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Abstract

Microscopy and flow cytometry are pillars of life science research. They use agents such as
light or electrons to analyse the structure and composition of biological samples at micrometre
and nanometre scales. However, the samples can be damaged by this very process, resulting in
observations that do not capture them in their most natural state. [llumination intensity must
therefore be minimised, but this reduces the ratio of signal to noise. When signal intensity
is limited by practical constraints, and noise cannot be mitigated at the time of observation,
denoisers must be employed to estimate the signal underlying a noisy observation post hoc.
Currently, the most accurate estimates are made by deep learning-based denoisers. Their strength
comes from utilising the information contained in training data, but this is also one of their greatest
limitations.

To reliably remove all forms of noise, existing deep learning-based denoisers require paired
training data, typically consisting of noisy observations and corresponding clean signals. In the life
sciences, paired data and clean signals may be unobtainable. Techniques exist to train denoisers
with unpaired noisy observations, i.e., the very data that is to be denoised, but these face another
challenge: structured noise. Structured noise is prevalent in both microscopy and flow cytometry,
and it is defined as noise that is correlated over pixels or time points. Currently, no deep learning-
based denoiser can reliably remove it without either paired training data or by making sacrifices
in the quality of the output.

In this thesis, we develop unsupervised deep learning-based denoisers for structured noise
as it commonly occurs in microscopy and flow cytometry. These methods are trained without
paired observations or clean signals, and have quality approaching and sometimes exceeding that
of denoisers trained with paired data. We also identify another limitation of unsupervised deep
learning-based denoisers — their slow inference time — and present a method to reduce their
inference time by three orders of magnitude. We believe that the methods presented here will

remove some of the biggest barriers to applying deep learning denoisers to life science data.
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1 INTRODUCTION

1.1 Motivation

Microscopy confirmed the existence of cells and microbes [[/]. Flow cytometry later made it
possible to quickly and quantitatively phenotype them in heterogeneous mixtures [8, 9]. Today,
both techniques remain indispensable for life scientists. Indeed, to study the dynamics of living
cellular systems, researchers arguably have no choice but to use light microscopy [10], and no other
technique can analyse or sort a population of cells with the throughput of flow cytometry [11].
However, despite transforming the life sciences, these tools are prevented from reaching their full

potential by a practical constraint: the need to protect the sample.

In light microscopy and flow cytometry, high light intensity can harm living samples or bleach
fluorescent dyes [12, 13, 14]. In electron microscopy, high electron beam intensity can completely
destroy a sample [15]. Low signal intensity is therefore essential for preserving sample health, but

it comes at the cost of increasing the relative power of noise.

Noise consists of all the random errors that are made as a device measures a signal. For
light and electron signals, the first source of such errors is shot noise, which results from the
inherent randomness in the arrival of photons or electrons at a detector [16]. Another source
is readout noise, which arises from the random movement of electrons during signal amplifica-
tion [17]. Because it is possible for noise to degrade different signals into the same observation,
working backwards to recover an exact original signal is impossible. Nonetheless, we can make
an estimate that we believe to be close to the original signal. Methods for doing so are called

denoisers.

Traditional, non-deep learning-based denoisers separate noise from signal by utilising prior
knowledge of the characteristics that distinguish the two [18, 19, 20]. These methods are highly
refined and widely used [21]. However, in terms of output quality, deep learning-based approaches

predominate [22]. These methods leverage the information contained in training data to teach



1 INTRODUCTION

a deep neural network to transform noisy inputs into clean signals [23, R4, b, 25, 26, 27]. This
avoids the need for handcrafted priors and produces impressive results, but such power comes at
a cost. For example, deep learning requires a significant quantity of training data and substantial
computing resources, both of which can be limited in scientific applications. In this thesis, we
identify some of the key challenges faced by deep learning-based denoisers in the life sciences
and develop methods to overcome them. Our aim is to minimise the disruption imposed by
deep learning-based denoisers on a practitioner's workflow, without compromising on restoration
quality. Moreover, thanks to technical similarities between microscopes, flow cytometers and the

observation technologies used in other fields, these denoisers could have broad impact.

1.2 Challenges

The following are four challenges that are faced by deep learning-based denoisers when they are

applied to life science data.

1. Limited access to training data

Deep learning-based denoisers require training data. The type of training data they require varies
with their learning method. Supervised learning denoisers are trained using a collection of input-
target pairs. The input is always a noisy observation and the target is typically the corresponding
noise-free signal [5]. The quality of results from supervised denoisers trained with noisy-clean
pairs is consistently high [28]. However, with enough training data, the same quality can be
achieved using noisy-noisy pairs. This is data where both the input and the target contain the

same underlying signal but different and independent noise realisations [6].

For either case, the signals and noise in training pairs must be similar to that of the data
that the denoiser will ultimately be applied to [29]. For noisy-clean pairs, it can be impossible to
collect suitable clean examples if the sample is too delicate [30]. This is no problem for noisy-noisy
pairs, but they too can be difficult to collect if the sample moves between acquisitions or if it is

so delicate that it is destroyed by one [30]. And for historic data that was not collected with the

2



1.2 Challenges

intention of training a denoiser, any form of external training data can be impossible to obtain.

Another learning method is self-supervised learning [25, 31]. This only requires unpaired noisy
observations. Such a requirement is ideal because the training data can be the very data that the
user wants denoised, assuming that it is of a sufficient quantity. However, a price is paid for this
convenience. In self-supervised denoisers, the denoised value of an element, such as a pixel or
time point, is a function of all elements in the original observation except for that element itself.
The ignored element is known as a blind spot, and excluding it from predictions fundamentally
limits how accurately a self-supervised denoiser can a recover signal.

The most recent learning method for deep learning-based denoisers is unsupervised learn-
ing [26, 4]. This does not require paired data or blind spots. Instead, users must provide a noise
model — an approximation of the statistics of the noise. The noise model can be fitted to specially
collected calibration data [32] or, by assuming the noise is unstructured, bootstrapped from noisy

observations [26].

2. Structured and signal-dependent noise

Noise in microscopy and flow cytometry is often not as simple as some denoisers assume. One
assumption that is commonly broken is the belief that the noise in each pixel of an image, or
time point of a time series, is statistically independent of the noise in other pixels or time points.
In reality, noise is often what we refer to as structured, meaning that it exhibits correlations
across space or time [2]. For example, in scanning-based microscopy techniques such as confocal
microscopy [33, 34], noise can be correlated in the direction of the scan [35].

If paired training data is available, structured noise can be removed effectively by a supervised
denoiser. However, to apply a self-supervised denoiser, its blind spot must be extended from just
excluding the element that is being denoised to excluding every element that contains correlated
noise [2]. lgnoring so much information sets an even lower limit on performance.

To use an unsupervised denoiser, a model of the structured noise is required, but all current
applications of unsupervised denoisers use noise models that can only represent unstructured

noise. A workaround was proposed by Prakash et al. [4], but we show that this is not successful
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1 INTRODUCTION

for all cases of structured noise in Sec. @

Another characteristic of noise that is important to consider is signal dependence. This is
where the variance of the noise is a function of the intensity of the underlying signal, which is the
case for shot noise [36]. Although all current deep learning approaches to denoising can handle
signal-dependent noise, we must ensure that new denoisers retain this ability if they are to be

applied to data where shot noise is a limit on sensitivity.

3. Uncertainty

Denoising is an ill-posed problem with no unique solution. But while there are infinitely many
signals that could underlie a given noisy observation, we will believe some signals to be more
probable than others. The uncertainty in our beliefs is a combination of epistemic and aleatoric
uncertainty. Epistemic uncertainty can be reduced by learning more about the nature of the noise
and the signals. Aleatoric uncertainty is the uncertainty that remains after we have learnt all the
information we can [37]. In scientific applications, it is important to have a level of confidence in
data’s support for conclusions. Denoisers should therefore return an estimate of uncertainty for

a denoised signal.

The supervised denoiser lContent Aware Image Restoration (CAREj [5] estimates epistemic

uncertainty using a method called deep ensembles [38], and it estimates aleatoric uncertainty by

predicting a per-pixel variance for denoised images. The unsupervised denoisers DivNoising [26]

and hierarchical DivNoising (HDNj [4] estimate aleatoric uncertainty by allowing users to ran-

domly sample from an estimated probability distribution of clean signals. Randomly sampled

signals can be compared for semantic differences or used to compute a per-pixel variance.

4. Limited access to computing resources

While the ability to sample from the distribution of clean signals makes DivNoising and
useful for uncertainty estimation, it makes them much slower than supervised and self-supervised
denoisers during inference. This is because users are often interested in seeing one consensus

solution that summarises all possible signals. Typically, this will be the expected value of the

4



1.3  Thesis outline

solutions, equivalent to averaging infinite samples from the distribution of possible signals. Su-
pervised and self-supervised denoisers estimate this value directly, but unsupervised denoisers
require users to estimate it by sampling and averaging solutions manually, usually with 100 or
1,000 samples [26, 4]. Scientific image datasets can consist of thousands of images and access
to computing resources is often time-limited. Randomly sampling at least 100 signals per image

can incur an infeasible time cost.

1.3 Thesis outline

We believe that unsupervised denoisers have the most potential to overcome the above challenges
and become a standard tool for life scientists. They do not require paired training data, are not
limited by blind spots, and provide meaningful aleatoric uncertainty estimates. However, the
range of modalities that they can be applied to is restricted by their inability to reliably remove
structured noise, and their slow inference can be expensive. The following list describes how each
chapter of this thesis tackles these challenges.

Chapter @ formalises the denoising task and all necessary concepts. It then introduces the
unsupervised deep learning-based denoisers DivNoising [26] and [4], which we build upon.
Chapter E accelerates inference of unsupervised denoisers by co-training them alongside a super-
vised denoiser. The inputs for this supervised network are real noisy observations, and its targets
are corresponding denoised signals produced by the unsupervised denoiser. We refer to this new
network as the Direct Denoiser, and it learns to predict the expected value of the denoised signal
in a single forward pass, reducing inference time by three orders of magnitude. As a trade-off,
training time is increased by only 26%.

Chapter @ shows how deep autoregressive noise models can represent structured noise. However,
while they can model any type of structure, their reliance on calibration data limits them to
signal-independent noise in practice. We combine this noise model with an existing unsupervised
denoiser and, using both simulated data and real data from photoacoustic imaging, show that

we can remove structured, signal-independent noise.
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Chapter E demonstrates that despite being limited to signal-independent noise, the method from
Chapter E] can be used to denoise light scattering observations in flow cytometry. Specifically, we
enhance the diagnostic potential of a nanoparticle analyser by removing structured background
noise.

Chapter E presents an unsupervised learning method for removing row-correlated and signal-
dependent noise in microscopy images. Row correlation is a common form of structure for noise
in many microscopy modalities. The denoiser is trained using only noisy images, meaning no paired
observations or calibration data. This is made possible by co-training a deep autoregressive noise
model alongside the main denoiser.

Chapter B applies the noise model co-training principle of the previous chapter to develop a
denoiser for structured and signal-dependent flow cytometry noise. It is enabled by a proposed
data acquisition setup where a beam splitter is used to collect paired observations with identical
underlying signal but independent noise realisations. We show how this can be used to denoise
the fluorescence signal in flow cytometry data without any clean data. Although it still requires
noisy-noisy pairs to train, the method achieves better results than a typical supervised denoiser

trained with noisy-noisy pairs.



2 BACKGROUND

2.1 Signals, noise and denoising

A signal is a physical quantity that varies with one or more independent variables and carries
information [39]. The signals we are interested in are those in microscopy and flow cytometry,
two of the most popular approaches for studying life at the micrometre and nanometre scale.
In these modalities, the physical quantity is typically the light intensity at a photodetector, but
electron beam intensity is also commonly used [40]. Other quantities used in microscopy and
flow cytometry include sound and ion intensity [41, 42]. The independent variables are usually
space or time, and the information these signals carry describes the physical structure of biological
samples.

Detectors sample discretely. Therefore, for images, a signal, s € R¥*M is an array with NV
rows and M columns of pixels. The signal in the pixel in the ith row and the jth column is
denoted as s; ; € R. For time series, a signal, s € R”, is an array with T time points, where the
signal at time point ¢ is s; € R.

If we used a microscope or flow cytometer to repeatedly observe a fixed signal, s, each
observation, x € RV*M or x € R”, would be different. The differences would be random, so we

can think of observations as samples from a probability distribution,

x ~ p(x[s). (2.1)

We refer to this as the observation likelihood [43]. It describes the random fluctuations due to
shot noise, thermal motion of electrons, or any other random errors that may occur.
The noise-free signal is defined to be the average of infinite observations, or equivalently, the

expected value of the observation given the signal [44],

s = Ep(xjs) [x]. (2.2)

7



2 BACKGROUND

Under this definition, the noise-free signal includes deterministic errors such as the detector’s
point-spread function, pixel response non-uniformities or the dark current rate [45, 36]. For

brevity, we will often refer to this simply as the signal.

Noise, n, is defined to be the difference between an observation and its signal,
n=x-—s. (2.3)
As a consequence of Eq. (@) the noise has an expected value of zero,

Epms)[m] = 0. (2.4)

Frequently, we find ourselves in a situation where we have an observation, x, that we know
to be corrupted by noise. We would therefore like to know what the signal, s, that underlies
our observation is. Naively, we could find the signal estimate that maximises the observation
likelihood in Eq. (Ell) For a symmetric unimodal distribution, such as a Gaussian, we discover
that the signal with the highest likelihood is perfectly equal to the observation. We are almost
certain that this solution is not correct because we know that the signal is unlikely to have features

that resemble noise.

Knowledge about what the signal is likely or unlikely to be, which we held before looking
at the observation, comes from our prior. A prior is often defined by a set of beliefs such as
smoothness [46] or self-similarity [18], or by a probability distribution, p(s) [47, 26]. For images
and time series of natural phenomena, the prior distribution will have complex correlations between
pixels and time points. Nonetheless, a prior allows us to make more confident estimates of the
signal underlying our observation. In fact, the probability distribution of signals for a given

observation is proportional to the observation likelihood weighted by a prior,

p(s[x) o< p(x[s)p(s). (2.3)

8



2.2 Noise models

The process of estimating a signal or signals that we believe to be close to the original is
denoising. Supervised and self-supervised deep learning-based denoisers typically estimate the
signal with the lowest expected mean squared error under Eq. (@) [5, b, 5], learning an implicit

prior from the data. Unsupervised denoisers, on the other hand, randomly sample from an

approximation of Eq. (@) [26, 4].

The accuracy of a signal estimate has two sources of uncertainty. The first is epistemic, which
is uncertainty in how accurately we have modelled Eq. (@) The second is aleatoric uncertainty,

which stems from how diffusely the probability is distributed in our model of Eq. (@) [37].

Estimation of epistemic uncertainty for deep learning models is challenging and an area of ac-
tive research [48]. While various approaches have been developed, including deep ensembles [38]
as applied by the supervised denoiser [5], we do not attempt to estimate it in this work.
However, by basing our methods on unsupervised deep learning, we inherit the aleatoric un-
certainty estimation method of DivNoising [26] and [4]. The random samples that these
methods provide can be examined for semantic differences, allowing users to interpret aleatoric

uncertainty for themselves.

2.2 Noise models

Unsupervised denoisers avoid the need for paired training data or blind spots by utilising a noise
model. A noise model is an estimation of the observation likelihood in Eq. (Ell) representing
our understanding of the statistics of the noise produced by an observation device. While noise
models enable an unsupervised denoiser to produce results of the same quality as a supervised
denoiser [4], they restrict the denoiser to removing noise that an explicit model can be collected
for. In this section, we will describe the characteristics that a noise model should be able to

represent to enable the denoising of a wide range of microscopy and flow cytometry data.
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2.2.1 Signal-dependent noise

Arguably, the most simple noise model is the additive white Gaussian noise model. This assumes
that the noise in each pixel or time point of an observation is a random sample from a Gaussian
distribution with a fixed variance 0. For images, we can write an additive white Gaussian noise

model as

N M
pxls) = [[ [ [ p(xijlsis).  where p(x;]si;) = N(xi: 515, 0%). (2.6)
i

For time series, the distribution factorises similarly over time points. This is an example of a
signal-independent noise model because the statistics of the noise, n = x — s, are independent

of the signal,
N M
p(nls) = pm) = [[[[p(nis). where p(ni;) = N(ni;;0,07). (2.7)
[

While this model may be accurate for some of the electronic noise sources within a detector, it

ignores a noise source that affects all signals carried by light or electrons: shot noise.

Light from a sample travels to a detector in discrete packets called photons, and photon
emissions are independent random events. The total number of photons, X hoton, €mitted towards

a detector during an exposure is therefore a random variable with a Poisson distribution [16],

Xphoton ™~ P(Xphoton; )\)7 (28)

where the rate of emissions towards the detector, A, is a proportional to the brightness of the

light source. The difference between the rate and the number of emitted photons is shot noise,
Nghot = Xphoton — A (29)

A Poisson distribution has a variance equal to its rate, so the variance of shot noise must also be

10



2.2 Noise models

proportional to the brightness of the light source,

Var[Dgpot] = Var[Xphoton — A] = Var[Xphoton] = A (2.10)

In a perfect photodetector, shot noise is the only noise source. It occurs independently over

space and time, so we can write a model of shot noise for images as,

N M
p(xls) = [[ [ [ p(wijlsig),  where p(xi;lsi;) = Pl sig). (2.11)
i

The shot noise model for time series factorises equivalently over time points.

In reality, the number of photons actually detected is affected by imperfect quantum efficiency
and the presence of dark current [36], and additional noise sources will compound with shot noise.
Nonetheless, the variance of the final observation will still increase with its expected value, i.e.,
its underlying signal. We refer to noise that is statistically dependent on the underlying signal as

signal-dependent. Formally, noise, n, is signal-dependent when the following is true,
p(n[s) # p(n). (2.12)

A parametric model of the sum of additive white Gaussian and Poisson noise was proposed
by Foi et al. [49]. This models imaging noise by assuming a fixed variance for the electronic
noise component and a linear function of the underlying signal as the variance for the shot noise
component. While this is an accurate representation of combined electronic and shot noise, a
more general model of signal-dependent noise was used to enable denoising by Krull et al. [43].
They collected paired noisy-clean images, binned the signal intensities and plotted a histogram of
observed noisy values for each signal intensity. By normalising the histograms, they produced a
separate probability distribution of noise for every signal intensity. Another flexible approach was
applied by Prakash et al. [50]. They mapped signal intensities to the parameters of a Gaussian

mixture model using a polynomial function. Using a dataset of paired noisy-clean images, they

11



2 BACKGROUND

fit the parameters of the polynomial function with iterative maximum likelihood optimisation.

Although the signal-dependent noise models described here are fit to paired noisy-clean data,
they are still relatively straightforward to implement. This is because their data only needs to
represent the range of signal intensities that will be encountered. The patterns and structures in
the data can be arbitrary as they are ignored by the noise models. Suitable data can therefore
be obtained by, for example, taking around 100 noisy images of an out-of-focus light source and

averaging them to estimate their underlying signal [32].

2.2.2 Structured noise

The noise models that we saw in the previous section (Sec. ) were pixel-independent, i.e., the
probability distribution of noise in one pixel is unaffected by the noise in any other pixel. However,
noise generated by the electronics of a detector often exhibits spatial or temporal correlation. For
instance, a confocal microscope produces an image one pixel after the other by point-scanning
across a sample in a raster scan fashion. Often, the noise in each pixel is correlated with the
noise in previously produced pixels [35]. For such images, the observation likelihood in Eq. (Ell)

can be factorised as
N M

p(xls) = [ [ [ ] p(wisls, zi<)), (2.13)
(]
where z; ; are all the pixels in row ¢ and columns preceding column j. A more general factori-
sation that would capture any structure is

NxM

p(x[s) = H (i

S, T ), (2.14)

where * indexes pixels in a raster scan order [b1].

For time series, a general representation of structured noise is given by

T

p(x[s) = Hp($t|57$<t)- (2.15)

t

12



2.3 Unsupervised deep learning-based denoisers

More examples of structured noise can be found in Chapters E] E and E Currently no models
of structured noise have been applied to unsupervised denoisers, prohibiting their application to
these modalities. Developing suitable models of structured and signal-dependent noise is a key

theme of this thesis.

2.3 Unsupervised deep learning-based denoisers

The goal of this section is to explain the unsupervised deep learning-based denoiser DivNoising [26]

and its follow-up [4], as they are the starting point of the methods developed in this

thesis. But before doing so, we must first introduce their backbone, the }\/ariational Autoencode|{

52]

2.3.1 \Variational Autoencoders

The following is based on the tutorial in [53].

The framework [52] trains a latent variable model, py(x,z), with observed variables x,

latent variables z and parameters . The latent variable model can take the form

Po(x,2) = po(x|z)ps(z), (2.16)

or, to make it more expressive, it can use a hierarchy of latent variables z = (zy,...,z.) and

take the form

Po(X,2) = pp(x|21) (1:[ p@(zl|Zl+1)> po(zr). (2.17)

=1

Each py is parametrised with a deep neural network with parameters 6.

To optimise the model, we have access to random samples of x but not z. These could be

used to maximise the marginal log-likelihood objective,

pe(X,2)
po(z[x)

log pg(x) = log : (2.18)
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if it were possible to cancel out the latent variables with the posterior, py(z|x). Unfortunately,

the posterior is often intractable.

The overcomes this problem by introducing an approximate posterior, ¢4(z|x), which is
parametrised by a deep neural network with parameters ¢. When using the hierarchical latent

variable model in Eq. () the approximate posterior factorises as

-1
qs(2|x) = (H G (7] X, Zl+1)> qy(ZL|%). (2.19)
1=1
Expressing the marginal log-likelihood in terms of the approximate posterior, we have

log Pa() = Eayaie [log %} FKL(g(2])][po(2/)), (2.20)

J/

~
ELBO

where KL is the kullback—LeibIer (KL)I divergence [b4]. Of course, this form of the objective

still contains the true posterior, so it cannot be computed. However, notice that divergence

is always non-negative. Therefore, the first term in Eq. () will always be less than or equal

to the true marginal log-likelihood. For that reason, it is known as the |Evidence Lower Bounc‘

(ELBO).
By rearranging Eq. ()

Po(X,z)

qZ,(zyx)] = log ps(x) — KL(g4(2[x)|Ips(z[x)), (2.21)

Eq, (21x) {10%

we see that maximising the is equivalent to simultaneously maximising the marginal log-
likelihood and minimising the @ divergence from the true to the approximate posterior. This
will give us a latent variable model of the observed data and an approximate way to randomly

sample latent variables that could underlie an observation.

The can be optimised with gradient descent, which can be seen by expressing it in

14



2.3 Unsupervised deep learning-based denoisers

terms of the distributions parametrised with neural networks,

L0, 6;%) = By, o) [— log %} (2.22)
= Eg, (2% [~ 1og po (x|2)] + KL(qs (2|x)]|ps(2)). (2.23)

The expectation in the first term of Eq. () can be approximated using the reparametrisation
trick [62] and, when the latent variable distributions are Gaussians, the second term can be
computed analytically. For the hierarchical latent variable model in Eq. () the second term

becomes

L-1

KL (gs (21%)lps(2)) = > KL(gs(zi[x, ze1:)||po (za] 241)) + KL(go (22 [%)|lpa(z0)),  (2.24)

which can also be computed analytically for Gaussian distributions [55].

Equation () reveals that s are a form of regularised autoencoder: An observation, x,
is first encoded as a random sample, z, from the approximate posterior, ¢,(z|x). The approximate
posterior is regularised by rewarding it for having a low @ divergence from the prior, py(z). The
latent variable is then decoded as a random sample from py(x|z). For this reason, g¢4(z|x) is

referred to as the encoder and py(x|z) is referred to as the decoder.

2.3.2 DivNoising and @

The unsupervised denoisers DivNoising [26] and [4] combine the framework with a pre-
trained noise model. Current implementations of unsupervised denoisers pre-train noise models
using the methods described in Sec. . This means that they represent signal-dependent but
unstructured noise. DivNoising and have only been applied to images, so their noise models

are denoted as

po(xls) = [ [ [ pa(wislsis), (2.25)

i=1j=1

with parameters 7).
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The noise model, pn(x|s), is used as part of the following latent variable model,

Po(x,2) = py(x[s = fo(2))ps(2), (2.26)

where x and z are conditionally independent given s. Here, fy is a deterministic deep neural

network with parameters 6.

Both DivNoising and use the framework to optimise this model,

L(0, ¢:x) = By, a0 [~ log py(x|s = fo(2))] + KL(qo(2|x)][ps(2)) (2.27)

= — log pp(x) + KL(qs(2[x)||ps(2|x))- (2.28)

When the variables x are noisy images, minimising this loss trains a latent variable model of
those noisy images. The trained model can be used to sample entirely new noisy images by first
sampling a latent variable from the prior, py(z), then sampling a noisy image from the decoder,
Py(x|fo(z)). The decoder is fixed as the noise model, so the only variability it can model is
variability due to noise. Variability in the underlying signal must therefore be modelled by the
prior. Thus, to generate realistic noisy images, the latent variables must represent clean signals,

and fp(z) = s must transform them into actual clean signals.

The m also estimates a posterior distribution of latent variables, meaning that we can
randomly sample latent variables that might underlie an observed variable. Since latent vari-
ables represent clean signals, we now have everything needed to approximately sample from the

denoising distribution, pa(s|x),
fo(z) PR py(s|x), where z ~ q4(z|x). (2.29)

The key difference between DivNoising and HDN is the fact that DivNoising uses the standard
latent variable model in Eq. (R.16) whereas uses the hierarchical latent variable model

in Eq. () specifically with L = 6 layers. The hierarchical model makes the approximate
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2.3 Unsupervised deep learning-based denoisers

posterior more flexible and able to more closely match the true posterior, therefore giving more
realistic denoised signal; but the authors discovered an additional benefit.

When modelling images containing structured noise, but using a pixel-independent noise
model, the authors found that the high-frequency structured noise content was represented by
the two lowest latent variables in the hierarchy, z; and z;. They then showed that modifying
their approximate posterior to neglect the observation at levels 1 and 2,

4(21|22,X) = q4(21|22) (2.30)

44(22|23,%) = q¢(22|23),

removed structured noise content from denoised images. This variant is called 3_6. Unfor-

tunately, as we show in Sec. @ this strategy does not always work.
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3 DIRECT UNSUPERVISED DENOISING

The first of the challenges in Sec. @ that this thesis tackles is Limited access to computing

resources. In this chapter, we present a method to reduce the inference time of unsupervised

denoisers by predicting the expected value of a denoised signal in a single evaluation step, over-

coming the current requirement of 100 or 1,000 steps.

This chapter is based on: [56] B. Salmon and A. Krull, “Direct unsupervised denoising,” in

2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 3840-

3847,

2023.
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3.1 Introduction

3.1 Introduction

While the quality of restorations from unsupervised deep learning-based denoisers is now ap-
proaching and even sometimes matching that of their supervised counterparts [26, 4], the way
these two methods produce denoised images is fundamentally different. By training a [52],
unsupervised methods approximate a posterior distribution of the clean images that could underlie
a noisy input image. This distribution will be referred to as the denoising distribution. Random
samples from the denoising distribution then constitute the infinite possible solutions to a denois-
ing problem. Supervised and self-supervised learning methods, on the other hand, offer a single
prediction that compromises between all possible solutions. This is usually a central tendency of

the denoising distribution, and the specific central tendency that is predicted depends on the loss

function used. For example, a supervised method trained with the L“nean square error (MSE)I loss

function will predict the mean, which is also known as the Lninimum mean square error (MMSEj

estimate. A model trained with the }nean absolute error (MAE)l loss function will predict the

pixel-wise median, which is known as the Lninimum mean absolute error (MMAEj estimate.

While the ability of unsupervised methods to produce diverse solutions can in some circum-
stances be beneficial for downstream processing [26], users often require only a single solution
such as the estimate. If they are to obtain this from an unsupervised learning-based de-
noiser, they must process their image many times and average many possible sampled solutions,
leading to a significant computational overhead. For example, for a single image, the authors
of [26, 4] average 100 or 1,000 samples from the denoising distribution to obtain their
estimate. Such an approach requires substantial computational effort and is not likely to be

economically or ecologically reasonable for labs regularly analysing terabytes of data.

This chapter presents an alternative route to estimating the central tendencies from an unsu-

pervised denoiser, one that requires noisy images to be processed only once. We do so by training

an additional deterministic lConvqutionaI Neural Network (CNN)I, called the Direct Denoiser, that

directly predicts h\/IMSEI or |MMAE| solutions. It is trained alongside the main by using noisy
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3 DIRECT UNSUPERVISED DENOISING

training images as input and the sampled predictions from the as training targets. Being
deterministic, this network will minimise its or loss function by predicting the mean
or pixel-wise median of the denoising distribution. The result is a denoising network with the
evaluation times of a supervised approach and the training data requirements of an unsupervised
approach.

In summary, we propose an extension to unsupervised deep learning-based denoisers that
reduces inference time by estimating a central tendency of the learned denoising distribution in
a single evaluation step. Moreover, we show these estimates to be more accurate than those
obtained by averaging even 1,000 samples from the denoising distribution. Figure @ shows how
much shorter inference time is with our proposed approach, and how much higher the quality of
results are.

The remainder of the chapter is structured as follows. In Sec. @ we give a brief overview
of related work, concentrating on different approaches to inference methods in deep learning-
based denoising. In Sec. @ we provide background on inference in unsupervised -based
denoising, which is the foundation of our method. In Sec. @ we describe the training of the
Direct Denoiser. We evaluate our approach in Sec. @ showing that we consistently outperform
our baseline at a fraction of the computational cost. Finally, in Sec. @ and Sec. @ we discuss

our results and give an outlook on the expected impact of our work and future perspectives.

Code for the work presented here can be found at github.com/krulllab/DirectDenoiser.

3.2 Related work

3.2.1 Supervised denoising

Traditional supervised deep learning-based methods (e.g. [57, B]) rely on paired training data
consisting of corresponding noisy and clean images. These methods view denoising as a regression

problem, and usually train a UNet [58] or variants of the architecture to learn a mapping from
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3.2 Related work

noisy to clean. The most commonly used loss function for this purpose is the sum of pixel-wise
quadratic errors () which directs the network to predict the estimate for the noisy
input.

The approach’s requirement for clean training images greatly limits its applicability, partic-
ularly for scientific imaging applications, where often no clean data can be obtained. In 2018,
Lehtinen et al. [6] had the insight that training of equivalent quality can be achieved by replacing

the clean training image with a second noisy image of the same content; a training method

termed |Noise2Noise (N2N)|. In practice, such image pairs can often be acquired by recording

two images in quick succession. By using the loss and assuming that the imaging noise is
zero-centred (Eq. (@)) the network is expected to minimise the loss to its noisy training target
by converging to the same estimate as in noisy-clean training.

While Noise2Noise and traditional supervised methods are state-of-the-art with respect to
the quality of their results, their requirement for paired training data makes them inapplicable in
many situations. In contrast, our method requires only unpaired noisy data, which is available for

any denoising task, making it directly applicable in situations where supervised methods are not.

3.2.2 Self-supervised denoising

Self-supervised methods were introduced to enable denoising with unpaired noisy data. Here we
focus on blind-spot approaches (e.g. [25, B1, b9, 60]), which mask individual pixels in the input
image and use them as training targets. These methods rely on the assumption that imaging noise
unstructured, i.e., pixel-wise independent given an underlying signal. By training the network to
predict each pixel value from its surroundings, blind-spot approaches can learn to denoise images
without the need for paired noisy-clean or noisy-noisy data. Like most supervised methods,
self-supervised denoisers are trained with the loss, so predict an estimate for each
pixel. However, they do so with less information, since the corresponding input pixel cannot
be used during prediction. As a result, the quality of the output can be worse than supervised

methods. The blind-spot approach has been improved to reintroduce the lost pixel information
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3 DIRECT UNSUPERVISED DENOISING

during inference [32, 28], achieving improved quality in some situations. In [61], Broaddus et al.
extended the method to allow for the removal of structured noise.
Our method also does not require paired data, but we do not follow the self-supervised

blind-spot paradigm. As a consequence, we do not have to address the loss of pixel information.

3.2.3 Knowledge distillation

Knowledge distillation [62] is the process of training a smaller student network using a large
teacher network or an ensemble [63] of teachers. The goal of this approach is to reduce the
computational effort required during inference and enable more efficient employment of a powerful
model. Surprisingly, the student model can achieve better results compared to being trained on
the data directly. A survey of the topic can be found in [64].

The approach of training our Direct Denoiser with the output of another network can be seen
as knowledge distillation. However, in our case the Direct Denoiser is not intended as a smaller

replacement of the , but as a model with a faster inference procedure.

3.3 Background

Here we will describe the inference procedure of the unsupervised deep learning-based denoisers

DivNoising [26] and [4]. For a formal introduction to the training of these denoisers, see

Sec. @

The authors of DivNoising [26] and [4] adapt the for denoising by incorporating
a known explicit noise model, p,(x|s), into its training objective Eq. () After minimising
this objective, the signal, s, underlying a given x can be estimated by first encoding x with the
learned approximate posterior, g4(z|x), sampling a z and mapping that sample to an estimate of
the signal with the learned decoder fy(z). These solutions are samples from an approximation of

the true posterior distribution of signals,

Qo0(s|x) = /q¢(z|x)5(s — fo(2z))daz, (3.1)
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where ¢ is the Dirac delta function [65]. We refer to this as the denoising distribution.

Each sample from the denoising distribution is unique, allowing users to examine the aleatoric
uncertainty involved in their denoising problem. However, a single consensus solution is often

desired. The authors of [26, 4] chose to calculate the per-pixel mean of 100 or 1,000 samples,

deriving the estimate of the denoising distribution, e.g.,

100

1 | A
100 D folz) ~ argmin By, s [|Is — 3113]
= ° (32)

where z; ~ g4(z|x),

where ||-||3 is the squared L, norm. This consensus solution was then used for measuring denoising
performance. Taking so many samples requires many forward passes of the denoiser and incurs a

potentially prohibitive computational overhead for large datasets.

Our method extends the high quality denoising performance and minimal training requirements

of —based denoisers by allowing them to directly and efficiently produce and

results without repeated sampling.

3.4 Method

When given samples from a probability distribution, we are often interested in what a represen-
tative value of those samples is. In the case of unsupervised denoising, we are interested in a
representative signal from the denoising distribution. A common value to choose for this is the
central tendency of the distribution [66], a point which minimises some measure of deviation from

all of the samples.

For samples from a denoising distribution, g, (s|x), this would be

§" = arg méin Eqy o510 [L (8, 8)], (3.3)
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Figure 3.2: Training scheme: We train our novel Direct Denoiser (blue) alongside a Variational
AutoEncoder (VAE) [26, 4]. The processing of data is shown with solid arrows and the backward
propagation of gradients required for training is shown with dashed arrows. The VAE encoder
takes a noisy observation as input and predicts the parameters of a distribution in latent space.
A sample is drawn from here and mapped to a possible clean signal by the decoder network. The
reconstruction loss is computed using a pre-trained noise model. Our Direct Denoiser is trained
using noisy observations as input and the clean signal samples from the VAH as target. Since
individual samples differ for the same input, there is no unique correct solution for this task. As
a consequence, by using a squared L, loss, the Direct Denoiser will learn to predict the expected
value, i.e., the solution. Using an L, loss leads to predicting the pixel-wise median. We
block gradients from passing through the sampled clean image to prevent the m changing its
outputs.

where L is some per-pixel loss function. If L is the L; norm of errors,
L(s,8) =||s — 8§]|1, (3.4)

then §* corresponds to the pixel-wise median of the distribution, i.e., the estimate. For
the squared L, norm of errors,

L(s,8) = |Is — 8|5, (3.5)
s* will be the arithmetic mean, i.e., the .

The authors of [26, 4] estimated §* using a large number of samples from their denoising

distribution. We propose instead training a to directly predict a central tendency.
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Let g, be our Direct Denoiser with parameters ). The following objective,

L(1;x) = Eqy (s [L(5: 90 (%)), (3.6)

where L is either the L, or squared Ly norm of errors, would train g, to predict either the
pixel-wise median or mean of ¢, (s|x), respectively.

In practice, we can approximate the expectation in Eq. (@) with a single sample from a
denoising distribution pre-trained by DivNoising [26] or [4]. Furthermore, we find that it is
possible to train both the Direct Denoiser and the denoising distribution simultaneously. A single

training step is as follows:

1. Pass a noisy training observation x to the unsupervised denoiser and sample a possible

solution s ~ g ¢(s|X).
2. Update the parameters (6, ¢) towards minimizing the loss function in Eq. ()
3. Pass the same x to the Direct Denoiser, calculating g, (x).
4. Update the parameters 1) towards minimising Eq. (@)
5. Repeat until convergence.

A visual representation of this training scheme can be found in Figure @

3.5 Experiments

Our Direct Denoiser was trained alongside [4] using six datasets of intrinsically noisy mi-
croscopy images that come with known ground truth signal. Each dataset can be found in [4],

as can details of their size, spatial resolution and train, validation and test splits. Note that for

the Struct. Convallaria dataset, we adapted b—IDM into |HDI\‘3,6, making it capable of handling

structured noise.
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Table 3.1: Average @ of consensus solutions from [4] and direct solutions
from our novel Direct Denoiser. HDN's consensus solutions were obtained by taking samples
of varying sizes from its denoising distribution and calculating both their per-pixel median and
their per-pixel mean. The Direct Denoiser’'s solutions were obtained from a single pass of a
network trained under an L; loss and a single pass of a network trained under a squared Lo
loss. PSNRs in the upper table are for median consensus for HDN and the solution from the L,
network for the Direct Denoiser. @s in the lower table are for mean consensus for and
the solution from the squared L, network for the Direct Denoiser. Best results for a loss function
are printed in bold and best results overall are underlined.

Number of samples (HDN)

Dataset 1 10 100 1,000 Direct
Convallaria 33.69 36.59 37.17 37.19 37.50
Confocal Mice 35.43 37.30 37.58 37.62 37.77

I, 2 Photon Mice 31.21 32.63 32.86 32.89 33.55
Mouse Actin 31.62 33.52 33.87 33.91 34.22

Mouse Nuclei 33.48 36.24 36.79 36.81 36.87

Struct. Convallaria 29.02 30.88 31.22 31.27 31.58
Convallaria 33.69 36.76 37.23 37.27 37.45
Confocal Mice 35.43 37.42 37.68 37.69 37.75

Squared Ly 2 Photon Mice 31.21 32.68 32.87 32.89 33.54
Mouse Actin 31.62 33.66 33.92 33.95 34.28

Mouse Nuclei 33.48 36.44 36.89 36.90 36.93

Struct. Convallaria 29.02 31.00 31.27 31.29 31.64

3.5.1 Denoising performance

To evaluate denoising performance, we compare the Peak Signal-to-Noise Ratio (PSNR)I of our

Direct Denoiser’s direct solutions to the PSNI# of |HD|\"S consensus solutions. The consensus

solutions were produced by averaging samples of size 1, 10, 100 and 1,000, reporting both their
per-pixel median and mean. The Direct Denoiser’s solutions were reported from a network trained
with an L; loss and a network trained with a squared L, loss. Results are in Table El! Visual

results from the same experiment can be seen in Figure @
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Figure 3.3: Visual results: _Cropped images from each dataset showing consensus solutions

of varying sample sizes from HDN
Denoiser. For each dataset, the to
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h direct solutions from our Direct
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our L, trained Direct Denoiser, while the bottom row shows the mean of samples and a
solution from our squared L, trained Direct Denoiser.

3.5.2 Inference times

We also compared inference time to denoising performance. In Figure @ the total time for

to generate 1, 10, 100 and 1,000 samples for all 100 images in the Convallaria test set
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was measured, then plotted against the of the mean of those samples, averaged over all
100 images. On the same plot, the total time for our Direct Denoiser to produce single solutions
for each image is plotted against their average . Each test image consisted of 512 x 512
pixels.

Using our GPU (an NVIDIA GeForce RTX 3090 Ti), generating a single 512 x 512 solution
from @'s denoising distribution takes 0.076 seconds, using 2207MB of the GPU's memory.
Our Direct Denoiser takes 0.029 seconds at 1909MB to do the same. Processing one image with
either model uses the full capacity of the GPU’s parallelism, so we saw no speed improvements
by processing more than one image at a time.

If a consensus solution from with approaching that of the the Direct Denoiser

requires sampling 1,000 solutions, inference with the proposed method is 2,621 x faster.

3.5.3 Training times and memory usage

Finally, the additional training time incurred by co-training with the Direct Denoiser was
examined. The authors of [4] train their network for 200,000 steps for all datasets, using a
batch size of 64 and image patch size of 64 x 64. Using our GPU, training alone takes 0.27
seconds per step for 15 hours total, using 13GB of GPU memory. Training both and the
Direct Denoiser takes 0.34 seconds per step for 18.9 hours total, using 15GB of GPU memory.
Note that smaller virtual batches can be used as in [4] to reduce memory consumption. For the
proposed method to be a net time saving, inference would have to take 3.9 hours less. Using
our hardware and inference image resolution, time is saved when the inference test set consists

of 185 images with 512 x 512 resolution.

3.5.4 Network architecture and training

The Direct Denoiser used in these experiments was a UNet [58] with approximately 12 million
parameters, while the unsupervised denoiser was the same Hierarchical [55] used in [4]

with approximately 7 million parameters. We chose to give our UNet more parameters than the
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Hierarchical to ensure the former had the capacity to learn the full relationship between noisy
images and solutions generated by the latter. This may not have been necessary, and training
a Direct Denoiser with a lower computational demand would be an interesting topic for future
research.

Our UNet had a depth of four, with a residual block [67] consisting of two convolutions
followed by a ReLU activation function [68] at each level. Downsampling was performed by
convolutions with a stride of two, and upsampling by nearest neighbour interpolation [69] followed
by a single convolution with stride one. All convolutions had a kernel size of 3. The number of
filters was 32 at the first level and that number doubled at each subsequent level. Skip connections
were merged by concatenating the skipped features with the features from the previous level and
passing the two through a residual block.

Training followed the same procedure described in [4], with the only difference being that our
Direct Denoiser had its own Adamax optimiser [70] with an initial learning rate of 3x10™* that

reduced by a factor of 0.5 when validation loss had plateaued for 10 epochs.

3.6 Discussion

Solutions from our Direct Denoiser consistently scored a higher than consensus solutions of
1,000 samples from . Table Ell shows 's s converging towards our direct prediction
result with increased sample size. It seems that solutions from our Direct Denoiser are sometimes
equivalent to averaging sample sizes orders of magnitude larger than the largest samples size we
used in our experiment. Moreover, by looking at the inference times reported in Figure Ell the

time required to take such a sample size would be impractical for large datasets.

3.7 Conclusions

We have demonstrated that an extension of the unsupervised denoising approach — the Direct
Denoiser — can be used to reduce inference time while improving performance when compared

the standard inference procedure with up to 1,000 sampled images. We believe our approach will
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become the default way of producing central tendencies from unsupervised denoising models with

the increase in speed potentially allowing an easy adaptation by the community.

While we have evaluated our method only for |I\/ISEI and h\/IAE! loss functions, we believe the

approach could also be used with other loss functions such as Tukey'’s biweight loss [71], which
might allow us to find regions of high probability density or even the maximum a posteriori
estimate.

Recent work in image restoration has also suggested the use of more sophisticated perceptual
loss functions (see e.g. [72]). These types of loss functions would likely only be usable in a
supervised setting with clean training data and would be unlikely to work with Noise2Noise or
self-supervised methods. However, since the training targets sampled by our are essentially
clean images, they should be compatible with different types of complex loss functions, opening

the door to using perceptual loss with noisy unpaired data.
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4 TOWARDS STRUCTURED NOISE MODELS FOR
UNSUPERVISED DENOISING

In this chapter, we address structured noise. Specifically, we train deep autoregressive models
of structured imaging noise to enable its removal. At this stage, the process for training these
models restricts us to signal-independent noise, but we will show that this does not prevent us
from enhancing the diagnostic potential of a nanoparticle analyser in Chapter E

The work in this chapter is based on: [] B. Salmon and A. Krull, “Towards structured noise
models for unsupervised denoising,” in Computer Vision — ECCV 2022 Workshops (L. Karlinsky,
T. Michaeli, and K. Nishino, eds.), (Cham), pp. 379-394, Springer Nature Switzerland, 2023.

The photoacoustic imaging data was provided by Paul Beard and Nam Huynh from University

College London.

Noisy input MMSE output Ground truth

Figure 4.1: Comparing @ with our novel autoregressive noise model to @ and
HDNj;_; with the standard pixel-independent noise model. Structured noise can be ob-
served in many imaging modalities. Here, the simulated striped pattern in the noise is designed
to mimic real noise as it frequently in some sCMOS cameras. HDN with our novel autoregressive
noise model is able to remove structured noise, while with the established pixel-independent
noise model only removes the pixel-independent component. HDNs_g performs slightly better,
but struggles with long range correlation. Just as in the standard HDN method, we can sample
possible solutions from the E and compute the minimum mean square error (MMSE) estimate
by averaging them.
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4.1 Introduction

Since the introduction of digital image processing, a plethora of denoising methods have been

proposed; [18, 19, [74] to name a few. The last decade however, has seen a revolution of the

field, with |Deep Learning (DL)I emerging as the technology capable of producing the most accu-

rate results [75, 22]. Traditional supervised @—based methods [B, 6] are the most consistently
performant, but they require the collection of paired training images containing the same content
we would like to denoise, which is not always possible. In recent years this problem has been
addressed by new self- and unsupervised methods [25, 31, 43, 32, 61, 59, 26, 4], which can be
trained on individual (unpaired) noisy images, e.g., the very images that are to be denoised.
Two of the newest unsupervised techniques [26, 4], referred to as DivNoising and [4], have

demonstrated performance close to and sometimes exceeding that of supervised denoisers.

However, unsupervised methods require an additional ingredient during training. They rely
on a mathematical description of the imaging noise, called a noise model. The noise model is
estimate of the probability distribution, p(x|s), over the noisy observations x we should expect
for a given underlying clean image s. Noise models can be measured from calibration data [43],
bootstrapped (using a self-supervised denoising algorithm) [32], or even co-learned on-the-fly
while training a denoiser [26]. Most crucially, noise models are a property of the imaging setup
— the camera/detector, amplifier etc., but do not depend on the object that is being imaged.
That is, once a noise model has been estimated for an imaging setup it can be reused again and

again, opening the door for denoising in many practical applications.

Previous noise models used in this context are based on a conditional pixel-independence
assumption. That is, the model assumes that for an underlying given clean image s, noise is
generated independently for each pixel in an unstructured way, similar to adding the result of
separate dice rolls to each pixel without considering its neighbours. This assumption is reasonable
for many imaging setups, such as for fluorescence microscopy, where noise is often thought of as

a combination of Poisson shot noise and Gaussian readout noise [[76]. For simplicity, we will refer
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to this type of noise model simply as pixel-independent.

Unfortunately, many imaging systems, such as bhotoacoustic (PAj imaging [77], do not adhere

to this property and can produce structured noise. In practice, even in fluorescence microscopy
the pixel-independence assumption does not always hold due to the camera’s complex electronics,
and many fluorescence microscopy setups suffer from noise that is partially structured. Figure [1]

shows an example of simulated structured noise with a pattern close to what is produced by many

Ecientific Complementary Metal-Oxide—Semiconductor (sCMOS)I cameras [7§].

When DivNoising methods are applied to data containing structured noise which is not accu-
rately represented in their noise model, these methods usually fail to remove it While Prakash et
al. [4] show that the effects of this problem can be mitigated by reducing the expressive power of
their network, we find that this technique fails to remove noise featuring long range correlations.

Here, we present a new and principled way to address structured noise in the DivNoising/
framework. We present an autoregressive noise model that is capable of describing structured
noise and thus enables to remove it. We evaluate our method quantitatively on various
simulated datasets and qualitatively on a @ dataset featuring highly structured noise. We publish

our code as well as the our simulated noise datasets.E

In summary, our contributions are:

1. We present an autoregressive noise model capable of describing structured noise.

2. We demonstrate that together with our noise model can effectively remove simulated

structured noise in situations where the previously proposed approach [4] fails.

3. We qualitatively demonstrate structured noise removal on a real @ data.

1The same is true for self-supervised methods such as [25], which discusses this topic explicitly.
2Code and datasets can be found at https://github.com/krulllab/autonoise.
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4.2 Related work

4.2.1 Self- and unsupervised methods for removing structured noise

i\loise2Void (N2V)| [25] is a self-supervised approach to removing unstructured noise relying on

the assumption that the expected value of a noisy observed pixel, conditioned on the those
surrounding it, is the true signal. Using what is known as a blind-spot network, a model is shown
as input a patch of pixels with a random subset masked. It is trained to produce an output that is
as close as possible to the pixels it did not see for which, under the aforementioned assumption,
its best guess is something close to the true signal.

In the case of structured noise, that assumption is broken. Broaddus et al. [61] accommodated
for this by masking not only the pixel that is to be predicted, but also masking all those for
which the conditional expected value of the target pixel is not the true signal. A drawback of this
approach is that one must first determine the distance and direction over which noise is correlated.
Another is that a considerable amount of valuable information is sacrificed by masking.

In [4], Prakash et al. demonstrated that tuning the expressive power of a can enable it
to remove structured noise. This method — 3_6 — is introduced in Sec. B Unfortunately,
we find that 3_6 does not work in all cases (see Fig. El]) and also comes at a cost; by
inhibiting some levels of latent variables, the expressiveness of the model is reduced. Therefore,
when we combine with our autoregressive noise model, we keep all levels of latent variables

activated to allow for maximum expressive power.

4.2.2 Noise modelling

In [79], Abdelhamed et al. proposed a deep generative noise model known as Noise Flow. It
is based on the Glow [80] normalising flow architecture and can be trained for both density
estimation and noise generation. In their paper, the authors demonstrated how this noise model
could be applied to the problem of denoising by using it to synthesise clean and noisy image pairs.

Those pairs could then be used to train a supervised denoising network.
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A normalising flow based noise model could be used for the purposes of this chapter, but a
recent review on deep generative modelling [81] found that autoregressive models perform slightly
better in terms of log-likelihood. As will be seen later, this makes autoregressive noise models

more suitable in a DivNoising framework.

4.3 Background

The unsupervised denoisers DivNoising [26] and @ [4] (Sec. @) are enabled by explicit noise
models (Sec. @) Before introducing our novel autoregressive noise model, we will recapitulate

here the assumptions made by those currently employed.

4.3.1 Pixel-independent noise models

Until now, noise models used with DivNoising and @ have been based on the assumption that
when an image, X, is recorded for any underlying signal, s, noise occurs independently in each

pixel. That is, the distribution factorises as

po(x[s) = [T T paislsis), (4.1)

i=1j=1

where p, (x; ;|s; ;) is the distribution of possible noisy values for the pixel in row ¢ and column
7 given an underlying clean pixel value at the same location. To describe the noise model
for an entire image, we only need to characterise the much simpler 1-dimensional distributions
for individual pixel values. These pixel noise models have been described non-parametrically

using 2-dimensional histograms (using one dimension for the clean signal and one for the noisy

observation) [43], or parametrically as an individual normal distribution [76] or a lGaussian Mixture{

odel (GMM) [32] parametrised by the pixel's signal s; ;.
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4.3.2 Signal-independent noise models

Although the models described in Eq. ([1]) are unable to capture dependencies between pixels,
they can describe a dependency on the signal underlying each pixel. For many practical appli-
cations, this is essential. For example, fluorescence microscopy is often heavily affected by shot
noise [76], which follows a signal-dependent Poisson distribution.

However, in this work, we will consider only a more basic case in which the noise does not

depend on the signal and is purely additive. In this case, we can write

Py(x[s) = py(n), (4.2)

with n = x — s. For a pixel-independent noise model, Eq. ([1]) becomes

po(xls) = ][] pa(nis). (4.3)

i=1 j=1

In Sec. , we will introduce our novel autoregressive noise model which assumes signal-
independence but drops the pixel-independence assumption. We address the more general case

of combined signal- and pixel-dependence in Chapter B

4.4 Method

4.4.1 Deep autoregressive models

Generally, the distribution of any high dimensional variable v = (vy,...,vy) can be written as

the product,
N

p(v) = [ pvilvr, .. vica), (4.4)

=1

of 1-dimensional distributions for each element conditioned on all previous elements.
Oord et al. [51] proposed using a to apply this technique to images, x, in an algorithm

known as PixelCNN. Let ¢* index pixels in a row-major ordering such that < ¢* indexes all the
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Figure 4.2: Our autoregressive noise model as a component in the DivNoising frame-
work. Divnoising trains a m to describe the distribution of noisy images x. It does so by
sampling clean images s and using a noise model as part of its loss function, called reconstruction
loss. The reconstruction loss assess the likelihood of network output s giving rise to original
noisy training image x. It is defined as the logarithm of the noise model. In both cases, for
the pixel-independent noise model and our autoregressive noise model, the reconstruction loss
can be computed efficiently as a sum over pixels. For the pixel-independent noise model, this is
done based on the conditional independence assumption by summing over the pixel noise models
log p(n; j), modelled as a Gaussian Mixture Model (GMM). In our autoregressive noise model we
sum over the conditional distributions p(7n; ;|71, ..., 7;_1) for the noise in each pixel conditioned
on the previous pixels, i.e., the pixels above and left. Our noise models describes these conditional
distributions using a modified version of the PixelCNN [82] approach, which is implemented as
an efficient fully convolutional network, outputting the parameters of a separate for each
pixel.

pixels above and directly to the left of pixel i*. Pixel CNNs models the distribution of images as

NxM

= H (s

(4.5)

This model can be parametrised with a by adequately shaping the network’s receptive field.
When applied to an image, the network outputs the parameters of the 1-dimensional conditional
distribution for each pixel.

The model can also be conditioned on external information ¢, such as a one-hot encoded

label or another image, by passing ¢ as an additional input to the network. The distribution of
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each pixel is then conditioned on preceding pixels and the external information,

NxM

p(x[c) = H Pz

Teje,C). (4.6)

4.4.2 Autoregressive noise models

Under the signal-independence assumption (Eq. (@)) a structured noise model can be imple-
mented as an image model for the distribution of noise images n. We use the PixelCNN approach

to implement this model. Specifically, our noise model distribution factorises as,

NxM

pafn) = ] palrns

N ). (4.7)

n;) are the conditional pixel distributions described by a PixelCNN network by

outputting the parameters of a for each pixel.

To train our autoregressive noise model, we require training images containing pure noise. In

where p, (n;«

practice, such noise images might be derived from dark areas of the image, where the signal is
close to zero, or could be explicitly recorded for the purpose, e.g. by imaging without a sample.

Our loss function is
NxM

L(pn) ==Y logp,(n;-

i*=1

Nei). (4.8)

Once our noise model is pre-trained, we can proceed to our model for denoising. We follow
the training process described in [4] and use Eq. () as a loss. Note that this contains the
noise model log p,(x|s = fy(z)). Considering Eq. (@) we can compute n = x — fy(z) and
insert it into Eq. ()

It would be possible to train a signal-dependent autoregressive noise model by passing an
underlying signal as an additional input to the network as in Eq. (@) However, this would
require paired training data. Unlike for pixel-independent noise models, this training data would

not only need to represent the range of signal intensities that will be encountered, but also the
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signal patterns and structures that will be encountered. If the patterns in the signals, and therefore
the patterns in noise variances, are too simplistic, the noise model will not be accurate for the real
noisy data. Therefore, the paired data needed to pre-train a signal-dependent autoregressive noise
model would be the same paired data that could simply be used to train a supervised denoiser.
At this stage, the problem of removing structured and signal-dependent noise with unpaired noisy
observations therefore remains open. We will return to this challenge in Chapter H where we
restrict our assumptions about the structure of the noise. For now, we will demonstrate the

effectiveness of deep autoregressive noise models for unsupervised denoising.

4.5 Experiments

We use a total of 5 datasets in our experiments, one is intrinsically noisy @ data and the other

four are synthetically corrupted imaging data.

4.5.1 Synthetic noise datasets

While datasets of paired noisy and clean images are not needed to train our denoiser, they
are needed to quantitatively evaluate the denoiser’'s performance using metrics such as .
The method proposed here is currently only capable of removing signal-independent noise, with
the extension to signal-dependent noise being left for future work. We are not aware of any
real datasets of paired noisy and clean images that do not contain signal-dependent noise, and
have therefore created synthetic pairs by adding signal-independent noise to clean images for the
purpose of quantitative evaluation. The very noise images that were added to the clean images
in the simulated datasets were used to train their noise models but this was only for convenience.
Any dataset of noise recorded under the same conditions as the signal could be used.

Convallaria Broaddus et al. [61] took 1,000 images of a stationary section of a Conva-
llaria with size 1,024x1,024. Each image contained signal-dependent noise, but the average of
the 1,000 images is an estimate of the ground truth. We normalised this ground truth and split

it into patches of size 128x128. For each patch, we added the same sample from the standard
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normal distribution to the upper 64 pixels in a column, taking a different sample for every column,
and then did the same for the lower 64 pixels. We then added pixel-independent Gaussian noise
with a standard deviation of 0.3. This was an attempt to produce noise similar to the

noise shown in Figure 6 of [83].

Brain @ 2,486 clean lComputed Tomography (CT)l brain scan images were taken from Hssayeni [84]

and centre cropped to size 256 x256. Independent Gaussian noise was generated with a standard
deviation of 110. This noise was smoothed by a Gaussian filter with a standard deviation of 1
vertically and 5 horizontally. More independent Gaussian noise with a standard deviation of 20
was added on top of that. Finally, we subtracted and shifted the noise to have zero mean. This

noise was intended to be similar to the E’I noise shown in Figure 3 of [85].

KNIST The Kuzushiji-MNIST dataset was taken from Clanuwat et al. [86]. The data was
normalised before adding a value of 1 to diagonal lines to create a stripe pattern. Independent
Gaussian noise with a standard deviation of 0.3 was then added on top. This was intended

to demonstrate how 3,6 with a pixel-independent noise model fails on long range, strong
correlations while with our noise model is successful.

4.5.2 Photoacoustic dataset

@ imaging is the process of detecting ultrasound waves as they are emitted by tissues that are
being made to thermoelastically expand and contract by pulses of an infrared laser [87]. The
resulting data is a time series, and noise samples can be acquired by taking a recording while the

infrared laser is not pulsed.

This particular dataset is afflicted with structured noise (see Fig. ) that is thought to have
been caused by inter-pixel sensitivity variations. It consists of 468 observations of a signal and

200 observations of only noise, with size 128x128.
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4.5.3 Training the noise model

The noise model used in experiments uses the architecture in van den Oord et al. [82], modified
to output the parameters of a Gaussian mixture model. We used the same hyperparameters for
each dataset. Those hyperparameters were 5 layers, 128 feature channels and a kernel size of
7. The output of the network was the parameters of a 10 component Gaussian mixture model
for each pixel. The Adam optimiser with an initial learning rate of 0.001 was used, and learning
rate was reduced by a factor of 0.99 every epoch. Every dataset was trained on for a maximum
of 12,000 steps, but a patience of 10 on the validation loss was used to avoid overfitting on the
training set. Images were randomly cropped to 64 x64, except the kanji data which was trained

on full images. All experiments used a batch size of 8.

4.5.4 Training @

The architecture was based on that of Prakash et al. [4] and was kept the same for all
experiments. Six hierarchical latent variables were used, each with 32 feature channels. There
was a dropout probability of 0.2, and to prevent vanishing, the free bits approach [88] was
used with a lambda of 0.5. The Adamax optimiser was used with a learning rate of 3 x 10~* and
learning rate was reduce by 0.5 when the validation loss plateaued for more than 10 epochs. The

same patch and batch size as in the training of the noise model was used.

4.5.5 Denoising with autoregressive noise models

Each of the 4 datasets was denoised using with a pixel-independent Gaussian noise model,
3_6 with a pixel-independent Gaussian noise model and with our autoregressive noise
model. For each test image, 100 samples were generated from each trained model and averaged
to produce an estimate. Each result is shown in Fig. @ with peak signal-to-noise ratio

calculated for the datasets where ground truth is available.

The highest was achieved by HDN with our noise model. For all of the datasets,

with a Gaussian pixel-independent noise model seemed to remove only the pixel-independent
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datasets. The overlaid numbers indicate the mean values_on the dataset after three
experiments with the standard deviation in brackets. We find that HDN with a pixel-independent
noise model is able to effectively remove some structured artefacts, by removing layers of the
latent space space [H] but fails for larger scale structures, spanning over tens of pixels. In contrast,
our method reliably removes all small- and large-scale structured noise.

Figure 4.3: Denoising results. Here we compare the outputs of different methods on various
PSNé

component of the noise, while retaining the structured parts. In some cases, @3_6 manages

to partially remove structured noise.

For the KNIST dataset, both HDM and HDM3_6 fail to remove the diagonal lines, which are

completely removed by our structured noise model.

We believe that @3_6 is unable to remove these noise structures because they feature long
range correlations, which are not only captured by the two lowest latent variables but also by
others in the hierarchy, entangled with the signal.

Similarly, for the @ dataset, only our autoregressive noise model is able to remove the

structured recording noise. Here, however, we find that our method produces a slightly blurred
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result. We attribute this to the limited amount of available noise model training data for this
dataset. To avoid overfitting, we had to stop noise model training early in this case, which we

believe leads to a sub-optimal end result.

4.5.6 Evaluating the noise model
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Figure 4.4: Comparing the statistics of pixel-independent noise models and our new
autoregressive model. Here, we compare generated noise samples from our noise model
(@) and a pixel-independent @ noise model to real noise. The auto-correlation function
compares different shifted versions (pixel shift) of the noise images in both directions, characteris-
ing the dependencies between pixels values at various distances and directions, i.e., the structure
of the noise. As expected, the pixel-independent noise model is unable to capture any such
dependencies present in the real noise. In contrast, our autoregressive noise model can faithfully
capture and reproduce even longer range dependencies.

To show how the autoregressive noise model is able to capture dependencies across an image,
we calculated the 2-dimensional autocorrelation of the real noise from the @ data, samples of

noise generated from our autoregressive noise model and samples of noise generated by a pixel-
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independent noise model. Each of these autocorrelation graphs are shown in Fig. @ along with

an image of each type of noise for visual comparison.

4.5.7 Choice of autoregressive pixel ordering

Some might be concerned that the choice of autoregressive ordering should take into account
the direction of dependencies in the noise, but, fundamentally, this is not the case. Eq. (@)
generally holds for any distribution of images and also regardless of the used pixel order.

Take, for example, the simulated noise in the Convallaria dataset which is designed
to be correlated vertically but not horizontally. In the modelling of the noise in this dataset, the
distribution of the possible values of one pixel will be more concentrated if it is a function of
the other pixels in the same column. However, considering Eq. () the autoregressive model
must sweep through the whole image one pixel at a time. Therefore, no matter if we choose a
row-major or column-major ordering, for at least one pixel the distribution has to be computed
without considering relevant correlated pixels. On the other hand, in both cases only one pixel in
a column can be a function of all relevant, correlated pixels. Both a row-major and column-major
ordering of pixels can achieve this if they have a large enough receptive field.

To demonstrate that there are no practical disadvantages arising from the choice of the pixel
order, we ran the experiment on the Convallaria dataset with transposed images, which
corresponds to changing the pixel order. Fig. @ shows the results of this experiment, where

almost no perceptual difference between the of the two experiments can be detected and
only a slight difference in mean is recorded.

4.6 Conclusion

We have presented a novel type of noise model to be used within the DivNoising framework
that addresses structured noise and outperforms 3_6 on highly structured, long range noise
artefacts. Both the noise model and DivNoising framework can be trained without matched

pairs of clean and noisy images. Instead, practitioners require a set of noise samples and the
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Ground truth

Figure 4.5: Our noise model can capture noise patterns regardless of their orientation
or the direction of pixel ordering. To demonstrate this, we reran the experiment (including
training of the noise model and VAE) on a transposed version of the Convallaria sCMOY dataset.
This is equivalent to using a column-major ordering of pixels to train the noise model, while
the orignal experiment used a row-major ordering. We compare denoising results carried out on
the original Convallaria sSCMOSY dataset (Noisy input;, MMS to the transposed version of
the dataset (inputy, MMSE,). We have transposed the result MMSHE? again to allow for easier
comparison. The overlayed numbers indicate the average PSNR and its standard deviation (in
brackets) over three reruns of the experiment.

images that are to be denoised. We believe this can potentially have great impact, by enabling
applications with structured noise for which no paired data is available.

The key difference between our noise model and those that had been used before [@] [@] [@]
is that ours evaluates the probability of a noise pixel conditioned on other pixels in the image,
while previously used noise models evaluate the probability of each pixel independently.

Currently, our method is limited to signal-independent noise, which makes a direct application
impossible for many settings, such as fluorescence microscopy, where data is usually affected by
signal-dependent Poisson shot noise. However, we do believe that we have made the first step
towards widely applied unsupervised removal of structured noise.

In Chapter H we extend this noise model to learn the distribution of signal-dependent struc-

tured noise by making assumptions about the nature of the noise structures.
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5 HIGH THROUGHPUT ANALYSIS OF RARE
NANOPARTICLES WITH DEEP-ENHANCED
SENSITIVITY VIA UNSUPERVISED DENOISING

In the previous chapter, we presented a method to remove structured, signal-independent imaging
noise using an unsupervised denoiser with a deep autoregressive noise model. In this chapter, we
adapt that method to the light scattering signal of flow cytometry. By combining our denoiser
with an optofluidic device tuned for nanoparticle detection, we realise a nanoparticle analyser that
simultaneously achieves high scalability, throughput, and sensitivity levels.

This chapter is based on: [89] Y. Iwamoto*, B. Salmon*, Y. Yoshioka, R. Kojima, A. Krull,
and S. Ota, “High throughput analysis of rare nanoparticles with deep-enhanced sensitivity via
unsupervised denoising,” Nature Communications, vol. 16, no. 1, p. 1728, 2025.

*Equal contribution.

[, B. Salmon, with Y. lwamoto, A. Krull and S. Ota conceived the idea and proactively
promoted the project. Y. lwamoto, Y. Yoshioka, A. Krull, S. Ota and | planned and performed
the experiments and contributed to experimental data analysis. Y. Iwamoto, A. Krull, S. Ota and
| contributed the denoising method development and data analysis. Y. Iwamoto, A. Krull, S. Ota
and | drafted the manuscript, and all the authors provided feedback. Y. Yoshioka and R. Kojima
contributed to preparation of the materials to analyse. Notably, | did not directly contribute to
development of the nanoparticle analyser, sample preparation or data collection, although | did

contribute to deciding what data should be collected.

5.1 Introduction

The rapidly evolving field of biological nanoparticle research, crucial to a wide range of biology [90,
91, 92], medicine [93, 94], and material engineering [95, 96], urgently demands methods that can

analyze both the physical and chemical properties of individual particles at a scale. Many key
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applications in these fields require both high sensitivity and scalability to enable high-resolution
and comprehensive analysis of heterogeneous populations [97, 98], including the identification
of rare subpopulations within diverse samples. This requirement becomes more challenging with

smaller particles, as efforts to enhance detection sensitivity often compromise throughput.

For instance, extracellular vesicles (s) nano-sized lipid cargoes secreted by living cells,
are intensively studied to reveal their important roles as intercellular communication tools [99].
Accurate and scalable profiling of @s based on both size and markers is essential [100, 101] to
understand their diverse functions in physiological processes and to pinpoint specific populations
vital in pathological processes [102, 103]. For small s, however, conventional high-sensitivity
multi-parametric analysis techniques [104, 105, 106, 107, 108, 109, 110] struggle with scalability,
leading to limited statistical accuracy in detecting minor subpopulations. Critically, these tech-
niques require sufficiently purified samples to detect the rare marker @s, creating a substantial
barrier to exploring the enormous diagnostic potential of @s in complex body fluids such as
serum and plasma. The purification process, dependent on laborious procedures and ex-
pensive equipment such as ultracentrifuges and size-exclusion chromatography systems, severely
limits practical clinical applications and may introduce variabilities depending on the separation
methods [111]. Thus, there is a significant need for a multi-parametric nanoparticle analysis

method that integrates high sensitivity with the ability to scale.

To address this challenge, here we develop a multiparametric nanoparticle analyser with un-
paralleled sensitivity, throughput, and scalability by applying the unsupervised deep learning-based

denoising approach developed in Chapter E] to data obtained from an optofluidic apparatus tailored

for nanoparticle analysis. We name this analysis method beep Nanometry (DNM)I. This unsuper-

vised approach requires only an empty-water time series in addition to the particle time series to
be denoised itself for training a deep learning-based model; the model removes instrument- and
environment-specific noises and recovers very weak particle signals that were otherwise dismissed.
detects polystyrene beads as small as 30 nm based on theoretical fitting of experimental

measurements within the size distribution of 40 nm beads at a throughput of over 100,000
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events/second (Supplementary Fig. @ Supplementary Fig. ) and scale up to millions of
events. This scalable measurement system enables us to detect rare s representing 0.002%
of the 1,214,392 total particles detected in serum without purification. We demonstrate the
cancer detection by accurately identifying CD9 and CD147 double-positive @s [112] in 0.93% of
colorectal cancer patient samples and 0.17% of healthy controls, achieving significant diagnostic

accuracy at p < 0.05.

5.2 Results

5.2.1 Apparatus and denoising workflow for

In , we employ an optofluidic apparatus specifically tailored for nanoparticle measurement.

Details of this analyser can be found in this chapter’s accompanying publication, [89].
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Figure 5.1: Conceptual diagram of the unsupervised denoising method. The first model, an
autoregressive [CNN, is trained to model background noise in the measurement system. The
second model, incorporating the first, is a @ trained to model the particle signals. Finally,
we obtain a consensus solution by randomly sampling many possible solutions from the trained
signal model and calculating their median. This denoising approach allows us to push down the
noise floor and increase the separation between particle peaks and noise, ultimately enabling the
detection of smaller particles.

In the analysis pipeline of , we develop a deep learning-based one-dimensional (1D) un-

supervised denoising method to identify and quantify very weak light scattering of nanoparticles
buried in various background noises (Fig. EI Supplementary Fig. @(a)) Specifically, we recover

noise-free clean particle signals (including the time-series signals between the detected particles)
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from a given noisy measurement. Our method is a 1D adaptation of the image denoising ap-
proach developed in Chapter E] and has three distinct advantages over other denoising approaches.
The first is that, by being deep learning-based, it allows us to automatically identify optimal pa-
rameters to remove complex noise that varies depending on environments and experimental and
instrumental settings. Conventional design-based methods such as Gaussian filters require man-
ual setting of parameters, making it practically difficult to identify the appropriate parameters
for the complexity of the noise on each experiment [113, 23]. Secondly, by being unsupervised,
clean, noise-free data are not necessary for training the system, and instead only the background
noise and the very data to be denoised are necessary (Fig. Ell Supplementary Fig. @(b)) In
contrast to the common supervised approach [114, 5], which requires pairs of clean and noise-free
data, unsupervised denoising is particularly impactful in nanoparticle analysis, where it is difficult
to experimentally obtain noise-free data. Finally, our method acknowledges the ill-posed-ness
of the denoising problem, where infinitely many possible clean signals can explain a given noisy
measurement [115], by estimating the probability distribution of possible denoised signals for a

given noisy measurement. This enables us to randomly sample denoised estimates.

Our denoising approach assumes that a measured noisy time series, x = s +n, x € R?, is
the sum of the measured signal intensity originating from the light scattered by particles (particle
signal) s € RT and signal-independent background noise n € R”, where T is time series length.
The particle signal s is affected by shot noise with a variance that depends linearly on the unknown
underlying clean signal. The background noise n has a fixed variance and is independent of the
particle signal [116], and we therefore describe it as sampled from probability distribution p(n).
Our denoising method removes signal-independent noise to recover the particle signal. Even
though it is currently not able to remove the remaining shot noise, we experimentally show in the

following section that this approach leads to improved sensitivity.

To denoise our measurements, we approximate the probability distribution of possible particle
signals for a given noisy measurement, p(s|x). Our first step in this process is to approximate

p(n) with an autoregressive deep learning-based probabilistic noise model p,(n) (with parameters
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n) using a with shifted convolutions [82]. This model is trained using samples n ~ p(n)
containing only background noise, obtained by recording particle-free ultrapure water. The noise
model then allows us to train a Hierarchical [55] to approximate p(s|x) with a signal model
do0(s|x) (with parameters ¢, 8), using samples of noisy measurements, x ~ p(x), obtained by
recording nanoparticle suspensions. This training data is the very data to denoise. Once the
whole system is trained, we feed noisy measurements x into our m and randomly sample a
set of clean signals from the signal model, g4 ¢(s|x) (Supplementary Fig. @) Since the noise
model assumes the signal intensity in its training data is zero throughout, it does not describe

signal-dependent noise. Therefore, samples from the signal model will be shot noise-affected

particle signals.

For evaluation, the random denoised samples from a trained signal model must be aggregated
into a single consensus solution with which peak detection can be performed. We chose to use
the point-wise median of the samples as it can be used to interpret the model's confidence for
this task. At each time point, denoised random samples can be classified as either above or
below the peak-detection threshold. If the median at that point in time is above the threshold, at
least 50% of the denoised samples must be above. Therefore, has predicted the probability
distribution of denoised solutions to have at least 50% of its probability above the detection

threshold. In other words, the model believes it is more likely that there is a particle than not.

For more certainty from the model, a lower percentile, for example the 10th, could be used as
a consensus. This would demand that the model place 90% of its samples above the detection
threshold to reveal a signal peak. Inversely, a higher percentile, for example the 90th, would
require that the model place only 10% of its samples above the detection threshold to reveal a

signal peak.

In contrast to the median, the mean of samples is more sensitive to outliers. Even if only a
few percent of the noise-removed samples have a sufficiently high intensity above the detection

threshold, this could distort the mean and lead to false detections.
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5.2.2 Assessment of a 1D denoising method for nanoparticle analysis

Denoising methods have been typically assessed by feeding them noisy inputs and comparing
their denoised outputs to corresponding clean ground-truth signals. In the case of nanoparticle
detections, however, acquiring pairs of noisy inputs and clean ground-truth signals is intrinsically
difficult. To mitigate this issue, we devised the optical setup shown in Fig. @(a) for simul-
taneously recording pairs of time series with low and high Signal-to-Noise Ratios (s) In
the setup, the scattered photons derived from nanoparticles are first split using a beam splitter
that reflects 10% of the signal and transmits 90%. Then, the reflected light is modulated by
an attenuator, reducing its , and serves as our noisy input time series. The transmitted
light maintains a high and serves as an approximation of the underlying clean signal, which
we hereafter refer to as our ground-truth time series. Using this setup, we first record a time
series containing only background noise through the attenuated arm for 1 s to train our noise
model, p,(n). We then simultaneously record a noisy and ground-truth time series of 110 nm
polystyrene nanoparticles for 1 s through the attenuated and ground truth arms, respectively; we
train our signal model, g, ¢(s|x) with the noisy particle time series. Subsequently, we apply the
trained signal model to denoise the noisy particle time series and compare the result to the ground
truth. A local maximum peak detection algorithm is employed to identify the peak positions and
heights within the noisy, denoised, and ground-truth time series (details in Sec. Ell Method).

Also, see more details about denoising in Sec. Ell Method, Supplementary Secs. Ell and @ and

Supplementary Figs. @ to @ and .
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Figure 5.2: See next page for caption.
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Figure 5.2: (@) Schematic of the optical setup for simultaneously obtaining a pair consisting of
a noisy signal and a clean ground-truth signal derived from each nanoparticle. A beam splitter
is used to split the scattering signals at a 90:10 ratio, with an absorbing ND filter placed in the
10% side path to further attenuate the signals. (b) Simultaneously acquired max-normalised
time-series scattering signals derived from 110 nm beads, attenuated signals, and the denoised
signal. (c) Histogram of the max-normalised scattering peak heights. In the ground-truth time
series, peak heights exceeding a threshold of 0.01 (indicated with dashed lines) are considered true
nanoparticles, and those lower than the threshold as noise. In the attenuated time series, peaks
with a height exceeding 0.05 are considered detections (positives) and only those that coincide
with the positions of the ground truth peaks (true nanoparticles) are considered correct detections
(true positives). In the denoised time series, peaks at the same location as the positive peaks in the
attenuated time series are considered as detections. (d) A Scatter plot comparing PSNRs before
and after denoising illustrates the quality of the time series relative to the ground truth series
(n = 5,010). Points above the line of y = x show improved , indicating an improved ability
to detect particles, whereas points below this line represent a decrease in PSNR, suggesting that
the particle signals are erroneously treated as noise and flattened. (e) Curve for evaluating peak
detection Frecision-RecaII (PR). The colours indicate the time series generated before filtering,
after the optimised Gaussian filter, and after denoising. The hean Average Precision (mAP) is
the area under the curve. (f) The variance of the attenuated signal before denoising (blue
line) and after denoising (olive line) as a function of the corresponding normalised ground truth
signal intensity. The dashed blue line is the variance of the noisy attenuated signal minus the
variance of signal-independent PBS-derived fluidic noise.

Fig. @(b) displays a max-normalised ground truth, noisy and denoised time series from top to
bottom. Despite the poor of its input data, our denoiser produced an output remarkably
similar to the ground truth. In the histograms obtained for max-normalised scattering height
distributions, shown in Fig. @(c) particles and the noise floor become distinguishable only after
denoising.

Next, to evaluate the performance of denoising on the signal retrieval from noise, we calculate
s [117] of the denoised time series relative to the ground-truth time series. In our analysis,
we divide all time series equally into windows of equal length of 200 sample points and employ
the ground truth to disregard windows containing no particle detections. Fig. @(d) shows the
of these windows in the original noisy data plotted on the horizontal axis, and those after
denoising on the vertical axis. Points above the dashed line of y = x show improved ,
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indicating improvements in the particle detection accuracy and subsequent recovery by denoising.
Conversely, points below this line represent a decrease in PSNR, suggesting that the particles
are erroneously treated as noise and flattened. We evaluate the quality of our denoising results
by directly comparing the denoised time series with the corresponding ground-truth time series.
We find that denoising improves the in the vast majority (87%) of cases. We achieved a
median value of 15.3 dB, which exceeds both the 9.4 dB of the raw data and the 10.7 dB after
Gaussian filtering (Fig. @(d) Supplementary Fig. @)

Finally, to evaluate the effect of the denoising on the ability to detect true particles, we utilise a

Frecision—RecaII (PR)l curve [118]. Precision — the number of true positives divided by the sum

of true and false positives — and recall — the number of true positives divided by the sum of
true positives and false negatives — are key metrics. We generate the @ curve by incrementally
increasing the threshold intensity for peak identification from 0 to 1 in 1,000 steps. Notably, at a

recall of 0.5, precision increased from 0.47 in the noisy data to 0.98 after denoising (Fig. @(e).

The Lnean Average Precision (mAP)I [119] — the area under the @ curve —is 0.80 for our denoised

data, significantly surpassing 0.50 for raw data and 0.73 for Gaussian-filtered data. These results
suggest that the noise reduction capability of our denoising approach outperforms that of Gaussian
filters and that unsupervised denoising realises accurate signal detection.

Furthermore, to thoroughly assess the denoising performances on the particle detection accuracy
and the signal retrieval from noise as a function of , we vary the optical density of the
attenuator and repeated @ and calculations as shown in Supplementary Fig. @
Resultantly, more significant improvements by denoising are observed when the raw data has a
lower around 1.4-3. In addition, by comparing the height distributions of peaks detected in
the denoised time series and those in ground truth time series, we found that the general shape
of the intensity distribution after denoising is preserved for s ranging from high (107.7) to
moderately weak value of 2.97 (see more detailed comparison in Supplementary Figs. @ and @)
Also, see Supplementary Sec. El! for a detailed discussion of a comparison to a supervised deep

learning approach.
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Additionally, we analysed the attenuated signal variance before and after denoising as a function
of the ground-truth signal intensity to evaluate how closely approaches the shot noise limit.
We consider the shot noise limit to be the state in which there is only noise that depends on
the optical signal and whose variance is proportional to the ground-truth signal intensity. In
the analysis, we first max-normalised the ground-truth time series, then binned these normalised
ground-truth signal intensities into 100 intervals. For each bin, we calculated the variance of the
attenuated signal at corresponding time points. We plot the results of this analysis in Fig. @(f)
Before denoising, the variance of the signal from the attenuated arm increases approximately
linearly with ground-truth signal intensity, matching the behaviour of shot noise. The y-intercept

of the line — the variance of the noise when the ground-truth signal intensity is zero — is approxi-

mately equal to the variance of the L)hosphate—buffered saline (PBS)l—derived fluidic noise. Since

the variance of the sum of two independent random variables is additive [120], this indicates that
the noise in the attenuated time series is the sum of the —derived fluidic noise and shot noise.
To make this clear, we subtracted the variance of the —derived fluidic noise from that of the
attenuated time series and plotted it as the dashed line in Fig. @(f)

We then repeated this analysis on the variance of the denoised signal. The slope of the variance
here is close to the slope before denoising, indicating that the shot noise indeed remains. However,
the y-intercept is now close to zero, indicating the removal of the -derived fluidic noise. The

curve slightly deviates from the ideal linear shape due to imperfections in the denoising result.

5.2.3 Benchmarking the sensitivity, throughput, and scalability of

In this section, by removing the beam splitter from the setup in Fig. @(a), we benchmark
the sensitivity, throughput, and scalability of without a clean ground truth. As previously
described, we train the denoising model using only the noise time series derived from pure water
and the noisy signal time series of the actual particles to be detected.

In our initial benchmark, we focus on assessing the sensitivity of to a series of nanoparticles:

standard polystyrene (PS) beads with different sizes (27/40/60 nm) and serum-derived s.
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Fig. B(a) shows the time series signals produced by 27 nm particles before and after denoising.
By detecting peaks of separately measured 27/40/60 nm particles before and after denoising, we
obtain their scatter height histograms as shown in left and right panels of Fig. B(b) indicating
that can resolve 27 nm and 40 nm nanoparticles. We observe a significant reduction in the
scatter height, confirming the detection of 27 nm scattered particles that were previously
obscured by noise. Indeed, the number of detected peaks decreases by 40% with alone
and increases by 38% at 27 nm and by 5% at 40 nm (Fig. E(c)) This reduction indicates
that denoising reduces the false detection rate and improves the particle detection recovery.
Our method outperforms standard flow cytometry in terms of the sensitivity and coefficient
of variation metrics (Supplementary Fig. @) In addition, Fig. @(d) shows the relationship
between particle size and denoised scattering height. Fitting using Rayleigh scattering theory [121]
(Supplementary Sec. @) produced good agreement, supporting the validity of the detected

scattering values.
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Figure 5.3: (@) Time series scattering signals produced before (blue line) and after (olive line)
denoising when_measuring 27 nm PS beads for a duration of 50 us. (b) Scattering height
histograms of PBS and 27 nm, 40 nm, and 60 nm beads detected by applying a constant
trigger threshold to time series data. We consider the detections made in PBY (which does
not contain real nanoparticles) to be purely the result of noise. _After denoising, the scatter
height of a portion of the particle sample is reduced, as is the IIE This indicates that the
denoising procedure separates the signal and noise that were not separated before denoising. In
particular, a portion of the 27 nm detections become clearly separated from the @ detections
after denoising. (c) Increased ratio of the numbers of scattered peaks detected before and after
denoising. Denoising reduces the number of detections in IFESD but increases that in particle
solutions, indicating that denoising reduces the false detection rate and improves the particle
detection recovery. (d) Relationship between the particle size and average scattering height after
denoising. Error bars indicate the standard deviation of the scattering heights of 12,636 peaks
for 27 nm, 28,965 for 40 nm, and 17,299 for 60 nm. The dashed line represents a sixth-power
nonlinear regression based on Rayleigh scattering theory [121] (Supplementary Note 4). (e)
Scatter plot of the CD9-Tide Fluor{TM)5WS fluorescence area and scattering area for particles
in the immunohistochemically labelled purified serum before and after denoising. By considering
detections in as background noise, we define the threshold for particle detection as black lines
whereas a dashed line in the right panel represents the background noise level before denoising.

Finally, we measured the intensity of the scattering and fluorescence signals of purified biological
particles labelled with anti-human CD9 antibody-conjugated Tide Fluor™5WS in serum. The
left and right panels of Fig. B(e) are plots of CD9-Tide Fluor™B5WS area and scattering area
before and after denoising the obtained time series, showing a shift of the noise area to the left.
By setting a threshold for confident detection at a peak value exceeding 99.9% of the detected
peaks, it can be inferred that the denoising process has effectively enhanced the reliable
detection of smaller particles. Collectively, in both the polystyrene and biological nanoparticle
cases, we show that denoising reduces the number of false detections and increases the number
of true detections, enhancing the accuracy of peak detection.

Next, we benchmark the throughput and scalability of . Assessing the total number of de-
tectable particles, herein referred to as scalability, is critical because the higher the scalability, the
more low-concentration or low-positive targets will be detected, determining the detection limit

of the system; the scalability is limited by both throughput and the time available for measure-
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ment. As a reference, we used a commercially available single-photon counting flow cytometer
(SP-FCM), the NanoAnalyzer (NanoFCM Inc.), which exhibits high scattering and fluorescence
sensitivities. In our method, the temporal width of each detected scattering peak is approxi-
mately 1 us, theoretically allowing a maximum detection throughput of up to 1,000,000 events
per second, assuming equal distances between particles. When we dilute the particle solution
to a concentration where the particles arrive every 10 us on average, considering the random
arrival times of particles and the need to minimise coincident events, our system can confidently
detect up to 100,000 events per second with minimal aborts (Fig. E(a)) Experimentally, we
achieved a throughput of 241,510 events per second by flowing a suspension of 110 nm PS beads
and gating singlet events, which accounted for 96.8% of the total events in the scattering width
versus area plot (Supplementary Fig. Ell) Note that this detection throughput varies depending
on the input concentration of particles.

The limit of the concentration detectable with based only on scattered light is evaluated
by measuring 110 nm polystyrene particles diluted with in a stepwise manner. From the
linear relationships observed between the number of particles detected and the dilution rate, as
shown in Fig. Ell(a), we conclude that the samples are detectable at concentrations of at least
2.82 x 10 particles/mL. We note that the detection limit (LoD) can ideally be determined by
the mean and variance of the detections when blank samples are measured without the target
particles; we experimentally detect no peaks in the time series during the 5-min measurement
period. Then, the LoD of simultaneous scattering and fluorescence measurement is assessed using
immunohistochemically labelled @s. In this experiment, we label s with anti-human CD9
antibody-conjugated Tide Fluor™B5WS in supernatants derived from human colorectal cancer
cell line HCT116 cultures and dilute them 10 to 10° times with unstained serum. Among the
detections defined by the scattering and fluorescence intensities, we assessed the counts and
concentration of CD9-positive s in and observe that they are proportional to the dilution
rate of 10° (Fig. El](b) and Supplementary Fig. @) This dilution rate is equal to the CD9-

positive concentration is 1.1 x 10* particles/mL and the detection rate of 11 particles/min; the
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CD9-positive rate is estimated to be 0.04% (Fig. (c)) The detection limit derived from the
antibodies in buffer control (background level of +3 o for 10-min measurements) is 4 detections
per minute or 4.0 x 103 particles/mL. The detection limit derived from blank (background
level of +3 o for 10-minute measurements) is 0.68 detections/minute or 6.8 x 102 particles/mL.
In contrast, when the same sample is measured by the SP-FCM for 1 min, we cannot detect
CDO9-positive particles at a 10-4 dilution rate (Fig. @(b) (c)). The detection limit we can derive
from this experiment for the SP-FCM was 3.87 x 10° detections/mL, with a CD9 positive rate

of 6.98%.

5.2.4 Detecting rare @s in serum

Large-scale measurement is critical for detecting an adequate number of rare @s in nonpurified
body fluids containing many other nanoparticles such as lipoproteins and debris [122, 123, 124,
125]. Currently, small-scale measurements require purification processes, which not only pose
practical cost and time issues but also lead to the loss of population fractions and biased
analyses [126, 127].

Here, we show that large-scale enabled the direct detection of rare s from non-purified
serum. In the experiment, we add anti-human CD9 antibody-conjugated Tide Fluor™5WS and
anti-human CD147 antibody-conjugated Alexa 488 to the serum of two donors, dilute the samples
in a 50-fold manner in , and detect them with DNM for 2 minutes. The detection threshold is
set at = 18 for confident detection, excluding 99.9% of the detected peaks. An analysis
of the serum obtained from one donor (Fig. @(a)—(c)) reveals that CD9-positive @s account for
0.05% of all confident detections (n = 1,214,392), corresponding to 2.7 x 10° detections/mL;
CD147-positive s account for 0.01% of the total, corresponding to 7.2 x 10* detections/mL;
and CD9 and CD147 double-positive @s account for only 0.002% of the total, corresponding to
1.2 x 10* detections/mL.

Additionally, we demonstrate the power of large-scale for detecting diagnostic @s. Previous
studies show that s originating from cancer [112, 128, 129, 130], depression [131], and other
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Figure 5.5: (@) Scatter plot of the CD147 and CD9 areas for particles in immunohistochemically

labelled, nonpurified serum obtained after 2 minutes of measurement. PBY indicates the detected
background noise and defines the thresholds (black lines). Serum samples 1 and 2 are nonpurified
serum samples acquired from healthy individuals. Bar plot of (b) the concentration of CD9 - and
CD147- positive particle detections per volume and (c) those per total detections in nonpurified
serum (n = 3, mean £+ S.D., technical replicates). Double positive s for CD9_and CD147
detected in serum samples 1 and 2 are compared to measurements of E only and PBS samples
mixed with CD9 or CD147 antibodies as a control for background noise and false positives derived
from antibody aggregation, respectively.

illnesses [ ] possess distinctive combinations of specific surface proteins. Increasing the
marker combination generally decreases the number of positive detections. In other words, scaling
up the analysis process enables the more accurate identification of disease-specific @s through
multiparametric analysis, a potential key to early disease detection. In this study, we focus on
colorectal cancer, which has a high mortality rate of 40-50%, and its early detection leads to
higher survival rates []

In the experiment, we purify nanoparticles from serum samples derived from five cancer pa-
tients and five healthy donors and label them with anti-human CD9 antibody-conjugated Tide

Fluor™5WS and anti-human CD147 antibody-conjugated Alexa 488. We analysed the ratio of
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CD9 and CD147 double-positive particles, a well-known colorectal cancer biomarker [112], to

CD9 single-positive @s using and the SP-FCM [107]. Figure @(a), (b) show an example
set of CD9 and CD147 scatter plots derived from , showing that more CD9 and CD147

double positive @s are observed in colorectal cancer patients.
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Figure 5.6: See next page for caption.
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Figure 5.6: (a) Scatter plots of the CD147 area and CD9 area (n = 30,000) in cancer patient
serum and (b) healthy control serum. (c) The total count and (d) the concentration of CD9-
and CD147-positive @s from_cancer patients and healthy controls, obtained with the SP-FCM
measurement for 1 min and measurement for 1 min and 3 min, respectively. The bar shows
mean (n_= 5 for cancer patients, n = 5 for healthy controls, biological replicates). Sample flow
rate of DNM is 1 uL/min and_that of SP-FCM is 3.2 nL/min. (e) Comparison of the percentages
of CD9 and CD147 positive s among CD9 positive EVis detected under different conditions.
(n = 5 for cancer patients, n = 5 for healthy controls, biological replicates). DNM successfully
detected a sufficient number of the targeted EVfs that account for only 0.93% and 0.17% of
the cancer patients and healthy control serum, respectively, leading to accurate cancer diagnosis
results with significance (p < 0.05). To evaluate p-value, we used the Mann-Whitney-Wilcoxon
test, a nonparametric two-sided test with Bonferroni correction.

Again, the total number of detectable particles is critical for accurately detecting rare diagnostic
@s. When identical serum is applied to the SP-FCM for 1 min and to M for 1 min and 3 min,
the mean total numbers of detected particles are 2,224, 31,610, and 97,175, respectively, as shown
in Supplementary Fig. ; the concentration of CD9 and CD147 double-positive particles were
1.9 x10° particle/mL, 1.1 x10° particle/mL, and 1.1 x10° particle/mL, respectively, as shown
in Fig. @(c) the mean total numbers of CD9 and CD147 double-positive particles were 19, 112,
and 328, respectively, as shown in Fig. @(d) Compared to the lower quantification limit of
25 particles estimated based on Poisson statistical simulations (Supplementary Fig. ) CD9
and CD147 double positive particles purified from serum cannot be quantified by the SP-FCM
but can be quantified by . Note that the scalability and consequent accuracy difference can
become even larger since the measurement throughput and time of are much greater in
practice: the throughput can increase up to 100,000 events/s at a higher particle concentration,
and a stable measurement lasts for at least one hour. Finally, we compare the percentages of
CD9 and CD147 double positive particles among the CD9 positive particles as cancer biomarkers
(Fig. @(e)) The SP-FCM reveal no significant differences between the cancer patients and
healthy controls, whereas the results significantly differed with p < 0.05 and demonstrates

superior diagnostic detection performance. This diagnostic sensitivity improvement achieves
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with M is specifically attributed to the ability of to precisely count the low levels of CD9
and CD147 double positive @s in healthy individuals.

5.3 Discussion

In summary, we developed a technique termed Deep Nanometry, which combines unsupervised
deep learning for noise reduction with optofluidic technologies specialised for nanoparticle detec-
tion. demonstrated the sensitive detection of polystyrene beads as small as 30 nm based
on theoretical fitting of experimental measurements within the size distribution of 40 nm beads,
achieving a high throughput detection of over 100,000 events per second and scalability of over a
million event analyses. The scalable measurement of enabled the purification-free detection
of rare CD9 and CD147 double-positive s that account for 0.002% of all confident detections
in serum; it also enabled the cancer diagnostic detection of CD9 and CD147 double-positive
@s among CD9 positive @s, accounting for only 0.93% and 0.17% of the cancer patients and
healthy control serum, respectively, with significance (p < 0.05).

We foresee that the unsupervised 1D denoising technique we have developed can impact a wide
range of technological fields, where detecting weak 1D signals is crucial. For instance, reducing
instrument- or environment-specific background noise is highly beneficial for flow cytometers in
general, from the traditional intensity-based to the image information-based [135]. Moreover,
there is an increasing need to integrate new data modalities, such as Raman spectroscopy [136]
and refractive index measurements, with high-throughput measurements to offer deeper insights
into the molecular compositions and structures of the particles. The significance of denoising
will be further emphasised as we advance in such measurement technology, given that the signals
derived from these modalities are inherently weak.

An important milestone for future work will be developing a method capable of additionally re-
moving signal-dependent shot noise. While in this work, the sensitivity was significantly improved
by removing only the signal-independent noise as it was dominant in the scattered signal, we also

observed that the signal-dependent noise in fluorescence data, for example, was too intense to
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ignore. We will return to this challenge in Chapter H

The sensitive, rapid, and scalable may find diagnostic and therapeutic applications such as
the multiparametric detections of —based biomarkers and the development and quality assurance
of viral or drug delivery particles in pharmaceuticals and vaccines. Similarly, in research,
may provide a comprehensive and high-resolution understanding of populations in body fluids,

opening avenues for dissecting and deciphering @ heterogeneity and the clinical significance of

rare @S.

5.4 Methods

For full reproducibility information, please refer to this chapter's associated publication [89] Y.
Iwamoto, B. Salmon, Y. Yoshioka, R. Kojima, A. Krull, and S. Ota, “High throughput analysis of
rare nanoparticles with deep-enhanced sensitivity via unsupervised denoising,” Nature Communi-

cations, vol. 16, no. 1, p. 1728, 2025.

5.4.1 Data analysis workflow and gating strategy

For all analyses, we calculated height, area, and from the time series data of scattering and
fluorescence based on the peak positions detected in the scattering time series signals.

For peak detection, a local maximum-based peak detection algorithm was applied using the ‘find
peaks’ function from the SciPy python library. This peak detection algorithm operates in two
steps. First, it differentiates the time series signal and records the peak position at the point
where the positive and negative derivative values are inverted. Then, based on the peak height
which is the signal value at the detected peak position, we treat a peak as detected only if this
height exceeded a detection threshold which is = 2 in this work.

In Fig. E peaks detected in the ground-truth time series data with s greater than 10 were
treated as nanoparticle detections (ground truth labels). Then, a peak in the noise or noise-
rejected time series was considered a true positive if it appeared within 20 points (1 us) of the

nearest peak in the ground-truth, and a false positive if it was further away than that. If there
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was no corresponding ground-truth peak within 20 time points in the noised or denoised time
series, it was considered a false negative.

The was calculated by dividing the signal height by the variance of the background noise
signal values of 1,000 consecutively recorded points. The signal area was calculated by integrating

the signal values contained in a total time window of 3 us before and after the peak position.

5.4.2 Experimental procedure for denoising

In each experiment, first, we obtain a 1 second scattering time series from particle-free ultrapure
water. Then, we acquire the scattering time series of the nanoparticle suspension for an arbitrary
time. Following this, we use the ultrapure water time series to train a background noise model.
We then train a signal model using the trained noise model and the sample suspension scattering
time series. Finally, we use the trained signal model to remove noise from the sample suspension

scattering time series.

5.4.3 Model architectures and training process

The models were trained with windows of the complete time series. This is because memory
limitations prevented us from loading the entire time series into the GPU for conducting forward
and backward passes through the s. Instead, we exploited the repetitive nature of the data
by assuming that the full time series could be modeled as the concatenation of smaller time
series, each of which was sampled from the same distribution. Specifically, the utilized data were
recordings of 1 s of a flow with a sample rate of 20 MHz, producing a total of 2x 107 data points.
Both networks learned to model windows containing 1x10% data points.

The noise model architecture consisted of a seven-layer causal that utilized gated blocks
from conditional PixelCNN decoders [82]. It created causal convolutions by shifting and employing
dilation instead of downsampling. Specifically, layers 2, 4, and 6 used dilations of 2, 4, and 2,
respectively. The convolutions had kernel sizes of 7 and 8 filter channels. The log-likelihood loss

was calculated using a Gaussian mixture model with two components.
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During training, the model used the Adamax [137] optimizer with a learning rate of 0.002, along
with a scheduler that reduced the learning rate by a factor of 0.5 after 10 epochs with no negative
log-likelihood changes. The data were split into non-overlapping windows with lengths of 1,000
and shuffled. An 80/20 split was used for training/validation, and the batch size was 32. The
training process stopped when the negative log-likelihood plateaued for 50 epochs.

The architecture was based on the Hierarchical DivNoising model [4] but with some modifi-
cations. We found that using 8 latent variables in the hierarchy instead of 6 [4] was more effective.
However, increasing the number of latent variables beyond 8 did not provide any additional ben-
efit. The network consisted of a bottom-up path with gated residual blocks that included batch
normalization [138], ELU activation [139], convolution, and gating, as well as a top-down path
that used gated residual blocks preceded by the sampling of a latent variable. The architec-
ture contained 8 layers with resampling at every layer, and downsampling was achieved using
strided convolutions and upsampling with nearest-neighbour interpolation. For the convolutions,
64 filters with kernel sizes of 3 were used.

During training, we used the Adamax optimiser [137] with a learning rate of 0.0003 and a
scheduler that reduced the learning rate by a factor of 0.1 when the loss plateaued for 10 epochs.
The data were split into windows with lengths of 1,000, shuffled, and divided based on a 90/10
training/validation split with a batch size of 32. We stopped the training process after the

reconstruction loss plateaued for 50 epochs.

5.4.4 Evaluation metrics

Precision-recall (@) curve and mean average precision (@)
@ curve represents the tradeoff between recall and precision depending on the detection threshold
in peak detection. We refer to the area under this curve as the , and a value close to 1

indicates an optimal detector.

Peak signal-to-noise ratio (@)

m represents the reproducibility of the signal to be evaluated relative to the clean signal in
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dB. The maximum signal value was divided by the mean squared error between the clean signal

and the signal to be evaluated.

Max peak height?
PSNR =10-1 51
©810 (Mean square error (51)
The mean squared error is calculated as follows,
L I
Mean Square Error = T ;(st — 5)? (5.2)

When a total of T data points are obtained, s; represents the true value (signal intensity at
the ground truth) at the ™ measured data point and 3; represents the estimated value (signal

intensity after denoising).

Statistics and reproducibility
All experiments were performed at least twice to ensure reproducibility. The Mann-Whitney-
Wilcoxon test two-sided with Bonferroni correction, a nonparametric test, was used for testing.

p > 0.05 was indicated as no significant difference (ns). No data were excluded from the analyses.

5.5 Data availability

The raw data of temporal signals before and after denoising and the table for the flow cytometric
features, generated in this study have been deposited in the Zenodo database along with the analy-
sis code and made publicly available with open access. Links to the data used in the figures of main
manuscript are as follows: https://doi.org/10.5281/zenodo.14616191, https://doi.
org/10.5281/zenodo. 10521246, https://doi.org/10.5281/zenodo.10521358, https://
doi.org/10.5281/zenodo.1052108359,60,61,62. A link to the data used in the Supple-
mentary Figs. is as follows: https://doi.org/10.5281/zenodo.1461594563. The code
for denoising and basic analysis of the measurement data was uploaded to GitHub [https:

//zenodo.org/records/14610019] and made publicly available with open access.
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5.6 Code availability

5.6 Code availability

The code for the denoiser, along with example Jupyter notebooks, can be found at https:

//github.com/krulllab/Deep Nanometry.
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6 UNSUPERVISED DENOISING FOR
SIGNAL-DEPENDENT AND ROW-CORRELATED
IMAGING NOISE

Up to this point, we have presented methods to remove structured noise in microscopy and
flow cytometry, but we have been unable to remove structured and signal-dependent noise.
This limitation stems from being practically unable to train an autoregressive model of such noise
without clean signal data. In this chapter, we identify a common feature of structured noise across
a variety of microscopy modalities: row-correlation. We take advantage of this characteristic to
enable training of a signal-dependent autoregressive noise model using unpaired noisy images, i.e.,
the data that trains the denoiser. The noise model can then be trained alongside the denoiser.
This chapter is based on: [140] B. Salmon and A. Krull, “Unsupervised denoising for signal-
dependent and row-correlated imaging noise,” in 2025 IEEE/CVF Winter Conference on Appli-
cations of Computer Vision (WACV), pp. 2379-2389, IEEE, 2025.

Computations in this chapter were performed using the University of Birmingham's BlueBEAR
HPC service, which provides a High Performance Computing service to the University's research
community. See http://www.birmingham.ac.uk/bear for more details.

Code and tutorials for applying this denoiser to new data can be found at github.com/

krulllab/COSDD.

6.1 Introduction

Self- and unsupervised learning-based denoisers(e.g. [31, 25, 26, 4, 141]) can be trained directly
on the data that is to be denoised and have substantially improved the practicality of denoising
in scientific imaging. These methods separate the imaging noise from the underlying signal by
making assumptions about the statistical nature of the noise. Typically, they assume the noise is

(1) signal-independent (purely additive and occurs separate from the underlying signal) [73], or
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6.1 Introduction

No

Focus of

Yes

this work

Row-correlated

Figure 6.1: Noise is often assumed to be spatially uncorrelated and/or signal-independent, such
as Additive White Gaussian (AWG) noise. These assumptions greatly facilitate self- and unsuper-
vised denoising. Unfortunately, real noise in microscopy is usually neither. We present the first
unsupervised denoising approach for this challenging scenario.

(17) spatially uncorrelated (unstructured and occurs separately for each pixel) [@ E?I @ , @]
Examples of (i) and (iz) are in Fig. @

In practice, (i) is often broken by the presence of Poisson shot noise [@] Moreover, many popular
scientific cameras and imaging setups break (ii) by producing row- or column-correlated noise
(see Sec. Row-Correlated Noise). These types of noise cannot be removed with basic
self- or unsupervised methods. Recently, variants of these methods for spatially correlated noise
have been proposed, but they are limited to locally correlated noise and can come at the expense
of reduced reconstruction quality [Q H]

In this chapter, we present the first unsupervised deep learning-based denoiser capable of reliably
removing signal-dependent noise that is correlated along rows or columns of pixels, as it commonly
occurs in microscopy data. The approach is illustrated in Fig. @ Our method requires neither
examples of noise-free images, which can be impossible to obtain (e.g. []) nor pre-trained noise
models [@ @ [7]] or hand-crafted priors [ , ] Furthermore, we do not rely on blind-
spot approaches [E] or subsampling [ Iil] techniques that degrade image quality and limit
denoising performance.

Our method is based on the representation learning technique proposed by Chen et al. []

who revealed how a [@] prefers to avoid using latent variables to describe structures that
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could instead be modelled locally by its decoder. For an lautoregressive (AR)I decoder such as

PixelCNN [82, 146], these are any inter-pixel dependencies that lie within its receptive field.
Consequently, latent variables will only represent information that the decoder cannot model,
i.e., dependencies that span beyond its receptive field.

We take advantage of this behaviour by designing a decoder that is capable of modelling exactly
what we want to be excluded from our latent variables — the imaging noise — while being incapable
of modelling the remainder of the data. Specifically, we use an @ decoder that can only model
axis-aligned structures because its receptive field spans only a row or column of the image. This
trains our model to exclude row- or column-correlated noise from the latent variables, while
encouraging it to include the statistics of the underlying signal. We then propose a second
network, termed signal decoder, that is trained to map these latent variables back into image
space, thus producing denoised images. Following Lehtinen et al. [6], who showed that noisy
images can be used as training targets for denoisers, we train the signal decoder alongside the
m using the original noisy data as targets.

Using real microscopy data recorded with various imaging modalities, we demonstrate that our
denoiser achieves state-of-the-art results compared to other unsupervised methods. Furthermore,
we show that the method is not sensitive to the length of the @ decoder’s receptive field, as
long as it is above a minimum, and that samples from the trained noise model have similar

autocorrelation and signal-dependence characteristics to real noise.

6.2 Related work

6.2.1 Self-supervised denoising

Most self-supervised denoisers use the blind-spot approach [31, 141, 25, 60, 147], where a net-
work learns a denoising function when trained to predict the value of a pixel from surrounding
pixels. Another technique trains the network to predict a subset of randomly sampled pixels

from another [142]. For photon-counting data, Krull et al. [148] proposed removing photons and
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training a network to predict them with a Poisson distribution. These techniques all exploit a
particular property of spatially uncorrelated noise, which is that the noise in one pixel cannot be

predicted from the noise in other pixels.

To address spatially correlated noise, btructured Noise2Void (SN2V)| [2] extended the blind-spot

approach to also mask pixels containing noise that is correlated with the noise in the pixel being
predicted. Lee et al. [1] also extended the blind-spot approach by subsampling pixels to break up

noise structures, making noise effectively spatially uncorrelated and ready for traditional blind-

spot denoising. |Noise2Void2 (N2V2)| [3] constrained a blind-spot network’s ability to reconstruct

high-frequency content.

There are also methods that add two independent noise samples to already-noisy images, training
networks to denoise by mapping between these doubly-noisy pairs [69, 149]. While theoretically
applicable to signal dependent, spatially correlated noise, practical implementation has not been
demonstrated. The obstacle lies in obtaining a suitable noise model to sample from, particularly

when signal dependent and spatially correlated noise must be described by a covariance matrix

([149]).

6.2.2 Diffusion-based denoising

In recent years, diffusion models have been proposed as priors for solving inverse problems, such
as denoising, in a Bayesian way [150, 151, 152]. However, such methods require clean training
data and a known mathematical forward model of the corruption process during inference, both
of which are unavailable in many microscopy applications. Very recently, methods have been
proposed to remove at least the requirement for clean training data by assuming simple additive

Gaussian noise [153] or focusing on inpainting problems [154].

6.2.3 @—based denoising

Another approach to denoising trains a conditional lGenerative Adversarial Network (GAN)l [155]

to model the distribution of clean images given noisy images. This can be done using a dataset of
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unpaired noisy and clean images, provided that the generator is forced to output an estimate of the
clean signal underlying its noisy input, and not a random clean image. Various methods have been
proposed to ensure this, including minimising the perceptual difference between the generator's
input and output [156], or maximising their mutual information [157]. While these methods have
more relaxed requirements than supervised denoisers, obtaining a dataset of clean images can be
a challenge in microscopy, even if it is unpaired. This is because the clean images must follow the
same distribution as the signal content in the noisy training data. That means, e.g., the same

cell type, imaging conditions, etc..

6.2.4 @-based denoising

These methods train a latent variable model of noisy data using a and a pre-trained explicit
noise model. Through the use of the noise model, the is trained to represent clean signals
with its latent variables. In DivNoising [26], the noise model assumes the noise is spatially
uncorrelated, i.e., noise is generated in each pixel independently. Later, [4] was proposed as
an extension to DivNoising that used a with a hierarchy of latent variables [b5]. It was found
that short-range spatially correlated noise structures were modelled by only the bottom levels of
the hierarchy and could be removed by preventing these latent variables from using information
from the encoded input. This technique is known as @3,6.

In Chapter E] we proposed a method to remove spatially correlated but signal-independent noise
by replacing the pixel-independent noise model in with a —based @ noise model [82].
This noise model was pre-trained using samples of pure noise which can be obtained by, e.g.,
imaging without light. The method was therefore able to remove noise of any spatial correlation,

but could not be applied to signal-dependent noise.

6.3 Background

Before we come to describe our method, we will first formalise the type of noise that we aim to

remove, then give some background on s for representation learning.
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6.3.1 Row-correlated noise

A popular choice for describing noise distributions is the pixel-independent noise model as it
can describe Gaussian, Poisson or combined Gaussian-Poisson noise (Sec. @) However, many

imaging systems can produce noise that does not conform to the pixel-independence assumption,

but is instead correlated along rows or columns of pixels. For example, bcanning Transmissior{

hEIectron Microscopy (STEM)I [158] is prone to line artefacts caused by the slow reaction time

of readout electronics [159], and |Laser Scanning Confocal Microscopy (LSCMj [33] has been

shown to produce artefacts in the scanning direction [35]. Depending on their settings,

Nultiplying Charge-Coupled Device (EMCCDj [160] cameras can produce horizontally correlated

readout noise [161, 2]. The [162] cameras that are popular in optical microscopy [83]
have separate amplifiers for each column of pixels, leading to correlated noise within each col-
umn [163]. In addition to microscopy, the detectors used in imaging systems, e.g.
microbolometers, also commonly use separate column amplifiers and suffer from similar noise
structures [164]. Examples of noisy images from these modalities along with plots of their spatial
autocorrelation and signal-dependence can be found in Fig. @

We propose to describe such noise as

N M

p(xls) =[] [ [ p(®islwi<jos), (6.1)

i=1j=1

where p(z; j|x; <;, s) is the distribution of possible noisy pixel values z; ; conditioned on the signal,
as well as all “previous” values in the same row, 7. While this model can describe interactions
between pixels within the same row, pixels in different rows are (conditionally) independent (given
a signal s). Note that in this formulation, a pixel z; ; can depend on not only the signal in pixel
(,7), as with shot noise, but on the entire image for more complex interactions. In this work,
we address the type of noise described in Eq. (El!) which we believe is a good model for many

real scientific imaging data.
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6.3.2 @s and the division of labour

A latent variable model, with parameters 6, defines a probability distribution, py(x) o<
po(x|z)pe(z), over observed variables x via latent variables z. This can be used to represent
a data generation process in which a value z is first sampled from the prior, py(z), and a value x
is sampled from the conditional distribution py(x|z).

A can be used to simultaneously optimise the model’s parameters and approximate the

posterior, py(z|x), via minimisation of an upper bound on the negative marginal log-likelihood,

5(07 Qb; X) = Iqu;(z|x) [_ 1Og p@(X’Z))] + KL(Q¢(Z|X)) ||pg(Z>), (62)

where the second term on the RHS is the @ divergence [54] from the prior to an approximate
posterior, ¢,(z|x). In Eq. (@) the first term is known as the reconstruction error, the second
term as the regularisation error, g4(z|x) as the encoder, and py(x|z) as the decoder.

This loss function can be rewritten as

L(0, ¢;x) = —log ps(x) + KL(gy(z|x)||ps(2]x)). (6.3)

This formation shows that the goal of a m is to simultaneously maximise the marginal log-
likelihood of the data while minimising the divergence from the true posterior distribution of
latent variables to the approximate posterior distribution of latent variables.

When designing a latent variable model for image data, the decoder can be made autoregressive,
where the distribution of each pixel is conditioned on the value of all pixels above and directly to

the left, as well as on z,
NxM

po(x[z) = ] polws

*=1

T, Z), (6.4)

where i* indexes pixels in a row-major order. We refer to x_;« as the full @ receptive field, and
its shape is shown in Fig. @b. This modification is intended to make the model more expressive.

However, the decoder is now powerful enough to model the entire data distribution locally. That
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is, it is possible to have a model of the data, py(x) = [ po(x|z)p(z)dz, where py(x|z) = py(x).
When we use a to train this model, it is therefore unclear which aspects of the data should
be encoded in z and which should be modelled by the decoder.

When using a in practice, there seems to be a preference to model as much content as
possible with the decoder. He et al. [165] argued that this behaviour is caused by the approximate
posterior lagging behind the true posterior in the early stages of training, causing the parameters
to get stuck in a local optimum where the decoder models the data without using the latent
variables.

Alternatively, Chen et al. [145] reasoned that with most practical s, ignoring the latent
variables leads a tighter lower bound on the marginal log-likelihood. By only using the latent
variables to express what the decoder cannot model, the true posterior is brought closer to the
prior and can be more closely matched by the relatively inflexible approximate posterior, reducing
the second term of Eq. (@) The authors then demonstrated how this behaviour can be used to
control the division of labour in a . Specifically, they designed an @ decoder that is capable
of modelling information that they do not want captured in the latent variables, but is incapable
of modelling the information that they do want captured in the latent variables.

In this chapter, we design an @ receptive field that only captures the correlations common in
scientific imaging noise. This allows us to train a latent variable model of noisy image data where
latent variables explain the signal content and the decoder models only the noise generation
process. We then use the approximate posterior to sample latent variables, each representing one

of the clean signals that could possibly underlie a given noisy image.

6.4 Method

We propose a -based unsupervised image denoiser for noise that is both signal-dependent
and correlated along rows or columns of pixels. It is trained using only noisy images and does not

require a pre-trained noise model. Moreover, it does not require pixel blind-spots or subsampling.

Instead, we restrict the receptive field of the @ decoder in a Hierarchical [55] to a row or
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Figure 6.2: (a) A VAH [145] (solid arrows) is trained to model the distribution of noisy images
x. The putoregressive (AR) decoder models the noise component of the images, while the latent
variable models only the clean signal component s. In a second step (dashed arrows), our novel
signal decoder is trained to map latent variables into image space, producing an estimate of the
signal underlying x. (b) To ensure that the decoder_models only the imaging noise and the
latent variables capture only the signal, we modify the decoder’s receptive field. In a full
receptive field (Eq. (p.4)), each output pixel (red) is_a function of all input pixels located above
and to the left (blue). In our decoder’s row-based receptive field (Eq. (.5)), each output
pixel is a function of input pixels located in the same row, which corresponds to the row-correlated
structure of imaging noise.

column of pixels, allowing the @ decoder to model the correlations of noise content but not the
correlations of underlying signal. Following the insights of Chen et al. [145] (Sec. ) the @
decoder will therefore learn to model noise, leaving the underlying signal to be encoded in the
latent variable z. We then propose a method for taking these latent variables and mapping them

back into image space, obtaining estimates of clean signals. An outline of our method can be

found in Fig. @

6.4.1 Autoregressive receptive fields for noise

Our @ decoder has a one-dimensional receptive field that is sufficient for modelling row- or

column-correlated noise (Eq. (Ell)) as it occurs in microscopy (see Sec. Row-Correlated
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Noise) by spanning pixels in the same row or column as z; ;. See Fig. @b for a visual represen-
tation.
To remove row-correlated noise, the first step in our denoising process is to train a to model

noisy image data with the objective function in Eq. (@) where py(x|z) is factorised as,

N M

po(x|z) = [ ] [ [ po(wislzi<s ). (6.5)

i=1 j=1

To remove column-correlated noise, the factorization over pixels is perpendicular.

We find that this factorisation is insufficient for modelling signal content, which is highly correlated
in all directions. Consequently, the learns to encode signal content in its latent variables.
The factorisation is however sufficient for modelling row-correlated noise content. Since a ’s
decoder will model everything that it can [145], noise will be modelled by the decoder. Our
encoder, ¢,(z|x), is now effectively a denoiser, mapping noisy images to a distribution over latent
variables, where each latent variable corresponds to a possible clean signal.

An experimental investigation of the effects of changing receptive field size can be found in
Sec. , and details on how we construct this receptive field with our @ decoder architecture

can be found in the supplementary material.

6.4.2 Decoding the signal

Once our has been trained, its latent space will represent clean signals, i.e., each z contains all
the information about an s. We would now like to use the model for denoising by inferring possible
clean signals s for a given noisy image x. Unfortunately, unlike previous methods [26, 4, 73], we
cannot directly sample clean images from our encoder. Rather, samples from g, (z|x) will directly
correspond to a clean signal s. We denote the signal corresponding to a value of z as s(z). For
an experimental validation of this deterministic relationship, please refer to the supplementary
material. To obtain denoised images, we approximate s(z) with an additional regression network,

termed signal decoder, fy(z) ~ s(z). In the following, we describe how fy(z) is trained despite
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not having access to training pairs (z,s(z)).

In fact, training the signal decoder only requires pairs (z,x), where x is a noisy image and z ~
¢s(z|x). If we assume that the approximate posterior is accurate, such that g4(z|x) ~ py(z|x),
these pairs can be equivalently thought of as samples from the joint distribution, (z,x) ~ py(z,x).
Least squares regression analysis tells us that optimising the signal decoder by minimising the

squared Ly norm of errors,

L(0;x) = Eq, ) || fo(z) — x]13], (6.6)

will train it to approximate E,, x|z [X] for any z [166]. By definition, z contains no more or
less information about x than s(z), so the signal decoder will equivalently be approximating
E,(x|s(z)) [X]. Recalling that imaging noise is zero-centred (Sec. ) the expected value of a
noisy image given an underlying signal is that signal. Therefore, fy(z) = E,,xjs(2)[X] = s(2).
This is similar to [6], where the regressor for s is trained using noisy targets x.

Even though the signal decoder would naturally be trained in a second stage after the main
is finished, in practice we co-trained it alongside the main . At every training step, the
sampled latent variable is fed to both decoders, but only the loss from the @ decoder is allowed
to backpropagate to the encoder. This method of training is simply for convenience and we did

not observe any changes in performance compared to a signal decoder that is trained separately,

after the main .

6.4.3 Inference

With the and signal decoder trained, we can denoise an image x in a two-step process. We
first sample a latent variable z ~ ¢,(z|x), then obtain a clean image by decoding s = fy(z).
Similarly to [26, 4, [73], the result constitutes a random possible solution s ~ p(s|x). To obtain
a consensus solution, we follow [26, 4, [73] in averaging a large number of such samples. In the

following experiments, all the results are the mean of 100 samples, both for our method and the
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baseline . Please refer to the supplementary material for the inference time and of

the mean of 1, 10 and 1,000 samples.

6.5 Experiments

Table 6.1: Comparison to baseline methods using , higher is better. The best results
for methods_that do not require paired images are printed in bold, and best results overall are
underlined. is a variant of that is intended for spatially uncorrelated noise, but was
applied to two datasets with spatially correlated noise by the original authors. These extra results
are presented in_brackets. Note that the Mouse Nuclei dataset contains spatially uncorrelated
noise and that failed to train on the Mouse Actin dataset. ICARE and N2N are supervised
denoisers requiring paired images, unlike the other baselines.

MCC LSCM
Conv. A Conv. B Mouse Actin Mouse Nuclei* Actin Conf. Mito Conf.
AP—BSI\I 22.30 24.10 29.55 35.41 26.89 24.94
SN2V 30.29 31.67 32.80 36.62 23.30 26.41
N2V 29.36 36.72 34.23 35.88 26.71 25.89
HDN;_s (HDN 3141 3721 (37.39) - (34.12) (36.87) 26.84 26.51
HDN;_¢ /arge (HDN /arge) 31.80 37.92 34.14 (38.12) 27.17 26.15
Ours small 34.42 38.99 36.50 39.56 27.35 27.49
Ours large 37.49 44.10 39.23 42.98 27.41 27.50
CAR 31.56 36.71 34.20 36.58 29.44 27.55
N2 28.22 36.85 34.60 37.33 - -
Simulated
FFHQ Stripe FFHQ Checkerb.

AP-BSN 28.22 13.19

SN2V 29.52 19.11

N2V 33.08 29.22

HDN;_ (HDN 32.64 29.61

HDN;_¢ large (HDN large) 34.54 25.51

Ours small 32.87 33.51

Ours large 35.66 36.27

CAR 36.46 36.89

N2 36.18 36.43

6.5.1 Benchmarking denoising performance

Datasets
We tested the performance of our proposed denoiser on real noisy images captured by five different

imaging modalities that commonly suffer from row-correlated noise. Two modalities have noisy
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Figure 6.3: Visual results from our method and two unpaired baselines on all datasets. The
spatial autocorrelation of the noise is overlaid on each noisy image, with red indicating a positive
correlation and blue indicating a negative correlation. The direction of the correlation is given
by the orientation of the autocorrelation bar. Additionally, the signal dependence of the noise
in each dataset is shown in the right-hand column. The horizontal axis of these graphs is the
clean signal intensity as a percentage of the maximum, while the vertical axis is the variance of
noisy pixel values recorded for these signal intensities. Ground truth must be used to calculate
signal dependence, so orange lines are used where denoised images from our method are used as
pseudo-ground truth.
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image datasets with known ground truth for quantitative evaluation. The method for obtaining
ground truth can be found in the source publications. The first is the sensor, for which we
have three spinning disk confocal fluorescence microscopy datasets: Convallaria A [2], Convallaria
B [60] and Mouse Actin [50]. The second is , for which we have three fluorescence datasets:
Mouse Nuclei [50], Actin Confocal [167] and Mito Confocal [167]. Note that Mouse Nuclei
contains spatially uncorrelated noise, but was included to demonstrate that the proposed method
is still applicable to spatially uncorrelated noise without modification. For details on the size of
the datasets and the train/test splits, see original publications. The remaining modalities have
only noisy images. These are the sensor for which we have one fluorescence dataset:
Embryo [168], the microbolometer with one infrared imaging dataset: @ [169], and a
dataset: [170].

In addition to real data, we created two datasets by corrupting the Flickr Faces HQ thumbnails
dataset [171] with simulated noise. For FFHQ - Stripes, the images were corrupted by a combina-
tion of additive white Gaussian noise, Poisson shot noise, and additive white Gaussian noise that
had undergone a horizontal Gaussian blur. For FFHQ - Checkerboard, the images were corrupted
by a combination of a vertical checkerboard pattern and Gaussian noise with an inverse signal

dependence. Details on the simulated noises are in the supplementary materials.

Baselines and architecture
We compare our method with other deep learning-based denoisers that can be applied to spatially

correlated, signal-dependent noise and do not require paired images. These are the self-supervised

denoisers EN2V| [2], |N2Vj [3] and lAsymmetric PD BSN (AP—BSN)I [1], and the unsupervised de-
noiser 3_6 [4]. We use these as baseline methods along with [5], which is trained

using pairs of noisy and clean images, and [6], which is trained using two noisy acquisitions

of the same signal, on datasets with suitable training images available. For details on how each
baseline was implemented, refer to the supplementary material.
Of the denoisers not requiring paired images, the performance of 3,6 is the best, but the

model implemented in the baseline's publication uses significantly fewer parameters than ours (7
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million to 25 million). We therefore evaluate an additional version, termed HDNj3_4 /arge, with
a similar number of parameters made by increasing the number of latent dimensions from 32 to
64.

It should be noted that the Convallaria B and Mouse Actin datasets had been treated as spatially
uncorrelated by Prakash et al. [4] when was tested. We also report those results in Sec. @
It should also be noted that the noise in the Mouse Nuclei dataset is spatially uncorrelated, so
was denoised by and its higher parameter version, large, which was made the same
way as Mg_(j large.

Our method requires a choice of orientation and size for the @ decoder’s receptive field. Orien-
tation was determined by examining the spatial autocorrelation of noise samples, with these plots
reported in Fig. @ and following the ablation study in Sec. , we always used a receptive
field length of 40 pixels.

As for our model's encoder, latent variables are produced by a Hierarchical [65] with 14
levels to its hierarchy. In addition to the full-sized version, we evaluate a smaller version that
requires approximately 6GB (as opposed to 20GB) of GPU memory to train. This was achieved
by reducing the number of latent variables from 14 to 6 and reducing the number of latent
dimensions from 64 to 32. We refer to these models as Ours small and Ours large, for the
lower memory and higher memory versions respectively. See the supplementary materials for full

architecture and training details.

Discussion

Quantitative results measuring the in dB are reported in Sec. @ and qualitative results
are reported in Fig. @ Note that 3_6 failed to train with the Mouse Actin and the Embryo
dataset. Out of the methods that do not require paired images, Ours large achieved the highest
across all datasets, even beating the supervised CARE and N2N on four of six microscopy
datasets. Ours small then had the second highest for an unpaired method on all datasets
except FFHQ - Stripe .

Turning to the qualitative results in Fig. @ we see that Ours /arge denoised images from each
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dataset without leaving behind any artefacts, whereas @ large could not remove the correlated

component of the noise from the or the FFHQ - Checkerboard dataset. left

artefacts in Convallaria A and FFHQ - Checkerboard. It is unclear if the high frequency features
that are visible in the Mito Confocal output of @ large and , but not in our output,

are true signal or artefacts of remaining noise, as the ground truth also contains a low level of noise.

6.5.2 Ablation study - receptive field size

Denoised

FuII AR receptive
ﬂeld (Fig. 2(b))

m 36.0
B 353
¥ 356

Q- 352 Noisy Ground truth Dataset average

35.0
20 40 60 80 120
Number of pixels in receptive fleld

Figure 6.4: The FFHQ - _Checkerboard dataset wass denoised 5 times by varying the number
of pixels covered by the decoder's receptive field. The images show denoising results for
each receptive field size with PSNR overlaid. Additionally, an image denoised using a full
receptive field is included on the right. In this situation, the signal decoder is given completely
uninformative inputs and learns to output the mean of the training dataset.

As stated in Sec. Ell to model the noise correlations addressed in this chapter, the receptive field
of a 's @ decoder must span pixels in the same row or column as the pixel being predicted.
In Fig. EII the effect of receptive field size (number of pixels) is investigated by denoising the
FFHQ - Checkerboard dataset using a range of receptive field lengths, from 10 to 120 pixels,
and measuring the effect on . We also include the effect of training a model with a full @
receptive field, as shown in Fig. @b.
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This study shows that the @ decoder is able to model this spatially correlated noise, and
therefore have it removed by the encoder, when the receptive field spans 40 pixels. Moreover,
the @ decoder does not seem to model more of the signal as the receptive field grows. If it did,
we would expect a steady drop in as denoised images lose signal content. However, as the
image on the right of Fig. @ shows, the signal will be modelled by an @ decoder with a full
receptive field. Latent variables in this situation carry no information about x, causing the signal
decoder to minimize Eq. (@) by predicting the mean of the training set. This is expected, as

when the latent variable z has no information about x; E,, x|z [X] = Ep,x)[x].

6.5.3 Ablation study - noise reconstruction
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Figure 6.5: A noisy image from the Convallaria A dataset was encoded and decoded to produce
a reconstructed observation and an artificial noise sample. The sampled noise has spatial au-
tocorrelation and signal dependence that match those of the real noise, indicating that the
decoder has learnt an accurate noise model.

If the ’s @ decoder is modelling only the noise component of images, encoding an image
with the and sampling from the @ decoder should yield an image with the same underlying
signal but a different random sample of noise. If the decoder’'s model of the noise is accurate,
the sampled noise should exhibit similar autocorrelation and signal-dependence characteristics as
the noise in the original image. An investigation into this is reported in Fig. @ where a noisy
image from the Convallaria A dataset was encoded by a trained , then a latent variable was

sampled and used by the ’s @ decoder to sample a reconstruction of the original image.
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The reconstructed noise exhibits spatial autocorrelation and signal dependence very similar to the

real noise, indicating that our @ decoder has learnt an accurate model of the noise.

6.6 Conclusion

We proposed an unsupervised —based denoising algorithm for signal-dependent noise that is
correlated along rows or columns of pixels. It is trained without any clean data or a noise model.
By engineering the receptive field of the @ decoder, the 's latent variables are encouraged
to represent the signal content of an image while discarding the noise. We then presented a novel
signal decoder that is trained to map this latent variable to an estimate of the clean image. The
algorithm outperforms existing self- and unsupervised denoisers.

Our method is suited to noise with correlations that run parallel to the image axes. This commonly
occurs in microscopy and lab users often cannot find suitable methods to remove it. We release
our code open source and strongly believe that the scientific imaging community will apply and
adapt our methods in a variety of applications.

While we have achieved our results using 1-dimensional receptive fields, some imaging modalities
produce noise that is correlated in multiple directions, therefore requiring a differently shaped
receptive field. We found that extending the receptive field to cover both a row and a column
of pixels allows the @ decoder to model some aspects of the signal, making the technique
unsuitable for removing noise correlated in two dimensions. However, we believe that techniques
other than shaping the @ decoder's receptive field could be discovered to limit it's modelling
capabilities. Furthermore, the method is limited to zero-centred noise by the signal decoder.
This precludes, e.g., removing salt-and-pepper noise or restoring images with saturated pixel
intensities. A direction for future work could therefore be alternative methods for mapping latent
variables back into image space. We hope that future work will further improve the theoretical

understanding of the method and allow us to utilise its full potential.
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7 DUAL ARM DETECTION FOR UNSUPERVISED
DENOISING IN OPTICAL TIME SERIES
MEASUREMENT

In the previous chapter, we proposed a method for training an unsupervised denoiser to remove
structured and signal-dependent noise in a range of microscopy modalities. We utilised the
fact that the structures present in noise are often distinct from the structures in the underlying
signal. Unfortunately, the distinction is less clear for the structures in flow cytometry noise.
Here, both signal and noise are correlated along the time axis — the only axis. To overcome
this issue, we introduce a new axis, one along which signal is perfectly correlated but noise
is perfectly uncorrelated. This requires inserting a beam splitter into the acquisition setup,
effectively recording noisy-noisy pairs. The noise model co-training principal behind the denoiser
in the previous chapter can then be applied to this data. The data analysed in this chapter was

collected by Sadao Ota and Yuichiro lwamoto from the University of Tokyo.

7.1 Introduction

Flow cytometry is a powerful tool for quantifying cellular and molecular characteristics. It has been
shown to be effective in the diagnosis of disorders and diseases including immunodeficiencies [172],
cancer [173, BY] and sepsis [174]. It works by suspending particles in a solution and flowing
them single-file through a laser beam. Fluorescent probes attached to the particles are excited
by the laser, causing them to emit photons that are subsequently amplified and detected by
photomultiplier tubes. In addition to fluorescence signals, forward- and side-scattered light can
be collected to provide additional structural and morphological information [175]. The result is a
time series of light intensity measurements that describe the content of biological fluids [176].

One application that flow cytometry has great potential in is the detection of rare populations,

enabling early disease diagnosis [177]. However, the sensitivity required for this task is limited
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by noise. Two noise sources dominate: dark current and shot noise [178]. Dark current can be
misinterpreted as particle detections, while shot noise distorts the characteristics of a detection.
For the weakest signals, shot noise can even cause no photons to be detected. Exacerbating the
problem, noise is made to be correlated in time by the bandwidth limited detector, and temporally
correlated additive read-out noise inhibits deconvolution of the impulse response.

Existing simple denoisers, such as Gaussian filters, are limited in their effectiveness and distort the
resulting signal, and supervised deep learning denoisers are not applicable when no clean ground
truth data is available. In Chapter E we introduced a -based approach for unsupervised
denoising. However, we were only able to denoise the scattering channel. This is because it is
mainly affected by signal independent read-out noise, allowing us to collect calibration data to
train a noise model.

In this chapter, we present an unsupervised deep learning-based method for estimating the signal
underlying noisy measurements, enabling accuracy at the single photon level by removing signal-
dependent Poisson shot noise and dark current. Our method requires no additional training or
calibration data beyond the data that is to be denoised. Instead, we use a beam splitter setup
to collect paired observations of the same underlying signal, each corrupted by statistically inde-
pendent noise. The statistical characteristics of these observations allow us to apply a modified
version of a denoiser that was recently proposed for microscopy images [140].

Furthermore, we improve the trustworthiness of denoised outputs by directly estimating aleatoric
uncertainty. This method works by training an additional deep neural network to predict credible
intervals over the range of values that the true denoised signal could exist in.

Experiments show that the performance of our method is close to that of a supervised approach [5]
and exceeds an existing self-supervised approach [6]. The former represents the gold standard of
performance in the impractical scenario that clean, ground-truth training data is available. The
latter represents what is currently possible when using the same limited training data as us.

In summary, our contributions are:

» Combining a beam splitter acquisition setup with an unsupervised deep learning denoiser
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to remove signal-dependent and temporally correlated noise in an optical time series.

» Direct uncertainty estimation by predicting credible intervals over possible values of the

denoised signal.

7.2 Background

Our method is built upon the deep learning denoiser proposed in the previous chapter,

iated and Signal-Dependent Denoising (COSDDj, which removes spatially correlated noise from

microscopy images using only noisy training data. Here, we will give a brief recap of the method.
trains a Hierarchical [52, b5] to model noisy images, x, but ensures that signal is
modelled by the 's prior distribution, py(z), over latent variables z, and noise is modelled by
the 's decoder, py(x|z). As a result, the encoder, g,(z|x), acts as a denoiser, mapping noisy

images to a distribution of latent variables that represent possible underlying signals. The loss

function used to optimise parameters 6 and ¢ is the [52],
L(0, ¢;x) = Eg, (af [~ log po(x[2))] + K L(qy(2x))|Ips(2)), (7.1)

where KL is the divergence.

This division of labour between the encoder and decoder is achieved by exploiting differences in
the spatial correlation of signal and noise. In microscopy images, noise is often correlated along
rows of pixels, or not at all, while signal is correlated in all directions. To take advantage of these
characteristics, the is equipped with an autoregressive (@) decoder. In an @ decoder,
the distribution of each pixel is conditioned on the value of previously generated pixels, as well
as on z. We refer to the elements of x that a pixel is conditioned on as the decoder’s receptive
field. In , the receptive field is restricted to a row of pixels. This gives the decoder the
power to model noise but not signal. If a 's decoder has the power to model something, it
will [145], so a row-based receptive field forces the decoder to model noise. Consequently, noise

will not be represented by the latent variables. Signal, on the other hand, cannot be modelled by
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the decoder because its structures span outside the receptive field. This forces the to use its
latent variables to represent signal content. Once the is trained, the encoder will randomly
sample latent variables representing the clean signals that could underlie a given observation.

By distinguishing noise from signal via differences in their spatial correlation, the unsupervised
learning-based performs comparably to supervised learning-based denoisers. However, in
flow cytometry data, signal and noise cannot be distinguished so easily, as both can be correlated
in time. To apply the principle behind , we introduce a new axis to the data, along which

signal is perfectly correlated and noise is completely independent.

7.3 Method

7.3.1 Beam splitter

To collect suitable data for our denoiser, we use a flow cytometer with a beam splitter setup.
This creates two observations with identical underlying signal and statistically independent noise.
In our setup, the photons emitted by a fluorophore as it passes through the laser are sent through
a beam splitter and redirected to two s. The noise sources, shot noise and dark current,
occur independently at each . The bandwidth limited detectors then convolve the signal with
an impulse response, making the noise correlated in time. They also add temporally correlated
read-out noise, making deconvolution with the impulse response difficult.

Assuming equal rates of dark current, the mean signal at each will be the same, and
comprise of the quantity of interest — the rate of photons emitted by the fluorophore — scaled by
the gain and summed with the rate of dark current. This quantity, as a function of time, will
then be convolved with the impulse response, giving the mean of the observations which we refer
to as our signal, s. The paired observations are concatenated along the channel axis, giving us

the final observation x € RE*T where C' = 2 is the number of channels and T is the total time.
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Figure 7.1: The architecture of our denoiser. A pair of observations, x, each containing the
same underlying signal, are fed into a Hierarchical t\/AEI The }\/A 's decoder is autoregressive,
and predicts each element of x by conditioning on previous elements of x in the same channel.
Because it cannot see across channels, it cannot model signal, only noise. The latent variables
therefore describe signal [145]. These latent variables are decoded back into time series by the
signal decoder, which is trained using Eq. (p.6).

Channel
Channel

7.3.2 @ denoising

We propose the following factorisation for an autoregressive decoder,

pg(X‘Z) = HHPO(xc,t|xc,<t7Z)a (72)

c=1t=1

where channels are conditionally independent given the latent code, but can be temporally cor-
related. By conditioning the distribution of each element of x on previous values from the same
channel, i.e., from the same , the decoder can perfectly model the noise content in x.
However, the signal content, i.e., the timing and brightness of particles, must match between
channels. Anything generated by the decoder will be generated differently in each channel, so it

cannot effectively model signal. If we insert Eq. (@) into the loss ( El!) the only way for

the to effectively model data is to encode signal with its latent variables z. The encoder,
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¢»(z|x), therefore becomes a denoiser. The receptive field corresponding to Eq. (@) and the

are shown in Fig. El!

We use Eq. (@) to train a signal decoder to map latent variables back into time series space.

The target for the signal decoder is the concatenated observations x, so it will predict the signal,

s € RY*T underlying each of the two channels.

7.3.3 Direct denoising and uncertainty estimation
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Figure 7.2: The process of percentile estimation with a Direct Denoiser. A pair of
observations, x, are fed into a pre-trained VAE and a training Direct Denoiser. The VAE randomly
samples a possible clean signal estimate. This is the target for the Direct Denoiser. The Direct
Denoiser returns |K| + 1 = 6 outputs. The first |K| = 5 are trained to minimise into the
quantile regression loss (Eq. (B)) for each quantile in K. The | K|+ 1 = 6t output is trained
to minimise the mean squared error loss. Only the Direct Denoiser's parameters are updated to

minimise these losses.

For a given noisy observation, a —based denoiser [26, 4, 73, 140] randomly samples possible

denoised signals. The variation of many samples can be inspected to assess the aleatoric uncer-
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tainty of the denoising problem. For a single consensus estimate, users will often take the mean
of many samples.

Repeated sampling of denoised outputs for a large dataset takes a long time. A solution to this
problem was presented in Chapter H where a second deep neural network regresses observations
to denoised signals output by a . This network is known as the Direct Denoiser, g,. The
choice of regression loss dictates what the Direct Denoiser will learn to predict. For example, the
squared Lo norm of errors will train it to predict the mean of all possible denoised signals, while
the L1 norm will train it to predict the element-wise median of all possible signals.

Instead of settling for one prediction, we train a Direct Denoiser with multiple output channels,
each minimising a different loss function. One is trained to minimise the squared Ly norm of

errors. The others are trained using the quantile regression loss function [179],

Pi(8 — gy(x)) = (s — gyp(X)e) (K — Ls— g, (x)c<0); (7.3)

where 1 is the indicator function, 0 < xk < 1 is a choice of quantile and g, (x). is the cth channel
of the prediction g, (x).

We choose the set of quantiles K = {0.005,0.25,0.5,0.75,0.995}. These allow us to plot the
99% and the 50% credible intervals over possible denoised signals, and predict the element-wise
median signal. Users are free to select quantiles for a desired credible interval.

With ¢, ¢(s|x) as the distribution of denoised signals learned by the (Sec. @) the loss for

our Direct Denoiser is
co) 2
L(1;x) = Eq, s > Pl — gy (%)) + [Is = g5 ()1 ]13- (7.4)
reK
cetlonKl)

A graphical representation of this training process is shown in Fig. @
All results in Sec. Ell are computed using outputs of our Direct Denoiser. As our denoiser

separately estimates the signal underlying each channel, we sum over the channels for a final
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denoised result.

7.4 Experiments

7.4.1 Architecture, datasets and baselines

The architectures of our Hierarchical and signal decoder are the same as in Chapter a
but we use 6 levels in our hierarchy and have one-dimensional convolutions instead of
two. Our Direct Denoiser uses the same as the Hierarchical , but converted to be
deterministic. This was achieved by replacing the random samples at each level of the approximate
posterior with the distribution’s mean prediction.

We evaluated our denoiser using two real flow cytometry datasets, Data 1 and Data 2. They
consist of two low fluorescence channels, which are our noisy observations, and one high
fluorescence channel, which is our ground truth. All channels contain the same underlying
signal, except the signal in the ground truth is stronger. We also collected a high side-scatter
channel. All particles in our data scatter light and emit fluorescence.

These datasets were made using a double beam splitter setup. After being emitted from the
particle, light is passed through a 90/10 beam splitter, sending 90% of the signal to one
and creating our ground truth. The remaining 10% passes through a 50/50 beam splitter. For
Data 1, this attenuated light becomes our paired noisy observations. For Data 2, the light
ultimately passes through a neutral density filter with an optical density of 0.2 before becoming
our paired observations. Both datasets are of 110-nanometre polystyrene nanoparticles, but Data
1 used a 250mW excitation power and Data 2 used a 50mW excitation power. The final 20% of
each dataset was used for testing.

Our denoiser was compared to two learning-based baselines: a supervised learning denoiser [B]
(Supervised) and the self-supervised learning denoiser [6]. Both used the same UNet archi-
tecture as our Direct Denoiser and were also trained using the same multichannel loss function

(Eq. (@)) The input for Supervised was both low fluorescence channels, and its target
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was the high fluorescence channel. The input for was one of the low channels

and the target was the other. As Supervised is trained using ground-truth targets, it was not

shown the test set during training.

Lastly, we compared our denoiser to a Gaussian filter with a standard deviation of 4 and the
geometric mean of the two noisy channels. The intuition behind using the geometric mean is
that, by multiplying channels together, only time points that are non-zero in both channels will
remain, revealing simultaneous photons that could indicate the presence of a particle. Because of
read-out noise, the intensity is never truly zero, so we first clamp the baseline of the observations

to zero before multiplying them.

7.4.2 Evaluation

Table 7.1: Quantitative performance using LnAPIT and hange—lnvariant Peak Signal-to-Noise Rati(J
(RI-PSNR)T. The best method that does not require high SNH training data is shown in bold.

Gaussian  Geometric
;
filter mean

Datal 0.8220 0.8211 0.8218  0.7993 0.0253  0.8053
Data 2 0.802 0.8055 0.7773  0.7394 0.0074  0.7318

RI-PSNR Datal 18.86 18.94 18.65 18.26 17.11 17.39
Data 2 18.74 19.03 18.23 17.27 15.30 15.83

Ours  Supervised Raw

mAP

A good denoiser for flow cytometry should recover the signal of all particles and not reveal false
positives. To assess how well particles are recovered, we apply a peak detection algorithm to our
scattering data, revealing the true location of all particles. The same peak detection algorithm
was applied to denoised data, varying the threshold height for a detection from the minimum of
the data to the maximum. Following Iwamoto et al. [89], we do peak detection on 50th percentile
predictions. From this we obtained true positive, false positive and false negative detections at
varying thresholds and calculated the of each denoiser. Results for this experiment can be
found in upper Tab. El! Our denoiser beats on both datasets, and even beats Supervised on

Data 2. We suspect that our denoiser is at an advantage as, being unsupervised, it can utilise
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Figure 7.3: Visual denoising results of Data 1. In the top row are paired observations of the
same underlying signal. The true location of particles is shown in the side-scattering channel on
the bottom row. Middle rows are denoised outputs. We show the predicted median of denoised
signals and the 99% and 50% credible intervals. These are the regions where the model is 99%

and 50% certain t

particles, but

hat the true signal lies. Our denoiser and Supervised confidently recover both

N2

misses the first.
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the test data during training.

To assess the accuracy of recovered particle signals, we use the CAREamics library [180] to

compute the Fange—lnvariant Peak Signal-to-Noise Ratio (RI—PSNRj from the ground truth to

denoised signals. The predictions from the squared Ly norm channel were used for this test.
Following lwamoto et al. [89], we crop a window of length 200 around each particle detection
in the ground truth, and crop the same windows in the denoised time series. The of
each window is averaged to produce the final result. Results can be found in lower Tab. Ell Our
denoiser again beats and the non-deep learning baselines.

Lastly, we show denoised examples in Fig. @ The first row of this plot has the two noisy
observations. Subsequent rows show the output from our denoiser, and Supervised. Each
denoiser’s estimate of the median and their predicted 99% and 50% credible intervals are shown.
is trained to target noisy data, so believes the true location of the signal could lie in a much
larger region than ours, which instead predicts credible intervals over the true denoised signal.
In the bottom row is the high scattering channel, which reveals two particle detections.
The first particle has been confidently revealed by our denoiser, but only assigns a small

probability to a detection.

7.5 Discussion

We paired an optical time series acquisition setup with an unsupervised deep learning denoiser
to enable nanoparticle detection at extremely low signal intensities. The paired data we collect
could be used to train an existing denoiser, , but we demonstrate that ours recovers particle
detections with greater accuracy. The reason for this is as follows. A practitioner will always use
as much light as they can without causing enough photodamage to invalidate their observations.
The amount of light that can be used is commonly known as a photon budget. For unpaired
observations, the photon budget can be completely spent on each acquisition. For paired ob-
servations, the photon budget must be split between acquisitions. Each element of the paired

observations will therefore have a greater noise intensity than the unpaired observation, while
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their sum will be equal to the unpaired observation (minus any inefficiencies).

can only operate on each element of a pair individually, and must therefore contend with
elevated noise levels. Our method can operate on both elements of the pair together, effectively
halving the intensity of the noise that it must remove.

We believe that the denoiser presented here, and further developments of it, could be become a

preferred method for utilising paired noisy-noisy observations.

101



8 CONCLUSION

8.1 Summary

This thesis identified some of the key obstacles that prevent routine application of deep learning-
based denoisers to microscopy and flow cytometry data. Two of the foremost challenges were
limited access to training data and structured noise. For microscopy and flow cytometry, these
problems were interconnected. Structured noise could be removed, but only with paired training
data could it be removed reliably and with accuracy. Without access to paired training data,
structured noise required destructive blind-spot networks or impaired unsupervised denoisers,
neither of which can be expected to perform as well as a supervised denoiser. One of the key
contributions of this thesis was in Chapter H where an unsupervised deep learning-based denoiser
was developed to remove structured and signal-dependent noise using only unpaired noisy training
data. The specific type of structure tackled was row and column correlation, which is common
in a range of microscopy modalities. This method was demonstrated to have closer performance
to supervised deep learning-based denoisers than all other self- and unsupervised methods, and
even surpassed supervised denoisers on some datasets.

The above denoising method is made possible by recognising and utilising structural differences
in signal and noise in microscopy. For flow cytometry, signal and noise structures are much harder
to distinguish. Nonetheless, two methods for removing structured noise in flow cytometry were
developed. The first was in Chapter B where the structured background noise of the scattered
light signal was removed. To avoid the need for paired training data, this method involved training
a deep autoregressive model of light-scattering noise. Doing so required collecting data of pure
noise, which is a relatively simple need that can be met by recording a particle-free flow. While
this method was shown to enhance the sensitivity of flow cytometry to extra-cellular vesicles, it
was unable to remove signal-dependent noise.

The signal-dependence challenge was therefore revisited in Chapter H where a beam splitter setup
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8.1 Summary

was utilised to create paired observations containing identical underlying signals but independent
noise samples. This characteristic was used to train a denoiser with the same technique used in
Chapter B The paired noisy-noisy training data here could have trained the supervised denoiser
[6], but is not able to take advantage of both halves of the pair simultaneously, whereas
our method can examine the correlation between each.

Beyond structured noise, another practical challenge for unsupervised denoisers is their prolonged
inference time, where a practitioner must repeatedly sample random denoised signals to obtain a
consensus solution. In Chapter B this challenge was overcome by training a supervised denoiser
to predict the randomly sampled signals from an unsupervised denoiser. Depending on its loss
function, the supervised denoiser could predict either the pixel-wise median or the mean of the
denoised signals. It would thereby provide consensus estimates in a single forward pass.

We believe that the work here has taken a step towards unsupervised deep learning-based denoisers
becoming a standard stage of life science observation. Integrating these denoisers with free and
easy-to-use libraries such as CAREamics [180] or ZeroCostDL4Mic [114] will make it easier for
researchers outside of computer science to adopt them. Already, the denoisers for scattered flow
cytometry light B and row-correlated imaging noiseE have been released with interactive-notebook
examples. The implementation of the image denoiser was also integrated with the Direct Denoiser
from Chapter B further easing its use.

Soon, unsupervised denoisers will smoothly integrate into researchers’ workflows, and life scientists
will be able to push their technology beyond the limits set by noise, trusting that they have the
tools to accurately recover clean signals. The impact in live-cell imaging will be greatest, as
the delicate dynamics of real processes will be observed in great detail without perturbation by

illumination.

3github.com/krulllab/deep_nanometry
4github.com/krulllab/COSDD
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8 CONCLUSION

8.2 Future work

Before unsupervised denoisers become mainstays of microscopy and flow cytometry, remaining
challenges must be overcome. One challenge is their slow training time compared to regression-
based denoisers. With the advent of multi-billion-parameter models and growing interest in
implementing deep neural networks on edge devices, there has been a great deal of research into
efficient deep learning [181]. It would be interesting to investigate whether recent developments
in this field could be used to make unsupervised denoisers even less expensive to implement for
researchers.

Another issue is interpretable uncertainty estimation. While randomly sampling signals is useful,
manually examining a range of solutions for semantic differences is a subjective process, particu-
larly for images. It could be beneficial to develop an uncertainty estimation method that is more
meaningful than a per-pixel variance map, but more quantifiable than a collection of randomly
sampled signals.

Lastly, it is crucial that the 's behaviour regarding its division of labour [145] is investigated
further. In Chapters E and H we utilised this behaviour to design denoisers. Specifically, we
used our knowledge of the dimensions along which noise is correlated in order to design an
autoregressive receptive field suitable for modelling this noise. For images, we found that a row
of pixels is sufficient for modelling common imaging noise, but is insufficient for modelling signal,
and therefore enabled denoising. An outstanding question is: what other noise structures can be
separated in the same way? Alternatively, we could ask how data could be designed to enable
separate modelling of noise and signal, much like in Chapter H An interesting route to explore
could be video denoising. Even if noise is highly correlated within a video frame, it is unlikely to
be correlated between video frames. It may be possible to exploit this independence to train a
denoiser.

The limits of the division of labour should also be investigated. For example, we found that a row

of pixels is an insufficient receptive field for an autoregressive model of signal. We believe that
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this is because the inter-row correlation of signals describing natural phenomena is too strong to
be ignored. That is, knowing the values of neighbouring pixels beyond the row massively reduces
the uncertainty in the pixel being modelled. This is in contrast to row-correlated noise, where
knowing the values of pixels beyond the row has no effect on the uncertainty in the noise of
the pixel being modelled. However, imagine a simple signal that smoothly transitions from one
brightness to another across the full width of the image. For this, a row-based receptive field would
contain all relevant information for an accurate autoregressive model. It is therefore important
to find the limit of how simple a signal can be before a row-based receptive field enables an
accurate autoregressive model. This would provide more confidence when applying the denoiser.
Another degenerate case could be caused by intense noise. Even for complex signals, it could be
possible for noise to become so severe that inter-row correlations become irrelevant, and a pixel's
signal intensity could be predicted no more accurately using inter-row information than using only
intra-row information.

Ultimately, we believe that the 's division-of-labour preference, which was identified by
Chen et al. [145], has the potential to power unsupervised learning-based image restoration

in modalities beyond those addressed here, if it is investigated further.
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9 HIGH THROUGHPUT ANALYSIS OF RARE
NANOPARTICLES WITH DEEP-ENHANCED
SENSITIVITY VIA UNSUPERVISED DENOISING -

SUPPLEMENTARY

9.1 Comparison to a supervised deep learning approach

To benchmark the performance of the unsupervised method in , we compare it to a su-
pervised deep learning-based denoiser. This supervised denoiser is a network trained using the
attenuated data as input and the clean ground-truth data as target. In practice, such train-
ing data constituting both noisy data and noise-free data is much more difficult to obtain than
the data required for the unsupervised method in . only requires a time series from
particle-free ultrapure water, collected separately from the noisy time series that is to be denoised.
For the supervised denoiser to also predict the point-wise median of possible solutions (Appara-
tus and denoising workflow for ) it is optimised by minimizing the L1 norm of the error
between prediction and target. For a fair comparison, the architecture of the supervised network
is the same as the architecture of the in the unsupervised DNM, except stochastic layers are
made deterministic by replacing random samples from the learned Gaussian distributions with the
learned mean of the distributions. This makes the network a U-Net [58]. Unlike the unsupervised
, a denoiser trained in a supervised manner should not be evaluated using its training data,
so we withheld 10% of the total dataset for evaluation and used it to evaluate both methods.
The results in Supplementary Fig. @ were obtained from this subset.

First, Supplementary Fig. E?l(a) shows a max-normalised ground-truth time series, the corre-
sponding attenuated time series before denoising, and the attenuated time series after denoising
by both the supervised denoiser and the unsupervised denoiser in . The supervised denoiser

produced a result more closely resembling the shape of ground truth peak. In the histograms
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of max-normalised scattering height distributions in Supplementary Fig. @(b) the supervised
denoiser distinguishes more particle detections from noise than thel04 unsupervised denoiser in
, which has some overlap between noise and particle scattering heights below 0.05.

Next, Supplementary Fig. @(c) shows the scale-invariant peak signal-to-noise ratio () [182]
of the attenuated time series before and after denoising by both the supervised denoiser and the
unsupervised denoiser of DNM. This was obtained by dividing all time series equally into win-
dows of equal length of 200 sample points and employing the ground truth to disregard windows
containing no particle detections. We find that the supervised denoiser improves scale-invariant
in 79.6% of cases, compared to 76.0% of cases denoised by the unsupervised . The
supervised denoiser achieves a median scale-invariant value of 15.6 dB, while the unsu-
pervised DNM achieves a median scale-invariant value of 15.2 dB. The raw attenuated
data has a median scale-invariant value of 14.7 dB. Finally, the @ curve in Supplemen-
tary Fig. E?l(d) was generated using the same procedure as Fig. @(e) in the original manuscript.
The two denoisers produce output with a similar precision up to a recall of 0.6. We observe that
the precision of the supervised denoiser's output sharply drops at a recall of 0.8, compared to
the precision of 's output sharply dropping at a recall of 0.7. The of the supervised
denoiser’s output is 0.04 higher than the unsupervised 's output.

In conclusion, the supervised method outperforms across metrics, indicating what could be
possible with future methods. We believe that the main reason for this gap is the fact that the
supervised approach can learn to remove signal independent noise as well as signal dependent shot
noise, while our method is currently trained solely to remove signal independent noise. However,
it should be again noted that the ground truth data required for supervised methods is rarely

available in practice, and our unsupervised method did provide a substantial improvement.

9.2 Training and evaluation time

Our workstation consists of a 36 core Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz with 134GB
of RAM running Ubuntu 22.04.4, Python 3.11.5 and pytorch-lightning 2.2.1. The GPU used for
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training is a NVIDIA GeForce RTX 3090 with 24GB of VRAM. The minimum VRAM required
for training the model is 2GB. In our environment, total training time for the noise model and
the , using 1 second of data for each, takes 2.5 hours. Once the model is trained, denoising
a 1 second time series by randomly sampling 100 denoised time series from the estimated signal

distribution and computing the median of them takes 8.5 minutes.

9.3 Rayleigh scattering theory and fitting strategy

Using the Rayleigh theory [121], the scattering amplitude for small particles is expressed as,

m2—1
m2 4+ 2

5,76
2m°d° N o

3

Scattering amplitude(d) = A X Ogcat(d, Nned, Mparticle,n) = A X

‘ = cdb,
(9.1)
where 0., is the scattering cross section, m = % d is the particle size, ny.eq is the refractive
index of the medium, nparicle is the refractive index of the particle, and A is the excitation
wavelength. The scattering amplitude is proportional to the scattering cross section, scaled by a
factor A. All of these, except d, are parameters of the experimental setup and can be reduced to
the constant factor c. In the fitting, using the medians of the experimentally obtained scattering

height for 40 nm and 60 nm particles, respectively, we obtained ¢ = 3.4x 10! in Eq. (Ell)
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Figure 9.2: Schematic of our unsupervised denoising process. (a) Training and denoising scheme. In the
first step, the signal-independent noise distribution p(n) is estimated from the particle-free time series using an
autoregressive [CNN. Next, we train to estimate the clean signal distribution from the noisy time series containing
particles using a VAH. At each training step, a noisy time series is fed to the VAR and a clean signal estimate is
sampled. A corresponding noise estimate is then obtained by subtracting the clean signal estimate from the original
noisy time series. The likelihood of this noise estimate is calculated using the pre-trained autoregressive noise
model, p,(n). Finally, denoising is performed using the trained signal model. The signal distribution is estimated
from the noisy time series, 100 denoised time series are randomly sampled from this distribution, and the median
value is used as the denoising result (for more details, see Methods, Supplementary Note 1). (b) Simultaneously
acquired time-series scattering signals derived from 110 nm beads, attenuated signals, and the denoised signal. (c)
40 time series out of 100 time series sampled from the signal distribution used to calculate the denoising results in

(b).
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Figure 9.3: The architecture of @I (a) Noise model architecture. The noise model is based on the
PixelCNN architecture [82], adapted to one-dimensional data by using one-dimensional convolutions. The Shifted
Convolution module enforces the autoregressive structure of the noise model. It pads the start of the input array
with k& — 1 zeros, where k is the size of the convolutional kernel. This means that the tth element of the output
array is a function of the first ¢ elements in the input array. The exception to this is in the first Shifted Convolution
of the noise model, where the input is padded with k& zeros, so that the tth element of the output array is a
function of the first £ — 1 elements in the input array. In the Channel Split, the input array is divided in two along
the channel axis. The hyperbolic tangent and sigmoid functions are represented by tanh and o respectively. &
represents element-wise multiplication. (b) Hierarchical architecture. This follows the architecture used
by Prakash et al. [4]. The constant fed into the first top-down block is an array of zeros with the same dimensions
as the data. The probability distributions ¢, (2;|z<;, x) and py(z;|z<;) are Gaussians. Their means are the first half
of channels of the block’s input and their standard deviations are the second half, with positivity enforced by a
softplus function. All convolutions have a kernel size of 3. & and © represent element-wise addition and subtraction
respectively. The concatenate module denotes concatenating arrays along the channel axis. ELU represents the
Exponential Linear Unit activation function [139].
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Figure 9.5: Performances on the particle detection accuracy and the signal retrieval from noise with
varying @s. (a) Relationship between the PSNR of Gaussian filtered time series and the PSNR before denoising
(n = 5,010). (b) Relationship between the of denoised time series and the PSNR before denoising. _(c)
Relationship between the @ of denoised time series and the PSNR of Gaussian filtered time series. (d) mAP
and PSNR, obtained with_the different kernel size of the Gaussian filter. The arrows indicate the highest mAP
and PSNR obtained. (e) , with error bars representing the standard errors, for different s obtained from
different attenuation rates. (f) Mean s, with error bars representing the standard errors, for different s
obtained from different attenuation rates.
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Figure 9.6: Histograms of normalised denoised scattering peak heights at optical densities (OD) of 1.5,
3, 3.2, and 3.6, overlaid with a kernel density estimate (KDE) plot of the ground truth. We consider
peaks with a height >0.01 in the ground truth series true detections (olive) and all others false detections (blue). A
black line represents the distribution of detections in the ground truth series. Left panels show stacked histograms
with the x-axis on a logarithmic scale. We observe that the two distributions match well for attenuation OD 1.5
(median m of 107.77 before denoising), indicating that the denoising process preserves the scatter amplitude
distribution under this condition. For the attenuation OD of 3.0 and 3.2 (median SNR of 3.05 and 2.97 before
denoising, respectively) the distribution exhibits a bimodal pattern. The right mode corresponds to peaks that have
been preserved by denoising and contains mostly true detections. The left mode corresponds to peaks that have
been flattened by the denoiser and contains mostly false detections. With increasing OD, we observe that more and
more true peaks are lost (incorrectly flattened). Right panels show a thresholded version of the data, rejecting
detections below 0.1, as it may be done in a real applied setting to remove false detections. We show normalised
probability density estimates with a linear scale on the x-axis. The result confirms that the general shapes of the
distribution, which an experimenter without access to ground truth would measure, are well preserved at least for
OD 1.5, 3.0, and 3.2 and less well preserved for the most extreme OD 3.6 (median of 1.73).
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Figure 9.7: See next page for caption.



Figure 9.7: Comparison of the supervised and unsupervised denoising results. (a) Acquired max-normalised
time-series scattering signals derived from 110 nm beads. The ground-truth_signal, the attenuated signal before
denoising, the attenuated signal after denoising by the unsupervised denoiser (@) and the attenuated signal after
denoising by the supervised denoiser, respectively. (b) Histograms of the max-normalised scattering peak heights.
In the ground truth times series, peak heights exceeding a threshold of 0.01 are considered true nanoparticles,
and those lower than the threshold are noise. In the attenuated time series, peaks with a height exceeding 0.05
are considered detections (positives), and only those that coincide with the positions of the ground truth peaks
(true nanoparticles) are considered correct detections (true positives). In the denoised time series, peaks at the
same location as the positive peaks in the attenuated time series are considered as detections. (c) Scatter plot
comparing s before and after supervised and unsupervised (DNM) denoising illustrates the quality of the
time series relative to the ground truth series. Points above the line of y = x show improved PSNR, indicating an
improved ability to detect particles. In contrast, points below this line represent a decrease in PSNR, suggesting that
the particle signals are erroneously treated as noise and flattened. (d) Precision and recall (PR) curve for evaluating
precision and recall of peak detection in time series denoised by the supervised model, added to Fig. b.2(d) in the
main text as a dashed olive line. The is the area under the curve.
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Figure 9.8: Comparative analysis of the particle concentration changes observed before and after de-
noising. (@) Variations in the detected particle concentration by size before and after denoising (blue: before
denoising; olive: after denoising). The decrease in the number of detections at and the increase in_the
number of detections at 27 nm suggest a decrease in false detection and an increase in true detection by
(b) Nanoparticle scattering measurements obtained using the conventional flow cytometer (BD FACS Aria) (color:
particle size). All but the 110 nm particles overlap the scattering area of the PBS and are not detected.
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Figure 9.9: Statistical analysis of scattering- and fluorescence-based detection of @s subjected to
stepwise dilution. (a) Scatter plot of the average detection throughput of CD9(+) EVs and the factor of diluting
them with unstained serum (10 to 10°). The y-axis is symmetric log scale. The blue and olive colors indicate
the result of 3-minute m and 1-minute SP-FCM measurements, respectively. The black line indicates the linear
regression result produced for DNM measurements (n = 3, mean + S.D., technical replicate). The black and
orange dashed horizontal lines represent the PBY background mean + 3xS.D. and the free antibody background
mean £ 3xS.D., respectively. Sample flow rate of DNM is 1 uL / min and that of SP-FCM is 3.2 nL/min. (b)
Coefficient of variation (CV) for each estimated concentration. The dashed line denotes CV=0.2.
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Figure 9.10: The estimation of the limit of scattering detection (LoD). (a) Comparison of the size distribution
using the denoised data of 40 nm + 6.7 nm PS beads (Thermo Fisher, F8795, n = 84 392) for estimating the LoD.
First, we define the detection threshold value below which the 99.9% of 1- second scattering time series values
are included. Learning from the previous research [183], we compare the experimentally estimated size distribution of
PS beads with that estimated based on the spec sheet provided by a manufacturer (as a ground truth distribution).
To estimate the experimental size distribution, we converted the scatter height to particle size using Rayleigh
scattering theory [121] and fitting (Supplementary Note 4). Herein, we normalized the experimentally measured
histogram by dividing the counts by double the number of particles detected as 40 nm or larger. We defined the
LoD as the smallest size at which the particle count ratio does not fall below 50% [184, 185, 186], and thereby
obtained the LoD of 30 nm (01op of oxm = 0.34 nm?). (b) Detectable size and refractive index range calculated
based on scattering cross section of LoD. We calculated the particle size and refractive index combinations that are
detectable by based on the obtained or.p of oxm = 0.34 nm2). We calculated scattering cross sections for
each particle size and refractive index pair based on Eq. (9.1), and determined the region where the cross sections
are smaller than orop of oxm undetectable (blue), and the region where the cross sections are larger detectable
(yellow).
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Figure 9.11: Detection of @s from cancer patient
We performed SP-FCM measurement for 1 minute and

s, (d) the concentration of CD9-positive

particles.

ts and healthy donors for colorectal cancer diagnosis.
DNM measurement for 1 minute and 3 minutes, respectively
for each sample (n = 5 for cancer patients, n = 5 for healthy controls, biological replicates). Plots of (a) the total
count of detected particles, (b) the concentration of detected particles (/mL), (c) the total count of CD9-positive
s (/mL), and (e) the ratio of CD9-positive particles in all detected
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Figure 9.12: Statistical analysis of the limit of detection (LoD) and quantification limit (LoQ). (a)
Distribution of the numbers of expected particle detection per measurement for different low-count conditions of
A: the expected mean number of particles per measurement. When the number of particle detection is sufficiently
small, their distribution follows a Poisson distribution assuming each A. When the number of detected particles is
sufficiently large, it follows a normal distribution. (b) Plot shows the recalls with respect to the mean numbers of
particle detections. The dotted line shows the case in which the recall = 0.5, corresponding to the commonly used
LoD: the lowest quantity or concentration of a component that can be reliably detected against noise. If the number
of particle detections exceeds 0 and that for noise is zero, the number of particle detections measured is above
LoD. (c) Plot shows the coefficient of variation (CV) with respect to the mean numbers of particle detections. The
dotted line shows the case in which the CV < 0.2, corresponding to the commonly used LoQ: the lowest quantity
or concentration of a component that can be quantitatively. If the number of particle detections exceeds 24 and
that for noise is zero, the number of particle detections measured is above LoQ.



10 UNSUPERVISED DENOISING FOR
SIGNAL-DEPENDENT AND ROW-CORRELATED
IMAGING NOISE - SUPPLEMENTARY

10.1 Latent variables represent clean images

The training of the signal decoder assumes that every sampled value of the latent variable z
corresponds one clean image, or signal, s. We denote the signal corresponding to a value of z by

s(z). Using this relationship, the signal decoder, fy(z), can be trained to estimate

fo(2) = Epy(xj2)[X] = Epy(xls(x)) [X] = 8(2). (10.1)

Here, we provide an another way of viewing this deterministic relationship.

If the latent variables of our model truly represent only signals, then the @ decoder, py(x|z),
must model only the noise generation process. Therefore, different random samples from the @
decoder for the same value of latent variable will be images with the same underlying signal and
different random samples of noise. Since the noise is zero-centred, this allows us to produce an

estimate of the signal by calculating the mean of many samples from the @ decoder. That is,

if x1,Xs,...,xy are L random samples from py(x|z),
1 L
X = Z Z X = IE:'pg(x\z) [X] - S(Z) (102)
=1

In this section, we experimentally verify Eq. ([L0.1) by estimating the signal underlying a noisy
image x using both techniques; by passing a latent variable sample to the signal decoder and
by averaging 10,000 noisy image samples from the @ decoder. If Eq. () is true, the two
estimates of the signal should be nearly identical for the same value of latent variable.

Figure shows the result of this experiment for two different random samples from the ap-
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UNSUPERVISED SIGNAL-DEPENDENT ROW-CORRELATED SUPPLEMENTARY

X DX~ Py x|z1 X: X~ py(x|z9)

Figure 10.1: Given a noisy image x, we took two samples from the approximate posterior, z; and
Zo. For each latent variable sample, we produced one estimate of the signal by passing it through
the signal decoder fy and one by averaging 10,000 samples from the decoder, py(x|z).

proximate posterior, z; and zs. The two estimates of s(z;) are visually very similar to each other,

while exhibiting clear structural differences from the two estimates of s(z,).

10.2 Training and inference

10.2.1 Hyperparameters

Both the main and the signal decoder were trained with an Adamax [] optimiser with a
learning rate of 0.002. Both learning rates decreased by a factor of 10 when the validation loss
had plateaued for 50 epochs. The models for all datasets were trained for a maximum of 80,000
steps but stopped if validation loss had plateaued for 100 epochs.

For the non-simulated datasets, training images were randomly cropped to a size of 256 x 256
at each epoch and a batch size of 16 was used, but this was split into 4 virtual batches. For the
FFHQ - Stripe and FFHQ - Checkerboard datasets, training images were kept at their original

resolution of 128 x 128 and a batch size of 64 was used, but split into 16 virtual batches.

10.3 Hardware and software

The workstation used for this paper's experiments is a 36 core Intel(R) Core(TM) i9-10980XE CPU
©@ 3.00GHz with 134GB of RAM running Ubuntu 22.04.4, Python 3.11.5 and pytorch-lightning
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10.3 Hardware and software

2.2.1. The GPU used for training is a NVIDIA GeForce RTX 3090 with 24GB of VRAM. For all
datasets, training required approximately 20GB of GPU memory with the /arge network and 6GB

with the small network.

10.3.1 Times

Training a model for 80,000 steps with our hardware takes approximately 24 hours. After training,
denoising 100 images of size 512x512 by randomly sampling 100 denoised estimates takes 13
minutes when using a batch size of 10. Increasing batch size made no improvement as the GPU

is at 100% utilization.

10.3.2 of minimum mean square error estimates

Table 10.1: Our denoiser randomly samples clean images for a_given noisy image. A consensus
solution can be produced by averaging random samples. The of the mean of increasing
sample sizes is shown below.

MCC LSCI!i

No. Samples Conv. A Conv. B Mouse Actin Mouse Nuclei* Actin Conf. Mito Conf.

1 36.54 42.33 37.43 42.25 26.81 22.62
10 37.39 43.90 39.03 4291 27.37 23.39
100 37.49 44.10 39.23 42.98 27.42 27.50
1,000 37.50 4410 39.24 42.99 27.44 27.52
Simulated

No. Samples FFHQ Stripe FFHQ Checkerb.

1 32.27 33.03

10 35.24 35.85

100 35.66 36.27

1,000 35.74 36.32

In addition to the quantitative results presented in the paper, the of the mean of 1, 10
and 1,000 random denoised samples can be found in Sec. .
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10.4 Architecture

We proposed two network architectures for denoising, one large and one small. Each model
consists of a hierarchical [65], an autoregressive decoder [82] and our novel signal decoder.
In the /arge network, the has 14 levels in its hierarchy. The first 13 levels have 64 latent
dimensions each, while the final level has 128 dimensions. The latent variable passed to the
decoders is sampled from this final level. At each level on both the bottom-up path and the
top-down path is a residual block consisting of two sets of a convolution followed by a batch
normalization [138] followed by a Mish activation function [187]. Each residual block is followed
by a gated block [188]. Resampling is performed at alternating levels. The small network is the
same except that it has 6 levels to its hierarchy and half the latent dimensions.

The autoregressive decoder is built with eight layers of conditional PixelCNN blocks as proposed
in [82], but we found the performance to be better with a ReLU activation function [68] than
with gated units. The convolving kernels in the @ decoder have dimensions 1 X k, where k is
the kernel size. In the first layer of the decoder, the input is padded with k zeros on its left-hand
side, and then a convolution is applied. At all subsequent layers, the input features are padded
with k£ — 1 zeroes on the left-hand side. This results in a row-based autoregressive receptive field.
For a column-based receptive field, the kernels have dimensions k& x 1 and padding is applied to
the top of the input. For all of our experiments, k = 5. The convolutions in every other layer
have dilated kernels [189] and all have 64 filters. The likelihood distribution is a Gaussian mixture
model, with 3 components used for all datasets except the FFHQ datasets, for which 10 were
used, and the dataset, for which 5 were used.

The signal decoder is a convolutional neural network consisting of four 3x3 convolutions with

128 filters, each followed by a RelLU activation function.
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10.5 Baselines

10.5 Baselines

10.5.1 1]

These models were trained using the code available at https://github.com/wooseokleed/
AP-BSN using hyperparamters detailed in the original publication. We used a stride factor of 5

for all datasets.

10.5.2 Structured Noise2Void [2] and [3]

Both these model types were trained using the code available at https://github.com/juglab/
n2v, using default hyperparameters found in the example notebooks for and hyperparameter
values found in the original publication of . Following Broaddus et al. [2], masks
should be as small as possible while covering pixels with a noise value that is highly predictive of
the noise value in the target pixel. A trial and error test of the mask size for each dataset would
be too computationally expensive, so we follow [2] and mask 4 pixels on each side of the target
pixel for all datasets except FFHQ - Checkerboard. The structured component of noise in the
FFHQ - Checkerboard dataset can theoretically be predicted by seeing only two pixels in the same
column, so entire columns were masked here. The orientation of the pixel mask was determined
by looking at the spatial autocorrelation in noise patches for each dataset. The Mouse Nuclei

dataset is corrupted by unstructured noise, so was denoised with a single pixel mask.

10.5.3 [4]

These models were trained using the code available at https://github.com/juglab/HDN/
using default hyperparameters found in the example notebooks. requires a pre-trained noise
model. We followed Prakash et al. [4] and modelled the noise in each dataset using a Gaussian
mixture model. The noise model parameters can be estimated from the training data of datasets
with available ground truth. For datasets without ground truth, we trained the noise model using

denoised images from our method as pseudo-ground truth.
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10.5.4 CARE [5] and [6]

Both of these model types were trained using the code available at https://github.com/

CSBDeep/CSBDeep, using default hyperparameters and setting noisy images as target for M

10.6 Simulated data

The Flickr Faces HQ thumbnails dataset [171], with resolution 128 x 128, was made greyscale
by averaging across colour channels. For FFHQ - Stripe, the ground truth, s, was scaled to have
pixel values between 0 and 1, and Poisson noisy images were created as x = 0.002 x P(s/0.002).
Zero-mean Gaussian noise with a standard deviation of 0.02 was then added to these images.
Finally, structured noise was created by applying a horizontal Gaussian blur with a standard
deviation of 1 to white Gaussian noise with a standard deviation of 0.025 and added on top.
For FFHQ - Checkerboard, we added noise with inverse signal dependence by sampling Gaussian
noise from the distribution A/ (0,0.15 x 1/s). Then a vertical checkerboard pattern was added
by subtracting 0.1 from two pixels and adding 0.1 to the next two pixels along columns. The
starting point for the checkerboard was randomly sampled from a uniform distribution. For both

FFHQ datasets, the final 1,000 images were designated as a test set.

10.7 Additional qualitative results

See overleaf for larger denoised images from each dataset.
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Figure 10.8: Embryo
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