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Abstract 
 

 

Occupying a disjointed and vulnerable habitat, specialist Coleoptera associated with Exposed 

Riverine Sediments (ERS) are shown to exhibit high levels of adaptation.  An assessment of 

the English and Welsh habitat resource confirms the presence of strong geographical and 

physical restraints on its distribution which partially explain the rarity of some of the 

associated Coleoptera.    Assemblage studies reveal the presence of multiple adaptive 

strategies that enable specialists to utilise the resource in spite of perceived environmental 

pressures, and the strength of these morphological and behavioural adaptations can be used 

to predict abundance and distribution at alpha, beta and gamma levels.  Furthermore, 

adaptations enforce varying nutrient acquisition strategies which spatially define 

communities.  This study demonstrates the need specialist invertebrates have for a complex 

and highly connected ERS habitat with English and Welsh rivers, that exhibits structural 

variation along a longitudinal gradient.  Reliant on riverine processes and subsidies the 

habitat and its associated invertebrates are symptomatic of a healthy and naturally structured 

lotic system operating laterally and across reach scales. 
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Exposed Riverine Sediments, the role and value of 

the resource in English and Welsh rivers 
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1.1 Introduction 

 

The occurrence of exposed riverine sediments (ERS) as an integral morphological unit 

of natural rivers has, in recent decades, become an historical observation for many 

lotic environments as anthropogenic demands have reduced and removed the habitat 

(Brewer et al., 2000, Gilvear, 1993, Petts and Gurnell, 2005).  This loss has been 

observed within the UK and across Europe (e.g. Hohensinner et al., 2004), but our 

understanding of the impacts of this on associated invertebrate ecosystems has until 

recently largely been overlooked as the requirements of flood planning, charismatic 

higher fauna, and power and water needs took priority.  More recently this knowledge 

gap has attracted more attention (e.g. Lambeets et al., 2008, Paetzold et al., 2008).  

The realisation that river systems must be viewed as complex multi-dimensional 

structures has included habitats such as ERS into recent conservation and restoration 

thinking (Jahnig et al., 2009).  This inclusion has highlighted a need to understand 

better the ecology, function and vulnerabilities of the invertebrates whose lifecycles 

are inherently tied to the resource (Anderson and Hanssen, 2005).  

 

The characterisation of a constrained invertebrate ERS fauna (particularly Coleoptera) 

was first undertaken in Fennoscandia (Andersen, 1968, Andersen, 1969) with 

knowledge of European and UK assemblages following much later (Bonn and 

Kleinwachter, 1999, Desender, 1989, Eyre and Luff, 2002, Eyre et al., 2002, Hering 

and Plachter, 1997, Sadler and Bell, 2002).  This more recent research was broadened 

by the inclusion of research on other invertebrates including spiders (Framenau et al., 

1996, Greenwood and McIntosh, 2008, Lambeets et al., 2006), grasshoppers (Bastow 

et al., 2002, Stelter et al., 1997) and flies (Drake et al., 2007).  Alongside this 
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knowledge sits an ever growing understanding of the controls of sediment transport 

and deposition, including the formation and dynamics of ERS  (Petts et al., 2000, 

Kondolf et al., 2002, Caruso, 2006, Ward et al., 1999a).   

 

The ERS resource within England and Wales has been acknowledged as a habitat of 

specific conservation concern (Environment Agency, 2002), as has its rarest 

Coleopteran fauna (including the endemic species Thinobius newberyi (Scheerpeltz) 

and Meotica anglica (Benick)), which have been targeted with a Biodiversity Action 

Plan (Anon, 1999).  Many of the species found within the resource exhibit a high level 

of fidelity to the habitat (Bates and Sadler, 2005) and these species frequently possess 

some level of conservation status within the UK (Eyre et al., 2001b, Sadler et al., 

2004a) and Europe (Anderson and Hanssen, 2005, Plachter and Reich, 1998, Van 

Looy et al., 2005).  Contractions in populations have been observed (based on 

historical data) but only recently has it been demonstrated that anthropogenic 

pressures are responsible via loss of habitat (Graf, 2006), changes in flow regime 

(Paetzold et al., 2008) and habitat degradation (Bates et al., 2007). Although 

distributions of English and Welsh species are reasonably well understood (Bates and 

Sadler, 2004, Eyre et al., 2001a, Eyre et al., 2001b, Sadler and Bell, 2002),  there has 

been a lack of knowledge on the landscape controls that can predict the distribution 

and structure of assemblages and which are valuable in protecting against future 

population contractions, or for informing habitat restoration requirements.  As such 

this study presents an opportunity to explore the sensitivities of specialist assemblages 

and understand how they utilise their environment.  By increasing the understanding 

of community ecology, the relative strength of potential threats can be assessed. 
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The ERS resource should be viewed within the larger context of the riverine 

landscape, where the river itself acts as a dynamic force that controls much of the 

geomorphic and biotic structure of the adjacent flood plains (Ward et al., 1999b).  The 

extent and diversity of the ERS are dictated by the scale and influence of the river, 

which may produce the complex high volume forms associated with braided rivers 

(van der Nat et al., 2003) (Figure 1.1) or more laterally constrained distributions 

found in single channel rivers (Church, 1992), more typical of English and Welsh 

rivers (Figure 1.2). 

 

Figure 1.1:  Savage Creek, Denali National Park, Alaska, exhibiting multiple channels of 

differing depths and widths, across a wide floodplain. 
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Figure 1.2:  Single channel ERS deposits in the headwaters of the River Severn, Llandinam, 

Wales.  Extensive deposits are confined to one side of the channel with small island deposits 

immediately downstream of within-channel coarse woody debris.  The bank immediately 

opposite is comprised of seasonally inundated Willow Carr. 

 

Common to both morphological forms is the occurrence of flows that restructure the 

habitat to such an extent that primary succession is suppressed (Sadler and Bates, 

2008), thereby removing within-habitat nutrient production and exacerbating biotic 

extremes (Henshall et al., in press, Desender, 1989).  The conditions imposed on 

organisms utilising the resource enforce high levels of adaptation which allow them to 

survive abiotic pressures such as inundation or wide thermal thermal variability 

(Andersen, 1968) and maximise resource acquisition (Hering and Plachter, 1997, 

Paetzold and Tockner, 2005).  Under less disturbed conditions these adaptations 
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disadvantage species (Sadler et al., 2004b) and exclude them from potential refugia if 

the ERS habitat is permanently removed.  

 

1.2 Study aims and objectives 

The aim of this research is to understand landscape factors that control current ERS 

specialist distributions, and the effects that these have on community structure at local 

and regional scales, thereby allowing an assessment on the vulnerability of 

assemblages to threats posed by hypothetical future environmental changes.  This aim 

is met through five objectives which evaluate landscape processes at several scales.  

They are: 

 

• Evaluate the extent and distribution of the current English and Welsh ERS 

resource, and categorise the landscape forms (hydrological and geographical) 

with which it is associated. 

 

• Model the distribution of ERS specialists according to habitat characteristics at 

a regional scale and across rivers, assessing which elements can be used to 

predict species’ presence and assemblage structure at a local scale. 

 

• Use long-term data sets to assess the role variations in inundation pressures 

have in structuring local assemblages. 

 

• Investigate how different specialists utilise available prey resources at a local 

scale according to inundation pressures. 
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• Assess whether a change in nutrient pathways occurs along a longitudinal 

gradient by examining dietary proportions of distinct sample groups from 

headwaters to low altitude floodplains. 

 

1.3 Thesis structure 

This thesis is written in the form of extended papers, and as such may feature some 

repeated elements, particularly in analytical or statistical methodologies.   

 

Chapter 2 begins the thesis by assessing the current extent of the ERS resource in 

England and Wales by presenting a database of extensive habitat patches identified 

via aerial photographs and maps.  Using a subset of these data, commonalities in the 

river profiles (magnitude, flow profiles, geology and morphology) are characterised 

and used as tools to model the complexity and extent of the resource within a river. 

 

Chapter 3 uses field collected data on ERS Coleopteran assemblages from 22 sites on 

five rivers to create models predicting the landscape controls on the distribution of 

species and functional groups.  The importance of anthropogenic impacts, habitat 

complexity and connectivity and longitudinal positioning are assessed to determine 

which factors most constrain local populations. 

 

Chapter 4 assesses the impact on local assemblages of long-term flow regime patterns 

by combining river discharge data for the Upper River Severn with seven years of 

Coleoptera assemblage data.  Generalised Additive Models are used to examine long-

term trends in abundance.  Generalised Linear Models are used to assess the 
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importance of key elements of flow regime such the timing and duration of high and 

low flows in driving familial abundance across six habitat patches on the River Severn 

at Llandinam, mid-Wales. 

 

Chapters 5 and 6 concentrate on resource acquisition by ERS Coleoptera at a local 

and regional scale using stable isotope analysis to quantify aquatic and terrestrial prey 

ratios.  Chapter 5 examines how different functional groups’ prey selection is driven 

by morphological and behavioural characteristics; which also dictate their responses 

to inundation pressures.  Chapter 6 looks at the same functional groups, but across a 

150km longitudinal gradient to examine how resource acquisition changes within and 

between groups according to sampling position.  

 

Chapter 7 summarises the research conclusions, using them to suggest strategies to 

maintain and enhance current assemblage distributions in England and Wales, and 

suggests future avenues of research that will benefit management and conservation of 

the ERS habitat and its associated fauna.  
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2 
 

Exposed Riverine Sediments in England and 

Wales: investigating controls on the abundance 

and complexity of the habitat 
 

Exposed riverine sediments (ERS) are an ecologically valuable, but poorly understood habitat 

associated with the riparian zone of natural and semi-natural rivers.  Found globally, they 

are formed by erosive and depositional processes occurring under fluctuating flow regimes 

and, as such, are susceptible to changes in the availability of sediments and alterations in 

flow patterns.  Although identified in England and Wales as a habitat of conservation value, 

little is known regarding their current extent and distribution, the river systems with which 

they are associated, or the strongest natural and anthropogenic controls on abundance or 

complexity.  This study addresses this knowledge gap by developing and analysing an 

extensive database of extant ERS habitat (as of 2009) and uses a subset of these data to 

characterise the rivers with which is it associated.  The magnitude (size) and shape (form) of 

river flow regime are coupled with physical, geological and anthropogenic variables to 

produce multiple linear regression models predicting habitat area (m
2
/km

-1
) and density 

(number of bars/km
-1

). The frequency of excess Q10 flow events is shown to influence area 

positively, whilst abstraction has a negative impact.  The slope of the river (descent in 

metres/km) positively influences ERS density, but impoundment has a negative impact.  

Natural variables are the strongest influence on habitat provision on the rivers studied, but 

anthropogenic impacts reduce the complexity and cohesion of the ERS mosaic. 
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2.1 Introduction 

At its broadest, ERS have been defined as “exposed, within channel, fluvially 

deposited sediments (gravels, sands and silts) that lack continuous vegetation cover, 

whose vertical distribution lies between the levels of bankfull and the typical base 

flow of the river” (Bates and Sadler, 2005, p.5).  This definition incorporates a 

longitudinal gradient of habitat forms from headwaters to estuary and broadly mirrors 

the convention of riverine sediments exhibiting a reduction in size with downstream 

transportation (Brookes, 1994, Surian, 2002), notwithstanding variations resulting 

from tributary inputs (Benda et al., 2004, Knighton, 1980) or local geological changes 

(e.g. Rice, 1957). ERS represent a transient terrestrial habitat, formed, modified and 

destroyed by natural riverine processes (Ward and Stanford, 1995, Church, 2002), 

their formation being a product of the interaction between discharge, slope and 

sediment supply, identified by geomorphologists as the principle components in the 

structuring of river morphology (e.g. Vandenberg, 1995).  Within channel sediments 

are eroded, transported and deposited according to sediment calibre and supply, and 

variations in the river’s energy, which is derived from a combination of river flow 

(characterised by discharge or water depth) and the power with which it is flowing 

(largely related to channel gradient) (Carling, 1992, Bettess, 1994).  This river energy 

will vary spatially (geomorphologically) and temporally (with flow variability), and 

these variations dictate the form of the river and the occurrence of ERS (Gurnell et al., 

2009).  These interactions have been visualised (Figure 2.1) to provide a predictor of 

river channel form (Church, 2002, Gurnell et al., 2009). 

 



 16 

 

Figure 2.1: Classification of channel morphological types, showing ERS likelihood according 

to form, sediment supply and size and stream power (reproduced from Gurnell et al., 2009). 

 

Even in highly unstable channels, sediment mobilisation occurs infrequently, under 

only the highest flows, when large-scale movements occur followed by rapid 

redeposition as stream power reduces to normal levels.  The duration of the high flow 

events and the size of the sediments dictate the distances transported, although for 

larger sediments this is seldom more than tens of metres (Bridge, 2003).  These 

processes also serve to mobilise sediments from the adjacent floodplain, particularly 

where the channel is laterally mobile, which can account for the majority of local, 

within-channel sediments (Surian and Cisotto, 2007).  Within the context of the wider 

floodplain, channel instability produces a complex, but coherent, landscape with the 

turnover rates of channel, riparian habitats (such as ERS) and the wider floodplain 

tending towards equilibrium, described as a ‘shifting mosaic steady state’ (van der Nat 

et al., 2003).  Turnover rates themselves vary according to position and local 
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morphology, constrained headwaters showing reduced turnover in comparison to 

braided headwaters (Ward et al., 2002a) and high altitude areas exhibiting greater 

turnover rates than lowland reaches nearing the estuary (Arscott et al., 2002).  ERS 

are dependent on high turnover rates and reduced stability, a main characteristic being 

the lack of permanent vegetative cover.  Where inundation and habitat restructuring 

are infrequent, successional processes stabilise recently exposed sediments and return 

them to a terrestrial, vegetated form (Asaeda et al., 2010, Gurnell et al., 2001). 

 

This complex interaction of flow, power, sediment and turnover explains the 

vulnerability of ERS to anthropogenic impacts.  Impoundment, sediment mining, 

water abstraction and channel alterations disrupt the natural processes which maintain 

the fluctuating mosaic of habitat forms.  Impoundments have several effects; 

capturing upstream sediments and preventing replenishment by downstream erosion 

(Petts and Gurnell, 2005), whilst controlled releases of captured sediments can bury 

existing habitat and alter its structure (Sakamoto et al., 2010).  Impoundment also 

alters the flow regime, reducing the variation between minimum and maximum flows 

both daily and annually (Arrigoni et al., 2010) and, as such, the magnitude of 

restructuring processes (Brandt, 2000), resulting in reduced channel complexity and 

increased stability (Petts et al., 1993).  Substrate extraction (as resource exploitation 

or for flood amelioration) has marked impacts on channel structure, typically reducing 

complexity and degrading habitat diversity, the transportation and supply equilibrium 

being broken (Gaillot and Piegay, 1999, Kondolf et al., 2002).  Land-use change (via 

afforestation) has also reduced sediment inputs in areas where agriculture has reduced 

(Bravard et al., 1997, Liebault and Piegay, 2002), having the same impact as substrate 
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removal.  These two impacts (impoundment and sediment removal) have been 

suggested as the principle causes in the change of many of Europe’s large rivers from 

braided to single channel regimes (Bravard, 2010, Hohensinner et al., 2004).  Water 

abstraction and channel modification have similar impacts, reducing the frequency 

and magnitude of high flow events and allowing vegetative stabilisation of the 

riparian zone (Brunke, 2002), whilst channel modifications increase local stream 

power and enhance sediment mobilisation (Brookes, 1985), removing substrates faster 

than replenishment, particularly where bank erosion is prevented (Florsheim et al., 

2008). These increases are often concurrent with a natural reduction in habitat 

turnover rates (Arscott et al., 2002), occurring largely in developed or urbanised, often 

lowland areas (Paul and Meyer, 2001, Surian and Rinaldi, 2003, Fotherby, 2009).  

With turnover also adversely affected by system modification (Ward et al., 2002b), 

urban pressures exaggerate the reduction in habitat rejuvenation in low altitude rivers. 

 

ERS are seen as important as they are indicative of a natural river system in landscape 

equilibrium, and play a part in the ecosystem services provided by such systems 

(Paetzold et al., 2005, Petts et al., 2000). Their role as a habitat resource for specialist 

and often rare invertebrates is also now established (Anderson and Hanssen, 2005, 

Drake et al., 2007, Sadler and Bates, 2008).  The English and Welsh resource was 

targeted in a specific habitat action plan (Environment Agency, 2002), yet 

understanding of the distribution of the resource remains limited.  This study will 

address this knowledge gap and aims (1) to create a new database of ERS areas in 

England and Wales and (2) to analyse emergent ERS patterns in relation to the nature 
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of the flow regimes, environmental factors and anthropogenic influences that are 

hypothesised to affect the extant resource. 

 

 

2.2 Methodology 

Initial identification of ERS sites was made by cross-referencing aerial photography 

with detailed Ordnance Survey Maps (accessed via Digimap).  The English and Welsh 

database includes coordinates of areas of extensive ERS (either single patches or 

complex areas) visible in photographs or marked as shingle, gravel or sand on maps.  

Coordinates were then imported to a Microsoft Access database allowing for 

archiving, future enhancement and categorisation.  A subset of 20 rivers with 

abundant ERS was chosen to represent the three main geographic distributions of the 

resource in the south west and north of England and Wales (Figure 2.3) and (again 

using aerial photography and map information) their ERS resource was measured at 

higher resolution to assess area (m
2
/km

-1
), density of habitat units (number of 

patches/km
-1

) and slope (m/km
-1

) for each river.   

 

Classification of flow regimes of the rivers in the subset was calculated using data 

supplied from the National River Flow Archive (NRFA) by the Centre for Ecology 

and Hydrology.  Data were obtained from stations with a complete (or minimum 

90%) record of data from 1988-2008 (Figure 2.2).  These long-term datasets allowed 

hydrologically similar rivers to be identified using regime classifications (Hannah et 

al., 2000, Harris et al., 2000).  This technique groups rivers based on magnitude and 

shape attributes, which in turn can be combined to provide descriptive classes. Data 
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were converted from discharge records (m
3
s

-1
) into runoff (mm month

-1
), to 

standardise for differences in catchment area and thereby allowing between-catchment 

comparison.  Additional information on catchment geology and anthropogenic 

modifications were derived from the NRFA.  Rivers were grouped by magnitude 

based on four indices: mean, maximum, minimum and standard deviation of monthly 

values, regardless of their timing  (Harris et al., 2000, Monk et al., 2006).  

Standardisation of data using z-scores (mean = 0, standard deviation = 1) allowed 

comparison of regime ‘shapes’, identifying variations in seasonal patterns of high and 

low flows, (Hannah et al., 2000).  Both magnitude and shape groups were defined 

using hierarchical cluster analysis (Ward’s method) with dendrograms and 

agglomeration schedules (scree plots) used to identify robustly the number of clusters 

to retain and gauging stations that showed similarity (Griffith and Amrhein, 1997). 
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Figure 2.2: Distribution of gauging stations across the south west and north of England, and 

Wales, used to source run-off data for classification of regime shape and magnitude 

characteristics, labelled by river. 

 

Prior to analysis the data were explored to identify outliers in explanatory variables, 

co- linearity between the explanatory variables and variables requiring transformation 

(Zuur et al., 2010).  These variables were initially analysed using Spearman 

correlation to identify those with strong relationships (> 0.4) to habitat metrics, as 

data were non-parametrically distributed.  
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Multiple Linear Regression models were run for habitat abundance and complexity, 

and flow characteristics, river slope, anthropogenic modifications and geology as 

explanatory variables.  The most important explanatory variables were identified 

using a drop 1 selection process, which presented the most probable, significant 

combinations (Zuur et al., 2007).  Visual model validation occurred, whereby plots of 

standardised residuals against fitted values were used to assess homogeneity, 

histograms of residuals were used to test normality and plots of residuals against 

explanatory variables established independence (after Zuur et al., 2010).  No patterns 

were visible in any of the plots. 

 

An information-theoretic approach to model selection was taken whereby the most 

parsimonious model was selected from a suite of possible models using Akaike’s 

Information Criterion (AIC) (Burnham and Anderson, 2002).  AIC was defined as: 

AIC = –2L + 2K, where L is the maximum log-likelihood of the model and K is the 

number of parameters in the model (Akaike, 1973). The models were ranked 

according to their AIC values and their Akaike weights, w, calculated using the 

following formula:  

, where ∆i is the difference between the AIC for model i and the 

model with the lowest AIC and the sum is over the other alternative models in the 

analysis set j = 1. Using the Akaike weights, a 95% confidence set of models was 

identified starting with the models with highest Akaike weight and repeatedly adding 

the model with the next highest weight until the cumulative weight was greater than 

0.95. 
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2.3 Results 

2.3.1 English and Welsh ERS resource 

The majority of the ERS resource are confined to the North of England (on rivers 

rising along the Pennine spine), Wales and the South West of England (Figure 2.3).  

The resource is absent from rivers associated with major groundwater aquifers found 

in much of south and east England, as well as from heavily engineered rivers in 

populace areas such as the West Midlands.  The full dataset is included on a 

supplementary CD. 

 

 

Figure 2.3: Distribution of all major areas of ERS identified within England and Wales, 

showing highest densities in the south west and north of England and Wales.  Each point 

represents the grid reference for a site of ERS, ranging from single patches, to complex areas 

of multiple patches. 



 24 

 

2.3.2 Flow regime classifications of river subset. 

Regime shape and magnitude were derived using long-term (1988-2008) mean 

monthly runoff data from 20 stations. Following inspection of cluster dendrogram and 

agglomerative analysis (scree plot) indicating levels of similarity between gauging 

stations, four distinct groups were identified for both flow regime magnitude (Table 

2.1) and shape (Table 2.2).  Four magnitude classes were identified from minimum, 

maximum, mean flows and their standard deviations (Figure 2.4):    

Class 1: High flows, with highest values in all indices, including catchment size  

  (8 rivers). 

Class 2: Second highest flows, consistent across all indices except Standard 

Deviation, where its range has the highest value (2 rivers). 

Class 3: Intermediate flows, which although having lowest mean flows, has 

higher maximum flows than Class 4 (5 rivers). 

Class 4: Lowest magnitude, with higher mean flows than Class 3, but with 

lower mean and maximum flows (4 rivers). 

 

Table 2.1: Summary statistics of magnitude classes (mm month
-1

) 

  Class 1  Class 2 Class 3 Class 4 

Mean (mm month -1) 151.56 124.43 76.51 53.43 

Min (mm month -1) 76.51 49.61 31.3 23.66 

Max (mm month -1) 238.8 221.71 139.86 102.82 

Std Dec (mm month -1) 59.73 64.3 39.47 27.09 

Mean Catchment area (km2) 404.42 165.9 353.61 105.25 

No. of rivers 2 4 8 5 
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Figure 2.4: Box plots of monthly mean, minimum, maximum and standard deviation runoff within the 

four flow magnitude classes (1-4).  Box length represents interquartile range, whiskers show the extent 

of minimum and maximum values (outliers plotted individually) and median values are shown by the 

horizontal line in each box. 

 

Regime shape is described from plotted z-scores of standardised discharge data 

(Figure 2.5). 

Class A:  January peak flow, with the autumnal rise to maximum showing a  

  period of  stability in October and November, and a steady spring  

  decline. 
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Class B:  Prolonged December-February maximum flow, with level of autumnal 

  stable period higher and less distinct that Class A and an erratic  

  spring, decline. 

Class C:  Two peak flow periods in autumn and winter. 

Class D:  Maximum peak is in January, with a reduced late summer flow. 

Regime shape and magnitude classifications were then combined to identify 

hydrologically similar gauging stations, the underlying geology and level of 

anthropogenic influence on each station was also determined (Table 2.2) and the 

distribution of these classifications mapped (Figure 2.6), magnitude classifications 

show no discernible patter of distribution, regime shapes A and C dominate in the 

north west of England, whilst shape B has a westerly distribution.  

 

Table 2.2: Combined magnitude and regime shape classes given by river, along with 

geographical region, underlying geology and anthropogenic impacts within 

catchment. 

River Class Region Geology Abstraction Impoundment 

Dee 1B N Wales Igneous/Limestone Y Y 

Esk 1C NW Lava.tuff.granite N N 

Eden 2A NW Boulder clay/sandstone N N 

Lune 2A NW Boulder clay N N 

Wye 2B Mid Wales Sediments Y N 

Ystwyth 2B Mid Wales Shales N N 

Ribble 3A NW Boulder clay N N 

Severn 3A Mid Wales Boulder clay Y Y 

Tees 3A NE Boulder clay N Y 

Wharfe 3A NE Boulder clay Y Y 

Torridge 3B SW Shale/Sandstone Y Y 

Wyre 3C NW Millstone grit/glacial Y N 

Exe 3D SW Sandstone Y Y 

Ithon 3D Mid Wales Shales N N 

Irthing 4A NW Boulder clay Y Y 

Lugg 4D W Alluvial Y N 

Otter 4D SW Alluvial Y N 

Swale 4D NE Glacial N N 

Usk 4D S Wales Alluvial/boulder clay N Y 

Wear 4D NE Alluvial/boulder clay N Y 
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Figure 2.5: Classification and grouping of rivers using standardised average monthly runoff (mm month
-1

 converted into z-scores), showing variation in 

timing and characteristics of high and low flows; lines represent flows of constituent rivers within each classification. 
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a) magnitude 

 

 

b) regime shape 

Figure 2.6: Geographical distribution of gauging stations according to a) magnitude and b) 

regime shape class as defined in Table 2.2.   

 



 29 

2.3.3 Multiple Linear Regression  

 
 

Regression models lying within a 95% confidence interval were derived for mean 

m
2
/km

-1
 of river (area) and number of bars/km of river (density) using a drop 1 

selection procedure validated by AIC scores and ranking by weights (Appendix 1).  

The area of ERS/km
-1

 model included average annual number of Q10 events (the 

highest discharge rates occurring ten per cent or less of the time)  and water 

abstraction, with increased Q10 events positively affecting area, and abstraction 

negatively, the adjusted r
2
 = 0.216, significant at  the  <0.05 level (Table 2.3).  The 

density model (number of ERS patches/km
-1

) indicated slope (as drop in metres/km
-1

) 

and impoundment as the strongest significant parameters (adjusted r
2
 = 0.407), 

density increasing with slope but reduced in impounded streams, significant at the < 

0.005 level (Table 2.3).  Visualisation (Figure 2.7) demonstrated that area is positively 

associated with Q10 events and density positively associated with slope. 

 

Table 2.3: Multiple linear regression models with best fit for ERS area and density 

using hydrological and landscape variables. 

Model  adjusted r
2
 F dF Variables   p-value 

 

Area  0.216  4.57 17 Av. Annual Q10 events <0.05 

      Abstraction  

 

Bars/km 0.407  7.46 17 Slope    <0.005 

      Impoundment 
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 2.7a) ERS area: Q10 events    2.7b) Patch density:slope

  

 
Figure 2.7: Scatter plots of significant positive model elements a) increasing habitat area with 

higher monthly average of Q10 events b) increasing patch density with steeper stream slope.
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2.4  Discussion 

 

This study is the first geographical overview of the extent and distribution of the 

English and Welsh ERS resource, and characterises the rivers and landscapes with 

which it associated.  Complex river systems are known to be degraded and 

morphologically simplified by anthropogenic modifications and developmental 

pressures (Brewer et al., 2000, Gurnell et al., 2009, Petts, 1984), with subsequent 

ecological ramifications (Ward and Stanford, 1995).   Loss of habitat and changes in 

flow regimes are also known to impact riparian arthropod community cohesion and 

function (Bonn et al., 2002, Greenwood and McIntosh, 2010, Hering, 1995, Lambeets 

et al., 2008).  By understanding the controls on the existing ERS resource in England 

and Wales (within a context of historical degradation) the long-term maintenance of 

current resource levels may be secured, aiding the conservation of specialist 

invertebrates. 

 

A visual evaluation of the distribution of the current ERS resource (Figure 2.3) 

confirms the regional distribution suggested in earlier estimates (Eyre and Lott, 1997), 

with densities greatest in Wales, south western and northern England.  Its absence 

from the remaining rivers may have several causes, including anthropogenic induced 

losses due to channel and flow alterations (Brunke, 2002, Gaeuman et al., 2005) and 

natural reductions of habitat turnover in lower altitude rivers (Arscott et al., 2002).  

The underlying importance of sediment supply and mobilisation potential should not 

be overlooked, and enforces much of the geographical restriction of the resource, 

dependent as these are on the characteristics of headwaters and flow regimes (Gurnell 

et al., 2009).  Each of the rivers selected for analysis descend steeply from high 
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altitude sources; are not associated with major aquifers but are more responsive, 

surface water dominated and their catchments are typically characterised by glacial or 

alluvial deposits with relatively low permeability.  Stream slope dictates the potential 

power available for sediment mobilisation and subsequent deposition (Church, 1992), 

and coupled with the timing and magnitude of flow events dictates the morphology of 

channel and floodplain.  Surface water dominated regimes in England and Wales 

exhibit wide variations in flow over short time frames, with the variance most 

pronounced in steep catchments providing rapid runoff of surface waters.  This flashy 

hydrology is a key element in maintaining high levels of habitat turnover (and ERS) 

by resetting the successional clock.  By comparison ground water dominated rivers 

have buffered flow variations (e.g. Wood et al., 2001), applying fewer turnover 

pressures on colonising riparian vegetation (Naiman and Decamps, 1997, Nilsson and 

Svedmark, 2002), thereby eliminating the potential for ERS establishment.  

 

The best fitted models of factors predicting ERS area and density demonstrate that the 

habitat persists due to hydrogeomorphological processes and landscape factors; the 

river drives the form of terrestrial floodplain.  The available area of habitat is 

positively influenced by the number of individual Q10, high flow events, exceeded ≤ 

10% of the time over the 20 year discharge record (a parameter that occurs in four of 

the possible seven models).  These refer to the episodic, resetting events that have the 

potential to prevent succession or induce habitat turnover.  Q10 events necessarily 

occur only ≤ 10% of the time, but their distribution through the hydrological year will 

dictate the level of habitat restructuring.  A more stable regime will exhibit fewer Q10 
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events, and therefore riparian areas will have longer stabilisation periods between 

them, allowing the development of more complex vegetation.     

 

ERS density is positively influenced by increased stream slope (a parameter consistent 

across all possible models), which dictates stream power through the supply of kinetic 

energy.  Steeper slopes increase stream power, resulting in greater sediment 

mobilisation potential, moderated by sediment calibre and erodibility (Howard et al., 

1994).   Local hydrogeomorphology dictates where mobilised sediments are deposited 

and the distances they are transported.  Erosion, mobilisation and deposition occur 

very locally, within ≤ tens of metres (Bridge, 2003). ERS density increases with slope 

as raised power increases sediment processing, but the distances involved remain low.  

The absence of regime shape in the model outputs indicates that timing is not a factor 

in structuring ERS, although there are indications that magnitude may be (according 

to weaker models), a reflection of sediment transport potential (Gurnell et al., 2009). 

 

Whilst natural characteristics of river systems are shown to predict the extent and 

distribution of ERS habitat, anthropogenic alterations reduce ERS provision and 

densities (again supporting observations of historical losses).  The reduced ERS area 

modelled for rivers where water abstraction occurs supports long-term observations of 

changes in channel form. Abstraction is associated with a reduction in the area of 

habitat, a consequence of stabilised and lowered long-term flows imposing fewer 

pressures on riparian vegetation.  Consequently, the permanently vegetated zone 

encroaches onto existing ERS, stabilising the sediments and further reducing 

restructuring potential under high flows.  A gradual process, its effects have been 
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observed on wandering and braided rivers globally (Petts, 1996, Whiting, 2002).  The 

shape of the daily regime may not change, Q10 events may still occur to rework non-

stabilised sediments, but reduced flows enhance floodplain stability and therefore 

limit the sediment supply for mobilisation. ERS density models indicate a negative 

response to impoundment.  Impoundment has a dual effect of interrupting 

downstream sediment transportation and stabilising downstream flows (reducing the 

habitat-restructuring flashy events). This has been shown to decrease rapidly within-

channel sediments post completion (Ligon et al., 1995, Petts and Gurnell, 2005, Graf, 

2006, Greenwood et al., 1999). The data included here indicate that the reduction is 

sustained (the most recent impoundment in the dataset occurred in 1981), with the 

resource reaching a new, reduced equilibrium, relative to rivers where the regime is 

unaltered.   

 

2.4.1 Conclusions 

Past degradations of English and Welsh ERS largely occurred as a result of intensive 

management schemes in the latter half of the 20
th

 Century (Brewer et al., 2000).  

These resulted in reductions or the entire removal of the ERS resource from many 

rivers.  The current distribution (as identified for the first time in the ERS inventory 

created herein) is found in both near-natural rivers and, to a lesser extent, 

anthropogenically altered systems.  Interruptions to the continuity of sediment 

transportation and urban pressures have largely removed the resource from many low 

altitude rivers.  Three natural influences enforce a natural geographic limitation on the 

distribution of ERS, with steep stream slope, flashy flow regimes and supplies of 

erodible sediments maintaining the resource’s abundance and complexity.  The 



 35 

current distribution represents a relict level of the resource, which remains vulnerable 

to anthropogenic disturbance, but it is not clear whether a new equilibrium has been 

reached following the completion of major engineering and impoundment projects.   

 

In the short-term, the priority for the resource is to maintain and protect current 

distributions of ERS, and to establish whether they are stable, declining or increasing.  

The database of the resource will act as an essential reference tool in this process.  

The negative impacts of impoundment and abstraction are well known for both 

aquatic and riparian ecosystems, and the models of ERS distributions further 

emphasise the care that should be employed when these are considered for natural 

systems.  

 

River restoration projects indicate that complexity of channel morphology (with 

associated ERS) can be reintroduced longitudinally (Caruso, 2006, Jahnig et al., 2009, 

Jansson et al., 2007), although in a crowded landscape the multiple pressures on 

floodplains predicate against fully restored connectivity.   But even partial restoration 

may serve to improve ERS distribution.  Field observations of both the Severn and the 

Wye established that ERS persists downstream of low-impact ‘soft’ floodplain 

alterations (such as earth embankments), suggesting models for future application on 

degraded rivers.  Whilst the resource has declined it exhibits an inherent resilience 

where some level of natural state persists and where environmental conditions are 

conducive.   
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3 
 

The role of habitat connectivity in maintaining 

complex riparian communities of specialist 

invertebrates 
 

Sampling of specialist invertebrates (Coleoptera) from riparian gravel deposits found 

alongside five Welsh rivers was used to derive predictive models of community 

distribution based on predetermined connectivity parameters.  Species were assigned 

to functional guilds based on morphological traits associated with dispersal ability.  

The influence of habitat complexity upon these guilds was tested using Generalised 

Linear Modelling.  Of the three identified groups, that containing the rarest species 

showed strongest dependence on a highly connected and complex habitat mosaic (and 

possessed weak morphological adaptations).  Specialist, but widely distributed 

species showed no dependence on a well connected habitat and possessed strong 

dispersal favouring adaptations, with apparent niche partitioning between 

morphologically similar species exhibited via a change in longitudinal composition of 

communities. Finally, ubiquitous generalist species showed a negative response to 

increased habitat complexity (with concurrent decreased morphological adaptations) 

but a positive response to patch isolation.  Rarity appears to be a function of reduced 

physical adaptations (particularly reduced mobility) to the disturbance prone 

environment in some specialist species, which emphasises their need for a spatially 

complex and linked mosaic of undisturbed habitat. 
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3.1 Introduction 

Terrestrial arthropods inhabiting dynamic riparian ecotones have been studied widely 

in Europe and Fennoscandia (Desender, 1989, Anderson and Hanssen, 2005, Paetzold 

et al., 2006, Sadler and Bates, 2008).  The habitat with which they are associated is 

characteristically unstable, nutrient deficient, subject to extremes of temperature and 

frequently reworked by flood events (Sadler et al., 2004, Bates et al., 2009).  

Associated with continental scale braided river systems (Petts et al., 2000) as well as 

headwater  upland stream systems (Benda et al., 2005), the habitat typically decreases 

in abundance with stream order, becoming finer and deposited within meanders, as a 

result of reduced sediment inputs, slower flows and decreased inclines (Bettess, 

1994), these correspond to disequilibrium and equilibrium floodplains (Ward et al., 

2002)  The habitat is vulnerable to alterations to the natural river state (direct and 

indirect) and as such is associated with natural or scarcely modified streams (Bates et 

al., 2009).  Limited distribution of the habitat necessarily constrains the distribution of 

associated stenotopic species, many of which have been classified as rare (Niemeier et 

al., 1997, Gunther and Assmann, 2005), and in the case of two UK species (Thinobius 

newberyi and Meotica anglica), endemic.  

 

A problem for conservation practitioners is that no reliable assessment mechanism 

exists for predicting the quality of habitat, at either patch or matrix scale, except 

through physical sampling.  Similarly there may be a temptation to focus on 

individual species which are of conservation concern.  The conservation status of 

habitat mosaics is however better assessed by examining the health of resident 

communities (Kremen et al., 1993). 
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Exposed riverine sediments have a patchy and linear distribution.  Any single patch 

may be at risk from stochastic flooding events which may also involve erosion and 

downstream deposition of some of the sediments, although in unmanaged systems the 

total amount of habitat will remain approximately constant, assuming the presence of 

flashy flows and fresh sediment inputs (Ward et al., 2002).   Specialist arthropods can 

only persist by being able to survive or escape these major disturbance events and by 

being able to recolonise the habitat post inundation.  In this context, a functioning 

riparian gravel bar resource is necessarily a well connected one, with susceptibility to 

isolation varying between taxa and functional guilds according to their life histories 

and dispersal capabilities (Tockner et al., 1998).  Individual species may face 

increased pressures if the equilibrium state of habitat supply is altered.  The 

grasshopper Bryoderma tuberculata (Fabricius) is found in metapopulations on 

riparian gravel bars in the European Northern Alps.  Individual populations are 

subject to local extinction (as a result of habitat immersion or loss) and the 

metapopulation is reliant on the persistence of enough connected habitat to permit 

recolonisation.  The metapopulation is therefore vulnerable to both catastrophic 

inundation events, eliminating multiple populations, and to reductions in flooding, 

producing a long-term reduction in habitat (as bare gravel is vegetatively colonised) 

(Reich, 1991, Stelter et al., 1997).   

 

Typically, stenotopic species have phenological and morphological adaptations that 

enable them to survive the demands of their environment (Adis and Junk, 2002, Bates 

et al., 2009).  These may increase their response to immediate inundation threats 

(presence or size of wings and wing muscles) (Desender, 2000), or enhance seasonal 

avoidance (inland quiescence/diapause during flooding season) (Andersen, 2006).  
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The older and more stable the environment that specialist species inhabit, the greater 

and more pronounced these traits, demonstrating that they have evolved to improve 

survival and fitness.  There is also scope for within-species variation, according to the 

strength of environmental influences on individual populations – as shown by the 

increasing percentage of macropterous (large winged) Bembidion tetracolum (Say) 

with proximity to stream channel  (Siepe, 1989), or wing muscle occurrence in 

Central Amazonian Cicindela (Coleoptera) decreasing with distance from and 

elevation above the river (Adis and Junk, 2002).  

 

Successful species actively utilise the environmental cues (such as rising water) 

available in the habitat to prompt inter-patch movement, an adaptation symptomatic 

of both their specialisation and fitness for the environment which they occupy.  These 

cues may prompt seasonal (e.g. light cues initiating movement to overwintering 

habitat (Andersen, 1989, Andersen, 2006)) or rapid, stochastic (Bates et al., 2009) 

movements, but both responses presuppose the physical ability to make the 

movement. An aquatic parallel can be seen in the Ferocious Water Bug (Abedus 

herpeti, (Hidalgo)).  To avoid scouring during high flow events, individuals exit the 

stream channel and move inland following rainfall cues of fixed length and intensity 

(Lytle, 1999).  Bates also argues that the open habitat associated with riparian gravels 

and shingles requires adaptation to avoid predation, either by avoidance (typically 

fossorial lifestyles) or escape, through rapid movement across the surface (Lindroth, 

1974, Desender, 1989).   

 

Species-specific studies have shown that there is variation in the strength of 

behavioural and morphological adaptations, however these studies are by no means 
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exhaustive.  The click beetle, Fleutiauxellus maritimus  (Curtis) exhibited no 

between-patch movement, in contrast to the ground beetle Bembidion atrocaeruleum 

(Stephens) which moved between patches, up to several hundreds of metres, in the 

same study (Bates et al., 2005).  The wolf spider Pardosa agricola (Thorell) exhibits a 

limited, short-range dispersal insufficient to allow cross-channel movement and 

therefore potentially isolating populations (Lambeets et al., 2010).  It is therefore 

likely that the type and strength of adaptations impact upon a species’ likelihood of 

surviving individual inundations.  In a study of Carabidae (ground beetle) recovery 

following a 100 year flood on the River Isar in Germany, population recovery was 

related to the avoidance adaptations and to the timing of the lifecycle.  Bembidion 

species were adults at the time of the flooding and able to escape, rapidly recolonise 

and reproduce in a competition free environment, their numbers rapidly exceeding 

previous records. In comparison Nebria picicornis (Fabricius) was in its pupal (and 

therefore vulnerable) stage at the time of flooding and showed no recovery during the 

study (Hering et al., 2004).  Microspatial positioning has been shown to structure 

specialist communities (Bates et al., 2007a) with elevation above stream level acting 

as a strong predictor of species occurrence, an observation repeated in  spatially 

distant populations (Desender, 1989). 

 

Although the environmental requirements of a few species have been well studied, 

allowing limited predictions of distribution and presence/absence to be made, for the 

majority of species there is a paucity of autecological data.  In the absence of such 

information, more generalised knowledge must be applied.  A common approach 

when studying arthropod communities is to infer functionality from morphology i.e. 

make assumptions on a species’ requirements and behaviour based on physical 
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adaptations to the environment in which it is found (Adis and Junk, 2002, Ribera et 

al., 2001, Jelaska and Durbesic, 2009, Moretti and Legg, 2009).  Vegetation structure, 

temperature regimes, topography and prey emergence or preference are likely to 

affect both the trophic and spatial positioning of any given species, whilst physical 

constraints (e.g. apterous or alate) and species-specific behaviour will inform 

dispersal propensity  (Auclerc et al., 2009).  In the context of a dynamic riparian 

habitat here studied, the ability of individuals to survive disturbance events will be a 

key determinant in a species’ persistence.  A strong argument can be made that 

survival probability will be predicted by functional traits such as size, trophic 

position, reproductive strategy and geographical distribution.  The multiple and 

combined traits will act to increase or reduce a species’ fitness within any local 

environment (Barbaro and van Halder, 2009, Pizzolotto, 2009).   Due to the high 

levels of disturbance encountered with ERS, it is possible to hypothesise that the type 

and strength of adaptations employed to minimise the impact of this can predict 

distributions under differing regimes. 

 

The paucity of species-specific knowledge inhibits our understanding of communities’ 

susceptibility to isolation, and the importance of dispersal potential within this 

fragmented and patchy habitat, particularly if the matrix becomes degraded.    

Connectivity parameters, including responses to the extent, density or relative 

isolation of habitat patches, may well be the best assessment tool available for 

multiple species inhabiting this environment, allowing morphological adaptations to 

be matched to their perceived usefulness within the context of a dynamic and 

sometimes chaotic habitat. 
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3.2 Study aims, objectives and hypotheses 

1. Assess the role of habitat complexity in predicting the distribution of specialist 

riparian Coleoptera. 

2. Determine functional groups from morphological characteristics and test the 

accuracy of these defined groups by modelling their distributions from field 

data. 

3. Assess the relationship between functional groups, habitat complexity and 

levels of specialisation. 

 

Objectives 

• Identify ERS habitat areas for sampling, and assign connectivity and 

disturbance parameters. 

• Measure and analyse morphological characteristics of abundant species found 

within the habitat and areas of between-species variation. 

• Investigate assemblage structure and assign species to functional groups using 

morphological data and abundance correlations. 

• Model the role connectivity and disturbance parameters have in predicting 

patch scale assemblage structure. 

 

Hypotheses 

The hypotheses of this chapter are that morphological characteristics will be common 

to functional groups and that this commonality will be reflected in model outputs, 

with characteristics indicative of potential mobility and therefore distribution within 

the habitat patches studied.
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3.3 Methodology 

3.3.1 Study sites and sampling methods. 

Twenty two sites were sampled from five rivers (Figure 3.1) rising in the mid-Welsh 

Cambrian mountains which are subject to a high annual and year- round precipitation 

(relative to the majority of the inland British Isles).  The rivers included sites covering 

both natural and modified streams, all maintaining a level of flashiness needed for the 

persistence of exposed river sediments.  Each of the five rivers contains characteristic 

areas of within channel and riparian gravel bars which decrease in frequency with 

increasing distance from the headwaters (Chapter 2).  Intensive flood controls or 

channel alterations are absent until the rivers Vyrnwy, Severn and Wye reach the 

English borders in Shropshire and Herefordshire, and areas of more dense human 

habitation.  The Tanat and Banwy are tributaries of the Vyrnwy, which in turn is a 

tributary of the Severn.  The Wye has no physical connection with any of the other 

rivers in the study.  Sampling points were identified from each of the rivers’ 

headwaters until they merged with another larger river, or (for the Severn and Wye) to 

the point of the last accessible area of coarse gravel habitat.  Aerial photographs were 

cross referenced with pre-existing River Habitat Surveys provided by the 

Environment Agency, to select the study sites prior to site visits, to assess 

accessibility and suitability.  Site area and nearest patch of habitat up and downstream 

(from midpoint of site), along with the total area of habitat within 1km, and the 

number of habitat patches within 1km were measured using Ordnance Survey maps 

(accessed via Digimap).  These parameters were intended to measure a site’s relative 

isolation and the complexity of the matrix which it inhabits. Distance of site from 

headwater was also included to establish the strength of influence of longitudinal 

factors in altering community structure.  Field observations established that all sites 
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were characterised by an area of early successional annual or biannual vegetation 

emerging from bare gravel, typically Polygonum persicaria (Redshank), Digitalis 

purpurea (Foxglove) and the invasive Impatiens glandulifera (Himalayan Balsam) 

giving way to perennial woody vegetation with increasing distance from the stream.  

Adjacent land use was agricultural, with sheep grazing at higher altitudes and cattle at 

lower.  Sampling was only conducted on habitat patches from which livestock has 

been excluded, to avoid potential degradation by trampling and nutrient enrichment 

(Bates et al., 2007b). 

 

 

Figure 3.1: Distribution of sampling points (marked by red dots) on the rivers Banwy, Severn, 

Tanat, Vyrnwy and Wye, including a range of distance downstream, disturbance and 

connectivity levels,  
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Sampling took place fortnightly from 15 May – 21 August 2009 with six pitfall traps 

(0.3L capacity with a 50:50 ethylene glycol: water preservative solution) placed in a 

grid at 1m and 2m from the water’s edge on each site (Lott and Eyre, 1996, 

Vanbergen et al., 2010, Boscaini et al., 2000).  Flooding events caused the loss of 

some traps and therefore data at all sites randomly throughout the study period. 

Analysis was therefore conducted on pooled seasonal data, a standard procedure when 

sampling such a highly dynamic habitat (Lambeets et al., 2009).  When traps had been 

lost by flooding (or by animal or human interference) they were reset.  Although non-

exhaustive (Andersen, 1995) and with a probable over representation of more mobile 

ground beetles and under-representation of cryptic/fossorial species (Baars, 1979, 

Bell, 1990) the methodology is a standard one to study ground-dwelling invertebrates.  

Further resolution could be obtained by combining pitfall trapping with a 

handsearching method (Andersen, 1995). 

 

Upon collection, samples were stored in 70% ethylene glycol prior to identification to 

species level in the laboratory.  Samples were pooled by site and date prior to 

identification using appropriate keys (Tottenham, 1954, Joy, 1976, Luff, 2007, Lott, 

2009)  Identification adhered to current nomenclature (Duff, 2008).  Where 

identification was uncertain, colleagues within the University of Birmingham 

provided confirmation.  Voucher specimens were carded and are retained at the 

University of Birmingham, whilst all samples were transferred to 70% IMS for 

storage.  Following identification, specialist species with a known dependence on the 

habitat for at least part of their lifecycle were identified (Eyre and Lott, 1997, Sadler 

and Bell, 2002, Luff, 2007).  Species with no known affinity to the habitat were 

excluded from the analyses. 
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3.3.2 Statistical analyses. 

In an adaptation of the methodology used by Ribera et al. (2001), six specimens of 

each of 12 species, from the ground beetle (Bembidion atrocaeruleum, B. decorum, 

Zenker), B. prasinum (Duftschmid), B. punctulatum (Drapiez), B. tetracolum, 

Paranchus albipes (Fabricius), Perileptus areolatus (Creutzer)), click beetle 

(Fleutiaxellus maritimus, Negastrius sabulicola (Boheman), Zorochrus minimus 

(Boisduval and Lacordaire)) and rove beetle (Staphylinidae) (Aloconta cambrica 

(Wollaston), Deleaster dichrous (Gravenhorst)) families were selected and their wing, 

leg and body (front of pronotum to tip of abdomen) measured to provide 

morphological data of leg: body and wing: body ratios.  Measurements were Logn 

transformed prior to exploration and analyses via ANOVA, with a post hoc Scheffe 

test applied (selected as the most conservative available) (Fowler et al., 1998).  

Species were then grouped according to morphological similarity.  To test the validity 

of these groupings, Spearman’s rank coefficients (as the data were non-parametrically 

distributed) were derived for their presence and abundance, confirming the probability 

of the associations; the morphological groups were expanded by applying Spearman’s 

coefficients for all specialist species within the samples. 

 

Data exploration was initially conducted to establish the validity of the observed 

values, checking for normality of distribution, the presence and importance of 

outlying data and heterogeneity of variance (Zuur et al., 2009).  As a result of these 

preliminary analyses, data from site seven were rejected from the final analysis as 

they formed unrepresentative outliers in the dataset due to low retrieval rate.  

Rejection was justified to prevent over-dispersion in the modelling process (Hilbe, 

2007).   
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The impact of  predefined connectivity parameters on functional groups’ abundance 

and distribution was examined by Generalised Linear Modelling (Quinn and Keough, 

2002) once spatial influences (i.e. that proximate communities show similar 

abundances) had been ruled out by applying a Mantel test (Legendre and Legendre, 

1998) to the data (F: 0.143; df: 1; p 0.71).  GLM were run as the most appropriate 

method for count data, ensuring ecological valid whole values in the final outputs.  

Similarly, negative values were not ecologically valid in final models, so Poisson 

rather than Gaussian distribution was applied (Zuur et al., 2007).   

 

The most important explanatory variables were selected using a drop 1 selection 

process to select the most probable, significant combination of variables (Zuur et al., 

2007).  Model validation was performed visually using plots of standardised residuals 

against fitted values to assess homogeneity, histograms of the residuals to verify 

normality, plots of residuals against each explanatory variable to establish 

independence.  No patterns were visible in any of the plots.  

 

Akaike’s Information Criterion (AIC) (Burnham and Anderson, 2002) was used to 

validate and select possible models via weighting.  The process (see Chapter 2) allows 

identification of models lying within 95% confidence intervals, as well as a single 

optimum model. 
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3.4 Results 

 

Of the 14,879 Coleoptera sampled, 12,883 were classified as wholly or partly 

specialist species associated with the habitat (86.6%). 

 

3.4.1 Morphological grouping 

The Logn transformed morphological measurements of wing, leg and body length 

were used to derive ratios as indications of the strength of mobility.   

 

One-way Analysis of Variance showed that between species variation in leg-body 

length rations were significant at the < 0.001 level (F:50.172; df: 11), as were those 

between wing and body length (F:33.508; df: 11).  Post-hoc testing split the species 

into two distinct groups when leg:body length ratios were compared: 

Group 1: Five Bembidion sp., P. albipes  

Group 2: F. maritimus, N. sabulicola, A. cambrica, D. dichrous 

(Z. minimus and P. areolatus showed an overlap between the two groups) 

 

When the same post hoc testing was applied to wing: body length two slightly 

different groups were derived.  The first contained P.albipes, B. tetracolum, A. 

cambrica, D. dichrous and the three click beetle species.  The second contained the 

remaining ground beetle species.  The two analyses of variance allowed separation of 

the 12 species into three nominal functional groups – (i) specialist ground beetles (B. 

atrocaeruleum, B. decorum, B. prasinum, B. punctulatum and P.areolatus), with 

known high levels of affinity to the habitat.  (ii) low affinity ground beetles (B. 

tetracolum and P.albipes), associated with damp habitats, but not exclusively ERS, 
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and (iii) click and rove beetle specialists (A. cambrica, D. dichrous, F. maritimus, N. 

sabulicolis and Z. minimus), also with known high levels of affinity to the habitat.  

When the data from these three groups was pooled, further analysis of variance 

indicated both leg and wing ratios to body length were significantly different at the p 

< 0.001 level (F: 82.04; df: 2 and F: 102.62; df 2, respectively).  Post-hoc testing 

showed significant differences between the wing: body ratio of specialist ground 

beetles and low-affinity ground beetles (p <0.001) and click and rove beetle 

specialists (p <0.001).  There was no significant difference between low-affinity 

ground beetles and click and rove beetle specialists.  When variance was analysed for 

leg:body length ratio, significant difference was detected between all ground beetles 

and click and rove beetle specialists (p <0.001).  Visualisation reinforces these 

separations (Figure 3.2) indicating low levels of morphological overlap. 
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 a)      b)  

Figure 3.2:  Box plots (with 95% confidence intervals) of functional Coleopteran groups 

derived from Analysis of Variance of Logn transformed morphological variations, a) variation 

in Leg: Body length ratio by nominal functional group, and b) variation in Wing: Body length 

ratio by nominal group.  Outlying data points are included, labelled with their sample number. 

 

Spearman Rank coefficients of the species were derived to act as verification for 

morphological separations.  Significant correlations were observed within the 
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morphologically grouped species (Table 3.1) and the process subdivided specialist 

ground beetles into two groupings, B. atrocaeruleum, B. decorum and B. tibiale, and 

B. punctulatum and B. prasinum.       

 

The two processes, morphological comparisons of the 12 species, and Spearmans 

ranking of the larger dataset allowed species to be assigned to one of four groups 

(Table 3.1) which formed the datasets for inclusion in the modelling process.  This 

process then allowed adaptations, habitat requirements and optimum position within 

the river corridor to be assigned to functional groups (Table 3.2).  

 

Table 3.1: Functional groups (with conservation status) derived from morphology and 

Spearman’s correlations. 

Specialist ground beetles 1 Specialist ground beetles 2 Low-affinity ground beetles Specialist click and rove beetles 

Bembidion atrocaeruleum Agonum marginatum Agonum emarginatum Fleutiauxellus maritimus 

Bembidion decorum Bembidion prasinum Bembidion tetracolum Nagustrius sabulicola 

Bembidion tibiale Bembidion punctulatum Paranchus albipes Zorochrus minimus 

Perileptus areolatus    Aloconota cambrica 

     Deleaster dichrous 

     Hydrosmecta fragilis 

     Hydrosmecta longula 

     Neobisnius prolixus 

     Philonthus rubripennis 

     Stenus guttula 

 

3.2.2 Generalised linear modelling 

Four groups were modelled with Poisson distributions (with specialist ground beetles 

split according to their grouping by correlation coefficients). Best fitting models were 

selected following AIC scoring and Akaike weighting to derive all models lying 
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within the 95% credibility interval (Appendix 2), summary outputs are presented in 

Table 3.3. 

 

Specialist ground beetles 1:  the best fitting model includes the distance from 

headwaters of the sampling point (AIC 82.61), with abundance decreasing 

downstream (d: 8.17: df: 19; p < 0.005). (Henceforward referred to as headwater 

ground beetles). 

Specialist ground beetles 2: the best fitting model (AIC 77.77) gives a positive 

association with distance downstream of the headwaters (d:27.99; df 19; p < 0.05). 

(Henceforward referred to as floodplain ground beetles). 

Specialist click and rove beetles: the best fitting model (AIC 93.49) predicts increased 

abundance with increased habitat complexity (measure by number of gravel bars 

within 1km)  and decreasing abundance with distance from headwater (d: 21.07; df: 

19; p < 0.005). 

Low-affinity ground beetles:  the best fitting model (AIC 70.35) shows abundance 

increase with distance to the nearest downstream habitat patch (d: 9.71; df: 19; p 

<0.005). 

 

Table 3.2: Summary of functional groups’ morphology, habitat requirements and 

corridor positioning 

Group    Location  Connectivity leg:body  wing: body 

Headwater ground beetles  Headwaters Low  Long  Long 

Floodplain ground beetles  Floodplains Low  Long  Long 

Low-affinity ground beetles Ubiquitous Isolated  Long  Short 

Specialist click and rove beetles Headwater High  Short  Short 
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Table 3.3:  Summary of GLM outputs for effects of connectivity parameters on 

functional groups. 

    AIC  Deviance d/df*  P 

Headwater ground beetles  82.61  8.17  0.44  < 0.005 

Floodplain ground beetles  77.77  27.99  1.47  < 0.05 

Low-affinity ground beetles 93.49  21.07  1.05  < 0.005 

Specialist click and rove beetles 70.35  9.71  0.51  < 0.005 
 

*d/df provides measure of dispersion; a value <2 indicates acceptable levels of dispersion within data 
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3.5 Discussion 

 

Predicting the environmental factors that govern the structure of arthropod 

communities would greatly aid their conservation, yet, as this chapter demonstrates, 

real-world interactions are complex and require multiple approaches when explored. 

 

Viewing the species within the context of morphological groupings allows a 

corroborative pattern to emerge, confirming studies showing that functional form of 

species has a controlling role on their distribution within the habitat studied 

(Desender, 1989).  The ratio of wing and leg to body length produces distinct groups 

with little overlap.  It has been suggested that the leg:body length ratio is an indicator 

of feeding strategy (Davies, 1953), hence the actively predacious ground beetles 

possessing longer legs in relation to their body length than other species (P. 

aureolatus overlaps the groups, which may be a function of small body size (2.3-

2.8mm) and a proportionally greater margin of error when measuring.  When 

combined with separation by wing length versus body length, the groups identified 

here split along specialist rather than familial lines, with specialist ground beetles 

having longer wings that low-affinity species, which show no significant difference 

from specialist click and rove beetles. 

 

Based on these identified traits, the initial observation is that distribution may be 

indicated by the level of morphological adaptation exhibited by a guild.  

Consequently, the specialist ground beetle species (headwater and floodplain) possess 

longer legs and larger wings and show a widespread (if local) distribution within the 

national habitat resource (Luff, 1998).  They are the most adapted of the three groups 
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identified, both for disturbance avoidance and for between patch movement.  Isolation 

of individual populations is likely to be less of a threat for this group, due to their 

enhanced locomotive and apterous abilities.  Although the low-affinity group possess 

the longer legs of all ground beetles, their wing length is not comparable to that of 

specialists, suggesting that they are less well adapted to escape the irregular, flashy 

flows found in headwater stream systems (where the most complex habitat is found). 

Despite the known increase in macroptery in riparian populations of B. tetracolum 

(Adis and Junk, 2002), this apparently does not achieve parity with permanently 

resident specialist ground beetles  This group also contains the largest species studied 

(P. albipes and A. emarginatum, 6.5-8.8mm and 7.5-9mm, respectively) and larger 

size has been suggested as an indicator of low disturbance tolerance (Ribera et al., 

2001, Kotze and O'Hara, 2003).  Coupled with the increased numbers of specialists 

within these connected patches, there is scope for further exploration of the role of 

competition in suppressing the numbers of generalist species.   

 

The separation (by Spearman’s Correlation) of the specialist ground beetles into two 

groups is explained when their distribution is modelled, with the second group (1b, 

containing B. prasinum and B. punctulatum) preferentially occupying a spatially 

removed habitat, downstream of those species associated with the headwater habitat 

(although never to the exclusion of the latter group).  In the light of known 

morphological differences possessed by these two species (especially greater 

flattening of body (Luff, 2007)), they would have a competitive advantage in the finer 

sediments associated with the downstream habitats in comparison to their more robust 

relatives.  Downstream patches within the study were also physically the most 

isolated, typically by kilometres rather than metres (Chapter 2), so a heightened level 
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of mobility may also be inferred for these two species. Whilst both groups’ optimum 

models include the distance downstream as an explanatory variable, the headwater 

specialist ground beetles (Table 3.3) exhibit a negative response, whilst the floodplain 

specialist ground beetles (Table 3.4) exhibit a positive response. The low-affinity 

ground beetles are ubiquitous across sites, but their distribution is the most confusing 

modelled (Table 3.5), showing a positive response according to the distance of the 

nearest habitat patch downstream (increasing with isolation).  This can be an 

indication of a lack of reliance on well-connected habitat, and indicative of the 

species’ casual affinity to the resource.  Further data are required for this group to be 

able to describe controls on its distribution with any ecological certainty.   

 

As well as being separated morphologically, specialist groups exhibit differing 

predictive environmental parameters in models.  The click and rove beetle specialists 

possess significantly shorter legs and wings in relation to their body length, 

suggesting reduced fitness for rapid and sustained disturbance avoidance.  Their 

fidelity with the habitat however is established, coupled with higher levels of rarity 

(taken from conservation status designations). It has been repeatedly demonstrated 

that there are species-specific levels of inundation tolerance within specialist 

invertebrates, and that this tolerance is largely a function of adaptation (Bonn et al., 

2002, van Looy et al., 2007, Paetzold et al., 2008).  The contention of this study is that 

there is a gradation of adaptation within specialist species that determines the 

probability of long-term population persistence in a compromised habitat.  Those 

species with primarily behavioural adaptations (i.e. the click and rovef beetles which 

tend to occupy habitat elevated above frequently inundated sediments) become 

disadvantaged when physical adaptations are required for active avoidance.  Although 
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not included in the assemblage identified here, a strong comparison can be made with 

Lionychus quadrillum (Duftschmid) and Elaphropus parvellus (Dejean), both species 

associated with exposed riverine sediments, but found in sandy deposits on higher 

points within the habitat  (Lambeets et al., 2009).  Reduced physical adaptations will 

increase the dependency of the group upon a well-connected habitat (as indicated in 

their model, Table 3.4), minimizing the need for prolonged flight or in-channel 

movement.  This form of ERS is associated with headwater reaches, which explains 

the negative response to distance downstream which is also included in the model.  

The more abundant and widely distributed specialist ground beetle species are 

therefore arguably the guild best adapted to the dynamic habitat, accounting for their 

success, a trait already identified by Lambeets et al. (2009) for B. decorum.  Specialist 

ground beetles’ increased dispersal potential reduces the requirement for a very 

complex habitat mosaic and increases the likelihood of the colonisation/recolonisation 

of any single habitat patch, post inundation or deposition. 

 

This research suggests that connectivity plays an important role in predicting the 

Coleoptera assemblages present on the exposed riverine sediments in the system 

studied.  Rarer species with strong affinities to the habitat appear most dependent on 

its least abundant form, the well-connected upland systems found only in the first few 

kilometres of the rivers studied.  Behavioural rather than physical adaptations 

determine their specialisation, resulting in reduced dispersal ability and an absence 

from poorly connected habitat mosaics.  Local populations within this group will be 

doubly vulnerable to stochastic inundation events due to extinction potential and 

reduced recolonisation likelihood.  Other specialist species are however more 

successful at inter-patch movement and are consequently both more abundant and 



 64 

widely distributed, with further morphological variation creating subdivisions of 

specialisation and enhancing longitudinal changes in assemblage composition.  Low-

affinity species meanwhile exhibit an opportunistic utilisation of the resource, but the 

apparent suppression of their abundance in the optimum habitat suggests that they are 

at a competitive disadvantage in this environment, and that their presence within any 

patch is also likely to be a function of adjacent habitat suitability. 

 

3.5.1 Conclusions 

This preliminary study on the modelling potential for functional guilds demonstrates 

the potential of the methodology for gaining a greater understanding of the 

environmental requirements of arthropods.  Even with a constrained database, clear 

trends can be demonstrated which allow functional guilds to be postulated and 

corroborated.  For conservation purposes, the importance of a complex and spatially 

coherent habitat matrix is demonstrated for rarer species, an essential consideration in 

future stream restoration and management projects.  Future research is also suggested; 

the need for a larger, contiguous dataset which would allow thorough testing of 

connectivity parameters and the role of morphology in defining functional guilds.  

Secondly, this study provides some indication that competitive exclusion (or 

suppression) may be occurring within the optimum habitat.  Whether this is the case, 

or a correlation with a concurrent decrease in adjacent habitat quality can be studied, 

to identify how specialists are achieving better resource utilisation to the detriment of 

other species.  Finally, variation in prey abundance may vary according to the area of 

habitat patch and the relative hostility encountered there.  Microspatial studies have 

already shown variations in the positioning of Coleoptera within the habitat (Henshall 
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et al., 2011), further work could be undertaken to examine how greater area may 

affect productivity and resource utilisation. 
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4 
 

The long-term value of high flow events in 

maintaining abundant and diverse riparian 

invertebrate communities  
 

 

Using long-term datasets of Coleoptera assemblages found at Llandinam Gravels on the 

upper River Severn, Wales, river archive data were applied to establish the role of inter-

annual flow variation on community composition.  Generalised Linear Models were 

created for cursorial and fossorial specialists associated with the habitat and revealed 

differing effects of high and low flow events.  Fossorial rove beetles (Staphylinidae) were 

shown to benefit most strongly from prolonged, low flows during the summer months and 

weakly from increased raised flows in the previous year, and that of sampling.  Cursorial 

ground beetles (Carabidae) showed positive responses to high flow events occurring in 

the previous year and the year of sampling.  It is suggested that different adaptations are 

responsible for the response variations, ground beetles utilise strong survival mechanisms 

and high dispersal abilities to colonise new habitat created in winter and move to 

optimum sites when threatened by local inundation.  Rove beetles benefit in the short-

term from local stability, but also require a level of habitat disturbance and movement 

cues.  These results further demonstrate the importance of irregular flows within rivers to 

maintain complex arthropod communities.  Long-term regional changes in weather 

patterns or anthropogenic alterations to river hydrology may change population levels 

and structure. 
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4.1 Introduction 

Exposed riverine sediments are a highly disturbed habitat intrinsically reliant on 

variable flow regimes for their maintenance.  They are characteristic of rivers that 

exhibit natural flow regimes where ERS habitat is created by repeated inputs of 

eroded sediments that are subjected to frequent reworking by high flow events 

(Plachter and Reich, 1998).  As such they are devoid of established vegetation and 

autochthonous nutrients (Bates et al., 2009). Although highly disturbed, the habitat 

possesses a community of associated specialist invertebrates adapted to the pressures 

it imposes (Fowles, 1989, Sadler et al., 2004, Van Looy et al., 2005).  Repeated 

disturbance resulting from high flow variability is the key pressure subjecting riparian 

biodiversity to repeated inundations (Plachter and Reich, 1998, Ward and Tockner, 

2001).  Whilst these are essential for long-term maintenance of the habitat, the 

potential for increased mortality in populations utilising the resource may rise with the 

severity of the flows.   Anthropogenic alteration of rivers via channel modification, 

impoundment and abstraction lead to variations in the timing, frequency and 

magnitude of high and low flows, causing changes to the physical and vegetative 

structure of downstream riparian areas (Toner and Keddy, 1997).  There is a growing 

body of evidence demonstrating that modification of natural flows also has a 

detrimental impact on ERS macroinvertebrate communities, via the removal of high-

flow, habitat-creating events which promote dispersal (Hering et al., 2004), low-flow 

events that allow between patch movement by poor dispersers (Lambeets et al., 2010, 

Stelter et al., 1997), and overall reduction in diversity under regulated flows, which 

are typically moderated, causing channel and ERS stabilisation (Bonn et al., 2002, 

Lambeets et al., 2008, Paetzold et al., 2008, van Looy et al., 2007).  With an 
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increasing implementation of river restoration projects (Gunther and Assmann, 2005, 

Jahnig et al., 2009, Tockner et al., 1998), the long-term impact of naturally changing 

flow regimes is less well understood.  This is an important omission as current global 

scenarios predict possible long-term changes to future river regimes, emphasising 

more frequent and aseasonal high magnitude events.  This study aims to examine how 

specialist invertebrates react to natural or semi-natural variations in flow over several 

years, as an indication of how communities may be altered by long-term changes in 

flow regimes resulting from climate change. 

 

4.1.1 Flooding responses of specialist invertebrates 

 

Mechanistic and morphological adaptations to mitigate inundation pressures have 

been well documented in specialist species.  These incorporate both avoidance and 

survival strategies, including submersion tolerance (Andersen, 1968), flight 

(Desender, 2000) and life-cycle plasticity (Plachter and Reich, 1998).  Whilst these 

adaptive strategies provide advantages for specialists, they can be expected to be most 

efficient under an optimum, intermediate level of inundation frequency and magnitude 

(Ward and Tockner, 2001).  A degree of mortality within populations subjected to 

disturbance is the norm; where the population possesses adaptive advantages, these 

losses are minimised and a viable population maintained (Petraitis et al., 1989).  

Where flow regimes are modified by regulation, populations of specialist species are 

impacted  (Bonn et al., 2002, Lambeets et al., 2008, Paetzold et al., 2008) most likely 

due to a long-term reduction in the quality and quantity of available habitat as a result 

of flow stabilisation (Naiman et al., 2008).  This may occur even with an increase in 
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prey availability (Greenwood and McIntosh, 2008).   Repeated extreme events have 

however potentially catastrophic consequences for patchily distributed populations 

with limited dispersal abilities, as shown by populations of the specialised ERS 

grasshopper Bryoderna tuberculata (Stelter et al., 1997) and spider Pardosa agricola 

(Lambeets et al., 2010).  Both species exhibit vulnerability to repeated high flow 

events, which serve to cause local extinctions, their limited dispersal abilities 

preventing subsequent recolonisation of habitat from isolated populations.  Extreme or 

prolonged changes in the flow regime of a river may also alter community structure 

(Gunther and Assmann, 2005), as species respond differently to events of changing 

duration and magnitude.  ERS ground beetle populations exhibited a temporary 

collapse following a major flood event before rebounding to very high levels.  Hering 

et al. (2004) suggested that this is indicative of the group’s colonisation abilities. 

 

ERS invertebrate studies have often focused on ground beetle assemblages and 

responses, due to their larger size, ease of identification and cursorial behaviour 

(Anderson and Hanssen, 2005, Desender, 1989).  They do, however, represent only 

one component of the associated community, with often smaller and fossorial rove 

beetles providing a major contribution to the assemblage diversity (Eyre et al., 2001, 

Sadler and Bell, 2002).  The adaptations of these two groups differ both 

morphologically and behaviourally (Chapter 3) allowing simultaneous use of the 

resource whilst minimising competitive interactions.  As such, it is likely that their 

responses to different flow regimes will also vary. 
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4.2 Aim, objectives and hypotheses 

 

This chapter uses a unique long-term dataset of ERS species abundance and river flow 

data to assess how inter-annual variations in the flow regime alter community 

structure.  It has three linked objectives. 

 

• Collate and categorise existing data sets from 2002 – present of specialist 

Coleoptera abundance from Llandinam Gravels, mid-Wales. 

 

• Collate historic flow data from upstream river gauge station (Dolwen) to 

delineate variations in annual flow regimes, defining the duration, occurrence 

and magnitude of low, median and high flow events. 

 

• Use statistical modelling to define models that best predicted the components 

of flow regime that exerted strongest influence on specialist fauna abundance. 

 

The hypotheses of the study is that local populations of specialist Coleoptera 

associated with ERS will demonstrate long-term variations in abundance that can be 

explained by inter-annual changes in flow regime, with the magnitude, timing and 

duration of high and low flow events particularly important.  It is also expected that 

the population responses will vary between taxonomic families. 
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4.3 Methodology 

 

Samples of Coleoptera fauna were collected annually from Llandinam Gravels on the 

upper River Severn using a standardised hand searching and excavation method.  The 

sample sites are within an extensive stretch of ERS found along the Upper Severn 

between Llandinam (SO025885) and Caersws (SO035925).  Situated downstream of 

the confluence of the Severn and the impounded Clywedog, the river has a maintained 

minimum flow (Higgs, 1987), but retains enough features to be classed as a 

‘wandering gravel’ river (Church et al., 1987).  Samples from each of six adjacent 

habitat patches (Figure 4.1) were undertaken three times a year (between May-

August) from 2002 – 2010 (excluding 2005 and 2007).  Standard hand-searching 

protocol was followed, with two samples taken per bar (one upstream, one 

downstream) from a quadrat of 1.5m x 1.5m.  The removal of surface armour and 

repeated wetting with water reveals all Coleoptera present, which are collected with 

an aspirator (Andersen, 1995, Bates et al., 2007a).  All specimens were identified to 

species and classified by the level of fidelity to the ERS habitat (Sadler and Bell, 

2002).  Data used in this study was a combination pre-existing data, and new data 

collected in 2009-2010 to supplement the existing data set. 

 

Flow data were obtained from the Centre for Ecology and Hydrology’s National River 

Flow Archive for the Dolwen gauging station (SN996851).  From these data, 

exceedence levels of 10% (16.521 m
3
/s

-1
), 50% (3.862 m

3
/s

-1
), and 70% (2.569 m

3
/s

-1
) 

were used to derive high, median and low flow thresholds, and the number, duration 

and magnitude of events in each year calculated.  These flow metrics were chosen as 
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they define the extent and rate of habitat turnover, and dictate the level of abiotic 

inundation pressure imposed on ERS specialists (sensu Olden and Poff, 2003, Richter 

and Richter, 2000).  The inundation parameters used in model creation encompass the 

mechanisms which both maintain and rework the habitat (which may be a beneficial 

process) and those which are potential threats to ERS invertebrates.  The role of 

previous years’ events is included as inundation or ERS restructuring may reduce 

reproductive success and suppress subsequent adult generations.   

 

Figure 4.1: Relative positions of habitat patches 1-6 (based on DGPS survey taken in 2009) 

sampled from 2001-2010 at Llandinam Gravels, SO023873. Patch 1 is upstream, with the 

river flowing northwards.  

6 

5 

4 3 

2 
1 



 79 

 

Prior to the analysis the data were carefully explored to identify outliers in the 

explanatory variables, collinearity between the explanatory variables, and variables 

requiring transformation (Zuur et al., 2010).  

 

The pool of hydrological variables that captured the key components of the flow 

regime (i.e. magnitude, frequency, duration and timing of high (Q10), median (Q50) 

and low flow (Q70) events) were initially analysed using Spearman’s correlation to 

identify those with strong relationships to species abundance metrics. Correlation was 

also used to seek explanatory variables that were strongly correlated (Rs>0.4).  These 

were removed from the analyses. 

 

Generalised Additive Models (GAM) were used to establish trends in abundances of 

Coleopteran families over time, allowing for non-linear changes.  Generalised Linear 

Models (GLM) with a Poisson distribution were run for three response taxa: (i) 

ground beetle abundance, (ii) rove beetle abundance, and (iii) the most abundant 

ground beetle, Bembidion atrocaeruleum, and a range of explanatory (hydrological) 

variables. The most important explanatory variables were selected using a drop 1 

selection process to select the most probable, significant combination of variables 

(Zuur et al., 2007).  Model validation was performed visually using plots of 

standardised residuals against fitted values to assess homogeneity, histograms of the 

residuals to verify normality, plots of residuals against each explanatory variable to 

establish independence (after Zuur et al., 2010).  No patterns were visible in any of 

the plots.  
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Optimum model selection from the range of possible models was undertaken using 

Akaike’s Information Criterion (AIC) (Burnham and Anderson, 2002), with weighting 

also providing all models lying within a 95% confidence interval (see Chapter 2 for 

detail). 
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4.4 Results 

The species data comprised 1604 rove beetles, 8547 specialist ground beetles (of these 

6090 were single species, Bembidion atrocaeruleum). 
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Figure 4.2: Abundance data of Coleoptera sampled from Llandinam Gravels 2002-2010 (data 

missing from 2005 and 2007), with ground beetle populations peaking in 2003 and rove 

beetles in 2008. 

 

 a)      b) 

2002 2004 2006 2008 2010

-0
.4

-0
.2

0
.0

0
.2

0
.4

Year

s
(Y

e
a

r,
0

.6
3

)

2002 2004 2006 2008 2010

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

Year

s
(Y

e
a

r,
1

.0
1

)

  

Figure 4.3: Abundance trends over time for rove beetles (a) and ground beetles (b).  Rove 

beetles show a non-significant (F: 1.183; df 0.63; p: 0.25,) increase over time, and ground 

beetles exhibit a significant decrease (F: 5.222: df: 1.009; p <0.05,). 
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Average monthly flow - Dolwen 2001-09
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Figure 4.4: Average monthly flows recorded from Dolwen gauging station (2001-2009), 

showing heightened average winter flows, with raised individual events.  The reduced 

summer flows are consistent, excepting extreme years such as 2007 and 2008. 

 

Model validations were conducted using Akaike weights to produce a list of ranked 

models lying within the 95% confidence intervals (Appendix 3), with models of best 

fit (Table 4.1) selected by AIC weighting and significance. Rove beetle validations 

give the optimum model as the duration of the lowest flow in the year of sampling. 

Ground beetle validations produce a best-fitting model that is a combination of the 

number of high flow events in the previous year, the magnitude of the highest flow 

event in the previous summer and the duration of the maximum flow in the year of 

sample.  B. atrocaeruleum validations produce a best-fitting model that is a 

combination of the number of high flow events in the previous year, the magnitude of 

the highest flow event in the previous year and the duration of the maximum flow in 
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the year of sample.  Rove beetles demonstrate the largest number (7) of possible 

models (within 95% confidence interval), half of which feature duration of lowest 

flow; ground beetles have five possible models within the 95% confidence interval, all 

of which contain the number of Q10 events and maximum magnitude of flow in the 

previous summer.  B. atrocaeruleum has three possible models within the 95% 

confidence interval, all of which contain duration of maximum flow in the year of 

sampling 

 

Table 4.1: GLM models for rove beetles, specialist ground beetles and B. 

atrocaeruleum using Poisson distribution (dLF = duration of lowest flow in sample 

season; p10% = no of 10% exceedence events in year before sampling; dMF = 

duration of maximum flow in sample season; MpSum = Magnitude of highest flow in 

summer before sampling; MpM = magnitude of highest flow in year before 

sampling). 

 

 Model Std E Z Pr Dev Dev/ df AIC 

Rove beetle dLF 0.0047 2.893 <0.005 19.19 0.56 151.66 

Ground beetle P10% + dMF + 

MpSum  

0.197 13.996 <0.001 33.6 1.05 201.06 

B. atrocaeruleum P10% + dMF + 

MpM   

0.218 11.658 <0.001 46.27 1.45 204.67 
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Figure 4.5: Daily flows recorded from Dolwen gauging station (2001-09) showing individual flood pulses: summer high flow events have varying 

characteristics each year, with 2007 having prolonged high flows in June and July whereas 2008’s flow is larger, but of short duration and at the end of 

the active season in September.  Other years lack these summer high flows all together.
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4.5 Discussion 

Flow variability is vital in sustaining riverine ecosystem complexity (spatial and 

temporal) (Arthington et al., 2006), although long-term, anthropogenic-induced 

change has the potential to alter community structure (Greenwood et al., 1999, Poff 

and Zimmerman, 2010).  Both aquatic and riparian assemblages are altered by high 

and low flow events, with high flows in particular resetting successional processes  

(Harris et al., 2000), reducing local densities in the short-term (Suren and Jowett, 

2006) and potentially benefitting individual species in the medium-term (Hering et al., 

2004).  The flow data for the Severn exhibits patterns characteristic of a surface, rain 

water fed river system, with maximum flows consistently observed in autumn and 

winter (Figure 4.4) but with inter-annual variations varying the maximum and 

minimum monthly flows within this pattern. These high flows normally coincide with 

the overwintering strategy of many specialist invertebrates, which seek sites away 

from the riparian edge to hibernate, ensuring that during an essential period of 

quiescence, they are removed from the inundation pressures of high flow events 

(Andersen, 1968, Andersen, 2006). Daily data (Figure 4.5) highlights the role of 

individual events, which vary both in magnitude and duration.  Very high magnitude 

events are typically of short duration (hours), whilst moderately raised flows can be 

comparatively stable and persist for several weeks. Within the annual pattern, there 

remain wide variations. The magnitude of winter flows in 2002, 2004 and 2008 is 

much greater that in other years (and therefore habitat restructuring will have been 

more pronounced).  Similarly, some summers are characterised by unusually high 

flow events (2007 and 2008), where others show prolonged low summer flows (2004 

and 2005), altering the potential environmental stress during the active period from 
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year to year.  The timing, magnitude and duration of these variations can be expected 

to differently impact ERS communities. High flow winter events rework and 

restructure the habitat.  Whilst summer events of a lower magnitude have been 

suggested as important in spatially varying resource availability (Paetzold et al., 2005, 

Paetzold and Tockner, 2005). Any high flow event in the active period potentially 

reduces habitat, raises mortality and increases patch emigration, both passively by 

downstream transportation (Andersen, 1968), and actively via dispersal (Desender, 

2000).  Whether these mechanisms enhance or reduce the integrity of local 

communities will be dictated by the extent of the inundation pressure imposed 

(frequency and magnitude) and the ability of species to evade or survive.   

 

In Chapter 3 it is demonstrated that a variety of morphological forms are possessed by 

ERS specialist Coleoptera these dictate their responses to the various pressures of the 

environment particularly inundation.  These results presented in this chapter indicate 

how these morphological forms, can be used to predict community responses to inter-

annual changes in flow regimes, indicating likely long-term changes in population 

structure under different hydrological scenarios. 

 

Initial model selection grouped the two most abundant families sampled, allowing the 

responses of cursorial ground beetles and fossorial rove beetles to be examined 

separately.  Generalised Addditive Models (Figure 4.3) indicate differing long-term 

population trends between rove beetles and ground beetles, the former increasing and 

the latter declining. ERS ground beetles are almost universally macropterous 

(Plachter, 1986) and are capable dispersers within the habitat.  The life cycle of rove 
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beetles is less well understood, but connectivity modelling (Chapter 3) indicates that 

they have reduced dispersal capabilities and are reliant on a complex habitat mosaic.  

Inundation responses model differently between ground beetles and rove beetles.  

Abundance data (Figure 4.2) shows the former fluctuating between 700-1000 each 

year, with a single year (2003) when abundance peaks around 2500.  Rove beetles are 

consistently less abundant (150-250), but exhibit a peak of nearly 500 in 2008.  The 

best-fitting model (Table 4.4) indicates that rove beetle abundance is most positively 

associated with the duration of the lowest flow during the season of sampling (i.e. a 

period of prolonged stability free from inundation pressures, (a variable that occurs in 

half of the models falling within the 95% confidence interval)).  Other (less 

significant) models falling within this confidence interval (Table 4.1) include the role 

of the number of Q10 events in both the season of sampling and the previous year, 

both having a weak positive influence on abundance.  This grouping contains mostly 

small (less than 5mm) cryptic species, found via excavation of the substrate.  The 

best-fitting model therefore indicates that stability favours adult generations (but not 

subsequent generations), whilst disturbance has a less important, but at least partially 

beneficial influence on long-term rove beetle abundance.  Ground beetles respond 

positively to a combination of high flow parameters, the number of Q10 events in the 

previous year, the duration of the highest flow in the season of sampling and the 

magnitude of the highest flow in the previous summer (parameters consistent within 

all of the models lying within the 95% confidence intervals, Table 4.2).  These 

parameters include both habitat reworking events (magnitude) and potential 

inundation pressures (summer events).  The strength of adaptations possessed by ERS 

ground beetles throughout their lifecycle appears to maximise their fitness to a very 
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high level of disturbance.  The optimum model includes extensive habitat provision 

via high flow events, even when occurring during the active period of their lifecycle.  

Several summers within the data record contain short duration/high magnitude 

summer events which would cause local inundation.  The ability of eggs, larvae and 

adults to survive immersion (Andersen, 1968), coupled with flight responses and 

recolonisation abilities (Bonn, 2000, Hering et al., 2004) maintain the integrity of 

individual generations at all stages of their lifecycle and maximise their potential to 

utilise newly available habitat resources.   

 

There is some evidence that even within the tribe Bembidinii, there are subtle 

adaptive and behavioural differences that allow species to partition resources 

(Andersen, 1988), one of which involves spatial positioning within the ERS habitat 

(Bates et al., 2007b), that alters resource utilisation and may be responsible for 

longitudinal variations in community structure (Chapters 5 and 6).  B. atrocaeruleum 

(the most abundant ground beetle sampled) exhibits a mobile behaviour within the 

habitat, which optimises utilisation of headwater ERS.  Due to this dominance (and 

specialised behaviour) the species was modelled individually, providing the smallest 

range of models (3) within the 95% confidence interval (Table 4.3). The optimum 

model was (unsurprisingly) similar to that derived for all specialist ground beetles, 

except magnitude of previous summer’s highest event was replaced was by the 

magnitude of the previous year’s highest event.  Magnitude represents the ability of 

the river to rework the ERS habitat, higher magnitudes exposing larger areas of new 

habitat.  The inclusion of this parameter within the model reinforces the suggestion 

made in Chapter 4 that B. atrocaeruleum possesses optimum adaptations for the 
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headwater ERS habitat, reflecting its ability to colonise newly available resource, a 

trait which is present, but less pronounced when all specialist ground beetles (with 

varying levels of adaptation) are modelled. 

 

4.5.1 Conclusion 

The models demonstrate the importance of fluctuating flow regimes in structuring 

ERS assemblages.  Both families studied are more or less beneficiaries of disturbance 

(as both a force for habitat creation and dispersal promotion).  The stronger the 

dispersal potential, the better able a group is to take advantage of these habitat 

characteristics.  Temporal changes in local abundances are (at least in part) a result of 

differing responses to variations in flow regime.  Ground beetles are highly adapted, 

strong dispersers and rapidly take advantage of the resources made available by major 

restructuring events, with evidence that the most strongly adapted are best positioned 

to make this rapid response.  The causes of the positive response of rove beetles to 

seasonal stability are uncertain, but are likely to be due to reduced local mortality and 

emigration, coupled with strong toleration of the thermal and humidity gradients 

present within the habitat (sensu Andersen, 2006), which would be exaggerated 

during such stability.  There is however no indication that this translates into 

increased fecundity via raised abundance in subsequent generations.  Whether this is a 

trend that would emerge over a succession of stable, low summer flows could only be 

tested with a longer dataset.   

 

The loss of stochasticity in flow regimes has repeatedly been demonstrated to have a 

detrimental impact on stream and riparian diversity, with loss of peak flows in 
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particular leading to an increasing ‘terrestrialisation’ of the riparian zone (Poff and 

Zimmerman, 2010).  Where species are functionally dependent on ERS, the stochastic 

nature of unregulated flows is essential for maintaining the riparian disturbance 

regime characterised by frequently arrested succession.  These results demonstrate the 

positive influence of high flow events on ERS specialists, and indicate the mechanism 

by which observed population losses have occurred on regulated rivers. The predicted 

rise in intense rainfall events over coming decades will however potentially benefit 

communities in less regulated rivers, with increasing habitat reworking a likely 

outcome.  Highly adapted species are dependent on the environmental pressures that 

exclude non-specialists from the ERS habitat, an increase in these pressures will 

further benefit specialists that are best positioned to utilise the resource. 
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 5 
 

 

The impact of inundation on aquatic nutrient 

utilisation by riparian beetles 
 

Stable Isotope Analysis (SIA) was used to investigate the role of inundation pressures 

on the dietary composition of an assemblage of predatory riparian beetles inhabiting 

exposed riverine sediments (ERS) on the Upper Severn, mid Wales.  With potential 

prey originating from both aquatic and terrestrial sources, inundation stresses were 

shown to cause differing variations in dietary composition according to behavioural 

and morphological adaptations to the habitat.  Stream edge species showed a 

consistent aquatic dominated diet regardless of inundation pressures.  Mobile species 

increased the level of aquatic subsidy with increased inundation pressures.  In-land 

species either exhibited a consistent terrestrial diet under all inundation levels or 

switched to a strong terrestrial based diet with the onset of moderate pressures.  

Seasonal changes in dietary composition are also evident, reflecting overwintering 

strategies.  Resource uptake is controlled by morphology and behaviour which reflect 

species’ toleration of inundation pressures.  These adaptations enforce a complex, 

overlapping partitioning of resources and habitat, creating micro-niches which 

enhance the diversity and abundance of specialist ERS beetle fauna. 
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5.1 Introduction 

The aquatic-riparian interface is an important transfer zone, characterised by 

reciprocal, varying flows in nutrients and food resources (Bastow et al., 2002, Briers 

et al., 2005, Burdon and Harding, 2008, Collier et al., 2002).  Terrestrial inputs are a 

major nutrient resource (Richardson et al., 2009), both as a primary carbon source in 

headwater streams (Vannote et al., 1980) and as a subsidy for macroinvertebrates 

(Jardine et al., 2008).  Higher trophic levels also benefit; fish consume terrestrial 

invertebrates, and fruit and seeds that fall into the stream (Correa et al., 2007), and 

this can account for up to 50% of the annual energy budget for juvenile salmonids 

(Baxter et al., 2005).  The reciprocal aquatic subsidy (Figure 5.1) is as important for 

terrestrial mammals (Ben-David et al., 1998), reptiles (Sabo and Power, 2002), birds 

(Iwata et al., 2003) and arthropods (Kato et al., 2004).  In some systems this process 

can facilitate extreme but temporally constrained inputs, such as the Pacific coast 

salmon returns of North America (Wipfli et al., 1998).  Of chief concern to this study 

is the role of emergent or stranded aquatic insects which are actively predated or 

scavenged by specialist arthropods of ERS (Hering and Plachter, 1997). 

 

Much of the resource utilisation at this ecotone is passive or reactive (i.e. increased 

predator density is a reaction to prey abundance rather than obligative habitat and 

resource use), as such the habitat supports regular influxes of locally itinerant species 

(Baxter et al., 2005).  This results in temporary spatial shifts in predation and foraging 

with a concurrent switch in diet (from terrestrial to aquatic prey).  The Coleoptera 

fauna associated with British ERS have been extensively documented in recent years 

with an increasing knowledge of species’ behaviour and lifecycles (Eyre et al., 2001, 
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Sadler and Bell, 2002, Sadler et al., 2005).  That the habitat hosts an associated fauna 

indicates that this fauna will possess a suite of characteristics optimising their 

utilisation of the environment and the resources it provides.  These ‘specialist’ 

Coleoptera are known to be at least partially dependent on aquatic prey, with some 

evidence that their abundance is linked to emergence levels (Paetzold et al., 2006).  

Whether the subsidy causes the fluctuations in Coleoptera abundance or is an example 

of synchronous lifecycles is unclear, particularly as there is evidence that the 

proportion of aquatic subsidy is proportionate to stream productivity, suggesting an 

obligative plasticity in prey selection (Hering and Plachter, 1997, Paetzold and 

Tockner, 2005). 

 

Figure 5.1: Simplified representation of nutrient exchanges and sources across the aquatic-

riparian ecotone. 
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A common understanding of specialisation is that  morphological adaptations serve to 

position species into functional groups, allowing them to co-exist within a habitat due 

to differing resource utilisation (Ribera et al., 2001).  This positioning may be evinced 

spatially, as with fossorial and cursorial Coleoptera (Andersen, 1988), or temporally, 

where species exhibit the same limiting resource but with diel separation (Kocarek, 

2001, Lundgren et al., 2009).  The more ‘adverse’ the environment, the stronger the 

adaptive measures that are required (Lytle et al., 2008, Parmesan et al., 2000).  This 

exclusion process is known as ‘habitat filtering’ (Cornwell et al., 2006) and it 

effectively reduces the pool of potential species that can occupy a habitat and utilise 

its resources. 

 

The filters imposed by ERS have been much studied and the adaptations Coleoptera 

utilised (especially ground beetles) to overcome them have largely been identified.  

Physical disturbance and inundation (Plachter and Reich, 1998), reworking of habitat 

patches, low nutrient availability, extremes of temperature and humidity all play a part 

in suppressing long-term colonisation by non-adapted species (Sadler and Bates, 

2008).  The suite of characteristics exhibited include high reflectivity (Desender, 

1989), flattened bodies (Andersen, 1985), avoidance behaviour, spatial positioning 

(Andersen, 1983) and seasonal alterations of habitat (Andersen, 2006).  Many of these 

adaptations enable species to tolerate the high levels of disturbance caused by 

repeated inundations.  Whilst there is a strong seasonally predictive element to these 

(during autumn-winter high rainfall periods in the UK), high flow events are possible 

year round.  Most specialists possess a lifecycle that ensures avoidance of seasonal 

inundation by movement to higher sites to overwinter (Andersen, 1968).  The spring-
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summer active period will however occasionally be subjected to extreme flow events 

that inundate all or part of the habitat. 

 

Morphological adaptations can give some indication of the strategies employed by 

different groups to ensure survival of these extreme events, for instance specialist 

ground beetles have increased wing and leg length (relative to body length) than rove 

and click beetles associated with the habitat, enabling greater and more rapid 

dispersal.  This allows the ground beetles to utilise active movement  (either flight or 

running) away from rising waters more effectively than other families (Desender, 

1989).  The shorter legs and wings of rove and click beetles indicate other avoidance 

strategies may be preferentially employed (Chapter 3). An obvious strategy is to avoid 

the habitat that is most frequently inundated, as with Fleutiauxellus maritimus, which 

utilises elevated areas of habitat away from the stream edge (Bates et al., 2005) and 

therefore the need to employ costly avoidance mechanisms.  Other adaptations reduce 

the danger of immersion, delaying the need for escape in the event of rapid 

inundation.  Rove beetle species (particularly Stenus sp.) produce hydrophobic 

discharges promoting movement across the water surface, couple with enlarged and 

flattened tarsal segments, increasing contact area with the water (Betz, 1998, Betz, 

2002).  These adaptations also appear to influence the dietary selection of different 

species, a consequence of variations in the likelihood of encountering prey types and 

increased/decreased efficacy of foraging in different microhabitats (Andersen, 1988, 

Bates et al., 2007b, Bauer and Pfeiffer, 1991). 
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Inundation avoidance or survival adaptations are specific to the ERS environment but, 

concurrently, inundation temporarily deprives the specialist species of their optimum 

habitat.  Under these conditions the refugia utilised may provide suboptimum 

conditions which alter resource acquisition.  The complex morphology of the habitat 

means that individual patches will exhibit marked variations in inundation 

susceptibility, which in turn drives variations in sediment deposition and vegetative 

colonisation, all characteristics of the dynamic ‘riverine landscape’ (Ward et al., 

2002).  Whilst organisms make individual responses to flood pressures, the 

morphology of individual patches will produce ‘response trends’ that are idiosyncratic 

to the structure of each patch. 

 

Previous invertebrate studies have examined the strength of the aquatic subsidy to 

Aranea (Briers et al., 2005, Burdon and Harding, 2008, Collier et al., 2002), 

Orthoptera (Bastow et al., 2002), Formicidae and Coleoptera (Paetzold et al., 2005), 

most of these studies, however, have not distinguished between specialists and 

transitory species present in the study area (although see Paetzold et al., 2005).  The 

apparent similarities of the species typically found in riparian Coleopteran 

communities have been suggested as a rare example of a lack of ‘intrageneric 

isolation’ (Thiele, 1977) with multiple species occurring in the same niche. Work on 

micro-habitats has demonstrated how apparently similar species are able to operate in 

close proximity (Desender, 1989).  Differences in the way species utilise the aquatic 

subsidy when subjected to varying levels of environmental pressure may further 

demonstrate the existence of these micro-habitats and delineate their boundaries. 
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Partitioning of resources, particularly food resources, allows species co-existence with 

minimal competition (Andersen, 1988, Bell, 1971).  Data on Coleoptera diet have 

been derived using gut content analysis (Davies, 1953, Hering and Plachter, 1997) and 

provided useful a priori information on potential food sources (from an otherwise 

large pool).  A pre-requisite of consumption is availability, a factor not just of 

presence but also size and emergence pathway, which are specific for both consumer 

and prey (Hering and Plachter, 1997).  Prey preferences can either be morphologically 

driven or opportunistic.  Stenus species possess an additional extendable and adhesive 

set of mandibles, well adapted to catching Collembola (Bauer and Pfeiffer, 1991).  

The presumed aphid-based diet of Coccinellidae is also known to incorporate 

opportunistically the larval stages of both Coleoptera and Lepidoptera (Evans, 2009).  

Ground beetles largely appear to be opportunistic feeders, if they encounter prey, the 

main selection criteria is size.  This may explain observed variations in dietary content 

between differently-sized species; where smaller species fed on chironomids and 

larger species predating emerging stoneflies (Paetzold et al., 2005). 

 

What is known about the adaptive strategies, prey selection by riparian Coleoptera 

and inundation pressures allow hypotheses to be developed that resource acquisition 

will vary between adaptive groups and according to inundation pressures, which can 

be tested by observing variations in dietary composition. 

 

SIA has been suggested as a means to unravel the complexities of multi-source food 

webs, allowing investigation of trophic positioning (Anderson and Cabana, 2007) and 

identifying contributions of multiple sources (Inger et al., 2006).  These techniques 
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are especially applicable to the ERS habitat which demands high levels of specialism 

from its permanent inhabitants yet simultaneously recruits large numbers of itinerant 

visitors from neighbouring terrestrial habitats.  The suggestion that riparian gravel 

bars form a disproportionately subsidised habitat due to their low productivity relative 

to adjoining systems (Marczak et al., 2007) may aid investigation of trophic 

positioning, resource utilisation and functional groupings be amplifying variations 

between differently subsidised groups. 
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5.2  Study aim, research questions and hypotheses 

The aim of this study is to examine how inundation alters nutrient uptake pathways by 

specialist riparian Coleoptera.  The strength of specialism varies between species, as 

such pressures imposed by the system may induce differing responses that can be 

detected via changes in resource acquisition.  Observed variations may illuminate the 

extent of resource partitioning within the ERS ecotone and the presence of multiple 

niches. 

 

1. ERS is a complex boundary between the aquatic and the terrestrial.  How 

efficient is this boundary at absorbing aquatic subsidies, and does this change 

under differing conditions or over time?  Particularly, how do pressures of 

inundation and spatial positioning create local and temporal variations in 

aquatic subsidies? 

2. Specialisation is an important element of the Coleoptera fauna associated with 

ERS and many of the adaptations are associated with inundation survival or 

avoidance.  To what extent do these adaptations drive prey selection by 

controlling interaction with the productive stream edge? 

3. Can the use of trophic enrichment be used to establish the presence of resource 

partitioning within Coleoptera assemblages, and explain high levels of 

diversity and abundance? 

 

The study hypothesises that it is possible to detect variation in prey selection (via 

SIA) between different functional groups of Coleoptera, and that the level of aquatic 

prey will be predicted by the strategies utilised to overcome inundation pressures 

imposed by local hydrology.  
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5.3 Methodology 

5.3.1 Assessing dietary proportions through SIA 

SIA is a widely used mechanism for assessing variation in dietary composition both 

spatially and within assemblages.  
13

C and 
15

N are naturally occurring isotopic forms 

of Carbon and Nitrogen which are fractionated by all organisms during metabolism 

and excretion (Hood-Nowotny and Knols, 2007) allowing for studies of trophic 

positioning within food webs (Layman et al., 2007, Peterson and Fry, 1987).  Trophic 

enrichment occurs in all consumers, although rates vary between organisms, 

individuals and tissues (Bennett and Hobson, 2009, Post et al., 2007, Vander Zanden 

and Rasmussen, 2001).  For invertebrates however a standard trophic enrichment rate 

has been accepted at 2.3‰ ± 0.16‰ for δ
15

N, and 0.5‰ ±  0.13‰ for δ
13

C 

(McCutchan et al., 2003).  Isotopic date are initially plotted to give a visual estimation 

of trophic positioning, via isotopic positioning.  The extent of the spread of isotopic 

values is seen to indicate the distribution of the population sampled, and the variation 

within food sources, known as the ‘total area’ (Layman et al., 2007).  As an indicator 

of the most prevalent values this process is heavily influenced by outlying data points.  

A refinement which removes this influence test the data within a Bayesian framework, 

thereby incorporating a level of probability into the distribution and providing the 

most probable values of the majority of the population (Jackson et al., 2011).  Mixing 

models  are also applied to the data to estimate probable contributions after 

ecologically informed a priori selection of potential prey items (Phillips et al., 2005). 
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5.3.2 Data collection 

 

An extensive run of ERS occur along a 7km stretch of the upper River Severn 

between the villages of Llandinam and Caersws, mid Wales (Figure 5.2).  Twenty 

individual gravel bars were selected along this gradient for terrestrial sampling, 

representing a diverse range of sizes and profiles.  Care was taken to avoid bars where 

livestock had access due to potential for nutrient enrichment and community 

alteration, as observed on the River Tywi (Bates et al., 2007a). 

 

Figure 5.2: Study area of the River Severn, mid-Wales, with sampling areas shaded. 

 

Each site was mapped using a Leica Geosystems 1200 DGPS during a period of low 

flow in April 2009.  These data were used to produce contour maps of each habitat 

patch in ArcGIS (Figure 5.3 and 5.4).  Contour levels were set at 20cm and compared 

with data from a permanently installed pressure transducer recording river depth every 

15 minutes throughout the study period (April 2009-April 2010).    For each 20cm 

increase in river depth extent of habitat submerged was calculated, up to 1m, 
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representing the greatest depth recorded the study species’ active period).  Bankfull (> 

1.5m) occurred only during winter when invertebrates are absent from the habitat.  

Habitat patches were classified by inundation susceptibility (1: low; 2: moderate; 3: 

high) based on the percentage of habitat inundated at (or before) a 1m increase in river 

depth (<50%: low; 51-90%: moderate; > 90%: high).   

 

Samples of terrestrial Coleoptera (consumers) and potential prey (aquatic and 

terrestrial) were collected three times during the period (June 2009, September 2009 

and April 2010).  Consumer samples were collected at the stream edge and at the 

point where perennial vegetation established.  Potential terrestrial prey (Collembola 

and Aphids) were collected by hand from the substrate and host plants.  Aquatic prey 

were collected using a standard 3 minute kick sample with a 500 µm net.  Three 

samples were taken from each of four points in the reach.  All samples were kept alive 

until they were returned to the laboratory at the University of Birmingham, where 

they were frozen.  Samples were then identified to species (Coleoptera) or family 

(sources) prior to removal of gut contents and drying of organisms (> 48 hours at 

65°C).   

 

5.3.3 SIA sample preparation 

Each sample was divided, with one half undergoing lipid extraction. Doing this avoids 

difficulties arising due to lipid depletion in δ
13

C values; extraction provides greater 

accuracy and therefore reliability than post-analysis mathematical correction (Post et 

al., 2007).  A 2:1 mix of ethanol:methanol was added to samples for a minimum of 30 

minutes before centrifuging and disposal of the solvent.  This process was repeated 
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three times before the remaining sample was dried for 24 hours at 60
o
C (Folch et al., 

1957).  Individual samples were then weighed (Carbon: 0.2mg ± 0.05mg; Nitrogen: 

0.6mg ± 0.05mg) into tin cups prior to combustion. 

 

Samples were combusted at 920
o
C before being passed through a reduction column in 

an Elementar Pyrocube, the isotopic composition of sample gases was then 

determined on an Isoprime continuous flow mass-spectrometer.  Within-run 

reproducibility was better than 0.07 per mil for both δ
13

C and δ
15

N.  The two 

techniques were analysed on separate sub-samples rather than by ‘peak-jumping’ (i.e. 

measuring δ
13

C and δ
15

N in the same combustion), avoiding observed influences of 

the lipid extraction process on δ
15

N values (Logan et al., 2008). 

 

5.3.4 Trophic and nutrient proportion analysis 

Species data were analysed separately and by functional group, as defined by 

morphological similarity (Chapter 3). Analyses were conducted to determine how 

dietary composition was influenced by season, inundation and sampling position 

(stream edge or inland), following testing for significant differences by multivariate 

analysis of variance.  Inundation analysis excluded specialist rove and click beetles, 

and in-land ground beetles (with no known affinity to the ERS habitat) due to a lack 

of individual organisms retrieved from high inundation sites.  Sample sizes were large 

enough to allow species-specific analysis of specialist ground beetles with an affinity 

to the habitat: Bembidion atrocaeruleum, B. decorum, B. punctulatum, B. tetracolum 

and Paranchus albipes. 
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Data were entered into a Bayesian mixing model available as an open source R 

package, SIAR v4 (Parnell et al., 2008).  The SIAR model is fitted via a Markov 

Chain Monte Carlo  (MCMC) method, producing simulations of plausible values of 

dietary proportions of sources.  The SIAR MCMC was run with 500,000 iterations, 

the first 50,000 being discarded before thinning by 15 to reduce autocorrelation.  The 

resulting probability density function distributions of feasible consumption solutions 

allow identification of the most probable (median) solutions, with feasible solutions 

captured by the total range of credibility intervals.  Trophic positioning was visualised 

using a Bayesian probability framework to evaluate most likely distributions of 

isotopic values by functional group (Jackson et al., in press ). 
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5.4 Results 

Samples were derived from 1368 terrestrial Coleoptera, 786 potential aquatic prey and 

195 potential terrestrial prey.  Some samples comprised multiple organisms (3-5) due 

to small size of individuals.  Isotopic values were obtained for 50 terrestrial prey 

samples, 262 aquatic prey (which following exploration were reduced to 130) and 366 

predatory terrestrial Coleoptera.  Once isotopic analysis was complete, samples were 

grouped by species and functional group (Table 5.1) before statistical analysis. 

 

Table 5.1:  Members of Coleoptera functional groups, assigned according to 

morphological indications of mobility potential and affinity to habitat. 

    Summary   Member Species 

 

Group 1   Specialist ground beetles: B. atrocaeruleum 

    Headwaters   B. decorum 

 

Group 2   Specialist ground beetles: B. punctulatum 

    Lower reaches 

 

Group 3   Ground beetles:  B. tetracolum 

    Low affinity   P. albipes 

 

Group 4   Ground beetles:  All other ground beetle 

species 

    No affinity 

 

Group 5   Other specialists  Stenus species 

    Headwaters   C. 5-punctata 
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5.4.1 Habitat morphology and inundation susceptibility 

 

The contour maps (derived from digital elevation models (DEM)) of both Llandinam 

(Figure 5.3) and Caersws (Figure 5.4) coupled with stage data provide indicators of 

inundation susceptibility at each site for any given rise in river depth.  Peak river 

depth was consistently higher during the autumn and winter periods; maximum winter 

flows (2.2m) submerged all sites, maximum summer flows (1.4m above base levels) 

left some ten sites with available habitat.  Six sites experienced total inundation 

during April – October 2009 (Figure 5.6), whilst the five least affected lost less than 

50% of available area under the highest flows.  Concurrently, the duration of 

inundation events varies between bars; those with shallow profiles experience 

prolonged inundation of several weeks during the raised levels in July, whilst the 

short-lived peaks created more extensive flooding, but typically for a duration of a 

few hours, rather than days or weeks.  Inundation susceptibility was obtained by 

transforming the DGPS data of each habitat patch into DEM with 20cm contour maps 

defined.  Sequential 20cm rises on habitat area are illustrated (Figure 5.5) for a highly 

susceptible patch (Site 1), indicative of the between patch variability in inundation 

susceptibility (Table 5.2) 
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Figure 5.3: DEM of Llandinam reach of the River Severn, showing patches 1-11, 

incorporating a range of low, moderate and high inundation risks.  River flows from south to 

north.  Lowest elevations are coloured light green, highest, dark green, with each contour 

representing a 20cm increase. 
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Figure 5.4: DEM of Caersws reach of the River Severn, incorporating each of the three 

inundation risk levels, and showing confluences of the Afon Cerist and Afon Carno.  River 

flows from south to north.  Lowest elevations are coloured light green, highest, dark green, 

with each contour representing a 20cm increase. 



 

1
1
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Figure 5.5: Sequential loss of habitat from base flow with each incremental 20cm rise on a habitat patch (no. 1) with a high inundation 

susceptibility.  River flows upwards, to the right of the habitat patch depicted.  Area to the left is grazed pasture. 

Base Flow 20cm 40cm 60cm 

50m 
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Table 5.2: Percentage of habitat submerged with each 20cm rise in stream depth for 

each habitat patch.  Data given up to 1m (maximum summer depth) or until all habitat 

patch is submerged if this is less.  Inundation classes are coloured mild (blue), 

moderate (green) and high (red) 

 

 

Patch <20cm  <40cm  <60cm  <80cm  <1m            % 

 

1 11  27  53  9  -  100 

2 13  14  17  22  20  86 

3 12  21  23  21  12  89 

4 0  5  16  18  19  58 

5 3  8  14  12  16  53 

6 13  22  27  34  4  100 

7 10  30  45  15  -  100 

8 19  25  20  36  -  100  

9 19  25  20  34  1  100 

10 1  2  13  6  6  28 

11 2  5  6  13  25  51 

12 2  4  9  11  13  39 

13 0  1  2  4  6  13 

14 2  4  9  11  13  39 

15 47  53  -  -  -  100 

16 17  50  22  4  3  96 

17 6  19  23  21  25  93 

18 1  5  11  11  12  40 

19 8  14  25  27  18  92 

20 4  15  16  15  12  62 
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Figure 5.6: Daily variations in river depth (using calibrated pressure transducer data), showing 

high flow peaks, frequencies and durations.   

 

 

5.4.2 Isotope data 

Isotopic data for Coleoptera consumers showed a range of -29.9 to -21.9 δ
13

C and 

3.67-13.76 δ
15

N, with potential sources showing ranges of -26.72 to -21.63 δ
13

C and 

4.07 to 12.63 δ
15

N (aquatic), and -29.03 to -22.34 δ
13

C and 1.44 – 8.26 δ
15

N 

(terrestrial) using pooled data from the three sampling periods.   Seasonal variation in 

source data were significant for δ
13

C (F: 10.871; df: 2; p <0.001) and δ
15

N (F: 3.331; 

df 3; p 0.038); with Autumn 2009 less enriched than Summer 2009 (δ
13

C: p <0.001; 

δ
15

N: p 0.03) and Spring 2010 (δ
13

C only, p <0.001).   The Coleoptera δ
15

N signature 

was significantly different between samples from the stream edge and inland, with 

stream edge samples more enriched (F:11.955; df: 2; p 0.001).   
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Figure 5.7: Biplots of δ13
C and δ15

N
 
values derived for potential source prey; Springtails and Aphids (terrestrial), and Blackflies and Stoneflies 

(aquatic), with individual consumer values by morphological group.  5.7a shows prey values according to family, whilst 5.7b shows combined values 

for terrestrial and aquatic groups; the majority of all consumer values lie within those indicated by potential prey, suggesting multiple sources are being 

utilised. 
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Both the 4- and 2-source biplots (Figures 5.7a and 5.7b) show the positioning of the 

terrestrial consumers between the δ
15

N enriched aquatic sources and the relatively 

depleted terrestrial sources, providing the first indication that populations are 

consuming prey from both systems.  Mean δ
13

C values for aquatic and terrestrial 

sources are identical, suggesting that the two systems still possess an archetypal 

headwater signal, where aquatic consumers are largely reliant on allocthonous carbon 

in the absence of sufficient in-stream primary production.  Stoneflies show greater 

δ
13

C and δ
15

N enrichment than simulids, reflective of the multiple feeding strategies 

in the family, in comparison to reliance on fine particulate matter.  Aphids 

demonstrate relative depletion of δ
13

C and enrichment of δ
15

N when compared with 

Collembola, which in turn reflects their reliance on nitrogen rich sap and Collembola 

utilisation of carbon rich detritus. 

 

There are also indications that the terrestrial subsidy may have a stronger influence 

than has been recorded in the potential sources with several consumers lying outside 

the range of source data (Figure 5.7a and 5.7b).  Although these data points may be an 

indication that sampling of sources was incomplete (Layman et al., 2007), the data 

points represent groups 3, (n=1), 4 (n=2) and 5 (n=5), and also show a strong 

terrestrially skewed signal.  Variation in Collembola signals is know to be wide 

(especially between taxa) and there are data to suggest they often exhibit very low  

δ
15

N (Chahartaghi et al., 2005).  The lowest δ
15

N value for the Collembola sampled 

here is 1.44 ‰, which lies outside the standard errors depicted within the biplots, but 

does incorporate the lowest Coleoptera value. 
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Isotopic position was visualised for morphological groups (Figure 5.8).  

Morphological groups show the strongest δ
15

N enrichment (indicative of increased 

aquatic subsidy) in specialist ground beetles, with the stream-edge dwelling, 

floodplain  ground beetles (Group 2) having the highest level, followed by mobile, 

headwater ground beetles (Group 1).  Medium enrichment is exhibited by ground 

beetles with a weak affinity to the ERS resource (Group 3), whilst the lowest levels 

(reflecting greater uptake of terrestrial sources) are exhibited by non-affiliated ground 

beetles (Group 4) and Stenus sp. and C. 5 punctata (Group 5).  Although group 

ellipses exhibit overlap (reflecting variation in population prey selection) the trends 

show increasing utilisation of aquatic resources with stronger inundation resilience 

adaptations. 

 

 

Figure 5.8: Isotopic positions of morphological groups visualised using convex hulls (dotted 

lines showing extent of whole population) and standard ellipses (solid lines) showing range of 

most probable population values. 

δ
15

N 

δ
13

C 
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5.4.3 Variations in dietary composition. 

 

Probability density functions provide the most likely contribution levels to each group 

under differing regimes, with surrounding extent of plausible values.  Representative 

visualisations are shown in Figures 5.9-5.11, with summaries of median values of 

nutrient proportions in Tables 5.3-5.5.  

 

The headwater specialist ground beetles (Group 1, Figure 5.9a) have a consistent 

~50:50 split in aquatic and terrestrial subsidies in both summer and autumn.  In 

spring, the mean proportions change to 32:68 split.  The specialist ground beetles 

associated with floodplains (Group 2, Figure 5.9b, Table 5.3) exhibited a mean 

aquatic subsidy higher than Group 1 in summer and autumn but also exhibited a 

seasonal shift toward terrestrial subsidies in the spring (~60:40 in summer and 

autumn, 35:65 in spring).  Group 3, low affinity ground beetle species show a lower 

uptake of aquatic prey compared with Groups 1 and 2.  The summer and autumn 

proportions are again steady between 32-36:64-68, and also show a spring reduction 

in aquatic prey (to 25%).   The final two groups, in-land ground beetles (Group 4, 

Figure 5.9c) and Stenus sp. and C. 5-punctata (Group 5) show similar patterns; in the 

summer terrestrial prey accounts for almost 100% of dietary contributions, with the 

spring diet incorporating 20-25% aquatic prey.  Ground beetles show a small increase 

in aquatic prey in the autumn (to 15%) but Stenus sp. and C. 5-punctata show no 

uptake.  Both groups do increase their aquatic prey use in the spring to 24% for 

ground beetles and 20% for Stenus sp. and C. 5-punctata. 
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a) Specialist headwater ground beetles 
 

   
b) Specialist floodplain ground beetles 



 

1
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c) In-land ground beetles with no ERS affinity 

 

Figure 5.9: Seasonal variations (summer, autumn and spring) in dietary proportions of specialist headwater (a) and floodplain (b) ground 

beetles (Groups 1 and 2), and ground beetles with no habitat affinity (c) (Group 4). 
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5.4.4 Impact of inundation 

Species from Groups 1-3 were analysed for changes in nutrient sources according to 

the three inundation risk levels.   Individual species were analysed to establish any 

species-specific responses, as well as functional group responses (Figure 5.10).  B. 

atrocaeruleum (Group 1, Figure 5.10a) showed a 35:65 ratio of aquatic: terrestrial 

sources under low inundation risk, changing under high risk to 55:45.  B. decorum 

(Group 1) showed a 60:40 split under low risk, switching to a 45:55 ratio under high 

risk.  B. punctulatum (Group 2, Figure 5.10b) exhibited a shift from 60:40 to 35:65.  

B. tetracolum (Group 3, Figure 5.10c) had a 50:50 ratio in low risk patches switching 

to a 15:85 ratio in high risk sites.  Finally P. albipes exhibited a small change from 

45:55 to 35:65. 

 

5.4.5 Effect of lateral positioning 

 

Comparison of dietary composition according to proximity to the stream edge 

produces varying data between groups.  Group 1, headwater specialist ground beetles, 

exhibited strongest variation, with samples taken at the stream edge having a 50:50 

aquatic:terrestrial composition, whilst samples from the vegetated areas in land 

switching to 30:70 proportions (Figure 5.11).  This was the only group that exhibited 

a large switch in dietary proportions according to position.  Group 2 (floodplain 

specialist ground beetles) dropped its aquatic proportions from 60% to 52% inland, 

Group 3 (low-affinity ground beetles) showed no change between sample positions 

(~30% aquatic prey), whilst Groups 4 and 5 showed a stable uptake of predominantly 

terrestrial sources (70% for ground beetles with no affinity to the habitat and >95% 

for Stenus sp. and C. 5-punctata beetles). 
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Figure 5.10: Probability density functions of ground beetle species from each of the groups with a level of affinity to the ERS habitat, B. atrocaeruleum 

(a), B. punctulatum (b) and B. tetracolum (c), showing variation in dietary composition according to inundation pressures.
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Figure 5.11: Probability density function of dietary proportions of headwater specialist ground 

beetles (Group 1) exhibiting switch in dietary contributions with change in sampling position. 

 

Table 5.3: Median values of seasonal aquatic and terrestrial prey contributions 

according to Coleoptera functional group 

 

Group     Season  Aquatic % 

 Terrestrial % 

Headwater ground beetles  Spring        32          68 

     Summer       58          42 

     Autumn       55          45  

Floodplain ground beetles  Spring        35          65 

     Summer       60          40  

     Autumn       60          40 

Low-affinity ground beetles  Spring        25          75 

     Summer       32          68 

     Autumn       32          68 

Stenus sp. & C. 5-punctata  Spring        20          80 

     Summer       5          95 

     Autumn       5          95 

In-land ground beetles   Spring        75          75 

     Summer       0          100 

     Autumn       20          80 
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Table 5.4: Median values of aquatic and terrestrial prey contributions according to 

inundation pressures on three representative species 

Species    Inundation pressure Aquatic % 

 Terrestrial % 

B. atrocaeruleum   Low        35          65 

     Medium       42          58 

     High        55          45  

B. punctulatum    Low        60          40 

     Medium       62          38 

     High        45          55 

B. tetracolum    Low        50          50 

     Medium       30          70 

     High        15          85 

 

Table 5.5: Median values of aquatic and terrestrial prey contributions to functional 

groups according to lateral positioning. 

Group     Position  Aquatic % 

 Terrestrial % 

Headwater ground beetles  Stream edge       50          50 

     In-land        70          30  

Floodplain ground beetles  Stream edge       60          40 

     In-land        52          48 

Low-affinity ground beetles  Stream edge        30          70 

     In-land        30          70 

Stenus sp. & C. 5-punctata  Stream edge       5          95 

     In-land        5          95 

In-land ground beetles   Stream edge       30          70 

     In-land        30          70 
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5.5 Discussion 

 

This study demonstrates that resource acquisition within the ERS habitat has spatial 

and seasonal variations that are specific to functional groups.  The ‘adverse’ (Lytle et 

al., 2008) conditions of the habitat demand high levels of adaptation from its 

permanent residents, whilst limited primary production has created resource 

partitioning and dietary plasticity allowing highly adapted species to utilise the 

resource in spite of its environmental pressures.  Conversely, species with weaker or 

lacking adaptations show less resource flexibility and find themselves excluded from 

the habitat under high environmental stress.  Even between specialised groups, 

behavioural responses vary, in turn altering resource acquisition under different 

regimes and suggesting resource partitioning at very fine scales, which creates highly 

defined functional groups adapted to varying environmental pressures. 

 

Morphological characteristics have been successfully used to delineate functional 

groups in Coleoptera (Chapter 3 and Ribera et al., 2001).  SIA analysis tests the 

validity of these morphological groupings by establishing differences in resource 

acquisition and stress responses.  Behavioural variations in ERS specialists have been 

observed, with species demonstrating microspatial positioning (Bates et al., 2007b), 

habitat resource partitioning (Andersen, 1988) and microclimate preferences 

(Henshall et al., 2011).  Until now there has been little understanding of how these 

‘choices’ guide resource acquisition.  The importance of the aquatic subsidy to 

riparian arthropod communities has been well demonstrated.  Paetzold (2006) showed 

between taxa variations in and dependence upon the aquatic subsidy amongst ground 

dwelling arthropods (ants, beetles and spiders), although further classification within 
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taxa was not conducted.  Within that study beetles were shown to utilise the aquatic 

subsidy, although it was not a limiting factor – a trait which is repeated in this study 

where both headwater and floodplain specialist ground beetles exhibit dietary 

plasticity.  Where family groups have been examined, variations in dietary 

composition have been observed according to size and family (Hering and Plachter, 

1997, Paetzold et al., 2005).  In the community studied here, there is very little 

variation in size (the larger P. albipes being the exception), so variations in dietary 

composition are being influenced by other factors, the suggestion being that 

morphologically driven resource partitioning is a reflection of the strength of 

adaptations to the habitat. 

 

Initial exploration of the likely sources was conducted using a priori knowledge of 

coleopteran dietary preferences; emergent aquatic insects especially Plecoptera and 

Diptera (Hering and Plachter, 1997, Paetzold et al., 2005); Collembola (Bauer and 

Pfeiffer, 1991, Betz, 1998); aphids and Coleoptera larva (Evans, 2009).  This allowed 

the elimination of non-contributing sources (Ephemeroptera, Trichoptera and the 

abundant G. viridula larvae from the terrestrial zone), their absence from the diet is 

likely to be a result of emergence pathways and feeding strategies, which reduce the 

likelihood of consumers encountering them).  Dominant sources were consistently 

simulids, Plecoptera, Collembola and aphids with proportions varying between 

groups.  Chironomids were never indicated as an important prey source in this system 

(compare Hering and Plachter, 1997) but similarly sized simulids were.  This is likely 

to be a function of prey availability, chironomid abundance being much lower than 

simulids in all the kick samples (typically < 5 compared to several hundred). 
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The community splits initially into species deriving a greater proportion of their diet 

from aquatic resources or terrestrial resources, with further seasonal and inundation 

responses.  The need for inundation tolerance within the habitat has been well 

described (Sadler and Bates, 2008), these data demonstrate that the strength of 

adaptive mechanisms also provide advantages in sourcing nutrients.  Stream edge 

(floodplain) species and mobile (headwater) species utilise the aquatic resource under 

all levels of inundation pressure, with mobile species increasing their utilisation with 

increased inundation (a reflection of reduced ERS area and increased interaction with 

the stream edge).  Modelling of species’ positioning within the larger river corridor 

(Chapter 3) suggests the mobile species have a stronger affinity with headwater 

habitat than stream edge species.  Mobility within the habitat protects a proportion of 

the population from rapid inundations, associated with flashy headwater systems.  

Stream edge species trade off the increased resources derived from aquatic sources 

with increased likelihood of inundation. Although well adapted to survive these 

pressures, distribution models for these species show a preference for downstream 

habitat where flows show less rapid fluctuations.  Stenus sp. and C. 5-punctata utilise 

the inundation avoidance strategy by positioning themselves above all but the highest 

events.  Under these conditions they are excluded from the habitat.  This positioning 

is also shown to remove their access to an aquatic subsidy, as they exhibit a stable 

dietary composition regardless of position or season (the small input of aquatic 

nutrients is likely to be an opportunistic response to very high local emergence levels 

(Hynes, 1961)).  Where adaptations are weak or missing, species that 

opportunistically utilise the aquatic resource exhibit a rapid switch to a terrestrially 
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dominated diet under high stress, or show negligible utilisation of the resource at all 

(demonstrating their vagrant status within the habitat). 

 

There is strong evidence that nutrient acquisition is a key element in the structuring of 

ERS Coleoptera communities, and that inundation pressures have different 

implications according to the strength of adaptations for the environment.  Inundation 

frequency structures riparian arthropod assemblages, with intermediate levels 

demonstrably enhancing species richness.  Unusually or artificially raised and lowered 

levels of inundation degrade habitat and associated communities in both the short- and 

long-term (Greenwood and McIntosh, 2008, Hering et al., 2004, Lambeets et al., 

2010).  Much of the research into inundation responses has been on lowland, modified 

European rivers (e.g Lambeets et al., 2008, Paetzold et al., 2008)  In contrast, the 

system in this study is a headwater, semi-natural river, with maintenance of minimum 

flows but retention of natural, surface-water fed flashiness.  It and many similar 

systems within the UK are characterised by high species diversity (Sadler and Bates, 

2008) along with high levels of rarity (Luff, 1998, Sadler and Bell, 2002).  Rarity is 

likely to be (partly) due to a heightened reliance on habitat connectivity (Chapter 3), 

which in turn is a reflection of levels of inundation tolerance.  This study 

demonstrates that reduced inundation tolerance in the species studied also controls 

dietary choice.  Lambeets et al (2009) argued for the need to understand and include 

the functional responses of specialist invertebrates in management and conservation 

practice.  Understanding how near-pristine communities are structured by natural, 

intermediate inundation pressures adds to our stock of knowledge for inclusion in the 

restoration and protection of our rivers.  
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Within the species study, dietary plasticity is also evident in highly specialised 

groups, occurring spatially and seasonally.  The disturbed nature of the habitat favours 

species which are able to exploit resources opportunistically when their preferred 

sources are unavailable.  The cumulative advantages of ERS adaptations can be 

visualised to explain success and abundance of Coleoptera functional groups in the 

study’s headwater habitat (Figure 5.12).  Species which have a strong affinity with the 

habitat possess different adaptations, some of which provide multiple advantages.  

The most abundant group (Headwater specialist ground beetles) utilises within habitat 

mobility, high inundation tolerance and dietary plasticity, whilst the least abundant 

has fixed microspatial positioning, fixed nutrient sources and reduced inundation 

tolerance. 

 

Figure 5.12:  Functional adaptations as drivers of distribution and abundance of specialist 

Coleoptera within a head water ERS network. 
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5.5.1 Conclusions 

The variation in nutrient sourcing between functional groups refutes Thiele’s (1977) 

‘lack of intrageneric isolation’.  The ERS habitat supports a complex Coleoptera 

assemblage with multiple species, often derived from within the same genus.  

Notwithstanding, this study, in combination with morphological observations, 

demonstrates the presence of overlapping functional groupings within these 

assemblages, where highly similar species utilise subtle adaptive variations to 

partition the spatial and nutrient resources.  There are indications that although these 

variations permit overlapping populations, they favour some species in the studied 

environment.  If this is evidence of geographical positioning through adaptation, then 

it can be demonstrated by further research into the less abundant groups for which 

headwater habitat is predicted to be optimal.  The presence of low levels of adaptation 

within specialist species is counterintuitive to the demands of the habitat.  In natural 

river systems however, the required complex network of habitat will be maintained, 

reducing pressures on metapopulations and allowing species to occupy a specific ERS 

niche.  SIA has provided a valuable insight into community dynamics of ERS 

Coleoptera which have previously been viewed in terms of how they ‘cope’ with the 

demands of their environment.  This study demonstrates that these demands benefit 

the most highly adapted species and force multiple microhabitat and resource 

selection decisions which enhance the complexity and richness of the Coleoptera 

assemblages of ERS. 
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6 
 

Longitudinal variations in the utilisation of aquatic 

resources by ground beetles along a 150km length 

of the River Severn 
 

Longitudinal variations in assemblage structure have been observed in Coleoptera 

fauna inhabiting exposed riverine sediments on Welsh rivers.  Stable Isotopes 

Analyses of δ
13

C and δ
15

N were used to identify changes in dietary composition of 

different functional groups of specialist ground beetles (Carabidae) according to 

sampling position.  The three defined groups exhibited an increasing utilisation of 

aquatic subsidies in downstream samples, but species associated with headwater 

habitat switched to a terrestrially dominated diet in the lowest sample sites.  

Floodplain associated species demonstrated the greatest increase in uptake of aquatic 

prey downstream, followed by inundation-averse weakly associated species.   

Behavioural and morphological adaptations specific to functional groups establish 

differing optimum disturbance regimes and change the efficiency of resource 

acquisition on a longitudinal gradient. 
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6.1 Introduction 

At the interface of river and riparia a reciprocal exchange of nutrients maintains a 

complex and diverse ecotone exhibiting marked spatial and temporal variation (Baxter 

et al., 2005, Burdon and Harding, 2008, Gray, 1993).  One factor driving the 

complexity of this exchange is the morphological variation in habitats associated with 

riparian areas which instigate specific ecological responses.  The level of structural 

complexity enhances the interchange, with wooded riparia supporting elevated 

populations of web-building spiders (relative to wooded areas away from the river) 

(Nakano and Murakami, 2001) and simultaneously supplying riverine consumers with 

a supply of terrestrial food (Correa et al., 2007, Richardson et al., 2009).  Increased 

spatial complexity in meandering streams locally increases the surface area and 

subsequent densities of emerging aquatic prey, promoting a aggregative response in 

insectivorous birds (Iwata et al., 2003).  Exposed riverine sediments offer a 

superficially less complex environment, but have also been shown to facilitate 

extensive two way subsidies, with terrestrial consumers extensively utilising aquatic 

emerging or stranded insects.  This uptake can be an opportunistic, temporary 

response to increased emergence, a common strategy in non-specialised ants (Paetzold 

et al., 2006) or preferential, and ensuring a dominant contribution of aquatic nutrients, 

a strategy employed by specialised spiders and beetles (Greenwood and McIntosh, 

2008, Hering, 1995).  In Chapter 5 it is demonstrated that Coleoptera preferentially 

utilising the resource also possess strong morphological and behavioural adaptations 

that facilitate this uptake.  These adaptations concurrently enable these specialist 

species to overcome the environmental pressures imposed within the disturbed ERS 

habitat (Andersen, 1988, Desender, 1989). 
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In England and Wales, the ERS resource is predominantly confined to rivers with 

high stream power and flashy surface fed flow regimes, which leads to a geographical 

concentration in north and south west England and Wales (Chapter 2).  The resource 

persists in these rivers into low altitude flood plains where anthropogenic 

modifications have not broken lateral and longitudinal connectivity of river and 

floodplains, as has been observed in some European systems (Bonn et al., 2002, Van 

Looy et al., 2006). Where this longitudinal continuity persists, the characteristics of 

the habitat change downstream, as loss of stream power, flashiness and sediment 

sorting and fining reducing the frequency and complexity of ERS, typically confining 

the habitat to meanders, with grain size much reduced in comparison to headwater 

patches (Church, 1992, Gurnell et al., 2009, Petts et al., 2000).  The exceptions to this 

exponential reduction come when fresh sediment inputs are received from tributary 

supplies (Benda et al., 2005, Knighton, 1980) or the river channel flows through 

geological forms which increase the local sediment load (e.g. Rice, 1957) 

 

Much of the research on English and Welsh ERS invertebrate fauna has utilised the 

abundant and complex northern and western habitat (e.g. Bates et al., 2005, Henshall 

et al., 2011, Sadler et al., 2005), with the collected data demonstrating existence of 

diverse, complex and vulnerable assemblages of ERS dependent species. (Bates et al., 

2009, Sadler and Bell, 2002).  Chapter 3 showed that downstream restructuring of 

Coleopteran assemblages occurs, especially within ground beetle populations, whilst 

Chapter 5 suggests that this longitudinal positioning may be a function of strategies 

for nutrient acquisition traded against inundation risk.  Flashy, headwater areas of the 
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ERS provide a complex and well connected habitat mosaic, where individual patches 

are susceptible to stochastic high flow events.  If the observed differences in 

longitudinal communities do reflect strategies that are responses to inundation threats, 

then the lower altitude habitat (which stream edge species show a preference for) 

should exhibit a less stochastic flow regime which reduces the threat of inundation 

and increases potential for the uptake of aquatic resources.  This is (generally) what is 

expected with downstream progression.  Headwater systems typically possess high 

and erratic rainfall, draining rapidly over steep catchments.  When they descend to 

lower altitudes, raised ground water inputs and increased timings of surface runoff 

buffer the rate of discharge change (Bridge, 2003).   

 

Alongside hydrological changes downstream, changes occur in nutrient availability 

and productivity (Junk et al., 1989, Vannote et al., 1980, Ward and Stanford, 1983).  

Headwater streams support an abundance of organisms in defiance of their reduced 

primary productivity; terrestrial carbon has been suggested as the subsidy which 

enables this biomass, entering as vegetative matter which is processed by guilds of 

shredders and gatherers.  Downstream, primary productivity rises and the reliance on 

terrestrial carbon declines (Vannote et al., 1980, Wallace et al., 1997, Wallace and 

Webster, 1996). With increasing distances from headwaters, nutrient supplies within 

the river channel become a complex synthesis of upstream ‘leakage’, flood-pulse 

contributions from the floodplain, and in-stream productivity   (Thorp and Delong, 

1994).  The sequestration and movement of nutrients along this gradient  is further 

complicated  by spatial variations in nutrient spiralling (Newbold et al., 1982), and 

groundwater and hyperheic interactions (Boulton et al., 1998, Dahm et al., 1998, 
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Tockner and Stanford, 2002).  These processes can cause highly localised changes in 

nutrient availability; increased velocity or dilution (via groundwater inputs) can 

increase biotic retention of nutrients and compress spiralling (Mulholland et al., 

1995), which in turn reduces primary production (Trudeau and Rasmussen, 2003).  

Substrate variations can change basal algal communities, altering the relative 

contributions of aquatically and terrestrially derived carbon (Cabana and Rasmussen, 

1996, England and Rosemond, 2004). 

 

6.1.1 Stable isotopes, nutrient sources and dietary composition 

Stable isotope analysis (SIA) utilising carbon and nitrogen provides a mechanism for 

identifying the relative contribution of possible nutritional sources, with naturally 

occurring lighter, abundant forms (
12

C and 
14

N) of both elements being preferentially 

metabolised and excreted by consumers.  This process causes a predictable increase in 

isotopic concentrations in consumers, which can be used to assign trophic positions 

(Hood-Nowotny and Knols, 2007).  Whilst the precise values of enrichment vary 

between species, individuals and tissues (Post, 2002, Vander Zanden and Rasmussen, 

2001), a standardised enrichment rate has been established for whole invertebrates; at 

2.3 ± 0.16 ‰ δ
15

N and 0.4 ± 0.13 ‰ δ
13

C (McCutchan et al., 2003).   

 

The importance of the reciprocal exchange across the aquatic:terrestrial interface is 

well established, and has been shown to influence the structure of both communities 

(Correa et al., 2007, Jardine et al., 2008, Kato et al., 2004, Nakano and Murakami, 

2001).  Terrestrial consumers utilise the subsidy at all trophic levels, as herbivores  

and predators or scavengers (Burdon and Harding, 2008, Greenwood and McIntosh, 
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2010).  The subsidy is spatially (Hering and Plachter, 1997) and seasonally (Paetzold 

and Tockner, 2005) variable and can be altered by changes in the flow regime 

(Greenwood and McIntosh, 2010).  SIA has been shown to be a valuable tool in 

identifying dietary composition from multiple potential souces (Hood-Nowotny and 

Knols, 2007, Inger et al., 2006, Peterson and Fry, 1987) and spatial variation in diet 

within populations (Ainley et al., 2003, Sierszen et al., 2006). Chapter 5 demonstrated 

that the technique can be applied to examine local variations in dietary composition 

and elucidate differences in functional responses to environmental stresses.  This 

study hypothesises that functional responses are consistent within species across a 

longitudinal gradient, representing permanent nutrient acquisition strategies which are 

best adapted to specific levels of inundation stress.  These functional responses 

combine with behavioural adaptations to dictate the positioning of functionally 

specific optimum habitat along the gradient. 
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6.2 Aims, objectives and hypothesis 

 

The ERS habitat persists along the River Severn from its headwaters on Plynlimon in 

the Cambrian Mountains to lowland patches in Shropshire (approximately 150km).  

The resource changes from a complex and abundance mosaic in the headwater 

reaches, to isolated, single patches in the Shropshire floodplain.  Longitudinal changes 

in the ground beetle fauna of ERS are also exhibited.  Using SIA (δ
13

C and δ
15

N) the 

study aims to investigate whether changes occur in the dietary composition of riparian 

beetles inhabiting the ERS along a longitudinal gradient and how these changes (if 

they occur) are related to functional group. The hypothesis, based on data from 

preceeding chapters, is that floodplain specialist ground beetles will show an 

increased uptake of aquatic prey with downstream position, as their behavioural 

adaptations coincide with optimum conditions; mobile, headwater specialists may be 

disadvantaged under these conditions. 

 

Objectives 

• Analyse samples of riparian predatory Coleoptera and their potential prey 

(both aquatic and terrestrial) from ERS habitat occurring along the 150km 

distribution on the River Severn. 

 

• Establish whether changes occur in prey sources along the longitudinal 

gradient and whether changes vary between functional groups observed in 

headwater studies. 

 

• Assign the relative importance of environmental pressures versus species’ 

traits in determining prey selection via dietary plasticity.  
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6.3 Methodology 

6.3.1 Study sites and sample collection 

Fifteen ERS habitat patches were sample from five positions along the 150km 

continuum of ERS on the River Severn from its headwaters above Llanidloes in mid-

Wales to Shropshire (Figure 6.1).  Samples of dominant ground beetle beetles and 

potential terrestrial prey (collembola and aphids) were collected by hand from each 

sample site in June 2009, August 2009 and April 2010.  Samples of potential aquatic 

prey were also collected at the same time, using a standardised three minute kick 

sample using a 500µm net. This sampling method ensured consumers, and potential 

terrestrial and aquatic prey were obtained simultaneously at each site in summer, 

autumn and spring. 

 

Figure 6.1: Relative positions of 15 sampling points along the River Severn, grouped in threes 

according to longitudinal position (1-5), moving from beneath Llyn Clwyedog, downstream 

to Llandinam, Caersws, Abermule and Welshpool, and Ironbridge (Sampling points with 

close proximity overlap on the map). 
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6.3.2 Sample processing 

All invertebrates were kept alive until they were returned to the laboratory where they 

were frozen prior to identification (to species for Coleoptera and to family for 

potential prey).  Gut contents were removed and samples were then dried for 24 hours 

at 60°C before being ground and split into two sub-samples, with one half undergoing 

lipid extraction.  A 2:1 mix of ethanol:methanol was added to ground samples for a 

minimum of 30 minutes before centrifuging and removal of the solvent and dissolved 

lipids.  This process was repeated three times and the remaining samples then dried at 

60°C for > 24 hours (Folch et al., 1957).  Individual samples were weighed (carbon 

0.2mg ± 0.05mg; nitrogen 0.6mg ± 0.05mg) into tin cups prior to combustion. 

 

Samples were combusted at 920°C before being passed through a reduction column in 

an Elementar Pyrocube, the isotopic composition of sample gases was then 

determined on an Isoprime continuous flow mass-spectrometer.  Within-run 

reproducibility was better than 0.07 per mil for both δ
13

C and δ
15

N.  The two 

techniques were analysed on separate sub-samples rather than ‘peak-jumping’. 

 

6.3.3 Data Analysis 

Consumer samples were assigned to one of five functional groups (headwater 

specialist ground beetles, floodplain specialist ground beetles, weak affinity ground 

beetles, non-specialist ground beetles and specialist non-ground beetles), defined 

using morphological measurements and distribution models (Chapter 3).  Variance in 

stable isotope signatures was initially tested using Multivariate Analysis of Variance 
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(with a post-hoc Tukey test), to explore variations between spatially distinct 

populations of consumers and potential sources 

 

Data were then entered into a Bayesian isotope mixing model available as an open 

source R package, SIAR v4 (Parnell et al., 2010a).  SIAR models were fitted using a 

Markov Chain Monte Carlo method (MCMC) to produce plausible values of dietary 

proportions of sources consistent with the data using a Dirichlet prior distribution.  

The SIAR MCMC was run with 500,000 iterations, the first 50,000 being discarded 

before thinning to reduce autocorrelation.  The resulting probability density functions 

of the feasible dietary proportions allow identification of the most probable solutions 

based on median values, the total range of credibility intervals describing possible 

proportions of potential sources (Parnell et al., 2010b).  Trophic positioning was 

visualised using a Bayesian probability framework to evaluate most likely 

distributions of isotopic values by functional group (Jackson et al., 2011). 
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6.4 Results 

 

A total of 719 analyses were undertaken on 572 Coleoptera, 182 potential aquatic 

prey and 65 potential terrestrial prey.  Coleoptera comprised 327 ground beetles with 

known affinity to the habitat, and 145 other predatory beetles (phytophagous click 

beetles were not included in the analyses).  Source samples were derived from 

between 3-5 amalgamated individuals.  All samples were classified according to the 

longitudinal position at which they were collected and the date. 

 

 

Prior to functional group analysis, changes in community isotopic signal were 

explored.  Downstream changes were observed in Coleoptera and aquatic source 

isotopic signals; with δ
13

C (Figure 6.2a) showing consistent values until Position 5 

(Sheinton, Buildwas and Ironbridge) when they were lower (F: 9.16; df 4; p < 0.001).  

Post hoc testing showed the difference between Position 5 and all others to be 

significant (1: p 0.006; 2: p < 0.001; 3: p <0.001; 4: p <0.001).  δ
15

N (Figure 6.2b) 

showed consistent variation between sampling positions (F: 13.025; df 4;  p < 0.001) 

which represented progressive enrichment downstream.  Position 1 was significantly 

lower than all other sampling positions, Position 2 was significantly different from 3 

(significance values from post hoc testing shown in Table 6.1). 
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Table 6.1: Post-hoc Tukey test results of between sampling position variation in 

Coleoptera δ
15

N. 

Position  1  2  3  4  5 

1   -  0.004  < 0.001 0.002  < 

0.001 
2   0.004  -  0.011  0.423 

 0.379 

3   < 0.001 0.011  -  0.998 

 0.082 

4   0.002  0.423  0.998  - 

 0.653 

5   < 0.001 0.379  0.082  0.653  - 
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     6.2a: δ
13

C by sampling position    6.2b: δ
15

N by sampling position 

Figure 6.2: Coleopteran isotopic variation (2 SE) between sampling position, showing 

position 5’s relative  δ13
C  depletion in comparison to other sampling position (6.2a) and the 

downstream enrichment of  δ
15

N (6.2b). 
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Similar isotopic patterns were observed in community changes in potential aquatic 

prey.  Samples from Position 5 also showed a significant depletion in δ
13

C (F: 37.058; 

df: 4; p< 0.001), with variation from all positions significant at < 0.001 in post-hoc 

testing (Figure 6.3a).    Downstream enrichment of δ
15

N (Figure 6.3b) was also 

evident, (p < 0.001) with variation significant between Positions 1 and 2 (p 0.001), 4 

(p 0.001) and 5 (p <0.001); Positions 2 and 5 (p 0.018) and 3 and 5 (p 0.01). 
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N by sampling position 

Figure 6.3: Changes in isotopic values (2 SE) of potential aquatic prey, showing Position 5’s 

relative δ13
C (6.3a) and downstream enrichment trend of δ15

N (6.3b) 

 

Interseasonal variation in isotopic values of potential prey was significant (F: 5.571; 

df 4; p <0.001) with post-hoc testing showing significant difference (p <0.001) 

between summer and spring δ
13

C values (Figure 6.4a), and between summer and 

autumn δ
15

N values (p 0.018) (Figure 6.4b). 
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Figure 6.4: Seasonal changes in isotopic values of potential prey (2 SE).  Spring shows 

relative enrichment of δ13
C (6.4a), autumn shows relative enrichment of δ15

N (6.4b). 

 

Ellipses of probable isotopic values were consistent with the data presented in Chapter 

5, with the same vertical positioning of functional groups (Figure 6.5).  Specialist 

ground beetles, (defined in Chapters 4 and 5), show greatest δ
15

N enrichment (an 

indication of the relative contribution of aquatic prey to the diet) with Group 2 

(floodplain specialist ground beetles) more enriched than Group 1 (headwater 

specialist ground beetles).  Group 3 (ground beetles with a weak affinity to the 

habitat) occupy a median level of enrichment, Groups 4 (in-land ground beetles) and 5 

(specialist rove beetles) showing least enrichment and therefore greater utilisation of 

terrestrial prey. 
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Figure 6.5: Variations in trophic positioning according to functional group (1: Headwater 

specialist ground beetles; 2: floodplain specialist ground beetles; 3: low-affinity ground 

beetles; 4: inland ground beetles; 5: specialist rove beetles.  Dotted lines represent total 

distribution of data values, ellipses represent probable distributions. 

 

There are slight indications of carbon enrichment in the diet, although the range of 

possible values does not suggest a strong variation between functional groups.  The 

three dominant ground beetle groups (1-3) were analysed to establish how 

functionality affected their resource acquisition spatially, with the data being 

visualised via a Bayesian probability density functions.  Group 1, headwater ground 

beetles showed a gradual increase in use of aquatic prey downstream (Figure 6.6), 

until the final sampling position, where terrestrial prey dominates the diet.  In 

headwater sites, the proportions are around 30:70 aquatic:terrestrial, this rises to a 

maximum of 65% aquatic in Position 4 (Abermule and Welshpool).  In Position 5, the 

terrestrial component rises to 60%.   

δ
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N 

δ
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Floodplain specialist ground beetles (Group 2) were absent from the first headwater 

sampling position. At their first sampling point, aquatic sources show a small 

dominance (52%) but this changes to 75% aquatic composition of diet in all other 

sampling positions (Figure 6.7).  Group 3 (low affinity ground beetles) were also 

missing from the headwater sample sites.  They exhibited a switch from a terrestrial 

prey dominated diet in position 2 (65%) to an aquatic prey dominated diet in the 

lowest sites (around 60%) (Figure 6.8).  Group 3 (low affinity ground beetles) were 

also missing from the headwater sample sites.  They exhibited a switch from a 

terrestrial prey dominated diet in position 2 (65%) to an aquatic prey dominated diet 

in the lowest sites (around 60%) (Figure 6.8). 

 

 

 

 

 

 



 

1
5
7

   
Position 1 Position 2 Position 3 

 

  
Position 4 Position 5 

 

Figure 6.6: Headwater specialist ground beetle dietary composition according to sampling position (1-5) showing switch from aquatic dominated prey 

in headwaters (Position 1), to a balanced aquatic:terrestrially sourced diet (Positions 2-4) before a final switch back to an aquatically dominated in the 

furthest downstream sampling points (Position 5)
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Figure 6.7: Floodplain ground beetle dietary composition according to sampling point, 

showing increasing aquatic contributions with downstream progression (2-5). No individuals 

were sampled at Position 1. 
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Figure 6.8: Dietary composition of low affinity ground beetles according to sampling 

position, shifting from aquatic dominated diet in sampling positions nearest to headwaters 

before stabilising with a small dominance of aquatic prey downstream.
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6.5 Discussion 

The spatial variations in the isotopic signatures of sources and consumers indicate the 

complexity of the river’s nutrient supply along a longitudinal gradient.  The 

downstream  δ
15

N enrichment is indicative of both natural and anthropogenic 

processes, with retention of naturally-derived nitrogen supplemented by additions 

from urban and agricultural sources (Carpenter et al., 1998).  Even headwater 

signatures which possess raised δ
15

N in comparison to pristine site studies (Milner et 

al., 2000) indicate the influx of anthropogenic nitrogen at an early stage (with water 

treatment, agricultural and landfill inputs entering the  river at or downstream of 

Llanidloes).  The depleted δ
13

C values in the lowest sample points provide the 

strongest evidence of floodplain complexity over-riding simplistic models of nutrient 

transfer longitudinally, with possible causes including groundwater influx (Tockner 

and Stanford, 2002) and substrate changes altering algal production (England and 

Rosemond, 2004).  These spatially distinct isotopic signatures preclude 

homogenisation of the data set. 

 

Seasonal variations occur only within aquatic samples, demonstrating the presence 

within the riverine system of enrichment processes reflecting annual cycles of 

productivity (sensu Yoshioka et al., 1994). This variation is not however significantly 

reflected in consumer signals – which may be a reflection of lifecycles, as adults 

function in autumn and spring with an intervening period of diapause (Andersen, 

2006). 
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Variations in the response of functional groups complement observations of a 

headwater community (Chapter 5), and provides data that matches subsidy levels seen 

on European rivers (Hering and Plachter, 1997, Paetzold et al., 2005).  Trophic 

positioning initially confirms the stability of prey selection within the different 

functional groups within the entire dataset.  The generic terms assigned to the three 

ground beetle groups with a level of affinity to the habitat are indicative of their 

distributions based on morphological and abundance data (Chapter 3).   This study 

tests the validity of these terms by examining changes in resource acquisition under 

changing circumstances.  All three groups exhibit an increase in the proportions of 

aquatic prey in their diets as they are sampled downstream.  The level of this increase 

varies between groups, and in the headwater specialists switches to a terrestrial 

dominance in the sites sampled furthest downstream.  The downstream ERS resource 

is poorly connected and less complex, relative to the headwater resource (Chapter 2) 

and inundation pressures are likely to occur over more defined seasonal scales 

(Bridge, 2003).  The composition and quantity of the aquatic subsidy will also be 

different, with increased  (Grubaugh et al., 1997) productivity increasing the potential 

subsidy.  The observed uptake in all three functional groups will be (at least partly) 

explained by raised local productivity.  The observed switch to terrestrial prey in 

headwater specialists argues however that the level of subsidy is not the only factor 

selecting prey selection. 

 

Behavioural differences in the species are known, with B. punctulatum from the 

floodplain grouping  exhibiting stable positioning at the stream edge, in comparison to 

B. atrocaeruleum (grouped in the headwater species) which is mobile in ERS habitat).  
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In Chapter 5 it is argued that this elasticity of positioning benefits B. atrocaeruleum in 

habitat which has very high levels of disturbance.    Preferential spatial positioning 

comes with trade-offs; increased access to the aquatic subsidy or decreased risk of 

disturbance exposure and the relative costs of this risk change with longitudinal 

position.  Floodplain specialists are positioned at the stream edge, constantly available 

to intercept the subsidy, whereas only a proportion of local populations of headwater 

species will be in that position at any given point.  As the numbers of emerging 

insects rapidly decline away from the stream edge (Briers et al., 2005, Petersen et al., 

1999) access to the subsidy is curtailed in mobile species; as floodplain species 

benefit from their optimum habitat and potentially significantly reduce prey numbers 

(Paetzold and Tockner, 2005), headwater species are excluded from resource 

utilisation and turn to terrestrial prey.  Under less flashy flow regimes, the benefits of 

raised aquatic subsidies outweigh inundation risks for those species spatially 

positioned to take advantage of them.  The reduced flashiness of floodplain rivers may 

also explain the longitudinally raised aquatic subsidy in low-affinity species.  Data in 

Chapter 5 indicated that these species have high aversion to inundation risk, but are 

opportunistic consumers of aquatic prey where that risk is reduced.  The relative 

stability of floodplain flows therefore allows them to utilise the raised subsidy, and, 

given their larger size, they can consume larger prey, thereby avoiding direct 

competition with specialist species.  

 

Several studies on ERS specialists have stressed the importance of intermediate levels 

of disturbance in maintaining stable and diverse assemblages (Greenwood and 

McIntosh, 2008, Lambeets et al., 2008).  The dietary shifts observed in this study 
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indicate that what can be classed as ‘intermediate’ is directly related to the adaptations 

that are possessed to ameliorate the impacts of that disturbance.  Headwater specialists 

have greater tolerance of inundation pressures which benefit local populations under 

disturbance levels that are too high for floodplain specialists and low-affinity species.  

But under differing conditions, the same adaptations disadvantage previously highly 

adapted species. 

 

 

6.5.1 Conclusions 

This study has demonstrated the presence of longitudinal structuring processes in 

specialist Coleopteran assemblages along the River Severn that have been suggested 

by abundance data (Chapter 3) and isotopic data from a headwater dataset (Chapter 

5).  The data show that the strength of the aquatic subsidy has spatial and functional 

group variations that are driven by behavioural adaptations that delineate the 

conditions of optimum habitat.  The adaptations serve to reduce competition and 

allow species to coexist within individual habitat patches, although differently 

benefitting individual species according to local pressures.  The results show a 

longitudinal complexity within ERS specialist Coleoptera that has not previously been 

demonstrated and emphasis the need to maintain the longitudinal cohesion of the ERS 

resource. 
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7 
 

Conclusion 

 

 
The combined conclusions of the different elements of the research are presented: 

ERS invertebrates form complex multi-dimensional assemblages with reliance on an 

equally complex habitat resource.  Further research areas are proposed, along with 

potential limitations.   
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7.1 Exposed riverine sediments and their associated invertebrates: 

landscape integrity and community cohesion. 

 

 

This research project has enabled a landscape-scale approach into the controls of ERS 

Coleopteran assemblages, looking beyond the autecology of individual species to 

explain the diversity of the communities associated with the habitat.  Understanding 

how the resource is occupied and utilised across gradients of longitude, connectivity 

and increasing terrestrial stability provides insights into the consequences of habitat 

degradation on resident assemblages at a riverine scale and as such can inform future 

conservation and resource management strategies. 

 

The reliance of associated species on the habitat constrains possible distributions 

because of the characteristics of rivers with which the resource is associated.  Whilst 

current ERS distributions are in part a function of historical degradation, they are also 

strongly dictated by hydrogeomorphological forces and underlying geology.  The 

regional distribution of habitat initially predicts the occurrence of complex formations 

of ERS, and the likelihood (in the absence of downstream channel modifications) of 

sediment transport to provide floodplain habitat within rivers.  Knowledge of the 

location of a river’s headwaters provides at least enough information to establish its 

potential to contain ERS i.e. does it exhibit a steep incline? Is it predominantly 

rainfall/surface water fed? What is the sediment store within the catchment?  The long 

term impacts of impoundment, abstractions of sediments and water, and engineering 

works on within-channel sediment movements are well understood, and therefore the 

potential for degradation and loss of ERS habitat where new schemes are 



 173 

implemented can be viewed within the context of the catchment in which they are 

taking place.  A database now exists which covers all major distributions of ERS in 

England and Wales, by river.  Although positions are liable to change with natural 

habitat turnover, in the absence of changes to the channel or flow regimes, overall 

amounts are likely to remain constant over time.  Similarly, in rivers where it is 

absent, restoration procedures can only be expected to reintroduce the ERS habitat 

where the characteristics of the river support its presence. 

 

When species’ distributions are modelled, lateral and longitudinal complexity 

emerges at local and regional scales, with data indicating the presence of multiple 

levels of specialisation that fit species into functional groups and these groups to 

specific environmental regimes.  Consequentially assemblage structure can be 

predicted spatially, and the factors producing rarity (chiefly dependence on habitat 

complexity and connectivity) understood.  However, they also enable us to understand 

why morphologically similar species achieve peak abundances under differing 

environmental scenarios.   

 

The intrinsic role of flooding is much discussed in relation to the formation and 

maintenance of ERS, and the pressures it places upon associated species.  The long-

term impacts of differing regimes reveal the variation in adaptations and inundation 

resilience between families, and further explain levels of rarity, local spatial 

positioning and resource utilisation.  Dichotomous responses to inundation frequency 

between rove beetles and ground beetles within the same habitat patches demonstrate 

how a variable flow regime can temporarily benefit one family.  Under natural 
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conditions, interannual fluctuations in rainfall are reflected in the responses of 

Coleoptera, low flows benefitting rove beetles, high flows benefitting ground beetles.  

Prolonged stabilisation of the regime, in either direction, therefore has the potential to 

reduce the habitat suitability for different elements of the ERS community; it is the 

inherent, exaggerated stochasticity of the environment that enforces long-term 

assemblage diversity. 

 

Inundation is also shown to be a driver in directing prey selection amongst ERS 

specialists, or rather, the adaptations employed to avoid inundation stresses.  

Inundation has a role in altering temporal structure of associated assemblages, but also 

spatial structure.  The occurrences of morphological and behavioural adaptations that 

favour survival or avoidance dictate the efficiency of aquatic prey utilisation.  Weaker 

adaptations and stronger inundation aversion position species away from high risk 

areas (such as the stream edge), reducing aquatic prey availability and enforcing a 

reliance on terrestrial prey.  Highly adapted species demonstrate greater uptake of 

aquatic prey, as their survival mechanisms and avoidance strategies enable a 

successful trade off between the risks of inundation and the benefits of resource 

acquisition.  The impact of minor changes in behaviour becomes evident when 

resource acquisition is studied at a larger scale; longitudinal variations in assemblages 

are a reflection of subtly different responses to inundation threat.  In flashy, headwater 

systems, a slight increase in risk aversion (shown by increased within-habitat 

mobility) reduces aquatic prey uptake, but enhances local abundance.  The risks of the 

trade off are not high enough to favour permanent stream edge positioning under this 
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regime.  In the floodplains, where the demands of the regime alter, the risks of stream 

edge positioning are reduced, and these species are favoured. 

 

By combining the factors controlling ERS distribution and influencing local and 

regional assemblages, it is possible to conceptualise (Figure 7.1) the longitudinal 

structuring of the ERS community as a consequence of the combined processes of 

hydrology, resource availability and adaptive strategies.  This mechanism reinforces 

the need to view specialist invertebrates of ERS at a regional and catchment scale, 

with the whole diversity of the system intrinsically reliant on the sustained  

connectivity of habitat and populations along the headwater:floodplain gradient.



 

1
7
6

  

Figure 7.1: Conceptual model of processes structuring specialist invertebrate communities on English and Welsh ERS; demonstrating the 

complexity of biotic and abiotic factors enforcing local population controls defining longitudinal variations in habitat and associated 

specialist. 
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7.2 Limitations observed within the research 

 

This research project has established the extent of the ERS resource within England 

and Wales and goes some way to explaining the complexities of associated 

Coleopteran assemblages.  It establishes the importance of habitat complexity at both 

local and regional scales and emphasises that ERS communities are spatially 

structured according to highly refined levels of specialisation, creating multiple 

overlapping niches and maximising assemblage diversity. 

 

However, several limitations were observed within the research that should be taken 

in to consideration in future research planning, and in applying outcomes of the 

project: 

 

• Assessment of the ERS resource was undertaken using aerial photography, 

which included differing seasons and flow levels.  As such the database is 

likely to be an underestimation of the total extent of the resource, with habitat 

patches either submerged or obscured by tree canopies.  The database provides 

information on relative variations in ERS resources between rivers, but 

accurate assessments can only be obtained by groundtruthing. 

 

• The accepted sampling method of ERS invertebrates uses pitfall traps to 

collect data on abundance and diversity but is vulnerable to data loss via 

inundation and anthropogenic or animal disturbance (Andersen, 1995).  2008 

included two months of high river levels with subsequent interruptions of data 
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collection, notwithstanding the inherent sampling weaknesses. The quality of 

the dataset would have been improved by including sampling through hand 

searching to complement the passive trapping method. 

 

• SIA analysis remains a developing area of ecological study, both in its 

techniques and statistical analysis.  Whilst the consensus is for tissue specific 

analysis (e.g.Wehi and Hicks, 2010), the small size of the invertebrates in this 

study precluded such detailed work, which will have reduced the accuracy of 

the data.  Similarly, debate is still occurring on the most valid analytical 

approach to derive mixing models (Jackson et al., 2011, Jackson et al., 2009, 

Semmens et al., 2009, Parnell et al., 2010).  Bayesian techniques have been 

shown to provide truthful representations of ecological processes, but it is 

likely that this is an area which will be subject to ongoing development.   

 

• One absence in the SIA dataset comes from a lack of information on the small, 

fossorial Staphylinid species associated with the habitat.  As one of the 

principle morphological forms associated with the habitat (and containing 

many of the rarer species), understanding their resource utilisation would have 

completed the picture of resource partitioning within the habitat.  Size, habitat 

choice and relatively lower abundance did not supply enough specimens for 

valid analysis, and as such a knowledge gap remains in this area. 
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7.3 Suggestions for areas of future research 

The roles that habitat complexity and continuity have in structuring ERS assemblages 

provide suggestions for the development of future research themes.   

 

• Modelling of species distributions and habitat selection, although borne out by 

SIA data, can be further tested by incorporating larger datasets from disparate 

sites.  Anthropogenic influences within the catchments study appear to have a 

largely indirect impact on assemblages via historic reductions in habitat.  The 

inclusion of more replicate river systems is needed to test this observation, and 

would indicate whether regionally isolated communities show similar 

responses to natural and anthropogenic pressures.  The presence of differing 

flow regime shapes and magnitudes observed within the ERS river subset also 

offers the opportunity to assess the role of these factors in predicting 

assemblage structure within rivers where data are available. 

 

• Much interpatch movement is assumed to be linear, with individuals moving 

within their river corridor.  If this is the case, then individual rivers’ 

communities are vulnerable in the event of reach scale disturbances.  Whilst 

different species are known to have differing levels of dispersal ability, the 

extent to which between river exchanges of individuals occur is unknown.  If 

these are rare events, then reach scale extinction events will be long term.  

Genetic tools provide methods to assess the relatedness of separate 

populations (Lagisz et al., 2010).  Microsatellites for the abundant species B. 

atrocaeruleum have been identified and are currently being tested for 
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reproducibility.  Once testing is complete, these will enable within and 

between river genetic changes to be studied, providing information on short-

term, inundation driven movements within local populations, and the longer-

term rate of exchange between populations.    

 

• River restoration projects offer the potential to reintroduce ERS habitat to 

degraded systems (Gunther and Assmann, 2005).  The ability of species to 

recolonise new habitat is poorly understood – and will be related to their 

interpatch movement potential and the relative isolation of new habitat from 

source populations.  Understanding the rates of movement for an abundant 

species will provide an indication on the re-establishment timescales of a basic 

assemblage structure. 

 

• Ever-developing techniques in SIA will enable more sophisticated research in 

prey acquisition by specialists.  The whole body technique used in this study 

should be improved by tissue specific studies which would enable analysis of 

responses to emergence patterns, and can potentially demonstrate any 

variations between adult and larval dietary composition (Tallamy and Pesek, 

1996). As many of the requirements of larval specialist Coleoptera are unclear, 

any increase in knowledge of this stage of the lifecycle would provide an 

invaluable aid in their conservation. 

 

• The SIA data shown here indicate variations in behaviour and nutrient 

acquisition according to longitudinal positioning within the river, which in 
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turn reflect differing strategies in inundation avoidance and survival.  ERS 

specialist distributions are a reflection of early Holocene colonisations (Thiele, 

1977), with populations following retreating glaciers and utilising newly 

disturbed landscapes.  Current distributions reflect species’ tolerance of 

disturbance levels and may provide a chronosequence of colonisation.  This 

could be tested by examining ERS assemblages within contemporary disturbed 

environments, where stream (and habitat) age is known.  The presence of 

temporal changes in populations (along with any variation in prey selection) 

would provide information on fine-scale successional processes. 
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Chapter 2  multiple linear regression model validations of for ERS area and density, 

giving models of best fit, and all models lying within 95% confidence interval 

following weighting and ranking. 

 

Definition of variable terms: 

Shape:  Annual shape of discharge (as defined in Chapter 2) 

Magnitude: Magnitude classification (as defined in Chapter 2) 

Q10:  Average number of Q10 events annually 

Slope:  Descent of river, m/km
-1 

Abstraction: Anthropogenic abstraction for drinking/agriculture 

Dam:  Upstream impoundment 

Natural: No know anthopogenic influences on river 

Table 1: Ranked models of explanatory variables within 95 confidence interval 

following validation and derivation of Akaike weights: Area of ERS/km
-1

 of river 

 

Rank Shape Magnitude Q10 Slope Abstraction Dam Natural AIC Weight 

1   �  �   -7.19 0.38 

2  �  � �   -5.94 0.2 

3   �     -5.47 0.16 

4   � �    -3.71 0.07 

5     � �   -2.9 0.04 

6   � � �   -2.26 0.03 

7  �      -1.8 0.02 

 

Table 2: Ranked models of explanatory variables within 95 confidence interval 

following validation and derivation of Akaike weights: Number of bars/km
-1

 of river. 

 

Rank Shape Magnitude Q10 Slope Abstraction Dam Natural AIC Weight 

1     �  �  -23.46 0.412 

2     � � �  -5.47 0.165 

3    � �     -5.28 0.161 

4     �   � -4.11 0.161 
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Chapter 3 GLM model validations of morphological groups’ responses to connectivity 

variables, giving model of best fit, and all models lying within 95% confidence 

interval following weighting and ranking. 

 

Definition of variables 

 

Upstream  Distance from nearest upstream habitat patch. 

Downstream  Distance from nearest downstream habitat patch. 

1km area  Total area of ERS within 0.5km of habitat patch up and  

   downstream. 

No. bars  No of habitat patches 0.5km of habitat patch up and   

   downstream. 

Dist. Down  Distance of sample site from headwaters. 

 

Table 1: Ranked models with AIC scores and Akaike weights for headwater ground 

beetles, showing all combinations of explanatory variables lying within the 95% 

confidence interval. 

 
Rank Upstream Downstream 1km Area No. bars Dist. Down AIC Weight 

1     � 82.91 .226 

2      �   82.96 .22 

3     �     83.15 .201 

4    �   �  84.73 .091 

5      �  �   84.9 .084 

6      �  �  84.92 .083 
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Table 2: Ranked models with AIC scores and Akaike weights for floodplain ground 

beetles, showing all combinations of explanatory variables lying within the 95% 

confidence interval. 

 
Rank Upstream Downstream 1km Area No. bars Dist. Down AIC Weight 

1     � 77.77 .446* 

2    �   � 79.73 .167* 

3 �  � � � 80.04 .143* 

4    � � � 81.03 .087* 

5 �    �   � 81.37 .074* 

 

Table 3: Ranked models with AIC scores and Akaike weights for specialist click and 

rove beetles, showing all combinations of explanatory variables lying within the 95% 

confidence interval. 

 
Rank Upstream Downstream 1km Area No. bars Dist. Down AIC Weight 

1    � � 93.49 .383* 

2    �  94.82 .197* 

3     � 96.2 .099* 

4   �  � 96.34 .092* 

5   � � � 96.71 .077* 

6  � � � � 97.51 .051* 

 

Table 4: : Ranked models with AIC scores and Akaike weights for low-affinity 

ground beetles, showing all combinations of explanatory variables lying within the 

95% confidence interval. 

 
Rank Upstream Downstream 1km Area No. bars Dist. Down AIC Weight 

1  �    73.72 .383* 

2  � �   74.79 .173* 

3  �   � 75.54 .119* 

4  � �  � 76.31 .081* 

5 �  � � � 76.5 .073* 

6   � � � 77.19 .052* 

7 �   � � 77.54 .044* 
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Chapter 4 GLM model validations of responses to flow variations, giving model of 

best fit, and all models lying within 95% confidence interval following weighting and 

ranking. 

 

Definition of variables: 

PQ10:  Number of Q10 events occurring in the year before sampling. 

PSQ10:  Number of Q10 events occurring in the previous summer. 

PSQ50:  Number of Q50 events occurring in the previous summer. 

CQ10:  Number of Q10 events occurring in the year of sampling. 

CQ50:  Number of Q50 events occurring in the year of sampling. 

CSQ10:  Number of Q10 events occurring in the season of sampling. 

CSQ50:  Number of Q50 events occurring in the season of sampling. 

CSQ70:  Number of Q70 events occurring in the season of sampling. 

dMF:  Duration of maximum flow in the year of sampling. 

dLF:  Duration of lowest flow in the year of sampling. 

mpsum: Duration of maximum flow in the summer before sampling. 

mpm:  Duration of maximum flow in the year before sampling. 

 

Table 1:  Potential models of rove beetle response to hydrological metrics validated, 

weighted and ranked. 

Rank PQ10 CSQ10 CSQ50 CSQ70 dLF AIC Weight 

1     � 151.66 .247 

2  �  �  152.57 .157 

3 �    � 153.35 .106 

4  �    � 153.65 .091 

5      �   153.66 .091 

6 �   �   153.67 .09 

7 � �      153.79 .085 

8 �   � � 155.34 .039 
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Table 2:  Potential models of specialist ground beetle response to hydrological 

metrics, validated, weighted and ranked. 

 

Rank PQ10 CQ10 PSQ50 dMF mpsum AIC Weight 

1 �   � �  201.06 .374 

2 �  � � � 203.04 .139 

3 � � �   � 203.08 .136 

4 � �   � � 203.24 .126 

5 � � � � � 205.01 .052 

 

Table 3:  Potential models of B. atrocaeruleum response to hydrological metrics 

validated, weighted and ranked. 

 

Rank PQ10 psQ50 CQ10 CQ50 Mpm dmf AIC Weight 

1 �    � � 204.67 .64 

2    �  � 206.88 .212 

3    � � � 208.87 .078 
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