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Abstract
Polycrystalline tin-doped indium oxide (ITO) thin films were prepared by Pulsed Laser

Deposition (PLD) with an ITO (In2O3-10 wt.% SnO2) target and deposited on borosilicate

glass substrates. By changing independently the thickness, the deposition temperature

and the oxygen pressure, a variety of microstructures were deposited.

The impact on thin film physical properties of different gas dynamics is stressed and

explained. Films deposited at room temperature (RT) show poorer opto-electrical

properties. The same is true for films deposited at low or high oxygen pressure. It

is shown that films grown with 1 to 10 mT Oxygen pressure at 200◦C show the best

compromise in terms of transmittance and resistivity. The influence of the thickness,

the substrate temperature and the oxygen pressure on the microstructure and ITO film

properties is discussed. A practical application (a Dye Sensitized Solar Cell) is proposed.
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Chapter 1

Introduction

1.1 Semiconductors and Transparent Conducting Oxides

A transparent conducting oxide is a semiconducting material combining high conductivity

and optical transparency. Within the transparent conducting oxides category, Indium

Tin Oxide (ITO) is still the most widely used. Today, it has reached the industrial level

mainly via the use of the magnetron sputtering deposition process. Nonetheless, Pulsed

Laser Deposition (PLD) presents some unique advantages over magnetron sputtering,

which make this technique particularly suitable in the processing of some opto-electronic

devices.

The physical characteristics of semiconductors are determined both by the properties

of the host crystal and by the presence of impurities and crystalline defects. Dopant

impurities, which typically substitute for a host crystal atom, introduce electronic states

in the bandgap close to the valence and conduction band edges and thus determine

the type and conductivity of the material. These so-called shallow level defects enable

a wide range of semiconductor properties. However, crystal lattice defects and other

impurities, which introduce electronic states deeper in the bandgap and are referred

to as deep level defects, also modify the properties of the semiconductor and thus may

make a semiconductor unsuitable for its intended applications. It is then necessary to

control carefully the deposition process to adjust the required properties.

1.2 Challenges of this project

The electrical and optical properties of ITO are interrelated and can be tailored to suit

a whole range of applications. Obtaining metallic high conductivity means sacrificing

optical properties. Moreover, ITO films are extremely sensitive to crystallinity and

microstructure. Never-ending demands from technological applications for better quality

electronic materials exhibiting higher performance limits involve a deep understanding

of the structure (phases, stoichiometry, crystallinity) and morphology (grain size, texture,



1.3. Aims of the project 2

roughness) since they determine the mechanical, electrical and optical properties of thin

polycrystalline ITO films. This microstructure is itself quite sensitive to the deposition

conditions. Controlling the latter is essential to produce films for a given application.

Nonetheless, few studies exist of the crystallisation and growth process of ITO deposited

by PLD and above all of the link between microstructure and the observed physical

properties. And yet, understanding this link is indispensable to growing high quality thin

films.

Several challenges have to be addressed:

1. Careful control of the deposition conditions.

2. Understanding very different microstructures.

3. Making the link between those microstructures and the physical properties.

1.3 Aims of the project

The two main goals of this study are to understand and control:

1. the dependence of microstructure on PLD processing parameters

2. the dependence of the physical properties on the microstructure in order to produce

high quality ITO thin films

1.4 Organisation of the thesis

Chapter 2 gives the background theory of ITO and its associated electro-optical properties.

The pulsed laser deposition technique is also detailed and explained. A literature review

of ITO deposition by PLD and other methods is given and they are compared. The

physical properties of pulsed laser deposited ITO thin films are compared with those

from other deposition methods. The last section of this chapter gives background theory

on thin film deposition (nucleation and growth) and the resulting microstructures.

Chapter 3 focuses on chemical microanalysis. It provides background theory for EDX and

EELS.

Chapter 4 contains experimental methods. Machines, methods and procedures will be

detailed: for example, ITO thin film deposition, electro-optical measurements and TEM

sample preparation.
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Chapter 5 contains experimental results for the ITO films. The effects of the thickness (t),

the substrate temperature (Ts) and the oxygen pressure (P(O2)) on the conductivity and

optical transparency of the films are described and discussed. Microstructural arguments

are used to explain changes in physical properties.

Chapter 6 concludes the thesis. The main findings of this project are summarised. The

future work which needs to be done is described.

Appendix A presents macro and nanoscale dielectric constant measurements performed

on ITO thin films via ellipsometry and EELS respectively, while appendix B describes a

practical application: a dye-sensitized solar cell. Its electrodes are made from the best

ITO thin film obtained during this study.



Chapter 2

Background theory and literature review: ITO thin film

deposition, physical properties and microstructure

2.1 General background

2.1.1 Indium Oxide and Tin-doped Indium Oxide: an overview

Indium Oxide and Indium Tin Oxide (ITO) are metal oxides. They are electrically con-

ductive, even though band theory predicts them to have wide band gaps. This behaviour

defines the materials class of “Transparent Conducting Oxides” which includes tin dioxide

(SnO2), especially doped with antimony or fluorine, doped/undoped indium oxide, in

particular doped with tin, cadmium oxide, cadmium stannate and doped/undoped zinc

oxide. They have large band gaps in the ultraviolet and are transparent over the visible

range. Yet, the Fermi level is in (or very close to) the conduction band due to free-carrier

producing centres.

Indium Oxide is a direct wide band gap (> 3.5 eV) n-type semiconductor which makes

the transmission window between wavelengths 300 nm and 1500 nm, depending on

the processing conditions. At short wavelengths (high energies - UV range) electron

interband transitions from the valence to unoccupied states in the conduction band limit

the transmission up to the band gap. For long wavelengths (low energies - IR range),

light is reflected because of the quasi-free electron plasma. Thus, the wavelength cutoff

in the IR depends on the charge carrier density. An indirect band of of 2.62 eV has been

calculated by Weiher et al. [9] but is not widely reported in the literature.

This carrier density is related to the oxygen stoichiometry, where, in the ideal case,

each doubly charged oxygen vacancy contributes two free electrons and to the doping

element when the latter is present. These defects create an impurity band that overlaps

the conduction band, thereby creating a “degenerate” semiconductor (i.e. its behaviour
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approximates that (semi-)metals. Increasing the carrier density also leads to a widening

of the band gap known as the Burstein-Moss effect. This effect competes with many body

effects (electron-electron interactions) which tend to decrease the band gap. However, it

is a double edged sword: doubly charged O vacancies and singly charged Sn on an In

site reduce the mobility of charge carriers via ionised impurity scattering. In addition,

oxygen vacancies play an important role in all processes related to solid-state diffusion,

including recrystallization, grain growth, sintering and phase transformations. They are

electrically charged and can be associated with dopant atoms to form neutral or charged

complexes.

To summarise, these oxide films are electrically conductive and act optically as a selective

transmitting layer, being transparent to visible light and reflective of thermal infrared

radiation.

2.1.2 Indium Oxide and Tin-doped Indium Oxide (ITO) structure

The indium oxide (In2O3) and the ITO structure are closely related. In2O3 is an ionically

bound semiconducting oxide. During its synthesis, point defects are formed relatively eas-

ily, compared with covalently bonded materials. These defects consist mainly of oxygen

vacancies and interstitial indium atoms [10]. The same authors found that these defects

are pressure dependent (P(Ox
2)) where x=-0.166 and -0.1875 for oxygen vacancies and

indium interstitals respectively. It is worth mentioning that these two values are derived

from a model assuming a parabolic conduction band and non-degeneracy of the carrier

concentration. These vacancies and interstitials are electrically charged, making ionized

impurity scattering unavoidable in Indium Oxide and ITO. Indium oxide crystallizes in

a cubic bixbyite-type structure with a space group Ia3 [11] and a lattice parameter of

10.118 nm. The unit cell contains 80 atoms. 32 sites are occupied by cations at two

types of non-equivalent six-fold coordinated site. One quarter of the cations is located on

trigonally compressed octahedral sites, referred to as b sites, while the remaining three

quarters are located on highly distorted octahedral d sites. The two different six-fold

coordinated sites are called ”b” and ”d”, according to international notation [12]. Indium

atoms, on both b and d sites, reside at the centre of a distorted cube with the six corners

occupied by oxygen atoms, while the remaining two corners are empty. In the case of

the b sites, oxygen vacancies are located along the body diagonal; for the d site they are

located along a face diagonal. A schematic representation of the structure including “b”

and “d” sites is given in Fig. 2.1.
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Figure 2.1 Indium Oxide structure - (a) Eight oxygen atoms are situated within com-
pressed octahedra (b site) and have six equidistant oxygen atom neighbours at 2.18 Å.
(b) Eight Indium atoms are situated at the corners of a highly distorted octahedron (d
site). For these Indium atoms, there are three possible cation-oxygen distances: 2.13,
2.19 and 2.23 Å [11].

Indium Oxide contains intrinsic oxygen vacancies: via in-situ electrical property mea-

surements, De Wit [10] concluded that In2O3 is an anion-deficient n-type conductor

where the oxygen vacancy population (about 1%) limits the electron concentration. This

deficiency persists even under equilibrium growth conditions, at high-temperature. With

tin doping a charge imbalance is created due to the different valences of indium and

tin. The charge imbalance can be compensated by incorporation of interstitial oxygen

atoms or/and oxygen vacancies. Tin cations and interstitial oxygen anions can form

cluster defects (charged or not). Frank et al. [13] proposed the existence of such defects

rather than isolated point defects in order to explain the conductivity of ITO. These

clusters of defects can be overall positive, negative or neutral depending on their stoi-

chiometry. In their work, a defect model is presented in which interstitial and associated

Sn-oxide defect complexes such as [Sn.2O
′′
i ][Sn2O4]x, depending on the Sn content, are

presented. This model does not involve other defects than Sn and interstitial oxygen

even if interstitial indium atoms have been discussed in the literature [14][15].



2.2. Band structure and related electro-optical properties 7

2.2 Band structure and related electro-optical proper-

ties

Indium oxide and ITO are most of the time used as thin films. Therefore, in the following

sections, the properties of indium oxide and ITO thin films will be detailed.

2.2.1 Indium Oxide and ITO band structures

It is generally accepted, despite the observed high sensitivity of its properties to processing

conditions [16], that the electronic band structure is one of the most important factors

for understanding the unique interplay between optical and electrical properties in

TCOs. Most of the interesting TCO properties are predetermined and can be described

satisfactorily on the microscopic level only on the basis of a suficiently detailed and

reliable model of the electronic band structure. The plot of electron wave vector against

electron energy is called a band structure diagram. The band structure is directly related

to the crystal and defect structure of the material. The band structure of indium oxide

and above all ITO is extremely complicated to model because of the complexity of

the lattice structure and electronic interactions in these compounds. Therefore, the

properties are usually discussed in terms of an assumed band structure consisting of an

isotropic parabolic condution band [17].

Fan and Goodenough [18] were the first to publish a schematic energy band model for

pure indium oxide and ITO (see Fig. 2.2) on the basis of their Electron Spectroscopy

for Chemical Analysis (ESCA)/XPS measurements. Even if this band model is largely

simplified, it is still the only one allowing a qualitative explanation of the observed

concurrent high optical transparency and electrical conductivity in ITO . The only

attempt for a similar material structure was based on Eu2O3 [19]. This band model

exhibits a wide direct band gap (3.5 eV) accounting for the high transmission in the

visible range. The conduction band was proposed to be mainly from indium 5s electrons

and the valence band from oxygen 2p electrons. The Fermi energy Ef is very close from

the conduction band (a few tens of eV).
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Figure 2.2 Schematic energy-band model for tin doped indium oxide according to [18].
a) Low doping level b) High doping level.

Regarding ITO, the situation is sightly different: a low doping level results in a low

density of donor atoms. Under these conditions, donor states are formed just below the

conduction band, and the Fermi energy lies between the donor level and the conduction

band minimum. However, for very high doping, the donor density increases. The donor

states merge with the conduction band at a certain “critical” density nc. This is the

Mott critical density and is defined as: nc1/3

a0∗
= 0.25 where the effective Bohr radius

a0 is about 1.3 nm for In2O3. Therefore,nc(ITO)=3.43×10−19cm−3. Above the critical

Mott density [20], the impurities and the associated electrons occupy the bottom of the

conduction band in the form of an electron gas. The material is said to be “degenerate”.

Electrons present at the lowest states ofthe conduction band prevent or “block” these

states resulting in a band gap widening known as the Burstein-Moss shift [21].

The ITO band structure and its relation with the electro-optical properties can be sum-

marized as follows:

1. ITO exhibits a wide direct optical band gap (at least 3.5 eV) prohibiting interband

transitions in the visible range and hence making it transparent within this range.

2. Intrinsic dopants (oxygen deficiency) or extrinsic dopants (Sn) donate electrons

into the conduction band (n doping - creation of donor level states below the

conduction band).

3. A large internal gap in the conduction band prohibits inter-conduction band ab-

sorption of photons in the visible range [22].
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2.2.2 Electrical and optical properties of Indium Oxide and ITO

2.2.2.1 Electrical properties

2.2.2.1.1 General considerations Transport in polycrystalline semiconductors is

much more complex than that in single crystals [23]. In2O3 or ITO films consist of

amorphous or crystalline phases or a mix of both. Polycrystalline films, which generally

display better electro-optical properties than amorphous ones, result when the films

are deposited on heated substrates or after annealing of the amorphous films. In ITO

films, the presence of Sn lowers the resistivity if thermally “activated”, i.e., diffusion of

Sn from grain boundaries and/or interstitials to effectively substitute In on an In site.

This process adds extra free electrons to the conduction band [24] [25] [26]. However,

for RT deposited ITO films, Sn is not efficiently “activated” resulting in generally higher

resistivity at lower substrate temperatures compared to In2O3 thin films as it can act as

an additional scattering centre.

Electrical conductivity (σ) depends on the concentration (N) and mobility (µ) of free

carriers as follows:

σ = N × µ× e (2.1)

where e is the electron charge. In order to obtain films with high conductivity, high

carrier concentration and mobility should be simultaneously realised. Indium oxide

behaves as an insulator in its stoichiometric form, but if prepared in its oxygen-decient

form, it can reach high n-type doping levels (∼1019cm−3) as a result of intrinsic defects

(O vacancies). On the contrary, under reducing conditions, oxygen is lost. It is convenient

to use the Kröger-Vink notation (see section ) when describing In2O3/ITO. In2O3 can be

written as In2O3−x(V
..
O )xe

′
2x with x∼0.01. The creation of oxygen vacancies contributes

two free electrons to the matrix: Ox
o → 1

2
O2(g) + V ..

o + 2e
′ . As a consequence, a variety of

electrical properties can be obtained: metallic, semiconducting, or insulating behaviour

depending on the stoichiometry, without any further impurity doping [27].

Efforts were then made to lower the resistivity by doping and particularly by tin doping.

Most of these efforts directed at improving the conductivity of the material have been

focused on increasing the effective number of free carriers N (electrons) via tin doping.

TCOs have to be doped to a carrier concentration of up to 1021cm−3 in order to achieve

low resistivities (ρ < 5 × 10−4Ω cm) [24]. This means that these semiconductors
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are degenerately-doped, leading to a Fermi level position within the conduction band.

Although this method had some success, it is also self-limiting. As the dopant atoms

occupy random In sites in the host lattice, the process of doping certainly impairs the

mobility while increasing nN. Hence, obtaining the lowest possible resistivity is a trade-

off between carrier concentration and electron mobility. When adding small amounts

of Sn to In2O3, and if the right conditions are met, the Sn atoms enter substitutionally

into the cation sublattice. Since Sn has one valence electron more than indium, a Sn

atom substituting for an In atom will be expected to donate one free extra electron to

ITO. Incorporation of Sn2+ has not been proved by experiments [28] but it is believed

to operate [29] [30]. For high Sn content (>12 at.%), complexes and precipitates

may form, distorting the lattice and/or adding scattering centres. Carrier generation

in ITO is somewhat less efficient than that observed in group IV semiconductors. In

TCOs, the chemical dopant concentration is generally much higher than in other typical

semiconductors (Si, GaAs etc.), easily reaching 10 wt.% owing to the low doping

efficiency of Sn: 10% and 20% only for ITO thin films with 1.9 and 6.7 wt.% SnO2

respectively [31]. Therefore, the concentration of impurities in the host indium oxide

crystal tends to be higher than in other typical semiconductors.

2.2.2.1.2 Scattering mechanisms In order to fully explain the electrical properties

of indium oxide and ITO, it is necessary to consider the different mechanisms at play for

scattering of electrons. There are several of them:

1. Lattice scattering

2. Ionised impurity scattering

3. Dislocation scattering

4. Grain boundary scattering

5. Neutral impurity scattering

The total mobility can therefore be written as:

1

µtot
=

∑
i

1

µi
(2.2)

The one mechanism that will certainly operate is scattering of the electrons by the

ionised impurities which must be present in order to preserve charge neutrality in indium

oxide and ITO [32]. This scattering is caused by ionised dopant atoms/clusters and

dominates for free carrier concentrations above about 1020cm−3 owing to the inherently

high oxygen vacancy density when depositing in low oxygen environment. The scattering

of conduction electrons by ionised impurities has been extensively treated in the Born
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scattering approximation by Brooks and Dingle [6]. This model was refined later by

Moore [33] and Pisarkiewicz et al. [34]. For high charge carrier densities (degenerate

semiconductors),

µI =
3(ε0εr)

2h3N

e3m∗2F (ζd)Z2Ni

(2.3)

with

ζd =
(3π2)1/3ε0εrh

2N1/3

m∗e2
(2.4)

The screening function F(ζd) is given by:

F (ζd) = ln(1 + ζd)−
ζd

1 + ζd
(2.5)

The symbols ε0, h and e are the dielectric constant in vacuum, Planck’s constant and

the charge of an electron. εr and m∗ are the low-frequency relative permittivity and

the effective mass of the conduction electrons. N is the carrier density, Z and Ni are

the charge and density of the charged scattering centres, respectively. It is also worth

mentioning that the theoretical model given above is based on the assumption of a

statistically homogeneous distribution of scattering centres (vacancies, dopants etc.) and

conduction band parabolicity.

Neutral impurity scattering operates as well. Its origins have been presumed to be

two different kinds of crystallographic faults: point defect aggregates which were

observed by Transmission Electron Microscopy (TEM) as locally strained small areas

and supposed to be a low-grade oxide of In2O3 (In2O3−x) [35] or associated Sn-oxide

defect complexes such as ((Sn.2O
′′
i )(Sn2O4)x) which do not contribute to the increase

in electron concentration [13]. This scattering gives rise to a mobility µN expressed

as [36]:

µN =
m∗e3

20ε0εrh̄
3Nn

(2.6)

where Nn is the concentration of neutral impurities. The symbols ε0, h̄ and e are the

dielectric constant in vacuum, Planck’s constant and the charge of an electron. εr and

m∗ are the low-frequency relative permittivity and the effective mass of the conduction

electrons.
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Scattering by grain boundaries plays a subordinate role if the mean-free path length

(L) of electrons in indium oxide and ITO is much smaller than the crystallite size [37]

and/or the carrier concentration is high (∼1021cm−3). L can be calculated from a highly

degenerate electron gas model [4]. L is expressed as:

L = (3π2)1/3(h/e2)ρ−1N−2/3 (2.7)

where h is Planck’s constant, e is the electron charge, ρ is the resistivity and N is the carrier

concentration. Shigesato et al. [38] found that this mean free path (L) was relatively

unchanged with Sn concentration in the amorphous material (L=7 nm), increased in

the undoped crystallized sample (L=11 nm), and decreased rapidly with increasing Sn

concentration. The mobility of the free carriers can also be significantly affected by

surface scattering [39] provided the mean free path is comparable to the film thickness.

In conclusion, it appears that the carrier mobilities in crystalline ITO films are mainly

dominated by neutral scattering centres which are independent of temperature [40] and

above all by ionized scattering centres [6].

The effect on electric conductivity of disordered (amorphous) indium oxide should be

substantial. Indeed, a common view in semiconductor physics is that the mobility is

highest in semiconductors of high structural quality (large grains, low dislocation density

etc.). Nonetheless, it is still questioned [32]. One explanation is the fact that the mean

free path of free carriers in indium oxide and ITO is a few nanometres. For comparison,

the mean free path in a metal is one order of magnitude less (a few Å). As a consequence,

electrons in indium oxide and ITO might not be strongly scattered by the disorder because

it varies rapidly on the scale of an electron wavelength and the electrons experienced

only a smoothed out potential. Again, this is not the case for metals since the electron

wavelength is of the order of the interatomic spacing. This is confirmed by the fact that

the resistivity of RT deposited ITO and particularly indium oxide films (amorphous) is

generally low (∼10−3Ω cm) [41][38]. Conduction mechanisms have been proposed for

amorphous ITO films. Hopping conduction via localized states, originating in density

fluctuations in the material, seems to govern the conductivity. Such a type of conduction

was suggested by Korzo et al. [42] for amorphous Indium Oxide films prepared by the

CVD method based on the pionneering work of Mott [43].
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2.2.2.2 Optical properties

As for electrical properties, optical ones of the spectrally selective In2O3 and ITO films

are governed by their band structures and its modifications by defects.

2.2.2.2.1 The refractive index and the dielectric constant The absorption and

refraction of a medium can be described by a single quantity: the complex refractive

index nc=n+ik. n is the refractive index and it describes the velocity of light v in the

medium since n=c/v where c is the speed of light in vacuum. k is called the extinction

coefficient and it describes the attenuation of light wave as it goes through a material. k

is directly related to the absorption coefficient α of a medium. It is shown that:

α =
4πk

λ
(2.8)

where λ is the vacuum wavelength of light.

The transmittance T is given by:

T = A× exp(−4πkt

λ
) ∼ exp(−αt) (2.9)

where

A =
16n0n1(n2 + k2)

((n0 + n)2 + k2) + ((n1 + n)2 + k2)
(2.10)

n0, n and n1 are the refractive indices of air, film and substrate respectively. k is the

extinction coefficient. For TCOs in the visible range, k2 <n 2 and hence A∼1. n and k are

interdependent parameters related with the Kramers-Kronig relationships:

n(ω)− 1 =
2

π
P

∫ ∞
0

ω
′
k(ω

′
)

ω′2 − ω2
dω
′

(2.11)

and

k(ω
′
) = −2

2

πω
P

∫ ∞
0

ω
′2[n(ω

′
)− 1]

ω′2 − ω2
dω
′

(2.12)

2.2.2.2.2 UV region In the UV region, indium oxide and ITO films show high ultravi-

olet absorption due to the fundamental direct band gap of about 3.5 eV. This absorption

is related to interband transitions. The absorption edge (λgap or band-gap absorption) is

strongly dependent on the method of preparation [44]: it is found to lie between 3.5

and 4.1 eV.
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It has been observed [45] that the higher the free electron density (N), the shorter the

wavelength of the absoprtion edge. This phenomenon can be explained if the density

of free electrons is so high that the conduction band is partially filled up; then, the first

observable interband transition occurs for higher photon energy. This shift ∆E can be

described by assuming a Fermi free electron gas whereupon:

∆E = Egopt − Eg0 =
h̄2

2m∗V C
× (3π2N)2/3 + h̄

∑
(2.13)

and is commonly referred to as the Burstein-Moss shift [21]. Egopt is the direct optical

band gap, Eg0 is the intrinsic band gap, N the free carrier density, h̄ is the reduced Planck’s

constant and m∗V C is the reduced effective mass of the electron carriers defined by:

1

m∗V C
=

1

m∗c
+

1

m∗v
(2.14)

where mc and mv are respectively the conduction and valence band effective mass of the

electrons. h̄
∑

accounts for electron-electron and electron-impurity scattering. Thus, the

free electron concentration is a critical parameter in defining optical properties in the UV

region.

Muller [46] observed a considerable absorption tail at low photon energies (<3.7 eV) on

his sputtered In2O3 thin films. This absorption tail was not believed to be caused by direct

or indirect interband transitions but rather by lattice defects. Such absorption tails are

ascribed to lattice imperfections, for instance: defects near the band edges (band tailing)

or statistical variations in the energy gap due to local lattice deformations [47]. The

introduction of a high concentration of impurities/defects to a perfect semiconducting

crystal causes a perturbation of the band structure with the result that the parabolic

distribution will be disturbed and prolonged by a tail extending into the energy gap.

2.2.2.2.3 IR region In the IR region, films exhibit high infrared reflection related

to the quasi-free electron plasma [28], with a plasma wavelength λp. λp is defined by

Transmittance=Reflectance, where the dielectric-like transmittance equals the metal-like

IR reflectance. Therefore, in the near-IR region, the free carrier absorption becomes

important for the transmittance and reflectance of the ITO film. The optical phenomena

in this region can be explained on the basis of classical Drude theory [48][49]. As in

the UV region, the free electron concentration is a critical parameter in defining optical

properties in this range of wavelengths.
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2.2.2.2.4 Visible region Between λgap (the band-gap absorption) and λp (the plasma

wavelength) there is a region of high transmission, about 80 - 90% (glass substrate

included) for the visible spectrum [45] depending on the deposition conditions. The

wide optical band gap (> 3.5 eV) prohibits interband transitions, hence the transparency

within this range.

2.3 Pulsed Laser Deposition

The PLD process can be described as follows:

1. Interaction laser/target and laser/evaporated material

2. Expansion of the plume and interaction with the background gas

3. Condensation on a substrate: thin film growth

A simplified schematic of the PLD method is given in Fig. 2.3.

Figure 2.3 Pulsed laser deposition schematic

The next sections detail each of these processes.

2.3.1 Interaction laser/target

Photons from the laser can be absorbed by the target in at least three different ways:

• Volume absorption by electrons and phonons in the solid

• Surface absorption by free carriers in the molten layer

• Absorption by the emitted plume

Optical irradiation of the target causes a strong (typically up to temperatures of more

than 5000 K) and fast (a few ns) surface heating [50]. The rate of increase in the
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surface temperature depends on the optical penetration depth of the material and the

thermal diffusivity of the target. Laser parameters such as the energy density (fluence),

pulse duration, wavelength, polarization and laser repetition rate also play a role in

the formation and properties of the plasma from the irradiated surface. The underlying

non-equilibrium mechanisms involved in this removal are extremely difficult to model.

This also makes PLD a non-thermal deposition technique.

Generally, the electronic structure of the target does not really matter since the very high

electric fields generated by the laser result in dielectric breakdown. Indeed, at these

power densities (107 - 108 W/cm2), all materials actually absorb a significant fraction of

the radiation, resulting in surface heating and evaporation of all target components at

the same time, irrespective of their partial binding energies yielding stoichiometric films.

2.3.2 Interaction laser/evaporated material from the target mate-

rial

The laser subsequently interacts with plasma via ionisation, energy absorption and

radiation transport. The optical absorption of the plasma is a self-regulating process: if

the optical absorption of the plasma falls for whatever reasons, its increased transparency

will enable further surface exposure to re-populate the plasma and again increase

absorption and surface shielding. Thus it could be deduced that an instantaneous

equilibrium plasma density, once formed, will try to self regulate against any change in

density, temperature or irradiance.

2.3.3 Expansion of the plume and interaction with the background

gas

The interaction of laser ablation plumes with a background gas is of importance in PLD,

nanoparticle formation and growth [51]. Compared with expansion into a vacuum, the

interaction of the plume with an ambient gas is a far more complex gas dynamic process

due to the appearance of new physical processes such as deceleration, thermalisation

of the ablated species, interpenetration, recombination, formation of shock waves and

clustering [52][53][54]. Numerical investigations of PLD have been performed both

experimentally and theoretically for decades. Several diagnostic tools have been used

to study plume formation and content: they mainly include time-resolved optical spec-

troscopy and time-of-flight mass spectrometry [55]. Different models describing the

expansion of the plume were then developed according to the background gas pressure
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range used. Shock wave models are commonly used for the case of ablation in a dense

background gas when typically pressures of above a few Pa are used. Nevertheless, a

number of gas dynamic aspects of the expansion are not yet fully understood [56].

Optimal properties of films deposited by PLD require the use of a background gas to

obtain high-quality ITO films, with both high conductivity and transparency. Background

gas influences the kinetic energy distribution of plume constituents when they impact

on the substrate. Moreover, oxygen reacts with the ablated metal species of the plume

leading to the formation of oxides and oxygen-containing clusters [55]. These reactions

play an important role in preserving film stoichiometry and ensuring good functional

properties. It was found in [57] that high quality as-deposited superconducting films

could be obtained at only a given target-substrate distance (7 cm) and oxygen background

pressure (5 mT). Authors related this observation to the velocity distribution uniformity of

the various species, ensuring homogeneous substrate surface densities of the constituents

and identical coverage rates. As a consequence, there is a better chance for the atoms to

rearrange amongst themsleves to form a stoichiometric film. There are narrow ranges of

parameters for which a uniform velocity distribution occurs. It was shown in [58] that

the velocity distribution of each atomic species could be described very accurately by the

following equation (theory of supersonic molecular beams):

f(v) = Av3 × e
m(v−v0)

2

2kTs (2.15)

where A is normalization constant, v0 is the so-called stream velocity, m is the mass

of the ejected atom or ion under consideration, k is Boltzmann’s constant and Ts is a

temperature parameter describing the velocity spread.

For laser pulses of some tens of nanoseconds duration, the expansion of the evaporated

cloud into the ambient gas starts right after the laser pulse termination. Thus, the

evaporation and expansion can be considered separately. The expansion starts from

a cloud with the density and temperature uniformly distributed within a half sphere

spreading above the surface exposed to the laser beam. The particles in the cloud have

a Maxwell-Boltzmann distribution with the temperature [56]. After its formation and

until the end of the laser pulse, it can be considered isothermal, with the temperature

well exceeding 1000 K. Immediately after irradiation, the plasma will expand away from

the target because it is the direction of the greatest density gradient. This expansion

pushes any existing gases away from the target, setting up a pressure wave: this is
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a shock-wave. There is a threshold pressure above which shock-wave formation can

occur [59]. During propagation through a gas, the presence of this shock-wave front

causes spatial confinement resulting in a reduced cooling rate of the plume and high

ionisation degree of its species. Under such conditions mutual aggregation of plume

constituents occurs [60] leading to the formation of clusters which can grow on the

substrates if they are larger than a critical size. Expansion of the saturated vapour,

combined with heat transfer at the contact surface between the plume and the ambient

gas, leads to very rapid cooling. This cooling can occur more rapidly than condensation,

leading to exceptionally high saturation ratios (S).

After evaporation from the target, material from the plume is then allowed to recondense

on a substrate, where film growth occurs.

2.3.4 Film growth

2.3.4.1 Adsorption and diffusion

After an atom or an ion is adsorbed on a surface, it has two possibilities: it might diffuse

across the surface and then escape to the vacuum or it might bond. The diffusion rate of

an adatom across a surface at a temperature T is given by a Maxwell-Boltzmann relation:

Ds = D0 × e
−εD
kT (2.16)

where εD is the activation energy for diffusion (cal/mole) and D0 is a constant. In order

to grow high quality crystalline film, there must be sufficient surface diffusion to allow

adatoms to migrate to thermodynamically stable sites and minimize their surface energy

within the time needed to deposit a monolayer of atoms. There are two ways to enhance

this surface diffusion: increasing the substrate temperature and/or the kinetic energy

of the ablated species. One problem with increasing the surface temperature is the

increase in surface-to-bulk diffusion and bulk interdiffusion. This leads to a smearing

out of planes so that it can lower the limit to device size [61]. This problem can be

overcome by enhancing surface mobility by energy transfer from the species impinging

from the plume to the surface. A compromise needs to be found between promoting

surface mobility and avoiding bulk displacement phenomena. The arrangement and

growth of indium oxide and ITO thin films can be simplified in terms of the stacking of

MO6 coordination groups. Amorphous indium oxide is probably formed during physical

vapour deposition processing when MO6 coordination units, which evolve from the

target or are formed while chemisorbed on the growth surface, are incorrectly oriented
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when they are incorporated into the growing film. For example, at low temperature,

the restricted mobility of the indium oxygen clusters preserves the misorientation of the

coordination units and consequent bond distortion [62].

2.3.4.2 Nucleation and growth

2.3.4.2.1 Energetic considerations and supersaturation When a cluster is allowed

to diffuse on a given substrate, it will try to minimize its free energy G. G is the free

energy function and is a convenient measure of the feasibility of reaction. It is defined

as:

G = H − TS (2.17)

where H is the enthalpy, S the entropy and T the absolute temperature. Thus, if a system

changes from some initial (i) to a final (f) state at constant temperature due to a chemical

reaction or physical process, a free-energy change ∆G=Gf -Gi occurs given by:

∆G = ∆H − T∆S (2.18)

where ∆H and ∆S are the corresponding entahalpy and entropy changes. Systems

naturally tend to minimize their free energy and successively proceed from a value G ,

to a still lower, more negative value G, until it is no longer possible to reduce G further.

When this happens, ∆G =0 . The system is said to have achieved equilibrium and there

is no longer a driving force for change. It is convenient to work with the change in

chemical free energy per unit volume ∆Gv.

For most deposition processes including pulsed laser deposition, the two main thermo-

dynamic parameters that determine to a great extent the growth mechanism are the

substrate temperature Ts and the supersaturation S. Both parameters are involved in the

expression for ∆Gv which can be written as [63]:

∆Gv = −kTs
Ω
ln(

P

Pe
) = −kTs

Ω
ln(S) (2.19)

P is the pressure of the arriving atoms and Pe is the equlibrium vapor pressure at the

substrate temperature Ts. S is the vapour supersaturation defined by S=P/Pe. Ω is the

atomic volume. Without supersaturation, S=0 and hence ∆Gv=0 so that nucleation and

growth are impossible. Therefore, any level of gas-phase supersaturation generates a
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negative ∆Gv, which makes nucleation possible. A supersaturated solution/vapour is

not at equilibrium (∆Gv 6= 0). In order to relieve the supersaturation and move towards

equilibrium (∆Gv = 0), the solution or the thin film crystallises. Thus, a supersaturated

solution/vapour is required for crystallisation to occur. In PLD thin film growth, the

degree of supersaturation of the plume (vapour) is mainly controlled by the energy

density (Ed) falling on the target. Therefore, it is a critical parameter to control.

On the other hand, the growth orientation is determined by the surface free energy Gs

given by:

Gs = (γf − γs) + γi − γe (2.20)

where γf , γs, γi and γe are respectively the free surface energy for the film-air, substrate-

air, film-substrate interfaces and the epitaxial energy gain [64]. The film actually grows

along the orientation leading to a minimum value of Gs. The crystal plane with the

smallest surface energy tends to be exposed at the surface of the crystal. Crystallisation

includes nucleation and growth; the ratio of nucleation to growth controls the grain size

distribution. The next paragraph gives more details about these steps.

2.3.4.2.2 Details of the processes All phase transformations, including thin film

formation, involve the processes of nucleation and growth. During the earliest stages of

film formation, a sufficient number of vapour atoms condense and establish a permanent

residence on the substrate. Depending on their size, they will either grow in size

or dissociate into smaller entities. After repeated exposures of the substrate to the

incident vapour, a uniform distribution of small but highly mobile clusters or islands is

observed [65]. If the nucleus size is greater than the critical size, the nuclei incorporate

impinging atoms and subcritical clusters and grow in size while the island density rapidly

saturates. The next stage involves merging of these islands by a coalescence phenomenon.

Then, a second layer can be formed. This the “layer by layer growth” (or Frank-van

der Merwe growth) mechanism which is clearly favoured in PLD given the small size of

critical nuclei (practically one atom) owing to the high degree of supersaturation. This

results in two-dimensional nucleation of mono atomic height islands. Fig. 2.4 illustrates

the three main basic modes of thin film growth.
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Figure 2.4 The three basic modes of thin film growth: island (or Volmer-Weber), layer
(or Frank-van der Merwe) and Stranski-Krastanov (combination of layer and island
growth). The layer by layer (Frank-van der Merwe) growth is favoured in PLD growth.

2.4 Pulsed Laser Deposition of ITO thin films

The substrate temperature (Ts) and oxygen pressure (P(O2)) can be easily controlled

during deposition to obtain ITO thin films with the required properties. However,

parameters also affecting film properties such as film thickness (t) and stress are much

more difficult to control. These four parameters are reviewed in the next sections.

2.4.1 Substrate temperature

Much work has been done on ITO films using commonly known fabrication technologies

such as sputtering, evaporation, chemical vapour deposition and spray pyrolysis. This will

be detailed in the next section. Nevertheless, most of these techniques require elevated

temperatures (Ts > 300◦C) to grow reasonably low resistivity and high transparency

films [24]. This requirement may be restrictive for a number of applications such as

liquid crystal displays which require low deposition temperature, solar cells (especially

photovoltaic devices based on amorphous silicon which may deteriorate seriously at

elevated temperature [66]) and in situations where coatings need to be made on poly-

merized materials (flexible substrates). PLD is then extremely suitable since it allows

lower deposition temperatures to be used.

Even at RT, high quality indium oxide thin films can be grown [41]. At RT and 10 mT

oxygen pressure, better conductivity films (2.5 × 10−4Ω cm) could be obtained from
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undoped In2O3 material as compared with ITO. Optical transmittance in the visible range

in excess of 90% was obtained and the presence of Sn was less critical to the transmittance

value. This behaviour is consistent with the fact that it has been reported [38] [24] that

at RT, the presence of Sn atoms in the ITO films does not contribute free carriers to the

conduction band, rather they act as scattering centres in the films. Sn has to be thermally

“activated” effectively to substitute for In and provide free carriers to the matrix [67]

resulting in lower resisitity ITO thin films at higher substrate temperatures.

Regarding ITO thin films, the decrease in resistivity with an increase in Ts is also

explained in terms of enhanced crystallisation. Grain growth is favoured at higher Ts

resulting in better optical properties.

The plasma wavelength (λp), related to free carrier cocnentration, was observed to de-

crease initially with increasing Ts up to 100◦C and then increase slightly up to 300◦C [25].

Usually, post deposition heat-treated films or films deposited on heated substrates (at

least above 300◦C) exhibits high near-infrared reflectance. This parameter is extremely

important to tailor the optical properties of applications like window layer coatings and

solar cells. Such a high near-infrared reflectance was also obtained for films deposited

by PLD at temperatures as low as 200◦C [68][69]. Ts also affects the direct optical band

gap. It was found [25] that the direct band gap of ITO films increases from 3.89 to

4.21 eV as Ts increases from RT to 300◦C owing to increase in carrier concentration. In

another paper [70], Adurodija et al. found that the best films were obtained for oxygen

pressures around 10 mT. For this oxygen pressure, resistivities as low as 5.35× 10−4Ω cm

and 1.75× 10−4Ω cm were obtained at RT and 200◦C respectively. Optical transmittance

in the visible region of 85% was also achieved.

The substrate temperature is sometimes found to have an effect on thickness [71].

The authors noticed that the thickness decreases from 90 to 44 nm as the substrate

temperature increases from RT to 300◦C.

2.4.2 Oxygen pressure

The oxygen flow during the deposition influences the chemical composition, film density,

growth rate and layer morphology. P(O2) is found to affect the PLD deposition rate and

hence the film thickness during growth. The deposition rate reduced significantly as

P(O2) increased. It was found [70] to reduce from 15 nm/min under a P(O2) of 5 mT to

5 nm/min under a P(O2) of 50 mT. Such a reduction in the growth rate was attributed
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primarily to increased collisions of the ablated ITO particles with the ambient oxygen gas.

This is a widely shared view among researchers where similar effects of P(O2) on the

growth rate and thickness have been reported, not only for PLD but also for sputtering

and electron beam evaporation [72] [73]. Another effect of P(O2) is to reduce surface

mobility. This reduction is so important that at very high P(O2), ITO films were found to

be completely amorphous [68].

The electrical properties are also strongly impacted by oxygen pressure changes. At very

low P(O2), there is a very large number of oxygen vacancies; above a certain threshold,

the crystallinity can be greatly impacted, reducing the mobility of the free carriers. At

very high P(O2), the mobility also tends to decrease for two main reasons: oxygen atoms

accumulate mainly at grain boundaries and tend to form defects because an Sn4+ ion

pair may attract an additional oxygen atom, producing a neutral cluster (SnO2)2 in

which the additional oxygen atoms play the role of electron traps and so reduce the

carrier mobility [13]. In between, there is a narrow window of oxygen pressure (at a

given substrate temperature) where low resistivity thin films can be grown. For instance,

several groups found that for RT PLD deposited indium oxide and ITO thin films, the

optimal oxygen pressure that yielded the highest conductivity films lies within a narrow

range from 10 to 15 mT [73] [25] [69] [70]. This range is about the same for films

grown at higher substrate temperatures.

The carrier concentration also plays a role in the increase/decrease in resistivity. The

incorporation of oxygen leads to a decrease in oxygen vacancies in the films and hence to

a fall in the carrier concentration. Therefore, the resistivity of the ITO film is strongly cor-

related with the chamber oxygen pressure and the resulting film stoichiometry. Oxygen

provides the background gas necessary for optimal PLD growth of complex oxides, and

equilibrates the energetic species of the emerging atomic/ionic constituents ablated from

the target [74]. A uniform velocity distribution is found to be a key parameter in growing

high quality thin films. This gas-dynamic equilibration is even more necessary in the low

temperature case, where there is not sufficient surface diffusivity to allow formation of

the film after the atomic/ionic species impinge on the substrate and where it mediates

enhanced ITO cluster formation within the plume. Zheng et al. [74] observed that at low

and high P(O2), small particles covered the surfaces of their films. They suggested that

these small particles are precipitates of indium or of tin. Nonetheless, due to the very

small size of the particle, they could not perform accurate energy dispersive X-ray analysis

in the SEM. They also noticed that there were no particles on the surface for the films
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grown at the optimized pressure. At low P(O2), ITO films are substoichiometric, [75]

which leads to metallic inclusions (metallic indium or tin) and hence to opaque films.

These metal-rich dark ITO films also exhibit high carrier concentrations but very low

mobilities with the presence of different phases. Optical properties are also impacted

because of light scattering.

The density of ITO films is reported [76] to increase as the deposition pressure increases.

The incorporation of oxygen leads to a decrease in oxygen vacancy concentration and

hence the density increases. Optical properties are affected by this density change: less

light is scattered as the film becomes denser, increasing its transparency. This oxygen

vacancy concentration change impacts as well on the refractive index n of In2O3 films.

A decrease in the refractive index with increasing P(O2) was observed in the thickness

range 200-300 nm for pulsed laser deposited indium oxide films [77] and for reactively

evaporated indium oxide films[78]. It is suggested that this is due to a change in the

number of conduction electrons [79].

2.4.3 Film Thickness

Film thickness is an important parameter for the properties of ITO films. It is directly

proportional to the number of laser shots. When the film thickness decreases below a

critical value, the electrical properties of the indium oxide and ITO films deteriorate

drastically. As films get thinner, the effect of surface scattering becomes more and more

predominant over grain boundary [80] than ionised/neutral impurity scattering and

tend to be discontinuous. The critical thickness, below which electro-optical properties

degrade strongly, depends on the control parameters of the process. Jan et al. [81] also

studied the critical thickness of ITO thin films deposited by directly coevaporating metallic

In and Sn onto a heated glass substrate. A rapid increase of resistivity with decreasing

film thickness below 50 nm was again attributed to 1) the increased importance of

carrier scattering from the outer surface of the film due to surface roughness as seen

previously but also to: 2) the greater density of grain boundaries due to decrease in

grain size [25] and 3) film discontinuities attributed to the formation of islands [82] and

extensive voids. Similar studies for pulsed laser deposited films have been published.

Kim et al. [25] observed that the resistivity of the ITO thin films initially decreased with

an increase in the film thickness, up to 220 nm, but it remains almost constant with

further increases in the film thickness up to 870 nm. The resistivity does not change very

much for films thicker than 300 nm because both carrier density and mobility become

independent of film thickness.
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The same authors [25] also reported the effect of thickness on optical transmission.

They found that the transmission was not exponentially related to the film thickness

as expected from the following relation: I = I0exp(−αt) where α is the absorption

coefficient, t the film thickness, I the transmitted intensity at a particular wavelength

and I0 the incident intensity, taken to be 100%. Therefore, other parameters affect the

optical properties. The one found to have the greatest impact was the grain size, which

grew larger with film thickness. But surface roughness might play a role as well as the

films grew thicker [83]. It has also been shown that the refractive index depends on the

film thickness up to 100 nm, after which it is almost constant [79].

In the range of extremely thin films ( a few nanometres), it was reported [84] that

reactively evaporated indium oxide films were amorphous below 4 nm, while films

thicker than 4 nm were polycrystalline. Finally, adjusting the film thickness has a

practical use in applications where the ITO serves as an antireflective layer. In that

specific case, the reflectivity losses can be reduced when the layer thickness is adjusted

to the wavelength of the light used [85].

2.4.4 Stress in thin films

Virtually all vacuum-deposited coatings are in a state of stress. The total stress is

composed of a thermal stress and an intrinsic stress. The thermal stress is due to the

difference in the thermal expansion coefficients of the coating and the substrate and

is generally independent of the deposition process. The intrinsic stress is due to the

cumulative effect of the crystallographic flaws that are built into the coating during

deposition.

2.4.4.1 Thermal stress

Strain is invoked due to thermal mismatch between the ITO film (7.2×10−6/◦C [86])

and the substrate when the latter is a polymer substrate (from 12×10−6/◦C for PET

substrates [87] to 39×10−6/◦C for polycarbonate substrates [76]). This thermal stress

is somewhat less important when ITO films are grown on glass substrates, since the

thermal expansion coefficient of glass (4.6×10−6/◦C) is close to that of ITO.

2.4.4.2 Intrinsic stress

In PLD, the tailoring of stress in the film becomes possible through the bombardment of

the depositing film with the energetic species during film growth. It is indeed possible
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to tune the kinetic energy of ablated species through background gas pressure. Few

studies have addressed this issue for PLD. One study, though, showed the existence of

compressive stress in homoepitaxial growth of SrTiO3 using PLD [88].

Norton et al. [89] studied further the role of ablation energies in determining the film

stress in CeO2 films deposited by PLD. They showed that at very low P(O2) (0.4 mT),

large lattice distortion occured. This was attributed to both the stresses and the defects

in the film, mainly due to the large number of oxygen vacancies. They separated the

effects of plume kinetic energy from other possible sources of lattice distortion, including

the variation in oxygen content by depositing films at constant oxygen pressure but with

different background gas pressure (using Ar). They confirmed that the compressive

stress decreases as the background gas pressure increases through a reduction in the

kinetic energy of ablated species via collisions.

2.4.5 Summary

Table 2.1 sums up the electro-optical properties and deposition conditions of pulsed laser

deposited In2O3 and ITO thin films as discussed in the above sections:

2.5 ITO by other deposition methods

2.5.1 Spray Pyrolysis techniques

The spray pyrolysis method has been used frequently for the preparation of transparent

conducting oxide films for many years [97][98][99]. The conventional spray hydrolysis

technique consits of spraying a dilute solution of an appropriate chloride from an

atomizer onto a heated substrate under normal atmospheric conditions or controlled

atmospheres. High pressure argon, nitrogen, or air are usually used as the spraying

gas. ITO films can be formed by mixing InCl3 with a proper amount of SnCl4 [28][97].

The solutions are made usually by dissolving SnCl4 and InCl3 in some solvents such as

ethanol [97][99], butyl acetate [100], propanol [101], HCl or H2O. ITO films deposited

by spray hydrolysis adhere strongly to various substrates and can have a very low

resistivity of about 5× 10−4Ω cm with high transparency of about 90% in the visible and

near infrared parts of the spectrum [45]. The deposition rate can be very high, ranging

from 200 to 400 nm/min [45]. In another paper [13] it was found that the optimum

concentration of Sn atoms, resistivity and carrier concentration were 9 at.%, 1.3× 10−4Ω

cm and 1.5 × 1021/cm3, respectively. But for some opto-electronic applications such
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as OLEDs, the layers have too rough a surface, so in such cases more “sophisticated”

deposition techniques are needed.

2.5.2 Sputtering techniques

Sputtering is one of the most extensively used techniques for the deposition of ITO films.

Various sputtering techniques have been used for deposition of transparent conducting

oxide films, including conventional direct current (d.c.), radio frequency (r.f.) and

magnetron reactive sputtering of a metal alloy target in the presence of oxygen, as well

as r.f. and ion beam sputtering of a pressed oxide powder target. Magnetron sputtering as

one deposition method offers the possibility to prepare ITO films at low temperature and

on large areas and is the dominant technology in the industry. Indeed, the development

of high performance magnetron sputtering sources that provide relatively high deposition

rates and large deposition areas [102][103]. However, sputtered films are generally

much rougher than PLD deposited films [25]. In particular, the conventional d.c. reactive

sputtering process proceeds under elevated working gas pressures (generally in the

range 0.8 to 13 Pa or 6 to 97 mT). Such high pressures often cause surface roughness in

sputtered films which is inconvenient for some applications like OLEDs.

The magnitude of the deviation from the stoichiometric composition in reactively sput-

tered oxide layers is another very important issue. Sputtering does not allow the same

control over the In/Sn ratio in the film as chemical vapour or pulsed laser deposition.

Moreover, reduced yields in reactive sputtering attributed to compound formation on

the target are commonly observed. Sputtering in pure O2 produced a thin film of In2O3

and SnO2 on the In-Sn target surface [104] especially at high oxygen partial pressure.

The sputter rate drops substantially since oxides usually sputter more slowly than metals.

Pure O2 and a mixture of O2 and Ar or N2 are usually used as the sputtering gas. The

use of inert gas ions avoids chemical reactions at the target and substrate. As a result

of the difference in the volatility and sputter rates of these oxides, an enrichment in

indium of the film is observed. Therefore, the film composition deviates from that of the

target. Additionally, the surface topography that develops on the target can be signicantly

influenced by ions/surface interactions. Because of the difference in the sputter yields of

metallic materials and their corresponding oxides, the deposition rate is very sensitive to

the change in the oxidation state of the target. Therefore, control of the oxidation state

of the target surface is a primary factor to be considered during sputtering of ITO thin

films with good physical properties.
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2.5.3 Evaporation techniques

To evaporate In2O3/SnO2 powder, electron beam evaporation and direct thermal evapo-

ration of metallic In and Sn in an O2 ambient are commonly used. For the latter, since

In has a signicantly higher vapour pressure than that of Sn, it will be preferentially

vaporized, causing a change in the composition of the Sn+In liquid alloy with time [24].

A much more efficient way to produce low resistivity and high transparency films is to

use an electron beam. Low resistivity ITO films processed at low Ts have been reported

using reactive electron beam evaporation onto heated glass substrates (300◦C and an

oxygen pressure above 0.5 mT) [49]. Under optimum conditions, the resistivity was

3×10−4Ω cm and the average mean transmittance in the visible range was about 84%.

Salhei [105] deposited ITO using a thermal evaporation technique without introducing

oxygen into the chamber. A transmittance value of more than 80% in the visible region

of the spectrum and a resistivity of 9.1×10−4Ω cm were obtained.

2.5.4 Chemical Vapour Deposition (CVD)

Chemical vapour deposition (CVD) is a process in which a chemical reaction involving

gaseous reacting species takes place on, or in the vicinity of, a heated substrate surface.

The CVD technique has the advantage of being cost effective with respect to the apparatus.

It enables the production of coatings with good properties without the use of high vacuum

even on substrates with complicated shapes. In particular, atmospheric pressure CVD

(APCVD) is attractive in many applications in the sense that it offers high deposition

rates and hence short process time [24]. The deposition of ITO films by the CVD method

generally faces difficulties due to a lack of volatile and thermally stable source materials.

Maruyama et al. [106] deposited ITO films using the APCVD technique without an

oxygen supply. The precursor materials were indium acetate and tin diacetate. Although

the transmittance in the visible region exceeded 90%, the films had a relatively high

electrical resistivity (6.93×10−3Ω cm). This was attributed to the small crystallite size

(15 - 20 nm). Later on, Maruyama and Fukui [107] reported the fabrication of ITO films

with better electrical properties using indium and tin acetylacetonate. This time, oxygen

gas was introduced. The films deposited at 450◦C and 215 nm thick had much lower

resistivity (1.8×10−4Ω cm). Indium 2-ethylhexanoate and tin IV chloride were proposed

as precursor materials [108] for obtaining ITO films by APCVD without a supply of

oxygen. The ITO film obtained at a reaction temperature of 400◦C had a resistivity of

2.9×10−4Ω cm.
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2.5.5 Sol-gel method

Compared to conventional thin film forming processes, films prepared by the sol-gel

route require considerably less equipment and are potentially very cost effective. This

method offers many other advantages [24]:

• intimate mixing, at the molecular level, of the starting materials resulting in a high

degree of film homogeneity, even for multicomponent systems.

• low processing temperature

• dopants, even at a trace level, can be introduced with relative ease.

• easy adjustment of the viscosity, and thereby the thickness per coating, by adequate

choice of the solvent, chelating organic ligands, concentration, etc.

• large area coatings with desired thickness and composition are obtainable.

Dip coating [109] is the preparation method favoured in the sol-gel process. ITO films

with satisfactory electrical and optical properties can be prepared by the sol-gel method.

Gallagher et al. [110] prepared ITO films by dip coating them from an acetylacetone

solution of indium and tin acetylacetonate. They studied the solution chemistry and

the thermal decomposition of ITO precursors. The best resistivity (1.01 × 10−3Ω cm)

was obtained after postannealing in forming gas and for a film containing 8 wt.% SnO2.

Maruyama et al. [111] obtained a lower resistivity (4.23×10−4Ω cm) through direct

heating in an inert gas. Furusaki et al. [112] used indium 2-ethylhexanoate or indium

acetylacetonate and tin 2-ethylhexanoate as starting materials for indium and tin. A

relatively high resistivity in the range 3-5×10−3Ω cm was obtained after annealing in

vacuum at 550◦C. However, they obtained a very good transparency of over 90% in the

visible region. Using the same precursors, Xu et al. [113] slightly improved properties

(1.08×10−4Ω cm and transparency over 90% in the visible range) for spin coated ITO

films annealed at 650◦C and without annealing. Similar to the CVD technique, the

preparation of ITO films with satisfactory electrical and optical properties by the sol-gel

process is restricted to a very limited range of precursors, mainly because of the high cost

of the alkoxides which are commonly used and a lack of sufficient solubility. Therefore,

better understanding of the solution chemistry, film thermal decomposition and reduction

and control of film microstructure are important in the preparation of low electrically

resistive films by the sol-gel method.
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2.5.6 Comparison with PLD deposited thin films

Table 2.2 sums up the electro-optical properties of ITO thin films deposited by different

techniques.

Table 2.2 Comparison of different deposition techniques with PLD.

Technique ρ (Ω cm) T(%) Ts (◦C) t (nm) Reference
Sputtering 6.8× 10−5 >90 370 150 [48]

4× 10−4 84 RT 800 [114]
7× 10−4 84 300 300-1500 [115]

Electron beam evaporation 3× 10−4 >84 300 300 [49]
Thermal evaporation 9.1× 10−4 >80 80 120 [105]

CVD 6.93× 10−3 >90 300 450-700 [106]
1.8× 10−4 >90 450 215 [107]
2.9× 10−4 80 400 430 [108]

Spray-pyrolysis 1.3× 10−4 no data 500 300 [13]
no data no data 506 280 [97]

Sol-gel 3− 5× 10−3 90 550 150 [112]
4.23× 10−4 85 500 no data [111]
1.08× 10−3 95 650 360 [113]
1.01× 10−3 90 500 273 [110]

2.6 Advantages/drawbacks of PLD

PLD has become one of the most versatile and powerful methods for producing multi-

component oxide thin films. PLD has advantages and disadvantages. Major advantages

of PLD include [116]:

• Relatively high deposition rates. Film growth rates may also be controlled to any

desired level.

• Congruent transfer from the target to the film, provided that appropriate and

precise deposition conditions are met.

• The possibility of producing as-deposited films with an appropriate microstruc-

ture at relatively low substrate temperature. It is known that energetic particle

bombardment of the film surface during growth lowers the crystallisation tempera-

ture [117].

• Possibility of producing multilayered films of many different materials.

• Possibility of sharing the laser beam among several deposition systems.

• Reduction of film contamination since the laser beam is focused on the source

material during deposition.

• The energy source (laser) is outside the vacuum chamber providing a greater
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degree of flexibility in material use and in the geometrical arrangements.

• Almost any condensed matter can be ablated.

• The possibility to produce metastable materials that would be unattainable under

thermal conditions.

The main disadvantages are:

• Formation of micron and submicron-sized particulates (droplets) during target

ablation.

• The highly focused nature of the laser beam makes it difficult to scale-up the PLD

technique to cover large areas (unlike magnetron sputtering for example).

• The necessity to polish the surface of the target for each new film deposition (time

consuming).

• Impurities in the target materials.

• Frequent cleaning of the special quartz ultra high vacuum window, used to intro-

duce the laser beam into the deposition chamber.

• Inhomogeneous flux and angular energy distribution within the ablation plume.

2.7 Emerging techniques to improve PLD deposition

Because of the disadvantages listed in the previous section, PLD has not been preferred

so far as a manufacturing process, primarily because of two main limitations: the

deposition of micron and submicron-sized particulates and a limited area of uniformity

in the deposited film. Droplets spoil the surface smoothness and uniformity of the films.

Numerous research groups have tried to address these two issues.

2.7.1 Minimising droplet formation

Several techniques can minimise droplet formation. The most successful and easy to set

up involves target rotation and/or beam scan across the target. A 10,000 rpm rotating

deflector can also be inserted between target and substrate [118] to deflect selectively

slow particles and transmit faster moving species. Later on, a similar device was used by

Yoshitake et al. [119]. They used a vane velocity filter. They succeeded in eliminating

particulates below 0.5 µm diameter at 350 rpm. They also found that particulate

maximum velocities become larger as their size decreases (up to 65 m/s for 0.5 µm

diameter particulates). Another set up [120] was to use two colliding beams to generate

a high pressure zone which expanded towards the substrate. Heavier particles were

then forced to miss the surface altogether. A negative substrate bias of several hundred
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volts can also reduce considerably similarly charged heavy clusters. This was found to

improve the growth of Ge by PLD [121]. A second laser to excite and dissociate the

larger particles within the plasma has been successful [122][123]. Sankur et al. [124]

adopted a totally different approach: they used a melted Ge target and they managed to

produce completely particulate-free films.

2.7.2 Large-area PLD approaches

PLD has now demonstrated the capability to deposit highly uniform films over 150 mm

diameter substrates. Variations over the useable area were found to be only 2.3% and

0.5 at.% for thickness and composition, respectively [125]. These latter data presently

represent the state of the art for the laser-deposition process and clearly indicate that PLD

can be scaled to sizes compatible with mainstream semiconductor processing equipment.

Finally, the limits of the PLD process have not yet been reached and it is expected that

similar uniformity over even larger substrate sizes will be demonstrated in the near

future.

There are three main techniques which have been used to grow large area thin films:

• “Offset” (OS) or off-axis PLD

• Rotational/Translational (R/T) PLD

• Laser-beam rastering over a large diameter rotating target

The first two techniques are static-beam approaches while the last one is dynamic and

involves computer-controlled laser beam(s). Laser beam rastering is the oldest of the

large-area PLD approaches. High quality YBCO thin films on 7.6 cm diameter (100)

LaAlO3 substrates have been grown [126] with this method. It has even been used

recently to deposit films on 12.5 cm diameter substrates [127]. In OS PLD, the target is

positioned such that the centre of the ablation plume which nominally leaves normal

to the target surface, impinges near the outer edge of the rotating substrate. This

technique can reduce droplets (improving overall thin film quality) although growth

rate is slower than on-axis deposition. It easily accommodates substrate heating, and

has been further used to grow high quality films of YBCO in situ on 50 mm diameter

LaAlO3 substrates [128]. Furthermore, the OS approach has been scaled up to deposit

Bi4Ti3O12 films over 100 mm diameter Si substrates for RAM applications [129]. In the

second static beam approach, R/T PLD, the substrate is both rotated and translated in

a linear fashion. A computer controls both substrate motions such that uniform film

properties are obtained. Unlike the techniques already described, this approach is not
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really suitable for substrate heating. It has been used to deposit YBCO films onto 75 mm

diameter LaAlO3 substrates [130].

2.8 Applications of ITO thin films

There are three main applications for ITO thin films:

• Optoelectronic Devices (Solar Cells, Organic light emitting diodes and Flat Panel

Displays).

• Electromagnetic shielding.

• Functional glass.

For most opto-electronic applications, ITO thin films are used as a transparent electrode.

Manufacturers try to achieve both a high optical transparency and a low resistivity. For

OLED devices, there is an additional very important requirement: the surface has to

be ultra smooth (a few nanometres roughness at most). Roughness is known to cause

colour quality to deteriorate and to reduce the lifetime of the OLEDs (higher electric field

at the tip). Much smoother film can be deposited by PLD as compared with magnetron

sputtering films [92]. PLD is clearly a promising technique for making OLEDs with better

lifetimes. An OLED with an ITO anode grown by PLD at room temperature has been

reported to work very well [25]. There is however the problem of scaling up the PLD

technique and making it more cost effective but the possibility of producing good quality

films even at room temperature makes this technique very attractive indeed [73].



Chapter 3

EDX/WDX and EELS: background theory and literature

review

Electron microscopy enables micro and nanochemical analysis, i.e. establishing the

chemical composition of small (micron size range) to very small (nanometre size range)

volumes of material. Such analysis is performed with EDX or EELS. EDX can be performed

both in a TEM and SEM for elemental chemical analysis. The physics underlying the

generation and the detection of X-Rays is exactly the same in SEM and TEM. However,

since electron transparent specimens are analysed in a TEM while bulk specimens are

analysed in a SEM, the achievable spatial resolution and data treatment differ profoundly.

Those differences will be stressed. EELS can only be operated in a TEM. Contrary to

EDX, not only compositional elemental can be gained from the sample but also bonding

information. EDX will be discussed first before moving on to EELS.

3.1 Energy Dispersive X-Ray microanalysis (EDX)

3.1.1 General principles

EDX derives its major elemental analytical signal (X-Rays) from ionisation of the inner

electron shells of the atoms, with subsequent de-excitation via various inter and intra-

shell transitions of the electrons. This is done through the bombardment of a specimen

with a high energy beam of electrons. One product of these transitions is the emission of

electromagnetic radiation in the form of X-Rays. The other way for the atom to dissipate

its energy excess is to emit a secondary electron or “Auger” electron (see Fig. 3.1).

Generated X-Rays are emitted isotropically but only 1% of those X-Rays are detected

due to geometrical constraints on the detector. Since these X-rays are emitted as a result

of electron transitions between precisely defined energy levels, the X-Rays produced

have specific energies that are characteristic of the atoms involved and thus serve to

identify them. Therefore, qualitative analysis is possible. In addition, the intensity of
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Figure 3.1 The main mechanism for X-ray production is a consequence of an electron
being ejected from an inner shell of an atom by the high energy electron beam. The
vacancy is subsequently filled by an outer shell electron. The atom finds itself with excess
energy which must be dissipated. One way of doing so is by the emission of an X-ray with
its energy corresponding to the energy difference between the inner and outer atomic
shells. Taken from [131].

the emitted X-ray is directly proportional to the quantity of atoms present in the excited

volume. Therefore, it is also possible to perform quantitative analysis. Modern detectors

can detect X-Rays for all the elements in the periodic table above Beryllium (Z=4).

Fig. 3.2 shows a typical EDX spectrum acquired with a SEM: it is composed of peaks

corresponding to specific X-ray lines. Their intensity varies according to the elements

concentration present. Peaks sit on a background consisting of a continuum which

decreases with energy. This continuum arises from the X-Rays produced as electrons

are slowed down in the coulombic fields of atoms (nucleus) comprising the specimen.

Such radiation is called “Bremsstrahlung” or “braking” radiation. The red curve in

the same figure is a “reconstructed” spectrum which results from the processing of the

experimental one. This is the subject of the next section.

Figure 3.2 Typical SEM EDX spectrum in the 0-5 keV range of a 300 nm ITO (In2O3:Sn
10 wt.%) thin film.
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3.1.2 Presentation of the measurement chain

The detection and measurement of X-Rays in an electron microscope require a complex

measurement chain. It is complemented with a software which allows reliable automatic

peak identification and processing through different algorithms. An EDX system (shown

in Fig. 3.3) is composed of three basic components designed to work together to achieve

optimum results:

1. A solid state X-ray detector (a classical Si(Li) like in Fig. 3.3 or a more “sophis-

ticated” Silicon Drift Detector (SDD)) which detects and converts X-Rays into a

charge signal. This charge signal is fed into a Field Effect Transistor (FET), and

becomes a voltage signal which is then amplified.

2. A pulse processor or Multi Channel Analyser (MCA) which measures the previously

amplified voltage signals to determine accurately and quickly the energy of each

X-ray.

3. An analyzer which displays via a Cathode Ray Tube (CRT) and interprets (analytical

software) the X-ray data.

Figure 3.3 Schematic of an EDX system on an electron column. AMP=amplifier,
MCA=multi channel analyser and CRT=cathode ray tube.

For information and a sense of scale, it only takes a few µs to “deal” with each X-ray (also

called dead time), i.e. detecting it, measuring it and storing it in the MCA. If another

X-Ray arrives before the completion of this process, both X-Rays must be ignored or the

answer will be some combination of the two energies (pulse pile-up). Therefore, it is

important not to overload the detector.
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3.1.3 Working out the composition

The correction procedure for bulk microanalysis is often refered to as ZAF corrections. Z

represents the atomic number, A and F respectively the absorption and fluoresecence

of X-Rays within the specimen. For thin specimens such as those analysed in a TEM,

the correction procedure is greatly simplified since to a first approximation (thin film

approximation), the A and F factors can be neglected and only the Z correction remains

necessary. Both procedures are detailed in the following two sections.

3.1.3.1 In the TEM

Deriving the chemical composition of a specimen involves determining factors relating

EDX peak intensities and concentrations. They are called “k-factors”. There are two ways

one can determine k-factors:

• Calculation from first principles.

• Experimental determination using a standard.

The first way uses a set of stored equations and standard peak profiles built into the

software. The calculated value is accurate to within ±20% relative [132]. When a

quick answer is required and accuracy is not essential, it is the recommended approach.

However, if a suitable standard specimen can be obtained, experimenal k-factors should

be determined to increase the previous level of accuracy. In theory, there is no limit to

the accuracy of such a method, but generally, accuracy better than a few percent can

be achieved. It also makes possible a known level of confidence in the quantification

results produced. This is the method of choice if elements with concentration less then 5

wt.% are to be detected with accuracy. The most popular method of quantification was

proposed by Cliff and Lorimer [133]. In the case of a specimen whose chemical formula

would be AB, it states that: if X-ray absorption (A) and fluorescence (F) in the sample

are negligible (known as the thin film approximation), the ratio of the peak intensities

IA/IB is directly related to the ratio of the concentrations of the two elements CA/CB

through a factor, generally called a “k-factor”, which depends on components A and B,

but also on the specific EDX system used to get such measurements. The equation can be

written as:

CA
CB

= kAB
IA
IB

(3.1)
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Owing to the dependence of k-factors on the system used to acquire the data, a k-factor

is not a constant. Therefore, it is of the utmost importance first to determine which

experimental conditions are to be used and to keep those conditions unchanged when

analysing a set of samples. Otherwise, the results cannot be reliably compared. In that

sense, EDX is not an absolutely standardless method.

The Cliff-Lorimer equation involves concentration and intensity ratios, hence relative

k-factors are determined: “relative” to a standard ratio element which is present or not

in the sample. Its k-factor is taken to be 1. The determination procedure is the following:

for a standard compound AB of known composition CA and CB, the experimental

determination of k-factors involves three different steps:

1. Acquisition of a “standard profile”, i.e. generating an EDX spectrum of a given

standard under precise experimental conditions. A profile stored in the analytical

software can also be used.

2. After data processing, values of IA and IB are obtained and inserted in the Cliff-

Lorimer equation.

3. k-factors are calculated since CA and CB are already known.

In a second time, when a specimen of unknown composition is analysed, the now known

k-factors enable the calculation of CA and CB. IA and IB are respectively derived from

peaks A and B areas. The latter is calculated from the fitting of stored peak profiles

(or previously acquired experimental peaks from a standard specimen). During this

matching process, a fit index is calculated and is of particular interest even if it has no

absolute significance in itself. It is a figure of merit which allows the user to determine

the quality of quantitative microanalysis using experimental k-factors. It is a used as a

“diagnostic tool”.

3.1.3.2 In the SEM

In a bulk specimen, obtaining compositional data requires a different data treatment. For

example, the absorption A and the fluorescence F cannot be neglected anymore. Matrix

effects impacting on analytical studies are detailed and explained below.

3.1.3.2.1 Atomic number effect (Z) For some elements, a significant fraction of the

beam electrons escape the surface as backscattered electron (elastic scattering). For

instance in gold (Au), this is the case for 50% of the electrons. If these electrons had

remained in the specimen, they would have generated many more X-Rays.
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3.1.3.2.2 Absorption (A) X-Rays are produced over a range of depth into a bulk

sample. To be detected, they have to “travel” up to the detector. This propagation

takes place along a finite path through the specimen to reach the detector, and they are

subject to photoelectric absorption and scattering. As a consequence, the detected X-Ray

intensity will be less than the generated intensity and this intensity reduction has to be

taken into account in order to give the right chemical composition.

3.1.3.2.3 Fluorescence (F) It was seen previously that absorption of X-Rays on the

way to the detector needs to be corrected for. There is is another effect: absorption

of X-Rays causes the inner shell ionisation of the absorbing atoms and the subsequent

generation of characteristic X-rays from the absorbing atoms. It raises the generated

intensity over that produced by the direct action of the beam electrons. Therefore, the

detected X-Ray intensity will be more than expected and this intensity increase has to be

taken into account to yield the correct chemical composition. This effect can be induced

by both characteristic X-Rays and Bremsstrahlung.

When the above three physical processes are taken into account in a quantitative analysis

procedure, one is using the ZAF method. A separate correction factor is calculated for

each effect (or matrix effects). The characteristic X-Rays measured from the specimen

are ratioed to the intensity measured from a standard. The physical models yielding

the correction factors Z, A and F described above are used to calculate iteratively inter-

element matrix factors that multiply the unknown/standard intensity ratio to yield the

concentration of the unknown relative to the standard [134]. Therefore, in a binary

compound AB, A and B peak intensities are related to the concentrations of A and B by:

CA
CB

= ZAF × IA
IB

(3.2)

3.2 Electron Energy-Loss Spectroscopy (EELS)

Electron energy-loss spectroscopy provides a spectrometry complementary to EDX, en-

abling much better light element detection. It consists of the analysis of the energy

disribution of electrons that have interacted inelastically with the specimen. The scat-

tered beam of electrons is spectroscopically analysed to give an energy spectrum for the

electrons after the interaction. Energy and hence intensity from the incident electron

beam are absorbed by the matter under study. The nature of this energy absorption

will depend on the precise composition and electronic structure of the specimen under
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investigation. The general principle of EELS will first be explained before moving on to

the description of the electron energy loss spectrum and the working principles of the

spectrometer.

3.2.1 General principles

Electrons can interact in two manners with matter: elastically and inelastically. During

scattering both the amplitude and phase of the incident electron wave may alter. When

elastic scattering occurs, the direction of the electron velocity is changed, but its mag-

nitude remains constant, so that the kinetic energy is unchanged. It is also generally

coherent. Large angle scattering (greater than 5◦) occurs through the coulombic inter-

action between the incident electron and the nucleus of the atom. It is also known as

Rutherford scattering. If the electrons travel much farther from the nucleus and only

interact with the screened nuclear field (by electrons) of an atom, then small-angle (a

few degrees) elastic scattering occurs.

During an inelastic scattering event, not only is energy transferred to the target atoms and

electrons but also any phase relationships between scattered waves are lost (incoherent

scattering). As a consequence, the kinetic energy of some beam electrons decreases

giving rise to energy losses. An inelastically scattered electron undergoes only slight

angular deviation (up to a few mrads/tens of degrees), which means that contrary to EDX,

a large fraction of the total possible signal can be collected by an electron spectrometer

placed in the forward-scattering direction. It is the energy analysis of these inelastically

scattered electrons that forms the basis for EELS.

The main types of inelastic scattering mechanisms are:

• Phonon excitation (heat).

• Plasmon excitation (valence electrons in a solid).

• Single electron excitation (inner and outer shell scattering).

• Direct radiation losses (deceleration of the electron beam in the Coulomb field of

an atom (Bremsstrahlung radiation)).

• Excitation of conducting electrons leading to secondary electron (low-energy)

emissions.

These different mechanisms are all associated with different energy levels. Some of

them cannot even be detected, like phonon excitation. Indeed, the energy resolution of

the very best current EELS systems (0.1 eV) is much higher than the phonon scattering
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energy (0.03 eV) [135].

If the specimen is sufficiently thin to prevent any multiple inelastic scattering (or if the

latter is corrected for), the majority of electrons suffers only a single inelastic scattering

event during passage through the specimen. If not, there is a degradation of the ionisation

edge information. ”Sufficiently thin” means that the specimen thickness must generally

lie in the 25-100 nm range (depending on the average atomic number of the specimen

and the beam energy). If the specimen thickness is less than 25 nm, surface effects are

increasingly likely and can modify low-loss EELS spectra [136]. Thickness is sometimes

given as a fraction of the inelastic mean free path (IMFP). This better represents the

average distance travelled by an electron between two inelastic scattering events and is

inversely proportional to the inelastic cross section. It can be calculated by the use of

either classical physics or wave mechanics. A commonly used expression for the IMFP is

given by Egerton [137]:

IMFP (nm) =
106× [(1 + E0/1022)/(1 + E0/511)2 × (E0/Em)]

ln(2βE0/Em)
(3.3)

where E0 is the incident beam energy (keV), Em = 7.6× Z0.36 (Z is the average atomic

number), β is the collection angle (mrad) and (1+E0/1022)/((1+E0/511)2 is a relativistic

correction factor. IMFP is expressed in nanometres.

The high background in the EELS spectrum generally restricts the relative detection limit

to 1% or higher [134]. Quantitative analysis is based on physical models of inelastic

electron scattering with empirical corrections for instrumental effects. The next section

will detail the different regions of the electron energy loss spectrum.

3.2.2 The Electron Energy Loss Spectrum

The electron energy loss spectrum is composed of two main parts: a low loss and a high

loss part. The first region extends from 0 to about 50 eV with several noticeable features.

It contains a zero-loss peak (ZLP) which is made up from those electrons which have

(1) not been scattered by the specimen, (2) suffered only phonon scattering (±0.03

eV) or (3) been elastically scattered. The energy width of the zero-loss peak is caused

by the energy spread of the electron source (up to ±2 eV for a thermionic W filament)

and the energy resolution of the spectrometer. It is an excellent measurement of the

energy resolution of a given experiment. A lower intensity peak is observed in the 20-30

eV region. It is associated with bulk plasmon excitations corresponding to collective,

resonant oscillations of the valence electrons. Its energy is given by:
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Ep =
h

2× π
×

√
Ne2

meε0

(3.4)

where N is the valence electron density, h the Planck constant, me the electron mass, e

the electron charge and ε0 the permittivity of free space.

Plasmon scattering has the largest cross section and it is by far the most common inelastic

interaction occurring in materials [138]. The typical mean free path for the generation

of a plasmon is about 50 nm, resulting in many electrons suffering from single-plasmon

losses: only thicker specimens would show additional peaks at multiples of the plasmon

energy, corresponding to the excitation of more than one plasmon by the incident electron.

Plasmons can be imagined as soundwaves, since they are longitudinal oscillations which

create regions of varying electron density. Other types of plasmons can be observed

depending on the material under investigation or its geometry. Samples thinner than

20 nm or nanoparticles generally show surface plasmons. The presence of interfaces

parallel to the beam direction (including possible contamination layer(s)) can give rise

to interface losses such as interface plasmons [139] and gap states [140]. The low-loss

region is generally used for thickness and electron density measurement. It is also used

for deriving the dielectric function after Kramers-Kronig analysis of the single scattering

distribution (SSD) obtained after zero-loss peak and multiple scattering deconvolution

of the low-loss spectrum. It can then be correlated with optical measurements and band

gap determinations in semiconductors/insulators.

The second region extends from about 50 eV to 2000 eV. Above a certain critical ioniza-

tion energy Ec, excitation of electrons from well localised orbitals (core shells) at a single

atomic site to previously unoccupied electron energy levels just above the Fermi level of

the material arises. This region reflects the atomic character of the specimen, so that com-

positional data can also be derived. A continuous background on which the characteristic

ionisation edges (rather than peaks in the low-loss range) are superimposed is particular

to this region. Such a background arises from tails of plasmon excitation(s) combined

with those of ionisation edges at lower threshold energies. Qualitative elemental analysis

can be carried out simply by measuring the energies of the edges and comparing them

with tabulated energies. A classification of EELS ionisation edges can be found in [141].

Since the ionisation process can impart more than the critical ionisation energy Ec needed

by the core electron to escape the attraction of the nucleus, the final state of the excited

electron will be in the range of possible energy levels above the Fermi level (EF ) giving

rise to Energy-Loss Near Edge Structures (ELNES). Some electrons gain enough energy to
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leave the atom and act as an electron wave which can be diffracted by the surroundings

atoms. In the spectrum, it is seen as weak oscillations and fine structures beyond the

first 30-40 eV of an edge and known as Extended Energy Loss Fine Structures (EXELFS).

Analysis of this part of the spectrum can be performed to obtain the Radial Distribution

Function (RDF).

3.2.3 The electron spectrometer

The intensity of the various electrons, i.e. those transmitted without loss of energy and

those that have been inelastically scattered and lost energy, is obtained by dispersing

the electrons with a magnetic prism, which separates spatially the electrons of different

energies. This is the main feature of an electron spectrometer.

Several types of electron spectrometers are curently in use: the sector magnet spectrom-

eter, the Castaing-Henry prism, the Ω filter and the Mollenstedt analyser. The sector

magnet spectrometer is the most commonly used as it can be easily fitted to any TEM

column. It consists of a sector magnet generating a homogenous magnetic field normal

to the electron beam. According to the Lorentz equation, this causes the electron to

bend with a radius R where R=mv/eB due to the magnetic force F defined as F=Bev

where v is the electron velocity, B the magnetic vector value and e the electron charge.

Therefore, electrons with different kinetic energies undergo a different Lorentz force

and hence emerge from the spectrometer spatially dispersed. The object plane of the

spectrometer is either the final projector crossover in TEM mode or the virtual image of

the specimen in STEM mode. The spectrometer has a focusing action which results in the

formation of a line spectrum at the spectrometer image plane and can be thought of as an

optical component with its own properties and aberrations. Such aberrations have to be

corrected by the user through quadrupole and sextupole magnetic lenses at the entrance

and exit faces of the magnet. At the image plane is an array of silicon photodiodes where

the whole spectrum is recorded at once in parallel. Like any other photodiode, they need

to be calibrated before exposure to electron radiation. A schematic of a sector magnet

spectrometer is shown in Fig. 3.4.
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Figure 3.4 Schematic of an EELS spectrometer (sector magnet type) mounted on a
TEM/STEM column. The spatial dispersion of different electron energies is obtained
with a uniform field sector magnet resulting in the formation of a line spectrum at the
spectrometer image plane.

3.3 Parameters affecting chemical microanalysis

3.3.1 Parameters affecting EDX experiments

3.3.1.1 Energy resolution

The FWHMs of the peaks give the energy resolution of the experiment. Depending on

the element, the typical resolution of an EDX detector (Si-Li) is around 130 eV. This

rather “poor” energy resolution arises from the statistics of electron-hole pair production

and electronic noise in the processing chain.

3.3.1.2 Spatial resolution

EDX when performed in a TEM operating in STEM mode allows nanoanalysis to be

performed at a much higher spatial resolution than in conventional imaging mode

(smaller interaction volume) resulting from the combination of a very small electron

probe of diameter d (about 1 nm width in STEM mode) and a very thin specimen limiting

(high-angle) elastic scattering (beam spreading b). d is defined as the FWHM of the

Gaussian electron density which can be experimentally measured from the viewing

screen. The beam spreading/broadening b caused by elastic scattering is described

by [142]:

b = 0.198× (
ρ

A
)0.5(

Z

E0

)× t3/2 (3.5)
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where Z is the atomic number, E0 is the incident beam energy, ρ is the density, A is the

atomic weight and t is the foil thickness. It is worth noting the strong dependence on t.

A calculation shows that at 100 keV, a 100 nm thick sample (the typical thickness of a

TEM sample) gives a beam broadening of the order of 10 nm. This is rather significant

when small electron probes of a few nanometres diameter are used. Beam spreading can

be restricted by making the specimen thickness no greater than a few times the elastic

mean free path. In crystalline specimens, b can also be limited by orienting it in such a

way that electron channelling down atomic columns occurs [143]. By combining d and

b, it is now possible to come up with an expression [144] describing the diameter R of

the interaction volume midway through the foil:

R =
Rmax + d

2
(3.6)

where
Rmax = (b2 + d2)1/2 (3.7)

is the width of the broadened beam at the exit surface of the specimen.

In a bulk specimen such as those analysed in a SEM, it is the contrary: the dimension of

the beam-specimen interaction dominates over the incident beam diameter. Not only is

the beam larger (about 10-100 nm) but also and more importantly, the electron beam

spreads out in a pear-shaped ”interaction volume” below the sample surface due to

elastic and inelastic scattering.

The radius R of the interaction of the interaction volume from which X-Rays are generated

is defined as [145]:

R(µm) =
0.068

ρ
× (E1.68

0 − E1.68
c ) (3.8)

where ρ is the material density, E0 the incident beam energy (keV) and Ec is the critical

excitation energy for the characteristic X-Ray of interest.

3.3.2 Parameters affecting EELS experiments

3.3.2.1 Energy resolution

The overall energy resolution is mainly a function of the type of electron source, filament

emission current, the spectrometer resolution, external fields and the energy dispersion
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at the detector [146]. It is conveniently given by the FWHM of the ZLP for a given

experiment.

3.3.2.2 Spatial resolution

In STEM mode, the spatial resolution is determined by eq. 3.6. As discussed previously,

elastic scattering causes a broadening (b) of a focused electron probe, by an amount that

increases with specimen thickness eventually limiting the spatial resolution of EDX. The

effective broadening is less for EELS if an angle-limiting aperture (an SAED aperture)

is used to eliminate electrons scattered through larger angles (in imaging or STEM

mode). In conventional diffraction mode, the area from which the spectrum is taken is

limited by the size of the selected area diffraction aperture (SAED). Nonetheless, the

precision of the area selected using the SAED aperture is strongly affected by spherical

and chromatic aberration of both the TEM objective and projector lenses. At last, in

imaging mode, the diameter D of the analysed area is governed by both magnification

M and entrance aperture radius R according to D=(2Rhv)/(Mha) where hv and ha are

respectively the distance from the projector lens to the viewing screen and spectrometer

entrance aperture [146].

3.3.2.3 Signal-to-noise ratio (SNR) and Signal-to-background ratio (SBR)

The SNR or fractional noise is determined by the choice of a suitable detector integration

time before data read-out. The integration time is chosen according to the number of

electrons arriving at the detector. It is determined by the number of electrons falling on

the anlaysed area which is related to: the incident beam energy, the brightness of the

source, the emission current, the size of the condenser aperture and the collection angle.

The SBR is dependent on the thickness and the collection angle as discussed below and

should increase with the accelerating voltage. The SBR is also known as the “jump ratio”

(see Fig. 3.5).

3.3.2.4 Collection angle

The collection angle should be chosen to ensure that the optical dipole selection rule is

respected. It is so when collected electrons have transferred minor momentum (h̄.−→q ∼0

where−→q =
−→
k0-
−→
kf ) upon collison with specimen outer shell electrons, limiting the observed

electronic transitions to those in which the angular momentum quantum number (l)

changes by ±1. Typical collection angles of 10 mrads are used in the high loss regime

while smaller collection angles (5 mrads<) are used in the low loss region, in particular
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Figure 3.5 Definition of the jump ratio of an ionisation edge. For information, it should
be about 5-10 at the carbon K ionisation edge provided the EELS system is aligned
correctly [132].

if dielectric data are acquired. These selection rules originate from restrictions imposed

on matrix elements of the electric-dipole operator [146].

3.3.2.5 Deconvolution procedures

With increasing sample thickness, there is an increasing probability of multiple inelastic

scattering. This constitutes noise and can mask features in the spectrum. It is however

possible to remove this multiple inelastic scattering by Fourier transform deconvolution.

Two techniques are routinely employed depending on the energy-loss range [137]:

• Fourier-log method

• Fourier-ratio method

Fourier-log deconvolution is usually applied to low-loss spectra while the Fourier-ratio

method is more suitable for high loss spectra [147]. If the specimen thickness is greater

than 1 IMFP, the multiple scattering has appreciable intensity and gives rise to a redistri-

bution of counts within the spectrum making features like ELNES or EXELFS difficult

to observe. This redistribution of counts can be counteracted by deconvolution pro-

cedures like the Fourier-Ratio or Fourier-Log routines detailed. In addition, it is also

necessary to deconvolute either an experimental spectrum (recommended) or a modeled

zero-loss peak (ZLP) to suppress the effects of the ZLP tail on the spectrum. As with all

deconvolution procedures, some noise added to the spectra is unavoidable.

3.3.2.6 Relativistic effects

Relativistic effects, also known as retardation effects, are not widely discussed in the

literature. Among those are Cerenkov radiation which gives rise to an additional loss
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visible on an VEELS spectrum as a bump, typically arising in the band-gap energy region

of common semiconductors (2 - 3 eV). This occurs as soon as the speed of the probing

electron exceeds the speed of light inside the probed medium [148] ( i.e. v>c0/n, n

being the refractive index). Consequently, the VEELS spectrum is spoiled by effects

which do not purely stem from the interaction beam/specimen impacting negatively on

the accuracy at which band-gap measurements can be performed affecting eventually

Kramers-Kronig analysis results. A few possibilities exist to circumvent such losses:

• decrease the accelerating voltage

• record VEELS spectra with a non-zero momentum transfer (−→q 6=0)

• use the difference method described in [149]

The first method is the easiest but is not always experimentally possible (the EELS

spectrometer may need some realignment at lower accelerating voltage). The second

one is also experimentally difficult but for another reason: the intensity is very weak

making the acquisition time much longer. More importantly, optical data from such

spectra acquired under those conditions cannot be compared with the standard optical

method where −→q ∼0. The third method is the most versatile. The user can still derive

optical data from EELS measurements even if decreasing the accelerating voltage is

impossible.

3.3.3 Parameters affecting both EELS and EDX experiments

3.3.3.1 Contamination

Specimen contamination in the electron microscope is a complicated process [150]

and is not always well understood. The microscope itself is not really a detectable

source of contamination, but dirty specimens definitely are. The contamination of

specimens in the electron microscope is due to a complex process involving adsorption

of impinging molecules, subsequent migration of the molecules across the surface and

finally conversion to carbon film by ionisation and polymerization [151]. This problem

of contamination in the normal operation mode of a TEM can be ameliorated by the

use of a specimen cold stage. It acts in reducing the partial pressure of hydrocarbons

in the vicinity of the specimen [150] and in preventing the build-up of carbonaceous

contamination under a small probe by slowing thermally activated hydrocarbon transport

across the specimen sufaces. Contamination is an important issue when very small beam

diameters are used, as for example in STEM mode [152]. It has been shown that the

kinetics of contamination build up depend solely on the beam size (the smaller the
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beam, the faster the build up) and not on the current density of the probe [153]. Dirty

specimens can also be cleaned by baking in the microscope [154] but this is not always

experimentally feasible. A high level of contamination can not only affect the final

results but also the spatial resolution of chemical microanalysis since beam spreading in

surface contamination layers will also occur with dirty specimens. Such a layer creates an

interface with the specimen which could give rise to interface/surface plasmons spoiling

EELS spectra.

3.3.3.2 Radiation damage and surface sputtering

In most organic and some inorganic materials, the practical limit to spatial resolution is

set by radiation damage. The main damage mechanism is radiolysis or ionisation damage

which involves the breaking of chemical bonds as a result of inelastic scattering. Such

damage occurs even for low-energy incident electrons as those used in High Resolution

Electron Energy Loss Spectroscopy (HREELS) [155]. For metallic and semi-metallic

specimens, there is no radiolysis but displacement damage (due to elastic scattering)

occurring at high radiation dose above a given displacement energy threshold Td (10-30

eV range). It arises through a knock-on momentum transfer from the incident electrons

to atomic nuclei and results in permanant displacement of the atom from its original site.

The energy transferred (TT ) to an atom by a fast incident electron of mass m0, is given

by the expression [156]:

TT =
2E0(E0 + 2m0c

2)sin2(φ/2)

Mc2
(3.9)

where E0 is the kinetic energy of the incident electron, M is the mass of the nucleus, c is

the speed of light and φ is the scattering angle.

The displacement of surface atoms, i.e. surface sputtering at the exit surface of a solid,

has an even lower energy threshold Ts [157](5-10 eV range). Surface sputtering can

become an issue as the specimen thickness decreases which is often wanted for the

best images and chemical microanalysis spatial resolution. It can induce changes in the

surface chemistry and affect quantitative microanalysis. Sputtering is expected to be

quite rapid in a focused aberration-corrected electron probe, where the current density

can exceed 106 A.cm−2 . Table 3.6 [1] lists some value of TT , Td and Ts for several

atoms.
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Figure 3.6 Typical sputtering and displacement energy thresholds (eV) at different
accelerating voltages [1].

3.4 Summary of the project

This project will detail electro-optical properties of ITO thin films deposited by PLD under

different growth conditions in two different chambers. The thickness, the substrate

temperature and the oxygen temperature are varied independently. This enables the

determination of sets of optimal growth conditions.

However, this study will give more emphasis on the microstructure rather than on only

optimising electro-optical properties. A variety of microstructures can be generated by

these different growth conditions which in turn give rise to various physical properties.

This link is rarely studied and yet, it is essential to achieve good electro-optical properties.

This is what this study is intending to do.



Chapter 4

Experimental method
A description of the experimental techniques and methods will be given in this chapter.

Since the project extends from thin film deposition to thin film characterisation, a wide

range of techniques were used. They will be described briefly except where particular

experimental difficulties were encountered.

4.1 Pulsed Laser Deposition

During the course of the project, two different chambers with a slightly different set-up

were used as illustrated in Fig. 4.1.

Figure 4.1 The two different PLD set-ups used during the course of the project.

Both chambers are manufactured by Neocera, a US based company. The ”first” and

”second” chamber is simply the chronological order. They will be referred as “chamber 1”

and “chamber 2” in the rest of this thesis. Fig. 4.1 illustrates and Table 4.1 sums up the

differences between chambers 1 and 2.

In chamber 1, the starting deposition parameters were chosen from previous work at

the University of Birmingham [8]. A slightly different set of optimal growth parameters

was found. “Optimal” parameters were defined in terms of the highest [Transparency

over the visible range]/[resistivity] ratio of the thin film obtained. They are presented in
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Table 4.1 Experimental differences between chamber 1 and 2. “Bottom” refers to the
bottom of the deposition chamber where pumping takes place.

Chamber 1 Chamber 2
Oxygen input Bottom Directly onto the substrate via a nozzle

Oxygen pressure measurement Top Bottom
Lateral beam scan Yes No

Table 4.2. Initially, optimal experimental parameters found in chamber 1 were directly

transposed to chamber 2. Owing to the slightly difference set-up presented in Fig. 4.1,

the parameters were refined. They are also listed in Table 4.2.

Table 4.2 Optimal conditions used in chambers 1 and 2. Conditions from previous
work [8] are also shown.

Parameter Chamber 1 in [8] Chamber 1 Chamber 2
Oxygen pressure (mT) 10 10 5

Substrate temperature (◦C) 300 200 200
Distance target-substrate (mm) 63 63 63

Number of pulses 5000 5000 5000
Energy density (J/cm2) 14 7.5 10

The oxygen flow rate and pumping speed were identical in both chambers. The ITO films

were deposited on 1.1 mm thick glass (Corning 1737) substrates (10×10 mm). Corning

1737 is an Alkaline Earth Boro-Aluminosilicate glass type with a very low content of

alkaline ions. This is relevant since such ions can diffuse into the thin films at high

temperature and ruin its electrical properties. Boro-Aluminosilicate glass is mainly

composed of silica (70 - 80 %), boric oxide (B2O3) and aluminium oxide (Al2O3). Boron

gives greater resistance to thermal shock. These substrates were ultrasonically cleaned

using HCl, deionized water, acetone and ethanol sequentially and mounted on a heater

with silver paint to ensure good thermal contact. Before depositions, the substrate was

kept one hour at a given Ts to ensure that the temperature on the substrate surface is

about the same as the one on the thermal heater, i.e. thermal equilibrium is reached.

This is important since glass has a low thermal conductivity. The target supplied by

π-Kem and manufactured by LTS (Chemical) via Hot Isostatic Pressing (HIP) resulting

in a 2 cm diameter sintered ceramic in a slightly reduced oxygen atmosphere. It is

composed of 90 wt.% In2O3 and 10 wt.% SnO2, which corresponds to 17 mol % SnO2,

or to a 9.2% contribution of Sn to the total cation content ([Sn]/([Sn]+[In])). It is of

high density and purity (>99.9%). The exact same target was used in both chambers.

The latter was ablated by a 248 nm KrF excimer laser (Lambda Physik LPX 300).
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Energy density (Ed) is a fundamental parameter in PLD thin film growth. The laser

energy inside the chamber and the laser beam area on the target were thus carefully

monitored prior to each deposition. The laser was focused onto the target within the

vacuum chamber through a quartz glass window using a spherical lens with a focal

length of 30 cm. The beam was incident at an angle of 45◦ on a rotating target at 10

rpm. Target rotation was necessary to avoid creating craters on the surface, to maximize

material utilization and to produce homogeneous films over a large area. In addition,

the laser beam was rastered over the target in chamber 1. Prior to each deposition, the

target was polished and pre-ablated with 750 pulses to remove any contaminant from the

surface. A base vacuum of less than 10−5 Torr was assured by means of a turbomolecular

pump. During deposition, oxygen ambient gas was introduced into the chamber to

maintain the desired oxygen pressures. The oxygen flow was left on after the deposition

and the sample was left to cool to RT at a cooling rate of 3◦C/min prior to removal. 5000

laser pulses were fired onto the ITO target. This ensured 250 nm ± 20 nm and 320

nm ± 20 nm thick films in chambers 1 and 2 regardless of the substrate temperature.

However, pulse numbers were adjusted accordingly when P (O2) was varied. No post

deposition heat treatment was performed on any of the films reported in this study.

4.2 X-Ray Diffraction

X-Ray diffraction is a powerful non-destructive technique to determine the crystal struc-

ture of materials. Two different X-ray set-ups were used: a classical θ/2θ Bragg-Brentano

and a glancing angle geometry.

4.2.1 Bragg-Brentano geometry

X-Ray diffraction was primarily used to characterize the crystal structure of the films

immediately after deposition and was performed on a conventional Bragg-Brentano

(θ/2θ) diffractometer (Philips PW 1120) with CuKα radiation (1.54 Å). The spotsize

on the sample was about 4 mm2. Constructive interference of the radiation reflected

from successive planes occurs whenever the path difference is an integral number n of

wavelengths λ. Thus the condition for constructive reflection of the incident radiation

and appearance of a peak is:

2dsinθ = nλ (4.1)

This equation is known as Bragg’s law where d is the lattice inter-planar spacing, λ the
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wavelength of the incoming X-ray beam, θ the angle of diffraction and n is an integer.

XRD peaks were fitted with a Gaussian profile with Origin 6.1 in order to obtain precise

peak parameters such as peak position (related to interatomic spaces) and peak width or

FWHM (grain size, strain, crystalinity information). Finally, the preferred orientation of

the thin films was qualitatively evaluated by calculating the texture coefficient (TChkl):

TC(hkl) =
I(hkl)∑n

i=1 In(hkl)
(4.2)

where I(hkl) is the measured intensity of a particular (hkl) plane, In(hkl) is the intensity

of the nth peak and n is the number of significant peaks observed in the corresponding

diffractogram.

4.2.2 Glancing angle X-Ray Diffraction (GAXRD)

For thin film studies, the “conventional” Bragg-Brentano X-ray diffraction geometry is

not always adequate when studying possible other phases or particular peak shapes, for

example. This is partly because of the presence of the interfering effect of the substrate

giving rise to an amorphous signal which could mask low intensity features. A useful

geometry is therefore based on a low (up to a few tens of degrees) X-ray incidence angle,

so as to make sure a greater proportion of the signal stems from the thin films alone rather

than the substrate plus the thin film. Many thanks to Dr. Blackburn (Physics department,

the University of Birmingham) for the opportunity to use the GAXRD diffractometer

(Siemens D5000). CuKα1 radiation (1.54 Å) were selected and focused by a Ge (111)

monochomator. The geometry of such measurements is shown in Fig. 4.2.

Figure 4.2 Principle of GAXRD: parallel, monochromatic X-Rays fall on a sample
surface at a fixed angle of incidence (α) and the diffraction profile is recorded by detector
scan.

The penetration depth of the X-Rays is defined as the length at which the field has fallen
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by a factor e−1. It is a function of the incidence angle α. The lower the incidence angle,

the lower the penetration depth. Such values were obtained from the Center for X-Ray

Optics (CXRO) [158]. Peak shape versus thickness probed was investigated via different

glancing incident angles from α=0.5 to 20◦.

4.3 Electron Microscopy

4.3.1 Transmission Electron Microscopy (TEM)

4.3.1.1 The instrument

An electron micoscope consists of an electron gun and an assembly of lenses all enclosed

in an evacuated column. Electrons are charged particles and interact strongly with

matter, thus generating a wealth of signals (see Fig. 4.3) all giving specific information

about the material under investigation.

Figure 4.3 Signal generated when a high-energy beam of electrons interacts with a
thin specimen. Taken from [138].

TEM imaging and chemical microanalysis were performed on an FEI Tecnai F20 FEG

and a Philips CM20 microscope both operating at a beam voltage of 200 kV. TEM

can be operated in image and diffraction modes and both modes give complementary

information.

Prior to introduction of the sample into the TEM column, it was cleaned by a Fischione

Oxygen/Nitrogen plasma cleaner for five to ten minutes to remove contaminants.
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4.3.1.2 EDX analysis

EDX analysis was performed on an FEI Tecnai F20. Spectra were acquired using a large

area (80 mm2) X-Max Silicon Drift Detector (SDD) manufactured by Oxford Instruments

and interfaced to INCA software. The higher capture angle (or solid angle) corresponding

to a large area detector makes possible many more counts than the “classical” 10 mm2

Si(Li) detector. In addition, its design enables unlimited count rates. More accumulated

counts improve very much the statistics of each measurement and make quantification

of low concentration elements like Sn in this project more accurate.

Spectra were acquired in STEM mode. The objective aperture was removed during

analysis. The microscope was operated with a clean, top-hat C2 diaphragm (30 µm

diameter). Prior to each analysis, it was ensured that the hole counts from stray radiation

from the illumination system were negligible over the energy range of interest (0 - 40

keV). The specimen was tilted to 17◦ and an extraction voltage of 4400 V was used.

Since sample thickness and roughness affect the measured X-Ray intensity owing to

variations in the path lengths of X-Rays emerging from the sample on their way to the

detector, relative and absolute sample thicknesses were carefully monitored by EELS

measurements to compute an absorption correction factor.

Table 4.3 sums up the experimental conditions used when acquiring EDX spectra in

image and STEM mode.

Table 4.3 Conditions used in acquiring EDX spectra in STEM mode. The specimen was
tilted to 17◦ and the display resolution was 20 eV/ch over a 0 - 40 keV energy range.

Microscope parameters STEM mode
Condenser aperture size (µm) 30

Extraction voltage (V) 4400
Count rate (cps) 3200

Acquisition time (live time) (s) 200

EDX spectra were generated from In2O3 and SnO2 nanopowder specimens manufactured

by Alpha Cesar. Their characteristics are listed in Table 4.4. Standard In, Sn and O

profiles were made from these spectra to replace the standard profiles initally stored in

the software element library.
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Table 4.4 In2O3 and SnO2 nanopowder characteristics used as standard specimens.

In2O3 SnO2

Purity (%) 99.994 99.996
Formula weight (g/mol) 277.64 150.69

Melting point (◦C) 850 1630
Density (g/cm3) 7.18 6.09

Quantifying EDX results also requires careful determination of sensitivity factors or

“k-factors” (see section 3.1.3.1). A typical k-factor determination involves taking many

spectra from different parts of a specimen to check both the chemical homogeneity and

the stability of the specimen under the beam. It was also ensured that there were enough

counts (a few tens of thousands typically) in each peak for good count statistics. In order

to determine k(In), k(Sn) and k(O), In2O3 and SnO2 nanopowder specimens were used.

Spatial resolution was not in that case at all an issue so that the beam was not fully

focused during analysis. Indium was always chosen as the ratio standard element, hence

k(In)=1. In the first place, k(O) was measured from the analysis of In2O3. Then, k(Sn)

was measured from SnO2 using the previously measured k(O). K lines were used for

quantification. As mentioned by Bellingham et al. [159], one must be careful about the

absorption correction on oxygen as the oxygen content varies (change in density of the

films).

A large number of spectra were acquired in image mode from different nanoparticles

to ensure they were chemically homogeneous over large areas. The thickness of the

analysed area calculated via EELS was in the 60 - 70 nm range and the density was

known in each case. This enabled correction of the k factors for X-Ray absorption in the

In2O3 and SnO2 specimens. Each measurement corresponded to a different area. The

exact same experimental conditions were used for all the measurements. Finally, it was

ensured that several measurements made at the exact same place gave the same results.

The results of the k factor measurements are listed in Table 4.5.
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Table 4.5 k(Sn) and k(O) sensitivity factors measured from EDX spectra generated
from In2O3 and an SnO2 nanopowder specimens. The analysed area were 60 - 70 nm
thick. This value was fed in the INCA software to account for X-Ray absorption in the
In2O3 and SnO2 layers on the way to the EDX detector. Indium was chosen as the ratio
standard element: k(In)=1.

In2O3 SnO2

Area number k(O) k(Sn) using k(O)=0.07
1 0.07 1.2
2 0.06 1.1
3 0.08 1.4
4 0.06 1.3
5 0.10 1.2
6 0.07 1.2
7 0.08 1.4
8 0.05 1.3
9 0.09 1.2

10 0.05 1.5
Average 0.07 1.28

Standard deviation 0.02 0.12

Based on Table 4.5, k(Sn)=1.28 and k(O)=0.07 were used for TEM EDX quantification

analysis in this study.

4.3.2 Scanning Electron Microscopy (SEM)

4.3.2.1 The instrument

A scanning electron microscope (JEOL 7000, Fig. 4.4) was used to study the surface

morphology and chemistry of the films.

Figure 4.4 Scanning Electron Microscope JEOL 7000 at the University of Birmingham.

When the samples were very smooth and hence with low topological contrast, they were
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tilted to the maximum angle experimentally possible (5◦) with respect to the incident

electron beam and the working distance was decreased to 6 mm from 10 mm (default

setting). The samples were all mounted on metallic SEM stubs with double-sided sticky

tape. Silver paint was used to provide a path for the electrical current from the surface

down to the metallic stub, thus preventing charging of the specimen. Prior to introducing

the specimen into the SEM column, the surface of the specimen as well as that of the

SEM stub was cleaned with ethanol. Spatial resolution can deteriorate drastically by

contamination of the specimen, and/or apertures. Contamination results when the beam

interacts with organic volatiles (from oil diffusion pumps, rubber vacuum seals, vacuum

grease, fingerprints and samples) and causes them to polymerize. Polymerization occurs

primarily where the beam is most intense (crossover points), such as at the apertures

and above all, on the specimen.

4.3.2.2 EDX analysis

All the EDX analyses were performed on the JEOL 7000. INCA software was used to

acquire and process the EDX spectra. The following X-ray lines were used for quantifi-

cation: In L (3.2870 keV), Sn L (3.4440 keV) and O K (0.5249 keV). The overvoltage

parameter, U=E0/Ec must obviously exceed unity for any X-ray generation to take place.

(E0 is the incident beam energy and Ec is the minimum energy for X-ray generation from

a given line). In fact, a value of at least U=2 is desirable [134]. Hence, the microscope

was operated at 7 kV resulting in a 96 µA current. This choice was motivated by Monte

Carlo simulations of the electron trajectories inside the specimen and above all, the

intensity of the detected oxygen X-ray versus depth at 7 kV, since the substrate also

contains oxygen. The simulations were performed using CASINO version 2.42 [160].

The model consisted of an Indium Oxide (In2O3) layer (thickness 250 nm - chamber 1

and 350 nm - chamber 2) on top of a semi-infinite Alkaline Earth Boro-Aluminosilicate

glass substrate. The densities were respectively 7.18 g/cm3 and 2.40 g/cm3. The initial

beam diameter was 10 nm. The results are presented in Figs. 4.5 and 4.6.

The intensity of the detected oxygen X-ray versus depth at a beam voltage of 7 kV is

presented in Fig. 4.7.
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Figure 4.5 Monte Carlo modelling of beam trajectories in an In2O3 layer with total
thickness 250 nm on a glass substrate at an accelerating voltage of 7 kV. 300 trajectories
are represented. Backscattered electrons are represented in red.

Figure 4.6 Monte Carlo modelling of beam trajectories in an In2O3 layer with a total
thickness 350 nm on a glass substrate at an accelerating voltage of 7 kV. 300 trajectories
are represented. Backscattered electrons are represented in red.

Figure 4.7 Detected X-ray intensity versus depth for oxygen (K line) at an accelerating
voltage of 7 kV. Results are derived from previous Monte Carlo modelling for an In2O3

layer with total thickness of 350 nm on a glass substrate.
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The Monte Carlo simulations (Figs. 4.5 - 4.6) and Fig. 4.7 confirm that the influence

of the substrate is minimal (in terms of oxygen contribution) at both 250 and 350 nm,

provided an acceleration voltage of 7 kV is used. This was confirmed by the absence of

Silicon peaks.

The working distance (the distance of the sample from the objective lens) was kept at 10

mm due to EDX detector - sample stage geometry constraints. A highly polished surface

is required for accurate quantitative analysis, since surface roughness would cause undue

random absorption of the generated X-ray signal, which is impossible to account for

in the quantification procedure. Nonetheless, all our ITO thin films were sufficiently

smooth (a few nanometres roughness) that such an effect could be neglected.

Prior to each measurement, the system was optimised (“quant optimisation” option

in INCA software) since ambient temperature changes can alter the gain/exact peak

positions of the system and the microscope beam current varies with time. It was

performed via the acquisition of a spectrum from a pure titanium sample.

The default standard In, Sn and O peaks used during the quantification procedure

(matching process) were replaced by In, Sn and O peaks acquired experimentally from

InAs, pure Sn and Al2O3 standard specimens respectively. Hence, InAs, Sn and Al2O3

were used as chemical standards.

The bulk ITO target was not used as a chemical standard because its composition was

not exactly known. Finally, when Sn is in solid solution in the In2O3 matrix, ITO can be

written as In2−xSnxO3. Hence the nominal (In+Sn)/O atomic ratio should be 0.66. With

10 wt.% of SnO2 in the matrix, the nominal In/Sn atomic ratio was calculated to be 9.85.

4.3.2.3 EELS measurements

EELS measurements were performed with a Gatan 666 parallel electron energy-loss

spectrometer attached to an FEI Tecnai F20 Schottky field emission gun transmission

electron microscope, which offers an energy resolution of 0.8 eV when operating at 200

keV (University of Birmingham). Another set of EELS measurements was performed at

Daresbury in the SuperSTEM laboratory (University of Liverpool). Measurement details

are presented in the next two paragraphs.
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4.3.2.3.1 Measurements at Birmingham The spectrometer consists of a magnetic

prism spectrometer where aberrations are corrected using quadrupole and sextupole

lenses through the Gatan EL/P software (version 3.0). The microscope was operated in

conventional diffraction mode. Only low loss spectra were acquired (0-50 eV). Operating

in conventional diffraction mode presents two advantages:

• large enough area can be selected (up to a few hundreds of microns square)

• reduced problem associated with chromatic aberration in the objective and projec-

tor lenses which can result in differing collection efficiencies at different energy

losses [146].

• the acceptance angle β is easy to compute.

In diffraction mode, the spectrometer object is the demagnified image of the specimen in

the final projector lens and so the spectrometer is said to be image coupled. The angle

of acceptance at the specimen, β, is defined by the radius of the spectrometer aperture,

R, which was selected to be 1 mm. For inellastically scattered electrons in conventional

diffraction mode, β is defined as:

β =
hVR

hAL
(4.3)

where L is the camera length (for the viewing screen) and hV and hA are the distances

from the projector lens crossover to the viewing screen and spectrometer entrance

aperture respectively. In an FEI Tecnai F20, hV
hA

=0.718. L was chosen to be 150 mm

giving β=4.78 mrads ensuring the dipole selection rule to be verified.

The area from which the spectrum is taken is limited by the size of the selected area

diffraction aperture (SAED). The smallest aperture was chosen (10 µm diameter). It

is large enough to select several grains/crystallites and associated defects but not too

large to select an area where the thickness would not be uniform resulting in less

precise deconvolution/background removal procedures. However, the precision of the

area selected using the SAED aperture is strongly affected by spherical and chromatic

aberration in both the TEM objective and projector lenses. It was not an important

issue in this work since “any” area containing a few tens of grains/defects could be

selected. The extraction voltage was reduced down to 3800 V to reduce the electron

energy spread and hence improve energy resolution. No drift or contamination problems

were ancountered as the beam was spread (conventional diffraction mode). The smallest

condenser aperture was generally used for several reasons:
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• Degree of beam coherency was improved.

• Effective removal of stray scattering which can contribute artefacts to the EELS

spectrum.

Table 4.6 sums up the experimental conditions used when acquiring low-loss spectra.

Table 4.6 Experimental conditions used acquiring low-loss spectra in conventional
diffraction mode.

Condenser aperture size (µm) 30
Entrance aperture radius (R) (µm) 1

Camera length (mm) 150
Collection angle (mrads) 4.78
Energy resolution (eV) 0.9/1

4.3.2.3.2 Measurements at Daresbury The SuperSTEM used (“SuperSTEM 1”) is

based on the Cambridge VG HB 501 dedicated STEM and has Quadrupole-Octupole

corrector retrofitted within the column. It enables electron-optic aberrations up to 3rd

order to be corrected. Spatial resolution up to 1Å and 0.3 eV energy resolution on a

UHV ENFINA spectrometer were achieved. The microscope was operated at 80 kV (cold

FEG emitter) to circumvent any Cerenkov radiation spoiling low-loss EELS spectra in

TCO materials. A probe semi-convergence angle of 20 mrads was used after aberration

correction. The acceptance angle β was chosen to be 6 mrads for consistent Kramers-

Kronig analysis. Prior to introduction inside the column, the sample was baked at 100◦C

for one hour to remove any residual contaminants. The EELS spectra were all corrected

for dark-current and readout noise.

4.4 Atomic Force Microscopy (AFM)

A Dimension 3100 nanoscope AFM (Veeco, UK) was used to study further surface

morphology and roughness. Its principle is shown in Fig. 4.8.

It operates Nanoscope v5.12 software for both real-time analysis and post-capture image

processing. The AFM was housed on vibration isolation tables and all images were

acquired while operating in Contact Mode under ambient conditions, using triangular

pyramidal-tipped Si3N4 cantilevers (DNP-S, Veeco, UK) with nominal spring constants

of 0.58 N.m−1 and nominal tip diameters of 20 nm. Contact mode alows direct sur-

face profiling by scanning a tip (Si3N4), capable of following topology at atomic-scale

resolution. It does so by using a sharp tip mounted on a flexible cantilever. When

the tip comes within a few Å of the sample’s surface, repulsive Van Der Waals forces
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Figure 4.8 Atomic Force Microscope principle. Illustration of the feedback loop [161].

between the atoms on the tip and those on the sample cause the cantilever to deflect.

This deflection is monitored by a laser beam falling on the cantilever and reflected onto

a position-sensitive photodetector (PSPD). A feedback loop is then formed making the

force applied to the cantilever constant. The level of contamination can be important

causing image acquisition to deteriorate if no caution is taken. Therefore, each sample

was cleaned with ethanol and blown dry with nitrogen gas prior to analysis. Samples

were mounted on an SEM stub with with double-sided sticky tape. The roughness of the

film can be calculated from the AFM image. The Root Mean Square (RMS) roughness is

the standard deviation of the Z values within a given area [162].

RMS(mm) =

√∑N
j=1(Zj − Zm)2

N − 1
(4.4)

where Zm is the mean surface level within a given area, Zi is the current Z value and N is

the number of pixels (related to the number of measurements) within a given area.

4.5 TEM sample preparation

TEM preparation from ITO coated onto a glass substrate is challenging due to the nature

of glassy materials: cracks inititate very easily and ion milling causes significant heating

during the process owing to the low heat conduction of such materials. Specimens were

prepared for both plan-view and cross-sectional TEM mainly by the wedge polishing

method. When necessary, ion beam milling was used for cleaning purposes. There-

fore, only the wedge polishing method will be detailed. A tripod polisher (South Bay

Technology - Model 590) on which the specimen was mounted with glue was used. A
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lapping machine (South Bay Technology) was also used for the polishing. Fig. 4.9 is an

illustration of the tripod polisher used.

Figure 4.9 Tripod polisher - South Bay Technology - Model 590 [2].

For plan-view samples, a set of six diamond films with roughnesses of 30, 15, 6, 3, 1

and 0.5 microns were used sucessively to polish the sample down to a few hundred

nanometres. Each step of the polishing should remove the scratches from the previous

one. The final stage involved the use of silica solution (Syton) on a velvet cloth. This step

is sometimes called chemical mechanical polishing (CMP). Syton HT-50 manufactured

by Testbourne Ltd. is a solution of colloidal silica with particles ranging from 0.02 to

0.05 micrometres. The sample was removed from the tripod by dipping in acetone (∼20

minutes). It was then glued onto a copper grid. Post-cleaning can be critical and essential

after colloidal silica polishing. Plasma cleaning in combination with ion beam milling

(low kV and sputtering angle, five minutes on both sides) were used for that purpose

when necessary. For cross-section sample preparation, the same process described above

was used except that both sides had to be polished to make the interface flat. Figs. 4.10

and 4.11 sum up the processes:

1. Make an angle by changing the leg graduations (Fig. 4.10)

Figure 4.10 Creation of an angle by wedge polishing.

2. Cut a part of the film with a diamond saw into small pieces of approximately 1×3

mm. In order for this part to be representative of the film, it has to be in the middle
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of the sample (Fig. 4.11 1)).

3. Glue these two pieces with the film facing each other, thus making a ”sandwich”

(Fig. 4.11 2) and 3)).

4. Polish both sides of this “sandwich”.

5. One of the sides is polished down to electron transparency.

Glass
ITO

1 mm

3 mm

Glue

1)

2) 3)

Figure 4.11 TEM sample preparation: the main steps to make a cross section

An optical microscope was regularly used along with the interference fringe technique,

a well-established non destructive method [163], to control accurately the specimen

thickness during the thinning process. The appearance of black and white interference

fringes shows that the specimen thickness is no more than a few tens of nanometres

and hence electron transparent. The main advantage of the wedge polishing method

is that less structural damage is introduced using tripod polishing as compared to

ion milling [164]. By this method, one can get quite a large thin area and a clean

surface [165]. However, it is a very time consuming process and the failure rate can be

quite high.

4.6 Electrical measurements

4.6.1 Four point probe

The resistivity ρ was measured using a four-point probe. The principle of a Four-Point-

Probe is shown in Fig 4.12.
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Figure 4.12 Principle of four point probe measurements. A current (I) is passed
through two outer probes and the voltage (V) is measured between the inner probes
allowing the measurement of the film resistivity when its thickness is known.

A current is passed through through two outer probes and the voltage measured via the

inner probes, allowing the measurement of the film resistivity provided the thickness is

known. Measurements are made on finite sized areas and therefore correction factors

have to be used based on the sample geometry. This correction factor depends on the

sample thickness and edge effects (i.e. location of the probe on the sample). Correction

factors are well known and tabulated [166]. The resistivity ρ is given by:

ρ =
π

ln(2)
t(
V

I
)f1f2 (4.5)

where t is the film thickness, V the potential difference between electrodes 2 and 3 and I

the current between electrode 1 and 4. f1 and f2 are respectively a finite sample thickness

and sample width correction factors. The four-point-probe used has four tungsten carbide

tips at 1 mm spacing (s=1 mm). The lateral dimension was d=10 mm (size of the

specimen). Since d/s=10, a finite width correction f2 needs to be applied; according

to [166], f2=0.90. However, since t<<s, f1=1 (no correction needed).

4.6.2 Hall effect measurements

Hall measurements were performed at the department of Chemistry at the University of

Oxford. Special thanks are given to Dr. Kuznetsov for allowing me using the Hall effect

measurement set-up. If an electric current flows through a conductor in a magnetic

field, the magnetic field exerts a transverse force called a “Lorentz force” on the moving

charge carriers. This tends to push them to one side of the conductor. These charges

build up at the sides of the conductors and balance the magnetic influence, producing a

measurable voltage between the two sides of the conductor. The Hall voltage VH is given

by: VH = IB
Ned

where I and B are respectively the current and magnetic field intensity, N

is the density of mobile charges (holes or electrons), e is the electron charge and d is the
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film thickness (see Fig. 4.13).

Figure 4.13 Hall effect principle [3].

Thus, by measuring the Hall voltage VH and from the known values of I, B, q and d,

it is possible to determine the carrier density N. As for the Hall mobility, it is given by

µH = VH
RsIB

where Rs, the sheet resistance, can be determined using Ohm’s law Rs=V/I

(see Fig. 4.14).

Figure 4.14 Experimental set-up to determine the sheet resistance [3].

Therefore, the bulk resistivity ρ = Rsd can be calculated from Rs. Thus, in order

to determine both the carrier density N and the mobility µH = µ, a combination of

resistivity and a Hall measurements is needed: this is known as the Van Der Pauw

technique. Regarding the ITO sample, it was ensured that the average diameters of the

contacts and the sample thickness were much smaller than the distance between the

contacts. The contact made with indium metal has to be ohmic so as to obtain consistent

and reproducible measurements. The sample is mounted on a holder as shown in Fig.

4.15.
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Figure 4.15 Hall sample holder used for measurements. Contacts with the film were
made with indium and the wires were made of copper.

Previous formula were intially developed for single crystal materials where the Hall

mobility (µH) is set equal to the drift mobility (µd):

µH = rµd (4.6)

where r is a scattering factor which lies betwenn 1 and 2 [23]. The simplification r=1

is widely accepeted for polycrystalline and high carrier concentration specimens on the

basis that other uncertainties of interpretation are probably greater than any uncertainty

in r.

4.7 Optical measurements

The transmittance of the films was measured with a UV-visible spectrometer. An ellip-

someter was also used to derive optical constants like the refractive index and extinction

coefficient. More details are given in the following two sections.

4.7.1 UV and Visible Spectroscopy

Transmittance measurements were performed on a single beam Jenway 6315 UV/Vis

scanning spectrophotometer operating in the 198 to 1000 nm range. Wavelength

resolution and accuracy were respectively 1 nm and +/-2 nm. A 2 nm scan interval

was used. It consists of a light source (Xenon lamp), a monochromator (diffraction

grating to produce a range of wavelengths) and a detector (photodiode). “Direct”

transmittance was measured as no integrating sphere (measuring diffuse and hence

total transmittance) could be used with this set-up. Calibration was performed prior

to each measurement and consisted in taking a reference spectrum with no sample in

the measurement chamber. This process also enables residual noise to be effectively

suppressed. Finally, the transmittance value measured at a given wavelength for a sample

is compared with the transmittance through a reference sample (the air). Fig. 4.16
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shows how the different elements of a spectrophotometer are organised.

Figure 4.16 Schematic of a single beam spectrophotometer.

4.7.2 Ellipsometry

Ellipsometric measurements were performed at the department of Chemistry at the Uni-

versity of Birmingham. Special thanks are given to Dr. Bowen for all the measurements

presented in this study. A spectroscopic ellipsometer (Jobin-Yvon/Horiba, UK) operating

with DeltaPsi2 v. 2.0.8 software at an angle of incidence of 70◦ was used. The wavelength

range for the incident light was 250 - 800 nm (or 1.5 - 5 eV). All measurements were

made under conditions of ambient temperature, pressure and humidity. Precautions were

taken to avoid performing measurements on visibly defective locations on the sample (if

any).

The principle of the ellipsometer shown in Fig. 4.17.

Figure 4.17 Principle of spectroscopic ellipsometry: ellipsometry uses the change in
polarisation of light upon reflection from a material to determine optical constants like
the real part (refractive index n) and the imaginary part (extinction coefficient k) of the
complex refractive index of a material [167].

Linearly polarised light at non-normal angles of incidence becomes elliptically polarised

on reflection from the material with asymmetric intensity difference (tan(Ψ)) and phase
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difference (∆). The ellipticity, or ratio of minor to major axis of the ellipse, and the

orientation of the reflected beam are determined by the relative phase difference ∆ and

azimuth Ψ. These values are measured using ellipsometry and they are related to Rp
Rs

,

the complex ratio of the p- and s- polarized components of the reflected amplitudes

(complex Fresnel ratio):

tan(Ψ)e∆i =
Rp

Rs

(4.7)

The ellipticity of the reflected light depends on the optical constants of the thin film and

its thickness (i.e. SE is an indirect measurement technique.). It makes it a powerful

non-destructive technique to investigate accurately thin film optical properties (complex

refractive index nc/dielectric constant ε) and even non-optical properties (thickness or

roughness for example) down to a few Å. SE derives its sensitivity from the measurement

∆ which contains phase information.

Calculation of the film thicknesses was performed for each measurement, based on

a three-phase ambient/thin film/glass model, in which the thin film was assumed

to be isotropic and modelled using a simple classical layer model, with the initial

thickness varied using a multiguess iterative calculation procedure. Surface roughness

was not taken into account owing to the very smooth characters of the thin films under

investigation (a few nanometre RMS roughness). The correct interpretation of the

measured data (Ψ and ∆) relies on theoretical model fittings with sample structure and

optical/physical constants previously known (or guessed) by the user. Such a model

must be able to describe the interaction of light with the material under investigation.

Two models were used in this work: the Cauchy and Lorentz models. The thickness was

the by-product of these models and the fitted thickness was initially compared with the

measured one (direct measurements made under the SEM and/or TEM) to test how well

the simulations are reproducing the physical parameters.

4.7.2.1 The Cauchy model

For dielectric function modelling in a transparent region (ε2 or k∼0), the Cauchy (or

Cauchy absorbent) model is commonly used [168] and n(λ) and k(λ) are defined by:

n(λ) = A+
B × 104

λ2
+
C × 109

λ4
(4.8)

k(λ) = D × 10−5 +
E × 104

λ2
+
F × 109

λ4
(4.9)
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where A, B, C, D, E and F are fitting parameters and λ is the wavelength.

The real (ε1) and imaginary (ε2) parts of the dielectric function ε are obtained by data

conversion of (n,k) using the two following equations: ε1=n2-k2 and ε2=2nk

The fitting of the experimental data (ΨExp and ∆Exp) to the modelled outputs (ΨTheory

and ∆Theory) is done by minimizing the mean-square error (MSE) χ2 defined as:

χ2 =
1

2n−m− 1

n∑
i=0

[(tanΨi
Theory − tanΨi

Exp)
2 + (cos∆i

Theory − cos∆i
Exp)

2] (4.10)

where n is the number of Ψ/∆ pairs and m is the number of free parameters. The lowest

χ2 corresponding to the fitting process is taken as the correct model outputs.

4.7.2.2 The Lorentz model

The dielectric function ε of ITO can be divided, in most cases, into a number of terms

each representing different excitation mechanisms: ε=ε∞+εs+εFC+εV E where εFC and

εV E are the dielectric contributions of the valence electrons and free carriers, respectively.

εs/ε∞ is the low/high frequency dielectric constant and includes all other polarisation

processes at low/high frequency. The contribution of valence and free electrons can be

described respectively with Lorentz oscillators and a Drude term. The dielectric function

ε is expressed as:

ε = ε∞ + εs +
(ε∞ − εs)ω2

0

ω2
0 − ω2 + iγ0ω

+
ω2
p

−ω2 + iγDω
+

2∑
j=1

fjω
2
0j

ω2
0j − ω2 + iγjω

(4.11)

where ε∞ is the high frequency contribution to the dielectric constant, εs is the static

dielectric constant (material response to a static electric field), ω is the photon frequency,

ω0j is the jth resonant frequency, fj the jth oscillator strength, and γj is the jth damping

constant. ωp is the plasma frequency due to free carriers. The two Lorentzian oscillators

describe interband transitions while the Drude term describes the contribution of intra-

band transitions (free electron transitions in the conduction band). The fit parameters

in eq. 4.11 are ε∞, εs, ωtj and γj (including γD and γ0). The fitting of the experimental

data (ΨExp and ∆Exp) to the modelled outputs (ΨTheory and ∆Theory) is also done by
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minimizing the MSE χ2.

4.8 X-ray photoelectron spectroscopy (XPS)

The measurements were made at the department of Chemistry at the University of

Birmingham. Dr. Bowen is acknowledged for the measurements presented in this work.

XPS analysis of the thin films was performed using a custom-built instrument with an

Al Kα X-ray source, providing a monochromatic X-ray beam with an incident energy of

1486.68 eV in a vacuum of ∼ 1×10−8 mbar and with a circular spot size of ∼ 4 mm2.

Samples were immobilised onto stainless steel sample holders using double-sided carbon

sticky tape (Shintron tape, Agar Scientific, UK). X-Rays illuminate an area of a sample

causing electrons to be ejected with a range of energies and directions.

The electron optics consists of electrostatic lens units to collect a proportion of these

emitted electrons due to the X-Ray bombardment. They are transferred through the

apertures and focused onto the analyzer entrance slit. Electrostatic fields are established

to only allow electrons of a given energy (also called “pass energy”) to arrive at the

detector slits and onto the detectors themselves. Low resolution survey spectra were

obtained using a pass energy of 150 eV over a binding energy range from 0 to 1200 eV

in 1 eV increments. High resolution spectra were obtained using a pass energy of 20 eV

with 0.1 eV increments. A dwell time of 1 sec was employed when collecting data from

each binding energy increment for all measurements. Peaks were referenced to the C 1s

peak (286 eV) so as to correct eventual shifts due to carbon contaminated surfaces.
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Results

In this chapter, the physical properties of the pulsed laser deposited ITO films are

reported. These films were deposited under different experimental of conditions. One set

was deposited at different thicknesses (t), the second was deposited at various substrate

temperatures (Ts) and, in the third set, the oxygen pressure (P(O2)) was varied. Each of

the above sets occupies a section. For each of them, any microstructure change and its

relationship with physical property change will be systematically exposed and detailed.

During the second half of the project, another PLD chamber (referred to as “chamber

2”) was used along with a slightly different set-up. Results from this chamber will also

be presented and compared with the first chamber (“chamber 1”). Any differencies are

discussed. The chapter begins by discussing the influence of thickness and substrate

temperature before moving on to the influence of Oxygen pressure on microstructure

and physical properties.

5.1 Influence of thickness

5.1.1 Results from chamber 1

Thickness variation and its impact on electro-optical properties were studied in previous

work [8] in the department using films deposited in in chamber 1. A brief summary of

those results is given below. The interested reader is invited to look at the reference

provided for more detailed information. Thickness was changed by varying the number

of pulses from 3000 to 30000 and was observed to increase linearly with the number of

pulses. Film orientation was influenced as the number of pulses increased: the (222)

preferred orientation observed up to 5000 pulses was increasingly changed to a (521)

orientation and the film tended to become more polycrystalline. As thickness increased,

films tended to show a higher degree of polycrystallinity. Resistivity decreased up to 9000

pulses then remained unchanged from 9000 to 30000 pulses. The optical transparency

at 636 nm was also impacted as it decreased almost linearly with increasing thickness.

Finally, the film surface was found to be rougher as the number of pulses increased.
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Similar work was repeated in the second chamber, although Hall effect and optical

measurements over the whole visible spectrum were added and will now be described.

5.1.2 Results from chamber 2

The thickness (t) was changed by varying the number of pulses. In this study, 500 to

15000 pulses in total were fired. Other parameters like P(O2) and Ts were kept constant.

Table 5.1 summarises the growth parameters used in this section. In the following, the

number of pulses will be converted into thickness.

Table 5.1 Summary of ITO growth parameters by varying the number of pulses

Temperature 200◦C

T-S distance 63 mm

Laser fluence 10 J/cm2

Laser frequency 10 Hz

Oxygen pressure 5 mT

Table 5.2 summarises samples grown under the conditions listed in Table 5.1.

Table 5.2 Summary of ITO growth parameters by varying number of pulses

Sample number Number of pulses Thickness (nm)

110 500 47

91 1000 69

96 2500 172

53 5000 327

100 9200 654

107 15000 1467

The thicknesses listed in the previous table were evaluated via direct measurements. For

that purpose, cross-section SEM samples were prepared, micrographs of two examples

of which are given in Fig. 5.1. Despite the small thickness of the thinnest sample (∼50

nm), its thickness could still be measured with reasonable confidence.
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Figure 5.1 Cross-sectional SEM micrographs of a film grown with 500 pulses (left).
A resulting thickness of 47 nm is evaluated; when 15000 pulses are fired, a resulting
thickness of 1467 nm is observed (right). Other deposition parameters used are listed in
Table 5.1.

The results are plotted in Fig. 5.2, which enables the calculation of the deposition rate in

chamber 2 at Ts=200◦C and P(O2)=5 mT.

Figure 5.2 Thickness of ITO thin films deposited in chamber 2 by varying the number
of pulses from 500 to 15000; deposition parameters used are listed in Table 5.1. The
coefficient correlation R is shown.
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As in [8], thickness is observed to vary linearly with the number of pulses, a linear

regression giving 0.09 nm/pulse. In alternative terms, with a laser frequency of 10 Hz, a

deposition rate of 54 nm/min is calculated. The variations of structural and electrical

properties with film thickness (t) are now presented taking into account previous results

on thickness.

5.1.2.1 Structural property and surface morphology of ITO films deposited by

varying the thickness

Structural properties were studied by XRD while surface morphology was studied by

AFM. XRD patterns are presented in Fig. 5.3 (left).

Figure 5.3 XRD patterns of ITO thin films deposited for varying thickness (left); high
resolution XRD scan for 2θ=25 - 40◦ (right) choosing 10s/step (step size=0.05) instead
of 1s/step for the sample deposited with 500 pulses (t∼47 nm). A Savitzky-Golay
smoothing [169] is also shown on the same graph (red curve). The thickness varied
from 47 to 1467 nm; other deposition parameters used are listed in Table 5.1.

At 47 nm, no evidence for crystallisation is evident, based on the XRD pattern presented

in Fig. 5.3 (right). That means that the film is either amorphous or its thickness is so

low that any XRD peak would be difficult to identify above the noise level resulting

from the glass substrate and the instrument. This last hypothesis is unlikely, as an

increase in acquisiton time failed to show any peak. However, between 69 and 327

nm, films developed a strong (222) orientation. As the ITO films grow thicker, they

become increasingly polycrystalline with a slight (611) texture. This is in agreement with

previous results obtained at the University of Birmingham in chamber 1 [8]. However,

in this previous work, a slightly different preferred orientation was found ((521)) as

thickness increased.

FWHM results are illustrated in Fig. 5.4. The FWHM of the preferred (222) orientation
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peak is observed to decrease between 69 and 327 nm from to 0.702 to 0.559◦. When the

same experiment was performed between 654 and 1467 nm, the (611) peak dominated

and its FWHM was taken. A somewhat smaller decrease is observed from 0.489 to

0.452◦. These results suggest an overall and gradual improvement in crystallinity, larger

grain size and lower residual stress as t increases.

Figure 5.4 FWHM of preferred orientation peaks of ITO thin films deposited in chamber
2 and varying thickness from 47 to 1467 nm; Gaussian peak fitting (mot shown) was
performed on the dominant peak to compute the FWHMs; other deposition parameters
used are listed in Table 5.1.

Surface morphology was studied by AFM with 2×2 µm 3-dimensional AFM scans being

performed on each sample grown at a different number of pulses. The results are shown

in Fig. 5.5.

RMS roughness resulting from the above measurements is plotted in Fig. 5.6.
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Figure 5.5 2×2 µm 3-dimensional AFM scans of ITO thin films deposited in chamber 2
by varying the film thickness from 47 to 1467 nm; other deposition parameters used are
listed in Table 5.1.

Figure 5.6 RMS roughness of ITO thin films deposited in chamber 2 with varying
thickness from 47 to 1467 nm; other deposition parameters used are listed in Table 5.1.
Errors were calculated as the standard error of the mean and represented by error bars.
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The RMS roughness appears to increase with the thickness in steps, although this

statement needs to be moderated when account is taken of the error bars. A rather

strong increase between 47 and 69 nm is noticed while between 69 and 327 nm pulses,

the increase is more moderate. Since only one set of samples was grown, one cannot

be too conclusive about this effect. Finally, a stronger increase is noticed between 327

and 654 nm before a levelling-off takes place around 1467 nm. Unfortunately, it was

not possible to fire more pulse to confirm this plateau. Overall, however, the roughness

remains extremely low compared with those reported from other deposition techniques

such as sputtering [25] or spray pyrolysis [45].

Finally, based on the AFM pictures presented in Fig. 5.5, some degree of grain growth is

observed as the number of pulses increases. The features observed in Fig. 5.5 (see white

arrows) were interpreted as grains showing different faces at the top surface. However, at

thicknesses as low as 47 and 69 nm, one cannot make an accurate quantitative measure

of the crystallite size (if any). Such an effect is also in agreeement with the improved

crystallinity evidenced in Fig. 5.3 by a decrease of the FWHM of the preferred orientation

peak.

5.1.2.2 Electrical properties of ITO films deposited by varying the thickness

Hall effect and four-point probe measurements were performed on the samples listed

in Table 5.2. Results are given in Fig. 5.7 for N (carrier concentration) and µ (carrier

mobility).

Figure 5.7 Variation of N (left) and µ (right) of ITO thin films deposited in chamber 2
by varying the thickness; it was varied from 47 to 1467 nm; other deposition parameters
used are listed in Table 5.1.

Fig. 5.8 illustrates variation of ρ (resisitivty) with t.
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Figure 5.8 Variation of ρ of ITO thin films deposited in chamber 2 by varying the
thickness from 47 to 1467 nm (left). On the right, the variation of ρ with thickness is
shown in more detail by omitting the experimental point at t=47 nm; other deposition
parameters used are listed in Table 5.1.

As shown in Fig. 5.7 and 5.8, values N, µ and ρ all saturate above a certain thickness

value after a very sharp rise. Minor improvements are observed after 172 nm for N and,

327 nm for µ and ρ respectively. This value for ρ (327 nm) is slightly lower than the

one reported in [8] for chamber 1 where saturation of ρ was observed above 654 nm.

However, the chamber and the deposition rate are different as well (see section 4.1, Fig.

4.1). Both N and µ increase sharply with increasing thickness up to about 180 and 70

nm respectively, beyond which, both tend to saturate.

5.1.2.3 Optical properties of ITO films deposited for various thicknesses

Fig. 5.9 shows the optical properties from the near-UV (250 nm) to the near-IR range

(1000 nm) as the film thickness is varied from 47 to 1467 nm.

For the sake of clarity, Fig. 5.10 shows how the average transparency over 400 - 1000

nm range varies with the film thickness. This range is chosen as transmittance values

show smaller variations with wavelength (λ) than over the band gap region (250 - 350

nm).

At very low thickness (e.g. 47 nm), average optical transmittance for the 400 - 1000

nm range is strongly degraded as compared with those over the 69 - 327 nm range. At

higher thicknesses (654 - 1467 nm), once again, average optical transmittance is strongly

degraded. When the thickness reaches 1467 nm, average transmittance is only about

60%, despite the enhanced crystallinity of this film (see Figs. 5.3 - 5.4).
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Figure 5.9 Optical properties of ITO thin films deposited for varying film thickness in
chamber 2; the thickness varied from 47 to 1467 nm; other deposition parameters used
are listed in Table 5.1.

Figure 5.10 Average transmittance over the 400 - 1000 nm optical region of ITO thin
films deposited with varioua thicknesses in chamber 2. The thickness varies from 47 to
1467 nm; other deposition parameters used are listed in Table 5.1.

5.1.3 Discussion

5.1.3.1 Structural properties

The growth orientation was affected as t increased (Fig. 5.3). This can explained on the

basis of thermodynamics and kinetics. It is suggested that the occurence of a preferred

(222) growth orientation up to ∼350 nm is related to the minimisation of the surface

and interface free energies (see eq. 2.20) which makes the growth rate of such crystals

higher than others (competitive growth). As the thickness increased over 350 nm, the

importance of interface and surface free energies relative to the the total bulk free energy

of the solid decreased. Since the orientation favouring a minimisation of bulk free
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energy is not necessarily the same as the one minimising the interface and surface free

energies, a (611) orientation seems to predominate at higher thicknesses (Fig. 5.3),

once again because of the higher growth rate of such crystals as compared with other

directions. Roughness was also found to be affected with thicker films being found to

be rougher. This is explained on the basis of enhanced crystallinity and development of

other orientations as the films become thicker.

5.1.3.2 Electrical properties

It has been observed that both the electron transport properties (N, µ and ρ) are thickness

dependent before reaching a plateau. The latter occurs at different thickness values: 172

nm for N and 69 nm for µ and ρ. Based on Figs. 5.7 - 5.8, 100 nm is taken as the thickness

value afterwhich N, µ and ρ show minor change: it is identified as a critical thickness.

Therefore, the discussion will be divided between the following thickness ranges: below

and above 100 nm. It is suggested that this value corresponds to a thickness at which a

transition takes place from a film containing voids to a more continuous one.

During the initial growth stage, a rather stressed defective structure is likely to be formed

at the interface with the substrate because the nucleation and coalescence processes that

occur with thinner films are not continuous [170] [171] [172]. It is suggested that such

processes do not favour the electrical activation of Sn resulting in films with lower N.

Moreover, thinner films have a larger surface-to-volume ratio meaning that thin films

contain more defects than thicker films [173]. More scattering of carriers is therefore

expected in thinner films and hence a relatively low µ was observed.

Above 100 nm (critical thickness), it is suggested that the transition from a porous to

a more continuous film takes place. The crystallinity still improves (lower FWHM, see

Fig. 5.4) but at a much slower pace as the film formed is already continuous. This

transition is also confirmed by a parallel improvement in µ. After a certain threshold

('100 nm), increased µ results from increased grain size, possibly combined with a

change in the preferred orientation of crystallites with film thickness as shown by XRD.

In general, if the thickness of the layer is increased, the crystallites become larger in

size [174] in agreement with thin film growth theory [175]. The lower FWHM is also

an indication that the grain size of the films increases with growing film thickness. The

growth orientation does not seem to play any significant role in determining µ as no

large difference is observed between 69 and 327 nm while films retain a preferred (222)

orientation.



5.1. Influence of thickness 85

We now discuss the scattering mechanism of free carriers. The observed mobility

and its dependence on N can be explained in terms of scattering mechanisms such as

ionized impurity scattering. The relationships between µ and N calculated from the

ionised impurity scattering theory presented in eq. 2.3 of section 2.2.2.1.2 show that

there is a linear negative correlation between µI (the mobility arising from a dominant

ionised impurity scattering) and N. Fig. 5.11 illustrates the relation obtained between µ

(experiemntal) and N.

Figure 5.11 Mobility µ versus carrier concentration N of ITO thin films deposited for
various film thicknesses. The thickness varies from 47 to 1467 nm; other deposition
parameters used are listed in Table 5.1. A larger scale plot is shown on the right hand
side in the region 327 - 1467 nm where a tentative linear fit (red line) is made.

Despite the obvious lack of data abd a very low correlation coefficient (R=-0.16), a

tentative trend can be identified. Experimental points at 327, 654 and 1464 nm seem

to fit a straight line with a negative slope. This would be in agreement with ionised

impurity scattering being the dominant scattering mechanism. Thinner films do not fit

this trend at all and the thinner the film is, the more it deviates from the straight line

between 327 and 1467 nm. This suggests that the dominant scattering mechanism is

different, especially at lower film thicknesses. This is perhaps not surprising as thinner

films might be more discontinuous and those discontinuities might very well become the

dominant scattering mechanism in combination with increased surface scattering.

It is now possible to explain the behaviour of ρ (see Fig. 5.8) since it depends on the

variation of both N and µ. The larger grain size with increasing thickness results in a

lower density of grain boundaries, which behave as traps for free carriers and barriers to

carrier transport in the film (grain boundary trapping model [176]). Hence, an increase

in the grain size can cause a decrease in grain boundary scattering, which leads to a
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decrease in ρ. Thus, the initial decrease in ρ is due to an increase in both carrier density

and carrier mobility of the films, which result from the increased grain size/crystallinity

and better film continuity. For thicker films (t>100 nm), ρ remains constant because

both N and µ become independent of film thickness (it is reasonable for ρ to become

independent of the film thickness since thick films eventually behave like bulk materials).

Finally, below 100 nm, ρ was observed to increase with decreasing thickness. This

increase in ρ can be related to the increase in carrier scattering due to a decrease in grain

size or to other discontinuities in the film. The relatively rapid increase in ρ as the films

get thinner is related to the percolative structure of the ITO film [177].

5.1.3.3 Optical properties

When t∼50 nm, the transmittance is extremely low (down to about 67%) despite the low

thickness of such films. This is attributed to the very small degree of crystallinity. Indeed,

AFM does not really show a grainy surface morphology while XRD does not show any

peaks and the absorption edge slope is lower than for thicker films. At higher thicknesses

(>600 nm), the transmittance is once again degraded. This cannot be explained similarly

by a lack of crystallinty, since the XRD and AFM results show fully crystallised films

above 600 nm. Rather, it is suggested that the thickness is playing a dominant role via

the simple Beer-Lambert Law:

T =
I

I0

= e−αt (5.1)

where α is the absorption coefficient, t the distance the light travels through the material

and I and I0 are the intensity of the incident and transmitted light. Thus, T decreases

exponentially with t, and as t increases above a certain threshold (here 600 nm), t

becomes the dominant parameter in determining the resulting transmittance. Grain size,

which is observed to increase with increasing t no longer influences the transmittance.

Another factor which might influence the optical properties is the surface roughness

which increases as t increases. However, it is suggested that it plays a minor role because

of the low roughness found between 47 and 1467 nm (<0.5 nm). Moreover, the RMS

roughness does not vary to a great extent so that it does not affect the comparison in

optical properties of the different films.
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5.1.3.4 Optimal thickness

Based on the electro-optical properties reported previously, the best compromise between

low resistivity and high transparency for chamber 2 was obtained for films of about 350

nm thickness (5000 pulses). An identical conclusion was reached for chamber 1 [8] but

resulting thicknesses were about 250 nm. In consequence of these findings, 5000 pulses

were fired for all the subsequent films deposited at various Ts and P(O2) reported in this

study.

5.2 Influence of substrate temperature

This section investigates the changes in physical properties and microstructure as Ts

is varied in chambers 1 and 2, starting with electrical property changes with Hall

effect measurements presented first. Optical properties will be presented subsequently.

These electro-optical property changes will be explained and discussed on the basis of

microstructural evidence. An attempt is also made to reconcile the physical properties of

films grown in chambers 1 and 2 and discussed. As a reminder, it is noted that these two

chambers and their different set-ups have already been described in section 4.1.

5.2.1 Electrical properties

Hall effect measurements were performed on samples deposited at constant P(O2) in

the two chambers. P(O2) was set at 10 mT and 5 mT in chambers 1 and 2 respectively.

In order to be as representative as possible of the “true” physical reality, the following

method was adopted: five consecutive Hall effect measurements were performed for

each particular sample. The averages of these five measurements were taken as the true

values of the mobility (µ), carrier concentration (N) and resistivity (ρ). The same method

was repeated on as many samples as possible (depending on how many were available

during the time of measurement) grown under exactly the same conditions. Finally, the

averages of these different samples were taken as the representative values of µ, N and ρ

for each particular growth condition. Errors were calculated as the standard error of the

mean and represented by error bars. Where error bars are not visible on the plots, it is

either because they were very small or simply because only one sample was measured.

Since thickness (t) affects electrical properties [80][39], the variation of t with Ts was

studied first for chambers 1 and 2. t could vary because a crystalline phase is likely to be

denser than an amorphous one. Moreover, sticking coefficients could change significantly
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when Ts is varied from RT to 400◦C. t was calculated through direct (cross-sectional

SEM or TEM) and indirect (ellipsometry) measurements. Tables 5.3 - 5.4 sums up fitted

(ellipsometry) and measured (SEM or TEM) thicknesses. Fitted thicknesses were derived

from the Cauchy model (see section 4.7.2.1).

Table 5.3 Summary of fitted and measured thicknesses for samples deposited in cham-
ber 1 between RT and 400◦C. 5000 pulses were fired.

Ts (◦C) Fitted t (nm) Measured t (nm)
RT 242 221 (TEM)

313 227 (SEM)
50 246 no data

100 251 214 (SEM)
241 286 (SEM)

175 256 no data
292 no data

200 287 245 (TEM)
233 no data

300 301 282 (SEM)
400 252 246 (TEM)

Average t (nm) 264.91 245.86
Standard deviation 27.84 28.60

Table 5.4 Summary of fitted and measured thicknesses for samples deposited in cham-
ber 2 between RT and 400◦C. 5000 pulses were fired.

Ts (◦C) Fitted t (nm) Measured t (nm)
RT 327 374 (TEM)

337 no data
100 352 no data
200 365 349 (SEM)

347 383 (TEM)
400 317 376 (SEM)

Average t (nm) 340.83 370.5
Standard deviation 17.44 14.84

In both chambers, fitted thicknesses (derived from ellipsometric measurements over a

1.2 mm2 area) and measured ones do not differ to a great extent over the temperature

range investigated (RT - 400◦C), indicating that the approach of using a Cauchy model to

approximate film thicknesses is sufficiently good in the visible spectrum for our purposes.

Film thicknesses in chamber 2 are larger than in chamber 1 due to the different working

oxygen pressures in chamber 1 (10 mT) and 2 (5 mT). A higher P(O2) induces more

scattering of ejected species reducing the amount of material reaching the thin film

surface [72] [73]. Fitted thicknesses shown in Tables 5.3 and 5.4 are plotted in Fig. 5.12

for the sake of clarity.
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Figure 5.12 Variation of thickness (t) with Ts in chamber 1 (black curve) and 2 (blue
curve). Ts was varied from RT to 400◦C.

It is observed that t is not a strong function of Ts in the RT - 400◦C range for either

chamber for the sets of samples studied, while no particular shrinkage (in terms of

densification) is observed at low or high Ts. It is expected that these samples are

representative of the average thickness over the Ts range from RT to 400◦C. When the

thickness was not known for a particular sample in chambers 1 or 2, the average value

(see Tables 5.3 and 5.4) in the corresponding chamber was taken.

5.2.1.1 Film microstructure

XRD measurements were performed in both chambers and the evolution of XRD patterns

with Ts is illustrated in Figs. 5.13 - 5.14 for chambers 1 and 2 respectively.

The following observations are made: a reproducible small “bump” between 2θ=25 and

32◦ is observed in both chambers and originates entirely from the glass substrate since

an X-Ray scan from a bare glass substrate shows exactly the same feature (Fig. 5.15).

Films are (nearly) amorphous below 150◦C in chamber 1 which is the reported onset of

crystallisation temperature for ITO thin films [77]. A longer counting time (from 1 to

10 s) in the 25 - 40◦ region did not improve the visibility of any peak in that region as

shown in Fig. 5.16.

In chamber 2, evidence of crystallisation is observed at RT with a low intensity (400)

peak. In addition, the growth orientation is affected by Ts in chamber 2 where a change

from a (400) to a (222) preferred orientation takes place at Ts=150◦C (see the red
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Figure 5.13 XRD patterns of the ITO films deposited at different substrate temperatures
in chamber 1. A constant pressure of P(O2)=10 mT was maintained. Data were shifted
to the right for the sake of clarity.

Figure 5.14 XRD patterns of the ITO films deposited at different substrate temperatures
in chamber 2. A constant pressure of P(O2)=5 mT was maintained. Data were shifted
to the right for the sake of clarity. A red arrow shows where the orientation change is
taking place.

arrow in Fig. 5.14). In chamber 1, no such orientation growth change is observed. Films

conserved a (222) texture from 150 to 400◦C. The Full Width at Half Maximum (FWHM)

of preferred orientation peaks versus Ts is also investigated and plotted in Fig. 5.17.

The FWHM in chamber 2 appears relatively stable except at Ts=150◦C where a growth

orientation change takes place (see XRD patterns in Fig. 5.14). In chamber 1, the FWHM

increases linearly with Ts between Ts=175 and 400◦C. In addition, the texture quality in

the present thin films was qualitatively evaluated by calculating the texture coefficient
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Figure 5.15 XRD pattern of a bare glass substrate between 2θ=20 and 70◦.

Figure 5.16 XRD pattern in the 25 - 40◦ region of a sample grown at RT in chamber 1.
Noise was filtered out with a 21 point Savitsky-Golay smoothing [169] (red curve).

Figure 5.17 Corresponding FWHM of preferred orientation peaks of XRD patterns
presented in Figs. 5.13 - 5.14. Unless stated otherwise, FWHMs were measured on (222)
peaks.
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(TC(hkl)) as described in section 4.2.1. A linear correlation between mobility and TC(222)

or TC(400) was evidenced in both chambers (Fig. 5.18) between RT and 400◦C.

Figure 5.18 Relation between mobility µ and texture quality of ITO thin films grown
in chamber 1 (left) and 2 (right). Chamber 1, P(O2)=10 mT; chamber 2: P(O2)=5 mT.
In chamber 1, the 400◦C data was not included in the calculation of R. The mobility
values are taken from the samples corresponding to the X-Ray diffractograms presented
in Figs. 5.13 and 5.14.

The following observations can be made:

• In chamber 1, a positive linear relation between TC(222) and µ is observed between

Ts=175 and 300◦C, although the experimental point at 400◦C does not fit the

general trend.

• In chamber 2, a positive linear relation between TC(222) and µ is observed between

Ts=150 and 400◦C.

• Experimental points at RT, 50 and 100◦C do not fit the trend from Ts=150 to

400◦C for chamber 2. Rather linear relation possibly governs the behaviour in this

temperature range (shown in Fig. 5.18 with green dashes and points) although

more experimental points are needed to confirm such a conclusion.

A preferred growth orientation change was also observed within the layers themselves.

For example, glancing angle XRD (GAXRD) was performed on a sample deposited in

chamber 2 at Ts=200◦C and P(O2)=5 mT and the results are presented in Fig. 5.19.

The incidence angle Ψ was varied from 0.5 to 20◦ to probe the whole film thickness and

beyond (glass substrate). The right hand side of Fig. 5.19 shows a plot of the attenuation

length in microns versus the glancing angle (◦). The attenuation length is defined as the

length at which the X-Ray intensity in the material has fallen by a factor e−1 and was

obtained from the Centre for X-Ray Optics (CXRO) [158]. The sample was 350 nm thick.
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Figure 5.19 GAXRD patterns of a sample deposited in chamber 2 at Ts=200◦C and
P(O2)=5 mT (left) by varying the incidence angle Ψ from 0.5 to 20◦. The patterns
were superimposed and shifted to the right for the sake of clarity. The correspondence
between incidence angles and attenuation lengths is shown (right).

At low Ψ (0.5◦), which corresponds to the top part of the film (the first few tens of

nanometres), a preferred <100> growth direction is identified. But, from Ψ=2◦ - 4◦

onward, which corresponds approximately to the second half of the film (next to the

substrate), the (400) preferred orientation vanishes and the film tends to become more

polycrystalline with a (222), (411) and (420) orientations gradually appearing.

Mobility can be strongly affected by grain size effects [178][25] and other related aspects

like surface roughness [39]. These constitute crystallographically disturbed regions

which lead to defect electronic levels in the bandgap of ITO. Surface morphologies were

investigated in both chambers by SEM, AFM and TEM. Low and high magnification

SEM micrographs are presented in Fig. 5.20 and 5.21 respectively for samples grown in

chamber 1. The corresponding AFM pictures are presented in Fig. 5.22.
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Figure 5.20 Evolution of surface microstructure in chamber 1 observed via low mag-
nification SEM micrographs. The samples were grown at (a) Ts=150◦C , (b) 175◦C,
(c) 200◦C, (d) 300◦C and (e) 400◦C at P(O2)=10 mT. Crystallites at Ts=150◦C (a) are
shown with red arrows.

Higher magnification sections of the SEM micrographs presented above are shown in Fig.

5.21.

Figure 5.21 Evolution of surface microstructure in chamber 1 observed by high magni-
fication SEM. The samples were grown at (a) Ts=200◦C , (b) 300◦C and (c) 400◦C at
P(O2)=10 mT.

The corresponding AFM micrographs for chamber 1 are presented in Fig. 5.22.
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Figure 5.22 5×5 µm AFM scans of samples grown at (a) RT, (b) Ts=150◦C, (c) 175◦C,
(d) 200◦C, (e) 300◦C and (f) 400◦C at P(O2)=10 mT in chamber 1. Red arrows in a)
show the round shaped crystallites and the dip they induce.

The exact same work was repeated in chamber 2. Low and high magnification SEM

micrographs are presented in Fig. 5.23 and 5.24 respectively. The corresponding AFM

pictures are presented in Fig. 5.25.



5.2. Influence of substrate temperature 96

Figure 5.23 Evolution of surface microstructure in chamber 2 observed by low magni-
fication SEM. The samples were grown at (a) RT, (b) Ts=100◦C, (c) 150◦C, (d) 200◦C,
(e) 300◦C and (f) 400◦C at P(O2)=10 mT. The crystallites at RT (a) are encircled in red
while blue arrows point to some carbon contamination.
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Figure 5.24 Evolution of surface microstructure in chamber 2 observed by high magni-
fication SEM. The samples were grown at (a) RT, (b) Ts=50◦C, (c) 150◦C, (d) 200◦C,
(e) 300◦C and (f) 400◦C at P(O2)=10 mT. The crystallites at RT (a) are shown with red
arrows.
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Figure 5.25 2×2 µm AFM scans of samples grown at (a) RT, (b) Ts=200◦C, (c) 300◦C
and (d) 400◦C at P(O2)=5 mT in chamber 2.

Difficulties were encountered in obtaining good quality SEM pictures for samples from

chamber 2. This is attributed to the extremely low surface roughness of the ITO thin films

grown in this chamber (∼0.4 nm). The surface roughness of samples grown in chambers

1 and 2 between RT and 400◦C is illustrated for comparison purposes in Fig. 5.26. It

is seen that surface roughness in chamber 1 is typically double that of samples from

chamber 2 and almost triple at 400◦C. It is suggested that higher adatomic mobilities in

chamber 2 gives rise to such behaviour.

Several observations based on the previous SEM and AFM micrographs can be made in

terms of hole density, crystallites and grain size:

• No dramatic change of grain size with Ts is observed in either chamber.

• The lateral growth of grains seems to be more inhibited in chamber 2 than in

chamber 1 resulting in a smaller average grain size.

• Holes are present regardless of Ts and tend to be more numerous in chamber 2.

• Films become rougher at high temperature (400◦C) in both chambers.
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Figure 5.26 RMS roughness comparison between chamber 1 (black curve) and 2 (blue
curve). RMS roughness is calculated on the basis of 5×5 and 2×2 µm scans in chambers
1 and 2 respectively. Holes were avoided so as to reflect the true roughness of the film
surface.

• Round crystallites (200 to 300 nm diameter) are visible in RT samples from chamber

2 at a calculated density of 2.38×108/cm2.

• Much smaller round crystallites (50 to 100 nm diameter) are visible on samples

grown in chamber 1 at Ts=150◦C. At Ts=175◦C, the matrix is almost fully crystalline

and becomes totally so at Ts=200◦C.

• Crystallites are visible on AFM micrographs as a small dip on the surface (less than

5 nm).

The particular contrast shown by the crystallites on the SEM micrographs in chambers 1

(Fig. 5.20 (a)) and 2 (Fig. 5.23 (a)) is due to topography (as confirmed by AFM images

with small dip on AFM images in chamber 1, Fig. 5.22) and also to density: a crystalline

area is always denser than an amorphous one.

Grain size and crystallites were further investigated via bright field TEM plan view (Figs.

5.27 - 5.28) and cross sectional (Fig. 5.29) micrographs for samples from both chambers.
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Figure 5.27 TEM bright-field plan view microgprahs of films grown in chamber 1 at
(a) Ts=RT, (b) 100◦C, (c) 200◦C and (d) 400◦C. The oxygen pressure was kept constant
at P(O2)=10 mT.

Figure 5.28 TEM bright-field plan view micrographs of films grown in chamber 2 at
(a) Ts=RT, (b) Ts=200◦C and (c) 400◦C. The oxygen pressure was kept constant at
P(O2)=5 mT.

Bright field cross sectional micrographs at Ts=200◦C confirm a smaller average grain

size in chamber 1 as compared with chamber 2 (Fig. 5.29).
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Figure 5.29 TEM bright-field cross sectional micrographs of films grown in (a) cham-
bers 1 and (b) 2 at Ts=200◦C. The oxygen pressure was kept constant at P(O2)=10
and 5 mT in chambers 1 and 2 respectively. Syton particulates were visible in (b) and
indicated with a black arrow.

The large round shaped crystallites visible in chamber 2 samples at RT were also observed

on cross sectional TEM micrographs (Fig. 5.30).

Figure 5.30 TEM bright-field cross sectional micrographs of a film grown at RT in
chamber 2. The oxygen pressure was kept constant at P(O2)=5 mT.

Crystalites observed at RT in chamber 2 look like “flowers” where the “petals” constitute

large crystals consuming/advancing through the amorphous matrix while the inner

part contains smaller grains and has a more complicated structure. The “petals” are

separated by still amorphous regions. Such an observation has been previously reported
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for amorphous metal oxide films [179] and will be discussed further in section 5.2.1.7.

Unwanted syton contamination is visible as black round shaped spots on the brigh-field

micrographs.

The grain size derived from previous SEM and TEM micrographs are summarised in

Table 5.5.

Table 5.5 Average grain size (nm) at Ts= RT, 100◦C, 200◦C, 300◦C and 400◦C in
chambers 1 and 2.

Average grain size (nm)
Substrate temperature (◦C) Chamber 1 Chamber 2 Technique used

RT n.a. n.a /
100 n.a. 90 SEM
200 200 90 TEM
300 200 100 SEM
400 150 90 TEM

5.2.1.2 Mobility

The mobility (µ) variation with Ts is presented for chambers 1 and 2 in Fig. 5.31.

Figure 5.31 Variation of µ with Ts. Ts is varied from RT to 400◦C. The black curve is
for chamber 1 while the blue one is for chamber 2.

The mobility measurements show a similar behaviour for both chambers in the 150

- 400◦C range: µ improves slightly. This is typical for a semi-metal or degenerate

semiconductor. Below 150◦C, there is a significant disagreement in the mobility values

between the two chambers: in chamber 1, µ increases almost linearly from RT to 150◦C

while in chamber 2, µ is constant except at RT where it rises. This disagreement at lower

Ts is statistically confirmed.
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5.2.1.3 Calculations

To assess the grain boundary scattering impact on µ, the free carrier mean free path (L)

in ITO was calculated using a highly degenerate free electron gas model [4]:

L = (3π2)1/3(h/e2)ρ−1N−2/3 (5.2)

where h is Planck’s constant, e is the electron charge, ρ is the resistivity and N is the

carrier concentration. L versus Ts using values of ρ and N obtained by previous Hall

effect measurements is plotted in Fig. 5.32 for samples from chambers 1 and 2.

Figure 5.32 Calculated mean free path L for ITO thin films grown in chambers 1 (black
curve) and 2 (blue curve). P(O2) was maintained at 10 mT and 5 mT in chambers 1 and
2 respectively.

The calculated mean free paths are about the same in both chambers. Moreover, all the L

values are much smaller than the average grain size for both chambers as derived by AFM

(Figs. 5.22 - 5.25), SEM (Figs. 5.21 - 5.24) and TEM (Figs. 5.27 - 5.28) micrographs

when Ts >200◦C. It is deduced, therefore, that electron scattering at grain boundaries

(GBs) is negligible in both chambers when the matrix is fully crystalline.

At lower Ts, where isolated crystallites are embedded in an amorphous matrix, the

situation is somewhat different (Figs. 5.27 (b) - 5.28 (a)). For example, µ is found to

be thermally activated in chamber 1 between RT and 200◦C where an excellent linear

regression between log(µ) and 1/Ts (R=0.989) is obtained for experimental points

within this temperature range. This is not the case in chamber 2 as illustrated in Fig.

5.33 where the experimental points are more widely scattered.
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Figure 5.33 Plot of log(µ) versus 1/Ts for chambers 1 (left) and 2 (right). In chamber
1, a good linear regression is obtained for the experimental points coloured in green and
red.

The behaviour observed in chamber 1 between 100 and 200◦C is in excellent agreement

with the model developed by Petritz [180]. He considered the case where carrier

transport occurred by thermionic emission across intergrain barriers. This model yields

an effective mobility µeff dominated by thermionic emission across the grain barriers

with an energy Eb:

µeff = µ0 × e−
Eb
kT (5.3)

where

µ0 =
Lgq√

2πm∗kT
(5.4)

Eb is the energy barrier at the grain surface, T the sample temperature (which is set

equal to the substrate temperature Ts), Lg is the grain size, q is the charge of the trap,

m∗ is the effective mass of the charge carriers and k is Boltzmann’s constant. Based on

the slope of the linear regression obtained in chamber 1, it is estimated that Eb=39.46

meV. This activation energy is smaller than the grain boundary activation energies for

a semiconductor such as Si and is consistent with the fact that grain boundary effects

are not very strong in crystalline ITO. Below 100◦C, µ is more likely to be trap-limited

[181]. For chamber 2 samples, the data was too scattered for a log(µ) versus 1/Ts for a

Petritz relation.
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5.2.1.4 Carrier concentration

The carrier concentration of the thin films was measured via Hall effect measurements

using the Van Der Pauw method, presented in section 4.6.2. Results obtained for films

from chambers 1 and 2 are presented in Fig. 5.34.

Figure 5.34 Variation of N with Ts when Ts is varied from RT to 400◦C. The black
curve is for chamber 1 while the blue one is for chamber 2.

Based on Fig. 5.34, the following observations can be made: in the RT - 400◦C range,

N is statistically larger for chamber 2 than for 1. A slight decrease in N was observed

to take place at high temperature (400◦C) in chamber 1, while this effect occurs much

earlier in chamber 2 (200◦C). It is reminded that there are two contributions to ITO thin

film conduction:

1. oxygen vacancies.

2. “electrically active” Sn (effective substitution of an In atom by a Sn atom).

In chamber 1, the matrix is fully crystalline from 200◦C (Fig. 5.27). As for chamber 2, it

can be considered that 100◦C is the temperature at which the matrix is fully crystalline

(Fig. 5.24). In crystals, all the Sn is electically active, i.e., each Sn effectively substitutes

for one In. This is a reasonable approximation since the Sn concentration used (3.65

at.%) is well below its solubility limit in In2O3 (∼5 at.% [182]). This also implies that

there are no particular complexes/precipitates/phases “extinguishing” Sn (i.e. preventing

it from donating one free carrier to the matrix), a situation confirmed by XRD and TEM

measurements (Figs. 5.13 - 5.14 - 5.27 - 5.28). Below 200◦C for chamber 1 and 100◦C for

chamber 2, where there is a mix of amorphous and crystalline phases, it is assumed that
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a combination of oxygen vacancies and a gradual Sn activation governs the generation

of free carriers. Table 5.6 sums up how free carriers are generated in each temperature

range.

Table 5.6 Generation of free carriers for ITO thin films grown in chambers 1 and 2.

Chamber number Temperature range (◦C) Generation of free carriers

Chamber 1 RT - 150 Oxygen vacancies

150 - 400 Oxygen vacancies + Sn

Chamber 2 RT - 200 Oxygen vacancies + Sn

200 -400 Oxygen vacancies

The variation of oxygen content as Ts changes was studied by SEM EDX peformed at 7

kV. This yields the average composition of an interaction volume which comprises the

whole film from top surface to substrate/film interface (see Monte carlo simulations

in section 4.3.2.2). The In/Sn and (In+Sn)/O atomic ratio evolutions with Ts in both

chambers are presented in Fig. 5.35.

Figure 5.35 Variation of In/Sn and (In+Sn)/O atomic ratios for chambers 1 and 2
when Ts varies from RT to 400◦C. O K, In L and Sn L lines were used for quantification.

Three main observations can be made:

• the (In+Sn)/O atomic ratio seems to decrease slightly with Ts in chamber 1 while

no change is observed in chamber 2.

• the (In+Sn)/O atomic ratio in chamber 2 is slightly higher than that in chamber 1

in the RT - 400◦C range.

• the In/Sn atomic ratio is stable and close to the nominal ratio in both chambers.
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The stability of the In/Sn atomic ratio suggests that the variation of the (In+Sn)/O

atomic ratio is solely due to a change in oxygen concentration. As noted in[], as the

oxygen content changes, there are changes in the density of the film, the efficiency

of X-ray production in the sample and the degree of absorption the X -Rays suffer as

they exit the specimen. However, no correction for the oxygen absorption (typically

by changing the density of the film) was made because of the large uncertainty in the

magnitude of the change in the film density.

Profiles of Sn segregation to the film surface were obtained from STEM EDX (in the

Tecnai F20) to complement the SEM EDX study. An electron probe was used and moved

accross the whole film layer. A sample grown in chamber 2 at Ts=200◦C and P(O2)=5

mT kindly prepared by FIB by Dr. Chu. Drift affected the measurements but not to the

extent of impacting on precision: under INCA software, a spatial drift of 1 to 3% as

compared with the initial “locked” area was observed for a 200 seconds acquisition time.

X-Ray absorption and specimen thickness were taken into account to yield results as

accurate as possible (see section 4.3.1.2 for the k-factor determination for In, Sn and

O). Three five-point line scans (noted as a, b and c) across the film were carried out as

illustrated in Fig. 5.36.

Figure 5.36 STEM EDX linescans. The sample was prepared by FIB and grown at
Ts=200◦C and P(O2)=5 mT in chamber 2. The coloured dots illustrate from which area
compositional data were acquired.

The STEM EDX results obtained are summarised in Table 5.7.
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Table 5.7 Summary of In/Sn and (In+Sn)/O atomic ratios obtained from the three
five point line scans shown in Fig. 5.36). The sample was prepared by FIB and grown at
Ts=200◦C and P(O2)=5 mT in chamber 2.

Line scan Position in Fig. 5.36 In/Sn (In+Sn)/O
a 1 9.82 0.52

2 9.67 0.56
3 10.12 0.58
4 9.42 0.54
5 10.38 0.57

Average 9.88 0.55
Standard deviation 0.38 0.02

b 1 9.52 0.58
2 9.27 0.54
3 9.78 0.57
4 9.49 0.57
5 9.23 0.53

Average 9.70 0.56
Standard deviation 0.43 0.02

c 1 9.23 0.59
2 9.56 0.54
3 10.21 0.52
4 9.43 0.62
5 10.09 0.57

Average 9.68 0.57
Standard deviation 0.37 0.04

Total average 9.75 0.56
Total standard deviation 0.48 0.03

No clear trend can be discerned for both the In/Sn or (In+Sn)/O atomic ratios, indicating

that no significant Sn segregation to the film surface took place even at high Ts where

the mobility of Sn atoms is enhanced. The atomic ratios agree rather well with those

obtained by SEM EDX for chamber 2 (see Fig. 5.35).

5.2.1.5 Resistivity - Surface resistance

The resistivity ρ was calculated from the values of µ and N previously determined

by Hall effect measurements and using the Van Der Pauw technique (as indicated

previously ρ=1/Neµ). It is observed that ρ of films grown in chamber 2 does not change

appreciably between RT and 400◦C because µ and N variations cancel each other. A

totally different behaviour is observed in chamber 1 where the resistivity decreases

linearly up to 175/200◦C before reaching a plateau. The results are illustrated in Fig.

5.37.
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Figure 5.37 Variation of ρ (left) and Rs (right) with Ts as Ts is varied from RT to 400◦C.
The black curve is for chamber 1 while the blue one is for chamber 2.

This linear behaviour is remarkable and worth investigating further. An in-situ study

could not be performed here, and, all subsequent characterisations made in this study

were performed ex-situ. Nonetheless, the true microstructure at a given temperature

might not be accurately represented by that after cooling the sample since they could

differ at low and high Ts. That is the reason why a low cooling rate was chosen (3◦C/min)

so as to limit any possible change in microstructure during cooling down. In that case,

the resistivity measured after cooling down is representative of the resistivity at higher

Ts.

ρ was found to show a temperature activated behaviour as illustrated by an Arrhenius

type plot of log(σ) versus 1/Ts (Fig. 5.38).

Figure 5.38 Arrhenius plot of log(ρ) versus 1/Ts for chambers 1 and 2. Ts was varied
from RT to 400◦C and P(O2) was kept constant at 10 and 5 mT in chambers 1 and 2
respectively.
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If a straight line is obtained in a log(ρ) versus 1/Ts plot, ρ can be assumed to obey an

Arrhenius type law:

ρ = ρ0e
−Ea
kT (5.5)

where Ea is an activation energy. Since the fall of resistivity may be associated with the

rearrangement and removal of point defect clusters and recombination centres along

with crystallization, Ea is the overall activation energy of these processes. The slope

was used to determine the activation energy Ea of the reaction described above. The

linear fit performed for chamber 1 gave a slope of: -600 yielding Ea=0.52 eV, taking

k=8.62×10−5 eV/K. This value is close to the one found by Bhatti et al. [183] (0.49 eV)

for ITO films deposited by r.f. sputtering. Another fitting region was identified (green

curve in Fig. 5.38, chamber 1) which yielded Ea=0.03 eV. While further experimental

points at these temperatures are needed to confirm this value, it can be assumed that ρ

does not show any temperature dependence in that range. A very low activation energy

seems to hold true for films grown in chamber 2 between RT and 400◦C. However, no

calculation of this activation energy was performed owing to random nature of the

experimental log(ρ) - 1/Ts plot.

5.2.1.6 Summary of the results

ITO thin films were deposited in chambers 1 and 2 by varying Ts from RT to 400◦C.

The oxygen pressure was kept constant and set at 10 and 5 mT in chambers 1 and 2

respectively. The number of pulses fired was indentical in both chambers, but films in

chamber 2 were thicker than in 1 while Ts was not found to significantly affect thickness.

The microstructure was strongly impacted. At RT, a nearly amorphous matrix was

obtained in chamber 1, yet the crystallisation process was already well underway in

chamber 2. Full crystallisation was achieved at 200◦C and 100◦C in chambers 1 and 2

respectively. In both chambers, the average grain size did not vary much with increasing

Ts, although it was smaller in chamber 2 than in 1. The electrical properties were

influenced in both chambers by microstructure changes even though the impact was less

marked in chamber 2. Finally, thin film composition varied only moderately with Ts.

5.2.1.7 Discussion

5.2.1.7.1 Structural properties In chamber 2, the growth orientation was affected

by the substrate temperature Ts (Fig. 5.14): films were orientated along the <100>
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direction up to 100◦C. Above this temperature, the films increasingly developed a

preferred (222) orientation. No such change could be observed in chamber 1 (Fig. 5.13),

because no evidence of crystallinity could be seen below Ts=150◦C. At high temperature

(Ts=400◦C), films tended to become more and more polycrystalline in both chambers

with the gradual development of (211) and (440) orientations.

The choice of a particular preferred growth orientation is determined primarly via the

minimisation of the surface and interface free energies of the thin film. Indeed, glass is

amorphous in nature so that the growth of ITO films on such substrates is not principally

determined by the lattice mismtach between the film and substrate as it is for crystalline

substrates. Hence, in chamber 1, the preferred (222) orientation is suggested to be the

one minimising both the surface and interface free energies. In chamber 2, a texture

change arose between 100 and 150◦C. It is suggested that such a change is connected

with adatomic mobilities which vary with Ts. A lower adatomic mobility at low Ts might

result in a structure under more stress. The preferred (100) orientation would be the

one minimising such stress. As it relaxes at higher Ts, the growth orientation would be

once again controlled by the minimisation of the surface and interface free energies,

leading to the (222) texture, which was also observed in chamber 1.

The difference in microstructure at low Ts between chamber 1 and 2 was explained with

variations in adatomic mobilities with the laser energy density falling on the target (Ed)

and P(O2). Since a higher Ed and a lower P(O2) were used in chamber 2 (see section

4.1), the kinetic energies of species impacted onto the growing surface in chamber 2

was greater than in chamber 1. This explains why RT films were more crystalline in

chamber 2. In chamber 1, clear evidence of crystallisation by XRD was only observed

above Ts=150◦C (Fig. 5.13), although, a very small amount of crystallites were already

present at RT in chamber 1, as witnessed by TEM micrographs (Fig. 5.28 a)) along with

DPs (diffuse rings with spots). As a consequence, RT grown films in chamber 1 are not

fully amorphous. Complete crystallisation of the matrix was observed at 200 and 100◦C

in chambers 1 and 2 respectively, following an initial stage whereby round crystallites

were embedded in the amorphous matrix (Figs. 5.27 - 5.28).

Cross-section (Fig. 5.30) TEM micrographs for samples from chamber 2 showed that

the layer adjacent to the substrate tended to be amorphous whereas the top layer was

crystalline. After nucleation, grains are observed to grow as very narrow 10 - 50 nm

wide parallel-sided columns perpendicular to the substrate (Fig. 5.29). A very different

behaviour is observed in chamber 1, where a large lateral growth from the substrate is
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observed. This larger lateral growth results in a higher average grain size observed at

the surfaces of samples grown in chamber 1 (Fig. 5.21) as compared with those grown

in chamber 2 (Fig. 5.24). The lower average grain size observed in chamber 2 compared

to chamber 1 is attributed to a different density of pre-existing nuclei within the matrix.

The latter is in turn attributed to the higher energy density Ed falling on the target in

chamber 2, thus evaporating a larger number of ions and other reactive species, with

larger kinetic energies, eventually forming more nuclei.

GAXRD profiles (Fig. 5.19) demonstrated that the degree of texture tended to evolve

during thin film growth in chamber 2, at P(O2)=5 mT and Ts=200◦C. The film originally

grows with no preferred orientation during the first 100/150 nm, with (222), (411) and

(420) peaks visible. Afterwards, a (400) preferred orientation was increasingly favoured

indicating that more pronounced textures are obtained after the film has achieved a

certain crtitical thickness, estimated to be around 200 nm. This observation may be

explained in terms of energetic considerations, since during the first stages of the growth,

the thin film has to minimise both its interface and surface free energies. In addition,

the amorphous nature of the substrate does not favour any specific growth orientation.

Hence, several growth orientations could meet the requirements of minimising both the

surface and interface free energies.

The change of the preferred growth orientation in chamber 2 was found to affect the

FWHMs of the preferred oriention peaks. The FWHMs gradually decreased with Ts

except at 150◦C where a significant maximum (1.05◦) was observed (Fig. 5.17). This

can be explained in terms of an intermediate/transition state if the matrix undergoes the

change in texture change as demonstrated by the XRD measurements (Fig. 5.14). This

maximum did not show a strong impact on the electron mean free path (L), as illustrated

in Fig. 5.32, which remains of the order of a few nanometres. This is not contradictory

since L is defined as: L = (3π2)1/3(h/e2)ρ−1N−2/3.

Since ρ is found to be almost constant in the RT - 400◦C range (Fig. 5.37), variations of

L are solely due to changes in N, which shows a maximum at 100◦C, but not significant

to impact on L. The fact that L remains almost unchanged as the matrix undergoes a

texture change and some loss of crystallinity combined with increased internal stress

(FWHM increase) is related to L being of a few nanometres. The possible structural

disorder implied by a texture change occurs on a much smaller scale than L so that it is

not strongly affected by such a disorder.
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The impact of the texture strength was connected to µ in chambers 1 and 2 (Fig. 5.18). A

positive linear relation between TC(222) and µwas found in chamber 1 except at Ts=400◦C

due to possible oxygen absorption effects as shown by SEM-EDX measurements (Fig.

5.35). Therefore, a more textured film tends to have a higher mobility on account of

crystallisation enhancement with higher Ts. In chamber 2, two different temperature

ranges were identified where a correlation between the orientation and µ occured:

between RT and 150◦C, a negative linear correlation between TC(400) and µ is observed,

while between 150 and 400◦C, there is a positive linear correlation between TC(400) and

µ. In the range 150 - 400◦C, and likewise for chamber 1, the positive linear corrrelation

is attributed to thermally induced crystallisation. The negative linear correlation in the

low temperature range is not believed to be related to any physical phenomenon taking

place in the films.

In chamber 1, the situation is somewhat simpler but opposite to that in chamber 2.

FWHMs were found to increase steadily with Ts (Fig. 5.17). While it is often explained

that a higher Ts enhances adatomic migration improving overall crystallinity, it is argued

that at high Ts, oxidation can take place more easily (Fig. 5.35). The enhanced diffusion

of oxygen within the layer would impact on the crystallinity as oxidation could result

in oxygen atoms going into interstices (in addition to those filling in oxygen vacancies)

distorting the structure and increase its stress level. This hypothesis is confirmed by the

noticeable decrease of the (222) peak amplitude at Ts=400◦C (Fig. 5.13) along with a

FWHM increase (Fig. 5.17).

On a final note, the average FWHM for films from chamber 2 is higher than that for

chamber 1. This is attributed to a higher deposition rate in chamber 2 due to the higher

laser energy density used. This also implies that a larger amount of material is evaporated

from the target in chamber 2 as compared with chamber 1 as partially confirmed by the

higher film thicknesses obtained in chamber 2 (Fig. 5.12).

5.2.1.7.2 Chemistry Oxygen can be easily incorporated/desorbed into/from the lat-

tice via the surface owing to the unique crystal-defect structure of bixbyite based materials

which includes a high concentration of vacancies. The higher the Ts, the higher the

oxygen diffusion rate since the latter is thermally activated. It has been proposed [10]

that O2 gas can be adsorbed as O2−, O− and/or O−2 . Such an oxygen intake was not

significant for films grown in either chambers as demonstrated by SEM-EDX (Fig. 5.35):

both film types showed a relative stability of the In/Sn and (In+Sn)/O atomic ratios. A

slight decline of the (In+Sn)/O atomic ratio was however noticed at 400◦C in chamber
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1. This is in line with previous carrier concentration measurements (Fig. 5.34) where a

significant decline in N (chamber 1) was observed. This was accounted for by the filling

of oxygen vacancies, which was less significant in chamber 2. Oxygen intake at high Ts

was also reported in [184] [48].

Such a low level of interaction with the oxygen atmosphere might be explained by the

fact that for Ts <450◦C, the vacancy concentration is frozen in [185]. Hence, it is argued

that the level of oxygen vacancy concentration encountered in the films at Ts <400◦C

(for both chambers) is not sufficiently high to enable significant oxygen absorption and

desorption.

5.2.1.7.3 Carrier concentration, mobility and resistivity As the crystallization im-

proved with increasing Ts, the carrier concentration in the ITO films increased in both

chambers (Fig. 5.34). It is suggested that 2 independent carrier generating mecha-

nisms take place. Initially, a structural rearrangement or relaxation of the amorphous

phase [186] led to ordering of the oxygen vacancies. As the crystallisation proceeds

further, larger crystallites are formed. Within each of these crystallites, Sn can effectively

substitute for In atoms (a thermally activated process), further releasing free carriers.

In chamber 1, this hypothesis and the chronological order of these two mechanisms is

reinforced by the carrier concentration results presented in Fig. 5.34 which showed at

first a steady and linear rise in N between RT and 150◦C (structural rearrangement of

the amorphous phase). This is followed by a much sharper increase between 150 and

200◦C (Sn substitution for In atoms). The matrix is then fully crystallised as observed in

SEM and plan view TEM micrographs.

In chamber 2, a rapid rise of N is observed between RT and 100◦C where a maximum is

observed. At that temperature, complete crystallisation of the matrix is also achieved

as witnessed by SEM micrographs showing a grainy surface morphology at a Ts as low

as 100◦C (Fig. 5.24 (b)). Nonetheless, the occurrence of a strong (400) preferred

orientation (see Fig. 5.14) could also be considered as another factor to enhance the

carrier concentration (N), although further investigations are needed to be carried out to

find out the relation between the (400) preferred orientation and why such a maximum

is not observed for µ (Fig. 5.31).

Saturation occurs after 200 and 150◦C in chambers 1 and 2 respectively. It is suggested

that this takes place when the majority of Sn has effectively substituted for In atoms for

a given concentration of oxygen vacancies depending on the oxygen pressure during

growth. A slight decrease in N is observed above 300 and 200◦C in chambers 1 and 2
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respectively due to oxygen absorption as explained above.

The difference in microstructure between samples from chambers 1 and 2 at low Ts had

a dramatic impact not only on N, but also on µ. µ was shown to be almost independent

on Ts in chamber 1 above 200◦C and over the whole temperature range investigated

in chamber 2 (Fig. 5.31), suggesting that degenerate conduction behaviour, as in

(semi-)metals, takes place. In chamber 1, below 200◦C, µ and ρ exhibit thermally

activated behaviour between RT and 200◦C (Figs. 5.33 and 5.38) with energy barriers of

39.46 meV and 0.52 eV respectively. For ρ, this activation energy was attributed to the

crystallisation process occurring over this temperature range, while for µ, such a barrier

is suggested to result from the formation of trapping states due to the inherent atomic

disorder (incomplete atomic bonding) at grain boundaries (grain boundary trapping

theory [176]) in the 100 - 200◦C range and in the amorphous matrix (RT - 100◦C) [181].

Above 200◦C, this activation energy is close to zero since no strong variations with

Ts are observed (Fig. 5.34). This reduction of activation energy in the transition to

a polycrystalline matrix seems to be related to the transition from trap/grain barrier

limited conduction to quasi-impurity band conduction. In addition, the increase in N

between RT and 200◦C (for reasons stated in the above paragraph) might impact on the

gradual diminishing action of energy barriers on the conduction.

On the other hand, µ does not appear to be thermally activated in chamber 2 and

values do not vary to a great extent between RT and Ts = 400◦C. This would imply

a very low or non-existent activation energy of the mobility with free carriers flowing

freely across grain surfaces. This might be due to the difference in N between films

from the two chambers: a higher carrier density N would screen energy barriers set by

grain boundaries and amorphous/crystalline interfaces. While the highest µ observed

in chamber 2 is at RT, this result is to be taken with caution. Such a disceprency might

result from crystallites being of much lower resistivity than the intercrystalline barriers.

Therefore, the measured Hall mobility µH (noted µ in this work) would be the mobility

within crystallites/grains without accounting for the effects of intercrystalline barriers,

hence the much higher mobility observed at low temperature. This affects the validity of

the measurements and makes r in eq. 4.6 different from unity. As the matrix becomes

fully crystalline at Ts=100◦C, the effect of energy barriers on carrier flow becomes

less predominant via grain growth and/or less disordered grain boundaries so that the

measured mobility reflects the true nature of the sample under investigation. Segregation

of impurity (particularly Sn) at grain boundaries cannot be totally ruled out either based

on our experimental results in explaining grain interiors having lower resistance than
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grain boundaries (segregation model [187]). The reason why this is not happening in

chamber 1 is puzzling and requires further work to confirm whether this trend is true or

not.

The derivation of µ and N enable the calculation of ρ. In chamber 1, ρ was found to

decrease from RT to 200◦C. Over this range, and a similar manner to µ, the ρ exhibited a

thermally actived behaviour between RT and 200◦C so that:

ρ = ρ0e
−Ea
kT (5.6)

The thermally activated behaviour of ρ is related directly to that of µ (and possibly N,

although, more experimental points are needed). The lowest resistivity was obtained

for ITO films deposited at Ts >200◦C in chamber 1 (Fig. 5.37). ρ reaches a plateau

above this temperature. This plateau is seemingly reached when crystallinity is at a

maximum and no more free carriers can be generated by oxygen vacancy creation and Sn

activation. The overall decrease in ρ in chamber 1 was explained by thermally induced

crystallisation generating carriers and a mobility increase. Meanwhile, log(ρ) versus 1
Ts

in chamber 2 (Fig. 5.38) showed a linear dependence, but the fit was so poor that no

reliable calculations were possible using this fit. The resistivity is almost constant in the

RT - 400◦C range owing to the inverse relationship between µ and N.

5.2.1.7.4 Scattering mechanisms The different microstructures observed in cham-

bers 1 and 2 as Ts was varied impacted on the dominant scattering mechanisms operating

in our films. The large surface roughness observed at 400◦C in chamber 1 is not believed

to cause strong surface scattering as only the very top surface (∼1.5 nm) was affected,

as compared with a total layer thickness of about 250 nm. In chamber 2, films were even

smoother, so surface scattering was not considered to be significant in either chamber.

Neutral defect scattering was not considered either as TCO materials are highly ionised

semiconductors showing very low ionisation energies. For example, in In2O3, the ionisa-

tion energy of the donors is only about 0.01 eV [188]. Consequently, the concentration

of neutral donors at RT is very low meaning that ionised impurity scattering (oxygen

vacancies and Sn ions) is not expected to operate. Ionised impurity scattering is the most

likely mechanism remaining. It is demonstrated by plotting µ versus N (see Fig. 5.39).

Fig. 5.39 shows that µ depends strongly on N in chamber 1 (between Ts=150 and

400◦C) and in chamber 2 (RT - 400◦C). This behaviour is compatible with the ionised
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Figure 5.39 Relationship between the carrier concentration N and the mobility µ of
ITO thin films when Ts varies from RT to 400◦C. Left: chamber 1; right: chamber 2.

impurity scattering theory developed by Dingle et al. [6] (chapter 2/section 2.2.2.1.2).

The experimental µ - N plots in chambers 1 and 2 are compared with this model (see

Fig. 5.40) assuming either scattering at Sn ions (red curve) and scattering at oxygen

vacancies (green curve).

Figure 5.40 Hall mobility µ versus carrier density N for chambers 1 (left) and 2 (right).
Experimental data are shown as blue triangles. Also shown are the calculated µ based
on charged impurity scattering assuming that all carriers are substitutional Sn ([Sn.In],
Z=1, red curve) or doubly charged oxygen vacancies ([VO..], Z=2, green curve).

The value of εr=9 [72] and m∗=0.35m0 [28] (where m0 is the stationary mass of an

electron) is taken from the literature. The scattering at doubly charged oxygen vacancies

is obviously larger than at singly charged Sn for a given donor density. The values of

Ni are postulated to be N/2 for Z=2 ions (half of oxygen sites are vacancies) and N for

Z=1 ions (all substitutional Sn are ionised) as explained in [38]. This model assumes no

temperature dependence of µ which is reasonably well observed in both chambers for
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the higher temperature range (> 200◦C) (see Fig. 5.31).

Ionised impurity scattering is observed to be dominant between 150 and 400◦C in

chamber 1 and over the whole temperature range in chamber 2. This scattering is also

shown to be mainly due to oxygen vacancies since the curve representing scattering by

oxygen vacancies gives a better fit with the experimental data. The departure from the

modelled to the experimental data in chamber 1 at low Ts means that ionised impurity

scattering is not predominant within this temperature range. It was indeed shown that

trap and grain boundary limited conductions were taking place at these Ts’s which is the

reason why µ was found to be thermally activated (Fig. 5.33). Moreover, at RT, Sn atoms

are believed to form neutral complexes with the oxygen anions [13]. They are said to

be “deactivated” and no longer constitute ionised impurities making the conduction

mechanism depart further from the ionised impurity model.

In chamber 2, the dominance of ionised impurity scattering between RT and 400◦C

was justified by the larger N as compared with chamber 1, suggesting that an equally

large number of oxygen-vacancy-like electron-donating defects are present and that

degenerate ionised impurity scattering remains dominant over the whole temperature

range studied. The relatively low mobility variation with Ts combined with a more or less

constant electron density N point to a highly degenerate semiconductor-type behaviour

where the films behave like a semi metals [189]. Finally, and in both chambers, the

electron mean free path was found to be only a few nanometres. Hence, grain boundary

scattering was not considered as strongly affecting electrical conduction through the

films.

5.2.2 Optical properties

As mentioned in section 5.2, the film thickness in both chambers did not show any

dependence on Ts. As a consequence, it is assumed that the film thickness parameter

does not play any significant role in optical property changes with Ts.

5.2.2.1 Transmittance and ellipsometric measurements

Transmittance measurements in the UV-visible-near infra red range (250 - 1000 nm)

were performed. Fig. 5.41 shows the results.

The fluctuations in the spectra of chamber 2 (see blue arrows in Fig. 5.41) are connected
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Figure 5.41 Transparency in the 400 - 1000 nm region of ITO thin films deposited at
varying Ts in chambers 1 and 2. Ts was varied from RT to 400◦C and P(O2) was kept
constant at 10 and 5 mT in chambers 1 and 2 respectively.

with the film thickness, resulting in interference between light reflected from the top

surface and the film/substrate interface. A “zoom” over the 250 - 500 nm range is

provided in Fig. 5.42 to emphasise the band gap shift taking place.

Figure 5.42 Transparency in the 275 - 500 nm region for ITO thin films deposited at
varying Ts in chambers 1 and 2. Ts was varied from RT to 400◦C and P(O2) was kept
constant at 10 and 5 mT in chambers 1 and 2 respectively.

For the sake of clarity, the average transmittance over the 400 - 1000 nm range is plotted

in Fig. 5.43. This range was chosen since the data vary somewhat less in that region than

in the band gap region 250 - 400 nm meaning that a better comparison can be achieved.

The variation of the bandgap Eg with Ts is also shown in the same figure (right). The

latter is calculated by plotting α2 (α=absorption coefficient) versus the photon energy

E=hν (Tauc plot [190]).

Several observations can be made. Based on Figs. 5.41 and 5.42, a shift of the bandgap

towards lower wavelengths takes place as Ts increases. This shift is observed in both
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Figure 5.43 Left: average transparency in the 400 - 1000 nm region of ITO thin films
deposited at T ′ss from RT to 400◦C in chambers 1 and 2. Right: variation of bandgap Eg
with Ts. Ts was varied from RT to 400◦C and P(O2) was kept constant at 10 and 5 mT in
chambers 1 and 2 respectively.

chambers but its magnitude is different: it is more pronounced in chamber 1 than in

2. In addition, saturation can be identified in both chambers. Whereas in chamber

2, no appreciable shift is visible after 100◦C, in chamber 1 this occured at the higher

temperature of 200◦C. This agrees well with carrier concentration measurements (N)

(see Fig. 5.34) which showed a relative stability of N after 100 and 200◦C in chambers

2 and 1 respectively. Hence the link between N and the bandgap shift known as the

Burstein-Moss effect (see earlier explanation section 2.2.1).

Based on Fig. 5.43, the average transmittance in the 400 - 1000 nm region improves

with Ts in both chambers. In chamber 1, at RT, the ITO films were dark brown in

colour with an average transmission of less than 60% over the 400 - 1000 nm range.

Transmittance at that same temperature and over the same range was significantly higher

in films from chamber 2 with an average transparency of 75%. A further increase in

temperature (200◦C in chamber 1 and 300◦C in chamber 2) does not lead to an increase

in transmittance over the wavelength region studied, indeed transmittance seems to

degrade slightly at 400◦C in chamber 1. It was previously shown that the electrical

properties degraded slightly over this range, illustrating once again the interdependence

of electrical and optical properties. AFM showed (Fig. 5.44) that the roughness increases

strongly with Ts in chamber 1 up to about 2 nm at 400◦C. A strong increase is also

observed in chamber 2: RMS roughness doubled between 200 and 400◦C in chamber 1

while in chamber 2, even at 400◦C, films remained extremely smooth with only 0.6 nm

RMS roughness.
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Figure 5.44 RMS roughness comparison for chambers 1 and 2. RMS roughness is
calculated on the basis of 2×2 µm scans. Holes are avoided to reflect the “true” roughness
of the film surface.

Another effect is worth noting in Fig. 5.42 is the gradual increase in steepness of the

absorption edge as Ts increases. The steepness of an absorption edge is related to the

degree of crystallinity of the volume probed by the transmittance measurements [46].

The more crystalline is the specimen, the sharper is the edge. This increase in steepness

of the absorption edge can be related directly to the TEM plan view micrographs shown

in Figs. 5.27 and 5.28. These show the gradual disappearance of the amorphous phase

at the expense of the crystalline one. This gradual steepness increase is definitely less

marked in chamber 2 and, once again, this can be related to the SEM and TEM micro-

graphs which show that, even at RT, the crystalline phase represents a significant fraction

of the ITO thin films in chamber 2 so that sharp edges are obtained at temperatures as

low as RT.

In chamber 1, N2/3 is found to be linearly related to Eg while in chamber 2, no such link

is obvious as shown in Fig. 5.45.

From the slope, B, of the linear Eg versus N2/3 plot in chamber 1 (Fig. 5.82), the

derivation of the electron reduced effective mass in the material is possible using the

formula:

B =
h̄2

2m∗V C
(3π2)2/3 (5.7)

With linear regression, it is found that m∗V C(chamber 1)=8.93×10−30 kg. Since m0=9.11×10−31
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Figure 5.45 Variation in the optical bandgap Eg with N2/3 in chambers 1 (left) and 2
(right). Ts was varied from RT to 400◦C and P(O2) was kept constant at 10 and 5 mT in
chambers 1 and 2 respectively.

kg, m∗V C(chamber 1)=0.98m0. Agreement with the literature is not satisfactory since

Vainshtein et al. [191] obtained m∗V C=0.50m0 while Kostlin et al. [28] calculated

m∗V C=0.54m0. It is concluded that the band gap shift is not solely due to carrier

concentration variation (especially in chamber 2 where no linear relation is evidenced)

and hence the Burstein-Moss shift is not fully obeyed. Other effects competing with this

shift (resulting in band-gap shrinkage) will be discussed in section 5.2.2.3.

Finally, ellipsometric measurements are presented in Fig. 5.46 which enable the deriva-

tion of the refractive index n and the extinction coefficient k.

Figure 5.46 Real part of the complex refractive index (n) and extinction coefficient (k)
derived from ellipsometric results for ITO films grown at RT, 200 and 400◦C in chambers
1 (left) and 2 (right). The Cauchy model was used.

The refractive index n is observed to decrease with Ts increasing from RT to 200/400◦C.

Meanwhile, the extinction coefficient k was also found to decrease over this same
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temperature range which is compatible with an increase in transmittance with increasing

Ts (see Fig. 5.43). The variations of (n,k) is much more pronounced in the band gap

region (250 - 350 nm).

5.2.2.2 Summary of the results

ITO thin films were deposited at various Ts (RT - 400◦C) in both chambers. Films with

similar thicknesses were compared and the optical transmittances were found to be

impacted in two different ways:

• the (average) transmittance improved over the visible range with increasing Ts.

• absorption edges shifted towards lower wavelenghts with increasing Ts.

The complex refractive index was also found to be affected. In chamber 1, the absorption

edge shift with increasing Ts permitted the calculation of the electron reduced effective

masse via the Burstein-Moss relation (eq. 2.13). This was not the case in chamber 2

because of other effects at play.

5.2.2.3 Discussion

The transmittance was found to be affected by Ts in both chambers but to a different

degree (Fig. 5.41). In chamber 1, the transmittance spectra showed significant changes

in values, absorption edge shifts and shapes. These changes were more moderate in

chamber 2, this being attributed to the lower working oxygen pressure combined with

the slightly higher energy density (Ed) used in this chamber. These 2 parameters result

in higher surface mobilities of ejected species on the growing surface resulting in better

crystallinity and optical properties at temperatures as low as RT. In chamber 1, however,

the surface mobilities are lower than those in chamber 2 - significantly lower to the

extent that Ts is suggested to be the dominant parameter in determining these surface

mobilities. Hence, the larger spread of features (band gap shifts, transmittance values in

the visible range) observed for transmittance spectra chamber 1.

In chamber 1, for films prepared at RT, the transmittance was less than 60% over

the visible range while for Ts over 100◦C gave films with an average transmittance of

85%. The low transmittance at RT was attributed to an amorphous structure, which by

definition is composed of a higher level of structural defects than a crystalline one, giving

rise to numerous impurity or trap energy levels within the band gap. Since non oxidised

particulates and other non stoichiometric compounds, such as InO and SnO [192], sitting
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on the surface, were not observed by SEM measurments (Fig. 5.20), these could not

account for the loss of transparency.

The increased transmittance with increasing Ts was attributed to crystallisation. Films

grown in chamber 2 also showed an improving transmittance with increasing Ts with a

10% improvement between RT and 400◦C. At RT, films grown in chamber 2 were signif-

icantly more transparent than those grown in chamber 1 due to higher crystallisation

as a result of surface mobilities. Therefore, the degree of matrix crystallisation has an

important effect on resulting transmittance over the visible range. An interesting feature

was observed on the films grown at Ts=100◦C, namely a decline in transmittance in the

near-IR region (∼900 nm). This was attributed to the very high carrier density (of the

order of 1021cm−3) as indicated by Hall effect measurements (Fig. 5.34) at Ts=100◦C.

The increasingly rough surfaces at higher Ts demonstrated by AFM measurements (Fig.

5.44) were not expected to cause any sort of light scattering as the RMS roughness

remained around 1 - 2 nm, i.e., far less than the wavelength of the visible light (a few

hundred nanometres).

The absorption edge shape was also found to depend on Ts. Its slope was observed to

decrease at lower Ts in chamber 1, although, no such observations were made for cham-

ber 2. This behaviour is consistent with the slope of the absorption edges being linked

to the defect density. The latter is expected to be very high for the nearly-amorphous

film grown at RT in chamber 1 compared with the one grown in chamber 2 where

crystallisation was well underway, effectively reducing the total defect concentration.

These structural defects are believed to give rise to localised energy levels within the

band gap so that an electron is less and less likely to make a direct transtion from the

valence to the conduction band, blurring the band gap.

A plot of band gap Eg versus N2/3 (Fig. 5.45) showed good agreement between the

Burstein-Moss shift theory (see section 2.2.2.2.2) and experiment in chamber 1 but

not in chamber 2 (Fig. 5.45). There is however another competing mechanism to

fully take into account for the overall band-gap widening (see eq. 2.13): a band-gap

narrowing (or band-gap renormalisation) which is a consequence of electron-electon

and electro-impurity scattering [193] [194]. Electron-electron scattering is expected to

play a more important role at high N and this might be the reason why data in chamber

2 are not in good agreement with the theory, since films grown in chamber 2 showed a

higher N. The further departure of the Burstein-Moss shift theory in chamber 2 might
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be due to a stronger electron-impurity scattering mechanism since these films contain a

higher number of oxygen vacancies (which is also a consequence of a high N). Finally, it

has to be noted that no dependency between effective mass and carrier concentration N

as postulated in [195] was taken into account in this study, perhaps explaining some

scattering in our data.

Transmittance spectra (Fig. 5.41) demonstrated a saturation in the shift above 200◦C

and 100◦C in chambers 1 and 2 respectively which is in excellent agreement again with

previous Hall effect measurements (Fig. 5.34). Hence, the electro-optical properties

observed in our study are self-consistent. This shift towards lower wavelengths with

increasing Ts is equivalent to band gap widening.

Finally, the spectroscopic ellipsometry measurements presented in Fig. 5.46 showed

that the refractive indexes n in the visible range (400 - 800 nm) were quite close to

the reference values previously reported [196][197] for high quality ITO films and that

the extinction coefficients k of the deposited films were below 0.1 in the visible region.

This is characteristic of very transparent films, as is also demonstrated with transparency

measurements. k was found to decrease with increasing Ts which is compatible with an

increase in transmittance with increasing Ts (Fig. 5.41). In the band gap region (250

- 350 nm), the variations of (n,k) were more marked. n and k vary together because

they are interdependent since they are derived from the real and imaginary parts of a

single parameter, namely, the complex refractive index. (The reader is reminded that the

general relationships between n and k are given by the Kramers-Kronig equations (eq.

2.11 and 2.12)). N is varying modestly in both chambers (Fig. 5.34), while the matrix

density is not expected to vary greatly as Ts changes, even though direct measurements

could not be performed. Therefore, the decrease of n might be related to electron

concentration.

5.2.2.4 Optimal substrate temperature

From the result presented in sections 5.2 and 5.2.2, it is deduced that the optimal

temperature leading to the highest [Transparency over the visible range]/[resistivity]

ratio in both chamber 1 and chamber 2 is 200◦C. Therefore, subsequent variations of

oxygen pressure is performed at Ts = 200◦C.
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5.2.3 Reconciling results from chambers 1 and 2

An attempt is made to correlate the electrical and optical data of ITO thin films grown for

chambers 1 and 2 since the transposition of the growth parameters from chamber 1 to

chamber 2 resulted in films an order of magnitude more resistive than those in chamber

1. Then, it was noticed that at given growth conditions, thin films grown in chamber 2

had a resistivity ρ very close to the films grown in chamber 1 (under exactly the same

conditions) provided a static atmosphere is used in chamber 2. Here “static” means that

no pumping took place in the chamber after the introduction of a certain amount of pure

O2 gas. Consequently, a comparison between chamber 1, where a dynamic atmosphere

(i.e. pumping plus continuous introduction of O2 gas) was used, and chamber 2, under

a static atmosphere, is made. (The differences in set-up between the two chambers

was illustrated in section 4.1, Fig. 4.1). All other parameters used in chamber 2 were

set to be exactly the same as those used in chamber 1, i.e. 10 mT of pure oxygen was

introduced to the chamber and then pumping was stopped. It was found necessary to

inject regulary some oxygen inside the chamber as gas was consumed by the thin film

during its growth. Table 5.8 summarises the growth conditions used in chamber 2.

Table 5.8 Summary of ITO growth parameters in chamber 2. P(O2) was kept at 10 mT.
The parameters were unchanged as compared with chamber 1, although the atmosphere
was static.

Temperature RT - 400◦C
T-S distance 63 mm
Laser fluence 7.5 J/cm2

Laser frequency 10 Hz
Oxygen pressure 10 mT

Electro-optical and structural properties are studied and compared.

5.2.3.1 Electrical properties

Fig. 5.47 shows Hall effect measurements where the mobility µ, the carrier concentration

N and the resistivity ρ are plotted versus Ts.

The resistivities are similar over the range RT to 400◦C. Here the carrier concentration,

agreement is satisfactory (less than 25% difference) up to 200◦C, after which the curves

diverge increasingly. Conversely, the agreement in mobility is not good except above

300◦C.
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Figure 5.47 Comparison of electrical properties between chambers 1 and 2 in terms.
Ts is varied from RT to 400◦C.

5.2.3.2 Structural properties

XRD patterns are presented and compared at RT, 200◦C, 300◦C and 400◦C (see Fig.

5.48).

It is interesting to observe that the agreement between the mobility measurements is

best (at 300◦C and 400◦C) when both films are textured along the <111> direction.

5.2.3.3 Optical properties

Fig. 5.49 shows a comparison of optical properties in transmission between specimens

grown at RT, 200, 300 and 400◦C in chambers 1 and 2.

Films grown in chamber 1 show a systematic absorption edge shift towards higher

wavelengths as compared with chamber 2. Since the thickness of the films compared is

similar, this shift was explained on the basis of free carrier concentration. Indeed, carrier

concentration measurements (Fig. 5.47) showed that films grown at RT, 200, 300 and
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Figure 5.48 Comparison between XRD patterns of films grown in chamber 1 (dynamic
atmosphere) and 2 (static atmosphere) at four different Ts: RT, 200, 300 and 400◦C.

400◦C in chamber 1 contain a lower amount of free carriers than those grown in chamber

2 in a static atmosphere. The change in carrier concentration is particularly large at

400◦C, which seems to induce the slightly larger shift observed at this temperature (Fig.

5.49). At RT, the shift is reversed owing to the higher carrier density in chamber 1.

Hence, electro-optical measurements are self-consistent. It is also interesting to note that

the absorption edge slope at RT is much less steep than at higher Ts due to the lower

crystallinity. Both absorption edges are similar in both shape and slope showing that the

crystallinity might be about the same in both chambers.

5.2.3.4 Summary

Reconciling results from chambers 1 and 2 comes down to reconcile with static and

dynamic pumping. Comparing films grown at different Ts in chamber 2 under a static

atmosphere with those grown initially in chamber 1 under a dynamic atmosphere yielded

mixed results. As regards the electrical properties, µ and N do not compare particulary

well showing opposite behaviour in the two chambers, although ρ does compare well, a
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Figure 5.49 Comparison between chambers 1 and 2 for transmittance over the 300
-1000 nm wavelength range. A static atmosphere was used in chamber 2 where P(O2)
was kept at 5 mT. In chamber 1, there was a constant pressure of P(O2)=10 mT in a
dynamic atmosphere (pumping system operating). Ts was varied from RT to 400◦C.

fact that had initially lead us to make the present comparisons. The XRD results compare

relatively well with an observed (222) preferred orientation, although at Ts=200◦C, the

agreement is not so good since films in chamber 2 do not show any preferred orientation.

Optical properties agree very well, especially at RT where the slope of the absorption

edge was reproduced in chamber 2. A systematic absorption edge shift towards lower

wavelength is also noticed between chambers 1 and 2 and is attributed to the previously

discussed Burstein-Moss effect due to the difference in N. The fact that using a static

atmosphere in chamber 2 makes it possible to grow ITO thin films with similar physical

properties to those initially grown in chamber 1 demonstrates the very strong impact

of oxygen flow and the resulting gas dynamics in a PLD chamber during growth. Very

few studies have been undertaken regarding that matter. One of the most detailed study

coming from Spencer et al. [198] for a magnetron sputtering system. They monitored

the film and pump consumption of oxygen and showed that the best way to obtain a

stable deposition system (i.e. a constant P(O2) on the substrate surface so that the arrival
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rate of different species and the stoichiometry stay constant) is to ensure that most of the

oxygen gas is removed by the vacuum pumps and not by consumption by the growing

film. This process is likely to take place in chamber 2 where the oxygen nozzle on top

of the chamber directly points at the growing film before being pumped down at the

bottom. The oxygen nozzle, the substrate and the pumping system all sit on a straight

line. In chamber 1, the oxygen is both introduced and pumped down at the bottom

of the chamber. This might result in a more static flow of the oxygen molecules over

the entire surface of the growing film as the ambient gas would tend to accumulate on

top of the chamber. The fact that µ and N could not be reproduced exactly indicate

that some other parameters are at play. Such oxygen accumulation may not occur in

chamber 2 due to the different oxygen introduction/pumping configuration. The location

of the oxygen nozzle directly pointing at the growing film might also facilitate more

efficient incorporation of oxygen into the film hence the lower P(O2) needed to obtain

high quality thin films. The higher energy density needed in chamber 2 might be due

to the fact that oxygen moleclues are likely to be less uniformly distributed (since they

are mainly concentrated in the vicinity of the growing thin film) as compared with the

situation in chamber 1. Therefore, dissociation/ionisation of oxygen molecules leading

to reactive oxygen species in the ambient gas is not favoured in chamber 2 hence the use

of a higher energy density (also enhancing formation of such reactive species).

5.3 Influence of Oxygen pressure

ITO films that exhibit optimum values of conductivity and transparency require an

oxygen partial pressure in the PLD ambient to be kept within very narrow limits. Good

process control and reproducible starting conditions for every PLD run are required

to obtain films of constant quality. This section investigates the change in physical

properties and micrsostructure as the oxygen pressure (P(O2)) is varied in chambers 1

and 2 (with the growth temperature (Ts) is kept at 200◦C for reasons stated in section

5.2.2.4). Discussion of how the electrical properties are presented first, with optical

properties presented in a later section (5.3.2.1). As in section 5.2, an attempt to correlate

results from chambers 1 and 2 is made, while the section ends with a discussion.

5.3.1 Electrical properties

A similar approach to the one taken when Ts was varied (section 5.2.1) was followed

regarding the data processing of µ, N and ρ.
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The first parameter to take into account is the film thickness (t) since films need to be

of constant thickness to be compared correctly with each other. Indeed, it has been

reported [86] [199] that TCOs tend to have a large dependence of carrier concentration

on film thickness, (similar to the results presented in section 5.1). In chamber 1, when

the oxygen pressure was set above 30 mT, 8000 instead of 5000 pulses were fired to

counteract additional scattering by the oxygen atmosphere at 30, 40 and 50 mT P ((O2)

resulting in a film thickness of about 260 nm. Such an adjustment was found to be

unnecessary in chamber 2, as illustrated in Fig. 5.50 where films grown at P ((O2)=0.5

and 50 mT in chamber 2 are compared showing no strong impact of P ((O2) on t.

Figure 5.50 Comparison via SEM cross sectional micrographs of the thicknesses of
films deposited at P(O2)=0.5 (left) and 50 mT (right) in chamber 2. The temperature
was kept at Ts=200◦C.

Table 5.9 sums up the growth conditions used in the two chambers.

Table 5.9 Summary of ITO growth parameters when varying P(O2).

Parameter Chamber 1 Chamber 2
Temperature 200◦C 200◦C
T-S distance 63 mm 63 mm
Laser fluence 7.5 J/cm2 10 J/cm2

Laser frequency 10 Hz 10 Hz
Oxygen pressure 1 - 50 mT 0.2 - 70 mT

5.3.1.1 Film microstructure

XRD patterns for chambers 1 and 2 are presented in Figs. 5.51 and 5.52.
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Figure 5.51 XRD patterns of ITO films deposited at different oxygen pressures in
chamber 1. P(O2) was varied from 1 to 50 mT. Patterns were shifted to the right in order
not to mask any features. Other process conditions are listed in Table 5.9.

Figure 5.52 XRD patterns of ITO films deposited at different oxygen pressures in
chamber 2. P(O2) was varied from 0.2 to 70 mT (left). For the sake of clarity, the high
intensity XRD peaks obtained at P(O2)=40 and 50 mT are reproduced on the right hand
side. Other process conditions are listed in Table 5.9.

Fig. 5.53 shows a plot of the corresponding FWHMs of (222) or (400) (preferred

orientation) peaks versus P(O2).

In chamber 2, the preferred orientation of the film is strongly affected by P(O2). In

chamber 1, ITO films increasingly developed a (222) preferred orientation (Fig. 5.51)

with higher P(O2). The (222) peak intensity decreases at 50 mT while the FWHM stays

constant (see Fig. 5.53). For chamber 2, an orientation change (from (400) to (222))

takes place between 1 and 5 mT (Fig. 5.52). At high P(O2), the (222) peak intensity

decreases in both chambers, with no major change in the FWHM. It is observed that µ in
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Figure 5.53 FWHM of preferred orientation (222) (except for red experimental points)
peaks as P(O2) is varied. P(O2) varies from 1 to 50 mT in chamber 1 and from 0.2 to 70
mT in chamber 2.

chambers 1 and 2 shows a negative linear correlation with the FWHMs (presented in Fig.

5.53) of both the preferred (222) and the (400) peaks (Fig. 5.54).

Figure 5.54 Correlation between FWHM and the mobility µ in chambers 1 (left)
and 2 (right). Ts was kept at 200◦C. The mobility values are taken from the samples
corresponding to the X-Ray diffractograms presented in in Figs. 5.51 and 5.52.

The texture quality (noted as TC(222) or TC(400)) also affected µ as illustrated in Fig. 5.55.

In chamber 2, the large FWHM obtained in the intermediate 10 - 30 mT range (see Fig.

5.53) was not attributed to the amorphous glass substrate (see the amorphous “bump”
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Figure 5.55 Relation between µ and TC(222) - TC(400) in chambers 1 (left) and 2 (right).
P(O2) was varied from 1 to 50 mT in chamber 1 and from 0.2 to 70 mT in chamber 2. The
mobility values are taken from the samples corresponding to the X-Ray diffractograms
presented in Figs. 5.51 and 5.52.

originating from the glass substrate in Fig. 5.15) since this large FWHM vanishes both at

low and high P(O2) (and the films are of about the same thickness). Instead, it is argued

that the large FWHM peak obtained in the 10 - 30 mT range originates from a gradual

phase development. At P(O2)=30 mT, a shoulder on the right hand side of the peak is

clearly distinguishible and found to be reproducible (Fig. 5.56).

Figure 5.56 Reproducibility of the (222) peak asymmetry for three different samples
grown under exact the same conditions. Deposition was performed in chamber 2 at
Ts=200◦C and P(O2)=30 mT.

These particular features were studied in greater detail with glancing-angle XRD (GAXRD)

by varying the incidence angle from Ψ=1 to 16◦, so that the peak shapes and position

could be studied as a function of film thickness. Fig. 5.58 shows how the shape and

position of the (222) diffraction peaks evolve at these different incident angles (Ψ). The
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approximate thickness probed is also indicated for information.

Figure 5.57 GAXRD patterns performed on a film grown at P(O2)=20 (left) and 30 mT
(right). Ψ was varied from 0.5/1 to 16◦. Other growth conditions are listed in Table 5.9.

Fig. 5.58 illustrates the necessary double peak fittings to fit the asymmetry. The incidence

angle was chosen to be Ψ=16◦ to ensure the maximum intensity signal (whole thickness

probed).

Figure 5.58 Multi peak fitting of the GAXRD peak asymmetry for films grown at
P(O2)=20 mT and Ts=200◦C in chamber 2. The incident angle was set at Ψ=16◦.

Fig. 5.58 shows that this effect is not a “simple” peak splitting, rather at P(O2)=20

mT, the large (222) peak is composed of two subpeaks: “Peak 1” at 29.72◦ and a “peak

2” at 30.66◦. “Peak 1” at 2θ=29.49◦ (d=3.13Å) is attributed to the host matrix cubic

phase In2O3 ((222) reflection) (JCPDS 44-1087). “Peak 2” is more difficult to account

for. Its large FWHM at P(O2)=30 mT makes an overlap of SnO (JCPDS 01-072-2324),

SnO2 (JCPDS 01-071-5329) and possibly Sn3O4 (JCPDS 00-020-1293) peaks likely so

that indivudual identification remains difficult. Although other metastable InxSnyOz

compounds have not been reported in the literature, they remain a possibility on the basis
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of our diffraction data. It is also observed that at P(O2)=20 and 30 mT, the shapes of

the peaks are conserved through the whole specimen thickness, which is strong evidence

that the phases mentioned previously is a bulk one rather than a surface or substrate

interface effect. As regards the position of “peak 1”, a significant peak shift (1◦) towards

lower 2θ as compared with JCPDS data (JCPDS 00-006-0416) is observed indicating a

relatively high level of stress within the thin film, at least under these growth parameters.

The coexistence of several oxides might explain such an observation.

Surface morphology was investigated by SEM and AFM imaging. Figs. 5.59 - 5.60 present

low magnification SEM micrographs of the surfaces of samples grown in chambers 1 and

2 at different P(O2).

Figure 5.59 Low magnification SEM micrographs of samples grown at (a) P(O2)=1
mT, (b) 5 mT, (c) 10 mT, (d) 20 mT, (e) 30 mT, (f) 40 mT and (g) 50 mT in chamber
1. Holes are observed and attributed to highly energetic ejected species impacting the
growing surface.
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Figure 5.60 Low magnification SEM micrographs of samples grown at (a) P(O2)=0.2
mT, (b) 0.5 mT, (c) 1 mT, (d) 5 mT, (e) 50 mT and (f) 70 mT in chamber 2. Holes
are observed and attributed to highly energetic ejected species impacting the growing
surface (see red arrows). Round particulates are also observed scattered homogeneously
over the surface of the sample grown at 0.2 mT (see blue arrows in (a)).

Holes are observed at low P(O2) for samples grown in chambers 1 and 2, while surface

particles with an average diameter of 100 nm are also identified in chamber 2 at

P(O2)=0.2 mT. Because PLD is a very energetic deposition process (with kinetic energies

of ejected species up to 1000 eV as compared a few hundreds eV at most [61] with
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sputtering or a few tens eV [200] for evaporation), thin film surface/bulk structure

can be badly damaged. This is particularly the case at low P(O2), so control of the

atmosphere pressure used is of utmost importance. Unfortunately, quantitative SEM

EDX could not be performed on the particles observed at P(O2)=0.2 mT due to spatial

resolution constraints.

Higher magnification SEM micrographs were acquired to study in more detail the

average grain size. Figs. 5.61 - 5.62 present high magnification SEM images of the

surface morphology of samples grown in chambers 1 and 2 at different P(O2).

Figure 5.61 High magnification SEM micrographs showing the change of surface
microstructure at (a) P(O2)=1 mT, (b) 5 mT, (c) 10 mT, (d) 20 mT, (e) 30 mT, (f) 40
mT and (g) 50 mT. Films were grown in chamber 1 at Ts=200◦C. Surface particles are
visible in (g).
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Figure 5.62 High magnification SEM micrographs showing the surface microstructure
evolution at (a) P(O2)=0.2 mT, (b) 0.5 mT, (c) 5 mT, (d) 50 mT and 70 mT (f). Films
were grown in chamber 2 at Ts=200◦C.

AFM images of samples grown at different P(O2) in chambers 1 and 2 are shown in Figs.

5.63 - 5.64.

Figure 5.63 AFM images showing the surface microstructure evolution at (a) P(O2)=1
mT, (b) 10 mT, (c) 30 mT and (d) 50 mT. Films were grown in chamber 1 at Ts=200◦C.
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Figure 5.64 AFM images showing the change of surface microstructure evolution at
(a) P(O2)=0.2 mT, (b) 5 mT, (c) 20 mT, (d) 30 mT, (f) 50 mT and (g) 70 mT. Films
were grown in chamber 2 at Ts=200◦C. In (e), an artefact is present due to a particulate
sitting on the surface.

The AFM images presented above enabled the derivation of surface roughnesses. Fig.

5.65 illustrates graphically the variation of surface roughnesses with P(O2) in chambers

1 and 2.
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Figure 5.65 RMS roughness of ITO thin films deposited at various oxygen pressures
in chambers 1 (black curve) and 2 (blue curve). P(O2) was varied from 1 to 50 mT for
chamber 1 and 0.2 to 70 mT for chamber 2. Ts was kept constant at 200◦C.

At low P(O2), the surfaces are rough due to the presence of particles. The roughness also

increases at very high P(O2) (70 mT) and significant grain growth seems to take place.

At intermediate P(O2) the films appear relatively smooth.

The grain size derived from previous AFM and SEM micrographs are summarised in

Table 5.10.

Table 5.10 Average grain size as P(O2) is varied from 1 to 50 mT and from 0.2 to 70
mT in chambers 1 and 2 respectively.

Average grain size (nm)
Oxygen pressure (mT) Chamber 1 Chamber 2 Technique(s) used

0.2 n.a. n.a /
0.5 n.a. 25 SEM
1 90 50 AFM/SEM
5 100 90 AFM/SEM

10 200 no data AFM/SEM
15 no data no data /
20 250 90 SEM
30 200 120 AFM/SEM
40 150 no data AFM/SEM
50 n.a. 50 AFM/SEM
70 no data 100 AFM/SEM

5.3.1.2 Mobility

Mobility measurements for both chambers are presented in Fig. 5.66.
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Figure 5.66 Mobility (µ) variation for films grown in chambers 1 and 2 versus P(O2).
The growth conditions used are listed in Table 5.9.

Fig. 5.66 shows one maximum for mobility values in chamber 1 at 20 mT, while two

maxima are observed at 5 and 30 mT in chamber 2.

5.3.1.3 Calculations

As with the substrate temperature study (see sections 2.2.2.1.2 and 5.2.1.3), grain

boundary scattering is not expected to be the dominant conduction mechanism since the

average grain size, calculated using AFM and SEM imaging, is much greater than the

calculated electron mean free paths (MFP) L as shown in Fig. 5.67 at different P(O2). L

was calculated using eq. 5.2.

Figure 5.67 Calculated mean free paths of free carriers for films grown at various
P(O2) in chambers 1 and 2 based on a highly degenerate free electron gas model [4].

The same overall trend for MFP versus pressure is observed for both chambers, i.e. the
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MFP decreases drastically at low or high P(O2) in both chambers leaving a pressure

window where the MFP is a few nanometres. This window is relatively large for chamber

1 (5 - 30 mT), while it is much narrower for chamber 2 with a maximum MFP of 3.4 nm

at P(O2)=5 mT. Hence, it can be stated that the best quality films in terms of MFP are

grown at 5 - 30 mT and 5 mT in chambers 1 and 2 respectively.

To investigate the occurence of surface holes observed in micrographs presented in section

5.3.1.1, an empirical formula estimating the mean free path of ejected particulates from

the target proposed by Mergel et al. [5] was used:

Pλ = 0.63 (5.8)

where P is the deposition pressure expressed in Pa. λ is the mean free path expressed in

cm. This curve is plotted in Fig. 5.68 with the pressure converted to mT.

Figure 5.68 Mean free path versus P(O2) according to the empirical formula proposed
by Mergel et al. [5].

For a target-substrate distance of 6.3 cm, no thermalisation (the process whereby particles

lose energy through mutual interaction, eventually reaching thermal equilibrium) occurs

below P(O2)=0.84 mT and hence more surface/bulk damage is to be expected. These

seem to correspond well with observations in chamber 1, although no films were grown

below 1 mT. However, in chamber 2, the threshold is much higher with damage still

being observed at oxygen pressures as high as 50 mT (Fig. 5.60).
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5.3.1.4 Carrier concentration

The carrier concentration was derived from Hall effect measurements using the Van

Der Pauw technique (see section 4.6.2). Carrier concentrations (N) versus P(O2) for

chambers 1 and 2 are illustrated in Fig. 5.69

Figure 5.69 Carrier concentration (N) variation for chambers 1 and 2 with P(O2). The
growth conditions used are listed in Table 5.9.

The N curves show the same trend in both chambers and show a far less complex

behaviour than the mobilities, especially in chamber 2: an overall decrease in N as P(O2)

increases is observed in both chambers. A steeper decline is observed in chamber 2

between 0.2 and 10 mT. In both chambers, N reaches about the same value of 50 mT. A

plateau is clearly visible in chamber 2, although the data for chamber 1 is missing above

50 mT so a similar trend cannot be confirmed. Data for both chambers were fitted over

the 1 - 50 mT range with a first order exponential curve as illustrated in Fig. 5.70. The

first order exponential is y = y0 + A1e
−(x/t1) with y0, A1 and t1 as fitting parameters.
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Figure 5.70 Dependence on P(O2) of N. Films were grown in chambers 1 (left) and 2
(right) at a constant Ts=200◦C in the 1 - 50 mT range.

The fits obtained are of very good quality with R2 of 0.982 and 0.988 respectively in

chambers 1 and 2 so that the following relationships can be established: N(chamb1) =

3.96× 1019 + 7.74× 1020 × e−
P (O2)
29.84 and N(chamb2) = 1.06× 1020 + 1.29× 1021 × e−

P (O2)
7.98 .

The following two observations suggest that changes in carrier concentration N with

P(O2) are solely due to changes in oxygen vacancy concentration: (1) at Ts=200◦C,

previous TEM micrographs (Figs. 5.27 and 5.28) showed a fully crystalline matrix with

no particular precipitates for either chamber. (2) XRD showed no peak other than that

from the In2O3 phase at 5 mT in chamber 2 (see Fig. 5.52). These observations suggest

that Sn is in solid solution in the In2O3 matrix, effectively substituting for In atom and

releasing one free carrier to the matrix per atom [24]: Sn is said to be fully “activated”

(thermally and electronically speaking).

SEM EDX results illustrated in Fig. 5.71 indicate incorporation of oxygen in both

chambers as the oxygen pressure increases. Fig. 5.71 shows how the (In+Sn)/O and

In/Sn atomic ratios vary with P(O2) during growth in chamber 2.

Recall that the experimental atomic ratios for the target were: In/Sn=9.65±0.2 and

(In+Sn)/O=0.61±0.03. Fig. 5.71 shows that the In/Sn atomic ratio is fairly constant

over the oxygen pressure range investigated, while the (In+Sn)/O ratio decreases overall

with P(O2) suggesting that the bulk structure is absorbing some oxygen, resulting in

changes in vacancy concentration.
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Figure 5.71 In/Sn (left) and (In+Sn)/O (right) atomic ratios for chambers 1 and 2
obtained by EDX SEM as P(O2) is varied from 1 to 50 mT (chamber 1) and 0.2 to 70
mT (chamber 2). Films were grown in chambers 1 and 2 at a constant temperature of
Ts=200◦C. O K , In L and Sn L lines were used for quantification.

An XPS survey was undertaken to investigate the role of the top surface in the oxygen

intake since the latter represents by definition an interface. The evolution of the In, Sn

and O XPS peaks with increasing P(O2) is presented in Fig. 5.72.

There is a small but reproducible binding energy shift in the same direction for all

core levels (In 3d, Sn 3d and O 1s). With regard to the peaks, the In 3d ones are

Gaussian, indicating single state oxidation. The binding energy of In 3d is around 445 eV

corresponding to In3+ in agreement with an In2O3 host matrix [201]. The In 3d peaks

are insensitive to the loss/gain of oxygen as peak shapes show no appreciable differences.

This indicates that the electronic environment of In3+ ions is not strongly modified as

P(O2) increases.

However, the Sn and O 1s peaks show more complex structures, particularly at very low

P(O2) (0.2 mT) where asymmetries in the higher energy part of the peaks are observed.

These asymmetries require a multipeak fitting to account for exact peak positions: single

and double Gaussian peak fits were performed using Origin 6.1. depending on whether

such an asymmetry was observed. Particular attention was paid to the sample grown at

P(O2)=0.2 mT where the asymmetries are more marked and relatively large particles

were observed on the surface by SEM (Figs. 5.60 - 5.62). Fig. 5.73 presents the In, Sn

and O peaks of the sample grown at 0.2 mT with their various fitted curves.

The main Sn 3d peak position (subpeak 1) is at 487.7 eV and corresponds to the binding

energy of SnO2 [201]. This indicates that the main component of Sn in ITO is Sn4+, even

at the top surface. The “electrically active” Sn atoms (Sn4+) are thought to be bound
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Figure 5.72 XPS survey of the In, Sn and O peaks for ITO thin films grown in chamber
2. Spectra are compared at P(O2)=0.2, 5, 50 and 70 mT. Ts was 200◦C.

to three lattice O atoms and to donate one electron to the conduction band: they are

said to be “activated”. Although the same behaviour cannot be extrapolated to the whole

thin film based on the XPS experimental results since only the first 10 nm were probed,

it is suggested that Sn remains in the same oxidation state, i.e “activated”, through the

whole thin film. The subpeak 2 at 489.1 eV points to Sn ions within another electronic

environment.

The peak at 530.9 eV (subpeak 1) corresponds to O2− ions [201]. Such ions have

neighbouring In atoms with a full complement of six nearest-neighboring O2− ions. This

corresponds well to the ionic structure of In2O3. However, the other peak at 532.5 eV

(subpeak 2) indicates another type of O with a much more complex environment. It is

assigned to a suboxide forming at the surface which is held to be responsible for the

low transparency in the visible range and for the presence of the particles witnessed by

SEM imaging (Figs. 5.60 - 5.62). It is possible that it is an electrically inactive complex

involving interstitial oxygen and neighbouring Sn atoms.
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Figure 5.73 XPS of a sample grown in chamber 2 at P(O2)=0.2 mT. Background
corrected In 3d5/2 Sn 3d5/2 peaks are shown along with double Gaussian curve fitting
to derive accurate peak positions. Sn 3d and O 1s peaks show asymmetries on their right
hand side as shown by blue arrows.

Table 5.11 presents In/Sn and (In+Sn)/O atomic ratios computed from XPS measure-

ments. They were derived from peak area ratios which were computed with the XPS

Peak Fit 4.1 software [202] after a linear background subtraction. Individual peak areas

were corrected by their respective atomic sensitivity factor (ASF) taken from Evans et.

al [203]. These values are semi-quantitative at best as the photoionisation cross section

in the 100 - 1500 eV range are difficult to measure reliably.

Table 5.11 Variation with P(O2) in chamber 2 of the In/Sn and (In+Sn)/O atomic
ratios given by XPS.

Oxygen pressure In/Sn (In+Sn)/O
0.2 mT 9.96 0.56
5 mT 9.81 0.71
50 mT 10.99 0.61
70 mT 9.61 0.72

The EDX SEM and XPS results agree well as far as the In/Sn atomic ratio is concerned,
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again demonstrating that there is no Sn segregation at the top surface, as previously

shown with STEM EDX (Fig. 5.36) in section 5.2 when Ts was varied. However, whereas

the EDX results in Fig. 5.71 showed a noticeable decrease in the (In+Sn)/O atomic ratio

as P(O2) increased, the XPS results do not show any clear trend. The (In+Sn)/O surface

atomic ratio is close from the nominal value at P(O2)=0.2 mT, while higher oxygen

pressure seems to result in an oxygen deficient environment at the surface.

The change in the oxygen content suggested by SEM EDX is accompanied by a change in

film stress and density as demonstrated by the accurate monitoring with GAXRD of the

(222) peak position of samples grown between P(O2)= 0.2 and 7.5 mT in chamber 2

(see Fig. 5.74).

Figure 5.74 Evolution of the position of the (222) peak as P(O2) varies from 0.2 to 7.5
mT (left). Peak positions were computed with Gaussian fitting as shown with an example
on the right at P(O2)=7.5 mT. Films were grown in chamber 2 at a constant temperature
of Ts=200◦C. The incidence angle was kept identical at Ψ=16◦ for comparison purposes.

Data is rather limited here because it was acquired on selected samples grown in chamber

2 using the GAXRD diffractometer set-up in another department. The much higher

precision level of peak position attainable compared with the conventional θ/2θ Bragg-

Brentano geometry diffractometer used for most of this study makes it a particularly

good choice to study such tiny shifts. It is observed that a steady shift in the (222)

diffraction peak position towards higher 2θ angles with increasing P(O2) is taking place,

or, put another way, the (222) interplanar spacing parallel to the substrate is steadily

decreasing. However, the shape of the peaks does not change substantially.
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5.3.1.5 Resistivity - Surface resistance

The resistivity (ρ) was calculated via the relation: ρ=1/Neµ where N and µ are the

carrier concentration and mobility derived from Hall effect measurements (see section

4.6.2). The resistivity ρ the and surface resistance Rs measurements are presented in Fig.

5.75

Figure 5.75 Resistivity (ρ) (left) and surface resistance (Rs) (right) versus P(O2) for
chambers 1 and 2. The growth conditions used are listed in Table 5.9.

It is observed that in both chambers, the resistivity increases with P(O2). The resistivity

maximum observed in chamber 2 at 20 mT is mainly due to the low mobility of free

carriers (see Fig. 5.66). It saturates at P (O2) >20 mT. The lowest resistivity in chamber

1 was obtained for ITO films deposited between P(O2)=1 and 10 mT. A narrower range

is identified for chamber 2 (1 - 5 mT). In both chambers, ρ increases due to the combined

effect of carrier concentration and mobility decline, although the former dominates since

its variations are more important than the resistivity ones.

5.3.1.6 Summary of the results

ITO thin films were deposited by varying P(O2) from 1 to 50 mT and from 0.2 to 70

mT in chambers 1 and 2 respectively. While the number of pulses had to be adjusted

in chamber 1 at high P(O2) in order to obtain films of similar thicknesses, such an

adjustement was found unecessary in chamber 2. The microstructure was strongly

impacted: the films deposited at low P(O2) were composed of very small packed grains

and their surfaces showed extended damage in chamber 2. These effects were more

significant in chamber 2 than chamber 1 and were visible at P(O2) as high as 50 mT.

In addition, surface particles were observed at low P(O2). Higher P(O2) resulted in

films with larger grains in chamber 2 while in chamber 1 this was less evident. These
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microstructural changes impacted on electrical properties, compounded by the bulk and

surface chemistry variations of the films with increasing P(O2).

5.3.1.7 Discussion

5.3.1.7.1 Thickness In both chambers, electrical properties were found to show a

strong dependence on P(O2), while the film thickness was also affected in chamber 1

and had to be adjusted by varying the number of pulses fired. Surprisingly, as shown in

Fig. 5.50, the thickness for chamber 2 was not affected when P(O2) was varied from 0.5

to 70 mT meaning that the deposition rate was identical between 0.2 and 70 mT. This is

attributed to the different growth/pumping configurations between the chambers (as

stressed in section 4.1 - Fig. 4.1) and reinforces the findings of section 5.2.3.4 that the

O2 gas interacts “less” with the plume in chamber 2 as compared with that in chamber 1,

i.e., less scattering of the oxygen molecules occurs from the atmosphere by the energetic

species ejected from the target and the deposition rate remains about constant. It also

implies that the kinetic energy of the species impacting the growing film surface is greater

overall in chamber 2 than in chamber 1 as confirmed by a higher surface hole density

from chamber 2 films as observed up to 50 mT. High-energy particles from the plasma

are expected to have sufficient energy to create defect centres in the films; indeed such

defect centres include holes are observed at a very high density for samples grown below

1 mT in chamber 2.

5.3.1.7.2 Structural properties XRD results suggested a texture change as P(O2)

was increased in chamber 2 (Fig. 5.52). This took place between P(O2)=1 and 5 mT

when the texture changed from (400) to (222). Such a change was not observed in

chamber 1 (Fig. 5.51), probably because no samples were grown below 1 mT. A similar

texture change was also noticed for chamber 2 as Ts was varied (as explained in section

5.2) where energetic considerations were used to explain such changes. It is believed that

the same explanation holds true here: the minimisation of the surface and interface free

energies gives rise to a preferred (222) growth orientation. In addition, it is believed [48]

that films with a preferred <111> growth direction can accommodate more oxygen into

their lattice, meaning that films grown at high P(O2) would see this orientation favoured

and the growth can be explained by reduced oxygen vacancies.

However, at low P(O2) (<5 mT), a stress growth is suggested to take place: the films

contains a high density of oxygen vacancies so that the structure is under more stress.

Larger stress would favour <100> aligned grains to be preferentially nucleated and
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grown, as reported in [204]. In addition, it is further reported [205] that the (400)

plane has more resistance to the bombardment of energetic neutral atoms than the (222)

planes, possibly reinforcing growth along the <100> direction. Overall, the change

in preferred crystal orientation appears to be related to film oxidation, although this

hypothesis could not be fully confirmed since no films were grown in chamber 1 below

P(O2)=1 mT.

XRD peak intensities were also affected by P(O2). In both chambers, a decrease in the

(222) orientation peak intensity at high P(O2) was observed (50 and 70 mT in chambers

1 and 2 respectively). A similar observation was made by Dietrich et al. [206] although

no explanation was advanced. It is proposed that under a high oxygen pressure, crystal

growth of ITO resembles the bulk growth mechanism with decreased oxygen vacancy

conditions. Under these circumstances, less effective tin doping can be observed due to

an oxygen rich environment in which oxygen is likely to form complexes and precipitates

with Sn, which would degrade the crystal structure causing the (222) peak intensity

to decrease. However, the FWHMs do not vary much (Fig. 5.53) as compared with

lower P(O2). The low FWHMs observed at high P(O2) were attributed to enhanced

crystallisation of the In2O3 matrix with increasing P(O2), although the formation of

precipitates/secondary phases (possibly increasing the internal stress level resulting in

peak broadening) is likely to be a competing mechanism.

5.3.1.7.3 Bulk and surface chemistry The enhanced crystallisation with increasing

P(O2) could be a direct result of the increasing oxygen flow leading to restoration of the

stoichiometry of the crystalline phase. This is indicated by SEM EDX measurements (Fig.

5.71) which show that the ITO matrix actually incorporates oxygen from the atmosphere,

since the In/Sn atomic ratio remains stable while (In+Sn)/O decreases. However, the

decline is not particularly significant if the error bars are taken into account showing

that the actual Oxygen intake by the bulk structure is rather small. Even at low P(O2),

the inner part of ITO remained oxidised since the EDX SEM atomic (In+Sn)/O ratios

obtained were close to the nominal value. This in agreement with what was observed

in section 5.2 where even at Ts values as high as 400◦C (which favours oxygen bulk

diffusion), the interaction of the oxygen atmosphere with the bulk material was relatively

moderate (Fig. 5.35).

XPS gave further insight into the intake of oxygen and related phenomena at the film/air

interface. The surface was slightly oxygen deficient at higher (>5 mT) than at lower
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P(O2) (∼0.2 mT). This might indicate some degree of oxygen adsorption on the top

surface at very low P(O2). This process may be favoured via the larger amount of oxygen

vacancies and holes populating the top surface at such pressure. This oxygen deficient

environment was responsible for Sn 3d and O 1s peak asymmetries (Fig. 5.73). The

formation at the surface of a new phase incorporating Sn and O atoms is not ruled out

either. This possible phase would disappear gradually as P(O2) increases, this being

attributed to the restored stoichiometry (as regards to the bulk) of the structure.

Based solely on the XPS results presented in this study, these possible other phase(s)

could not be identified with any certainty. The involvement of Sn and O atoms seems

very likely as their respective peak profiles were modified at low P(O2). Nonetheless, the

presence of a suboxide like In2O (a non-transparent and highly resistive material [207])

cannot be totally ruled out since the samples obtained at low P(O2) were darkish. SEM

imaging (Fig. 5.60) did show particles sitting on the top surface. Their true nature

could not be quantified owing to SEM EDX spatial resolution constraints, but they are

expected to be of metallic and/or suboxidic in nature. Therefore, changes to the shape

of the core-levels with oxygen content in the chamber were attributed to the formation

of intermediate compound(s), combined with possible surface suboxide/metallic particle

formation favoured by a very poor oxygen environment at P(O2)=0.2 mT.

In addition to the O 1s asymmetry, systematic changes with P(O2) of binding energies

towards lower energies were observed for the In 3d, Sn 3d and O 1s spectra. Such a shift

in the whole spectrum was interpreted as a change in the surface Fermi level EF . A shift

towards lower binding energy as P(O2) increases is compatible with an increase in the

surface work function, which corresponds to the energy needed to move an electron from

the surface Fermi level into vacuum. This observation is in agreement with the increased

surface work function observed after oxidative surface treatments [208]. Interest in the

ITO surface potentials was generated by the observation that an increase of the ITO work

function leads to a desired lower injection barrier for holes at the interface with organic

conductors. This increase in work function is typically achieved by oxidative treatments

such as oxygen plasma, UV ozone, or chemical treatments. However, in solar cells, the

ITO electrodes are used as electron collectors which requires a low work function. The

change in EF was attributed to changes in surface coverage by O2.

The film textures were quantitatively evaluated via the texture coefficients TC(400) or

TC(222) (see section 4.2.1 for more details) and related to the mobility µ as measured by
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Hall-effect measurements. Excellent linear agreement (R=0.98) in chamber 1 is found

between TC(222) and µ (Fig. 5.55), although the experimental point at 50 mT was not

taken into account as it showed very poor agreement with the rest of the data. This is

attributed to oxygen accumulating in the structure and forming complexes/precipitates.

In addition, this linear relation means that the maximum in µ observed previously (Fig.

5.66) at 10/20 mT in chamber 1 also corresponds to the film with the strongest (222)

preferred orientation.

No particular strong linear regression (R=0.64) was found for chamber 2, especially in

the low pressure range (0.2 - 5 mT), where the crystal damage dominates the mobility

behaviour. Therefore, µ appears to be more independent of the texture than in chamber

1. No other explanations could be found for the discrepencies between chambers 1 and

2 since films in both chambers showed about the same carrier density, so, any argument

based on defect screening by a high carrier density does not hold. The mixed findings in

this study reflect the situation in the literature, where orientation is sometimes believed

to affect the mobility of free carriers [209] [210] [211], while other authors suggest no

influence whatsoever [29][212].

The mobility µwas found to be linearly related to the FWHMs of preferred oriention peaks

in both chambers (Fig. 5.54), which gives an indication of the degree of crystallinity of a

certain film (of no or negligible crystallite size and strain broadening). Linear relations

were identified for both chambers. One is between P(O2)=1 and 20 mT and P(O2)=20

and 50 mT in chamber 1. At P(O2)=20 mT, the proportionality changes corresponding

to the maximum observed mobility (Fig. 5.66). After P(O2)=20 mT, µ degrades much

faster than in the 1 - 20 mT range as witnessed by the steeper slope of µ versus the

FWHM of the (222) peaks. As for chamber 2, linear relations between µ and the FWHMs

were found for all the pressure ranges investigated (0.2 - 70 mT) except at P(O2)=1, 30

and 40 mT. It is concluded that the higher the FWHM, the lower the mobility.

The particularly marked discrepancy in chamber 2 near P(O2)=30 mT in terms of FWHMs

and µ is explained on the basis of a structure argument. The (222) preferred orientation

peak showed a systematic and reproducible asymmetry at larger 2θ (Fig. 5.56): this

broad peak (shoulder) was attributed to a combination of SnO (JCPDS 01-072-2324),

SnO2 (JCPDS 01-071-5329) and possibly Sn3O4 (JCPDS 00-020-1293) phases. These

were not stable at P (O2) >30 mT. The sharper and more intense peak at 2θ=29.49◦

was still attributed to the cubic In2O3 phase despite a significant 1◦ shift of the main

(222) XRD peak as compared with JCPDS data (JCPDS 00-006-0416). Moreover, the
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ever larger FWHM(222) between P(O2)=5 and 20 mT is suggested to arise from this

particular phase development, which also has a large (positive) impact on µ (Fig. 5.66),

while no effect whatsoever was noticed on the carrier concentration N (Fig. 5.69). Hence,

these phases appear to be more conductive than In2O3.

GAXRD confirmed that these phases are present across the whole layer since the peak

shape is conserved as the incident angle is varied (i.e. as different thicknesses were

probed) as observed in Fig. 5.58. Such a behaviour was not observed in chamber 1, at

least between P(O2)=1 and 50 mT. At P (O2) >30 mT, the asymmetry disappears. In

addition, when working under a static atmosphere (and also a lower energy density),

it also vanishes. This points to the fact that gas dynamics might play a central role in

the formation of secondary phases during PLD growth. It is worth mentioning that very

few reports of asymmetry in the (222) peak have been published to date [30]. The

non-thermal nature of PLD favours the formation of such metastable phases which could

explain why such effects are not systematically reported. It is suggested that the high

energy density used in chamber 2 might favour such formation since it results in a plume

containing a larger amount of reactive species facilitating metastable phase formation.

GAXRD also showed a slight change in film density as P(O2) was increased. A shift

towards higher 2θ was observed as P(O2) was changed from 0.2 to 7.5 mT (Fig. 5.74).

This shift is explained in terms of oxygen vacancy filling and bombardment by energetic

particles during growth. As P(O2) increased, more oxygen vacancies are filled and the

molar volume of the film increases. This moderate intake was evidenced by EDX SEM

(Fig. 5.71) and probably explains the observed moderate shift of the (222) peaks. Since

the film is attached to a rigid substrate (glass), this shift is expected to result in some

compressive stress. In addition, bombardment by energetic particles of the film surface

could also play a role in this peak position shift as it is also known [5] to additional

compressive stress via compaction and distortion of the surface.

5.3.1.7.4 Mobility, carrier concentration and resistivity At low P(O2), µwas clearly

affected in both chambers. In chamber 2, at very low P(O2), SEM micrographs (Figs.

5.60 (a) - 5.62 (a)) showed porous films with pore sizes with an average diameter of

100 nm and high uniformity. It appears that when the flux of bombardment becomes too

high, the growth of larger grains is suppressed and the film tends to become microcrys-

talline. Similar results were found by Kim et al. [87]. The large number of voids is held

responsible for the dramatic decrease in µ observed at P(O2)=0.2 mT in chamber 2. This
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effect is compounded by a decline in oxygen atoms (leaving oxygen vacancies) which

degrades the crystal structure and increases the level of concentration of defects, thus

increasing µ. If the increase in the concentration of oxygen vacancies (as demonstrated

by the strong rise of carrier density in the low pressure range, Fig. 5.69) at lower P(O2)

is responsible for the decrease of µ during this “over-reduction”, this would indicate

strong scattering by these defects. This degardation in crystallinity at low P(O2) (below 1

mT) in chamber 2 seems to be confirmed by a decrease in the FWHM of the main (400)

orientation peak (Fig. 5.53). The same mechanism is likely to operate in chamber 1

where at P(O2)=1 mT the first significant decrease in µ is observed.

The addition of low amounts of oxygen leads to very fine grained films in chamber 2.

This fine grained and nearly featureless film morphology prevails in chamber 2 from 1

to 50 mT oxygen (Figs. 5.60 - 5.62). At P(O2)=70 mT, a much rougher surface (∼5

nm RMS roughness) and a larger grain size (∼100 nm) is observed. At high P(O2),

the mobility shows a plateau (except at 30 mT as a result of the phase development

described above).

In chamber 1, an average grain size increase is also noticed between 1 and 20 mT

before decreasing again. The surface morphology is markedly different at P(O2)=50 mT,

perhaps indicative of a new growth mode leading to rougher surfaces at higher P(O2).

Meanwhile, in the 1 - 20 mT range, µ increased. A lower density of grain boundaries

and a better texture might have a positive impact on µ. As with chamber 2, the mobility

showed a steady decline possibly before reaching a plateau.

Although no direct evidence could be found in this work, it is believed [13] that neutral

and charged complexes (SnOOi/SnInOi) with excess interstitial oxygen form at grain

boundaries. This has the effect of “deactivating” donors, further decreasing the overall

carrier concentration in the film. Excess oxygen would accumulate at grain boundaries

acting as trapping centres for free carriers [115] and setting grain boundary energy

barriers, thus impacting on the mobility. In that case, the mobility would be temperature

activated but because no experiment involving deposition of films at different Ts in a

high oxygen pressure atmosphere were carried out, this hypothesis could not be verified.

Finally, the hypothesis that excess oxygen would accumulate in the structure (and

typically at interstices) is reinforced since SnO2 is in solid solution in In2O3 for the SnO2

concentration used in this work [213]. This is in accordance with XRD measurements

(Figs. 5.51 - 5.52) showing no secondary phases formation at high P(O2). The formation

of complex/precipitates eventually reaches a plateau, when no more excess oxygen can
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be incorporated in the structure. This would explain the nearly constant µ observed in

chamber 2 at P (O2) >30 mT, although insufficient experimental points are available in

chamber 1 to confirm such a trend.

The carrier concentration was also affected when P(O2) was varied (Fig. 5.69). The

filling of oxygen vacancies decreases the carrier concentration as evidenced by Hall effect

measurements. However, saturation is observed at 20 mT in chamber 2 while the decline

is more gradual in chamber 1. This plateau can be attributed to the total filling of oxygen

vacancies. More experimental points would be needed here to confirm the reaching of a

plateau in chamber 1.

In both chambers, the decrease in N with P(O2) was mathematically described by a first

order exponential decay when P(O2) was varied from 1 to 50 mT by:

N = 3.96× 1019 + 7.74× 1020× e−
P (O2)
29.84 (chamber 1) and N = 1.06× 1020 + 1.29× 1021×

e−
P (O2)
7.98 (chamber 2). The closeness of these two relations is remarkable and points to the

fact that a similar mechanism is taking place regarding the filling of oxygen vacancies.

A strong dependence of the resistivity on the partial oxygen pressure for laser ablated

films has already been observed by Zheng and Kwok [74][73] and Jia et al. [214]. In

this work, optimum oxygen pressure ranges were identified for growing low resistivity

thin films in the chambers: 5 - 20 mT and 5 - 10 mT in chambers 1 and 2 respectively.

Such a narrow range was attributed to the behaviour of the carrier concentration (Fig.

5.69) and the mobility (Fig. 5.66). High carrier density can only be realised at low P(O2)

while higher mobility can only be achieved at high P(O2). As these two mechanisms

cause opposite effects, the resistivity showed a minimum value at a certain P(O2). In

chamber 2, in the 20 - 70 mT range, N decreased with increasing P(O2), but µ increased

and compensated for the charge carrier concentration, so that the films show a constant

resisitvity over this range (Fig. 5.75).

5.3.1.7.5 Scattering mechanisms The dominant scattering mechanism operating

for films grown in both chambers was investigated, employing a similar approach to

that used in section 5.2.1.3. Calculations (Fig. 5.67) showed that electron mean free

paths were about equivalent (a few nanometres) and followed the same trend in both

chambers. In chamber 2, at P(O2)=0.2 mT, the MFP is barely above 1 nm. The same

general trend is seen in chamber 1, although no film could be grown below 1 mT. It is

suggested that electron scattering at the holes and pores observed by SEM (Figs. 5.59 -
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5.60) is a major obstacle for good electrical conduction in these ITO films. The decrease

in MFP at low P(O2) is related to an increase in FWHM (Fig. 5.53) demonstrating a

strong crystal degradation. Even though grain sizes could not be derived accurately for

some samples (especially in chamber 2 at very low P(O2)), it was higher than a few

nanometres. Therefore, grain boundary scattering is not expected to impact strongly on

µ.

Similarly to section 5.2, ionised impurity scattering is shown to operate up to a certain

oxygen pressure threshold. Since µ seem to be linearly correlated (in a specific oxygen

range) as shown in Fig. 5.76, Eq. 2.3 proposed by Ding et al. [6] was used to model the

theroretical mobility when ionised impurity scattering due to Sn or oxygen vacancies

predominates over other scattering mechanisms (see Fig. 5.77).

Figure 5.76 Relation between the mobility µ and the carrier concentration N in cham-
bers 1 (left) and 2 (right).

Figure 5.77 Ionised impurity scattering model developed by Dingle et al. [6] (red and
green curves) and comparison with experimental data (blue triangles) in chambers 1
(left) and 2 (right).
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Ionised impurity scattering is shown to dominate within certain P(O2) ranges (Fig. 5.77):

1 - 20 mT and 0.2 - 10 mT in chambers 1 and 2 respectively. As the oxygen pressure

increases up to 20 mT in chamber 1, the experimental points are closer to the theoretical

mobility curve where the oxygen vacancies are the dominant ionised scattering impurities

than the case where only singly charged tin impurities are considered. Above the 20

mT threshold (30 mT in chamber 2), the experimental values significantly depart from

the theoretical mobility curves. It is suggested that above these pressures, most oxygen

vacancies were filled leaving fewer ionised impurities hence switching the dominant

ionised impurity scattering mechanism to a new one. The conduction mechanism at high

P(O2) could not be positively indentified in this work. It is suggested that the increasing

probability of precipitate and complex formation(s) at higher oxygen pressures makes

neutral impurity scattering likely to operate. In chamber 2, the fitting of the theoretical

model to the experimental data is of less quality at P (O2) <0.2 mT, possibly due to

scattering at discontinuities becoming predominant.

5.3.2 Optical properties

As mentioned in section 5.3.1 for electrical properties, the thickness of the films was

found to show a strong dependence on P(O2) in chamber 1 but not in chamber 2. As a

consequence, the number of pulses was adjusted accordingly in order to produce films

with comparable thickness as P(O2) changed. Therefore, it is assumed that the thickness

parameter did not play a significant role in any optical property change with P(O2)

reported in this section.

5.3.2.1 Transmittance and ellipsometric measurements

Transmittance measurements were performed in the 250 - 1000 nm range (Fig. 5.78)

for chambers 1 and 2.

The variation of the interference structure in the visible range is believed to arise from

interference between beams reflected from the top of the film and the interface of

the substrate/film [96]. The effect is more pronounced for films grown in chamber 2

because they were thicker than those in chamber 1. In the near-IR region, the free carrier

absorption becomes important for the transmittance and reflectance of the ITO films. The

optical phenomena in this region can be explained on the basis of classical Drude theory,

which states that the transition from high transmittance to high reflectance will occur at

shorter wavelength for films with high carrier concentration. This is what is observed for
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Figure 5.78 Transparency of ITO thin films deposited with varying P(O2) in chambers
1 (left) and 2 (right). P(O2) was varied from respectively 1 to 50 mT and 0.2 to 70 mT
in chambers 1 and 2. Ts was kept constant at 200◦C.

chamber 2 with P(O2)=0.2 and 0.5 mT where a significant decline in transmittance (due

to an increase in reflectance) is noticed in the near-IR region (∼900 nm). In chamber

1, in the P(O2) range investigated (1 - 50 mT), no significant differences are observed

between the different spectra apart from a shift towards higher wavelengths as P(O2)

increases. However, in chamber 2, where a larger oxygen range is studied, significant

differences are observed, namely a strong improvement in transmittance in the visible

range as P(O2) increases from 0.2 to 1 mT, although above this pressure, transparency

improvements are minor.

Fig. 5.78 shows a shift in the absorption edge toward longer wavelengths with increasing

P(O2) (consistent with a decrease in carrier concentration according to the Burstein-Moss

effect) for both chambers. In chamber 1 the shift is gradual up to 50 mT (see Fig. 5.79).

However, in chamber 2, no significant shift of the absorption edge is observed after 20

mT. The magnitude of these shifts versus different P(O2) are in accordance with the

carrier concentration measurements presented earlier (Fig. 5.69).

It is observed that at very low P(O2) in chamber 2, the absorption edge steepness is

strongly affected. Above 1 mT, no significant difference is evident despite the large

FWHM obtained at P(O2)=20 mT (Fig. 5.53) and the decrease of the (222) peak intensity

at P(O2)=70 mT (Fig. 5.52). In chamber 1, no films were grown below P(O2)=1 mT,

hence the impact of the absorption edge steepness is unknown. However, at P (O2) >40

mT, the absorption edge slope is found to decrease contrary to the behaviour in chamber

2. This could be related to the decrease of the (222) peak intensity observed by XRD

(Fig. 5.51) and the slight increase of the FWHM of the (222) peak (Fig. 5.53) which



5.3. Influence of Oxygen pressure 161

Figure 5.79 Variation of the absorption edge in chambers (left) 1 and 2 (right) with
P(O2). P(O2) was varied from 1 to 50 mT and 0.2 to 70 mT respectively in chambers 1
and 2. Ts was kept constant at 200◦C.

point to a degradation in crystallinity combined with a higher residual stress level.

For the sake of clarity, the average transmittance in the 400 - 1000 nm range is also

plotted in Fig. 5.80 for both chambers.

Figure 5.80 Average transmittance over the 400 - 1000 nm range of ITO thin films
deposited at various oxygen pressures in chamber 1 and 2. P(O2) was varied from 1
to 50 mT and 0.2 to 70 mT respectively in chambers 1 and 2. Ts was kept constant at
200◦C.

In the present work, the surface roughness was not found to be a significant parameter

determining final optical properties. Indeed, the film grown in chamber 2 at P(O2)=70

mT is by far the roughest (∼5 nm) of all films grown, nonetheless it still showed an

excellent transparency of about 80% in the visible range as compared with smoother

films at lower pressures.
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Fig. 5.81 shows more clearly the variation of the optical band gap energy of the ITO thin

films with P(O2). Tauc plot were used to derive the optical band gap energy.

Figure 5.81 Optical bandgap variation of ITO thin films deposited at various oxygen
pressures in chambers 1 (black curve) and 2 (blue curve).

Fig. 5.82 plots the relation between the band gap and N2/3.

Figure 5.82 Variation in the optical band gap with carrier concentration N2/3 in cham-
bers 1 (left) and 2 (right), showing the Burstein-Moss shift in ITO thin films. P(O2) was
varied from 1 to 50 mT and 0.2 to 70 mT in chambers 1 and 2 respectively. The oxygen
pressure for each experimental point is added for information. Ts was kept constant at
200◦C in both chambers.

The linear plot obtained show the proportionality between the bandgap Eg and N2/3 in

both chambers, verifying the Burstein-Moss shift relation. The intrinsic band gap Eg0

(band gap of the undoped semiconductor) can be derived from the intersect with the

y axis. It is calculated to be 3.51 eV in chamber 1 and 3.44 eV in chamber 2. These 2

values are lower than the ones reported generally in the literature: 3.99 eV [215], 3.83
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eV [97] and 3.76 eV [216]. It is worth noting that these 2 values are relatively close to

each other considering that the films were deposited in two different chambers, tending

to confirm that the Burstein-Moss shift theory holds well for both chambers.

Using eq. 5.7, it is found that m∗V C(chamber 1)=2.94×10−30 kg and m∗V C(chamber

2)=6.01×10−30 kg. Since m0=9.11×10−31 kg, m∗V C(chamber 1)=0.31m0 and m∗V C(chamber

2)=0.64m0. Agreement with the literature is satisfactory in chamber 2 since Vainshtein

et al. [191] obtained m∗V C=0.50m0 while Kostlin et al. [28] calculated m∗V C=0.54m0. In

chamber 1, this agreement is more moderated.

Ellipsometric results are presented to complement the transparency measurements

presented above. The complex refractive index nc=n+ik is derived, which includes its

real part, the proper refractive index (n), and its imaginary part, the extinction coefficient

(k). Only results from chamber 2 are presented. The Cauchy model (see section 4.7.2.1)

was used to derive the optical and dielectric data presented here and Fig. 5.83 shows

the results for ITO films grown at 0.2, 1, 5, 20, 50 and 70 mT.

Figure 5.83 Refractive index n (left) and complex coefficient k (right) derived from
ellipsometric measurements using a Cauchy model for ITO films grown at 0.2, 1, 5, 20,
50 and 70 mT. Ts was kept constant at 200◦C in both chambers.

It is observed that the refractive index increases as P(O2) increases, while in the visible

range (400 - 800 nm), the extinction coefficient is decreasing with increasing P(O2). This

is in good agreement with transmittance measurements for chamber 2 presented in Fig.

5.78 where it was observed that overall transparency over the visible range improved

as P(O2) increased. The variation of k (250 - 350 nm) in the band gap region is more

dramatic, with k increasing exponentially in the near-UV range at high P(O2) (above 20

mT). As P(O2) goes up, the refractive index tends to have a more horizontal behaviour.

Above 20 mT, no more improvement in the refractive index is observed except in the

band gap energy range between 250 and 350 nm. Essentially, the same observation was



5.3. Influence of Oxygen pressure 164

made in Fig. 5.79 regarding the absorption edge, which showed minor shift from 20 mT.

This points to a relation between n and the carrier concentration N.

5.3.2.2 Summary of the results

ITO thin films were deposited by varying P(O2) from 1 to 50 mT and from 0.2 to 70 mT

in chambers 1 and 2 respectively. Films with similar thicknesses were compared and the

optical transmittance was found to be impacted in two ways:

• improving (average) transmittance over the visible range with increasing P(O2).

• absorption edge shift towards higher wavelenghts with increasing P(O2).

Meanwhile, the complex refractive index was also found to be affected. The absorption

edge shift with increasing P(O2) enabled the calculation of the electron reduced effective

masses in both chambers.

5.3.2.3 Discussion

The transmittance was found to be strongly affected by P(O2) in both chambers. In

chamber 2, at low P(O2) (0.2 mT), the transmittance was less than 40% over the

visible range while P(O2) over 1 mT gave an average transmittance of 80%. Such low

transparency in the 0.2 - 1 mT range was accounted for by the observed strong blackening

of the ITO thin films. Previous EDX SEM results (see Fig. 5.71) showed that ITO films

become less oxygen rich as P(O2) decreases, leading to slightly non-stoichiometric films.

However, at such low P(O2), the film surface was much more affected by the formation

of surface intermediate phases and particles as discussed in section 5.3.1.4. These

suboxide compounds forming at the surface are suggested to be responsible for the loss

of transparency in the 0.2 - 1 mT range. In addition, at P(O2)=0.2 mT, SEM microgaphs

showed round particles about 100 nm in diameter and a few hundred nanometres apart

sitting all over the surface: this is the scale of the wavelength of the light over the visible

range. Therefore, these particulates are expected to cause strong light scattering, thereby

reducing even more the transparency over the visible range at such low pressure.

Films grown at P(O2)=0.2 mT also showed a plummeting transmittance in the near-IR

region (∼900 nm). This was attributed to the very high carrier density (of the order

of 1021cm−3) where free carriers screen the incoming electric field. The same was not

observed in chamber 1 as no films were grown below P(O2)=1 mT.

Moreover, bombardment by the high energy neutral or negatively charged ions (par-
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ticularly in chamber 2) and deficiency of oxygen at such low P(O2) are likely to cause

crystalline degradation resulting in the generation of structural defects and giving rise

to deep localised impurity levels. Those can prevent electrons from making interband

transitions from the valence to the conduction band so decreasing transmittance. The

increasingly rough surface morphologies at low P(O2) were not found to cause any

significant light scattering as even the roughest sample (∼5 nm RMS roughness) did not

show any degradation in terms of transmittance values. Roughness of a few nanometres,

i.e. far less than the visible light wavelength scale (a few hundreds nanometres) explains

such an observation.

In both chambers, as P(O2) increases, a clear absorption edge shift towards higher

wavelengths is noticed. This effect is related to the density of free electrons: if the free

carrier concentration N is so enlarged that the bottom of the conduction band is partly

filled, then transition to these lowest levels is no longer allowed and the first transition

now observable occurs at somewhat higher photon energy, i.e. lower wavelengths and

higher energy gaps. As a consequence, a bandgap or absorption edge shift occurs which

is known as the Burstein-Moss shift [21].

A good linear regression was obtained between 1 and 50 mT in chamber 1 and between

0.2 and 20 mT in chamber 2 (see Fig. 5.82) for the bandgap energy Eg versus N2/3. The

shift showed a plateau after 20 mT in chamber 2, while the effect was more gradual

in chamber 1. It is perfectly in line with carrier concentration measurements showing

a plateau after 20 mT in chamber 2 while N gradually declines between 1 and 50 mT

in chamber 1 (see Fig. 5.69). Hence, the electro-optical properties observed in our

study are self-consistent. The linear relation evidenced between Eg and N2/3 enabled

the calculation of the electron reduced effective mass (m∗V C) of our films in chambers

1 (m∗V C=0.31m0) and 2 (m∗V C=0.64m0). Overall, these values were found to be in

moderate agreement with the literature but similarly to section 5.2.2.3, no dependence

between effective mass and carrier concentration was taken into account.

The slope of the absorption edges was linked to the concentration of defects in our films.

It was found to be modified by P(O2) since its slope was observed to decrease at very

low P(O2) for chamber 2 in agreement with larger FWHMs and low (400) XRD peak

intensity. Films grown at low P(O2) showed a high defect concentration as mentioned

above. This gave rise to localised energy levels within the band gap so that an electron

is less and less likely to make a direct transtion from the valence to the conduction
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band. At P (O2) >1 mT, the slope of the absorption edge was not found to vary despite

the large FWHM obtained at P(O2)=20 mT (Fig. 5.53) and the decrease of the (222)

peak intensity at P(O2)=70 mT (Fig. 5.52) which would suggest a loss in crystallinity.

It was concluded that the large FWHM observed around 20 mT was due to a phase

development rather than a proper loss of crystallinity. In addition, the FWHMs tended to

decrease/increase with P(O2) in chambers 2 and 1 respectively. The slight increase of

the FWHMs in chamber 1 with P(O2) were connected with a loss of crystallinty since no

asymmetry of the (222) peak could be determined, hence the less steep absorption edge

observed at higher P(O2) in chamber 1. It is also suggested that films grown in chamber

1 at P (O2) <1 mT would probably have shown a similar impact on the transmittance

spectra.

The refractive index n was found to increase with P(O2), especially in the band gap

region. This was related to the carrier concentration N, although crystallinity and

material density variation effects (filling of oxygen vacancies) cannot be excluded. Both

parameters were shown to increase sligthly with an increase in P(O2), as evidenced by

FWHM (Fig. 5.53) and GAXRD (Fig. 5.74) measurements respectively.

The extinction coefficient k tended to decrease over the visible range with increasing

P(O2). This is consistent with the observed increase in transmittance with increasing

P(O2) (Fig. 5.78), since k determines the absorption coefficient α (see eq. 2.8). This

is attributed to a restored stoichiometry at high P(O2). In the band gap region, larger

variation were observed. Films grown at high P(O2) were more opaque in the band gap

region and this opacity extended to the visible range (>400 nm). This is in agreement

with transparency measurements (Fig. 5.79) showing a shift towards higher wavelengths

with increasing P(O2) in accordance with the Burstein-Moss shift theory (Fig. 5.82).

In conclusion, the behaviour of n and k was connected to the absorption and desorption

of oxygen in the film structure as P(O2) is varied, as shown by previous EDX SEM and

XPS measurements.

5.3.2.4 Optimal oxygen pressure

The results from sections 5.3.1 and 5.3.2 show that the optimal oxygen pressures leading

to the largest [transparency over the visible range]/[resistivity] ratio are 10 mT and 5

mT in chambers 1 and 2 respectively.
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5.3.3 Reconciling chambers 1 and 2

An attempt to reconcile results from the two chambers has already been made in section

5.2.3 for varying Ts. The same work is done here for the reasons stated in section 5.2.3.

In this section, electrical (µ, carrier concentration N and ρ) and optical properties are

compared and discussed in terms of P(O2). The reader is reminded that chamber 1

was used under a dynamic atmosphere, while in chamber 2, the atmosphere was static,

i.e. no pumping took place after introduction of a certain amount of pure O2 gas and

deposition. The set-up difference between the two chambers was illustrated in section

4.1, Fig. 4.1. All other parameters used in chamber 2 are set to be exactly the same as

for chamber 1. 10, 20, 30 and 50 mT of pure oxygen gas was introduced to chamber 2

and then pumping was stopped. To maintain pressure, it was found necessary to inject

regulary some oxygen inside the chamber as it was consumed by the thin film during its

growth. Table 5.12 summarises the growth conditions used in chambers 1 and 2.

Table 5.12 Summary of ITO growth parameters by varying P(O2) in chamber 2. Ts
was kept at 200◦C. The atmosphere was static.

Temperature 200◦C
T-S distance 63 mm
Laser fluence 7.5 J/cm2

Laser frequency 10 Hz
Oxygen pressure 1 - 50 mT

5.3.3.1 Electrical properties

Fig. 5.84 shows how µ, N and ρ vary when P(O2) is varied from 1 to 50 mT.

Reasonably good agreement is obtained concerning N, the trend being exactly the same

with an inflextion point at 20 and 30 mT in chambers 1 and 2 respectively. The agreement

not so good as far as the mobility is concerned, the two curves looking to be shifted

relative to one another on the P(O2) axis by 10 mT. This is the value by which the

inflection point in N is shifted in chamber 2. All in all, the resistivity comparison shows a

mixed trend (Fig. 5.84). Fairly good agreement is obtained between 10 and 20 mT while

above, the values increasingly diverge. The two curves can also be seen as shifted from

one another along the P(O2) axis by 10 mT. Taking account of this shift, the comparison

between N, µ and ρ would be reasonably satisfactory. Such a shift is due to the slightly

different gas dynamics at play in the two chambers. The higher resistivity for films from

chamber 2 under static O2 pressure as compared with chamber 1 could demonstrate a



5.3. Influence of Oxygen pressure 168

Figure 5.84 Comparison of the mobility µ , carrier concentration N and resistivity ρ
for films from chambers 1 and 2. The temperature is set at 200◦C. The pressure is varied
from 10 to 50 mT in chamber 2 and from 1 to 50 mT in chamber 1.

capacity of the film to absorb more oxygen, thus filling in more oxygen vacancies. Only

a rough trend can be established here however, as only one set of samples grown in

chamber 2 under a static atmosphere was measured.

5.3.3.2 Structural properties

Structural properties were investigated by XRD. Fig. 5.85 compares XRD patterns at

P(O2)=10, 20, 30 and 50 mT between 2θ=20 and 70◦ for chamber 1 (dynamic) and 2

(static).

A (222) preferred orientation is observed in chamber 2. The agreement between the

two chambers in terms of orientation is best at higher P(O2) (30 and 50 mT). However,

poorer agreement is found at 10 mT. Other orientations appear in chamber 1 and not

in chamber 2 under a static atmosphere. This fact can be explained by the kinetic

energy and velocity distribution of ejected species being slightly different between the

two chambers. As a consequence, some differences in orientation are observed. As

mentioned earlier, the asymmetric peak (Fig. 5.56) observed at 30 mT in chamber 2
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Figure 5.85 XRD pattern comparison for samples grown at Ts=200◦C in chambers 1
and 2. Chamber 2 is operated under static atmosphere. P(O2) was set to 10, 20 mT, 30
and 50 mT.

is not observed when operating under static atmosphere (albeit with a lower energy

density used in chamber 1). This again shows that operating under static atmosphere in

chamber 2 enables the operator to get closer to the orientation properties observed in

chamber 1 and confirms the crucial role of gas dynamics in the resulting orientation of

ITO thin films.

5.3.3.3 Optical properties

Transmittance in the UV/near-IR range is now compared for the two chambers. Fig. 5.86

shows how using a static atmosphere in chamber 2 affects the optical properties of the

thin films.

As seen in section 5.2, when Ts was varied, films grown in chamber 1 showed a systematic

shift of the absorption edge towards lower wavelengths when oxygen pressure was varied.

Since the thickness of the films compared is similar, this shift can only be explained on

the basis of free carrier concentration. Carrier concentration measurements presented
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Figure 5.86 Optical properties comparison in the 250 - 1000 nm range of films grown
in chamber 1 and 2 when chamber 2 is operated under a static atmosphere. The oxygen
pressure was set to 10, 20, 30 and 50 mT. The substrate temperature was kept constant
at Ts=200◦C.

above (Fig. 5.84) show that films grown at P(O2)=30 and 50 mT in chamber 1 indeed

contain more free carriers than the corresponding films grown in chamber 2 under a

static atmosphere, which is self-consistent with the Hall effect measurements (Fig. 5.84).

At 20 mT, the values are similar, though, and the shift remains, even at 10 mT where the

trend in carrier concentration is reversed. Therefore, it is still unclear if the absorption

edge shift observed between a dynamic and a static atmosphere is solely due to carrier

concentration effects or if another parameter is at play.

5.3.3.4 Summary

Comparing films grown at different P(O2) in chamber 2 under a static atmosphere with

those grown initially in chamber 1 under a dynamic atmosphere yielded mixed results.

In terms of electrical properties, µ and N do not compare particulary well, but ρ does

compare well up to P(O2)=20 mT. Similar observations were made in section 5.2.3 when

Ts was varied. The very good agreement below P(O2)=20 mT is due to the opposite

behaviour of N and µ. Above that pressure, µ and N are constantly higher in chamber

1 than in chamber 2 hence the diverging behaviour. Both chambers showed a (222)
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texture except at P(O2)=10 mT in chamber 2 (in a static atmosphere) where the film

tended to become more polycrystalline. Overall though, the structural agreement is

satisfying.

Finally, optical properties were compared. A systematic absorption edge shift towards

lower wavelengths is noticed between chamber 1 and 2, an observation that could not

be solely attributed to the previously discussed Burstein-Moss effect (difference in carrier

density N). Instabilities in the deposition system in chamber 1, resulting in different

film properties at these pressures, might explain this behaviour. Once again, the fact

that using a static atmosphere in chamber 2 makes it possible to grow ITO thin films

with similar physical properties to those initially grown in chamber 1 shows the very

strong impact of the oxygen flow and the resulting gas dynamics in a PLD chamber

during growth; results can be influenced not only by varying Ts (section 5.2.3) but also

P(O2). Therefore, the conclusion drawn in section 5.2.3.4 is also valid here: the O2 gas in

chamber 1 has a tendency to accumulate more around the growing film than in chamber

2 due to the different pumping configurations.



Chapter 6

Conclusions and future work

6.1 Summary

This study focused on pulsed laser deposited ITO thin films. On one hand, this project

intended to study the relationship between microstructure and PLD growth parameters

while on the other hand, it aimed to gain a greater understanding of the dependence

between microstructure and physical properties. Such knowledge enabled the growth of

high quality thin films which were integrated in solar cell devices.

Indium Tin oxide (ITO) thin films were deposited on borosilicate glass susbtrates by Pulse

Laser Deposition (PLD). Two different chambers (chambers 1 and 2) were used during the

course of the project with the deposition parameters of chamber 2 being chosen so that

the film resistivity and transparency obtained matched the best obtained from chamber 1.

The influence of three different deposition parameters were studied: the film thickness

(t), the substrate temperature (Ts) and the oxygen pressure (P(O2)). The microstructure

was characterised using XRD, AFM, SEM and TEM. The electrical properties of the films

(mobility, carrier density and resistivity) were characterised by four point probe and

Hall effect measurements while the optical properties (transmittance, complex refractive

index and dielectric data) were investigated using spectrophotometry, ellipsometry and

EELS. The optimum film was defined in terms of low resistivity combined with high

transparency. An attempt was made to reconcile results from chambers 1 and 2 in terms

of electro-optical properties by varying Ts and P(O2) independently. For that purpose,

exactly the same growth parameters used in chamber 1 were transfered to chamber 2 and

depositions were made under a static oxygen atmosphere. Films obtained under these

conditions in chamber 2 were comparable with those obtained in the initial chamber 1

in terms of their electro-optical properties.

Spectrophotometry, ellipsometry and EELS measurements were compared. A sample

deposited at room temperature in chamber 2 was used as it contained a crystalline
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phase embedded in an amorphous phase. Cauchy and Lorentz models were used to

extract macroscopic dielectric data from ellipsometric measurements while a Kramers-

Kronig procedure was used to extract nanaoscale dielectric data from low-loss EELS

measurements. Two different microscopes operating in different modes were used to

acquire low-loss EELS spectra within an amorphous and a crystalline phase to study

possible electronic and optical differences.

The optimum film deposited on glass from chamber 2 was chosen to study the feasibility

of using ITO thin films as a front and back transparent electrodes integrated in Dye

Sensitized Solar Cells devices. A 1 µm thick porous layer, indispensible for the operation

of such cells, was deposited on top of the optimum film using the same target and

chamber. Two such devices were made and characterised in terms of their electrical

current output; in addition, the optical transparency of the whole device was studied.

6.2 Conclusions

Three different growth parameters, i.e. the thickness, the substrate temperature and the

oxygen pressure were varied independently in two different PLD chambers, although

the thickness was only varied in chamber 2. The effects of each parameter on the

structural and physical properties of the ITO films were studied and explained to enable

the optimisation of physical properties.

6.2.1 Thickness

Film thickness was studied in chamber 2, where it was shown that a minimum critical

thickness (∼100 nm) was required to obtain combined low resisitivity and high trans-

parency thin films. Identical behaviour was demonstrated in chamber 1 in previous work.

The best trade-off was found at t∼300 nm (5000 pulses) and thicknesses similar to this

value were achieved in this study when Ts and P(O2) were subsequently varied. Below

this critical thickness, the film appeared to be increasingly discontinuous, impacting on

the mobility and carrier concentration and resulting in amorphous high resistivity thin

films. Transparency over the visible range was adversely affected by crystallinty at very

low thicknesses while the thickness values themselves affected it above about 1000 nm.
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6.2.2 Substrate temperature

1) Initially, films were deposited in chamber 1. The lowest resistivity (∼2.5×10−4Ω cm)

and highest transparency (∼85%) were obtained for films deposited at Ts=200◦C and

P(O2)=1 - 10 mT. In chamber 2, excellent electrical properties (∼2×10−4Ω cm) were

already found in the low temperature range (RT - 200◦C) as compared with chamber 1,

although, optical properties were slightly degraded (75 - 80%). Therefore, the optimal

[low resistivity]/[high transparency] ratio was found at Ts=200◦C and P(O2)=1 - 5 mT.

These optimal growth conditions were relatively close to those found in chamber 1.

2) The discrepancies in electro-optical properties between the two chambers in the low-

temperature range (RT - 200◦C) were explained in terms of microstructural differences.

In chamber 2, films were almost fully crystalline at RT. They achieved full crystallinity

at Ts=100◦C, well below the crystallisation temperature of ITO (∼ 150◦C) and showed

a grainy morphology and a strong (400) preferred orientation. At RT, large (several

hundred nanometre diameter) round shaped crystallites were observed, which took the

form of “flowers” showing small grains in their centres from which large “petals” grew at

the expense of the amorphous surrounding matrix.

3) On the contrary, films in chamber 1 in this temperature range, were found to crystallise

in a more gradual way. At RT, films were nearly amorphous, while at Ts=100◦C, round

shaped crystallites were found scattered randomly within the amorphous matrix. The

surface density of crystallites kept on increasing until at Ts=150◦C, a very weak (222)

XRD peak was observed. This became increasingly intense accompanying full crystallisa-

tion of the matrix, which was observed at Ts=200◦C. This very different microstructural

behaviour was explained on the basis of slightly different growth parameters and set-ups

between chambers 1 and 2. In chamber 2, a higher energy density (10 J/cm2 instead of

7.5 J/cm2), a lower oxygen pressure (5 mT instead of 10 mT) combined with different

gas dynamics as compared with chamber 1 (resulting from different pumping configu-

rations), resulted in a higher surface mobility, making the film effectively crystalline at

lower Ts. The surface morphology was impacted as well: smaller grains were obtained

in chamber 2 owing to a higher nucleus/cluster density of the plasma. The grain size

was not a strong function of Ts in either chamber.

4) As a result, electro-optical properties were found to be more heavily impacted in

chamber 1 than in chamber 2. The gradual crystallisation of films in chamber 1 with

increasing Ts from RT to 200◦C led to a quasi-linear increase of carrier concentration
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and linear increase mobility, resulting in a linear decrease of the resistivity over this

temperature range. The mobility and the resistivity were found to be thermally activated

because of the trap and grain boundary limited conduction mechanisms taking place

within this temperature interval. Above 200◦C, the conduction mechanism was found to

become degenerate, (i.e. approximating to that of a semi-metal) while the mobility and

the resistivity were very weak functions of Ts. The carrier concentration increased with

the crystallisation, as explained by tin activation and gradual ordering of the matrix such

that oxygen atoms and their associated vacancies formed an extensive array, effectively

releasing free carriers to the matrix. Higher Ts resulted in slight thin film oxidation

in chamber 1 although such an effect was not evident in chamber 2. No temperature-

activated behaviour was observed in chamber 2 either. A higher carrier concentration

and a fully crystallised matrix at low Ts resulted in degenerate conduction where the

mobility and resistivity were found to be almost constant between RT and 400◦C.

5) In neither chambers was grain size found to have a strong impact on electrical

properties: ionised impurity scattering due to oxygen vacancies was dominant, except

between RT and 150◦C in chamber 1, where trap-limited conduction in the amorphous

matrix was suggested to take place based on the observed temperature activated mobility.

6) The optical properties obtained in both chambers were similar, even though slightly

more transparent films over the visible range were obtained in chamber 1 due to their

higher oxygen content. This could also be due to less surface damage occurring in

chamber 1 owing to a higher oxygen pressure and lower energy density used during

deposition. The absorption edge position was found to obey the Burstein-Moss shift

law (resulting in band gap widening) in chamber 1 as Ts varied, but not in chamber

2. This was accounted for competing band-gap narrowing from electron-electon and

electro-impurity scattering. The refractive index n was shown to be connected with the

carrier concentration N.

7) The preferred growth orientation was influenced by Ts in chamber 2 due to adatomic

mobilities varying with Ts and the necessary minimisation of both surface and interface

film/substrate free energies. The effect was not observed in chamber 1 due to the

amorphous nature of the films in the low temperature range. Moreover, it was found that

the stronger the texture, the higher the mobility, suggesting a positive relation between

crystallinity and mobility.
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6.2.3 Oxygen pressure

1) The oxygen pressure was also found to have a dramatic impact on the electro-optical

properties of ITO thin films, which is not unexpected as the crystal structure of ITO

accommodates oxygen vacancies facilitating the adsorption/absorption and desorption

of oxygen. Low oxygen pressure (below 1 mT) was found to have a large effect on the

crystal structure. An extensive pore network combined with surface particulates were

observed, reducing resistivity and optical transparency via light scattering in the visible

range (only 36% in chamber 2 at P(O2)=0.2 mT).

Electron scattering at discontinuities dominated the electrical properties at low P(O2)

in both chambers. At intermediate P(O2), ionised impurity scattering was found to be

predominant. The ionised impurity scattering mechanism was no longer predominant

at high P(O2) in either chamber as the oxygen vacancies gradually vanished. It was

suggested that neutral impurity scattering due to the accumulation of excess oxygen

at grain boundaries and interstices, became dominant resulting in neutral complex

formations. However, no direct observation of such complexes were made in this work.

As P(O2) increased, the carrier concentration decreased due to the filling of oxygen

vacancies (possibly combined with intermediate compound formation) while the mobility

increased, although to a lesser extent. This was connected with the gradual removal of

defects such as oxygen vacancies resulting in a decrease in the overall resistivity before

reaching a plateau in chamber 2 at 30 mT. More experimental points are needed in

chamber 1 to confirm such a trend.

2) The average grain size was found to increase with P(O2) in chamber 1 up to a certain

threshold (20 mT) but was not observed to impact strongly on electrical conduction. The

grain size did not vary to a great extent in chamber 2 except at very high P(O2) (>70

mT). The surface composition did not change dramatically in either chamber with P(O2)

although the bulk composition was found to vary slightly with P(O2), with a moderate

oxygen intake in both chambers observed using SEM EDX.

3) The optical transparency improved with increasing P(O2) over the visible range in

both chambers due to improved crystallinity and restored stoichiometry from the bulk

state. The absorption edge position was found to obey reasonably well the Burstein-Moss

shift law in both chambers when P(O2) was varied, so that its position depended mainly

on the carrier concentration N. The refractive index n was also shown to be related to
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N. Both chambers showed similar electron reduced effective masses suggesting that the

band structures of the films grown in chambers 1 and 2 were not too different. This

might be especially so at high P(O2) where the films tend to bulk behaviour.

4) The growth orientation was affected by P(O2) in chamber 2. In this chamber, between

5 and 30 mT, an ever stronger asymmetry developed on the left hand side of the ITO (222)

preferred orientation peak. This was due to a phase development (SnO/SnO2/Sn3O4)

which totally disappeared at higher P(O2) (>30 mT). Moreover, it was shown that the

stronger the texture, the higher the mobility, an effect related to crystallinity enhancement

with increasing P(O2). This was confirmed with the negative linear proportionality

between the FWHM of the preferred oriented peak and µ and is in line with results

gathered in both chambers at different Ts values: there is a link between the crystallinity

and the mobility.

5) The best films, defined in terms of the highest average transparency over the visible

range/resistivity ratio, were grown at Ts=200◦C and P(O2)=1 - 10 mT in chamber 1. In

chamber 2, Ts and P(O2) were found to lie in the 200◦C - 400◦C and 1 - 5 mT ranges.

6) An attempt was made to reconcile the electro-optical properties of both chambers

when Ts and P(O2) were varied independently. Similar resistivities were achieved when

a static oxygen atmosphere was used in chamber 2 while keeping exactly the same

growth parameters as for chamber 1. This stressed the very strong impact of different

O2 gas dynamics on thin film physical properties. The different gas dynamics were

accounted for by the different pumping configurations between chambers 1 and 2. Similar

resistivities were achieved because of the opposing behaviour of the mobility and carrier

concentration under static and dynamic atmospheres. Similar optical properties were

also achieved in terms of transparency over the visible range. However, the positions of

the absorption edge varied slightly owing to the different carrier concentration achieved

under static (chamber 2) and dynamic (chamber 1) atmospheres. This behaviour was

accounted for by the Burstein-Moss shift effect, as already shown in the case of the

oxygen pressure variation.

6.2.4 Achievements

This work demonstrated that it is possible to grow high quality thin films using the

PLD technique. The laser energy density and the distance target substrate must first be

determined, then, careful optimisation of the thickness, the substrate temperature and
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the oxygen pressure is required. At that stage, the laser energy density and the distance

target substrate can be refined. The gas dynamics in the deposition chamber play a very

important role in the resulting electro-optical properties of the thin films.

Films with texture show slightly enhanced electro-optical properties, provided a certain

critical thickness is reached. However, the grain size is not a critical parameter as long as

it is not lower than 10/20 nanometres. The PLD growth parameters used in this work

enabled the deposition of fully crystalline ITO thin films at substrate temperature as low

as 100◦C although higher temperatures (up to 200◦C) are needed to achieve the best

compromise between high conductivity and transparency. High temperature (> 400◦C)

must be avoided to prevent oxidation. The optimal oxygen pressure to achieve such a

compromise lies in a narrow range.

Optical properties were measured on a conventional macroscale (ellipsometry, spec-

trophotometry) as well as at the nanoscale with STEM EELS (see appendix A). While

these nanoscale measurements only constituted a prelimenary study, the results in-

dicate the potential to derive optical properties of individual grain boundaries, amor-

phous/crystalline phases as well as nanowires as used in third generation solar technology

such as Dye Sensitized Solar Cells (DSSCs).

This type of solar cell was made and despite the very low intensity generated current, an

encouraging potential difference was detected (see appendix B). These solar cells were

made using only one target: only the growth parameters were changed (live) to deposit

the thin film electrode and the high aspect-surface ratio porous ITO layer on top of it.

While more work needs to be done, the initial success of this process could be a first step

towards an industrialisation of PLD deposited DSSCs.

6.3 Further work

The use of two different chambers in the project may have added some confusion in

terms of electro-optical properties and microstructural comparisons and a complete

understanding of the different gas dynamics in play in chambers 1 and 2 remains to

be achieved. Additional oxygen gauges could be installed in both chambers to study

in more detail oxygen gas flow within the whole chamber and particularly around the

growing thin films. Gas scattering onto the walls and possible time/pressure dependent

instabilities should be studied. The interaction of the oxygen gas flow with the plume
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would also be interesting to study and understand in more detail. Computational Fluid

Dynamics (CFD) modelling of oxygen gas flow might be particularly useful to account

for such phenomena. It is suggested that optimal oxygen flow rate inputs and pumping

speeds must exist in chambers 1 and 2 under which optimal thin films could be grown

although independent variation of these two parameters and their impacts on the thin

film properties remain to be investigated.

Hall effect measurements at different temperatures (10 K - 300 K range) on the ITO films

grown in chambers 1 and 2 should be performed to study accurately carrier transport

mechanisms and their relative proportions to each other. More understanding needs to

be gained from samples where two phases of different conductivity are mixed (amor-

phous and crystalline) and the effect on the actual mobility and carrier concentration

measurements.

Oxygen absorption was evidenced by SEM EDX, particularly when P(O2) was varied.

It would be useful to know whether this phenomenon takes place at grain boundaries

and/or in the grains themselves. Variable-Angle XPS (VAXPS) experiments to probe

different film thicknesses or Secondary Ion Mass Spectrometry (SIMS) are needed to

study in much more detail how the In, Sn and O compositions vary throughout the whole

film thickness. Analysing pure In2O3 and SnO2 nanopowders prior to XPS measurements

is also suggested to facilitate much of the interpretation of the In, Sn and O peaks

observed for ITO thin films.

More films need to be prepared for TEM observations in the low temperature range to

study in more detail crystallisation. Similarly, TEM plan view and cross sectional films

need to be prepared when P(O2) is varied. This would be particularly useful for studying

any phase segregation at grain boundaries and the specific behaviour of films grown in

chamber 2 at P(O2)=30 mT where an XRD asymmetry was observed. It is possible that

the second phase might be identifiable using TEM techniques.

A comparison of our pulsed laser deposited ITO thin films with other thin film materials

such as doped-zinc oxide thin films needs to be made since Indium and Tin are becoming

increasingly scarce and difficult to mine and hence more costly.



Appendix A

Ellipsometry and EELS: complex refrac-

tive index and dielectric function

A.1 Method

The optical data obtained by spectrophotometry and ellipsometry are compared with

low-loss EELS measurements to evaluate the possible differences between nanoscale

amd macroscale optical properties. Special emphasis is put on a sample grown at RT

in chamber 2 since EELS measurements were performed on this sample both in the

SuperSTEM at Daresbury Laboratory and in Birmingham.

A.2 Ellipsometric data

Measuring the dielectric properties of ITO thin films by ellipsometry is extremely chal-

lenging as ITO often has a graded microstructure and optical properties [217]. It was

previously seen by glancing angle XRD (see Fig. 5.19) that a sample deposited at

Ts=200◦C and P(O2)=5 mT evolved towards a more textured film as it grew thicker,

which can introduce a thickness dependence of the optical constants such as the refractive

index. Although, the Cauchy and the Lorentz models, presented back in section 4.7.2,

assume structural homogeneity of the samples analysed, the thickness measurements

derived using the Cauchy model (presented earlier in Tables 5.3 and 5.4 at the beginning

of section 5.2.1) appeared to be in agreement with the measured thickness values. These

thicknesses determined via the model were used as a “benchmark” or a measure of

confidence in the dielectric data thus extracted.

Fig. A.1 shows how ε1 and ε2 vary with Ts in chambers 1 and 2.

For films from chamber 1, ε1 and ε2 are peaking between 3 and 4 eV. Such peaking

behaviour can be seen as a resonance phenomenon within this energy range. A resonance

of ε2 is consistent with interband transitions (accross the band gap), i.e., the creation

of excitons (electron-hole pairs). Surprisingly, for chamber 2 films, no such resonance



A.2. Ellipsometric data 181

Figure A.1 The real (ε1) and the imaginary (ε2) parts of the dielectric function derived
from ellipsometric results for ITO films grown at RT, 200 and 400◦C in chambers 1 (left)
and 2 (right). Ts was varied from RT to 400◦C and P(O2) was kept constant at 10 and 5
mT in chambers 1 and 2 respectively. The Cauchy model was used for describing the
complex refractive index of ITO.

could be seen in the band gap region. As a consequence, the ellipsometric Cauchy model

was changed to a Lorentz model (presented back in section 4.7.2.2) since the latter gives

a better account of free carrier absorption and interband transitions. This model splits

the dielectric function into several contributions: free carriers (εFC), valence electrons

(εV E) and other polarisation effects at low (εs) and high frequency (ε∞). Each of these

contributions is described by a Lorentz oscillator. The experimentally measured thickness

was fed into the model and results on a RT deposited sample in chamber 2 are illustrated

in Fig. A.2. This sample is used for the rest of this study for the reason stated in section

A.1.

When using the Lorentz model, a clear resonance of ε2 is identified in the direct band

gap region at 3.8 eV which is in agreement with interband transitions as mentioned

above. Another one around 2.5 eV might reveal the existence of an indirect band gap.

Therefore, the Lorentz model outputs are considered to be more “consistent” than those

for the Cauchy model ones for RT deposited films in chamber 2. The dielectric functions

obtained at RT with both models will be used as a reference for the EELS measurements

(with more emphasis on the Lorentz model) presented in the following two sections.
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Figure A.2 The real (ε1) and the imaginary (ε2) parts of the dielectric function derived
from ellipsometric results for ITO films grown at RT in chamber 2 using the Lorentz
model. The two Lorentz oscillators (named 1 and 2) describing interband transitions are
also shown in the ε2 curve.

A.3 Low loss EELS data processing of spectra acquired

on the SuperSTEM (Daresbury laboratory)

At very low losses (typically 0 - 5 eV), current deconvolution procedures for multiple

inelastic scattering are not sufficiently accurate [218] (see section 3.3.2.5 on deconvo-

lution procedures). Indeed, any differences between the experimental zero-loss peak

(ZLP) and the modelled one can create large, random data spikes in the deconvoluted

spectrum in the low-loss regime. These errors propagate during the data processing and

in particular during Kramers-Kronig analysis to extract ε1 and ε2. As a consequence, only

a background subtraction to remove the effect of the ZLP tail was performed meaning

that the dielectric information is extracted from spectra in as raw a state as possible

to reveal the true physical reality of the volume sampled. Sample stability can be an

issue when acquiring position-resolved EELS linescans. In most cases, specimen drift

originates from thermal difference between the stage and the holder itself: this type

of drift is mostly linear and therefore straightforward to model and correct for post

acquistions. Given time, it should disappear when the sample-stage assembly reaches

thermal stability, although in the present case, even after baking, residual drift was still

found. Linescans (series of spectra acquired serially along a given line) were performed

within a crystalline or an amorphous area to avoid contamination build up around the

electron beam. Care was taken to acquire spectra from a line parallel to the interface

to prevent any significant thickness change during the scan. For crystallites, shorter
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linescans (a few tens of nanometres) were used because of crystallite size constraints

(more experimental details are given in section 4.3.2.3.2). Fig. A.3 shows HAADF

micrographs illustrating where those line scans were taken.

Figure A.3 HAADF micrographs showing where the line scans were taken from four
different regions. Regions 1 (a) and 2 (b) are crystalline while regions 3 (c) and 4 (d)
are amorphous. Line scan lengths vary from 70 to 500 nm. The acquisition time was set
at 70 ms per spectrum. 100 to 500 spectra were accumulated and summed up to reduce
noise and instabilities.

The most crucial and difficult step was the background subtraction as demonstrated

below with “region 1”. Depending on the characteristics of the electron source, the tails of

the ZLP might spread up to 10 eV or more away from the nominal energy of the incident

electrons, thus interfering with the bulk dielectric properties. Apart from finding the tail

of the ZLP, the instrumental and the diffuse scattering background, on which the whole
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spectrum sits, must also be determined. Inexact background extraction yields false results

in any subsequent analysis. Furthermore, simple removal of the ZLP via deconvolution

or subtraction of a theoretical, experimentally fitted or separately measured ZLP cannot

achieve a fair comparison of spectra from differently diffracting regions due, again, to

the lack of precision of the deconvolution procedures. Therefore, the single scattering

distribution (SSD) was obtained by consistently subtracting the original spectrum with a

power-law fitting of the tail performed using the Digital Micrograph software.

The next issue to address is how large should the fitting window be and over which

energy range? The low-energy tail of the ZLP was fitted right in front of the first

actual intensity onset using a power-law function, extrapolated to higher energies and

subtracted from the experimental data. The very first signal after the ZLP was evaluated

using the Origin 6.1 software in which the first derivative of the initial raw signal in the

2 - 10 eV range (see signal 1 Fig. A.4) was computed. Nonetheless, a 21-point Savitzky-

Golay filter was used on the raw spectra prior to compute the first derivative so as not to

add noise to the latter signal and make the best decision for the fitting window choice.

The Savitzky-Golay algorithm [169] produces datasets with reduced noise, but attempt

to preserve the height and width of peaks. It performs a least squares fit of a small set of

consecutive data points (21 points in our case) to a polynomial and take the calculated

central point of the fitted polynomial curve as the new smoothed data point. The main

absorption features in the spectra were hardly affected by this filtering as can be seen

from Fig. A.4, while residual noise is effectively removed. It is also observed that in the

energy range between 5 and 9 eV, two weak features noted as “signal 2” and “signal 3”

in Fig. A.4 are also present and these are attributed to single electron transitions from

the valence band to the conduction bands (interband transitions). “Signal 1” could be

the result of an indirect band gap. The spectrum presented here corresponds to “region

1”, which is a crystalline area.

The first feature was identified as the first significant crossing of zero counts of the first

derivative. The energy to which this first crossing corresponds was taken as the upper

limit of the fitting window. The lower limit was chosen to adjust finely the power law in

order that the ZLP tail is correctly fitted.

Based on the first-derivative signal, the very beginning of the energy-gap signal is at

3.31 eV (in general agreement with the literature). A very weak signal is also visible

around 2.80 eV with an onset at 2.65 eV which could result from an indirect band gap.

However, this is also the region where retardation effects are abserved. As suggested
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Figure A.4 Illustration of how to choose the fitting window for a spectrum acquired
in region 1 (crystalline area). Left: plot of the raw (black curve) and 21 point Savistky-
Golay fitered (red curve) signals. Right: first derivative of the previously filtered EELS
signal.

by Erni et al. [136], the impact such effects on the spectra was estimated by analysing

the probability of the emission of Cerenkov radiation. The number of Cerenkov photons

emitted by a unit charge per unit path length in respect to the maximal emission rate in

a bulk material is given by:

PCerenkov = 1− c2

v2ε1

(A.1)

where c is the speed of light, v is the speed of the electrons and ε1 is the real part of the

dielectric function. Erni et al. [136] suggest that when PCerenkov falls between 0 and 0.8,

negligible or very weak retardation effects are expected provided the foil is thinner than

100 nm. ε1 is taken to be 9 [72]. At 80 kV, v=1.42×108m/s giving PCerenkov=0.50. As a

consequence, retardation effects are not expected to be a major cause of measurement

artefacts, a factor that was essentially confirmed experimentally even if a weak signal

noted as “signal 1” in Fig. A.4 in the 2 - 3 eV region was observed. This is attributed

to weak Cerenkov radiation owing to a relative thickness close to 1 inelastic mean free

path (IMFP) but the existence of an indirect band gap cannot be ruled out either. Such a

feature was not observed on other spectra from other regions.

A small fitting energy window 0.20 eV wide extending from 2.45 to 2.65 eV (in front

of the very first significant feature observed in the spectrum) was found to be adequate

since:

• the fitted power low function must fit correctly the ZLP tail.

• negligible negative counts must be present within the extracted spectrum.
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• Cerenkov losses can be modelled (“bump” around 2 - 3 eV).

• the energy band gap signal must be situated in the 3.5 - 4 eV region, as was found

with previous experiments with the SuperSTEM, the spectrophotometer and in the

literature.

This window and its width vary slightly from one spectrum to another since different

parts of the sample yield different types of noise and energy-gap onset. As a consequence,

the fitting window chosen will be specified each time. The ZLP removal procedure (left)

and a resulting extracted signal (right) under Digital Micrograph are illustrated in Fig.

A.5.

Figure A.5 Illustration of ZLP loss peak removal from a spectrum acquired from a
crystalline area. Left: a power law is fitted over the 2.45 - 2.65 eV range to model the
background (red curve) arising from instrumental noise and ZLP in the low loss range
(here 0 - 10 eV). Right: the background thus extrapolated is subtracted from the original
unprocessed spectrum to yield an SSD. The latter is shown over the 0 - 10 eV range.

Residual noise in experimental data can lead to large artefacts in subsequent Kramers-

Kronig analysis, leading to large errors in the derivation of dielectric properties. Although

the noise level obtained in this work at Daresbury could have been improved by simply

choosing longer acquisition times, this could have also induced sample damage and

recrystallisation of the amorphous matrix. In addition, since the focus was on recording

low-loss spectra, the intense ZLP was systematically recorded meaning that the acquisi-

tions are needed to be short so as not to burn the CCD camera. It is suggested that the

best method would be to record a very large number of spectra and add them together

in order to minimise instabilities and noise. While this was done in this study for some

spectra, on other spectra, this would have had taken a few days so time constraints

dictated that shorter acquisition times were chosen. In addition, since the Savitzky-Golay

filter used earlier to compute the first derivative of the raw EELS signal was found to

remove noise effectively, additional subsequent noise removal was not necessary. The

resulting background subtracted signal was considered as a single scattering distribution

(SSD) and used as input for the subsequent Kramers-Kronig analysis. While electrons
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contributing to this signal may have undergone several elastic scattering events in ad-

dition to the energy loss they have sustained, we made sure to observe samples with

thicknesses below one inelastic mean free path whenever possible. This ensures that

the recorded signal is a good approximation to a single scattering distribution for the

inelastic phenomena that we are interested in and the extracted spectra (such as that

presented in Fig. A.5) will thereafter be referred to as SSDs.

Finally, Kramers-Kronig analysis (KKA) is applied to the SSD shown previously in Fig.

A.5 (right), using a Fortran program, KRAKRO, written by Egerton [219] which employs

the Fourier procedure for KKA. It also eliminates beam convergence, collection angle

and the effect of thickness, but not possible surface losses. In this program, spectra

are normalised using the method described by Egerton [137] which yields the energy

loss function Im(-1
ε
). Normalisation using the refractive index for visible light yields

the absolute value of the dielectric function. The refractive index used was taken from

ellipsometric measurements previously presented in Fig. 5.46 (right), i.e., n=2.1. This

implies that n does not change significantly at the nanometre scale. The real and

imaginary parts of the dielectric function could, therefore, finally be obtained. Inputs for

the KRAKRO program are as follows: an SSD, the ZLP intensity, the beam energy (kV),

the collection angle β (mrads) and the refractive index n. β was fixed at 6 mrads. All the

results are saved in a file KRAKRO.dat and two spectra are created simultaneously: the

real (ε1) and imaginary (ε2) parts of the dielectric function. The optical absorption α

was also calculated separately according to:

α(E) = (
E

h̄c
)[2(ε2

1 + ε2
2)1/2 − 2ε1]1/2 (A.2)

where E is the energy, ε1 and ε2 are the real and imaginary parts respectively of the

dielectric function.

It was then converted into transmittance T (%) via the following equation:

T = 10−α(E) ∗ 100 (A.3)

to allow direct comparison with the spectra presented in section 5.2.2.1 Exactly the same

data processing to yield dielectric data was applied to all EELS spectra presented in the

next section.
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A.4 Crystalline and amorphous areas

In order to study the different dielectric properties of the amorphous and crystalline

phases, two line scans within amorphous (regions 1 and 2) and crystalline (regions 3

and 4) areas were acquired (Fig. A.3). Region 2 is a grain boundary (Fig. A.3 (b)).

Although minute differences in the low loss spectra may arise at such grain boundaries,

such detailed analysis was considered beyond the scope of this study (see future work).

Therefore, the dataset was treated as one single crystalline region and the average of all

the spectra taken on the linscan was considered as representative of of a crystalline area.

The corresponding raw EELS spectra and the first derivative of these signals are presented

in Figs. A.6 - A.8 while efforts were made to be consistent regarding the width of the

fitting window for the four different regions, this fitting window does vary slightly from

one region to another. This work has already been performed on region 1 (Fig. A.4) and

will not be repeated here.

Figure A.6 Raw EELS signal corresponding to region 2 (crystalline) over the 0 - 10
eV range. A 21 point Savitsky-Golay filter of the raw EELS signal was applied and
represented by the red curve (left). The first derivative of the filtered EELS signal over
the 0 - 10 eV range was computed.

The fitting window for each region and its thickness (in terms of IMFP) are presented in

Table A.1.

Finally, Kramers-Kronig analysis was performed on all the previous extracted SSD.

Kramers-Kronig results are presented as dielectric data (ε1, ε2) and optical data (trans-

mittance).

The real and imaginary parts of the dielectric function are shown in Fig. A.9 and

compared with ellipsometric measurements.
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Figure A.7 Raw EELS signal corresponding to region 3 (amorphous) over the 0 - 10
eV range. A 21 point Savitsky-Golay filter of the raw EELS signal was applied and
represented by the red curve (left). The first derivative of the filtered EELS signal over
the 0 - 10 eV range was computed.

Figure A.8 Raw EELS signal corresponding to region 4 (amorphous) over the 0 - 10
eV range. A 21 point Savitsky-Golay filter of the raw EELS signal was applied and
represented by the red curve (left). The first derivative of the filtered EELS signal over
the 0 - 10 eV range was computed.

Table A.1 Summary of the chosen fitting windows from region 1 to 4. Relative and
absolute thicknesses are specified. At 80 kV, IMFP is calculated to be 78 nm.

Fitting window (eV) Relative thickness (IMFP) Absolute thickness (nm)
Region 1 2.45 - 2.65 1.49 116
Region 2 3.35 - 3.55 1.70 133
Region 3 3.54 - 3.65 0.76 59
Region 4 3.70 - 3.80 0.59 46

Finally, Fig. A.10 illustrates transmittance derived from EELS measurements from

amorphous and crystalline areas and a comparison with measurements from the spec-

trophotometer.

Transmittance spectra obtained by KKA showed very good agreement with those obtained
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Figure A.9 Kramers-Kronig analysis results (ε1 and ε2) from spectra acquired from
regions 1 and 2 (crystalline) and regions 3 and 4 (amorphous) and a comparison with
the ellipsometric results (Cauchy and Lorentz models). The sample was grown at RT in
chamber 2.

Figure A.10 Left: Kramers-Kronig analysis results (transmittance) from spectra ac-
quired from regions 1 and 2 (crystalline) and regions 3 and 4 (amorphous) and a
comparison with spectrophotometry results. The comparison is made in the 250 nm -
1000 nm range. Right: zoom of the bandgap region. The sample was grown at RT in
chamber 2.

by spectrophotometry regarding the cut-off wavelength (or band gap). In the visible

range, the 100% transmittance obtained with EELS measurements is due to the extreme

difficulty in getting counts close to the ZLP which only stems from the material itself

rather than from residual random noise. Data treatment, i.e. the residual signal extracted

after power law fitting of the high energy ZLP tail, has a large impact in that region.

Below the fitting window, counts cannot be recovered and are lost in the broad tail of

the ZLP resulting in nil counts.

The agreement with the ellipsometric measurements is not wholly acceptable using

the Cauchy model since the resonance behaviour of ε2 in the energy gap region is not
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modelled at all. This is attributed to the fact that the Cauchy model does not account

for the different contributions of bound and unbound electrons. The Lorentz model,

however, appears to account for the dielectric properties more satisfactorily. Three

oscillators were used: a Drude term to account for free electrons and two others to

account for interband transitions in the energy gap region. Moreover, low and high

frequency polarisation effects were taken into account with the high frequency dielectric

function ε∞ and the static dielectric constant εs. The agreement between (ε1, ε2)(EELS)

and (ε1, ε2)(Lorentz model, ellipsometry) is not yet satisfactory in terms of absolute

values and peak position and width. The broadening of (ε1, ε2) peaks is related to

damping effects taking place in the material, for example phonon generation (lattice

vibrations). Hence, data processing and instrumental/specimen contributions aside, the

fact that the ε1 and ε2 curves as given by EELS measurements are much broader than the

ones given by ellipsometry indicates that a strong dampening is indeed taking place. The

use of better energy resolution may also have resulted in narrower ε curves, although

it may not account for the full broadening: dampening due to sample thickness would

certainly be a major contributor too. It is also worth noting that on the EELS spectra,

no deconvolution for multiple scattering was performed. Even though measurements

are acquired from area less than 1 IMFP, multiple scattering events are still possible. In

addition, crystalline areas were thicker than 1 IMFP which makes multiple scattering

events unavoidable.

The fact that only very small differences were observed between EELS measurements

from a crystalline and amorphous area is surprising at first. It is indeed expected

that the band structure would be significantly altered upon crystallisation inducing

different features in the resulting EELS spectra. Typically, more and/or stronger interband

transitions are expected in the crystalline rather than in the amorphous material thus

modifying the SSD and (ε1, ε2). More details are given in the discussion (section A.6).

A.5 Results from Birmingham

Data from the Tecnai F20 in Birmingham are also presented and compared with results

from the SuperSTEM and the ellipsometric data. The experimental details for the

acquisition of those spectra were presented in section 4.3.2.3.1. As a reminder, the largest

difference for the EELS acquisition between these two microscopes is the accelerating

voltage, which is 80 kV for the SuperSTEM and 200 kV for the Tecnai F20. Despite

the advantage of decreasing the microscope accelerating voltage described above (less
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sample damage and virtually no retardation effects), doing so on the Birmingham

instrument was difficult in practise due to the extremely tedious alignments of the Gatan

spectrometer necessitated by the voltage change.

As with previous measurements in the SuperSTEM, PCerenkov was also computed for a 200

kV voltage and found to be 0.77. The criterion of Erni et al. [136] (i.e. 0< PCerenkov < 0.8)

is still respected, but at the limit. As a consequence, a thickness of only 0.5 IMFP was

chosen whenever possible to counteract possible retardation effects. Thicknesses below

0.25 IMFP were not used as they increased the probability of surface effects that would

interfere with the actual bulk dielectric losses.

Another major experimental difference was the energy resolution: 0.35 eV energy

resolution was achieved on the SuperSTEM while 1 eV at best could be achieved on the

Tecnai F20 microscope. With a 0.35 eV resolution, the tails of the ZLP are signficantly

reduced with respect to the tails obtained in Birmingham. Even if the extraction of the

ZLP presented exactly the same difficulties as encountered with the spectra from the

SuperSTEM, they were compounded by this loss of energy resolution, making weaker

features such as Cerenkov losses even more difficult to identify and assess. Some features

next to the ZLP could simply not be recovered properly.

We now move on to the actual removal of the ZLP tails from the EELS signals where a

similar approach to the one used for spectra acquired in SuperSTEM was used. Indeed, as

in the previous section, deconvolution procedures yielded inconsistent results in the low

energy range whatever collection angle was used. When present, very weak Cerenkov

losses (and more generally non-relativistic effects) were seen “indirectly”, i.e., only after

removal of the ZLP tails with a power law function to extrapolate and subtract them

from the raw EELS signal. Owing to the loss of energy resolution when compared with

superSTEM, no strong features could be identified when computing the first derivative

of the raw EELS signals before the band gap signal. This is also likely to be due to the

fact that retardation effects were relatively weak. While for superSTEM, the level of

detail (energy resolution) enabled a power law function to be fitted right in front of the

first feature in the spectrum, the same could not be done with the spectra acquired in

Birmingham owing to the much lower energy resolution. Therefore, for the upper limit

of the fitting window, an energy between 3.5 and 4 eV was chosen, assuming de facto

that the band gap signal is the first significant signal of our EELS spectra and lies above

3.5/4 eV. As the lower limit, an energy of about 2 eV was chosen. These choices are not
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arbitrary, but were made according to the four physical criteria presented in the previous

section.

The procedure is illustrated by a raw spectrum acquired in diffraction mode with an

acceptance angle of 4.2 mrads and shown in Fig. A.11 while the extracted signal is

shown in Fig. A.12.

Figure A.11 ZLP loss peak removal from a spectrum acquired with an acceptance angle
of 4.2 mrads. The thickness was calculated to be 0.53×IMFP. Left: a power law is fitted
in the 2 - 4 eV range to model a background arising from instrumental noise and the ZLP
tail in the low loss range and to extract the residual signal (green curve). Right: zoom of
the 0 - 10 eV region.

Figure A.12 Signal extracted after removal of the ZLP tail of the spectra presented in
Fig. A.11. A weak singal was observed around 2 eV, as indicated with a red arrow.

A very weak signal (see red arrow in Fig. A.12) around 2 eV is identified. Indeed,

non zero counts were sometimes observed within the background fitting window after

subtraction. These subtraction errors may possibly be attributed to the presence of

Cerenkov losses within this window; as explained above, however, those were too

difficult to take into account given the extended ZLP tails. The assignment of such

features to Cerenkov radiation is therefore tentative and should not be used for any



A.5. Results from Birmingham 194

quantitative analysis. As a consequence, this spectrum is taken as an SSD ready to be fed

into a Kramers-Kronig analysis program. It has to be stressed that when negative counts

were encountered, they were manually set to nil due to the program’s high sensitivity to

negative values and difficulty in dealing with noisy backgrounds. It is argued that this

is justified as negative counts do not make sense physically and most likely arise from

noise in the data or errors in the background removal.

Since Cerenkov radiation does not stem from the material itself, it spoils the data in

precisely the low-loss region that we are interested in. However, it arises at a much lower

intensity than the overall low-loss EELS signal; it was, therefore considered negligible

and as having no impact on the dielectric data. Before proceeding to Kramers-Kronig

analysis, a major concern was the reproducibility of the results. To that end, several

spectra from different regions were acquired and compared. They are all presented in

Fig. A.19.

Figure A.19 Reproducibility of the EELS removal procedure illustrated over the 0 - 10
eV region for 6 spectra taken from 6 different regions (1...6).

Table A.2 sums up the fitting windows used for each spectrum as well as the thickness of
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the area they originated from.

Table A.2 Fitting windows used to derive the spectra presented in Fig. A.19. Relative
and absolute thicknesses are mentioned. At 200 kV, IMFP was calculated to be 160 nm.
The spectrum number is indicated in the first column.

Fitting window (eV) Relative thickness (IMFP) Absolute thickness (nm)
1 2.1 - 3.9 0.27 43.2
2 2.2 - 4 0.53 84.8
3 1.8 - 3.8 0.55 88
4 2.1 - 3.8 0.47 75.2
5 1.9 - 3.6 0.35 56
6 1.9 - 3.8 0.46 73.6

The SSD extracted are plotted in Fig. A.20, normalised with respect to the bulk plasmon

peak to give a reference point for comparison.

Figure A.20 Summary of the SSD obtained after extrapolation and removal of the ZLP
tails from the low-loss EELS signal via a power-law function.

The data are seen to be reproducible with an energy gap onset around 4 eV. Features

at higher energy are difficult to distinguish. Spectrum 4 also shows a slightly different

behaviour, with an EELS signal taking off more rapidly than the other spectra. This is

attributed to surface losses interfering with the bulk dielectric losses. Those are not

removed with the Kramers-Kronig procedure as proposed by Egerton [219]. On all the

spectra, there is some residual intensity over the 2 - 3 eV region, but the latter is part

of the noise and does not significantly affect the spectrum shapes. It is likely that some

weak retardation effects are responsible for these residual intensities since the emission

probability PCerenkov as defined by Erni et al. [136] is close to 0.8.

KKA was finally performed on the SSD shown in Fig. A.19. Its outputs are illustrated in

Fig. A.21, in terms of dielectric data (ε1, ε2). The resulting transmittance using eq. A.2
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and A.3 is also shown in Fig. A.22.

Figure A.21 KKA analysis results in terms of dielectric data (ε1, ε2) for the 6 SSD
spectra presented in Fig. A.20.

Figure A.22 KKA analysis results in terms of optical data (transmittance) of the 6
spectra presented in Fig. A.19.

The results are now compared with the previous ellipsometric measurements using the

Cauchy and Lorentz models as shown in Fig. A.23. For the EELS measurements, the

average of the 6 spectra presented in Fig. A.20 was taken.

The agreement between the EELS and the ellipsometric measurements is slightly better

using the Cauchy model as compared with the EELS measurements in Daresbury (see

Fig. A.9). This is due to the different positions of the ε1 and ε2 peaks as given by
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Figure A.23 Comparison of EELS and ellipsometric measurements (Cauchy and Lorentz
models) over the 1-10 eV range for ε1 (left) and ε2 (right).

Kramers-Kronig analysis of SSD spectra acquired in Daresbury and Birmingham (see

below Fig. A.24). However, the resonance behaviour in the energy gap region is still not

modelled at all for the same reasons mentioned in section A.2. As a result of the different

positions of the ε1 and ε2 peaks between Daresbury and Birmingham measurements, the

agreement with the Lorentz model is still not satisfactory enough. Exactly the same effect

occurs with the transmittance spectra, where the onset of the band gap is systematically

modelled at lower wavelengths than the spectrum given with the spectrophotometer

(and taken as reference).

Finally, a comparison between the EELS measurements in Daresbury and Birmingham is

also shown in Fig. A.24.

Figure A.24 Comparison between ε1 (left) and ε2 (right) obtained after Kramers-Kronig
analysis of SSD acquired in Birmingham and in Daresbury.

While the different microscopes give the same trend and shape for the behaviour of ε1

and ε2 versus energy, the (ε1, ε2) peaks are shifted from one another by about 1 eV. The
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absolute values remain very similar though, while the onset of the ε2 signal is almost

identical in both configurations.

It is observed that the (ε1, ε2) peaks have the same width (much larger than those given

by the Lorentz model for ellipsometric measurements). This reinforces the previous

assumption that such broad (ε1, ε2) peaks might stem from the fact that no multiple

scattering deconvolution was performed on any of the SSD presented in this study even

though it was ensured (whenever possible) that areas of interest were less than 1 IMFP.

A.6 Discussion

In this section, dielectric/optical data computed from EELS and ellipsometry measure-

ments from a RT grown sample in chamber 2 were compared. Spectrophotometry results

(i.e. transparency measurements) were also compared with the two former techniques.

The Cauchy and Lorentz models were found to predict different dielectric responses,

especially for films in chamber 2. This is was attributed to the fact that account was taken

of the free carriers and interband transitions in the Lorentz model, while the Cauchy

model only consists of parametric equations. Dielectric data showed maxima in both ε1

and ε2 in chamber 1 (consistent with interband transitions in the band gap region) while

the latter was off-scale or even non-existent (RT) in chamber 2. This behaviour was

not considered to be physically consistent and was attributed to the different behaviour

of bound electrons for RT deposited chamber 2 films (Fig. 5.34), for which the mathe-

matical form is too complex to be described adequately by the relatively simple Cauchy

model. The width of the (ε1, ε2) peaks was modelled to be narrower for ellipsometric

(Lorentz model) than for EELS measurements. This was connected with the EELS spectra

processing: no multiple inelastic scattering deconvolution was performed owing to their

inadequacy to process data in the low-energy range. In addition, emphasis were put

on obtaining spectra that were processed as little as possible so that the SSD reflects as

much as possible the interactions between electrons and the material. Moreover, the

crystalline regions investigated in Daresbury were thicker than 1 IMFP contrary to the

amorphous areas. This makes multiple scattering events unavoidable in the crystalline

phase so that multiple inealstic scattering no longer plays a marginal role for IMFP>1

and is likely to mask additional features in the SSD of crystalline areas as compared with

the amorphous phase.

Despite the two different microscopes and modes used, the EELS measurements at
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SuperSTEM (Daresbury laboratory) and in Birmingham agree in terms of peak position

(although a 1 eV shift occurs between the ε1 and ε2 maxima) and absolute intensities.

The difference observed in terms of peak position is attributed to (1) the lower energy

resolution attainable in Birmingham, which leads to a loss of spectrum information,

particularly in the low-loss range (0 - 10 eV); (2) significantly less material was probed

in SuperSTEM since the STEM mode was used. This had the advantage that the surface

analysed can be considered as homogeneous in terms of thickness contrary to measure-

ments performed in conventional diffraction mode in Birmingham; (3) at Daresbury,

despite efforts to obtain a scattering vector −→q as parallel as possible by choising the

lowest objective aperture diameter, the latter still has a convergence of 20 mrads, which

may give rise to a different scattering distribution; (4) the choice of the fitting window

can impact on the SSD since a few tens of eV difference in the fitting window can result

in a slightly different band gap energy onset, thus affecting the (ε1, ε2) peaks positions.

This is connected with the loss of energy resolution in Birmingham which makes it more

difficult to choose accurately the optimum fitting window.

No strong differences in the EELS spectra were noticed between the crystalline and

amorphous areas, which is rather surprising as the band structures of the amorphous

and crystalline material are expected to be significantly different. However, a lot more

experiments are needed to check the statistics and derive any trend. Moreover, there is

a significant thickness difference between crystalline (t>1 IMFP) and amorphous (t<1

IMFP) regions, That could result in fine features being masked in the SSD from crystalline

areas. Hence, thinner samples are needed as well.

Regarding the cut-off wavelength (band gap energy), the EELS and spectrophotometry

measurements were in good agreement in the SuperSTEM case. Interestingly, the cut-off

wavelength modelled measured by spectrophotometric measurements falls roughly in

between the ones modelled for the amorphous and crystalline areas via Kramers-Kronig

analysis. This was attributed to the scale of the volumes probed with the two techniques

since the spectrophotometric measurements result from the interaction of light with a few

square millimetres of surface on the sample, while the STEM measurements only probed

a volume of a few nm3. Therefore, the dielectric responses obtained from spectrophoto-

metric measurements represent an average from a large number of crystallites and from

amorphous material. A trend in the transmittance measurements seems to emerge in that

the band gap for the crystalline area is smaller than for the amorphous one, although

more measurements are needed to refine this trend. Transparency in the visible range
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did not match that obtained by spectrophotometry. This is attributed to the fact that

collecting counts close to the ZLP and dissociating them from possible retardation effects

is extremely challenging and there is bound to be some information loss, especially at

such low energy loss. Regarding measurements in Birmingham, modelled optical data

were not in good agreement with spectrophotometric data.

A.7 Further work on EELS measurements

A more complex ellipsometric modelling, taking into account possible thickness variations

of the optical constants, would possibly result in a much better match with EELS. As

for the EELS measurements themselves, different fit functions such as a Pearson VII

function or a combination of different functions might reproduce much better the ZLP

contribution than the power-law used in this study. A different approach to the Kramers-

Kronig analysis using a normalisation of the SSD by the plasmon mean free path (as

suggested by Stoger-Pollach et al. [220]) rather than the refractive index alone, might

also yield a closer match with ellipsometric measurements. Finally, finding amorphous

and crystalline regions of exactly the same thickness (t) would help to ensure that

multiple scattering events do not spoil the data provided, t<IMFP.

Studying electronic structures at the crystalline/amorphous phase interface as well as at

grain boundaries, together with their impact on optical properties, remains to be carried

on to get a deeper understanding of their effects on macroscopic physical properties.

Such knowledge would enable an accurate prediction of optical properties (transparency,

refractive index, reflectance etc.) solely based on the grain size of the thin film grown.

It would have been helpful to perform low-loss EELS measurements on films grown at

different Ts and P(O2) values to study in more detail the effects of these two parameters

on the thin film optical and electronic properties. The use of a microscope equiped with

a monochromator and hence capable to go down in resolution to 0.050 eV should be

suitable for this type of study.



Appendix B

One application: Dye-Sensitized Solar

Cells

B.1 Context and challenges

Every day, our planet receives from the sun an energy equivalent to the electric con-

sumption of 5.9 billions of persons during 27 years. Human beings are only harvesting a

very small amount of it, agriculture aside. Technologies developed during the twentieth

century make it possible to harvest a significant amount of this energy to power our

industrial civilisation.

There are two types of solar cells: inorganic and organic. Most of the inorganic solar cells

are based on silicon (amorphous or single crystalline). This is the dominant technology

(wafer technology) in the commercial production of solar cells. The manufacturing of

silicon single crystal solar cells requires a massive amount of energy since the silicon

has to be ultra-pure to prevent unwanted electron-hole recombinations. Hence, manu-

facturing such cells involves complex and energy intensive equipment. Therefore, the

Energy Returned Over Energy Invested (EROEI) and energy payback are not always

attractive. As for thin-film solar cells, their efficiencies are still lower than those of silicon

(wafer-based) solar cells, but manufacturing costs are also lower, so that a lower cost per

watt can be achieved. They also use less material. These types of solar cell also rely on a

traditional p-n junction to separate photogenerated charge carriers.

On the contrary, organic solar cells are not based on a p-n junction. In general, over re-

cent years, there has been growing interest in organic-based electronics, electrochemical

systems, and cheap chemically synthesized inorganic semiconductors to replace tradi-

tional microelectronic technologies mainly based on silicon. Among organic solar cells,

Dye Sensitized Solar Cells (DSSCs) are regarded as potential inexpensive alternatives to

conventional solid-state devices.
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Discovered in 1991 [221], their yield is nearly equivalent to that of standard amorphous

silicon solar cells and they also enable very low cost production which makes them

attractive. Moreover, organic solar cells also make possible the fabrication on flexible

substrates such as plastic sheets. Nonetheless, DSSCs suffer from a lower lifetime than

standard silicon solar cells, mainly because of the liquid electrolyte, even though solid-

state electrolytes are being developed [222]. ITO is still used as an anode (top front

electrode), but cheaper alternative materials like doped-ZnO are being investigated so as

to achieve greater efficiency as well as cost savings.

B.2 Principle

The principle of a DSSC closely imitates the photosynthesis process used by plants. It is

composed of the following main elements:

• Two electrodes: one is platinum coated, the other one has to be nanoporous.

• An electrolyte.

• A coloured dye.

The organisation of these elements in the cell is illustrated in Fig. B.1.

Figure B.1 Schematic of dye sensitized solar cell. Taken from Smestad [7]. In this
work, the TiO2 porous layer was replaced with an ITO porous one.

The light absorption, electron injection and regeneration reaction is illustrated in more

detail in Fig. B.2.
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Figure B.2 Electron injection and regeneration reaction. Instead of TiO2 nanocrystals, a
porous ITO layer was used in this work. Taken from Smestad [7]. The TiO2 nanocrystals
were replaced with ITO porous ones.

The energy producing reactions found in a DSSC cell are [7]:

• Dye+light =⇒ Dye∗ (1)

• Dye∗ + ITO =⇒ e−(ITO) + Dye∗(Oxidised dye) (2)

• Dye∗(Oxidised dye) + 3
2
I− =⇒ Dye + 1

2
I3− (3)

• 1
2
I3− + e−(counterelectrode) =⇒ 3

2
I− (4)

After having been excited by light (eq. (1)), the coloured dye is able to transfer an

electron to the porous semiconducting ITO layer via a process called electron injection

or sensitization (eq. (2)). The dye used in this study was a ruthenium-based organic

compound called “Ruthenium 535”. It has to be noticed that this dye can be as simple

as pure blackberry, carrot or beetroot juice diluted in pure ethanol. Extracting green

chlorophyll from young leaves is also an option. Usually, the dye layer is so thin that

almost all of the excited electrons produced from light absorption can be injected into the

porous ITO and collected in the underlying conducting ITO layer. It is then “injected” into

the circuit so that it produces electricity. This electrode (often called a “photoelectrode”

or “photoanode”) has to be made as porous as possible to enhance the surface area so

that the dye molecules can collect as many photons as possible. This enhancement is

necessary to achieve full light absorption over the absorbing range of the composite

when the porous electrode is coated with a monolayer of dye.

As for the electrolyte, it contains a redox couple. In this study, an iodide/trio-iodide

redox couple was used. It is a low viscosity electrolyte formulation with a tri-iodide
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concentration of 50 mM. The oxidised dye is transformed back into its non-oxidised form

via light absorption and eq. (3). The platinum-coated electrode serves as a catalyst for

the tri-iodide/iodide regeneration reaction with the incoming electron (eq. (4)). As an

alternative to the platinum coating, the counter electrode can be prepared by chemically

depositing a transparent, fine-grained carbon layer. Therefore, an electrical current is

effectively produced with the circulation of one electron though an external load.

B.3 Experimental method

B.3.1 Resources

The solar cell was built as much as possible from resources available in the depart-

ment. However, a few elements had to be ordered from a manufacturer in Switzerland

(Solaronix [223]) as they could not be made:

• The electrolyte

• The platinum paint

• The coloured dye

The resources used from this department were:

• A syringe to inject the coloured dye

• A hot plate to seal the electrodes and fire the platinum painting

• A PLD deposition set-up. Only chamber 2 was used in this work

B.3.2 Preparation of the porous electrode (photoanode) and counter

electrode

The “standard”, or at least the most common way in the literature to make a porous

electrode is to deposit a layer of TiO2 several microns thick on top of a conductive ITO or

SnO2 thin film. In this work, a different approach was used. Only one ITO target was

used to deposit the conductive ITO thin film on a glass substrate and the porous ITO

layer right on top of it. The temperature and the atmosphere were changed. A summary

of the conditions used to make the photoanode is given in Table B.1.



B.3. Experimental method 205

Table B.1 Growth conditions used for manufacturing the photoanode in chamber 2.

Layer name Temperature (◦C) Atmosphere composition (mT) Thickness (nm)

Conductive ITO 200 5 mT O2 ∼300

Porous ITO 450 1 mT O2 + 430 mT N2 ∼1000

The electrodes were generally made as thin as possible: 300 nm for the conductive ITO

layer and 1000 nm for the porous one. Making cells thinner reduces the time required

for deposition and thereby reduces capital costs.

In order to obtain a reasonably porous ITO layer, the deposition atmosphere was chosen

to be a mix of pure nitrogen and oxygen. After numerous trials and errors, the optimum

nitrogen/oxygen pressure ratio was found to be 430. The surface microstructure was

evaluated using a SEM. A plan view and cross-sectional SEM micrograph are shown in

Fig. B.3.

Figure B.3 Plan view SEM micrograph showing the surface microstructure of the
porous ITO (left). Cross-sectional SEM micrograph of the same porous ITO/photoanode
showing the 284 nm thick conductive ITO thin film on top of which a 1062 nm porous
ITO layer was deposited (right). The growth conditions used for both layers are listed in
Table B.1.

The achievement of a porous microstructure is believed to arise from the Vapour-Liquid-

Solid (VLS) growth mechanism [224]. The nitrogen/oxygen pressure ratio was found to

be critical to obtaining the porous microstructure as also found in [225]. If the latter

was too low or too high, the surface microstructure appeared to be quite dense. This is
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illustrated in Fig. B.4 with N2/O2= 140 and 700.

Figure B.4 Plan view SEM micrographs showing the surface microstructure of the
porous ITO electrode at two different N2/O2 pressure ratios: 140 (left) and 700 (right).
The substrate temperature was kept at 450◦C.

The porous electrode must be sensitized with a monolayer of dye molecules. Ruthenium

535 was used. The sensitization was accomplished by diluting 10 mg of dye (Ruthenium

535) in 50 ml of absolute ethanol. The electrode was then gently heated on a hot plate

at 70◦C before putting it slowly into the sensitizer solution, face-up. The impregnation

process was carried out at RT and left overnight to ensure the success impregnation

process.

The counter electrode was easier to make. It consisted of a simple ITO thin film on

a glass substrate using the optimal growth conditions for chamber 2 found earlier in

this work (see sections 5.1.3.4, 5.2.2.4 and 5.3.2.4): 5000 pulses, P(O2)=5 mT and

Ts=200◦C. On top of it, a platinum catalyst was deposited. It was obtained by using a

platinum catalyst precursor paint. It was then brush-painted onto the conductive ITO

film before firing at 450◦C on the hot plate for 5 minutes.

B.3.3 DSSC assembling

Prior to the actual assembling, both electrodes were cleaned with absolute ethanol and

dried in air with a hair-drier. DSSCs were assembled following the procedure described

in the literature [7]. The catalyst-coated counter electrode was placed underneath the

photoanode so that the conductive side of the counter electrode faces the porous ITO

film (see Fig. B.5). A hot melt sealing polymer film was used to seal the electrodes

together. Sealing was carried out at 120◦C with the hot plate. The electrolyte solution

was then injected with a syringe into small holes on the edges of the cell. Only 65 µm
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separates the two electrodes. Hence, injecting the electrolyte through one hole caused

lots of bubbles. To circumvent this, two to three more holes (depending on the cell size)

were made using a diamond blade. This way, the liquid was succesfully drawn into the

space between the electrodes. These holes were plugged by placing on top of them a

few mm2 of hot melt polymer film, melting it with a soldering iron. The electrodes were

slightly displaced from one another to create space for electrical contacts as shown in

Fig. B.5.

Figure B.5 Schematic of how the two electrodes are arranged in the built DSSCs. Two
contacts (+ and -) are formed and covered with Ag paint.

Two cells were built: one cell with a 10×10 mm active area (cell 1) and another one

with a larger active area of 15×15 mm (cell 2). Unfortunately, cell 2 dried out because

of defective hole plugging. Injection of new electrolyte did not restore the previous

performance of this cell.

B.3.4 Characterisation and measurements

B.3.4.1 Electrical measurements

The cells were illuminated by a 60 W tungsten Halogen lamp equipped with an integral

parabolic reflector and UV and IR blocking filters. The light intensity was adjusted simply

by changing the distance from the cell to the light source. For characterisation, the latter

was chosen to be 10 cm for both cells. A light irradiance of 60 W/m−2 was evaluated

for the electrical measurements. Using a ruler, the dimensions of the active (stained)

area of both solar cells was calculated. It is found to be: 100 and 225 mm2 for cells

1 and 2 respectively. A simple set-up was used consisting of a multimeter attached to

both electrodes. Both electrodes were painted with Ag paint to ensure a better electrical
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contact between the multimeter probes and the electrodes themselves. The wires used

were copper based. This is illustrated for both assembled cells in Fig. B.6.

Figure B.6 Electrical characterisation set-up for the two assembled cells. Cell 1 is on
the left while cell 2 is on the right.

The chosen calibration on the multimeter was 200 mV. 14.1 mV could be measured for

cell 1 while only 1 mV was measured for cell 2. The initial drying-out of the electrolyte of

cell 2 is probably responsible for such a low voltage output. Unfortunately, no measurable

current could be detected on either cell.

B.3.4.2 Optical measurements

A spectrophotometer was used to derive the transmittance of both cells over the 250 -

1000 nm wavelength range. Results are illustrated in Fig. B.7.

Figure B.7 Transmittance of cell 1 (left) and 2 (right) over the 300 - 1000 nm wave-
length range.

The two cells show similar transmittance in the visible range with a maximum trans-

mittance of 40% around 700 nm. A small shift towards higher wavelengths is observed
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for cell 2 as compared with cell 1. This is attributed to inhomogeneities within the

electrolyte due to the presence of bubbles.

B.4 Summary

Two transparent and operational DSSCs were built using electrodes deposited according

to the optimal growth conditions found in this work for chamber 2. A potential difference

was measured (14.1 and 1.0 mV for cells 1 and 2 respectively) under a light irradiance

of 60 W/m−2. However, no measurable current could be detected in either cell. Hence,

no energy conversion efficiency calculation could be performed. It is suggested that

the porosity of the ITO thin film deposited under an N2/O2 pressure ratio of 430 was

not large enough as compared with the conventional TiO2 layer. Its thickness (∼1000

nm) might be too low as well. Nonetheless, it was demonstrated that with a single

target/material but different growth conditions depending on the layer deposited, a

potential difference could be measured showing the potential of such a method. The

cells showed a maximum transparency of 40%. Such a transmittance could be suitable

for their integration in a window making electricity generation possible.

B.5 Further work on Dye-Sensitized solar cells

Although beetroot juice or chlorophyll as dyes could not be tested with our set-up, it

would be relevant to investigate them as such dyes would be inexpensive to manufacture,

making the scale up of such a technology more likely. Regarding a possible scaling-up,

the Platinum coating is an important issue as Platinum is not an abundant metal on

Earth; the same is true of Indium. The two electrodes made here could be made with

a unique doped-ZnO target circumventing the use of Indium. Possibly, graphite could

have been used in place of Platinum, although it is not as efficient as a catalyst [226]. In

chamber 2, films with good electro-optical properties were grown and could be used to

manufacture inexpensive solar cells. However, the effect of the deposition of the porous

layer on the underlying ITO electrode needs to be studied.

Another aspect related to such applications is the study of possible aging effects of our

amorphous and polycrystalline samples. Clearly, it is important to know the effects

of the environment on the microstructure and subsequently on the properties of the

films/electrodes. These effects could be studied by TEM after a suitable period of aging

under normal atmosphere conditions.
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