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ABSTRACT 

 
Ionomer glasses are one of the components to produce glass ionomer cements or glass 

polyalkenoate cements, a popular type of white dental fillings. A typical glass 

composition for this application is 20-36% wt.%  SiO2, 15-40% Al2O3, 0-35% CaO, 

0-10% AlPO4, 0-40% CaF2, 0-5% Na3AlF6 and 0-6% AlF3. These glasses can be 

made by mixing the appropriate oxides followed by fusion of ingredients in the 

temperature range of 1200 ˚C to 1590 ˚C. 

 

 The glass composition used in this study is 4.5SiO2-3Al2O3-1.5P2O5-3CaO-2CaF2. A 

series of new glasses were produced by Mg substitutions for Ca. Magnesium replaced 

calcium, by 25 (LG26 25%Mg), 50 (LG26 50%Mg), 75 (LG26 75%Mg) and 100 

molar % (LG26 100%Mg). The new glasses were characterised by Helium 

Pycnometer, FTIR, DSC and XRD. The optimum nucleation temperatures and 

activation energies were calculated by DSC, the crystal size was measured using the 

Sherrer equation from the XRD patterns and finally the chemical structure was 

analysed by FTIR. The glass density and the oxygen density were calculated in order 

to understand how magnesium substitutions can affect the glass network.  

 

In this study was showed that the density of glasses and glass ceramics decreased 

whereas the oxygen density increased slightly with Mg substitution. Furthermore in 

FTIR spectra there are four absorption regions of Mg containing aluminosilicate 

glasses which were associated with stretching and bending vibrations. In FTIR was 

also observed some shift towards higher wavenumbers with Mg substitution. On the 

other hand, DSC analysis showed that the glass transition temperature (Tg), Tp1 and 



9 

 

Tp2 did not undergo significant changes with Mg substitution comparing all Mg 

substituted glasses but a significant change was observed between the Tp1 and Tp2 

values of LG26 and Mg substituted glasses. A decrease in optimum nucleation 

temperature (Tn) with Mg substitution in all Mg substituted glasses except of 

LG26(100%)Mg was also observed. The LG26(100%)Mg glass did not exhibit an 

optimum nucleation temperature indicating that the glass undergoes spontaneous 

crystallisation. Furthermore, XRD analysis showed that the substitution of Mg for Ca 

resulted in the formation of Wagnerite (Mg2PO4F), Ca-FAP and Mullite (Al6Si2O13) 

in the case of LG26(25%)Mg and LG26(50%)Mg containing glass ceramics and 

Wagnerite (Mg2PO4F) and Mullite (Al6Si2O13)  in the case of LG26(75%)Mg and 

LG26(100%)Mg glass ceramics. The crystal size and the activation energy of Ca-

FAP/Wagnerite were calculated. The activation energy increased for all glass 

compositions with the exception of LG26(75%)Mg. 
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CHAPTER 1 

 LITERATURE REVIEW 

 

1.1 Introduction 
 

 

Ionomer glasses are used to form glass ionomer cements and play an important part to 

the structural features and the properties of glass ionomer cements which affect their 

application range. Glass ionomer cements are adhesive to the tooth structure, 

translucent and biocompatible [1]. Wilson and Kent developed the first glass-ionomer 

cement in the Laboratory of the Government Chemist in UK formed by an acid-base 

reaction between basic fluoro-alumino-silicate glass and a polyacrylic acid in the 

presence of water. The glass ionomer cements that are available in the market today 

show much improved mechanical properties compared to the ones used in the past [2-

8].  

 

Dental cements are made out of an alumino silicate glass type containing Ca and 

fluoride ions. These glasses can be made by oxide mixing followed by fusion of 

ingredients in the temperature range of 1200˚C to 1590˚C which is composition 

dependant. A typical composition is 20-36% SiO2 wt.%, 15-40% Al2O3, 0-35% CaO, 

0-10% AlPO4, 0-40% CaF2, 0-5% Na3AlF6 and 0-6% AlF3. Ions are leaching out from 

the glass while the cement is set as a result of the glass surface acid base reaction with 

the polymeric acid, resulting in cation release and consequently cross-linking of the 

polymer chains (Figure 1.1) [1, 9-11]. 
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Figure 1.1: Setting reaction of a glass ionomer cement [25] 

 

 

 

It is important to note, that the mechanical properties of cements are affected by the 

silicon to aluminium ratio as well as the fluorine in the glass structure. The influence 

of the silicon to aluminium ratio can be reduced by the high phosphorus content of 

glasses since phosphorus locally charge balances the four-fold coordinated aluminium 

ions in the glass network reducing the number of Al-O-Si bonds available for acid 

hydrolysis and therefore delaying the setting reaction. It is generally accepted that low 

phosphorus containing ionomer glasses are more reactive than high phosphorus 

containing ionomer glasses. Aluminium as an intermediate oxide acts as network 

former entering the silica network and conferring a negative charge in the network 

making it susceptible to the acid hydrogen ions attack [12]. Lowenstein’s theory states 

that if two tetrahedral units are linked by one oxygen bridge, the centre of only one of 

them can be occupied by a tetrahedral aluminium. Occupation by silicon, or another 

small ion of electrovalence of four or more, e.g. phosphorus must occur in the other 

centre [45]. If aluminium is the second centre it must be at a higher coordination state 
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e.g. five or six coordination. Apart from the composition, other factors were taken 

into account for the use of this glass: 

 Each silicon has at least one NBO (non bridging oxygen) as part of its 

composition 

 The amount of fluorine in the glass should be less than that of aluminium in 

order to minimize the formation of volatile SiF4 during melting [46]. The second 

criterion can be explained on the basis that one Si
4+

 cation can be replaced easier with 

NBOs or O
2-

 anions than with a non-bridging fluorine or F
-
 anion and that an Al

3+
 ion 

should bond to F
-
 anions preventing the formation of Si-F bonds in the glass network. 

This explanation is supported by a trimethylsilylation analysis reported in a previous 

study of 2SiO2-Al2O3-CaO-CaF2 glass that showed absence of Si-F bonds in the glass 

structure [47]. 

 

On the other hand, fluorine plays an important role in the properties of ionomer 

glasses and glass ionomer cements. The presence of fluorine decreases the glass 

transition temperature, the melting temperature and the viscosity of ionomer glasses 

as well as the refractive index of the glass and generally disrupts the glass network 

facilitating the acid attack and is released directly by the ionomer glass, during cement 

formation. Furthermore, the presence of fluoride (CaF2) enhances the compressive 

strength (reaching values even above 200 MPa) and Young’s modulus but does not 

seem to significantly influence the fracture toughness of glass ionomer cements, that 

is strongly dependent on the polyacid molecular weight [5, 7, 12, 13, 15-18].  

 

Glasses with appropriate compositions can be heat-treated and thus undergo 

controlled crystallisation to form glass-ceramics, in which the main crystalline phase 
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is apatite, similar to the apatite phase in bones and teeth [15]. One of the most 

important glass ceramics are apatite-mullite glass ceramics and are the result of the 

crystallisation of the following general glass composition 4.5SiO2-3Al2O3-1.5P2O5-(5-

x)CaO-xCaF2. 

  

1.2 Composition and Structure of Ionomer glasses 

As was already described, the main components of ionomer glasses are 20-36% SiO2 

wt.%,   15-40% Al2O3, 0-35% CaO, 0-10% AlPO4, 0-40% CaF2, 0-5% Na3AlF6 and 

0-6% AlF3. The composition of glasses affects the rate of ion release. There are three 

different types of glasses that have been used in the glass ionomer cements. These are 

aluminosilicate, aluminoborate and zinc silicate glasses: 

 

1) Alumino silicate glasses, that have been mainly studied by Wilson and co-workers 

and are based on the systems SiO2 - Al2O3 – CaO or SiO2 - Al2O3 - CaF2 [11]. Low 

amounts of alkali and alkali oxides (e.g. MgO and CaO) are present in the commercial 

glasses of this type. The glasses exhibit high elastic modulus and a high chemical 

corrosion resistance. The vast population of low-alkali aluminosilicates can be 

transformed into glass ceramics readily and have been used in various applications 

including cookware and dental implants [19].  These glass ceramics show good 

chemical durability, tolerance in higher temperatures and superior strength properties. 

Despite the fact that aluminosilicate glasses have been studied for a long time their 

structure and chemical bonding is not completely understood [20, 21]. 
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2) Alumino borate glasses studied by Combe et al are based mainly on the system 

Al2O3 – B2O3 – ZnO – ZnF2 [22]. This type of glasses referred to as alumino borate 

glasses are fairly important because of their ability to be hydrolysed in aqueous 

environments. Yet after research, the alumino borate glasses were found to have 

relatively poor chemical durability. The corresponded cements of alumino borate 

glasses exhibit a limited compressive strength compared to alumino silicate glass- 

formed ionomer cements. This makes the alumino borate glasses unsuitable for the 

formation of cement [11]. 

 

3) Zinc silicate glasses based on the system CaO – ZnO - SiO2 or Al2O3 – ZnO - SiO2 

have been investigated by Hill et al [43]. This type of ionomer glasses gives rise to 

high strength glass ionomer cement. The glass reactivity and the ability to form 

cement are determined by the network connectivity depending on the role of zinc in 

the glass network whether this is a network modifier or an intermediate oxide. The 

cement formed though, seemed to be unsuitable for dental use since it is hydrolysed 

leading to degradation together with its general weakness. Furthermore, zinc is 

important for the function of the immune system and has been recognised as an 

antibacterial agent. Hence Zn-glass polyalkenoate cements can be used as hard tissue 

replacement materials [11, 14].  

 

Modification of the glass powder component using various methods occurs readily in 

order to improve the glass ionomer strength. These methods include changing the 

composition (e.g. the fluoride and sodium content and the aluminium : silicate ratio), 

addition of bioactive components (e.g. certain glasses and hydroxyapatite) and 
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reinforcing by incorporating metal particles (e.g. silver-tin alloy, gold, platinum, 

palladium, stainless steel or fibres such as carbon steel or glass) [23]. 

 

Goldschmidt’s radius ratio criterion and Zachariasen’s random network theory are the 

two main theories on glass formation, both of which have been thoroughly 

investigated and for both of which a great deal of information is known. Concerning 

Goldschmidt, in the early 1920’s he proposed a rule for the formation of a glass based 

on the knowledge about glass formation oxides, such as SiO2. He stated that if an 

oxide is expressed as AmOn, the ratio of the ionic radii of the atom A and the atom O, 

rA/rO, needs to be between 0.2 and 0.4 for glass formation. This implies the 

tetrahedral coordination of the glass forming cation [44]. Zachariasen on the other 

hand defined a glass as “a substance that can form an extended three-dimensional 

network that is lacking periodicity with energy content comparable with that of the 

corresponding crystal network” and summarized basic rules (1, 2, 3, 4) for glass 

formation in simple oxides as well as modified rules (5, 6, 7) for complex glasses 

respectively, which have been developed during extensive usage for formulating a 

continuous 3-dimensional glass network. These rules are summarised below (Figure 

1.2) [19]: 

1. Each oxygen atom is linked to no more than two cations. 

2. The oxygen coordination number of the network cation is small. 

3. Oxygen polyhedra share only corners and not edges or faces. 

4. At least three corners of each oxygen polyhedron must be shared in order to 

form a 3D network. 

5. The sample must contain a high percentage of network cations which are 

surrounded by oxygen tetrahedral or triangles.  
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6. The tetrahedra or triangles share only corners with each other. 

7. Some oxygens are linked only to two network cations and do not form further 

bonds with any other cation. 

  

 

Figure 1.2: An example of the basic structure of tetrahedral units in silicate glasses 

[44]. 

 

The structural role of fluorine in ionomer glasses has been a main issue in research 

due to their broad use in the formation of glass polyalkenoate cements. The role of 

fluorine in the glass network and glass ionomer cements is summarised below [1, 7, 9, 

11, 12, 28-32]:  

1. Fluorine decreases the melting temperature and the viscosity of the ionomer glass 

as well as the refractive index of the glass. 

2. Fluorine disrupts the glass network facilitating the acid attack during cement 

formation.  

3. During cement formation, fluorine is released directly by the ionomer glass 

without the need to add other fluorine compounds leading to a lower refractive 

index. Hence, an improved translucency of the cement is adopted together with a 
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lower fusion temperature, improving the working characteristics of the cement 

paste. 

4. The presence of fluorine does not influence the fracture toughness of glass ionomer 

cements. 

5. Fluoride constantly being released is responsible for the inhibition of the formation 

of secondary caries. 

6. Fluoride enhances the compressive strength (which is reaching values above 200 

MPa) and Young’s modulus of glass ionomer cements.   

7. An increase in the fluorine content results in a significant reduction in the glass 

transition temperature. The reduction was attributed to the replacement of BOs by 

non bridging fluorines resulting in an overall reduction in the network 

connectivity. This consequently allows network motion at a lower temperature 

[33]. 

 

The use of calcium fluoro-alumino-silicate glasses for the formation of glass ionomer 

cements (GICs)  which is in turn used for medical and dental applications (as luting 

cements, bases, anterior filling materials and increasingly as posterior filling materials 

and bone cements) has attracted the interest of scientists in the last 10 years. The 

above ionomer glass compositions have the ability of forming apatite and mullite 

crystal phases which are then used for apatite-mullite glass-ceramics formation. These 

ceramics have excellent osteo-integration and osteo-conduction properties when 

implanted in the body as has been reported by Freeman et al. [24]. 

 

As was already mentioned, the generic glass composition SiO2-Al2O3-P2O5-CaO-CaF2 

determines the properties of glass ionomer cements (GICs). Particularly, the Al/Si 
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ratio influences the glass properties and the properties of the resulting glass-ionomer 

cements and glass-ceramics as derived after studies and scientific experiments. Yet, 

the influence of Al/Si can be reduced by the high phosphorous content of the glasses 

since phosphorus can locally charge balance four-fold coordinated aluminium ions in 

the glass network which as a result has reduced number of Al-O-Si bonds available 

for acid hydrolysis [25]. In simple phosphorus-free alumino-silicate-glasses, 

hydrolysis of Si-O-Al bonds occurs and a silica gel layer is formed around the 

remaining glass particles. During this process Al and Ca are released that can 

ionically cross link the polyacrylic acid chains to form a polysalt matrix. 

                                           

On the other hand, when glasses have high phosphorus content or if they have 

undergone amorphous phase separation, a special type of hydrolysis occurs, known as 

the P-O bonds hydrolysis [26]. During the hydrolysis of amorphous phase separated 

glasses, the phosphate groups compete with carboxylate groups for aluminium and 

calcium ions resulting in the inhibition of the cross-linking reaction in the cement 

matrix. Moreover, glasses with high phosphorous content show a significant decrease 

in the compressive strength and Young’s modulus of the cement. 

 

In order to improve the glasses used in glass ionomer cement formation, extensive 

research has been taking place studying the behaviour of glasses undergoing 

amorphous phase separation. Cement improvement is highly important since it is 

involved in restorative dentistry as explained above. Amorphous phase separation of 

ionomer glasses and fluoro-phospho-silicate glasses, such as the borosilicate glass 

system, was first studied by Barry et al.  
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He has acknowledged the division of the separation in two phases, one of which is 

more susceptible to acid attack [12, 27].                     

          

1.3 Structural Characterization of Ionomer glasses 

by Solid state MAS-NMR Spectroscopy 

 

The structure of complex amorphous and crystalline solid materials is a field of great 

importance in biomaterials science. These structures are mainly investigated using the 

technique of solid state MAS-NMR (Magic Angle Spinning Nuclear Magnetic 

Resonance) [6]. The above glass compositions have been extensively characterised in 

the past by multinuclear solid state MAS-NMR spectroscopy. It has been suggested 

that all Si is four fold coordinated and is present as Q
3
(3Al) and Q

4
(4Al) species. 

MAS-NMR characterisation of a range of model fluoro-alumino-silicate glasses 

forming the basis of glass (ionomer) polyalkenoate cements and commercial glasses 

was focused on four isotopes 
29

Si, 
27

Al, 
31

P and 
19

F: 

29
Si: Its spectrum indicates the two following species. Firstly, the Q

3
(3Al) species 

which represent a silicon with one non-bridging oxygen and three Si-O-Al linkages 

and secondly, the Q
4
(4Al) species which represent a silicon with four Si-O-Al bonds. 

27
Al: It was found predominantly in four-fold coordination except in glasses with high 

fluorine contents that have also a small proportion of five and six coordinated 

aluminium. 

31
P: Its presence is observed as Al-O-PO3, which has a local negative charge of -2. 

The negative charge is compensated by cations such as Ca
2+

 or six-fold coordinated 

Al. 
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19
F: F-Ca (n) and Al-F-Ca (n) species are found to be present in the calcium based 

glass compositions. F-M (n) corresponds to fluorine surrounded by n next nearest 

neighbour cations whereas Al-F-M (n) represents a fluorine bonded to aluminium 

with the metal M in close proximity, charge balancing the tetrahedral AlO3F species. 

An increase in the fluorine content of the glass and lower non-bridging oxygen 

contents give rise to an increase in the proportion of Al-F-M (n) species [34]. 

  

A lot of information has been reported regarding the fluorine environment within the 

aluminosilicate glass network by the MAS-NMR studies of Stamboulis and Hill [2, 

21, 35, 36]. Stamboulis et al. did not justify the presence of Si-F-Ca (n) although its 

presence cannot be completely ruled out. This is considered as true due to the 

increasingly stronger peak with fluorine content at -125 ppm observed by high 

fluorine containing glasses with the general composition of 4.5SiO2-3Al2O3-1.5P2O5-

(5-x)CaO-xCaF2 where x = 0-3. Identification of F-Ca(n) and Al-F–Ca(n) species in 

all glasses at -90 ppm and -150 ppm respectively can also be made. 

 

High concentration of five- and six-fold coordinated Al was observed in the MAS-

NMR studies conducted by Stebbins et al [37]. Stabilisation of the high-coordinated 

Al species by the F
-
 ions present in the Al coordination was observed. A series of 

fluorine containing alumino-silicate glasses and commercial ionomer glasses was 

additionally tested by applying 
27

Al
 
and

 19
F MAS-NMR spectroscopy by Stamboulis 

et al. and Hill et al. [35, 36]. A lower resonance shift position of the peak of four-fold 

coordinated Al (IV) for the phosphorus containing glass due to the Al-O-P bonds 

being formed in contrast to a phosphorus free calcium alumino-silicate glass was 

found.  
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1.4 Crystallisation of Ionomer glasses 

The last 20 years have been a time of revolution for glass ceramic development [15].  

The work of Hill et al led to the development of the SiO2-Al2O3-P2O5-CaO-CaF2 

system that crystallises to an apatite phase that is the basis of glass-ceramic bone 

substitutes and is mainly used in orthopaedic and dental applications. The presence of 

fluorine in the above system has a significant effect on the nucleation and 

crystallisation behaviour of the glasses. The system undergoes bulk crystallisation of 

Fluorapatite (Ca-FAP) and Mullite that followed prior amorphous phase separation. 

Evidence for the above are the optimum nucleation temperatures and the two loss 

peaks occurring in dynamic mechanical thermal analysis experiments on nucleated 

(phase separated) glasses. Often these glasses exhibit two transition temperatures that 

are identified by the loss peaks in a dynamic mechanical thermal analysis study. 

When the glasses are phase separated, the first phase is calcium, phosphate and 

fluoride rich, crystallizing to fluorapatite (first crystallisation temperature) and the 

second phase is aluminium and silicon rich, crystallizing to mullite (second 

crystallisation temperature) [27].  

 

APS (amorphous phase separation) is particularly important in glass–ceramics, as it 

often occurs before crystal nucleation. It is the dominant nucleation mechanism in 

commercial glass–ceramics and often occurs much faster than a nucleation 

mechanism involving the precipitation of crystals of a nucleating phase. APS often 

promotes crystal nucleation by two distinct mechanisms. It can provide an internal 

surface for heterogeneous crystal nucleation, which will always have lower activation 

energy than homogeneous nucleation, and it can also result in lowering the activation 

energy for homogeneous crystal nucleation, as a result of one of the two new 
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amorphous phases being closer in chemical composition to the crystal phase that 

forms. Nano-scale APS will often promote crystal nucleation, but may then serve to 

hinder crystal growth and coarsening, as it will be difficult for a crystal to grow into 

the second amorphous phase that is depleted in the species forming the crystal phase. 

This is illustrated schematically in Figure 1.3. In this case there is a strong correlation 

between the size of the extracted crystals and the size of the droplet phase, suggesting 

that the Ca-FAP crystals do not grow beyond the boundaries of the droplet phase [39].  

 

 

Figure 1.3: The figure indicates the Ca-FAP crystal growth which is inhibited by the 

size of the droplet. The droplet phase size is equivalent to the fluorapatite crystal size. 

Reaching the transition temperature of the second phase stimulates the fluorapatite 

crystal to exceed the droplet phase boundaries [39]. 

 

One of the compositions, studied by Dimitrova-Lukacs et al. [16], shows an increase 

in the material’s fracture toughness and strength. The high fracture toughness results 

from the microstructure, which consists of interlocking apatite and mullite crystals. 

The apatite crystals can have an aspect ratio >50, and during fracture these needle-like 
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crystals are pulled out resulting in a high fracture toughness. A microstructure made 

out of elongated hexagonal apatite crystals is shown in Figure 1.4.  

 

 

 

 

 

 

 

 

Figure 1.4: SEM of a fracture surface showing elongated apatite crystals with a high 

length to diameter aspect ratio [16]. 

 

Glass-ceramics are divided in three main groups: 

1. The Apatite-Wollastonite ceramics [15]  

2. Mica-based materials [15] 

3.  The Apatite-Mullite glass-ceramics[40].  

 

Apatite-wollastonite and Apatite-Mullite systems have apatite as their primary phase 

and in the case of fluorine containing Apatite-Mullite glass-ceramics the apatite is a 

Ca-FAP phase. Ca-FAP is more effective as a primary phase in Apatite-Mullite 

systems for the following reasons: 

 

The fluoride ions in Ca-FAP are smaller than the hydroxyl ions in Hydroxyapatite 

(HA) hence packing more readily in the lattice. The release of fluoride ions gives out 
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a cariostatic effect making the system more suitable for tooth saving preparation 

methods. 

Due to the importance of the above, scientists researched on the crystallisation of 

Apatite-Mullite glass-ceramics. These ceramics have a general composition of 

4.5SiO2-3Al2O3-1.5P2O5-(5-x)CaO-xCaF2 (where x = 0-3.0) with two fluorine atoms 

substituting for one oxygen atom, which is the basis of the series of ceramics being 

formed today. A Ca:P ratio of 1.67 representing that in apatite is observed in every 

glass of this composition. Glasses with x = 0.5 on the other hand, have a Ca:P:F ratio 

of 5:3:1 representing the stoichiometry in fluorapatite. The substitution of oxygen by 

fluorine gives a crosslink density of 1.04 for the highest fluorine content possible, 

0.44 less than the glass without fluorine as calculated by Ray et al. Fluorine has two 

roles in glasses, one being that of a nucleating agent leading to the crystallisation of 

fluorapatite. The other role is the allowance of a motion and rearrangement of the 

glass network by facilitating the kinetics of crystallisation [16].  

 

1.5 Cation Substitution in Ionomer glasses  

Polyalkenoate cements (used for medical and dental applications) are formed by 

calcium fluoro-alumino-silicate glasses or fluoro-alumino-silicate glasses containing 

phosphate and strontium. A MAS-NMR study showed that the presence of F-Ca(n) 

species in the glass is critical for the formation of Ca-FAP [21]. This becomes 

particularly critical when cation substitution takes place. For example, Mg, Sr and Ba 

substitution resulted in the presence of F-Mg(3), Al-F-Mg,  F-Sr(3), Al-F-Sr and Al-

F-Ba species with obvious lack of F-Ba(3). As a result only Mg and Sr substituted 

glasses crystallised to Wagnerite and Sr-Fluorapatite whereas Ba substituted glasses 
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did not crystallise to any apatite phase [21, 33, 36].  The latter information gave a 

better insight in the understanding of the crystallisation mechanism and potential 

applications of the above systems. 

 

Radio-opacity that makes glasses opaque to X-Rays is introduced to the glass ionomer 

cements usually by strontium, a substitute for calcium. For instance, the substitution 

of strontium for calcium was investigated during nucleation and crystallisation of a 

composition that has a Ca:P ratio of 1.67 corresponding to apatite stoichiometry and 

crystallizes to Ca-FAP. This was first noticed and studied by Hill and Stamboulis. 

Strontium can be a substitute to calcium since they have similar ionic radii, 1.16 nm 

for strontium and 0.94 nm for calcium. Substitution of strontium in crystalline 

structures may also occur.  An example is the substitution of strontium in Apatite 

structures [2, 12]. Solid solutions of strontium-calcium Hydroxyapatite 

(Sr,Ca)10(PO4)6(OH)2, and pure Strontium Apatite are produced by aqueous solutions 

and are hence described as minerals. An increase in the unit cell dimensions, with a 

and c increasing to 0.942 from 0.688 nm for HA occurs when strontium is introduced 

into the apatite lattice due to the slightly larger ionic radius of strontium. An X-ray 

diffraction pattern for strontium apatite was produced due to this change with larger 

d-spacing than its calcium counterpart. A material with increased X-ray radio opacity 

is produced due to the increased atomic weight and number of strontium which in turn 

leads to an increased density of both the glass and crystal structure. The ability to 

observe a materials location and behaviour is basically what is important for medical 

and dental applications. 
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Other substitutions studied include Mg and Ba cations. The size of the cations is 

considered to strongly affect the structure and crystallisation of the ionomer glasses. 

In Ba-substituted glasses for example, the silicon and phosphorus environment of the 

glass was not highly influenced by the substitution. Yet, FTIR studies showed that 

Ba-substitutions have the following effects [11, 42]: 1) A lower inter-tetrahedral angle 

in Si-O-Si is being formed, 2) A less strained glass network is achieved, 3) Low 

barium contents affect the crystallisation of the main phases which are Ca-FAP, 

Mullite and some mixed Ba-Ca-FAP, 4) At high barium contents, there is no Ca-FAP 

forming during crystallisation but mostly a barium aluminosilicate phase together 

with crystalline BaPO4. 

 

1.6 Aims and Objectives 

The purpose of this research is to study the influence of magnesium substitution on 

the structure of fluorine containing calcium-alumino-silicate glasses and the resulting 

glass-ceramics. Consequently, the main purpose of this project is: 

 To study how Mg substitution can affect the glass transition temperature (Tg), 

the crystallisation temperatures (Tp1, Tp2) as well as the optimum nucleation 

temperature (Tn).  

 To understand the crystallisation mechanism and determine the crystal phases 

as well as the crystal size of each crystal phase. 

 To calculate the Activation Energy (Ea) of Ca-FAP/Wagnerite, giving 

information about the related nucleation and growth process that corresponds 

to the formation of Ca-FAP. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Materials 

The study was based on the use of Ca-alumino Silicate glasses with a composition of 

4.5SiO2-3Al2O3-1.5P2O5-3CaO-2CaF2 and an excess of fluorine content Ca:P:F = 

5:3:1. The production of the alumino-silicate glass of the defined composition 

occurred using a melt quench route [70]. The required reagents are silica (SiO2), 

alumina (Al2O3), phosphorus pentoxide (P2O5), calcium carbonate (CaCO3) and 

calcium fluoride (CaF2). Concerning the Mg – substituted alumino silicate glasses, the 

composition is 4.5SiO2-3Al2O3-1.5P2O5-3CaO-2CaF2, by LG26(25%)Mg, LG26 

(50%)Mg, LG26(75%)Mg and LG26(100%)Mg. The required reagents are silica 

(SiO2), alumina (Al2O3), phosphorus pentoxide (P2O5), calcium carbonate (CaCO3), 

calcium fluoride (CaF2), magnesium oxide (MgO) and magnesium fluoride (MgF2) 

(all the reagents were of analytical grade and supplied by Sigma-Aldrich) 

 

The following steps were applied for the formation of alumino silicate glass and Mg-

substituted alumino silicate glasses: 

 A total amount of 500 g of glass was measured and mixed.  

 Transfer of the glass batch in a platinum crucible and heating at a temperature 

of 1475
o
C for 2 hours. 
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 The glass melt was then quenched in deionized water to avoid phase 

separation and crystallization resulting in the formation of frit glass (fritting). The frit 

glass was then grounded using a pestle and mortar and sieved. 

 

Table 2.1.2: Composition of Mg substituted alumino-silicate glasses 

 Oxides-Molar Composition 

Glass code SiO2 Al2O3 P2O5 CaO CaF2 MgO MgF2 

LG26(25%)Mg 4.5 3 1.5 1.75 2 1.25 0 

LG26(50%)Mg 4.5 3 1.5 0.5 2 2.5 0 

LG26(75%)Mg 
4.5 3 1.5 0 1.25 3 0.75 

LG26(100%)Mg 4.5 3 1.5 0 0 3 2 

 

 

2.2 Methods 

2.2.1 Helium Pycnometer – Density Measurements  

 

The density of glasses and glass ceramics was measured using the method of helium 

pycnometer. Gas pycnometry is a common analytical technique that uses a gas 

displacement method to measure volume accurately. Inert gas, such as helium is used 

as the displacement medium. The sample is sealed in the instrument compartment of 

known volume, the appropriate inert gas is admitted, and then expanded into another 

precision internal volume. The pressure is measured before and after expansion and is 
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used to calculate the sample volume. Dividing this volume into the sample weight 

gives the gas displacement density.  

 

The AccuPyc II 1340 Series Pycnometer, that we used for density measurements of 

glasses and glass ceramics, is automatic and provides density calculations on a wide 

variety of powders, solids, and slurries having volumes from 0.01 to 350 cm
3
. In our 

case the samples were <45μm of particle size and their mass was approximately 1gr. 

The instrument completed sample analyses in thirty minutes providing us with 10 

consecutive measurements as well as the deviation of each measurement. In order to 

calculate the density of the glasses and glass ceramics we took the average of these 

ten consecutive measurements.  

 

In addition, the oxygen density was calculated in order to provide us with an 

indication of the change of network connectivity with substitution. 

 

Then the oxygen density of glasses was calculated by using the following equation 

2.2: 

(Eq 2.2) 

 

2.2.2 Fourier Transform Infrared Spectroscopy  

The FT-IR Spectroscopy is used in order to understand the nature of the bonds formed 

in the amorphous glass with Mg substitution. Fourier transform infrared (FTIR) 

powder absorption spectra were recorded in the 4000 - 400 cm
-1

 region by using a 

glassofweightmolecular

oxygenofweightmolecular
DensityDensityOxygen
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Perkin-Elmer FTIR spectrometer (Spectrum 2000, Perkin Elmer, USA).  A mixture of 

the sample and KBr powders in an agate mortar and pestle which was then pressed 

into the required shape resulted in the production of the KBr pellets. The weight ratio 

of sample/KBr was 0.01. Approximately 12 scans were shown by the spectrum of 

each sample represented an average of 12 scans and the background spectrum of a 

blank KBr pellet was subtracted.  

 

2.2.3 X-ray Powder Diffraction  

X-ray Powder Diffraction is used in order to measure the crystal size of the formed 

Ca-FAP as well as how the crystal size is affected by magnesium substitution. Also, 

this technique will show the different crystal phases formed with magnesium 

substitution. An increase in temperature of 10
o
C per minute up to 1100

o
C using a 

ramp heated all the frit glass samples. Once that temperature was achieved the 

samples were left to heat for an hour and then cooled to room temperature using a 

furnace. X-Ray diffraction was then performed on the samples using a continuous 

scan between 2θ = 10° and 60°, with a step size of 2θ = 0.0200°. A Philips analytical 

x’pert XRD was used with Cu Ka, at 40 kV and 40 mA. 

 

Use of the Scherrer equation calculated the crystal size D [48, 49, 75]:  

D=K /[wcos(θ)]                                               (Eq 2.3) 

K is a constant that takes values between 0.9 and 1.0 depending on the particle 

morphology.  is the Cu Kα radiation (0.15406nm), w is the full width at half-

maximum (FWHM in radian), and θ is the diffraction angle (in degrees). In this 
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experiment the average value of K = 0.95 was used giving an average volume of the 

apparent size independent of the morphology. 

 

2.2.4 Differential Scanning Calorimetry  

In order to investigate the nucleation and crystallisation behaviour of glasses or in 

other words in order to measure the optimum nucleation temperatures a NETZSCH 

404C DSC with pairs of matched platinum-rhodium crucibles was used. 20 mg Al2O3 

were weighed for the reference crucible as well as 20 mg samples were weighed and 

placed in dry argon followed by heating with a rate of 10
o
C/min (unless otherwise 

stated).  

 

The method outlined by Marotta et al. was followed for the determination of the 

optimum nucleation temperature in glasses that undergo bulk crystal nucleation [50]:  

 

DSC (Differential Scanning Calorimetry) was used in order to determine the glass 

transition and crystallisation temperature of glasses. The temperature range was from 

25 to 1100
o
C and the heating rate was 10

o
C/min. The sample weight was ca 20 mg for 

all samples and the reference sample was alumina. According to the Marotta method 

[43, 51], the glass sample should be held for 1 hour at 4 different temperatures Tg+20, 

Tg+40, Tg+60 and Tg+80, and then it should be heated at 10
o
C/min to 1100

o
C. All the 

measurements were run at the temperature range of 400˚C-1100˚C with a heating rate 

of 10˚C/min in a dry argon gas atmosphere. The optimum nucleation temperature was 

then calculated as the temperature that corresponds to the minimum of the curve 

http://las.perkinelmer.com/Catalog/default.htm?CategoryID=Differential+Scanning+Calorimetry+%5BDSC%2C+DTA%5D
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defined by plotting the new first crystallisation temperatures against the holding 

temperatures.   

 

The number of stable nuclei Nn produced in a sample per time element tn as indicated 

by Marotta et al. is:                                                   

b

nn tIN                                                      (Eq 2.4) 

where I is the kinetic rate constant of nucleation and b is a parameter related to the 

nucleation mechanism. The exothermal crystallisation peak temperatures will reflect 

variations in nucleation rates when the samples have been subjected to lengthening 

heating in the surrounding area of the assumed nucleation maxima. The above 

observation led to Marotta realising that if tn is the same for each sample at each 

temperature Tn, the subsequent equation can be applied [52-55]:                                       
 

C
TTR

E
I

pp

c 11
ln

'

                                  (Eq 2.5) 

where Ec is the activation energy for crystallisation, R is the gas constant, Tp   is the 

crystallisation peak temperature occurring after a nucleation hold, Tp is the latter 

crystallisation peak temperature without a nucleation hold and C is the constant.  

 

The experiments for the calculations of the activation energy for the crystallisation of 

fluorapatite were conducted in the Physics Department at Warwick University using 

the equipment of Mettler Toledo TGA/DSC 1 and Pt crucibles. These calculations 

using both the Marotta method and the modified Kissinger method as proposed by 

Matusita et al. [40] provide information about the related nucleation and growth 

process. The Marotta method is based on the equation 2.6:  
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CRTE
r

Ln PC /1                                     (Eq 2.6) 

where r is the heating rate, EC is the activation energy of the process, TP is the 

temperature corresponding to the maximum of the crystallisation peak, R is the 

universal gas constant, and C is the constant.  

 

On the other hand, the modified Kissinger method suggested by Matusita and Sakka 

[54] is based on the equation 2.7: 

 

CRTmErTLn PC

n

P //2                                  (Eq 2.7) 

where TP is the crystallisation peak temperature, r is the heating rate, R is the 

universal gas constant, n and m are the numerical constants which depend on the 

crystallisation mechanism, and C is the constant. For surface nucleation n = m = 1 

whereas for bulk nucleation from a constant number of nuclei n = m = 3 and for bulk 

nucleation from an increasing number of nuclei n=4 and m=3.  

 

The glass composition undergoes no change during crystallisation as assumed by both 

methods. This is not true when the glass compositions differ to the crystalline phases 

formed during crystallisation. The Kissinger [55] method makes it possible to assume 

which are the appropriate values for n and m used for the above calculations including 

the rare use of non-integer values (such values are used when neither pure bulk 

nucleation nor surface nucleation occurs). Heating coarse glass particles in five 

different heating rates which include 2, 5, 10, 15, and 20
o
C/min was used to calculate 

the activation energies obtained. 
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CHAPTER 3 

RESULTS 

 

3.1 Effect of Cation Substitution on Glasses. 

3.1.1 Density and Oxygen Density of Mg Substituted 

Glasses 

 

The measured density and oxygen density for Mg containing alumino-silicate glasses 

are shown in Figure 3.1 and Figure 3.2. It is indicated, that the decrease of density is 

proportional to the enhancement of magnesium substitution with the highest density 

for LG26 (4.5SiO2-3Al2O3-1.5P2O53CaO-2CaF2) at 2.73 g/cm
3
 and the lowest density 

for LG26(100%)Mg (4.5SiO2-3Al2O3-1.5P2O5-3MgO-0.75MgF2-1.25CaF2) at 2.65 

g/cm
3
.  
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Figure 3.1: Density of Mg containing glasses. 
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Figure 3.2: Oxygen Density of Mg containing glasses. 

 

However, the oxygen density, based on the density values mentioned above, shows a 

slightly increasing tendency, suggesting that there is a very small change of the 

oxygen environment within the glass network with Mg substitution. The oxygen 

density is increased from 1.11 g/cm
3
 for LG26 to 1.17 g/cm

3
 for LG26(100%)Mg. 

 

3.1.2 FTIR analysis of Mg substituted glasses 

Figure 3.3 shows the FTIR adsorption spectra of all Mg containing glasses. The first 

strong  bands in the region of 800-1400 cm
-1

 appear in all samples and are assigned to 

the Si-O(s) and P-O(s) stretching vibrations, however with increasing the Mg molar 

content from LG26 to LG26(100%)Mg, these bands are shifted to slightly higher 

wavenumbers, i.e., from 1089 cm
-1

  to 1109 cm
-1

 [56, 57]. In the case of 

LG26(100%)Mg  there is a difference, the bands are shifted to slightly lower 

wanenumbers. It is very likely that this happens due to the more tight glass network 

formed with 100%Mg substitution. In addition, there is an effect in the intensity of the 

band situated at around 983 cm
-1 

that decreased with increasing the Mg molar content 
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in the glass. Furthermore, there is a medium strong band in the region of 620-800 cm
-1

 

which is associated with AlO4 tetrahedra. The band between 530-620 cm
-1

 is 

attributed to the P-O bending vibrations and Si-O-Al linkages, while the band centred 

at around 460 cm
-1

 is related to the motion of bridging oxygens in the plane 

perpendicular to the Si-O-Si(Al) bond, in other words is attributed to vibrations of the 

Si-O-Si and Si-O-Al bonds [58- 60]. 

 

Figure 3.3: FTIR spectra of all Mg substituted glasses. 

 

3.1.3 Glass Transition and Crystallization 

Temperatures of Mg Substituted Glasses  

 

Coarse particles (>45μm) of Mg containing glasses were characterised by using 

differential scanning calorimetry (DSC) at a heating rate of 10
o
C/min from room 

temperature to 1100
o
C. All graphs showing glass transition temperatures and 
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crystallisation peak temperatures are presented in Figure 3.4 and Figure 3.5.  Table 

3.1 presents the values of glass transition and crystallisation temperatures for all 

glasses. It is clear that in these glasses, the corresponded glass transition temperature 

(Tg) of LG26 has the highest value of 655
o
C whereas the Tg of each sample 

(LG26(25%)Mg, LG26(50%)Mg, LG26(75%)Mg, LG26(100%)Mg) is decreased 

initially with increasing the content of Mg, but then increased when the content of Mg 

is higher than that of Ca.  

Figure 3.4: DSC trace of calcium containing glass LG26 with particle size >45μm 

measured at a heating rate of 10
o
C/min. 

 

 

Concerning the first crystallisation peak temperature (Tp1) the progressive Mg 

substitution forces Tp1 consistently to higher values from 760
o
C in the case of LG26 

to 983
o
C in the case of LG26(100%)Mg as shown in Table 3.1. It is suggested, that 
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the changes of Tp1 in Mg substituted glasses may be related to the formation of 

different crystalline phases at Tp1 in each sample.  

 

Figure 3.5: DSC traces of all Mg containing glasses (a) (LG26(25%)Mg, (b) 

LG26(50%)Mg, (c) LG26(75%)Mg and (d) LG26(100%)Mg) with particle size 

ranging from 3mm to 45μm-100 μm measured at a heating rate of 10
o
C/min. 

 

Table 3.1: DSC analysis data for all Mg containing glasses (particle size >45μm) 

measured at a heating rate of 10
o
C/min. 

 

Glass 

 

Mg content 

(at%) 

 

Tg(
o
C) 

 

Tp1(
o
C) 

 

Tp2(
o
C) 

LG26 0 655 760 991 

LG26(25%)Mg 25 636 901 1070 

LG26(50%)Mg 50 620 933 1073 

LG26(75%)Mg 75 633 937 968 
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LG26(100%)Mg 100 652 983 1071 

 

The second crystallisation peak temperature (Tp2) on the other hand increases 

initially from 991
o
C in the case of LG26 to 1070

o
C in the case of LG26(25%)Mg and 

1073
o
C in the case of LG26(50%)Mg but then decreases to 968

o
C in the case of 

LG26(75%)Mg but increases again to 1071
o
C in the case of LG26(100%)Mg. A 

characteristic endotherm at around 1200
o
C is observed in graphs 3.5c and d most 

likely associated with crystal dissolution. 

 

3.2 Effect of Cation Substitution on Glass-Ceramics 

3.2.1 Density of Mg Substituted Glass-Ceramics 

 

Figure 3.6 shows the measured density of Mg substituted glass ceramics. It is clear, 

that the density for glass ceramics is decreased slightly with Mg substitution from 

2.88 g/cm
3
 for LG26 (4.5SiO2-3Al2O3-1.5P2O53CaO-2CaF2) to 2.84 g/cm

3 
for 

LG26(100%)Mg (4.5SiO2-3Al2O3-1.5P2O5-3MgO-0.75MgF2-1.25CaF2).  

 

Glass-Ceramics

y = -0,0004x + 2,892

R2 = 0,7562

2,8

2,82

2,84

2,86

2,88

2,9

0 20 40 60 80 100 120

Mg substitution content (at%)

D
en

si
ty

 (
g/

cm
3 )

 

Figure 3.6: Density of Mg containing glass ceramics. 



40 

 

It is observed, there is a linear relationship between the density and Mg molar content. 

In addition, in this case the density depends on the amount and type of phases formed 

in glass-ceramics. 

 

3.2.2 XRD Study of Mg substituted Glass-Ceramics 

Figure 3.7 indicates the X-Ray powder diffraction analysis of Mg substituted glasses 

heat treated up to 1100
o
C with one hour hold in optimum nucleation temperature. It is 

observed that the formation of Wagnerite (Mg2PO4F) (JCPDS 00-042-1330) is 

favoured with increasing Mg substitution and fully replaces Ca-FAP when the Mg 

content is higher than that of Ca.  

 

 

Figure 3.7: X-ray powder diffraction patterns of heat treated Mg glass-ceramics. F = 

Ca-FAP, M = Mullite, W = Wagnerite. 
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In particular, Mullite (Al6Si2O13) is present in all crystallised samples, Ca-FAP 

(Ca5(PO4)3F) appears in LG26 in LG26(25%)Mg and in LG26(50%)Mg while 

Wagnerite (Mg2PO4F) is present in all substituted glass-ceramics apart form LG26  as 

shown in Table 3.2. There is also a small amount of AlPO4 present. The LG26 

containing glass is mainly crystallised to Ca-FAP and Mullite as well as a small 

amount of AlPO4. 

 

Table 3.2: Analysis of XRD patterns of different Mg containing glass-ceramics. 

GLASS CRYSTAL PHASES 

LG26 Ca5(PO4)3F x Al6Si2O13 AlPO4 

LG26(25%)Mg Ca5(PO4)3F Mg2PO4F Al6Si2O13 AlPO4 

LG26(50%)Mg Ca5(PO4)3F Mg2PO4F Al6Si2O13 AlPO4 

LG26(75%)Mg x Mg2PO4F Al6Si2O13 AlPO4 

LG26(100%)Mg x Mg2PO4F Al6Si2O13 AlPO4 

 

Furthermore all Mg substituted glasses were heat treated up to corresponding Tp1 and 

studied by XRD analysis in order to identify the crystal phases formed at Tp1. The 

Tp1 used for the heat treatments was measured from the DSC curves shown in Figure 

3.11 (a, b, c and d) and used to calculate the activation energy (with holding at the 

optimum nucleation temperature) when the heating rate was 10
o
C/min. Figure 3.8 

shows that Ca-FAP (Ca5(PO4)3F) and Wagnerite (Mg2PO4F) are formed at Tp1 in 

LG26(25%)Mg containing glasses, while only Wagnerite (Mg2PO4F) is formed in 

LG26(75%)Mg glass-ceramic at Tp1.  
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Figure 3.8: X-ray powder diffraction patterns of heat treated Mg glass-ceramics up to 

Tp1. F = Ca-FAP, W = Wagnerite. 

 

Table 3.3: Comparison of the crystal size and type of Ca-FAP (Ca5(PO4)3F), 

Wagnerite (Mg2(PO4)F) and Mullite (Al6Si2O13) phase formed in glass-ceramics with 

different Mg content. 

GLASS CRYSTAL SIZE   (nm) 

 Ca-FAP 

(Ca5(PO4)3F) 

Hexagonal 

Mullite 

(Al6Si2O13) 

orthorhombic 

Wagnerite 

(Mg2(PO4)F) 

Monoclinic 

LG26 28 26 x 

LG26(25%)Mg 84 53 34 

LG26(50%)Mg 26 72 42 

LG26(75%)Mg x 59 35 

LG26(100%)Mg x 31 30 
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In the case of LG26(100%)Mg the XRD pattern showed that the glass was not 

crystallised to Wagnerite at the temperature indicated by DSC (Figure 3.11(d) below) 

as the first crystallisation temperature. It is therefore concluded that the first 

crystallisation temperature is higher than the above temperature and corresponds to 

the second exothermic transition observed in Figure 3.11(d). The crystal size of all 

phases, such as Ca-FAP (Ca5(PO4)3F), Wagnerite (Mg2PO4F) and Mullite (Al6Si2O13), 

was calculated by the Scherrer equation and is shown in Table 3.3.  

 

3.2.3 Optimum Nucleation Temperature and 

Activation Energy Study on Mg Substituted glasses 

 

As described before in Chapter 2, the Marotta method was used in order to calculate 

the optimum nucleation temperatures for Mg substituted glasses. As it has been 

mentioned, the minimum point in the curve of the first crystallisation temperatures 

Tp'1 against the nucleation temperature Tn, corresponds to the optimum nucleation 

temperature. For example, Figure 3.9 shows the DSC traces for LG26(25%)Mg after 

1 hour hold at different nucleation temperatures e.g. 656
o
C, 676

o
C, 696

o
C and 716

o
C. 

The Tp'1 for the four different nucleation temperatures is 840
o
C, 832

o
C, 855

o
C and 

864
o
C, respectively. According to Figure 3.10 the optimum nucleation temperature 

(Tn) is 671
o
C, 658

o
C, 654

o
C for LG26(25%)Mg, LG26(50%)Mg and LG26(75%)Mg, 

respectively. 
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Figure 3.9: DSC traces of LG26(25%)Mg glass with 1 hour hold at different 

nucleation Temperatures (656˚C, 676˚C, 696˚C, 716˚C) and a heating rate of 

10
o
C/min. 
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Figure 3.10: Optimum Nucleation curves of Tp´1 collected for the LG26(25%)Mg, 

LG26(50%)Mg and LG26(75%)Mg containing glasses. 

 

 

All Mg substituted glasses exhibit well defined optimum nucleation temperatures as 

Figure 3.10 shows, except for LG26(100%)Mg substituted glass that does not exhibit 

a well defined nucleation minimum indicating possible phase separation. In particular 

the LG26(100%)Mg substituted glass crystallises spontaneously, this means that the 

crystallisation occurs very slowly and it was not possible to calculate the optimum 

nucleation temperature. When crystallisation occurs slowly then crystallisation is 

inhibited but the glass is crystallized. All the values of the optimum nucleation 

temperature (Tn) are indicated in the Table 3.4. It is observed that the optimum 

nucleation temperatures (Tn) decrease as Mg substitution increases i.e. the value 

decreases initially from 700
o
C in the case of LG26 to 671

o
C in the case of 

LG26(25%)Mg but then decreases again to 658
o
C in the case of LG26(50%)Mg and 

finally results in 654
o
C in the case of LG26(75%)Mg. 

 

The activation energy (Ea) of Ca-FAP/Wagnerite was determined by the Marotta and 

Kissinger methods, with or without 1 hour hold in optimum nucleation temperature, 

respectively. In particular, the activation energy (Ea) of Ca-FAP for LG26(25%)Mg, 
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LG26(50%)Mg and the Ea of Ca-FAP/Wagnerite for LG26(75%)Mg was determined 

following 1 hour hold in 671
o
C, 658

o
C, 654

o
C , respectively, using five different 

heating rates such as 2, 5, 10, 15 and 20
o
C/min as is indicated in Figure 3.11.  

 

 

 

(a)   
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(b) 

(c) 
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Figure 3.11: DSC traces of (a) LG26(25%)Mg, (b) LG26(50%)Mg, (c) 

LG26(75%)Mg and (d) LG26(100%)Mg glasses at five different heating rates after 1 

hour of optimum nucleation hold.  

 

  

It is obvious that in the case of LG26(100%)Mg the activation energy (Ea) of Ca-

FAP/Wagnerite was not calculated since the glass does not exhibit well defined 

optimum nucleation temperature. Furthermore, it was observed that the activation 

energy slightly increased with the exception of LG26(75%)Mg. In order to understand 

how magnesium substitution can affect the activation energy of Ca-FAP/Wagnerite 

phase, both the Marotta and Kissinger methods were used for calculations for all Mg 

substituted glasses (Table 3.4). 

 

 

(d) 



49 

 

Table 3.4: Optimum nucleation temperature and activation energies in Mg containing 

glasses for Ca-FAP/Wagnerite crystallisation determined by the Marotta and 

Kissinger method (Matusita) 

Glass 

Mg 

substitution 

content 

(at%) 

Optimum 

Tn (
o
C) 

Marotta, 

Ea 

(KJ/mol) 

n    

m 

Kissinger(Matusita), 

Ea  (KJ/mol) 

LG26 0 700 533 
3     

3 
527 

  No hold 603 
4     

3 
354 

LG26(25%)Mg 25 671 620 
3     

3 
663 

  No hold 627 
4     

3 
400 

LG26(50%)Mg 50 658 645 
3     

3 
690 

  No hold 635 
4     

3 
411 

LG26(75%)Mg 75 654 621 
3     

3 
655 

  No hold 636 
4    

3 
412 

LG26(100%)Mg 100 N N  N 
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                              CHAPTER 4 

DISCUSSION 

 

4.1 Effect of Cation Substitution on Glasses 

4.1.1 Density and Oxygen Density 

 

The measured density values are decreased linearly with increasing the molar content 

of Mg from 2.73 g/cm
3 

of LG26 glass to 2.65 g/cm
3 

of LG26(100%)Mg containing 

glass shown in Figure 3.1. The substitution of Mg for Ca resulted in a decrease of the 

density of glasses as Mg has a smaller atomic weight (AW=24.3) and ionic radius 

(0.065nm) compared to the atomic weight (AW=40) and ionic radius (0.114nm) of 

Ca. Since the atomic weight of Mg and Ca are significantly different, the linear 

decrease of density indicates that the atomic weight change has a more important 

effect on the density values than the ionic radius.  

 

 The oxygen density values on the other hand, increased as the Mg substitution 

increased, as shown in Figure 3.2. The minimum value is 1.113 g/cm
3
 in the case of 

LG26 and the maximum value is 1.168 g/cm
3 

in the case of LG26(100%)Mg. In the 

glass network, the oxygen density reflects the degree of packing of the atoms. There is 

a slight linear increase in the oxygen density from LG26 to LG26(100%)Mg 

containing glasses indicating a closer packed glass network. To summarise, it is clear 

that Mg substitution leads to a decrease in glass density and an increase in oxygen 

density.  
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4.1.2 Fourier Transform Infrared Spectroscopy 

The Figure 3.3 showed the FTIR spectra of Mg substituted alumino silicate glasses. 

The lack of sharp peaks in the FTIR spectra shown in Figure 3.3 indicates a disorder 

in the silicate network reflecting the wide distribution of Q
n
 units occurring in the 

glasses. J.Serra et al. [70] reported that the peak at around 800 cm
-1

 is associated with 

the bending Si-O(b) vibration whereas the asymmetric Si-O(s) stretching mode is 

located in the range of 100-1300 cm
-1

. It was also reported that the symmetric and 

asymmetric stretching modes of Si-O-Si bonds in the Q
n 

units appear in the 800-1300 

cm
-1 

region with the absorption bands of the Q
n 

units with n= 4, 3, 2, 1 and 0 centred 

around 1200, 1100, 950, 900 and 850 cm
-1

, respectively [65]. As reported from the 

literature [57] in a simple silica glass all the silicon atoms are bonded to four oxygen 

atoms and all oxygen atoms are bridging oxygen atoms (BO), each oxygen atom 

bridges two silicon atoms. In addition, in FTIR spectra, the main absorption band is in 

the range of 800-1400 cm
-1

 and indicates a distribution of Si-O-Si stretching (Q
4
), Si-

O-Si stretching (Q
3
) and Si-O-[NBO] per SiO4 tetrahedron (Q

3
) [64].  

 

In general, Mg acts as network modifier and can induce a visible shift of certain 

bands, indicating a change in the formation of non-bridging oxygens in the glass 

network. The replacement of Mg for Ca results in a shift towards larger wavenumbers 

for the bands as well as in decreased relative intensity connected with Si-O-NBO 

bonds.  By increasing the Mg content, it is suggested that Mg substitution for Ca leads 

to the formation of more bridging-oxygens within the glass network, as well as bigger 

inter-tetrahedral angle values [60]. As observed from the Figure 3.3 the spectra of 

LG26(100%)Mg substituted glass has a different tendency from all the other spectra. 

The bands of this spectra are shifted to lower wavenumbers. It is most likely that this 
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happened due to the more tight glass network formed with 100%Mg substitution. 

Generally, the formation of more Si–O–NBOs and the breakage of Si–O–Si bonds 

play an important role in the biological response at the interface of the bioactive 

materials when exposed to body fluids, therefore the study of the bonding 

configuration is a key step for the development of new glasses and their biomedical 

application [60-64]. 

 

4.1.3 Glass Transition and Crystallization 

Temperatures of Mg Substituted Glasses  

 

As indicated in Table 3.1 the glass transition temperature (Tg) decreases slightly with 

Mg substitution in the beginning and then increases due to the “mixed cation effect” 

as has been reported elsewhere [68]. Generally, it is observed that the glass transition 

temperature (Tg) does not change significantly with Mg substitution. It has been 

reported, that Mg substitution resulted in an increase in the number of bridging 

oxygens and therefore the network connectivity was expected to increase [11, 21]. 

However, it is not clear whether an increase in the number of bridging oxygens is 

connected with an increase in the glass transition temperature. One would expect that 

an increase in the number of non-bridging oxygens would result in a stiffer glass 

network and therefore in an increase in the glass transition temperature but the present 

and previous experimental work [44] has not justified the above assumption. 

Furthermore, it was observed that both Tp1 and Tp2 increased with Mg substitution. 

In general, there are not significant changes in Tp1 and Tp2 among Mg substituted 

glasses but there are significant changes between LG26 and Mg substituted glasses. 

The values increase or decrease slightly by changing the substitution and often this 
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behaviour has been characterised as mixed cation effect.  It has been reported [65] 

that the mixed cation effect can represent the nonlinear variation of physical 

properties (e.g. high minimum conductivity) that was observed in a family of glasses 

when the relative proportion of two modifiers was varied while the total modifier 

concentration was kept unchanged. This was most likely related to the cation 

movement and structural properties. Rao et al. [66] reported, that the glass transition 

temperature of xK2O–(40−x)Na2O–50B2O3–10As2O3 system exhibits a negative 

deviation from linearity. For glasses containing 40 mole% of alkali content, the Tg 

followed the order Na>K that is Tg,Na > Tg,K. In addition, a similar observation was 

made in silicate glasses and mixed crystals [67]. Other published work [68] showed 

that the glass transition temperature of glasses containing one network modifier 

increased in the following order: Na2O<BaO<MgO. This is also consistent with an 

increase in the cation-oxygen bond strength in the above order. In our case however a 

similar behaviour was not observed. According to the literature, one would expect that 

the glass transition temperature would increase with Mg substitution and considering 

that the cation-oxygen bond is stronger than Ca-O, the Mg substituted glasses should 

show an increase in the glass transition temperature. Previous work with similar Ba 

substitutions did not show any increase in the glass transition temperature not even 

compared to the present data [38]. In the contrary, the glass transition temperature is 

very similar for both Ba and Mg substitutions. Here it is obvious that the mixed cation 

effect is not that strong although there is some evidence of the mixed cation effect in 

the first crystallisation temperature (Tp1). Different models [65] have been used to 

interpret the mixed cation effect, assuming either a large structural modification 

induced by mixing mobile species of different sizes or a specific interaction between 

dissimilar mobile species. Pevzner et al. [68] studied the RO(R2O) · 2B2O3 glasses 
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(where R2O = Na2O, RO = BaO, MgO) upon replacement of Na2O by BaO or MgO, 

and BaO by MgO and supported that the mixed cation effect was associated with the 

difference in energy of cation-oxygen bonds and a different effect of cations on the 

coordination state of boron.  

4.2 Effect of Cation Substitution on Glass-Ceramics 

4.2.1 Density of Glass Ceramics 

 

The measured density values for glass ceramics are decreased with increasing the 

molar content of Mg from 2.88 g/cm
3 

of LG26 containing glass ceramic to 2.84 g/cm
3 

of LG26(100%)Mg containing glass ceramic, shown in Figure 3.6. This happens 

because the density depends on the kind of phases as well as the amount of each phase 

that is present in the glass ceramic. For instance, it has been calculated from the XRD 

data base (icdd ) in x’pert high score that the density of crystal phases such as Ca-FAP 

(Ca5(PO4)3F) with reference code (00-015-0876), Wagnerite (Mg2PO4F) with 

reference code (00-042-1330) and Mullite (Al6Si2O13) with reference code (00-015-

0776) are 3.15 g/cm
3
, 3.13 g/cm

3
 and 3.00 g/cm

3
, respectively. Consequently, it can 

be explained why the LG26(100%)Mg substituted glass ceramic has the lowest 

density value while the LG26(25%)Mg substituted glass ceramic has the highest 

value. According to Table 3.2, it was observed that the LG26 glass ceramic consist of 

3 crystal phases such as Ca-FAP, Mullite and AlPO4 whereas the LG26(100%)Mg 

substituted glass ceramic consists of Wagnerite, Mullite and AlPO4. Gradually the 

density decreases as the Mg substitution increases since Wagnerite replaces Ca-FAP 

as well as the density of Wagnerite is lower than the density of Ca-FAP. 
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4.2.2 XRD Study of Mg substituted Glass-Ceramics 

As Figure 3.7 showed, in the first series of measurements that Mg substituted glasses 

heat treated up to 1100
o
C with one hour hold in optimum nucleation temperature, the 

LG26 containing glass is mainly crystallised to Ca-FAP and Mullite (Al6Si2O13) as 

well as a small amount of AlPO4. Consequently, the first crystallised phase is the Ca-

FAP and the second crystallised phase is the Mullite (Al6Si2O13). In particular, the 

introduction of Mg for Ca results in the formation of Wagnerite (Mg2PO4F), Ca-FAP 

and Mullite (Al6Si2O13) in the case of LG26(25%)Mg and LG26(50%)Mg containing 

glass ceramics whereas the formation of Wagnerite (Mg2PO4F) and Mullite 

(Al6Si2O13) is appeared in the case of LG26(75%)Mg and LG26(100%)Mg containing 

glass ceramics. As was mentioned the formation of cubic AlPO4 phase is detected in 

all Mg containing glass ceramics. AlPO4 has also been confirmed by Neutron 

Diffraction [39] by previous work in the case of LG26. As far as the formation of 

Magnesium Fluoride Phosphate (MgPO4F) is concerned this phase was appeared only 

in the case of the LG26(75%)Mg containing glass ceramics. 

 

By using Scherrer equation [69, 70], in the first series of measurements that involved 

heat treatment of Mg substituted glasses up to 1100
o
C with one hour hold in optimum 

nucleation temperature (Table 3.2), the crystal size of hexagonal Ca-FAP was 

calculated to be in the range of 84 to 26 nm, and the crystal size of orthorhombic 

Mullite was calculated in the range of 31 to 72 nm while the crystal size of 

monoclinic Wagnerite was in the range of 30 to 42 nm.  

 

Furthermore, all Mg substituted glasses were heat treated up to corresponding Tp1 

and studied by XRD in order to identify the crystal phases formed at Tp1. As Figure 
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3.8 shows the Ca-FAP (Ca5(PO4)3F) is produced in LG26(25%)Mg containing glass 

ceramic whereas the Wagnerite (Mg2PO4F) is formed in LG26(75%) Mg containing 

glass ceramics. In the case of LG26(100%)Mg the XRD pattern showed that the glass 

was not crystallised to Wagnerite at the temperature indicated by DSC (Figure 

3.11(d)) as the first crystallisation temperature. It is therefore concluded that the first 

crystallisation temperature is higher than the above temperature and corresponds to 

the second exothermic transition observed in Figure 3.11(d). In order for the 

LG26(100%)Mg to crystallise the heat treatment should have been conducted to 

higher temperature (983
o
C from Figure 3.5(d)) and not at 820

o
C taken from the DSC 

curve used for the calculation of the activation energy. 

 

4.2.3 Optimum Nucleation Temperature and 

Activation Energy Study on Mg Substituted glasses 

 

The basic method in order to calculate the optimum nucleation temperature is the 

method outlined by Marotta et al. as mentioned before. The optimum nucleation 

curves of Tp´1 collected for the LG26(25%)Mg, LG26(50%)Mg and LG26(75%)Mg 

glasses are shown in Figure 3.10. The optimum nucleation temperatures (Tn) 

decreased as Mg substitution increased. Consequently, a well defined optimum 

nucleation temperature was calculated for all samples according to the first 

crystallisation peak temperature except for the LG26(100%)Mg containing glass 

which does not exhibit an optimum nucleation temperature. It is likely that this glass 

was phase separated and crystallisation occurred spontaneously without going through 

the nucleation process. In other words the crystallisation occurs very slowly and it 

was not possible to calculate the optimum nucleation temperature. When 
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crystallisation occurs slowly then crystallisation is inhibited but the glass is 

crystallized. In order to establish whether the above glass was phase separated an X-

ray diffractogram of the glass was taken which did not show any sign of 

crystallisation. Knowing that phase separation can happen at a very small scale it is 

possible that the XRD shows an amorphous glass pattern.  A similar behaviour was 

observed in previous work [38] with LG26(100%)Ba containing glass which did not 

appear  to have a well defined optimum nucleation temperature, indicating possibly 

the efficiency of the corresponding phase (BaAl2Si2O8) to self-nucleate and grow. 

Concerning the fact that in all cases the optimum nucleation temperature is only 

slightly above the glass transition temperature, is indicative of the nucleation 

mechanism involving amorphous phase separation [39]. It is very important to notice 

that in the case of LG26(25%)Mg and LG26(50%)Mg the first crystallisation 

temperature corresponds to the crystallisation of both Ca-FAP and Wagnerite whereas 

in the case of LG26(75%)Mg and LG26(100%)Mg the first crystallisation 

temperature corresponds to the crystallisation of Wagnerite only. Therefore in the two 

first glass compositions the activation energy corresponds to both Ca-FAP and 

Wagnerite crystal phases with Ca-FAP being the dominant crystalline phase.      

 

As described above in Chapter 2, the calculations of the activation energies of Ca-

FAP/Wagnerite crystallisation were conducted using both the Marotta method and the 

modified Kissinger method as proposed by Matusita et al. [40] that give information 

about the related nucleation and growth process that corresponds to the formation of 

Ca-FAP/Wagnerite. The values of n=3 and m=3 assume bulk nucleation from a 

constant number of nuclei for samples with a nucleation hold, while the values n=4 

and m=3 assume bulk nucleation from an increasing number of nuclei without a 
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nucleation hold. The activation energy for all Mg substituted glasses increased 

compared to the activation energy for Ca-FAP crystallisation of the base LG26 glass 

whereas the activation energy of Ca-FAP/Wagnerite did not change significantly with 

Mg substitution if compared to all Mg substituted glasses (some slight increase or 

decrease in value that do not follow a specific pattern). The increase of the activation 

energy of Ca-FAP/Wagnerite with Mg substitution compared to the activation energy 

of Ca-FAP/Wagnerite of LG26 is related with the gradual replacement of Ca-FAP by 

Wagnerite as Mg substitution progressively increased. In a previous study it was 

reported that the activation energy corresponding to the crystallisation Ca-FAP in Ba 

and Sr glasses reduced with increasing substitution of Ba or Sr for Ca. Additionally, 

the Ba substituted glasses exhibited lower activation energies than these of Sr 

containing glasses. This may be attributed to the formation of a more disrupted glass 

network in the case of Ba containing glasses as well as more non-bridging oxygens 

with the larger cation substitution. It is therefore logical to conclude that in the case of 

Mg which is a smaller cation compared to Ba, Sr and Ca the change in the activation 

energy should be different.  It is clear from Table 3.4 that between the Kissinger and 

Marotta methods, the activation energies are in good agreement for all the glasses 

with nucleation hold confirming the assumption of n=m=3 and consequently bulk 

nucleation and crystallisation.  
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CHAPTER 5 

CONCLUSIONS 

 

 

 

The effect of Mg substitution on the structure of ionomer glasses and glass ceramics 

was studied by using a combination of analytical methods such as FTIR, DSC and 

XRD. The optimum nucleation temperature and the activation energy of Ca-

FAP/Wagnerite crystallisation was also measured using both the Kissinger and 

Marotta methods. The Helium Pycnometer was used to measure the density of glasses 

and glass ceramics. 

 

The density of glasses decreased with increasing the molar content of Mg as expected 

considering that Mg has a smaller atomic weight and ionic radius than the atomic 

weight and ionic radius of Ca. Furthermore, the oxygen density increased slightly 

with Mg substitution most likely due to better packing of atoms in the glass network 

with Mg substitution for Ca. The density of glass ceramics on the other hand 

decreased with increasing the molar content of Mg as expected because of the 

formation of Wagnerite (Wagnerite exhibits lower density than Fluorapatite) that 

progressively replaces Fluorapatite. 

 

The FTIR spectra showed that there are four absorption regions of Mg containing 

aluminosilicate glasses, associated with the following: 

  Si-O-Si (Q
4
) and Si-O-Si (Q

3
) stretching vibrations as well as Si-O-[NBO], 

  Al-O vibrations with Al in four-fold coordination state,  

  P-O bending vibrations and Si-O-Al linkages and Si-O-Si bending vibrations. 
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The spectra did not show significant changes with Mg substitution other than some 

shift towards higher wavenumbers with Mg substitution.  

 

DSC analysis showed that the glass transition temperature Tg did not undergo 

significant changes with Mg substitution but decreased slightly up to 50% Mg 

substitution and then increased slightly with the progressive substitution of Mg for 

Ca. This can be explained considering the mixed cation effect. Also, not significant 

changes were observed for Tp1 and Tp2 comparing all Mg substituted glasses but a 

significant change was observed between the Tp1 and Tp2 values of LG26 and Mg 

substituted glasses. Among Mg substituted glasses, the Tp1 and Tp2 values increased 

or decreased slightly with substitution and often this behaviour has been characterised 

as the mixed cation effect. The optimum nucleation temperature (Tn) on the other 

hand decreased as Mg substitution increased. Consequently, a well defined Tn was 

calculated for all the samples according to the first crystallisation peak temperature 

except for LG26 100%Mg containing glass which did not exhibit a Tn. It is likely that 

this glass was phase separated and the crystallisation occured spontaneously without 

going through the nucleation phase. 

 

XRD analysis showed that the substitution of Mg for Ca resulted in the formation of 

Wagnerite (Mg2PO4F), Ca-FAP and Mullite (Al6Si2O13) in the case of LG26(25%)Mg 

and LG26(50%)Mg containing glass ceramics whereas the formation of Wagnerite 

(Mg2PO4F) and Mullite (Al6Si2O13)  was observed in the case of LG26(75%)Mg and 

LG26(100%)Mg glass ceramics. Furthermore, the crystal size of hexagonal Ca-FAP 

was calculated to be in the range of 84 to 26 nm, the crystal size of orthorhombic 
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Mullite was calculated in the range of 31 to 72 nm while the crystal size of 

monoclinic Wagnerite was in the range of 30 to 42 nm. The Mg substituted glasses 

which were heat treated up to the first crystallisation temperature Tp1 showed that 

only Ca-FAP (Ca5(PO4)3F) was formed in LG26(25%)Mg glass ceramic whereas 

Wagnerite (Mg2PO4F) was the only phase formed in LG26(75%)Mg glass ceramic.  

 

The activation energy of Ca-FAP/Wagnerite increased for all glass compositions with 

the exception of LG26(75%)Mg where Wagnerite was the only phase formed at Tp1 

and therefore the activation energy was expected to decrease. The activation energies 

values were in good agreement between the Kissinger and Marotta methods for all the 

glasses with nucleation hold indicating bulk nucleation and crystallisation as the main 

crystallisation mechanism. 
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CHAPTER 6 

FUTURE WORK 

 

 

 

The following future work can be suggested: 

 

1. The first crystallization temperature corresponds to both Fluorapatite and 

Wagnerite that crystallize both at the same temperature. It would be interesting to 

identify what phase is forming first in order to be able to calculate the activation 

energy of each one crystal phase separately. For this further DSC analysis is required. 

2. It would be interesting to measure the degree of crystallisation for all Mg 

substituted glass ceramics by XRD analysis. Glass-ceramics are polycrystalline 

materials prepared by the controlled crystallisation of highly viscous glass-forming 

melts. Their properties depend on the kind and the percentage of crystal phase formed 

and on the composition of the residual glass. Therefore, the determination of the 

degree of crystallisation is very important. 

3. The study of different substitutions offered a very good insight of the role of 

cations in the glass network. It is interesting that Ba, Sr and Ca are clearly network 

modifiers whereas Mg and Zn have been also considered as intermediate oxides 

(based on other published work). This study offered some useful information on the 

effect of Mg on the glass structure but there is no evidence about the role of Mg in the 

glass network. The possibility that under certain conditions Mg can act as a network 

former is very attractive as this will lead to the formation of Al-free glasses that are 

very desirable for biomedical applications. 

4. Biocompatibility tests should be conducted on all Mg crystallised glasses in order 

to assess their possibility as bone replacements for medical and dental applications. 
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