to lengths between 200 

and 800 bp on ice-cold water using Diagenode Bioruptor sonicator.  The Bioruptor 

sonication system, as described by the manufacturer, uses ultrasound waves to create 

focused mechanical stress to lyse cells, or shear DNA, or chromatin. The ultrasound 

waves pass through the sample, expanding and contracting liquid.  During expansion, 

negative pressures pull the molecules away from one another and form a cavity or 

bubble in a process called cavitation.  The bubble continues to absorb energy until it can 

no longer sustain itself and then implodes, producing intense focused shearing forces, 

which disperses or breaks biomolecules.  The fragmentation of DNA takes place as a 

consequence of this mechanical stress, or shear, from the bubbles.  For HUVEC, 

conditions were optimised as follows.  Round 1 for 10 minutes with the power Level set 

at: high, and ultrasound wave pulse ON for 25 sec, and OFF for 1 min.. Followed by a 

second round for 7.5 minutes with the power Level set at: high and ultrasound wave 

pulse ON for 1 mins, and OFF for 25 sec.  To ensure the fragments are of the desired 

size, sheared DNA was reverse cross-linked by adding 8 µl of 5 M NaCl and incubated 

at 65
 o

C for 4 hours followed by DNA extraction by phenol-chloroform method (see 

section 2.18.4 below).  Samples of 5, 10, and 20 µl were run on in 1.5% agarose gel to 

visualise shearing efficiency and the DNA concentration determined at OD 260/280 on 

a spectrophotometer for PCR.  The remaining DNA was used as ‘INPUT’. 
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2.18.3. Immunoprecipitation 

 

For immunopreciptation, sheared DNA was subjected to further processing steps. 

Samples were centrifuged for 10 minutes at 13000 rpm at 4
o
C, the supernatant 

transferred to a new 2 ml microcentrifuge tube and pellet discarded.  Sonicated cell 

supernatant was diluted 10-fold in ChiP dilution buffer, containing protease inhibitors 

as above (section 2.18.1).  This is done by adding 1800 µl of ChiP dilution buffer to 

200 µl sonicated cell supernatant for a final volume of 2 ml in each 

immunoprecipitation condition.  To reduce non-specific binding background, the 

diluted 2 ml cell supernatant was pre-cleared with 75  µl of protein agarose/salmon 

sperm DNA (50% slurry) for 30 minutes at 4
o
C with agitation.  The agarose was then 

pelleted by brief centrifugation and the supernatant collected.  This step was followed 

by adding 5 μg of immunoprecipitation antibody against the HA epitope 

(YPYDVPDYA) to the 2 ml supernatant fraction and overnight incubation at 4
o
C with 

agitation.  60 µl of protein A agarose/salmon sperm DNA (50% slurry) was added for 1 

hour at 4
o
C with rotation to collect the antibody/histone complex. For negative control, 

a sham immunoprecipitation was performed by incubating the supernatant fraction with 

60 µl of protein A agarose/salmon sperm DNA (50% slurry) and no antibody for 1 hour 

at 4
o
C with rotation.   The agarose was then pelleted by gentle centrifugation (700 to 

1000 rpm at 4
o
C, for 1 min) and the supernatant that contains unbound, non-specific 

DNA was carefully removed.  The protein A agarose/antibody/histone complex was 

then washed once for 3-5 minutes on a rotating platform with 1 ml of each of the 

buffers as follows: a) low salt immune complex wash buffer, b) high salt immune 

complex wash buffer, c) LiCl immune complex wash buffer, and two washes with d) 

TE buffer.  To isolate the DNA that is bound to the immunoprecipitated histone 
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complex, 250 μl of elution buffer (1% SDS, 0.1 M NaHCO3) was added to 

agarose/antibody/histone complex from the step above, vortexed briefly to mix and 

incubated at room temperature for 15 minutes with rotation.  The agarose was then 

removed by centrifugation and supernatant fraction (eluate) was transferred to a new 

tube.  This step was repeated twice, and the resultant eluates (500 μl) combined.  This 

was followed by a reverse cross-linking step and DNA was recovered by phenol-

chloroform-isoamyl alcohol (25:24:1) and ethanol precipitation for PCR amplification. 

 

2.18.4. DNA precipitation 

 

The addition of inert carrier, such as glycogen (5 μl of 10 μg/ml) assists the 

visualisation of DNA pellet.  To remove the protein phase, an equal volume of Tris-

saturated phenol-chloroform-isoamyl alcohol (25:24:1) was added and the mixture was 

vortexed and centrifuged for 2 minutes at 12,000 rpm at 4°C. The supernatant was 

transferred to a fresh tube while avoiding aspiration of interlayer or organic phase.  To 

remove phenol, an equal volume of chloroform was added and the mixture was 

vortexed and centrifuged for 2 minutes at 12,000 rpm at 4°C.  The supernatant was then 

transferred to fresh tube while avoiding aspiration of interlayer or organic phase.  To 

precipitate DNA, 0.1 volume of 5 M ammonium acetate was added followed by 0.7 

volume of isopropanol.  The mixture was vortexed and DNA precipitated at -20
o
C 

overnight.  The precipitate was spun down for 20 minutes at 12,000 rpm 4°C.  The 

supernatant was carefully removed to prevent the loss of the DNA pellet.  To wash out 

salts, 1 ml of cold 70% ethanol was carefully added without vortexing and spun down 

for 10 minutes at 12,000 rpm 4°C.  The pellet was left to air-dry for 10 minutes at RT, 

but was not allowed to dry completely as it becomes difficult to dissolve. The DNA was 
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then dissolved in 50 μl of dH2O, DNA concentration was determined using a 

spectrophotometer and PCR performed.  ChIP primer sequences are in listed in (Table 

2.8) were in-house designed using Primer 3 Software and tested prior use for actual 

experiments (see Section 4.2.9), and PCR was performed in triplicate using the 

following conditions, an initial denaturation step at 95
o
C for 5 minutes followed by 40 

cycles of, denaturation at 94
o
C for 1 minute; annealing at 60

o
C for 30 seconds; 

extension at 72
o
C for 1 minute and a final extension step at 72

o
C for 10 minutes. 

 

gene Primer sequences Source 

PlGF-seq1 

5’-TTG TGT GCA CCT ATG CAA ATC G-’3 

5’-CAG TCT GGA CGA CAG AGT AGA AC-3’ 

In-house designed 

PlGF-seq-2 

5’-GTC CTT GAT GGT CCT TGA CTT TGC-3’ 

5’-CAA TGT GTC ATC ACC AAA GGA ATG G-3’ 

In-house designed 

VEGFR-1 

5’-GAG TAG CAA GCT GCC ACC AGA AAG-3’ 

5’-CTT GCT TGG CAC CTT TGG GAA GAC-3’ 

In-house designed 

eNOS 

5′-CGGAGCAGGTGATAGAAGCTAGG-3′ 

5′-GCTTCCCTGGAGTCTTGTGTAGG-3′ 

(Potente et al., 2005) 

 

Table 2.8.  ChIP primer sequences used in this study. 
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2.19. Animal experiments 

 

2.19.1. Adenoviral injection of FVB/N mice 

 

FVB/N mice were obtained from Charles River and kindly provided by Dr Andrea 

Bacon (University of Birmingham, UK) between 8-12 weeks of age weighing between 

25-30 g.  FVB/N mice were injected via the tail vein with 2x10
10

 IFU of adenovirus 

encoding FoxO-ADA, or Ad-CMV empty control virus in a total volume of 100 μl 

sterile PBS by Mr Ian Ricketts at Birmingham University Biomedical Services Unit.  

After 48 hours the mice were sacrificied, blood collected to prepare serum, and the 

livers frozen for the preparation of mRNA and protein extracts. 

 

2.19.2. Ob/ob mouse experiments  

 

The ob/ob mouse tissue and plasma used in this study were obtained through 

collaboration with Dr Steve Russell (Dept of Pharmacology, Aston University, 

Birmingham, UK).  The Aston ob/ob colony was established in 1966 and has been 

maintained in a closed non-inbred colony.  These mice were originally developed in the 

Edinburgh Animal Genetics Unit in 1957 using the C57Bl/6J
ob/-

 from Jackson 

Laboratories and carry the ob gene mutation on a mixed background (JH for greater 

litter size and CRL for increased growth) which leads to a more severe phenotype than 

reported for the original and other strains (Bailey et al., 1982).  Ob/ob mice and their 

wild-type (+/+) littermates were sex and age-matched between 16 and 19 weeks old 

(severly hyperglycaemic) and were housed individually at 20-22
o
C with 12 hour 

light:12 hour dark cycles with free access to drinking water and standard chow diet.   
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2.19.3. Mouse tissue and plasma collection 

 

FVB/N and ob/ob mouse liver tissue and serum were collected under the licence of Dr 

Stuart Egginton (University of Birmingham, Birmingham, UK).  Immediately upon 

collection, tissues were processed as follows 

I. Frozen in liquid nitrogen and stored at -80
o
C until required for Western blot 

analysis, ELISA or qPCR. 

II. Lysed and homogenised in ice-cold 1X RIPA buffer supplemented with protease 

inhibitors and homogenised using the Precellys tissue homogeniser at a speed of 

6,500 x g for 10 minutes.  

 

2.20. Statistical analysis 

 

All data are expressed as mean ± SEM.  Statistical comparisons were performed 

Student’s t-test as appropriate.  Statistical significance as indicated in figure legends 

was set at a value of P ˂0.05. 
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3.1. Introduction 
 

In humans, PlGF expression is up-regulated in cardiovascular and metabolic disorders 

characterised by hyperglycaemia and endothelial dysfunction, such as proliferative 

diabetic retinopathy (Khaliq et al., 1998; Mitamura et al., 2002).  Furthermore, elevated 

levels of PlGF in patients with atherosclerosis is associated with inflammation, 

vascularisation and plaque instability (Pilarczyk et al., 2008).  In animal studies, 

blocking PlGF or VEGFR-1 inhibited ocular angiogenesis, inflammation and reduced 

atherosclerotic plaque growth and its susceptibility to rupture in mice (Luttun et al., 

2002; Van de Veire et al., 2010).  In addition, adenoviral delivery of PlGF-2 into ApoE
–

/–
 mice increased intimal thickening and macrophage accumulation compared with the 

double knockout ApoE
–/–

/PlGF
–/– 

mice, suggesting a role for PlGF in the promotion of 

atherosclerosis (Khurana et al., 2005).  

 

Signalling through the PI3K/Akt pathway is crucial for metabolic responses to insulin 

in insulin-responsive tissues and essential for endothelial cell survival, growth and NO 

generation (Montagnani et al., 2002; Potenza et al., 2005).  Hyperglycaemia-induced 

oxidative stress is thought to be responsible for the down-regulated signalling through 

this pathway, leading to the development of endothelial dysfunction (Song et al., 2007).  

In this chapter, the relationship between PlGF expression and the modulation of the 

PI3K/Akt signalling pathway activity by hyperglycaemia has been examined in vitro 

and in vivo. 
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3.2. Results 
 

3.2.1. Acute hyperglycaemia increases the release of PlGF from HUVEC’s in vitro. 

 

To determine whether PlGF release from endothelial cells was affected by 

hyperglycaemia, HUVEC were incubated for 24 hours in growth factor-free MCDB 131 

medium containing 10% FBS and normal glucose levels (NG; 5 mM D-glucose), high 

glucose (HG; 30 mM D-glucose), or osmolarity control (OS; 5 mM D-glucose + 25 mM 

L-glucose).  PlGF levels were measured by ELISA in cell-conditioned medium.  Figure 

3.2.1 shows that following exposure to high levels of D-glucose the amount of PlGF 

secreted by HUVEC was approximately 2-fold greater than that secreted by cells 

maintained in the normal levels of glucose (p < 0.01, n = 4) and cells that had been 

treated with an equivalent amount of the physiological inert L-glucose isomer (p < 0.01, 

n = 4). 

 

 

 

 

 

 

 

 

 

Figure 3.2.1.  The effect of hyperglycaemia on PlGF secretion in HUVEC.  Cells were cultured for 

24 hours in growth factor-free MCDB 131 medium containing 10% FBS and normal glycaemia (NG = 5 

mM D-glucose), hyperglycaemia (HG = 30 mM D-glucose) or osmolarity control (OS = 5 mM D-glucose 

+ 25 mM L-glucose).  PlGF levels were measured in cell-conditioned medium by ELISA.  (**P<0.01, 

n=4).  
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3.2.2. Is VEGF involved in the hyperglycaemia-stimulated PlGF release in 

HUVEC? 

 

It has been suggested that in bovine retinal microvascular endothelial cells both, the 

expression of PlGF mRNA and the secretion of PlGF protein can be stimulated during 

acute periods of hyperglycaemia by an auto- or paracrine mechanism that appears to 

involve induction of VEGF secretion (Zhao et al., 2004). Therefore, a potential role for 

VEGF in hyperglycaemia-induced PlGF secretion in HUVECs was investigated using 

pre-designed short-interfering oligonucleotides (siRNA) sequences directed against the 

human VEGF gene to ‘knockdown’ the expression and secretion of VEGF.  

Effectiveness of the VEGF siRNA was initially tested in a human embryonic kidney 

cell line (HEK 293) which has a high basal secretion of VEGF.  It can be seen in 

Figures 5.2.6A and 5.2.6B that by following transfection with the VEGF siRNA 

oligonucleotides the expression of VEGF mRNA was reduced by ~ 50% and the 

secretion of VEGF protein by > 75 % in HEK 293 cells.  A random oligonucleotide 

siRNA control failed to have any effect on basal VEGF secretion in HEK 293 cells.  

Basal secretion of VEGF in HUVEC used in this experiment was below the limit of 

detection of the VEGF ELISA (see Figure 5.2.6C), so it was not possible to directly 

demonstrate the effectiveness of the VEGF siRNA treatment in HUVEC.  However, 

from the results obtained in the HEK 293 cells, it can be inferred that any 

hyperglycaemia-stimulated increase in either the expression of VEGF mRNA or 

secretion of VEGF protein in HUVEC would be significantly reduced following VEGF 

siRNA treatment. 

To test any potential effects of siRNA-mediated knockdowns of VEGF on 

hyperglycaemia–induced PlGF secretion from HUVEC, cells were transfected with the 

VEGF siRNA by electroporation as described in the methods section (2.6.1).  The effect 
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of hyperglycaemia on the secretion of PlGF from HUVEC was assessed exactly as 

described in the experiment shown in section 3.2.1.  Figure 3.2.2 shows that there was a 

significant increase in PlGF secretion under each of the experimental conditions 

following siRNA-mediated knockdown of VEGF compared to the relevant control (n = 

3, p < 0.05).  In ‘VEGF-knockdown’ cells the effect of hyperglycaemia on PlGF 

secretion was significantly greater than the additive effect of both treatments on PlGF 

secretion.  The preceding data suggests that it is highly unlikely that acute exposure of 

HUVEC to a hyperglycaemic stimuli can induce VEGF secretion which then acts in a 

paracrine fashion to increase PlGF secretion.  Since we were unable to verify the 

knockdown of VEGF in HUVEC, these data should be treated with caution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2.  The role of VEGF knockdown in hyperglycaemia-induced PlGF release in HUVEC.  

HUVEC were electroporated with siRNA targeted to VEGF-A, or control siRNA using an Amaxa 

nucleofector and incubated overnight.  After a further 24 hour incubation in fresh growth factor-free 

MCDB 131 medium containing 10% FBS and NG, OS or HG PlGF levels were measured in cell-

conditioned medium by ELISA.  (*P<0.05, n=3). 
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3.2.3. IGF-1 reduces PlGF release in HUVEC. 
 

To examine the effect of IGF-1, a classical activator of the PI3K/Akt pathway in 

endothelial cells in vitro and in vivo (Song et al., 2007; Sukhanov et al., 2007) on PlGF 

release, confluent HUVEC were incubated in MCDB 131 medium containing 10 % 

FBS and increasing concentrations of IGF-1 (0, 0.1, 1, 10, 100 ng/ml) for 24 hours, and 

PlGF was quantified in cell-conditioned medium by ELISA.  As shown in Figure 3.2.3, 

IGF-1 significantly suppressed PlGF release in HUVEC in a concentration-dependent 

manner.  The effect was maximal at 100 ng/ml, but not significantly different to that 

observed with 10 ng/ml.  Therefore, 10 ng/ml was the standard concentration used for 

IGF-1 stimulations.  These data indicate that activation of the PI3K/Akt pathway may 

inhibit PlGF release in HUVEC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.3.  Effect of IGF-I on PlGF release in HUVEC.  Confluent HUVEC were stimulated 

with increasing concentrations of IGF-1 in MCDB 131 medium containing 10% FBS for 24 hours.  

PlGF concentrations were measured in cell-conditioned medium by ELISA.  (*P<0.05, **P<0.01, 

n=3). 
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3.2.4. Combined effects of hyperglycaemia and IGF-1 on PlGF release in 

endothelial cells. 
 

To determine the combined effects of hyperglycaemia and IGF-1 on PlGF release in 

endothelial cells, HUVEC and HAEC were incubated in growth factor-free MCDB 131 

medium containing 10% FBS and NG, OS or HG in the presence of IGF-1 (10 ng/ml), 

or vehicle for 24 hours, and PlGF was quantified in cell-conditioned medium by 

ELISA.  The results are shown in Figure 3.2.4A for HUVEC, and Figure 3.2.4B for 

HAEC.  In both cell types, HG, in the absence of IGF-1, significantly induced PlGF 

release compared with NG and OS.  In the presence of IGF-1, this effect was 

significantly reduced.  These data confirm the inductive effect of hyperglycaemia and 

suppressive effect of IGF-1 on the regulation of PlGF release in endothelial cells. 
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Figure 3.2.4.  Combined effects of hyperglycaemia and IGF-1 on PlGF release in endothelial cells.  

A, HUVEC and B, HAEC were cultured in growth factor-free MCDB 131 medium containing 10% FBS 

and NG, HG or OS control in the presence of IGF-1 (10 ng/ml) or vehicle.  After 24 hour incubation 

PlGF concentrations were measured in cell-conditioned medium by ELISA.  (*P<0.05, n=3). 
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3.2.5. Combined effect of Hyperglycaemia and IGF-1 on Akt activity in HUVEC.  
 

The suppression of IGF-1-induced Akt activation by hyperglycaemia in HUVEC has 

been shown by others (Song et al., 2007; Sukhanov et al., 2007).  In this section these 

experiments have been repeated to investigate whether there is a link between Akt 

phosphorylation status (as a surrogate marker of Akt activity) and PlGF release in 

glucose stimulated HUVEC.  Akt phosphorylation was assessed in cell lysates from 

HUVEC that had been incubated for 24 hours in growth factor-free MCDB 131 

medium containing 10% FBS under normal or hyperglycaemic conditions.  At the end 

of the 24 hour incubation period, cells were stimulated with IGF-1 (10 ng/ml) or vehicle 

control for 10 minutes and Akt phosphorylation was assessed by Western blotting of 

cell lysates using an antibody against phospho-Akt (pAkt
ser473

). Western blotting using 

antibodies recognising Akt and β-actin was performed on stripped and reprobed bltos to 

determine whether the level of Akt was altered under these conditions and to verify 

equality of loading respectively. 

 As shown in Figure 3.2.5, high basal levels of Akt phosphorylation was seen in cells 

grown under both NG and OS conditions, and the level of Akt phosphorylation was 

markedly increased by IGF-1 under both conditions.  Basal Akt phosphorylation was 

markedly reduced even under the mildest of hyperglycaemic conditions.  IGF-1 was 

still able to increase the phosphorylation of Akt but the increase in the level of Akt 

phosphorylation produced by IGF-1 stimulation was much reduced when compared 

with the relevant controls.   Therefore, these results indicate that under conditions of 

acute hyperglycaemia both basal and agonist stimulated Akt activity is greatly reduced. 
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3.2.6. Effect of inhibition of PI3K by LY294002 on PlGF expression in HUVEC.  

 

To further investigate the role of PI3K in the regulation PlGF expression, HUVEC were 

incubated with the pharmacological PI3K inhibitor, LY294002 (20 µM). In the 

experiment depicted in Figure 3.2.6A HUVEC were treated for 8 hours with LY294002 

and PlGF mRNA was quantified by qPCR. Under these experimental conditions, 

LY294002 produce an approximate 2-fold increase in PlGF mRNA expression (p < 

0.05, n = 3, Figure 3.2.6.A). In the second experiment the HUVEC were incubated in 

the presence or absence of LY294002 for 24 hours. At the end of the incubation period 

the amount of PlGF protein secreted into the culture medium was quantified by ELISA. 

Figure 3.2.6B shows that following LY294002 treatment the secretion of PlGF had 

increased 3-fold relative to control (p < 0.05, n = 3).  The blockade of PI3K by 

LY294002 was confirmed by probing cell lysates from these experiments with 

 

 

Figure 3.2.5.  Combined effects of hyperglycaemia and IGF-I on Akt activity in HUVEC.  Confluent 

HUVEC were maintained in medium growth-factor-free MCDB 131 containing 10% FBS and NG, HG 

or OS control and stimulated with IGF-1 (10 ng/ml), or vehicle for 10 minutes and cell lysates were 

Western blotted using antibodies recognising phospho-Akt (ser 473), Akt and β-actin.  This is a 

representative blot of 3 independent experiments.   

pAkt Ser473
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β-actin
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antibodies recognising pAkt (for activity), Akt and β-actin for equal loading.  Figure 

3.2.6C clearly shows that the basal level of Akt phosphorylation in HUVEC had been 

significantly reduced by LY294002.  These data present further evidence to suggest that 

the PI3K signalling pathway may act as a negative regulator of PlGF mRNA expression 

and protein secretion in HUVEC. 

 

 

 

 

 

 

 

 

 

 

3.2.7. Combined effects of LY294002 and hyperglycaemia on PlGF release in 

HUVEC 

 

To further investigate whether suppression of the PI3K/Akt signalling pathway activity 

is involved in the regulation of PlGF release, the combined effects of LY294002 and 

hyperglycaemia on PlGF secretion were examined.  The experiment described in 

section 3.2.1 was repeated in the presence of LY294002 (20 μM), or vehicle.  PlGF 

A    B   C   

  

 

Figure 3.2.6:  Effect of PI3K inhibition by LY294002 on PlGF expression in HUVEC.  Confluent 

HUVEC were pre-treated with LY294002 (20 µM) and incubated in growth factor-free MCDB 131 

medium containing 10% FBS for A, 8 hours and quantitative PCR (qPCR) was performed on the 

extracted RNA, or B, for 24 hours and PlGF protein levels quantified in cell-conditioned medium by 

ELISA.  C, Cell lysates from B were Western blotted with antibodies recognising phospho-Akt (ser 473), 

Akt and β-actin.(*P<0.05, n=3). 
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secreted into the cell-conditioned medium was quantified by ELISA.  As shown in 

Figure 3.2.7, under normal glucose conditions LY294002 alone, significantly increased 

the amount of PlGF secreted into the medium bathing  the HUVEC by three-four fold 

when compared with non-treated cells (NG, p < 0.05, n = 3, OS, p < 0.05, n = 3).  This 

is also consistent with the results shown in Figure 3.2.6B.  As previously shown in 

Figure 3.2.1, the amount of PlGF secreted into the medium was significantly increased 

compared to control following exposure to the hyperglycaemic stimuli.  However, when 

this experiment was carried out in the presence of LY294002, there was a further small 

increase in the amount of PlGF secreted into the medium.  However, the amount of 

PlGF in the conditioned medium in cells that had been both treated with LY294002 and 

had been exposed to a hyperglycaemic stimuli was not significantly different than that 

seen in cells that had just been subjected to hyperglycaemia (n = 3, p > 0.05).  This is 

probably a reflection of the observation that under the conditions used in this 

experiment the hyperglycaemic stimulus alone was sufficient to almost completely 

block basal PI3K activity itself (see Figure 3.2.5) and its subsequent stimulatory effects 

on PlGF secretion was near maximal and inhibition of the remaining residual PI3K 

activity with LY294002 was only sufficient to increase the extent of PlGF secretion 

closer to its maximal amount.  However, the data still supports a role for PI3K as a 

negative regulator of PlGF secretion in glucose-stimulated HUVEC. 

 

 

 

 



Chapter 3-The role of the phosphatidylinositol 3-kinase/Akt pathway in the regulation of PlGF secretion from 

human umbilical vein endothelial cells during acute hyperglycaemia. 

98 
 

 

 

 

 

 

 

 

 

 

3.2.8. Effect of PI3K blockade by PTEN on PlGF release in HUVEC 

 

The experiments with LY294002 support the notion that PI3K is a negative regulator of 

PlGF expression and secretion in endothelial cells. However, it is well known that 

pharmacological inhibitors of cell signalling pathways, including LY294002, may have 

off target effects, especially when used at high concentrations.  Therefore, an alternate 

approach was used to investigate the effects of reducing PI3K activity of PlGF secretion 

from HUVEC.  As discussed in the introductory section, the lipid phosphatase PTEN 

which acts as negative regulator of the PI3K/Akt signalling pathway by increasing the 

rate of dephosphorylation of the second messenger PtdIns(3,4,5)P3 (Maehama and 

Dixon, 1999).  Therefore, activation of the PI3K signalling cascade can be decreased by 

simply increasing the level of expression of PTEN within cells.  This can be achieved 

practically by adenovirus-mediated over-expression of wild-type PTEN (Huang and 

 

 

Figure 3.2.7.  Combined effects of LY294002 and hyperglycaemia on PlGF release in HUVEC.  

Confluent HUVEC were pre-treated with LY294002 (20 µM), or vehicle and incubated for 24 hours in 

growth factor-free MCDB 131 medium containing 10% FBS and NG, HG or OS control. PlGF released 

was measured in cell-conditioned medium by ELISA.  (*P<0.05, n=3).  NS = not significant. 

* *
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Kontos, 2002).  Two controls were used in these experiments, an adenovirus expressing 

a catalytically inactive mutated PTEN (PTEN-c/s) and an adenovirus encoding a β-

galactosidase (β-gal).  HUVEC were infected with the adenoviruses containing either, 

PTEN, PTEN-c/s or β-gal overnight as described in the experimental section.  After 24 

hour incubation in growth factor-free MCDB 131 medium containing 10% FBS and 

PlGF in cell-conditioned medium was quantified by ELISA.  Adenovirus mediated 

over-expression of PTEN proteins; functional validation and equal loading were 

confirmed by Western blotting on cell lysates probed with antibodies recognising 

PTEN, pAkt, Akt and β-actin (Figure 3.2.8B and C).  

 

As shown in Figure 3.2.8A, over-expression of PTEN significantly induced a 5-fold 

increase in PlGF release compared with the β-gal over-expressing control (p < 0.05, n = 

3).  In Figure 3.2.8C, it can be seen that phosphorylation of Akt is completely abolished 

by PTEN over-expression.  The over-expression of the mutant dominant-negative 

PTEN-c/s had no effect on PlGF release compared with the β-gal control.  These data 

confirm the role of PI3K in the regulation of PlGF release in HUVEC.  
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Figure 3.2.8.  Effect of PTEN expression on PlGF release in HUVEC.  Cells were infected overnight 

with adenoviruses encoding PTEN, dominant-negative PTEN (PTEN-c/s) and β-galactosidase (β-gal).  

After 24 hour incubation, A, PlGF in cell-conditioned medium was quantified by ELISA.  B and C, 

Infection of HUVEC and the status of Akt activity following adenovirus mediated over-expression of 

PTEN were demonstrated by Western blotting with antibodies recognising PTEN, pAkt, Akt and β-actin.  

(*P<0.05, n=3). 
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3.2.9. Effect of Akt activity modulation on PlGF release in HUVEC 
 

Both pharmacological and enzymatic blockade of PI3K activation increased PlGF 

release, but it remained unclear which of the PI3K downstream targets is involved in 

the signalling pathway that controls PlGF release.  The serine threonine kinase Akt lies 

at the top of many of the PI3K activated signalling cascades (Alessi et al., 1997).  To 

examine any potential role of Akt in the regulation of PlGF secretion, adenoviruses 

encoding mutant Akt were used to manipulate its activity.  To this end, HUVEC were 

infected with adenoviruses encoding either a constitutively-active Akt mutant (myr–

Akt) or a dominant-negative Akt mutant (dn-Akt). As a control, HUVEC were infected 

with an adenovirus encoding β-galactosidase.   

Figure 3.2.9A shows the effects of adenovirus over-expression on the degree of 

phosphorylaytion of Akt on serine 473.  It can be quite clearly seen that the level of Akt 

phosphorylation relative to the β-gal containing adenovirus infected control cells was 

massively increased in HUVEC infected the myr-Akt containing adenovirus and was 

significantly reduced in cells infected with the dn-Akt adenovirus.  

The experiment depicted in Figure 3.2.9B shows that after an 8 hour incubation with 

adenovirus containing the dn-Akt construct, PlGF mRNA expression was increased ~ 6-

fold relative to the β-gal control (p < 0.05, n =3).  In contrast, the level of expression of 

PlGF mRNA in the myr-Akt infected cells was not significantly different from the β-gal 

control.  Figure 3.2.9C shows the amount of PlGF protein in cell-conditioned medium 

measured over the 24 hour time period after infection with the respective adenoviruses.  

It can be quite clearly seen that in cells infected with the dn-Akt containing adenovirus 

the amount of PlGF protein secreted into the medium was reduced by approximately 2-

fold when compared with the β-gal control (p < 0.05, n = 3), whereas, infection with the 
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myr-Akt containing adenovirus had little effect. This is again evidence for an inhibitory 

role of the PI3K/Akt signalling pathway in the regulation of PlGF secretion in HUVEC.   

 

 

 

 

 

 

 

 

 

 

 

3.2.10. Effect of Akt-1 loss on PlGF release in HUVEC. 

 

The experiments described in the previous section suggest that modulation of Akt 

activity is implicated in the regulation of PlGF expression in HUVEC.  To confirm this 

finding, a complementary approach was sought.  Akt-1, the major Akt isoform 

expressed by endothelial cells (Chen et al., 2005) was silenced in HUVEC by siRNA. 

The siRNA oligonucleotide pair used to knockdown Akt expression are shown in Table 

2.3.  Figure 3.2.10A shows the expression of Akt-1 protein was significantly reduced in 

HUVEC treated with the Akt-1 oligonucleotides siRNA.  In Figure 3.2.10B it can be 

seen in HUVEC treated with the Akt-1 siRNA, the amount of PlGF secreted into the 

A    B    C 

   
Figure 3.2.9.  The Effect of Akt activity modulation on PlGF release in HUVEC.  HUVEC were 

infected overnight with adenoviruses encoding dominant-negative Akt (dn-Akt), constitutively-active Akt 

(myr-Akt) and β-galactosidase (β-gal) in HUVEC complete medium containing 5% FBS. The medium was 

then replaced with fresh growth factor-free MCDB 131 medium containing 10% FBS.  A, Cell lysates from 

B were Western blotted using antibodies recognising pAkt (Ser 473) and β-actin.  B, Following an 8 hour 

incubation qPCR was performed. C, After 24 hour incubation, PlGF levels in cell-conditioned medium 

were quantified by ELISA.    (*P<0.05, n=3). 
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medium bathing the cells was increased by approximately 3-fold compared with control 

(p < 0.05, n = 4).  This is another indication that PI3K/Akt signalling pathway plays an 

important role in the regulation of PlGF release.   

 

 

 

 

 

 

 

 

 

 

3.2.11. Is Akt the central regulator of PlGF expression in HUVEC? 

 

To determine whether Akt is the central regulator acting downstream of PI3K, HUVEC 

were infected with adenoviruses over-expressing PTEN, myr-Akt or β-gal in 

combination with adenoviruses over-expressing either, PTEN or β-gal.  Figure 3.2.11 

shows the amount of PlGF protein secreted into the medium over the 24 hour period 

after infection with the adenoviruses.  The right hand panel of Figure 3.2.11 shows that 

in the cells that had been co-infected with the control β-gal containing adenovirus and 

the PTEN over-expressing adenovirus that the amount of PlGF protein secreted into the 

 

A      B 

 

 

Figure 3.2.10.  Effect of Akt-1 loss on PlGF release in HUVEC.  HUVEC were electroporated with 

siRNA targeted to Akt-1, or control siRNA using an Amaxa nucleofector and incubated overnight. A, cell 

lysates from A were Western blotted using antibodies recognising Akt and β-actin.  B, After further 24 

hour incubation in growth factor-free MCDB 131 medium containing 10% FBS, PlGF was measured by 

ELISA in cell-conditioned medium.  (*P<0.05, n=4). 

 

s
iC

o
n

tr
o

l

s
iA

k
t-

1

Akt

β-actin

*



Chapter 3-The role of the phosphatidylinositol 3-kinase/Akt pathway in the regulation of PlGF secretion from 

human umbilical vein endothelial cells during acute hyperglycaemia. 

104 
 

medium was approximately 2-fold greater than from cells that had been infected with 

the β-gal control adenovirus alone (p < 0.05).  In contrast, cells that had been co-

infected with β-gal and myr-Akt, the amount of PlGF protein secreted into the medium 

bathing the cells was approximately 10-fold lower than from cells that had just been 

infected with the β-gal control adenovirus (p < 0.01).  In the experiment depicted in the 

left hand panel of Figure 3.2.11, HUVEC were infected with the PTEN over-expressing 

adenovirus in combination with either the myr-Akt, PTEN or β-gal containing 

adenoviruses.  It can be clearly seen that the amount of PlGF protein secretion into the 

medium was increased in cells that had been infected with a combination of the β-gal or 

PTEN adenoviruses and had received a ‘double dose’ of the PTEN containing 

adenovirus when compared with β-gal control.  However, the inductive effect of PTEN 

was still significantly reduced by myr-Akt, indicating that Akt activation overrides the 

effect of the PI3K inhibition by PTEN.  This suggests that Akt is the central 

downstream effector of PI3K involved in the regulation of PlGF release. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.11.  Is Akt the central regulator of PlGF release in HUVEC.  HUVEC were co-infected 

with combinations of PTEN, myr-Akt and β-gal adenoviruses overnight in HUVEC complete medium 

containing 5% FBS.  After a further 24 hour incubation in growth factor-free MCDB 131 medium 

containing 10% FBS, cell-conditioned medium was collected and PlGF levels quantified by ELISA.  

(*P<0.05, **P<0.01, n=3). 
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3.2.12. Effect of Akt activity on hyperglycaemia-mediated regulation of PlGF 

expression in HUVEC. 

 

In the next set of experiments the role of Akt in hyperglycaemia-induced PlGF 

secretion from HUVEC was assessed.  Two basic experimental approaches were 

employed:- 1), assessment of PlGF secretion under basal and HG conditions in HUVEC 

following siRNA mediated Akt-1 silencing and:- 2), examination of PlGF secretion 

under basal and HG conditions following over-expression of a constitutively-active 

Akt.  As shown in Figure 3.2.12A, silencing of Akt-1 was sufficient to induce an 

approximate 2-fold increase in PlGF secretion in cells cultured under normal glucose 

conditions and in the osmotic control cell cultures.  Under HG conditions, PlGF 

secretion was elevated ~ 7-fold over control and there was no significant additional 

increase in PlGF release in cells in which Akt-1 expression had been knocked down.  

This might be due to the fact that under HG conditions near maximal inhibition of the 

PI3K/Akt signalling pathway had already been achieved and knocking down any 

residual Akt-1 activity does not have a major impact on PlGF release.  

In the second set of experiments, HUVEC were infected with either myr-Akt or β-gal 

containing adenoviruses and then subjected to hyperglycaemia for 24 hours.  Under NG 

or OS conditions, myr-Akt over-expression had no significant effect on PlGF secretion 

when compared with the β-gal control.   
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As shown before, PlGF release was significantly increased in cells that over-expressed 

β-gal control under HG conditions.  In contrast, the increase in PlGF secretion produced 

by exposing the cells to HG conditions was completely abolished by myr-Akt over-

expression (p < 0.05), suggesting that the suppression of Akt activity is involved in the 

hyperglycaemia-mediated effects on PlGF secretion (Figure 3.2.12B). 

 

3.2.13. The effect of oxidative stress on PlGF expression in HUVEC. 

 

Hyperglycaemia-induced oxidative stress has been shown to interfere with many 

cellular processes and is associated with many disorders, in particular, endothelial 

dysfunction (Song et al., 2007).  To determine the effect of oxidative stress on PlGF 

expression, HUVEC were treated with increasing concentrations of hydrogen peroxide 

A     B 

 

Figure 3.2.12.  Effect of Akt activity on hyperglycaemia-mediated regulation of PlGF expression in 

HUVEC.  A, HUVEC were electroporated with siRNA targeted to Akt-1, or control siRNA, using an 

Amaxa nucleofector and incubated overnight. After further 24 hour incubation in fresh growth factor-free 

medium containing 10% FBS and NG, OS or HG, and PlGF was measured by ELISA in cell-conditioned 

medium.  B,  HUVEC were infected with myr-Akt or β-gal overnight in HUVEC complete medium 

containing 5% FBS, followed by 24 hour incubation in growth factor-free MCDB 131 medium containing 

10% FBS and NG, OG or HG and PlGF release measured by ELISA.  (*P<0.05, n=3).  NS = not 

significant. 
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(H2O2; 0, 200, 500, 1000 μM) for 24 hours and PlGF secreted into the tissue culture 

medium was quantified by ELISA as described in the experimental section.  The H2O2 

concentrations used in this study are widely used in the published literature and had 

been reported to have no detrimental effect on cell viability provided the experiments 

were not conducted for longer than 24 hours (Tanaka et al., 2009).   

Hydrogen peroxide produced a concentration-dependent increase in PlGF release 

compared with control, with 500 μM causing maximal effect (Figure 3.2.13A).  To 

investigate whether the effect of H2O2 can be reversed by Akt activation, HUVEC were 

co-treated with 500 μM H2O2 and 10 ng/ml IGF-1 for 24 hours and PlGF secreted into 

the tissue culture medium was quantified by ELISA.  As already shown in Figure 

3.12.13A, H2O2 treatment of HUVEC elevated PlGF secretion compared with untreated 

cells. The H2O2-stimulated increase in PlGF secretion was suppressed by approximately 

30% in the presence of IGF-1 (p < 0.01).  This is very reminiscent of the effect IGF-1 

had on the hyperglycaemia-induced secretion of PlGF (Figure 3.2.4).  At best these 

results show that oxidative stress-induced PlGF secretion can be reversed by activation 

of the Akt signalling pathway.  Perhaps, these results suggest a potential role for Akt in 

oxidative stress up-regulation of PlGF expression, but further experiments will have to 

be performed to prove this conjecture.   
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3.2.14. PlGF levels in obese ob/ob mice compared with their lean littermates. 

 

To confirm the role of PI3K/Akt pathway in the regulation of PlGF release in vivo, 

PlGF mRNA and protein were quantified in the severely hyperglycaemic obese ob/ob 

mouse model.  Obese ob/ob mice are reported to show suppressed PI3K/Akt activity in 

the muscle and liver tissue compared with their lean littermates (Folli et al., 1993; 

Kerouz et al., 1997).  As shown in Figure 3.2.14A, PlGF mRNA levels quantified by 

qPCR in liver tissues were significantly higher in obese mice compared with their lean 

littermates.  However, PlGF protein levels measured by ELISA in tissue homogenates, 

although higher in the ob/ob mice compared with the lean littermates, did not reach 

statistical significance (Figure 3.2.14B).  This is possibly due to the fact that PlGF is 

secreted and not retained within the cells.  PlGF protein in plasma was significantly 

higher in the fat mice compared with the control, as shown in (Figure 3.2.14C).  

A       B 

 

Figure 3.2.13. The effect of oxidative stress on PlGF expression in HUVEC.  Confluent 

HUVEC treated with, A, increasing concentrations of H2O2 and B, 500 µM H2O2 with IGF-1 (10 

ng/ml), or vehicle for 24 hours.  PlGF levels were quantified by ELISA in cell-conditioned medium.  

(*P<0.05, **P<0.01, n=3).  

 

 

**

**

**

H2O2 (μM)

*

*

H2O2



Chapter 3-The role of the phosphatidylinositol 3-kinase/Akt pathway in the regulation of PlGF secretion from 

human umbilical vein endothelial cells during acute hyperglycaemia. 

109 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

A 

 

B 

 

C 

 

Figure 3.2.14.  PlGF levels in obese ob/ob mice compared to their lean littermates.  A, Livers were 

homogenised in RIPA buffer, RNA extracted and PlGF mRNA quantified by qPCR.  PlGF was measured 

in B, liver tissue extracts and C, in plasma by ELISA.  (*P<0.05, n=6). 
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3.3. Discussion 

 

In this study the role of the PI3K/Akt signalling pathway in the regulation of PlGF 

expression by acute hyperglycaemia was examined in endothelial cells.  In HUVEC, 

hyperglycaemia induced PlGF protein levels over 24 hours compared with control. This 

is in agreement with findings of Boulton and colleagues (Zhao et al., 2004) who 

examined the relationship between PlGF mRNA and protein expression and increasing 

concentrations of D-glucose (10 mM, 15 mM, 20 mM and 25 mM) in bovine retinal 

microvascular endothelial cells.  Although they showed an increase in PlGF mRNA and 

protein expression in response to HG compared with control by semi quantitative RT-

PCR and Western blotting, my findings differ, because 30 mM D-glucose, which is the 

most commonly used glucose concentration in vitro and in vivo studies (Du et al., 

2000), increased PlGF protein release significantly compared with control 5 mM D-

glucose.  Whereas, they found that 15 mM D-glucose significantly induced PlGF 

mRNA and protein.  Concentrations lower or higher or than 15 mM D-glucose had no 

significant effect (to either control, or 15 mM respectively).  The difference could be 

because controls for osmolarity were not used in the Zhao study.  The effect of 

hyperglycaemia on PlGF expression in endothelial cells, as the data in this study 

suggest, is PI3K/Akt-dependent.  Additionally, Zhao and colleagues suggested that 

hyperglycaemia-induced PlGF release is secondary to endogenous VEGF, but they did 

not show the presence of VEGF in the endothelial cell type used, its up-regulation by 

hyperglycaemia, or the loss of response to hyperglycaemia when VEGF was knocked 

down. 

In humans, the pathological role of PlGF in the promotion of inflammation, 

vascularisation in atherosclerotic plaques (Pilarczyk et al., 2008) and diabetic patients 
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with proliferative retinopathy (Khaliq et al., 1998; Mitamura et al., 2002) have been 

shown.  In animal studies, the role of PlGF in the progression of atherosclerosis in 

atherosclerosis susceptible (ApoE
-/-

) mice has also been documented
 
(Khurana et al., 

2005; Luttun et al., 2002).  Moreover, the loss or inhibition of PlGF and/or its receptor, 

VEGFR-1, in mice inhibited the aforementioned disorders (Khaliq et al., 1998; 

Mitamura et al., 2002).  In agreement with these findings, in this study it was shown 

that IGF-1, which was previously reported to inhibit the progression of atherosclerosis 

in ApoE
-/-

 mice through the suppression of inflammation and oxidative stress generation 

(Sukhanov et al., 2007) significantly reduced PlGF expression in a concentration-

dependent manner in cultured HUVEC. 

 

In adipocytes, skeletal muscle and hepatocytes, the activation of the PI3K/Akt 

predominantly mediates the metabolic effects of insulin via the promotion of glucose 

up-take through the translocation of GLUT4 to cell membrane (James et al., 1988; 

James et al., 1989).  The disruption of this signalling pathway is therefore considered 

the main cause of insulin resistance in metabolic tissues and the development of 

diabetes.  In endothelial cells, which also express both insulin and IGF-1 receptors, but 

not GLUT4, insulin and IGF-1 function as mitogens, promote endothelial cell survival 

(Montagnani et al., 2002), and phosphorylate eNOS to promote NO production (Zeng et 

al., 2000; Zeng and Quon, 1996).  Hyperglycaemia-induced impairment of PI3K/Akt 

signalling in diabetes was found to abrogate NO production leading to the up-regulation 

of pro-inflammatory adhesion molecules such as endothelin-1 (ET-1), vascular cell 

adhesion molecule 1 (VCAM-1), E-selectin (Min et al., 2005; Potenza et al., 2009a; 

Potenza et al., 2009b; Quagliaro et al., 2005), generation of reactive oxygen species 

(ROS) (Du et al., 2000; Esposito et al., 2002; Quagliaro et al., 2003) and induction of 
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endothelial cell apoptosis (Baumgartner-Parzer et al., 1995; Du et al., 1998; Lorenzi et 

al., 1985).  These alterations culminate in endothelial dysfunction. 

 

In this study, 24 hour exposure of endothelial cells to 30 mM D-glucose increased PlGF 

secretion significantly compared with control, and IGF-1 suppression of this effect was 

accompanied by changes in Akt phosphorylation status.  Changes in PlGF protein were 

accompanied by even greater increases in mRNA levels.  The inhibition of Akt by 

hyperglycaemia induced PlGF release, and conversely, its activation by IGF-1 

suppressed it, consistent with the interpretation that possibly the same mechanism that 

causes endothelial dysfunction, induces PlGF release in endothelial cells in diabetes.  

To dissect the role of the PI3K/Akt pathway in the modulation of PlGF release, 

complementary approaches were used.  Inhibition of PI3K using the pharmacological 

inhibitor, LY294002, or adenovirus-mediated over-expression of PTEN significantly 

increased PlGF release at an mRNA and protein level compared with control.  The 

inductive effect of LY294002 alone on PlGF expression was not significantly different 

from that in the presence of HG.  These data implicate PI3K in the regulation of PlGF 

expression and confirm that HG effect suppresses PI3K activity in HUVEC.  This 

finding is in agreement with studies showing PTEN up-regulation by hyperglycaemia in 

HUVEC, mediated by the tumour suppressor transcription factor LKB1 (Song et al., 

2007).  In another study, the specific inhibition of PTEN expression in mice reversed 

these effects of hyperglycaemia (Butler et al., 2002).  Oxidative stress induced by 

hyperglycaemia, also suppresses Akt activity (Song et al., 2007) and is considered the 

underlying cause of endothelial dysfunction in diabetes.  To evaluate whether oxidative 

stress plays any role in PlGF regulation, HUVEC treated with increasing concentrations 

of H2O2 showed significantly elevated PlGF levels (almost 10-fold) compared with non-
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treated cells, and the suppression of this inductive effect by IGF-1 suggested that PlGF 

up-regulation by oxidative stress is may be PI3K/Akt-mediated  and that it may be a 

stress response, lending further support to the hypothesis implicating PlGF in the 

promotion of inflammation in endothelial dysfunction.  Examination of oxidative stress 

effect on PlGF expression in the presence and absence of Akt activity in endothelial 

cells would answer the question whether Akt is the main mediator of this effect. 

 

To explore which of the PI3K downstream effectors control PlGF release, Akt activity 

was manipulated and PlGF release was measured.  Inhibition of Akt activity using 

dominant-negative Akt (dn-Akt) adenovirus in the absence of HG significantly induced 

PlGF expression at an mRNA and protein level.  In contrast, adenovirus-mediated over-

expression of constitutively-active Akt (myr-Akt) suppressed it, or had no effect 

compared with control.  In the presence of hyperglycaemia, the HG-promoting effect on 

PlGF expression was markedly blunted by constitutively-active Akt.  To confirm this 

finding, an alternative approach was used.  Akt-1 knockdown in HUVEC alone, in the 

absence of hyperglycaemia significantly induced PlGF expression compared with 

control. Since the inductive effect of Akt-1 loss under basal conditions was not 

significantly different from that in the presence of hyperglycaemia, this suggested that 

hyperglycaemia effect is Akt-mediated.  This is in line with the data of Fernandez-

Hernando and colleagues (Fernandez-Hernando et al., 2007) who showed by gene 

array, although not confirmed by qPCR, that Akt-1 knockdown in ApoE
-/-

 mice fed a 

Western diet, showed 3-fold greater PlGF expression.  These mice lacking Akt-1, 

exhibited exacerbated atherosclerosis and occlusive coronary artery disease. 
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VEGF up-regulation has been implicated in hyperglycaemia-mediated pathologies 

(Aiello et al., 1994).  VEGF promotes angiogenesis by promoting PlGF expression in 

endothelial cells (Carmeliet et al., 2001), and PlGF up-regulation by hyperglycaemia 

was suggested to be secondary to VEGF induction (Zhao et al., 2004).  To differentiate 

whether the observed effects on PlGF expression by hyperglycaemia are secondary to 

increased VEGF levels, or to the suppression of the PI3K/Akt pathway, siRNA to 

VEGF-A, or control siRNA were used to block its synthesis under NG, OS and HG 

conditions.  VEGF knockdown in the absence of HG increased PlGF expression under 

all conditions compared with control, possibly representing a mechanism to restore 

homeostasis.  Under hyperglycaemia conditions, levels of PlGF released in the absence 

of VEGF increased further, suggesting that increased PlGF release induced by 

hyperglycaemia is independent of VEGF. 

 

The hypothesis linking PI3K/Akt to PlGF expression regulation by HG was confirmed 

by in vivo data showing PlGF levels are significantly higher both at mRNA and protein 

levels in the liver and plasma of the severely obese and hyperglycaemic ob/ob mice 

compared with their lean littermates.  One can speculate that hyperglycaemia-induced 

up-regulation of PlGF expression may contribute to the development of cardiovascular 

disorders, retinopathy and possibly obesity in diabetic patients.  

Taken together, this study suggests that the PI3K/Akt signalling pathway is a central 

regulator of PlGF expression by hyperglycaemia in endothelial cells.  Understanding 

how PlGF expression is regulated may provide novel targets for therapy for pathologies 

characterised by endothelial dysfunction and inflammation.  
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4.1. Introduction  
 

In Chapter 3, the PI3K/Akt signalling pathway was shown to play a negative role in 

PlGF expression in endothelial cells, but little is known of the transcriptional regulation 

of PlGF expression downstream of Akt.  A number of possible Akt effectors, including 

mTOR, NF-κB  and forkhead transcription factors, have been identified (Manning and 

Cantley, 2007). Little is known about the promoter region of the PlGF gene but one 

report suggests that one or more NF-κB binding sites are present in the PlGF promoter 

(Cramer et al., 2005).  In insulin-responsive tissues, the most abundant of the forkhead 

transcription factors is FOXO1.  FOXO1 has been identified as the primary downstream 

target of PI3K/Akt activation by insulin in the maintenance of glucose homeostasis 

(Accili and Arden, 2004).  In endothelial cells, FOXO1 activation mimics the cytotoxic 

and pro-inflammatory effects of hyperglycaemia and oxidative stress that have been 

implicated in the promotion of atherosclerotic plaque formation and rupture through the 

induction of LDL oxidation (Potente et al., 2005; Tanaka et al., 2009), but whether 

FOXO1 is involved in the up-regulation of PlGF expression that accompanies these 

diseases has not been addressed. 

 

The involvement of VEGFR-1 in pathologies characterised by inflammation and 

vascularisation, such as cancer, arthritis, atherosclerosis and choroidal 

neovascularisation, has been documented (Kami et al., 2008; Luttun et al., 2002; 

Murakami et al., 2006).  Transcriptional regulation of VEGFR-1 was previously shown 

to be inhibited by nuclear factor of activated T cells (NFAT) (Jinnin et al., 2008), and 

enhanced by early growth response factor-1 (Egr-1) (Vidal et al., 2000).  Gene array 

analysis following either loss or gain of FoxO1 function in HUVEC suggests that 
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FOXO1 plays an important role in the regulation of VEGFR-1 expression (Daly et al., 

2004; Potente et al., 2005).  In this chapter, the role of NF-κB and FOXO1 in the 

regulation of PlGF and VEGFR-1 expression in human endothelial cells under basal 

conditions and in hyperglycaemia were investigated. 

 

4.2. Results 
 

4.2.1. The role of NF-κB in the regulation of PlGF expression in HUVEC.   

 

It has been suggested that NF-κB mediates cellular processes downstream of Akt in 

endothelial cells .i.e. cell cytotoxicity (Zhou et al., 2008).  In addition, NF-κB activity 

induction by hyperglycaemia have been shown in endothelia cells, leading to increased 

expression of pro-inflammatory molecules and induced cell apoptosis, two key triggers 

of atherosclerosis (Morigi et al., 1998; Sheu et al., 2005) .  Furthermore, binding sites 

for NF-κB on the PlGF gene promoter have been identified and shown to be functional 

in fibroblasts (Cramer et al., 2005).  In pursuit of identifying effectors downstream of 

Akt implicated in the regulation of PlGF expression in endothelial cells, NF-κB, seemed 

to be an ideal target to investigate first.  To this end, NF-κB activity was inhibited and 

the effect on PlGF protein expression was quantified.  Under the experiment conditions 

depicted in the Figure 4.2.1A, HUVEC incubation with isohelenin (1μM), a highly 

specific and potent pharmacological inhibitor of NF-κB activation (Lyss et al., 1998),  

had no significant effect on PlGF expression compared with control (p > 0.05, n = 3).  

Since pharmacological inhibitors of cells signalling may have off target effects, an 

alternative approach to inhibit NF-κB activity was sought.  Under normal physiological 

conditions, NF-κB proteins are sequestered in an inactive state in the cytoplasm by 
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dimerisation with a member of the endogenous inhibitory protein family IκB (Inhibitor 

of κB) (Gilmore, 2006).  NF-κB activation is triggered by the signal-induced 

degradation of IκB proteins.  This occurs primarily via the phosphorylation of two 

serine residues on the regulatory domain of IB mediated by a kinase called the IκB 

kinase (IKK) which targets IB for ubiquitinylation and destruction in the proteosome.  

Once activated the NF-B molecule translocates to the nucleus where it is involved in 

regulation of the expression target genes.  Therefore, an alternative way of blocking of 

NF-κB activation in HUVEC is infection with an adenovirus encoding an IKK mutant 

(dn-IKK) that cannot phosphorylate IB so preventing it degradation.  As shown in 

Figure 4.2.1B, the amount of PlGF released  in the cell-conditioned medium after 24 

hour incubation was not altered in dn-IKK-infected cells compared with control (p > 

0.05, n = 3), again, suggesting that NF-κB does not play a role in the regulation of PlGF 

expression in endothelial cells. However, since we have not actually demonstrated 

activation of NF-κB by hyperglycaemia in our hands, this data has to be interpreted 

with some caution. 

 

 

 

 

 

 

 

 

A      B 

 

Figure 4.2.1.  The role of NF-κB in the regulation of PlGF expression in HUVEC.  PlGF was 

quantified by ELISA in cell-conditioned medium from, A, Confluent HUVEC treated with isohelenin 

(1 μM), or control for 24 hours.  B, HUVEC transduced with dominant-negative IKK (dn-IKK), or 

β-gal adenoviruses overnight followed by 24 hour incubation in growth factor-free MCDB 131 

medium containing 10% FBS.  (n=3). 
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4.2.2. Effect of modulating Akt activity on FOXO1 phosphorylation in HUVEC.  

The identification of  FOXO1 as the primary downstream target of PI3K/Akt activation 

by insulin in the maintenance of glucose homeostasis in metabolic tissues (Accili and 

Arden, 2004) and the mediation of hyperglycaemia and oxidative stress in the 

promotion of atherosclerotic plaque formation and rupture through the induction of 

LDL oxidation (Potente et al., 2005; Tanaka et al., 2009), warranted the examination of 

whether FOXO1 is involved in the up-regulation of PlGF expression that accompanies 

these disorders.  To demonstrate that FOXO1 is downstream effector of Akt in 

endothelial cells, HUVEC were infected with recombinant adenoviruses encoding 

constitutively-active myristoylated Akt (myr-Akt), dominant-negative Akt (dn-Akt), or 

β-gal and their effects on FOXO1 phosphorylation, a surrogate marker of FOXO1 

activity,  were examined by Western blotting as described in the Methods (section 2.5).  

Cell lysates were Western blotted using antibodies recognising phospho-FOXO1 

(Serine 256), suggested that constitutively-active Akt induced FOXO1 phosporylation, 

whereas, there was a slight decrease in dn-Akt-infected HUVEC compared with β-gal.  

Blots were also probed with antibodies recognising FOXO1 and β-actin to verify 

change in FOXO1 expression and equal loading (Figure 4.2.2). 

 

 

 

 

 

 

 

Figure 4.2.2.  Regulation of FOXO1 phosphorylation by expression of mutant Akt in HUVEC.  

Confluent HUVEC were transduced with adenoviruses encoding β-gal, constitutively–active Akt (myr-

Akt) and dominant-negative Akt (dn-Akt) overnight in HUVEC complete medium containing 5% FBS 

followed by 24 hour incubation in growth factor-free MCDB 131 medium containing 10% FBS.  Cell 

lysates were Western blotted using antibodies recognising phospho-FOXO1 (Ser 256), FOXO1 and β-

actin. This is a representative blot of 3 independent experiments.   
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4.2.3. Effect of hyperglycaemia on FOXO1 phosphorylation in HUVEC.   

In Chapter 3, it was shown that hyperglycaemia abrogated Akt phosphorylation in 

HUVEC, in agreement with previously published literature (Song et al., 2007).  To 

further determine that FOXO1 is acting downstream of Akt and whether the 

suppression of Akt activity by hyperglycaemia had any effect on the phosphorylation 

status of FOXO1 activity, HUVEC were exposed to normal and high levels of 

hyperglycaemia (NG, OS or HG) in the presence of IGF-1 (10 ng/ml), or vehicle, as 

described in section 3.2.5.  Cell lysates were probed with antibodies recognising 

phospho-FOXO1 (Serine 256) and the results are shown in Figure 4.2.3.  In the absence 

of IGF-1, it was difficult to assess the effect of HG (10 and 30 mM D-glucose) on 

FOXO1 activity since FOXO1 phosphorylation levels were very low under all 

conditions.  However, IGF-1 strongly induced FOXO1 phosphorylation under all 

conditions (NG, OS and HG).  This stimulatory effect on FOXO1 phosphorylation was, 

however, largely eliminated by HG (30 mM D-glucose) compared with NG and OS, 

whereas, moderate HG (10 mM D-glucose) had very little, if any effect.  These data 

indicate that the downstream target of Akt FOXO1 is activated  by hyperglycaemia in 

HUVEC.  Expression of FOXO1 and β-actin were also examined to demonstrate equal 

loading using antibodies recognising FOXO1 and β-actin (Figure 4.2.3). 

 

4.2.4. Effect of FOXO1 knockdown on PlGF expression in HUVEC.  

In the experiments described in the previous section, it has been shown that FOXO1 is a 

downstream effector of Akt that is activated by hyperglycaemia, but whether FOXO1 

plays any role in the regulation of PlGF expression is still not known.  To address this 

question HUVEC were transduced with siRNA duplex to inhibit FOXO1  
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protein synthesis, or control siRNA duplex as described in the Methods (section 2.6.1).  

FOXO1 knockdown was verified by Western blot analysis on cell lysates using 

antibodies recognising FOXO1, and β-actin to confirm equal loading as shown in 

Figure 4.2.4A.  FOXO1 knockdown significantly decreased PlGF protein secreted in 

cell-conditioned medium by ~ 50% compared with control (p < 0.05, n = 3), these 

results indicate that FOXO1 is implicated in the regulation of PlGF expression (Figure 

4.2.4B).   

 

 

 

 

 

 

 

 

To confirm that FOXO1 is acting downstream of PI3K/Akt to regulate PlGF 

expression, the experiment in 4.2.4B was repeated, but in the presence of the PI3K 

pharmacological inhibitor, LY294002 (20 μM).  Following 24 hour incubation, PlGF 

protein was quantified in cell-conditioned medium by ELISA.  The results in Figure 

4.2.4C, indicate that inhibition of the PI3K/Akt signalling pathway in the presence of 

FOXO1, as expected, significantly increased PlGF expression compared with control.  

This induction was, however, abolished when FOXO1 was knocked down (p < 0.05, n 

  

Figure 4.2.3.  Effect of hyperglycaemia and IGF-1 on FOXO1 phosphorylation in HUVEC.  

Confluent HUVEC were maintained growth factor-free MCDB 131 medium containing 10% FBS and 

NG, HG or OS and then stimulated with IGF-1 (10 ng/ml) or vehicle for 10 minutes.  Cell lysates were 

Western blotted using antibodies recognising phospho-FOXO1 (Ser 256), FOXO1 and β-actin.  This is 

a representative blot of 3 independent experiments. 
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= 3), suggesting that PI3K/Akt regulation of PlGF expression is FOXO1-mediated and 

that FOXO1 is acting downstream of the PI3K/Akt.   

The identification of the essential role of FOXO1 in the regulation of PlGF expression 

warranted the examination of its effect on the hyperglycaemia-mediated induction of 

PlGF expression.  To this end, FOXO1 was silenced in HUVEC overnight, this was 

followed by 24 hour incubation in normal, or hyperglycaemia (NG, OS or HG), 

essentially as described in Section 3.2.12.  Figure 4.2.4D indicates that HG, as 

expected, markedly augmented PlGF release compared with NG, OS in the presence of 

FOXO1.  The silencing of FOXO1, however, significantly abolished the inductive 

effect of HG compared with control (p < 0.05, n = 3).  These data, again, confirm a role 

for FOXO1 as an effector of the PI3K/Akt in the regulation of PlGF expression by 

hyperglycaemia. 

 

4.2.5. Effect of FOXO1 gain-of-function on PlGF expression in HUVEC. 

The observed effect of FOXO1 loss-of-function raised the question whether FOXO1 

gain-of-function would have the converse effect on PlGF expression.  To examine this 

hypothesis, HUVEC were transduced with recombinant adenoviruses expressing 

constitutively-active FoxO1 (FoxO1-ADA), this adenovirus expresses a mutated 

FOXO1 protein that cannot be phosphorylated by active Akt, hence, preventing its 

expulsion from the nucleus (see Table 2.2)), or β-gal overnight in HUVEC as described 

in Section 2.5, followed by a further 24 hour incubation in the presence of IGF-1 (10 

ng/ml), or vehicle.  PlGF secreted in cell-conditioned medium was measured by ELISA.  

Figure 4.2.5A demonstrates the over-expression of FoxO1-ADA compared to non-

infected cells as confirmed by Western blot analysis on cell lysates using antibodies  
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Figure 4.2.4.  Effect of FOXO1 knockdown on PlGF release in HUVEC.  HUVEC were 

electroporated with siRNA targeted to FOXO1 or control using an Amaxa nucleofector and incubated 

overnight. A, After 24 hour incubation in growth factor-free MCDB 131 medium containing 10% FBS, 

PlGF was measured by ELISA in cell-conditioned medium. B, Cell lysates from A were Western blotted 

with antibodies recognising FOXO1 and β-actin. C, Cells were treated with LY294002 (20 µM) or 

control for 24 hours and PlGF was quantified in cell-conditioned medium by ELISA. D, Cells were 

incubated for 24 hours in growth factor-free MCDB 131 medium containing 10% FBS and NG, OS or 

HG, and PlGF levels were measured by ELISA in cell-conditioned-medium.  (*P<0.05, **P<0.01, 

n=3). 
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recognising β-actin and HA tag on FoxO1-ADA adenovirus.  As shown in Figure 

5.2.5B, there was a significant induction (~ 4-fold) of PlGF expression in FoxO1-ADA-

transduced HUVEC over control in the presence and absence of IGF-1.  However, the 

activation of the PI3K/Akt pathway and phosphorylation of FOXO1 by IGF-1 in the 

presence of β-gal significantly suppressed PlGF expression.  In contrast, this 

suppressive effect was largely eliminated in the presence of FoxO1-ADA.  These 

experiments further confirm that PI3K/Akt effects on PlGF expression in HUVEC are 

FOXO1-dependent (Figure 4.2.5B). 
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Figure 4.2.5. Effect of FOXO1 gain-of-function on PlGF expression in HUVEC.  HUVEC 

were transduced overnight with adenoviruses encoding constitutively-active FoxO1 (FoxO1-ADA) 

or β-gal in HUVEC complete medium containing 5% FBS.  A, After 24 hour incubation in growth 

factor-free MCDB 131 medium containing 10% FBS in the presence of IGF-1 (10 ng/ml) or 

vehicle, PlGF was quantified in cell-conditioned medium by ELISA.  B, Increasing volumes of cell 

lysates of FoxO1-ADA-infected and non-infected HUVEC were Western blotted using antibodies 

recognising the HA epitope and β-actin.  (*P<0.05, **P<0.01, n=3).  NS = not significant. 
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4.2.6. FOXO1 gain-of-function effect on PlGF expression in vivo. 

Although the role of FOXO1 in the regulation of PlGF expression in vitro was shown in 

the preceding section (4.2.5), the demonstration of this role in vivo has not been 

previously demonstrated.  To examine the role of FOXO1 in the regulation PlGF 

expression in vivo, FVB/N mice were injected with 2 x 10
10

 ifu of recombinant 

adenoviruses expressing FoxO1-ADA, or a control adenovirus (Ad-CMV) via the tail 

vein (i.v).  A further 48-60 hours was allowed for the virus to propagate and produce its 

biological effects.  The mice were then sacrificed and the expression of PlGF mRNA in 

the liver was quantified and PlGF protein measured in the serum.   

The expression of PlGF mRNA following adenoviral administration to mice was 

investigated in the liver as it is well established that the adenoviruses delivered i.v. are 

rapidly filtered by the liver leading to a strong expression of the insert in this tissue 

(Matsumoto et al., 2006).  In addition, previous studies had demonstrated the dual role 

of FoxO1-ADA in the regulation of hepatic insulin sensitivity and lipid metabolism in 

liver 5 days after the i.v. delivery of 4 × 10
9
 ifu of the same adenovirus in C57BL/6 

male mice (Matsumoto et al., 2006), which provided us with a starting point to optimise 

the adenoviral dose. The injection of FVB/N with (4 × 10
10

) FoxO1-ADA was lethal 24 

hours post injection; therefore, it was reduced to the abovementioned concentration.  

PlGF mRNA in the liver (p < 0.05, n = 8) and protein (p < 0.05, n = 10) levels in serum 

were significantly higher in FoxO1-ADA-injected mice compared with Ad-CMV-

infected controls (Figure 4.2.6A and 6B), thus confirming our in vitro results. 
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4.2.7. Does FOXO1 interact with the PlGF and VEGFR-1 gene promoters? 

 

To examine the direct binding of FoxO1 to the PlGF and VEGFR-1 gene promoters in 

endothelial cells, ChIP assay were performed.  To identify potential FOXO1 binding 

sites on the PlGF gene promoter, conserved regions in the 5’ region of the PlGF gene 

were identified by alignment of 10 Kb sequences immediately upstream of the start 

codon from human, chimpanzee, marmoset, bovine, pig, rat and mouse using the Vista 

web-based search engine (http://genome.lbl.gov/vista/mvista).  To identify conserved 

putative FOXO1 transcription factor binding sites within these sequences the human 

PlGF sequence was subjected to transcription factor binding site searches using a 

combination of TFsearch (http://www.cbrc.jp/research/db/TFSEARCH.html) and TESS 

(http://www.cbil.upenn.edu/cgi-bin/tess) search engines in regions of high homology.  

Two promising conserved regions of the PlGF gene which contained putative FoxO 

binding sites were identified.  PCR primers were designed to amplify these regions for 

A      B 

 

Figure 4.2.6.  Effect of FoxO1 gain-of-function on PlGF expression in vivo.  FVB/N mice were 

transduced with adenoviruses encoding FoxO1-ADA or Ad-CMV for 48-60 hours, and A, livers 

homogenised, RNA extracted and PlGF mRNA quantified by qPCR (n=8).  B, PlGF protein levels 

quantified in plasma by ELISA (n=10). (*P<0.05). 
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ChIP assays.  PlGF ChIP site 1 (PlGF-seq 1) is ~ 3.6 Kb and ChIP site 2 (PlGF-seq 2) is 

~ 5.7 Kb upstream of the start codon.  The PCR product sizes were 252 bp (-5716 to –

5968 bp), and 184 bp (-3613 to -3797 bp) for ChIP sites 1 and 2 respectively (see 

Figure 4.2.7). 

 

 

 

 

 

 

 

 

PlGF-seq 1 contains a 5’-GATTTGTT-3’ a FoxO binding site as described  by Gao X et 

al., (2010), 5’-TTGTTTTG-3’ and other potential FoxO binding motifs containing 5’-

xxTTTGTT-3’ and 5’-TTGTTTxx-3’.  PlGF-seq 2 contains an inverse FOXO response 

element 5’-CTAAACA-3’ and two novel Forkhead binding motifs, 5’-GACAAG-3’ 

and 5’-GACATG-3’, that were recently described by, (Gao et al., 2010) immediately 

flanking the site.  

 

 

 

 

Figure 4.2.7.  PCR amplification of fragments of PlGF, VEGFR-1 and eNOS genes.  PCR 

optimisation for PlGF-seq 1 and 2, VEGFR-1 and eNOS ChIP primers with HUVEC sheared genomic 

DNA used as a template. 
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4.2.8. Chromatin-bound DNA shearing optimisation 

To shear chromatin-bound DNA to the optimal fragment size (200-800 bp), briefly, 

HUVEC chromatin was cross-linked to DNA using HUVEC complete medium 

containing 1% (v/v) 37% formaldehyde for 10 minutes at 37
o
C.  Chromatin-bound 

DNA was sonicated, the DNA was then purified and DNA fragments were run on 1.5% 

agarose gel.  As shown in Figure 4.2.8, DNA fragmentation was optimised to 

successfully yield 200-800 bp fragments. (See Methods Section 2.18.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.8.  DNA fragmentation.  Confluent HUVEC fixed in HUVEC complete medium 

containing 1% (v/v) 37% formaldehyde for 10 minutes, cells were then lysed, DNA was sheared 

and increasing volumes of purified DNA fragments were run on 1.5% agarose gel.  This is a 

representative gel of 3 independent experiments. 
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4.2.9. Optimisation of PCR conditions for ChIP primers on human genomic DNA 

from HUVEC. 

To optimise PCR conditions for PlGF and VEGFR-1 ChIP primers, PCR analysis was 

performed on purified sheared DNA from HUVEC using primers flanking predicted 

FOXO1 putative binding sites on the PlGF and VEGFR-1 promoters using transcription 

factor binding site search engines (see details below).  Figure 4.2.7 shows PCR 

amplification of two fragments containing putative FOXO1 binding sites in the PlGF 

gene promoter, referred to as PlGF–seq 1, PlGF-seq 2, a binding site on the VEGFR-1 

promoter and a previously reported FOXO1 binding site on the eNOS gene promoter 

(positive control) located at -2765 bp upstream the start codon (Potente et al., 2005).  

These data indicate that HUVEC DNA shearing and ChIP primers are working.  

 

4.2.10. The ChIP analysis of PlGF gene promoter. 

To determine whether FOXO1 directly binds to the PlGF gene promoter at these 

putative binding sites, ChIP analysis was performed on HUVEC transduced with 

FoxO1-ADA, Ad-CMV adenoviruses, or non-infected cells for 48 hours.  Chromatin-

bound DNA was immunoprecipitated with an antibody against the HA epitope (HA-

tagged FOXO1-ADA).  Immunoprecipitated DNA was then analysed by PCR using 

primers designed flanking the binding the putative sites (PlGF-seq 1 and PlGF-seq 2) 

PCR amplification of genomic DNA fragments using PlGF-seq 1 and PlGF-seq 2 and 

Input DNA that had not been immunoprecipitated serve as a positive control (4.2.9A 

and B).  

PCR amplification of immunoprecipitated HA-tagged DNA fragments from FoxO1-

ADA-infected cells indicates that FOXO1 directly binds to the PlGF promoter at PlGF-
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seq 1, but not PlGF-seq 2. A plasmid encoding PlGF was used as an additional positive 

control. 
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Figure 4.2.9.  PCR amplification of anti-HA-immunoprecipitated fragments from HUVEC.  

PCR amplification of DNA fragments from ChIP analysis performed on A, PlGF-seq 1, plasmid 

encoding PlGF and HUVEC transduced with Ad-CMV, FOXO1-ADA, or non-infected cells. B, 

PlGF-seq 2, plasmid encoding PlGF and HUVEC transduced with Ad-CMV, FoxO1-ADA 

adenoviruses or non-infected. This is a representative gel of 3 independent experiments.  
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4.2.11. Ets-2 role in PlGF expression in HUVEC. 

FoxO transcription factors have been reported to interact other transcription factors 

(Randi et al., 2009).  The direct interaction of FoxO and ETS transcription factors in the 

regulation of endothelial cell gene expression and angiogenesis was shown previously 

(De Val et al., 2008).  To examine whether Ets-2 plays a role in PlGF expression in 

HUVEC, Ets-2 was silenced using siRNA as described in the Methods (Section 2.6.1).  

After 24 hour incubation in growth factor-free MCDB 131 medium containing 10% 

FBS, PlGF release was quantified by ELISA.  As shown in Figure 4.2.10, the loss of 

Ets-2 significantly induced PlGF expression compared with control (p > 0.05, n = 3).  

This raises the possibility that there might be an interaction between FOXO1 and Ets-2 

that results in the suppression of PlGF expression.  The role of Ets-2 in the regulation of 

PlGF expression through interaction with FOXO1 can further be determined by 

combined knockdown of both transcription factors at the same time and PlGF mRNA 

and protein quantified to prove whether the interaction of FOXO1 with Ets-2 suppresses 

that activity of the latter. 

 

 

 

 

 

 

 

 

 

Figure 4.2.10.  Ets-2 loss-of-function effect on PlGF release in HUVEC.  HUVEC were 

electroporated with siRNA targeted to Ets-2 or control siRNA using an Amaxa nucleofector and 

incubated overnight.  After further 24 hour incubation in growth factor-free MCDB 131 medium 

containing 10% FBS, PlGF was measured by ELISA in cell-conditioned medium.  (*P<0.05, 

n=3). 
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4.2.12. Effect of FOXO1 knockdown on VEGFR-1 expression in HUVEC. 

To confirm whether VEGFR-1 expression is regulated by FoxO1 as predicted by 

reported gene array data (Daly et al., 2004; Potente et al., 2005), HUVEC were 

electroporated with siRNA oligonucleotides targeted against FOXO1.  Cell lysates of 

FOXO1-koncked down HUVEC were Western blotted using antibodies recognising 

VEGFR-1 indicated that the ablation of FOXO1 reduced both membrane-bound 

VEGFR-1 and its soluble form, s-VEGFR-1, at the protein level compared with control.  

The same cell lysates were blotted with an antibody recognising β-actin to verify equal 

loading.  These data confirm the array data of previous studies and indicate that FOXO1 

activity plays a role in the regulation of PlGF expression (Figure 4.2.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.11.  Effect of FOXO1 knockdown on VEGFR-1 expression in HUVEC.  

Confluent HUVEC were electroporated with siRNA targeted to FOXO1, or control siRNA, using 

an Amaxa nucleofector and incubated overnight.  After 24 hour incubation in growth factor-free 

MCDB 131 medium, cell lysates were Western blotted using antibodies recognising VEGFR-1 

and β-actin. This is a representative blot of 3 independent experiments. 
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4.2.13. Effect of FOXO1 gain-of-function on VEGFR-1 expression in HUVEC. 

 

To examine whether FOXO1 gain-of-function would have the opposite effect to 

FOXO1 knockdown, HUVEC were transduced with FoxO1-ADA, or β-gal 

adenoviruses overnight followed by 8 hour and qPCR for VEGFR-1 mRNA expression 

was performed.  As can be seen in Figure 4.2.12A, constitutively-active FoxO1 

significantly induced VEGFR-1 expression (p < 0.05, n = 3).  FoxO1-ADA over-

expression for 24 hours induced VEGFR-1 protein synthesis as demonstrated by 

Western blotting analysis using an antibody recognising VEGFR-1 in HUVEC lysates.  

Equal loading was confirmed using antibody against β-actin on the same blots (Figure 

4.2.12B).  These data confirm the role of FOXO1 in the regulation of VEGFR-1 

expression.  
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Figure 4.2.12.  Effect of FoxO1 gain-of-function on VEGFR-1 expression in HUVEC.  

Confluent HUVEC were transduced with FoxO1-ADA and β-gal adenoviruses overnight followed 

by 24 hour incubation in  growth factor-free MCDB 131 medium containing 10% FBS.  A, VEGFR-

1 qPCR was performed. B, Cell lysates were Western blotted using antibodies recognising VEGFR-

1 and β-actin.  (*P<0.05, n=3).  This is a representative blot of 3 independent experiments. 
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4.2.14. Effect of FOXO activity on VEGFR-1 promoter activity in endothelial cells. 

As FOXO1 and FOXO3a are the predominant FOXO factors expressed in endothelial 

cells (Potente et al., 2005).  The effects of constitutively-active FOXO1 and FOXO3a 

on VEGFR-1 promoter activity were examined.  Bovine aortic endothelial cells 

(BAEC) were used for these experiments due to the very low transfection efficiency of 

plasmids that can be achieved in HUVEC.  BAEC were co-transfected with a VEGFR-1 

promoter/luciferase reporter plasmid in combination with plasmids expressing 

constitutively-active FOXO1, FOXO3a or pCDNA control vectors for 24 hours, and 

VEGFR-1 promoter activity was quantified using a luminometer as described in the 

Methods (Section 2.6.2).  As shown in Figure 4.2.13A, FOXO1 significantly induced 

VEGFR-1 promoter activity (~ 4-fold) compared with control (p < 0.05, n = 3), whereas 

the constitutively-active FOXO3a-expressing plasmid had no effect (p > 0.05, n = 3).  

To confirm FOXO1 regulation of VEGFR-1 promoter, BAEC were co-transduced with 

FoxO1-ADA, or β-gal with VEGFR-1 promoter luciferase reporter plasmids containing 

1.3 Kb or 0.9 Kb (Both constructs contain a FoxO1 binding site, see details below) of 

the VEGFR-1 promoter sequence upstream of transcription site, or the empty pGL2 

vector for 24 hours.  As shown in Figure 4.2.13B, constitutively-active FOXO1 

increased the activity of the (1.3 Kb construct) by almost 15-fold and the 0.9 Kb 

construct by over 30-fold compared to β-gal control (p < 0.01, n = 3), but had no effect 

on pGL2 control vector activity.  These data confirm FOXO1 interaction/regulation of 

the VEGFR-1 promoter. The discrepancy in the observed VEGFR-1 promoter activity 

between the two constructs suggests that the long construct might contain a 

transcription repressor in addition to a FOXO1 binding site. 
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Figure 4.2.13. Effect of FoxO1 gain-of-function effect on VEGFR-1 promoter activity in 

endothelial cells.  VEGFR-1 promoter activity was quantified using the luciferase reporter assay. 

BAEC were co-transduced with A, VEGFR-1 promoter reporter plasmid with constitutively-active 

FoxO1, constitutively-active FoxO3a and pCDNA control vectors for 24 hours. B, VEGFR-1 promoter 

reporter plasmid with either FoxO1-ADA adenovirus or pGL2 Plasmid were transduced in BAEC with 

FoxO1-ADA, or β-gal.  (*P<0.05, **P<0.01, n=3).  0, transcription start site.  FHRE, forkhead 

recognition elements.  LUC, luciferase reporter gene. 
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4.2.14. Does FOXO1 directly interact with the VEGFR-1 promoter? 

 

To identify potential FOXO1 binding sites on the VEGFR-1 gene promoter, conserved 

regions in the 5’ region of the VEGFR-1 gene were identified by alignment of 10 Kb 

sequences immediately upstream the transcription start site from human, chimpanzee, 

marmoset, pig, cow, rat and mouse using the aforementioned search engines.  One 

conserved FoxO binding site that lies between -761 to -751 bp was identified (Figure 

4.2.14A) upstream of the transcriptional start site and was present in both VEGFR-1 

promoter constructs, as indicated on Figure 4.2.15B. 

 

To visually demonstrate whether FOXO1 directly binds to the VEGFR-1 gene 

promoter, ChIP analysis was again performed on HUVEC transduced with FoxO1-

ADA, Ad-CMV adenoviruses, or non-infected cells for 48 hours.  Chromatin-bound 

DNA was immunoprecipitated with an antibody against the HA epitope (HA-tagged 

FOXO1-ADA).  Immunoprecipitated DNA was analysed by PCR using primers 

flanking a region of ~ 262 bp in size, which lies between -882 to - 619 bp upstream the 

transcription start site and contains the conserved putative FOXO1 binding site on the 

VEGFR-1 promoter (4.2.14A).  PCR amplification of the immunoprecipitated DNA 

fragments (specific Band) from cells transduced with FoxO1-ADA, but not from Ad-

CMV-transduced, or non-infected HUVEC indicates that FOXO1 directly interacts with 

the VEGFR-1 promoter at this site (Figure 4.2.14B). 
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Figure 4.2.14.  ChIP on FoxO1 binding site on the VEGFR-1 gene promoter in HUVEC.  A, 

identified putative FoxO1 binding site in the VEGFR-1 promoter in a conserved region across 

several species.  B, PCR amplification of anti-HA-immunoprecipitated fragments from HUVEC 

transduced with Ad-CMV, FoxO1-ADA adenoviruses, and non-infected cells and human genomic 

DNA control. This is a representative gel of 3 independent experiments.  
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4.3. Discussion 
 

In this study, direct evidence demonstrating a positive role for FOXO1 in the regulation 

of PlGF and its receptor, VEGFR-1, expression in human endothelial cells is presented 

for the first time.  Dysregulation of FoxO1 activity by hyperglycaemia in insulin-

responsive tissues is a hallmark of metabolic disorders.  In atherosclerosis, the loss of 

endothelial integrity, increased oxidative stress, activation of pro-inflammatory 

pathways and the up-regulation of PlGF and its receptor VEGFR-1 have all been 

documented (Autiero et al., 2003a; Carmeliet et al., 2001; Luttun et al., 2002). 

The data from Chapter 3 indicated that inhibition of the PI3K/Akt signalling pathway 

significantly augmented PlGF levels in cultured endothelial cells in vitro, and in the 

liver and plasma of obese ob/ob mice.  NF-κB is a transcription factor that has been 

widely implicated in inflammation (Baker et al., 2011), and putative binding sites for 

NF-κB on the PlGF gene promoter have been reported (Cramer et al., 2005).  In 

endothelial cells, NF-κB mediates the cytotoxic effects of TNF-α through the activation 

of the PI3K/Akt pathway (Zhou et al., 2008).  These findings provided a rationale to 

initially examine whether NF-κB is implicated in hyperglycaemia-mediated regulation 

of PlGF expression in endothelial cells.  However, the inhibition of NF-κB transcription 

activity using the pharmacological inhibitor, isohelenin, or the dominant-negative IKK 

adenovirus was found to have no effect on PlGF expression in HUVEC. Others have 

shown NF-κB activation in HUVEC after a short period of hyperglycaemia (Morigi et 

al., 1998). We have not repeated these experiments, so our findings should be taken 

with some caution. 

The dual role of FOXO1 in the regulation of angiogenesis and metabolism associated 

with the suppression of PI3K/Akt and PlGF up-regulation reported in ob/ob mouse 
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model (Voros et al., 2005) warranted the examination of the role of this transcription 

factor in the regulation of PlGF expression in endothelial cells.  In the previous Chapter, 

it was shown that hyperglycaemia-mediated inhibition of Akt activity results in the 

suppression of FOXO1 phosphorylation in cultured HUVEC and that this effect can be 

reversed by stimulation with IGF-1.  In insulin–responsive tissues, one of the major 

effects of persistent FOXO1 nuclear localisation, resulting from chronic 

hyperglycaemia and blunting of insulin signalling are metabolic abnormalities 

culminating in insulin resistance and induction of pro-inflammatory gene expression; 

two key triggers in the development of atherosclerosis.  In endothelial cells, Tanaka et 

al., (2009) found that incubation in 25 mM D-glucose or 500 μM H2O2, both 

significantly induced FOXO1 promoter activity compared with control.  Using both 

gain- and loss-of-function approaches, in this study it was shown that the loss of 

FOXO1 activity in HUVEC cultured under normal conditions significantly suppressed 

PlGF release compared with control.  Furthermore, FOXO1 ablation abolished the 

induction of PlGF expression in hyperglycaemia.  Conversely, adenovirus-mediated 

over-expression of nuclear constitutively–active FoxO1 significantly induced PlGF 

release in both the absence and presence of IGF-1, demonstrating that FOXO1 is the 

major downstream effector regulating PlGF expression in this pathway.  To verify that 

FOXO1 regulates PlGF expression in vivo, FVB/N mice were transduced with FoxO1-

ADA adenovirus over 48 hours leading to elevated PlGF mRNA in the liver and 

circulating PlGF protein in plasma compared with Ad-CMV-transduced control mice.  

Taken together, the data identify FOXO1 as a transcription regulator of PlGF. 

FoxO factors are known to regulate gene transcription by either directly binding the 

DNA of target genes, or indirectly in conjunction with other transcription factors 

through protein-protein interactions.  Performing ChIP followed by PCR amplification 
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of evolutionary conserved FOXO1 binding sites on PlGF promoter in HUVEC clearly 

demonstrated that FOXO1 regulation of PlGF is through direct binding.  In another 

study, PlGF expression was up-regulated by FoxD1/BF-2, which is exclusively 

expressed by stromal cells in the embryonic renal cortex during development.  

FoxD1/BF-2 binds PlGF promoter at a HNF-3β site (Zhang et al., 2003).  Similarly, the 

forkhead-related factor, glial cell missing-1(GCM-1) is reported to regulate PlGF 

transcription in placental trophoblasts.  The over-expression of GCM-1 was reported to 

prevent the inhibitory effects of hypoxia on PlGF expression (Chang et al., 2008).  

Moreover, the knockdown of Ets-2, a repressor factor and a member of the ETS family 

which have been shown to interact with FoxO factors in the regulation of angiogenesis 

(De Val et al., 2008) resulted in a pronounced increase in PlGF release.  The role of 

ETS factors in the regulation of PlGF remains to be fully elucidated.  

Altered VEGFR-1 expression following FoxO1-ADA over-expression in endothelial 

cells was reported in gene arrays of two independent studies (Daly et al., 2004; Potente 

et al., 2005).  In these studies using gain- and loss-of-function approaches was used to 

demonstrate how FOXO1 regulates VEGFR-1 expression and identify potential binding 

sites for FOXO1 on the VEGFR-1 promoter.  Silencing FOXO1 with siRNA in 

HUVEC significantly reduced the expression of both membrane-bound and soluble 

forms of VEGFR-1 compared with control.  Conversely, HUVEC transfected with the 

FoxO1-ADA that is permanently retained in the nucleus significantly increased the 

expression of VEGFR-1 at the protein level compared with β-gal and non-infected cells.  

This was confirmed by qPCR on samples from the same experiments.  This finding 

does not however rule out the possibility of indirect interaction under different 

circumstances.  To verify whether there is an overlap between FOXO factors in the 

regulation of VEGFR-1, BAEC were co-transfected with plasmids over-expressing 
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either constitutively-active FoxO1 or FoxO3a with VEGFR-1 promoter plasmid 

reporter. These experiments showed that only FoxO1 induced VEGFR-1 promoter 

activity and that FoxO3a and pCDNA control were without effect.  This was further 

corroborated by co-transfection of FoxO1-ADA adenovirus with VEGFR-1-expressing 

reporter plasmid.  Performing ChIP on HUVEC transfected with FoxO-1-ADA and Ad-

CMV indicated that FOXO1-ADA binds to the (TT(G/A)TTTTG) binding site on the 

VEGFR-1 promoter.  

The discovery that FOXO1 activation promotes PlGF and VEGFR-1 expression in 

endothelial cells may provide an explanation for the shift towards pro-inflammatory 

signalling in angiogenic pathologies.  It is also possible to speculate that the promotion 

of PlGF and VEGFR-1 expression which was previously shown to promote endothelial 

cells survival via VEGFR-1 and activation of the PI3K/Akt signalling pathway (Cai et 

al., 2003b) may to contribute to the angiogenic switch to compensate for the loss of Akt 

activity in endothelial dysfunction.  Furthermore, the up-regulation PlGF and VEGFR-1 

in pathology might have implications on the crosstalk at the ligand level between PlGF 

and VEGF and the receptor level between VEGFR-1 and VEGFR-2 in the regulation of 

angiogenesis.  These data also add to the body of evidence placing FOXO factors, as 

actors, at the centre of two interlinked loops, metabolic and angiogenic, each of which 

feeds the other and compound its deleterious effects. 

Taken together, these data implicate FOXO1 in the direct regulation of PlGF and 

VEGFR-1 expression.  FOXO1 controlled and tissue-specific expression may therefore 

provide an excellent target for therapy in pathologies characterised by inflammation and 

endothelial dysfunction. 
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5.1. Introduction 

 

VEGF elicits its major biological effects, such as endothelial cell migration, survival, 

proliferation and tube formation via binding to high affinity VEGFR-1 and VEGFR-2 

kinase receptors (de Vries et al., 1992; Terman et al., 1992b). PI3K/Akt, MAPK and 

PKC are major intracellular signalling pathways downstream of VEGFR-1 and 

VEGFR-2, and their activation by VEGF and other growth factors modulates the 

expression of a wide range of genes in different cell types (Ferrara et al., 2003).  In 

endothelial cells, VEGF enhances angiogenesis by augmentation of NO production and 

the promotion of endothelial cell survival (Dvorak et al., 1995; Fujio and Walsh, 1999).  

VEGF can also enhance angiogenesis through the induction of other pro-angiogenic 

genes, including PlGF (Carmeliet et al., 2001; Yao et al., 2005).  In recent years 

considerable work has been undertaken to define the mechanisms through which PlGF 

contributes to pathology, yet little is known about its regulation and release.  As 

outlined in the Introduction, there are several mechanisms by which PlGF can enhance 

VEGF activity, including displacement of VEGF from VEGFR-1,  making it freely 

available to bind VEGFR-2, or the preferential formation of PlGF:VEGF heterodimers, 

thus reducing the formation of the more potent VEGF:VEGF homodimers (Cao et al., 

1996; Eriksson et al., 2002).  

 

In Chapter 4 of this thesis, it was demonstrated that the inhibition of the PI3K/Akt 

signalling pathway in endothelial cells enhanced PlGF release.  Constitutive activation 

of Akt or stimulation of Akt activity with IGF-1 suppressed PlGF expression through 

the inactivation of the forkhead transcription factor, FOXO1.  VEGF also promotes 

PlGF expression despite strongly activating Akt (Yao et al., 2005; Zhao et al., 2004).  



 Chapter 5-Mechanisms mediating VEGF up-regulation of PlGF release in endothelial cells 

 

144 
 

This puzzling paradox prompted the attempt to define the mechanism of VEGF-

mediated induction of PlGF expression in endothelial cells and whether the endogenous 

VEGF plays a significant role in this process. 

 

5.2. Results 

 

5.2.1. Effect of exogenous VEGF stimulation on PlGF release in endothelial cells.  

 

To explore the role of VEGF in the regulation of PlGF release in endothelial cells, 

HUVEC were made quiescent by growth factor starvation for 6-8 hours in growth 

factor-free MCDB 131 medium containing 10% FBS.  Following 24 hour incubation in 

fresh MCDB 131 medium in the presence of increasing concentrations (10 and 20 

ng/ml) of recombinant VEGF165 and PlGF was quantified in the culture medium by 

ELISA.  As shown in Figure 5.2.1A, VEGF165 (20 ng/ml) significantly increased PlGF 

secretion compared with non-treated cells (p < 0.05, n = 3).  Similarly, HAEC were 

stimulated with 20 ng/ml of recombinant VEGF165 for 24 hours showed a pronounced 

increase with VEGF stimulation (approximately 6-fold) in PlGF release compared with 

control (p < 0.05, n = 3, Figure 5.2.1B), confirming findings of other published reports 

(Yao et al., 2005; Zhao et al., 2004). 
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5.2.2. Effect of endogenous VEGF164 stimulation on PlGF release in HUVEC.  

 

To confirm exogenous VEGF165 effect on PlGF release, over-expression of murine 

VEGF164 (in mouse; the human proteins are one residue longer), or β-gal in HUVEC 

was achieved by recombinant adenoviruses as described in the Methods (Section 2.5).  

As depicted in Figure 5.2.2, the over-expression of VEGF significantly induced PlGF 

release in HUVEC compared with control (p < 0.01, n = 3).  These data indicate that the 

addition of recombinant VEGF or adenovirus-mediated VEGF164 over-expression 

stimulate PlGF secretion in endothelial cells. 

 

A      B 

 

 

Figure 5.2.1.  Effect of exogenous VEGF165 on PlGF release in endothelial cells.  A, 

Confluent HUVEC were incubated in growth factor-free MCDB 131 medium containing 10% 

FBS.  Cells were then stimulated with increasing concentrations of VEGF165 for 24 hours in 

fresh medium. B, Confluent HAEC were incubated in growth factor-free MCDB 131 medium 

containing 10% FBS.  Cells were then stimulated with 20 ng/ml of VEGF165, or control and 

incubated for 24 hours in fresh MCDB 131 medium containing 10% FBS.  PlGF was quantified 

in cell-conditioned medium by ELISA.  (*P<0.05, n=3). 

VEGF165 (ng/ml)
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5.2.3. The role of VEGFR-2 in VEGF-mediated PlGF release in HUVEC. 

 

It has previously been documented that VEGF-mediates the induction of PlGF secretion 

in bovine microvascular endothelial cells through the use of neutralising antibodies to 

prevent VEGF interacting with its receptors (Zhao et al., 2004).  To confirm this 

finding, an alternative approach was adopted using an siRNA duplex to knockdown 

VEGFR-2 synthesis in HUVEC in the presence of VEGF (20 ng/ml).  VEGFR-2 

knockdown in HUVEC cell lysates was verified using a VEGFR-2 ELISA employing a 

monoclonal anti-VEGFR-2 as a capture antibody, and biotinylated anti-VEGFR-2 as a 

detection antibody.  This VEGFR-2 ELISA was developed in-house and validated by 

Dr Melissa Cudmore.  Serial dilutions of the recombinant VEGFR-2 were used as 

standard curve for ELISA (Figure 5.2.3A).  As can be seen in Figure 5.2.3B, VEGFR-2 

 

Figure 5.2.2.  Effect of VEGF164 on PlGF release in HUVEC.  HUVEC transduced with 

adenoviruses encoding murine VEGF164 or β-gal overnight, followed by 24 hour incubation in 

growth factor-free MCDB 131 medium containing 10% FBS.  PlGF was quantified in cel 

supernatants by ELISA.  (**P<0.01, n=3). 

**

Ad-VEGF164



 Chapter 5-Mechanisms mediating VEGF up-regulation of PlGF release in endothelial cells 

 

147 
 

protein synthesis was almost completely abolished by siRNA compared with control (p 

< 0.01, n = 3).   

The data shown in Figure 5.2.3C, indicate that VEGFR-2 knockdown alone in the 

absence of VEGF reduced PlGF secreted levels compared with control, although it did 

not reach statistical significance (p > 0.05, n = 3).  However, induction of PlGF 

secretion by VEGF was significantly inhibited in the absence of VEGFR-2 (p < 0.05, n 

= 3).  In order to further define the role VEGFR-2, HUVEC were treated with the 

VEGFR-2 activation inhibitor, SU5416 (20 μM) followed by 24 hour incubation in the 

presence of VEGF (20 ng/ml), or control.  As shown in Figure 5.2.3D, VEGF alone 

significantly induced PlGF release compared with control.  This induction was, 

however dramatically reduced in the presence of SU5416.  These data implicate 

VEGFR-2 in VEGF-mediated induction of PlGF release in endothelial cells. 
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Figure 5.2.3.  The role of VEGFR-2 in the regulation of VEGF-induced PlGF release in HUVEC.  

HUVEC were electroporated with siRNA targeted to VEGFR-2 or control siRNA using an Amaxa 

nucleofector and incubated overnight.  A,a typical VEGFR-2 ELISA standard curve (see the Methods 

section).  B, After 24 hour incubation, VEGR-2 was quantified in cell lysates by VEGFR-2 ELISA.  C, 

After 24 hour incubation in growth factor-free MCDB 131 medium containing 10% FBS, and VEGFR-2 

levels were quantified by ELISA in cell-conditioned medium.  D, HUVEC were treated with SU5416 (20 

μM) or vehicle and incubated in growth factor-free MCDB 131 medium containing 10% FBS in the 

presence of VEGF (20ng/ml) or control.  After 24 hours, PlGF was measured by ELISA in cell-

conditioned medium.  (*P<0.05, **P<0.01, n=3). 

**

* *
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5.2.4. The role of VEGFR-1 in VEGF-mediated PlGF release in HUVEC 

 

It has been reported that VEGFR-1 does not play a role in VEGF stimulation of VEGF 

secretion in endothelial cells (Zhao et al., 2004).  To explore this finding further, an 

siRNA duplex targeted to block VEGFR-1 expression was introduced into HUVEC and 

the PlGF levels secreted were quantified by ELISA in the cell-conditioned medium.  As 

depicted in Figure 5.2.4A, the loss of VEGFR-1 strongly induced PlGF release 

compared with control (p < 0.05, n = 3), suggesting a role for VEGFR-1 in the 

regulation of PlGF expression.   

 

To further explore the role of VEGFR-1 in the regulation of VEGF-mediated up-

regulation of PlGF release, VEGFR-1 was silenced in HUVEC in the presence or 

absence of adenoviruses over-expressing murine PlGF-2, VEGF164, or β-gal control.  

The data are shown in Figure 5.2.4B.  The loss of VEGFR-1 markedly induced PlGF 

release under all conditions compared with control siRNA-treated cells (Ad-VEGF164, P 

< 0.05, β-gal, P < 0.01, n = 3), indicating that, unlike VEGFR-2, VEGFR-1 may 

actually play an inhibitory role in mediating PlGF release. However, in control siRNA-

treated cells, murine PlGF over-expression actually seemed to increase PlGF secretion. 

This is surprising, if VEGFR-1 is negative regulator of PlGF expression, a possible 

explanation is that high levels of secreted murine PlGF-2 are cross-reacting with the 

human ELISA. 
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Figure 5.2.4.  The role of VEGFR-1 in the regulation of VEGF-induced PlGF release in HUVEC.  

HUVEC were electroporated with siRNA targeted to VEGFR-1 or control siRNA using an Amaxa 

nucleofector and incubated overnight.  A, After 24 hour incubation in growth factor-free MCDB 131 

medium containing 10 FBS%, PlGF was measured by ELISA in cell-conditioned medium. B, cells were 

then transduced with adenoviruses encoding murine PlGF-2, VEGF164 or β-gal, and incubated 

overnight.  After 24 hour incubation in growth factor-free MCDB 131 medium containing 10% FBS, 

PlGF was measured by ELISA in cell-conditioned medium.  (*P<0.05, **P<0.01. n=3). 
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5.2.5. Effect of VEGF knockdown on PlGF release in HUVEC. 

Since stimulation of endothelial cells with exogenous VEGF165, or over-expression of 

VEGF164 was found to induce PlGF release, this raised the question whether the 

knockdown of endogenous VEGF would have the converse effect.  Zhao et al., (2004) 

and Yao et al., (2005) showed previously that antibodies to VEGF could inhibit PlGF 

release.  The effect of VEGF knockdown was examined by silencing VEGF in HUVEC 

by siRNA.  As shown in the Figure 5.2.5.  Interestingly, VEGF ablation significantly 

increased the release of PlGF compared with control (p < 0.05, n = 4).  It is 

Conceivable that the observed increase in PlGF release is due to a loss of PlGF:VEGF 

heterodimer formation , which should preferentially form within the cell upon the loss 

of VEGF.  Alternatively, the loss of VEGF may invoke other mechanisms to 

compensate for its own loss to maintain homeostasis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.5.  Effect of VEGF knockdown on PlGF release in HUVEC.  HUVEC were 

electroporated with siRNA targeted to VEGF, or control siRNA using an Amaxa nucleofector 

and incubated overnight.  After 24 hour incubation in growth factor-free MCDB 131 medium 

containing 10% FBS, PlGF was measured by ELISA in cell-conditioned medium.  (*P<0.05, 

n=4). 
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5.2.6. Detection of endogenous VEGF in HUVEC 

 

The puzzling and seemingly contradictory finding that both VEGF stimulation with and 

knockdown of endogenous VEGF induced PlGF expression warranted the examination 

of VEGF knockdown further using HEK 293 cells as a positive control.  Following the 

electroporation of HEK 293 cells with VEGF siRNA, VEGF mRNA expression was 

reduced by ~ 50% and the secretion of VEGF protein by > 70% compared with siRNA 

control (mRNA, p < 0.05, protein, p< 0.01, n = 3, Figure 5.2.6 A and B).  In HUVEC, 

however, VEGF protein was not detectable using the same ELISA (Figure 5.2.6A).  in 

addition, very low levels of VEGF mRNA were detectable by PCR which appeared to 

be below the limit of detection  for the assay (Figure 5.2.6C).  This is supported by the 

finding that transfection of HUVEC with VEGF siRNA did not result in a reduction in 

VEGF mRNA in these cells. 
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5.2.7. Effect of VEGF induction by hypoxia on PlGF release in HUVEC 

 

Since we were unable to detect VEGF under normoxia, HUVEC were incubated in 

hypoxia conditions in an attempt to induce VEGF expression (Liu et al., 1995; Wang 

and Semenza, 1995) and examine its subsequent effect on PlGF release.  To this end, 

VEGF siRNAs were introduced into HUVEC by electroproration and following a 24 

hour incubation in normoxia (21% O2), or hypoxia (1% O2) in growth factor-free 

B 

 

C 

 

Figure 5.2.6.  Detection of endogenous VEGF in HUVEC.  A, HEK 293 and HUVEC were 

electroporated with siRNA targeted to VEGF, or control siRNA using an Amaxa nucleofector and 

incubated overnight.  A, after 24 hour incubation, VEGF protein was quantified in cell-conditioned 

medium by ELISA.  B & C, After an 8 hour incubation in growth factor-free MCDB 131 medium 

containing 10% FBS, cell lysates were collected, RNA extracted and VEGF qPCR performed.  

(*P<0.05, **P<0.01, n=3). 
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MCDB 131 medium in the presence of VEGF (20 ng/ml).  PlGF was quantified by 

ELISA in cell supernatants.  Consistent with previous findings, both VEGF stimulation 

and knockdown significantly elevated PlGF release in HUVEC (p < 0.05, n = 3), 

whereas there was no significant difference observed in the secreted PlGF levels 

between normoxia and hypoxia (p > 0.05, n = 3), indicating that hypoxia alone had no 

effect on PlGF release.  Also, there was no effect of hypoxia on VEGF-mediated 

induction of PlGF expression by hypoxia (Figure 5.2.7), suggesting, as expected, that 

VEGF induction of PlGF release in endothelial cells is independent of hypoxia.  This 

finding suggests that the increase in PlGF secretion observed in hypoxia is independent 

of the up-regulation of endogenous VEGF, but more experiments are needed to prove 

this finding. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.7.  Effect of endogenous VEGF and hypoxia on PlGF release in HUVEC.  

HUVEC were electroporated with siRNA targeted to VEGF, or control siRNA, using an Amaxa 

nucleofector overnight.  After 24 hour incubation in MCDB 131 medium containing 10% FBS 

under 1%, or 21 O2 tension in the presence of VEGF (20 ng/ml), PlGF was measured by 

ELISA in cell-conditioned medium.  (*P<0.05, n=3)  .NS = not significant. 
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5.2.8. Examination of the putative role of preferential PlGF:VEGF heterodimer 

formation in the modulation of PlGF release in HUVEC. 

 

The preferential formation of the PlGF:VEGF heterodimers has previously been 

reported (Cao et al., 1996; DiSalvo et al., 1995) and might play a role in the apparent 

increase in PlGF secretion observed following VEGF knockdown in HUVEC.  Due to 

our inability to detect VEGF in HUVEC, it was hypothesised that any VEGF protein 

produced by endothelial cells might present as PlGF:VEGF heterodimers in the 

presence of higher levels of PlGF.  Therefore, it was postulated that VEGF knockdown 

in HUVEC may allow the formation of more PlGF homodimers, and thus the apparent 

up-regulation of PlGF detected by ELISA.  To test this hypothesis, a PlGF:VEGF 

heterodimer sandwich ELISA was devised consisting of anti-monoclonal PlGF:VEGF 

heterodimer monoclonal antibody, and polyclonal anti-VEGF detection antibody.  The 

assay was optimised using recombinant PlGF:VEGF heterodimer standard shown in the 

Figure 5.2.8 A.  Figure 5.2.8B shows that silencing of PlGF or VEGF in HUVEC for 24 

hours to allow the formation of PlGF, or VEGF homodimers, did not result in a change 

in PlGF:VEGF heterodimer levels (p > 0.05, n = 3), suggesting that VEGF regulation of 

PlGF release in endothelial cells is PlGF:VEGF heterodimer-independent.  PlGF 

knockdown (4-fold) was verified by PlGF ELISA as shown in Figure 5.2.8C (p < 0.05, 

n = 3). 
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Figure 5.2.8.  Effect of PlGF:VEGF heterodimer formation on VEGF-mediated PlGF release 

in HUVEC.  A, PlGF:VEGF heterodimer ELISA standard.  B, HUVEC were electroporated with 

siRNA targeted to VEGF, PlGF or control siRNA using an Amaxa nucleofector overnight.  After 24 

hour incubation in growth factor-free MCDB 131 medium containing 10% FBS, PlGF:VEGF 

heterodimer quantified using heterodimer ELISA (see methods).  C, Demonstration of PlGF 

knockdown in HUVEC.  (*P<0.05, n=3). 
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5.2.9. The role of PI3K in VEGF induction of PlGF release in HUVEC. 

 

As PI3K is an important mediator of the biological effects of VEGF in endothelial cells, 

and shown in Section 3.2.6 in Chapter 3 to negatively regulate PlGF expression.  The 

role of PI3K in VEGF-mediated regulation of PlGF release was examined.  HUVEC 

were treated with LY294002 (20 μΜ) in the presence of VEGF (20 ng/ml), or control as 

described in Section 3.2.6.  As shown in Figure 5.2.9, HUVEC treatment with 

LY294002 had no effect on VEGF-mediated induction of PlGF release compared with 

control, suggesting that PI3K is not important for VEGF-mediated regulation of PlGF 

expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.9.  The role of PI3K in VEGF induction of PlGF release in HUVEC.  Confluent 

HUVEC were treated with 20 μM of LY294002, or control.  After 24 hour incubation in growth factor-

free MCDB 131 medium containing 10% FBS in the presence of VEGF (20ng/ml), or control, PlGF 

was measured by ELISA in cell-conditioned medium.  (*P<0.05, n=3). 
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5.2.10. The role of Akt in VEGF induction of PlGF release in HUVEC. 

 

Previously, it was shown that VEGF activates Akt (Gerber et al., 1998b), and that 

activation of Akt was found to suppress PlGF expression (section 3.2.8, 9 and 10).  

HUVEC stimulation with VEGF induced PlGF secretion from endothelial cells (Section 

5.2.9).  To further investigate the potential role of Akt in VEGF-mediated regulation of 

PlGF release, Akt-1 was knocked down in HUVEC in the presence of VEGF (20 

ng/ml), or control.  As demonstrated previously (Section 3.2.10), the loss of Akt-1 

activity in the absence of VEGF in HUVEC significantly induced PlGF release 

compared with control (p < 0.05, n = 3).  In the presence of VEGF, there was further ~ 

2-fold increase, suggesting that VEGF regulation of PlGF expression is independent of 

Akt activity (Figure 5.2.10). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.10.  The role of Akt in VEGF-mediated PlGF release in HUVEC.  HUVEC were 

electroporated with siRNA targeted to Akt-1 or control siRNA using an Amaxa nucleofector and 

incubated overnight.  After 24 hour incubation in growth factor-free MCDB 131 medium 

containing 10% FBS in the presence of VEGF (20ng/ml) or control, and PlGF was measured by 

ELISA in cell-conditioned medium.  (*P<0.05, n=3). 
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5.2.11. The role of FOXO1 in VEGF induction of PlGF release in HUVEC.  

 

In Chapter 4, it was demonstrated that PlGF expression is modulated by FOXO1; 

however, FOXO1 activity is negatively regulated by VEGF (Potente et al., 2005).  To 

examine the potential involvement of FOXO1 in VEGF-mediated regulation of PlGF 

expression, FOXO1 was silenced by siRNA in HUVEC overnight, followed by 24 hour 

incubation in the presence of VEGF (20 ng/ml)  and PlGF was quantified by ELISA.  

As shown in Figure 5.2.11, FOXO1 knockdown, slightly reduced PlGF expression 

under basal conditions.  In the presence of VEGF, FOXO1 knockdown had no 

significant effect on the stimulatory effect of VEGF on PlGF release (p > 0.05, n = 3).  

This suggests that VEGF-mediated PlGF release is largely independent of FOXO1 

activity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.11.  The role of the FOXO1 in VEGF-mediated PlGF release in HUVEC.  

HUVEC were electroporated with siRNA targeted to FOXO1 or control siRNA using an Amaxa 

nucleofector and incubated overnight.  After 24 hour incubation in growth factor-free MCDB 

131 medium containing 10% FBS in the presence of VEGF (20ng/ml) or control, and PlGF was 

measured by ELISA in cell-conditioned medium.  (*P<0.05, n=3).  NS = not significant. 
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5.2.12. The role of PKC in VEGF induction of PlGF release in HUVEC. 

 

To examine the role of PKC pathway, which is also activated by VEGF (Takahashi et 

al., 1999) and had been  implicated in VEGF-mediated regulation of PlGF expression in 

endothelial cells (Yao et al., 2005; Zhao et al., 2004), HUVEC were treated with 

GF109203X, a potent pan-PKC pharmacological inhibitor, in the presence of VEGF (20 

ng/ml), or control for 24 hours and PlGF was quantified by ELISA in cell supernatants.  

The inhibition of PKC had no effect on PlGF release in the absence of VEGF, but 

VEGF-mediated up-regulation of PlGF release was significantly suppressed (p<0.05, n 

= 3), suggesting that VEGF regulation of PlGF expression is PKC-dependent (Figure 

5.2.12).  This is in line with the findings of Zao et al., (2004) who stimulated bovine 

microvascular endothelial cells with VEGF, in the presence or absence of GF109203X 

to reach the same conclusion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.12.  The role of the PKC signalling pathway in VEGF-mediated PlGF release in 

HUVEC.  Confluent HUVEC were treated with 5 μM of GF109309X, or control for 24 hours in 

MCDB 131 medium containing 10% FBS and VEGF (20 ng/ml), or control.  PlGF was measured 

by ELISA in cell-conditioned medium.  (*P<0.05, n=3). 
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5.2.13. Effect of VEGFR-1 and VEGFR-2 knockdown on Akt activity in HUVEC. 

In Chapter 3, the role of Akt in the regulation of PlGF expression was established.  In 

addition, our group showed that both VEGFR-1 and VEGFR-2 mediate growth factor 

activation of Akt in HUVEC (Ahmad et al., 2006).  This provided a rational to examine 

the effect of VEGFR-1 and VEGFR-2 loss on Akt activity in endothelial cells. To this 

end, VEGFR-1 and VEGFR-2 were knocked down by siRNA in HUVEC infected with 

Ad-VEGF164, Ad-PlGF-2, or Ad-β-gal overnight.  As shown by Western blotting 

analysis, the silencing of VEGFR-1 reduced Akt phosphorylation (pAkt
ser473

) compared 

with VEGFR-2 knockdown, with no change in Akt expression.  The reported 

stimulatory effect of PlGF over-expression on Akt activity (Ahmad et al., 2006; Cai et 

al., 2003b) was also moderately suppressed by VEGFR-1 ablation.  VEGF-mediated 

activation of Akt, however, was not affected by the individual knockdown of either 

VEGFR-1 or VEGFR-2, suggesting that VEGF is capable of eliciting its biological 

effects via either receptor VEGFR-1 or VEGFR-2 (Figure 5.2.13).  However, VEGF 

uses more than one receptor and potentially multiple signalling pathways to exert its 

biological effects. Therefore, a different approach should be sought to determine the 

exact role of each receptor independently in Akt activation by PlGF and VEGF. 

 

 

 

 

 

 

 

Figure 5.2.13. Effect of VEGFR-1 and VEGFR-2 knockdown on Akt activity in HUVEC.  HUVEC 

were electroporated with siRNA targeted to VEGFR-1, VEGFR-2, or control siRNA using an Amaxa 

nucleofector, and transduced with adenoviruses encoding murine PlGF-2, murine VEGF164, or β-gal 

and incubated overnight.  After 24 hour incubation in growth factor-free MCDB 131 medium containing 

10% FBS, cell lysates were Western blotted using antibodies recognising phospho-Akt (Ser 473), Akt 

and β-actin.  This is a representative blot of 3 independent experiments. 
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5.3. Discussion 

 

The stimulation of HUVEC with recombinant VEGF165, or transduction with 

adenovirus encoding VEGF164 significantly induced PlGF release.  Data in this Chapter 

confirms those of other investigators (Yao et al., 2005; Zhao et al., 2004), who showed 

that exogenous VEGF induces PlGF production in endothelial cells.  Induction of PlGF 

release by VEGF produced within the cell has not, however, been assessed before.  

VEGF clearly activates the PI3K/Akt signalling pathway, yet, promotes PlGF 

expression (Byzova et al., 2000; Gerber et al., 1998).  Zhao et al., (2004) found that 

VEGF-mediated the up-regulation of PlGF in bovine microvascular endothelial cells by 

hyperglycaemia can be abolished using neutralising antibodies to VEGF, VEGFR-2, or 

pharmacological inhibitors that block the PKC signalling pathway.  VEGF expression 

in endothelial cells promotes the phosphorylation of VEGFR-2, maintenance of 

endothelial cell survival and vascular homeostasis when studied in the mouse 

endothelial cells (Lee et al., 2007).  It was therefore hypothesised that the loss of VEGF 

in endothelial cells might suppress PlGF expression.  However, VEGF expression in 

endothelial cells, such as HUVEC, has been extremely difficult to detect by ELISA and 

qPCR.  Unexpectedly, VEGF knockdown led to a significant induction of PlGF release 

in HUVEC.  This raised further questions about the possible role of VEGF in the 

regulation of PlGF release in endothelial cells. 

 

In 2006, our group demonstrated that VEGF could activate Akt via both, VEGFR-1 and 

VEGFR-2, through the PI3K and PKC signalling pathways (Ahmad et al., 2006).  To 

define the mechanism of VEGF regulation of PlGF expression, the first question 

addressed was to delineate the separate roles of VEGFR-1 and VEGFR-2.  As the data 
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in this Chapter show, the ablation of VEGFR-2, or inhibition of its activity using 

SU5416, significantly reduced VEGF-mediated PlGF release compared with control.  

The use of the VEGFR-2 inhibitor, SU5416, or VEGFR-2 knockdown, did not affect 

the level of PlGF release in the absence of exogenous VEGF, but did not inhibit 

recombinant VEGF165-stimulated PlGF secretion.  Whereas, the knockdown of 

VEGFR-1 strongly induced PlGF production in both, the presence and absence of 

murine PlGF-2 and VEGF164 over-expression.  These results strongly suggest that 

VEGFR-1 is playing a negative role in PlGF production.  The observed increase in 

PlGF release could be explained by the displacement theory.  In the presence of 

VEGFR-1, over-expression of murine PlGF-2 increases PlGF secretion.  This might be 

due to the displacement of the human PlGF from endogenous VEGFR-1/s-VEGFR-1 

which is then detected by human PlGF ELISA.  Alternatively, there may be some cross-

reactivity of murine PlGF-2 in the human PlGF ELISA leading to this result.  This 

needs to be explored further by qPCR which would indicate whether over-expression of 

murine PlGF-2 leads to increased PlGF gene expression and examining levels of murine 

PlGF-2 production produced in transduced HUVEC and any cross-reactivity with the 

human ELISA.  To conclude, VEGFR-1 and VEGFR-2 have different, but possibly 

complementary roles and there may be co-operation between the receptors in the 

regulation of PlGF expression in endothelial cells. 

 

One possibility from the results obtained in Figure 5.2.6 is that VEGF may be present in 

endothelial cells as PlGF:VEGF heterodimer.  Cao et al., (1996) have demonstrated that 

VEGF and PlGF preferentially form heterodimers when co-expressed within a cell.  If 

there were a relatively small amount of VEGF present in endothelial cells compared to 

PlGF we predict that any VEGF would be present mostly as PlGF:VEGF heterodimers, 
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rather than VEGF:VEGF homodimers.  To address this question, a PlGF:VEGF 

heterodimer sandwich ELISA was devised comprising monoclonal anti-PlGF:VEGF 

heterodimer, as a capture antibody and polyclonal anti-VEGF, as a detection antibody.  

It was postulated that the ablation of either PlGF or VEGF would lead to the formation 

of more PlGF:PlGF or VEGF:VEGF homodimers and cause a subsequent reduction 

reduction in PlGF:VEGF heterodimer levels released by endothelial cells, which we 

were able to detect in HUVEC supernatants at approximately 50 pg/ml using the 

ELISA.  However, PlGF:VEGF heterodimer levels were unaltered by either PlGF or 

VEGF knockdown, suggesting that the preferential formation of PlGF:VEGF 

heterodimers is not associated with either with VEGF-mediated regulation of PlGF 

release, or the inability to detect VEGF secretion in HUVEC.  This requires further 

investigation in HUVEC.  

 

To exclude the involvement of the PI3K/Akt/FOXO1 axis in VEGF-mediated PlGF 

release, signalling through this pathway was manipulated in the absence or presence of 

VEGF, and PlGF secretion quantified by ELISA.  The blockade of PI3K in HUVEC 

using LY294002 significantly induced PlGF in the absence of VEGF, and there was a 

further increase upon stimulation with VEGF, indicating that VEGF acts independently 

of PI3K to promote PlGF production.  The same result was achieved when Akt-1 or 

FOXO1 were silenced in HUVEC, suggesting that both Akt-1 and FOXO1 are also not 

involved in VEGF-mediated increase in PlGF secretion.  The inhibition of the PKC 

pathway, which is a target of VEGF signalling downstream of VEGFR-2 in endothelial 

cells, significantly suppressed PlGF induction by VEGF on the PlGF, lending further 

support to the role of VEGFR-2 in the mediation of VEGF regulation of PlGF.  The 

identification of transcription factors that mediate the effects of VEGF on the PlGF 
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gene promoter remains a complex challenge, since the co-operation of more than one 

transcription factor may be involved. 

 

The increase of PlGF release following VEGFR-1 knockdown suggested the possible 

presence of an autocrine loop regulating PlGF and VEGFR-1 expression, with Akt 

potentially acting as both a sensor and regulator in this loop.  Therefore, one would 

speculate that, the loss of one of the ends in the loop (VEGFR-1 or PlGF) would alter 

Akt activity leading to an increase in the expression of the other end, thus creating a 

system of compensation for the loss of either, the receptor or the ligand.  This may be 

similar to Tie2/angiopoietin system, where angiopoietin-2 (Ang-2) is induced by 

FOXO1 following the loss of PI3K/Akt activity (Daly et al., 2006). 

 

Taken together, exogenous VEGF-mediated induction of PlGF release in endothelial 

cells is VEGFR-2 and PKC-dependent.  In addition, although, it was difficult to detect 

endogenous VEGF in endothelial cells, the observed effects of its knockdown remain 

difficult to explain and further work is required to understand them. 
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6. Final discussion and future work. 
 

In this thesis, the importance of the PI3K/Akt/FOXO1 signalling pathway in 

hyperglycaemia-mediated control of PlGF expression has been shown.  A direct 

interaction and regulation of VEGFR-1 by FOXO1 has also been demonstrated in 

endothelial cells.  This discovery will have major implications for pathologies 

characterised by endothelial dysregulation in PlGF or VEGFR-1 expression and 

PI3K/Akt/FOXO1 function. 

 

VEGF regulation of PlGF release 

Mechanisms of VEGF induction of PlGF release in ECs have also been investigated.  

Exogenous VEGF, in agreement with data previously reported, induces PlGF release in 

endothelial cells via the VEGFR-2/MAPK signalling axis (Zhao et al., 2004).  My data 

showed that augmentation of PlGF expression by hyperglycaemia is independent of 

VEGF in EC for two reasons, 1); it was not possible to detect endogenous VEGF in EC 

by qPCR and ELISA.  2), if VEGF levels in HUVEC are present but undetectable, its 

silencing had no effect on hyperglycaemia induction of PlGF, suggesting that it is 

independent of VEGF.  The unexpected effect of VEGF knockdown raised the 

possibility of a role for the naturally occurring VEGF/PlGF heterodimer, but this was 

also ruled out by lack of change in the levels of VEGF/PlGF heterodimer released upon 

the VEGF or PlGF knockdown in HUVEC.  The inability to detect VEGF compounded 

by its ability to bind multiple receptors and activate various interlinked signalling 

pathways simultaneously made the definition of its exact role in the regulation PlGF 

release very difficult.  This may be feasible by further VEGF qPCR optimisations. 
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The PI3K/Akt pathway and PlGF expression  

Metabolic and cardiovascular disorders are characterised by endothelial dysfunction, 

which is characterised by a loss of PI3K/Akt signalling.  PlGF expression is also up-

regulated in these disorders and we carried out investigations to determine whether the 

two are interlinked.  In these in vitro studies the effect of hyperglycaemia on PlGF 

expression in EC was examined and complementary systems to modulate the PI3K/Akt 

pathway activity were used.  Inhibition of the PI3K/Akt pathway significantly induced 

PlGF expression at an mRNA and protein level, and its sustained activation had the 

converse effect.  PlGF expression was found to be significantly higher at an mRNA and 

protein level in the liver and plasma, respectively, in the severely hyperglycaemic and 

obese ob/ob mice, compared with their lean controls.  This is consistent with the finding 

of another study showing augmented PlGF mRNA levels in the adipose tissue of obese 

ob/ob compared with lean counterparts (Voros et al., 2005).  PlGF mRNA in diabetic 

patients was also reported to be higher compared with healthy controls (Siervo et al., 

2010), suggesting that increased glucose levels are the underlying cause of PlGF 

augmentation in these subjects.  The discovery that PlGF expression is induced at an 

mRNA and protein level upon inhibition of PI3K and Akt may be important in 

understanding the pathologies associated not only with insulin resistance, but also in 

other diseases.  PTEN mutation, resulting in a constitutively-active Akt is a frequent 

occurrence in cancer (Li et al., 1997), PTEN phosphorylation, promoting its 

antagonistic activity of PI3K was induced by hyperglycaemia in HUVEC through the 

tumour suppressor transcription factor, LKB1 in vitro (Song et al., 2007).  In vivo, 

specific inhibition of PTEN expression in mice reversed the effects of hyperglycaemia 

(Butler et al., 2002).  The benefits of PTEN activation as a strategy to inhibit PlGF–

mediated inflammation in the clinic would be outweighed by the serious adverse effect 
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similar to that of the mutated PTEN, leading to the promotion of sustained Akt 

activation and cell survival, and thus cancer.  

 

Altered Akt activity is a major feature of diverse cellular processes and diseases.  

Phosphorylated Akt can directly regulate the activity of its target genes by translocation 

to the cell nucleus or indirectly by interaction with transcription factors.  In human fat 

and muscle cells, insulin activation of Akt mediates the promotion of glucose up-take 

through the translocation of GLUT4 from intracellular storage sites to cell membrane 

(James et al., 1988; James et al., 1989).  The blockade of GLUT4 translocation by 

inhibition of Akt phosphorylation is considered the main cause of insulin resistance in 

metabolic abnormalities of type 2 diabetes.  In endothelial cells, the suppression of Akt 

activity induces apoptosis, inflammation and abrogates NO production, key trigger 

events in the development of atherosclerosis.  The loss of Akt-1 in atherosclerosis 

susceptible ApoE
-/-

 deficient mice fed a Western diet, induced PlGF expression 3-fold 

compared with wild-type controls.  These mice exhibited exacerbated atherosclerosis 

and coronary artery disease (Fernandez-Hernando et al., 2007).  In another study, 

constitutively-active Akt, targeted to the endothelium in transgenic mice, led to reduced 

vascular lesion formation compared with control (Mukai et al., 2006).  What is more 

interesting about this study is the fact that this effect was only partially attributed to NO 

loss, but predominantly to increased endothelial survival and decreased inflammatory 

changes.  This is consistent with the role of PlGF as a promoter of inflammation in 

atherosclerosis (Luttun et al., 2002; Pilarczyk et al., 2008).  It would be interesting to 

quantify the levels of PlGF in these mice to determine whether PlGF expression is 

correlated with the increased inflammation. 
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Despite the importance of this discovery, the manipulation of Akt for therapeutic 

purposes remains a very challenging task.  Akt is localised at the centre of multiple 

signalling pathways and acts as a focal point at which signals converge or diverge to 

bring about a very diverse range of signals.  How Akt selectively inhibits, or activates 

one single effector among hundreds is a very complex process, as each of these 

processes depends on the type of the stimulant, the strength and the time length of the 

signal.  Furthermore, any Akt-activating medicinal molecule will almost ultimately 

favour the induction of tumour formation and growth.  This difficulty warranted the 

identification of potential transcription factor that might directly interact and regulate 

PlGF expression. 

 

FOXO1 and the regulation of PlGF expression 

The discovery that PlGF release in endothelial cells is transcriptionally regulated 

prompted us to identify potential transcription factors downstream of Akt.  The NF-κB 

transcription factor was a good candidate as its role in inflammatory signalling is well 

established and NF-κB binding sites have been reported to be in the PlGF promoter 

(Cramer et al., 2005).  The manipulation of the activity of this transcription factor using 

isohelenin and a dominant-negative IKK had no effect on PlGF expression.  FOXO1 is 

another direct downstream target of Akt and widely implicated in the regulation of 

metabolism, EC survival, detoxification of oxidative stress and cell cycle arrest in the 

endothelium (Accili and Arden, 2004; Brunet et al., 2004).  Insulin/IGF–I activated Akt 

inactivates FOXO1 by phosphorylation and nuclear exclusion (Brunet et al., 1999).  In 

insulin–responsive tissues, one of the major effects of hyperglycaemia-induced 

persistent FOXO1 nuclear localisation and blunting of insulin intracellular signalling is 
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the inhibition of glucose up-take, triglyceride clearance and induced glucose production 

(Accili and Arden, 2004).  The elevation of PlGF in obese ob/ob mice associated with 

the suppression of the PI3K/Akt and induced phosphorylation of FoxO1 reported by 

other groups (Behl et al., 2009) provoked the examination of the potential role for 

FOXO1 in the regulation of PlGF expression in endothelial cells.  In this thesis I 

showed not only that the silencing of FOXO1 suppressed PlGF expression, but also 

abrogated hyperglycaemia-induced PlGF expression in vitro.  In addition, the 

demonstration that constitutively-active FOXO1 over-expression promoted PlGF 

expression, and this effect was not reversed by IGF-I stimulation, clearly demonstrated 

that the effect of hyperglycaemia is primarily attributed to persistent FOXO1 nuclear 

localisation.  These data were corroborated by experiments performed on FVB/N mice 

where the transduction of adenovirus encoding constitutively-active FOXO1, 

significantly augmented hepatic PlGF mRNA expression and plasma protein levels.  It 

would therefore be interesting to quantify PlGF in endothelium-specific heterozygous-

FoxO1-deficient mice, a model that is already established.  The performance of ChIP on 

HUVEC transduced with FoxO1-ADA demonstrated that FOXO1 binds to the PlGF 

promoter.  This is in line with findings from another study showing that PlGF 

expression is up-regulated by FoxD1/BF-2, which is exclusively expressed by stromal 

cells in the embryonic renal cortex.  FoxD1/BF-2 binds PlGF promoter at a HNF-3β site 

(Zhang et al., 2003).  Similarly, the forkhead-related factor glial cell missing-1(GCM-1) 

was reported to regulate PlGF transcription in placental trophoblasts.  The over-

expression of GCM-1 prevented the inhibitory effects of hypoxia on PlGF expression 

(Chang et al., 2008).  These findings do not, however, rule out possible indirect 

activation of the PlGF promoter through interaction of FOXO1 with other transcription 

factors.  Data from this study showed that the ablation of Ets-2, that can act as a 
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transcriptional repressor, increased PlGF expression and the interaction between FOXO 

factors and members of the ETS family in the maintenance of endothelial homeostasis 

has been reported (De Val et al., 2008).  Another member of ETS family of 

transcription factors is Ets-related gene (Erg), was also shown to potentially modulate 

PlGF expression at an mRNA and protein level (PWH unpublished data).  The ideal 

approach to address the potential direct and in-direct interaction of FOXO1 with the 

PlGF promoter would be to construct an adenovirus encoding a constitutively-active 

FOXO1, but with a mutated DNA binding domain.  The alteration of PlGF expression 

in HUVEC transduced with this adenovirus (or lack of it) would clarify whether 

FOXO1 interacts indirectly with the PlGF promoter. 

 

FOXO1 activity and implications for obesity 

FOXO1 is highly expressed in both white and brown adipose tissue.  It is constitutively 

active and it is a major target of insulin regulation in this tissue (Nakae et al., 2003).  

FOXO1 is known to play an essential role in pre-adipocyte differentiation into mature 

adipocytes.  Pre-adipocytes express very low levels of FoxO1, but as they differentiate 

into mature adipocytes, FoxO1 expression increases significantly.  Pre-adipocytes over-

expressing constitutively-active FoxO1 do not differentiate (Nakae et al., 2003).  

Consistent with these findings, dominant-negative FoxO1 restored pre-adipocyte 

differentiation in insulin receptor knockout mice (Tseng et al., 2004).  Furthermore, the 

knockout of any components of the insulin signalling pathway impaired FoxO1-

mediated pre-adipocyte differentiation, and blocking of FoxO1 expulsion from the 

nucleus by Akt-1 knockdown in pre-adipocytes inhibited their differentiation in vitro 

(Nakae et al., 2003).  The combined weight of subcutaneous and gonadal adipose tissue 
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in PlGF-deficient mice on standard diet for 15 weeks was significantly lower compared 

with wild-type control mice, with comparable total body weight in both phenotypes 

(Lijnen et al., 2006).  In contrast, PlGF knockout mice on high fat diet had both lower 

total body weight, and less fat tissue compared with wild-type controls.  The authors 

attributed the effects seen in PlGF knockout mice to reduced angiogenesis.  The finding 

that PlGF is increased in obese ob/ob mice which are characterised by increased levels 

of constitutively-active FoxO1 hints at a potential role for PlGF in pre-adipocyte 

differentiation and adipose tissue development.  This hypothesis could be confirmed or 

refuted by quantification of PlGF released during the differentiation of pre-adipocytes 

in vitro.  This would confirm PlGF expression changes with adipocyte differentiation, 

but would not directly imply a role for PlGF in this process.  Modulation of FOXO1 

activity in pre-adipocytes in the presence and absence of PlGF would verify whether the 

loss of PlGF had an effect on differentiated adipocyte number or not.  However, to 

define the role of PlGF in disorders associated with metabolic syndrome and endothelial 

dysfunction, ob/ob mice could be crossed with PlGF-deficient mice.  The obese and 

PlGF-deficient mice would help to address the question of the PlGF role in pre-

adipocyte differentiation and adipose tissue development.  Mechanistically, PlGF acts 

as a chemoattractant of pro-inflammatory VEGFR-1-expressing cells, i.e. macrophages, 

to sites of inflammation.  In humans and rodents macrophages comprise over 40 % of 

total adipose tissue compared with 10% in lean controls (Weisberg et al., 2006).  Hence, 

the provocation of the obese but PlGF deficient phenotype with a high fat diet to induce 

atherosclerosis could be used to determine the role of PlGF in the formation of 

atherosclerotic plaques and their inflammatory cell content. 
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PlGF and oxidative stress 

Hyperglycaemia-induced oxidative stress has also been shown to contribute to 

endothelial dysfunction and induction of FoxO1 activity (Tanaka et al., 2009).  This 

provided an excellent rationale to further delineate the role of FOXO1 in PlGF 

regulation.  The marked augmentation of PlGF expression upon treatment of HUVEC 

with H2O2 and the significant inhibition of this stimulatory effect by IGF-I, suggested a 

role for FOXO1 in the induction of PlGF expression by oxidative stress.  It is, however, 

worth noting that only 50% inhibition by IGF-1 points to a possible role for other 

FOXO members expressed by endothelial cells i.e. FOXO3a, which acts as downstream 

target of JNK activated by oxidative stress (Brunet et al., 2004).  This could be 

confirmed by the treatment of HUVEC with H2O2 in the presence or absence of each of 

FOXO members separately or combined followed by PlGF quantification in cell 

supernatants by ELISA.  

 

FOXO1 and the regulation of VEGFR-1 expression 

The regulation of VEGFR-1 by over-expression of constitutively-active FoxO1, or 

siFOXO1 was reported in two unconfirmed gene array studies in endothelial cells (Daly 

et al., 2004; Potente et al., 2005).  Using gain- and loss-of-function approaches, I 

demonstrated that the silencing FOXO1 in cultured HUVEC significantly modulated 

the expression of both membrane-bound and soluble forms of VEGFR-1.  I also found 

that FOXO1 regulates VEGFR-1 by directly binding its promoter.  It is essential to 

determine under what circumstances VEGFR-1 is regulated by FOXO1 and whether its 

expression changes in ob/ob mice.  These data tie in very well with the discovery that 

the knockdown of PlGF or VEGFR-1 in endothelial cells suppresses Akt activity, and 
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that loss of PlGF induces the expression of its receptor, VEGFR-1, and vice versa, 

indicating the existence of an autocrine loop, at the centre of which Akt acts as sensor, 

thus, regulating the expression of both, the receptor and the ligand.  This is an important 

finding given the essential role of Akt in the regulation of endothelial cell biology in 

angiogenesis and homeostasis.   Evaluation of Akt activity in PlGF knockout mice, 

would be very interesting since the induction of angiogenesis in these mice was 

compromised compared to wild-type animals (Lijnen et al., 2006).  The functional 

significance of this loop requires further investigation in vivo. 

 

Final conclusion 

The discovery that in endothelial dysfunction, a phenomenon that precedes multiple 

metabolic and cardiovascular disorders, the blunting of PI3K/Akt/FOXO1 signalling 

pathways in EC induces the expression of the pro-inflammatory growth factor PlGF, 

could provide a target for therapies aimed at suppression of inflammation in these 

disorders.  In addition, the finding that FOXO1 induces VEGFR-1 expression promotes 

FOXO1 as an ideal target for manipulation in pathologies characterised by up-

regulation of VEGFR-1 and PlGF. 

.
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APPENDIX I – Chemical Reagents and Suppliers 

Ammonium acetate    Sigma, Poole, UK 

40% Acrylamide, 2% bis acrylamide  Bio-Rad, UK 

Agarose (molecular grade)   Sigma, Poole, UK 

Ammonium persulphate    Sigma, Poole, UK 

BCA protein assay    Bio-Rad, Hertfordshire, UK 

Bovine serum albumin    Sigma, Poole, UK 

Bromophenol blue    Sigma, Poole, UK 

Promega cDNA synthesis kit   Promega, Madison, USA 

Caesium chloride    Sigma, Poole, UK 

Collagenase type V    Sigma, Pool, UK  

ChIP kit (17-371)    Millipore, Watford, UK  

Chloroform     Sigma, Poole, UK 

DAB      DAKO, Cambrodgeshire, UK 

DMSO      Sigma, Poole, UK 

DTT      Pharmacia, Herts, UK 

ECL detection kit    Amersham, Buckinghamshire, UK 

EDTA      Sigma, Poole, UK 

Epidermal growth factor   ReliaTECH, Braunschweig, Germany 

ELISA substrate    R&D systems, Abington, UK 

Endothelial cell basal medium (EBM)  Lonza, Slough, UK 

Ethanol (99.7-100 %):    BDH, Poole, UK 

Ethidium bromide    Sigma, Poole, UK 

Ex-GEN-500     Fermentas,York, UK 
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Foetal bovine calf serum (F7524)  Gibco, Paisley, Scotland 

FOXO1 plasmid    Cambridge, MA, USA 

FOXO3a plasmid    Cambridge, MA, USA 

Gelatin      Sigma, Poole, UK 

Promega Gene reporter assay kit   Promega, Madison, USA 

Glycogen     Sigma, Poole, UK 

Glycerol     Sigma, Poole, UK 

Glycine      Sigma, Poole, UK 

HAEC      Lonza,Slough, UK 

Heparin      Sigma, Poole, UK 

HBSS      Sigma, Poole, UK 

HEK 293 Amaxa kit V    Lonza,Slough, UK 

HEPES      Sigma, Poole, UK 

HUVEC Amaxa Kit I     Lonza,Slough, UK 

Hydrogen peroxide:    Sigma, Poole, UK 

IGF-1      ReliaTECH, Braunschweig, Germany 

Isohelenin      Calbiochem, Nottingham, UK 

Isopropanol     Sigma, Poole, UK 

Kaleidoscope prestained standards:  Bio-Rad, Hertfordshire, UK 

Kodak, X-Omat AR film   Sigma, Poole, UK 

L-Glutamine     Sigma, Poole, UK 

Leupeptin     Sigma, Poole, UK 

LY294002      Calbiochem, Nottingham, UK 

Marvel dried milk    Sainsbury's, Birmingham, UK 
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M 199 medium      ICN, Basingstoke, UK 

MCDB 131     Invitrogen, Paisley, UK) 

Methanol     Sigma, Poole, UK 

PCR kit      Bioline, London, UK 

PCR loading dye    Sigma, Poole, UK 

Penicillin     Gibco, Paisley, Scotland 

Pepstatin A     Sigma, Poole, UK  

Phenol:chloroform    Sigma, Poole, UK 

Phenylmethylsulfonyl fluoride (PMSF)  Sigma, Poole, UK 

Phosphate buffered saline tablets (PBS)  Lonza, Slough, UK 

Phosphatase inhibitors    Sigma, Poole, UK 

PlGF duoset ELISA (human and mouse)  R&D systems, Abington, UK 

PlGF:VEGF antibody  (892984)  R&D systems, Abington, UK 

PlGF:VEGF Recombinant (892985)  R&D systems, Abington, UK   

Primers      Eurogentec, Southampton, UK 

Protease inhibitors    Sigma, Poole, UK 

qPCR kit     Quantace, London, UK 

RPMI 1640     Gibco, Paisley, Scotland 

RIPA buffer     Bio-Rad,Hertfordshire, UK 

RNA extraction kit    Norgen, Staffordshire, UK 

siRNA      Dharmacon, Loughborough, UK 

Sodium dodecyl sulphate:   Sigma, Poole, UK 

Streptomycin     Gibco, Paisley, Scotland 

TEMED     Bio-Rad, Hertfordshire, UK 
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Tris      Sigma, Poole, UK 

Trypsin (T3924)    Sigma, Poole, UK 

Tween-20     Sigma, Poole, UK 

VEGF-A     ReliaTECH, Braunschweig, Germany 

VEGF-A  duoset ELISA    R&D systems, Abington, UK 

VEGFR-2 (841245)    R&D systems, Abington, UK 

VEGFR-2 antibody (841243)   R&D systems, Abington, UK  

VEGFR-2 biotinylated antibody (841244) R&D systems, Abington, UK  

 

All other cell culture reagents and chemicals were obtained from Sigma, Poole, UK. 
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APPENDIX II – Antibodies and Suppliers 

Antibody 
Species raised 

in 

Dilution 

for WB 
Code Source 

-actin 
mouse 1:20,000 A-1978 Cell Signaling Tech, 

Herts, UK 

Akt 
rabbit 1:1000 9272 Cell Signaling Tech, 

Herts, UK 

Akt (phospho ser-473) 
rabbit 1:500 9271 Cell Signaling Tech, 

Herts, UK 

PTEN 
mouse 1:200 9552 

NEB, Ipswich, UK 

VEGFR-1 (flt-11) 
mouse 1:100 V4262 

Sigma, Poole, UK 

Anti-HA 
mouse 1:1000 11583816001 Roche, Hertfordshire, 

UK 

FOXO1 (Phospho 

ser256) 

rabbit 1:1000 9461 Cell Signaling Tech, 

Herts, UK 

FOXO1 
rabbit 1:1000 9462 Cell Signaling Tech, 

Herts, UK 

Hexon 
rabbit 1:1000 ab8249 Abcam,Cambridge, 

UK 

 

 

SECONDARY ANTIBODY CONJUGATES 

HRP IgG conjugates obtained from Vector Labs and used at 1:5000 for WB. 
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APPENDIX III – Equipment and Suppliers 

Amaxa electroporator    Lonza, Slough, UK 

Bench top microcentrifuge:   Phillip Harris, Staffs, UK 

Cell culture pipettes:     Fahrenheit Lab Supplies, UK 

Centrifuge (Sigma 2K 15)   Sigma, Poole, UK 

Centrifuge (80 K ultrcentrifuge)   Beckman Coulter, High Wycombe, UK 

Class II cell culture cabinets:   Triple Red, Oxfordshire, UK 

Conical tubes (15 ml):    Gibco BRL, Paisley, UK 

Coverglass:     Surgipath, Staffs, UK  

Cryovials:     Gibco BRL, Paisley, UK 

Diagenode Bioruptor Sonicator    Wolf laboratories Ltd, York, UK 

Disposable Scalpels:    Appleton Woods, Birmingham, UK 

microfuge tubes     Starstedt, Leicester UK 

Falcon tubes (15 and 50 ml):    Falcon/BDH, Poole, UK 

Filters (0.22 mm):    Millipore, Herts, UK 

Filter units (swinnex 47 and 22):   Millipore, Herts, UK  

Flasks (25 and 75 cm):    Falcon/BDH, Poole, UK 

Gilson pipettes:     Anachem, Buckinghamshire, UK 

Gilson tips (blue):    Starstedt, Leicester, UK 

Gilson tips (yellow):    Starstedt, Leicester, UK 
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Glass Pasteur pipettes 9':   Fisher Scientific, Loughborough, UK 

Glassware:     Phillip Harris, Staffs, UK 

Haemocytometer    Hawksley, Sussex, UK 

Heparin-Sepharose column (HiTrap):  Amersham Bioscience, UK 

Hybond ECL nitrocellulose membrane : Amersham, Buckinghamshire, UK 

Hybridisation oven/shaker (SI 20H):  Stuart Scientific, UK 

Horizontal gel electrophoresis system:  Gibco, Paisley, Scotland 

Luminometer     Berthold, Staffordshire, UK 

Microscope (Nikon, TS-100)   Nikon, Surry, UK 

Mini sub DNA gel:    Bio-Rad, Hemel Hempstead, UK 

Mr Frosty     Nalgene, Rochester, NY, USA 

Multiwell Plates (12 and 24-wells):  Falcon/BDH, Poole, UK 

Omnigene thermal cycler:   Hybaid, Middlesex, UK 

PCR thermocycler    Sunquest, Arizona, USA 

pH meter:      Corning costar, High Wycombe, UK 

Pipettes (5ml and 10 ml):   Falcon/BDH, Poole, UK 

Precellys Tissue Homogeniser    VWR, Leicestershire, UK 

Polytron Homogeniser PT1200:   Phillip Harris, Staffs, UK 

Rotary shaker (R100):    Appleton Woods, Birminghamn, UK 

Rotor-gene 6000    Corbett, NSW, Australia  
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Shaking orbital incubator:    Appleton Woods, Birminghamn, UK 

Shaking water bath:    Grant Instruments, Cambridge, UK 

Spectrophotometer    Amersham Biosciences, Amersham, UK 

Syringes (1ml - 50 ml):    Appleton Woods, Birmingham, UK 

Transfer-blot electrophoresis cell:  Bio-Rad, Hemel Hempstead, UK 

Ultracentrifuge:     Phillip Harris, Staffs, UK 

Universals (30 ml):    Phillip Harris, Poole, UK 

U.V light system:    Appleton Woods, Birmingham, UK 

Vertical gel electrophoresis unit:   Bio-Rad, Hemel Hempstead, UK 

Water-Jacketed Incubator:   Sanyo-Gallenkamp, Leicester, UK 

Weight Balance:    Sartorius Limited, Surrey, UK 

Whatman 3 MM paper:    Whatman, Kent, UK 

Xograph developer     Geneflow, Staffordshire, UK 
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APPENDIX IV – Solutions and Buffers 

PBS (10X) (pH7.3)   1.440 g/L KH
2
PO

4
  

     9.0000 g/L NaCl 

     7.950 g/L  Na
2
HPO

4 
 

 

TBS (pH 7.6) 

 

20 mM Tris 

73.1 mM NaCl 

 

TBS-T (pH7.6) 

 

20 mM Tris 

73.1 mM NaCl 

0.1% (v/v) Tween 

 

SDS-PAGE Running Buffer (pH 8.3) 

 

50 mM Tris 

384 mM Glycine 

3.47 mM SDS 

 

Gel to Membrane Transfer Buffer (pH 

8.3) 

 

39 mM Glycine 

48 mM Tris 

1.3 mM SDS 

20 % (v/v) Methanol 

 

Blocking Buffer 

 

TBS pH 7.6 

8% (w/v) Fat-free milk 

 

Antibody Diluent 

 

TBS pH 7.6 

0.5% (w/v) BSA 

 

Reducing Sample Buffer 

 

125 mM Tris pH 6.8 

20% (v/v) Glycerol 

4% (w/v) SDS 

200 mM DTT 
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1:10,000 (w/v) Bromophenol Blue 

 

Non - Reducing Sample Buffer 

 

125 mM Tris pH 6.8 

20% (v/v) Glycerol 

4% (w/v) SDS 

1:10,000 (w/v) Bromophenol Blue 

 

Stripping Buffer 

 

0.2 M Na OH  

 

RIPA Cell Lysis Buffer 

 

 

 

 

 

 

 

 

 

 

50 mM Tris pH 7.4 

1 % IGEPAL 

0.25 % Sodium deoxycholate 

150 mM NaCl 

1 mM EGTA 

1 mM NaF, Na3VO4 and PMSF 

1 μg/ml Apoprotin, Leupeptin and Pepstatin 

(code: 89900 thermo scientific, Rockford,  USA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices 

221 
 

  

GEL RECIPES 

 

Running gel (1.5 mm spacer) 

 

For 1 mini-gel 6 % 8 % 10 % 12 % 15 % 

dH2O (ml) 5.45 4.78 4.12 3.45 2.45 

1.5 M Tris pH 8.8 (ml) 2.5 2.5 2.5 2.5 2.5 

Acrylamide (ml) 2 2.67 3.33 4 5 

10 % APS (l) 50 50 50 50 50 

TEMED (l) 5 5 5 5 5 

Total (ml) 10 10 10 10 10 

 

 

 

Stacking gel (1.5 mm spacer) 

 

For 1 mini-gel 1x 

dH2O (ml) 3.07 

1.5 M Tris pH 8.8 (ml) 1.25 

Acrylamide (ml) 0.65 

10 % APS (l) 25 

TEMED (l) 5 

Total (ml) 5 

 

 
ELISA reagent diluents    1% BSA in PBS, pH 7.2 - 7.4 

ELISA washing buffer   0.05% Tween 20 in PBS, pH 7.2 - 7.4 

ELISA Substrate Solution    1:1 mixture of Colour Reagent A (H2O2)  

And Colour Reagent B (Tetramethylbenzidine) 

 

ELISA stop solution    2 N H2SO4 
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Dialysis buffer   (5liters)(pH 8.0) 10 mM Tris base 

     2 mM MgCl2 

     4% (w/v) sucrose  

 

 

 

Tris-Borate-EDTA (pH 8.0)  89 mM Tris Base  

     89 mM Boric Acid 

     20 mM EDTA 
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