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SYNOPSIS 

 

Globally, the use of resin based composites (RBCs) is increasing but several 

shortcomings remain. This may be related to problems associated with incomplete 

conversion (40-70%), polymerisation shrinkage (1-4% by volume) and the associated 

stress generated at the tooth/restoration interface. Additionally, the increased number 

of technique sensitive incremental steps required to fill relatively large cavities is due 

to inefficient light transmission at depths greater than 2 mm. Accordingly, the change 

in optical properties and the setting reaction of RBC materials is not well understood. 

An interesting approach to control the setting reaction is by the application of the 

exposure reciprocity law. Therefore the current investigation demonstrates the 

applicability of this law with regards to monomer composition, filler percentage and 

photoinitaitor type on degree of conversion with the aim of a better understanding of 

the setting reaction. Although appropriate resin matrix chemistry and photoinitiator 

chemistry may provide potential for reduced curing time, inadequate cure depths 

remain without appropriate filler adaptation.  

The development of techniques that will allow dynamic monitoring of optical 

and physical change during cure will further aid material development with the goal 

of improved depths of cure and will allow such restorations to be cured with one 

„shot‟.  The current investigation has demonstrated the use of several analytical 

techniques (FT-IR spectroscopy, UV-Vis Spectroscopy and low coherence 

interferometry) which will aid such developments. UV-Vis spectroscopy and low 

coherence interferometry may have some significance towards a better understanding 

of the dynamic changes of optical properties of RBC materials. UV-Vis Spectroscopy 

may be used to monitor the decomposition of the photoinitiator which will improve 

light transmission and low coherence interferometry can be used to monitor both 

refractive index and physical thickness change. The current study demonstrated the 

complexity of optical phenomena within RBCs which are affected by material 

composition as well as cavity dimensions.  

Whilst research continues to develop a novel RBC with reduced shrinkage and 

improved depths of cure, there is currently no commercially available solution to such 

problems. Consequently a better understanding of the setting reaction, optical 

properties and physical properties will aid material development. 
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CHAPTER 1  

 

Introduction and Literature Review 



1 

1.0 Historical perspectives 

 

The need for the artificial replacement of missing body parts has existed for 

thousands of years in order to improve and maintain primary health as-well as primary 

oral health. The latter includes prevention and management of dental caries and 

periodontal disease and improvements to the functionality and appearance of missing, 

damaged or worn teeth. Attempts at filling spaces created by tooth loss or tooth 

alterations has been documented as far back as the early century‟s in B.C were natural 

teeth were ligated with gold or silver wire, and detached teeth or teeth carved from other 

materials such as animal teeth, ivory and bone were connected by wire and ligated to 

existing teeth (Laney, 1997). However, such materials were utilised with limited success 

due to the instability of the materials in the oral cavity due to the corrosive effects of 

human saliva and the tendency for ivory and bone to become stained over time (Kelly et 

al 1996).  

The development of amalgam in the 18
th

 and 19
th

 century revolutionised 

restorative dentistry and gained widespread acceptance shortly after (Berry et al., 1998). 

Unfortunately, controversial issues regarding the use of mercury and the release of 

mercury vapour during mastication arose and its safety came into question, despite a lack 

of consensus (Osborne, 1992; Dodes, 2001; Osborne, 2004; Mutter et al., 2004; 

Sadowsky, 2006). More recently however, several Scandinavian countries (Norway, 

Denmark and Sweden) have banned the use of dental amalgam amongst fears of mercury 

toxicity and its environmental impact (Jones, 2008). However a significant drift from 

amalgam to resin based composites (RBCs) in several countries recently (UK, USA and 

Finland) is a result of clinical indication and the patients aesthetic demand and as a result 

of dentists seeking less invasive treatments (Forss and Widström, 2001; Burke et al., 

2003; Haj-Ali et al., 2005; Gilmour et al., 2007) rather than environmental and toxicity 

issues. Consequently, the use of resin-based composites has exponentially grown over 

several decades and today it is the direct restorative material of choice for many dentists 

across the world. For example, by 2005 in the USA, resin composite was the most 

frequently used direct restorative material for posterior restorations (Hajj-Ali et al., 

2005). The exponential growth is evident in studies performed in the UK, where in 2001, 
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49% of dentists questioned never or rarely used resin composites for posterior 

restorations (Burke et al., 2003), whereas in 2007 the number increased to a majority of 

restorations (Gilmour et al., 2007). Although these material types are extensively used in 

clinical practice there remain many unanswered questions concerned with intrinsic 

material properties and associated setting parameters such as shrinkage of the resin 

matrix, photoinitiator absorption, optical phenomena related to resin and filler interaction. 

This investigation explores such material and system deficiencies in an attempt to 

improve our understanding of RBC technology, which may hopefully assist future 

material development. 

 

1.1 Resin based composites 

 

A composite structure is a mixture of at least two phases with differing properties 

of one kind or another, which are intermediate in many senses to those of the 

components. This broad definition includes glass ionomer cements, compomers and 

ormocers as-well as RBCs. Resin based materials were first introduced in dentistry 

during the late 1940s. The earliest materials that were used were simple and based on 

unfilled poly(methyl methacrylate). Several shortcomings existed, amongst which 

polymerisation shrinkage (20-25% by volume), poor colour stability, and poor chemical, 

physical and mechanical properties led to modifications in order to try to improve these 

properties. In 1951 Knock and Glenn attempted to solve the problem of polymerisation 

shrinkage by including inorganic filler particles in the resin (Knock and Glen, 1951) 

although poor mechanical properties and significant discolouration remained a problem 

due to the absence of coupling agents between the filler and the resin.  

In the early 1960‟s, resin based composites where introduced into the dental scene 

(Bowen, 1962) by Dr Rafael Bowen and this class of material looked a promising 

alternative for amalgam. Bowen developed the monomer in 1956 after attaching 

methacrylate groups to an epoxy monomer to form bisphenol A-glycidyl methacrylate 

(Bis-GMA). The introduction of a high-molecular weight, di-functional monomer (Bis-

GMA or Bowens Resin) greatly facilitated the commercial development of materials 

containing inorganic fillers. In 1962, Bowen patented the combination of Bis-GMA resin 
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and silane-treated quartz particles, which is the origin of most commercial composites 

available today (Bowen, 1962). The first use of composites in paste/liquid form was 

developed by Chang in 1969 and Henry Lee in 1970 (Glenn JF, 1982). These materials 

were conventionally polymerised with the redox methods of the cold-cure acrylic 

chemistry commonly used in restorative dentistry. In RBCs the two phases are the resin 

matrices (i.e. the monomers) and the fillers.  

The fundamental work on the use of high molecular weight epoxy and 

methacrylate derivatives that incorporated inorganic filler loading has received wide 

spread attention and since then much work has been done to reach the current level of 

sophistication. However clinical longevity remains limited compared to amalgam and 

there exists a likelihood of root canal therapy if failure occurs (Drummond, 2008). 

However, since their inception, the properties of composites have been greatly improved 

resulting in higher mechanical properties (Palin et al., 2003), lower thermal coefficient of 

expansion (Stevens, 1999), lower dimensional change on setting (Watts and Cash, 1991), 

and higher resistance to abrasion (Turssi et al., 2005), which all contribute to the 

increased clinical performance. 

 

1.1.1 Aesthetic quality 

 

One of the major advantages of RBCs is the property of aesthetic quality. The 

aesthetic revolution began shortly after the introduction of RBCs in the 1970‟s. Although 

acrylic resin and silicate exhibited satisfactory initial aesthetics, the introduction of RBCs 

meant that for the first time, clinicians were able to restore teeth for aesthetics as well as 

form and function without rapid bulk discoloration occurring which was inherent with 

acrylic resins. The popularity of RBCs increased as the ability to mimic tooth structure 

through anatomical stratification improved and the incorporation of dyes and opacifiers 

became possible (Terry, 2003).  
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1.1.2 Composition 

 

Composite materials generally consist of a resin-based matrix and an inorganic 

filler, the ratio of which affects the properties of the material. The incorporation of filler 

is the main strategy used to improve the poor mechanical and physical properties 

associated with unfilled resins. The filler gives the composite wear resistance, strength, 

reduced dimensional change aesthetics and opacity (Ferracane, 1995; Turssi et al., 2005). 

The composite also consists of a coupling agent such as silane, which enhances the bond 

between the filler and the resin matrix, and an initiator in order to initiate the process of 

polymerisation when external energy such as light or heat is applied. An inhibitor may 

also be added into the composite in order to prolong the shelf life of the monomer 

(Bowen and Marjenhoff, 1992) and improve ambient light stability.  Furthermore, 

pigments and dyes (optical modifiers) may also be incorporated to improve aesthetics and 

aid colour matching with natural teeth.  

 

1.1.3 Resin matrix 

 

Resin restorative composites are typically prepared from Bowen‟s resin, a 

compound of bisphenol A and two molecules of glycidyl methacrylate called 2,2-bis[4(2-

hydroxy-3 methaacryloyloxy-propyloxy)-phenyl] propane (Bis-GMA; Figure 1.1.1) 

(Bowen, 1962). Bis-GMA was the earliest base resin successfully incorporated into an 

RBC for direct restoration and has been the primary component of dental RBCs for more 

than half a century. Although it was fundamental in the introduction and development of 

RBCs, the relatively large methacrylate molecule has two aromatic rings and hydroxyl 

groups which add to its molecular weight and stiffness. Consequently, the material is 

very viscous (~1,000,000 mPa.s) and reactivity and degree of conversion remain low 

(Pfeifer et al., 2009). Furthermore, the material is too viscous to handle comfortably and 

the incorporation of reinforcing filler to an appropriate mass percentage for sufficient 

mechanical and physical properties is almost impossible. Di-functional monomers such 

as triethyleneglycol dimethacrylate (TEGDMA; Figure 1.1.1) and ethylene glycol 

dimethacryalte (EGDMA; Figure 1.1.1) which have low molecular weight are added to 
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reduce the viscosity and act as diluents for the matrix system (Silikas and Watts, 1999) 

which facilitates the incorporation of greater amounts of inorganic filler and improves 

mechanical properties of the final RBC material. Additionally, these types of monomer 

contain reactive carbon double bonds at each end that can undergo addition 

polymerisation and therefore reactivity and degree of conversion are increased.  

 

 

 

 

 

 

Figure 1.1.1: The chemical structure of the base and diluent monomers used in RBC 

materials.  
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TEGDMA has a much lower molecular weight and thus the viscosity is 

significantly lower (~10 mPa.s). Although the reactivity increases due to the lower 

viscosity, the presence of ether groups (C-O-C) and the lack of aromatic rings along its 

structure, reduces its mechanical properties when compared to Bis-GMA. Furthermore, 

inferior physical properties are also reported, namely polymerisation shrinkage 

(TEGDMA = 12.5%, Bis-GMA = 5.2%) which is due to its lower molecular weight and 

increased concentration of carbon double bonds which inevitably improves conversion 

(Asmussen, 1982; Munksgaard et al., 1985; Braga et al, 2005). However, its low 

hydrophobocity may result in increased stain susceptibility and leaching of TEGDMA 

into the oral environment (Sideridou and Achilias, 2005).  

Other methacrylate-based monomers such as urethane dimethacrylate (UDMA; 

Figure 1.1.2) may be used to replace Bis-GMA or maybe used synergistically with Bis-

GMA to improve conversion and mechanical and physical properties (Palin et al., 2003). 

UDMA is derived from Bis-GMA but differs in the presence of urethane group, which 

offer a greater functionality to their counterparts. The functionality offered by these 

groups adds toughness and flexibility to the monomer backbone chain, providing the 

possibility for enhanced conversion and durability. Although it has similar molecular 

weight to Bis-GMA, the lack of aromatic groups produces a less viscous resin (~11,000 

mPa.s), which significantly improves its handling properties.  To date, no polymerisation 

system has been successful in the long term as the methacrylate based monomers in 

dentistry.   
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Figure 1.1.2: The chemical structure of the lower molecular weight base monomer, 

UDMA compared to Bis-GMA, which contains urethane functional groups.  

 

Other monomer systems are also available which have been used to address the 

problem of polymerization shrinkage. Ring opening chemistry has been available since 

the mid-1970s where homo-polymerisation of bycyclic ring-opening monomers where 

reported to result in expansion rather than shrinkage upon polymerisation (Bailey, 1975). 

The expansion was believed to be a result of the double spiro-cyclic ring opening of the 

spiro-orthocarbonate (SOC) molecule. However, it was not until the late-1970s that such 

chemistry was considered in dental composites by Thompson et al. (1979) who 

unsuccessfully attempted to combine the strength of conventional resins with the 

expansion properties of SOCs. The incorporation of Bis-GMA with SOC was impossible 

and the resin mixture resulted in decreased monomer conversion, which affected 

mechanical and physical properties. Then in 1992, by variations in ring size and melting 

points, the incorporation of methacrylate monomers such as Bis-GMA and TEGDMA, 

became possible (Stansbury, 1992 and Stansbury 1992b). These were polymerised by a 

cationic and a free-radical mechanism and showed a significant improvement in 

polymerisation shrinkage than a methacrylate-based control group. Further developments 

occurred over the years to eliminate polymerisation shrinkage (Byerley et al., 1992; 

Moszner and Salz, 2001), however, problems of reactivity remained which resulted in 
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inadequate saturation of SOC rings, decreased cross-linking and therefore decreased 

mechanical properties. 

In attempts to reduce polymerization shrinkage, thiol-ene resin chemistry has also 

been suggested for the use in dental restorative materials (Jacquelyn et al., 2005). The 

reaction of thiol-ene monomers creates reactive thiol or vinyl (ene)- functionalized 

oligomers. Thiol-ene resins polymerise by a step growth mechanism rather than a chain 

growth mechanism found in dimethacrylate based resins. As a result, the gel point is 

significantly delayed which enable better control of the polymerization process, i.e 

molecular weight control and reduced shrinkage stress (Cramer and Bowman, 2001). 

Furthermore, the use of such monomers has been reported to improve shrinkage by up to 

33% when compared to metahcrylate systems (Patel et al., 1987; Jacquelyn et al., 2005). 

However, although thiol-ene resins performed well physically, i.e reduced shrinkage and 

shrinkage stress, their mechanical properties remain inferior to Bis-GMA/TEGDMA 

resins (Jacquelyn et al., 2005). Recently composite methacrylate-thiol-ene formulations 

have been shown to exhibit improvements in methacrylate conversion, flexural strength, 

shrinkage stress, depth of cure, and water solubility (Boulden et al., 2010). In such 

systems, the thiol-ene acts as the reactive diluent in ternary formulations which then 

results in a unique polymerization kinetics and shrinkage dynamics which is a 

combination of both thiol-ene and methacrylate chemistry (Cramer et al., 2010). 

Additionally, such systems exhibit a pseudo-hybrid polymerization process whereby the 

first stage is dominated by methacrylate homo-polymeriation and chain transfer to thiol 

and the second stage is dominated by thiol-ene polymerization (Cramer et al., 2010). 

Consequently, the polymers produced are expected to show improved physical and 

mechanical properties. Research is ongoing on this topic. 

The utilization of epoxy resin chemistry has also been realised for decreasing 

reduction in polymerisation shrinkage. 3M ESPE Dental Products (Seefield, Germany) 

introduced „Filtek
TM

 Silorane‟ (c.2006), which is an epoxy based RBC developed from 

oxirane-based materials. Silorane (3,4-epoxycyclohexylcyclopolymethylsioxane) is 

synthesised from oxirane and siloxane moieties resulting in a polymer with similar 

mechanical and physical properties compared to methacrylate based RBCs whilst 

showing increased hydrophobicity (Palin et al., 2005), decreased cytotoxicity (Schweikl 
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et al., 2004), increased ambient light stability (Weinmann et al., 2005) and most 

importantly decreased polymerisation shrinkage and stress (Ernst et al., 2004; Weinmann 

et al., 2005). Such composites utilise an innovative approach of ring-opening chemistry. 

The monomers connect by opening, flattening and extending towards each other, which 

results in a significantly lower polymerisation shrinkage in contrast to a methacrylate 

based composite in which the monomers are linear and connect by actually shifting closer 

together, which results in a greater loss of volume.  

The initiating system in Filtek
TM

 Silorane composes of three components, 

camphoroquinone, an iodinium salt and an electron donor. The electron donor 

decomposes the iodinium salt to form the cation which initiates the polymerisation 

(Weinmann et al., 2005). A significant improvement over traditional methacrylate based 

RBCs in polymerisation shrinkage (<1%) has been reported due to the ring opening 

cationic polymerisation (Weinmann et al 2005). 

 

1.1.4 Fillers 

 

The incorporation of fillers is a strategy whereby inorganic particles or pre-

polymerised material is added in proportion to the composite, which then proportionally 

reduces the shrinkage (Bowen, 1962; Atai and Watts, 2006) by offsetting it with the 

relatively inert filler particles (Condon and Ferracane, 2000). However, even this method 

is reported to produce relatively high polymerisation shrinkage (Atai and Watts, 2006).  

In the 1970s and 1980s, it was recognised that the size and amount of filler was 

critically important for the material and physical properties and thus RBCs were 

characterised according to the filler content. Modification in the filler component will 

change rheology, curing kinetics, degree of conversion and ultimately the mechanical and 

physical properties (Leprince et al., 2009; Beun et al., 2009).  

Additionally, the type of filler is also important towards both optical and physical 

properties. The use of quartz provides excellent optical match to the polymer and is 

readily available. However, several drawbacks exist. Namely, it is not radioopaque and is 

very abrasive towards enamel. Furthermore, the relatively large particles reduces its 

polishability and therefore this was addressed with the development of amorphous silica. 
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However, the relatively small particles did not permit large volume fractions of filler to 

be incorporated. Consequently pre-polymerisaed fillers are added (which have larger 

particle size) to improve volume filler fraction. The use of such a technique improved the 

polishability of the material dramatically but the problem of radio-opacity remained. 

Most modern composites are filled with radiopaque silicate particles based on barium, 

strontium, zinc, aluminium, or zirconium (Ferracane, 1995). 

Composites have been mainly classified into five groups, which may also have sub-

group classifications: 

Macrofilled: Traditional macrofilled composites were developed in the 1970‟s and are 

based on quartz, strontium or barium glass and had filler particle sizes ranging from 

10μm – 40μm. The quartz filler had good aesthetics and durability but suffered from 

absence of radiopacity and low wear resistance. Although barium and strontium glass 

particles are radio-opaque, they are less stable than quartz.  

Microfilled: the poor polishability and relatively high wear resistance of macrofiller 

introduced much smaller particles in the 1970s which contained colloidal silica filler with 

a particle size of 0.01μm – 0.05μm. The small size made it possible to polish the resin 

composite to a smooth surface finish but due to the small volume and high surface area of 

the filler, it was difficult to obtain high filler loads, which led to poor physical properties. 

Hybrid: This type of filler was introduced to solve the problem of polymerisation 

shrinkage whilst maintaining good physical properties by combining both macrofilled 

and microfilled technologies together.  

Modern Hybrid: This type of filler was designed to combine the advantages of 

macrofilled and microfilled composites but additionally contain reduced submicron 

fillers. However, they do not have the final surface finish potential or translucency of 

microfilled resin composites. 

Nanocomposites: Although this type of filler existed as early as the 1970s as microfills, 

there was no concept of nano-technology and therefore this classification did not exist. 

However, in 2003, 3M ESPE marketed the first composites which they claimed to be 

nano but was actually manufactured with micron size agglomerated clusters of nano-

particles. Since then, several manufacturers have used nano sized particles in conjunction 

with microfillers and have suggested improved mechanical properties as a consequence. 
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However, the classification of „nano‟ creates some debate amongst researchers as to date 

no commercial composites truly contains only nano sized particles.    

 

Composite Type Filler Size (μm) Filler Material 

Macrofilled 10 - 40 Quartz or Glass 

Microfilled 0.01 - 0.1 Colloidal Silica 

Hybrid 15 - 20 and 0.01 - 0.05 Glass and colloidal silica 

Modern Hybrid 0.5 - 1 and 0.01 - 0.05 
Glass, Zirconia and colloidal 

silica 

Nanofiller < 0.01 (10nm) Silica or Zirconia 

 

Table 1.1.1: Summary of filler properties and classification of fillers in dental 

composite materials.  

 

1.1.5 Inhibitors 

 

Inhibitors are used commercially to prevent spontaneous polymer formation and 

extend the shelf life of RBCs. Manufacturers of dental resin composites typically add 

hydroquinone or butyl hydroxytoluene (BHT) to the composite in order to inhibit 

polymerisation (Figure 1.1.3).  

 

 

 

Figure 1.1.3: The chemical structures of the common inhibitors used in RBCs 
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The inhibitors react with the free radical thus decreasing the rate of initiation and 

increasing the rate of termination (Moad and Solomon, 1995). Decreasing the rate of 

initiation results in retardation of polymerization and an increase in the rate of 

termination. Although chemical inhibition may be used to extend the shelf life of 

composites, inhibition of polymerisation may also occur when there are large amounts of 

oxygen present and this could lead to partially cured restorations which may cause 

problems because the optimum properties are not obtained (Gauthier et al., 2005).  

BHT is a commercially available primary antioxidant and is also used as an 

inhibitor in dental composites (Geurtsen, 1998). Reduction in reaction speed by chemical 

inhibition occurs as the free radicals are terminated by reacting with the phenolic 

hydrogen of the BHT molecule. BHT molecules are primary antioxidants which are 

effectively free radical scavengers, which combine with peroxy radicals and break the 

autocatalytic cycle. The phenoxy radicals may then inactivate another free radical by C-C 

or C-O coupling or loss of another hydrogen atom to form a quinine, which may react 

further. Therefore, each inhibitor molecule can terminate two or more polymer chains 

(Moad and Solomon, 1995). The conversion of monomer to polymer proceeds at a 

reduced rate until all the inhibitor is consumed. Inhibition may also extend the „pre-gel 

phase‟, which will allow shrinkage forces to be dissipated before the cross-linking 

reaches a certain point at which molecular displacement becomes impossible (Braga and 

Ferracane, 2002). However, this idea has never been commercialized and BHT is only 

used to prolong the shelf life of a commercial composite by acting as a stabilizer to 

inhibit auto polymerization. 

 

1.1.6 Pigments and UV absorbers 

 

Pigments and dyes are used commercially to provide shading and opacity to aid 

colour matching to natural teeth. Typically metal oxides such as titanium and aluminium 

oxides are used. Titanium oxide provides opacity, whilst magnesium, copper and iron 

oxides provide a variety of colours and shades. 
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As dental composite fillings are prone to discolouration due to UV absorption 

(below 400nm), UV absorbers such as Benzophenone are used commercially, which 

absorb UV light to prevent such discolouration. 

 

1.1.7 Photoinitiators 

 

The first photo-polymerised composite system was developed in the 1970‟s under 

the trade name of Nuva; Dentsply/ Caulk (Rueggeberg, 2002) as an attempt to decrease 

the lengthy setting times. Photo-initiation polymerisation involves the use of a light to 

produce free radicals to start the polymerisation process and allows the ability to 

„command-cure‟ restorations.  This has become highly popular in dentistry as degree of 

conversion can range from 40-70% with appropriate conditions (Fonseca et al., 2004; 

Mendes et al., 2005; Ogunyinka et al., 2007). Systems used in current restorations and 

luting-agents frequently use both photo- and chemical–initiation (dual curing) as it is 

often difficult to expose the material to sufficient light to reach the maximum degree of 

conversion and thus maximum strength (Watts, 2005). The potential advantage of photo-

activated composites over chemically activated composites is that they have greater 

handling time because the polymerisation process is initiated once the composite is 

irradiated with light, whereas for the chemically activated composite resins, working time 

was extremely limited and setting times range from 3 to 5 minutes once the material is 

mixed and can only be controlled by modifying the concentrations of initiator and 

accelerator (Fonseca et al., 2004).  

 

1.1.7.1 Camphoroquinone 

 

The photoinitiator system within a RBC generally consists of a two-component 

system, a photoinitiator and a co-initiator. Camphoroquinone is the most commonly used 

visible light activated free radical photo-initiator for dental resins. The absorption range 

corresponds to visible blue light between 400-500nm (λmax = 470 nm). The co-initiator or 

photo sensitizer is normally a tertiary aliphatic amine reducing agent, which reacts with 

camphoroquinone in its excited triplet state to generate free radicals. The absorption of 
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one photon of radiation promotes the non-bonding electron of the carbonyl group to an 

excited state based on the π* anti bonding orbital.  This excited state may return to the 

ground state by fluorescence or a radiation-less transition or it may decompose to another 

species. If the excited state is an excited singlet state, it may undergo intersystem crossing 

to the triplet state. The excited triplet then forms an exciplet with the amine reducing 

agent by charge transfer from the nitrogen lone pair to carbonyl, thus producing two 

radical ions. In the exciplex the amine transfers the hydrogen localized in the α carbon to 

diketone, resulting in a production of an amino radical and a cetyl radical (Figure 1.1.4). 

The amino radical is responsible for the initiation of the polymerisation reaction, while 

camphoroquinone cetyl radical is inactive (Watts, 2005; Alvim et al., 2007). 

 

O

O

Camphoroquinone

O

3

O + N CH2R O + HN CH2R

OH N CHR + H

+ H

 

Figure 1.1.4: The production of free radicals during initiation in resins and RBCs 

containing camphoroquinone  and an amine reducing agent. 

 

Although several amine reducing agents (Figure 1.1.5) are capable of providing 

electrons for charge transfer during the initiation process, dimethylaminoethyl 

dimethacrylate (DMAEMA) is commonly used. The efficiency of this is dependent upon 
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its chemical structure and functional groups and affects clinically important properties 

such as the rate of polymerisation, the depth of cure and the final monomer conversion 

(Rueggeberg et al., 1997; dos Santos et al., 2007).  Aliphatic amines, such as ethyl 

dimethyaminobezoate and dimethylaminobenzoic acid ethyl ester may show a greater 

efficiency due to the aliphatic functional groups that have a greater electron density. 

 

 

 

 

Figure 1.1.5: Chemical structures of co-initiators/ photo sensitisers used in photo-

active RBCs.  
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Appropriate photoinitiator chemistry is essential for efficient polymerisation to 

achieve satisfactory mechanical and physical properties of the polymer (Ogunyinka et al., 

2007). An optimum correlation between photoinitiator and co-initiator type and 

concentration will maximize photon absorbance efficiency which may in turn maximize 

depth of cure of a filled system (Chen et al., 2007; dos Santos et al., 2007). The 

photoinitiator concentration should be limited in order to obtain an optimum photo-curing 

reaction with high monomer conversion since excessive un-reacted photoinitiator, 

products of their photolysis, and any un-reacted monomer, may cause cytoxicity (Pagoria 

et al., 2005). Furthermore, the concentration of camphoroquinone effects the aesthetics of 

a restoration as exceeding a critical concentration limit of camphoroquinone will lead to 

yellow discoloration and any un-reacted molecules may return back to the ground state 

(Ogunyinka et al., 2007) which will cause discolouration of the final polymer. Such 

discoloration may reduce aesthetic quality (Rueggeberg et al., 1997; Suh BI., 1997; 

Studer et al., 2001; Brackett et al., 2007) and affect light transport through material 

thickness. Furthermore, the discoloration may also create problems in color matching to 

natural teeth.  

 

1.1.7.2 Alternative photoinitaitors 

 

More recently alternative photoinitiators (Figure 1.1.6) have been used in RBCs 

such as phenyl proanedione (PPD), Benzil (BZ) and Norrish Type I photoinitiator 

systems such as mono (Lucirin TPO) and bi- (Irgacure 819) acylphosphine oxides 

(Neumann et al, 2005; Neumann et al, 2006; Ogunyinka et al., 2007). As some of these 

are non-pigmented, they have been utilized in bleach shade RBCs either synergistically 

with camphoroquinone or as a stand alone photoinitiator which may improve 

polymerisation kinetics, mechanical properties and aesthetic quality (Park et al, 1999; 

Weinmann et al, 2005; Neumann et al, 2006; Shin and Rawis, 2009). For such 

photoinitiators, it is interesting to note the absorption characteristics corresponding to the 

range of conventional light curing units (halogen380-550nm, LED440-500nm; Section 

1.4), which will inevitably dictate their compatibility, efficiency and clinical acceptance 

(Table 1.1.2).  
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Photoinitiator 

UV-Vis Absorption 

Absorption 

Range (nm) 
λmax (nm) 

Molar extinction coefficient 

at λmax (L.mol
-1

.cm
-1

) 

Camphoroquinone 400-550 470 ~35 

Lucirin TPO 300-430 381 ~550 

Irgacure 300-440 370 ~300 

PPD 300-480 393 ~150 

Benzil 300-460 385 ~50 

 

Table 1.1.2: The absorption characteristics of photoinitaitors used in RBCs.  
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Figure 1.1.6: The chemical structures of alternative photoinitaitors used in RBCs. 
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1.1.7.3 Lucirin TPO 

 

Lucirin TPO seems to be an interesting molecule despite its shorter wavelength 

absorption as it may provide the potential to be a more aesthetic and a more efficient 

photoinitiator due to less absorption in the visible region and its much higher molar 

extinction coefficient, respectively (Table 1.1.2). The Norrish Type I photoinitiator 

produces free radicals by the photochemical cleavage of the carbon-phosphorus bond 

resulting in two initiating radicals without the need for a co-initiator or photosensitizer 

(Figure 1.1.7).  The radicals are more reactive than the radicals created in the 

camphoroquinone-amine system. Ilie and Hickel (2008) demonstrated the potential for 

Lucirin TPO to replace camphoroquinone in adhesives with regards to degree of 

conversion and hardness. Other investigators have also reported the possibility of 

improved conversion with Lucirin TPO due to the much higher molar absorptivity (Allen, 

1996; Neumann et al., 2005). However, the use of low wavelength light to initiate 

radicals maybe problematic to achieve sufficient depths of cure as the high molar 

absorptivity will reduce light transmission at depth (Neumann et al., 2005).  Furthermore, 

interfacial scattering in RBCs is expected to be higher at lower wavelengths, which will 

further reduce light transmission (Shortall et al., 2008). Such problems can be overcome 

by adequate improvement in light curing technology to improve spectral 

emission/absorption mismatch, and adaptation of filler size to reduce low wavelength 

scattering. Additionally, using camphoroquinone or other photoinitiators synergistically, 

which have higher wavelength absorption, may aid curing at greater depths. Nevertheless, 

RBCs containing such initiators are limited to relatively thin specimens, which may not 

be a problem in flowable composites and adhesive layers of restorations.   
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Figure 1.1.7: The production of free radicals during initiation in resins and RBCs 

containing Lucirin TPO.  

 

1.2 Photo-induced Polymerisation 

 

Resin polymerisation is characterised by three processes; initiation, propagation 

and termination. As described earlier, the photoinitiator is responsible for the initiation of 

the reaction by the production of free radicals (X·), which can then open the double 

bonds at both ends of the monomer, which leads to cross-linking and propagation (Figure 

1.2.1). Termination occurs as a result of either radical-radical interaction or radical 

entrapment in a highly cross-linked structure, which prevents further interaction with 
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vinyl double bonds. However, initiation, propagation and termination are not successive 

steps but co-exist during polymerisation, the kinetics of which are affected by several 

factors including monomer composition (Lovell et al., 1999), photoinitiator chemistry  

and filler percentage (Ogunyinka et al., 2007). 

 

 

Figure 1.2.1: The schematic representation of the initiation and propagation process 

during photopolymerisation. (1), (2), (3) and (n) represent the theoretical steps of 

linear monomer addition.  

 

1.2.1 The kinetics of polymerisation 

 

As initiation, propagation and termination co-exist during polymerisation, reaction 

kinetics are complex and vary during the curing reaction, which are governed by the 

restriction imposed by system mobility. The system mobility is affected by material 

viscosity and has profound affects on cure kinetics. When system mobility is high, i.e. 

low viscosity, termination will mainly occur by radical-radical interaction (bimolecular). 

However, when system mobility is low, i.e high viscosity, then termination will mainly 

occur by a monomolecular pathway (radical-monomer). 
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  MRkR pp         Equation 1.2.1 

 2 RkR tt         Equation 1.2.2 

 

Equation 1.2.1 and 1.2.2 can be used to describe the polymerization process, where 

pR and tR  are the rate of propagation and termination respectively, pk and tk are the 

respective rate constants and M and R  in square brackets are the monomer 

concentration and free radical concentration respectively. At the very beginning of 

polymerisation, conversion and therefore the extent of cross-linking is low, and it can be 

assumed that the concentration of free radicals remains constant (i.e. equilibrium between 

rate of initiation, iR  where tR = iR and pR ) with the steps of polymerisation being 

chemically controlled. However, according to Anseth et al. (1996), for dimethacrylate 

monomers, this is only valid during the initial stage of polymerisation where conversion 

is less than 10%. As propagation proceeds, conversion increases, which subsequently 

restricts the mobility of the curing system due to increased viscosity. The cross-linked 

polymer network transforms from a liquid to a rubber and consists of two components; 

the sol (the monomer) and the gel component. The gelation point is characterised by the 

point at which the mobility of propagating species becomes so low that free-flow of 

macro-radicals becomes restricted and termination becomes diffusion limited. However, 

small monomer molecules can still diffuse through the cross linked networks and create 

new growth centres. As mobility restrictions mainly affect large growing polymer chains 

but not small monomer molecules tk  decreases significantly but pk  remains largely 

unaffected (i.e. pR >> tR ). Consequently, [ R ] increases and results in a dramatic 

increase in the rate of polymerisation, which is known as “autoacceleration” and is more 

pronounced in the case of more viscous monomers (Goodner and Bowman, 1999; Feng 

and Suh, 2007). Once the mobility restrictions become too high, diffusion becomes 

impossible (even for small monomer molecules), pk decreases and a dramatic decrease in 

the rate of polymerisation is observed (“autodeceleration”) and conversion starts to 

plateau as the system becomes vitrified. Vitrification occurs when the glass transition 

temperature ( gT ) of the polymerising material reaches reaction temperature, i.e ambient 
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temperature plus T of the reaction exotherm (n.b. above this temperature the same 

polymer would return from a glassy to a rubbery state if heated up). The glass transition 

temperature of a monomer based of 50% Bis-GMA and 50% TEGDMA is approximately 

47.5
◦
C (Dewaele et al., 2009). Although the majority of polymerization takes place 

during irradiation, conversion then evolves for up to 24 h post irradiation as a result of 

reduction in free volume bringing radicals closer together allowing further reaction 

(Truffier-Boutry et al., 2006). 

 

1.2.2 The problem of polymerisation shrinkage and shrinkage stress 

 

A major limitation of using RBCs as a dental restorative is shrinkage during 

polymerization, which may lead to a poor marginal seal, marginal staining and potentially 

an increased risk of recurrent caries. Polymerisation leads to closer packing of the 

molecules and consequently a loss in volume and bulk contraction occurs as the resin 

matrix changes from a pre-gel state to a solid. The polymerisation shrinkage increases 

proportionally with the amount of carbon double bonds present in the reaction 

environment. Consequently, increasing the proportion of low molecular weight 

monomers increases the concentration of double bonds and thus the degree of conversion 

increases with an increase in the volumetric shrinkage. Nonetheless, replacement of the 

bulky Bis-GMA molecule with lower molecular weight monomers such as UDMA and 

bisphenol-A ethoxylated dimethacrylate (Bis-EMA) have been shown to provide 

improved mechanical properties (Indrani et al., 1995; Asmussen and Peutzfeldt, 1998; 

Palin et al., 2003) although polymerisation shrinkage remains a problem. 

Since the mid-twentieth century, the main strategy to reduce polymerisation 

shrinkage has been to increase filler load. Shrinkage is an intrinsic property of the resin 

matrix and it follows that a reduction in the monomer percentage would proportionally 

reduce the shrinkage, as well as significantly increasing stiffness, which may also act to 

compromise the tooth/RBC interface. Polymerisation shrinkage remains, and to date no 

methacrylate-based chemistry has been developed to solve this problem, which may limit 

the clinical longevity of a restoration. The polymerisation shrinkage of modern 
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methacrylate based RBCs remain in the region of 1-4% by volume (Lai and Johnson, 

1993; Watts and Hindi, 1999; Schmidt et al., 2010).  

As described in section 1.2, the gelation point of an RBC occurs when the viscous 

flow of the curing monomer stops and is unable to keep up with the curing contraction 

(Davidson and Feilzer, 1997). When the composite resin is in the pre-gel state, no stress 

is conducted to the surrounding tooth structure. As the composite cures, the material can 

flow from the unbound surface to accommodate for shrinkage. The flow stops once the 

composite becomes too rigid due to the increasing modulus, and stresses are transmitted 

to the surrounding cavity walls. The shrinkage strain induced during polymerisation is 

characterised by its magnitude, direction and strain dependence and becomes problematic 

when it becomes restricted by the adhesive bond at the tooth-restoration interface, which 

causes it to manifest into shrinkage stress. The resultant stress may compromise the 

synergism between the tooth and restoration interface (Davidson et al., 1984), increase 

the likelihood of mechanical failure (Sakaguchi et al., 1992), permit the ingress of 

bacteria, causing pulpal irritation (Lutz et al., 1991), result in cuspal deflection (Abbas et 

al., 2003), and in some cases result in micro, or even macro-cracking of the surrounding 

tooth (Hübsch et al., 1999; Palin et al., 2005). 

The stress magnitude is not an inherent material property and is determined by 

characteristics of composites such as filler content and modulus (Condon and Ferracane, 

2000), curing rate (Bouschilcher and Rueggeberg, 2000) and degree of conversion (Braga 

and Ferracane, 2002). Many authors have also reported that the final stress is governed by 

the configuration factor (C-factor) of the cavity; the ratio of bonded to un-bonded 

surfaces and the compliance of the surrounding tooth structure or test system (Feilzer et 

al., 1987; Loguercio et al., 2004; Bragga et al., 2006; Watts and Satterthwaite, 2008). 

Some authors suggest that C-factors less than 1 result in the low development of 

shrinkage stress and the composite remains bonded to the cavity walls (Feilzer et al., 

1987). The C-factor itself is governed by the geometry of the cavity, i.e. the diameter and 

the height which both independently influence the magnitude of stress generated. 

Over the decades many changes have occurred in order to address the problem of 

polymerization shrinkage and its associated stress. Major changes in light-curing units 

and curing modes (Section 1.4.6) have occurred in attempts to try and prolong the gel 



25 

point, which has been reported to alleviate developing stress in vitro (Sakaguchi and 

Berge, 1998; Hofmann et al., 2002). 

Any clinical benefit of so-called, “soft-start” curing regimes (which employ lower 

irradiance at the outset of polymerisation) has yet to be realised, and there remains a risk 

of under-curing is adequate intensity is not provided to the restoration. Many factors 

associated with light transmission will also affect how much shrinkage occurs. Such 

factors include, light intensity, wavelength (Section 1.4.6) and the shade and opacity of 

the composite. 

 

1.3 Applications of Resin Based Composites 

 

The synthetic resins of RBCs have been used in dentistry for many years as 

restorative materials or adhesives. The fundamental characteristics that allow their 

successful use as restorative materials are aesthetic quality (Burke et al., 2003; Haj-Ali et 

al., 2005) and adequate mechanical physical properties (Peutzfeldt, 1997). Furthermore, 

they are relatively easy to handle which allows easy manipulation in the oral cavity. 

RBCs have many direct and indirect uses which include veneers, anterior restorations, 

posterior restorations, crowns, bridges, repair of fracture restorations, liners, pits and 

fissure sealants, bonding of orthodontic brackets and splinting (Ritter, 2005; Sadowsky, 

2006).  

„Extension for prevention‟, a principle introduced by Dr GV Black in 1895 which 

quickly became a foundational stone for the practice in the 20
th

 century. The principle 

was based on what was known in the 19th century and the limitations of technology, and 

made perfect sense but was later shown in several studies that the best dentistry was a 

least invasive one, one with the ultimate goal of conserving tooth structure (Ericson et al., 

2003; Anussavice, 2005). Nowadays, composites are placed with the principle of 

„minimally invasive dentistry‟ which was indicated through the use of adhesive 

restorative materials and new preparation instruments of the market (Rossomando, 2007).  

It is often difficult to work with high and medium viscosity composite pastes as they are 

difficult to handle. Flowable composites are better adapted to a less invasive preparation 

of the cavity as the composite easily flows due to lower viscosity. This type of composite 



26 

was first introduced in the 1980‟s. With respect to the more viscous packable RBCs, 

flowable composites can be produced in two ways; either by increasing the amount of 

diluent monomer or by reducing the filler mass percentage. Additionally, the use of 

flowable materials with reduced filler content has been shown to reduce shrinkage stress 

due to it much lower elastic modulus (Bragga et al., 2003). Again, this has been reported 

in vitro and its effect on lowering stress will differ depending on the ratio of bonded to 

non-bonded surfaces (Feilzer et al., 1987; Loguercio et al., 2004; Braga et al., 2006; 

Watts and Satterthwaite, 2008), compliance (Feilzer et al., 1987; Watts and Marouf, 

2000), material composition (Anseth et al., 1996) and irradiation protocol (Sakaguchi and 

Berge, 1998; Hofmann et al., 2002). Application of such composites include minimally 

invasive class III cavities, class I and II cavities without masticatory loads, pit and fissure 

sealing as well as extended pit and fissure sealing and class V cavities. Furthermore, they 

may also be used for cavity linings in class I and II cavities to alleviate stress (Braga et 

al., 2003). 

Packable composites were designed and developed for use in the posterior region in 

the late 1990‟s. Packable composites generally contain a high proportion of fillers or 

specialised filler technology such as integrated matrix fillers (Leinfelder et al., 1999). 

Such materials facilitate contouring of the approximal contact area when using standard 

metal matrices. Furthermore, they do not stick to instrument and exhibit good positional 

stability, which inevitably aids contouring of the occlusal surface. However, a more 

invasive preparation is required as this type of composite is highly viscous. 

 

1.4 Light-Curing Technology 

 

Light curing technology has improved over the last several decades. By 2007, the 

use of light emitting diode (LED) light curing units became wide spread and is set to 

dominate the light curing industry (Krämer et al., 2008). However, to date, four main 

types of polymerization initiating technology are available, namely halogen bulbs, plasma 

arc lamps, argon ion lasers and LED.  
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1.4.1 The quartz-tungsten halogen bulb 

 

Quartz tungsten halogen (QTH) lamps have been used in dentistry for several 

decades despite their remarkably low efficiency due to the relatively large heat generation 

(Strydon, 2005). Furthermore, as halogen bulbs operate with a hot filament, high 

operating temperatures due to long cure times limits the lifespan of the bulb to 

approximately 100 h with consecutive degradation of the bulb, reflector and band-pass 

filters which are used to limit the emission range to the absorption range of 

camphoroquinone (370-550 nm) (Neumann et al., 2005; Krämer et al., 2008). Recently, 

one high power QTH light has been developed which uses a 340 Watt bulb producing up 

to 3000 mW/cm
2
 and has a water-cooling system incorporated within the lamp housing to 

prevent the unit overheating and to limit the degradation of the bulb. The latter problem 

reduces the curing efficiency of the unit over time (Uhl et al., 2006). Typically for such 

lights, 5% of the total energy is visible light, 12% is heat, and 80% is light emitted in the 

infra-red region (Mills et al., 2002; Burgess et al., 2002).  

 

1.4.2 Plasma-arc lamps 

 

The reduction of curing time, which may have financial implications for a dentist, 

motivated researchers to find an alternative. This led to the introduction of plasma arc 

lamps (PAC) which emit at higher intensities (Rueggeberg, 1999). The emission of light 

occurs through the glowing plasma, which is composed of gaseous mixtures of ionized 

molecules such as xenon molecules and electrons. In comparison to QTH lamps, the 

spectral emission range is comparable but have a higher intensity focused centrally 

around 470nm (the maximum absorption wavelength of camphoroquinone).  
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1.4.3 Argon ion-lasers 

 

Argon-ion laser technology has also been used which emit blue-green light of 

activated argon ions in selected wavelengths (between 450 and 500 nm) (Meniga et al., 

1997). When compared to QTH lights, argon lasers show improved conversion rates and 

polymerization depths (Fleming and Maillet, 1999). Although these showed improved 

physical properties compared to conventional QTH systems, heat generation during 

polymerization combined with considerably high initial shrinkage stresses have been 

reported to be problematic (Christensen et al., 1999; Strydom, 2005). Furthermore, when 

compared to QTH lights, argon lasers show improved conversion rates and 

polymerization depths (Fleming and Maillet, 1999). However, these lights remain 

expensive due to the narrowness of the beam and their only interesting feature over other 

lights is their very low light dispersion over a distance (Krämer et al., 2008).  

 

1.4.4 Light emitting diodes 

 

Solid state light emitting diodes (LED) were later introduced as an attempt to 

solve the problems associated with conventional halogen lights as describe earlier. The 

efficiency of these lights was greatly improved as the power consumption was 

significantly lower. Light is generated through junctions of doped semiconductors (p-n 

junctions). In gallium nitride LEDs under forward biased conditions, electrons and holes 

recombine at the LED‟s p-n junction leading to the generation of blue light which is 

collimated through a polymer lens. The light emitted covers the maximum absorption 

range of camphoroquinone despite its lower bandwidth (440-500 nm) so no filters are 

needed (Nakamura et al., 1994). Despite the lower bandwidth, higher intensity light is 

produced by such LEDs and consequently higher photo polymerization efficiency has 

been reported (Neumann et al., 2006). Additionally, the advantages include a greater 

lifespan as LED lamps with a lifetime of several thousands of hours without a significant 

loss in intensity. Fifteen percent of the total energy produced is light energy and the 

remaining eighty five percent is emitted as heat energy, although the heat produced is in 

the opposite direction to the curing tip (Mills et al., 2002).   



29 

Over the last decade, LED technology has changed significantly with the 

development of recent “generations” of high power LEDs comparable to advances in 

high tech computer technology. The first generation LED lights were unable to compete 

with conventional halogen technology despite their greater efficiency. This was due to 

the lower power density, which forced manufacturers to build complicated arrangements 

of ten to fifteen diodes into one lamp (Burgess et al., 2002; Hofmann et al., 2002). 

Despite the higher intensity, the expectations toward a possible reduction in curing times 

with first generation LEDs could not be confirmed (Besnault et al., 2003). 

Second generation LEDs (or power LEDs) were later developed which were 

capable of delivering rather high outputs (>1500 mW/cm
2
) with one single diode. These 

where shown to produce material properties of polymers which where comparable to 

QTH lights (Soh et al., 2004; Shortall, 2005) and the potential for reduced curing time 

without loss of material properties was recognized (Yap and Soh, 2005; Schattenberg et 

al., 2008). However, maximum light intensities were limited to approximately 2000 

mW/cm
2
 as the heat generation created clinical concerns regarding gingival and pulpal 

tissue damage caused by the so called photodynamic effect and therefore the 

reappearance of cooling devices occurred (Krämer et al., 2008).  

More recently, the introduction of new photoinitiators created compatibility issues 

with narrow band LED light, which brought about the development of third generation 

(or poly-wave) LED lights (Price and Felix, 2009). This generation of LED lights 

comprises of two peaks, one in the visible region and one covering the shorter 

wavelength UV-Vis region. The use of such LED lights allows effective overlap of the 

emission spectra of the lights with the absorption spectra of other photoinitaitors such as 

Lucirin TPO, Iragcure and phenyl propanedione (PPD), which absorb at shorter 

wavelengths, as well as the most commonly used initiator, camphoroquinone (Neumann 

et al., 2005; Neumann et al., 2006). 
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1.4.5 The importance of spectral emission/absorption overlap 

 

For light curing units to be clinically relevant, they must adequately excite 

photoinitiators (Section 1.1.7). The type of curing light is important as the spectral 

emission varies (Figure 1.4.1) and consequently the absorption-emission overlap is 

affected. Although most dental light curing units are designed to provide maximum 

efficiency with camphoroquinone, it becomes problematic when manufacturers of RBCs 

incorporate alternative photoinitiators into materials which may cause a spectrum mis-

match when first and second generation LEDs or even some halogen and argon-laser 

lights are used (Price and Felix, 2009). To obtain maximum polymerisation efficiencies, 

an appropriate selection of light curing unit must be considered which will be compatible 

with the photoinitiator system (Neumann et al., 2006).  

 

Figure 1.4.1: Schematic representation of the spectral irradiance of the different 

types of light curing units. (Modified from Price et al., 2010) 
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1.4.6 The use of alternative curing protocols to reduce shrinkage 

stress 

 

Several curing protocols have been developed in order to address the problem of 

polymerisation shrinkage and its associated stress. Such techniques include, step curing, 

soft start and pulse-delay methods which have shown to improve conversion, material 

properties and marginal quality through the reduction in internal stresses (Sakaguchi and 

Berge, 1998; Hofmann et al., 2002). 

The first attempt to reduce initial shrinkage stress was by the step curing method, 

which initiates polymerisation initially at 100 mW/cm
2
 for 10s followed consecutively by 

a higher intensity dose (700 mW/cm
2
). This technique may extend the pre-gel phase, 

whereby any developing stress can be alleviated through composites flow. After the gel-

point, flow ceases and developing stresses cannot be compensated for. Although initial 

results indicated lower polymerisation stresses than conventional halogen lights, 

improved marginal adaption has not been reported (Muangmingsuk et al., 2003).  

The soft start method is based on similar principles to the step curing method. 

However, the increase from low intensity (100 mW/cm
2
) to higher intensity (800 

mW/cm
2
) occurs exponentially. However, the use of such a technique has not been 

unanimously clarified, although researchers have reported a reduction in stress, improved 

marginal quality of RBC restorations has not been proven in vivo (Krämer et al., 2008).  

Pulse activated polymerisation methods use short impulses of high intensity 

irradiations. For example, ten pulses for at two seconds at 750 mW/cm
2
 exposes the 

material to a total of twenty seconds of irradiation. The short pulses may extend the pre-

gel phase and allow flow of the composite, which may alleviate stress. Pulse-delay 

methods have also been introduced, which initially irradiates the restoration with short 

pulses of light energy (pre-polymerisation at low intensity, e.g. 2 seconds or 20 seconds 

at 100 mW/cm
2
). After a short waiting period of about three minutes, the final 

polymerisation is carried out for 30 seconds at high intensity. However this method 

remains controversial due to the low degree of conversion at the base of the cavity and 

furthermore no significant advantages have been reported (Yap et al., 2002). 
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1.5 The Exposure Reciprocity Law 

 

The introduction of high powered curing lights allows the reduction in curing time 

with the advantage of minimised chair side procedure time, which has financial 

implications (Christensen, 2000). Furthermore, a reduced curing time seems attractive to 

a patient, who are understandably reluctant to keep their mouth open for a long time. 

Curing time can be reduced by optimizing the spectral overlap between the light 

curing unit and the photoinitiator to increase the number of absorbed photons, however 

the general trend amongst manufacturers of light curing units has been to produce lights 

with increased irradiance with the assumption that curing time can be reduced 

proportionally (Burgess et al., 2002; Hofmann et al., 2002; Yap and Soh, 2005; 

Schattenberg et al., 2008). This is primarily based on the assumption that the degree of 

conversion and mechanical properties of photoactive materials are dependent upon the 

total energy of the irradiation, i.e. radiant exposure (J/cm
2
), the product of irradiance (I, 

mW/cm
2
) and irradiation time (t, s; Equation 1.5.1).  

 

It = constant         Equation 1.5.1 

            

The concept of total energy has been used extensively in other fields including 

photography and radiography and more recently has been applied to photo-active dental 

materials (Morgan, 1944; Halvorson et al., 2002; Peutzfeldt and Asmussen, 2005). The 

idea of total energy originated from the work of Robert Bunsen and Henry Roscoe, who 

in 1859 reported that all photochemical reactions are dependent upon the total absorbed 

energy and is independent of irradiance and time. However, failures were observed and a 

modification in the law was proposed by Scharzchild in 1900 (Equation 1.5.2): 

 

I
P
t = constant         Equation 1.5.2 

 

where p is the Schwarzchild coefficient that he believed was a constant, which was latter 

shown to vary from material to material and in some cases with a change in irradiance. In 

2003 it was concluded that the law proposed by Schwarzchild adequately modeled the 
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photo-response of a wide range of materials as a function of irradiance, as p lies between 

0.5 and 1.0 for 97% of materials where the latter corresponds to complete conformity to 

exposure reciprocity (Martin et al., 2003).  

In photo-active dental materials, the total energy principle promotes the common 

assumption that varying combination of curing irradiance and exposure time provides 

similar material properties for the same radiant exposure, irrespective of how radiant 

exposure is obtained (by different combinations of irradiance and time). This is the 

principle known as the “exposure reciprocity law”. This law has been tested with regards 

to several properties such as degree of conversion, flexural strength, flexural modulus, 

hardness and depth of cure (Feng and Suh, 2007) and in some cases the law holds quite 

well with regards to modulus (Sakaguchi and Ferracane, 2001), degree of conversion 

(Halvorson et al., 2002; Emami and Söderholm, 2003) and hardness (Price et al., 2004), 

whilst clearly in others it does not for similar outcomes (Peutzfeldt and Asmussen, 2005; 

Asmussen and Peutzfeldt, 2005; Feng and Suh, 2007). Although radiant exposure plays 

an important role, irradiance and time independently influences polymer chain length, 

extent of cross linking and mechanical properties and deviations from the law are 

reported. The investigation by Musanje and Darvell (2003) is of particular interest, as 

they tested highly filled commercial materials and their work highlighted the importance 

of particular composition and reactivity. Out of the four products tested at different 

combinations of irradiance and time, only one satisfied reciprocity with regards to 

flexural strength, modulus and total energy to failure. Additionally, a recent study by 

Feng and Suh (2009) also highlighted the inferior properties of some resin based 

composites and adhesives when cured for short exposure times at high irradiance and the 

same group earlier reported the importance of resin viscosity on degree of conversion and 

the validity of exposure reciprocity law (Feng and Suh, 2007). Other studies have also 

highlighted the inferior properties of lower viscosity systems, i.e. dentin bonding agents, 

compared with higher viscosity resin composites when using high power light curing 

units when compared to other lights (D‟alphino et al., 2007).  

The efficiency of the photoinitiators are dependent upon their absorption 

characteristics (Neumann et al., 2005) and the compatibility with the light curing unit 

(Section 1.4.5), which will determine the amount of free radicals created (Neumann et al., 
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2006). As degree of conversion is directly related to the efficiency of the photoinitiator 

system (Emami and Soderholm, 2003; Ogunyinka et al., 2007;) and the amount of light 

absorbed by the photoinitiator, it should be expected that reciprocity should hold at a 

similar radiant exposure as the same total amount of efficient radicals are created by 

different irradiation protocols (Chen et al., 2007). However, at very high irradiance, 

photoinitiators with very low extinction coefficients i.e. camphoroquinone (~ 35 L.mol
-

1
.cm

-1
), the photoinitiator system may become saturated resulting in no improvement in 

the initiation rate (Musanje and Darvell, 2003) and thus failures in the law may occur. 

The introduction of high powered lights and other photoinitiators may allow the 

possibility of reduced curing time with increased irradiance although to date there is no 

real consensus on an adequate radiant exposure to produce sufficient polymerization, 

with radiant exposures ranging from 16-24 J/cm
2
 (Rueggeberg et al., 1993; Koran and 

Kurschner 1998; Vandewalle et al., 2004) where the latter is usually considered a 

standard for less than 2 mm increments cured with a halogen lamp. As mentioned earlier, 

the combination of irradiance and time at the same radiant exposure will independently 

influence polymer chain length, extent of cross linking and mechanical properties. 

Peutzfeldt and Asmussen (2005) concluded that increasing radiant exposure increases the 

degree of conversion, flexural strength and flexural modulus.  Furthermore, the same 

study also showed the trend of decreasing degree of conversion with high irradiance and 

short time irradiation protocols for each radiant exposure whilst maximum flexural 

strength and modulus occurred at an intermediate irradiance (Peutzfeldt and Asmussen, 

2005). With high irradiance and short time irradiation protocols, degree of conversion 

and the kinetic chain length may decrease and the frequency of cross-linking increase, 

which may explain the parabolic relationship between irradiance, flexural strength and 

flexural modulus. Dewaele et al. (2009) suggested that degree of conversion, elastic 

modulus and gT  of a light curing polymer-based material are mainly and positively 

influenced by radiant exposure, whilst a negative correlation exists with respect to 

irradiance. Leprince et al. (2010) reported the impact of irradiation mode on the radical 

entrapment in photoactive resins. When similar radiant exposure were compared, higher 

concentrations of trapped free radicals were measured for longer times at lower 

irradiance. The authors suggested that since the premature termination of free radicals is 
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proportional to their squared concentration, which is higher for high irradiance protocols, 

early termination of free radicals would result in a lower degree of conversion. 

Furthermore, the concentration of trapped free radicals would also be influenced by the 

composition of the reaction medium as polymerisation leads to highly cross-linked 

networks where mobility restrictions would favour monomolecular termination (Section 

1.2.1; Andrzekewska, 2001). Thus it is clear that the validity of exposure reciprocity law 

is complex and several factors will influence whether the law is upheld. 

 

1.6 Optical and Physical Properties of Resin Based Composites 

 

The electromagnetic spectrum consists of photons of varying wavelengths and 

energy (Figure 1.6.1). The interaction of matter with photons in the ultraviolet and visible 

regions of the electromagnetic spectrum is known as UV-Vis spectroscopy, whereas the 

spectroscopy of photons in the infra-red region is known as infra-red spectroscopy.  

Spectroscopy is the study of the interaction between radiation or light with matter as a 

function of wavelength, which can be used to assess the amount of a given substance or 

for the identification of a substance. Ultraviolet-visible (UV-Vis) spectroscopy has been 

used to calculate the quantum yield of conversion of photoinitiators in RBCs (Chen et al., 

2007). Degree of conversion of the monomers used in RBCs has been analysed using 

mid- and near infra-red (MIR, NIR) spectroscopy (Antonucci and Toth, 1983; Ferracane 

and Greener, 1984; Urabe et al., 1991; Stansbury and Dickens, 2001). 
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Figure 1.6.1: The electromagnetic spectrum and the associated wavelength and 

energies. (Adopted from www.antonine-education.co.uk, 10/12/2010) 

 

1.6.1 Degree of conversion 

 

The degree of conversion is an important property to characterise as it ultimately 

relates to physical and mechanical properties of RBCs. Conversion occurs as carbon 

double bonds of monomers are converted to extended networks of carbon single bonds 

(Section 1.2). Although it is expected that dramatic changes in mechanical and physical 

properties will occur when an RBC converts from a liquid to a solid, at higher conversion 

however, relatively small changes in conversion will also dramatically improve some 

polymer properties as they are primarily affected by the cross linking density of the 

network. Vitrification of the polymer network consequently limits the degree of 

conversion of RBC in the range of 55-75% (Ruyter and Øysæd, 1987; Ferracane, 1995) 

and the extent of polymerisation is also affected by other factors such as, composition, 

specimen geometry, photoinitiator chemistry, irradiation protocol, temperature and the 

presence of oxygen. Although the majority of the conversion takes places during 

irradiation, conversion of RBCs typically evolves for 24h post irradiation, with a 
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logarithmically related decline in „post cure‟ (Vankerckhoven et al., 1982; Kildal and 

Ruyter, 1994; Truffier-Boutry et al., 2006).  

Several analytical techniques have been used to assess the degree of conversion in 

RBC materials, amongst which a temperature based differential scanning calorimetry 

(DSC) and infra-red spectroscopy are the most common (Antonucci and Toth, 1983; 

Ferracane and Greener, 1984; Urabe et al., 1991; Stansbury and Dickens, 2001).  

 

1.6.1.1 Fourier transform infra-red spectroscopy 

 

Infra-red (IR) spectroscopy techniques are mainly based on absorption 

spectroscopy in the IR region of the electromagnetic spectrum (Figure 1.6.1) and is 

divided into three main regions; the near-, mid- and far- IR according to their relation to 

the visible spectrum. The absorption at specific frequencies is characteristic of chemical 

structure and can be used to identify and quantify specific functional groups in a 

molecule.  

Fourier transform infra-red (FT-IR) spectroscopy has evolved as a technique 

which is used to obtain the IR spectrum of absorption, emission, photoconductivity or 

Raman scattering of a solid, liquid or gas, and is capable of simultaneously acquiring 

spectral data in a wide spectral range. The name „Fourier transform‟ simply means a 

mathematical algorithm, which is used to convert the raw data into the actual spectrum. 

The spectrometer is based on a Michelson interferometer (Section 1.6.3.1), where light 

from a polychromatic IR source is collimated and directed to a beam splitter. The light is 

then split equally onto a fixed mirror and a moving mirror, which is then reflected back to 

the beam splitter. Ideally, fifty percent of this light is passed into the sample 

compartment, which is then focused through the sample onto a detector. An 

interferogram is produced by creating a „time-delay‟ with the moving mirror and 

recording the signal at various points. This is then computed and the Fourier transform is 

applied by a computer programme to obtain the IR spectrum. 

In RBCs, IR spectroscopy directly measures the conversion as a function of the 

un-reacted methacrylate groups. Several methods within this analytical technique exist, 

which utilise a transmission method (Ruyter and Györösi, 1976), a multiple internal 
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reflection method (Ruyter and Svendsen, 1978), and an absorption method (Stansbury 

and Dickens, 2001). The transmission method and the multiple internal reflection 

methods measure the decrease in the intensity of the carbon double bond stretching mode 

at 1637cm
-1

 as the methacrylate monomer is converted into polymer. However, these 

methods require reference bands that are stable during polymerisation which are typically 

based on aromatic groups of Bis-GMA (1608cm
-1

 or 1583cm
-1

) or the N-H or C=O 

groups of urethane monomers. Conversion for a Bis-GMA/TEGDMA system is then 

calculated from the intensity at each band respectively (Equation 1.6.1): 

 

   Equation 1.6.1 

 

Conversion has been characterised by FT-IR using other methods, namely 

potassium bromide (KBr) pellets for bulk conversion and Raman spectroscopy, which 

involves scattering rather than absorption (Stansbury and Dickens, 2001). However, most 

of these techniques are limited by the fact that only the conversion in thin specimens was 

possible or the sample had to be ground and destroyed to measure bulk conversion. 

Near infra-red (NIR) spectroscopy has been used in medical and pharmaceutical 

industries for the non-destructive analysis of products and over the last decade has 

evolved as a technique to measure bulk conversion in RBCs having geometries of clinical 

relevance (Burns and Ciurezak, 1992; Murray and Cowe, 1992; Stansbury and Dickens, 

2001). In RBCs, NIR monitors the absorption of the =C-H group of monomers at 

6165cm
-1

 and 4743cm
-1

 (Bis-GMA/TEGDMA) which corresponds to conversion of the 

methacrylate groups. The band at 4743cm
-1

 is not typically used to characterize 

methacrylate conversion because the sharp baseline drop near its =C-H peak makes 

reliable peak area measurement difficult. Therefore the degree of conversion at 6165cm
-1

 

is the calculated from equation 1.6.2: 

 

    Equation 1.6.2 
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It is also possible to measure the conversion of RBCs based on other monomers as 

the majority of the peaks lie between 6163 and 6167cm
-1

 (Stansbury and Dickens, 2001). 

Additionally, such measurements do not require the presence of an internal reference 

peak and the non-destructive nature allows real-time measurement of conversion by the 

continuous measurement of the change in absorbance of the =C-H group. It is also then 

possible to interrogate curing kinetics, such as autoacceleration, rate maximum and time 

to reach maximum rates of polymerisation 

 

1.6.1.2 An alternative to infra-red spectroscopy 

 

Differential scanning calorimetry (DSC) provides a measure of the methacrylate 

conversion based on the enthalpy of the exothermic polymerisation reaction. This 

thermo-analytical technique uses the amount of heat required to increase the temperature 

of a sample and a reference as a function of temperature. The technique was originally 

developed by Watson and O‟Neil (1960) and then later became commercially available. 

It is now used in a variety of applications including the measurement of polymerisation in 

dental polymers (Lee et al., 2004; Tanimoto et al., 2005).  

The underlying principle of this technique is that when a sample undergoes a 

physical transformation from one phase to another, more or less heat will need to flow to 

it than the reference to maintain both of them at the same temperature. For example, 

when ice melts, it will require more heat flowing to the sample to increase the 

temperature at the same rate as the reference. This is an endothermic process in which 

heat is absorbed by the sample to undergo its phase transition. Conversely with RBCs, an 

exothermic polymerisation process (due to the conversion of the carbon double bonds to 

single bonds and photoinitator decomposition) will require less heat to raise the sample 

temperature. Thus, by observing the heat flow between the sample and reference, it is 

possible to measure the amount of heat absorbed and released during phase transitions. 

By assuming the heat produced during the polymerisation is proportional to the number 

of monomer units converted under isothermal conditions, it is possible to determine the 

degree of conversion and kinetics of polymerisation (Tanimoto et al., 2005). 
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Differential Thermal Analysis (DTA) has been shown to be a reliable method for 

measuring the conversion of dental composites (McCabe 1985; Imazato et al. 2001). 

Other methods to measure temperature change during polymerisation have also been 

employed. Some methods are based on thermocouples and others are based on 

thermistors (Shortall and Harrington, 1998). Although polymerisation temperatures can 

be measured, several limitations exist. Firstly, the non-isothermal conditions prevent 

reaction kinetics from being determined and secondly the positioning of the temperature 

sensors (on the material surface or embedded within its bulk) and the volume of the test 

sample will dictate how much heat is registered. For this reason it seems DSC is more 

reliable, but thermocouple and thermistor based methods remain adequate for simple 

temperature measurements during polymerisation of RBCs. 

 

1.6.2 Light transport through photocurable resins 

 

The transmission of light and number of photons absorbed by the photoinitiator is 

critically important to the extent of polymerisation and is a desired parameter to fully 

characterise since it ultimately relates to the final mechanical and physical properties of 

the polymer. Inefficient light transmission and limited cure depths are associated with 

surface reflection (Harrington and Wilson, 1995; Watts and Cash, 1994), absorption 

(Chen et al., 2007; Ogunyinka et al., 2007), scattering by filler particles (Enami et al., 

2005; dos Santos et al., 2008) and interfacial filler/resin refraction (Shortall et al., 2008). 

Upon irradiation, the photoinitiator will decompose (Section 1.1.7) and reduce its 

concentration. Polymerisation shrinkage of the curing resin (Section 1.2.2) will reduce 

the optical path length with the outcome of increased light transmission through the 

sample according to Beer-Lamberts law (Equation 1.6.3). 
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        Equation 1.6.3 

       

where, A is the absorbance, l is the optical path length, C and ε are the concentration and 

molar extinction coefficient of the absorbing species (i.e. the photoinitiator) and I and 
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0I are the light transmission and initial light transmission, respectively. Interestingly, 

varying patterns of light transmission in RBCs have been reported even using the same 

method. Harrington et al. (1996) developed a method based on a photo-diode which 

allowed the actual consumption of light energy by the activator to be demonstrated and 

reported an increasing light intensity with radiation time for most commercial 

composites. Using the same technique, Ogunyinka et al. (2007) reported decreasing 

transmission during polymerisation of experimental composite formulations. Then, 

Shortall et al. (2008) described the effect of monomer and filler composition on light 

transmission and reported that the refractive index mis-match between the filler and resin 

will affect its light transmission profile where maximum transmission was observed when 

the refractive index of the resin and filler are equal. This underlines the complexity of the 

optical properties of RBC materials when cured at depths as problems associated with 

attenuation and inherently non-uniform curing rates profiles exist which will inevitably 

affect the extent of monomer conversion. 

 

1.6.3 Refractive index 

 

As the resin matrix (typically, co-monomer mixtures of Bis-GMA and TEGDMA; 

Section 1.1.3) cures, its optical properties change and refractive index rises due to a rapid 

increase in cross-link density and viscosity. As the refractive index of the resin 

approaches that of the filler, interfacial filler/resin scattering is reduced and light 

transmission is increased (Shortall et al., 2008). The refractive index (n) of a medium at 

optical wavelengths is defined as the ratio of phase velocity of light in a vacuum (c) to 

the phase velocity ( p), in a given medium (Shoemaker et al., 1989) and the velocity at 

which it propagates is wavelength dependent (Equation 1.6.4).  

 

p

c
n




         Equation 1.6.4 

 

When light passes through the interfaces of two media, it is accompanied a 

change in velocity and a directional change. Hence the refractive index can also be 
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calculated by calculating the ratio of the sine of the angle of incidence to the sine of the 

angle of refraction (Figure 1.6.2). 

 

Figure 1.6.2: Schematic representation of the refraction of radiation through two 

media and the refractive index. 

 

The relationship between the phase velocity in two media ( 1 and  2) the angle of 

incidence (θ1) and refraction (θ2) and the refractive index of the two media (n1 and n2) 

can be predicted by Snell‟s law (Equation 1.6.3): 
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        Equation 1.6.3 

 

The most commonly employed technique to measure refractive index uses an 

Abbé refractometer. The refractive index is measured at the standard yellow Fraunhofer 

line of sodium (589nm) at 20 ºC (nD20) and is wavelength and temperature dependent. 

The measurement is based on observing the boundary line of the total reflection and 

measuring the angle of refraction.  It is then possible to determine the refractive index of 

an unknown sample according to Snell‟s law if the index of refraction of the layer that is 

in contact with the sample is known.  

Angle of incidence, θ1 

 

Angle of 

refraction, θ2 Index of refraction, n2 

n1 sine θ1 = n2 sine θ2  
 



43 

1.6.3.1 Contribution of low coherence interferometry 

 

Characterising the optical and physical properties of RBCs remains an important 

aspect in the development of restorative materials. Static and theoretical measurements of 

refractive index are well established for dental polymers (Shortall et al., 2008; Lehtinen 

et al., 2008). Additionally, polymerisation shrinkage of dental composites has been 

assessed by several methods amongst which dilatotometry (Archimedes principle) (de 

Gee and Davidson, 1981) and the bonded disc method (Watts and Cash, 1991) are the 

most commonly employed although devices based on laser interferometry and optical 

magnifiers are available (Fogleman et al., 2002; Demoli et al., 2004; Arenas et al., 2007).  

Low coherence interferometry (LCI) is an optical technique which has been 

applied to several fields related to industrial surface metrology, biological analysis, 

medical systems and more recently has been applied in the physical and optical 

characterisation of dental polymers to obtain thickness and topography (Tomlins et al., 

2007; Morel and Torga, 2009). It is well suited to such applications as there is no direct 

contact between the sample and the fiber output and the possibility of measuring samples 

at high temperatures exists. In RBC materials, the ability to measure refractive index and 

thickness change simultaneously during curing photoactive resins may allow for the 

design of composite formulations which exhibit optimum evolution of translucency (as 

the refractive index of the curing resin approaches that of the filler) and enable precise 

control of aesthetic quality and light transmission through material bulk to cure at depths. 

A „coherence grating‟ provides precise axial positioning of an object in the 

direction of light propagation and therefore it is possible to obtain micron range 

accuracies. Information on finite volume and structural information as a function of depth 

may be obtained by focusing the light to obtain good transverse resolution (perpendicular 

to the optical beam) so that backscattered light is coupled back into the interferometer. 

This then mixes with a reference beam to form interference fringes, which is then 

detected by a photo-detector.  

The most commonly used interferometer is the Michelson interferometer and was 

invented by Albert Abraham Michelson. The interferometer consists of two highly 

polished mirrors, a half silvered mirror and a monochromatic light source. The half 
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silvered mirror is partially reflective and therefore the beam can be transmitted in one 

direction and reflected in another. The principal is that when a beam of light coming from 

a monochromatic light source is incident on a half silvered glass plate, it is divided into 

equal intensities by partial reflection and transmission, i.e. both beams are coherent. Then 

if the two paths differ by a whole number, i.e by a moving mirror, there is constructive 

interefernce. Subsequently, when both beams recombine at the half silvered mirror, it 

produces the interference fringes that is detected at the detector (Figure 1.6.3)  

Figure 1.6.3: Schematic representation of a Michelson Interferometer

Half silvered 
mirror

Polished 
stationary mirror

Polished moving 
mirror

Detector

Broadband light 
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1.6.4 Colour 

 

The matching of restorative materials to natural teeth is complicated as the human 

perception of colour varies according to differences in illuminant, background colour, 

positioning, translucency and human eye fatigue (van der Burgt et al., 1990; Dagg et al., 

2004; Joiner, 2004). Additionally, moisture, skin tone and the surface characteristics of 

the restoration, i.e. gloss matt and roughness, further complicates matters. As described 

earlier (Section 1.1.1) the ability of RBCs to mimic tooth structure is one of its greatest 

assets and therefore a standardized method of quantifying any colour change is essential 

for a restoration to be aesthetically acceptable.  

The composition within the RBC determines its ability to colour match to natural 

teeth, i.e the photoinitiator and pigments and dyes. One of the greatest problems 

associated with the use of pigmented photoinitaitors such as camphoroquinone is the 

presence of a partly unbleachable chrompore group (Jakubiak et al., 2003), which reduces 

its compatability in bleach shade composites. Additionally, such photoinitaitors are 

typically used with amine photo-sensitizers which are also known to produce coloured 

reaction by products (Asmussen, 1985). This ultimately limits the concentration of 

champhoroquinone/amine that can be incorporated in to RBCs with concentrations 

ranging from 0.17 mass percentage to 1.03 mass percentage (Taira et al., 1988). 

Moreover, colour matching is further complicated by the fact that photoinitaitors 

decompose during irradiation with a subsequent loss of colour. However, the use of 

alternative photoinitaitors (Section 1.1.7.2) which absorb short wavelength visible light 

may show improved aesthetics and better colour matching properties particularly with 

bleach shade composites.  

Clinically, during colour matching, RBC colour is quantified by the use of shade 

guides (van der Burgt et al., 1990) but remains subjective and operator sensitive. The 

same operator may even visualize the same colour differently at different times (Okubo et 

al., 1998). Despite many inherent disadvantages associated with visual matching, it 

remains the most common method for determining tooth colour and shade matching due 

to its cost effectiveness over instrumental colour measurement devices (Brewer et al., 

2004). 
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1.6.4.1 Colorimetric spectrometry 

 

The colour of RBCs relates to optical properties of opacity and translucency and 

may be measured using a colorimeter or spectrophotometer. The sample under test is 

irradiated with light, which is transmitted, reflected, refracted and diffused through the 

sample (van der Burgt et al., 1990). The reflectance pattern is then measured which is 

unique (fingerprint) for each colour and therefore can be numerically quantified. 

Although such measurements are more reliable than visual assessment, its accuracy is 

limited due to the translucent nature of tooth structure and the occurrence of edge loss, in 

which tooth structure may be affected by background colour (Seghi et al., 1990; Bolt et 

al., 1994; Brewer et al., 2004). Spectrophotometers are typically considered to be more 

accurate than colorimeters, however recent advances in modern colorimeters have greatly 

improved their reliability (Seghi, 1990). 

For accuracy, such measurements are usually made with standard illuminants 

such as D65, which corresponds to average daylight conditions and illuminant A which 

represents incandescent lighting based on typical domestic tungsten filaments. The 

illuminant is irradiated onto the test specimen at a specific orientation (45
○
 for dental 

materials) and the reflected light is then captured and analysed, the spectrum of which 

represents the materials colour. However, as colour is not static and differs with 

illuminant and viewing orientations, the Commission Internationale de l‟Eclairage (CIE) 

have recommended four illuminating/viewing configurations to be used for materials  

with diffuse reflecting surfaces such as RBCs (Seghi, 1990) (Figure 1.6.4). 
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Figure 1.6.4: The illuminating/viewing configurations as recommended by CIE for 

materials with diffuse reflecting surfaces. (a) and (b) are illuminated by a standard 

illuminant and detected at 45○
. (c) and (d) are illuminated by a standard illuminant 

and detected at 0○.  

 

The CIE L*a*b* (CIELAB) measuring system is the most frequently used 

numerical quantification system of colour (Stober et al., 2001; Guler et al., 2005; Lee and 

Powers, 2005). L*, a* and b* refer to the three coordinates which are taken during the 

measurement, where L refers to white (L=100) or black (L=0), a* measures the green 

(negative value) and red (positive value) spectrum, and b* measures the blue (positive 

value) and yellow (negative value) spectrum according to CIE (1976).  

As mentioned above, the photoinitator decomposition and translucency changes 

during cure will affect the final colour of the material. It is possible to determine the 

colour change ( E ) of RBCs if the CIE L*a*b* co-ordinates are measured before and 

after cure using Equation 1.6.4. 
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where the subscript numbers 1 and 2 represent before and after cure, respectively for each 

co-ordinate. Subsequently, the acceptability of differences in colour change is a matter of 

debate in dental literature (Jonston and Kao; 1989; Guler et al., 2005; Lee and Powers, 

2005) whereby some authors suggest that a E  value less than 3.3-3.7 is clinically 

acceptable (Johnston and Kao, 1989; Lee and Powers, 2005) and some suggest a E  

value less than 5.4 is clinically acceptable (Cook and Chong, 1985) for RBCs. This value 

is lower for resins and a value not exceeding 2 is considered acceptable (Ferracane et al., 

1985). Such differences are presumably due to the many factors affecting the perception 

of colour, which underlines the necessity to quantify and measure colour change to 

improve clinical acceptability. 

 

1.7 Summary 

 

Since the introduction of RBCs in the 1960‟s (Bowen, 1962) there have been 

significant developments, which continue to improve both mechanical and physical 

properties, with the ultimate goal of improved clinical longevity. Although RBCs are 

becoming ever popular with increasing clinical indications, many inherent limitations 

remain, which limits their application. Polymerisation shrinkage (Davidson and Feilzer, 

1997) and limited cure depths (Fan et al., 2002) of RBCs remain major drawbacks when 

compared to amalgam fillings. Much research has been conducted in order to try and 

improve the setting reaction through improved technology and chemistry, but 

polymerization shrinkage and limited depth of cure remain major concerns of clinicians 

when using RBCs.   
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1.7.1 Aims of the present investigation 

 

The kinetics of polymerisation is complex and is dependent upon several factors 

including monomer composition (Feng and Suh, 2007), photoinitiator chemistry (Emami 

and Soderholm, 2005; Ogunyinka et al., 2007), filler content and irradiation protocol 

(Musanje and Darvell, 2003; Asmussen and Peutzfeldt, 2005) which all affect the setting 

reaction. The application of the so-called “exposure reciprocity law” seems an interesting 

approach to control polymerization kinetics and polymer properties. Consequently, to 

better understand polymerization kinetics, the associated setting reaction and the 

applicability of the exposure reciprocity law, Chapter 2 aims to investigate anomalies of 

the law in high viscosity commercial materials and their low viscosity counterparts 

(Section 2.1). However, the analysis of commercial materials remains limited due to the 

fact that manufacturers typically do not divulge the exact composition of RBCs, and thus 

the investigation of the exposure reciprocity law and the setting reaction in experimental 

materials for further understanding will also be conducted (Section 2.2). Additionally, the 

chemistry of the photoinitiator (i.e. the type and concentration) will play a remarkable 

role in the kinetics of polymerization and the setting reaction and therefore the impact of 

photoinitiator type in filled and unfilled photoactive resins on the exposure reciprocity 

law will also be investigated (Section 2.3).  

Additionally, as the optical properties of RBC are not well understood, Chapter 3 

aims to improve the understanding of such properties within RBCs. The composition of 

the RBC, i.e. photoinitiator, pigments/dyes, resin matrix and filler fundamentally control 

any optical change during cure. The photoinitiator is the primary absorber of light and its 

efficiency is dependent upon its absorption characteristics and will ultimately affect 

reaction kinetics. However, the use of other photoinitaitors such as Lucirin TPO are 

increasing in popularity mainly due to aesthetic benefits, therefore to better understand 

the use of Lucirin TPO in RBCs, the absorption characteristics of Lucirin TPO will also 

be investigated with regards to conversion, kinetics, physical properties and its potential 

for improved aesthetics (Section 3.1).  

Limited cure depths are primarily associated with inefficient light transmission at 

depth. Optical change is mainly governed by Beer-lamberts law, however, this is 
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complicated by the fact that there is a complex interaction between photoinitiator 

decomposition, shrinkage due to monomer conversion and an increase in refractive index 

due to increase in density by cross linking of polymer chains.  As the monomer cures, the 

refractive index increases and maximum light transmission is expected at the point where 

refractive index of the monomer matches that of the filler (Shortall et al., 2008). 

However, the change in refractive index is dependent upon the resin matrix composition 

and is not well understood dynamically. Therefore to better understand dynamic changes 

in refractive index the simultaneous dynamic monitoring of refractive index change 

through and physical thickness change of photo-active resins will be demonstrated using 

a novel bespoke low coherence interferometer (Section 3.2) with the goal of a better 

understanding of optical and physical properties. Additionally the affect of shrinkage 

strain on light transmission will also be investigated (Section 3.3), with the aim of 

improving the setting reaction through better understanding of light transmission during 

light curing of various specimen geometries 
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2.0 Polymerisation Kinetics of Resin Based Composites 

 

Resin based composites (RBCs) have become the material of choice in restorative 

dentistry for the direct restoration of damaged teeth. Although the materials have been 

significantly improved since their introduction several decades ago, several limitations 

remain. Most notably, inadequate cure depth and polymerisation shrinkage continue to be 

of primary concern to clinicians. From a material development viewpoint, such problems 

have been addressed by investigating various material aspects such as inorganic filler 

morphology and content, resin formulation and curing light technology, with some 

success. Clinically, RBCs are placed incrementally and should be cured according to 

manufacturer‟s guidelines for the material in an attempt to overcome the potential 

negative consequences of material shrinkage and inadequate cure depth. The incremental 

layering technique employed is designed to allow for adequate cure of a given increment 

and also to reduce bulk contraction stress of the composite restoration (Mackenzie et al., 

2009). However, for large restorations this can be a complex time consuming procedure 

and is undesirable both from the viewpoint of operator efficiency and patient comfort. 

Consequently, the goal of reduced chairside procedure time of large resin composite 

restorations requiring multiple increments is pursued globally. Accordingly, several 

investigators and manufacturers of light curing units support the “exposure reciprocity 

law” and claim that the radiant exposure (the product of irradiance and time) is the main 

determining factor of degree of conversion and mechanical properties of photoactive 

RBCs (Sakaguchi and Ferracane, 2001; Halvorson et al., 2002; Price et al., 2004; Emami 

et al., 2006). Consequently, due to the supposed reciprocity between irradiance and time, 

some dentists use high-power light curing units to reduce curing exposure. However, 

failures in the law are reported and it has been suggested that irradiance and time 

independently influence polymer chain length, extent of cross linking and mechanical 

properties (Musanje and Darvell, 2003; Asmussen and Peutzfeld, 2005; Peutzfeldt and 

Asmussen, 2005; Dewaele et al., 2009). Therefore, the aim of the current Chapter is to 

gain a greater insight into such failures by further investigating the physical properties of 

high intensity curing.  
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2.1 High Irradiance Curing and the Applicability of the Exposure 

Reciprocity Law in Commercial Dental Resin-Based Materials
*
 

 

2.1.1 Abstract 

 

The aim of this work was to investigate the effect of high irradiance curing on 

degree of conversion (DC) of „flowable‟ resin composites and their counterpart higher 

viscosity restorative materials. Five commercial flowable materials (Venus; Heraeus 

Kulzer, Synergy D6; Coltene, Premise; Kerr, Grandio; Voco and Gradia; GC Corp) and 

their counterpart restorative versions were tested. Specimens were cured with a halogen 

Swiss Master Light (EMS, Switzerland) at similar radiant exposures (18 J/cm
2
): 400 

mW/cm
2
 for 45 s, 900 mW/cm

2
 for 20 s, 1500 mW/cm

2
 for 12 s, 2000 mW/cm

2
 for 9 s or 

3000 mW/cm
2
 for 6 s. DC was measured in real time by Fourier transform near infrared 

spectroscopy (FT-NIRS). Two way ANOVA testing revealed significant differences 

(P<0.02) with respect to “composite type” and “cure protocol” for DC for all 5 product 

comparisons. Supplementary one-way ANOVA also revealed significant differences 

between curing protocols (P<0.05). The majority of higher viscosity resin composite 

paste materials exhibited similar DC regardless of curing protocol. However, a significant 

decrease in DC for specimens cured at 3000 mW/cm
2
 for 6 s compared with 400 

mW/cm
2
 for 45 s was observed for the flowable materials, Grandio (41  0.36 and 62  

1.15 %, respectively) and Venus (44  0.44 and 67  0.44 %, respectively). Conversely, 

other flowable materials exhibited little or no significant differences between curing 

modes. Generally, flowables showed higher DC than their counterpart, except at high 

irradiance for those materials were reciprocity failed. The validity of exposure reciprocity 

law and final DC depends on several factors, among which resin viscosity and filler 

content were important. Information on material composition and appropriate radiation 

sources by manufacturers may assist practitioners with the selection of appropriate curing 

protocols for specific material / light curing unit combinations which may reduce the 

incidence of under-cured restorations and the clinical impact thereof. 

                                                 
*
 Hadis M, Leprince JG, Leloup G, Devaux J, Shortall AC, Palin WM. High irradiance curing and 

anomalies of exposure reciprocity law in resin-based materials. Submitted to Journal of Dentistry. 
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2.1.2 Introduction 

 

 The placement of multi-increment resin composite restorations is time consuming 

and there exists a significant demand for reducing cure time to minimize chairside 

procedure and its potential financial implication (Christensen, 2000). Therefore, the use 

of high power curing light sources is commonplace since they play a crucial role in 

polymerization efficiency. Some reduction in curing time can be achieved by optimizing 

the spectral overlap between the curing unit and the photoinitiator to increase the 

efficiency of photon absorption, which has been improved in the case of camphorquinone 

initiated materials by the development of blue gallium nitride LED technology (Krämer 

et al., 2008; Jiménez-Planas et al., 2008; Santini, 2010). The general trend amongst 

curing unit manufacturers has been to produce lights with increased irradiance with the 

presumption that curing time can be reduced proportionally. This is primarily based on 

the assumption that the degree of conversion and mechanical properties of photoactive 

materials are dependent upon the total energy of the irradiation, i.e. radiant exposure (RE, 

J/cm
2
), the product of irradiance (I, mW/cm

2
) and irradiation time (t, s).  

 For photo-active dental materials, the total energy principle promotes the common 

assumption that varying combinations of curing irradiance and exposure time provide 

similar material properties at constant radiant exposure. This is the principle known as the 

“exposure reciprocity law” and holds quite well in certain cases with regards to degree of 

conversion (Halvorson et al., 2002; Emami and Söderholm, 2003), modulus (Sakaguchi 

and Ferracance, 2001) and hardness (Price et al., 2004). Other studies have reported that 

although radiant exposure plays an important role, irradiance and time independently 

influence polymer chain length, extent of crosslinking and mechanical properties, and 

consequently exposure reciprocity does not hold under all conditions (Musanje and 

Darvell, 2003; Peutzfeldt and Asmussen, 2005; Asmussen and Peutzfeldt, 2005; Feng and 

Suh, 2007; Dewaele et al., 2009).  

 The kinetics of polymerisation is complex and is dependent upon several factors 

including monomer composition (Feng and Suh, 2007), photoinitiator chemistry (Cook , 

1992; Emami and Söderholm, 2005), filler content and irradiation protocol (Asmussen 

and Peutzfeldt, 2005; Feng and Suh, 2007). For example, the investigation by Musanje 
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and Darvell (2003) on highly filled commercial materials highlighted the importance of 

particular composition and reactivity of different commercial products. They tested four 

commercial products at different combinations of irradiance and time and examined 

flexural strength modulus and total energy required for failure and reported that out of the 

four tested materials only one satisfied the exposure reciprocity law for all the properties 

considered (Musanje and Darvell, 2003). A recent study by Feng & Suh (2009) using a 

plasma-arc and a halogen curing unit suggested that some RBCs and adhesives exhibit 

inferior cure using short exposure times at high irradiance (Feng et al., 2009). The same 

group also highlighted the importance of resin viscosity on degree of conversion and the 

validity of the exposure reciprocity law (Feng and Suh, 2007). Other studies have also 

highlighted the inferior properties of lower viscosity systems (dentin bonding adhesives) 

compared to higher viscosity resin composites when using high power light curing units 

compared to other lights (D‟alphino et al., 2007). 

 Clinically, the impact of viscosity might have important consequences on the extent 

of cure of light-cured materials in dental practice. It is problematic when commercial 

materials are used where exact compositions remain unknown. Notably, commercial 

flowable materials can either be produced by reducing the filler content or increasing the 

diluent monomer, either of which may affect the setting reaction and final polymer 

conversion for high intensity curing protocols. As a result, this work aims to compare the 

efficiency of different curing protocols in terms of degree of conversion in flowable 

composite resin materials and their highly filled counterparts by testing two hypotheses:  

i) If exposure reciprocity law is upheld for the „parent‟ restorative composite 

(ie. similar degree of conversion regardless of curing protocol) then it will 

also hold for its counterpart lower viscosity, „flowable‟.   

ii) An increase in the filler content will result in a decrease in the degree of 

conversion regardless of curing mode. 
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2.1.3 Materials and Methods 

 

Five commercial resin composite materials (Venus; Heraeus Kulzer, Synergy D6; 

Coltene, Premise; Kerr, Grandio; Voco and Gradia; GC Corp) and their counterpart 

flowable versions in the A3 shade were tested for their compatibility with exposure 

reciprocity law. Table 2.1.1 describes the commercial materials and their resin matrix 

constituents. Specimens were cured with a halogen Swiss Master Light (EMS, 

Switzerland; 11 mm diameter light guide) chosen for its capability to provide a range of 

irradiance outputs and exposure times. Spectral emission was measured using a UV-Vis 

spectrometer (USB4000, Ocean Optics) calibrated with a deuterium tungsten light source 

(Mikropack DH2000-CAL, Ocean Optics, Dunedin, USA) with known spectral output in 

the UV-Vis and NIR range in accordance to NIST standards. This allowed absolute 

measurements of irradiance for the light curing unit at different irradiances. Reflective 

neutral density filters (Thorlabs, UK) were stacked to control the output of the high 

power curing light which produced a 6-fold reduction in irradiance over the whole 

spectrum during absolute irradiance measurements. Five different curing protocols giving 

a total of 18 J/cm
2
 of energy were applied to compare the applicability of exposure 

reciprocity law; 400 mW/cm
2
 for 45 s was chosen as the reference protocol and compared 

to protocols of the same radiant exposure (18 J/cm
2
): 900 mW/cm

2
 for 20 s, 1500 

mW/cm
2
 for 12 s, 2000 mW/cm

2
 for 9 s and 3000 mW/cm

2
 for 6 s. The irradiance values 

were based on the in-built radiometer of the curing-unit and verified by the spectrometer. 

Real time measurement of degree of conversion (DC) and rate of polymerization ( R
p
) 

were measured using a method developed by Stansbury and Dickens by which a Fourier 

Transform near infrared Spectrometer (FT-NIRS; Figure 2.1.1) continuously monitors 

(integration time = 0.85 s) the decompsoition of the -CH2 peak at 6164 cm
-1

 (Stansbury 

and Dickens, 2001). Curing kinetics of the RBC samples held in a 12 x 1.4 mm 

cylindrical white Teflon mould placed on a glass slide and covered by a thin glass cover 

slip (n=3) were measured for 190 s. Although DC evolves for up-to 24 h post-irradiation 

(Truffier-Boutry et al., 2006)., the major part of polymerization occurs during light 

activation. For that reason, DC at 180 s after the start of measurement was chosen for 

comparison and will be referred to as DCMax . 
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PASTE FLOWABLE 

Resin 
Filler mass % 

(manufacturer) 
Filler mass % 

(Ashing) 
Resin 

Filler mass % 
(manufacturer) 

Filler mass % 
(Ashing) 

Venus 
(Heraeus) 

Bis-GMA 
based 

78 73.3 (0.6) Bis-EMA, TEGDMA 62 61.6 (0.1) 

Synergy D6 
(Coltene) 

Bis-GMA, 
TEGDMA, 

UDMA 
80 74.0 (0.2) Bis-GMA, TEGDMA 63 57.9 (0.1) 

Premise (Kerr) 
Bis-EMA, 
TEGDMA 

84 73.8 (0.3) Bis-EMA, TEGDMA 79 58.7 (0.9) 

Grandio 
(Voco) 

Bis-GMA, 
TEGDMA 

87 84.0 (0.2) 
Bis-GMA, TEGDMA, 

HEDMA 
80 76.7 (0.1) 

Gradia (GC) UDMA-based 77 63.3 (0.2) Dicarbamate/TEGDMA 60 45.5 (0.0) 

 

Table 2.1.1: Resin Matrix Composition and filler mass percentage (reported by the manufacturers) and mass percentage 

(experimentally determined) of commercial materials. 
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Figure 2.1.1: Experimental setup for real time FT-NIRS measurements. 

Additionally, temperature rise measurements were made for the longest and the 

shortest irradiation modes (i.e. 400 mW/cm2 for 45 s and 3000 mW/cm2 for 6 s) to 

compare heat energy received by the curing composites from the light source at the two 

extremes. The thermistor bead set up consisted of a minature bead thermistor (256-045 

RS Components, Corby, England), which was imbedded into a brass jacket that was used 

as a stage. The recess between the brass jacket and the bead was filled with high density 

polysynthetic silver thermal compound (Arctic Silver 5, Visalia, CA) and then a piece of 

aluminium foil (BacoFoil, UK; thickness = 0.0182 ± 0.0008 mm) was placed on top to 

aid conductivity and protect the bead from damage. Rubber alignment rings were used to 

ensure concentric alignment of the cavity and thermistor bead before filling the cavity 

(similar dimensions to the FT-IR measurements) with model composites directly onto the 

aluminium foil. The composites were either made with 70 wt% Bis-GMA and 30 wt% 

TEGDMA or 30 wt% Bis-GMA and 70 wt% TEGDMA and contained the 

photoinitiator/amine camphoroquinone and dimethylaminoethyl methacrylate (0.2 wt% 

Optical Fiber (in) 
NIR FTIR 

spectrometer

SampleCover slip

Teflon mould

Microscope slide

Optical Fiber (out) 
NIR FTIR 

spectrometer

5mm

45◦

45◦

Tip of LCU



72 

and 0.8 wt% respectively). The reagents were supplied by Sigma Aldrich, UK and were 

used as received. The resins were filled to 40 vol% with 3 μm barium glass filler (Schott, 

Germarny) and 14 nm fumed silica particles (Aerosil 150, Evonik Industries, Germany) 

at a volume percent of 30 and 10%, respectively. This enabled the comparison of a high 

viscosity version and a low viscosity version on the amount of heat received. A cover slip 

(0.15 mm thick, 22 mm diameter) was pressed on top and the excess was extruded and 

scraped away before curing the samples (n=3) from above the cover slip. The heat 

evolved during curing was measured continuously (10 s
-1

) and logged using bespoke 

software. Additionally, as reaction exotherm will affect the temperature rise, the 

specimens were cured several times until the temperature no longer increased. This was 

used as the control to allow an approximation of the heat delivered to the material due to 

light minus the reaction exotherm. 

The measurements of viscosity were performed at a room temperature (23 +/- 

1°C) using a Physica MCR301 rheometer (Anton Paar Inc., Austria) with 25 mm parallel 

plates separated from each other by 0.5 mm. The complex viscosity (Pa.s) was measured 

at a constant strain amplitude of 0.06 and at two different angular frequencies: 0.01 and 

10 rad/s. Three measurements were performed for each material tested.  

As exact composition of commercial materials are unknown, the filler mass 

percentage of commercial materials were determined by an ashing technique which 

compares the difference in weight before and after ashing of 0.5 g (n=3) of each material 

at 900 
◦
C. The crucible was introduced into the furnace (Carbolite CWF 1300, UK; Max 

temperature: 1300 
◦
C) for an hour once the temperature of the oven had reached 900 

◦
C. 

The porcelain crucibles were weighed using an analytical balance which was accurate to 

0.001 g (Acculab Atilon, Satorius Group) before and after ashing.  

Statistical analyses were performed on the DCMax , R
p

Max  and time to R
p

Max data sets 

for the commercial materials on the „flowable‟ and „restorative‟ resin composites using 

two-way analysis of variance (ANOVA) with composite type (2 levels) and curing 

protocol (5 levels) as the independent variables. Additionally, one-way ANOVA and 

post-hoc Tukey tests (p=0.05) were performed on DCMax , R
p

Max  and time to R
p

Max  data sets 

versus the cure protocol to confirm the validity or otherwise of the exposure reciprocity 

law (Table 2). 
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2.1.4 Results 

 

Figure 2.1.2 represents a comparison between the emission spectra of the curing 

light at each irradiance against the absorption spectra of camphoroquinone. The increase 

in irradiance resulted in a greater spectral overlap with camphoroquinone although the 

spectral emission range for the light remained comparable at low irradiance. 
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Figure 2.1.2: Absorption spectra (Left axis, in L.Mol
-1

cm
-1

) of CQ (Light yellow fill) 

compared to emission spectra of the Swiss Master Light (right axis, in μW/cm
2
.nm) 

at different irradiances, i.e. 400, 900, 1500, 2000 and 3000 mW/cm
2
. 
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Two-way ANOVA revealed significant differences (P  0.05) with respect to 

“composite type” and “cure protocol” for DCMax for all 5 product comparisons. For any 

product that did not obey exposure reciprocity law, DCMax was significantly greater for the 

low irradiance and longest exposure curing protocols (400 mW/cm
2
 for 45 s) (P<0.05; 

Figure 2.1.3). Generally R
p

Max increased and time to R
p

Max decreased as higher curing 

intensities were employed (Table 2.1.2). 
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a) 

 

(b) 

 

 

Figure 2.1.3: The main affects plot for manufacturer, composite type (restorative or 

flowable) and irradiation protocol for the commercial materials on DC
Max
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For the „flowable‟ materials, DCMax

 was significantly reduced for the high 

irradiance protocol in all cases (P<0.05; Table 2.1.2). DCMax

 of Venus Flow and Grandio 

Flow were more dependent upon cure protocol and exhibited a significantly decreased 

DC
Max  even at intermediate compared with low intensity curing regimes (p<0.05; Table 

2.1.2). Figure 2.1.4 represents the complex viscosities for the flowable composites at high 

and low angular frequencies. It was noted that although some flowables exhibited similar 

or even reduced viscosity at different angular frequencies (Gradia at 0.1 s
-1

, Synergy D6 

and Gradia at 10 s
-1

) compared with Venus and Grandio, DCMax of the former material 

types was less dependent upon curing protocol (Figure 2.1.3; Table 2.1.2).
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Figure 2.1.4: The complex viscosities of the flowable composites. The error bars 

represent the standard deviations (n=6) for each flowable material, angular 

frequency of 10 rad/s and (a) angular frequency of 0.01 rad/s (b).  
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For high viscosity resin composites no significant differences in DCMax were 

recorded regardless of the curing protocol (p>0.05) except for Venus, which exhibited a 

significantly reduced DCMax at the highest intensity curing regime (p<0.01, Table 2.1.2). In 

most cases DCMax of the paste materials was significantly lower than that recorded in their 

flowable counterparts (p<0.05; Figure 2.1.3). However, for intermediate and high curing 

intensities, DCMax of Grandio and Venus pastes were either similar or greater than the 

associated respective flowable material (Table 2.1.2).  
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Table 2.1.2: DC
Max

, Rp
Max  and Time to R

p

Max of commercial materials. Similar letters within boxes indicate no significant 

differences. (p<0.05). 

  CURE PROTOCOL DC
MAX 

(%) Rp
MAX 

(%/s) Time to Rp
MAX 

(s) 

Resin Composite 
Time 

(s) Irradiance (mW/cm
2
) 

PASTE FLOWABLE PASTE FLOWABLE PASTE FLOWABLE 

Mean (+/- SD) Mean (+/- SD) Mean (+/- SD) Mean (+/- SD) 
Mean (+/- 

SD) 
Mean (+/- 

SD) 

Venus (Heraeus) 

45 400 57 (0.10) a 67 (0.44) a 4.03 (0.09) d 2.99 (0.23) d 6.5 (0.5) a 11.9 (1.5) a 

20 900 58 (0.10) a 66 (1.32) a 6.39 (0.63) c 4.43 (0.33) c 4.0 (0.5) b 8.2 (0.5) b 

12 1500 58 (0.31) a 58 (0.70) b 7.58 (0.33) bc 4.77 (0.10) c 3.7 (0.5) b 6.2 (0.5) bc 

9 2000 57 (0.02) ab 53 (0.28) c 8.52 (0.20) b 5.30 (0.05) b  3.4 (0.0) b 4.8 (0.5) c 

6 3000 55 (0.26) c 44 (0.44) d 9.91 (0.83) a 5.91 (0.05) a 2.8 (0.5) b 4.3 (0.0) c 

Synergy D6 (Coltene Whaledent) 

45 400 53 (1.16) a 64 (0.24) a 3.44 (0.11) c 4.42 (0.17) d 6.2 (1.3) a 4.5 (1.0) a 

20 900 53 (0.79) a 65 (0.47) a 6.57 (0.81) b 7.70 (0.97) c 2.3 (1.0) b 2.0 (1.3) b 

12 1500 53 (2.59) a 64 (0.93) a 10.51 (1.47) a 10.53 (0.60) b 1.4 (0.5) b 0.9 (0.0) b 

9 2000 53 (1.29) a 64 (0.39) a 12.13 (0.31) a 12.11 (0.67) ab 0.9 (0.0) b 0.9 (0.0) b 

6 3000 49 (1.48) a 61 (1.19) b 12.40 (0.89) a 13.78 (1.10) a 0.9 (0.0) b 1.1 (0.5) b 

Premise (Kerr) 

45 400 63 (1.19) a 72 (0.49) a 8.25 (0.76) d 7.65 (0.81) d 4.5 (1.3) a 3.4 (2.6) a 

20 900 65 (0.14) a 73 (0.15) a 11.96 (0.50) c 12.94 (1.00) c 3.4 (0.0) ab 2.0 (1.0) a 

12 1500 65 (0.79) a 74 (1.33) a 15.71 (0.50) b 15.99 (0.97) b 2.3 (0.5) b 1.7 (0.9) a 

9 2000 64 (1.37) a 73 (0.83) a 18.01 (1.07) a 18.01 (1.07) a 1.7 (0.9) b 1.7 (0.9) a 

6 3000 64 (1.22) a 71 (1.41) b 19.95 (1.71) a 20.00 (1.66) a 2.3 (0.5) b 2.0 (0.5) a 

Grandio (Voco) 

45 400 55 (0.35) a 62 (1.15) a 5.19 (0.13) e 2.97 (0.07) c 4.0 (0.5) a 9.1 (0.5) a 

20 900 55 (0.39) a 59 (0.74) b 8.17 (0.06) d 4.35 (0.19) b 2.6 (0.0) b 4.8 (0.5) b 

12 1500 55 (0.43) a 53 (0.76) c 10.19 (0.43) c 5.07 (0.23) a 2.6 (0.0) b 2.6 (0.0) c 

9 2000 55 (0.09) a 49 (0.67) d 11.40 (0.44) b 5.48 (0.31) a 2.0 (0.5) bc 2.8 (0.5) c 

6 3000 54 (0.41) a 41 (0.36) e 13.80 (0.65) a 5.11 (0.12) a 1.7 (0.0) c 3.1 (0.5) c 

Gradia (GC Corp) 

45 400 44 (0.86) a 72 (0.45) a 2.97 (0.34) d 7.23 (0.20) d 6.8 (0.9) a 4.5 (0.5) a 

20 900 44 (0.24) a 72 (0.08) a 5.09 (0.17) c 9.24 (0.10) c 4.3 (0.0) b 4.0 (0.5) ab 

12 1500 44 (0.30) a 72 (0.32) a 7.52 (0.60) b 11.59 (0.40) b 2.8 (0.5) c 3.4 (0.0) bc 

9 2000 45 (0.12) a 72 (0.25) a 10.12 (1.06) a 12.48 (0.59) b 2.0 (0.5) c 3.1 (0.5) bc 

6 3000 44 (0.37) a 71 (0.32) b 10.86 (0.41) a 15.80 (0.74) a 2.0 (0.5) c 2.3 (0.5) c 
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Following ashing, the majority of materials showed a decreased filler mass % in 

flowable materials compared with their parent restorative versions, although the 

difference observed between Grandio products was far less pronounced (Table 2.1.1). 

Table 2.1.3 represents the total heat energy registered at the thermistor bead, 

calculated from area under the respective curves in Figure 2.1.5 which represents the 

temperature measurements in model composites and the temperature rise due to the light 

at the highest and lowest irradiation modes. In both cases the high irradiation mode 

produced a significantly higher temperature rise regardless of resin matrix than the lower 

irradiation mode for all three series (P<0.05). The lower irradiation mode gives a more 

sustained temperature rise throughout the irradiation period and therefore the total heat 

energy  at the thermistor is greater than for the short irradiation mode (Table 2.1.3).  

 

 

Resin Matrix Irradiation Series 
Area Under Curves (

◦
C) 

45s at 400 mW/cm
2
 6s at 3000 mW/cm

2
 

70/30 

Curing specimen 53.2 (3.7) 17.8 (2.1) 

Light 18.6 (0.8) 10.9 (1.3) 

Cured Specimen 18.0 (1.6) 8.9 (0.8) 

30/70 

Curing specimen 74.6 (4.7) 17.3 (0.8) 

Light 17.7 (2.0) 12.5 (1.4) 

Cured Specimen 17.9 (3.8) 10.7 (0.5) 

 

Table 2.1.3: Total heat energy detected by the thermistor during irradiation 

calculated as the integrals of the curves respectively (Figure 2.1.5). 
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(a) 

(b) 

Figure 2.1.5: T during polymerization (curing) at low irradiance (45s at 400 
mW/cm2) compared to high irradiance (6s at 3000mW/cm2) for high viscosity resins 
(a) and low viscosity resins (b) filled with 40 vol%  filler in comparison to the light 
on its own (light) and temperature rise in a fully cured specimen (cured). 



82 

2.1.5 Discussion  

 

The first hypothesis (if exposure reciprocity law is upheld for a paste, it will also 

hold for its respective flowable material) was rejected as for all pastes reciprocity was 

achieved or nearly achieved (Venus), while no such relationship was observed for the 

respective flowables with much larger differences in DCMax of Grandio and Venus across 

curing regimes. An interesting point to note is that flowable composites are manufactured 

in different ways, i.e. some have more diluent monomer and some have less filler 

percentage in comparison to their parent high viscosity versions (the effects of which will 

be investigated in Section 2.2). Nonetheless, previous work has indicated that above a 

specific (unfilled) resin viscosity ( 6:4, Bis-GMA/TEGDMA), exposure reciprocity law 

is upheld (Feng and Suh, 2007). Viscosity of the resin matrix is known to play a 

significant role in the polymerization rate, with the highest maximum rates observed for 

mixtures containing 50-75 wt% Bis-GMA (Emami and Söderholm, 2003). Consequently, 

it may be expected that flowables composites manufactured with  6:4, Bis-

GMA/TEGDMA or high viscosity resins may allow for reduced curing time clinically 

when high irradiance protocols are used. However, when manufacturers use low viscosity 

resins, it is expected that high system mobility will increases the probability of a 

bimolecular (radical-radical) termination pathway during the initial stages of 

polymerization resulting in a greater loss of radical growth centres by early termination. 

When high irradiance protocols are applied to composites containing such resins, radical 

loss is expected to be greater as a multitude of radical growth centres exist and as 

termination is proportional to the squared concentration of free radicals at low conversion 

(Leprince et al, 2010a). Consequently DCMax will significantly decrease compared with 

similar radiant exposures achieved using a lower irradiance for longer time for 

composites containing low viscosity resins. Therefore, a correlation between the 

applicability of the exposure reciprocity law and the viscosity of the flowable materials 

may have been expected. However, this was not the case since Gradia exhibited the 

lowest viscosity (measured at 10 rad/s; Figure 2.1.4) and achieved similar DCMax for most 

curing regimes whereas DCMax for the more viscous Grandio and Venus flowable materials 

was clearly more dependent upon the irradiance and curing time combination (Figure 
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2.1.4 and Table 2.1.1). Although at lower angular frequency the rank order of viscosity 

changed (presumably due to differences in pseudoplastic behaviour), similar effects were 

seen. Here, Gradia and Synergy D6 exhibited lower viscosity compared with Venus, but 

the former still obeyed the exposure reciprocity law for most cure modes (Figure 2.1.1 

and Table 2.1.2). Therefore, it is evident that the impact of viscosity on composite 

reactivity is more complicated than that observed for unfilled resins.  

Broadly speaking, flowable resin composites can be manufactured either by 

reducing the filler mass percentage or by increasing the volume of diluent resin, 

maintaining a high filler load. In most cases, manufacturers do not divulge the exact 

composition of commercial resin composites and typically will only report resin matrix 

composition and filler percentage approximately. Material ashing may reveal useful 

information regarding filler content, however such a technique is limited since the exact 

percentage of organic filler types, which will decompose upon heating, are usually 

unknown. Since the filler mass percentages of Grandio and Grandio Flow are close 

(Table 2.1.1), it might be assumed that a higher quantity of diluent resin is used in the 

formulation of the latter. At constant volume percentage of filler, partially substituting 

Bis-GMA with a low molecular weight monomer (HEDMA) will serve to decrease the 

viscosity of the material. Although a reduced viscosity at a constant filler load is not 

apparent at first glance in the case of Venus/Venus Flow (78/62 and 73/62 mass% 

reported by the manufacturer and from ashing, respectively; Table 2.1.1). Closer 

examination of the resin constituents reveals substitution of the bulky Bis-GMA 

monomer with a lower molecular weight monomer, Bis-EMA. Again, this may serve to 

decrease resin viscosity in the „flowable‟ composite and thus reduce DCMax at high 

irradiance and short irradiation times. Commercial „flowable‟ materials, which exhibited 

similar DCMax

 and a reciprocal relationship with respect to irradiance and time, show a 

much greater reduction in filler percentage as opposed to any change in the resin matrix 

components (Table 2.1.1).  

In filled systems, the interaction between complex viscosity and the applicability 

of exposure reciprocity law may not be directly related to bulk or macroscopic viscosity. 

A first possible explanation could be that macroscopic viscosity does not reflect „local‟ 

viscosity of the resin matrix, as a result of inter-particulate spacing between fillers. From 
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the current results it appears that local viscosity is critical in determining polymerization 

kinetics of curing photopolymer composites. However, the situation is complex since 

changes in viscosity in the early stages of polymerization may differ with material 

composition. The effect of changing rheology throughout cure is also an important 

consideration and should be subject of further investigations. Additionally, RBC 

manufacturers are increasingly using other photoinitiator(s), the type(s) or concentration 

of which remain unknown to some extent. Since photoinitaitors have different absorption 

characteristics, i.e. molar extinction coefficients and absorption bandwidths, their 

quantum yield of conversion vary (Neumann et al., 2005; Neumann et al., 2006). As 

such, the type and concentration of photoinitiator may influence the reciprocal 

relationship between irradiance and exposure time, which also warrants further 

investigation and is presented in Section 2.3.  

The second hypothesis (that an increase of filler content results in a decrease in 

degree of conversion regardless of curing protocol) must also be rejected since the 

flowable versions of Venus and Grandio exhibited lower DCMax

 at high irradiance than 

their respective higher viscosity counterparts. For unfilled, or less filled systems 

vitrification is delayed, which allows further radical propagation and increased DC is 

usually observed for curing protocols that employ long exposure duration (D‟alphino et 

al., 2007; Feng and Suh, 2007; Feng et al., 2009). Such an effect explains why all 

flowables tested here show increased DCMax at the low irradiances for the longest cure 

times (45 s at 400 mW/cm
2
 and 20 s at 900 mW/cm

2
; Table 2.1.2). An inferior cure of 

Grandio and Venus flowable compared with their counterpart paste materials at higher 

intensities might be explained by the effects of a marked reduction in parent resin 

viscosity as previously explained. The addition of fillers will increase the local viscosity 

of the reaction medium and reduce the mobility of the propagating species and therefore 

more highly filled systems are expected to approach a reciprocal relationship with respect 

to irradiance and time at constant radiant exposure. This effect is supported by previous 

findings, which reported a 3-fold increase in higher concentration of trapped free radicals 

in the organic matrix of a filled composite than in its corresponding parent resin due to 

spatial confinement within filled composites preventing bi-radical termination (Leprince 

et al., 2009). The shape, size and content of filler as well as interlocking and interfacial 
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interactions between filler and the resin matrix will also affect the viscosity and mobility 

of the reaction medium (Lee et al., 2006). For flowable composite materials with low 

viscosity resins, the mobility restrictions due to fillers will lessen and a reduced local 

viscosity will increase the probability of bi-radical termination and DC will become more 

dependent upon irradiance and time (Table 2.1.2). 

The effect of temperature, either from the curing unit, polymer exotherm or 

insulating effects of filler inclusions should not be neglected. Absorption and scattering 

of light energy within the volume of composite may cause an increase in temperature 

during photopolymerisation (Panankis and Watts, 2000). The heat delivered to the 

material will increase proportionally with increased irradiation time and intensity (Lloyd 

et al., 1986; Hansen and Asmussen, 1993). An increase in temperature increases mobility, 

not only of the radicals but also of the whole reaction environment, delays auto-

acceleration and increases the reaction rate parameters (an Arrhenius-type dependence) 

thus increasing polymerization rate and final degree of conversion (Lovell et al., 2003). 

The lower irradiance curing protocol (45s at 400mW/cm
2
) is expected to have a slower 

polymerization process, which may result in a delayed liberated energy from the material 

and therefore a lower temperature increase. Furthermore, it has been reported that the use 

of the high irradiance mode on a Swiss Master light for a short time does not produce a 

significant temperature increase when compared to a standard halogen or LED light 

curing unit when activated for a longer time (Uhl et al., 2006) but this should be treated 

with caution as spectral emissions are not comparable between lights and dissimilar 

radiant exposures are used. Indeed, complementary temperature measurements recorded 

here in model RBCs using the Swiss Master Light revealed differences in the maximum 

temperature rise as well as total temperature rise between low (45s at 400mW/cm
2
) and 

high irradiance (6s at 3000mW/cm
2
) curing protocols. Model composites were used as 

manufacturers may use different monomers, fillers and photoinitiators, which will affect 

exothermicity during polymerization. The heat measured in a fully cured sample 

estimates the heating of a composite material due to the light minus the reaction 

exotherm. The temperature rise was higher at high irradiance, however, a longer cure 

duration at low irradiance exposes the materials to a more sustained temperature rise 

resulting in a higher total energy with respect to heat (Figure 2.1.5, Table 2.1.3) and may 
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contribute to the increased DCMax of materials cured using these protocols. It must also be 

underlined that the use of experimental materials (without pigments) probably 

underestimates the heating due to the light because of lower light absorption. 

Additionally, several limitations of the experimental procedure exist. Firstly, the 

measurements were carried out under non-isothermal conditions and secondly the 

protective foil and the conductive paste may have also significantly attenuated the heating 

effects from the light and exotherm of the curing materials. Further work regarding the 

synergistic effect of temperature (under isothermal conditions) on curing kinetics during 

the application of exposure reciprocity law is required to fully elucidate this 

phenomenon.  

DC data should not be considered the “gold-standard” of material properties since 

it is well known that irradiance and time independently influence polymer chain length 

and crosslinking, which in turn may affect the mechanical properties such as flexural 

strength and modulus, water sorption and cure depths (Musanje and Darvell, 2003; 

Peutzfeldt and Asmussen, 2005; Asmussen and Peutzfeldt, 2005; Ferracane, 2006; Feng 

and Suh, 2007; Dewaele et al., 2009). Moreover, flowable materials that are 

manufactured by reducing filler content rather than those which maintain higher filler 

loads and increase diluent resin concentration will exhibit differences in flexural strength, 

modulus and polymerization shrinkage, which may affect their performance in situ.  

 

2.1.6 Conclusion 

 

The reduced viscosity of commercial flowables can be acquired in at least two 

ways; either by decreasing filler load or increasing diluent monomer, which directly 

affects the cure kinetics and of the effect exposure reciprocity on conversion. From this 

work, it appears that the validity of the exposure reciprocity law may depend upon the 

method with which “flowable” viscosity is achieved. This underlines the necessity to 

adapt curing protocols according to the material filler content as well as the resin matrix 

composition, which is of prime importance to clinicians. Inevitably, the design of 

flowable materials may be optimized to ensure equivalent polymer conversion regardless 

of curing protocols. 
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2.2 Further Anomalies of the Exposure Reciprocity Law in Model 

Photoactive Resin Based Materials 

 

2.2.1 Abstract 

 

The aim of this section was to investigate the anomalies of exposure reciprocity in 

model resin composite materials. Resins containing camphoroquinone (CQ; 0.2 wt%) and 

dimethylaminoethyl methacrylate (DMAEMA, 0.8 wt%) were prepared having different 

Bis-GMA/TEGDMA percentages: 70/30; 60/40; 50/50; 40/60 and 30/70 mass%, 

respectively and were tested either unfilled (UF) or filled to 40 vol% (low fill, LF) or 60 

vol% (high fill, HF) with silanated barium glass fillers and fumed silica. Specimens were 

cured with a halogen Swiss Master Light (EMS, Switzerland) at the same radiant 

exposures (18 J/cm
2
): 400 mW/cm

2
 (reference), 900 mW/cm

2
 for 20 s, 1500 mW/cm

2
 for 

12 s, 2000 mW/cm
2
 for 9 s and 3000 mW/cm

2
 for 6 s. Degree of conversion (DC) was 

measured by FT-NIRS in real time. For the resins and composites two way ANOVAs for 

DC
Max , R

p

Max and time to R
p

Max revealed significant differences (P<0.001) in all cases for each 

of the two independent variables “resin type” and “cure protocol” as well as their 

interactions.  In the case of the UF resin, irradiation protocol was more influential (df = 4; 

F = 9328) for DCMax  than resin type (df = 4; F = 3455) whereas the opposite occurred with 

the LF and HF counterparts. Supplementary one-way ANOVA also revealed significant 

differences between curing protocols (P<0.05). Only composites made with 6:4 Bis-

GMA/TEGDMA completely obeyed reciprocity. For the resins and other composites, a 

significant decrease in DC for specimens cured at 3000 mW/cm
2
 for 6 s compared with 

the reference was observed. Generally the DC was lower for the composites cured with 

the reference protocol compared to UF resin, but for the higher irradiation mode (3000 

mW/cm
2
 for 6 s), addition of filler improved conversion. System viscosity as well as the 

irradiation protocol significantly influence polymerization rate and the onset of reaction-

diffusion controlled termination, with the highest maximum rates observed for mixtures 

containing high viscosity parent resins cured at high irradiance. The design and 

development of new composites that allow high irradiance curing may reduce curing 

time, which is desirable to both dentists and patients.  
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2.2.2 Introduction 

 

 Clinically, low viscosity materials or „flowables‟ have many uses including pit and 

fissure sealants, base or liners for large restorations, routine Class I and V restorations, 

small Class III restorations and restoration repairs. The reduction in curing time for such 

procedures has some inherent advantages for the dental practice, i.e. increased efficiency, 

as-well as the patient, i.e. comfort.  The reduction in curing time has been implemented 

namely by the application of the exposure reciprocity law (varying combinations of 

irradiance and time) and the introduction of high powered light curing units (Peutzfeldt 

and Asmussen, 2005; Feng and Suh, 2007). However, although the law is applicable in 

some scenarios (Sakaguchi and Ferracane, 2001; Emami and Söderholm, 2003; Price et 

al., 2004), the kinetics of polymerisation is complex and is dependent upon several 

factors including monomer composition (Feng and Suh, 2007), photoinitiator chemistry 

(Cook, 1992; Emami and Söderholm, 2005), filler content and irradiation protocol 

(Emami and Söderholm, 2005; Dewaele et al., 2009) and as such failures in the law are 

reported (Musanje and Darvell, 2003; Peutzfeldt and Asmussen, 2005; Emami and 

Söderholm, 2005; Asmussen and Peutzfeldt, 2005; Dewaele et al., 2009). 

  Previously, it was shown that some low viscosity commercial flowable composites 

do not obey reciprocity whilst others do (Section 2.1). Reciprocity failures can be 

attributed to the existence of bi-radical terminations in relatively low viscosity materials. 

However, from the previous section it appeared that the matter is complicated as 

macroscopic viscosity does not reflect local viscosity (i.e. that of the resin). Additionally, 

the importance of particular composition on reactivity was also highlighted by other 

researchers using commercial products, where only one out of four products satisfied 

reciprocity with regards to mechanical properties (Musanje and Darvell, 2003). Section 

2.1 and a previous study have reported the inferior properties of some resins and RBCs 

when cured with high irradiance/short duration cure protocols (Feng et al. 2009). 

Although previous works are relevant, the conclusions remain limited by the fact that 

commercial materials (with unknown specific compositions) and/or different light 

sources to achieve higher intensity (creating differences in emission spectra) are used 

(Musanje and Darvell, 2003; D‟alphino et al., 2007; Feng et al., 2009). Consequently, it 



89 

is important to fundamentally understand how certain low-viscosity flowable composites 

obey exposure reciprocity law whilst others do not (Section 2.1). Therefore, this section 

of the thesis is intends to investigate and obtain a better understanding of such failures 

using model photoactive resins and resin based composites. Consequently, the aim of this 

work is to investigate the following hypotheses: 

i) For similar radiant exposure using the same light curing unit, if exposure 

reciprocity law does not hold for the parent resin, then it will not hold for 

the counterpart composite regardless of filler loading.  

ii) An increase in the filler content will result in a decrease in the degree of 

conversion regardless of curing mode. 

 

2.2.3 Materials and Methods 

 

Resin formulations containing the photoinitiator camphoroquinone (CQ; 0.2 wt%) 

and the co-initiator, dimethylaminoethyl methacrylate (DMAEMA, 0.8 wt%) were 

prepared having different Bis-GMA/TEGDMA percentages: 70/30; 60/40; 50/50; 40/60 

and 30/70 mass% respectively.  Reagents were supplied by Sigma Aldrich, UK and were 

used as received. The resins were tested either unfilled or filled with silanated barium 

glass fillers (Average particle size: 3 ± 1 µm; Schott, Germany) and fumed silica (14 nm; 

Aerosil, Evonik Industries, Germany) to 30/10 vol% (Low Fill, LF), and 50/10 vol% 

(High Fill, HF) respectively. Specimens were cured with a halogen Swiss Master Light 

(EMS, Switzerland) chosen for its capability to provide a range of irradiance outputs 

from 400 mW/cm
2
 to 3000 mW/cm

2
 without altering the spectral emission as described 

previously. The UV-Vis spectrometer (USB4000, Ocean Optics) was calibrated using a 

deuterium tungsten light source (Mikropack DH2000-CAL, Ocean Optics, Dunedin, 

USA) according to NIST standards, as described previously in Chapter 2.1.2. Five 

different curing protocols giving a total of 18 J of energy were applied to compare the 

applicability of the exposure reciprocity law, 400 mW/cm
2
 for 45 s was chosen as the 

reference protocol and compared to protocols of the same radiant exposure (18 J/cm
2
): 

900 mW/cm
2
 for 20 s, 1500 mW/cm

2
 for 12 s, 2000 mW/cm

2
 for 9 s and 3000 mW/cm

2
 

for 6 s. The irradiance values were based on the in-built radiometer of the curing-unit and 



90 

verified by the spectrometer.  

The degree of conversion was measured throughout cure using a method 

developed by Stansbury and Dickens (2001) where a Fourier Transform Infra-red 

spectrometer is used to continuously measure - CH2 peak (6164 cm
-1

). The measurement 

protocol was identical to the one used in Chapter 2.1.2, where curing kinetics of resins 

and resin composite samples confined in a white Teflon ring mould were monitored for 

180 s  (n=3) (Figure 2.1.1).  

Statistical analyses were performed on the DCMax , R
p

Max  and time to R
p

Max  data sets 

for the experimental materials on the unfilled resins and the 40% and 60% filled resin 

composites using two-way analysis of variance (ANOVA) with resin type (5 levels). and 

curing protocol (5 levels) as the independent variables. Additionally, one-way ANOVA 

and post-hoc Tukey tests (p=0.05) were performed on DCMax , R
p

Max  and time to R
p

Max  data 

sets versus the cure protocol to confirm the validity or otherwise of the exposure 

reciprocity law.   
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2.2.4 Results 

 

Figure 2.1.2 may be used to compare the emission spectra of the five irradiation 

modes used on the Swiss Master curing light against the absorption spectra of 

camphoroquinone. From this it is evident that high irradiance results in a greater spectral 

overlap with camphoroquinone.  

Two way ANOVAs for DC
Max , R

p

Max and time to R
p

Max revealed significant 

differences (P < 0.001) in all cases for each of the two independent variables “resin type” 

and “cure protocol” as well as their interactions.  In the case of the unfilled resin series 

irradiation protocol was more influential (df = 4; F = 9328) for DCMax than resin type (df = 

4; F = 3455) whereas the opposite occurred with the 40% and 60% filled counterparts 

(Figure 2.2.1).  
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Supplementary one-way ANOVAs also revealed significant differences (P<0.05) 

between curing protocols (Table 2.2.1). For materials which did not obey the exposure 

reciprocity law, DCMax was significantly greater for the low irradiance/longest irradiation 

time (45s at 400mw/cm
2
) cure protocol compared to the high irradiance/shortest 

irradiation time (6s at 3000mW/cm
2
) cure protocol (P<0.05). For composite materials, 

only the high viscosity resins (>59% Bis-GMA) completely obeyed the exposure 

reciprocity law and showed no significant differences between cure protocols (P>0.05) 

(Table 2.2.1). R
p

Max  was significantly greater and time to R
p

Max  was significantly lower for 

the high irradiance/short irradiation time (6s at 3000mW/cm
2
) cure protocol (P<0.05) 

compared to the other protocols for all materials regardless of whether the exposure 

reciprocity law was obeyed. 



94 

 

Table 2.2.1: DC
Max

, Rp
Max and Time to R

p

Max of experimental formulations. Similar letters within columns indicate no significant 

differences (p<0.05).

Resin 

CURE PROTOCOL DC
MAX 

(%) Rp
MAX 

(%/s) Time to Rp
MAX 

(s) 

Time 
(s) 

Irradiance 
(mW/cm

2
) 

RESIN 
(Unfilled) 

40 Vol%  
(Low Fill) 

60 Vol% filler 
(High Fill) 

RESIN 
(Unfilled) 

40 Vol% filler 
(Low Fill) 

60 Vol% filler 
(High Fill) 

RESIN 
(Unfilled) 

40 Vol% filler 
(Low Fill) 

60 Vol% filler 
(High Fill) 

Mean (+/- SD) Mean (+/- SD) Mean (+/- SD) Mean (+/- SD) Mean (+/- SD) Mean (+/- SD) Mean (+/- SD) Mean (+/- SD) Mean (+/- SD) 

30/70 

45 400 73 (0.2) a 76 (1.9) a 77 (2.5) a 1.87 (0.04) c 3.00 (0.17) c 3.70 (0.14) b 31.7 (0.5) a 19.3 (0.5) a 12.8 (1.7) a 

20 900 62 (0.8) b 74 (1.2) a 71 (1.7) a 2.52 (0.04) b 4.35 (0.25) bc 3.99 (0.31) b 19.8 (0.5) b 13.0 (1.0) b 13.6 (0.0) a 

12 1500 34 (0.2) c 72 (2.2) a 71 (1.8) a 2.51 (0.01) b 5.60 (0.26) b 6.57 (0.44) a 11.1 (0.0) c 9.6 (0.5) c 6.8 (0.9) b 

9 2000 26 (0.2) d 65 (0.6) b 60 (2.3) b 2.60 (0.01) a 6.02 (0.17) b 5.67 (0.47) a 8.2 (0.5) d 7.9 (0.5) d 5.8 (0.6) b 

6 3000 18 (0.4) e 56 (1.9) c 53 (1.8) c 2.65 (0.04) a 9.32 (1.46) a 6.17 (0.07) a 5.1 (0.0) e 5.1 (0.0) e 5.1 (0.0) b 

40/60 

45 400 72 (0.5) a 72 (0.3) a 72 (2.3) a 2.14 (0.01) c 3.14 (0.16) c 2.99 (0.31) d 26.1 (0.5) a 15.2 (1.5) a 11.9 (0.8) a 

20 900 71 (0.4) a 72 (0.8) a 69 (2.4) b 3.43 (0.02) b 4.46 (0.16) bc 4.00 (0.20) c 17.6 (0.5) b 11.6 (1.3) b 9.9 (0.5) b 

12 1500 53 (0.8) b 72 (1.6) a 69 (2.5) b 3.94 (0.16) a 6.02 (0.20) b 5.68 (0.42) b 11.6 (0.5) c 9.1 (0.5) c 8.8 (0.5) bc 

9 2000 40 (0.3) c 68 (0.9) b 59 (0.9) c 3.87 (0.01) a 6.89 (0.36) b 5.17 (0.14) b 8.5 (0.0) d 7.7 (0.0) d 7.7 (0.0) c 

6 3000 27 (0.2) d 68 (0.4) b 56 (0.3) d 3.97 (0.04) a 12.17 (2.10) a 9.58 (1.11) a 5.1 (0.0) e 3.1 (1.0) e 3.1 (1.0) d 

50/50 

45 400 71 (0.1) a 68 (0.6) a 68 (1.2) a 2.61 (0.02) e 3.32 (0.17) d 3.18 (0.08) d 19.3 (0.5) a 13.3 (1.0) a 11.6 (1.3) a 

20 900 72 (0.1) a 69 (0.6) a 64 (0.6) a,b 4.16 (0.04) d 5.49 (0.40) c 4.22 (0.15) cd 12.8 (0.0) b 7.1 (0.5) b 9.1 (0.5) b 

12 1500 67 (0.4) b 68 (1.4) a 64 (1.8) a,b 5.24 (0.05) c 7.00 (0.47) b 5.77 (0.72) bc 10.5 (0.5) c 6.0 (0.8) bc 7.7 (0.8) b 

9 2000 59 (0.4) c 67 (0.9) a 61 (2.3) b 5.86 (0.04) b 7.97 (0.21) ab 7.43 (0.59) b 8.2 (0.5) d 6.0 (0.0) bc 3.7 (0.5) c 

6 3000 40 (0.3) d 61 (2.2) b 61 (2.4) b 6.03 (0.05) a 8.73 (0.73) a 10.86 (1.07) a 5.1 (0.0) e 4.8 (0.5) c 2.0 (0.5) c 

60/40 

45 400 66 (0.5) a 62 (0.6) a 61 (1.7) a 2.44 (0.03) e 3.21 (0.09) e 3.47 (0.11) e 16.7 (0.5) a 10.5 (0.5) a 10.2 (0.9) a 

20 900 65 (0.6) a 61 (1.8) a 60 (1.6) a 3.85 (0.02) d 4.71 (0.30) d 5.62 (0.33) cd 11.1 (0.0) b 7.4 (0.5) b 4.5 (0.5) b 

12 1500 64 (0.6) b 62 (1.4) a 61 (2.1) a 4.89 (0.21) c 6.80 (0.55) c 6.79 (0.38) c 9.1 (0.1) c 5.4 (0.5) c 4.3 (0.8) b 

9 2000 60 (0.5) c 61 (0.4) a 61 (0.3) a 5.74 (0.03) b 8.13 (0.18) b 8.23 (0.23) b 7.7 (0.0) d 3.7 (0.7) d 3.4 (0.0) b 

6 3000 50 (0.4) d 61 (0.2) b 60 (0.9) a 6.40 (0.07) a 10.62 (0.38) a 9.98 (1.49) a 5.1 (0.0) e 3.0 (0.5) d 3.4 (0.0) b 

70/30 

45 400 61 (0.5) a 54 (1.1) a 52 (2.0) a 2.34 (0.08) e 2.89 (0.26) e 2.39 (0.07) e 14.46 (0.9) a 5.4 (0.5) a 6.2 (0.5) a 

20 900 60 (1.2) a 54 (0.3) a 52 (1.6) a 3.65 (0.12) d 4.29 (0.28) d 4.32 (0.38) d 8.5 (0.9) b 5.1 (0.9) a 4.8 (0.5) ab 

12 1500 60 (0.7) a 55 (0.8) a 52 (1.5) a 4.97 (0.10) c 5.76 (0.38) c 5.75 (0.38) c 7.1 (0.5) c 4.8 (0.5) a 5.1 (0.8) ab 

9 2000 57 (0.2) b 54 (0.3) a 52 (1.0) a 5.72 (0.06) b 7.05 (0.04) b 7.16 (0.62) b 6.2 (0.5) d 2.8 (0.5) b 3.4 (0.9) bc 

6 3000 52 (0.8) c 52 (0.5) a 50 (1.5) a 7.40 (0.81) a 8.21 (0.06) a 8.98 (0.81) a 5.1 (0.0) e 2.3 (0.5) b 2.3 (0.5) c 
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2.2.5 Discussion 

 

The first hypothesis (that for similar radiant exposure, if reciprocity did not hold 

for the parent resin then it should not hold for its composite counterpart) must be rejected 

as reciprocity was not verified in any of the tested resins but was for some composites. 

However, the differences in DC
Max

 between the extremes of the irradiation modes for the 

resins became less marked for high viscosity resins (9% for 7:3 compared with 55% for 

3:7 Bis-GMA/TEGDMA ratio). Previous work has indicated that reciprocity can be 

verified above a specific (unfilled) resin viscosity ( 6:4, Bis-GMA/TEGDMA) (Feng 

and Suh, 2007) which plays a significant role in the polymerization rate and the onset of 

reaction-diffusion controlled termination, with the highest maximum rates observed for 

mixtures containing 50-75 wt% Bis-GMA (Emami and Söderholm, 2003). As suggested 

in the previous section, low viscosity resins have high system mobility and thus a 

bimolecular termination (radical-radical) pathway dominates during the initial stages of 

polymerization. Therefore, loss of radical growth centres is greater for high irradiance 

protocols (where a multitude of radical growth centers co-exist), since at low conversion 

termination is proportional to the squared concentration of free radicals (Leprince et al., 

2010b). Consequently, at constant radiant exposure, with higher irradiance (and shorter 

time), a reduction in growth centres during auto-acceleration is expected and DCMax will be 

significantly decreased compared with similar radiant exposures achieved using lower 

irradiance for longer time. Furthermore, the initiation rate ( pR ) has a square root 

dependency on intensity (Decker, 2002). This relationship only holds in the early stages 

of polymerization where termination occurs by bimolecular reactions between polymer 

radicals (i.e. in low viscosity resins). As polymerization proceeds, mobility restrictions 

increase as the density of the polymer increases and sole segmental diffusion of cross-

linked polymer radicals become less likely and the radical site will mainly move by 

reacting with neighboring functional groups until termination occurs. A more linear 

dependence of pR  on light intensity is observed after gelation as the polymer chain stops 

growing and corresponds to a monomolecular termination process (Decker, 2002). For 

high viscosity resins, polymerization exhibits reaction-diffusion-controlled termination 
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from the onset due to its very low mobility (Lovell et al., 2001; Emami and Söderholm, 

2003) and thus reaction rate increases significantly with light intensity (Table 2.2.1). The 

significant increase in the rates at high intensity allows for a reduced cure time (reduced 

time to R
p

Max ) and thus the differences in DCMax between the extremes of the curing 

protocols are lower. 

The second hypothesis (an increase in the filler content will result in a decrease in 

the degree of conversion regardless of curing mode) must also be rejected. Indeed, the 

addition of filler proportionally decreases the concentration of carbon double bonds 

available for conversion and thus conversion is expected to be lower. When compared to 

highly filled systems, vitrification is expected to be delayed in unfilled or low filled 

systems which will allow further radical propagation and improved conversion in such 

systems (Feng and Suh, 2007; D‟alphino et al., 2007; Feng et al., 2009). This may well 

explain why resins and composites made with ( 6:4, Bis-GMA/TEGDMA) always show 

the highest DCMax for the reference protocol (45s at 400mW/cm
2
). However, the increased 

viscosity due to the addition of filler served to decrease the differences in DCMax between 

the extremes of the irradiation modes for the filled systems (7:3 Bis-GMA/TEGDMA 

ratio: LF= 2%, HF= 2%; 3:7 Bis-GMA/TEGDMA ratio: LF= 20%, HF= 24%). Filled 

systems are expected to approach a more reciprocal relationship with respect to irradiance 

and time at constant radiant exposure by reducing the mobility of the propagating species. 

However, the applicability of the exposure reciprocity law may not be related to the bulk 

or macroscopic viscosity (Section 2.1). In filled systems, the diffusion of radicals will be 

limited to a relatively small volume as the organic fractions will be located in the small 

interstices between the inorganic particles and thus a monomolecular termination 

pathway would be favoured due to the reduced mobility (i.e. increased local viscosity). 

The local viscosity will increase as the contact area between the resin and the filler 

increases (due to interlocking and interfacial interactions between filler and resin), i.e. 

increasing the filler load, using smaller particle sizes or a combination of both (Leprince 

et al., 2009; Beun et al., 2009).   

The kinetics of polymerisation is complex and changes in viscosity in the early 

stages differ with material composition. The effect of changing rheology throughout cure 

is an essential consideration, which is needed to further understand the applicability of 
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the exposure reciprocity law. Additionally, the optical properties are also an important 

consideration. Most notably the photoinitiator type may have a profound impact on 

reciprocity (Section 2.3) due to greater efficiencies caused by greater molar absorptivity 

(molar extinction coefficient). Since the decomposition of photoinitiators is directly 

related to its absorbance optical properties are likely to be affected throughout cure and 

will subsequently be investigated in Chapter 3.  

Finally, temperature measurements should not be ignored as both irradiance and 

time will influence the total heat energy delivered and consequently will affect the 

kinetics and reaction exotherm (Section 2.1). Further work regarding the synergistic 

effects of rheology, optical properties and temperature should be a subject of further 

investigation. 

 

2.2.6 Conclusion 

 

Exposure reciprocity relies on the constituents of the resin matrix as well as the 

filler percentage. From this work it is evident that local viscosity (i.e. that between the 

fillers) is responsible for whether exposure reciprocity law is upheld. When a bi-radical 

termination pathway dominates, reciprocity is unlikely to be verified when the material 

contains only a camphoroquinone/amine photoinitiator system. However, when a 

monomolecular termination pathway dominates, degree of polymer conversion is more 

likely to be equal regardless of curing protocols with similar radiant exposure. This 

further underlines the necessity to adapt curing regimes according to material filler 

content, resin matrix composition and the photoinitiator system. This is of prime clinical 

relevance as the development of composite materials may be optimized to ensure 

equivalent polymer conversion at reduced curing times.  
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2.3 Photoinitiator Type and Applicability of the Exposure Reciprocity 

Law in Filled and Unfilled Photoactive Resins
†‡

 

 

2.3.1 Abstract 

 

The aim of this section is to test the influence of photoinitiator type and filler 

particle inclusion on the validity of exposure reciprocity law. 50/50wt% Bis-

GMA/TEGDMA resins were prepared with equimolar concentrations of 

camphorquinone/DMAEMA (0.20/0.80 mass%) (CQ) or Lucirin-TPO (0.42 mass%), and 

were used either unfilled or filled to 75 mass%. Specimens were cured with a halogen 

Swiss Master Light (EMS, Switzerland) using four different curing protocols: 400 

mW/cm
2
 for 45 s as reference protocol (18 J/cm

2
), 1500 mW/cm

2
 for 12 s (18 J/cm

2
), 

3000 mW/cm
2
 for 6 s (18 J/cm

2
) and 3 s (9 J/cm

2
). Degree of conversion (DC) was 

measured in real time for 70 s by FT-NIRS and temperature rise using a thermocouple. 

Depth of cure was determined with a penetrometer technique. With respect to DC and 

depth of cure, exposure reciprocity law did not hold for any tested material, except for the 

depth of cure of filled CQ-based materials. At similar radiant exposure, DC was 

significantly higher (p<0.05) for all unfilled and filled TPO-based materials compared 

with CQ-based materials. As exposure time was reduced and irradiance increased, TPO-

based materials exhibited higher DC whilst an opposite trend was observed for CQ-based 

materials (p<0.05). For similar curing regimes, depth of cure of CQ-based materials 

remained significantly greater than that of TPO-based materials. Adding fillers generally 

reduced DC, except at higher irradiance for CQ-based materials where a positive effect 

was observed (p<0.05). The validity of exposure reciprocity law was dependent on 

several factors, among which photoinitiator type and filler content were important. 

Lucirin-TPO is a highly reactive and efficient photoinitiator, which may allow the 

potential for a reduction in curing time of TPO-based photoactive materials in thin 

sections due to its reduced depth of cure.  

                                                 
†
 Leprince J, Hadis MA, Ferracane JF, Devaux J, Leloup G, Shortall ACC, Palin WM. Photoinitiator 

type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dental 

Materials, 2011; 27: 157-164 

 
‡
 Winner of the Paffenbarger Award, Academy of Dental Materials,  Portland, 2009. 
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2.3.2 Introduction 

 

The demand for the reduction in curing time and minimized chairside procedure 

is un-questionable. Combined with the increasing popularity and demand for photoactive 

resin-based restorations as a replacement for dental amalgam, major financial 

implications have been suggested for dentists who chose to use high power, fast curing 

light sources (Christensen, 2000). Such light curing units may allow the possibility of 

shorter exposure times (<10 s) whilst maintaining optimum material properties. This is 

based on the assumption that the total energy of the irradiation, i.e. radiant exposure 

(J/cm
2
), is the main determining factor in degree of conversion and mechanical properties 

of the photoactive material. As radiant exposure is the product of irradiance (I, mW/cm
2
) 

and irradiation time (t, s), it supposed that comparable material properties result from 

similar radiant exposure, no matter how it is obtained (by different combinations of 

irradiance and time). While in certain cases this law is upheld (Sakaguchi and Ferracane, 

2001; Halvorson et al., 2002; Emami and Söderholm, 2003; Price et al., 2004), other 

studies have reported that although radiant exposure plays an important role, irradiance 

and time independently influence polymer chain length, extent of crosslinking and 

mechanical properties, and as such, exposure reciprocity does not hold under all 

conditions (Musanje and Darvell, 2003; Asmussen and Peutzfeldt, 2005; Peutzfeldt and 

Asmussen, 2005; Feng and Suh, 2007; Dewaele et al., 2009).  

Sections 2.1 and 2.2 of this thesis demonstrated the importance of monomer 

composition and filler percentage on reactivity and degree of conversion of RBC 

materials. Reactivity and degree of conversion are also dependent upon the efficiency of 

the photoinitiator system (Ogunyinka et al., 2007). Furthermore, alternative 

photoinitiators have been integrated in commercially available materials in the last few 

years, mostly for aesthetic reasons, due to yellowing by camphorquinone/amine systems 

(Price and Felix, 2009). As some of these alternative photoinitiators are also interesting in 

terms of photopolymerization efficiency, they might also have an impact on the validity 

of exposure reciprocity law. Notably, Lucirin-TPO, a monoacylphosphine oxide, seems 

to be a promising molecule, as it presents higher molar absorptivity and curing efficiency 

(Neumann et al., 2005; Neumann et al., 2006). However, considering the absorption 
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characteristics of Lucirin TPO and the increased scattering of light of shorter 

wavelengths, inferior curing depth of materials that replace camphoroquinone with 

Lucirin TPO may be a cause for concern (Price and Felix, 2009; Leprince et al., 2010a). 

Although recent work has highlighted the potential of Lucirin TPO-based (unfilled) 

polymers to be cured in thick layers (Kenning et al., 2008) and for use in dental adhesives 

(Illie and Hickel, 2009), its application in filled resin composites has not been fully 

described. To date, the curing efficiency of Lucirin TPO in filled resin-based composite 

has only been studied in commercial materials (Palin et al., 2008; Price and Felix, 2009; 

Leprince et al., 2010a), in which Lucirin TPO is not used by itself but in combination 

with camphoroquinone. Lower quantum yields have been measured for polymerization 

initiated by a mixture of Lucirin TPO and camphoroquinone compared to systems in 

which Lucirin TPO was used alone, probably due to a transfer from the more efficient 

photoinitiator (Lucirin TPO) to the less efficient one (camphoroquinone) (Neumann et 

al., 2009). In addition, the exact photoinitiator concentration and ratio in commercially 

available composite materials usually remains proprietary.  

Consequently, the aim of this work was to investigate the impact of photoinitiator 

type on the polymerization efficiency in unfilled and filled experimental resins. Degree of 

conversion (DC) and depth of cure were measured to investigate the applicability of 

exposure reciprocity law on the photoinitiator type and also the presence or absence of 

fillers. 
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2.3.3 Materials and Methods 

 

50/50 mass% Bis-GMA/TEGDMA resins were prepared with two different 

photoinitiator systems at equimolar concentration (0.0134 mol.dm
-3

): either 

camphorquinone, and the co-initiator, dimethylaminoethyl methacrylate (0.20/0.80 

mass%) or Lucirin-TPO. The more bulky Lucirin TPO structure has a molecular weight 

of almost twice that of camphoroquinone (348 and 166, respectively; Figure 2.3.1) and an 

equimolar concentration of TPO corresponded to 0.42 mass%.  

 

 

 

 

     

 

Figure 2.3.1: The chemical structures of the photoinitaitors tested in the present 

study.  

 

The resins were tested either unfilled or filled with silanated barium glass fillers 

(0.7 µm; Esschem Europe LTD, Seaham) and fumed silica (14 nm; Aerosil 150, Evonik 

Industries, Germany) to 65/10 mass%, respectively. Specimens were cured with a 11 mm 

diameter tip halogen Swiss Master Light (EMS, Switzerland), chosen for its broad 

spectrum, overlapping the absorption spectrum of both photoinitiators (albeit only 

partially with Lucirin TPO). Emission spectra were determined using a method used 

previously (Chapter 2.1 and 2.2) The absorption spectra of the photoinitiators were 

determined in methyl methacrylate (Sigma-Aldrich, UK) using the UV-Vis spectrometer 

coupled to a standard cuvette holder in absorbance mode. Three different curing 

protocols were applied to compare the applicability of exposure reciprocity law and 

another one to assess the potential of time reduction at the highest irradiance. 400 

mW/cm
2
 for 45 s was chosen as the reference protocol and compared to protocols of the 

same radiant exposure (18 J/cm
2
): 1500 mW/cm

2
 for 12 s and 3000 mW/cm

2
 for 6 s. The 

last irradiation protocol, 3000 mW/cm
2
 for 3 s, was chosen to assess the effect of half the 

radiant exposure on Lucirin TPO-based materials. The irradiance values were based on 
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the in-built radiometer of the curing-unit and verified by the spectrometer. Degree of 

conversion (DC) and rate of polymerization (
pR ) were measured in real-time by Fourier 

Transform near infrared spectroscopy (FT-NIRS; Figure 2.1.1) by monitoring the height 

of the peak at 6164 cm
-1

. The method was previously described in Chapter 2.1 and 2.2. 

Though DC is known to slightly evolve up to 24 h after irradiation, the major part of the 

polymerization occurs during irradiation (Truffier-Boutry et al., 2006). For that reason, 

DC at 70 s after the start of irradiation was chosen for comparison and will be referred to 

as DC
Max

A real time measurement of the maximum temperature rise (T
Max

) during the 

polymerization was performed using a similar set up as for FT-IR measurements, except 

that the mould was split on one side to insert a thermocouple.  The latter was glued in 

place so that the bead of the thermocouple (1.5 mm diameter) was in contact with the 

outer edge of the sample. The thermocouple was calibrated against a standard mercury 

thermometer. The depth of cure was measured by an penetrometer technique (Shortall et 

al., 1995) after curing the samples in a cylindrical Teflon mould (5 mm diameter) (n=3).  

Statistical analyses were performed on the DC
Max

, R
p

Max , depth of cure and T
Max

 

data sets using a general linear model (GLM) three-way analysis of variance (ANOVA) 

with photoinitiator (2 levels), filler inclusion (2 levels) and curing mode (4 levels) as the 

independent variables. Supplementary two-way ANOVA and post-hoc Tukey multiple 

comparison tests (p=0.05) were also performed. 

 

2.3.4 Results 

 

Figure 2.3.2 presents a comparison between the absorption spectra of both 

photoinitiators (Camphoroquinone and Lucirin TPO) and the emission spectra of the 

curing-unit at 400, 1500 and 3000 mW/cm
2
. An increased power of the curing unit 

resulted in a greater effective irradiance at shorter wavelengths and thus the overlap with 

Lucirin TPO absorption was improved. However, spectral emission was better adapted to 

camphoroquinone absorption, as a greater overlap of the two spectra was evident. 
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Figure 2.3.2: Absorption spectra (left axis, in L.Mol

-1
cm

-1
) of Camphoroquinone 

(yellow) and Lucirin TPO (purple) compared to the emission spectra of the Swiss 

Master Light (right axis, in μW/cm
2
.nm) at different irradiances, i.e. 400, 1500 and 

3000 mW/cm
2
. An Improvement of the overlap with Lucirin TPO absorption can be 

observed with increased power of the curing unit.  

 

The GLM of all independent variables revealed significant differences (p<0.001) 

where photoinitiator (df=1; F=5971) > filler inclusion (df=1; F=1302) > curing mode 

(df=3; F=809). A two-way ANOVA test of DC
Max

 results revealed significant overall 

differences for both photoinitiators and curing mode (p<0.001). Comparing irradiation 

modes of similar radiant exposure (18 J/cm
2
), DC

Max
 was significantly higher for all resin 

and resin composite Lucirin TPO-based materials compared with Camphoroquinone-

based materials (p<0.05; Figure 2.3.3(a) and Figure 2.3.4(a)). For Lucirin TPO, an 

increase in irradiance resulted in higher DC
Max

 regardless of exposure duration, while a 

reverse trend was observed for camphoroquinone-based materials where longer exposure 

led to higher DC
Max

 regardless of irradiance. DC
Max

 significantly decreased in most cases 

with addition of fillers (p<0.05), except for camphoroquinone-based materials cured with 

the highest irradiance where filled resins exhibited a significantly increased DC
Max

 

compared with the unfilled parent resin (p<0.05).  
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Figure 2.3.3: DC (a) and pR  (b) curves in real time during 70 s for 50/50 mass% Bis-

GMA/TEGDMA resin. Blue and red curves correspond respectively to Lucirin 

TPO-based and CQ-based resins. Irradiation modes are indicated on the charts.  
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Figure 2.3.4: DC (a) and pR  (b) curves in real time during 70 s for 50/50 mass% Bis-

GMA/TEGDMA resin filled with 75 mass% fillers. Blue and red curves correspond 

respectively to Lucirin TPO-based and CQ-based resins. Irradiation modes are 

indicated on the charts. 
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For each curing regime, all Lucirin TPO-based materials exhibited a significantly 

increased R
p

Max  (p<0.05) compared with camphoroquinone-based materials, except for 

filled Lucirin TPO and camphoroquinone-based composites irradiated with the reference 

curing mode (400 mW/cm
2
 for 45 s) (p>0.05) (Figure 2.3.3(b) and Figure 2.3.4(b); Table 

2.3.1 and Table 2.3.2). Regarding T
Max

 (Table 2.3.1 and Table 2.3.2), values were 

significantly higher for Lucirin TPO-based unfilled resins compared with 

camphoroquinone-based unfilled resins, except for the reference curing protocol. A 

comparable trend was observed for filled materials, although the differences between 

similar curing modes were not statistically significant (p>0.05).  Moreover, multiple 

regression analysis revealed that DC
Max

 and T
Max

 were highly correlated for unfilled (R
2
 

= 0.95; p<0.0001) and to a lesser extent for filled resins (R
2
 = 0.74; p<0.0001). Contrary 

to the observations of DC
Max

 and R
p

Max , depth of cure was significantly higher for 

camphoroquinone-based compared with Lucirin TPO-based materials (~1.5 to 3 times for 

unfilled and filled materials, respectively; Table 2.3.1 and Table 2.3.2). 

Comparing modes of different radiant exposure, both DC
Max

 and depth of cure 

were significantly lower (p<0.05) for camphoroquinone-based materials using the lower 

radiant exposure (9 J/cm
2
). Interestingly, in the case of Lucirin TPO-based materials, 

DC
Max

 at low radiant exposure is comparable in some cases or at least close to DC
Max

 at 

high radiant exposure, especially for unfilled resins. However, depth of cure at 9 J/cm
2
 

was significantly reduced (p<0.05) compared to all specimens cured using 18 J/cm
2
 

(Table 2.3.1 and Table 2.3.2). 
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Table 2.3.1: DC
Max

, R
p

Max , T
Max

and depth of cure (DOC) of unfilled resins. Similar 

letters within columns indicate no significant differences (p<0.05). 

 

Material 

Mode Radiant 

Exposure 

(J/cm
2
) 

DC
Max

 (%) 

 

Mean (+/- SD) 

R
p

Max
 (s

-1
) 

 

Mean (+/- SD) 

T
Max

 (°C) 

 

Mean (+/- SD) 

DOC (mm) 

 

Mean (+/- SD) Time  

(s) 

Irradiance 

(mW/cm
2
) 

Filled 

 Camphoroquinone 

45 400 18 57.6 (0.7) c,d 0.022 (<0.001) e 14.0 (0.3) c 10.6 (0.2) a 

12 1500 18 54.9 (0.9) d 0.043 (0.001) d 17.6 (0.5) a,b,c 10.8 (0.2) a 

6 3000 18 50.8 (0.2) e 0.056 (0.001) c 17.0 (1.4) a,b,c 10.1 (0.3) a 

3 3000 9 32.5 (1.0) f 0.043 (0.001) d 7.6 (0.1) d 7.3 (0.2) b 

Filled 

Lucirin TPO 

45 400 18 62.7 (0.5) b 0.028 (0.001) e 14.5 (0.4) b,c 3.2 (0.2) d 

12 1500 18 65.2 (2.5) a,b 0.071 (0.01) b 18.9 (1.0) a,b 3.7 (0.1) c,d 

6 3000 18 68.0 (0.3) a 0.104 (0.005) a 19.9 (0.2) a 3.9 (0.3) c 

3 3000 9 59.0 (1.7) c 0.109 (0.002) a 13.6 (4.2) c 2.5 (0.3) e 

 

Table 2.3.2:DC
Max

, R
p

Max , T
Max

and depth of cure (DOC) of filled resins. Similar letters 

within columns indicate no significant differences (p<0.05). 

Material 

Cure Protocol Radiant 

Exposure 

(J/cm
2
) 

DC
Max

 (%) 

 

Mean (+/- SD) 

R
p

Max
 (s

-1
) 

 

Mean (+/- SD) 

T
Max

 (°C) 

 

Mean (+/- SD) 

DOC (mm) 

 

Mean (+/- SD) Time  

(s) 

Irradiance 

(mW/cm
2
) 

Unfilled  

Camphoroquinone 

45 400 18 72.1 (0.7)
 
d 0.024 (0.000) e 33.6 (2.0)

 
b,c 18.2 (0.2)

 
a 

12 1500 18 65.8 (0.5) e 0.043 (0.001) c,d 29.1 (1.4) c 16.9 (0.1)
 
b 

6 3000 18 43.9 (1.2) f 0.040 (0.001) d 19.5 (3.9)
 
d 14.4 (0.1) c 

3 3000 9 25.7 (1.3) g 0.028 (0.001) d,e 10.6 (1.4) e 9.5 (0.1) f 

Unfilled  

Lucirin TPO 

45 400 18 76.0 (0.1) c 0.058 (0.001) c 29.5 (1.9) b,c 9.6 (0.3) f 

12 1500 18 83.3 (0.5) a,b 0.133 (0.005) b 41.5 (3.2)
 
a 11.8 (0.2) d 

6 3000 18 85.0 (0.3) a 0.186 (0.006) a 41.1 (1.8)
 
a 10.4 (0.2)

 
e 

3 3000 9 82.1 (0.2) b 0.177 (0.014) a 36.4 (3.3) a,b 4.4 (0.2) g 
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2.3.5 Discussion 

 

Both photoinitiator type and filler content significantly influence material 

properties cured with similar radiant exposure by varying irradiance and/or exposure 

time, which contests the applicability of the exposure reciprocity law. However, in 

certain instances comparable DC
Max

 and depth of cure were observed regardless of curing 

protocol. Whilst reciprocity is observed for depth of cure of the camphoroquinone-based 

composite in accordance with Nomoto et al. (1994), it is not the case for DC
Max

 of the 

same material tested here. The trend observed for camphoroquinone-based materials is in 

agreement with previous literature (Peutzfeldt and Asmussen, 2005; Dewaele et al., 2009) 

supporting that for these systems, time has more impact than irradiance on the material 

properties. As explained in recent work on trapped free radicals (Leprince et al., 2010b), 

there is probably a loss in radical growth centres by translational diffusion and 

bimolecular (radical-radical) termination during the early stages of polymerization 

wherein system mobility is high. This loss (or early termination) is greater for high 

irradiance protocols, since at low conversion termination is proportional to the squared 

concentration of free radicals. As a result, at a radiant exposure with higher irradiance 

(and shorter time), the amount of growth centres created during auto-acceleration are 

reduced and DC
Max

 is significantly decreased compared with similar radiant exposure 

achieved using lower irradiance for longer time. However, while variations in DC
Max

 of 

camphoroquinone-based materials are obvious for unfilled systems, the differences 

appear more subtle in filled materials and approach a reciprocal relationship with respect 

to irradiance and time. This effect is supported by previous findings (Leprince et al., 

2009) demonstrating that trapped free radical concentrations were nearly 3 times higher 

in the organic matrix of a filled composite than in a corresponding unfilled resin and was 

related to spatial confinement of radicals in filled resins, preventing their recombination. 

It could indeed be assumed that the organic fraction is located in small interstices 

between the inorganic particles, which could restrict the diffusion of radicals to a 

relatively small volume. But, it could also be related to an increase in local viscosity as 

reported in the previous sections (Section 2.1 and 2.2), reducing molecular mobility, 

thereby favoring a monomolecular termination pathway. Feng and Suh (2007) 
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demonstrated that above a specifice Bis-GMA/TEGDMA ratios (  6:4, Bis-

GMA/TEGDMA) reciprocity holds (Feng and Suh., 2007). Interestingly, Beun et al. 

(2009) suggested that the large contact area between fillers and resin probably results in a 

significant local increase in viscosity. Accordingly in section 2.1 and 2.2 it was shown 

that for low viscosity resins, the addition of fillers significantly improved conversion and 

it was suggested that this was due to a significant increase in local viscosity.  

Consequently, at the highest irradiance, the filled camphoroquinone-based 

materials exhibited a significant increase in DC
Max

 and R
p

Max compared with the unfilled 

parent resin (50.8 and 43.9 %, 0.056 and 0.040 s
-1

, respectively). Since the 

polymerization kinetics of camphoroquinone-based materials at high irradiance are 

limited, inclusion of filler particulates may have also affected light scattering properties 

through the limited specimen thickness (1.4mm) and/or provided some thermal insulating 

effect which improved final conversion of the filled composite.  

By comparing camphoroquinone- with Lucirin TPO-based materials, deviations 

from the simple assumption of exposure reciprocity law can be highlighted. The 

significant increase in DC
Max

 of Lucirin TPO- compared with camphoroquinone-based 

materials (Figure 2.3.3(a) and Figure 2.3.4(a); Table 2.3.1 and Table 2.3.2) can be 

explained by an increased generation of free radicals resulting from the vastly higher 

molar absorptivity (Figure 2.3.2) and quantum yield efficiency of Lucirin TPO (Neumann 

et al., 2005; Neumann et al., 2006) compared with camphoroquinone. Photochemical 

cleavage of Lucirin TPO (a Norrish Type I photoinitiator) results in two free radical 

intermediates compared with one active radical in camphoroquinone/amine systems, and 

the absence of co-initiator for Lucirin TPO reduces the intermediate steps required for 

radical production. Nevertheless, even if it can be assumed that an increased number of 

free radicals led to higher DC
Max

, the increased efficiency of higher irradiance modes 

achieved by curing Lucirin TPO-based materials with the halogen curing unit is 

interesting, especially in unfilled resins. Firstly, the positive impact of higher irradiance 

on DC
Max

 is difficult to estimate due to a greater effective irradiance and complex overlap 

of Lucirin TPO-absorption with increasing power of the curing unit (Figure 2.3.2). 

Secondly, the quantum yield efficiency was reported to be 5 times higher for Lucirin 
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TPO than for camphoroquinone with a halogen light (Neumann et al., 2006). Hence, 

despite some radical loss by early recombination, there is probably a much quicker build-

up of the polymer network into a gel-phase, favouring radical entrapment and leading to 

an earlier onset of autoacceleration (Figure 2.3.3(b) and Figure 2.3.4(b)). During 

autoacceleration, which is characterized by a low termination rate, Lucirin TPO-based 

materials generate many more polymer growth centers. At high irradiance, this results in 

a significantly increased R
p

Max  compared with camphoroquinone-systems, which can 

compensate time reduction and lead to high DC
Max

. Although the results are presented as a 

function of the total power of the irradiating light source rather than the total number of 

photons absorbed directly by the photoinitiator, the conclusions remain valid since both 

quantities remained proportional for each curing protocol. In addition, the influence of 

temperature should not be ignored. As high R
p

Max  is associated with a greater and quicker 

reaction exotherm, it further improved DC
Max

 by increasing T
Max

, hence monomer 

mobility and increasing vitrification temperature  

Despite their obvious higher curing efficiency highlighted above, Lucirin TPO-

based materials exhibit inferior curing efficiency through depth, for unfilled and even 

more for filled materials. Since Lucirin TPO is a colourless photoinitiator and has been 

shown to exhibit efficient photo-bleaching properties with no absorbance of photolysis 

products above 360 nm (Stephenson Kenning et al., 2008), negligible light attenuation 

through an unfilled Lucirin TPO-based resin might be assumed although high exotherm 

and increasing UV radiation may cause some oxidation and discolouration of the polymer 

resin. The more likely explanation for inferior cure depth of Lucirin TPO-based materials 

is related to the much higher molar absorptivity of Lucirin TPO (Neumann et al., 2005). 

At similar photoinitiator concentration, Lucirin TPO utilizes many more photons than 

camphoroquinone due to the much higher molar extinction coefficient (Neumann et al., 

2005). Therefore, the penetration of appropriate wavelength light (i.e. <420nm; Figure 

2.3.2) needed to activate Lucirin TPO is reduced rapidly through depth. As such, the 

absorption properties of Lucirin TPO and camphoroquinone are interesting in terms of 

photoinitiator optical properties of RBC materials, which will be further investigated in 

Chapter 3.  
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In the present study, the ratio of camphoroquinone:amine was selected as an 

optimum combination to produce maximum DC (Yoshida and Greener, 1994) and the 

camphoroquinone concentration was similar to that used in commercial composites 

(Taira et al., 1988), and an equimolar concentration was used for Lucirin TPO for 

comparative purposes. However, given the very high polymerization efficiency of Lucirin 

TPO, its concentration could probably be reduced, thereby improving depth of cure. As 

for the additional decrease of depth of cure in filled materials, it is probably related to an 

increased light scattering at the shorter wavelengths that correspond with the effective 

absorption of Lucirin TPO (Price and Felix, 2009). However, the effective spectral 

irradiance of the curing-unit in the absorption range of Lucirin TPO is several times 

lower than that of camphoroquinone. As there is a correlation between irradiance and 

depth of cure (Lindberg et al., 2004), a higher depth of cure for Lucirin TPO-based 

materials might be achieved using a higher intensity source emitting specifically around 

400 nm. 

 

2.3.6 Conclusion 

 

In most cases, the implicit assumption of exposure reciprocity law was not 

upheld. Exposure reciprocity relies on the extent of monomolecular termination of the 

curing material, which is directly affected by molar absorptivity, quantum yield 

efficiency, material viscosity and temperature. However, while the validity of this law 

appears far from systematic, there is a clear interest to consider its global relevance to 

clinical practice and the potential of significant time reduction using modern high-

irradiance curing lights. From this work, it appears that this potential clearly depends on 

the photoinitiator type, as Lucirin TPO-based materials reach higher DC
Max

 than 

camphoroquinone-based materials at similar or even half radiant exposure. However, the 

problem of low depth of cure of Lucirin TPO-based materials still has to be addressed. 

For camphoroquinone-based systems, filler content has an impact on the efficiency of 

high irradiance modes, probably due to decreased local mobility of monomers. This 

underlines the necessity to adapt curing protocols according to the material filler content, 

which is of prime interest for clinicians.  
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2.4 Summary 

 

The aim of this chapter was to investigate the reason why in some cases exposure 

reciprocity is verified whilst in others it is not and to investigate the possibility of reduced 

curing time based on radiant exposure.  

Manufacturers of RBCs typically produce flowable materials either by reducing 

the filler percentage used in the high viscosity versions or by increasing the amount of 

diluent monomer used, both of which are likely to affect the kinetics of polymerization. 

Five commercial resin composite materials (Venus; Heraeus Kulzer, Synergy D6; 

Coltene, Premis; Kerr, Grandio; Voco and Gradia; GC Corp) and their counterpart 

flowable versions were tested (Section 2.1). The materials were irradiated at various 

combinations of irradiance and time so that they received a total radiant exposure of 18 

J/cm
2
. The majority of the higher viscosity resin composite paste materials exhibited 

similar degree of conversion regardless of curing protocol. However, a significant 

decrease in degree of conversion for specimens cured at 3000 mW/cm
2
 for 6 s compared 

with 400 mW/cm
2
 for 45 s was observed for flowable materials, Grandio (41 ± 0.36 and 

62 ± 1.15 %, respectively) and Venus (44 ± 0.44 and 67 ± 0.44 % respectively). 

Conversely, other flowable materials exhibited little or no significant difference between 

curing modes. The validity of exposure reciprocity and the extent of conversion depend 

on several factors amongst which resin viscosity and filler content are important factors 

in determining radical termination pathway. Bi-radical termination pathways are expected 

to be dominant when system mobility is high and therefore reciprocity is expected to fail. 

However, as reciprocity was verified for some low viscosity materials, it was suggested 

that the extent of bi-radical terminations depends upon the local viscosity (i.e. the resins 

between the fillers) and not the macroscopic viscosity.  Consequently, the problem of 

partly unknown composition limits the analysis of commercial materials. Therefore, to 

further understand such an effect, exposure reciprocity was investigated in model systems 

comprising of Bis-GMA/TEGDMA ratios of 70/30, 60/40, 50/50, 40/60 and 30/70 

mass%, respectively (Section 2.2). The resins were tested either unfilled (UF) or filled 

with silanated barium glass fillers and fumed silica to 30/10 vol% (Low Fill, LF), and 

50/10 vol% (High Fill, HF) respectively. The model composites were tested under the 
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hypothesis that if reciprocity held for the parent resins then it should also hold for the 

composites, i.e low viscosity resins are expected to fail reciprocity (Feng and Suh, 2007) 

regardless of whether they are filled or not. For UF resins, the differences in degree of 

conversion between the highest and lowest irradiation modes were greater for the low 

viscosity resins and degree of conversion was more dependent upon irradiation mode 

rather than resin type. The opposite occurred for the LF and HF counterparts where resin 

type became more influential. Therefore, it was suggested that the viscosity of the system 

determines how radicals are terminated. When the system viscosity is low, bi-radical 

termination occurs and polymer conversion becomes more dependent on exposure time 

but when the viscosity is high, a monomolecular termination pathway dominates and 

polymer conversion can rely, to a greater extent, on a reciprocal relationship between 

irradiance and time. Although the constituents of the resin matrix play a major role in the 

polymerization kinetics, it is evident that the fillers have a significant affect as they 

restrict mobility to a relatively small volume and increase the probability of a 

monomolecular termination pathway. Evidently bi-radical terminations even occur in 

highly filled composites with low local viscosities and therefore reciprocity cannot be 

verified.  

However, not all flowable composites are manufactured in the same way and 

there exists scenarios where reciprocity can be verified even with low resin viscosities 

(Section 2.3). The use of alternative photoiniators such as Lucirin TPO seems an 

interesting approach in terms of controlling polymerization kinetics as reactivity and 

efficiency is significantly greater when compared to camphoroquinone. Although inferior 

depth of cure may be a problem with such initiators, this may be overcome by improving 

optical properties with appropriate filler adaptation or by using camphoroquinone 

synergistically. As such, the optical properties of RBC materials will be investigated in 

Chapter 3 of this thesis.  

In conclusion, the current chapter highlights the importance of manufacturers to 

divulge the composition of their materials to some extent in order to select adequate 

curing protocols which may reduce the occurrence of under-cured restorations. Also, the 

findings presented here may help the design of novel materials that allow high irradiance 

curing at reduced time which will benefit both the dentist and the patient. 
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Optical Phenomena of Photoactive Dental Resins 
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3.0 Optical Phenomena of Photoactive Dental Resins 

 

The demand for filling materials to match the aesthetic quality of natural teeth has  

vastly increased in popularity over the last few decades. However, the durability of large 

„white‟-fillings or resin-based composites (RBCs) in posterior load bearing applications 

is generally considered to be inferior to „silver‟-filling types (dental amalgams). This 

shortcoming may be related to both the increased number of technique sensitive 

application steps the dentist has to perform when restoring the tooth as well as any 

inherent shortcomings of a quasi-brittle solid compared with amalgam alloy materials. 

The placement of modern light activated RBCs is limited to approximately 2 mm 

increments which are cured „on command‟ with high intensity blue light following the 

application and polymerisation of a bonding system Therefore, to fill large cavities, 

adhesives and multiple increments are required, which increases procedure time and cost 

when compared with placing dental amalgam which can be filled in bulk. Chapter 2 of 

this thesis investigated the potential of high irradiance curing protocols to reduce 

procedure time and cost. Another interesting approach to reduce procedure time is to 

improve depth of cure, which will reduce the number of technique sensitive steps. 

Consequently, the development of RBCs with improved light transmission through depth 

is highly desirable which may improve depth of cure and reduce placement time. 

The dynamic change in optical properties of RBCs is not well understood. Optical 

properties can be controlled through photoinitiator chemistry (Section 3.1) and also by 

altering the components of the resin matrix (Section 3.2), and therefore it may be possible 

to alter the extent to which the curing light is transmitted through the material. As RBCs 

cure, the photoinitiator decomposes and the resin components become denser and shrink. 

Consequently changes in optical properties occur. Shrinkage vectors are dependent upon 

several factors, amongst which material composition and cavity constraint are important. 

As shrinkage will affect light transmission, dynamic optical properties of the curing light 

may differ according to specimen geometry (Section 3.3). Therefore chapter aims to gain 

a better understanding of optical properties, which may provide a platform with which to 

improve cure depth, reduce procedure time and potentially improve clinical durability 

and success of such materials.   
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3.1 Competitive Light Absorbers in Photoactive Resin-Based 

Materials
††‡‡

 

 

3.1.1 Abstract 

 

The aim of this Section is to characterise real time photoinitiator absorption 

properties of “white” Lucirin TPO and “yellow” camphoroquinone and to assess their 

influence on polymer discolouration. Resin formulations (50:50 Bis-GMA/TEGDMA 

mass %) contained low (0.0134 mol/dm3), intermediate (0.0405 mol/dm3) or high 

(0.0678 mol/dm
3
) concentrations of the photoinitiators camphoroquinone or Lucirin TPO 

and the inhibitor BHT at 0, 0.1 or 0.2% by mass.  Disc shaped specimens (n=3) of each 

resin were cured for 60 s using a halogen light curing unit (~800 mW/cm
2
). Dynamic 

measurements of photoinitiator absorption, degree of conversion (DC)/ curing kinetics 

and reaction temperature were performed on curing resins. A spectrophotometer was used 

to measure CIELAB co-ordinates of each specimen before and after cure. Statistical 

analyses were performed using a general linear model (GLM) three-way analysis of 

variance (ANOVA) with photoinitiator (2 levels), photoinitiator concentration (3 levels) 

and BHT percentage (3 levels) as the independent variables. Supplementary one-way 

ANOVA and post-hoc Tukey tests (p=0.05) were also performed. The GLM of all 

independent variables revealed significant differences (p<0.001) where photoinitiator 

concentration (df=2; F=618.83) > photoinitiator type (df=1; F=176.12) > % BHT (df=2, 

F=13.17). BHT affected kinetics but consequently produced lower conversion in some of 

the camphoroquinone-based resins. Significant differences between photoinitiator type 

and concentrations were seen in colour (Lucirin TPO resins became yellow and 

camphoroquinone became less yellow). Reaction temperature, kinetics and conversion 

were also significantly different for both initiators (P<0.001). Despite Lucirin-TPO-based 

resins producing a visually perceptible colour change on cure, the colour change was 

significantly lower than that produced in camphoroquinone-based resins.  

                                                 
††

 Hadis MA, Shortall AC and Palin WM. Competetive light absorbers in photoactive dental 

materials. Submitted to Acta Biomaterialia. 

 
‡‡

 Winner of the Heraeus Kulzer Travel award for innovation in materials testing. International 

Association of Dental Research, Barcelona, 2010. 
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3.1.2 Introduction 

 

Over the last decade, the significant increase in the use of photo-active RBCs over 

dental amalgams in restorative dentistry is primarily due to patients aesthetic demands, 

the dentists material preference to use RBCs and environmental concerns and 

government legislations (Burke, 2004). The development of RBCs has continued since 

they were first introduced several decades ago with much research being carried out in 

order to improve the setting reaction and photoinitiator chemistry (the primary absorber 

of light in RBCs) (Yoshida and Greener, 1994; Rueggeberg et al., 1997; Halvorson et al., 

2002; Jakubiak et al., 2003; Neumann et al., 2005; Neumann et al., 2006; Ogunyinka et 

al., 2007; Musanje et al., 2009) as-well as mechanical properties (Kahler et al., 2008; 

Curtis et al., 2009). 

The α-diketone, camphoroquinone is the most widely and successfully used 

photoinitiator in RBC materials (Stansbury, 2000; Jakubiak et al., 2003) and has a distinct 

yellow tint, which does not bleach fully upon irradiation. Such discolouration may reduce 

aesthetic quality (Rueggeberg et al., 1997; Suh, 1999; Brackett et al., 2007) and affect 

light transport through material thickness. Furthermore, the use of camphoroquinone also 

requires amine co-initiators such as dimethylamino ethyl methacrylate (DMAEMA) to 

efficiently produce free radicals to initiate polymerisation. The use of such co-initiators is 

known to produce coloured reaction by-products in the presence of light or heat 

(Asmussen, 1985). Any colouring by the photoinitiators will inevitably reduce aesthetic 

quality and cause problems in colour matching to natural teeth (Alvim et al., 2007). 

Despite this, the camphoroquinone/amine system remains the most widely used 

photoinitiator system in photoactive dental RBCs although more recently alternative 

“colourless” photoinitators have been introduced which may be based on either iodinium 

salts (Weinmann et al., 2005), onium compounds (Shin and Rawis, 2009) or Norrish 

Type I photoinitiator systems such as acylphosphine oxides (Neumann et al., 2005; Illie 

and Hickel, 2005; Neumann et al., 2006). Some of these types of photoinitiators have 

recently been used by manufacturers either synergistically with camphoroquinone or as a 

stand alone photoinitiator system, which may improve polymerisation kinetics (Chapter 
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2), mechanical properties and aesthetic quality (Park et at., 1999; Weinmann et al., 2005; 

Neumann et al., 2006; Shin and Rawis, 2009).  

Free-radical polymerisation of methacrylate monomers used in dental RBCs is 

initiated by the excitation of suitable photoinitiator systems by light despite the monomer 

itself being capable of forming reactive species although this is deemed inefficient (Sun 

and Chae, 2000; Shin and Rawis, 2009). The photoinitiator chemistry affects light 

transmission, polymerisation kinetics and overall conversion of monomer to polymer thus 

affecting material properties (Yoshida and Greener, 1994; Rueggeberg et al., 1997; 

Ogunyinka et al., 2007; Musanje et al., 2009). It is well known that an increase in the 

amount of photoinitiator in composite resins or an increase in the spectral overlap 

between the light curing unit and the initiating system (i.e. synergistically using more 

than one photoinitiator) improves polymerisation kinetics, aesthetics, mechanical and 

biological properties (Rueggeberg et al., 1997; Park et al., 1999). However, there exists 

an optimal level above which any increase in photoinitiator does not benefit final 

conversion (Yoshida and Greener, 1994; Musanje et al, 2009) and aesthetic quality may 

be compromised in the case of pigmented photoinitiators.  

The increased demand for aesthetic quality has introduced the use of alternative 

colourless photoinitiators, which may provide the potential for improved aesthetic (Price 

and Felix, 2009) and curing efficiency (Chapter 2; Neumann et al., 2005; Neumann et al., 

2006). Furthermore, photoinitiators based on acylphosphine oxides such as Lucirin TPO 

(2,4,6-trimethylbenzoyl-diphenylphosphine oxide) do not require the use of amine 

accelerators, which further increases the potential for aesthetic quality. The 

photochemical cleavage of the carbon phosphorus bond in such molecules leads to the 

formation of two free radical intermediates, which can initiate polymerisation without the 

need for additional amine accelerators (Neumann et al., 2006).  

Camphoroquinone has an absorption range from 400-500nm with a maximum 

excitation wavelength of 470nm. Consequently, most light curing units are adapted for 

the excitation of camphoroquinone. Lucirin TPO seems to be an interesting molecule 

despite its shorter wavelength absorption range since its higher molar absorptivity may 

provide greater efficiency to cure dental resins (Chapter 2; Neumann et al, 2005; 

Neumann et al., 2006). Moreover, recent work has highlighted the potential of Lucirin 
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TPO-based (unfilled) polymers to be cured in thick layers (Stephenson Kenning et al., 

2008). However, in Section 2.3 it was suggested that inferior cure depth in resins and 

RBCs containing Lucirin TPO when compared to camphoroquinone based materials may 

be related to inefficient light transmission at depth. Additionally, the use of this initiator 

is not compatible with most conventional light emitting diode (LED) light curing units, 

which have an emission range between 450-500nm. Several manufacturers have now 

introduced so-called third generation dual wavelength LED units by combining LEDs 

with two different wavelengths that are capable of exciting alternative photoinitiators 

(Illie and Hickel, 2008).  

Consequently, the aim of this study was to analyse the photo-absorption 

characteristics and photo-bleaching characteristics of camphoroquinone and Lucirin TPO 

throughout cure using a dynamic spectroscopy technique, which may have some 

significance to improving light transmission and the perceived improvement of aesthetic 

quality using alternative, non-yellowing photoinitiator systems. The two hypotheses that 

were tested were: 

i) Camphoroquinone will exhibit a decrease in yellowing throughout and 

following cure 

ii) Lucirin TPO will not result in a significant change in colour during or 

following cure. 

 



123 

3.1.3 Materials and Methods 

 

Resin formulations were prepared using a 50/50 Bis-GMA and TEGDMA 

mixture containing low (0.0134 mol/dm
3
), intermediate (0.0405 mol/dm

3
) and high 

(0.0678 mol/dm
3
) concentrations of the photoinitiators camphoroquinone or Lucirin- 

TPO (Table 3.1.1).  

 

[PI] 

Weight % 

Camphoroquinone DMAEMA LUCRIN TPO 

Low 0.2 0.8 0.4212 

Intermediate 0.6 1.2 1.2644 

High 1 1.6 2.1062 

 

Table 3.1.1: Photoinitaitor concentration as percentage of total weight of resin 

having equimolar concentrations of camphoroquinone and Lucirin TPO. 

 

Resins were obtained by Sigma-Aldrich (Gillingham, UK) and either used as 

received or contained the inhibitor butylated hydroxytoluene (BHT) at 0.1% and 0.2% 

(by mass). The chemical structures of the photoinitiators and the mechanism by which 

free radicals are produced and terminated are shown in Figure 3.1.1. A resin containing 

no photoinitiator and no inhibitor was used as the control. A quartz-tungsten halogen 

light curing unit (XL2500, 3M) having a total irradiance of ~800 mW/cm
2
 measured on a 

handheld radiometer (Cotolux light meter; Cotelene Whaledent, UK) and verified using a 

UV-Vis spectrometer (USB400, Ocean Optics, Dunedin, USA) was used to cure the 

specimens for 60 s. The light curing unit was chosen specifically for its broad spectrum 

irradiance which overlaps the absorption spectrums of both photoinitiators (albeit only 

partially with Lucirin TPO). The emission spectrum was measured by calibrating the UV-

Vis spectrometer using a deuterium tungsten light source (according to NIST standard) 

with known spectral output in the UV-Vis and NIR range (Mikropack DH2000-CAL, 

Ocean Optics, Dunedin, USA). During the measurement of absolute irradiance, the 

irradiance of the light curing unit was controlled by stacking reflective neutral density 

filters (Thorlabs UK) which produced a 6-fold reduction in irradiance over the whole 

spectrum. Static absorption spectra of the photoinitiators and the inhibitor BHT were 

determined in methyl methacrylate (Sigma-Aldrich, UK) using UV-Vis spectroscopy.  
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(c) continued… 

 

 

 

Figure 3.1.1: Free radical (•) production with the photoinitiator system 

camphorquinone/amine (a) Lucirin TPO (b) and the termination of free radicals by 

the inhibitor BHT (c).  
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Degree of Conversion and Kinetics 

 

Dynamic measurements of DC/ curing kinetics were conducted in real time for 

curing resins (n=3) through cylindrical white Teflon moulds (12 x 1.4 mm) covered by 

two glass microscope slides (Figure 3.1.2). The FT-NIR method employed is described 

previously in Chapter 2 of this thesis. 

 

Temperature Measurements 

 

Temperature measurements were also conducted in real-time during light 

activation (n=3) through cylindrical white Teflon moulds (12 mm central circular cavity 

diameter x 1.4 mm thickness) covered by two glass microscope slides. The method 

employed was previously described in Section 2.3 where a thermocouple bead was 

inserted and glued into a mould which had been split on one side (Figure 3.1.2). The 

thermocouple was calibrated against a standard mercury thermometer. The temperature 

measurements where then used to calculate the maximum temperature rise ( maxT ) 

during irradiation. 

 

Photoinitiator Absorption 

 

 Additionally, photoinitiator absorption was measured in real time during 

irradiation at the maximum point of overlap between the photoinitiators and the light 

curing unit (camphoroquinone: 470nm; Lucirin TPO: 420nm) by a technique adapted 

from Chen et al., (2007) (Figure 3.1.2). The UV-Vis spectrometer (USB4000, Ocean 

Optics) was set up so that a 200 μm fibre optic cable, which had a cosine corrector 

attachment (CC3-UV; Ocean Optics, USA; light sensing diameter: 3.9 mm) was able to 

measure light of the appropriate wavelength from the centre of the light curing unit. Due 

to the relatively high intensity of the light curing unit, reflective neutral density filters 

were stacked directly above the cosine corrector. The spectrometer was then calibrated so 

that the „light spectrum‟ was taken with a sample within a cylindrical teflon mould (12 x 

1.4 mm) containing no photoinitiator (covered with two microscope slides). The „dark 
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spectrum‟ was then taken by blocking any light reaching the optical fibre. The distance 

between the top of the sample and the light curing unit was kept to 1 mm, which 

facilitated the use of a shutter. A shutter was used as preliminary studies identified 

fluctuations in light intensity during the first 10 s of activation and therefore the light was 

activated for 10 s before the shutter was removed to start both calibration and sample 

measurements. For sample measurements, real time absorbance was recorded using 

Spectrasuite software during irradiation of the sample. 

 

Colour Analysis 

 

A spectrophotometer (CM-2600d; Konica, Minolta, UK) was used to measure the 

tristimulus values of the International Commission on Illumination (CIELAB) values 

based on D65 standard illuminant and a 10-degree observer. The tristimulus values 

represent the amount of three primary stimuli (red, green and blue) required to give 

colour match with the colour stimulus. The spectrophotometer was first calibrated against 

a standard white tile provided by the manufacturer of the spectrophotometer. Colour 

measurements were made before and after real time photoiniator absorption 

measurements (described above). The measurements were made whilst the samples were 

contained within the moulds and the glass microscope slides but were placed on top of a 

white ceramic backing tile before each measurements. The CIELAB values obtained 

included specular gloss (SCI) as the specular port was covered with a diffuse white 

material and specular gloss was reflected back into the the integrating sphere. From these 

values, the colour change was calculated according to the following equation: 
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Statistical Analysis 

 

Statistical analyses were performed on the maxDC , 
max

pR , maxT , E  (change in 

colour) and b  (the change in b-value of the CIELAB co-ordinates) and data sets using a 

general linear model (GLM) three-way analysis of variance (ANOVA) with 

photoinitiator (2 levels), photoinitiator concentration (3 levels) and BHT concentration (3 

levels) as the independent variables. Supplementary one-way ANOVA and post-hoc 

Tukey tests (P=0.05) were also undertaken. 
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(a) 

 

(b)  

(c)   

 

 

Figure 3.1.2: Experimental set up for the measurement of real time photoinitiator 

absorption (a), degree of conversion (b) and temperature (c). 
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3.1.4 Results 

 

Figure 3.1.3 presents a comparison between the absorption spectra of both 

photoinitiators (camphoroquinone and Lucirin TPO), the inhibitor BHT and the emission 

spectra of the XL2500 light curing unit. The spectral emission of the light curing unit was 

better adapted to camphoroquinone absorption, as a greater overlap of the two spectra 

was evident although Lucirin TPO shows a significantly higher molar absorptivity at 

max . The absorption range of BHT fell outside the emission range of the light curing unit 

and absorbed in the UV region of the electromagnetic spectrum. 
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Figure 3.1.3: Absorption spectra (left axis, in L.Mol
-1

cm
-1

) of camphoroquinone 

(solid blue line), Lucirin TPO (broken blue line) and BHT (dotted blue line) 

compared to emission spectra of the XL2500 (right axis, in µW/cm
2
.nm) (a). 

Magnified peak for BHT (b).  
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Figure 3.1.4 represents the change in photoinitiator absorption for (a) 

camphoroquinone and (b) Lucirin TPO at the emission-absorption overlap. The 

concentration of photoinitiator significantly affects both initial and final absorbance in 

both camphoroquinone and Lucirin TPO (P<0.001). BHT did not significantly affect 

initial and final absorbance values for any of the camphoroquinone or Lucirin TPO 

although kinetics was affected. 
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Figure 3.1.4: Real time change in PI absorption of (a) camphoroquinone (CQ) (b) 

and Lucirin TPO, measured at the maximum point of overlap of the LCU 

(camphoroquinone: 470nm; Lucirin TPO: 420nm) by UV-Vis spectroscopy. 
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The GLM of all independent variables revealed significant differences (P<0.001) 

where photoinitiator concentration (df=2; F=618.83) > photoinitiator type (df=1; 

F=176.12) > % BHT (df=2, F=13.17). Separate one-way ANOVAs and post hoc-Tukey 

tests (p<0.05) revealed significant overall differences for each separate response to 

compare the effect of photoinitiator concentration and  BHT concentrations within each 

photoiniator group (Table 3.1.2). Camphoroquinone resins with similar BHT 

concentrations revealed significantly higher E  and b values as photoinitiator 

concentration was increased which was related to the significantly higher b-values 

(p<0.05) for both pre- and post irradiation (although b-values decreased upon irradiation 

resulting in a negative b ). Similar trends were also observed for Lucirin TPO-based 

resins although E  and b  (also related to the b-values) values significantly lower 

(p<0.05) for all Lucirin TPO resins compared with camphoroquinone-based resins. For 

Lucirin TPO resins, b values were positive as the b-value increased upon irradiation 

(Table 3.1.3). Resins containing no photoinitiator showed no significant colour change so 

E  and b  should be taken as zero. 
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Table 3.1.2: Colour change, temperature rise and DC for resins containing the photoinitiator Camphoroquinone. Similar 

letters within the same column represents no statistical significance (p<0.05). 

 

PI BHT 

COLOUR CHANGE TEMPERATURE CONVERSION 

ΔE b-value pre-cure b-value post-cure Δb ΔT
max

 DC
MAX

 

LUCIRIN LOW 

0% 1.15 (0.21) b 5.21 (0.19) c 6.13 (0.20) c 0.92 (0.03) b 28.40 (0.72) a 68.30 (0.27) c 

0.10% 1.03 (0.03) b 5.13 (0.13) c 6.10 (0.10) c 0.97 (0.09) b 30.97 (2.94) ab 68.78 (0.15) c 

0.20% 0.89 (0.12) b 5.18 (0.10) c  5.74 (0.41) c 0.56 (0.49) b 31.37 (1.12) ab 66.46 (0.19) d 

LUCIRIN INT 

0% 2.06 (0.33) ab 6.36 (0.08) b 8.38 (0.38) ab 2.01 (0.33) a 28.67 (2.06) b 74.24 (0.33) ab 

0.10% 1.85 (0.07) ab 6.17 (0.09) b 7.94 (0.10) b 1.78 (0.09) a 31.87 (2.54) ab 75.45 (0.13) ab 

0.20% 1.21 (0.81) b 6.22 (0.08) b 7.37 (0.85) b 1.15 (0.84) a 34.43 (2.50) a 73.84 (0.41) a 

LUCIRIN HIGH 

0% 2.25 (0.11) a 7.14 (0.06) a 9.29 (0.06) a 2.15 (0.50) a 34.47 (0.31) a 76.05 (0.70) a 

0.10% 2.12 (0.24) a 6.85 (0.10) a 8.91 (0.32) a 2.06 (0.24) a 35.33 (1.71) a 77.95 (0.27) a 

0.20% 2.08 (0.61) a 6.97 (0.12) a 8.97 (0.69) a 2.00 (0.59) a 33.57 (1.42) ab 76.09 (0.45) a 

 

Table 3.1.3: Colour change, temperature rise and DC for resins containing the photoinitiator Lucirin TPO. Similar letters 

within the same column represents no statistical significance (p<0.05). 

PI BHT 

COLOUR CHANGE TEMPERATURE CONVERSION 

ΔE b-value pre-cure b-value post-cure Δb ΔT
max

 DC
MAX

 

NO PI 0% 0.56 (0.38) 3.42 (0.25) 3.29 (0.01) -0.13 (0.25) 0.43 (0.12) - 

Camphoroquinone 
LOW 

0% 8.64 (0.50) d 15.61 (0.33) d 7.10 (0.50) c -8.51 (0.51) d 20.17 (1.62) a 70.53 (0.37) d 

0.10% 7.62 (0.38) d 15.50 (0.13) d 7.93 (0.51) c -7.57 (0.38) d 19.70 (1.01) a 70.95 (0.27) d 

0.20% 8.41 (0.23) d 15.41 (0.19) d 7.15 (0.05) c -8.26 (0.18) d 17.50 (0.72) b 69.57 (0.45) d 

Camphoroquinone 
INT 

0% 24.37 (0.29) c 35.25 (0.17) c 11.10 (0.28) b -24.16 (0.35) c 23.67 (0.67) a 77.28 (0.32) b 

0.10% 24.47 (0.74) c 35.38 (0.47) c 11.15 (1.14) b -24.23 (0.74) c 22.70 (0.36) a 76.07 (0.32) c 

0.20% 23.74 (0.38) c 35.16 (0.36) c 11.62 (0.48) b -23.54 (0.41) c 23.47 (1.93) a 75.45 (0.13) c 

Camphoroquinone 
HIGH 

0% 36.61 (0.63) a 51.35 (0.08) a 14.94 (0.64) a -36.40 (0.60) a 22.47 (0.40) a 80.36 (0.40) a 

0.10% 33.47 (0.84) b 49.08 (0.35) b 15.79 (0.91) a -33.29 (0.86) b 22.67 (2.54) a 77.97 (0.21) b 

0.20% 33.26 (0.84) b 49.44 (0.74) b 16.37 (1.11) a -33.08 (0.81) b 23.63 (0.80) a 77.95 (0.27) b 
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For Lucirin TPO based materials, each resin exhibited significantly higher  
max

pR
 

(p<0.05) than camphoroquinone based resins of similar concentrations although 

maxDC was significantly lower (p<0.05). For both camphoroquinone and Lucirin TPO, 

the addition of BHT significantly reduced 
max

pR
 (P<0.005) which significantly affected 

maxDC in some of the resins (p>0.05) (Figure 3.1.5; Table 3.1.2 and Table 3.1.3). The 

temperature rise was significantly higher in all Lucirin TPO resins (p<0.05) with the 

highest temperature rise being observed for high concentration. The addition of BHT did 

not significantly change 
maxT (p<0.05) for any of the resins apart from the low 

concentration of camphoroquinone that contained 0.20 wt% BHT which showed 

significantly lower 
maxT (p<0.05). The temperature rise in resins containing no 

photoinitiator was 0.43 ± 0.12 
○
C due to heat dissipated by the light curing unit and was 

used to correct resins containing photoinitiator to obtain temperature rise during 

polymerisation. 
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(a) 

 

(b) 

 

 

Figure 3.1.5: pR  curves for (a) camphoroquinone (CQ) and (b) Lucirin TPO  

measured in real-time using FT-NIR spectroscopy. 
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3.1.5 Discussion 

 

Light cured photoactive resins are composed of photoinitiator systems that absorb 

light to form excited states that initiate polymerisation. The proper combination of 

photoinitiator and co-initiator as well as light source and exposure time are regarded as 

major factors to optimise light curing of dental composites (Emami and Söderholm, 

2005) to improve conversion in order to attain better mechanical properties, clinical 

performance as-well as colour stability and biocompatibility (Shin and Rawls, 2009). The 

concentration of photoinitiator and co-initiator are also key factors that influence curing 

in dental composites where generally higher concentrations lead to better conversion 

(Musanje et al., 2009) although the use of high concentrations of coloured photoinitiators 

such as camphoroquinone may lead to undesirable photo-yellowing effects (Rueggeberg 

et al., 1997). 

The rapid rate of polymerisation in Lucirin TPO resins compared to 

camphoroquinone-based resins (Table 3.1.2, Table 3.1.3 and Figure 3.1.) is due to the 

photochemical cleavage of the carbon-phosphorus bond resulting in the formation of two 

polymerisation initiating radicals (an acyl and phosphonyl radical) which are more 

reactive than the one active radical expected in the camphoroquinone amine system 

(Neumann et al., 2006; Figure 3.1.1a). Although Lucirin TPO is reported to be a more 

efficient photoinitiator due to its higher molar absorptivity, the phosphonyl radical is 

considered to be more efficient for polymerisation than the acyl radical (Neumann et al., 

2006). In the case of camphoroquinone without amine co-initiators, homolytic cleavage 

of the C-C bond between the two carbonyl groups results in the formation of carbonyl 

radicals only. These radical pairs can undergo cage escape (where the radical site moves 

around the structure) to form photo-decomposed products which results in a decrease in 

the concentration of the active camphoroquinone molecules thus decreasing absorbance 

and the b-value of the CIELAB coordinates. However, the two carbonyl radicals in 

camphoroquinone remain structurally connected to each other and the probability of 

recombination to reform camphoroquinone molecules is great (Sun and Chae, 2000). 

Recombination can be greatly reduced by the addition of amine accelerators. Irradiation 

results in the formation of an exciplex (excited state complex) via electron transfer from 
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amine to the excited di-ketone. When amine accelerators are added, the formation of an 

aminyl radical (responsible for the initiation of polymerisation) and a hydryl radical 

(which is almost inactive) are a result of hydrogen transfer from amine to the excited 

diketone in the exciplex. (Figure 3.1.1b; Shin and Rawls, 2009). Irradiation leads to the 

decomposition of the photoinitiator system over time until the photoinitiator is consumed 

(Figure 3.1.4).  The amine accelerator serves to increase the rate of photodecomposition 

(Sun and Chae, 2000) although the rate of decomposition is much slower than in Lucirin 

TPO (Figure 3.1.5). The rate of decomposition and absorbance for both photoinitiator is 

proportional to their concentrations as the likelihood of excitation is greatly increased 

when the molar concentrations of absorbing species (photoinitiator) are increased. In the 

present study, the ratio of camphoroquinone and amine was selected as an optimum 

combination to produce maximum DC (Yoshida and Greener, 1994) and 

camphoroquinone concentration was similar to the one used in commercial composites 

(Taira et al., 1988), and an equimolar concentration was used for Lucirin TPO for 

comparative purposes. Increasing photoinitiator concentration serves to accelerate the 

reaction, consequently leading to greater max

pR  and maxT at a reduced time (Figure 3.1.5; 

Tables 3.1.2 and 3.1.3). 

BHT is commonly used in RBCs due to its anti-oxidant properties which help 

improve shelf-life and operatory light stability during chairside placement but may also 

influence polymerisation kinetics and degree of cure (Rosentritt et al., 2010). Reduction 

in reaction speed by chemical inhibition occurs as free radicals are terminated by reacting 

with the phenolic hydrogens of the BHT molecule (Figure 3.1.1c) and thus increase the 

rate of recombination and prolongs absorption by the photoinitiators with no dramatic 

change in temperature or conversion (Table 3.1.2 and Table 3.1.3). The conversion of 

monomer to polymer proceeds at a reduced rate until the inhibitor is consumed (Figure 

3.1.5). Additionally, it should also be mentioned that „off the shelf‟ monomers typically 

contain inhibitors to improve storability and shelf life and in this work these monomers 

were used without purification. Therefore the subtle difference between 0% BHT and 

0.1% BHT on cure kinetics, DC and colour (Figure 3.1.5; Tables 3.1.2 and 3.1.3) may 

relate to trace impurities of inhibitors. This may also account for the non-significant 

differences found in the same resins containing different BHT concentrations rather than 
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insensitivity of the analytical techniques employed (Tables 3.1.2 and 3.1.3). This is in 

agreement with previous work showing reaction time increasing significantly when BHT 

concentrations are above 0.25% (Rosentritt et al., 2010)  

For RBCs it has been reported that a visually perceptible colour change occurs 

when E  exceeds 5.4 (Cook and Chong, 1985). However, a E  value that exceeds 2 is 

considered representative of a visually perceptible colour change for resins in the yellow-

red range (b-value) of the colour spectrum (Ferracane et al., 1985). As the current 

investigation is based only on unfilled resins, it is more relevant to base the discussion 

around the latter value. For Lucirin TPO, visually perceptible colour changes occurred for 

the intermediate and high concentrations of Lucirin TPO, which may also occur in filled 

systems (Table 3.1.3). Therefore, where so-called colourless photoinitiators might be 

perceived to improve aesthetic quality of bleach white or translucent shades, they may 

actually cause significant colour contamination and reduce shade matching if used at high 

concentrations. Colour change may also be affected by several other factors such as 

temperature, moisture and the presence of oxygen (Barres, 1945; Shin and Rawls, 2009). 

One way to reduce the colour contamination is by the addition of inhibitors, which act as 

anti-oxidants and reduce the oxidative by-products. The addition of BHT did not 

significantly influence colour change for any of the tested resins although there was a 

noticeable trend of decreased yellowing with increased BHT concentration for most of 

the resins containing Lucirin TPO, which was not observed for camphoroquinone-based 

resins as camphoroquinone is strongly pigmented (Table 3.1.2 and Table 3.1.3). This may 

be due to the anti-oxidant properties of BHT (Lambert et al., 1996; Rosentritt et al., 

2010), which may reduce any oxidative by-products that are produced during the 

reaction. The non-significant data may be due to the limited concentration of BHT used 

in the present study ( 0.2 wt%) and the trace amounts of inhibitors already present in the 

monomer. Nonetheless, chemical inhibition will reduce 
max

pR (Figure 3.1.5) which will 

reduce the rate of conversion and the rate of colour change therefore affecting the final 

colour change.  

Yellowing of camphoroquinone resins is proportional to the concentration of 

camphoroquinone, however, photo-activation causes camphoroquinone to decompose 

and decreases the concentration of camphoroquinone causing a photo-bleaching effect 



141 

(decrease in b-value). Contrary to this, Lucirin TPO resins (initially colourless) show an 

initial increase in absorption (Figure 3.1.4b) as a consequence of an increase in the b-

value of the CIELAB co-ordinates (Table 3.1.3) in the initial stages of polymerisation. 

Since Lucirin TPO is a colourless photoinitiator and exhibits efficient photo-bleaching 

properties with no absorbance of photolysis by-products above 360 nm (Stephenson 

Kenning et al., 2006; Stephenson Kenning et al., 2008), the increase in b-value may be 

related to monomer discolouration. The vinyl groups of the monomers will readily react 

with oxygen to form coloured peroxides (Barres, 1945). The yellowing of Bis-GMA 

monomer under UV illumination was also reported by Ferracane et al., (1985). 

Consequently, the presence of oxygen and the higher reaction temperatures and kinetics 

may have lead to the formation of coloured peroxides that absorb in the visible region of 

the electromagnetic spectrum which are the probable cause of the yellow discolouration 

observed in Lucirin TPO resins. Also, it should be noted that the amine (not used in 

Lucirin TPO resins) and monomers do not absorb significantly between 420-520nm 

(Asmussen and Vallo, 2009). It is also worth noting that BHT has an absorbance peak in 

the UV region (290-310 nm) of the electromagnetic spectrum and thus falls outside the 

measured range (470 nm for camphoroquinone and 420 nm for Lucirin TPO). Therfore 

the measured absorbance is unlikely to be related to BHT. Additionally, the light curing 

unit has an emission range between 400-550 nm and therefore it is expected that the 

addition of BHT will not significantly affect light transmission through absorption by 

BHT. 

Polymerisation is usually accompanied by shrinkage and a decrease in volume 

and possibly results in a path length change of approximately 3-4% that occurs during the 

first 20 s of irradiation with a further 1-2% occurring thereafter (Mucci et al., 2009). As 

the measured absorbance is the product of the molar absorptivity and concentration of 

photoinitiator multiplied by the optical path length (Beer-lamberts law) any changes in 

the path length will affect absorbance (where an increase in path length, i.e. expansion 

will increase absorbance). Indeed, it may well be that for Lucirin TPO resins, volumetric 

expansion by high reaction temperatures caused an initial increase in absorbance (Figure 

3.1.4b). However, at the first stage of fast reaction, the sample shrinkage and expansion is 

believed to be very slow and changes in sample thickness can be disregarded (Asmussen 
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and Vallo, 2009). This was further verified using a interferometry technique (Section 

3.2), the results of which showed no such expansion during irradiation and can be found 

in the Appendix of this thesis. Nonetheless, the presence of Lucirin TPO serves to 

accelerate the colour change and this effect is related to photoinitiator concentration 

(Lucirin High > Lucirin Intermediate > Lucirin Low) where intermediate and high 

concentrations were deemed to be visually perceptible.  Although the criteria for visual 

perception vary in the literature any discolouration as a result of the photo-polymerisation 

process of so-called “colourless” photoinitaitors may not only affect aesthetic quality but 

also negatively affect light transmission and resultant DC. 

As photoactivation leads to the decomposition of the photoinititaors, the first 

hypothesis was accepted as all camphoroquinone-based resins exhibited a decrease in 

yellowing throughout and following cure. Although Lucirin TPO has been considered a 

colourless photoinitiator, monomers may become discoloured upon irradiation due to 

high max

pR and temperatures, which may produce coloured oxidative by-products and 

therefore the second hypothesis was rejected. In the present study, the absorption 

characteristics and colour change of only two photoinitiator (camphoroquinone and 

Lucirin TPO) were studied in unfilled resins. Therefore the absorption characteristics and 

colour change of these initiators and others in filled composites should be the subject of 

further studies as any scattering and attenuation of light (Brie et al., 1999) will inevitably 

affect the absorption characteristics and colour change. Also, since optical properties are 

likely to be directly related to shrinkage of the curing polymer, the change in physical and 

optical properties of photoactive resins will be investigated in Sections 3.2 and 3.3 of this 

thesis. Here, the understanding of optical absorption properties is of prime importance in 

order to improve photoinitiator chemistry and clinical success of RBCs. 
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3.1.6 Conclusion 

 

Although TPO, a “colourless” photoinitiator, exhibits greater absorption 

efficiency compared with camphoroquinone the formation of coloured peroxides was the 

likely cause of the yellow discolouration observed following increased rates of 

polymerisation.  

The dynamic understanding of photoinitiator absorption is of fundamental 

importance as any unconverted photoinitiator can cause aesthetic imperfections and 

reduced colour stability. Furthermore, competitive light absorbers from reaction by-

products from monomer or photoinitiator may reduce light transmission through depth 

and affect final aesthetic quality of dental composite restorations.  

Dynamic measurements during photo-polymerisation yields important 

information on curing characteristics of photoactive resins which may be used in order to 

significantly improve light transmission. Not only is the photoinitiator important for 

optical properties, the resin matrix of RBC materials seems an important factor to control 

optical and physical change which will be investigated in Section 3.2 of this thesis. 

Improving knowledge of optical properties may ultimately improve curing depths, DC, 

colour stability and mechanical properties of RBCs as well as have potential for reduced 

procedure times. 
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3.2 Dynamic Monitoring of Refractive Index Change Through 

Photoactive Resins
§§

 

 

3.2.1 Abstract 

 

The change in optical characteristics through the bulk of curing photopolymers is 

not fully understood. Photopolymerisation processes are accompanied by photoinitiator 

absorption, density changes and volumetric shrinkage, which alter optical properties and 

may affect curing efficiency through depth. This investigation demonstrates the use of a 

novel low coherence interferometry technique for simultaneous measurement of optical 

(refractive index) and physical (shrinkage) properties throughout curing of photoactive 

monomers containing various concentrations of bisphenol-A diglycidyl ether 

dimethacrylate and triethylene glycol dimethacrylate. Reliability of the interferometry 

technique was compared with an Abbé refractometer and showed a significant linear 

regression (p<0.001; adjusted R
2
>0.99) for both uncured and cured resins. The change 

and rate of refractive index and magnitude of shrinkage strain was dependent upon 

monomer formulation. The development of this interferometry technique provides a 

powerful non-invasive tool that will be useful for improving light transport through 

photoactive resins and filled resin composites by precise control of optical properties 

through material bulk. 

                                                 
§§

 Hadis MA, Tomlins PH, Shortall AC and Palin WM. Dynamic monitoring of refractive index 

change through photoactive resins. Dental Materials, 2010; 26: 1106-1112 
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3.2.2 Introduction 

 

The worldwide use of dental amalgam continues to decrease with several 

(Scandinavian) governments already prohibiting its application. The nearest chair side 

alternative in terms of mechanical and physical properties adequate for long-lasting, large 

stress-bearing restorations are resin-based composite (RBC) restorative materials 

polymerized by high intensity visible (blue) light. Unfortunately, there exist several 

shortcomings of RBCs in terms of technique sensitivity (partly a consequence of 

inadequate curing depths and multiple incremental placement steps) and dimensional 

change, which are partly a consequence of an incomplete understanding of the complex 

optical and physical material properties throughout cure.   

Besides diffusion limited termination reactions (by free radicals trapped in the 

rapidly vitrifying matrix), inefficient light transmission and limited curing depths 

(generally less than 3 mm) are a result of surface reflection (Watts and Cash, 1994), 

photoinitiator and dye/pigment absorption (Ogunyinka et al., 2007), scattering by filler 

particles (Enami et al., 2005, dos Santos et al., 2008) and interfacial filler/resin refraction 

(Shortall et al., 2008, Feng et al., 2010). Consequently RBC materials are typically placed 

incrementally which may be time consuming and costly. Chapter 2 demonstrated the 

potential for reduced curing time with the photoinitiator, Lucirin TPO although inferior 

cure depths when compared to camphoroquinone based materials may be a cause for 

concern.  

An interesting approach to reduce procedure time may be to increase cure depths 

of RBC materials. Whilst photoinitiator type and concentration may have some 

significance to improving light transmission (Section 3.1) through depth, other RBC 

components such as the resin matrix, filler, pigments and dyes may absorb, scatter and 

reflect light, as mentioned above. Although absorption characteristics of thin films are 

well characterised, the change in optical properties through the bulk of curing 

photopolymers (~1 cm) are not fully understood due to issues associated with light 

attenuation with increasing sample depth and inherently non-uniform and complex curing 

rate profiles (Stephenson et al, 2005; Kenning et al., 2006; Kenning et at., 2008). As the 

resin matrix (typically, co-monomer mixtures of Bis-GMA and TEGDMA) cures, its 
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optical properties change and refractive index rises due to a rapid increase in cross-link 

density and viscosity. As the refractive index of the resin approaches that of the filler, 

interfacial filler/resin scattering is reduced and light transmission is increased (Shortall et 

al., 2008). The refractive index (n) of a medium at optical wavelengths is defined as the 

ratio of the phase velocity of light in a vacuum (c) to the phase velocity, (υp), in a given 

medium (Equation 3.2.1; Shoemaker et al., 1989). 

 
p

c
n


         Equation 3.2.1 

 

In most materials the velocity with which light propagates is dependent upon the 

optical wavelength .  Hence, when broadband, rather than monochromatic, light 

illuminates a sample, the speed with which it propagates will have an associated 

distribution, the peak of which is known as the group velocity vg, with an associated 

group index ng (Equation 3.2.2). 

 

 
g

g

c
n


         Equation 3.2.2 

 

As light passes through the interface of one medium to another, the change in 

velocity is also accompanied by an optical path diversion. The relationship between the 

phase velocity in two media (VA and VB) the angle of incidence (θA) and refraction (θB) 

and the refractive index of the two media (nA and nB) can be predicted by Snell‟s law 

(Equation 3.2.3). 

 

A

B

B

A

B

A

n

n

V

V






sin

sin
       Equation 3.2.3 

 

Therefore, by measuring the angle of refraction and knowing the index of 

refraction of the layer that is in contact with the sample, it is possible to determine the 

refractive index of an unknown sample accurately. The most commonly employed 

technique to measure refractive index uses a commercial Abbé refractometer. Typically, 
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the wavelength and temperature dependent refractive indices are measured at the standard 

yellow Fraunhofer line of sodium (589 nm) at 20 ºC (nD20). The measurement is based on 

observing the boundary line of the total reflection. Although critical angle refractometry 

techniques are well established for measuring the refractive index of homogenous 

transparent materials, these techniques only measure the index at a smooth, planar surface 

of a material. Having the capability to monitor the change in refractive index throughout 

the bulk of a curing of photoactive resin will allow for a greater insight into the effects of 

material properties on the complex setting reaction.  

The use of low coherence interferometry (LCI) as a measurement method, has 

allowed the development of several techniques to obtain thickness and topography of 

multiple materials with excellent results and high accuracy (Tomlins et al., 2007; Morel 

and Torga, 2009). LCI is an optical technique that relies on a coherence grating to 

provide precise axial positioning of an object in the direction of light propagation and 

may be used for optical and physical characterisation of materials with accuracy in the 

micron range. LCI relies upon a broadband optical source, typically with a bandwidth of 

50-100 nm, to determine the optical time of flight  between material interfaces separated 

by a geometrical distance d (Equation 3.2.4).   

 

gv

d
          Equation 3.2.4 

 

The related group thickness tg is defined (Equation 3.2.5) 

 

dnt gg         Equation 3.2.5 

 

and the group index is defined from the spectrally dependent phase refractive index n() 

(Equation 3.2.6) 

 




d

dn
nng  )(        Equation 3.2.6 
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From Equation 3.2.5 it is clear that LCI measurements can be used to determine 

sample group index, providing that geometric thickness is known a priori.  Simultaneous 

determination of both ng and d by LCI has previously been described (Sorin and Gray, 

1992).  However, inversion of Equation 3.2.6 to determine n from measurements of ng is 

non-trivial (Rogers and Hopler, 1988).  An alternative approach is to apply Equation 

3.2.6 directly to phase refractive index measurements made at multiple discreet 

wavelengths using an Abbe refractometer.  In this way LCI group index measurements 

may be compared with those made using critical angle refractometry. 

This study aims to demonstrate in situ simultaneous measurements of refractive 

index and thickness change throughout polymerisation of model photoactive resin 

formulations using low coherence interferometry and to determine its reliability 

compared with a conventional Abbé refractometer technique. 

 

3.2.3 Materials and Methods 

 

Each experimental resin contained the same photoinitiator system, comprising 

0.3% mass camphoroquinone and 0.6% mass amine co-initiator, dimethylaminoethyl 

methacrylate. Resins were prepared containing a mixture of bisphenol-A diglycidyl ether 

dimethacrylate (bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) at varying 

mass ratios to control viscosity and refractive index (Table 3.2.1). All reagents (Sigma 

Aldrich, Gillingham, UK) were used as received. 

 

 

 

 

 

 

 

 

Table 3.2.1: Monomer composition of the experimental resins.  

 

Resin TEGDMA (mass %) Bis-GMA (mass %) 

M1 15 85 

M2 30 70 

M3 59 41 

M4 90 10 
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Refractive index (RI) and physical thickness measurements of each model resin 

formulation were obtained simultaneously throughout cure. The bespoke configuration 

comprises of a Michelson interferometer arrangement (Figure 3.2.1) with a super 

luminescent diode (L2KASLD16-015-BFA; Amonics, Kowloon, Hong Kong) broadband 

light source with a centre wavelength at 1624 nm and a full-width half maximum of 55 

nm. An „off the shelf‟ fibre coupled InGaAs photo detector (PDB120C; Thorlabs, 

Cambridgeshire, UK) was used to detect the interference fringes from the sample and the 

reference arm. A voice coil stage (VCS10-023-BS-1, H2W Technologies, Inc., USA) was 

used to change the position of the reference mirror in order to modulate an optical time 

delay between the reference arm and the sample arm.  
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Figure 3.2.1: Experimental arrangement of the frequency domain low coherence 

interferometry system used for dynamic monitoring of refractive index and 

shrinkage of photoactive materials.  
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Nominally identical (n=3) cylindrical specimens were prepared using a white 

Teflon ring mould (12 mm diameter 1.4 mm thick). Resins were carefully pipetted into 

the mould cavity ensuring no inclusion of air bubbles and slightly overfilled. Opposing 

surfaces were covered with a glass microscope slide (1.10  0.2 mm) on the irradiated 

surface and glass cover slip (0.15  0.03 mm) on the non-irradiated surface to contain the 

resin within the mould and limit oxygen inhibition of the outer layers. Both slides and 

slips had an RI = 1.518 ± 0.001 at 23ºC. A black nylon ring mould was used to contain 

each specimen, minimise reflection and allow reproducible concentric alignment with the 

sample objective and the light curing unit (Figure 3.2.1). The light curing tip was held 5 

mm away from the surface of the glass microscope slide in order to facilitate the use of a 

automatic shutter (aperture = 25 mm) operating at a shutter speed of 1/60 s. 

Each specimen was light irradiated for 90 s (after activation of the curing lamp for 

10 s without irradiation of the sample controlled by the shutter) with a halogen light 

curing unit (XL2500, 3M ESPE, Dental Products, Seefeld, Germany) with a 12 mm 

diameter fibre-optic bundle at an ambient temperature of 23 ± 1 ºC. Preliminary 

investigations identified the requirement for a 10 s non-irradiating lamp activation as 

fluctuations in light transmission were observed over this initial period. An irradiance of 

733 ± 18 mW/cm
2
 was measured using a handheld digital radiometer (Cotolux light 

meter, Cuyahoga Falls, OH, USA) held 5 mm normal to the light curing tip. Following 

cure, the samples were removed from the mould and the resultant flash was cut away 

using a sharp blade. 

Spectral data was acquired continuously over a 110 s period, which included a 90 

s cure duration. Averages (n=3) were calculated over the 90 s cure period and following 7 

days post irradiation. A bespoke computer programme was used to automate the 

processing of the spectral data to obtain refractive index and shrinkage strain information 

in real-time. 

 A conventional Abbé refractometer (Abbe 60, Bellingham and Stanley Ltd, UK) 

coupled to an infra red camera (Alpha NIR, Indigo Systems, USA) was used to acquire 

static refractive indices at three wavelengths of 1500 1550 and 1620 nm for both uncured 

and cured phases of each resin.  The sample was illuminated with a narrow-band tuneable 

laser (Tunics Plus CL/WB, Anritsu, Japan) at a power of less than 1 mW, spread over an 
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area of approximately 10x10 mm.  The group index for each sample was determined by 

using Equation 6.  The derivative of n with respect to  was estimated from the slope of a 

linear fit through the phase refractive index measurements.  This approach was shown to 

be valid by first measuring a pure silica calibration artefact (PT08002, Bellingham and 

Stanley, UK). Each specimen was prepared in a bar-shaped rectangular mould having 

similar dimensions to the calibration piece (25 x 10 x 2 mm).  An alignment mould was 

used to ensure repeatable placement of the light-curing unit with respect to the specimen. 

Each portion of the bar-shaped specimen was cured for 90 s to establish a full and even 

cure across the sample length. Specimens were measured following cure and 7 days post 

irradiation.  

As Kolmogorov-Smirnov normality tests on pooled refractive index data sets 

indicated variation from the pattern expected from a population with a normal 

distribution, data analysis was performed using distribution free test methods. Kruskal-

Wallis and Mann-Whitney non-parametric tests were performed with a significance level 

of p=0.05. Where appropriate, parametric data was analysed using one-way analysis of 

variance (ANOVA) and Tukey post-hoc comparisons (SPSS v.15.0, Surrey, UK) at a 

confidence level of 95%. 

 

3.2.4 Results 

 

The effect of measurement method on the RI of each resin mixture prior to and 

following 7d after cure are presented in Table 3.2.2 Kruskal-Wallace tests revealed 

significant differences (p<0.001) in RI values obtained by LCI and phase index results 

measured with the Abbé refractometer, although RI measured by LCI and group indices 

were not significant (p=0.261).  The phase index results were higher than those measured 

by LCI (p<0.001), however, a significant linear regression was observed between LCI 

and Abbé (phase) and LCI and Abbé (group) (Figure 3.2.2; adjusted R
2
>0.99 for both 

regressions).
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Table 3.2.2: The mean refractive index for resins with various TEGDMA/Bis-GMA ratios prior to and following 7 days after 

initial polymerization using two methods; low coherence interferometry (LCI) and a conventional Abbé technique with group 

and phase index values. Standard deviations are displayed in parentheses.  

 

 LCI Abbe (group index) Abbe (phase index) 

Monomer uncured cured uncured cured uncured cured 

M1 (15/85) 
1.5336 

(0.00153) 
1.5598 

(0.00432) 
1.5373 

(0.00027) 
1.5630 

(0.00016) 
1.5132 

(0.00027) 
1.5387 

(0.00016) 

M2 (30/70) 
1.5240 

(0.00517) 
1.5558 

(0.00407) 
1.5260 

(0.00042) 
1.5567 

(0.00014) 
1.5020 

(0.00042) 
1.5325 

(0.00014) 

M3 (59/41) 
1.4987 

(0.00613) 
1.5490 

(0.00570) 
1.5008 

(0.00015) 
1.5407 

(0.00014) 
1.4775 

(0.00015) 
1.5168 

(0.00014) 

M4 (90/10) 
1.4743 

(0.00521) 
1.5384 

(0.00986) 
1.4756 

(0.00016) 
1.5241 

(0.00010) 
1.4528 

(0.00016) 
1.5004 

(0.00010) 
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Figure 3.2.2: Correlation of the low coherence interferometry and conventional 

Abbé techniques for measuring phase and group refractive index of resins with 

increasing TEGDMA content (a) before and (b) following cure. 
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Regardless of measurement technique, RI significantly decreased as TEGDMA 

concentration increased for both pre-cure and post-cure measurements (p<0.05) although 

the change in RI was greater for TEGDMA-rich resins following polymerization 

(p<0.001; Table 3.2.2). For LCI measurements a gradual increase in RI of each resin 

mixture was observed throughout cure (Figure 3.2.3a) albeit at different rates (Figure 

3.2.3b). 
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Figure 3.2.3:  The dynamic and simultaneous measurement of (a) refractive index, 

(b) rate of refractive index change and (c) shrinkage strain of curing resins with 

various TEGDMA/Bis-GMA ratios. 

 

The magnitude of shrinkage strain following cure was dependent upon monomer 

composition and one-way ANOVA and post-hoc comparisons revealed significant 

increases in shrinkage strain for increasing TEGDMA content where the shrinkage strain 

of M4>M3>M2>M1 (p<0.05; Figure 3.2.3c).  

For M1, M2 and M3 resins at initial stages of polymerization, shrinkage strain 

increased proportionally with refractive index, however, for M4, RI appeared to decrease 

over the first 25 s of light irradiation (Figure 3.2.3b and Figure 3.2.4). A deviation from 

linearity occurred at different stages of cure depending on TEGDMA content, where 

development of shrinkage strain lagged behind the increase in RI. 
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Figure 3.2.4: The relationship between increasing shrinkage strain and refractive 

index of curing resins with various TEGDMA/Bis-GMA ratios. The circled region 

highlights an inverse trend where refractive index appears to decrease as the 

material cures.  
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3.2.5 Discussion 

 

The reliability of the LCI technique was tested against a conventional procedure 

using an Abbé refractometer and good agreement was established between the two 

methods. However, despite a >99% correlation, group refractive index values were found 

to be higher than phase refractive indices by approximately 210
-2

 (Figure 3.2.2).  The 

relationship between group and phase refractive index is summarized by Equation 3.2.6, 

from which it is expected that the group index will be greater than the phase index when 

the phase index decreases as a function of increasing wavelength.  This regime is 

consistent with normal dispersion, expected of the polymer matrix at near-infrared 

wavelengths. Calculated group refractive indices from phase refractive index 

measurements using Equation 3.2.6 show agreement with the LCI measurements, 

confirming the validity of this measurement modality. 

Conventional refractrometry is based on the subjective observation of a boundary 

line which may cause anomalies and specimen geometry is confined to the dimensions of 

the refractometer to minimise scattering. An alternative method to calculate RI of an 

amorphous polymer is based on the molar properties of a single polymer structural unit 

and for every bond that contributes to the structural unit, bond refraction can be defined 

(Lehtinen et al., 2008). However this method is only an approximation of fully 

polymerised materials and is restricted to tabulated values of bond refraction of the 

constituent bonds. With the technique described here, there is no sample restriction and 

appropriate specimen shape and thickness can easily represent those used in light-cured 

dental materials and other photoactive applications.  

 The decrease in refractive index with increasing TEGDMA content (Table 3.2.2) 

is a result of lower viscosity as molecular weight and density of the resin mixtures 

decreases (Shortall et al., 2008). As photo polymerization precedes a rise in RI (Figure 

3.2.3a) is caused by decrease in molecular polarizability as monomer molecules connect 

to the growing polymer chain. The change in polarizability during cure is a result of 

double to single bond conversion and an increase in density due to volumetric shrinkage. 

Irradiation initiates an exothermic reaction characterized by gelation (liquid to rubber) 

and vitrification (rubber to glass transition) and the RI increases as the resin is converted 
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from a mobile system to a glassy solid, where initial mobility and viscosity are 

proportional to the TEGDMA concentration. During polymerisation, network formation 

and therefore the rate of RI change is significantly affected by the TEGDMA/Bis-GMA 

ratio (Figure 3.2.3b). The high mobility of TEGDMA rich resins dominate the reaction, 

resulting in a delay to reach the maximum change in RI and shrinkage strain. The low 

viscosity of TEGDMA increases the mobility of the propagating species resulting in a 

decreased local radical concentration which delays the onset of vitrification compared 

with more viscous mixtures. In resins containing lower concentrations of TEGDMA, 

higher viscosity results in the more rapid onset of auto acceleration as mobility is rapidly 

restricted and polymerization rate and termination become diffusion controlled (Lovell et 

al., 1999). Despite the lower initial rate of RI increase in the 90/10 (M4) resin, the extent 

of shrinkage strain following cure is increased (Figure 3.2.3c) due to the higher 

concentration of double bonds in TEGDMA compared with Bis-GMA (~7 and 4 mol/kg, 

respectively), which increases monomer to polymer conversion.  

The Clausius-Mossotti relation or Lorentz-Lorenz equation defines the 

relationship between refractive index and molecular polarization where molar refraction 

changes proportionally with polarizability (Patel et al., 1992). Since a relative comparison 

exists between polarizability (and degree of polymer conversion) and density, a linear 

relationship was expected between refractive index and shrinkage (Kopietz et al., 1984). 

Indeed, throughout initial stages of polymerization there exists a linear relationship 

between the change in shrinkage strain and RI for each resin (Figure 3.2.4). It is well 

known that as the polymerization reaction reaches its maximum rate, the curing system 

vitrifies and shrinkage kinetics fall below that of conversion (Stansbury et al., 2005). 

Consequently, a deviation from the initial linear relationship of refractive index change 

and shrinkage strain is observed (Figure 3.2.4). This correlation is further complicated by 

the magnitude of shrinkage strain exhibited by each resin mixture. The resins containing 

higher Bis-GMA ratios exhibit less volumetric shrinkage and the departure from linearity 

is less pronounced compared with TEGDMA rich resins. The latter mixtures also exhibit 

an inverse trend where refractive index appears to decrease as the material cures. Since 

initial reaction rates are low in mobile curing systems, heating effects from the curing 

lamp may decrease viscosity, which outweighs any small decrease in volume at such 
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slow rates of polymerization resulting in the apparent decrease in RI at early stages of 

cure.  

Specimen geometry is likely to significantly affect the shrinkage vectors of the 

curing specimen. A low aspect ratio (where the specimen thickness approaches its 

measured diameter) would be expected to cause multi-axial, rather than linear shrinkage 

(Watts and Marouf, 2000), which would significantly affect both the measured optical 

and physical thickness change of the curing specimen. Here, a large aspect ratio was 

chosen to confine shrinkage to one direction and allow reliable correlations with 

refractive index and thickness change. The effect of specimen geometry on dynamic 

optical and physical properties will be investigated in Section 3.3 of this thesis. 
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3.2.6 Conclusion 

 

Filler particle refractive indices vary between filler type but remain constant 

throughout polymerization within a resin matrix (Shortall et al., 2008). The ability to 

measure refractive index change of curing photoactive resins will allow for the design of 

composite formulations, which exhibit optimum evolution of translucency (as the RI of 

the curing resin approaches that of the filler) and enable precise control of aesthetic 

quality, light transport through material bulk and curing depth. Furthermore, since 

polymer conversion relates directly to polarizability and refractive index, development of 

this technique (and miniaturisation of the components to a handheld device) will allow 

for in-situ monitoring of the curing extent of resin-based materials and therefore 

eliminate the risk of under cured restorations in clinical practice. 
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3.3 Specimen Aspect Ratio and Light-Transmission in Photoactive Resins 

 

3.3.1 Abstract 

 

This section tests the influence of specimen dimensions on light transmission and 

shrinkage strain properties of curing dental resins. Experimental photocurable resins (Bis-

GMA/TEGDMA) were placed in cylindrical cavities in disc-shaped moulds with aspect 

ratios (AR) ranging from 2-24; 4x2mm (AR: 2); 4x1mm (AR: 4); 8x2mm (AR: 4); 

8x1mm (AR: 8); 12x1mm (AR: 12); and 12x0.5mm (AR: 24) were cured using a quartz 

tungsten halogen light curing unit. Light transmission and shrinkage-strain data were 

recorded throughout curing for 70 s. Surface hardness measurements were taken to 

indirectly assess the extent of cure on the upper and lower surface of each specimen. 

One-way ANOVAs and post-hoc Holm-Sidak revealed significant effects of specimen 

dimensions on light transmission and Vickers hardness number (p<0.05). Cavity height 

significantly affected initial and final light transmission in nearly all cases except for the 

final light transmission in specimens with 12 mm diameter moulds (p<0.05). The lowest 

AR specimens showed an increase in transmission above 100%, which may be due to a 

possible „lens‟ effect caused by specimen constraint. The extent of lower surface cure (as 

assessed by increasing micro-hardness) was principally affected by cavity height. Micro-

hardness was significantly lower for thicker specimens except for specimens with 8 mm 

diameter (p<0.05). At constant thickness, only the 2 mm thick specimens showed 

significantly higher lower surface cure with increasing diameter (p<0.05). The highest 

AR specimen showed the significantly highest lower surface hardness percentage, which 

represents almost equivalent cure on either side (p<0.05). Total shrinkage strain increased 

with AR but no noticeable trends were observed at constant diameter and varying height. 

Shrinkage strain per unit mass was significantly lower in most cases with increasing 

diameter at constant height (p<0.05) except when diameter increased from 8 mm to 12 

mm. Specimen constraint during polymerization in low AR cavities may compromise 

light transmission as unexpected light intensity variations may occur for low 

configuration factors. Improving light transmission through depth will ultimately improve 

conversion and clinical longevity of the restoration. 
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3.3.2 Introduction 

 

 Photoactive dental RBCs are now widely used in restorative dentistry due to their 

aesthetic properties and the choice of this material as an alternative for amalgam (Burke, 

2004).  However, polymerisation shrinkage of RBCs is a major concern amongst both 

clinicians and researchers.  Polymerisation induced shrinkage stress can lead to failure of 

the interfacial bonds and can result in marginal leakage, premature failure of the 

restoration, and in some cases micro, or even macro-cracking of the surrounding tooth 

(Hübsch et al., 1999; Palin et al., 2005). 

The shrinkage-strain induced during photo-polymerisation may be characterised 

by its magnitude, direction (or vector character of strain) and time dependence. The strain 

imposed during photo-polymerisation is not only influenced by the material factors such 

as composition (Anseth et al., 1996; Section 3.2) but also shape and the size of the cavity 

being restored as well as the compliance of the surrounding cavity (Feilzer et al., 1987; 

Watts and Marouf, 2000). When the material undergoing shrinkage is bonded by 

opposing cavity walls, strain becomes restricted and the final stress generated is given by 

the product of the elastic modulus and the strain vectors (Davidson and Feilzer, 1997; 

Sakaguchi and Ferracane, 1998). Not only is the stress magnitude determined by 

characteristics of composites such as filler content (Condon and Ferracane, 2000), curing 

rate (Bouschilcher and Rueggeberg, 2000) and degree of conversion (Braga and 

Ferracane, 2002; Lu et al., 2004) but many authors have also reported that the final stress 

is governed by the configuration factor (C-factor) of the cavity; the ratio of bonded to un-

bonded surfaces (Equation 3.3.1), which may also be given by the aspect ratio 

(diameter/height), and the compliance of the system  (Feilzer et al., 1987; Loguercio et 

al., 2004; Braga et al., 2006; Watts and Satterthwaite, 2008). In the equation, r is the 

cavity radius; h is the cavity height and   is the cavity diameter. 
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        Equation 3.3.1 

 

Previous investigations have suggested that C-factors less than 1 result in the slow 
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development of shrinkage stress and the composite remains bonded to the cavity walls 

(Davidson and de Gee, 1984; Feilzer et al., 1987). The C-factor itself is governed by the 

geometry of the cavity, i.e. the diameter and the height which both independently 

influence the generation of shrinkage-stress. A recent investigation by Watts et al (2008) 

reported that at a constant height, with diameter variation, a C-factor increase from 0.6 to 

6 gave an exact exponential decrease in shrinkage-stress, whereas at constant diameter 

with height variation, an increase in C-factor from 3-100 gave an increase in shrinkage-

stress (Watts and Satterthwaite, 2008). It is clear that the stress generated during 

polymerisation cannot simply be extrapolated to C-factor and is dependent upon several 

other properties, amongst which volume and mass as well as the ratio of bonded to non-

bonded surfaces will influence the final stress as-well as bonding or lack of such to 

mould or tooth and matrix surfaces and compliance of such (Watts and Marouf, 2000; 

Braga et al., 2006; Watts and Satterthwaite, 2008).  

The transmission of light and number of photons absorbed by the photoinitiator is 

critically important to the extent of polymerisation and is a desired parameter to fully 

characterize since it ultimately relates to the final mechanical and physical properties of 

the polymer. Inefficient light transmission and limited cure depths are associated with 

surface reflection (Harrington and Wilson, 1995), absorption (Chen et al., 2007; 

Ogunyinka et al., 2007) and interfacial scattering (Shortall et al., 2008; Feng et al., 2010). 

Upon polymerisation, photoinitiator decomposition will reduce the concentration of light 

absorbers (Section 3.1) and polymerisation shrinkage (Section 3.2) will reduce the optical 

path length, which will increase the transmitted light through the sample according to 

Beer-Lamberts law (Equation 3.3.2).  

 


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0

log
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I
ClA         Equation 3.3.2 

 

where A is the absorbance, l is the optical path length, C and  are the concentration and 

molar extinction coefficient of the absorbing species (i.e the photoinitiator) and I and 

0I are the light transmission and initial light transmission, respectively. 
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Varying patterns of light transmission through filled and unfilled photocurable 

resins have been reported. Harrington et al. (1996) demonstrated a method, which 

allowed the actual consumption of light energy by the photoinitiator to be calculated and 

showed increasing light intensity with radiation time for commercial composites 

(Harrington et al., 1996). Using the same technique, Ogunyinka et al. (2007) reported 

decreasing transmission during polymerisation of experimental composite formulations. 

Shortall et al. (2008) showed the effect of monomer and filler composition on light 

transmission and reported that the refractive index mis-match between filler and resin 

will affect its light transmission profile where maximum transmission is observed when 

the refractive index of the resin and filler are equal. Section 3.2 also demonstrated the 

effect of monomer composition on the variation in optical properties and physical 

thickness change in unfilled resins during irradiation. Although shrinkage strain was 

dependent upon material composition, cavity constraint is likely to affect shrinkage strain 

development, which in turn may affect light transmission. Consequently, this Section 

tests the following hypotheses: 

i) For high specimen aspect ratio, increased shrinkage strain will increase 

final light transmission in curing photoactive resins. 

ii) If a higher final light transmission is observed, then curing extent will also 

improve. 
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3.3.3 Materials and Methods 

 

Experimental resins containing a 50:50 mix of Bisphenol-A diglycidyl ether 

dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) were 

mixed. The photoinitiator system within each experimental resin contained the 

photoinitiator camphoroquinone (0.2 wt%) and the co-initiator dimethylaminoethyl 

methacrylate (DMAEMA; 0.8 wt%). A resin that contained no photoinitiator system was 

employed as a negative control for each of the moulds tested. All reagents were provided 

by Sigma Aldrich, UK and were used as received. Resins were light cured using a quartz 

tungsten halogen light curing unit (XL2500, 3M ESPE, Dental Products, Seefeld, 

Germany) in cylindrical cavities placed in black nylon moulds having C-factors (Cf: 

Equation 1) ranging from 1-12 and aspect ratios (AR) ranging from 2-24; 4x2 mm (Cf: 1, 

AR: 2); 4x1 mm (Cf: 2, AR: 4); 8x2 mm (Cf: 2, AR: 4); 8x1 mm (Cf: 4, AR: 8); 12x1 mm 

(Cf: 6, AR: 12); and 12x0.5 mm (Cf: 12, AR: 24; Table 3.3.1). Aspect ratio was always 

twice that of C-factor (Table 3.3.1) and as they both represent the ratio of bonded to non-

bonded surfaces, from herein only aspect ratio will be mentioned. Each specimen (n=3) 

was light irradiated for 60 s (after activation of the curing lamp for 10 s without 

irradiation of the sample) with a 12 mm diameter fibre-optic bundle at an ambient 

temperature of 23 ± 1 ºC. A 10 s non-irradiating lamp activation period was required as 

fluctuations in light transmission occurred during this initial period. An irradiance of 733 

± 18 mW/cm
-2

 was measured using a handheld digital radiometer (Coltolux light meter, 

Cuyahoga Falls, OH, USA) held 5 mm normal to the light curing tip.  

 

Mould Dimensions 

(  x h) 
Volume 
(mm3) 

Mass 
(mg) 

Aspect Ratio 

(  / h) 
C-factor 

4x2 25.1 28.1 2 1 
4x1 12.6 14.1 4 2 
8x2 100.5 112.4 4 2 
8x1 50.3 56.2 8 4 

12x1 113.1 126.5 12 6 

12x0.5 56.5 63.2 24 12 

 

Table 3.3.1: Mould Properties 
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Resins were pipetted into the moulds with opposing surface covered with 1.10 ± 

0.2 mm thick glass microscope slides (RI = 1.518, 23ºC) to limit oxygen inhibition of the 

outer layers. The microscope slides were clamped into place with bulldog clips to form 

an air-tight arrangement before being placed onto the sample holder, in line with the 

optical fibre (8 μm diameter) and cosine corrector (CC3-UV; 3.9 mm diameter) and the 

light curing unit which was held 5 mm away from the irradiated surface. An optical rail 

ensured concentric alignment and rigidity throughout the experiment (Figure 3.3.1). Each 

specimen received 60 s irradiation controlled by an automated shutter (aperture 25 mm 

diameter) operating at a shutter speed of 1/60 s. Throughout irradiation light transmission 

was measured in real time using a USB4000 spectrometer and Spectrasuite application 

software (Ocean Optics, Duiven, The Netherlands) scanning the average from 400 nm to 

550 nm with an integration time of 0.1 s. The 10 s non-irradiation period was then 

excluded from the charts and the initial transmission was taken as the point were 

transmission started to increase steadily (t=0). Transmission traces were then corrected 

accordingly for the decrease in light transmission through a non-curing resin in each 

mould that was tested, i.e. the control group of each mould. Firstly the initial  light 

transmission values (the point at which maximum transmission occurs in non-curing 

resins) of the control group (Ni) was subtracted from the real time transmission (Nt) value 

of the control group to obtain the increase in transmission in real time for each mould. 

The corresponding values were then added onto real time measurements (LT) to exclude 

the affect of light intensity decreasing due to heating of the bulb which enabled corrected 

light transmission values (CLT; Equation 3.3.3) to be obtained. The control group was 

then taken as 100 % throughout the cure duration and CLT % of each curing resin was 

calculated as a percentage of each control group. 

 

LTNNCLT ti  )(        Equation 3.3.3 
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Figure 3.3.1: Experimental arrangement for the measurement of light transmission in real time of curing resins. 
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Shrinkage strain measurements were based on low coherence interferometry 

methods developed in Section 3.2. The bespoke configuration comprises of a Michelson 

interferometer arrangement, which has a super luminescent diode (L2KASLD16-015-

BFA; Amonics, Kowloon, Hong Kong) broadband light source with a centre wavelength 

at 1624 nm which allows shrinkage-strain to be measured centrally in each sample 

(Figure 3.3.2). An optical time delay is modulated by changing the position of the 

reference arm with a voice coil stage (VCS10-023-BS-1, H2W Technologies, Inc., USA) 

which produces interference fringes. The „off the shelf‟ fibre coupled InGaAs 

photodetector (PDB120C; Thorlabs, Cambridgeshire, UK) allows the detection of the 

interference fringes from the sample and the reference arm. Each specimen was 

polymerised using an identical curing protocol as that used for light transmission 

measurements. A bespoke computer programme was used to automate the processing of 

the spectral data to obtain shrinkage strain information in real-time. Since mass plays a 

dominant role (Watts and Satterthwaite, 2008), plots of strain variations per unit 

composite mass separated the effects which mould dimensions had on strain developed 

centrally at the specimen mid-point. 
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Figure 3.3.2: Experimental arrangement for the measurement of real time 

shrinkage-strain
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Micro-hardness measurements were made on the directly irradiated surface and 

on the surface which was furthest away from the light curing unit using a Vickers 

Hardness tester (Struers, Glasgow, UK). Indents (load=1.96 N; dwell time= 10 s) were 

made (n=3) less than 1 mm away from the centre on each surface of each sample (n=3) 

after 24 h dark storage post irradiation. The averages were taken respectively and the 

mean was calculated as group. The percentage of lower surface hardness was then 

calculated with respect to the upper surface to give indications of lower surface cure.  

In order to assess the effect of bonded versus non-bonded surfaces on light 

transmission, moulds were produced from pre-fabricated fine-particle feldspar ceramic 

blocks (Vitablocs Mark 2,, VITA, Germany) cut into 2 mm thick sections. The surfaces 

of each section were painted with black nail varnish (Rimmel, London) to minimize 

transmission and reflection of light through the moulds. Dental silicone impression 

material (Heraeus Kulzer, Germany) was used to hold the slabs centrally in an alignment 

ring. Cavities were prepared centrally (4 mm diameter) with a water cooled high speed 

dental hand piece which had a diamond bur attachment. The moulds were then split into 

two groups (n=3), a bonded group and a non-bonded group. For the first group, the cavity 

walls and glass slides were acid etched with hydrofluoric acid (5%) for 2 minutes and 

washed and dried several times before leaving in dry conditions at room temperature for 

24 h. After 24 h, Scotchbond (3M ESPE, Adper Scotchbond) adhesive was applied to the 

cavity walls and glass slides before curing for 20 s from each side of the cavity with the 

light curing unit. For the second group, liquid separator based on hexane resin solution 

(DVA Very special separator, USA) was applied both to cavity walls and the glass slide 

before the resin was applied. Light transmission was recorded as described above. 

Statistical analyses were performed on the initial and final light transmission 

values, the Vickers hardness number and strain percentage (or strain percentage per unit 

mass) data sets for the various moulds. Data sets were analysed using one-way analysis 

of variance (ANOVA) and post-hoc Holm-Sidak pairwise comparison tests in Sigmastat 

Version 3.5,  where the effects of thickness at constant diameter and the effect of 

diameter at constant thickness were compared (p<0.05). 
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3.3.4 Results 

 

The one-way ANOVA‟s revealed a significant difference between the cavity 

dimensions for each of the responses. The initial light transmission was significantly 

affected by the cavity height (p<0.05) where decreasing transmission was observed with 

increasing height (Table 3.3.2a and Figure 3.3.3). For increasing diameter at constant 

thickness only the 1 mm thick moulds showed a significant decrease in initial 

transmission (p<0.003) for 4 to 8mm and 12 mm wide specimens but not from 8 to 12 

mm wide specimens (Table 3.3.2b and Figure 3.3.3).  However, although some of the 

effects of diameter where insignificant, a noticeable decrease in initial light transmission 

was observed with increasing diameter and volume at constant height (Table 3.3.1; Table 

3.3.2b and Figure 3.3.3). For final light transmission, thicker moulds at constant diameter 

showed significantly higher transmission (p<0.05) except for the 12 mm diameter 

specimens where the effect of thickness was insignificant (Table 3.3.2a). At constant 

thickness, narrow specimens showed significantly higher final transmission although the 

change from 8x1 mm to 12x1 mm was not significant (Table 3.3.2b).  Specimens cured in 

the thickest and narrowest mould (4x2 mm) showed the most significant increase in light 

transmission (>100%) during irradiation in comparison to the other specimen groups 

(p<0.05; Table 3.3.2 and Figure 3.3.3). 
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(a) 

 

(b) 

COMPARISON OF CHANGE IN DIAMETER 

 Mould Dimensions 

( x h) 

Initial relative light 

transmission percentage 

(t=0) 

Final relative light 

transmission 

percentage (t=60) 

Total strain % (Sσ %) 
Strain % Per unit mass 

(% Sω g
-1

) 

Lower hardness 

percentage 

4 x 2 89.5(1.6) c 107.7(2.4) a 4.1(0.7) b 0.145(0.025) b 85.6(1.1) c 

8 x 2 87.9(0.6) c 101.4(0.9) b 6.4 (1.6) a,b 0.057(0.014) c 91.4(0.7) b 

4 x 1 93.8(0.5) a 101.5(0.5) b 4.9(0.4) b 0.346(0.031) a 93.2(1.3) b 

 8 x 1 91.3(0.1) b 99.8(0.2) c 5.8(0.8) a,b 0.103(0.013) c 92.1(2.0) b 

12 x 1 91.2(0.8) b 99.6(0.2) c 6.2(0.8) a,b 0.049(0.007) c 94.6(1.8) b 

 

Table 3.3.2: Comparison of light transmission, strain and Vickers hardness data of each specimen group. The tables represent 

the comparison between thickness at constant diameter (a) and diameter at constant thickness (b). Similar letters within each 

column represents no significant differences.  

COMPARISON OF CHANGE IN THICKNESS 

 Mould Dimensions 

( x h) 

Initial relative light 

transmission percentage 

(t=0) 

Final relative light 

transmission 

percentage (t=60) 

Total strain % (Sσ %) 
Strain % Per unit mass 

(% Sω g
-1

) 

Lower hardness 

percentage 

4 x 1 93.8(0.5) a 101.5(0.5) b 4.9(0.4) b 0.346(0.031) a 93.2(1.3) b 

4 x 2 89.5(1.6) c 107.7(2.4) a 4.1(0.7) b 0.145(0.025) b 85.6(1.1) c 

 8 x 1 91.3(0.1) b 99.8(0.2) c 5.8(0.8) a,b 0.103(0.013) c 92.1(2.0) b 

8 x 2 87.9(0.6) c 101.4(0.9) b 6.4 (1.6) a,b 0.057(0.014) c 91.4(0.7) b 

12 x 1 91.2(0.8) b 99.6(0.2) c 6.2(0.8) a,b 0.049(0.007) c 94.6(1.8) b 

12 x 0.5 95.9(1.0) a 100.0(0.7) c 7.8(1.1) a 0.124(0.017) b 99.2(1.3) a 



174 

(a) 

Time (s)

0 10 20 30 40 50 60

R
e
la

ti
v
e
 l

ig
h

t 
tr

a
n

s
m

is
s
io

n
 p

e
rc

e
n

ta
g

e
 (

%
)

70

75

80

85

90

95

100

105
4x2 (AR: 2)

4x1 (AR: 4)

8x2 (AR: 4)

8x1 (AR: 8)

12x1 (AR: 12)

12x0.5 (AR 24)

 

(b) 

Time (s)

0 10 20 30 40 50 60

R
e

la
ti

v
e

 l
ig

h
t 

tr
a

n
s

m
is

s
io

n
 (

%
)

85

90

95

100

105

110

NO PHOTOINITIATOR

4x2 (AR: 2)

4x1 (AR: 4)

8x2 (AR: 4)

8x1 (AR: 8)

12x1 (AR: 12)

12x0.5 (AR: 24)

 

Figure 3.3.3: Relative light transmission percentage of resin contained in black 

nylon mould cavities having different aspect ratios (n=3) for the control group (a) 

and for curing resins (b), which are a percentage of their respective control group. 
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For the micro-hardness measurements, the one-way analysis of variance also 

revealed significant differences between cavity height and cavity diameter. Cavity height 

significantly reduced lower hardness percentage (p<0.05) except for the 8 mm wide 

specimens, although a noticeable decrease in hardness was observed (Table 3.3.2 and 

Figure 3.3.4). Cavity diameter only significantly affected the percentage of lower surface 

cure for the 2 mm thick specimens (p<0.05) but no significant difference was observed 

for the other specimen groups. The Vickers hardness value for the upper surface of each 

specimen remained consistent regardless of specimen geometry (Figure 3.3.4).  
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Figure 3.3.4: The Vickers hardness number of the upper and the lower surfaces of 

cured specimens. The error bars represent the standard deviations of the averages 

of three indents of each specimen (n=3). 



176 

Only the 1 mm thick specimens showed a significant effect with increasing 

diameter at constant height for total shrinkage strain, where total shrinkage strain was 

significantly higher for 8 and 12 mm specimens when compared to the 4 mm specimen.  

Although shrinkage strain increased with aspect ratio, no noticeable trend was observed 

for increasing height at constant diameter for the total shrinkage strain (Table 3.3.2a), but 

the effects may be separated by shrinkage strain per unit mass as the mass of the material 

played an influential role in determining the magnitude of the strain during 

polymerization (Table 3.3.1 and Table 3.3.2; Figure 3.3.5). Shrinkage strain per unit mass 

significantly decreased with increasing diameter at constant height (p<0.05) for all the 

specimen groups although the effect was not significant between the 8 mm specimen 

group and the 12 mm specimen group. At constant diameter and increasing thickness, 

shrinkage strain per unit mass significantly decreased (p<0.05) except for the 8 mm 

specimens, which showed a non-significant decreasing trend (Tables 3.3.2 and Figure 

3.3.5).    
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Figure 3.3.5: Shrinkage strain data for specimens cured in black nylon moulds; total 

measured shrinkage strain percentage (a) the shrinkage strain per unit mass (b). 
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Figure 3.3.6 represents the transmission profile and the digital image of a 

specimen bonded to its cavity walls in comparison to a non-bonded specimen. The 

difference in transmission profiles are obvious.  
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Figure 3.3.6: Light transmission through resins contained in fabricated ceramic 

disks which were either bonded or non-bonded (a). For the non bonded specimens, a 

decrease in transmission is indicative of de-bonding from the cavity walls. 

Representative digital image of micro-cracked specimens which were bonded to the 

cavity walls with Scotchbond adhesive (b). The visible micro-cracks were 

characterized by an audible cracking sound.  

MICRO-CRACKING 



179 

3.3.5 Discussion 

 

The first hypothesis was accepted as mould cavity dimensions affected light 

transmission. The transmission of light is governed by Beer-Lamberts law (Equation 

3.3.2) and as such it should be expected that only changes in specimen height (l) will 

affect light transmission. Therefore, it might have been expected that diametrical changes 

(i.e. increasing specimen diameter at constant height) would have had no affect on initial 

light transmission as light is only detected at the center of each specimen. However, this 

was not observed and interestingly at similar thickness, wider specimens showed less 

initial light transmission, significantly in the case of 1 mm thick specimens. This may 

seem unexpected as a previous study reported that narrow specimens at similar thickness 

exhibited reduced light transmission as a greater amount of light was attenuated due to 

absorption by the cavity walls of the black nylotron moulds (Harrington et al., 1993). 

Interestingly in the present investigation, this was only observed for the control groups 

(without photoinitiator), which showed improved light transmission with increasing 

diameter at similar thickness. The reduced initial light transmission in the curing resins 

for wider specimens may be related to the greater volume of resin (and increased 

photoinitiator molecules within the volume), which may increase the absorption and 

attenuation of light. The peripheral absorption and attenuation may be related to the fact 

that greater absorption occurs by the photoinitiator than the cavity walls of the mould, 

which resulted in the reduced transmission. Such an effect may be reduced in relatively 

wide specimens as the CC3-UV cosine corrector is only capable of registering directly 

transmitted light normal to the specimen surface with a field of view of 180
◦
, which may 

account for the non-significant decrease in initial light transmission for the 12x1 mm 

specimen when compared to the 8x1 mm specimen (Table 3.3.2b). Furthermore, typical 

halogen lights such as the XL2500 have a Gaussian distribution of light irradiance across 

the tip diameter (Price et al., 2010) and therefore any edge effects on light transmission 

for wider specimens will be reduced which may also account for the non-significant data. 

Nonetheless, the highest initial light transmission was seen for the thinnest and widest 

specimen whereas the thickest and widest specimens showed the lowest initial light 

transmission (Tables 3.3.2 and Figure 3.3.3). This might be directly related to Beer-
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Lamberts law as absorption increases proportionally with optical pathlength (i.e. 

thickness) and concentration of absorbing species (i.e. photoinitiator molecules as the 

given volume increases), which would reduce the intensity of the propagating light.  

During polymerisation, the light transmission is also governed by the same law, 

and is affected by dynamic changes in pathlength and photoinitiator properties (Section 

3.1 and 3.2). Consequently, the observed light transmission traces may not represent the 

„true‟ transmission as correcting for such changes become complicated. Therefore, part of 

the observed increase in light transmission traces may be due to specimen shrinkage and 

photoinitiator decomposition (Chen et al., 2007). However, the effect of sample 

deformation to increase light transmission is also a possibility where a „lens effect‟ due to 

shrinkage causes the surface of the sample to bow. Convex lenses typically converge 

light into a focused beam and will tend to improve the intensity of light detected by the 

cosine corrector. In contrast to this, concave lenses typically „diverge‟ the light and 

spread the beam, which will reduce the intensity detected by the cosine corrector (Figure 

3.3.7). It is interesting to note that Asmussen and Peutzfeldt (1999) reported finding a 

convexity of the sample surface closest to the light and concavity of the surface furthest 

away from the light for composites cured in 6 mm diameter moulds having thickness of 

up to 6 mm, which indicates a convex-concave scenario (Figure 3.3.7). Therefore the 

increased light transmission may well be due to the formation of a convex-concave lens, 

which will tend to focus the beam onto the cosine corrector. The deformation may be 

greater in narrow-thick specimens (i.e. 4x2 mm) due to shrinkage vectors occurring 

axially as well as non-axially as a consequence of the lower aspect ratio (Watts et al., 

2003), which may account for the substantially high increase in light transmission 

(>100%). However, without surface profilometry (ideally 3-D), this may not be 

confirmed and remains speculative. Nonetheless, improved light transmission is 

associated with improved degree of conversion and improved mechanical properties such 

as strength, elastic modulus and hardness (Price et al., 2002; Palin et al., 2008), although 

some physical properties such as shrinkage may increase for conventional resins with 

improved degree of conversion (Braga et al., 2005).   
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Figure 3.3.7: Lens characterization and the converging/diverging of light travelling 

from left to right. 

 

The second hypothesis must be rejected as the specimen that showed the greatest 

improvement in light transmission (Table 3.3.2 and Figure 3.3.3) showed inferior lower 

surface hardness relative to its upper surface (Figure 3.3.4) in comparison to the other 

specimen groups. The hardness values for the upper surfaces remained comparable 

between the different specimen geometries whereas the hardness of the lower surfaces 

was dependent on the specimen geometry and the amount of light received initially at the 

lower surface. This might be supported by previous findings where a logarithmic 

correlation between intensity and depth of cure and a linear relationship between depth of 

cure and irradiating distance were reported (Aravamudhan et al., 2006). Not surprisingly, 

the 12x0.5 mm specimens showed significantly higher lower surface hardness in 

comparison to the other specimens, which is due to the relatively thin specimen height 

(0.5 mm) allowing equivalent cure on either surface due to the 96-100% light 

transmission throughout cure (Figure 3.3.3 and Figure 3.3.4). Interestingly, the specimen 
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group that showed the highest final light transmission had the lowest lower surface 

hardness. However, the substantially high increase in light transmission (>100%; Figure 

3.3.3) for the lowest aspect ratio mould may not reflect „true‟ transmission as previously 

mentioned. The lower surface hardness for the 4 mm and 12 mm diameter moulds were 

significantly lower for the thickest mould but for the 8 mm diameter moulds, there was 

no significant difference in lower surface hardness percentage with height variation. This 

was not expected as the initial light transmission is significantly lower for the thicker of 

the two. This may be related to adequate light transmission through the unfilled resins, 

which may not occur in 4 mm diameter moulds due to absorption by the cavity walls.  

The dimensions of the cavity will play a significant role in the viscous flow of the 

specimen during polymerisation and any developing stresses and strain, which may affect 

light transmission. During polymerisation, the resin transforms from a viscous resin to a 

viscoelastic phase (de Gee and Davidson, 1981). This transformation is characterized by 

the so called „gel-point‟. Prior to the gel-point, any developing stress can be compensated 

by the intrinsic flow of the resin (Sakaguchi et al., 2004). The shrinkage vectors (which 

are dependent upon height and diameter) will govern how light transmission is affected. 

When uni-axial shrinkage dominates and the shrinkage leads to a reduction in the height, 

it might be expected that the outcome would be improved light transmission and 

associated improvement in curing extent. For cavities with low aspect ratios, uni-axial 

shrinkage dominates with some non-axial shrinkage occurring due to the low aspect ratio 

(Watts et al., 2003). The constraint caused in such specimens may cause specimen 

deformation and a non-uniform transmission profile, which improves transmission 

significantly during polymerisation. The sudden increase in light transmission for the 4 

mm diameter moulds may be due to the high shrinkage strain imposed by the low mass 

and the constraint of the specimen (Figure 3.3.5). A sharp increase in transmission is 

expected at the point where the resin can no longer relax due to pre-gel flow. 

Interestingly, transmission above hundred percent is observed which may be due to the 

shrinkage vectors dominating axially (with some non-axial contribution) and the 

constraint causing the samples to become convex on the irradiated side and concave on 

the non-irradiated side as previously mentioned (Figure 3.3.7). The increase in diameter 

from 4 mm to 8 mm will increase the aspect ratio, which will reduce the constraint, 
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allowing both axial and non axial shrinkage (i.e. bi-axial). Therefore, non-axial shrinkage 

will contribute more to the total shrinkage and the deformation should be reduced (i.e. 

less convexity and concavity) as the sample shrinks more freely. The mass of the 

specimen will determine the magnitude of the shrinkage strain. At similar aspect ratio, 

the strain per unit mass is significantly greater (p<0.05) for the smaller specimen (4x1 

mm) when compared to a larger one (8x2 mm), whilst the total strain increases with mass 

although non-significantly (Table 3.3.2 and Figure 3.3.5). As shrinkage occurs bi-axially 

in both 8 mm diameter moulds, the increase in light transmission occurs at a more steady 

pace than the 4 mm diameter specimens and the bi-axial shrinkage does not allow for an 

increase in transmission above hundred percent (Figure 3.3.3). Then, for the mould 

having geometry of 12x1 mm, the aspect ratio increases from 8 (for the 8x1 mm mould) 

to 12. As a consequence of the larger diameter, a greater mass of resin is introduced. This 

greater mass allows for a lower shrinkage strain per unit mass although the total 

shrinkage strain increases when compared to the 8x1 mm mould (Table 3.3.2 and Figure 

3.3.5).  Consequently, as constraint decreases and radial shrinkage (i.e. shrinkage away 

from the cavity walls) starts to dominate, a slower increase in light transmission is 

expected (Figure 3.3.3). For the highest aspect ratio specimen, the relatively thin 

specimen and low mass when compared to the specimen having dimensions of 12x1 mm, 

will only allow radial shrinkage. The magnitude of the shrinkage strain is high as the 

opposing glass covers will cause greater constraint than the constraint imposed by the 

cavity walls of the mould as the aspect ratio is high (Figure 3.3.5a) but the shrinkage 

strain per unit mass remains comparable to that of a specimen with similar mass (8.x1 

mm; Figure 3.3.5b). Radial shrinkage in the relatively thin specimen would only produce 

little changes in transmission, and it may be speculated that the little change in light 

transmission observed for the 12x0.5 mm mould may be mainly due to photoinitiator 

decomposition (Chen et al., 2007). 

For low aspect ratio moulds, constraint is high and the bond between the cavity 

walls and the opposing surfaces might be compromised. When the shrinkage becomes 

restricted stress is generated. Stress generated after the gel-point competes with 

interfacial adhesion and can not be easily compensated. If this stress cannot be dissipated 

or relieved the sample may crack and introduce air-pockets which will affect light 
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transmission, as indicated by the inflection of the „bonded‟ transmission profile and 

digital image in Figure 3.3.6, respectively. Free-shrinkage (by means of separation or due 

to low constraint) will allow stress dissipation or relief. Free shrinkage will also reduce 

the „lens‟ effect as the specimen will shrink freely both axially and non-axially. 

Therefore, the lower transmission of the corrected „non-bonded‟ transmission in 

comparison to the „bonded‟ trace may support the greater deformation in the 4x2 mm 

specimens. However, in the ceramic moulds, the increase above 100% was lower than 

that observed in the nylon moulds (Figure 3.3.3 and Figure 3.3.6). This maybe related to 

the fact that acid etching ensured mechanical adhesion to both cavity walls and opposing 

surfaces and therefore deformation was almost impossible causing stress to build up and 

samples to crack. Nonetheless, for separated samples, de-bonding from the ceramic 

cavity walls and opposing surfaces resulted in a sharp decrease in light transmission 

following gelation of the curing resin as larger air gaps (than for sample micro-cracking) 

are introduced between the surfaces (Figure 3.3.6). This may be due to the much lower 

refractive index (RI) of air (RI~1) compared to that of resins cured or un-cured (RI~1.50-

1.55) (Section 3.2). De-bonding will allow light to travel down the sides of the sample 

(through air) and through air gaps between the microscope slides and samples. The 

sudden mismatch in RI between glass, air and curing resin will increase scattering and 

account for the sudden decrease in light transmission that was observed (Figure 3.3.6). 

From the current investigation, it is evident that the cavity dimension influence how light 

is transmitted through curing specimens and the constraint controls strain vectors and 

magnitude, which may also affect light transmission. Further work is required to fully 

understand this phenomenon at similar material mass and how other material properties 

are affected by such changes in light transmission. In addition to correcting for absorption 

and shrinkage, surface profilometry and more specimen geometries should be used which 

may help confirm these speculations. 
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3.3.6 Conclusion 

 

Specimen geometry and constraint affected light transmission throughout 

polymerization of dental resins. The light transmission was dictated by how the shrinkage 

vectors and strain developed during cure. Unexpected light intensity variations may occur 

for low configuration factors, which may increase or decrease curing extent of resin 

based restorations and ultimately compromise the success and longevity of the 

restoration. Characterizing fundamental aspects of photo-induced polymerization of 

dental resins such light transmission, with respect to shrinkage and shrinkage strain will 

provide a greater insight into the shrinkage behaviour of such materials and this will 

ultimately aid to improve longevity of such restorations. Furthermore, improving light 

transmission through depth may consequently improve degree of conversion. 
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3.4 Summary 

 

The aim of this chapter was to investigate the changes in optical properties of 

curing dental resins and introduce a novel technique to dynamically measure refractive 

index change and physical thickness change of photoactive dental resins. Changes in 

optical properties in RBCs occur as light is absorbed, attenuated, scattered and refracted 

through the specimen. Not only does the material composition affect such properties, i.e. 

the resin matrix composition, filler type and percentage, photoinitiator type and 

concentration and the addition of pigments and dyes, the conversion from monomer to 

polymer is also expected to affect optical properties.  

 Along with dyes and pigments used to create varying shades of resin composite 

materials, the photoinitiator is a strong absorber of light in photoactive dental resin 

composites, which decomposes during activation therefore decreasing absorption and 

increasing the amount of light transmitted through the specimen. Alternative colourless 

photoinitaitors are mainly used for aesthetic reasons as camphoroquinone has a distinct 

yellow tint due to its chromophore group which is partly unbleachable (Jakubiak et al., 

2003). As well as improved aesthetics, non pigmented photoinitaitors have been 

suggested to have additional benefits such as reduced curing time (Section 2.3) due to 

their higher efficiency. However, the use of such initiators is expected to have a 

significant influence on the optical and physical properties of the curing resin composite. 

Firstly, inferior depth of cure of Lucirin TPO-based resin composites was reported in 

Section 2.3 as a consequence of low wavelength scattering of light and high molar 

absorptivity causing in-efficient light transmission at depth. Secondly, such a high molar 

absorptivity is expected to affect reaction kinetics and increase the rate of polymerisation. 

Section 3.1 aimed to investigate some optical properties of resins made with 

camphoroquinone and Lucirin TPO with respect to reaction kinetics. Photoinitiator 

decomposition during cure is expected to increase light transmission proportionally 

according to Beer-Lamberts law (Chen et al., 2007). However, the inverse absorption 

observed for Lucirin TPO resins maybe related to monomer discolouration associated 

with high reaction exotherms by rapid rates of polymerisation. As such, the initially 

colourless resins become stained and an increase in yellowing was observed, verified by 



187 

the increase in b-value of the CIELAB co-ordinates. Conversely, for camphoroquinone 

resins, the initially yellow resins bleach upon irradiation and a decrease in yellowing is 

observed (decrease in b-value). Any discolouration during irradiation may potentially 

reduce light transmission through depth and affect depth of cure, even for photocurable 

resins that utlilise so-called, “colourless” photoinitiators such as Lucirin-TPO. 

Characterising photoinitiator properties dynamically will ultimately improve 

photoinitiator chemistry in such materials.  

The optical properties of resin-based composites are essential to optimise light 

transport through the material and to aid curing depth. Although refractive index of dental 

resins are well characterised statically, the change during cure is not well understood. 

Section 3.2 aimed to demonstrate a novel technique whereby refractive index can be 

measured during cure. The ability to measure refractive index change of curing 

photoactive resins will allow for the design of composite formulations, which exhibit 

optimum evolution of translucency (as the RI of the curing resin approaches that of the 

filler) and enable precise control of aesthetic quality, light transport through material bulk 

and curing depth. 

The shrinkage of dental RBCs is also an important consideration. When 

composites shrink, the affect on light transmission may be predicted by Beer-Lamberts 

law, where a decrease in optical path length will increase light transmission. Not only is 

the shrinkage affected by material composition, i.e. filler type and percentage and resin 

matrix composition, specimen geometry is likely to significantly affect the shrinkage 

vectors of the curing specimen, which may affect light transmission. As such, in Section 

3.3 it was observed that low aspect ratio moulds may result in unexpected light 

transmission profiles due to sample deformation caused by the relatively high constraint.  

The current Chapter demonstrated for the first time the ability to simultaneously 

measure refractive index change and physical thickness change in photoactive dental 

resins during polymerisation and reported the effect of monomer composition and 

specimen constraint on optical and physical properties (Section 3.2 and 3.3). Such 

information may be useful in order to optimise the resin matrix / filler interaction to 

improve light transmission through depth, with the aim of improved depth of cure and 

clinical success of such restorations.  
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4.0 Recommendations for Further Work 

 

In order the compare the anomalies of the exposure reciprocity law, commercial 

and experimental materials were tested. Although static rheology measurements provide 

some insight into the mobility of propagating species and reaction kinetics, the increase 

in density increases the viscosity during cure. Consequently, dynamic rheological 

changes will differ remarkably according to the reactivity of the monomer, the filler 

percentage and the photoinitiator chemistry throughout and proceeding light irradiation. 

Therefore dynamic rheological measurements may give a better insight into mobility of 

propagating species. Furthermore dielectric spectroscopy may also be used to measure 

mobility within a curing resin directly through Stroke‟s law where ionic conductivity is 

inversely proportional to the viscosity, in which the ionic species is considered to be rigid 

spheres moving through the liquid monomers. As such, the utilisation of real time 

rheology measurements and dielectric spectroscopy would afford a more detailed insight 

into the differences in polymerisation kinetics and failures in the exposure reciprocity law 

and should be the subject of further studies. 

Exposure reciprocity was verified even at low viscosity with the use of Lucirin 

TPO, however inferior cure depths were reported. Clinically, this maybe problematic as 

an increased number of technique sensitive incremental steps will be required to fill a 

relatively large cavity, which may also increase procedural time rather than decrease it. 

The increased scattering at low wavelength may be responsible for the inferior cure 

depths. Optimising the filler particle and resin matrix according to photoinitiator 

absorption spectrum may reduce scattering and aid curing at depth. In addition to this, 

using camphoroquinone or another photoinitiator which absorbs at higher wavelengths 

synergistically with Lucirin TPO will allow light at higher wavelengths to penetrate 

deeper with less scattering and may improve curing depth. Therefore it is proposed that 

further investigations are conducted with different resin and filler constituents and a 

variety of photoinitiators such as camphoroquinone, phenyl propanedione and benzyl 

used synergistically with Lucirin TPO in order to try and improve cure depths. 
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Much of the current investigation has focussed on the applicability of the 

exposure reciprocity law based on degree of conversion data. However, degree of 

conversion data should not be considered the gold-standard of material properties. The 

polymer chain length and cross linking may also be influenced by irradiation time and 

intensity and thus even at similar degree of conversion reported in the current 

investigation, the mechanical properties such as flexural strength, flexural modulus, water 

sorption and cure depths will be affected. Therefore, in order to better understand how the 

reduction in curing time will influence clinically important parameters, it is proposed that 

the materials tested in the current investigation are tested for their performance under 

mechanical testing regimes, such as dynamic mechanical thermal analysis which may be 

useful for real time development of mechanical properties or static load-to-failure tests 

such as three-point bend to assess flexural strength and modulus. 

The introduction of a novel low coherence interferometer used to assess optical 

and physical change dynamically in the present study may provide valuable information 

on optical and physical change in resin-based composites whilst under cure. The 

development of such a technique may allow for the design of composite formulations, 

which exhibit optimum evolution of translucency to enable precise control of aesthetic 

quality and light transport through material bulk and curing depth. Consequently, it is 

proposed that further work utilising model composites with different resin matrix 

constituents/ratios and filler type/percentage be tested for a more detailed insight into the 

evolution of translucency and its affect on depth of cure. 

Additionally, although 2-D measurement of refractive index and physical 

thickness change provided useful information on the optical properties and shrinkage 

behaviour of experimental resins, such changes are not uniform throughout the specimen. 

Precise control of optical properties such as refractive index will optimise light 

transmission at depth and enable greater depths of cure. However, to fully understand 

bulk optical change, a spatial, 3-D measurement of refractive index and physical 

thickness change would be more appropriate. Modification of the bespoke software used 

to control the measurement parameters in the current study to allow axial measurement 

during cure will enable precise mapping of the sample under measurement. The mapping 
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of which will further optimise the design of composites to allow optimal light 

transmission at depth by better design of composite formulations.  

Light transmission is an important factor for degree of conversion and depth of 

cure. As refractive index changes and approaches that of the filler, interfacial scattering 

decreases and light transmission increases. Therefore, light transmission is an important 

measurement parameter to optimise curing of resin-based composites. However, as 

optical measurements are sensitive to the experimental set-up, it seems more appropriate 

to measure them simultaneously. Thus, developing a device which allows the 

simultaneous measurement of refractive index/shrinkage and light transmission will 

reduce experimental errors and allow a better analysis of the data obtained.  

Finally, to truly optimise the experimental set up and procedure, degree of 

conversion and temperature measurements should also be made simultaneously. 

Experimentally, this is problematic as there will be many probes and sensors to operate 

simultaneously. Consequently, the „one-hit‟ measurement device seems almost 

impossible to construct for the measurement of multiple parameters in a relatively small 

sample. However, both the low coherence interferometer and the FT-IR spectrometer are 

based on the Michelson interferometer and the broadband light source used in the low 

coherence interferometer has a centre wavelength of 1624 nm, which corresponds with 

the vinyl carbon double bond absorption wavenumber at 6164 cm
-1

 (as the wavenumber 

is given by the reciprocal of wavelength). Consequently, it is possible to apply a Fourier 

Transform function on the low coherence interferometer data to obtain the absorption 

spectra for measuring conversion and curing kinetics. This would reduce number of 

probes and sensors in the „one-hit‟ measuring device and may allow for real time 

simultaneous measurements of refractive index, shrinkage, degree of conversion, 

temperature and light transmission which will ultimately aid material development by 

providing a greater insight into the curing behaviour of resin based composites.  

As mentioned previously, 3-D mapping of dental resins and dental resin 

composites may optimise the design of composites to allow optimal light transmission at 

depth by better design of composite formulations. However, such mapping may also be 

used to validate the „lens‟ effect theory discussed in Section 3.3.3. Currently, 2-D 

mapping may be used to map the thickness across the specimen on one axis but the data 
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remains limited as it only indicates the physical thickness and not how the sample shrinks 

(i.e. the type of lens formed). The most appropriate currently available solution to 

validating the „lens‟ effect theory may well be profilometry, which will directly indicate 

how the samples shrink and their resultant geomtery.  
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APPENDIX  

 

Appendix 1  Physical thickness change of Camphoroquinone resins and Lucirin 

TPO resins. 

 

 

 Camphoroquinone and Lucirin TPO resins were tested to verify that no expansion 

occurred during irradiation and reject the possibility that the initial increase in absorbance 

for Lucirin TPO resins was due to expansion by the high reaction exotherm (Section 3.1). 

The resins were tested with a Swiss Master halogen Light (EMS, Switzerland) under the 

hypothesis: 

 

i) Lucirin TPO resins will show initial expansion due to the high reaction 

exotherm whereas camphoroquinone resins will not. 

ii) The expansion would be greater for high irradiance protocols as rates of 

polymerisation and exotherm are expected to increase. 

 

Figure A1 represents the physical thickness change of camphoroquinone resins 

and Lucirin TPO resins measured using the low coherence interferometry method 

described in Section 3.2. It is evident from the charts that no expansion occurred during 

irradiation, even for the highest irradiance protocols. Interestingly however, the highest 

irradiance protocol showed the greatest shrinkage for Lucirin TPO resins and an opposite 

trend was observed for camphoroquinone resins. Consequently, both hypotheses must be 

rejected and the possibility of increased absorption due expansion in Lucirin TPO resins 

must be ruled out.   
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Figure A1: The physical thickness change of unfilled resins containing the low 

photonitiator concentration (0.0134 mol/dm
3
) for camphoroquinone (a) and Lucirin 

TPO (b) cured with a Swiss Master Halogen light at similar radiant exposure (18 

J/cm
2
). 




