
Decentralised Soft-Security in
Distributed Systems

Paul David Kiddie

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

Electronic, Electrical and Computer Engineering
College of Engineering and Physical Sciences

The University of Birmingham
February 2011

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

ABSTRACT

Existing approaches to intrusion detection in imperfect wireless environments employ lo-
cal monitoring, but are limited by their failure to reason about the imprecise monitoring
within a radio environment that arises from unidirectional links and collisions. This com-
pounds the challenge of detecting subtle behaviour or adds to uncertainty in the detection
strategies employed.

A simulation platform was developed, based on the Jist/SWANS environment, adopt-
ing a robust methodology that employed Monte-Carlo sampling in order to evaluate in-
trusion detection systems (IDS). A framework for simulating adversaries was developed,
which enabled wormholes, black holes, selfishness, flooding and data modification to be
simulated as well as a random distribution thereof.

A game theoretic inspired IDS, sIDS, was developed, which applied reasoning between
the detection and response components of a typical IDS, to apply more appropriate local
responses. The implementation of sIDS is presented within the context of a generic IDS
framework for MANET. Results showed a 5-15% reduction in false response rate compared
to a baseline IDS over a number of attacking scenarios.

sIDS was extended with immune system inspired features, namely a response over
multiple timescales, as employed by the innate and adaptive components of the immune
system, and the recruitment of neighbouring agents to participate in a co-ordinated re-
sponse to an intrusion. Results showed a true response rate of 95-100% for all simulated
attack scenarios. For random misbehaviour and assisted black hole scenarios, PDR gains
of up to 30% and 15% were observed respectively compared to the pure game theoretic
approach, tracking the omniscient network performance in these scenarios.

In all, this study has shown that applying game theoretic reasoning to existing detection
methods results in better discrimination of benign nodes from adversaries, which can be
used to bias network operation towards the benign nodes. When fused with immune system
inspired features, the resulting IDS maintained this discrimination whilst substantially
reducing attack efficacy.

ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisor, Dr. Costas Constantinou, for all the sup-
port and advice he has given over the course of the PhD, the many thought-provoking
discussions we’ve had and for reading through the thesis drafts.

I would also like to thank all the past and present members of the Distributed Systems
and Networks Laboratory, especially David, Keita, Amalia, Hani, Debra and Yuri for those
beer breaks at Staff House!

Then to my family: Mum and Dad, thanks for encouraging my passion in computing
as a child and providing continuous love and encouragement, especially throughout this
process. I wouldn’t have made it this far without you. To Karl, Neil, Mark and Tara,
thanks for always being there for me and taking an interest in my work, but also for
taking my mind off it when I needed a recharge, whether it was the quick chat on the
phone, or the quick online game. Thanks to Gwyn, John, Val, Helen, Andy, Jayne, Clive,
Glyn, Pauline and Nan – you each played a part in inspiring me to get this far, and your
continuous emotional support has been invaluable.

Special thanks go out to Sarah, James, Mark, Deborah and Dan, for being there when
I needed my mind taken off the pressures of the PhD and thesis-writing.

Finally, I would like to thank my partner Rhiannon for supporting me at every step
and for that I am eternally grateful. She also took on the (not insignificant) task of proof
reading numerous drafts of my thesis.

Thanks to the EPSRC, whom this research was funded by, and to the team at the
Centre for Learning, Innovation and Collaboration for providing employment in some of
their exciting projects during the writing up process.

CONTENTS

1 Introduction 1
1.1 The MANET security problem . 2
1.2 Research Questions . 2
1.3 Contributions . 3
1.4 Organisation of thesis . 4

2 Literature Review 5
2.1 Introduction . 5
2.2 Background . 5

2.2.1 Mobile Ad-Hoc networks . 5
2.2.2 Ad-hoc routing protocols . 6
2.2.3 Reactive ad-hoc routing protocols 6
2.2.4 Ad-hoc On Demand Distance Vector (AODV) 8

2.2.4.1 Route discovery procedure 8
2.2.4.2 Route maintenance procedure 9

2.2.5 MANET security challenges . 9
2.2.6 Network Intrusion Detection Systems (IDS) 11

2.2.6.1 Auditing . 11
2.2.6.2 Analysis . 12
2.2.6.3 Response . 12

2.3 Current approaches to providing security assurances in MANET 13
2.3.1 Secure Routing . 13
2.3.2 Incentive Schemes . 14
2.3.3 Watchdog/Pathrater . 15
2.3.4 Finite State Machines (FSMs) . 15

2.4 Artificial Immune Systems . 16
2.4.1 Background . 16
2.4.2 AIS models . 18
2.4.3 AIS applied to ad-hoc networks 19
2.4.4 Discussion . 20

2.5 Game Theory . 20

2.5.1 Background . 20
2.5.2 Game Types . 22
2.5.3 Game Theory applied to ad-hoc networks 23
2.5.4 Discussion . 25

2.6 Summary . 25

3 Simulation methodology 27
3.1 Introduction . 27
3.2 Simulation environment . 27
3.3 Metrics . 28

3.3.1 Goodput . 29
3.3.2 Packet Delivery Ratio . 29
3.3.3 Average end-to-end delay . 29
3.3.4 Control Overheads . 29
3.3.5 Response rate . 30
3.3.6 Average recovery time . 30

3.4 Monte-Carlo framework . 30
3.5 Validating Jist/SWANS . 33

3.5.1 Methodology . 33
3.6 Summary . 37

4 Development of Adversary Models 38
4.1 Introduction . 38

4.1.1 Threats to MANET routing . 39
4.1.1.1 Selfishness . 40
4.1.1.2 Black hole . 42
4.1.1.3 Grey hole . 42
4.1.1.4 Wormholes . 42
4.1.1.5 Flooding Attack . 44

4.2 Development of adversary models for simulation 44
4.2.1 Selfishness . 46
4.2.2 Route invasion . 46

4.2.2.1 Route freshness . 47
4.2.2.2 Passive route invasion 47
4.2.2.3 Active route invasion 51
4.2.2.4 Hybrid route invasion 53
4.2.2.5 The efficacy of route invasion attacks in MANET . . . 55

4.2.3 Black hole attack . 56
4.2.4 Grey hole attack . 57

4.2.5 Flooding Attack . 57
4.2.6 Wormhole Attack . 58

4.3 Conclusions . 58

5 Common Services and Detection Strategies for a MANET Intrusion De-
tection System 60
5.1 Introduction . 60
5.2 Common Services . 60

5.2.1 Neighbour table . 61
5.2.2 MAC-IP Pairs . 61

5.3 Audit source . 61
5.3.1 Generating an audit source in Jist/SWANS 62

5.4 Detectors . 62
5.4.1 Dropped packets detection . 62
5.4.2 Modified packets detection . 68
5.4.3 Route Request flooding detection 68
5.4.4 Dropped Route Requests detection 68
5.4.5 Route invasion detection . 71

5.4.5.1 Fake route reply as destination 71
5.4.5.2 Unsolicited route reply 71
5.4.5.3 Additional notes on route invasion 73

5.5 Computing metrics . 73
5.5.1 Considerations when calculating metrics 76

5.5.1.1 Imperfect detectors . 76
5.5.1.2 No requisite audit data 77

5.6 Responses . 77
5.7 Using imperfect detection mechanisms: A simulation study 78

5.7.1 Method . 78
5.7.1.1 IDS architecture . 78
5.7.1.2 Scenario . 79
5.7.1.3 Simulation configuration 80

5.7.2 Results . 81
5.8 Summary . 82

6 sIDS and Game Theoretic Reasoning 84
6.1 Introduction . 84

6.1.1 Desirable properties for a MANET IDS 84
6.2 Metric performance . 85
6.3 Design of sIDS . 88

6.4 Game construction . 91
6.4.1 Game model . 91
6.4.2 Construction of utility functions 92

6.4.2.1 Finalisation of utility functions 94
6.4.3 Game bi-matrix . 94

6.5 Solving the game . 96
6.5.1 The Nash Equilibrium . 96
6.5.2 Methods to find Nash Equilibria 97
6.5.3 Generating Nash Equilibria using the Lemke-Howson algorithm . . . 98

6.5.3.1 Pre-processing . 98
6.5.3.2 Initialising tableaux . 98
6.5.3.3 Pivoting . 99
6.5.3.4 Nash Equilibria . 100
6.5.3.5 Validation of Lemke-Howson algorithm 100

6.5.4 Lemke-Howson algorithm applied to the game 100
6.5.5 Responses . 102

6.6 Simulation configuration . 102
6.6.1 Network Model . 103

6.6.1.1 Game Theoretic IDS nodes 108
6.6.2 Simulation parameters . 109

6.6.2.1 Radio environment . 109
6.6.2.2 Network environment 109
6.6.2.3 Mobility . 109
6.6.2.4 Flows . 109
6.6.2.5 Topologies . 110
6.6.2.6 Adversary placement 110
6.6.2.7 Adversary Misbehaviour 111

6.6.3 Scenarios . 111
6.7 Results . 111

6.7.1 Flooding . 111
6.7.1.1 Discussion . 115

6.7.2 Unassisted Black hole . 117
6.7.2.1 Discussion . 121

6.7.3 Black hole assisted with passive route invasion 122
6.7.3.1 Discussion . 126

6.7.4 Wormhole . 127
6.7.4.1 Discussion . 128

6.7.5 Random misbehaviour . 132

6.7.5.1 Discussion . 135
6.8 Summary . 135

7 sIDS+AIS: An immune inspired approach to detection and response 138
7.1 Introduction . 138
7.2 From the Human Immune System to MANET IDS 138

7.2.1 From innate TLRs to perfect detectors 139
7.2.2 Adaptive response and imperfect detectors 139

7.3 An implementation of an AIS component for sIDS. 140
7.3.1 Reporting and aggregating intrusion data 140

7.3.1.1 Disseminating reports 140
7.3.1.2 Data aggregation . 142
7.3.1.3 Managing active responses 142

7.3.2 The innate component . 142
7.3.2.1 Local response . 142
7.3.2.2 Extended response . 143

7.3.3 The adaptive component . 145
7.4 Results . 147

7.4.1 Flooding . 149
7.4.1.1 Discussion . 151

7.4.2 Unassisted Black hole . 152
7.4.2.1 Discussion . 154

7.4.3 Black hole assisted with passive route invasion 154
7.4.3.1 Discussion . 156

7.4.4 Wormhole . 157
7.4.4.1 Discussion . 159

7.4.5 Random misbehaviour . 159
7.4.5.1 Discussion . 161

7.5 Summary . 161

8 Conclusions 163
8.1 Summary and Research Contributions . 163
8.2 Future Work . 166

A Common Parameters used for Jist/SWANS simulations 169

B Fixes to Jist/SWANS 171

C Extensions to Jist/SWANS 176
C.1 Trace file generation . 176

C.2 Simulation user interface . 176
C.3 Driver base class . 178
C.4 Jist/SWANS kernel . 178
C.5 Test framework . 178
C.6 Source code changes . 180

D Simulation source code 182

E Using the unit test framework 184

F Validating Jist/SWANS 185
F.1 Validation I . 185
F.2 Validation II . 189

G Configuration of adversaries 194

H Testing the Lemke-Howson algorithm implementation 198

I Publications 201

References 205

LIST OF FIGURES

2.1 A collection of nodes forming a Mobile Ad-Hoc Network (MANET). The
dashed lines show connectivity to immediate neighbours, and the arrows
show the selected path of data flow between source S and destination D. . 6

2.2 The dissemination of a route request from S (black arrows). Reverse route
pointers (in green) are set up as the route request is broadcast, used when
forwarding a route reply from D. 8

2.3 Route maintenance procedure. Destination D has moved out of range of
node 6 and has become a neighbour of nodes 4 and 5. 6 invokes local repair
and discovers route to D via 5, and data takes the new path highlighted. . 9

2.4 Interaction between modules of a network IDS 11
2.5 Defence-in-depth for MANET. 14
2.6 The layers of protection in the vertebrate immune system, illustrating the

actors and timescales associated with each layer. Epithelial surfaces provide
the first line of defence. If breached, the innate immune system is invoked
immediately, whilst the adaptive immune response takes the order of a few
days for effector cells to mature. 17

3.1 a) OSI Model, b) corresponding SWANS package structure, c) Example
node definition . 28

3.2 Monte-Carlo simulation runner acts as an intermediary between driver, post
processing script and SWANS runtime. 32

3.3 Flow diagram for Monte-Carlo simulation runner 32
3.4 Packet delivery ratio and end to end delay achieved in pkiddie.driver.Ns2-

ValidationSimple.java from the use of the original and customised
AODV routers in Jist/SWANS, and the Ns2 AODV router, set to use HELLO
messages. 36

3.5 Packet delivery ratio and end-to-end delay achieved in scaled up scenario by
Jist/SWANS with versions of RouteAodvMultiInterface and Ns2 AODV
router. 36

4.1 A topology with two established flows between S and D and S2 and D2. S
would detect 1 to be dropping packets if S was analysing promiscuous no-
tifications using a Watchdog technique. 1 is simply waiting for the medium
to be free to send data to D. 40

4.2 A selfish node (M) that does not forward route requests during route dis-
covery. 1. S sends a route request for D. 2. M explicitly drops the RREQ
whilst the other neighbours of S forward the route request to their neigh-
bours. 3. The route request arrives at D. None of the reverse route entries
point to adversary M. 4. The path the route advertisement from D takes.
M has excluded itself from servicing a possible route. 41

4.3 A black hole at M which attracts data flows from S1 destined to D1 and S2
to D2 respectively, and then drops the data. 1. S1 sends a route request
for D1. M does not have a route to D1 but immediately sends a route
advertisement to D1. 2. S1 uses M as the next hop to D1. Any data is
dropped. 3. Another source, S2, sends a route request for D2. Again, the
adversary responds immediately. 4. Two data flows have been attracted
toward M. 43

4.4 A wormhole attack in progress, with the tunnel between M1 and M2, who
are colluding adversaries. 1. S broadcasts a route request to D. 2. M1
broadcasts the route request over all interfaces, including the high through-
put tunnel between itself and M2. 3. M2 rebroadcasts the route request
as normal, which reaches D before the third broadcast by the honest nodes
has happened. 4. D replies as normal to the route request, which takes the
route over the tunnel back to S. Any subsequent route request packets by
the honest nodes are dropped by D. 45

4.5 M invades route between S and D passively by creating and sending a fake
route advertisement to S. 1. S broadcasts a route request for destination D.
2. M receives the route request and replies with a fake route advertisement.
3. Since M is closer to S than D is to S, the fake route advertisement from
M is selected initially. This may be temporary based upon how attractive
the real route advertisement from D is. M is now in a position to conduct
further attacks as part of the flow. 49

4.6 An existing data flow between S and D, which M wishes to invade through
the use of active route invasion. 1. Adversary M caches nodes 1 and 2, and
S and D as flow end-points by eavesdropping on relevant routing and data
packets (dotted lines). 2. M sends a faked route advertisement about D to
1, and 1 updates the next hop to D accordingly. 3. M redirects the data
flow between S and D, using this position to launch further attacks from. . 52

4.7 An existing data flow between S and D. 1. The adversary eavesdrops and
caches the IP addresses/MAC addresses of intermediate nodes responsible
for forwarding the flow data. 2. The adversary, having detected two inter-
mediate nodes, creates a RERR from (2) about the route to D, and sends
it to 1. 3. Node 1 queues packets from S whilst attempting to find a new
route to D. M can reply passively with a forged route reply attack in order
to invade the flow. 4. M has successfully redirected the flow through itself,
through a combination of active and passive attacks. 54

4.8 Packet Delivery Ratio achieved in simulations with varying numbers of ad-
versaries employing one of a number of route invasion attacks. 56

5.1 a) Node 5 directly monitoring flow S1->D. b) Node 5 indirectly monitoring
flow S2->D exclusively through promiscuous notifications. 63

5.2 A collision at node 2, which is undetectable through promiscuous monitoring
alone. 63

5.3 Simplified flow diagram showing audit data (complete with context) being
sent to IDS. 64

5.4 Analyser containing a set of detectors, operating on each audit data sample
received by the IDS, and producing a set of notifications managed by a
notification vector. 65

5.5 Time window maintained by the dropped packet detector, showing cached
packet entries and promiscuous notifications received. τn represents the
duration between packet n being sent and it being received promiscuously
by the monitoring node as a result of the neighbour forwarding it onwards. 66

5.6 Detection of dropped packets from M by S, represented as a state transition
diagram. 66

5.7 Detection of dropped route requests from M by S, represented as a state
transition diagram. Assume that M is sending data, hence S knows its
current neighbours are 1, 4 and M. 69

5.8 Detection of a faked route reply “as destination” from M by 1, represented
as a flow diagram. In this case, 1 can safely drop the route advertisement
from M, and send the true route advertisement (in green) to S. 72

5.9 Detection of an unsolicited route reply from M by 1 using sIDS, represented
as a flow diagram. In this case, 1 can safely drop the route advertisement
from M, using the existing route with nextHop = 2. 73

5.10 A routing loop caused by a route invasion attack. 1. and 2. A route inva-
sion attack by M, who fabricates an advertisement with a high destination
sequence number, destSeqNum=50. 3. Node 7, discovering that 8 has
roamed out of range, initiates local repair for a new route to destination
D. 4. Both D and S reply, but the reply from S has a larger destination
sequence number, so is chosen. 5. This results in the routing loop shown. . 74

5.11 PDRs achieved over various transmission ranges (determined by Transmission-

Radius driver) and propagation models. 80
5.12 Number of responses in fading and ideal environment using a detector with

perfect/imperfect signalling . 82

6.1 Detection rates of detection mechanisms at varying percentages of malicious
nodes when applied to scenario detailed in Table 6.1 87

6.2 False positive rates of detection mechanisms at varying percentages of ma-
licious nodes when applied to scenario detailed in Table 6.1 87

6.3 Phase-space of desired sIDS operation, where mi is the calculated value
from the set of imperfect metrics and mp is the calculated value from the
set of perfect metrics for an observed neighbour. p is the probability of
processing the packet. If p→ 0, sIDS responds whilst if p→ 1, sIDS pro-
cesses the neighbour’s packets. Constants αr and β control the thresholds
at which respond or process is selected respectively. 89

6.4 Flow diagram of sIDS in the context of a message being received by the
network layer. Strategy profiles are computed each interval for each known
neighbour, and are used to determine whether to process/respond to the
current message. 90

6.5 Distribution of p for various mi and mp, where αr = 0.2, β = 0.7 and
γ = 0.5. Notice that p < 0 for mp < αr and p > 1 for mp,mi > β

produces appropriate pure strategy solutions. 95
6.6 Distribution of p for various mi and mp, where αr = 0.2, β = 0.7 and

γ = 0.6. Notice that p < 0 for mp < αr and p > 1 for mp,mi > β,
producing appropriate pure strategy solutions in these regions. 101

6.7 Packet Delivery Ratio (PDR) achieved in simulations with increasing ratio
of ’black hole’ adversaries vs. defenceless, omniscient and threshold IDS
nodes with different window size k. 106

6.8 Response rate achieved in simulations with increasing ratio of ’black hole’
adversaries vs. threshold IDS nodes with varying window size k. 108

6.9 PDR achieved in flooding scenario with increasing numbers of adversaries . 114

6.10 Average end-to-end delay achieved in flooding scenario with increasing num-
bers of adversaries . 115

6.11 Control overheads in flooding scenario with an increasing numbers of ad-
versaries . 116

6.12 True response rate in flooding scenario achieved by baseline and game the-
oretic IDS with increasing numbers of adversaries 116

6.13 Recovery times and minimum goodputs achieved by defenceless, baseline
and game theoretic networks with moderate misbehaviour (30% adversaries)
in flooding scenario . 117

6.14 PDR and dropped packet ratio achieved in unassisted black hole scenario
with an increasing number of adversaries 119

6.15 Average end-to-end (ETE) delay achieved in unassisted black hole scenario
with an increasing number of adversaries 120

6.16 Control overhead in unassisted black hole scenario with an increasing num-
ber of adversaries . 120

6.17 True response rate achieved in unassisted black hole scenario with an in-
creasing number of adversaries . 121

6.18 Recovery times and minimum goodputs achieved by defenceless, baseline
and game theoretic networks with moderate misbehaviour (30% adversaries)
in unassisted black hole scenario. 122

6.19 PDR and dropped packet ratio achieved in assisted black hole scenario with
an increasing number of adversaries . 124

6.20 Average end-to-end (ETE) delay achieved in assisted black hole scenario
with an increasing number of adversaries 125

6.21 Control overhead in assisted black hole scenario with an increasing number
of adversaries . 125

6.22 True response rate achieved in assisted black hole scenario with an increasing
number of adversaries . 126

6.23 Recovery times and minimum goodputs achieved by defenceless, baseline
and game theoretic networks with moderate misbehaviour (30% adversaries)
in assisted black hole scenario . 127

6.24 PDR and intercepted packet ratio achieved in wormhole scenario with an
increasing number of adversaries . 129

6.25 Average end-to-end (ETE) delay achieved in wormhole scenario with an
increasing number of adversaries . 130

6.26 Control overhead in wormhole scenario with an increasing number of adver-
saries . 130

6.27 True response rate achieved in wormhole scenario with an increasing number
of adversaries . 131

6.28 Recovery times and minimum intercepted bytes achieved by defenceless,
baseline and game theoretic networks with moderate misbehaviour (30%
adversaries) in wormhole scenario . 131

6.29 PDR achieved in random misbehaviour scenario with an increasing number
of adversaries . 133

6.30 Average end-to-end (ETE) delay achieved in random misbehaviour scenario
with an increasing number of adversaries 134

6.31 Control overhead in random scenario with an increasing number of adversaries 134
6.32 True response rate in random scenario with an increasing number of adversaries 135

7.1 General structure of report IP packet . 141
7.2 Flow diagram of innate response when notification is generated by one or

more detectors. If the notification is from a perfect detector the innate
component responds locally and then initiates an extended response. 143

7.3 Report procedure for innate component of AIS. 1. An adversary misbehaves
by sending fake route replies, which is detected by most, but not all of
its immediate neighbours. 2. After a random jitter period, one of the
immediate neighbours, node 2, initiates the innate reporting procedure by
constructing and sending a report containing the new intrusion state to its
immediate neighbours. 3. Neighbours forward reports and if the receiver
is a neighbour of the adversary it sends its own report out (indicated by
the double arrows). This process continues. 4. After a timeout, nodes
determine a consensus, in this case, isolating M. 144

7.4 Structure of innate report . 145
7.5 Flow diagram of adaptive response, invoked when any suspect has a low mi. 147
7.7 Structure of adaptive report . 147
7.6 Report procedure for adaptive component of AIS. 1. An adversary mis-

behaves by dropping packets. 2. After a random jitter period, one of the
immediate neighbours, node 2, initiates the reporting procedure by forward-
ing a report containing its evaluation of the suspect’s mi to its neighbours.
Nodes forward the reports on and if they have recent experience they trans-
mit a report with their evaluation of mi (indicated by double arrows). 3.
After a timeout, nodes apply a threshold to the reported mi’s, and find the
consensus - in this case to respond to M. The empty set R now contains
M 4. Nodes find an alternative route around M. Note that neighbours with
no experience of M also contribute in the extended response against M. . . 148

7.8 Results from flooding scenario with increasing numbers of adversaries . . . 150
7.9 Results from unassisted black hole scenario with increasing numbers of ad-

versaries . 153
7.10 Recovery times and minimum goodputs achieved in unassisted black hole

scenario with 30% adversaries over range of node models 154
7.11 Results from assisted black hole scenario with increasing numbers of adver-

saries . 155
7.12 Recovery times and minimum goodputs achieved by defenceless, baseline

and game theoretic networks with moderate misbehaviour (30% adversaries)
in assisted black hole scenario . 156

7.13 Results from wormhole scenario with increasing numbers of adversaries . . . 158
7.14 Recovery times and minimum intercepted bytes achieved by defenceless,

baseline and game theoretic networks with moderate misbehaviour (30%
adversaries) in wormhole scenario . 159

7.15 Results from random scenario with increasing numbers of adversaries 160

C.2 a) Node protocol stack in simulation user interface, b) AppUdp application
layer panel, c) Routing layer panel . 177

C.1 Simulation GUI, showing SWANS event stream. 177
C.3 a) Jist/SWANS v1.0.6 class hierarchy; Jist rewriter specifically prohibits

derived classes. b) After modification of Jist/SWANS kernel, and extraction
of basic functionality into RouteAodvBase. Functionality in RouteAodv is
overridden in RouteAodvAdversary only where necessary to implement
misbehaviour. 179

F.1 PDRs achieved in Validation I scenario, using RouteAodvMultiInterface

(v2). 189
F.2 Average end-to-end delay achieved in Validation I scenario using RouteAodv-

MultiInterface (v2). 192
F.3 PDR and end-to-end delay achieved in Validation II using Rayleigh fading

and Tworay pathloss within Jist/SWANS and original study for comparison. 193

LIST OF TABLES

2.1 Excerpt of route table for S, showing a route entry to D via next hop 1 . . 9
2.2 A number of attacks MANET are susceptible to, with protocol layer they

target and the original author who investigated it. 10
2.3 An illustration of a normal form game: The Prisoners Dilemma. 20

3.1 Variable types supported by Runner. 31
3.2 Runtime environment for Jist/SWANS simulator 33
3.3 Runtime environment for Ns2 simulator 34
3.5 Default value of AODV constants in Jist/SWANS and Ns2 35
3.6 Jist/SWANS simulation parameters overridden in scaled up scenario and

implemented in pkiddie.driver.Ns2ValidationScaledUp.java. 36

4.1 Route invasion strategies to use depending on the state of the route. 55
4.2 A routing table entry for wormhole adversaries. The common fields of an

entry are greyed out, whilst the interface_id field specific to multiple
interface aware routing protocols (a requirement for wormhole adversaries)
is emphasised. 58

5.1 IDS parameters used in simulation study 79
5.2 Transmission radius’ chosen for different propagation environments, and

field length required to keep average route length constant. 80
5.2 Basic environment overridden to define ’Rayleigh fading and Two Ray Pathloss’

simulation. 81
5.3 Basic environment overridden to define ’No Fading and Freespace Pathloss’

simulation . 81
5.5 Average number of false alerts generated by detector network-wide 82

6.1 Scenarios and detector configuration used to evaluate the performance of
individual detectors. 86

6.2 The bi-matrix game played by the IDS . 91
6.3 Game in domain mp < αr . 93
6.4 Game in domain mp,mi > β . 93
6.5 Game in domain αr ≥ mp ≤ β, mi < β 93

6.6 Game played by nodes equipped with sIDS. 96
6.7 Sample game where mi = 0.7, mp = 0.5, αr = 0.2, β = 0.7 and γ = 0.5. . 98
6.8 Payoff matrices A and B used in tableaux construction 98
6.9 Jist/SWANS simulated adversary node protocol stack 104
6.10 Jist/SWANS simulated defenceless node protocol stack 104
6.11 Intrusion Detection System implementation used in each scenario. 105
6.12 Jist/SWANS simulated IDS node protocol stack 107
6.13 Effective window size in samples (k) and corresponding value of α used in

simulations . 107
6.14 Threshold IDS parameters . 108
6.15 Game Theoretic IDS parameters . 109
6.16 Flow properties for use in AppUdp traffic generator 110
6.17 Misbehaviour defaults used in simulations. 112
6.18 Attacking scenarios simulated using each node model 112
6.19 Flooding parameters. 113
6.20 Set of misbehaviours, their relative weightings and duration 132

7.1 AIS IDS parameters . 149

A.1 Simulation parameters used common to all Jist/SWANS simulations 169

F.1 Properties of AppUdp traffic generator in Validation I scenario 185
F.2 Simulation parameters used in Validation I scenario 186
F.3 Simulation parameters used in Validation II scenario 189
F.4 properties of flows in this scenario . 191

G.1 Methods on RouteAodvMultiInterfaceAdversary to control the adver-
sary during simulation. 194

G.3 Possible values of passiveRouteInvasion field used in RouteAodvMulti-

InterfaceAdversary router. 196
G.4 Possible values of activeRouteInvasion field used in RouteAodvMulti-

InterfaceAdversary router. 197

ABBREVIATIONS

AIS Artificial Immune System

AODV Ad-Hoc On-Demand Distance Vector

API Application Programmers Interface

CA Certificate Authority

CBR Constant Bit Rate

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

DC Dendritic Cell

DoS Denial of service

DSR Dynamic Source Routing

FSM Finite State Machine

GSM Global System for Mobile communications

HIS Human Immune System

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPS Intrusion Prevention System

Jist Java In Simulation Time

LCP Linear Complementarity Problem

LH Lemke Howson

LP Linear Program

MAC Medium Access Control

MANET Mobile Ad-Hoc Network

NE Nash Equillibrium

P2P Peer-to-peer

PAMP Pathogen Associated Molecular Pattern

PD Prisoners Dilemma

PDR Packet Delivery Ratio

PPAD Polynomial Parity Arguments on Directed graphs

RERR Route Error

RFC Request For Comments

RNG Random Number Generator

RREP Route Reply

RREQ Route Request

sIDS soft-Intrusion Detection System

SNS Self Non Self

SWANS Scalable Wireless Network Simulator

TCP Transmission Control Protocol

TFT Tit For Tat

TLR Toll Like Receptor

TTL Time-To-Live

VANET Vehicular Ad-Hoc Network

WEP Wired Equivalent Privacy

WPA Wireless Protected Access

CHAPTER 1

INTRODUCTION

A wireless peer to peer (P2P) network is a wireless network that allows members to
communicate without requiring any existing infrastructure. Members use each other as
routers to in order to reach hosts that are not in direct communication range. The earliest
such networks were Packet Radio networks (PRNET) (Jubin & Tornow, 1987), a project
concerned with developing them for military applications.

The interest in wireless P2P networks has increased greatly in recent years, brought
about by the ubiquity of mobile computing and commoditisation of wireless technologies,
such as 802.11 and Bluetooth, which means that most mobile devices are now equipped
with at least one short-range wireless technology. Furthermore, with their independence
from any form of infrastructure, P2P networks provide flexibility, which means they are
well suited to a variety of applications, from large networks covering a battlefield to smaller,
spontaneous networks set up for sharing data at business meetings. Practical applications
of P2P networks are emerging, including wireless sensor networks for use in smart home-
/office environments for monitoring energy consumption, and the dissemination of safety
information to road users by vehicle to vehicle (V2V) or vehicle to roadside infrastructure
(V2I) communications in Vehicular Networks (VANET). Wireless mesh networks have also
been deployed in a number of cities worldwide to provide Internet access to its citizens.

The key feature of each of these examples of P2P network is the ability to self-organise,
which is fundamental for their operation and is provided by a number of decentralised ser-
vices that are responsible for routing and addressing, as well as other critical services.
These services are the source of much research activity and pose a large number of re-
search challenges. This thesis is concerned with Mobile Ad-hoc Network (MANET)
security, an active area of research that poses significant challenges since these networks
rely on the co-operation of all participating nodes in order to survive.

1

1.1 The MANET security problem

MANET security is a significant problem due to the relative ease that an intruder can
eavesdrop on any wireless traffic in its neighbourhood. This is in direct conflict to the
security attributes that are a must for most network applications: availability, confiden-
tiality, integrity, authentication and non-repudiation (Zhou & Haas, 1999). Whilst access
control techniques such as Wired Equivalent Privacy (WEP) or Wireless Protected Access
(WPA) can prevent casual eavesdropping by outsiders, there is as much of a threat of
insider attacks from compromised hosts. Insider attacks are a risk in hostile environments
where a lack of physical protection means hosts are susceptible to capture and re-purposing
by the adversary. Intrusion detection can assist in identifying the sources of insider at-
tacks and responding appropriately. In these security-critical applications, multiple layers
of security should be employed to reduce the overall attack surface.

Typical security approaches suited for infrastructure networks such as firewalls and
centralised certification authorities (CAs) are not appropriate for MANET as they do not
scale with a MANET’s dynamic membership and they present a single point of failure
that adversaries are likely to target in order to succeed in disabling the network. Thus,
the services that run on ad-hoc networks should be fully distributed to promote high
availability (Zhou & Haas, 1999). Tamper-proof hardware (Buttyan & Hubaux, 2003) or
the use of a trusted platform module (TPM) (Shi & Perrig, 2004; Hao et al., 2006; Yan,
2006) have been suggested as ways to prevent reprogramming or enable neighbours to
verify remotely that a node has not been reprogrammed, but Intrusion Detection Systems
(IDS) should always be considered as a precautionary measure in a security-critical envi-
ronment. Numerous distributed approaches to the problem of insider security have been
proposed in the literature, including secure routing, (Hu et al., 2005; Sanzgiri et al., 2002a;
Patwardhan et al., 2005; Acs et al., 2004) misbehaviour detection, (Huang & Lee, 2003;
Mishra et al., 2004) cooperation enforcement (Buttyan & Hubaux, 2000, 2003; Michiardi
& Molva, 2002; Buchegger & Le Boudec, 2002b) and the use of incentives (Buttyan &
Hubaux, 2003). Such schemes employ local monitoring to confirm neighbours behave as
expected but they are limited by their failure to reason about the imperfect monitoring
possible within a radio environment that arises from unidirectional links and collisions.
This often results in false detections and reduces the quality of the consequent responses,
leading to retaliations to benign nodes.

1.2 Research Questions

This thesis studies the challenges of intrusion detection in imperfect wireless environments.
The sources of uncertainty in wireless environments that are of direct relevance to intrusion
detection are investigated. A set of local and distributed attacks of varying subtlety is

2

implemented and run in fading environments to demonstrate the impact an imperfect
wireless environment can have on detector output.

The main question posed in this thesis is if game theory and immune system inspired
approaches can be applied to improve the quality of intrusion detection in MANET. In
particular, we are interested in whether these techniques be used to reduce the number of
responses toward benign nodes and improve the detection rates of subtle misbehaviour.
Locally gathered information is used to build up a historical behavioural profile of neigh-
bours that represents their ability to perform a given function (e.g. forwarding or routing)
and is used within both approaches. Previous work in misbehaviour detection (Huang
& Lee, 2003; Mishra et al., 2004) gathers local information but fails to reason about the
uncertainties in this information, either because the misbehaviour is subtle, it cannot be
detected by local detection alone, or relies on detection schemes that are inherently im-
perfect. Another issue this thesis addresses is if end-to-end network performance can be
improved by employing these decentralised approaches. If game theory and immune system
inspired approaches can deliver improvements in intrusion detection, can this be trans-
lated into an advantage in terms of common metrics such as Packet Delivery Ratio (PDR)
that benefits the community of benign (or, well behaved) nodes?

1.3 Contributions

The first contribution of this thesis is the development of a framework for simulating a
diverse range of misbehaviour that targets Ad-Hoc On-Demand Distance Vector (AODV),
a MANET routing protocol. Noteworthy is a number of interesting variations of the
classical black hole attack that employs route invasion techniques to make significant
gains in attack efficacy for low ratios of adversaries in the network.

Next, a general, modular intrusion detection system for MANET is presented, which
provides a framework to formulate the baseline and game theoretic inspired IDS. The
generic IDS presented can be extended to detect other attacks by simply adding to the
set of detectors to provide continual improvements to the measure of a node’s behaviour.

A key contribution of this thesis is the development of sIDS, a game theoretic inspired
IDS that applies reasoning between the detection and response components of a typical
IDS. The additional reasoning enables the IDS to determine whether to respond given
the evidence presented whilst being aware of the imperfections implicit in the detection
strategies used. This approach delivers improvements in true response rates for most
studied scenarios.

The final contribution is sIDS+AIS, an extension of the game theoretic approach with a
number of immune system inspired features to initiate co-ordinated responses over multiple
timescales. This improves the end-to-end performance of benign nodes whilst keeping the

3

earlier advantage of a high base response rate.

1.4 Organisation of thesis

The thesis is organised as follows:

• Chapter 2 provides a background to MANET and ad-hoc routing protocols, iden-
tifying the attack surface exposed by them and motivating the need for intrusion
detection systems. It introduces the fundamental concepts of game theory and the
Human Immune System (HIS) and reviews the existing approaches to intrusion de-
tection in the literature, focussing on those that apply game theory and immune
system analogies to the area of intrusion detection.

• Chapter 3 provides the simulation methodology employed, including a brief evalua-
tion and validation of Jist/SWANS versus a number of other network simulators. It
also provides the performance metrics upon which the discussion of further chapters
has been based.

• In Chapter 4, a number of attacks on ad-hoc networks are described and an adversary
framework is formulated suitable for incorporation into Jist/SWANS. A small case
study is presented on a number of route invasion techniques that increase attack
efficacy.

• In Chapter 5 a general MANET IDS is described, which forms the basis of succes-
sive IDS implementations, detailing the common services and detection techniques
used to detect the attacks described in Chapter 4. This chapter also presents the
transformation of detector notifications into metrics suitable for incorporation into
a compact measure of a neighbour’s behaviour.

• Chapter 6 presents sIDS, a MANET IDS that employs game theoretic reasoning
as a means to improve the response characteristics of a typical MANET IDS. The
performance of sIDS is evaluated in simulations over a diverse range of scenarios
employing local and distributed misbehaviour.

• Chapter 7 presents sIDS+AIS, a multi-layered IDS employing both game theoretic
reasoning and immune system inspired mechanisms, and evaluates its performance
in the same scenarios as for sIDS.

• Finally, in Chapter 8, the thesis is concluded with a discussion of the main findings
and possible avenues for future work.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter introduces the properties of MANETs and provides a detailed description of
the operation of distributed routing protocols that run on member nodes, identifying a
large attack surface and motivating the need for intrusion detection systems (IDS) for reli-
able and secure dissemination of data across the network. To help the following discussion,
basic intrusion detection system terminology is introduced. Finally, current approaches to
mitigate misbehaviour in MANET is reviewed, and the steps, if any, that these approaches
take when reasoning and minimising uncertainties.

2.2 Background

2.2.1 Mobile Ad-Hoc networks

A Mobile Ad-Hoc Network (MANET) is a collection of wireless nodes that co-operate to
form a multi-hop network in which members maintain connectivity to one another without
the support of infrastructure (Figure 2.1). This connectivity is maintained when nodes
move, roam in and out, or when environmental factors cause individual wireless link breaks
or errors (Perkins & Bhagwat, 1994). Data flows are often routed over several hops to
their final destination (Perkins & Bhagwat, 1994; Perkins, 1997). The flexibility that a
multi-hop network offers means these networks are well suited to applications that require
instant deployment such as disaster relief and battlefield communications (Broch et al.,
1998).

Ad-hoc routing protocols provide end-to-end connectivity between nodes and are com-
monly implemented as a decentralised service operated by each node in the network. They
are designed to provide best effort connectivity even in the presence of mobility and an
unreliable medium with a high error rate (Royer & Toh, 1999).

5

S 2

6
3

D

4

5

1

Figure 2.1: A collection of nodes forming a Mobile Ad-Hoc Network
(MANET). The dashed lines show connectivity to immediate neigh-
bours, and the arrows show the selected path of data flow between
source S and destination D.

2.2.2 Ad-hoc routing protocols

Ad-hoc routing protocols are often categorised as proactive, reactive or hybrid. Proactive
routing protocols (also known as table-driven) maintain a route table with entries to
each node in the network and propagate changes to topology regularly to ensure each
node maintains a complete and consistent view of the network topology (Royer & Toh,
1999), resulting in a “chatty” protocol with large routing tables. Reactive protocols (also
known as on-demand) create, maintain and keep in memory only those routes currently
in use, which minimises storage and computational requirements (Abolhasan et al., 2004)
but at the cost additional latency in data dissemination whilst routes are discovered.
Hybrid routing protocols employ techniques from both proactive and reactive protocols.
Abolhasan et al. (2004) and Perkins et al. (2001) illustrate the difference these properties
can have on network performance over a range of topologies and traffic patterns.

Ad-Hoc On-Demand Distance Vector (AODV) (Perkins, 1997) and Dynamic Source
Routing (DSR) (Johnson &Maltz, 1996) are two common reactive ad-hoc routing protocols
which are under consideration for ratification by the Internet Engineering Task Force
(IETF).

2.2.3 Reactive ad-hoc routing protocols

Reactive routing protocols such as AODV and DSR operate by running two procedures
concurrently: route discovery and route maintenance. A source invokes route discovery
when it wants to send data to a destination, creating a Route Request (RREQ) that is
disseminated network-wide by neighbouring nodes. If the destination or a neighbour with

6

a valid route to the destination receives the request, a Route Reply (RREP) is sent back
to the source. When the source receives the reply, a route table entry is added and data
packets for the destination are serviced and sent onwards to the appropriate next hop
(Johnson & Maltz, 1996; Perkins, 1997). If the route discovery procedure times out and
fails to discover a route, a suitable unreachable host message is sent to the application,
and the packets for the corresponding unreachable destination are dropped.

The second procedure, route maintenance, monitors local connectivity to ensure routes
are preserved by detecting link breaks between pairs of nodes (Johnson & Maltz, 1996;
Perkins, 1997). Two methods are commonly employed in order to detect link breaks, which
are periodic HELLO messages or from feedback directly from the link layer. HELLO mes-
sages are broadcast packets that are sent periodically to advertise a node of its presence. If
a HELLO message is received by a neighbour, it assumes bidirectional communication to
the sender. Link layer feedback is provided by the MAC protocol after it deems a frame as
undeliverable, usually if multiple retransmissions of the frame are unsuccessful. The latter
is more reactive to changes in topology and introduces no further overheads (Chakeres &
Belding-Royer, 2005) but it requires specific hardware and driver support. If a link break
is detected, local repair is often used as a first attempt to restore connectivity locally. This
is where a request is sent with a small Time To Live (TTL) in order to find an alternative
neighbour and is often transparent to the source. If local repair is unsuccessful, a Route
Error (RERR) is sent to the source causing it to rediscover a route to the destination.
Route maintenance is also involved in removing inactive routing entries to minimise the
propagation of stale routing entries and to keep the size of routing tables down.

DSR and AODV use similar routing messages that have similar roles but there are
important differences in the operation of each protocol. Firstly, the forwarding process
is very different. DSR is a source routing protocol where the sender appends the full
path to the destination onto the packet header that contains a list of intermediate nodes
the packet should traverse (Johnson & Maltz, 1996). Intermediate nodes forward to the
next hop by looking at the next hop entry in the path and sending the data onward.
In contrast, AODV does not manipulate data packets, being a distance vector protocol
based on the Bellman-Ford routing algorithm. Instead, the next hop decision is made at
each intermediate node (Perkins et al., 2001). Secondly, DSR caches multiple routes to a
destination, permitting more redundancy during data transfer over AODV, which caches
one route per destination. Lastly, DSR specifically states the use of link layer feedback
(Johnson & Maltz, 1996) whilst AODV routers can be configured to send periodic HELLO
messages or can use link layer feedback.

7

D

S 1 2

6
3

4

5

Figure 2.2: The dissemination of a route request from S (black ar-
rows). Reverse route pointers (in green) are set up as the route request
is broadcast, used when forwarding a route reply from D.

2.2.4 Ad-hoc On Demand Distance Vector (AODV)

This project employs the most recent Request For Comments (RFC) of AODV (July
2003), a distance vector protocol for MANETs. In order to understand the vulnerabilities
exposed by AODV it is critical to understand the route discovery and route maintenance
procedures thoroughly.

2.2.4.1 Route discovery procedure

The route discovery procedure for AODV is initiated when a source broadcasts a RREQ
for a destination that it does not currently have a route for. This message is consequently
broadcast by its neighbours, and is identified by a RREQ ID and originator IP address
that prevents re-broadcasting and mitigates the effects of broadcast storms (Ni et al.,
1999), which can severely affect network performance.

As the RREQ is disseminated, each node adds a reverse route entry to the source via
the neighbour it received the RREQ as shown in Figure 2.2, used to forward the Route
Reply (RREP) generated either by the destination, or intermediate node with a “fresh
enough” route to the destination. Each intermediate node that receives the RREP adds
an entry to its routing table to the destination that is used during data forwarding. When
the source receives the RREP, data packets are serviced for that destination by sending
them onto the appropriate next hop.

The routing table entry (Table 2.1) lists the destination address, the next hop address,
the number of hops to the destination and a route lifetime used to ensure that inactive
routes are removed. A destination sequence number is also maintained for each destination,
used to ensure routes are “fresh” and to guarantee loop-free operation of the protocol

8

Table 2.1: Excerpt of route table for S, showing a route entry to D
via next hop 1
destination nextHop numHops destSeqNum lifetime (ms)

D 1 4 25 4000
2 1 2 20 8000

D

S 1 2

6
3

5

D

4

Figure 2.3: Route maintenance procedure. Destination D has moved
out of range of node 6 and has become a neighbour of nodes 4 and 5.
6 invokes local repair and discovers route to D via 5, and data takes
the new path highlighted.

(Perkins, 1997). Each node maintains their own sequence number allowing stale routing
information to be discarded.

2.2.4.2 Route maintenance procedure

The route maintenance procedure is invoked if a node detects a link break between itself
and a next hop which is actively being used to serve a route. Link breaks can be determined
by keeping a count of broadcast messages received from a neighbour within a given time
interval or through the use of a link layer notification (such as that provided by 802.11).

A node that detects a link break between itself and a next hop generates a RERR listing
the unreachable destination(s). This message is disseminated to appropriate neighbours,
either to invoke local repair of the affected part of the route, or as a last resort to force
the source node to re-route. Once an appropriate route is discovered, queued data packets
are once again serviced and sent via the new route (Figure 2.3).

2.2.5 MANET security challenges

MANETs expose a number of security vulnerabilities that span each layer of the protocol
stack. An attacker can target the physical layer, as in the case of jamming (Xu et al.,

9

Table 2.2: A number of attacks MANET are susceptible to, with
protocol layer they target and the original author who investigated it.

Attack Directed at layer Investigated in

Jamming Physical Xu et al. (2005)
Flooding Network Stajano & Anderson (2000)

Sleep deprivation Routing
Black hole Routing Wang et al. (1997)
Grey hole Routing Riedel (2003)
Wormhole Routing Hu et al. (2003a)
Rushing Routing Hu et al. (2003b)
Sybil MAC/Network Douceur (2002)

Spoofing Routing Vigna et al. (2004)
Route table overflow Routing Wang et al. (1997)

Selfishness Routing Michiardi & R. (2001)
MAC Kyasanur & Vaidya (2003)

2005), or the upper layers, by delaying or dropping packets to cause an an application that
requires a high Packet Delivery Ratio (PDR), such as Voice over IP (VoIP) (Caro et al.,
2008) to fail. A selection of attacks on MANET are presented in Table 2.2. A large number
of attacks these are directed at the routing protocol, targeting the unique characteristics of
a MANET, such as the use of distributed algorithms and a shared, open wireless medium
(Deng et al., 2002). Member nodes often implicitly trust one another (true of classical
MANET routing protocols), and attacks can occur by outsiders and insiders alike. An
outsider attack occurs by an adversary that does not belong to the MANET, whilst an
insider attack occurs by adversaries that belong to the network (Helsinki & Kärpijoki,
2000). A jamming attack is an effective but broad form of outsider attack; insider attacks
are often more targeted and can be used to target specific nodes and network services.

To become an insider, the adversary could attack physical layer security protocols such
as Wired Equivalent Privacy (WEP) or Wireless Protected Access (WPA) by a brute-force
attack. But often, MANET nodes are left unattended with little or no physical protection,
thus a preferred method is to physically capture member nodes, in the process acquiring
the cryptography keys used to communicate to other members.

Attacks can be further classified as active or passive. An active attack is one launched
outside the normal operation of the protocol by injecting false routing information or
causing artificial error conditions on routes. In contrast, passive attacks are protocol com-
pliant, completed as part of normal routing procedures. Additionally, atomic misuses are
attacks encapsulated in a single routing message whilst compound misuses are a sequence
of atomic misuses that may include protocol compliant routing messages (Ning & Sun,

10

Auditing Analysis Response
Event

stream
Anomalies

Figure 2.4: Interaction between modules of a network IDS

2003).

2.2.6 Network Intrusion Detection Systems (IDS)

Network IDS traditionally consist of several modules; an audit module, a detection module
and a response module. The interplay between each module is shown in Figure 2.4.
Network IDS can be:

• Host-based, in which each node performs intrusion detection and can be further
decentralised if they communicate their detection outcomes to one another.

• Hierarchical, often employed in heterogeneous networking environments where device
classes have computational and memory constraints which imposes a limit on their
role in the overall IDS.

• Fully centralised, where a single device is responsible for providing IDS services for
the entire network.

2.2.6.1 Auditing

Auditing is the initial process employed by an IDS in which an event stream is acquired
from several sources. For a network based IDS, sources may include promiscuous notifi-
cations or a sampling of received and sent packets at the network layer. Network Security
Monitor (NSM) (Heberlein et al., 1990) first employed such notifications in wired net-
works and enabled clients to eavesdrop on the transmissions of neighbouring clients. In a
MANET, this eavesdropping is trivial as member nodes share the wireless medium. When
a network interface is set to promiscuous mode, nodes receive all messages in their recep-
tion range including those that are not directly addressed to them. This was exploited for
IDS in MANET by Marti et al. (2000) in Watchdog and Pathrater, which uses promiscuous
notifications to verify that a packet sent onward to a neighbour for forwarding was actu-
ally forwarded by that neighbour. Alternative approaches used to determine the packet
forwarding ability of nodes are acknowledgments (Balakrishnan et al., 2005; Liu et al.,
2007) and probing (Just et al., 2003). Two-hop acknowledgments can be used to verify
that data was both forwarded and received without error. Probing can verify a node is
behaving as expected by the protocol (e.g. forwarding capability) by sending a control
message and checking those generated in response are in line with expectations, but this

11

approach assumes the target node should not be able to discriminate between a normal
control message and a probing control message. In both cases, intrusion events can only
be generated from those neighbours the monitoring node currently has a relationship with
(direct monitoring), and both increase the control data load leading to additional energy
expenditure.

Promiscuous notifications enable nodes to monitor the forwarding action of neighbours
on flows that the monitoring node is both participating in and those it is not. In contrast,
a node using an acknowledgment scheme can only monitor the flows it is participating in.
Most MANET IDS including the Watchdog/Pathrater (Marti et al., 2000) use eavesdrop-
ping as the basis for collecting audit data (Paul & Westhoff, 2002).

2.2.6.2 Analysis

Analysis is the process of detecting intrusions in audit data by the use of misuse detectors,
anomaly detectors, or a combination of both. Misuse detectors use prior knowledge of
known attack signatures to construct a finite set of rules, which are added to a rule base.
Audit data is searched for signatures that correspond to one or more of these rules, and
a match confirms an attack is in progress. Well defined misuse detectors are extremely
accurate and are characterised by having a low false positive rate, but the rules are hard-
coded and requires the IDS is constantly updated to deal with emerging threats. A
simple misuse detector for a MANET could capture protocol violations, for example if a
node originates an abnormal number of route requests in a given interval. Finite State
Machines (FSMs) and Coloured Petri Nets are examples of a misuse detection IDS used
within MANETs.

Anomaly detection uses statistical approaches to detect attacks and detectors are typ-
ically trained offline on audit data that corresponds to a normal profile. Once online, any
deviation from the normal profile is then flagged as an anomaly. Anomaly detectors are
more flexible than their misuse counterparts and can detect previously unknown attacks
(Kemmerer & Vigna, 2002), but they generate a significant number of false detections
depending on the specificity of the detectors and how representative the training set is of
normalcy. Cross-Feature Analysis (Huang et al., 2003), Genetic Algorithms (GA) (Sun-
dararajan & Shanmugam, 2009), Neural Networks (Abraham et al., 2007) and Artificial
Immune Systems (AIS) (§2.4) are examples of anomaly detection schemes employed in
MANETs.

2.2.6.3 Response

A response is the final action an IDS performs. Typical responses employed by MANET
IDS may include elevating a suspicion level, disseminating evidence to a selection of trusted
neighbours, or co-ordinating a response to isolate the suspect. Responses can occur locally,

12

or over an extended area of the network. Majority voting techniques (Zhang & Lee, 2000;
Paul & Westhoff, 2002) may be used to aggregate intrusion outcomes over an extended
network area where there is uncertainty about whether a particular node is intruding
based solely on local detection. The technique is susceptible to leading if the majority
of reporting nodes are co-ordinated adversaries, possibly causing responses being taken
against benign nodes.

2.3 Current approaches to providing security assurances in MANET

Table 2.2 showed a cross section of the attacks MANET are susceptible to. These have
resulted in a corresponding large number of approaches that detect, mitigate or prevent
such attacks from adversaries in MANET. These approaches are often categorised by five
common security metrics; availability, authentication, integrity, confidentiality and non-
repudiation and have been redefined by Zhou & Haas (1999) in the context of ad-hoc
networks.

Typical fully centralised network IPS and IDS schemes for wired networks do not
scale but instead introduce further weaknesses if directly applied to a MANET (Deng
et al., 2002). Centralised security services present a single point of failure (Dhillon et al.,
2004) likely to be targeted by the adversary. If the service is critical to the functioning
of the network, say by authenticating nodes or certifying data and control packets, then
disabling the security service will disable network communications entirely. If the service
is distributed between a number of nodes the security mechanism is more resilient and
the adversary has to target multiple agents, but distributing a security protocol is often
challenging; it may require nodes to be synchronised and share state by passing intrusion
reports, which itself could be targeted by the adversary. To fully meet the security needs
of a MANET, a defence-in-depth solution (Figure 2.5) spanning multiple layers of the
MANET protocol stack is often required (Yang et al., 2004). A number of existing MANET
security schemes which could be part of this defence-in-depth solution are now reviewed,
focusing on the network and routing layer.

2.3.1 Secure Routing

Secure routing protocols such as aridane (Hu et al., 2005), ARAN (Sanzgiri et al., 2002b,a),
SecAODV (Patwardhan et al., 2005) and endairA (Acs et al., 2004) are proactive MANET
security schemes that secure the ad-hoc network from manipulation, replay or eavesdrop-
ping of routing messages by unauthorised nodes. Secure routing protocols employ a num-
ber of techniques to achieve this including hop-by-hop authentication of routing messages,
Certification Authorities (CAs), frequent key revocation and encryption of routing packet
headers, to assure authentication, integrity and non-repudiation of the routing protocol.

13

Device

Physical / MAC layer

Routing

Network

Trusted
platform

module (TPM)

Tamper proof
hardware

MAC filtering
Access control
(WPA/WEP/

RADIUS)

Secure Routing
(S-AODV,

endairA ...)

Spread
spectrum

Incentive Schemes
(Reputation, Virtual Currency)Intrusion

Detection
(Misbehaviour
detection and

reaction)

Secure MAC

Figure 2.5: Defence-in-depth for MANET.

A CA may introduce a weak point in the ad-hoc network unless it is distributed as in
the case of threshold cryptography (Luo et al., 2005; Basile et al., 2005), which allows the
network to tolerate partial signatures originating from compromised CA nodes. However,
like majority voting, there is a limit on the number of adversaries a threshold cryptography
CA tolerates before the number of partial signatures generated by adversaries outweigh
those generated by honest nodes.

2.3.2 Incentive Schemes

A common approach to promote availability is to use incentives to promote co-operation
in MANETs. Incentives are artificial mechanisms that reward a node for co-operating
with the protocol to stimulate the desired behaviour. They are typically used in environ-
ments where members belong to a number of competing authorities, each with conflicting
objectives, or where each node is resource constrained, such as in energy or available
throughput. Virtual currency and reputation schemes are commonly employed to stimu-
late co-operation when routing.

Virtual currency schemes (Buttyan & Hubaux, 2000, 2003) provide economic incentives
to stimulate cooperation during MANET routing. Nodes maintain a budget that is used
when they send their own packets and is replenished when they service data for others,
hence rewarding contributing nodes. These schemes require each node be equipped with
tamper-proof hardware to store the budget (Carruthers & Nikolaidis, 2005). Furthermore,
routing messages are used directly when decrementing and replenishing a nodes budget,
which could be manipulated by the intelligent adversary. The maximum budget a node can
attain is based on the number of routes it serves, thus the schemes favour well-connected
nodes.

For malicious adversaries, reputation schemes such as CORE (Michiardi & Molva,
2002) and CONFIDANT (Buchegger & Le Boudec, 2002b) can be employed. In these
schemes, each node assigns a reputation to each neighbour it has communicated with. This
reputation depends on observations made locally through the use of eavesdropping and

14

in some cases, second-hand reports acquired from trusted neighbours. Reputation can be
used to identify trustworthy neighbours to send data onward, or to make a decision whether
to carry a neighbour’s traffic. Neighbours with consistently low reputation are excluded
from the network, which lessens the impact of the misbehaviour and should motivate the
adversary to behave. CORE defines functional reputation, which allows a node to identify
those neighbours with the highest reputation for a given network function, for example,
packet forwarding. CORE allows excluded nodes (as a result of prior misbehaviour) to be
gradually reintroduced should they be cooperative over a sustained period of time. Neither
CORE or CONFIDANT studies the effect of imperfect observations on the computation
of reputation and its effect on the overall fairness of the security protocol.

2.3.3 Watchdog/Pathrater

Watchdog/Pathrater (Marti et al., 2000) is a host-based IDS which promotes network
availability by allowing member nodes to verify the packet forwarding behaviour of neigh-
bours by the use of promiscuous notifications. Each node keeps a rating per observed
neighbour, which is increased if the chosen neighbour forwards data when it is asked to
and the observing node receives a notification and is reduced otherwise. The Pathrater
component uses these ratings to determine “stable” routes, preferring nodes with a higher
rating. Marti et al. (2000) identify that collisions and asymmetric links may cause missed
observations and corresponding false detections but in their scenario it seems to have min-
imal impact on network throughput. Pathrater does not exclude nodes with consistently
low ratings from using the network and is not appropriate for providing incentives for
selfish nodes (Buchegger & Le Boudec, 2005).

2.3.4 Finite State Machines (FSMs)

AODVSTAT (Vigna et al., 2004) is a host-based IDS that ensures availability and integrity
in MANET. Each node runs STAT (Vigna et al., 2003), a framework that allows the
modelling of attack scenarios and is preloaded with FSMs designed for the detection of
misbehaviour in MANET. Each FSM detects a single type of attack, corresponding to a
form of misuse detection. The FSMs transition from an initial idle state to a number of
intermediate states which represent a snapshot of the security state, based on input audit
data from promiscuous monitoring. Each FSM has a final ATTK state which signals an
alert to invoke an appropriate response.

15

2.4 Artificial Immune Systems

2.4.1 Background

Artificial immune systems (AIS) are an Artificial Intelligence (AI) paradigm that includes
Genetic Algorithms (GAs) and Neural Networks that are inspired by biological models.
Specifically, AIS are inspired by the processes and interactions between the various cells of
the immune system. The Human Immune System (HIS) is a multi-faceted, multi-layered
intrusion prevention and intrusion detection system with three main lines of defence.
The first is the epithelial surfaces (skin and mucosal linings) and the bodily fluids such as
stomach acid, which provide perimeter security that prevent most pathogens from entering
the body (Janeway et al., 2004, p. 40). Should the pathogens pass this initial barrier,
the innate, and later, the adaptive immune response takes over. The cells involved in the
innate immune response are:

• Innate leukocytes that include natural killer cells (NK cells), mast cells, eosinophils
and basophils.

• Phagocytes that include macrophages, neutrophils and dendritic cells.

These immune cells recognise pathogens through the activation of toll-like receptors (TLRs)
on the immune cells surface that recognise pathogen associated molecular patterns (PAMPs),
present only on pathogens (Janeway et al., 2004, p. 51). Each immune cell is equipped
with a subset of between ten and fifteen types of TLR (Janeway et al., 2004; Doan et al.,
2007). The activation of one or more TLRs by a pathogen leads to the host immune cell
taking one of the following immediate actions (Janeway et al., 2004):

• if the host cell is phagocytic it engulfs and digests the recognised pathogen. Dendritic
cells present the antigen of a digested pathogen as part of the preparation for an
adaptive immune response, if one is required.

• secrete cytokines and chemokines that have a number of effects that shape the im-
mune response, from triggering inflammation to recruiting and activating neighbour-
ing immune cells.

• release cytokines that directly act on the pathogen. Interferons are antiviral agents
that prevent the spread of viruses to uninfected cells (Janeway et al., 2004, p. 87).
Tumour Necrosis Factor (TNF) can cause the target cell to undergo apoptosis, or
’programmed cell death’.

Another important part of the innate immune system is complement, which is a system of
plasma proteins that can mark a pathogen for destruction by phagocytes (Janeway et al.,
2004, p. 55) or otherwise enhance the immune response to the pathogen.

16

Epithelial
Surfaces

Innate Immune
Response

Adaptive
Immune

Response

Actors:

Skin, mucosal
linings, stomach
acid

NK-cells, mast cells,
eosinophils, basophils,
macrophages, neutrophils,
dendritic cells, plasma

T-Lymphocytes, B-
Lymphocytes, dendritic cells

Dendritic cells

Immediate

Immediate-4 days

>4 days

Timescale:

Figure 2.6: The layers of protection in the vertebrate immune system,
illustrating the actors and timescales associated with each layer. Ep-
ithelial surfaces provide the first line of defence. If breached, the innate
immune system is invoked immediately, whilst the adaptive immune re-
sponse takes the order of a few days for effector cells to mature.

The adaptive immune response is induced when a pathogen is ingested by an immature
dendritic cell and, upon activation, presents pathogenic antigens to T-lymphocytes in a
nearby lymph node. These lymphocytes undergo a period of maturation called negative
selection. This period of maturation explains the lag after the original infection (Janeway
et al., 2004, p. 12) before the adaptive immune response is invoked. Thus, dendritic cells,
with their ability to sample the local environment and present non-self antigen to maturing
lymphocytes, act at the interface of innate and adaptive immunity. This process is shown
in Figure 2.6.

There are many examples in immunology literature that demonstrate the imperfect
nature of the immune system and the evolution of pathogens to the threat of detection,
each with shared analogues in network environments. Allergies can lead to systemic re-
sponses to common, harmless, non-self antigens that emerge as conditions such as asthma
or hayfever (Janeway et al., 2004). Autoimmunity, the process by which the immune sys-
tem responds to host cells is rare, but can cause substantial damage to the host organism.
Generally it is kept under control by a number of mechanisms, but if one or more of these
is compromised by infection, genetic defects or environmental conditions, self-reactivity
can occur. Autoimmunity is always a risk because of the subtle difference between self
and non-self (Janeway et al., 2004). Finally, pathogens have evolved ways to evade the

17

immune response or to attack immune cells directly (Chapel et al., 2006). For example,
Herpes enters a state of latency and hides in sensory neurons in which it is undetectable,
whilst Tuberculosis uses macrophages as its host and is immune to the bactericidal actions
of the cell.

2.4.2 AIS models

Forrest & Hofmeyr (2001) was pivotal to the development of the AIS field and artificialised
negative selection, the process by which lymphocytes mature and are checked for their auto-
reactive properties. In Forrest & Hofmeyr (2001), a set of immature detectors are created
and compared to a set of triples corresponding to network connections of a normal profile.
If any immature detectors match those triples they deleted and replaced with another
in the same way a lymphocyte would be deleted from the repertoire in the body. Any
surviving detectors have a finite lifespan and are used to detect anomalies in the network
traffic, raising an alarm if found. This is typical of the traditional view of the immune
system proposed by Janeway et al., 2004, which is that the immune system distinguishes
foreign bodies (non-self) from host cells (self) by self non-self recognition (SNS).

A number of improvements to the original negative selection algorithm have been
proposed. Dasgupta & Gonzalez (2002) proposes the use of GAs or neural networks to
produce the immature detectors for providing more even coverage of self and non-self
space, whilst Gonzalez & Dasgupta (2004) suggests the use of fuzzy detectors to provide
overlap between self and non-self and be more analogous with nature. The weaknesses
of the negative selection algorithm are discussed in Aickelin et al. (2003), who highlight
concerns over the scalability of the algorithm for large detector sets, required to ensure
few holes in detector coverage and minimise false negatives.

A more recent model is the Dendritic Cell Algorithm (DCA) (Greensmith et al., 2006)
inspired by the role of the dendritic cell in sampling and as a mediator of the adaptive
immune system. In the DCA, dendritic cells are signal processing elements that take
multiple input signals in the form of safe signals, danger signals and PAMPs (Aickelin &
Cayzer, 2002) and produce a single output. This output is used to activate or suppress
a lymphocyte and their ability to do so is based on their maturity just like their natural
counterparts (Janeway et al., 2004). Safe signals are defined to be an indicator of normal
behaviour, danger signals are measures which increase in response to abnormal behaviour
and a PAMP is a signature of abnormal behaviour. DCA is based on earlier work which
highlights suitable analogies from Danger Theory (DT) (Matzinger, 2002), an alternative
view on role of the immune system, which is that it is concerned with the recognition of
and response to dangerous non-self. Harmless non-self does not cause a reaction.

18

2.4.3 AIS applied to ad-hoc networks

AIS approaches to IDS in ad-hoc networks tend to use one of the above approaches at their
core. Balachandran et al. (2006) is a host-based IDS for nodes running DSR. Negative
selection is used to train a detector set within a network environment free of misbehaviour,
and the surviving detector set is used within the IDS of a live network. The initial training
conflicts with the instant deployment ideal of MANET and it is also unrealistic to assume
that the training set is completely free of all forms of misbehaviour, or that it is completely
representative of normalcy. The effect of imperfectly observing the routing protocol event
sequence on the training of detectors or the effect on detection is also not considered.
SASHA (Bokareva et al., 2005) also employs negative selection but uses neural networks
to create the immature detector set. It is a hierarchical IDS that uses high powered
monitoring sensors and PC class devices which collaborate to detect misbehaviour within
a sensor network environment. Whilst this has the advantage of freeing sensor nodes
from computationally demanding IDS duties, the hierarchical nature means the system is
partially centralised. The privileged links between the monitoring sensors and PCs are
likely to be the target of the more intelligent adversary.

Kim et al. (2006) presents a host-based IDS that applies the DCA (Greensmith et al.,
2006) to detect the Interest Cache Poisoning Attack in sensor networks. This is an attack
on the Directed Diffusion routing protocol where an adversary disrupts data paths by
injecting fake interest packets to replace entries in the interest cache of target nodes.
The interest cache is similar to the routing table of typical MANET routing protocols.
The signals are mapped onto appropriate observables, for example, the danger signal is
mapped to the interest cache insertion rate. There is no consideration of the impact that
an imperfect observation has on the calculation of the signals nor the effect this has on
the detection statistics.

Lastly, there are hybrid approaches that employ both negative selection and analogies
from Danger Theory to detect misbehaviour. Sarafijanovic & Le Boudec (2005) applies
such an approach to detect misbehaviour in MANET running DSR. Events are generated
from routing packets received or sent and are compressed into an event stream that lists the
type of routing packet and its direction (sent or received). This is further compressed into
a gene which corresponds to the number of times given events occur in sequence in a given
interval, before being converted into a bit stream suitable for use in negative selection, in
a format similar to Kim & Bentley (2001). The novelty is that detectors can be trained
during MANET runtime and a virtual thymus allows the self set (a representation of the
desired DSR behaviour) to change over time. A signal corresponding to packet losses is
used to suppress or activate an individual response but as stated earlier, packet losses
may arise from a number of network conditions that are not the result of misbehaviour
(§2.2.6.1).

19

2.4.4 Discussion

The immune system is a multi-layered approach to security and incorporates a number
of effective measures to eradicate infection; from physical barriers to innate and adaptive
immunity. The autonomy of immune cells and co-ordination of a response through chem-
ical signals provide much inspiration for a MANET IDS. Of course, the immune system
is not subject to the same limitations as MANET nodes but nevertheless the high level
features and processes are suitable for application to a MANET IDS.

2.5 Game Theory

2.5.1 Background

The field of game theory is considered to have begun in the 1940s with the publication
of The Theory of Games and Economic Behaviour (Von Neumann & Morgenstern, 1970).
This provided the mathematical basis for a diverse range of economics publications to
follow that provided tools to construct and model numerous scenarios to study the inter-
actions between a number of conflicting players (or agents), termed non-cooperative game
theory.

In game theory, each player has a number of actions and a utility function which
determines their preference for a given outcome. Through the application of solution
concepts it can be determined what strategies players are likely to adopt in the game. The
most widely used solution concept is the Nash Equilibrium (NE) (Nash, 1950). If each
player plays to maximise his own payoffs then the player is rational.

The main primitive modelled in algorithmic game theory is the game, G, which defines
the players, utility functions and set of actions for each player. A game can be repre-
sented in two forms. The first is a game in normal form and is commonly used where
players choose actions simultaneously, or, alternatively, where players do not observe the
moves made by the other players (Rasmusen, 2001). Such a game is represented as an
n-dimensional matrix, where n corresponds to the number of players. Table 2.3 illustrates
the normal form of a two-player Prisoners Dilemma, a classical and well-studied game in
game theoretic literature.

Table 2.3: An illustration of a normal form game: The Prisoners
Dilemma.

Column
Deny Confess

Row Deny -1,-1 -10,0
Confess 0,-10 -8,-8

20

Formally, an n-person normal-form game is a tuple G = (N,A, u) (Shoham & Leyton-
Brown, 2009) where:

• N is the set of n players

• A = A1 × ...× An, where Ai is a finite set of actions available to player i, and each
vector a = (a1, ..., an) ∈ A is a strategy profile.

• u = (u1, ..., un) where ui : A 7→ < is a real-valued utility (or payoff) function for
player i.

The one-shot Prisoners Dilemma (PD) bears some interesting properties; immediately
evident is that the equilibrium outcome (Confess, Confess) may initially be seen to be
an undesirable one, as it is intuitively worse for both players than (Deny,Deny). By
enumerating the process of finding the dominant-strategy equilibrium to find the players’
best responses we find there is in fact no better outcome. If Column were to choose
Deny then the best response, leading to the greatest payoff for Row, would be to choose
Confess, as 0 is greater than -1. Knowing this, Column, given Row’s choice of Confess
yields a choice of -10 for Deny and -8 for Confess, so it also chooses Confess. This leads
to the equilibrium outcome (also a Nash Equilibrium) of (Confess, Confess).

A game can also be represented in extensive form, similar to a game tree. Each node
on the tree represents a decision to be made by one of the players and the edges from
that node represent the action set available to the player at that node. As the game
progresses, signals may be revealed that are observed by the opposing players. The leaf
nodes represent outcomes to which players are awarded payoffs. In an extensive form, a
player’s strategy requires a decision at each of his choice nodes, regardless of whether or
not it is possible to reach that node during the game (Shoham & Leyton-Brown, 2009).

Formally, an n-person extensive-form game is the tuple G = (N,A,H,Z, χ, ρ, σ, u)
(Shoham & Leyton-Brown, 2009) where:

• N is the set of players

• A is the set of actions

• H is the set of nonterminal choice nodes

• Z is a set of terminal nodes, disjoint from H

• χ : H 7→ 2A is the action function, which assigns to each choice node a set of possible
actions

• ρ : H 7→ N is the player function, which assigns to each non-terminal node a player
i ∈ N who chooses an action at that node

21

• σ : H × A 7→ H ∪ Z is the successor function, which maps a choice node and an
action to a new choice node or terminal node

• u = (u1, ..., un), where ui : Z 7→ R is a real-valued utility function for player i on the
terminal nodes Z

A number of solution concepts exist that determine appropriate strategy profiles for the
game and describe how it should be played. Basic solution concepts include Minimax
(Von Neumann, 1928) or dominant strategy equilibria, which are straightforward to com-
pute but only produce a solution for a subset of game types. For example, minimax only
applies to zero-sum games (games whose payoffs add up to zero in each strategy combi-
nation) that are not typically found in realistic applications (Rasmusen, 2001). A strategy
profile is the set of strategies for each player of the game, i.e. S = s∗i ,, s

∗
N , and may be

in terms of pure or mixed strategies. A pure strategy states that a player should play the
given strategy with certainty, whilst a mixed strategy states the mixing probabilities that
players should play their pure strategies by. A strategy for player i, si, is a rule which
tells the player which action to choose at which each of his moves in the game.

Nash Equilibrium is a robust and widespread solution concept, and for any game at
least one exists in pure or mixed strategies (Shoham & Leyton-Brown, 2009). NE tests
that a player’s strategy si is a best response to the other player’s strategies si−1. If a player
cannot benefit by changing his or her strategy whilst the strategies of other players are fixed
then the proposed strategy profile s∗ = (s∗i ...s∗i−1) is a NE. This may be Pareto sub-optimal
in that there may exist a profile where both players can do better; such a strategy profile
is Pareto optimal. In the Prisoners Dilemma, the resulting NE (Confess, Confess) is not
Pareto optimal, but the Pareto optimal strategy profile (Deny,Deny) is in incompatible
with the NE; hence players are likely to deviate away from the Pareto optimal profile and
toward the NE. Incentives or an uncertainty over when interactions will terminate can
aid to curtail deviation and promote the desired behaviour. If multiple NE exist, Pareto
optimality can be used as an equilibrium refinement to remove less desirable equilibria.

2.5.2 Game Types

Several game types exist which allow realistic scenarios to be captured in a game theoretic
setting. Repeated games model frequent interactions or relationships between players over
time and are represented as a given game being played multiple times (or in multiple stages)
by the same set of players. Players observe the outcome of the game in the previous stages,
which is stored in their history profile and is used to compute their strategy profile in the
current stage. A player has infinite horizon if they can recall the history of all prior stages,
but if this is bounded, the player has finite horizon.

A game can be repeated finitely or infinitely. Infinitely repeated games can be used

22

if there is uncertainty over the interaction duration between players (Buttyan & Hubaux,
2007). Finitely repeated games are used when the duration is a priori known and can
suffer from an ’unravelling’ effect, where players use backward induction to determine
dominant strategies that may be non-cooperative strategies, leading to undesirable out-
comes from the modeller’s perspective (Nachbar, 1992). This unravelling does not occur
in infinitely repeated situations as it is not clear where the terminal payoffs are. In these
situations, payoffs cannot be attached to terminal nodes so a discount factor is applied
to future payoffs instead, representing the probability that the game will be stopped in
that round (Shoham & Leyton-Brown, 2009). Thus, infinitely repeated games can lead to
the emergence of co-operation which does not exist in finitely repeated games (Buttyan &
Hubaux, 2007).

Bayesian games model situations where players are unsure of the rules of the game,
for example, the precise game being played or the utility function of the other player. The
utility function employed by the player may be different for each type of the player. In this
case, the other players have a belief that the player is of a given type which is re-evaluated
based on signals or observations made through game play.

2.5.3 Game Theory applied to ad-hoc networks

Common applications of game theory in ad-hoc networks have explained the rationale
of selfishness that plagues decentralised algorithms in general (Feigenbaum & Shenker,
2002), demonstrating analogues between selfishness and the Prisoners Dilemma (PD). In
the PD, both parties confess in the absence of binding commitments or side-payments and
arrive at a solution which has a worse payoff than if they had cooperated. Similarly, a
selfish node prefers to drop rather than forward a packet if there are no reprisals for doing
as it benefits by conserving finite resources (such as energy). This is problematic if all
nodes adopt this strategy, when packet forwarding ceases network-wide and the network
becomes disconnected. Thus, the main issue is to stimulate cooperation by promoting
the desirable, co-operative, Pareto Optimal outcome. Srinivasan et al. (2003) illustrates
the emergence of co-operative behaviour by modelling selfishness as an infinitely repeated
PD where players adopt the Generous Tit For Tat (GTFT) strategy, showing that the
stable, Pareto-optimal NE corresponding to co-operation can be promoted without the
use of incentives. GTFT is similar to Tit For Tat (TFT), a common and highly effective
strategy used in game theory, but which gives a benefit of doubt to a player who confesses
on occasion. Their network model is simple and abstracts the underlying topology away.
In addition, they assume that all nodes know perfectly how many energy classes there
are in the system and that selfish nodes send a positive or negative acknowledgment of
their decision to forward to the requestor, which may not be the case in realistic scenarios.
Buttyan & Hubaux (2007) also provides evidence that that by infinitely repeating their

23

Forwarders Dilemma (a game with the same payoff structure as the PD) an NE with
cooperative properties emerges, even though a single stage game has defect as its only
NE. Felegyhazi et al. (2003) investigates the effect of mobility on promoting co-operation
but unlike Srinivasan et al. (2003), does not use energy as a cost, instead the source
derives a benefit from the arrival of a packet at the destination. In static configurations,
the conditions necessary for co-operation rarely exist, whilst in a more mobile network,
the conditions become more feasible, and is further improved by increasing ’generosity’ in
their model. Jaramillo & Srikant (2007) uses the repeated PD to model selfishness and
assesses the use of common and derived game theoretic strategies to promote co-operation
in ad-hoc networks. TFT requires a perfect signal that a given packet was relayed, which
is not possible due to collisions on the medium. GTFT requires a perfect estimate of the
probability that a packet that was forwarded was not overheard by the originating node.
Contrite TFT (CTFT) integrates reputation when determining whether to cooperate or
defect. Nodes all begin in good standing and stay that way if they co-operate when CTFT
specifies they should, but it also provides an opportunity for nodes in a bad standing to
correct their error by cooperating in a single stage.

Bayesian games have also been used to model selfishness, (Urpi et al., 2003) capturing
the lossy nature of wireless communications. Each node belongs to one of a set of secret
energy types, and payoffs are computed based upon a number of factors: a type dependent
evaluation of their energy importance, the measure of energy spent with success and the
ratio of sent packets compared to those it wanted to send. Typical of Bayesian games,
nodes maintain a belief that a neighbour is of a given energy type, which provides the
weights to the Bayes Nash Equilibrium (BNE). Other incentive schemes (described in
§2.3.2) are applied to the model, and it is shown that co-operation can emerge provided
that enough members of the network agree to do so and that members do not forward
more traffic than they generate (introducing fairness).

A small number of proposals use game theory in the context of malicious behaviour.
Alpcan & Basar (2003) develop a distributed IDS implemented on a network of sensors
and an underlying cooperative N-player coalitional game that allows the IDS to switch
between a number of security levels during runtime, which increases or decreases the
sensitivity of security measures. Each sensor reports a security risk value for a given
intrusion type and the Shapley value, a method used to analyse the output of coalitions
(Shapley, 1953), aggregates the risk values and updates the security level should the output
exceed a predefined threshold. Alpcan & Basar (2003) also develop an extensive game with
incomplete information to model the behaviour, intent and target of adversaries and the
response of the IDS. IDS nodes know the adversary has made a move but do not know
the action; whether it attacked or did not. A mixed-strategy NE emerges in which the
probability of the adversary attacking decreases as the false alarm cost to the IDS also

24

decreases. How the adversary estimates the false alarm cost is uncertain, but this is an
intuitive result as in the absence of a false alarm cost, the IDS given a choice of either
detecting or not would always detect, and the adversary would always be caught in an
ideal IDS.

Bayesian games are also used to model the interactions between malicious adversaries
and IDS. Patcha & Park (2004) model these interactions in a repeated, zero-sum, 2-player
Bayesian game based on a classic signalling game. The sender is either a regular or attacker
type, and is private information. In both types the sender can attack or not attack. The
receiver player is the IDS, has a single type and two actions: detect or miss. Beliefs are
maintained for each interacting node and are updated after each game stage. Intuitively,
the beliefs should converge over the stages of the game reducing the false alarm rates
and increasing the IDS payoff. Like Alpcan & Basar (2003), if the false alarm cost is
sufficiently low, then the IDS will always respond. Liu et al. (2006) use the same player
definitions as Patcha & Park (2004), but players have additional terms representing energy
cost for monitoring and attacking in their payoff function. The updated beliefs switch the
IDS between lightweight and heavyweight monitoring systems to conserve energy when
heavyweight monitoring is unnecessary, for example, when the majority of nodes in the
network are deemed to be benign.

2.5.4 Discussion

Game theory provides a mathematical framework for studying the interactions of players
under conflict. There are an abundance of game models and types that can accurately
model common scenarios within MANET including repeated interactions between nodes,
uncertainty about the behaviour of other players and imperfect information revelation and
signalling. Most current applications deal with the problem of stimulating co-operation
in the presence of selfish agents; few deal with the use of game theory to stimulate the
correct behaviour in the presence of malicious adversaries. Game theory and mechanism
design offers the possibility to stimulate the desired behaviour as defined by the protocol
designer given the right incentives, enforcement of a given strategy, or simply by providing
uncertainty in the duration of the game. Game theory is complimentary to AIS: the former
provides a framework to reason whilst the latter provides techniques to detect and respond
to attacks.

2.6 Summary

This chapter reviewed a number of approaches which proactively mitigate misbehaviour
in ad-hoc networks as well as those which react to the changing MANET environment
in terms of the security attributes they aim to meet (§2.3). Whilst the threats from

25

adversaries constantly evolve (Table 2.2), they arise from the presence of a selfish, malicious
or faulty adversary. At a basic level most threats severely impact the availability of the
network, whether indirectly by decreasing the network lifetime or by the introduction of
routing instabilities. Many of the reviewed mechanisms (§2.3) do not consider detection
ambiguities within a MANET environment through their use of promiscuous notifications,
which often result in a large false detection rate. Furthermore, many do not consider
appropriate responses. The two emerging fields of AIS and game theory have been chosen
in this study as they possess desirable properties in a MANET environment. AIS and
the natural immune system it is based upon provides a decentralised, reactive, defence-
in-depth solution to detecting and eradicating infection. It is not sufficient to rely on the
AIS itself as there is the imperfect signalling to contend with in a wireless environment.
Game theory is proposed as a way to deal with this, by reasoning about detection events
during IDS activities. Chapter 4 identifies and develops adversary models for MANET.
Chapter 6 details the use of a general IDS framework to with game theoretic reasoning.
Chapter 7 enhances the game theoretic reasoning with an AIS component.

26

CHAPTER 3

SIMULATION METHODOLOGY

3.1 Introduction

SWANS is the wireless network simulation component built on top of the Jist simulation
engine, a Java-based, discrete time event simulator (Barr, 2004b,a). As of v1.0.6, develop-
ment of the simulator has been discontinued, but there is a growing community of users
that continue to provide bug fixes and extensions to the Jist/SWANS kernel. A measure
of this is the number of releases using Jist/SWANS at their core; these include SIDnet-
SWANS (Ghica et al., 2008) optimised for simulating sensor networks and SWANS++
(Otto & Choffnes, 2007) for simulating vehicular ad-hoc networks.

This chapter describes briefly the evaluation of Jist/SWANS and a number of compe-
ting simulators, introduces the design of simulations in the simulation environment and
details the development work of a number of extensions that were added to enhance the
simulator. A number of validation studies are also presented that highlighted bugs in
several of the Jist/SWANS protocol implementations. The chapter presents the fixes ap-
plied to stabilise the metrics achieved from these validation scenarios. Finally, a number
of performance metrics are defined to measure the efficacy of an attack carried out by an
adversary and measure the response effectiveness of an IDS from output network traces.

3.2 Simulation environment

Jist/SWANS (Barr, 2004b,a), Ns2 (ns2, 2010) and Opnet (OPNET Technologies Inc, 2010)
were each evaluated for this study, and Jist/SWANS was adopted for a number of rea-
sons. The author was familiar with the Java language and Barr et al. (2005); Schoch
et al. (2008) showed that the simulator performed and scaled well in simulations contai-
ning large numbers of nodes. A brief evaluation of Ns2 revealed a programming model
that used a combination of a C++ for simulation models backed by a tcl scripting engine,
resulting in complex simulation code. Opnet was discounted as the kernel source code was
not readily available. Additionally, the Jist/SWANS Application Programmers Interface

27

(API) was well documented and facilitated rapid prototyping and was easy to understand
as the project was organised into a set of packages which corresponded roughly to the
classical OSI model (Figure 3.1). The code pattern enforced strict simulation communi-
cation patterns, for example preventing MAC frame headers being made available to the
network layer. It also came with a large number of radio channel models, propagation
models, mobility models and routing protocols by default. The availability of propagation
models was especially important to determine the effects these had on intrusion detection
performance.

Application

Presentation

Session

Transport

Physical

Data link

Network

jist.swans.app

jist.swans.trans

jist.swans.radio

jist.swans.mac

jist.swans.net jist.swans.route

a) b)

pkiddie.app.AppUdp

pkiddie.trans.
TransUdp

pkiddie.radio.
RadioNoiseIndep

pkiddie.mac.Mac802_
11

pkiddie.net.NetIp
pkiddie.route.

RouteAodv

c)

N/A

N/A

N/A

N/A

Figure 3.1: a) OSI Model, b) corresponding SWANS package struc-
ture, c) Example node definition

As the project progressed, the use of Jist/SWANS presented a number of challenges.
Simulated entities were buggy and incomplete, which led to poor network performance
during initial validation studies that was not in line with expectations. In addition, se-
veral vital components were lacking, including trace support and a user interface to view
the simulation execution, necessary for an effective simulation study. Thus, a trace struc-
ture was defined, file logging was implemented, and a simulation user interface developed.
These extensions are presented in Appendix C for the interested reader. Also, contribu-
tions from the Jist/SWANS community were applied in the course of this work, namely
Schoch (2009) who provided patches to the kernel and Kliot (2009), who provided bug
fixes for several protocol implementations that were used in this study.

3.3 Metrics

A number of metrics were defined for use to compare the effectiveness of the developed
IDS’s. Goodput, packet delivery ratio and end-to-end delay are performance metrics and
provide an indication of the efficacy of responses invoked by the IDS. Response time and
response rate were IDS specific metrics derived to compare the performance of individual
IDS’s. Each metric was implemented as a script that post-processed the trace file generated

28

by the network simulation. These scripts can be found on the web as described in Appendix
D.

3.3.1 Goodput

Goodput, G, is defined as the application layer throughput, which is the number of useful
data bytes sent by flow source s that was received by a flow destination d, excluding
any retransmissions or routing overheads. This was measured by considering only the
application layer events for s and d within the trace file. The metric was implemented in
goodput.pl. Flow goodput is given by:

G(s, d) = bytes received(d)
t(last packet sent(s))− t(first packet sent(s)) (3.1)

3.3.2 Packet Delivery Ratio

Packet Delivery Ratio, PDR, is the ratio of data packets sent by s that were received d.
Like the goodput, this can be measured by considering the received and sent application
layer events for pairs of s and d only. The PDR for a flow is given by:

PDR(s, d) = data packets received(d)
data packets sent(s) (3.2)

This was implemented in packetstats.pl, which additionally outputted losses from all
possible sources, including queue, mac, route, ttl, misbehaviour or ids.

3.3.3 Average end-to-end delay

End to end delay for a packet p, τp, is defined as the interval between an application layer
packet p being sent by s and received by d’s application layer, and is given by:

τp(s, d) = tp(send(s))− tp(receive(d)) (3.3)

This metric was implemented in delay.pl.

3.3.4 Control Overheads

Control overheads are computed as the ratio of routing and IDS transmissions to data
transmissions in a simulation and is based upon the definition by Marti et al. (2000)
where a transmission is defined as the sending or forwarding of a packet. Broadcasts (e.g.
route requests) are counted as a single transmission. This measure was used instead of
normalised routing load (NRL), defined to be the ratio of the sum of transmitted control
messages to the sum of data packets delivered to a destination (Perkins et al., 2001),
since NRL is sensitive to misbehaviour in which packets are dropped as they are forwarded
towards the destination. This metric was implemented in routingoverhead_marti.pl.

29

3.3.5 Response rate

The response rate is computed as the ratio of responses taken against IDS nodes and
adversaries to the total number of responses in the simulation, and provides insight into
the ability of the IDS to discriminate between benign and malicious behaviour. This
metric was implemented in response_count.pl.

3.3.6 Average recovery time

Recovery time measures the time difference when an active attack reduces a metric to its
minimum and the IDS restores the metric to the pre-intrusion average. To measure this,
a time averaged metric was processed by peakdet (Billauer, 2011), to compute the set
of maxima and minima within the time averaged data that have a given peak threshold.
The recovery time is calculated from the difference of the time when the first minimum
metric after misbehaviour starts was located and the time which the metric exceeds the
pre-intrusion average.

In most cases, the misbehaviour results in data loss so goodput (§3.3.1) provided an
appropriate metric to determine recovery time. For other cases where misbehaviour did
not adversely affect goodput, other metrics, such as intercepted bytes (implemented in
window_intercepted_packets.pl) was used.

To determine recovery time, the Matlab function avg_recoverytime was developed
and the base metric time averaged over 20 samples. The peak threshold was set to 5% of
the pre-intrusion average metric, which resulted in good discrimination of extrema without
being susceptible to noise.

3.4 Monte-Carlo framework

Network simulations are the product of a large number of random variables that result in
the topology, flow placement, traffic generation, packet and frame losses and other features
of a simulation run. These properties fluctuate between runs, thus sampling a number of
repeats is vital to ensure that the resulting network metrics are credible. A Monte-Carlo
approach was adopted that repeated simulations for only the necessary number of times
until the running average of a studied metric converged to within a given threshold. In
Jist/SWANS, a Monte-Carlo simulation runner was developed as an intermediate layer
between the driver and Jist/SWANS runtime, and is shown in Figure 3.2.

The runner is supplied with the chosen post-processing script (§3.3) and some conver-
gence threshold. The script post-processes the trace file once the simulation has completed
and produces a metric. The runner adds this to a set of samples and computes a run-
ning average. If the difference between the old and new running average is less than the
convergence threshold, the simulation is terminated, else the simulation is repeated once

30

more. When the runner terminates, an average, variance and standard deviation of the
metric is output. This process is illustrated in Figure 3.3. DescriptiveStatistics, part
of the Commons Math Library (Apache Commons, 2010), was used to store the set of
samples in the runner and compute the average, variance and standard deviation. The
distribution of samples was also output as a histogram to check the resulting distribution
was unimodal and ensure the mean metric was useful as an end result of the simulation.

To further automate metric collection, the runner was developed so multiple Monte-
Carlo sessions could be queued for possible combinations of variables. For example, one
variable could be a choice of router from the set {defenceless, omniscient}, whilst the
second could be the ratio of adversaries present on the field, taking a minimum value
of 0, maximum value of 0.5 and step size of 0.1. The Monte-Carlo runner enumerates
through all the possible values, collecting metrics for a given simulation with the following
parameters:

• defenceless, ratio of adversaries = 0.0

• omniscient, ratio of adversaries = 0.0

• defenceless, ratio of adversaries = 0.1

• omniscient, ratio of adversaries = 0.1

• ...

In the above description, two variable definitions were demonstrated. A range variable,
like the ratio of adversaries on the field, takes a minimum, maximum and step size. A
choice variable, such as the choice of router, takes a comma separated list of possible
values. These are illustrated in Table 3.1.

Table 3.1: Variable types supported by Runner.
Type Arguments Example Notes

range type;

name;

min;

max;

step

type=range;

name=pcAdversaryNodes;

min=0.0;

max=0.6;

step=0.1

Increments min by step

each time, till max.

choice type;

name;

choices

type=choices;

name=router;

choices=aodv,

aodv-omniscient

Invokes simulation for
each of the choices
specified in choices.

31

SWANS runtime

jist.swans.Main

Monte-Carlo simulation runner

pkiddie.driver.Runner --mode

montecarlo --convergence 0.05

Simulation driver

pkiddie.driver.SimulationDriver

Post-processing script

/pkiddie/tools/perl/goodput.pl

Figure 3.2: Monte-Carlo simulation runner acts as an intermediary
between driver, post processing script and SWANS runtime.

Post-process trace,

obtaining value for metric

value within ±T of

running average?

Run simulation, generating

trace file

terminate true

start

Add value to running

average

false

Figure 3.3: Flow diagram for Monte-Carlo simulation runner

32

3.5 Validating Jist/SWANS

A significant amount of time was spent early on in development to ensure the simulation
models supplied with Jist/SWANS produced network metrics comparable to other network
simulators when simulating similar networks (including propagation environment and node
models). Ns2 was used as the benchmark network simulator since its models were validated
by the contributions of a large community of users.

3.5.1 Methodology

An Ns2 script, parse_jistswans.tcl, was created to enable the user to drive a simulation
from a Jist/SWANS trace file with the same topology, traffic distribution and mobility
pattern of the original simulation. The script extracted scenario, add_node, move_node

and createflow events from the trace file and mapped them to the relevant Ns2 com-
mands. For example the move_node event in Jist/SWANS was mapped to the setdest in
Ns2.

Additionally, the node models used by the Ns2 simulations were hard coded into
the script and matched those employed in the Jist/SWANS simulation. In particular,
the Ns2 radio model was configured to match the default Jist/SWANS radio configura-
tion. To this end, RXThresh_ was configured appropriately by compiling and running
/ns-2.34/indep-utils/propagation/threshold.cc and specifying a 2.4Ghz frequency.

Tables 3.2, 3.3 and F.2 present the runtime environment used for Jist/SWANS and
Ns2 respectively to ensure the study satisfied the basic repeatability criteria of Kurkowski
et al. (2005b,a). The scripts used can be found on the web as described in Appendix D.

Table 3.2: Runtime environment for Jist/SWANS simulator

Simulator Jist/SWANS
Version based on v1.0.6 Modified simulation kernel from

Schoch (2009) and own
amendments. Full list of changes in
Appendix B

Operating
System

Windows 7 RTM (7600),
64bit

33

Java Runtime
Environment
(JRE)

1.5.0_22, 32bit Jist/SWANS currently
incompatible with Java 1.6 and
higher due to a dependency on
Bytecode Engineering Library
(BCEL) (Apache Jakarta Project,
2010). Development on BCEL
stopped at Java 1.5 and is buggy
when rewriting the bytecode of
Java 1.6 class files.

Random
Number
Generator
(RNG)

java.util.Random

pseudo random number
generator (PRNG)

linear congruential type;
Use of global simulation PRNG,
random, specified in
jist.swans.Constants. Seed used
is overridden in simulation driver,
with unique seed specified per
simulation run.

Table 3.3: Runtime environment for Ns2 simulator

Simulator Ns2
Version ns-allinone-v2.3.4
Operating
System

Ubuntu 8.04 i686 (32bit) kernel: 2.6.24-23-generic

gcc 4.2.4
Random
Number
Generator
(RNG)

default Ns2 RNG linear congruential type

Further differences in the defaults employed by both simulators’ models were found
and were normalised to ensure a consistency in the simulated network environments. For
example, the AODV router in Ns2 supports both HELLO messages and link layer feed-
back as methods to determine neighbour connectivity. whilst the Jist/SWANS AODV
router, RouteAodv, supported only HELLO messages. For a fair comparison, HELLO
messages were used in Ns2 by commenting out #define AODV_LINK_LAYER_DETECTION in
/ns-2.34/aodv/aodv.h and recompiling.

The Monte-Carlo framework introduced in §3.4 was applied to the Jist/SWANS scena-

34

rio, which generated a number of Jist/SWANS trace files that drove Ns2. Packet delivery
ratio and end-to-end delay metrics were produced for traces produced by both simulators
simulations and they showed that RouteAodv suffered from a poor PDR and higher end-to-
end delay than the Ns2 AODV router. On closer investigation, the HELLO_INTERVAL
constant in RouteAodv and used during route maintenance, was found to be set too high,
resulting in a large number of undeliverable (and consequentially dropped) packets that
worsened in highly mobile scenarios. In the default implementation, it could take up to
90s (HELLO_ALLOWED_LOSS*HELLO_INTERVAL s) to detect a link break. The
defaults in both simulators are shown in Table 3.5.

Table 3.5: Default value of AODV constants in Jist/SWANS and Ns2
Jist/SWANS (v1.06) Ns2 (v2.33)

AODV_TIMEOUT 30s N/A
HELLO_INTERVAL 30s 1s
HELLO_ALLOWED_LOSS 3 2

AODV_TIMEOUT is specific to RouteAodv and regulates calls to a timeout method
every AODV_TIMEOUT seconds. This method performs periodic housekeeping, inclu-
ding checking the reachability of neighbours. To do so, it iterates through the set of out-
going nodes in the outgoingSet, checking if the number of periods a HELLO message or
other broadcast message was not received has exceeded HELLO_ALLOWED_LOSS. The
AODV specification (Perkins, 1997, §10) recommends the HELLO_INTERVAL constant
be set to 1s, but in RouteAodv, this is meaningless unless AODV_TIMEOUT is also
set to 1s. The results obtained before and after the constants were updated are shown
in Figure 3.4 and illustrate the results obtained by RouteAodvMultiInterface, where
AODV_TIMEOUT and HELLO_INTERVAL was set to 1s were much more comparable.

The scenario detailed in Table F.2 was then scaled up to include more flows and
higher node densities, again driven primarily by Jist/SWANS and run in Ns2. As shown
Figure 3.5, the PDR obtained in the Jist/SWANS simulation was significantly lower whilst
the end-to-end delay was higher than the equivalent Ns2 scenario, requiring a further
investigation into the cause of the losses. A subtle interaction between a bug in the
RadioNoiseAdditive radio model and a bug in the Mac802_11 MAC layer was identified:
nodes entered backoff during congestion but never returned from this state. Schoch (2009)
and Kliot (2009) had independently discovered these bugs and provided appropriate fixes,
so these were added to produce a second version of RouteAodvMultiInterface resulting
in more consistent network performance similar to that of Ns2 (Figure 3.5).

35

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Jist/SWANS (RouteAodv) Jist/SWANS (...MultiInterface) ns2

P
a

ck
e

t
D

e
li

v
e

ry
 R

a
ti

o

Simulator / Router

0

0.5

1

1.5

2

2.5

3

3.5

Jist/SWANS (RouteAodv) Jist/SWANS (...MultiInterface) ns2

e
n

d
 t

o
 e

n
d

 d
e

la
y

 (
s)

Simulator / Router

Figure 3.4: Packet delivery ratio and end to end delay achieved in
pkiddie.driver.Ns2ValidationSimple.java from the use of the
original and customised AODV routers in Jist/SWANS, and the Ns2
AODV router, set to use HELLO messages.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Jist/SWANS (...MultiInterface

v1)

Jist/SWANS (...MultiInterface

v2)

ns2

P
a

ck
e

t
D

e
li

v
e

ry
 R

a
ti

o

Simulator / Router

0

0.5

1

1.5

2

2.5

3

3.5

4

Jist/SWANS (...MultiInterface

v1)

Jist/SWANS (...MultiInterface

v2)

ns2

e
n

d
 t

o
 e

n
d

 d
e

la
y

 (
s)

Simulator / Router

Figure 3.5: Packet delivery ratio and end-to-end delay
achieved in scaled up scenario by Jist/SWANS with versions of
RouteAodvMultiInterface and Ns2 AODV router.

Table 3.6: Jist/SWANS simulation parameters over-
ridden in scaled up scenario and implemented in
pkiddie.driver.Ns2ValidationScaledUp.java.

Simulation
Property

Jist/SWANS Class
Property Value

Route pkiddie.route.

RouteAodvMultiInterface

flows n/a n/a
20

nodes n/a n/a
100

A final round of validation ensured the new AODV router produced results compa-
rable to those in the literature. A number of scenarios presented in highly cited works

36

were implemented in Jist/SWANS, including Perkins et al. (2001) and Takai et al. (2001)
who evaluated AODV in the same scenario with employing several fading and path loss
models. Both authors adopted Ns2 and used the default AODV router, achieving PDRs
between 90-100% and 20-40% in each scenario respectively. The average PDRs obtained
by Jist/SWANS (shown in §F.1 and §F.2) varied between 80-100% and 15-20%, correlat-
ing with these published results, which gave additional confidence in the robustness of the
Jist/SWANS simulation models.

3.6 Summary

In this chapter Jist/SWANS was evaluated and chosen as a simulation platform. A number
of components were added to ease simulation debugging, development and post-processing
for metric collection. Significant validation work revealed bugs and incomplete implemen-
tations within several protocol layer implementations. Where possible, these bugs were
fixed and the functionality added, which produced results comparable to published simula-
tion studies for large scale MANETs in realistic propagation environments. An exhaustive
list of all modifications made in this chapter are provided in Appendix B. This gives confi-
dence in the results obtained by Jist/SWANS for future simulations. The development of
a general framework for a MANET IDS is detailed in the next chapter.

37

CHAPTER 4

DEVELOPMENT OF ADVERSARY MODELS

In Chapter 2, a number of challenges of intrusion detection in MANETs were described.
A significant challenge chosen as the subject of this work is to classify misbehaviour in the
presence of a number of uncertainties, namely in detection. Many of current techniques
we reviewed previously do not factor in these uncertainties which in turn leads to a high
false detection rate.

This chapter describes the attacks that have been investigated in this project and pro-
vides implementations of these within AODV for the Jist/SWANS simulator, introduced
in Chapter 3. The uncertainties in the detection of the each of these attacks have been
identified. The capabilities of the simulated adversary are explored and described.

4.1 Introduction

The characteristics of MANETs (reviewed in Chapter 2) lead to security challenges that
span every layer of the protocol stack. Attacks can be directed at the physical layer, as in
the case of jamming (Xu et al., 2005) or an adversary can drop or delay packets to target
applications that require high Packet Delivery Ratio (PDR) and small delays, such as
Voice over IP (VoIP) (Caro et al., 2008). Many of these are classical networking attacks,
but the unique characteristics of a MANET, such as the use of decentralised algorithms
over which services such as routing are run, and a shared wireless medium (Deng et al.,
2002) lead to novel security challenges. Additionally, member nodes implicitly trust one
another and attacks can occur by both outsiders and insiders. An outsider attack is caused
by an adversary that does not belong to the MANET and is often brute-force (such
as jamming communications) whilst an insider attack is often more focussed, targeting
specific nodes or services, and emerges from captured nodes belonging to the network
(Helsinki & Kärpijoki, 2000). To become an insider, an adversary could defeat physical
layer security and cryptography exclusively through brute-force methods at considerable
computational expense. An easier option in unattended MANET deployments is the
capture of nodes, upon which the adversary captures all cryptographic keys, which can be

38

used to access network services.
Routing in MANET is a distributed service run on each node and requires the full

participation of each to function most efficiently. As is the case with any open distributed
system, MANETs experience nodes with different preferences, objectives and utilities, or
put simply, different types. Feigenbaum & Shenker (2002) term these types as selfish, ma-
licious, faulty, or obedient. We redefine these agent types with respect to their objectives
during routing.

A selfish node is strategic, conserving its finite, measurable resources (e.g. energy
or own throughput) for its own activities and does not co-operate in the forwarding of
data routing as is expected by others (Michiardi & Molva, 2002). To motivate a selfish
node to co-operate, additional incentives are needed, such as the use of a strategy to
service data for the requestor if it has been reciprocal in the past (Felegyhazi et al.,
2006). This strategy can bias the computation of the selfish node’s utility function towards
participation. Selfish nodes do not intentionally damage other nodes (Michiardi & Molva,
2002) and their behaviour should not cause inconsistencies (such as the propagation of
routing loops) in the routing protocol of other nodes. However, the presence of selfish
nodes can affect the availability of end-to-end routes if they connect network partitions,
and may reduce the lifetime of the network as the load on honest neighbours increases.

A malicious node purposely inflicts damage by finding exploitable weaknesses in MA-
NET services, but this behaviour may be bounded. If it is, the node is termed strategic,
through the need to be in a good standing with neighbours to make use of the network in
the future. This is usually measured in terms of reputation, for which security protocols
such as CORE (Michiardi & Molva, 2002) or CONFIDANT (Buchegger & Le Boudec,
2002b) exist. The effects of malicious nodes are wide ranging and may lead to routing
inconsistencies that may propagate throughout the network unless they are detected early,
thus making attribution of the initial misbehaviour difficult. Faulty nodes do not follow the
prescribed protocol as dictated by the service, due to hardware failure or a software related
problem such as an incorrect implementation, buggy, crash-prone code, or poor software
design. Finally, obedient nodes adhere to the operations prescribed by the protocol of the
service in question.

4.1.1 Threats to MANET routing

Reactive routing protocols expose a range of vulnerabilities as they operate by discovering
routes on-demand. The adversary can attack in real time with minimal set-up time (Wang
et al., 2003) and a range of mechanisms are available to the adversary by which to invade
routes. The range of attacks is much more limited in a proactive routing protocol, in part
due to routing information being exchanged well in advance requiring that attack must be
fashioned in advance also (Wang et al., 2003).

39

S 1

D

3

S2

D2

CSMA

busy

Figure 4.1: A topology with two established flows between S and D
and S2 and D2. S would detect 1 to be dropping packets if S was
analysing promiscuous notifications using a Watchdog technique. 1 is
simply waiting for the medium to be free to send data to D.

A number of attacks can be directed at the routing layer of target nodes. Black
hole, wormhole and grey hole attacks attract data from many sources to a small number
of adversaries and may result in data loss, modification or information disclosure (Deng
et al., 2002). Flooding of routing packets, whether erroneous or not, depletes batteries,
causing premature node expiry, and decreases network lifetime. A node can prevent itself
from becoming part of a route by ignoring route requests and simultaneously making use
of the network.

4.1.1.1 Selfishness

AODV route discovery specifies that if a node receives a request and it is not the des-
tination, or an intermediate node with a fresh enough route to the destination, that it
should forward the request (Perkins et al., 2001). During route discovery, neighbours that
forward requests set up a chain of reverse route entries which point to the originator of
the request. This reverse route is used to forward a route advertisement to the originator
should the route request be satisfied. A selfish adversary preserves resources by discarding
requests. Thus, reverse routing entries never include the adversary, guaranteeing that the
chosen route always excludes the adversary (Figure 4.2). By continually failing to forward
requests, the selfish adversary can minimise the number of routes it serves. The net effect
of this is that the routing load which would normally be satisfied by the selfish node is
unfairly distributed on the remaining benign nodes, which leads to premature battery ex-
haustion and a reduction in network lifetime. Furthermore, the selfish adversary continues
to use of the network to serve any of its own data flows.

Another common description of a selfish adversary is one that fully participates in route
discovery (hence “agreeing” to carry the data flow), but switches off packet forwarding
due to the associated energy cost (Felegyhazi et al., 2006). This type of behaviour is
fundamentally no different to a malicious adversary attacking with a black or grey hole,

40

S 1 2 3

M4 5 D

S 1 2 3

M4 5 D

S 1 2 3

M4 5 D

S 1 2 3

M4 5 D

1.

2.

3.

4.

RREQ

RREP

reverse route

dropped RREQ

Figure 4.2: A selfish node (M) that does not forward route requests
during route discovery. 1. S sends a route request for D. 2. M explicitly
drops the RREQ whilst the other neighbours of S forward the route
request to their neighbours. 3. The route request arrives at D. None of
the reverse route entries point to adversary M. 4. The path the route
advertisement from D takes. M has excluded itself from servicing a
possible route.

41

thus we also classify this as malicious, rather than selfish behaviour.

4.1.1.2 Black hole

The black hole is a well-studied attack on MANET routing protocols (Deng et al., 2002;
Hu et al., 2005; Buchegger & Le Boudec, 2002a; Pirzada & McDonald, 2004) upon which
an adversary drops the data it is meant to forward on behalf of a neighbour (Figure 4.3).
To increase its chances of success, the adversary can intercept routes by continuously
advertising itself as having a path to a requested destination. The adversary short-circuits
the route table lookup and responds by issuing a fake route advertisement. The net effect is
that a significant number of flows are attracted toward the black hole adversary and PDR
drops substantially. An observation of dropped packets does not confirm the existence of a
black hole since physical layer phenomena, such as a busy channel, collisions, fading caused
by receiver mobility, and path loss, may all cause frames to be dropped, also leading to
dropped packets.

4.1.1.3 Grey hole

The grey hole attack covers a number of variations of the black hole attack carried out
probabilistically, usually for a list of targets. The probability used to determine whether
to drop a packet or to send a fake advertisement can be unique to each target (Srinivasan
et al., 2008). By targeting a subset of nodes and dropping some data, the adversary
introduces further uncertainty than it can use to manipulate a neighbour’s perception of
it and avoid detection.

4.1.1.4 Wormholes

Wormholes require at least a pair of co-operating adversaries (Yang et al., 2004), and
targets the selection of shortest paths between source-destination pairs in distance vector
routing (Baras et al., 2007). The first adversary receives packets at one point in the
network and tunnels them over a private communication channel to the second adversary,
who replays them at another point in the network (Hu et al., 2002, 2005). The adversaries
possess at least two network interfaces and are most successful at capturing data when the
secondary (tunnel) interface has a higher throughput and lower latency than the primary
network interface, and the tunnel distance is greater than the wireless transmission range
of a single hop (Hu et al., 2003a).

Wormholes are a form of a rushing attack (Hu et al., 2003b), which targets the route
discovery process, namely the fact that the destination, or an intermediate node with a
route to the destination replies to the first route request received and discards requests
with the same RREQ ID that arrive later. More generally, this behaviour corresponds to

42

1.

2.

3.

4.

RREQ

RREP

S1 1 2 D2

MS2 5 D1

S1 1 2 D2

MS2 5 D1

S1 1 2 D2

MS2 5 D1

S1 1 2 D2

MS2 5 D1

data

dropped data

Figure 4.3: A black hole at M which attracts data flows from S1
destined to D1 and S2 to D2 respectively, and then drops the data. 1.
S1 sends a route request for D1. M does not have a route to D1 but
immediately sends a route advertisement to D1. 2. S1 uses M as the
next hop to D1. Any data is dropped. 3. Another source, S2, sends
a route request for D2. Again, the adversary responds immediately. 4.
Two data flows have been attracted toward M.

43

a routing race condition, which arises when the routing service takes an action based on
the first instance of a given message it receives, ignoring later instances of that message
(Karlof & Wagner, 2003). Hence, if the adversary tunnels route requests through a higher
throughput interface (implicitly rushing it), the adversaries are almost guaranteed to be
part of the corresponding route and the flow will use the tunnel interface (Hu et al., 2003b).

At this point the adversaries have not actually attacked the network in any way. In fact,
they could be said to be offering a beneficial service as they are introducing other paths
that data may flow, making the network more connected (Hu et al., 2003a). Unfortunately,
the existence of a wormhole puts the adversaries serving it in a powerful position as they
will often be chosen to serve longer routes in the network. This position can be exploited
by discarding, modifying or delaying packets, or disclosing information from the packets
which should otherwise be forwarded over the tunnel.

4.1.1.5 Flooding Attack

Flooding attacks comprise any attack in which the adversary consumes resources by gener-
ating a number of repetitive messages and broadcasts them to its neighbours (Vigna et al.,
2004). The messages can optionally be constructed in such a way that they are processed
by the neighbours of the adversary, disseminating them network wide and resulting in a
collapse of network throughput in the worst case. In a RREQ flood attack, a malicious
adversary continually originates route requests for a fictional destination, incrementing the
RREQ ID so that neighbours process each request and forward them to their neighbours.

4.2 Development of adversary models for simulation

There are numerous published studies that identify and measure the effects of misbeha-
viour within a MANET environment, some of which were reviewed in §2.3. Unfortunately,
few simulation models have emerged from this research and are often designed to support
a particular scenario and/or topology. Thus, a number of general adversary models were
developed to support the research in this thesis. The aim of developing these models were
for each to be flexible enough to enable their application in any scenario and in any ran-
domly generated topology. To develop the models, the actions necessary to successfully
carry out each attack were decomposed. Often, these actions comprised of a period of data
collection, the generation of appropriate routing packets and some confirmation of success
before launching a successive attack. In this section, the actions required to carry out each
attack are written as pseudo code, with minimum protocol detail necessary so that we can
elaborate the attack processing. These attacks were implemented in Jist/SWANS v1.0.6
(Barr, 2004b,a), within RouteAodvMultiInterfaceAdversary, the adversarial router. It
is worth noting that receive in this context means the routing layer is receiving a rou-

44

S M1

4 5

1.

1

6

2

M2

3

D

S M1

4 5

2.

1

6

2

M2

3

D

S M1

4 5

3.

1

6

2

M2

3

D

4. S M1

4 5

1

6

2

M2

3

D

RREQ

Faked RREP

RREP

Reverse

Route

Figure 4.4: A wormhole attack in progress, with the tunnel between
M1 and M2, who are colluding adversaries. 1. S broadcasts a route
request to D. 2. M1 broadcasts the route request over all interfaces,
including the high throughput tunnel between itself and M2. 3. M2
rebroadcasts the route request as normal, which reaches D before the
third broadcast by the honest nodes has happened. 4. D replies as
normal to the route request, which takes the route over the tunnel
back to S. Any subsequent route request packets by the honest nodes
are dropped by D.

45

ting message and send means the network layer is requesting the routing layer transmit
a message that requires routing, which could be data, or routed control packets, in parti-
cular, route replies. Finally, netAddr and macAddr correspond to the network and MAC
addresses of the node, used in most cases to check whether the packet should be targeted.
This is used so an adversary does not target its own packets.

4.2.1 Selfishness

To implement selfishness within AODV, selfish adversaries drop any route requests recei-
ved unless they are the requested destination (i.e. a node wants to start a data session with
the selfish node). In RouteAodvMultiInterfaceAdversary, receiveRouteRequest() was
overridden to drop the request received unless the requested destination was the selfish
node. This is illustrated in the following pseudo-code, which illustrates the difference bet-
ween route request processing by an honest and selfish node in Algorithm 1 and Algorithm
2 respectively.

Algorithm 1 receiveRouteRequest for an honest node
if is destination then
generate route reply

else
if not in rreq buffer then
decrement ttl
if ttl greater than 0 then
broadcast rreq

end if
end if

end if

Algorithm 2 receiveRouteRequest for a selfish node
if is destination then
generate route reply

else
drop

end if

4.2.2 Route invasion

Route invasion, in its various forms, is a precursor to the black hole, grey hole and worm-
hole attacks described in §4.1.1, and is of particular interest to an adversarial node that
has just been captured to establish an attacking position within the MANET, whether

46

routes are established and stable, or not. There are three classes of route invasion attacks:
passive, in which routing messages are input or suppressed by the adversary during normal
execution of the routing protocol, active attacks that cause premature error conditions on
routes or inject unsolicited advertisements outside normal running of the protocol, and
hybrid attacks, which combine both. For example, a false routing message sent during
route discovery is passive as it is completed during an expected protocol procedure, in this
case route discovery, whilst an unsolicited route advertisement is an active attack that
is not specifically excluded by the routing protocol but is also not expected. From the
adversary’s perspective, route invasion should be controlled as the more routes an adver-
sary successfully invades, the more loaded the adversary will become, and it is likely to
be detected not for misbehaviour, but for excessive dropping instead if its interface queue
length is regularly exceeded.

4.2.2.1 Route freshness

To understand route invasion fully, it becomes necessary to define a “fresh” or “more
favourable” route advertisement, since route invasion targets the process by which reactive
routing protocols select route advertisements and the method by which existing route table
entries are removed. The AODV RFC (Perkins, 1997) specifies that upon receiving a
route advertisement, the existing route table entry (if it exists) is updated in the following
circumstances:

1. the sequence number in the routing table is marked as invalid in route table entry.

2. the Destination Sequence Number in the RREP is greater than the node’s copy of
the destination sequence number and the known value is valid, or

3. the sequence numbers are the same, but the route is marked as inactive, or

4. the sequence numbers are the same, and the New Hop Count is smaller than the
hop count in route table entry.

The sequence number is generally used to ensure route freshness and guarantee loop-free
operation in AODV, but it, and the Hop Count fields can be targeted by the adversary to
cause a defenceless reactive routing protocol to select the adversary to serve a given route,
even if the corresponding route through the adversary is not optimal.

4.2.2.2 Passive route invasion

Passive route invasion includes techniques that an adversary can invade a route during
route discovery and route maintenance, and is suited for the invasion of new or stale routes.
A couple of techniques were implemented in RouteAodvMultiInterfaceAdversary to
achieve this.

47

The first and most simple technique causes the adversary to generate a more favou-
rable advertisement for known destinations by adding a large constant to the destination
sequence number (dsn) currently held in the route table entry, before it sends the adver-
tisement to the target. This technique requires very little processing. When the target
compares this with an existing route table entry, the route advertisement with the fake,
higher dsn will overwrite any existing with a lower dsn. In general, advertisements with
higher dsn’s are favoured over those with a lower hop count (Perkins, 1997, §6.7) . Thus,
by implementing this technique, the adversary stands a good chance of being made part
of the route.

The second technique involves the adversary creating a fake route advertisement to D
from the receipt of a route request from a target source node, S (Figure 4.5), even when
it does not have a route to D in its route cache. If the dsn is unknown, (S having had
no prior interaction with D) the adversary guesses an appropriate sequence number based
upon the maximum dsn of the current routes in its routing table. If, on the other hand,
D was known to S in the past, the adversary can use the value of the dsn in the route
request on which to base the dsn on in the faked advertisement. The adversary sends this
fake route advertisement back to S. The two forms of this attack are for the adversary to
generate a fake route advertisement as if it is from the destination and to generate the
advertisement as if it is from an intermediate node with a route to the destination.

48

S 1 2 D

M

S 1 2 D

M

S 1 2 D

M

1.

2.

3. RREQ

Faked RREP

RREP

DATA

Figure 4.5: M invades route between S and D passively by creating
and sending a fake route advertisement to S. 1. S broadcasts a route
request for destination D. 2. M receives the route request and replies
with a fake route advertisement. 3. Since M is closer to S than D is to
S, the fake route advertisement from M is selected initially. This may
be temporary based upon how attractive the real route advertisement
from D is. M is now in a position to conduct further attacks as part of
the flow.

Passive route invasion does not guarantee success for the adversary for a number
of reasons. The attack is susceptible to mobility constraints, so D or S may be fewer
hops than S is currently to M, limiting the success of the attack. Also, M may add
only a conservative value to the dsn of the fake route advertisement, so the true route
advertisement sent by D, or an intermediate node, may actually be more favourable. In
this case, the fake route advertisement would either be ignored or added to the route cache
and subsequently overwritten by the true advertisement, depending on the order that they
are received. Thus, to increase its chances of being used to route data from S, the adversary
can increase the value of the constant it adds to the dsn, or advertise a smaller hop count,
to make the fake route advertisement more favourable. Large deviations of either from
the norm are more likely to be detected.

If the adversary succeeds in invading the route and starts receiving data from S it is
then in a position to carry out attacks. The adversary may not wish to arouse suspicion

49

immediately so it could begin by forwarding data as normal. This may involve a route
discovery for D if it short-circuited the original route discovery procedure. Alternatively,
whilst it generated a fake route advertisement to D, it could have sent a proactive route
request for D, used if successful in invading the route. In either case, whilst the adversary
continues to be part of the route it can perform a number of data based attacks.

Sample pseudo code for passive route invasion is presented in Algorithm 3, describing
the actions necessary to passively invade a route. In RouteAodvMultiInterfaceAdversary,
receiveRouteRequest() is modified such that fake route replies are generated for any
destination that is not the adversary. The ability for the adversary to generate a fake
route reply either as the destination or as an intermediate node with a route to the
destination is controlled by manipulating the RREP’s hopCount. The maintenance of a
passive_invasion_cache by the adversary is an optional procedure but ensures the adver-
sary can regulate its rate of attack to reduce the likelihood of detection. Furthermore,
it provides a notification of success so it can either attempt to invade the route again if
unsuccessful or attack the successfully redirected flow (§4.1.1.2). As such, receive() is
modified to check whether the data arriving at the adversary is from a targeted route in
the passive_invasion_cache.

Algorithm 3 receiveRouteRequest method for a node attacking by passive route inva-
sion
if is destination then
send route reply

else
rrep.origIp← rreq.origIp
rrep.destIp← rreq.destIp
rrep.hopCount← 0
send fake route reply
entry.origIp← rreq.origIp
entry.destIp← rreq.destIp
insert entry into passive_invasion_cache
add timeout for entry

end if

Algorithm 4 receive method for a node attacking by passive route invasion
for all entries in passive_invasion_cache do
if ip.src = entry.origIp and ip.dest = entry.destIp then
//user defined function here

end if
end for

50

4.2.2.3 Active route invasion

To intercept an existing flow an adversary can employ active route invasion. An adversary
injects an unsolicited route advertisement for a destination D and sends it to the source
S via a neighbour of the adversary that has been observed to be forwarding data for S.
This is completed even whilst a route exists between S and D and is in use. Should the
unsolicited route advertisement for the destination be more favourable than the existing
entry in the route cache for intermediate hops back to S, M will succeed.

For the adversary, an initial stage of eavesdropping is required to collect data pertai-
ning to target flows in the network, consisting of source-destination pairs and intermediate
nodes that are currently forwarding data. Thus, active route invasion is more computa-
tionally expensive than passive route invasion, due to this additional requirement of state.
When the adversary has identified a flow it is not part of (observed by only promiscuous
packets being received for a given source-destination pair), it generates a fake route adver-
tisement addressed to the flow source S and sends it to an intermediate node. Assuming
that the targeted intermediate node runs a defenceless routing protocol, it modifies its
next hop to use adversary M. Like passive route invasion, the adversary can regulate this
behaviour by adjusting the interval by which active route invasion is attempted for obser-
ved flows. Active route invasion is shown in Figure 4.6, and implementation details are
presented in Algorithm 5.

Algorithm 5 receive method for a node attacking by active route invasion
if ip message received promiscuously and not my ip message then
rrep.origIp← ip.src
rrep.destIp← ip.dest
send fake route reply

entry.origIp← rreq.origIp
entry.destIp← rreq.destIp
insert entry into active_invasion_cache
add timeout for entry

else if ip message received not promiscuously then
for all entries in active_invasion_cache do
if ip.src = entry.origIp and ip.dest = entry.destIp then
//user defined function here

end if
end for

end if

An interesting variation of the unsolicited RREP attack is where an adversary sends

51

S 1 2 D

M

S 1 2 D

M

S 1 2 D

M

1.

2.

3.
Faked RREP

DATA

Figure 4.6: An existing data flow between S and D, which M wishes to
invade through the use of active route invasion. 1. Adversary M caches
nodes 1 and 2, and S and D as flow end-points by eavesdropping on
relevant routing and data packets (dotted lines). 2. M sends a faked
route advertisement about D to 1, and 1 updates the next hop to D
accordingly. 3. M redirects the data flow between S and D, using this
position to launch further attacks from.

52

a RREQ for the destination to retrieve its latest destination sequence number in order
to base the sequence number used in the unsolicited advertisement, rather than choosing
one arbitrarily. In addition, a number of other techniques are possible if the network has
no protection from Sybil attacks (Douceur, 2002): an adversary can clone the identity of
another node and create a route advertisement to redirect the route as if the advertisement
was from a node participating in the route (Ning & Sun, 2003). It could also create an
appropriate RERR as if the RERR was from a node participating in the route, forcing an
upstream node to invoke route discovery that the adversary could subsequently target.

4.2.2.4 Hybrid route invasion

More elaborate schemes are possible in hybrid route invasion and are devised by combining
both active and passive actions. If targets have no protection from Sybil attacks, a route
error can be created and injected actively by the adversary. Unlike route replies, route
errors are authenticated in AODV: they must be generated from neighbours upstream
of the unreachable destination. The Sybil attacker sends a route error with a source
IP address of a neighbour servicing the route with an unreachable destination of a later
neighbour on the route. This is illustrated in Figure 4.7, whereby M sends a RERR as
if from node 2 to node 1, and sends a fake route advertisement on the subsequent route
discovery process.

53

S 1 2 D

M

RREP

S 1 2 D

M

RRER

RREQ

Faked

message

DATA

S 1 2 D

M

2.

3.

4.

S 1 2 D

M

1.

Figure 4.7: An existing data flow between S and D. 1. The adversary
eavesdrops and caches the IP addresses/MAC addresses of intermediate
nodes responsible for forwarding the flow data. 2. The adversary,
having detected two intermediate nodes, creates a RERR from (2)
about the route to D, and sends it to 1. 3. Node 1 queues packets
from S whilst attempting to find a new route to D. M can reply passively
with a forged route reply attack in order to invade the flow. 4. M has
successfully redirected the flow through itself, through a combination
of active and passive attacks.

As in active forms of route invasion, MAC-IP pairs of the target nodes need to be
captured, in order to address the routing messages created by the adversary (§4.2.2.3).
The net result is that the target invokes local repair to find an alternative route to the
destination. If this is unsuccessful it often results in complete route rediscovery by S. The
adversary now attacks passively by forging a more favourable route advertisement to the
route requests generated from local repair (similar to the process involved in §4.2.2.2),

54

and becomes part of the targeted route. These attacks, though interesting, are outside
the scope of this thesis, so are not discussed any further.

4.2.2.5 The efficacy of route invasion attacks in MANET

Route invasion enables an adversary that has just captured a number of nodes to establish
an attacking position within the MANET. Several mechanisms for achieving this have been
discussed and the choice of an appropriate strategy is dependent on the current state of
the targeted route that backs the flow, as shown in Table 4.1. Very often, a period of data
collection is required to first identify the presence of flows, the set of neighbours serving
those flows and an appropriate destination sequence number and hop count to use. The
use of a realistic dsn and hop count could be important if the adversary fears it is going
to be detected.

Table 4.1: Route invasion strategies to use depending on the state of
the route.

Route state Route invasion strategy

No route Passive (§4.5)
Expired route Passive (§4.5)
Route in use Active (§4.2.2.3)

state Hybrid (§4.2.2.4)

To determine the effectiveness of route invasion as a precursor to future attacks such as
those in §4.2.3-4.2.4, simulations were run with increasing ratios of adversaries, with each
employing one of a number of route invasion strategies. The simulations were configured
as shown in Appendix A, with 10 CBR flows and 100 nodes. Where route invasion was
used, the adversary proceeded to drop data that was not destined for it.

The impact on network PDR of benign nodes from adversaries employing various
route invasion strategies is shown in Figure 4.8, illustrating that fake-rrep, a passive
method for invading flows (§4.2.2.2) is the most effective approach an adversary can employ
to reduce the overall network’s PDR. Conversely, fake-seqnum does not result in any
significant reduction of network PDR over the range of adversaries. The advantage of
route invasion diminishes for a larger percentage of adversary nodes, which is explained
by the fact that there is increased likelihood of encountering at least one adversary in
the routes formed in simulations with a larger number of adversary nodes, in which route
invasion becomes unnecessary.

55

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

unassisted black hole
fake−seqnum & black hole
fake−rrep & black hole
unsolicited−rrep & black hole

Figure 4.8: Packet Delivery Ratio achieved in simulations with varying
numbers of adversaries employing one of a number of route invasion
attacks.

4.2.3 Black hole attack

The black hole attack, in which flows are attracted towards it and dropped, was imple-
mented in two stages. Firstly, the adversary awaits the arrival of a route request from a
node. On receipt of a request, it elects to follow the route discovery procedure as normal
or it replies with a fake route advertisement, using one of the route invasion techniques
described in §4.2.2. By invading the route it reduces the time and increases the chance
that the adversary will be selected to serve the route. Should the adversary start receiving
data that requires forwarding from the requestor, the adversary simply drops the data.
The description of the attack in Algorithm 6 assumes a route has been established from
the source to destination, through the black hole.

Algorithm 6 send method for a black hole node
if if ip.src != netAddr then
drop

else
forward message: find next hop, or queue until next hop found.

end if

56

4.2.4 Grey hole attack

The grey hole attack is a variation of the black hole where the dropping behaviour of the
adversary is more subtle. Variations of the attack implemented include:

1. Drop all data from a blacklist of target nodes.

2. Drop data probabilistically from a blacklist of target nodes.

3. Drop data probabilistically from all nodes.

In variations 1 and 2, the adversary only attempts to invade the route if the requesting
node is in the blacklist. In variation 3, the adversary attempts to invade all routes. Once
the adversary has captured the route, the adversary determines the probability by which
it should drop the data packet from the blacklisted node, which determines whether the
packet is dropped or not. In variation 1, the probability function is such that all data from
all targets is dropped, should the grey hole node be required to forward it. In variations 2
and 3, a probability function determines when the adversary drops or forwards the data.
The implementation of the grey hole is described in Algorithm 7.

Algorithm 7 send method for a grey hole node
if if ip.src != netAddr then
check blacklist for ip.src and ip.dest
if message is blacklisted then
drop

else
forward message: find next hop, or queue until next hop found.

end if
else
forward message: find next hop, or queue until next hop found.

end if

4.2.5 Flooding Attack

A flooding attack involves any misbehaviour in which messages are fabricated by the
adversary for the sole purpose of reducing throughput in the local area, or, if the messages
are created in such a way that they are re-broadcast by neighbours, over a larger area. In
RREQ flooding, the adversary generates messages for a fictional destination. The shape
of the flooding attack is controlled by adjusting the burst, interval and pause times, which
regulates the flooding behaviour. The dissemination area can be controlled through the
use of an appropriate TTL. Each fabricated route request is created with an increasing
RREQ ID which forces neighbours to process every RREQ received from the adversary,

57

and broadcast it to their neighbours. Thus, based on the configuration of this misbehaviour
the adversary can reduce network goodput by varying degrees.

4.2.6 Wormhole Attack

A wormhole attack requires adversaries to be equipped with multiple interfaces, where the
second tunnel interface is of a higher throughput than the shared interface. The attack
was implemented by extending the Jist/SWANS AODV router, RouteAodv (Lin, 2004), to
be aware of multiple network interfaces. Route requests are forwarded over each interface
that is not the loopback interface. As a result, routing table entries have an additional
interface_id field which represents the interface to forward the data onto (Table 4.2).
The underlying routing messages were not modified.

Table 4.2: A routing table entry for wormhole adversaries. The com-
mon fields of an entry are greyed out, whilst the interface_id field
specific to multiple interface aware routing protocols (a requirement
for wormhole adversaries) is emphasised.

Next Hop
Destination

Sequence Number
Hop Count Interface Id

M 200 2 1

Destination

Address

D

...

In Figure 4.4, route requests arriving at adversary M1 (wormhole node) are broadcast
over both interfaces; the shared interface and the tunnel to M2 (wormhole node). When
a route reply is received (and in most cases, especially for larger hop counts, from M2),
normal route reply processing occurs but now the interface that the reply was received
is added to the corresponding route table entry. When M1 is requested to forward data,
the interface_id and next hop address are used for onward data forwarding to the
destination address. Algorithm 8 illustrates how we enumerate over each of the interfaces.
This, in addition to the interface_id on route table entries, is all that is necessary to
implement a multiple-interface aware AODV in Jist/SWANS.

4.3 Conclusions

In this chapter, the effect of selfishness, black holes, grey holes, wormholes, flooding and
route invasion attacks in a MANET were investigated. As shown in §4.2.2.5, attack efficacy
can be increased significantly for low percentages of malicious nodes by initially employing
route invasion, to identify active flows or those in the process of being established, and
to redirect them through the adversary. Most attacks required a number of pre-requisite

58

Algorithm 8 receiveRouteRequest method for a wormhole node
if is destination then
generate route reply

else
for all i in interfaces do
if i 6= loopback then
broadcast route request on interface i;

end if
end for

end if

conditions to be met, often done so by a period of eavesdropping to identify source-
destination pairs and intermediate nodes. Implementation details of each attack were
provided in the context of Jist/SWANS, and implemented in an adversarial router. The
adversary’s behaviour can be tuned at any point in simulation time, useful in this study as
it allows intrusion detection systems developed for Jist/SWANS to be exercised over the
full range of attacks. In Chapter 5, a number of detectors are described that can detect
each of the attacks described here and are implemented to form the common services to
be used in a novel approach in reasoning about detection events.

59

CHAPTER 5

COMMON SERVICES AND DETECTION
STRATEGIES FOR A MANET INTRUSION

DETECTION SYSTEM

5.1 Introduction

Typical intrusion detection systems employ a common architecture consisting of an audit
stream, an analysis engine and a response component (Bace, 2000). Generally, information
is acquired from a number of sources and compressed into a form suitable for analysis. The
analyser generates detection events, which, based upon the rules and policies employed by
the IDS, may retaliate.

The first vital requirement is to determine a reliable mechanism to gather audit data
in order to observe misbehaviour. This chapter presents a number of audit sources in
MANETs and details detection strategies based on the detailed description of misbehaviour
described in Chapter 4. Each detector uses a number of common services to associate a
detection event with a neighbour’s identity. Detection strategies are distinguished by their
use of imperfect or perfect audit data. Detectors using imperfect sources are susceptible
to false positives whilst perfect schemes generate alerts only from the presence of misbe-
haviour in the network. The importance of differentiating these sources is motivated by
a case study that compares the performance of a detector using imperfect audit data to
one that is assisted by omniscient signalling. Lastly, a number of suitable responses are
described.

5.2 Common Services

A number of data structures are defined and are maintained by the IDS, including a
neighbour table and a list of known MAC-IP pairs, which are used by each detector
introduced in this chapter.

60

5.2.1 Neighbour table

The IDS maintains a list of one-hop neighbours constructed from broadcast packets re-
ceived. Each entry is keyed by a MAC addresses and a timeout that reflects the interval
by which a neighbour is determined to be unreachable, computed in a similar manner
to AODV, i.e. after ALLOWED_HELLO_LOSS*HELLO_INTERVAL Perkins (1997,
§6.9). Entries that have timed out are removed and any registered detectors are informed
of the change in order to update their state.

5.2.2 MAC-IP Pairs

The IDS maintains a list of the identities of network nodes by caching MAC-IP pairs from
received packets. If a broadcast packet is received then the full identity of the sender
is added to the MAC-IP table. If a unicast packet is received, each IP address listed
within the packet is added to the table with a null MAC address. These partial entries
are updated when any additional information becomes available (e.g. from receipt of
broadcast packets). This allows the profile computed by the IDS on a partial identity to
be re-assigned to the full identity when available. One of the common uses of this list is to
enable detectors to resolve a MAC address with a known IP address, useful in the dropped
packet detector as it prevents the raising of a false alert when a packet is being forwarded
to the final hop, when the destination does not acknowledge receipt of the packet.

5.3 Audit source

Auditing produces an event stream that can be used in the analysis process. The IDS uses
a combination of received packets, those received promiscuously and forwarded packets
for analysis. Setting the MAC layer to promiscuous mode enables a node to receive all
packets in its transmission range, including those not addressed to it, making an additional
imperfect data source available. A number of alternative approaches to collecting audit
data were evaluated, including the use of network layer acknowledgments (Balakrishnan
et al., 2005) and probing (Just et al., 2003) but these introduce large overheads and are
susceptible to targeted attacks by an intelligent adversary.

Promiscuous mode can be used to monitor the behaviour of neighbours directly and
indirectly. In the latter case, this allows the IDS to monitor the behaviour of neighbours it
has no association with. This can help to identify misbehaviour in denser networks where
nodes have a large number of neighbours and it is likely the IDS could observe two or
more forwarding notifications of a packet by neighbours wholly indirectly. Promiscuous
monitoring has weaknesses though; it increases the energy expenditure and is imperfect
in the sense that notifications will not always be received, due to ambiguous collisions,
receiver collisions and asymmetric links (Marti et al., 2000). An example of a collision is

61

presented in Figure 5.2, which is a type of loss that should not be reacted to. Queuing
delays and dropped packets resulting from an overloaded interface queue are outside the
control of the monitored node but may result in a response being taken against it.

5.3.1 Generating an audit source in Jist/SWANS

An audit stream was generated in Jist/SWANS by passing packets from a number of
contexts at the network layer directly to the IDS. Each node’s MAC layer was initialised
with the promiscuous flag (promisc) set to true, to enable all nodes to receive all packets
in their transmission range, including those that are not explicitly addressed to them.
The context of the packet was preserved by calling the send or receive procedure on the
IDS, setting the promisc flag as appropriate and is passed to each detector in turn. A
simplified figure showing this process is shown in Figure 5.3.

5.4 Detectors

Each audit data sample received from the network layer is passed into the IDS analysis
engine containing a set of detectors, which immediately returns so the network layer can
continue processing the packet as normal. Each detector then processes the packet imme-
diately, caches the header or content for future use, or returns if it is of no interest. Each
detector outputs notifications to the IDS asynchronously. Detection procedures are in-
voked outside the packet flow ensuring the IDS scales even for demanding network traffic.
A block diagram of the analysis engine used which produces the notifications is presented
in Figure 5.4.

The notifications are stored in a vector maintained by the IDS that keeps a count of
each type for further processing at the end of an interval, upon which it is reset. The
imperfect and perfect detection mechanisms were implemented in this thesis are presented
in the subsections below.

5.4.1 Dropped packets detection

The detection of dropped packets is based on an imperfect detection mechanism introduced
by Marti et al. (2000), which generates drop or forward notifications based on observations
of the forwarding action of monitored nodes. Packets to be sent onwards are added to a
buffer and packets overheard are used to determine if the packet in the buffer was actually
forwarded by the monitored neighbour. This implementation was further developed to
produce notifications based on whether the monitored packet is a control packet or data.

In direct monitoring (Figure 5.1a), a node maintains a time window of packets that it
has recently forwarded to its neighbours. When a packet is to be forwarded, it is added
to the window and assigned a timeout. If the timeout is exceeded without the monitoring

62

S1 4

S2

data

radio links

promiscuous

notifications

Direct monitoring (flow S1->D)

6

2

D

3

5

1
a)

S1 4

S2

data

radio links

promiscuous

notifications

6

2

D

3

5

1

Indirect monitoring (flow S2->D)

b)

Figure 5.1: a) Node 5 directly monitoring flow S1->D. b) Node 5
indirectly monitoring flow S2->D exclusively through promiscuous no-
tifications.

S 1 2 3 D

S2

D2

Figure 5.2: A collision at node 2, which is undetectable through
promiscuous monitoring alone.

63

Network layer

MAC layer

send(msg)

receive
(msg,
lastHop,
promisc)

IDS

send(msg,
nextHop)

receive(msg,
lastHop,
promisc)

Transport layer

pump(msg,next
Hop)

send(msg,
dst)

receiveData
(msg)

Figure 5.3: Simplified flow diagram showing audit data (complete
with context) being sent to IDS.

64

Notification Vector

Analysis

Detector

Detector
Detector

notifications

12

forward_data

0

drop_data

4...

rreq

send(msg,nextHop)

receive(msg,lastHop,
promisc)

N
e

tw
o

rk
 L

ay
e

r

Figure 5.4: Analyser containing a set of detectors, operating on each
audit data sample received by the IDS, and producing a set of notifi-
cations managed by a notification vector.

node having overheard the same packet being forwarded by the chosen next hop, the de-
tector issues a drop notification. Otherwise, the monitored packet is removed, the timeout
is cancelled and a forward notification is issued. The time window maintained by the
dropped packet detector is illustrated in Figure 5.5. τn represents the duration between
packet n being sent to a neighbour and it being consequentially overheard by the moni-
toring node as a result of the neighbour forwarding it onwards. Both routing and data
packets are monitored in this way, thus the detector generates four possible notifications:
forward_data, drop_data, forward_routing and drop_routing, thereby reporting pos-
itive and negative experiences with neighbours. The process by which notifications are
generated from this detector is illustrated in Figure 5.6.

Indirect monitoring (Figure 5.1b), whereby promiscuously received packets are also
added to the time window and the forwarding operation of the monitored node is verified
is not possible using AODV since the required information is unavailable. It would be
possible to do so with a source routing protocol by checking the forwarder corresponds to
one of the nodes on the source route header of the forwarded data packet.

Algorithms 9–11 provide the core implementation of the dropped packet detector. Al-
gorithm 9 illustrates the insertion of a packet into the time window. nextHop is the
neighbour chosen to forward the packet, pktEntry is a data structure that maintains the
state required to resolve a promiscuous notification consisting of a unique packet iden-

65

1

tτ1

Time window:

Promiscuous
notifications:

1

2

2

τ2

3

Figure 5.5: Time window maintained by the dropped packet detector,
showing cached packet entries and promiscuous notifications received.
τn represents the duration between packet n being sent and it being
received promiscuously by the monitoring node as a result of the neigh-
bour forwarding it onwards.

S 1 2 3

M4 5 D

data

dropped data

Data

id=1,

nextHop=M

notify

Forwarded(M)

notify

Drop(M)

Notification received

from M

timeout

idle

Send data

(id=1,src=S,dst=D,

nextHop=M)

data
(id=1,
src=S,

dest=D,
nextHop=M)

Figure 5.6: Detection of dropped packets from M by S, represented
as a state transition diagram.

66

tifier, id, and the nextHop. msg is the packet to be sent. Algorithm 10 illustrates the
actions that are taken when msg is overhead promiscuously and a forward notification is
generated. Finally, Algorithm 11 provides the implementation of the timeout for each
pktEntry, responsible for generating a drop notification should the packet not be over-
heard promiscuously.

Algorithm 9 Watchdog.send(msg,intId,nextHop) pseudo-code
if msg is unicast and nextHop is not msg destination then
pktEntry.id← msg.id

pktEntry.mac← nextHop

pktEntry.forwarded← false
insert packet entry pktEntry into window
assign timeout to pktEntry

end if

Algorithm 10 Watchdog.receive(msg,lastHop,intId,promisc) pseudo-code
if msg is unicast and msg received promiscuously then
size← length(window)
for i = 0 to size do
pktEntry ← window[i]
if pktEntry.id = msg.id then
pktEntry.forwarded← true
notifyForwarded()
return

end if
end for

end if

Algorithm 11 Watchdog.packetTimeout(pktEntry) pseudo-code
if pktEntry.forwarded = false then
notifyDrop()

end if
delete(pktEntry,window)

This detector differentiates between data and routing packets, which can assist the IDS
in determining the type of misbehaviour and respond appropriately: a large number of
dropped route replies may signify selfish behaviour, whilst a combination of dropped data
and control packets may be the result of malicious behaviour. Additionally, the presence
of wormholes can be determined by this detector, as if a wormhole node forwards data

67

over a private wormhole interface, promiscuous notifications will not be received by the
monitoring node, which would report a dropped packet. Lastly, to reduce false positives
from undelivered packets, link layer feedback is used to disarm related entries in the time
window, generated when the number of retries for a given frame transmission has been
exceeded in 802.11.

5.4.2 Modified packets detection

A simple extension of dropped packet detection (§5.4.1) was developed to determine if
monitored packets were forwarded without modification by the chosen neighbour. In this
detection scheme, entries used in the time window for dropped packet detection have a
hash of the IP packet and payload, generated from a computationally inexpensive hashing
algorithm such as Message-Digest algorithm 5 (MD5) (Rivest, 1992). Should the monitor
overhear the same packet from the monitored next hop, the hash of the packet in the
time window is compared to the overheard packet. If both hashes are equal, the packet
was sent without modification. If they are not equal, a modify_data or modify_routing

notification is generated for monitored neighbours.
To ensure false positives are not generated, mutable fields such as the TTL (Time

To Live) are excluded during the hashing operation. For routing packets, additional
mutable fields are excluded that are updated during their processing by intermediate
nodes (Perkins, 1997, §6.7), such as the Number of Hops for route replies.

5.4.3 Route Request flooding detection

AODV specifies an optional RREQ_RATELIMIT (Perkins, 1997, §6.9) constant which
specifies the maximum number of RREQs a node should originate per second. Neither the
default Ns2 or Jist/SWANS AODV routers rate limit RREQs, but simulations employing
the basic scenario and up to 4 CBR flows (Table 3.6) showed that the number of RREQs
originated per second by any node was considerably less than this limit. Thus, in flooding
detection, each monitoring node keeps a count of the RREQs originated by each neighbour,
and if the count for neighbour exceeds the maximum number of RREQs that can be
originated over a given interval, a flood_rreq notification is generated.

5.4.4 Dropped Route Requests detection

The implementation of the dropped route request detector was motivated by selfish nodes,
who purposely exclude themselves from serving routes in a number of ways. They could
drop route replies indiscriminately or wait until the route is established and drop data, but
this would be would be detected by the dropped packet detector (§5.4.1). Alternatively,
they could indiscriminately drop RREQs.

68

RREQ +

rebroadcasts

dropped RREQ

RREQ

(rreqId=0)

notify

Forwarded(n)

notifyDrop

(neighbours-

broadcast

Neighbours)

RREQ rebroadcast

from neighbour n

timeout: 2*NODE_

TRAVERSAL_TIME

idle

Send RREQ

(rreqId=0)

S 1 2 3

M4 5 D

neighbours:1,4,M

broadcastNeighbours:1,4

Figure 5.7: Detection of dropped route requests from M by S, repre-
sented as a state transition diagram. Assume that M is sending data,
hence S knows its current neighbours are 1, 4 and M.

An idle selfish node is difficult to discover as it is invisible to neighbours’ routing and
network layers. If the selfish node is actively using the network, then an imperfect strategy
to detect dropped requests can be devised, since the selfish node originates broadcast
packets during route discovery and sends periodic HELLO messages to sustain the links
to neighbours it is using. Any broadcast packets sent by the selfish node can be used by
neighbouring nodes during detection to indicate the selfish node is a neighbour.

A selfish node can be detected imperfectly if the monitoring node observes recent
broadcast traffic from the selfish node, but the selfish node fails to broadcast the monitoring
node’s own route requests. Whilst AODV discards re-broadcasted RREQs if they have
already been processed, this information can be used to construct a list of rebroadcasters of
the RREQ to be compared to the list of neighbours that should have broadcast the RREQ.
Those nodes that should have broadcast the RREQ but are not in the list of rebroadcasters
may have dropped the route request. The mechanism is illustrated in Figure 5.7.

To formalise this as an implementation, when a node originates a route request for a
given destination, it caches this structure in a buffer, adding a timeout and the current set
of neighbours to it. A forward_rreq notification is generated for those nodes observed
to have rebroadcasted the RREQ. When the timeout elapses, a drop_rreq notification is
generated for the remaining nodes.

69

Algorithm 12 expresses the actions taken by the IDS when a RREQ is originated,
Algorithm 13 lists the actions taken by the RREQ originator when it receives the re-
broadcasted RREQ from a neighbour, and Algorithm 14 shows the actions taken when
the entry times out.

Algorithm 12 Ids.send(msg,interfaceId,nextHop) pseudo-code
if msg.payload is RREQ and node is rreq originator then
RREQ← msg.payload

entry.origIp← RREQ.origIp

entry.rreqId← RREQ.rreqId

entry.neighbours← ids.getMacIpPairs()
insert rreq entry entry into rreqEntries
assign timeout to entry

end if

Algorithm 13 Ids.receive(msg,lastHop,interfaceId,promisc) pseudo-code
if msg.payload is RREQ then
RREQ← msg.payload

size← length(rreqEntries)
for i = 0 to size do
entry ← rreqEntries[i]
if entry.origIp = RREQ.origIp and entry.rreqId = RREQ.rreqId then
add lastHop to entry.broadcastNeighbours
notSelfish(lastHop)
return

end if
end for

end if

Like dropped packet detection, this scheme is imperfect and is prone to generating
more false positives than dropped packet detection, as 802.11 broadcast messages are sent
without acknowledgments and are unreliable (Lundgren et al., 2002). Some of the possible
reasons a monitor could falsely accuse a neighbour of dropping route requests include the
following:

• the neighbour, though in range, may not receive the broadcasted RREQ message
due to local congestion at the MAC layer,

• the neighbour may receive the broadcasted RREQ message but may be heavily
loaded and have large queuing delays and may not rebroadcast the RREQ by the
allotted time.

70

Algorithm 14 Ids.rreqEntryTimeout(entry) pseudo-code
remove neighbours in entry.broadcastNeighbours from entry.neighbours

size← length(neighbours)
for i = 0 to size do
notifySelfish(neighbours[i])

end for
delete entry from rreqEntries

• the monitor could miss the observation of the re-broadcasted RREQ from the neigh-
bour.

• The neighbour list maintained by the monitor may be out-of-date and include nodes
that are no longer in communication range. This is why entries in the neighbour
table (§5.2.1) are subject to a timeout equal to that which AODV uses to determine
a next hop as unreachable.

Only RREQs originated by the monitor node are monitored by the IDS, purposely ex-
cluding forwarded RREQs. The reason for this is that it is not clear which neighbours
have processed and forwarded the route request in the past. These neighbours will not
re-broadcast the RREQ by the definition of the route discovery procedure (Perkins, 1997,
§6.5), and would otherwise lead to the generation of a false positive.

5.4.5 Route invasion detection

5.4.5.1 Fake route reply as destination

In this type of route invasion, an adversary advertises a route as if it is the requested
destination, even if it is not, or currently has no route to it. The adversary can make the
advertisement more favourable to the target by appending an arbitrarily large destination
sequence number onto it, to overwrite any existing entries in the target’s routing table.

This attack can be detected by any of the next hop neighbours of the adversary. When
a destination replies to a route request, the RREP’s Hop Count field is set to 0. The IDS
checks that the Destination IP Address field of the RREP payload is equal to the Source
IP Address on the IP header. If it is not equal a fake_rrep notification is generated.
This can be implemented as a simple rule, such as that illustrated in the flow diagram in
Figure 5.8, which detects this attack.

5.4.5.2 Unsolicited route reply

An unsolicited route reply is a form of active route invasion where a malicious node sends
an advertisement for a destination to a target node it observes as forwarding traffic to

71

S 1 2 D

M

IP(src=M,dst=S)

RREP(orig=S, dst=D

destSeqNum=50,hopCount=0)

IP(src=D,dst=S)

RREP(orig=S,

dst=D

destSeqNum=1,

hopCount=0)

RREQ

Faked RREP

RREP

hopCount=0receiveRouteReply()
IP.src=

RREP.dst

drop

processtrue

false

Figure 5.8: Detection of a faked route reply “as destination” from M
by 1, represented as a flow diagram. In this case, 1 can safely drop the
route advertisement from M, and send the true route advertisement (in
green) to S.

that destination, in an attempt to overwrite the existing route table entry and redirect
the traffic toward the adversary. The attack was described in detail in §4.2.2. The simplest
form of the attack is to send an unsolicited route reply for the flow destination to the flow
source via a chosen intermediate node. Though the flow source may have been sending
traffic via a stable route and did not initiate route discovery for the destination, it processes
the route reply regardless and uses it if it is more favourable.

To detect an unsolicited route advertisement imperfectly, the IDS defines a period of
time after the request has been sent out that replies should be processed as normal. Once
the request has been fulfilled, any further advertisements for the destination received by
the requesting node generate an unsolicited_rrep notification unless as the result of
requestor initiated route maintenance. Since it is entirely possible that multiple route
advertisements may be received during normal operation of the network, a duration is
defined by which notifications are suppressed.

To formalise this, all nodes store route discoveries for nodes in a buffer and during
the period of time a node remains in there route advertisements are processed without
notifying the IDS. Once an advertisement has been processed, the entry for the node is
removed from the buffer after NET_TRAVERSAL_TIME, to allow for any other adver-
tisements to arrive. Any arriving thereafter generate an unsolicited_rrep notification.
The detection of this is illustrated in Figure 5.9.

72

rrep dest in

rreqBuffer
receiveRouteReply()

drop

processtrue

false

S 1 2 D

M

Faked RREP

DATA

rreqBuffer=∅

Figure 5.9: Detection of an unsolicited route reply from M by 1 using
sIDS, represented as a flow diagram. In this case, 1 can safely drop the
route advertisement from M, using the existing route with nextHop =
2.

5.4.5.3 Additional notes on route invasion

The correct maintenance of destination sequence numbers is key to the loop-free property
of AODV (Perkins, 1997). In the above route invasion approaches, the hop count and
destination sequence number fields are specifically targeted by the adversary and can
introduce routing loops into the network, either as an intended or unintended side-effect.
The propagation of a routing loop is shown in Figure 5.10.

So, in addition to being able to detect the forms of route invasion described in §5.4.5.1–
5.4.5.2 and reacting instantaneously (to prevent the proliferation of false routing informa-
tion network wide) routing loop detection is also advisable to maintain high levels of packet
delivery. This can be implemented by creating a time window of monitored packets (e.g.
§5.4.1) and checking if the received packet has been forwarded in the past.

5.5 Computing metrics

A 12-dimensional notification vector stores a count of each notification from the set of de-
tectors for each neighbour n over the time period specified by INTERVAL and represents
the compressed form of the audit data, which is used for the purposes of intrusion detec-
tion. The structure of this vector isDn = {forward_data, drop_data, forward_routing,
drop_routing, modify_data, modify_routing, forward_rreq, drop_rreq, fake_rrep,
unsolicited_rrep, rreq_count, rrep_count}. This compression reduces the computa-

73

S 1 2 3 4

M 6 7 8 D

destSeqNum=1destSeqNum=50

S 1 2 3 4

M 6 7 8 D

S 1 2 3 4

M 6 7 D

S 1 2 3 4

M 6 7 D

destSeqNum=2destSeqNum=50

S 1 2 3 4

M 6 7 D

1.

2.

3.

4.

5.

RREQ

Faked RREP

RREP

DATA

Figure 5.10: A routing loop caused by a route invasion attack. 1.
and 2. A route invasion attack by M, who fabricates an advertisement
with a high destination sequence number, destSeqNum=50. 3. Node
7, discovering that 8 has roamed out of range, initiates local repair for
a new route to destination D. 4. Both D and S reply, but the reply
from S has a larger destination sequence number, so is chosen. 5. This
results in the routing loop shown.

74

tional burden and memory required to store the historical data about neighbours.
The notifications are transformed into a number of metrics defined as ratios that en-

able the IDS to discriminate between benign and malicious behaviour for a given function.
Ratios with a value close to one signify benign behaviour for that function (e.g. forward-
ing data, forwarding data without modification or forwarding control packets) whilst a
ratio close to zero indicates behaviour that deviates from the expectations of the routing
protocol, and may be malicious. Each IDS computes an 8-dimensional vector (Mn) of
metrics for the neighbour n, every INTERVAL seconds, from the notification vector about
a neighbour n (Dn), generated above. Mn consists of the following elements:

1. Forwarded data rate (m1) is a ratio of forward_data notifications to the sum of
drop_data and forward_data notifications for n. m1 = 1 means all monitored
packets were forwarded by n.

m1 = forward_datan
forward_datan + drop_datan

(5.1)

2. Forwarded routing rate (m2) is a ratio of forward_route notifications to the sum
of drop_route and forward_route notifications for n.

m2 = forward_routen
forward_routen + drop_routen

(5.2)

3. Unmodified data rate (m3) is a ratio of modify_data notifications to forward_data

notifications for n. As n modifies more data packets, this ratio decreases.

m3 = modify_datan
forward_datan

(5.3)

4. Unmodified routing rate (m4) is a ratio of modify_route notifications to forward_route

notifications for n.
m4 = modify_routen

forward_routen
(5.4)

5. Forwarded RREQ rate (m5) is a ratio of forward_rreq notifications to the sum of
forward_rreq and drop_rreq notifications for n.

m5 = forward_rreqn
forward_rreqn + drop_rreqn

(5.5)

6. Fake RREP rate (m6) is a ratio of fake_rrep notifications to the sum of route replies
originated by n stored in rrep_count.

m6 = 1−
(
fake_rrepn
rrep_countn

)
(5.6)

7. Unsolicited RREP rate (m7) is a ratio of the sum of unsolicited_rrep notifications
to the total number of route replies originated by n, stored in rrep_count.

m7 = 1−
(
unsolicited_rrepn
rrep_countn

)
(5.7)

75

8. RREQ flood rate (m8) is expressed by the following function:

m8 =

1 0 ≥ rreq_count ≤ RREQ_RATELIMIT

0 otherwise
(5.8)

Once the metrics have been computed, Dn is reset to collect the notifications in the next
interval. Mn is used by the IDS as the basis of any reasoning before it invokes a response.

5.5.1 Considerations when calculating metrics

Evaluating new values for each of the metrics in Mn is conditional on having the requisite
notifications for n, determined by n’s use of the network. Certain conditions may arise
where no notifications of a particular type will be received in a period, for example,
during light data loads or low mobility. In the first case, the IDS may not observe any
data forwarded by n and thus be unable to compute m1, which expresses the forwarding
behaviour of it, whilst in the second case, the IDS will be unable to compute m2, which
expresses the forwarding of routing messages by n. In addition, as described in §5.4, some
of the notifications are determined from imperfect detection methods, leading to a low
evaluation for one or more metrics. This subsection details the approaches employed by
the IDS to mitigate these problems.

5.5.1.1 Imperfect detectors

The detection methods that employ eavesdropping are liable to generate false notifications
that may lead to the calculation of low valued metrics in one time period and cause an IDS
using the instantaneous value of the metric to retaliate in the following period. To prevent
knee-jerk reactions of this nature, each metric was smoothed by applying the following
function:

new mn = α.old mn + (1− α).latest mn (5.9)

This corresponds to each metric being computed from an effective memory of k samples,
with the following relationship to α:

k = 1
1− α (5.10)

It was postulated that if α was set too low, the IDS would respond to honest nodes as a
result of missed observations, whilst if α was too high, the IDS would become increasingly
insensitive to misbehaviour. An appropriate value of α was determined by running several
simulations in §6.6.1.

76

5.5.1.2 No requisite audit data

If the IDS is unable to compute a metric from the current notification vector, the new
value is calculated from the last known sample and a small increment, δ, is added to it so
that nodes are eventually re-introduced. Using m1 as an example:

lim
forward_data+drop_data→0

m1 = last m1 + δ (5.11)

5.6 Responses

The IDS is equipped a number of responses to provide incentives to malicious and selfish
nodes to co-operate whilst mitigating the spread of influence of misbehaviour and min-
imising the effect on network quality-of-service. The responses against a neighbour n are
invoked by a reasoning scheme, such as thresholding, which maps the values of the metrics
to zero or more responses. The responses considered in this work are:

1. RESPONSE_IGNORE_ALL: all packets originating from the suspect network or
MAC address are ignored. This prevents the suspect from accessing the network
entirely.

2. RESPONSE_IGNORE_DATA: the data originating from the suspect network or
MAC address is ignored. This prevents the suspect from using the network for its
own activities but does not stop it from contributing to the routing service, giving
the suspect an opportunity to show it has corrected its behaviour.

3. RESPONSE_IGNORE_ROUTING: control packets originating from the suspect
network or MAC address are ignored. If a suspect is accused of tampering or in-
jecting false routing information, this prevents the IDS node from processing further
advertisements and circulating this information network-wide. Route requests origi-
nating from the suspect are also ignored, which prevents the suspect from becoming
a forwarder for the IDS node in order to find an alternative route.

4. RESPONSE_PURGE_ROUTE: the IDS removes all references to the suspect from
the routing table. Any destinations that are served by the suspect as the next hop
are removed, which when used with RESPONSE_IGNORE_ROUTING, can find
an alternative route to the destination that does not include the suspect.

5. RESPONSE_CLEAR: clears any of the above responses and processes the packets
with the suspect network or MAC address as normal.

77

5.7 Using imperfect detection mechanisms: A simulation study

Detectors relying on notifications from promiscuous monitoring or the receipt of broadcast
packets often miss observations and generate false positive detections that could deny a
benign node access to the network if the IDS retaliates. Whilst missed observations are
acknowledged for their effect on IDS performance (Marti et al., 2000), many simulated
studies of IDS fail to mention the propagation environment they use (Marti et al., 2000).
More realistic propagation environments that employ fading are likely to compound the
issue of missed observations.

This study aims to show that simple threshold-based IDS’s exhibit good performance in
simulations with ideal propagation environments, generating a small number of false posi-
tives, but in more realistic propagation environments, false positives increase dramatically;
to motivate the importance of reasoning as a mechanism to improve IDS performance.

5.7.1 Method

An IDS using the dropped packet detector described in §5.4.1 was applied to a network
with no misbehaviour in two network scenarios:

1. an ideal propagation environment with no fading and Freespace Pathloss,

2. with Rayleigh fading and Two-ray Pathloss.

In another simulation, an IDS using an ideal dropped packet detector was applied to the
same environments. The ideal detector is sent an omniscient notification for every packet
successfully forwarded by the monitored neighbour and correctly issues forward notifica-
tions where it would have otherwise missed the overheard packet from the neighbour. The
dropped packet detector issues drop alerts for these missed observations even if the neigh-
bour did forward the packet, as is commonly the case. Thus the ratio of alerts that are
false detections from missed observations and those arising from the neighbour dropping
the packet can be determined.

5.7.1.1 IDS architecture

The audit data stream for each IDS node was generated from promiscuously and non-
promiscuously received packets and those queued for forwarding, as described in §5.3.
A threshold-based IDS was equipped with the dropped packet detector or ideal dropped
packet detector, producing a notification from the set {drop_data, drop_routing, for-

ward_data, forward_routing} for each data and routing packet that required forward-
ing. The IDS was configured as shown in Table 5.1.

The metrics m1 and m2 were computed from the relevant notification counts for each
observed neighbour n every INTERVAL seconds, as shown in §5.5. Once the metrics had

78

Table 5.1: IDS parameters used in simulation study
Parameter Value

INTERVAL 1s
MIN_SAMPLES 5

METRIC_THRESHOLD 0.5

been updated a reputation value rn was calculated for n and added to a reputation table
managed by the IDS. rn was calculated as follows:

rn =

1 m1 ≥METRIC_THRESHOLD

−1 m1 < METRIC_THRESHOLD
(5.12)

The default reputation assigned to n was zero. Until MIN_SAMPLES samples were
collected, rn = 0. The following response mapping was applied to n from mean value of
rn and defined as follows:

response(n) =

RESPONSE_CLEAR rn ≥ 0

{RESPONSE_ALL,RESPONSE_PURGE_ROUTE} rn < 0
(5.13)

The response chosen from this mapping was applied for the duration specified by
INTERVAL. Thus, if rn dropped below zero, data and routing packets originating from
n would not be processed or forwarded, whilst if rn was greater than zero, the responses
from the previous interval were cleared and packets originating from n were processed and
forwarded by the IDS as normal.

5.7.1.2 Scenario

A simulated MANET was subjected to two different propagation environments: one with
no fading and Freespace Pathloss, and another with Rayleigh fading and Two Ray Pathloss.
This varies transmission radius of a node, so to keep the average route length constant,
the transmission radius was determined and the simulation area adjusted appropriately.

To compute the transmission range of a node, a simulation sent 100 messages between
two nodes placed at increasing distances from one another and reported the number of
received messages at each of these distances. The results were averaged by using the
Monte-Carlo approach described in §3.4. The graph shown in Figure 5.11 shows the PDR
for each distance for the two propagation environments used.

79

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance between nodes (m)

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

Rayleigh Fading & Two Ray Pathloss
No Fading & Freespace Pathloss

Figure 5.11: PDRs achieved over various transmission ranges (deter-
mined by TransmissionRadius driver) and propagation models.

Table 5.2: Transmission radius’ chosen for different propagation envi-
ronments, and field length required to keep average route length con-
stant.
Propagation environment Transmission radius Field length

Freespace Pathloss, No fading rtfn
= 600 lenfn = 2009

Two Ray Pathloss, Rayleigh Fading rttr = 365 lentr = 3300

To keep the average route length constant between the two environments, the field
length was computed using the following formula whilst keeping the required number
of nodes, N = 77 , the average number of neighbours, < n >= 8, and reading the
transmission radius obtained from the TransmissionRadius simulation. This produced
the field lengths shown in Table 5.2.

len =

√
Nπr2

t

< n >

5.7.1.3 Simulation configuration

The simulation environment was configured as described by Perkins et al. (2001) and is lis-
ted in Appendix A. The properties in Table 5.2 override this environment to complete the
definition of the Rayleigh fading and Two Ray Pathloss scenario, and Table 5.3 completes
the definition of the No Fading and Freespace Pathloss scenario.

80

Table 5.2: Basic environment overridden to define ’Rayleigh fading
and Two Ray Pathloss’ simulation.

Simulation Property Class Property Value

Fading jist.swans.field.

Fading.Rayleigh

Pathloss jist.swans.field.

Pathloss.TwoRay

Field len lentr

bounds lentr, lentr

nodes 77

Table 5.3: Basic environment overridden to define ’No Fading and
Freespace Pathloss’ simulation

Simulation Property Class Property Value

Fading jist.swans.field.

Fading.None

Pathloss jist.swans.field.

Pathloss.Freespace

Field len lenfn

bounds lenfn, lenfn

nodes 77

5.7.2 Results

Table 5.5 shows the number of false alerts generated by the different propagation envi-
ronments, demonstrating that a simple change in propagation environment dramatically
affects detection performance. Four times more false alerts were generated in the Rayleigh
fading environment compared to no fading, resulting from more promiscuous observations
being missed. Each time the ideal detector receives an omniscient forward notification
when it was about to generate a drop notification from the use of promiscuous listening
alone, a false alert is recorded.

Figure 5.12 illustrates the number of responses invoked by the IDS in the two environ-
ments with the drop detector and its ideal counterpart. A response count is ncremented
each time the IDS takes an action against a packet originating from n. The most impor-
tant feature of the chart is that the number of responses generated by the drop detector

81

Table 5.5: Average number of false alerts generated by detector
network-wide

Scenario Average false alert count Standard Deviation

Freespace Pathloss, No fading 1228.17 391.47
Two Ray Pathloss, Rayleigh fading 5475.29 1055.29

0

50000

100000

150000

200000

250000

300000

Perfect detection Imperfect detection Perfect detection Imperfect detection

Tworay pathloss, Rayleigh fading Frespace pathloss, No fading

N
u

m
b

e
r

o
f

re
sp

o
n

se
s

o
v

e
r

n
e

tw
o

rk
 l

if
e

ti
m

e

Network Scenario

Figure 5.12: Number of responses in fading and ideal environment
using a detector with perfect/imperfect signalling

using imperfect observations is higher in the Rayleigh fading environment as a result of
the large number of alerts generated and this is not as a result of misbehaviour. Note that
the response count from the ideal drop detector remains constant because the omniscient
notifications negate the effect of changing the propagation model.

These results shown that even in the absence of misbehaviour, a typical threshold based
IDS generates false positives, which increases dramatically in more challenging propaga-
tion environments. These corresponded to responses entirely toward other benign nodes,
as there were no misbehaving nodes present in this scenario, motivating the need for
additional reasoning in these environments.

5.8 Summary

In this chapter, a number of detection methodologies were described and implemented
within Jist/SWANS as part of the basic services to support an intrusion detection sys-
tem. The detectors used a combination of imperfect and perfect audit data, from packets
addressed to a node, those overheard, and those to be forwarded.

A threshold IDS with an imperfect dropped detector was applied to networks with
varying propagation environments, and its performance evaluated against the same IDS

82

using a perfect dropped packet detector, demonstrating the negative effect that the prop-
agation of alerts from missed observations can have on the IDS response. These effects
were much more pronounced in the challenging propagation environment as the imper-
fect detector generated many more false alerts from missed observations. Thus, in more
realistic environments, the ability to reason about alerts generated by detectors is both
desirable and necessary. In Chapter 6, an approach to reasoning about the imprecision
of certain observations provided by game theory will be explored and applied to network
scenarios.

83

CHAPTER 6

SIDS AND GAME THEORETIC REASONING

6.1 Introduction

In Chapter 5 we showed that employing an IDS that responds directly to notifications
from imperfect detectors can negatively affect the quality of service experienced by benign
nodes within a MANET due to frequent retaliation by the IDS arising from false detec-
tions. Moreover, this effect worsens with more progressively realistic radio propagation
environments as the reliability of overhearing neighbour transmissions decreases.

This chapter investigates the use of game theory within the IDS framework discussed in
the previous chapter to develop a soft-Intrusion Detection System (sIDS) that reduces the
likelihood of retaliating from false detections. This is achieved by developing a reasoning
component in the form of a game that evaluates the quality of the metrics computed in
§5.5 and determines if, given the evidence collected in the previous periods, a response is
really necessary.

First, the performance of each detector was studied to determine its performance,
which provided the basic grouping of the metrics into two sets. Then, the metrics were
combined into a form suitable for a game formulation. Basic game theoretic definitions
and terminology used were presented in §2.5. An implementation of the game-theoretic
IDS is provided for the Jist/SWANS network simulator.

6.1.1 Desirable properties for a MANET IDS

The distributed nature of MANETs requires a suitable IDS possess a number of desirable
properties, summarised in review papers by Deng et al. (2002) and Zhou & Haas (1999).
Firstly, IDS should be decentralised such that each member node contributes to intrusion
detection. In fact, any critical services responsible for promoting network availability such
as certification and signing should not be centralised as doing so introduces a single point
of failure that could be targeted by the adversary to disrupt network communications. Any
IDS schemes employed should minimise the computational, memory and control overheads

84

required since MANET nodes are often energy and compute constrained and communi-
cate through low bandwidth wireless links. False detection rates should be minimised to
preserve quality of service, and if a response is invoked, it should be appropriate to the
type of adversary in order to incentivise it to co-operate.

sIDS applies additional reasoning in the form of a game within the IDS framework
introduced in Chapter 5 and incorporates a number of the desirable properties described
above. First, detection activities are distributed to each MANET node, which process
and analyse audit data independently. Secondly, minimum state is maintained by the use
of a sliding window that provides an effective memory (§5.5.1.1), reducing the memory
overheads required significantly. Thirdly, adversaries are re-introduced over time if they
are observed to have corrected their behaviour. The aim of the game theoretic component
is to reason about metric quality, which should reduce the number of false detections in
the imperfect radio medium, meeting a further desirable property.

6.2 Metric performance

The basic IDS framework introduced in Chapter 5 computes a number of metrics (m1−m8)
in a recent interval for each neighbour from notifications generated by a set of detectors
(§5.5) that each analyse audit data for suspected misbehaviour by neighbouring nodes.
Each metric is a normalised continuous variable, so mn ∈ [0, 1]. Some of the metrics
are computed from notifications by imperfect detectors and are liable to generate false
positives in networks free of misbehaviour, whilst the remaining metrics are computed
from notifications by perfect detectors that are guaranteed not to produce false positives.
Imperfect schemes are important to provide additional information that would otherwise
make certain types of misbehaviour impossible to detect, but their ability to cause an IDS
to retaliate should be lower than from perfect detection schemes. Thus we grouped each
metric into one of two sets: mp consisting of metrics driven by perfect detectors and mi

consisting of those driven by imperfect detectors.
To evaluate the set a given metric belongs to, a series of simulations were configured

as defined in Appendix A, with 100 nodes, Rayleigh fading and Two-ray pathloss. Each
node was assigned a type from Θ = {IDS, adversary}, selected at random according to
the ratio of adversaries required. Adversaries misbehaved continuously over the period of
time ts – te where ts = 50s and te = 500s.

IDS nodes were configured with an alert-only IDS, IdsAlert.java, which employed
the full detector set described in §5.5. Detector notifications from IDS nodes and misuses
from each adversary were logged to enable detection performance statistics to be extracted
for each detector. Each detector was configured as shown in Table 6.1.

The results in Figures 6.1–6.2 illustrate the comparative performance of the imperfect

85

Table 6.1: Scenarios and detector configuration used to evaluate the
performance of individual detectors.

Scenario Detector Detector
Parameter

Value

Black Hole DETECTION_DROP timeout 1s

Modify
Data

DETECTION_MODIFY timeout 1s

Passive
Route
Invasion

DETECTION_FAKE_
RREP

-

Active
Route
Invasion

DETECTION_
UNSOLICITED_
RREP

-

RREQ
Flooding

DETECTION_RREQ_
FLOOD

rreqRateLimit 10

Selfish DETECTION_DROP_
RREQ

timeout 0.25s

86

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

D
et

ec
ti

o
n

 R
at

e

drop−data
modify−data
fake−rrep
rreq−flood
unsolicited−rrep
drop−rreq

Figure 6.1: Detection rates of detection mechanisms at varying per-
centages of malicious nodes when applied to scenario detailed in Table
6.1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

F
al

se
 P

o
si

ti
ve

 R
at

e

drop−data
modify−data
fake−rrep
rreq−flood
unsolicited−rrep
drop−rreq

Figure 6.2: False positive rates of detection mechanisms at varying
percentages of malicious nodes when applied to scenario detailed in
Table 6.1

87

and perfect detectors, used to determine the members of mi and mp respectively. The set
of imperfect metrics mi consisted of forwarding rates (m1 and m2), forwarded RREQ rate
(m5) and unsolicited RREP rate (m7). Of the imperfect detectors, drop-rreq performed
worst with the largest false positive rate as a result of its reliance on overhearing re-
broadcasted RREQs from neighbours, which is unreliable (as described in §5.4.4). The best
performing imperfect detector was drop-data since data packets are unicast toward their
destination and benefit from MAC layer acknowledgements. These acknowledgements
enable the MAC layer to determine if a frame is undeliverable and is used by the drop-
data detector to delete packets in its buffer that would otherwise trigger a dropped packet
alert, reducing its false positive rate.

The set of perfect metrics (mp) consisted of the modified rates (m3 and m4), the fake
RREP rate (m6) and RREP flood rate (m8), compiled from detectors that demonstrated
a zero false positive rate over the set of network simulations. Summarised below are the
members of the sets mi and mp:

mi = m1,m2,m5,m7 (6.1)

mp = m3,m4,m6,m8 (6.2)

Metrics were combined to return a value suitable for inclusion into a utility function.
The sigmoid function of equation (6.3) was chosen to generate an output over the range
|mj | → [0, 1]. Moreover, it discriminated over the full range of each of the independent
metrics.

|mj | = 1−
(∑n

j=1(1−mn)k)1/k

n1/k , k = 4 (6.3)

Thus for mi:

|mi| = 1− ((1−m1)4 + (1−m2)4 + (1−m5)4 + (1−m7)4)1/4

41/4 , (6.4)

and for mp:

|mp| = 1− ((1−m3)4 + (1−m4)4 + (1−m6)4 + (1−m8)4)1/4

41/4 . (6.5)

6.3 Design of sIDS

sIDS aims to reduce the number of responses from false positives by evaluating the quality
of the metrics maintained for each monitored neighbour. Intuitively, node misbehaviour
from mp → 0 should result in a response being taken with absolute certainty. mi corre-
sponds to possible misbehaviour by the neighbour. Thus when mi → 0 but mp remains
high, a benefit of doubt should be applied, in which a probabilistic response is taken. As

88

mi

mp

1

1
0

αr

p=0

p=1

0<p<1

β

β

p→0 Do not process : respond
p→1 Process neighbours packets

0

Figure 6.3: Phase-space of desired sIDS operation, where mi is the
calculated value from the set of imperfect metrics and mp is the calcu-
lated value from the set of perfect metrics for an observed neighbour.
p is the probability of processing the packet. If p→ 0, sIDS responds
whilst if p→ 1, sIDS processes the neighbour’s packets. Constants αr
and β control the thresholds at which respond or process is selected
respectively.

mp decreases, the benefit of doubt given to the neighbour diminishes. If mp and mi are
both above a certain value, the monitoring node processes the neighbour’s packet with
certainty.

Figure 6.3 represents the desired behaviour as a phase space diagram, resulting in three
distinct domains and the IDS choosing the following action over combinations of mp and
mi:

action =

Process 0 < mp < αr

Respond β < mp,mi < 1

mix(Process,Respond) otherwise

(6.6)

A game was designed to provide these modes of operation in which the IDS chooses an
action based on its payoff given the current values of mp and mi for monitored neighbours.

89

Query action to take
msg

Compute metrics

Construct game Solve game

Strategy
profile(s)

Computed
each interval s

process/
respond

Notification
Vector

notification

Do Action

Figure 6.4: Flow diagram of sIDS in the context of a message being
received by the network layer. Strategy profiles are computed each
interval for each known neighbour, and are used to determine whether
to process/respond to the current message.

The flow diagram shown in Figure 6.4 provides a brief overview of the resulting game-
theoretic inspired IDS, entitled sIDS. At each interval, mi and mp are computed for each
observed neighbour and a game constructed and solved using these metrics. As packets
arrive at the network layer, they are passed to sIDS in parallel with the relevant application
layer, to not introduce any further delays in network layer handling that would decrease
the scalability and applicability of the proposed solution. Thus, IDS performs delayed
processing of each received audit data, which may result in the processing of malicious
payloads before they are detected as so. Appropriate responses have been designed to
minimise the effect of these payloads.

The output of the game is a strategy profile that is cached in a look-up table and is
applied for any decisions in that interval about packets originating a given neighbour. The
generation of notifications by detectors and the procedure used for calculating metrics was
previously described in Chapter 5 and §6.2 respectively. The construction of the game,
the development of an appropriate game solver and the generation of appropriate strategy
profiles is the subject of the remainder of this chapter.

90

Table 6.2: The bi-matrix game played by the IDS
Suspect (j)

Not Attack Attack
IDS (i) Process a,w b, x

Respond c, y d, z

6.4 Game construction

6.4.1 Game model

In sIDS, a two-player, general sum game in normal form computes appropriate strat-
egy profiles for pairwise interactions between an IDS node, denoted as player i, and the
suspect, denoted as player j. Two-player games are appropriate in intrusion detection sce-
narios as they minimise the computation required in a MANET environment. Very few
algorithms currently exist to compute equilibria for N -player games (Shoham & Leyton-
Brown, 2009). Since detection and response in this instance occurs locally, the use of such
games is of limited value. However, it has been demonstrated that the use of N -player
games could provide an advantage if coalitions of IDS nodes were permitted and detection
was completed in an extended manner (Otrok et al., 2007; Michiardi & Molva, 2005).
General sum games provide more flexibility over the formulation of the payoffs than zero-
sum games, and cater for more realistic scenarios where i’s loss is not equal to j’s gain or
visa-versa.

In typical game-theoretic inspired IDS for MANET, the output of the game deter-
mines whether or not to detect (Patcha & Park, 2004), switch between lightweight or
heavyweight intrusion detection schemes (Liu et al., 2006; Otrok et al., 2008b), or opti-
mise the placement of IDS monitors in the network environment (Schmidt et al., 2008),
with the primary concern being to reduce the energy and computational requirements of
intrusion detection. In sIDS detection is always-on, but a novel approach is proposed in
which the game output determines whether the IDS should respond or process a packet
from a neighbour given the metrics computed about that neighbour in the past.

The adversary can choose one of two actions, Aj = {Attack, NotAttack}, based on
the IDS’s computation of mi and mp from past observations of the adversary’s behaviour.
The IDS also has two actions, Ai = {Process, Respond}. Process corresponds to normal
packet processing, whilst Respond invokes a response that is appropriate to the context and
the type of the packet. A pure strategy is the choice of an available action with certainty.
In this and any other game there are also an infinite number of valid mixed strategies, each
of which assigns a probability over the pure strategies for each player. If such a strategy
results, Process or Respond is chosen according to the mixing probabilities returned. To
meet the desired IDS operation, a pure strategy should be chosen at extremes of behaviour

91

whilst a mixed strategy would be employed when the IDS observes the adversary as
demonstrating possible misbehaviour.

The resulting bi-matrix game implemented by the IDS for players i and j is shown in
Table 6.2. Utility functions for players i and j (ui and uj respectively) were constructed,
describing the preferences of the IDS and suspect, and have been designed to ensure the
modes of operation emerge as described in §6.3.

6.4.2 Construction of utility functions

To construct the utility functions for the IDS and the adversary, common game types were
evaluated for properties that matched expected behaviour of both types of nodes in the
three regions of the phase space shown in Figure 6.3. In these regions, the inequalities
between payoffs differ, resulting in an appropriate game solution.

mp < αr

If mp falls below αr, the IDS would prefer to play Respond and knowing this, a rational
adversary would always choose Not Attack. Thus, the IDS plays the pure strategy Respond
regardless of the adversary’s action. In this case, Process is dominated by Respond, and
Attack is dominated by Not Attack. The resulting game is shown in Table 6.3.

In order to produce this game, the following inequalities in the utility functions within
the domain mp < αr are required:

c > a, d > b, w > x, y > z (6.7)

mp,mi > β

If mp and mi are both greater than β, the IDS would prefer to choose Process and the
rational adversary would always choose Attack. Thus, the IDS plays the pure strategy
Process regardless of the adversary’s action. In this case Respond is dominated by Process,
and Not Attack is dominated by Attack. The game played in this domain is shown in Table
6.4, and requires the inequalities in the utility functions within the domain mp,mi > β

shown in Equation 6.8.

a > c, b > d, x > w, z > y (6.8)

αr ≥ mp ≤ β, mi < β

In this domain, there should be no pure strategy equilibrium for the IDS. Instead, a
discoordination game emerges where the preferences for the IDS and adversary are directly
opposed to one another (Rasmusen, 2001). From the perspective of the IDS the preferred
strategy combinations are (1) Process when Not Attack, and (2) Respond when Attack.

92

Table 6.3: Game in domain mp < αr

IDS (i)\Suspect (j)

Process

Respond

Not Attack

a,w

c,y

Attack

b,x

d,z

Table 6.4: Game in domain mp,mi > β

IDS (i)\Suspect (j)

Process

Respond

Not Attack

a,w

c,y

Attack

b,x

d,z

Table 6.5: Game in domain αr ≥ mp ≤ β, mi < β

IDS (i)\Suspect (j)

Process

Respond

Not Attack

a,w

c,y

Attack

b,x

d,z

93

From the suspect’s perspective, as a malicious node, the preferred strategy combinations
are (1) Attack when Process, and (2) Not Attack when Respond. The game played in this
domain is shown in Table 6.5 and requires the following inequalities in the utility functions
within the domain αr ≥ mp ≤ β, mi < β:

a > c, d > b, x > w, y > z (6.9)

A desirable property of a discoordination game is that there is a single equilibrium
in mixed strategies, whose mixing probabilities are defined by the cardinal values of the
payoffs (Rasmusen, 2001). Thus, as long as the preference structure is kept intact by
enforcing the inequalities specified in Equation 6.9, the ratios between the absolute payoffs
can be adjusted to result in an appropriate strategy mixture. This is further exploited to
provide a benefit of doubt to an adversary, which falls in this mode of operation.

6.4.2.1 Finalisation of utility functions

The utility functions were developed further from the conditions of §6.4.2 to provide a
benefit of doubt factor to those nodes who an IDS observes as having low mi but high
mp and is represented by γ, increasing the benefit of the doubt as γ decreased, and visa-
versa. Following this, numerical experiments were run using the payoff equating method of
Rasmusen (2001) to identify suitable candidates for the utility function whilst preserving
each inequality. This method yields the probabilities p and q that correspond to the mixed
strategies employed by the IDS and adversary respectively:

p = d−b
(d−b)+(a−c) , q = z−y

(z−y)+(w−x) (6.10)

The absolute values of a, b, c and d were manipulated until the desired distribution of
p was obtained. An instance of this distribution with tuning parameters αr, β and γ is
shown in Figure 6.5. The regions where p < 0 and p > 1, though impossible, show the
combinations of mp and mi that offer only the required pure strategy solution.

6.4.3 Game bi-matrix

The game implemented in sIDS is shown in Table 6.6. It assumes the adversary is rational
from the perspective of the IDS and has preferences that stay constant through the game.
The adversary always prefers to (1) Attack when Process and (2) Not Attack when Respond.
Since we wanted to manipulate the mixed strategy over Process or Respond obtained by
the IDS, the utility function of the adversary (in the game played at the IDS) contains mi

and mp.
If a game were to be played by the adversary, its own utility function would not contain

mi andmp as these are private to the IDS. Instead, the adversary would make observations

94

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

m
i

m
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
i

m
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

β

α
r

Figure 6.5: Distribution of p for various mi and mp, where αr = 0.2,
β = 0.7 and γ = 0.5. Notice that p < 0 for mp < αr and p > 1 for
mp,mi > β produces appropriate pure strategy solutions.

95

Table 6.6: Game played by nodes equipped with sIDS.
Suspect (j)

Not Attack Attack
IDS (i) Process 1, 0 0, γ((1−mi)2 + (1−mp)2 − (1− β)2)

Respond 0, αrmp(mp − αr) 1, 0

on the performance of IDS (such as an estimate of detection performance) when deciding
between Not Attack or Attack, or the mixture thereof. In this research, the adversary is
rational but is not adaptive.

6.5 Solving the game

A number of solution concepts exist that predict the outcome(s) of game G given the
players’ utility functions. Simple solution concepts, such as dominant-strategy equilibrium,
can be implemented with computationally inexpensive algorithms, but may not find a
solution for the set of all general sum games.

The most well-known solution concept is the Nash Equilibrium (NE), for which many
algorithms exist. The result of applying solution concepts is the generation of one or more
strategy profiles that consist of the best response for each player in the game. A number
of algorithms were reviewed in §2.5.1 to find NE. Minimax or payoff-equating (Rasmusen,
2001) are two such examples, and whilst these are computationally inexpensive, they only
apply to a subset of game types; Minimax is only applicable for finding the equilibria
of two-player zero-sum games whilst the payoff-equating method can produce erroneous
results if a mixed strategy solution does not exist in the game (Rasmusen, 2001). Fur-
thermore, algorithms specific to a subset of games can be non-terminating (Shoham &
Leyton-Brown, 2009) or produce a single equilibrium when multiple equilibria exist, so
special care needs to be taken when selecting an appropriate algorithm. Thus, a robust,
terminating algorithm was required to find the equilibria of a general sum bi-matrix game.

6.5.1 The Nash Equilibrium

The Nash Equilibrium, proposed by John Forbes Nash (Nash, 1950), is a widely used solu-
tion concept in game theory. There is at least one NE in any general sum game (Rasmusen,
2001), which makes it a particularly attractive solution concept from a computational per-
spective. NE tests that a player’s strategy si is the best response to the other player’s
strategies, defined by si−1. If a player cannot benefit by changing his strategy whilst the
strategies of other players are fixed then the proposed strategy profile s∗ = (s∗i ...s∗i−1) is a
NE.

NE is formally defined in Rasmusen (2001) as:

96

Definition. ∀i, πi(s∗i , s∗−i) ≥ πi(s′i, s∗−i),∀s′i.

The resulting equilibria can be in terms of pure or mixed strategies. For a pure strategy
NE:

Definition. The strategy profile s∗i ,, s∗N is a NE if for each i, s∗i is a best response to
the other players choices s∗−i.

For a mixed strategy NE:

Definition. The mixed strategy profile p∗i ,, p∗N is a NE if for each player i, p∗i is a best
response to the other players choices p∗−i.

A pure strategy states that a player should play the given strategy with certainty,
whilst a mixed strategy states the mixing probabilities that players should assign to their
pure strategies, thus pi(si) is the probability i assigns to the pure strategy si.

6.5.2 Methods to find Nash Equilibria

A number of algorithms exist to find sample NE in two player games. The NE of a
bi-matrix zero sum game can be found by applying the Simplex algorithm, in which the
game is expressed as an optimisation problem within a linear program (Shoham & Leyton-
Brown, 2009). Simplex is a pivoting algorithm that operates over a linear program in which
the payoff matrices for both players have been transformed into a system of equations.

More challenging is finding the NE of a general sum bi-matrix game, which is no longer
a straightforward optimisation problem and cannot be represented as a linear program.
Instead general sum games can be represented as a Linear Complementarity Problem
(LCP) and the Lemke-Howson (LH) algorithm employed. LH guarantees to find sample
equilibria in a problem (Shoham & Leyton-Brown, 2009). The complexity class of LH is
PPAD-complete (Polynomial Parity Arguments on Directed graphs) and means comput-
ing the equilibria by LH can take exponential time depending on the size of the game
(Roughgarden et al., 2007). Even though this is the case, few algorithms are as flexible
or provide guarantees on producing Nash Equilibria as LH, making it appropriate for use
within the game theoretic component of sIDS.

Lastly, and most challenging is to compute equilibria for general sum N -player games,
which cannot even be represented as an LCP. Shoham & Leyton-Brown (2009) and Widger
& Grosu (2009) propose the use of a sequence of LCPs (SLCP) which each correspond to
an approximation of the problem and have designed a parallel NE enumeration algorithm
suitable for use on multi-core architectures.

97

Table 6.7: Sample game where mi = 0.7, mp = 0.5, αr = 0.2,
β = 0.7 and γ = 0.5.

Suspect (j)
Not Attack Attack

IDS (i) Process (p) 1, 0 0, 0.125
Respond (1− p) 0, 0.15 1, 0

Table 6.8: Payoff matrices A and B used in tableaux construction
A Not Attack Attack

Process 1 0
Respond 0 1

B Not Attack Attack

Process 0 0.125
Respond 0.15 0

6.5.3 Generating Nash Equilibria using the Lemke-Howson algorithm

The Lemke-Howson algorithm (Lemke & J. T. Howson, 1964) finds NE on LCP formula-
tions of a general-sum game and is similar in principle to the Simplex algorithm (Pritchard,
2007) as it uses iterated pivoting. The algorithm was implemented as a component within
Jist/SWANS and computes a number of NE for payoff matrices of players i and j. Inter-
nally, the tableaux method described by Pritchard (2007) is used, which employs four steps
to find the NE in the game. In this section these steps are described for an instance of the
game developed in §6.4.3 shown in Table 6.7 to illustrate the operation of the algorithm.

6.5.3.1 Pre-processing

The bi-matrix game is first separated into payoff matrices A and B for players i and j

respectively as shown in Table 6.8. To ensure the game satisfies the conditions required by
LH, the payoff matrices cannot contain any negative values, thus a suitably large constant
C is added to each entry. This keeps both the ordinality and cardinality of the preferences
intact so the same equilibria will be computed from the pre-processed payoff matrices.

6.5.3.2 Initialising tableaux

Two tableaux are required for the two players in order to solve the game. The term ri is
the slack in the constraint Ay ≤ 1 and sj is the slack in the constraint xTBj ≤ 1, so the
following system is obtained:

Ay + r = 1
BTx+ s = 1

(6.11)

Thus, the tableaux required are r = 1 − Ay, stated as Tableaux A and s = 1 − BTx

stated as Tableaux B:
Tableaux A:

98

r1 = 1− y3

r2 = 1− y4
(6.12)

Tableaux B:

s3 = 1− 0.15x2

s4 = 1− 0.125x1
(6.13)

The r terms are the duals of the x’s, whilst the s’s are the duals of the y terms, also
known as the slack variables in the system.

6.5.3.3 Pivoting

The pivoting process starts by arbitrarily choosing a variable xi from the tableaux to bring
into the basis. Then, a minimum ratio test determines the slack variable (or dual) to be
removed by considering the coefficients of xi, and the equation for the slack variable just
removed is solved. The remaining equations are then solved in the chosen tableaux. The
dual which left the basis determines the variable to enter the basis next.

The variable x1is arbitrarily brought in, so by the minimum ratio test, s4 leaves the
basis, and solving s4 for x1 gives the following equation:

x1 = −0.125s4 + 8 (6.14)

The variable x1 is substituted into the remaining equations of Tableaux B, to produce:

s3 = 1− 0.15x2

x1 = −8s4 + 8
(6.15)

Since s4 is y4’s dual, y4 is brought in, and the pivoting process occurs once more,
modifying Tableaux A in the process.

The procedure terminates when the initial variable chosen to enter the basis, xi, or its
dual, leaves. The resulting tableaux from this iterated pivoting are:

Tableaux A:

y3 = 1− r1

y4 = 1− r2
(6.16)

Tableaux B:

x2 = 6.67− 6.67s3

x1 = 8− 8s4
(6.17)

99

6.5.3.4 Nash Equilibria

To read the NE from the tableaux, the slack variables rn and sn are set to 0 and the
resulting values in xn and yn are expressed as probabilities, resulting in the final form of
the NE. Thus, Tableaux A becomes:

y3 = 1
y4 = 1

(6.18)

and Tableaux B becomes:

x2 = 6.67
x1 = 8

(6.19)

This results in the following Nash Equilibrium:

NE =
[

x1
x1 + x2

,
x2

x1 + x2
,

y3
y3 + y4

,
y4

y3 + y4

]
(6.20)

NE = [0.545, 0.455, 0.5, 0.5] (6.21)

Thus p = 0.545 and q = 0.5. To find additional equilibrium points (if any more exist),
this process (§6.5.3.1–6.5.3.4) is repeated and a different initial variable xi is chosen. If
the solution differs from those currently in the list, it is added to the set of equilibria.

6.5.3.5 Validation of Lemke-Howson algorithm

In order to test the correctness the implementation of LH in Jist/SWANS, several general-
form games with well-known results were created and the algorithm applied to generate the
corresponding NEs. The expected NEs were computed by hand, through the game theory
solver Gambit (McKelvey et al., 2010), or from published results in the game-theoretic
literature. The results obtained by the implementation of LH described above coincided
with the expected results, and are shown in Appendix H.

6.5.4 Lemke-Howson algorithm applied to the game

The plots shown in Figure 6.6 show the distribution of p, the probability of the IDS
choosing Process, for various mi and mp when the game of §6.6 is solved using the LH
algorithm. The distribution corresponds to that achieved from the payoff-equating method
(Figure 6.5), but the LH algorithm selects the relevant pure strategy equilibrium when
mp < αr and mp,mi > β.

The game solver produces an array of equilibria that correspond to strategy profiles
specifying a probability for each action over the IDS and adversaries’ action set, Ai and Aj .
In this case, there is a single equilibrium in mixed or pure strategies for any combination of

100

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

m
i

m
p

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.10.20.30.40.50.60.70.80.91

m
p

 m
i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

β

α
r

Figure 6.6: Distribution of p for various mi and mp, where αr = 0.2,
β = 0.7 and γ = 0.6. Notice that p < 0 for mp < αr and p > 1
for mp,mi > β, producing appropriate pure strategy solutions in these
regions.

101

mp ∈ [0, 1] and mi ∈ [0, 1]. The strategy profile is cached in a look-up table and refreshed
each interval. In the period between intervals, the pre-computed cached profile is consulted
each time the network layer queries the IDS, to prevent additional computational burden
from applying the LH algorithm.

6.5.5 Responses

The output of the Lemke-Howson algorithm is a NE that defines the best response for the
IDS to take given the current observations mp and mi for each known neighbour. The
NE defines a probability distribution over which Process or Respond should be chosen by
the IDS. The send and receive processes of an IDS-equipped network layer queries the
action it should take for each packet and responds in a manner appropriate to the current
packet context (i.e. send/receive or forward) and type.

For this thesis, these responses are simple, but are effective for countering a large
number of attacks, and are chosen from those described in §5.6. These responses are
either reactive and apply on a per-packet basis, if a packet meets a given criteria, such as
RESPONSE_IGNORE_DATA and RESPONSE_IGNORE_ROUTING, or, in the case
of RESPONSE_PURGE_ROUTE are applied proactively at the start of the interval when
the appropriate strategy mixture has been computed.

6.6 Simulation configuration

Network simulations were used to compare the performance of the game theoretic IDS rel-
ative to a baseline non-adaptive, threshold-based IDS. In addition, defenceless and omni-
scient networks were simulated to provide lower and upper bounds for the adopted metrics.
Metrics were generated by post-processing the network trace output by Jist/SWANS with
a number of scripts (described in §3.3), driven by the Monte-Carlo method introduced in
§3.4, which terminated a study (the scenario and choice of independent variables) only
when the metric(s) under observation had converged. This reduced the number of runs
required, although a minimum of five simulation runs per study was specified to prevent
early convergence.

A number of attacking scenarios were defined to have a broad range of local and
distributed attacks. These are listed in Table 6.18. The environment detailed in Appendix
A was used in each case. This section introduces the network model, the environmental
parameters and node models used during network simulation. The scenarios used to
evaluate the performance of the game theoretic IDS are also detailed.

102

6.6.1 Network Model

The simulated MANET is represented by the directed graphG(V,E), where V = {v0,, Vm}
is the set of MANET nodes and E = {e0,, En} is the set of directed links between the
nodes. At simulation initialisation, t = 0s, the members of V are partitioned into two
subsets: Vi is the set of IDS nodes, Vj the set of adversarial nodes. Membership of these
subsets is decided at runtime by randomly selecting nodes according to the percentage of
adversaries required, an independent variable controlled during simulation. Once nodes are
assigned to Vi and Vj , the relevant protocol stack is created and they remain a permanent
member of the subset for the duration of the simulation.

An edge en connects two vertices vm and vn if vm is able to communicate with vn,
thus (vn, vm) ∈ E. Communication is asymmetric due to the use of Rayleigh fading, thus
the reverse, (vm, vn) ∈ E, is not always true. A node vi is able to overhear packets that
originate from node vj destined to vk if vj is in range of vi.

6.2 Node models

A number of protocol stacks were developed to define the simulated models of defenceless,
omniscient, IDS and adversary nodes. In each of the following cases only the network
and routing layer instances differ between the types of node, but the full protocol stacks
are presented for completeness. The source code for the layers used by each of the node
models can be obtained by following the instructions in Appendix D.

Adversaries

Adversaries were created with the RouteAodvMultiInterfaceAdversary router and NetIp-

Adversary network layer. The adversarial routing layer provided a number of methods
used to control misbehaviour during simulation (listed in Table G.1), whilst the network
layer maintained a number of data structures used by the adversary during intrusion, such
as an up-to-date list of neighbours and active data flows. The protocol stack of a simulated
adversary is presented in Table 6.9).

Defenceless nodes

Defenceless nodes were created with the validated RouteAodvMultiInterface AODV
router and the network layer, NetIp, and are represented by the protocol stack shown
in Table 6.10.

IDS nodes

Each IDS node was created with the NetIpIds network layer and RouteAodvMulti-

InterfaceIds router and both provide a respond method that is invoked by the IDS when

103

Table 6.9: Jist/SWANS simulated adversary node protocol stack

pkiddie.app.AppUdp

pkiddie.trans.
TransUdp

pkiddie.radio.
RadioNoiseIndep

pkiddie.mac.Mac802_
11

pkiddie.net.NetIpAd
versary

pkiddie.route.
RouteAodvAdversary

Application

Transport

Physical

Mac

Network

Routing

Table 6.10: Jist/SWANS simulated defenceless node protocol stack

pkiddie.app.AppUdp

pkiddie.trans.
TransUdp

pkiddie.radio.
RadioNoiseAdditive

pkiddie.mac.Mac802_
11

pkiddie.net.NetIp

pkiddie.route.
RouteAodvMultiInterface

Application

Transport

Physical

Mac

Network

Routing

104

Table 6.11: Intrusion Detection System implementation used in each
scenario.

Node Model IDS class used

Omniscient IdsOmniscient

Baseline IdsBaseline

Game Theoretic IdsGameTheory

an intrusion is detected. IDS models implemented a common interface (IdsInterface),
to allow code reuse and to simplify the implementation. Each IDS used in the scenarios
that follow are listed in Table 6.11.

The IDS is created and managed by the network layer, which passes audit data directly
to the IDS (as shown in Figure 5.3) as messages are sent or received. The IDS network
layer maintains a number of data structures used during detection, such as a list of current
neighbours and node identities, described previously in Chapter 5.

Omniscient Nodes

Omniscient nodes were created with an IdsOmniscient IDS, which comprises of a single
omniscient detector that is notified by adversaries as they are about to misbehave. To
achieve this, the strict layering imposed by Jist/SWANS was circumvented by creating a
Globals class that served as a cache for global knowledge and was updated by adversaries
directly. Through this perfect signal, omniscient nodes respond appropriately to all attacks
from adversaries and are not susceptible to false alarms. This class was inspired by the
General Operations Director (GOD) object in Ns2 that serves a similar purpose, storing
global information about the network environment (Aad & Hubaux, 2004).

When an omniscient node is alerted to the presence of an adversary by the Globals

class it retaliates immediately by ignoring any future transmissions originating from the
adversary, and removes any entries that use this node as a next hop from the AODV
routing table. Each omniscient node is pre-loaded with the full identity of all other nodes
in the simulation.

Threshold IDS nodes

These nodes are created with a non-adaptive IDS (IdsThreshold) that employs a thre-
shold to discriminate between benign and malicious behaviour; a common strategy em-
ployed by several published MANET IDS’ (Vigna et al., 2004; Marti et al., 2000). The
threshold IDS computes the metrics mp and mi fromMn each INTERVAL for each known
neighbour and applies one of the following actions to that neighbour during the next in-
terval.

105

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

k=2
k=5
k=10
k=15
k=20
defenseless
omniscient

Figure 6.7: Packet Delivery Ratio (PDR) achieved in simulations with
increasing ratio of ’black hole’ adversaries vs. defenceless, omniscient
and threshold IDS nodes with different window size k.

action =

Process 0.5 < mp,mi < 1

Respond 0 < mp,mi < 0.5
(6.22)

Thus, when mp or mi drops below 0.5, the IDS retaliates, removing any routing depen-
dencies and ignoring any messages that originate from the neighbour. If mp and mi are
greater than or equal to 0.5, the IDS clears any responses that may still be active from
earlier rounds.

The computation of mp and mi is influenced by the choice of α, which provides an
effective memory over each of the individual metric contributions, as described in §5.5.1.1.
To find a suitable value of α, network simulations were set up employing nodes fortified
with a threshold IDS subjected to misbehaviour from increasing numbers of black hole
adversaries. The values of α shown in Table 6.13 were used.

Figure 6.7 shows the PDR achieved by the threshold IDS with different window size
k, whilst Figure 6.8 shows the effect that adjusting k has on the response rate of the IDS.
Together they illustrate that in general, using small values (e.g. k ≤ 2) or large values
(e.g. k > 10) reduces overall packet delivery. For small values this occurs because of the
knee-jerk reactions that lead to a large number of false responses and the isolation of IDS
nodes. For larger values, the reduction in PDR results from the insensitivity of the IDS to
misbehaviour due to the long convergence time before the behaviour of the misbehaving

106

Table 6.12: Jist/SWANS simulated IDS node protocol stack

pkiddie.app.AppUdp

pkiddie.trans.
TransUdp

pkiddie.radio.
RadioNoiseAdditive

pkiddie.mac.Mac802_11

pkiddie.net.NetIpIds

pkiddie.route.
RouteAodvMultiIntefaceIds

Application

Transport

Physical

Mac

Network

Routing

IDS

Table 6.13: Effective window size in samples (k) and corresponding
value of α used in simulations

Window size (samples) (k) Corresponding value of α

2 1/2

5 4/5

10 9/10

15 14/15

20 19/20

107

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

k=2
k=5
k=10
k=15
k=20

Figure 6.8: Response rate achieved in simulations with increasing ratio
of ’black hole’ adversaries vs. threshold IDS nodes with varying window
size k.

Table 6.14: Threshold IDS parameters
Parameter Value

INTERVAL (§5.5) 1s
α (§5.5.1.1) 0.8
δ (§5.5.1.2) 0.005

nodes is reflected by the individual metrics. Thus adversaries drop a larger percentage of
traffic before being detected than with the lower values of k.

The value k = 5 (α = 0.8) was chosen for its better performance over the full range of
adversaries. For low ratios of malicious nodes the threshold IDS tracked the performance
of the omniscient protocol, and for larger ratios it maintained the highest packet delivery
ratios of all the values of k whilst showing few false positives. The parameters for the
threshold IDS were set as shown in Table 6.14.

6.6.1.1 Game Theoretic IDS nodes

Game theoretic IDS nodes are created with an instance of IdsGameTheory, which uses
the full set of detectors introduced in §5.4 to maintain mp and mi for each monitored
neighbour. The game, described in §6.3, computes an appropriate strategy mixture that
determines whether the node should process or respond to incoming traffic. The free
parameters for the game theoretic IDS were set as shown in Table 6.15.

108

Table 6.15: Game Theoretic IDS parameters
Parameter Value

αr(6.4.2.1) 0.2
β(6.4.2.1) 0.7
γ(6.4.2.1) 0.6

INTERVAL (§5.5) 1s
α (§5.5.1.1) 0.8
δ (§5.5.1.2) 0.005

6.6.2 Simulation parameters

The basic simulation parameters are shown in Appendix A. The following sub-sections
discuss some of the important parameters used in this simulation environment, the place-
ment of adversaries and filtering of topologies to reduce the spread of metrics output from
the simulation.

6.6.2.1 Radio environment

Rayleigh fading was employed to simulate missed observations and unidirectional links
between nodes. Together with Tworay Pathloss, this produced the sigmoidal PDR shown
earlier in Figure 5.11. Each node was created with the default RadioNoiseAdditive radio
model, which used the Signal-To-Noise (SNR) threshold model.

6.6.2.2 Network environment

One hundred (100) nodes were placed randomly within a 1500x500m simulation area.
Together with the radio environment, this meant that flow sources and destinations were
on average more than one hop away from each other, which ensured that most traffic was
routed to give the adversaries an opportunity to affect it.

6.6.2.3 Mobility

Mobility introduces further challenges to the IDS, especially in detection mechanisms that
require an up-to-date list of neighbours. The random-waypoint model is a common model
employed by numerous MANET studies and was employed and configured as shown in
the basic simulation environment.

6.6.2.4 Flows

Ten Constant Bit Rate (CBR) flows were created and source-destination pairs were ran-
domly assigned in the network. Flows were either evenly distributed between adversaries

109

Table 6.16: Flow properties for use in AppUdp traffic generator
Parameter Value

size 512 bytes
start 10s
burst END-10s
interval 0.25s
type udp
reps 1

and IDS nodes, or IDS nodes only. A node is a source for at most 1 flow, so for N sim-
ulation nodes, a maximum of N/2 flows could be created. Each flow lasted the duration
of the simulation and had the properties specified in Table 6.16. Each flow terminated 10
seconds before the end of the simulation to ensure each data packet was fully traced.

6.6.2.5 Topologies

Topologies were randomly generated and then filtered to limit the effect of disconnected
flows on resulting network metrics. The transmission radius in the chosen environment was
determined empirically to be rttr = 365m (§5.7) and was used to discard any topologies
where any one flow was disconnected to reduce the spread in the computed metrics. To
enable this, Dijkstra’s algorithm (Dijkstra, 1959) was applied to an undirected graph
representation of the network using the JUNG library (JUNG, 2010) to check that for
every simulated flow there was at least one path between the source and destination. The
DijkstraDistance class was used, which returned a numeric value for pairs of nodes with
at least one path between them, or null if no path existed.

6.6.2.6 Adversary placement

Adversary nodes were placed using the MaxBetweenness adversary assignment model,
which ranked each node in terms of their node betweenness, using the undirected graph
representation of the network. The betweenness of a node v reflects the number of shortest
paths between pairs of nodes in the field that include v, so nodes with a higher between-
ness are more critical in the current topology. For the undirected graph G(V,E), the
betweenness CB(v) for vertex v is

CB(v) =
∑

s6=v 6=tεV

σst(v)
σst

(6.23)

where σst is the number of shortest paths from s to t, and σst(v) is the number of shortest
paths from s to t that pass through a vertex v (Brandes, 2001). Adversaries are picked

110

from a ranked list of highest to lowest betweenness to ensure that the adversaries chosen
have the largest influence possible on the studied metrics.

6.6.2.7 Adversary Misbehaviour

An AdversaryMisbehaviour class manages the selection and activation of misbehaviour
during the network simulation, and is configured by setting the misbehaviour types avail-
able to the adversary (described in Table G.1), the duration of the misbehaviour and pause
time between instances. An active misbehaviour may comprise of a number of misuses.
For example, each RREQ sent in a flooding attack is a single misuse.

Each misbehaviour activation is recorded with a network-wide unique identifier used
only during post-processing. Misbehaviour instances cannot overlap, which makes the
post-processing easier without sacrificing flexibility. Thus when an adversary is idle it can
activate rreq_flood and passive_route_invasion simultaneously, but cannot activate
another type of misbehaviour if it is already misbehaving. The defaults for each type of
misbehaviour are shown in 6.17, and were used in each of the scenarios.

6.6.3 Scenarios

To evaluate the performance of the game theoretic IDS over a broad range of local and
distributed attacks, a number of suitable attacking scenarios were designed, and are listed
in Table 6.18. Each scenario was repeated for the node models described in §6.6.1, from
the defenceless network to each fortified network.

6.7 Results

The percentage of adversaries in the network was the only independent variable used in
the simulations, and was varied from 0% to 60%. For each of the scenarios, PDR, average
end-to-end (ETE) delay and control overheads were computed (previously defined in §3.3).
In addition, response rate and recovery time were used to evaluate the performance of each
IDS for moderate numbers of adversaries (defined as 30%). Where necessary, additional
metrics have been defined to show the effectiveness of an attack when its effect was not
obvious from these base metrics alone.

6.7.1 Flooding

The detection technique used to determine RREQ flooding attacks was described in §5.4.3.
Briefly, IDS nodes detect flooding if neighbours originate more than RREQ_RATE_LIMIT
RREQs for any destination per second. Adversaries that flood the MANET create a large
number of RREQs for real or fictitious destinations. This causes nodes to generate a large

111

Table 6.17: Misbehaviour defaults used in simulations.

Misbehaviour Parameter Value

Black Hole packetType udp

Modify
Data

packetType udp

Passive
Route
Invasion

mode forge-rrep-as-dest

baseSeqNum 100

Active
Route
Invasion

mode forge-rrep

baseSeqNum 100

numHops 3

RREQ
Flooding

burstTime 1s

pauseTime 10s

interval 0.067s

Selfish -

Wormhole interfaceId 2

Table 6.18: Attacking scenarios simulated using each node model
Scenario Attack

local/perfect Flooding (§4.1.1.5)
local/imperfect Unassisted Black Hole (§4.1.1.2)

local/(perfect+imperfect) Black Hole + Passive Route Invasion (§4.2.2)
distributed/imperfect Wormhole (§4.1.1.4)

random Random

112

Table 6.19: Flooding parameters.
Parameter Value

duration 1s
pauseTime 50s

amount of control traffic in an attempt to satisfy the RREQ, which reduces the throughput
available for data.

In this scenario, the simulation time was reduced to t = 250s as the flooding created an
explosion in the size of the output network traces and compute time. The flood parameters
were also tuned and are shown in Table 6.19.

Packet Delivery Ratio

Figure 6.9 shows the PDR achieved by each of the node models when subjected to a
flooding attack with an increasing number of malicious nodes. In the defenceless network,
the attack results in an average decrease of 76.3% of the maximum PDR when 60% of
the nodes are adversaries. The omniscient network is also susceptible to the effects of the
attack purely as a result of the localised contention hot-spots from the flood attack, which
results in larger MAC losses.

In the defenceless, baseline and game theoretic networks, the attack efficacy saturates
at around 30% adversaries. A possible reason for this is that at this point the generation
of any more flooding traffic exceeds the offered load of the network and results in a large
number of flooding packets being dropped at neighbours’ queues. The baseline and game
theoretic IDS are largely ineffective at preventing the drop of PDR aside from a small
advantage at the 10% adversary ratio.

Average end-to-end (ETE) delay

The additional flooding of control packets introduces a large, linearly increasing ETE
delay, which saturates between 30% to 40% adversaries (Figure 6.10). The maximum
increase of ETE delay is shown in the defenceless network where flooding introduces a
ten-fold increase at 40% adversaries compared with no adversaries.

The advantage offered by the IDS for small ratios of adversaries is more difficult to see
here; no IDS significantly reduces the ETE delay from that of the defenceless network. The
susceptibility of the omniscient protocol is also evident here: even though these nodes drop
flooding packets immediately, the local contention effects from flooding are unavoidable
and are demonstrated by a five fold increase beyond 30% adversaries.

113

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory

Figure 6.9: PDR achieved in flooding scenario with increasing num-
bers of adversaries

Control overheads

Figure 6.11 shows the total routing overheads independent of those generated by adver-
saries from the flooding attack. The total number of overheads increases as the ratio of
adversaries increase, regardless of the network type. A portion of the routing overheads
in each of the networks arise from additional contention introduced by flooding, which
means fewer HELLO packets are delivered to neighbours resulting in a large number of
unnecessary link breaks from AODV’s route maintenance procedure. RREQs become the
largest contributor to the routing overheads in this scenario, route discovery dominates,
and the routes formed are unstable.

The baseline and game theoretic networks add an additional overhead through their
attempted response to the flood attack. In addition, the contention leads to greater
difficulty in observing the forwarding capability of neighbours leading to a large number
of reactions to other IDS nodes.

Response Rate

The contention and extra delays introduced by flooding diminishes the ability of the IDS’
to discriminate between benign and malicious behaviour. Most responses are directed
towards IDS nodes as a result of imperfect detectors firing frequent false alerts (§6.2),

114

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory

Figure 6.10: Average end-to-end delay achieved in flooding scenario
with increasing numbers of adversaries

for example, those that use eavesdropping to verify the behaviour of neighbours. This
is evident from Figure 6.12, where the baseline IDS consistently outperforms the game
theoretic IDS by up to 20%, but still cannot achieve true response ratios greater than 50%
until at least 30% adversaries are present.

Recovery Time and Minimum Goodput

The severity of the flooding attack is shown by the average recovery time for the defen-
celess network, showing a 1s flood takes 40s for the network to stabilise to pre-intrusion
levels of goodput for moderate numbers of misbehaving nodes (30% adversaries). The
small advantage in running the baseline or game theoretic IDS is depicted in Figure 6.13.
Whilst the additional overheads generated by the responses from the baseline and game
theoretic IDS reduce the average minimum goodput of the flooded network compared to
the defenceless network, the baseline IDS recovers approximately 25% quicker than the
defenceless network. The game theoretic IDS recovers on average around 10% quicker
than the defenceless network.

6.7.1.1 Discussion

Flooding leads to congestion and medium contention that defeats the baseline and game
theoretic IDS for anything larger than a small minority of adversaries. This is evidenced by
the relatively small advantage gained by running either IDS in any of the performance me-

115

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory

Figure 6.11: Control overheads in flooding scenario with an increasing
numbers of adversaries

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory

Figure 6.12: True response rate in flooding scenario achieved by ba-
seline and game theoretic IDS with increasing numbers of adversaries

116

defenseless baseline game theory
0

10

20

30

40

50

60

70

Node model

R
ec

o
ve

ry
 t

im
e

(s
)

defenseless baseline game theory
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Node model

G
o

o
d

p
u

t
(b

yt
es

/s
)

Figure 6.13: Recovery times and minimum goodputs achieved by
defenceless, baseline and game theoretic networks with moderate mis-
behaviour (30% adversaries) in flooding scenario

trics. A number of reasons explain this behaviour. First, the game theoretic IDS is unable
to use the additional discrimination to its advantage due to the massive increase of false
alerts from the imperfect detectors that use eavesdropping to verify the behaviour of neigh-
bouring nodes. Secondly, flooding results in the overflow of immediate neighbour’s queues
in which flooding packets from other adversaries may also be dropped, thus, the detection
criterion may not always be met (if nodes exceed RREQ_RATE_LIMIT). Even if it is met,
the response occurs only after IDS nodes have forwarded up to RREQ_RATE_LIMIT
RREQs from the adversary onto neighbouring nodes. Each of these factors lead to poor
preservation of desirable network metrics when flooding adversaries are introduced.

6.7.2 Unassisted Black hole

Eavesdropping was used to verify the forwarding behaviour of neighbours and determine
the presence of consistent non-forwarders (described in §5.4.1). In this scenario, adver-
saries drop data they receive for destinations other than themselves, including data from
other adversaries.

Packet Delivery Ratio

The results in Figure 6.14 show the network PDR and dropped ratio achieved in the
unassisted black hole scenario for the different IDS’ for an increasing ratio of adversaries
in the network. As this ratio increases, it is more likely data will be routed via an adversary
and dropped. In the worst case, 60% of adversaries drop an average 50% data in defenceless
networks.

For small numbers of adversaries (up to 20%), the baseline and game theoretic IDS
preserve a similar PDR to the omniscient network, but diverge at 30% adversaries or

117

higher. From this point on, the baseline IDS performs better than the game theoretic
IDS, preserving between 50% and 75% of the omniscient maximum for moderate numbers
of adversaries. The omniscient network is unaffected over the full range of adversaries.

Average end-to-end (ETE) delay

Figure 6.15 illustrates a general decrease of ETE delay as the number of adversaries in-
crease for each of the networks in the black hole scenario. For the omniscient network,
this results from IDS nodes ignoring any routing transmissions from an increasing number
of adversaries. For all other types of network, the decrease occurs partly from ignoring
routing transmissions from adversaries, but also because more data is dropped from a suc-
cessful attack, leading to less medium contention. Hence the defenceless network reports
the lowest ETE delay, resulting from the increased number of dropped data packets from
misbehaviour.

Control overheads

The control overheads for the unassisted black hole scenario are shown in Figure 6.16.
The defenceless network offers constant overheads over the full ratio of adversaries. This
is expected as the drop rate increases for higher ratios of adversaries, leading to a reduction
in the routing overhead required to support the remaining data. The omniscient network
exhibits similar overheads as the defenceless network but diverges after 40% adversaries
due to the longer routes required avoid the increasing number of adversaries. The baseline
and game theoretic networks show a similar overhead curve which increases at a greater
rate as the numbers of adversaries increase. This reflects the increased likelihood that
responses against numerous adversaries will be necessary to support each data flow.

Response Rate

The game theoretic IDS was found to be slightly less effective overall at reducing the
number of dropped packets by black hole adversaries compared to the baseline (Figure
6.14). The advantage of employing the game theoretic IDS is shown in Figure 6.17 where
the true response rate for moderate numbers of adversaries is 10–15% better than the
baseline. This is as a result of the better discrimination between the misbehaving and
benign nodes offered by the game theoretic reasoning. This advantage diminishes when
there are equal numbers of adversaries and benign nodes.

Recovery Time and Minimum Goodput

Unlike the flooding attack, which continues to affect network performance for a period
after the attack, the activation and deactivation of the black hole attack has an immediate

118

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

D
ro

p
p

ed
 p

ac
ke

ts
 r

at
io

defenseless
omniscient
baseline
game theory

Figure 6.14: PDR and dropped packet ratio achieved in unassisted
black hole scenario with an increasing number of adversaries

119

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory

Figure 6.15: Average end-to-end (ETE) delay achieved in unassisted
black hole scenario with an increasing number of adversaries

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory

Figure 6.16: Control overhead in unassisted black hole scenario with
an increasing number of adversaries

120

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory

Figure 6.17: True response rate achieved in unassisted black hole
scenario with an increasing number of adversaries

effect on network performance. This is shown in Figure 6.18 where the defenceless network
takes on average 100s to recover to pre-intrusion levels of goodput - the exact time the
misbehaviour is active for.

The advantages of running the game theoretic or baseline IDS is clearly illustrated by
a doubling of the minimum goodput experienced during the attack compared to that of
the defenceless network. In both cases, recovery time is reduced by more than half of the
100s attack duration. Furthermore, there is very little difference between recovery time
and minimum goodput achieved by game theoretic or baseline IDS.

6.7.2.1 Discussion

This scenario illustrates the strength of the game theoretic IDS for moderate ratios of ad-
versaries in the network as it better discriminates between benign and malicious behaviour,
as shown by the higher true response rate with negligible difference in PDR compared to
the baseline IDS. As the number of adversaries increases still further, the baseline IDS
begins to lead in the overall PDR preserved and the difference in true response rate begins
to converge with that of the game theoretic IDS. This convergence is to be expected as
an indiscriminate approach will work better when the majority of nodes are malicious
rather than benign, as there is a higher likelihood that a given response is taken against
a malicious node.

121

defenseless baseline game theory
0

20

40

60

80

100

120

140

Node model

R
ec

o
ve

ry
 t

im
e

(s
)

defenseless baseline game theory
0

2000

4000

6000

8000

10000

12000

14000

16000

Node model

G
o

o
d

p
u

t
(b

yt
es

/s
)

Figure 6.18: Recovery times and minimum goodputs achieved by
defenceless, baseline and game theoretic networks with moderate mis-
behaviour (30% adversaries) in unassisted black hole scenario.

6.7.3 Black hole assisted with passive route invasion

An adversary can vastly increase the effectiveness of a black hole attack by falsely adver-
tising itself as having the shortest route to a requested destination during route discovery.
Several route invasion techniques were shown in §4.2.2.5. This attack is the product of
two misuses: first the adversary advertises routes to any requested destination and then
indiscriminately drops any data it receives that is not addressed to itself. Whilst both at-
tacks can be detected, the detection of the black hole attack is imperfect, but fake routing
information can be detected perfectly (§5.4.5.1).

Packet Delivery Ratio

The PDR for each network subjected to increasing ratios of adversaries in the network is
shown in Figure 6.19. The presence of adversaries reduces the PDR by 50%, akin to §6.7.2,
albeit with only 10% adversaries, at which point the attack saturates. This characteristic
reflects the fact that adversaries are rate limited to prevent throughput starvation by the
generation of large numbers of fake RREPs: extremely important for higher numbers of
adversaries in which the attack would not scale. Omniscient nodes are largely unaffected
by the attack as they ignoring any messages originating from known adversaries.

The maximum dropped packet ratio in the defenceless network is lower than Figure
6.14 shows. Since the overall PDR is reduced to similar levels, this may indicate that the
additional traffic generated by the route invasion causes additional congestion that leads
to higher MAC losses.

The baseline IDS performs the best of all the IDS schemes evaluated, tracking perfor-
mance of the omniscient network at each ratio of adversaries in the network. The game
theoretic IDS performs slightly worse and at its worst preserves approximately 15% less

122

traffic than the baseline IDS.

Average end-to-end (ETE) delay

Figure 6.20 shows the ETE delay for the assisted black hole scenario. Immediately evident
is the uniform increase in ETE delays for the defenceless network, caused by a number of
factors. Firstly, the route invasion component of the attack generates a significant amount
of additional routing traffic and further illustrates the necessity of rate limiting the route
invasion behaviour of adversaries. The fake route replies generated by adversaries use an
arbitrarily large sequence number that does not follow standard sequence number handling
and leads to the emergence of routing loops and isolated large ETE measurements. Lastly,
the number of HELLO packets increases accordingly in order for adversaries to persist the
fake routes. The baseline, game theoretic and omniscient IDSs show relatively constant
ETE delay across the full range of adversaries in the network.

Control overheads

Figure 6.21 shows that aside from the defenceless network, there is a general downward
trend in control overheads as the ratio of adversaries increases. This decrease extends to
the baseline and game theoretic IDS and includes the additional overheads from respon-
ding, showing it is advantageous detect and respond to this attack. The response from
all IDS’ block RREPs that correspond to a route invasion, which suppresses the additio-
nal routing traffic that emerges upon the success of this attack, including the increased
number of HELLO packets from fake routes being established.

Response Rate

As Figure 6.22 shows, there is very little to separate the true response rate of the baseline
and game theoretic IDS. This results from the attack being formed of two misuses; the
route invasion is caught by a perfect detection scheme whilst the dropped packets are
caught by an imperfect scheme. The route invasion on its own provides strong evidence
of an impending attack and is caught before the target begins to send any data. This is
the reason the threshold approach does as well as the more reasoned approach provided
by game theory.

Recovery Time and Minimum Goodput

The recovery times and minimum goodputs for the defenceless, baseline and game theoretic
networks are illustrated in Figure 6.23. The defenceless network recovers at approximately
100s, whilst the baseline IDS does so in approximately half the time, as it does when
subjected to adversaries misbehaving with an unassisted black hole (§6.7.2). The game

123

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

D
ro

p
p

ed
 p

ac
ke

ts
 r

at
io

defenseless
omniscient
baseline
game theory

Figure 6.19: PDR and dropped packet ratio achieved in assisted black
hole scenario with an increasing number of adversaries

124

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory

Figure 6.20: Average end-to-end (ETE) delay achieved in assisted
black hole scenario with an increasing number of adversaries

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory

Figure 6.21: Control overhead in assisted black hole scenario with an
increasing number of adversaries

125

0 0.1 0.2 0.3 0.4 0.5 0.6
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory

Figure 6.22: True response rate achieved in assisted black hole sce-
nario with an increasing number of adversaries

theoretic IDS is unable to match its performance in this same scenario, averaging a 31.5%
reduction in recovery time over the defenceless network. The baseline also doubles the
minimum goodput experienced to preserve network performance, whilst the game theoretic
protocol is within 15% of the goodput preserved by the baseline IDS. Compared to the
unassisted black hole scenario, both IDS’s show a slight reduction in the minimum goodput
preserved, arising from the more detrimental characteristics of this type of attack.

6.7.3.1 Discussion

The baseline IDS exhibits much better performance than the game theoretic IDS in this
scenario and tracks the omniscient protocol for PDR but via a purely local detection
scheme that applies a threshold directly to mi and mp. Although it may appear that
the game theoretic IDS performs worse with increased overheads, the metric is slightly
misleading as it is dependant on the number of data packets transmitted, which is lower
for the game theoretic IDS as it is unable to respond to adversaries as quickly as the
baseline IDS. The “benefit of the doubt” factor used could be responsible for this larger
convergence time, thus making it more insensitive to extreme misbehaviour, such as in
this case. We can conclude that a threshold with short-term memory is a good measure
against this kind of attack.

126

defenseless baseline game theory
0

20

40

60

80

100

120

140

Node model

R
ec

o
ve

ry
 t

im
e

(s
)

defenseless baseline game theory
0

2000

4000

6000

8000

10000

12000

14000

16000

Node model

G
o

o
d

p
u

t
(b

yt
es

/s
)

Figure 6.23: Recovery times and minimum goodputs achieved by
defenceless, baseline and game theoretic networks with moderate mis-
behaviour (30% adversaries) in assisted black hole scenario

6.7.4 Wormhole

Wormholes exploit routing race conditions whereby the MANET routing protocol takes an
action based on the first instance of a given message received and ignores instances of that
message received later (Karlof & Wagner, 2003). In this case, only the first RREQ with
a given RREQ ID is processed and forwarded by a neighbour: subsequent RREQs with
the same ID are dropped (Perkins, 1997, §6.7). If colluding wormhole adversaries connect
distant parts of the MANET over a lower latency link than the medium shared by the
MANET, the adversaries will be chosen to serve most routes. Wormholes can be detected
imperfectly by monitoring the forwarding behaviour of neighbours, also used previously
to detect the presence of black hole nodes in the network (§6.7.2).

Packet Delivery Ratio

The resulting PDR for each network subjected to an increasing number of wormhole
adversaries is shown in Figure 6.24. The average PDR for this scenario is approximately
80%, as illustrated by the omniscient network which is resilient to this attack, resisting
the use of routes advertised by adversaries. With the introduction of a small number of
wormhole nodes the average PDR of the remaining networks regularly exceeds 90% due to
the use of the wormhole links, resulting in approximately 50% of all packets being served
by at least one adversary. The attack peaks at 20% adversaries when 60% of all packets
are served by a wormhole node and saturates after this point.

Although it appears from the PDR metric alone that both IDS’s are largely ineffective
to the effects of this attack, both reduce the ratio of intercepted packets by 49.1% at 10%
adversaries to 20.8% at 30% adversaries when compared to the defenceless network. The
data show that both IDS’ become increasingly ineffective for larger ratios of adversaries

127

in the network.

Average end-to-end (ETE) delay

Figure 6.25 shows that the introduction of a small number of wormhole adversaries results
in a 90% decrease in the ETE delay of the defenceless, game theoretic and baseline networks
due to the decreased latency offered by the wormhole links for intercepted traffic. The
resilience of the baseline IDS to small ratios of adversaries is shown by the higher ETE
delay which decreases with moderate numbers of adversaries.

Control overheads

The control overheads for the wormhole scenario are depicted in Figure 6.26, and show
that a constant overhead for increasing ratios of adversaries in the defenceless and om-
niscient networks, whilst there is a linearly increasing overhead in the baseline and game
theoretic networks. This additional overhead introduced by the baseline and game theore-
tic networks is due to the response initiated by the IDS’s, which routes around adversaries
as they are detected ’dropping’ packets. The overheads introduced by the game theoretic
protocol range from 10.3-17.2% less than the baseline one.

Response Rate

Figure 6.27 shows the true response ratio achieved by the game theoretic and baseline IDS
and demonstrates that the further discrimination employed by the game theoretic IDS
results in a 10% reduction in the number of false responses (for 10% adversaries) which is
reduced to approximately 5% thereafter when compared to the baseline IDS.

Recovery Time and Minimum Intercepted Throughput

The recovery times and minimum intercepted throughput offered by each of the networks
is shown in Figure 6.28. In general, the baseline and game theoretic IDS’s offer an appre-
ciable reduction in the recovery time, whilst reducing the number of bytes intercepted by
adversaries. The larger spread in the intercepted throughput reported by each of the IDS’
results from the local response, which may succeed in re-routing data to a benign node,
or instead choose another wormhole node.

6.7.4.1 Discussion

Each of the measures suggest the game theoretic IDS provides better performance than
the baseline IDS in this scenario. The game theoretic IDS offers a similar reduction
in the intercepted throughput whilst providing a lower number of false responses and
maintaining a lower overall overhead compared to the baseline IDS. The performance of

128

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

In
te

rc
ep

te
d

 p
ac

ke
ts

 r
at

io

defenseless
omniscient
baseline
game theory

Figure 6.24: PDR and intercepted packet ratio achieved in wormhole
scenario with an increasing number of adversaries

129

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory

Figure 6.25: Average end-to-end (ETE) delay achieved in wormhole
scenario with an increasing number of adversaries

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory

Figure 6.26: Control overhead in wormhole scenario with an increasing
number of adversaries

130

0 0.1 0.2 0.3 0.4 0.5 0.6
0.75

0.8

0.85

0.9

0.95

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory

Figure 6.27: True response rate achieved in wormhole scenario with
an increasing number of adversaries

defenseless baseline game theory
0

10

20

30

40

50

60

70

80

90

100

Node model

R
ec

o
ve

ry
 t

im
e

(s
)

defenseless baseline game theory
0

5000

10000

15000

Node model

In
te

rc
ep

te
d

 b
yt

es
 p

er
 s

ec
o

n
d

Figure 6.28: Recovery times and minimum intercepted bytes achieved
by defenceless, baseline and game theoretic networks with moderate
misbehaviour (30% adversaries) in wormhole scenario

131

Misbehaviour Frequency of occurrence Duration

Data modification 0.225 20s
Unassisted black hole 0.225 20s

Black hole and passive route invasion 0.225 20s
Wormhole 0.225 20s

RREQ flooding 0.1 1s

Table 6.20: Set of misbehaviours, their relative weightings and dura-
tion

both suffers when there is a moderate numbers of adversaries and converges with the
defenceless network’s performance for high numbers of adversaries.

6.7.5 Random misbehaviour

In the final scenario, a one-time random distribution of misbehaviour was generated
over the entire simulation time from the set of misbehaviours and their respective fre-
quency of occurrence as shown in Table 6.20. Of these, flooding has a lower weighting
due to the previous trace file explosion problem described in §6.7.1. The output from
RandomMisbehaviourGenerator was applied to each adversary at simulation initialisa-
tion. The scenario evaluated the context switching ability of each of the IDS schemes.

Packet Delivery Ratio

Figure 6.29 shows the PDR preserved over each network type for an increasing ratio of
adversaries in the network. The defenceless network shows a 45.3% reduction in PDR from
the network average at 0% adversaries to the lowest PDR at 60% adversaries. The rate
at which the attack reduces the PDR diminishes for larger numbers of adversaries. The
omniscient network shows a slight reduction in the PDR, from the flooding component of
the random scenario.

For low ratios of adversaries, the baseline IDS preserves 95.6% of the omniscient PDR,
which decreases to between 81.9% and 85.8% when larger numbers of adversaries are
present. The game theoretic IDS performs similarly to the baseline for 10% adversaries,
but thereafter offers little protection.

Average end-to-end (ETE) delay

ETE delay for the random scenario across all network types is shown in Figure 6.30.
The defenceless network shows a variable delay as the ratio of adversaries in the network
increases, due to the extra contention induced by the flooding and assisted black hole

132

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory

Figure 6.29: PDR achieved in random misbehaviour scenario with an
increasing number of adversaries

components of the attack. The omniscient network exhibits an ETE delay response simi-
lar to the flooding scenario (§6.7.1) due to the local congestion hot spots from flooding
adversaries. The delay from the baseline network increases at a slower rate than the game
theoretic protected network, reaching their maximum ETE delay at 20% adversaries and
remaining at an average of 2.01s and 2.46s for the remaining ratios of adversaries respecti-
vely. The improved response provided by the baseline IDS corresponds to a 33% reduction
in ETE delay when compared to the game theoretic network.

Control overheads

The omniscient protocol’s control overheads remain at the network average, as illustrated
in Figure 6.31. The overheads for the defenceless protocol rise as a result of the fake RREP
and flooding causing additional contention, but this increase is offset by the wormhole
component, and the dropped data resulting in less latency for the remaining data.

Of the IDS’s, the baseline leads to better preservation of network quality whilst mi-
nimising the number of extra overheads; the average overhead induced at any time is a
maximum of 36.5% more than the defenceless network. The game theoretic IDS performs
much more poorly, resulting in a maximum 75% overhead over the defenceless network.

133

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory

Figure 6.30: Average end-to-end (ETE) delay achieved in random
misbehaviour scenario with an increasing number of adversaries

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory

Figure 6.31: Control overhead in random scenario with an increasing
number of adversaries

134

0 0.1 0.2 0.3 0.4 0.5 0.6
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory

Figure 6.32: True response rate in random scenario with an increasing
number of adversaries

Response Rate

The true response rate for the baseline and game theoretic IDS is shown in Figure 6.32,
indicating that whilst the baseline protocol incurs more false responses than the game
theoretic protocol and has greater variability for a lower proportions of adversaries, it
converges towards the performance of the game theoretic IDS for higher ratios.

6.7.5.1 Discussion

The metrics suggest that the baseline IDS performs better in this scenario as it preserves
a larger portion of network PDR and simultaneously minimises the overhead required for
the extra responses. Although the true response ratio for the baseline IDS is slightly lower
than the equivalent for the game theoretic IDS for lower numbers of adversaries, its perfor-
mance converges with that of the game theoretic protocol for moderate to high numbers of
adversaries. The results show that the baseline IDS is as effective with moderate numbers
of adversaries as it is when there is a majority of adversaries, illustrated by the difference
in PDR between itself and the resulting PDR from the omniscient network.

6.8 Summary

This chapter has shown the application of a threshold and game theoretic inspired MANET
IDS to several scenarios employing both local and distributed misbehaviour of varying

135

subtlety in order to determine the effectiveness and the scalability of both approaches
with increasing number of adversaries. The threshold IDS was used as a baseline in order
to determine the efficacy of the game theoretic approach.

The core of the game theoretic implementation was the design of a game with appro-
priate regions that responds or processes packets from neighbours based on their observed
behaviour. The output of the game is a mixed strategy solution that determines this out-
come and applies it probabilistically until it is updated in the next interval. The baseline
and game theoretic IDS employ the same method of computing a node’s behaviour profile
in two measures, mp and mi, which were comprised of independent metrics that measured
the ability of a node to perform a given function, such as forwarding data, from local
observations. What differentiates the approaches is how the measures are evaluated. The
threshold IDS applied a strict threshold on mp and mi whilst the game theoretic approach
employs further reasoning (termed a “benefit of doubt”), by placing less importance on mi

(constituting weak evidence) without an associated reduction of mp (stronger evidence),
to reduce the number of retaliations against benign nodes in imperfect wireless environ-
ments, such as fading ones. In these environments, taking the output of detectors that
operate via eavesdropping is unreliable and leads to false positives as often the notification
that a neighbour has fulfilled a given function (e.g. packet forwarding), is missed.

Overall, the game theoretic protocol demonstrates a significant improvement in true
response rate compared to the baseline IDS for most of the scenarios presented in this
Chapter, though this does not always translate into an improvement in network metrics.
For example, the baseline provides consistently better network performance in the assis-
ted black hole scenario and when subjected to random misbehaviour. This may be the
result of the longer convergence time from the additional reasoning employed in the game
theoretic IDS when it is either unnecessary (as in the assisted black hole scenario) or when
it prevents quick context switching (as in the random misbehaviour scenario). Both ap-
proaches are unsatisfactory when subjected to flooding and for high numbers of wormhole
adversaries, where they failed to preserve any network performance over the defenceless
network. Flooding is a special case where the core detection strategies are compromised
by the additional contention, resulting in self-reactivity that is illustrated by large false
positive rates in both the game theoretic and baseline IDS.

Both the game theoretic and baseline IDS employ local detection and response, and
do not share their intrusion knowledge with their neighbours. This is advantageous in
that the IDS is less exposed to misleading from false reports by adversaries. Negative
false reports could cause IDS nodes to deny a benign node access to the network, whilst
positive false reports disseminated by colluding adversaries could reduce the likelihood
of a retaliation, even if that adversary is actively attacking the network. This approach
also means, however, that if nodes do not have prior experience of an adversary they

136

will be susceptible to its misbehaviour they detect it themselves, even if this adversary
is known to others. The leads to a slower network-wide response, and imposes an upper
limit on its effectiveness. In addition, these techniques respond to misbehaviour over a
single timescale (refreshed each interval seconds), whilst a near-instantaneous response
would be appropriate for misbehaviour that can be detected perfectly.

137

CHAPTER 7

SIDS+AIS: AN IMMUNE INSPIRED APPROACH
TO DETECTION AND RESPONSE

7.1 Introduction

Chapter 6 showed that incorporating game theoretic reasoning encouraged IDS nodes to
give neighbours that triggered imperfect detectors with little corresponding evidence from
perfect detectors a benefit of the doubt. The contribution of sIDS is a reduction in the
rate by which benign nodes are retaliated against and the application of more appropriate
responses.

The objective of the Human Immune System (HIS) is to protect the host by employing
distributed mechanisms that work in tandem to orchestrate an immune response. This
Chapter provides an overview of these mechanisms that served as an immune-inspired
component to sIDS, referred to as sIDS+AIS. The scheme was run in parallel to the game
theoretic component over each of the intrusion scenarios detailed in §6.6.3, and end to end
network and intrusion detection metrics were extracted to enable the effectiveness of the
approach to be evaluated.

7.2 From the Human Immune System to MANET IDS

The properties of the immune system and challenges it faces were discussed in previously in
§2.4. These challenges are not too dissimilar of the security challenges faced in MANETs.
A number of the features of the immune system emerged as being desirable within a
MANET IDS:

• multiple layers: the innate response deals with a priori known threats that can be
detected perfectly. The adaptive response deals with more subtle threats or those
where the pathogen has subverted the innate response.

• over different timescales: the innate response is instantaneous whilst the adaptive
response occurs much later and acts over a much longer time period.

138

• agent signalling: cells of the immune system use chemical signals to orchestrate a
response.

In Chapter 6 we showed that fortifying a MANET with sIDS that detects and responds
locally results in an increase in end-to-end network performance over a defenceless network
when both are subjected to malicious behaviour. Even so, there is a limit to the effective-
ness of this purely local approach, shown by its ineffectiveness to deal with more subtle
types of misbehaviour, or those where a co-ordinated response is required to prevent the
spread of misbehaviour. This was illustrated in §6.6.3 where the best performing IDS is
still far from the performance of the ideal omniscient network that has a shared global
knowledge of adversaries.

The local detection paradigm employed so far means that if a node identifies a suspect
as misbehaving, even by perfect schemes, this knowledge is not shared with its neighbours.
In addition, detection activities operate over a single timescale, with no discrimination
made between perfectly or imperfectly detected misbehaviour. Thus, when the IDS retal-
iates to possible misbehaviour from an imperfect source, it often results in a false positive.
The following sub-sections describe the above properties in the context of a MANET IDS.

7.2.1 From innate TLRs to perfect detectors

On breaching the epithelial surfaces, a major part of the innate response involves the
recognition of PAMPs by TLRs present on the surface of immune cells. As stated earlier,
PAMPs exist only on pathogens, thus are a definitive marker of non-self. The activated
immune cell reacts near instantaneously, by digesting the pathogen (a local response)
and/or releasing cytokines to recruit neighbouring immune cells that are in transit (an
extended response).

Applying this to the MANET environment, sIDS+AIS offers a near-instantaneous
local response for misuses that can be classified perfectly (with a zero false positive
rate) to short-circuit the long convergence time of the current IDS architecture (Figure
6.4). Secondly, sIDS+AIS disseminates this knowledge to its neighbours to co-ordinate an
extended response should other neighbours corroborate with these findings. If the majority
of nodes corroborate, distant neighbours with no first-hand experience of the misbehaving
node can also contribute to the extended response against it.

7.2.2 Adaptive response and imperfect detectors

The adaptive response takes over a few days after the original infection (Janeway et al.,
2004, p. 21) if the innate response has failed to rid the pathogen from the host. The cells
involved are tasked with classifying more subtle markers of infection, such as recognising
the altered expression of Major Histocompatibility Complex (MHC) on infected host cells

139

(Janeway et al., 2004, p. 28). Cells of the adaptive response often require activation by
multiple co-stimulatory signals before being able to carry out their effector function.

In sIDS+AIS signals are used to reduce the uncertainty of the imperfect detection
schemes. In particular, a node’s observation radius is limited by unidirectional links and
contention, such that two nodes that are both neighbours of the suspect may have a
slightly different vantage point and could classify the suspect differently. When consistent
imperfect misbehaviour is observed with no corresponding evidence from perfect detectors,
IDS nodes cross-correlate alerts generated from the imperfect schemes, to reduce the
likelihood of falsely responding. Like the above, should the majority of reports cross-
correlate, neighbours with no first-hand experience of the misbehaving node can also
contribute to an extended response.

7.3 An implementation of an AIS component for sIDS.

The implementation of the AIS component was inspired by the three desirable properties of
the immune system discussed earlier: multiple layers, response over multiple timescales,
and the organisation of extended responses, classified as innate (§7.3.2) and adaptive
(§7.3.3), via immune cell signalling. The shared services used by both are described first.

7.3.1 Reporting and aggregating intrusion data

Majority voting is a simple mechanism to determine intrusions with or without strong
evidence in a distributed manner. The technique described by Zhang & Lee (2000) was
applied to compute the extended response in both the innate and adaptive components.
Rather than trust and act on reports from individual neighbours implicitly, majority vot-
ing aggregates a number of them, reducing the effect of falsified or erroneous data from
neighbours. It is robust to a minority of compromised nodes sending falsified data.

7.3.1.1 Disseminating reports

The dissemination of intrusion reports is central to the AIS’ extended response via the
innate or the adaptive component. To disseminate these reports, gossiping is used, in which
messages are forwarded with a given probability to reduce the redundancy of flooding (Li
et al., 2002; Ni et al., 1999; Haas et al., 2006). In flooding, a node transmits a message to
all its neighbours, who in turn transmit the message to their neighbours until the message
reaches the desired set of nodes. It is routinely used by ad-hoc routing protocols during
route discovery and is the source of large overheads that reduce the capacity of MANETs
(Yi et al., 2003). Haas et al. (2006) applied gossiping to AODV route discovery, showing
its ability to reduce routing load and improve network metrics whilst maintaining high
delivery ratios of control messages.

140

...

Hop Count Report Payload

0 8 16 3224

Source IP Address

Destination IP Address

Figure 7.1: General structure of report IP packet

The approach we use is most similar to GOSSIP1(p, k) in Haas et al. (2006). A
node originating a report about a given suspect node sends it with p = 1, and waits for
REPORT_TIMEOUT seconds to acquire reports from other nodes about the suspect (as
shown in Algorithm 17). Neighbours increment the hop count field (h) and compute p as
follows:

p =

1 h ≤ k
1

h−k h > k
(7.1)

The value k = 3 was determined empirically by running several simulations and was
a good trade-off between the radius of report dissemination and control overhead. In
this scheme, neighbours forward a given report once at most, by storing recently received
reports in a buffer; the reporting node’s identity (’Source IP Address’) and the report
contents are stored in a data structure keyed by the target node (’Destination IP Address’).
The structure of the report payload is illustrated in Figure 7.1. It defines the target (the
’Destination IP Address’), the reporting node (the ’Source IP Address’), the report payload
and the hop count (’Hop Count’), which is incremented by intermediate nodes during its
dissemination.

When a neighbour receives a new report, it also originates its own report about the
reported suspect node if it has any first-hand experience about it. If the same report is
received again, it is silently discarded. Broadcast based gossip is employed to ensure the
functioning of the extended response independently from the routing protocol (which may
be under attack). The reporting procedure is throttled such that each neighbour that
participates in the reporting procedure for a suspect cannot initiate another for that node
until at least MIN_REPORT_INTERVAL.

141

7.3.1.2 Data aggregation

Once REPORT_TIMEOUT has elapsed, the n received reports about the suspect are
processed to determine a consensus. Whilst the conditions that determines an intrusion
vary between the innate and adaptive component, if the computation concludes that the
suspect has intruded, the node responds.

7.3.1.3 Managing active responses

For simplicity, the same data structure is used by the innate and adaptive component
when initiating and managing the state of responses. Algorithm 15 illustrates how this
data structure is updated when either component computes that the node with identity
macIpPair has intruded, and shows for each detected misuse the length of the response
increases exponentially.

Algorithm 15 respond(macIpPair)
if actively responding to macIpPair then
entry ← bufResponse[macIpPair]
entry.bo ← 2*buf.bo

else
create new entry

end if

To achieve this, backoff values for monitored nodes are cached in a finite buffer with
the oldest entries from out-of-range neighbours removed first. Then, the length of response
for macIpPair is computed from bo as follows:

response_time = bo ∗RESPONSE_BASE (7.2)

RESPONSE_BASE is a parameter that determines the smallest length of time a response
can be active.

7.3.2 The innate component

The innate component of the AIS consists of a set of artificial TLRs, which comprise the
perfect detectors shown in §6.2. This is accomplished by feeding the notifications directly
into the innate component, as shown in Figure 7.2 (extending the architecture of the IDS
shown in Figure 6.4).

7.3.2.1 Local response

Should one or more artificial TLRs be activated by a suspect’s audit data, the IDS responds
locally and near-instantaneously to the detected threat by blocking further communication

142

Compute metrics
Notification

Vector

notification

Is TLR? Local Response

return

false

Extended
Response

true

Figure 7.2: Flow diagram of innate response when notification is gen-
erated by one or more detectors. If the notification is from a perfect
detector the innate component responds locally and then initiates an
extended response.

between itself and the suspect (§7.3.1.3). Any messages that are received by the suspect
during this active response are delivered only to the IDS component in order to monitor
its future behaviour.

7.3.2.2 Extended response

After the application of the local response, an extended response is co-ordinated by sharing
knowledge of the intrusion to neighbouring nodes by invoking a reporting procedure. The
initiator of the extended response constructs a report, adds its observation to it and
transmits it onto its neighbours. When a neighbour receives a new report, it forwards the
original report to its neighbours and, if it has recent first-hand experience, disseminates
its own report about the target. The strategy for disseminating reports was described in
§7.3.1, and aside from the payload and majority voting criteria, is common to both the
adaptive and innate components of the AIS. An example of the reporting procedure and
corresponding extended response is shown in Figure 7.3.

The innate report IP packet is illustrated in Figure 7.4, and has a payload that consists
of a flag (T) if one or more TLRs was activated by the target node specified in the
Destination IP Address field.

143

2 3 4

6 M 7

9 10 11

1

5

8

fake_rrep fake_rrep

fake_rrep

fake_rrep fake_rrep

fake_rrep

2 3 4

6 M 7

9 10 11

1

5

8

fake_rrep fake_rrep

fake_rrep

fake_rrep fake_rrep

fake_rrep

2 3 4

6 M 7

9 10 11

1

5

8

fake_rrep fake_rrep

fake_rrep

fake_rrep fake_rrep

fake_rrep

2 3 4

6 M 7

9 10 11

1

5

8

fake_rrep fake_rrep

fake_rrep

fake_rrep fake_rrep

fake_rrep

1. 2.

3. 4.

fake_rrep report

R={M} R={M}

R={M} R={M}

R={M} R={M}

R={M} R={M} R={}

R={M} R={M} R={}

R={M} R={M}

R={M} R={M} R={M}

R={M} R={M} R={M}

R={M} R={M}

R={M}

R={M}

R={M}

R={M} R={M}

R={M} R={M}

R={M} R={M}

Figure 7.3: Report procedure for innate component of AIS. 1. An
adversary misbehaves by sending fake route replies, which is detected by
most, but not all of its immediate neighbours. 2. After a random jitter
period, one of the immediate neighbours, node 2, initiates the innate
reporting procedure by constructing and sending a report containing
the new intrusion state to its immediate neighbours. 3. Neighbours
forward reports and if the receiver is a neighbour of the adversary it
sends its own report out (indicated by the double arrows). This process
continues. 4. After a timeout, nodes determine a consensus, in this
case, isolating M.

144

Source IP Address

Hop Count T Reserved

0 8 16 24 32

Destination IP Address

Figure 7.4: Structure of innate report

Once the reporting procedure times out, the reports for the suspect are aggregated if
at least MIN_REPORTS reports have been received. A majority vote is computed if
the ratio of reports which have the TLR flag (T) set is greater to those that are unset. If
more nodes report that at least one TLR was fired for the suspect in the near past, then
this node invokes the local response described earlier.

Pseudo code for initiating the local and extended innate responses is shown in Al-
gorithm 16. The sending of an innate report and the management of the innate report
buffer is shown in Algorithm 17 whilst the approach for determining the consensus report
timeout is listed in Algorithm 18.

Algorithm 16 IdsInterface.alert(type) method for generating innate intrusion re-
ports
if tlrFired(type,macIpPair) then
if macIpPair not in report buffer then
initiateInnateReportProcedure(macIpPair)

end if
armResponse(macIpPair)

else
return

end if

7.3.3 The adaptive component

The adaptive component of the AIS is used to cross-correlate a node’s own experience
about a suspected intrusion with neighbours that may also have first-hand experience to
report, however, it is weak evidence characterised by a low value of mi in the absence of
mp. The intuition is that the cross-correlated outcome should more accurately reflect the

145

Algorithm 17 initiateInnateReportProcedure(macIpPair)
netAddr ← node ip address
if macIpPair not in innateReportBuffer then
entry ← new innate report buffer entry
msg ← new innate report
msg.tlrF ired = true
msg.src = netAddr

msg.destIp = macIpPair.ip

send(msg)
entry.addReport(msg.tlrF ired,msg.src)
queue innateReportTimeout(entry)

end if

Algorithm 18 innateReportTimeout(entry)
if |entry.reports| > MIN_REPORTS then
compute majority(entry.reports)
if intrusion detected then
armResponse(macIpPair);

end if
end if

behaviour of the suspect than just that from local observations.
An adaptive report procedure is initiated when mi and mp are re-computed by the

IDS for each known neighbour (§6.2) each interval. If any node is assigned a low value of
mi from the computation of the individual metrics, the adaptive component can initiate
a reporting procedure for that node if it hasn’t done so for MIN_REPORT_INTERVAL,
as illustrated in Figure 7.5.

The reporting procedure uses gossip to push reports to neighbours and majority voting
to compute a consensus similar to the innate component. The adaptive report IP packet
is illustrated in Figure 7.7. The payload contains the most recent computed value of mi

for the target node (specified in the Destination IP Address field). Nodes only reply if
they have had recent first-hand experience of the node. This prevents stale values of mi

being disseminated and contributing to the consensus.

146

Compute metrics
Notification

Vector

notification

Is TLR? Local Response

return

false

Extended
Response

true

Low
mi

Local Response
Adaptive
Response

true

return

false

Figure 7.5: Flow diagram of adaptive response, invoked when any
suspect has a low mi.

m_i

Hop Count Reserved

0 8 16 3224

Source IP Address

Destination IP Address

Figure 7.7: Structure of adaptive report

Once the procedure times out, the consensus is computed by applying an IMPER-
FECT_THRESHOLD to each of the samples of mi reported by neighbours about the
suspect. Neighbours compute a consensus, which if it indicates an intrusion, invoke a
response, as detailed in §7.3.1.3.

7.4 Results

sIDS+AIS was run over the range of local and distributed attacks listed in §6.6.3 and
network and IDS metrics extracted in order to evaluate the performance of the immune-

147

2 3 4

6 M 7

9 10 11

1

5

8

2 3 4

6 M 7

9 10 11

1

5

8

1. 2.

3. 4.
drop report

2 3 4

6 M 7

9 10 11

1

5

8

mi(M)=0.3

mi(M)=0.4

mi(M)=0.7

mi(M)=0.35

2 3 4

6 M 7

9 10 11

1

5

8

mi(M)=0.3

mi(M)=0.4

mi(M)=0.7

mi(M)=0.35

R={} R={} R={}

R={} R={}

R={M} R={M} R={M}

R={M} R={M}

R={M} R={M} R={M}

R={M} R={M}

mi(M)=0.3

mi(M)=0.4

mi(M)=0.7

mi(M)=0.35

mi(M)=0.3

mi(M)=0.4

mi(M)=0.7

mi(M)=0.35

data

R={} R={} R={}

R={} R={}

R={M} R={M} R={M} R={M} R={M} R={M}

R={M}

R={M}

R={M}

R={M}

R={M}

R={M}

Figure 7.6: Report procedure for adaptive component of AIS. 1. An
adversary misbehaves by dropping packets. 2. After a random jitter
period, one of the immediate neighbours, node 2, initiates the report-
ing procedure by forwarding a report containing its evaluation of the
suspect’s mi to its neighbours. Nodes forward the reports on and if
they have recent experience they transmit a report with their evaluation
of mi (indicated by double arrows). 3. After a timeout, nodes apply
a threshold to the reported mi’s, and find the consensus - in this case
to respond to M. The empty set R now contains M 4. Nodes find an
alternative route around M. Note that neighbours with no experience
of M also contribute in the extended response against M.

148

Table 7.1: AIS IDS parameters
Parameter Value

REPORT_TIMEOUT 2s
MIN_REPORT_INTERVAL 50s

RESPONSE_BASE 100s
MIN_REPORTS 3

IMPERFECT_THRESHOLD 0.5
REPORT_DIAMETER 3

inspired approaches employed. The results for each of the metrics are superimposed onto
the graphs previously obtained to highlight the performance of sIDS+AIS versus the
baseline and game theoretic networks. The overall response taken by sIDS+AIS is formed
of a Boolean OR operation on the responses independently initiated by the game theoretic
and IDS components.

Each of the parameters for the AIS component were set as shown in Table 7.1, and
their values determined empirically.

7.4.1 Flooding

The flood scenario used was identical to the description provided in §6.7.1.

Packet Delivery Ratio

Figure 7.8(a) shows the PDR achieved by sIDS+AIS when subjected to flooding by an
increasing number of adversaries in the network. This attack tests the effectiveness of
the innate component since flood detection belongs to the set of perfect detectors that
activate a TLR once an intrusion has occurred. Whilst the local response provided by
the innate component drops more flood packets than either the baseline or game theoretic
IDS due to a near-instantaneous and asynchronous response, queues are still regularly
exceeded because a number of flooding packets are still forwarded by IDS nodes until
RREQ_RATE_LIMIT is reached.

The contention and congestion introduced by the remaining flood packets limits the
usefulness of the extended response provided by the innate component as the report packets
that are crucial to the initiation of the extended response are frequently dropped at by
a neighbour’s queue or MAC layer. The result of this is that extended responses are
suppressed; neighbours may not observe reports and thus are unable to contribute to the
reporting procedure for a given suspect. Moreover, this limits the effectiveness of the
synchronisation procedure and reduces overheads by causing all nodes that contribute to
the report procedure for a given suspect to back off for MIN_REPORT_INTERVAL .

149

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory
game theory + ais

(a) Packet Delivery Ratio (PDR)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory
game theory + ais

(b) Average end-to-end delay

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

8

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory
game theory + ais

(c) Control overheads

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory
game theory + ais

(d) True response ratio

defenseless baseline game theory game theory + ais
0

10

20

30

40

50

60

70

Node model

R
ec

o
ve

ry
 t

im
e

(s
)

(e) Recovery time (30% adversaries)

defenseless baseline game theory game theory + ais
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Node model

G
o

o
d

p
u

t
(b

yt
es

/s
)

(f) Minimum goodput (30% adversaries)

Figure 7.8: Results from flooding scenario with increasing numbers of
adversaries

150

Overall, these data show that there are no significant gains to PDR in this scenario by
employing sIDS+AIS over the baseline or game theoretic IDS.

Average end-to-end (ETE) delay

Figure 7.8(b) depicts the ETE delay achieved by sIDS+AIS. The data show that the
rate of increase of ETE delay decreases until 30-40% adversaries, after which the attack
saturates, resulting in no further ETE delay or loss in PDR. This characteristic of the
ETE delay in sIDS+IDS is similar to that of the game theoretic and baseline networks.
The attempts to initiate an extended response introduce further overheads, which can be
up to twice that of the baseline IDS, yet result in no appreciable performance gain, as
shown in Figure 7.8(c).

Response Rate

The high true response rate of sIDS+AIS compared to the baseline and game theoretic
IDS’s (shown in Figure 7.8(d)) is purely a result of the local response provided by the
innate component of the AIS. This blacklists a node that is detected for flooding for an
exponentially increasing period of time (§7.3.1.3) near-instantaneously, thus dropping any
further traffic from this node. This response is in dependant from the slower computation
of metrics mp and mi used in the pure game theoretic and baseline networks.

Recovery Time and Minimum Goodput

The recovery time and minimum goodput for sIDS+AIS is reported in Figure 7.8(e) and
Figure 7.8(f) respectively. The data indicate only a slight decrease in the time taken to
restore goodput to pre-intrusion levels, but a reduction in the average minimum goodput
compared to the pure game theoretic approach.

7.4.1.1 Discussion

As discussed in §6.7.1, flooding leads to large amounts of network congestion and medium
contention, which negates one of the main advantages of the AIS approach by suppressing
the extended detection and response by neighbours of the node detecting the original
intrusion. This often results in the minimum number of reports required to invoke an
extended response (MIN_REPORTS) not being met or the production of false negative
reports from neighbours due to collisions of multiple flooding attacks that result in IDS
nodes not observing the full number of flooding packets sent by each adversary. The extra
overhead introduced by the extended response tends not to produce retaliatory effect, and
is evidenced by the lack of an appreciable gain in any network metric in this scenario.

151

7.4.2 Unassisted Black hole

Packet Delivery and Dropped Packet Ratio

Figures 7.9(a) and 7.9(b) show the PDR and dropped packet ratio of sIDS+AIS respec-
tively, illustrating that there is very little difference in either metric compared to the
baseline or pure game theoretic approach to recommend the use of the AIS component in
this scenario.

Whilst in the flooding scenario the similar performance to the baseline and game
theoretic IDS was caused by a suppressed extended response, in this scenario, although
the adaptive component of the AIS enables cross-correlation, few neighbouring nodes are
in a position to corroborate on first-hand experience of an intrusion, thus cannot take
advantage of this feature. Once more, this results in very few extended responses in the
network.

Average end-to-end (ETE) delay and control overheads

Figure 7.9(c) shows sIDS+AIS introduces a slightly larger ETE delay than the baseline and
game theoretic networks. This is as a result of the increased overhead from the extended
response of the adaptive component, as shown in Figure 7.9(d). The ETE delay returns
to the levels of the baseline and game theoretic networks for greater than 40% adversaries,
due to a similar level of overheads.

Response Rate

The response rate of sIDS+AIS offers a 5% improvement over the use of a pure game
theoretic approach, which showed the best performance previously. This improvement
results from the few long-lasting extended responses initiated by the adaptive component
which cross-correlates the neighbours evaluations of a suspect’s imperfect metrics to reduce
the uncertainty, and emerges as less false responses being directed at benign nodes.

Recovery Time and Minimum Goodput

The recovery time and minimum goodput experienced by each of the node models for
the unassisted black hole scenario is shown in Figure 7.12. The figure shows sIDS+AIS
has marginally inferior performance for both metrics compared to the baseline or pure
game theoretic approach. The recovery time reported by sIDS+AIS is not surprising,
however, since the extended response from the adaptive component is only invoked when
mi decreases sufficiently, which would cause a local response in the baseline IDS, thus we
are comparing responses that occur on the same timescale.

152

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory
game theory + ais

(a) Packet Delivery Ratio (PDR)

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ratio of adversaries

D
ro

p
p

ed
 p

ac
ke

ts
 r

at
io

defenseless
omniscient
baseline
game theory
game theory + ais

(b) Dropped packet ratio

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory
game theory + ais

(c) Average end-to-end delay

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory
game theory + ais

(d) Control overheads

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory
game theory + ais

(e) True response ratio

Figure 7.9: Results from unassisted black hole scenario with increasing
numbers of adversaries

153

defenseless baseline game theory game theory + ais
0

20

40

60

80

100

120

140

Node model

R
ec

o
ve

ry
 t

im
e

(s
)

defenseless baseline game theory game theory + ais
0

2000

4000

6000

8000

10000

12000

14000

16000

Node model

G
o

o
d

p
u

t
(b

yt
es

/s
)

Figure 7.10: Recovery times and minimum goodputs achieved in unas-
sisted black hole scenario with 30% adversaries over range of node
models

7.4.2.1 Discussion

The forwarding behaviour of a neighbour is captured by the imperfect metricmi alone, thus
the innate component of the AIS does not play a part in the overall response. Although
the adaptive response is regularly initiated, as shown by the increased overheads over
the baseline and pure game theoretic approach, nodes often fail to reach a consensus
decision regarding possible suspects.. This may be the result of weaknesses in the traffic
distribution employed in these simulations, which is further compounded by the inability
of the drop detector to verify the forwarding of packets on indirect flows (§5.4.1), possible
with other ad-hoc routing protocols. Despite this, the approach shows a further advantage
in true response rate over the pure game theoretic approach, resulting from appropriate
extended responses.

7.4.3 Black hole assisted with passive route invasion

Packet Delivery Ratio

Figures 7.11(a) and 7.11(b) illustrate the PDR and dropped packet ratio for sIDS+AIS,
indicating a significant reduction (approximately 5%) in the number of dropped packets
compared to the leading IDS in this scenario, the baseline IDS. sIDS+AIS tracks the PDR
achieved by the omniscient and baseline networks, showing a real advantage over the pure
game theoretic approach for small ratios of adversaries. That the reduction in drop rate
does not result in a proportionate increase in the overall PDR is an interesting result,
which could be due to additional queue or MAC drops from the overheads imposed by the
reporting procedure, or the routing overheads required to support the additional 5% data
preserved.

154

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory
game theory + ais

(a) Packet Delivery Ratio (PDR)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ratio of adversaries

D
ro

p
p

ed
 p

ac
ke

ts
 r

at
io

defenseless
omniscient
baseline
game theory
game theory + ais

(b) Dropped packet ratio

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory
game theory + ais

(c) Average end-to-end delay

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

4

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory
game theory + ais

(d) Control overheads

0 0.1 0.2 0.3 0.4 0.5 0.6
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory
game theory + ais

(e) True response ratio

Figure 7.11: Results from assisted black hole scenario with increasing
numbers of adversaries

155

defenseless baseline game theory game theory + ais
0

20

40

60

80

100

120

140

Node model

R
ec

o
ve

ry
 t

im
e

(s
)

defenseless baseline game theory game theory + ais
0

2000

4000

6000

8000

10000

12000

14000

16000

Node model

G
o

o
d

p
u

t
(b

yt
es

/s
)

Figure 7.12: Recovery times and minimum goodputs achieved by
defenceless, baseline and game theoretic networks with moderate mis-
behaviour (30% adversaries) in assisted black hole scenario

Average end-to-end (ETE) delay and control overheads

The additional extended responses applied by the innate and adaptive components of the
AIS in this scenario account for the larger ETE delays (Figure 7.11(c)) and doubling of
the overheads compared to the baseline network (Figure 7.11(d)).

Response Rate

The response rate achieved by sIDS+AIS is shown in Figure 7.11(e), indicating a slight
reduction in average true response ratio over the pure game theoretic approach. This re-
duction may be due to the extended detection from the adaptive component of sIDS+AIS,
in which a percentage of the consensuses reached may be incorrect. These extended false
detections lead to more far reaching and longer lasting effects than if a benign node was
determined as misbehaving locally.

Recovery Time and Minimum Goodput

sIDS+AIS results in a 42% reduction of recovery time compared to the baseline IDS, which
was the previous leader in this scenario (Figure 7.12). This reduction arises from the near-
instantaneous response to the strong evidence component of this attack (the passive route
invasion). The advantage of employing the AIS framework in sIDS+AIS is reinforced by
the preservation of a minimum goodput similar to the baseline.

7.4.3.1 Discussion

sIDS+AIS results in a near eradication of the assisted black hole attack at a cost of
additional overheads over the pure game theoretic approach and a slight reduction in the
true response ratio for larger ratios of adversaries. The extended response proactively

156

identifies adversaries to neighbours that have no prior experience of them, helping to
maintain a low drop rate by adversaries. This does not translate into an advantage in
PDR, suggesting the overheads from the extended response and delivery of the extra data
results in larger MAC and queuing losses.

7.4.4 Wormhole

Packet Delivery and Intercepted Packet Ratio

Figures 7.13(a) and 7.13(b) depict the PDR and intercepted packet ratio for sIDS+AIS
applied to the wormhole scenario. These data show that the IDS is still susceptible to a
large number of intercepted packets for moderate numbers of adversaries, resulting in an
artificially high PDR due to intercepted packets taking low latency paths and freeing the
shared medium.

At moderate to high numbers of adversaries, employing sIDS+AIS does reduce the
average number of intercepted packets by between 8.9 and 17% compared to the baseline
(previously the most effective approach).

Average end-to-end (ETE) delay and control overheads

The general trend for a reduction in ETE delay with greater number of adversaries in
the wormhole scenario continues with sIDS+AIS (Figure 7.13(c)). The decreased number
of intercepted packets at moderate levels of adversaries gives rise to a larger ETE delay
that reduces to baseline levels at 50% adversaries and above, as the wormhole attack
becomes more effective. Extended responses contribute to a 30% increase in overheads at
20% adversaries compared to the baseline IDS, which decreases to a 5% increase for 50%
adversaries.

Response Rate

The true response rate achieved by sIDS+AIS is shown in Figure 7.13(e), decreasing from
the pure game theoretic approach towards the baseline for 30% adversaries and over. This
is the result of some consensuses that override the game theoretic reasoning being incorrect.
The worst case scenario is a 5% increase in false response rate compared to the pure game
theoretic approach for the large advantage in reducing the number of intercepted packets.

Recovery Time and Minimum Intercepted Throughput

sIDS+AIS reduces the recovery time only very slightly compared to the baseline and
sIDS, which is expected as the innate component does not play as part in the detection
of this attack. There is also no noticeable reduction in the maximum bytes intercepted

157

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory
game theory + ais

(a) Packet Delivery Ratio (PDR)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

In
te

rc
ep

te
d

 p
ac

ke
ts

 r
at

io

defenseless
omniscient
baseline
game theory
game theory + ais

(b) Intercepted packet ratio

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory
game theory + ais

(c) Average end-to-end delay

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory
game theory + ais

(d) Control overheads

0 0.1 0.2 0.3 0.4 0.5 0.6
0.75

0.8

0.85

0.9

0.95

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory
game theory + ais

(e) True response ratio

Figure 7.13: Results from wormhole scenario with increasing numbers
of adversaries

158

defenseless baseline game theory game theory + ais
0

10

20

30

40

50

60

70

80

90

100

Node model

R
ec

o
ve

ry
 t

im
e

(s
)

defenseless baseline game theory game theory + ais
0

5000

10000

15000

Node model

In
te

rc
ep

te
d

 b
yt

es
 p

er
 s

ec
o

n
d

Figure 7.14: Recovery times and minimum intercepted bytes achieved
by defenceless, baseline and game theoretic networks with moderate
misbehaviour (30% adversaries) in wormhole scenario

by wormhole nodes through employing sIDS+AIS, as a consequence of a similar recovery
time (Figure 7.14) to the other IDS’s.

7.4.4.1 Discussion

There is a clear advantage to running sIDS+AIS for large ratios of adversaries as it
reduces the number of packets intercepted by between 8.9 and 17% of those intercepted
when running the baseline IDS for equivalent numbers of adversaries.

7.4.5 Random misbehaviour

The random misbehaviour scenario was constructed using the misbehaviour distribution
constructed in Section 6.7.5.

Packet Delivery Ratio

sIDS+AIS tracks the omniscient network PDR for up to 40% adversaries, and then appears
to diminish after 50% adversaries (Figure 7.15(a)) representing a 7-25% advantage over
the baseline IDS. This is due to the innate and adaptive components working in tandem to
produce long-lasting responses to audit data identified as strong evidence of an intrusion,
including passive route invasion and flooding.

Average end-to-end (ETE) delay and control overheads

The ETE delay produced by each network type for the random scenario is shown in Figure
7.15(b). sIDS+AIS results in a slightly decreased ETE delay compared to the baseline
IDS, on average, as a result of effective blocking of adversaries that flood or attempt to
invade routes that would otherwise cause benign nodes to indirectly generate additional

159

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of adversaries

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

defenseless
omniscient
baseline
game theory
game theory + ais

(a) Packet Delivery Ratio (PDR)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ratio of adversaries

A
ve

ra
g

e
E

T
E

 D
el

ay
 (

s)

defenseless
omniscient
baseline
game theory
game theory + ais

(b) Average end-to-end delay

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

Ratio of adversaries

C
o

n
tr

o
l o

ve
rh

ea
d

 r
at

io

defenseless
omniscient
baseline
game theory
game theory + ais

(c) Control overheads

0 0.1 0.2 0.3 0.4 0.5 0.6
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Ratio of adversaries

T
ru

e
re

sp
o

n
se

 r
at

io

baseline
game theory
game theory + ais

(d) True response ratio

Figure 7.15: Results from random scenario with increasing numbers
of adversaries

160

routing overheads through retransmissions. To support these responses, Figure 7.15(c)
illustrates sIDS+AIS doubles the control overheads compared to the baseline IDS, a basic
result reflected in all previous scenarios.

Response Rate

The true response rate of sIDS+AIS is depicted in Figure 7.15(d), and shows similar
characteristics to the pure game theoretic approach, responding to adversaries in 98.7-
99.5% of cases across all ratios of adversaries tested.

7.4.5.1 Discussion

The metrics shown in Figure 7.15 indicate the benefits of the near-instantaneous innate
response and co-ordinated response provided by the AIS in a scenario where adversaries
produce audit data with a mixture of strong and weak evidence of an intrusion. Near
omniscient level performance was provided by the sIDS+AIS across the full range of
adversaries, at a cost of greater overheads.

7.5 Summary

This chapter has shown the design and implementation of immune system inspired mecha-
nisms suitable for MANET IDS and their application to sIDS, resulting in a multi-layered
IDS entitled sIDS+AIS. The performance of sIDS+AIS was compared to the pure game
theoretic and baseline IDS in scenarios employing a range of local and distributed misbe-
haviour.

The immune inspired approach employed several key aspects of the HIS, including
responding over multiple timescales (additionally asynchronously) and the recruitment
of nearby agents (in this case, nodes rather than immune cells) to facilitate the overall
response against the adversary. The benefit of employing multiple timescales is that intru-
sions with strong evidence can be responded to near-instantaneously, thereby preventing
the attacks spread and reducing further susceptibility, whilst the recruitment of nearby
agents enables quicker isolation of the node, reducing the false positives associated with de-
tection schemes that rely on eavesdropping or accurate neighbour lists by cross-correlation
of mi.

The innate response is a long-term response to any misbehaviour that activates a
TLR from the perfect detectors described in §5.4. This initiates a cascade in which the
detecting node blocks any further traffic from the adversary immediately and an extended
response where a consensus decision is made by all neighbours within a radius of the
original intrusion leading to a further extended response over a larger set of nodes in the
locality of the intrusion. The extended response of the adaptive component occurs over

161

a longer timescale and is a reaction to weak evidence of an intrusion encapsulated in low
values of mi, where intrusion reports are cross-correlated with other neighbouring nodes
to reduce the overall imperfection in mi.

The strength of the multi-layered approach employed by sIDS+AIS is shown by the
simulation results of the wormhole attack, where the number of intercepted packets was
reduced compared to the baseline or pure game theoretic approach, due to the extended
response from the adaptive component of the AIS. sIDS+AIS also showed a marked re-
duction in the ratio of packets dropped by adversaries in the assisted black hole scenario.
Another significant result is in the random scenario where the overall PDR is vastly im-
proved compared to any of the previous approaches, and tracks the performance of the
omniscient network for up to 50% adversaries. The cost associated with this approach that
much larger control overheads are required to support the extended reporting procedure
that is responsible for some of these performance gains. In the majority of simulations,
the total overheads were doubled compared to the baseline. Of the scenarios that remain,
the extreme contention present in a flooding environment causes the extended response to
be suppressed, whilst in the unassisted black hole, there is not enough corroborative evi-
dence to allow nodes to cross-correlate, which when taken into account with the overheads,
makes the system unsuitable for such attacks.

Overall, this chapter has proved the utility of an immune system inspired approach in
conjunction with the pure game theoretic approach. A clear advantage in the reduction of
attack efficacy resulted in improved end-to-end metrics observed in most studied scenarios
over the baseline IDS and delivered high true response rates throughout. The modular
design that this IDS is based on means there is the potential for further performance gains
by adding new detectors for new forms of attack, which contribute toward the overall
behavioural profile of the monitored node.

162

CHAPTER 8

CONCLUSIONS

Security remains a fundamental research challenge for MANET and distributed systems in
general. Pushing the responsibility of core networking functions, such as routing and ad-
dressing onto individual agents relies on the co-operation of participants. Full co-operation
is rarely the case in practice: nodes in shared environments that belong to multiple author-
ities may have competing objectives and may not be willing to contribute to the service
without the risk of being penalised for poor behaviour or the promise of incentives for good
behaviour. Secondly, nodes with a lack of physical protection in hostile environments risk
capture and reprogramming by an adversary. These two scenarios illustrate just two cases
where adversaries could launch insider attacks, which was the main focus of this thesis.

8.1 Summary and Research Contributions

The research question under investigation in this thesis was whether game theoretic and
immune system inspired approaches could be applied to improve the quality of intrusion
detection in MANET, with a focus on the sources of uncertainty in detection arising from
the subtlety of misbehaviour or in the detection strategies themselves. This is of interest
and importance because current approaches of misbehaviour detection are not comprehen-
sive enough for application in imperfect wireless environments. The uncertainty implicit
in eavesdropping leads to a large number of false detections and consequent responses to
benign nodes, an effect which worsens with degradation of wireless environment. In addi-
tion, IDS’ using only local detection techniques are unable to detect distributed attacks,
leading to insensitivity to subtle misbehaviour.

The first hypothesis under investigation in this thesis was that employing a game
theoretic framework within a distributed IDS would help provide reasoning within these
imperfect wireless environments. The second was that the application of an immune-
inspired approach could be used to improve network end-to-end metrics when applied in
conjunction with the pure game theoretic approach.

To meet the aims of the thesis, a simulation-based approach was adopted using a

163

robust methodology that employed Monte-Carlo sampling as discussed in Chapter 3. This
required significant development and validation of the Jist/SWANS simulation kernel and
flexible adversary models to provide a range of attacking scenarios that could be used to
evaluate the performance of the proposed IDS (described in Chapter 4).

A modular intrusion detection system employing distributed detection and response
was developed in Chapter 5, using a number of perfect and imperfect detectors. Chapter
6 studied their ability to generate false positives in the absence of misbehaviour in fading
environments. Detectors that could generate false positives formed part of the evaluation
of mi, whist detectors that did not formed mp, the combination of which formed a node’s
behavioural profile. A baseline threshold-IDS was simulated and the PDR fraction ob-
tained corroborated mostly with the findings of a similar local detection scheme published
in Marti et al. (2000) in which the authors showed a 20% reduction in PDR between 0%
and 40% adversaries in the black hole scenario. Defenseless and omniscient networks pro-
vided the upper and lower bounds of each of the studied metrics when applied to each of
the scenarios. These results were used to assess the efficacy of the game theoretic and AIS
approaches when applied to the developed attacking scenarios over the studied metrics.

The results in Chapter 6 go some way to addressing the first hypothesis under investi-
gation in this thesis. A game theoretic inspired IDS, sIDS, was developed, which applied
reasoning between the detection and response components of a typical IDS. Unlike the
threshold IDS, in which an equal importance was placed on mp (the perfect metrics) and
mi (the imperfect metrics), the game theoretic IDS employed a 2-player game between
the IDS and suspect, designed to give the suspect a ’benefit of doubt’ that reduced the
ability of mi (constituting weak evidence) to invoke a response without being accompa-
nied with a reduction of mp (consisting stronger evidence). As such, these terms formed
part of a payoff function, which when the LH algorithm was applied, generated a mixed
strategy solution each monitored neighbour. This mixed strategy solution was applied
consequently to any packets received from neighbours, to determine whether to drop or
process them. The results show that most scenarios studied this approach delivered signif-
icant improvements in true response rates. In particular, there was a 5-10% improvement
in the wormhole scenario and a 10-15% improvement in the unassisted black hole scenario
over the baseline IDS. The use of game theory to improve discrimination in IDS scenarios
has been shown in (Otrok et al., 2008a), where the closest measure, false positive rates,
was also reduced significantly in their environment. The approach we took deviated from
the typical approach of applying game theory to intrusion detection scenarios (Patcha &
Park, 2004; Liu et al., 2006) where false positive rates are as encoded as a feature of the
game; instead the computation of strategy profiles did not depend on a priori known false
positive rates of a IDS. An interesting feature of the game theoretic solution is that this
advantage is almost always lost beyond 50% adversaries, but it represents an important

164

result for applications where benign nodes are in the majority, where the additional dis-
crimination can be used to bias the operation of the network toward the favour of these
nodes. These improvements do come at a cost of additional routing overheads due to a
component of the local response that attempts to re-route flows as misbehaving outgoing
neighbours are detected. The game theoretic approach also incurs a computational over-
head from finding the mixed strategy solution to a game by invoking the LH algorithm on
each game instance. To reduce these, the mixed strategy solution is only updated when
the neighbour’s behavioural profile is recomputed, thus the IDS adopts a cached version
of the mixed strategy solution until then.

To address the second hypothesis under investigation in this thesis sIDS+AIS was de-
veloped, presented in Chapter 7, which further extended the pure game theoretic approach
with a number of immune system inspired features. These were a response over multiple
timescales as employed by the innate and adaptive components of the immune system, and
the recruitment of neighbouring immune cells to participate in a co-ordinated response to
an infection. In sIDS+AIS, the innate component was comprised of the arrangement of the
perfect detectors into TLRs that initiated long-lasting near-instantaneous responses when
an intrusion was detected. This was followed by an extended, consensus-based response by
neighbours in the locality of the known intrusion. The adaptive component of sIDS+AIS
monitored long term reductions inmi and initiated an extended response where nodes with
recent, first-hand experience exchanged reports that led to a long-lasting, consensus-based
response if the majority of the reports indicated a low mi, taking advantage of the cross-
correlation of observations about a given suspect from the monitors in the locality. These
we hypothesised would both improve the end-to-end metrics, and further increase the true
response performance because neighbours unaware of the detected intrusion would be able
to avoid the affected area entirely and the cross-correlation would reduce the uncertainty
implied in the imperfect detection techniques encapsulated in mi.

The results show that in most scenarios studied, this approach delivered significant im-
provements in end-to-end network metrics over the pure game theoretic approach. More-
over, some improvements were observed for true response rates, especially in the wormhole
and flooding scenarios where the discrimination performance of the baseline or game the-
oretic approach was unsatisfactory. Notable is the near elimination of packets dropped
by adversaries in the assisted black hole scenario, resulting in a PDR that tracks the
omniscient protocol. The best result by far is in the random scenario, where the system
performs well for a number of intrusions with strong and weak evidence, once again track-
ing the omniscient protocol. There is a slight reduction in true response ratios for the
wormhole and assisted black hole scenario following the application of sIDS+AIS, which
could be a result of incorrect consensuses occasionally being reached. The consequence
of this is that there is a larger reduction on the resulting true response ratio. The main

165

contribution to overheads in the AIS approach is the communication overheads required
to initiate an extended response. Computational overheads required to compute a con-
sensus are trivial. To disseminate intrusion reports, data push via intelligent flooding
of broadcast packets was chosen. Thus, reports are shared voluntarily without a node
specifically requesting them, but the use of broadcast leads to unacceptable performance
when conditions are severely degraded (as in the case of flooding). The reduction of false
positives by adopting a consensus based approach to weak evidence (encapsulated in mi)
so long as the majority of nodes are not malicious is a well-known result (Zhang & Lee,
2000), but this is the first attempt to the best of our knowledge of employing game theory
and features of the immune system within a MANET IDS.

In summary, the research contributions presented in this thesis are as follows: the
development of a generic framework intrusion detection MANET in imperfect wireless
environments, the implementation of a pure game theoretic approach using this generic IDS
framework to enhance reasoning and better discriminate benign nodes from adversaries,
and the further development of this to include immune-inspired approaches employed to
allow co-operation of responses over an extended network area. These contributions have
gone some way to meeting to original research aims set out in Chapter 1. It has been
shown that the game theoretic and immune system inspired approaches do improve the
quality of intrusion detection in MANETs. The pure game-theoretic approach showed
improvements in the true response ratio of IDS nodes to better discriminate benign nodes
from adversaries, whilst the fusion of game theory and immune system features resulted
in improved network metrics, at least when applied to certain attacking scenarios. The
additional strength of this work is the modular approach employed to the design of the
intrusion detection system that allows new detectors to be added (§5.4) and contribute
directly to a node’s behavioural profile, once the susceptibility of the detector to cause
false positives is understood.

8.2 Future Work

Although we have shown several advantages to the use of a game theoretic and immune
system inspired approach to intrusion detection, there remains a great deal of work to
fully quantify the bounds of the performance advantages of the corresponding protocols
- sIDS and sIDS+AIS. It was previously noted that the performance of some detectors,
and therefore the effectiveness of the extended response, may be dependent on the traffic
patterns used in the simulations. The use of more realistic traffic patterns, such as bursty
traffic, where the number of flows active at one time is fixed but source-destination pairs
vary, may help to provide more instances of weak evidence that can be cross-correlated
to improve the overall effectiveness of the extended response. This highlights the general

166

limitation of employing simulations to prove the efficacy of the approach, in which it is
desirable to run a greater number of simulations over a wider range of network parameters
in order to build confidence in the results presented. Although Monte-Carlo sampling
over a wide range of free parameters was employed, varying other network measures such
as node density may warrant an investigation to present further rigorous proof of the
advantages of the approach. Furthermore, as was noted in the individual discussions, the
improvements in true response rate provided by sIDS+AIS does not always translate to
an advantage in the network metrics chosen to evaluate it. Thus, further evaluation of
the efficacy of sIDS+AIS at the application layer, where the advantage in true response
rate could be applied to bias network operation to favour benign nodes, merits further
research.

Additionally, it would also be worth investigating the applicability of sIDS to other
data centric ad-hoc routing protocols, such as Dynamic Source Routing (DSR), where
it is easier to verify the monitored neighbours ability to perform a given function from
additional audit data provided by the DSR packet header. An example of this is more com-
plete verification of packet forwarding, where DSR would permit neighbours to indirectly
monitor other flows.

Whilst minimising overheads was not the primary focus of this research, it is clear that
communication overheads impose an upper limit on the performance gains, especially of
sIDS+AIS. Computational overheads on the other hand are not quantified during the
simulation. Further work is needed to gain an appreciation of the total overheads, and a
course of optimisation prescribed. For example, in the game theoretic approach, although
the application of LH provides a general solution to NE that is guaranteed to terminate,
more specific approaches that compute mixed-strategy solutions only (e.g. described in
Rasmusen (2001)) may be more appropriate and reduce the computational complexity
significantly.

In sIDS+AIS, the main overheads are communication overheads stemming from the
extended responses, which use a naive limited flood/gossip technique. This results in
scalability problems as the number of adversaries in the network increase. Instead, alter-
native data dissemination techniques could be evaluated, such as epidemic routing where
summary vectors are exchanged instead (Vahdat & Becker, 2000). This would require an
investigation into the time-sensitivity of the report procedure and the overall impact this
would have on the efficacy of extended responses. If these approaches were to result in
little reduction of overheads, it may be worth adapting to the current network conditions,
which could be used to switch between the lightweight and more demanding IDS mecha-
nism(s) (taking inspiration from the approach by Liu et al. (2006)). This would make the
most of the advantage offered by the approaches when they best suit the current observed
network conditions.

167

Furthermore, we only considered one of many ways that immune techniques could be
fused with the game theoretic approach. We ran them in parallel, forming the overall re-
sponse from a Boolean OR operation on the independent responses initiated by the game
theoretic and IDS components, but other approaches could be considered. For example,
the expensive adaptive response could be initiated only when the mixed strategy solu-
tion invokes as response. Alternatively, similarity measures such as the sum of absolute
differences on the cross-correlated reports could be used to automatically set the bene-
fit of doubt term used in the game theoretic component, which may result in a tighter
integration of the two approaches. Lastly, we considered rational, but non-adaptive ma-
licious behaviour. It would be interesting to see how the performance of sIDS deviates
when adversaries behave more intelligently by scavenging evidence of responses applied by
neighbours to adapt their overall strategy.

In conclusion, it has been shown that employing a reasoned approach through the
use of game theory in intrusion detection within imperfect wireless environments results
in improved discrimination, and together with an immune inspired approach results in
increased performance of network metrics in a variety of attack scenarios.

168

APPENDIX A

COMMON PARAMETERS USED FOR
JIST/SWANS SIMULATIONS

Table A.1: Simulation parameters used common to all Jist/SWANS
simulations

Simulation Property Class Property Value

Application (Client) pkiddie.app. AppUdp.

Server

Application (Server) pkiddie.app. AppUdp.

Client

Transport pkiddie.trans.

TransUdp

Network pkiddie.net.NetIp

MessageQueue pkiddie.net.

MessageQueue.

DropMessageQueue

capacity 50

Route pkiddie.route.

RouteAodvMultiInterface

RouteAodvBase.

AODV_TIMEOUT

1*Constants.SECOND

RouteAodvBase.

HELLO_INTERVAL

1*Constants.SECOND

priority Constants.

NET_PRIORITY_CONTROL

Mac pkiddie.mac.

Mac802_11

promisc true

Radio pkiddie.net.

RadioNoiseAdditive

169

PacketLoss jist.swans.net.

PacketLoss.Zero

Spatial jist.swans.field.

Spatial.Grid

divisions 5

Mobility jist.swans.field.

Mobility.

RandomWaypoint

pauseTime 50

granularity 10

minSpeed 0

maxSpeed 10

Placement pkiddie.field.

Placement.Random

FlowPlacement pkiddie.flow.

FlowPlacement.Random

Constraint pkiddie.constraints.

Constraint.

FlowConnectedConstraint

FlowProperties pkiddie.flow.

FlowPropertiesHolder

.Random

flows n/a n/a 10

endTime n/a n/a 500*Constants.SECOND

170

APPENDIX B

FIXES TO JIST/SWANS

RouteAodv

Fixes applied during validation with ns2

• RouteAodvBase.HELLO_INTERVAL = 1*Constants.SECOND - Default of 30s lead to
poor performance.

• RouteAodvBase.AODV_TIMEOUT = 1*Constants.SECOND - Required for HELLO_INTERVAL

to be fired each second.

Fixed applied during comparision with published works

• RouteAodvMultiInterface.MAX_RREQ_BUFFER = 1000 - Default was 10. In a loaded
network drops route requests in progress too readily, leading to duplicated RREQs
and an increased likelihood of a broadcast storm in highly loaded network with many
data flows. Inspired by no limit on the number of RREQs that can be held in the
broadcast buffer of the ns2 AODV agent.

• PrecursorSet.sendRERR - Previously this method iteratively unicast RRER to each
precursor. Now this method broadcasts a RRER if there are more than 5 precursors
to be informed, else unicasts to each precursor. As per §6.11 of the AODV RFC
(Perkins, 1997):

“A Route Error (RERR) message MAY be either broadcast (if there are
many precursors), unicast (if there is only 1 precursor), or iteratively uni-
cast to all precursors (if broadcast is inappropriate). Even when the RERR
message is iteratively unicast to several precursors, it is considered to be a
single control message for the purposes of the description in the text that
follows.”

171

• Added sentBroadcastMessage boolean, which is set to true if any broadcast mes-
sages have been sent to a precursor in a HELLO_INTERVAL. This boolean is reset to
false each HELLO_INTERVAL.

• RouteAodvBase.helloSendEvent() - Previously this method blindly broadcasted
hello messages to each precursor, regardless of whether broadcast messages were
sent. Now this method checks to see if a broadcast message was sent in the last
HELLO_INTERVAL seconds (captured in sentBroadcastMessage boolean) to the pre-
cursor. Sends a HELLO message to the precursor if sentBroadcastMessage is false.
As per §6.9 of AODV RFCPerkins (1997):

“Every HELLO_INTERVAL milliseconds, the node checks whether it has
sent a broadcast (e.g., a RREQ or an appropriate layer 2 message) within
the last HELLO_INTERVAL. If it has not, it MAY broadcast a RREP
with TTL = 1, called a Hello message ...”

• Added a bo (backoff) field to RouteRequest instances, used in RreqBuffer during
route discovery which holds a multiplication factor used to calculate backoff value
on repeated attempts to find a RREP for a single destination.

• RouteAodvMultiInterface.RouteRequest.getBo - gets the current backoff for the
RouteRequest

• RouteAodvMultiInterface.RouteRequest.incBo - increment the backoff for the
RouteRequest, when unsuccessful.

• RouteAodvMultiInterface.computeRREQTimeout() - Previously, this method did
not use binary exponential backoff; instead the timeout was linear with the increased
TTL applied to repeated RREQs for a single destination. Now this method performs
exponential backoff based on the NET_TRAVERSAL_TIME. §6.3. of AODV RFC Perkins
(1997) states:

“To reduce congestion in a network, repeated attempts by a source node
at route discovery for a single destination MUST utilize a binary expo-
nential backoff. The first time a source node broadcasts a RREQ, it waits
NET_TRAVERSAL_TIME milliseconds for the reception of a RREP. If
a RREP is not received within that time, the source node sends a new
RREQ. When calculating the time to wait for the RREP after sending the
second RREQ, the source node MUST use a binary exponential backoff.”

172

• Any RouteErrorMessages are created with TTL=1, rather than 64 as used by de-
fault in DEFAULT_TTL, reducing the likelihood of a broadcast storm of RRERs. §6.11
of AODV RFC Perkins (1997) states:

“...the RERR is typically sent to the local broadcast address (Destination
IP == 255.255.255.255, TTL == 1) with the unreachable destinations,
and their corresponding destination sequence numbers, included in the
packet...”

• RouteRequest.broadcast() - Previously, this method used an expanding ring tech-
nique, until TTL_THRESHOLD was reached, when the destination was returned as un-
reachable. Now, route Requests are disseminated using a expanding ring search
technique, until TTL_THRESHOLD reached. Then, for RREQ_RETRIES times, attempts
are generated with TTL = NETWORK_DIAMETER. §6.4 of the AODV RFC Perkins
(1997) states:

“To prevent unnecessary network-wide dissemination of RREQs, the orig-
inating node SHOULD use an expanding ring search technique...

... This continues until the TTL set in the RREQ reaches TTL_THRESHOLD,
beyond which a TTL = NET_DIAMETER is used for each attempt.”

• RouteAodvMultiInterface.generateRouteReplyMessage(...) - If an interme-
diate node was to generate an advertisement for a destination, the destination se-
quence number of the node (and not the destination) was incorrectly being copied
into the advertisement. Updated this method such that if a route reply message is
being generated by an intermediate node, then the destination sequence number in
the route entry for the destination is used. §6.6.2 of the AODV RFC Perkins (1997)
states:

“If the node generating the RREP is not the destination node, but instead
is an intermediate hop along the path from the originator to the desti-
nation, it copies its known sequence number for the destination into the
Destination Sequence Number field in the RREP message...”

• RouteAodvMultiInterface.generateRouteReplyMessage(...) - Nodes own se-
quence number was incorrectly being updated. Updated method such that the nodes
own sequence number is ONLY incremented if it is responding to the RREQ as the

173

destination and the nodes own sequence number is less than or equal to the one in
the RREQ. §6.6.1 of the AODV RFC Perkins (1997) states:

“If the generating node is the destination itself, it MUST increment its
own sequence number by one if the sequence number in the RREQ packet
is equal to that incremented value. Otherwise, the destination does not
change its sequence number before generating the RREP message.”

RadioNoiseAdditive

• endTransmit - This method is overridden from RadioNoise (the base class of each ra-
dio implementation). Now, when the radio has signals after transmitting, it goes into
sensing mode, and not into receiving mode. Credit to: http://www.vanet.info/node/14.

Mac802_11

• pauseBackoff - This method was updated to adhere to 802.11 standard, §9.2.5.2
- Backoff procedure. The current implementation caused more collisions result-
ing in decreased throughput. The result of this fix and RadioNoiseAdditive fix
is that a further bug where nodes are permanently suppressed in a backoff state
was fixed. Credit to: http://www.cs.technion.ac.il/~gabik/Jist-Swans/mac/BUG-
NonDiscrete-Backoff.html.

• sendDataUnicast - This method was updated to supress duplicate messages, adher-
ing to the 802.11 standard. The result of this fix is that there are no more duplicated
messages at the CBR application layer. Credit to: http://www.cs.technion.ac.il/~
gabik/Jist−Swans/mac/BUG−Duplicate−Elimination.html.

NetIp

• protocolHandlers now grows dynamically to prevent unnecessary exceptions. Credit
to: http://www.vanet.info/node/14.

NetMessage.Ip

• added logId field as integer type. This is output as pid field in log file and prevents
wrap around of id in large simulations. id, the ip identifier field, is left unchanged
as short type, but output as iid in trace files.

174

MessageQueue.DropMessageQueue

• insert - Drop and log the newest message (drop tail queue) instead of terminating
the simulation.

175

APPENDIX C

EXTENSIONS TO JIST/SWANS

C.1 Trace file generation

Jist/SWANS v1.0.6 had no default mechanism to output simulation statistics so post-
processing for the purpose of collecting network metrics was impossible. A number of com-
munity projects were available, such as Javis for Jist/SWANS (Kliot, 2009) and XTend-
SWANS (no longer available online), but they logged a small number of the possible
simulation events, which was too restrictive for our purposes. The log4j library (Apache
Software Foundation, 2010), included within Jist/SWANS, was re-purposed for trace out-
put. A trace format was defined suitable for easy post-processing as a set of tab delimited
fields and key-value pairs, corresponding to the following format:

log level (INFO,DEBUG...)| event source class | simulation time (ns)|

event source (ip address)| event | event_details

This trace format was applied to all events across all existing layer implementations.
The following shows a trace from the network layer and corresponds to the node with IP ad-
dress 0.0.0.1 receiving a route request from a node with mac address 68 at 10009562861ns:

INFO [NetIpBase]: 10009562861 0.0.0.11 receive: from=68 on=1 data=(src

=0.0.0.68 dst=ANY size=44 type=ip prot=123 ttl=5 pid=13 iid=13 route=[]

src_route=null data=(hopCount=0 rreqId=0 destIp=0.0.0.54 destSeqNum=0

origIp=0.0.0.68 origSeqNum=1 type=rreq))promisc=false

C.2 Simulation user interface

GuiLog is a user interface for Jist/SWANS that enabled the user to view events in the
simulation event queue as they were processed (Fong, 2004). This type of output failed
to provide an ’at a glance’ overview of the simulated MANET, so GuiLog was extended
to provide a graphical overview of the MANET topology and events of interest as they

176

Figure C.2: a) Node protocol stack in simulation user interface, b)
AppUdp application layer panel, c) Routing layer panel

a) b) c)

were processed by the simulator, including received packets, dropped packets, and node
movement (Figure C.1), with options to increase and decrease the speed of simulation exe-
cution. The ad-hoc network user interface aided debugging of the Jist/SWANS simulation
models as and eased future development of the misbehaviour models and protocols.

drop

receive

drop

drop

receive

Figure C.1: Simulation GUI, showing SWANS event stream.

Furthermore, protocol layer classes could contribute a panel presenting a number of
options available on the given protocol layer. Figure C.2 shows the protocol stack for a
simulated node at simulation initialisation. For example, an UDP application layer panel
was developed to force the selected instance to send network traffic to a given destination,
and an AODV routing layer panel developed to disable routing behaviour on-demand.

177

C.3 Driver base class

The majority of code in simulation drivers (§??) was common ’boilerplate’ code that tied
adjacent protocol layer entities together for each node in the simulation. For every dri-
ver, this code had to be repeated, thus to reduce code maintenance, a DriverBase driver
containing the common code was created. Future drivers were created from DriverBase,
which also provided a number of other common data structures that assisted in simulation
development. For example, a Node data structure kept references of the simulated pro-
tocol layer entities for each node. This was important for allowing protocol layers to be
reconfigured during simulation time, to simulate node capture or invoke traffic generation.

C.4 Jist/SWANS kernel

The Jist/SWANS rewriter prohibited derived classes from being defined as proxy entities
for use in network simulation. This reduced the advantages that the simulator had over
competing simulators through the use of Java object oriented code: inheritance allows
code reuse and specific functionality to be overridden as necessary. Thus, the kernel was
extended to permit derived classes, with an aim to simplify the creation of adversary
models in the future by requiring them to override only the necessary methods. The aim
was for RouteAodvMultiInterfaceAdversary, the adversarial router, to be composed of
the RouteAodvMultiInterface class that defined the AODV protocol, itself composed
from RouteAodvBase, which defined the common fields and data structures (route table,
route table entries, message queues) used in all AODV implementations. Then, to create
any number of attacks, RouteAodvMultiInterfaceAdversary just overrode appropriate
methods and the could still benefit from any bug fixes applied to its base classes.

Most other layers were refactored to derive from a base class, which helped to simplify
logging code and the binding of adjacent layers by DriverBase. Figure C.3a) shows the
broken inheritance model of unmodified Jist/SWANS, using RouteAodv as an example,
whilst the revised hierarchy is presented in Figure C.3b).

C.5 Test framework

In network simulations, a standard testing practise is to run a simulation and compute the
relevant metrics to determine if it is in line with expectations. If it is not, then the user
investigates the cause, which can be labour intensive as it can often resort to manually
iterating through a network trace. In this thesis, unit testing was used to repeatedly test
small parts of code during the development of the adversary models and intrusion detection
schemes. This proactively highlighted regressions during the development process.

178

RouteInterface

RouteAodvBase

RouteAodv

RouteAodvAdversary

RouteInterface

RouteAodv

RouteAodvAdversary

implements

extends

implements

extends

extends

a) b)

Figure C.3: a) Jist/SWANS v1.0.6 class hierarchy; Jist rewriter speci-
fically prohibits derived classes. b) After modification of Jist/SWANS
kernel, and extraction of basic functionality into RouteAodvBase.
Functionality in RouteAodv is overridden in RouteAodvAdversary

only where necessary to implement misbehaviour.

In Java, unit tests are typically run in a unit testing framework such as JUnit, but
JUnit and Jist/SWANS are incompatible due to the bytecode rewriting Jist/SWANS
does. Thus, inspiration was taken from JUnit and a simple unit test framework entit-
led ReallySimpleSwansUnitTestingFramework was developed to enable unit testing of
Jist/SWANS simulation entities. A number of test methods, written in Arrange, Act,
Assert syntax (AAA) (Hamill, 2004) were produced. These methods are annotated with
@Test optionally specifying the simulation time which the test should be executed in, by
specifying a time parameter, and a timeout parameter, after which the test fails if the
assertions have not evaluated to true in the specified interval. Simulation time can be in-
cremented by calling JistAPI.sleepBlock(), whilst Assert.assertTrue(bool) asserts
that simulation entities under test have an expected state at the new simulation time.
When a number of tests are run under the test framework, the framework produces a
’pass’ or ’fail’ along with the name of test, which can be used to identify problems with
the method of the simulation entity that is under test. A simple example is shown in
Listing C.1.

The test testRouteToSelf(), described in Listing C.1, checks that a route entry to self
is created when an instance of RouteAodvMultiInterface is created. The test begins at
the simulation time t=1s by creating an instance of the router and starting it. Simulation

179

Listing C.1: A unit test to check an route entry to self is created when
an instance of RouteAodvMultiInterface is created.

@Test(time =1* Constants . SECOND)

public void testRouteToSelf () {

NetAddress netAddr = new NetAddress (1);

RouteAodvMultiInterface routeAodv = new RouteAodvMultiInterface (netAddr);

routeAodv . getProxy (). start ();

JistAPI . sleepBlock (1* Constants . SECOND);

RouteTableEntry entry = routeAodv . getRouteTable (). lookup (netAddr);

Assert . assertNotNull (entry);

}

time is incremented to t=2s, by which time it is expected that there should be a single
entry in the route table with the network address of the node (netAddr) known as the self
entry. The test framework produced the following output:

Method: testRouteToSelf, Passed: true

C.6 Source code changes

Source code wide changes

• numerous debug/info logging statements added using built in log4j library,

• LogUtil.formatLog for standardised log formatting across all the layers of the pro-
tocol stack.

RouteAodvMultiInterface

• common functionality factored into RouteAodvBase and shared by all RouteAodv

types.

• router is multiple interface aware. interface_id field added to routing table entries.

• allow setting of network layer (IP) priority that routing packets are sent as.

jist.Runtime.Rewriter

• ignoredPackages - added "org.w3c.", "au.com.bytecode.opencsv", "org.netbeans.",
"org.apache.commons", "edu.uci.ics.jung". All are external libraries used in research
that should not be rewritten by the simulator.

• constructor - rewriterTime set to 0 if clRewriter returns null. Prevents NullReference

Exception being thrown on occasion.

180

• doClass() - removed Constants.ACC_FINAL from generated method mg (both times),
which permits derived, rewritten classes, with no noticeable side-effects.

jist.Runtime.Controller

• manages gui creation, should the user require it.

• eventLoop() - at end of simulation (i.e. when JistException.JistSimulationEnd

Exception is thrown), close gui instance.

181

APPENDIX D

SIMULATION SOURCE CODE

Full source code to the updated Jist/SWANS environment (including bug fixes), node
models and post-processing scripts are available at http://www.eee.bham.ac.uk/com_test
/dsnl/kiddiep/index.html as a zip file. In particular:

• src\pkiddie contains a mirror of most of the Jist/SWANS simulation engine with
the fixes and additions listed in Appendix B and Appendix C respectively.

• post-processing scripts can be found in src\pkiddie\tools\perl.

• ns2 source code to create a simulation from a Jist/SWANS trace can be found in
src\pkiddie\tools\ns2

• simulation drivers are located in src\pkiddie\drivers.

To compile, an Ant build script has been provided in the root of the zip file entitled
build_pkiddie.xml, and for simplicity, the whole distribution can be compiled under
Eclipse by setting the builder to use build_pkiddie.xml in the project properties dialog.
Detailed instructions provided on the website. Please ensure you are compiling with
the Java 1.5 class format, as there are known issues with the BCEL library
and Java 1.6+ class format.

The source code for the baseline IDS can be found at src\pkiddie\ids\IdsBaseline

.java.
The source code for the game theoretic IDS includes src\pkiddie\ids\IdsGameTheory

.java and the Lemke-Howson solver at src\pkiddie\gametheory\lemke*.
The source code for the game theoretic/AIS IDS are all located in \src\pkiddie\ids

and include IdsAisGameTheory.java, Ais2.java, GameTheory.java, InnateReport*.

java, Report*.java and Buffer*.java.
Each of the IDS depend on the set of detectors implemented in src\pkiddie\ids

\detection, the custom network layer \src\pkiddie\net\NetIpIds.java and routing
layer src\pkiddie\route\RouteAdovMultiInterfaceIds.java.

182

Finally, source code for implementing the types of misbehaviour described in Chapter
4 may be found in src\pkiddie\route\RouteAodvMultiInterfaceAdversary.java.

183

APPENDIX E

USING THE UNIT TEST FRAMEWORK

To run a test class, e.g. xxxTest.java, under the ReallySimpleSwansUnitTestingFramework

test framework:

• Add a static main method to the test class and insert the following code:

public static void main(String [] args) {

ReallySimpleSwansUnitTestingFramework tester = new

ReallySimpleSwansUnitTestingFramework (); tester .

run(xxxTest .class); }

• Then invoke the Jist/SWANS runtime with the argument xxxTest.java (assuming it
resides in the tests package)

java jist. runtime .Main jist.swans.Main tests. xxxTest

ReallySimpleSwansUnitTestingFramework analyses the test class, and runs each test
method (a method that was annotated @Test) sequentially on the Jist/SWANS event
queue (providing access to simulation time).

The results are output on the console in the following format:

Method : testRouteToSelf , Passed : true

184

APPENDIX F

VALIDATING JIST/SWANS

Two validation studies were completed by comparing results from published simulation
studies of AODV and employing the same scenario in Jist/SWANS using the final version
of RouteAodvMultiInterface with the additions and bug-fixes listed in Appendix B.

F.1 Validation I

The network environment used in Perkins et al. (2001) was chosen to validate the Jist/SWANS
AODV router and implemented in the driver Perkins2001.java. Table F.2 lists the pa-
rameters that were used. The independent variables were flows and pauseTime, and were
driven by the Monte-Carlo runner, which enumerated over each possible combination of
flows = {10, 20, 30, 40} and pauseT ime = 0-900 with step size of 100, to produce the
mean PDR and end-to-end delay plots shown in Figures F.1 and F.2 respectively. Table
F.1 details the flow pattern used in this simulation.

Table F.1: Properties of AppUdp traffic generator in Validation I sce-
nario

Property Value

packet size 512 bytes
start time 10s
interval 0.5s
type udp

burstTime random(min=40s,max=50s)
pauseTime random(min=10s,max=20s)

reps 15

185

Table F.2: Simulation parameters used in Validation I scenario
Si
m
ul
at
io
n

P
ro
pe

rt
y

Ji
st
/S

W
A
N
S

ns
2

C
la
ss

P
ro
pe

rt
y

V
al
ue

T
C
L
C
la
ss

P
ro
pe

rt
y

V
al
ue

A
pp

lic
at
io
n

(C
lie

nt
)

pk
id

di
e.

ap
p.

Ap
pU

dp
.S

er
ve

r
Ag

en
t/

NU
LL

A
pp

lic
at
io
n

(S
er
ve
r)

pk
id

di
e.

ap
p.

Ap
pU

dp
.C

li
en

t
Ap

pl
ic

at
io

n/

Tr
af

fi
c/

CB
R

Tr
an

sp
or
t

pk
id

di
e.

tr
an

s

Tr
an

sU
dp

Ag
en

t/

UD
P

N
et
wo

rk
pk

id
di

e.
ne

t.
Ne

tI
p

n/
a

M
es
sa
ge

Q
ue

ue
pk

id
di

e.
ne

t.

Me
ss

ag
eQ

ue
ue

.

Dr
op

Me
ss

ag
eQ

ue
ue

ca
pa

ci
ty

50
Qu

eu
e/

Dr
op

Ta
il

/

Pr
iQ

ue
ue

if
ql

en
50

R
ou

te
pk

id
di

e.
ro

ut
e.

Ro
ut

eA
od

v
/

pk
id

di
e.

ro
ut

e.

Ro
ut

eA
od

vM
ul

ti
In

te
rf

ac
e

AO
DV

186

M
ac

pk
id

di
e.

ma
c.

Ma
c8

02
_1

1
Ma

c/
80

2_
11

da
ta

Ra
te

_
1M

b

ba
si

cR
at

e_
1M

b

R
ad

io
pk

id
di

e.
ne

t.

Ra
di

oN
oi

se
Ad

di
ti

ve
Ph

y/

Wi
re

le
ss

Ph
y

fr
eq

_
2.

4e
+9

RX
Th

re
sh

_
7.

23
13

1e
-1

1

ba
nd

wi
dt

h_
1M

b

Sp
at
ia
l

ji
st

.s
wa

ns
.f

ie
ld

.

Sp
at

ia
l.

Gr
id

di
vi

si
on

s
5

n/
a

M
ob

ili
ty

ji
st

.s
wa

ns
.f

ie
ld

.

Mo
bi

li
ty

.R
an

do
mW

ay
po

in
t

pa
us

eT
im

e
0

dr
iv
en

by
Ji
st
/S

W
A
N
S

gr
an

ul
ar

it
y

10

mi
nS

pe
ed

0

ma
xS

pe
ed

20

Fi
el
d

bo
un

ds
20

00
,2

00
0

dr
iv
en

by
Ji
st
/S

W
A
N
S

Pa
th
lo
ss

ji
st

.s
wa

ns
.f

ie
ld

.

Pa
th

lo
ss

.F
re

eS
pa

ce
Pr

op
ag

at
io

n/

Fr
ee

Sp
ac

e

187

Pl
ac
em

en
t

pk
id

di
e.

fi
el

d.

Pl
ac

em
en

t.
Ra

nd
om

dr
iv
en

by
Ji
st
/S

W
A
N
S

Fl
ow

Pl
ac
em

en
t

pk
id

di
e.

fl
ow

.

Fl
ow

Pl
ac

em
en

t.
Ra

nd
om

dr
iv
en

by
Ji
st
/S

W
A
N
S

C
on

st
ra
in
t

pk
id

di
e.

co
ns

tr
ai

nt
s.

Co
ns

tr
ai

nt
.

Fl
ow

Co
nn

ec
te

d

Co
ns

tr
ai

nt

n/
a

Fl
ow

Pr
op

er
tie

s

pk
id

di
e.

fl
ow

.

Fl
ow

Pr
op

er
ti

es
Ho

ld
er

.

Ra
nd

om

n/
a

flo
w
s

n/
a

n/
a

10
dr
iv
en

by
Ji
st
/S

W
A
N
S

en
dT

im
e

n/
a

n/
a

50
0s

dr
iv
en

by
Ji
st
/S

W
A
N
S

no
de
s

n/
a

n/
a

50
dr
iv
en

by
Ji
st
/S

W
A
N
S

188

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900

P
a

ck
e

t
D

e
li

v
e

ry
 R

a
ti

o

Pause Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900

P
a

ck
e

t
D

e
li

v
e

ry
 R

a
ti

o

Pause Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900

P
a

ck
e

t
D

e
li

v
e

ry
 R

a
ti

o

Pause Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900

P
a

ck
e

t
D

e
li

v
e

ry
 R

a
ti

o

Pause Time (s)

Figure F.1: PDRs achieved in Validation I scenario, using
RouteAodvMultiInterface (v2).

The resulting network metrics shown in Figures F.1 and F.2 show the resulting met-
rics obtained in Jist/SWANS were slightly better than the published results for smaller
numbers of flows, an effect that increases as more flows are present.

F.2 Validation II

The performance of RouteAodvMultiInterface was also compared to Takai et al. (2001),
who published a study illustrating routing protocol scalability and the corresponding
degradation of PDR and end-to-end delay when fading and pathloss propagation mod-
els were applied to simulated networks. We were interested how comparable the metrics
generated by Jist/SWANS were to this work when applying the same propagation models,
and created Takai2001.java, set up as shown in Table F.3.

Table F.3: Simulation parameters used in Validation II scenario

Simulation Property Class Property Value

Application (Client) pkiddie.app. AppUdp.

Server

189

Application (Server) pkiddie.app. AppUdp.

Client

Transport pkiddie.trans.

TransUdp

Network pkiddie.net.NetIp

MessageQueue pkiddie.net.

MessageQueue.

DropMessageQueue

capacity 50

Route pkiddie.route.

RouteAodvMultiInterface

RouteAodvBase.

AODV_TIMEOUT

1*Constants.SECOND

RouteAodvBase.

HELLO_INTERVAL

1*Constants.SECOND

priority Constants.

NET_PRIORITY_CONTROL

Mac pkiddie.mac.

Mac802_11

promisc true

Radio pkiddie.net.

RadioNoiseAdditive

PacketLoss jist.swans.net.

PacketLoss.Zero

Spatial jist.swans.field.

Spatial.Grid

divisions 5

Fading jist.swans.field.

Fading.Rayleigh

Pathloss jist.swans.field.

Pathloss.TwoRay

Mobility jist.swans.field.

Mobility.

RandomWaypoint

pauseTime 0

granularity 10

minSpeed 0

maxSpeed 20

Field bounds new Location.

Location2D

(1200,1200)

190

Placement pkiddie.field.

Placement.Random

FlowPlacement pkiddie.flow.

FlowPlacement.Random

Constraint pkiddie.constraints.

Constraint.

FlowConnectedConstraint

FlowProperties pkiddie.flow.

FlowPropertiesHolder

.ForAll

flows n/a n/a 40

endTime n/a n/a 500*Constants.SECOND

nodes n/a n/a 100

The RadioNoiseAdditive model can be created using either Bit Error Rate (BER) or
Signal To Noise Ratio Threshold (SNRT). For this study, SNRT mode was chosen. The
end time and queue length of 50 was assumed since the original study based the simulation
environment from Perkins et al. (2001). The traffic pattern used is described in Table F.4.

Table F.4: properties of flows in this scenario

Property Value

packet size 512 bytes
start time 10s
interval 0.376s
type udp

burstTime random(min=40s,max=50s)
pauseTime random(min=10s,max=20s)

reps 7

Figure F.3 shows the PDR and end-to-end delay achieved by Jist/SWANS and the
study by Takai et al. (2001), using ns2, illustrating that whilst the PDR obtained by
Jist/SWANS is within the margin of error, the end-to-end delay was as much as 40% more
on average. It is unclear from the published results whether they are the average of several

191

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900

e
n

d
 t

o
 e

n
d

 d
e

la
y

 (
s)

Pause Time (s)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900

e
n

d
 t

o
 e

n
d

 d
e

la
y

 (
s)

Pause Time (s)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900

e
n

d
 t

o
 e

n
d

 d
e

la
y

 (
s)

Pause Time (s)
-6.5

-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 100 200 300 400 500 600 700 800 900

e
n

d
 t

o
 e

n
d

 d
e

la
y

 (
s)

Pause Time (s)

Figure F.2: Average end-to-end delay achieved in Validation I scenario
using RouteAodvMultiInterface (v2).

simulation runs.

192

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNRT Rayleigh

P
a

ck
e

t
D

e
li

v
e

ry
 R

a
ti

o
 (

P
D

R
)

Propagation Models

PDR (Perkins2001)

PDR (Jist/SWANS)

0

2

4

6

8

10

12

14

16

18

20

SNRT Rayleigh

e
n

d
-t

o
-e

n
d

 d
e

la
y

 (
s)

Propagation Models

delay (s) (Perkins2001)

delay (s) (Jist/SWANS)

Figure F.3: PDR and end-to-end delay achieved in Validation II using
Rayleigh fading and Tworay pathloss within Jist/SWANS and original
study for comparison.

193

APPENDIX G

CONFIGURATION OF ADVERSARIES

The misbehaviour described in Chapter 4 was implemented in the RouteAodvMulti-

InterfaceAdversary router within Jist/SWANS. Adversaries were created with an ins-
tance of this router and their behaviour controlled by calling any of the methods shown
in Table G.1 at any point in simulation time. An example that causes all adversaries to
behave as a black hole at t=20s is shown in listing G.1.

Listing G.1: Source code which causes adversary nodes of type
NODE_ADVERSARY to attack via a black hole at t=20s.

JistAPI .runAt(new Runnable () {

public void run () {

final Vector <Node > adversaries = nodes. getByType (Constants .

NODE_ADVERSARY);

for (Node n : adversaries) {

final RouteAodvMultiInterfaceAdversary advRouter = ((

RouteAodvMultiInterfaceAdversary)n. getRouter ());

advRouter . setBlackHole ();

}

}

} ,20* Constants . SECOND);

Table G.1: Methods on RouteAodvMultiInterfaceAdversary to
control the adversary during simulation.

Mode of operation Method Comments

Normal setNormal() Resets the
adversary

194

Passive Route Invasion setPassiveRouteInvasion(

int passiveRouteInvasion)

Sets the type of
passive route
invasion to
attempt (Table
G.3)

Active Route Invasion setActiveRouteInvasion(

int activeRouteInvasion)

Sets the type of
active route
invasion to
attempt (Table
G.4)

Selfish setSelfish() Sets the adversary
as selfish

Black Hole setBlackHole() Sets the adversary
as a black hole

Gray Hole setGrayHole(Vector

targets)

Sets the adversary
as a grey hole
targeting nodes
specified in
targets

Wormhole setWormhole() Set the wormhole
interface,
consequently used
to broadcast route
requests from

195

Table G.3: Possible values of passiveRouteInvasion field used in
RouteAodvMultiInterfaceAdversary router.

Attack
type

Value of
passiveRouteInvasion field

Action

N/A NULL Do nothing
1 FAKE_SEQNUM For requested destinations that

are known to the adversary,
advertise route with a fake
destination sequence number
(known dsn + a constant).

2
FORGE_RREP_AS_DESTINATION

For any requested destination,
forge a route advertisement as
the specified destination
(hopCount = 0) with false dsn.

3 FORGE_RREP_WITH_ROUTE_TO_

DESTINATION

For any requested destination,
forge a route advertisement as
if from an intermediate node
with a route to the
destination, with user defined
hopCount and false dsn.

196

Table G.4: Possible values of activeRouteInvasion field used in
RouteAodvMultiInterfaceAdversary router.

Attack
Type

Value of
activeRouteInvasion field

Actions

N/A NULL Do nothing
1 FORGE_RREP Forge a RREP for the

targetted flow
2 FORGE_RREQ_THEN_RREP Send a RREQ to the flow

destination in order to retrieve
its latest destination sequence
number. Then forge a RREP
for the targetted flow based on
the latest sequence number

3 FORGE_RERR_SYBIL Forge a RERR whose identity
(source network address)
corresponds to a node on the
targetted flow

4 FORGE_RREP_SYBIL Forge a RREP whose identify
(source network address)
corresponds to a node on the
targetted flow

197

APPENDIX H

TESTING THE LEMKE-HOWSON ALGORITHM
IMPLEMENTATION

In order to verify the accuracy of the implementation of LH within Jist/SWANS (Lemke.java),
the algorithm was applied to general games with well-known results, including the Prison-
ers Dilemma, coordination and discoordination games. The general forms of these games
are specified solely by their inequalities between payoffs. The implementation was also
applied to randomly generated general-sum games, with the expected result generated
by Gambit McKelvey et al. (2010). The results show that the expected Nash Equilibria
obtained correlate with the actual Nash Equilibria generated by the LH algorithm. The
unit tests forming this validation is distributed with the source, the details of which can
be found in Appendix D.

198

Ty
pe

of
ga
m
e

G
en
er
al

Fo
rm

G
am

e
In
st
an

tia
tio

n
Ex

pe
ct
ed

N
E

A
ct
ua

lN
E

Pr
iso

ne
rs

D
ile

m
m
a

C

C
oo

p
er

at
e

D
ef

ec
t

R
C

oo
p

er
at

e
R

,R
S,

T

D
ef

ec
t

T
,S

P
,P

T
>
R
>
P
>
S

C

C
oo

p
er

at
e

D
ef

ec
t

R
C

oo
p

er
at

e
-1

,-
1

-1
0,

0

D
ef

ec
t

0,
-1

0
-8

,-
8

[0
,1
,0
,1
]

R
as
m
us
en

(2
00

1)
[0
,1
,0
,1
]

C
oo

rd
in
at
io
n

C A
B

R
A

a,
w

b,
x

B
c,

y
d,

z

a
>
c,
d
>
b,
w
>
x
,z
>
y

C A
B

R
A

5,
4

2,
3

B
4,

1
3,

2

[1
,0
,1
,0
]

[0
,1
,0
,1
]

[0
.5
,0
.5
,0
.5
,0
.5
]

R
as
m
us
en

(2
00

1)

[1
,0
,1
,0
]

[0
,1
,0
,1
]

[0
.5
,0
.5
,0
.5
,0
.5
]

D
is-

co
or
di
na

tio
n

C A
B

R
A

a,
w

b,
x

B
c,

y
d,

z

a
>
c,
d
>
b,
x
>
w
,y
>
z

C A
B

R
A

1,
-1

-1
,1

B
-1

,1
1,

-1

[0
.5
,0
.5
,0
.5
,0
.5
]

R
as
m
us
en

(2
00

1)
[0
.5
,0
.5
,0
.5
,0
.5
]

D
is-

co
or
di
na

tio
n

C

A
B

R
A

a,
w

b,
x

B
c,

y
d,

z

c
>
a
,b
>
d
,w

>
x
,z
>
y

C A
B

R
A

-1
,1

1,
-1

B
1,

-1
-1

,1

[0
.5
,0
.5
,0
.5
,0
.5
]

R
as
m
us
en

(2
00

1)
[0
.5
,0
.5
,0
.5
,0
.5
]

199

Ty
pe

of
ga
m
e

G
en
er
al

Fo
rm

G
am

e
In
st
an

tia
tio

n
Ex

pe
ct
ed

N
E

A
ct
ua

lN
E

R
an

do
m

G
en
er
al

Su
m

N
/A

C A
B

C

R
D

2.
74

0,

1.
23

0

1.
10

0,

2.
19

7

2.
82

8,

2.
66

7

E
2.

92
5,

2.
22

9

2.
60

4,

1.
89

5

1.
10

3,

1.
00

0

F
1.

91
4,

2.
29

5

2.
10

0,

1.
15

0

2.
27

2,

2.
42

6

[1
,0

,0
,0

,0
,1

]

[0
,1

,0
,1

,0
,0

]

[0
.3

70
,0

.4
51

,0
.1

80
,

0.
23

10
.3

97
,0

.3
71

]

M
cK

el
ve

y
et

al
.(

20
10

)

[1
,0

,0
,0

,0
,1

]

[0
,1

,0
,1

,0
,0

]

[0
.3

70
,0

.4
51

,0
.1

80
,

0.
23

1,
0.

39
7,

0.
37

1]

200

APPENDIX I

PUBLICATIONS

Position Paper

Kiddie, P. & Constantinou C. (2008) Decentralised Soft-Security in Distributed Systems.
Presented at PhD-NOW workshop, co-located with Ad-Hoc NOW 2008, Sophia Antipolis,
France.

201

REFERENCES

Aad, I. & Hubaux, J.-P. (2004) ns-2 for the impatient. Technical report, EPFL, Lausanne,
Switzerland.

Abolhasan, M., Wysocki, T. & Dutkiewicz, E. (2004) A review of routing protocols for
mobile ad hoc networks. Ad Hoc Networks, 2 (1), 1 – 22. ISSN 1570-8705.

Abraham, A., Jain, R., Thomas, J. & Han, S.-Y. (2007) D-SCIDS: Distributed soft com-
puting intrusion detection system. Journal of Network and Computer Applications,
30 (1), 81 – 98. ISSN 1084-8045.

Acs, G., Buttyan, L. & Vajda, I. (2004) Provably Secure On-demand Source Routing in
Mobile Ad Hoc Networks. Mobile Computing, IEEE Transactions on, 5 (11), 1533 –
1546. ISSN 1536-1233.

Aickelin, U., Bentley, P., Cayzer, S., Kim, J. & McLeod, J. (2003) Danger Theory: The
Link between AIS and IDS? ICARIS-2003, 2nd International Conference on Artificial
Immune Systems, volume 2787. 147 – 155.

Aickelin, U. & Cayzer, S. (2002) The danger theory and its application to artificial immune
systems. Technical Report HPL-2002-244, HP Labs, Bristol.

Alpcan, T. & Basar, T. (2003) A game theoretic approach to decision and analysis in
network intrusion detection. 42nd IEEE International Conference on Decision and
Control, volume 3. Maui, HI, USA. ISBN 0 7803 7924 1, 2595 – 2600.

Apache Commons (2010) Math - Commons-Math: The Apache Commons Mathematics
Library. http://commons.apache.org/math/. Last Accessed: 25/08/2010.

Apache Jakarta Project (2010) BCEL: The Byte Code Engineering Library. http://

jakarta.apache.org/bcel/. Last Accessed: 25/08/2010.

Apache Software Foundation (2010) Apache log4j 1.2 - log4j 1.2. http://logging.

apache.org/log4j/1.2/. Last Accessed: 15/09/2010.

Bace, R. G. (2000) Intrusion detection. MacMillan Technology.

Balachandran, S., Dasgupta, D. & Wang, L. (2006) A Hybrid Approach for Misbehavior
Detection in Wireless Ad-Hoc Networks.

Balakrishnan, K., Deng, J. & Varshney, V. (2005) TWOACK: preventing selfishness in
mobile ad hoc networks. Wireless Communications and Networking Conference, 4, 2137
– 2142. ISSN 1525-3511.

Baras, J. S., Radosavac, S., Theodorakopoulos, G., Sterne, D., Budulas, P. & Gopaul, R.
(2007) Intrusion Detection System Resiliency to Byzantine Attacks: The Case Study of
Wormholes in OLSR. Milcom 2007: Proceedings of the 2007 Military Communications
Conference.

Barr, R. (2004a) JiST - Java In Simulation Time. Cornell.

Barr, R. (2004b) SWANS - Scalable Wireless Ad Hoc Network Simulator User Guide.
Cornell.

Barr, R., Haas, Z. J. & van Renesse, R. (2005) JiST: an efficient approach to simulation
using virtual machines: Research Articles. Softw. Pract. Exper., 35 (6), 539 – 576. ISSN
0038-0644.

Basile, C., Kalbarczyk, Z. & Iyer, R. (2005) Neutralization of errors and attacks in wireless
ad hoc networks. Dependable Systems and Networks, 2005. DSN 2005. Proceedings.
International Conference on. 518 – 527.

Billauer, E. (2011) peakdet: Peak detection using MATLAB. http://www.billauer.co.

il/peakdet.html. Last Accessed: 17/01/2011.

Bokareva, T., Bulusu, N. & Jha, S. (2005) SASHA: Toward a Self-Healing Hybrid Sensor
Network Architecture. Embedded Networked Sensors, 2005. EmNetS-II. The Second
IEEE Workshop on. 71 – 78.

Brandes, U. (2001) A Faster Algorithm for Betweenness Centrality. Journal of Mathemat-
ical Sociology, 25, 163 – 177.

Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C. & Jetcheva, J. (1998) A performance
comparison of multi-hop wireless ad hoc network routing protocols. MobiCom ’98:
Proceedings of the 4th annual ACM/IEEE international conference on Mobile computing
and networking. ACM, New York, NY, USA. ISBN 1-58113-035-X, 85 – 97.

Buchegger, S. & Le Boudec, J. (2002a) Nodes bearing grudges: Towards routing security,
fairness, and robustness in mobile ad hoc networks. Parallel, Distributed and Network-
based Processing, 2002. Proceedings. 10th Euromicro Workshop on, 403 – 410.

Buchegger, S. & Le Boudec, J.-Y. (2002b) Performance analysis of the CONFIDANT
protocol. MobiHoc ’02: Proceedings of the 3rd ACM international symposium on Mobile
ad hoc networking & computing. ACM, New York, NY, USA. ISBN 1-58113-501-7, 226
– 236.

Buchegger, S. & Le Boudec, J.-Y. (2005) Self Policing Mobile Ad-Hoc Networks by Rep-
utation. IEEE Communication Magazine, 43 (7), 101 – 107.

Buttyan, L. & Hubaux, J.-P. (2000) Toward a formal model of fair exchange – a game
theoretic approach. Technical report.

Buttyan, L. & Hubaux, J.-P. (2003) Stimulating Cooperation in Self-Organizing Mobile
Ad Hoc Networks. ACM/Kluwer Mobile Networks and Applications, 8 (5).

Buttyan, L. & Hubaux, J.-P. (2007) Security and Cooperation in Wireless Networks
Thwarting Malicious and Selfish Behavior in the Age of Ubiquitous Computing. Cam-
bridge University Press.

Caro, G. A., Ducatelle, F. & Gambardella, L. M. (2008) A Simulation Study of Routing
Performance in Realistic Urban Scenarios for MANETs. ANTS ’08: Proceedings of
the 6th international conference on Ant Colony Optimization and Swarm Intelligence,
volume 5217/2008. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-540-87526-0, 211 –
218.

Carruthers, R. & Nikolaidis, I. (2005) Certain limitations of reputation–based schemes in
mobile environments. MSWiM ’05: Proceedings of the 8th ACM international sympo-
sium on Modeling, analysis and simulation of wireless and mobile systems. ACM, New
York, NY, USA. ISBN 1-59593-188-0, 2 – 11.

Chakeres, I. & Belding-Royer, E. M. (2005) AODV Implementation Design and Perfor-
mance Evaluation. International Journal of Wireless and Mobile Computing (IJWMC),
2/3.

Chapel, H., Haeney, M., Misbah, S. & Snowden, N. (2006) Essentials of Clinical Immunol-
ogy. Wiley-Blackwell.

Dasgupta, D. & Gonzalez, F. (2002) An immunity-based technique to characterize intru-
sions in computernetworks. Evolutionary Computation, IEEE Transactions on, 6 (3),
281 – 291. ISSN 1089-778X.

Deng, H., Li, W. & Agrawal, D. (2002) Routing security in wireless ad hoc networks.
Communications Magazine, IEEE, 40 (10), 70 – 75. ISSN 0163-6804.

Dhillon, D., Randhawa, T., Wang, M. & Lamont, L. (2004) Implementing a fully dis-
tributed certificate authority in an OLSR MANET. Wireless Communications and
Networking Conference, 2004. WCNC. 2004 IEEE, 2, 682 – 688. ISSN 1525-3511.

Dijkstra, E. W. (1959) A note on two problems in connexion with graphs. Numerische
Mathematik, 1, 269 – 271. ISSN 0029-599X.

Doan, T., Melvold, R., Viselli, S. & Waltenbaugh, C. (2007) Lippincott’s Illustrated Re-
views: Immunology (Lippincott’s Illustrated Reviews Series). Lippincott Williams &
Wilkins.

Douceur, J. R. (2002) The Sybil Attack. IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, volume 2429/2002. Springer-Verlag,
London, UK. ISBN 3-540-44179-4, 251 – 260.

Feigenbaum, J. & Shenker, S. (2002) Distributed Algorithmic Mechanism Design: Recent
Results and Future Directions. In Proceedings of the 6th International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications. ACM
Press, 1 – 13.

Felegyhazi, M., Buttyan, L. & Hubaux, J.-P. (2006) Nash Equilibria of Packet Forwarding
Strategies in Wireless Ad Hoc Networks. IEEE Transactions on Mobile Computing
(TMC), 5 (5). ISSN 1536 – 1233.

Felegyhazi, M., Hubaux, J.-P. & Buttyan, L. (2003) Equilibrium Analysis of Packet For-
warding Strategies in Wireless Ad Hoc Networks - the Dynamic Case. Technical report.

Fong, M. (2004) JiST event viewer project report. Technical report, Cornell University.

Forrest, S. & Hofmeyr, S. (2001) Engineering an Immune System.

Ghica, O. C., Trajcevski, G., Scheuermann, P., Bischof, Z. & Valtchanov, N. (2008)
SIDnet-SWANS: a simulator and integrated development platform for sensor networks
applications. SenSys ’08: Proceedings of the 6th ACM conference on Embedded network
sensor systems. ACM, New York, NY, USA. ISBN 978-1-59593-990-6, 385 – 386.

Gonzalez, F. A. & Dasgupta, D. (2004) Anomaly Detection Using Real-Valued Negative
Selection. Journal of Genetic Programming and Evolvable Machines. 4 – 383.

Greensmith, J., Aickelin, U. & Twycross, J. (2006) Articulation and Clarification of the
Dendritic Cell Algorithm.

Haas, Z. J., Halpern, J. Y. & Li, L. (2006) Gossip-based ad hoc routing. IEEE/ACM
Trans. Netw., 14, 479–491. ISSN 1063-6692.

Hamill, P. (2004) Unit Test Frameworks. O’Reilly Media.

Hao, L., Li, X., Yang, S. & Lu, S. (2006) Fast Authentication Public Key Infrastructure
for Mobile Ad Hoc Networks Based on Trusted Computing. Wireless Communications,
Networking and Mobile Computing, 2006. WiCOM 2006.International Conference on.
1 – 4.

Heberlein, L., Dias, G., Levitt, K., Mukherjee, B., Wood, J. & Wolber, D. (1990) A
network security monitor. Research in Security and Privacy, 1990. Proceedings., 1990
IEEE Computer Society Symposium on. 296 – 304.

Helsinki, V. K. & Kärpijoki, V. (2000) Security in Ad Hoc Networks.

Hu, Y.-C., Johnson, D. B. & Perrig, A. (2002) SEAD: Secure Efficient Distance Vector
Routing for Mobile Wireless Ad Hoc Networks. Mobile Computing Systems and Appli-
cations, 2002. Proceedings Fourth IEEE Workshop on, 3 – 13.

Hu, Y.-C., Perrig, A. & Johnson, D. (2003a) Packet leashes: a defense against wormhole
attacks in wireless networks. INFOCOM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications Societies. IEEE, 3, 1976 – 1986. ISSN
0743-166X.

Hu, Y.-C., Perrig, A. & Johnson, D. B. (2003b) Rushing attacks and defense in wireless
ad hoc network routing protocols. WiSe ’03: Proceedings of the 2nd ACM workshop on
Wireless security. ACM, New York, NY, USA. ISBN 1-58113-769-9, 30 – 40.

Hu, Y.-C., Perrig, A. & Johnson, D. B. (2005) Ariadne: A Secure On-Demand Routing
Protocol for Ad Hoc Networks. Wireless Networks, 11 (1 - 2), 21 – 38.

Huang, Y., Fan, W., Lee, W. & Yu, P. S. (2003) Cross-Feature Analysis for Detecting
Ad-Hoc Routing Anomalies. Distributed Computing Systems, International Conference
on, 0, 478. ISSN 1063-6927.

Huang, Y.-a. & Lee, W. (2003) A cooperative intrusion detection system for ad hoc net-
works. SASN ’03: Proceedings of the 1st ACM workshop on Security of ad hoc and
sensor networks. ACM, New York, NY, USA. ISBN 1-58113-783-4, 135 – 147.

Janeway, C., Travers, P., Walport, M. & Shlomchik, M. (2004) Immunobiology. Garland
Science.

Jaramillo, J. J. & Srikant, R. (2007) DARWIN: distributed and adaptive reputation mech-
anism for wireless ad-hoc networks. MOBICOM. 87 – 98.

Johnson, D. B. & Maltz, D. A. (1996) Dynamic Source Routing in Ad Hoc Wireless
Networks. Imielinski & Korth, eds., Mobile Computing, volume 353. Kluwer Academic
Publishers.

Jubin, J. & Tornow, J. (1987) The DARPA packet radio network protocols. Proceedings
of the IEEE, 75 (1), 21 – 32. ISSN 0018-9219.

JUNG (2010) Java Universal Network/Graph Framework. http://jung.sourceforge.

net/doc/index.html. Last Accessed: 17/10/2010.

Just, M., Kranakis, E. & Wan, T. (2003) Resisting Malicious Packet Dropping in Wireless
Ad Hoc Networks. In Proc. of ADHOCNOW?03. Springer Verlag, 151 – 163.

Karlof, C. & Wagner, D. (2003) Secure routing in wireless sensor networks: attacks and
countermeasures. Ad Hoc Networks, 1 (2-3), 293 – 315. ISSN 1570-8705.

Kemmerer, R. A. & Vigna, G. (2002) Intrusion Detection: A Brief History and Overview
(Supplement to Computer Magazine). Computer, 35, 27 – 30. ISSN 0018-9162.

Kim, J. & Bentley, P. (2001) Towards an artificial immune system for network intrusion
detection: an investigation of clonal selection with a negative selection operator. Evo-
lutionary Computation, 2001. Proceedings of the 2001 Congress on, volume 2. 1244 –
1252.

Kim, J., Bentley, P., Wallenta, C., Ahmed, M. & Hailes, S. (2006) Danger Is Ubiquitous:
Detecting Malicious Activities in Sensor Networks Using the Dendritic Cell Algorithm.
ICARIS. 390 – 403.

Kliot, G. (2009) Technion Extensions of the JiST/SWANS Simulator.

Kurkowski, S., Camp, T. & Colagrosso, M. (2005a) MANET Simulation Studies: The
Current State and New Simulation Tools.

Kurkowski, S., Camp, T. & Colagrosso, M. (2005b) MANET simulation studies: the
incredibles. SIGMOBILE Mob. Comput. Commun. Rev., 9 (4), 50 – 61.

Kyasanur, P. & Vaidya, N. (2003) Detection and handling of MAC layer misbehavior in
wireless networks. Dependable Systems and Networks, 2003. Proceedings. 2003 Interna-
tional Conference on, 173 – 182.

Lemke, C. E. & J. T. Howson, J. (1964) Equilibrium Points of Bimatrix Games. SIAM
Journal on Applied Mathematics, 12 (2), 413 – 423.

Li, L., Halpern, J. & Haas, Z. (2002) Gossip-based Ad Hoc Routing.

Lin, C. (2004) SWANS AODV project report.

Liu, K., Deng, J., Varshney, P. & Balakrishnan, K. (2007) An Acknowledgment-Based
Approach for the Detection of Routing Misbehavior in MANETs. Mobile Computing,
IEEE Transactions on, 6 (5), 488 – 502. ISSN 1536-1233.

Liu, Y., Comaniciu, C. &Man, H. (2006) A Bayesian game approach for intrusion detection
in wireless ad hoc networks. GameNets ’06: Proceeding from the 2006 workshop on
Game theory for communications and networks. ACM, New York, NY, USA. ISBN
1-59593-507-X, 4.

Lundgren, H., Nordstrom, E. & Tschudin, C. (2002) The gray zone problem in IEEE
802.11b based ad hoc networks. ACM SIGMOBILE Mobile Comput. Commun. Rev.,
volume 6. 104–105.

Luo, J., Hubaux, J.-P. & Eugster, P. T. (2005) DICTATE: DIstributed CerTification
Authority with probabilisTic frEshness for Ad Hoc Networks. IEEE Transactions on
Dependable and Secure Computing, 2 (4), 311 – 323.

Marti, S., Giuli, T. J., Lai, K. & Baker, M. (2000) Mitigating routing misbehavior in
mobile ad hoc networks. MobiCom ’00: Proceedings of the 6th annual international
conference on Mobile computing and networking. ACM Press, New York, NY, USA.
ISBN 1-58113-197-6, 255 – 265.

Matzinger, P. (2002) The Danger Model: A Renewed Sense of Self. Science, 296 (5566),
301 – 305.

McKelvey, R. D., McLennan, A. M. & Turocy, T. L. (2010) Gambit: Software Tools for
Game Theory, Version 0.2010.09.01.

Michiardi, P. & Molva, R. (2002) CORE: A collaborative reputation mechanism to enforce
node cooperation in mobile ad hoc networks. Advanced Communications and Multimedia
Security. IFIP TC6/TC11 Sixth Joint Working Conference on Communications and
Multimedia Security, 107 – 121.

Michiardi, P. & Molva, R. (2005) Analysis of coalition formation and cooperation strategies
in mobile ad hoc networks. Ad Hoc Networks, 3 (2), 193 – 219. ISSN 1570-8705.

Michiardi, P. & R., M. (2001) Simulation-based Analysis of Security Exposures in Mobile
Ad Hoc Networks.

Mishra, A., Nadkarni, K. & Patcha, A. (2004) Intrusion detection in wireless ad hoc
networks. Wireless Communications, IEEE, 11 (1), 48 – 60. ISSN 1536-1284.

Nachbar, J. H. (1992) Evolution in the finitely repeated prisoner’s dilemma. Journal of
Economic Behavior & Organization, 19 (3), 307 – 326. ISSN 0167-2681.

Nash, J. F. (1950) Equilibrium Points in n-Person Games. Proceedings of the National
Academy of Sciences of the United States of America, 36 (1), 48 – 49. ISSN 00278424.

Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S. & Sheu, J.-P. (1999) The broadcast storm problem
in a mobile ad hoc network. MobiCom ’99: Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking. ACM, New York, NY,
USA. ISBN 1-58113-142-9, 151 – 162.

Ning, P. & Sun, K. (2003) How to misuse AODV: a case study of insider attacks against
mobile ad-hoc routing protocols. Information Assurance Workshop, 2003. IEEE Sys-
tems, Man and Cybernetics Society. 60 – 67.

ns2 (2010) The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/. Last Ac-
cessed: 15/03/2010.

OPNET Technologies Inc (2010) Opnet Modeler. http://www.opnet.com/solutions/

network_rd/modeler.html. Last Accessed: 1/10/2010.

Otrok, H., Debbabi, M., Assi, C. & Bhattacharya, P. (2007) A Cooperative Approach
for Analyzing Intrusions in Mobile Ad hoc Networks. Distributed Computing Systems
Workshops, 2007. ICDCSW ’07. 27th International Conference on, 86 – 86. ISSN 1545-
0678.

Otrok, H., Mohammed, N., Wang, L., Debbabi, M. & Bhattacharya, P. (2008a) A game-
theoretic intrusion detection model for mobile ad hoc networks. Computer Communi-
cations, 31 (4), 708 – 721. ISSN 0140-3664.

Otrok, H., Mohammed, N., Wang, L., Debbabi, M. & Bhattacharya, P. (2008b) A Mod-
erate to Robust Game Theoretical Model for Intrusion Detection in MANETs. 608 –
612.

Otto, J. & Choffnes, D. (2007) SWANS++ - Extensions to the Scalable Wireless Ad-hoc
Network Simulator.

Patcha, A. & Park, J.-M. (2004) A game theoretic approach to modeling intrusion de-
tection in mobile ad hoc networks. Proceedings from the Fifth Annual IEEE SMC
Information Assurance Workshop (IEEE Cat. No.04EX879), 280 – 284.

Patwardhan, A., Parker, J., Joshi, A., Iorga, M. & Karygiannis, T. (2005) Secure Routing
and Intrusion Detection in Ad Hoc Networks. Pervasive Computing and Communica-
tions, 2005. PerCom 2005. Third IEEE International Conference on. 191 – 199.

Paul, K. & Westhoff, D. (2002) Context aware detection of selfish nodes in DSR based
ad-hoc networks. Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall.
2002 IEEE 56th, volume 4. ISSN 1090-3038, 2424 – 2429.

Perkins, C. (1997) Ad-hoc on-demand distance vector routing.

Perkins, C., Royer, E., Das, S. & Marina, M. (2001) Performance comparison of two on-
demand routing protocols for ad hoc networks. Personal Communications, IEEE, 8 (1),
16 – 28. ISSN 1070-9916.

Perkins, C. E. & Bhagwat, P. (1994) Highly dynamic Destination-Sequenced Distance-
Vector routing (DSDV) for mobile computers. SIGCOMM Comput. Commun. Rev.,
24 (4), 234–244. ISSN 0146-4833.

Pirzada, A. A. & McDonald, C. (2004) Establishing trust in pure ad-hoc networks. ACSC
’04: Proceedings of the 27th Australasian conference on Computer science. Australian
Computer Society, Inc., Darlinghurst, Australia, Australia, 47 – 54.

Pritchard, D. (2007) The Lemke-Howson Algorithm.

Rasmusen, E. (2001) Games and Information: An Introduction to Game Theory. Blackwell
Publishing. ISBN 0631210954.

Riedel, I. (2003) Security in Ad-hoc Networks: Protocols and Elliptic Curve Cryptography
on an Embedded Platform.

Rivest, R. (1992) The MD5 Message-Digest Algorithm.

Roughgarden, T., Tardos, E. & Vazirani, V. V. (2007) Algorithmic Game Theory. Cam-
bridge University Press.

Royer, E. & Toh, C.-K. (1999) A review of current routing protocols for ad hoc mobile
wireless networks. Personal Communications, IEEE [see also IEEE Wireless Commu-
nications], 6 (2), 46 – 55. ISSN 1070-9916.

Sanzgiri, K., Dahill, B., Levine, B., Shields, C. & Belding-Royer, E. (2002a) A secure
routing protocol for ad hoc networks. Network Protocols, 2002. Proceedings. 10th IEEE
International Conference on. ISSN 1092-1648, 78 – 87.

Sanzgiri, K., Dahill, B., Levine, B., Shields, C. & Belding-Royer, E. (2002b) A secure
routing protocol for ad hoc networks. Network Protocols, 2002. Proceedings. 10th IEEE
International Conference on. ISSN 1092-1648, 78 – 87.

Sarafijanovic, S. & Le Boudec, J.-Y. (2005) An Artificial Immune System for Misbehavior
Detection in Mobile Ad-Hoc Networks with Virtual Thymus, Clustering, Danger Signal

and Memory Detectors. International Journal of Unconventional Computing, 1, 221 –
254.

Schmidt, S., Alpcan, T., Albayrak, S., Basar, T. & Mueller, A. (2008) A Malware Detector
Placement Game for Intrusion Detection. Lecture Notes in Computer Science, volume
5141. Springer Berlin / Heidelberg, 311 – 326.

Schoch, E. (2009) JiST/SWANS Portal.

Schoch, E., Feiri, M., Kargl, F. & Weber, M. (2008) Simulation of ad hoc networks: ns-2
compared to JiST/SWANS. Simutools ’08: Proceedings of the 1st international confer-
ence on Simulation tools and techniques for communications, networks and systems &
workshops. ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering), ICST, Brussels, Belgium, Belgium. ISBN 978-963-9799-20-2, 1
– 8.

Shapley, L. S. (1953) A Value for n-person Games. Contributions to the Theory of Games,
II, 307 – 317.

Shi, E. & Perrig, A. (2004) Designing secure sensor networks. Wireless Communications,
IEEE, 11 (6), 38 – 43. ISSN 1536-1284.

Shoham, Y. & Leyton-Brown, K. (2009) Multiagent Systems : Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press.

Srinivasan, A., Teitelbaum, J., Wu, J., Cardei, M. & Liang, H. (2008) Reputation-and-
Trust-Based Systems for Ad Hoc Networks, chapter 13. Algorithms and Protocols for
Wireless, Mobile Ad Hoc Networks. Wiley, 375 – 403.

Srinivasan, V., Nuggehalli, P., Chiasserini, C. & Rao, R. (2003) Cooperation in wireless ad
hoc networks. INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies. IEEE, 2, 808 – 817. ISSN 0743-166X.

Stajano, F. & Anderson, R. (2000) The Resurrecting Duckling: Security Issues for Ad-hoc
Wireless Networks. Proceedings of the 7th International Workshop on Security Protocols.
Springer-Verlag, London, UK. ISBN 3-540-67381-4, 172–194.

Sundararajan, T. & Shanmugam, A. (2009) Behavior Based Anomaly Detection Technique
to Mitigate the Routing Misbehavior in MANET. International Journal of Computer
Science and Security (IJCSS), 3.

Takai, M., Martin, J. & Bagrodia, R. (2001) Effects of wireless physical layer modeling
in mobile ad hoc networks. MobiHoc ’01: Proceedings of the 2nd ACM international

symposium on Mobile ad hoc networking & computing. ACM, New York, NY, USA.
ISBN 1-58113-428-2, 87 – 94.

Urpi, A., Bonuccelli, M. & Giordano, S. (2003) Modelling cooperation in mobile ad hoc
networks: a formal description of selfishness. Proc. of WiOpt Workshop, 2003.

Vahdat, A. & Becker, D. (2000) Epidemic Routing for Partially-Connected Ad Hoc Net-
works. Technical report.

Vigna, G., Gwalani, S., Srinivasan, K., Belding-Royer, E. & Kemmerer, R. (2004) An
intrusion detection tool for AODV-based ad hoc wireless networks. Computer Security
Applications Conference, 2004. 20th Annual. ISSN 1063-9527, 16 – 27.

Vigna, G., Valeur, F. & Kemmerer, R. A. (2003) Designing and implementing a family of
intrusion detection systems. ESEC/FSE-11: Proceedings of the 9th European software
engineering conference held jointly with 11th ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, New York, NY, USA. ISBN 1-58113-
743-5, 88 – 97.

Von Neumann, J. (1928) Zur theorie der gesellschaftsspiele.

Von Neumann, J. & Morgenstern, O. (1970) Theory of games and economic behavior.
Princeton Princeton Univ. Press.

Wang, F., Vetter, B. & Wu, S. F. (1997) Secure Routing Protocols: Theory and Practice.
Technical report, North Carolina State University.

Wang, W., Lu, Y. & Bhargava, B. (2003) On security study of two distance vector routing
protocols for mobile ad hoc networks. Pervasive Computing and Communications, 2003.
(PerCom 2003). Proceedings of the First IEEE International Conference on. 179 – 186.

Widger, J. & Grosu, D. (2009) Parallel Computation of Nash Equilibria in N-Player
Games. volume 1. 209 – 215.

Xu, W., Trappe, W., Zhang, Y. & Wood, T. (2005) The feasibility of launching and
detecting jamming attacks in wireless networks. MobiHoc ’05: Proceedings of the 6th
ACM international symposium on Mobile ad hoc networking and computing. ACM, New
York, NY, USA. ISBN 1-59593-004-3, 46 – 57.

Yan, Z. (2006) A conceptual architecture of a trusted mobile environment. Security,
Privacy and Trust in Pervasive and Ubiquitous Computing, 2006. SecPerU 2006. Second
International Workshop on. 81.

Yang, H., Luo, H., Ye, F., Lu, S. & Zhang, L. (2004) Security in mobile ad hoc networks:
challenges and solutions. Wireless Communications, IEEE, 11 (1), 38 – 47. ISSN 1536-
1284.

Yi, Y., Gerla, M. & Kwon, T. J. (2003) Efficient flooding in ad hoc networks: a comparative
performance study. Communications, 2003. ICC ’03. IEEE International Conference
on, volume 2. 1059 – 1063.

Zhang, Y. & Lee, W. (2000) Intrusion detection in wireless ad-hoc networks. MobiCom
’00: Proceedings of the 6th annual international conference on Mobile computing and
networking. ACM Press, New York, NY, USA. ISBN 1-58113-197-6, 275 – 283.

Zhou, L. & Haas, Z. J. (1999) Securing Ad Hoc Networks. IEEE Network, 13 (6), 24 – 30.

