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ABSTRACT 

This research undergone is an inter-disciplinary project with the Civil Engineering 

Department, which focuses on acceleration of the numerical solutions of Partial differential 

equations (PDEs) describing continuous solid bodies (e.g. a dam or an aircraft wing). 

Numerical techniques for solutions to PDEs are generally computationally demanding and 

data intensive. One approach to acceleration of their numerical solutions is to use FPGA based 

reconfigurable computing boards.  

 

The aim of this research is to investigate the features of various algorithms for the numerical 

solution of Laplace’s equation (the targeted PDE problem) in order to establish how well they 

can be mapped onto reconfigurable hardware accelerators. Finite difference methods and 

finite element methods are used to solve the PDE and they are characterized in terms of their 

operation count, sequential and parallel content, communication requirements and amenability 

to domain decomposition. These are then matched to abstract models of the capabilities of 

FPGA-based reconfigurable computing platforms. The performance of different algorithms is 

compared and discussed. The resulting hardware design will be suitable for platforms ranging 

from single board add-ins for general PCs to reconfigurable supercomputers such as the Cray 

XD1. However, the principal aim in this research has been to seek methods that perform well 

on low-cost platforms. 

 

In this thesis, several algorithms of solving the PDE are implemented on FPGA-based 

reconfigurable computing systems. Domain decomposition is used to take advantage of the 

embedded memory within the FPGA, which is used as a cache to store the data for the current 

sub-domain in order to eliminate communication and synchronization delays between the 

sub-domains and to support a very large number of parallel pipelines. Using Fourier 

decomposition, the 32bit floating-point hardware/software design can achieve a speed-up of 

38 for 3-D 256×256×256 finite difference method on a single FPGA board (based on a 

Virtex2V6000 FPGA) compared to a software solution implemented in the same algorithm on 

a 2.4 GHz Pentium 4 PC which supports SSE2. The 32 bit floating-point hardware-software 

coprocessor for the 3D tetrahedral finite element problem with 48,000 elements using the 

preconditioned conjugate gradient method can achieve a speed-up of 40 for a single FPGA 

board (based on a Virtex4VLX160 FPGA) compared to a software solution.  
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Chapter 1 
 

INTRODUCTION 

1.1 Introduction 

The Finite Difference Method (FDM) is one of the simplest and most straightforward ways of 

solving Partial Differential Equations (PDEs). The PDE is converted, by transforming the 

continuous domain of the state variables to a network or mesh of discrete points, into a set of 

finite difference equations that can be solved subject to the appropriate boundary conditions. 

 

The Finite Element Method (FEM) is a widely used engineering analysis tool to obtain an 

approximate solution for a given mathematical model of a structure, as well as being used in 

the approximation of the solutions of partial differential equations. Finite Element Analysis 

(FEA) is widely applied to model a material or design that will be affected by various 

environmental factors, such as stress, temperature and vibration. FEA usually requires the 

solution of a large system of linear equations repeatedly. In industry, there is a requirement to 

reduce the time taken to obtain results from FEA software. In three dimensions, in order to 

reduce the memory requirements, iterative solvers are typically used to solve these systems. 
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Of the iterative algorithms available, the Conjugate Gradient method is one of the most 

effective iterative approaches to the solution of symmetric positive definite sparse systems of 

linear equations, as it converges in a finite number of steps.   

 

FDM and FEM are both extremely computationally expensive, especially for 3-D problems. 

Much effort has therefore been made to explore the degree of parallelism on parallel computer 

systems in order to achieve a high speed-up of the simulation that is proportional to the 

number of processors used. Unfortunately, because of problems such as load balancing, 

synchronization and communication overheads, these systems could not achieve an ideal 

linear speed-up. 

 

One of the approaches to high performance computing that is growing in credibility is the use 

of reconfigurable hardware to form custom hardware accelerators for numerical computations. 

This can be achieved through the use of Field Programmable Gate Arrays (FPGAs), which are 

large arrays of programmable logic gates and memory. FPGAs can be reconfigured in real 

time to provide large parallel arrays of simple processors that can co-operate with the host 

computer to solve a problem much faster and more efficiently. In recent years, Graphics 

Processing Units (GPUs) computing has also become a popular trend in high performance 

computing due to their massively parallel simplified CPU-units. However, for data-intensive 

numerical problems, such as FDM and FEM, the performance of GPUs can degrade because 

the memory accesses required by such numerical algorithms have a long latency which cannot 

always be hidden by pipelining.  

 

FPGAs have evolved rapidly in the last few years, and have now reached sufficient speed and 
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logic density to implement highly complex systems. FPGAs are being applied in many areas 

to accelerate algorithms that can make use of massive parallelism, such as bioinformatics [1],  

real-time image processing [2], data mining [3], communication networks [4], etc. The rapid 

improvement in hardware capabilities in the last few years has steadily widened the range of 

prospective application areas. One promising application area is the use of FPGA-based 

reconfigurable hardware to form custom hardware accelerators within standard computers for 

numerical computations. In this research, the term “reconfigurable computing” is used to refer 

to any use of an FPGA co-processor, not restricted only to run-time reconfigurable 

applications.  

 

As a poor man’s supercomputer, FPGA co-processors are more expensive than general 

purpose GPUs, but they are still more easily affordable than expensive parallel computers. 

FPGAs within desk-top systems open a new window to low cost hardware acceleration. It is 

therefore desirable to explore how well the FDM and FEM can be mapped onto an 

FPGA-based reconfigurable computing platform. 
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1.2 Contribution of this thesis 

This thesis presents a study of the use of reconfigurable hardware using FPGAs to accelerate 

implementations of the FDM and the FEM. An emphasis within this thesis is to find 

formulations that can perform well on low-cost platforms. In practice, this means seeking 

algorithms that have very low communications and synchronization overheads, as low-cost 

platforms tend to be characterized by low bandwidth for communications between FPGA 

boards and the host. The major contributions made by this work are as follows: 

 

� A novel approach was taken to accelerate the finite difference method to solve a 

three-dimensional Laplace equation on a single FPGA. Both fixed-point arithmetic 

and floating-point arithmetic were investigated, and the performance of hardware 

based on 32-bit customised fixed-point arithmetic and 32-bit floating-point 

arithmetic was compared. 

� A novel parallel hardware architecture for a preconditioned Conjugate Gradient 

solver was presented to solve the finite element equations using an 

element-by-element storage scheme.   

� A domain decomposition technique has also been employed. Fourier decomposition 

was applied to the FDM to eliminate communication and synchronization delays 

between the sub-domains, whilst ensuring that the pattern of memory accesses is 

easy and efficient to implement. An element-by-element (EBE) approach was 

chosen for the FEM to efficiently handle sparse problems without requiring 

complicated data structures that inhibit the efficiency of hardware implementation. 



Chapter 1: Introduction 

- 5 - 

The use of the element-by-element storage scheme also reduces the RAM 

requirement. 

� Compared to an equivalent software solution on a 2.4GHz Pentium4 PC, a speed-up 

of 38 was achieved for solution of a 3-D Laplace equation using a 256×256×256 

finite difference method using 32-bit floating-point arithmetic on the reconfigurable 

computing board with a Virtex2V6000 FPGA, whereas, a speed-up of 105 was 

achieved for a 64×64×64 FDM problem by using customized fixed-point arithmetic. 

For the finite element method, the 32bit floating-point hardware-software 

coprocessor for the 3D tetrahedral finite element problem with 48,000 elements 

using the preconditioned conjugate gradient method achieved a speed-up of 40 for a 

single FPGA board (based on a Virtex4VLX160 FPGA) compared to a software 

solution. 

� Predictions of scalability are presented as to how well the hardware architecture 

would map onto larger FPGAs and larger number of FPGAs. The effects of data 

precision and additional resources are also considered. 

� An analysis of speed-up has been carried out. It demonstrates that the performance 

of the hardware implementations is determined mainly by the available FPGA 

resources, with communication bandwidth and synchronization overheads between 

FPGAs and the host machine imposing relatively modest limitations.  
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1.3 Thesis organisation 

Chapter 2 introduces the basic concepts of Partial Differential Equations and their solution. 

Direct methods and iterative methods are formulated, and their feasibility is considered.  

 

Chapter 3 presents a brief review of reconfigurable computing in parallel processing. 

 

Chapter 4 introduces the two most widely used general solution techniques of PDEs: the finite 

difference method (FDM) and the finite element method (FEM). The FDM is used to solve a 

3-dimensional Laplace equation. Because the FDM can be extremely computationally 

expensive, especially when the number of grid points becomes large, Fourier decomposition 

is used to split the 3-D problem into a series of 2-D sub-problems, which can each be farmed 

out to a different FPGA (or fed sequentially through a single FPGA). The FEM, also widely 

used as an approximation for the solutions of PDEs, is also discussed in chapter 4.  

 

Chapter 5 describes several hardware designs that were implemented onto a reconfigurable 

computing board. The first is a very compact design of an FDM implementation, which uses a 

customized 32-bit fixed-point arithmetic to fit the parallel computational units and working 

memory for an entire self-contained domain onto a single FPGA. The second is a more 

complex implementation, which extends the work to use floating-point arithmetic in order to 

avoid the poor numerical properties of fixed-point arithmetic. However, the impact of the 

larger logic requirements of floating-point arithmetic operators cannot be ignored: the number 

of parallel pipelines must be reduced due to the limitation of hardware resources. Furthermore, 

an element-by-element preconditioned Conjugate Gradient iterative solver for the solution of 
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a 3D FE analysis has been implemented using 32-bit floating-point arithmetic on a single 

FPGA. 

 

In chapter 6, the hardware implementations are compared with software implementations in 

terms of speed-up and numerical precision. Furthermore, the performance of several hardware 

implementations is compared based on logic requirements, clock rates, and error propagation 

etc. The floating-point hardware implementation of the finite difference method gives a factor 

of 24 speed-up compared to the software version, whereas the floating-point hardware 

implementation of the finite element method gives a factor of 40 speed-up. More 

sophisticated iteration schemes are examined in hardware and the data dependences are 

discussed. The Red-Black successive over-relaxation (SOR) method is judged to be a 

particularly attractive approach due its benign pattern of data dependencies and simple data 

path. 

 

Chapter 7 describes how the hardware designs can be modified to enhance the performance 

(in terms of speed and efficiency) and discusses the bottlenecks of parallel computing. The 

whole of the reconfigurable computing system is considered: the limitations on the speed of 

communication between board and host, the memory resources and also the embedded 

microprocessors and multipliers on future FPGAs. A projection of how a typical system can 

be implemented and how well the system performs is presented. Based on the hardware 

implementations on Virtex II and Virtex 4 FPGAs, an estimate on how well the design can be 

scalable to take advantage of the properties of future FPGAs is also presented and discussed. 

Some of the main parameters that impact the performance of the hardware designs are 

discussed in Chapter 5. Also projections are made as to how much hardware will be needed 
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and what level of speed-up could be expected.  

 

Chapter 8 discusses the conclusions of the study, and gives some recommendations for 

possible future work. 
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Chapter 2 
 

BACKGROUND 

 
The history of research on partial differential equations (PDEs) goes back to the 18th century. 

One of the most important phenomena in the application of PDEs in science and engineering 

since the Second World War has been the impact of high speed digital computation [5]. 

Numerical analysis can be considered as a branch of analytical applied mathematics. There is 

a variety of numerical techniques for solving PDEs, such as the finite difference method [6], 

finite element method [7], finite volume method [8], boundary element method [9], meshfree 

method [10], and the spectral method [11]. The finite element method and finite volume 

method are widely used in engineering to model problems with complicated geometries; the 

finite difference method is often regarded as the simplest method [12]; the meshfree method is 

used to facilitate accurate and stable numerical solutions for PDEs without using a mesh.  

 

This chapter provides a comprehensive guide to two numerical approaches to solution of 

partial differential equations, the finite difference method and the finite element method. 
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2.1 Introduction of Partial Differential Equations 

Partial differential equations (PDEs) are used to formulate problems involving functions of 

several independent variables; the equations are expressed as a relationship between a 

function of two or more independent variables and the partial derivatives of this function with 

respect to these independent variables. The order of the highest derivative defines the order of 

the equation. PDEs are widely used in most fields of engineering and science, where many 

real physical processes are governed by partial differential equations [13]. Moreover, in recent 

years, there has been a dramatic increase in the use of PDEs in areas such as biology, 

chemistry, computer science and in economics.  

 

PDEs fall roughly into these three classes, which are [13]  

♦ Elliptic PDEs 

♦ Parabolic PDEs 

♦ Hyperbolic PDEs 

 

If all of the partial derivatives appear in linear form and none of the coefficients depends on 

the dependent variable, then it is called a linear partial differential equation [13]. Otherwise, 

the PDE is non-linear if the coefficients depend on the dependent variable or the derivatives 

appear in a non-linear form. For example, consider the following two equations: 

 

2

2

f f

t x
α

∂ ∂
=

∂ ∂
  Eq. (1) 

where x  and t  are the independent variables, f  is the unknown function, and α  is the 

coefficient, and 
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0
f f

f
x y

∂ ∂
+ =

∂ ∂
  Eq. (2) 

where x  and y  are the independent variables, and f  is the unknown function.  

 

Eq. (1) is the one-dimensional diffusion equation, which is a linear PDE, whereas, Eq. (2) is 

nonlinear because the coefficient of 
f

x

∂

∂
 is the function f . 

 

The 3 dimensional Laplace equation (3) for a function ( , , )x y zφ , which is a classical 

example of an elliptic linear PDE, describes the electrostatic potential in the absence of 

unpaired electric charge, or describes steady-state temperature distribution in the absence of 

heat sources and sinks in the domain under study in heat and mass transfer theory [14].  

         

2 2 2

2 2 2
0

x y z

φ φ φ∂ ∂ ∂
+ + =

∂ ∂ ∂
 or 2 0φ∇ =  Eq. (3) 

where x , y  and z  are the independent variables, φ  is the unknown function, and 2∇ is 

the Laplacian operator. 

 

The equation is supplemented by initial and/or boundary conditions in order for a solution to 

be found. Laplace’s equation is a second-order homogeneous partial differential equation. (An 

equation is classified as homogeneous if the unknown function or its derivatives appear in 

each term). The Poisson equation (4) (which represents a steady state seepage problem with 

source term, an electrical field problem with source term, or a steady state heat transfer 

problem with heat sources) is the non-homogeneous form of the Laplace equation:   
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2 2 2

2 2 2
( , , )

u u u
F x y z

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 or 2 ( , , )u F x y z∇ =  Eq. (4) 

where the non-homogeneous term ( , , )F x y z  is application dependent.  

 

In electrostatics, the three-dimensional Poisson’s equation (5) defines the relationship between 

the electrostatic potential and the electric charge density [14]:  

 

2 2 2

2 2 2
0x y z

φ φ φ ρ

ε

∂ ∂ ∂
+ + = −

∂ ∂ ∂
 or 2

0

ρ
φ

ε
∇ = −  Eq. (5) 

where 0ε  is the vacuum permittivity, ρ is the charge density and ( , , )F x y z is presented as a 

constant value
0

ρ

ε
− . 

 

The appearance of the non-homogeneous term ( , , )F x y z  can greatly complicate the exact 

solution of the Poisson equation, however, it does not change the general features of the PDEs, 

nor does it usually change or complicate the numerical method of solution [13]. Consequently, 

the solution of the linear homogeneous Laplace’s equation, which is a common elliptic PDE, 

is considered in the whole thesis. All of the following discussions can be applied directly to 

the numerical solution of the Poisson equation, because the non-homogeneous term is simply 

added to the numerical approximation of the Laplace equation at each node or computational 

location. 

 

Generally, various methods can be used to reduce the governing PDEs to a set of ordinary 

differential equations (ODEs). Unfortunately, only a limited number of special types of 

elliptic equations can be solved analytically. The most dramatic progress in PDEs has been 
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achieved in the last century with the introduction of numerical approximation methods that 

allow the use of computers to solve PDEs in most situations for general geometries and under 

arbitrary external conditions, even though there are still a large number of hurdles to be 

overcome in practice. 

 

The analytical solution of a two-dimensional elliptic equation is produced by calculating a 

function with the space co-ordinates x and y, which satisfies the partial differential equation at 

every point of area S which is bounded by a plane closed curve C, and satisfies certain 

conditions at every point on the boundary curve C as shown in Figure 1. Unfortunately, only a 

limited number of special types of elliptic equations can be solved analytically. In other cases, 

numerical approximation methods are necessary.  

 

 

Figure 1 : 2-D Solution Domain for FDM. 

 

In the following sections, the two widely used numerical approximation methods, the finite 

difference method (FDM) and the finite element method (FEM), will be introduced in the 
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context of the Laplace’s equation, which is a classical elliptic PDE that can be solved using 

relaxation methods [6]. 

 

2.1.1 Boundary conditions 

There are three types of boundary conditions [13]: 

1. Dirichlet boundary condition: the value of the function is specified. 

2. Neumann boundary condition: the value of the derivative normal to the 

boundary is specified. 

3. Mixed boundary condition: A combination of the function and its normal 

derivative is specified on the boundary. 

 

Figure 2 illustrates the closed solution domain Ω(x1,x2) and its boundary Γ. Equilibrium 

problems are steady-state problems in closed domains Ω(x1,x2) in which the solution f(x1,x2) is 

governed by an elliptic PDE subject to boundary conditions specified at each point on the 

boundary Γ of the domain.  

 

Figure 2 : Solution domain for an equilibrium problem. 
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2.2 Finite difference method  

The Finite Difference Method (FDM) is one of the numerical approximation methods that are 

frequently used to solve partial differential equations [13]. The continuous physical domain is 

discretized into a discrete finite difference grid in order to approximate the individual exact 

partial derivatives in the PDE by algebraic finite difference approximations, then the 

approximations are substituted into the PDE to form a set of algebraic finite difference 

equations and, finally, the resulting algebraic equations are solved [13].  

 

For technical purposes, FDMs can give solutions accurately, so they are as satisfactory as one 

calculated from analytical solutions [6]. Figure 3 shows a solution domain which is covered 

by a two-dimensional finite difference grid. The finite difference solution to the PDE is 

obtained at the intersections of these grid lines. Assuming that f  is an unknown function of 

the independent variables x and y, the x-y plane is subdivided into sets of rectangles of sides 

x∆  and y∆ . The subscript i is used to denote the physical grid lines corresponding to 

constant values of x, where ix i x= ⋅ ∆ , and the subscript j is used to denote the physical grid 

lines corresponding to constant values of y, where jy j y= ⋅∆ . Additionally, a 

three-dimensional physical domain can be obtained by a three dimensional grid of planes 

perpendicular to the coordinate axes in a similar manner, where the subscripts i , j  and k  

denote the physical grid planes perpendicular to the x , y  and z  axes. The grid point 

( , , )i j k represents location ( , , )i j kx y z  in the solution domain. 
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i,ji-1,j i,j-1 i+1,ji,j+1
x

y
P(ih,jk)

 

Figure 3 : Solution domain of 2D Laplace Equation and finite difference grid [6]. 

 

By using a second-order central difference approximation, the two-dimensional Laplace 

equation (3) becomes 

 

1, 1, , , 1 , 1 ,

2 2

2 2
0i j i j i j i j i j i jf f f f f f

x y

+ − + −+ − + −
+ =

∆ ∆
 Eq. (6) 

 

Solving Eq. (6) for ,i jf  yields 

 

2 2
1, 1, , 1 , 1

, 22(1 )
i j i j i j i j

i j

f f f f
f

β β

β
+ − + −+ + +

=
+

 Eq. (7) 

where β  is the grid aspect ratio 
x

y
β

∆
=

∆
. 

When the grid aspect ratio β  is unity, i.e. x∆ = y∆ , Eq. (7) simplifies to  
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1, 1, , 1 , 1
, 4

i j i j i j i j

i j

f f f f
f

− + − ++ + +
=  Eq. (8) 

or 

1, 1, , 1 , 1 ,4 0i j i j i j i j i jf f f f f− + − ++ + + − =  Eq. (9) 

 

This can be solved by either of two approaches. The first approach assembles the contribution 

of each point into a global matrix, which can be written as follows: 
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Figure 4 : Pattern of global matrix of 3-D finite difference mesh  

 

and the global matrix is then inverted by direct methods, such as Gauss Elimination. The 

second approach is to repeatedly apply Eq. (8) across all points in an iterative fashion until 

convergence is reached. Convergence is guaranteed as the global matrix in Figure 4 is 

diagonally dominant for the finite difference method. The direct methods and iterative 

methods for solving the system equations are presented in section 2.4 and 2.5. 

 

Three-dimensional problems can be solved by including the finite difference approximations 
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of the exact partial derivatives in the third direction. It is more complicated than 

two-dimensional problems as the size of the system of PDEs increases dramatically and the 

computation becomes expensive. 

 

2.3 Finite element method 

The finite element method is considered as the most general and well understood PDEs 

solution available. “The finite element method replaces the original function with a 

function that has some degree of smoothness over the global domain but is piecewise 

polynomial on simple cells, such as small triangles or rectangles.”[12]  

 

The essential idea of the finite element method is to approach the continuous functions of the 

exact solution of the PDE using piecewise approximations, generally polynomials [15]. A 

complex system is constructed with points called nodes which make a grid called a mesh. 

This mesh is programmed to contain the material and structural properties which define how 

the structure will react to predefined loading conditions in the case of structural analysis. 

Nodes are assigned at a predefined density throughout the material depending on the 

anticipated stress levels of a particular area. 

 

Thus, a basic flow chart of FEM is shown in Figure 5. First, the spatial domain for the 

analysis is sub-divided by a geometric discretization based on a variety of geometrical data 

and material properties using a number of different strategies. Generally, the solution domain 

is descretized into triangular elements or quadrilateral elements, which are the two most 

common forms of two-dimensional elements. Then, the element matrices and forces are 
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formed; then the system equations are assembled and solved. Finally, the results are 

post-processed so that the results are presented in a suitable form for human interaction. 

 

 

Figure 5 : Flow chart for the finite element algorithm. 

 

The finite element method is used to model and simulate complex physical systems. The 

continuous functions are discretized into piecewise approximations, so the whole system is 

broken to many, but finite parts. However, the finite element method can be extremely 

computationally expensive and the available memory can be exhausted, especially when the 

number of grid points becomes large. The resulting system of equations may be solved either 

by direct methods or iterative methods such as Jacobi, Gauss Seidel, Conjugate Gradients or 

other advanced iterative methods such as the Preconditioned Conjugate Gradient (PCG) 

method, Incomplete Cholesky Conjugate Gradient method and GMRES. The direct method 

can provide the accurate solution with minimal round-off errors, but it is computationally 

expensive in terms of both processing and memory requirements, especially for large matrices 

and three dimensional problems because the original zero entries will be filled in during the 

elimination process. The global matrix for linear structural problems is a symmetric positive 
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definite matrix. In general, it is also large and sparse. Consequently, the iterative methods are 

more efficient and more suitable for parallel computation but with lower accuracy (though a 

higher accuracy can be obtained at the expense of computational time) and the risk of a slow 

convergence rate.  

 

Instead of assembling the global matrix, element stiffness matrices can be used directly for 

iterative solution techniques. An element-by-element approximation for finite element 

equation systems was presented in [16], and applied in the context of conventional parallel 

computing in [17]. This approach is very memory efficient (despite the fact that more memory 

is required than storing just the non-zero elements as in the CSR structure introduced in 

section 3.6), computationally convenient and retains the accuracy of the global coefficient 

matrix.  
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2.4 Direct Methods  

Direct methods for solving the system equations theoretically deliver an exact solution in 

arbitrary-precision arithmetic by a (predictable) finite sequence of operations based on 

algebraic elimination. Gauss elimination, Gauss Jordan elimination and LU factorization are 

some of the examples of direct methods.  

 

Consider the system of linear algebraic equations,  

Ax b=  Eq. (10) 

where matrix A  is the coefficient n n×  matrix obtained from the system of equations.  

 

The Gauss elimination procedure is summarized as follows [18]: 

1. Define the n n×  coefficient matrix A , and the 1n×  column vectors x  and 

b , 

11 12 1 1 1

21 22 2 2 2

1 2

n

n

n n nn n n

a a a x b

a a a x b

a a a x b
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     
     =
     
     
     

�

�

� � � � � �

�

 Eq. (11) 

 

2. Perform elementary row operations to reduce the matrix into the upper triangular 

form 

11 12 1 1 1

22 2 2 20

0 0

n

n

nn n n

a a a x b

a a x b

a x b

′ ′ ′ ′     
     ′ ′ ′
     =
     
     

′ ′     

�

�

� � � � � �

�

 Eq. (12) 
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3. Solve the equation of the n th row for nx , then substitute back into the equation 

of the ( 1)n − th row to obtain a solution for 1nx − , etc., according to the formula  

1

1 n

i i ij j

j iii

x b a x
a = +

 
′ ′= − 

′  
∑  Eq. (13) 

 

The number of operations required by Gauss elimination method is 3 2( / 3 / 3)N n n n= − + . 

The Gauss-Jordan method, the matrix inverse method, the LU factorization method and the 

Thomas algorithm are variations or modifications of the Gauss elimination method. The 

Gauss-Jordan method requires more operations than the Gauss elimination method, which is 

3 2( / 2 / 2)N n n n= − + . The matrix inverse method is simple but not all matrices have an 

inverse (there is no inverse matrix if the matrix’s determinant is zero, i.e. singular, and no 

unique solution for the corresponding system of equations). The LU method requires 

34 / 3 / 3N n n= −  multiplicative operations, which is much less than Gauss elimination, 

especially for large systems. 

 

When either the number of equations is small (100 or less), or most of the coefficients in the 

equations are non-zero, or the system domain is not diagonal, or the system of equations is ill 

conditioned1 direct elimination methods would normally be used. Otherwise, an alternative 

solution method for the system of equations is an iterative method. This is desirable when the 

number of equations is large, especially when the system matrix is sparse [13]. 

 

                                                        
1  The condition number of a matrix is the ratio of the magnitudes of its maximum and 
minimum eigenvalues. A matrix is ill conditioned if its condition number is very large. 
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2.5 Iteration Methods  

Beside the direct approach, the iterative approach is another common approach used to solve 

the system of PDEs. Direct methods are systematic procedures; whereas, iterative methods are 

asymptotical procedures with an iterative approach. Generally, direct methods are better for 

full or banded matrices, whereas, iterative methods are better for large and sparse matrices, 

especially for those arising from 3-dimensional PDEs. By assuming an initial guess solution 

vector (0)x , iterative methods attempt to solve a system of equations by finding successive 

approximations and this procedure is repeated until the solution converges to some prescribed 

tolerance. If the matrix is diagonally dominant (i.e. the magnitude of the diagonal entry in 

every row of the matrix is larger than or equal to the sum of the magnitudes of all the other 

entries in this row), or extremely sparse, iterative methods are generally more efficient ways 

to solve the system of equations than direct methods. Stationary iterative methods and 

non-stationary iterative methods are the two main classes of iterative methods to solve a 

system of linear equations. Stationary iterative methods are called stationary because the same 

operations are performed on the current iteration vectors for every iteration (i.e. the 

coefficients are iteration-independent). Non-stationary iterative methods have 

iteration-dependent coefficients. In this sub-section, several stationary iterative approaches 

that are easy to solve and analyse will be presented. 

 

2.5.1 Jacobi Method 

The Jacobi method is the simplest algorithm for solving a system of linear equations. Due to 

the simultaneous iteration of all values, the Jacobi method is also called the method of 
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simultaneous iteration, where all values of 1k
x

+  depend only on the values of k
x . The 

process is then iterated until it converges. 

 

Consider Eq. (10), written in index notation: 

,
1

n

i j j i

j

a x b
=

=∑    ( 1, 2,..., )i n=  Eq. (14) 

The solution vector ix  becomes 

1

, ,
1 1,

1 i n

i i i j j i j j

j j ii i

x b a x a x
a

−

= = +

 
= − − 

 
∑ ∑    ( 1, 2,..., )i n=  Eq. (15) 

 

An initial solution vector (0)x  is chosen. The superscript in parentheses denotes the iteration 

number, where zero denotes the initial solution vector. 

 

Substituting the initial vector (0)x  into Eq.(15), the first improved solution vector (1)x  is 

then 

1
(1) (0) (0)

, ,
1 1,

1 i n

i i i j j i j j

j j ii i

x b a x a x
a

−

= = +

 
= − − 

 
∑ ∑    ( 1, 2,..., )i n=  Eq. (16) 

 

After the k th iteration step, the solution vector ( 1)kx + is 

 

1
( 1) ( ) ( )

, ,
1 1,

1 i n
k k k

i i i j j i j j

j j ii i

x b a x a x
a

−
+

= = +

 
= − − 

 
∑ ∑    ( 1, 2,..., )i n=  Eq. (17) 

This procedure is iterated until it converges to some specified criterion. Eq.(17) can be 

re-written in an equivalent way as  
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( 1) ( ) ( )
,

1,

1 n
k k k

i i i i j j

ji i

x x b a x
a

+

=

 
= + − 

 
∑    ( 1, 2,..., )i n=  Eq. (18) 

 

The Jacobi algorithm is simple and easy to implement on a parallel computing system, 

because the order of processing the equations is immaterial. However, from the point of view 

of numerical analysis, the Jacobi method has a poor convergence property in comparison to 

other iterative methods. Consequently, the Gauss Seidel and successive over-relaxation (SOR) 

methods are introduced in the following sub-sections.  

 

2.5.2 Gauss Seidel Method 

Compared to the independence among all values of ( 1)kx + in the Jacobi method, the Gauss 

Seidel method uses the most recently computed values of all ix  in all computations 

immediately. Thus, the solution vector ( 1)k

ix
+  is 

 

1
( 1) ( ) ( 1) ( )

, ,
1,

1 i n
k k k k

i i i i j j i j j

j j ii i

x x b a x a x
a

−
+ +

= =

 
= + − − 

 
∑ ∑    ( 1, 2,..., )i n=  Eq. (19) 

 

Because the most recent values of ix  are used in the calculations, the Gauss Seidel method 

generally converges faster than Jacobi method [13]. 

 

2.5.3 Successive Over-Relaxation (SOR) Method 

The successive over-relaxation (SOR) method is a numerical method used to speed up the 
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convergence of the Gauss-Seidel method. Here, ω  is a relaxation factor. The successive 

over-relaxation method is equivalent to the Gauss-Seidel method when 1ω = . The Gauss 

Seidel procedure to compute the new value GS

ix ; then the successive over-relaxation update 

applies a scaled version of the Gauss-Seidel update, where ω  is the scaling factor:  

1
( 1) ( ) ( 1) ( )

, ,
1,

i n
k k k k

i i i i j j i j j

j j ii i

x x b a x a x
a

ω −
+ +

= =

 
= + − − 

 
∑ ∑    ( 1, 2,..., )i n=  

Eq. (20) 

 

Eq. (20) can be written in terms of the solution value GS

ix  from Gauss Seidel iteration 

method to yield 

 

( )( 1) ( ) ( 1) ( )k k GS k k

i i i i
x x x xω+ += + −    ( 1, 2,..., )i n=  Eq. (21) 

 

Based on Ostrowski’s Theorem [19]: 

If A is symmetric and positive definite, then for any (0, 2)ω ∈  and any starting vector 

(0)x , the successive over-relaxation (SOR) iterates converge to the solution Ax b= . 

 

When ω <1.0, the system of equations is under-relaxed. When ω =1.0, Eq. (21) becomes the 

Gauss Seidel method. When ω >2.0, the iterative method may diverge. When 1.0<ω <2.0, the 

system of equations is over-relaxed. The maximum rate of convergence is achieved for some 

optimum value of the over-relaxation factor ω , which lies between 1.0 and 2.0 [13]. The 

optimum value of ω  depends on the size of the system of equations and the nature of the 

equations. However, there is no good general method for determining the optimal ω  rather 

than searching by numerical experimentation for a optimal ω . 
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2.5.4 Red-black Successive Over-Relaxation 

With the optimal choice of ω , the successive over-relaxation (SOR) iterative method is the 

recommended method, which converges much faster than the Jacobi and Gauss Seidel 

methods [13]. However, in both the Gauss Seidel and successive over-relaxation (SOR) 

methods, the update of the ( 1)k + th element depends on the update of the k th elements, as 

in Eq. (19) and Eq. (21). There is data dependency between elements and their neighbours. 

This causes a problem if one attempts to perform the updates in parallel, as the computation of 

Eq. (19) and Eq. (20) must wait until the required elements have been computed. In this 

sub-section, Red-black successive over-relaxation, a parallel scheme for the traditional 

successive over-relaxation method, is introduced.  

 

Imagine that the two dimensional finite difference grids are coloured with a red and black 

checkerboard as in Figure 6. With this red-black group identification strategy, it is 

immediately apparent that the solution at the red square (R) depends only on its four 

immediate black neighbours. Similarly, the solution at the black square (B) depends only on 

its four red neighbours. The iteration scheme proceeds by alternating between update of the 

red squares and the black squares. So on an odd-numbered pass of the matrix, only the red 

squares are updated, using the previously computed values of the black squares. On an 

even-numbered pass, the black squares are updated using the newly computed values of the 

red squares. The use of the red-black scheme removes the requirement for each element to 

have immediate access to an updated value of some of its neighbours.  
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Figure 6 : Two-dimensional Red-Black Grid. 

 

2.5.5 Convergence 

The iterative methods attempt to solve the system of PDEs by finding successive 

approximations to the solution from an initial approximation. Convergence of an iteration 

method is achieved when the maximum relative error of the whole system is smaller than the 

tolerance ε  required, i.e. 
( 1)

max

k exact

i i

exact

i

x x

x
ε

+ −
≤ . Since the exact solution is unknown in most 

situations, the relative error at any step in the iterative process is based on the change in the 

values being calculated from one step to the next. Thus, convergence is assumed to be 

achieved when 
1

max

k k

i i

k

i

x x

x
ε

+ −
≤ . “The iterative methods require diagonal dominance to 

guarantee convergence” [13]. Some non-diagonally dominant problems can be rearranged by 

transforming to an equivalent diagonally dominant problem in a straightforward way, such as 

row interchanges. Some non-diagonally dominant system may converge for certain initial 

solution vectors, but convergence is not assured. Diagonal dominance requires that  
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1,

n

ii ij

j j i

a a
= ≠

≥ ∑    ( 1, 2,..., )i n=  Eq. (22) 

with the inequality satisfied for at least one equation.  

 

Based on the discussion in section 2.2, the system of finite difference equations arising from 

the five-point second-order central difference approximation of the Laplace equation is 

always diagonally dominant [13]. Therefore, convergence is assured when the iteration 

methods are applied on the finite difference approach to the solutions of PDEs.  
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2.6 Conjugate Gradient Method 

The conjugate gradient (CG) method, named from the fact that it generates a sequence of 

conjugate vectors, is a non-stationary method for numerical solution. The method proceeds by 

generating vector sequences of iterates, residuals corresponding to the iterates, and searching 

the directions used in updating the iterates and residuals [20]. The residuals of the iterates are 

the gradients of a quadratic functional. Figure 7 demonstrate the performance of Conjugate 

Gradient (CG) for two variables. 

 

 

Figure 7 : The method of Conjugate Gradients [21]. 

 

The method of Conjugate Gradient is:  

Consider Eq. (10),  
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(0) (0) (0)d r b Ax= = −  Eq. (23) 

 

( ) ( )
( )

( ) ( )

T

i i

i T

i i

r r

d Ad
α =  Eq. (24) 

 

( 1) ( ) ( ) ( )i i i ix x dα+ = +  Eq. (25) 

 

( 1) ( ) ( ) ( )i i i ir r Adα+ = −  Eq. (26) 

 

( 1) ( 1)
( 1)

( ) ( )

T

i i

i T

i i

r r

r r
β + +

+ =  Eq. (27) 

 

( 1) ( 1) ( 1) ( )i i i id r dβ+ + += +  Eq. (28) 

 

This method can be used effectively when the coefficient matrix A  is :  

♦ Symmetric (i.e. 
TA A= ) 

♦ Positive definite, defined equivalently as: 

• All eigenvalues are positive 

• 0Tx Ax >  for all nonzero vectors x  

• A Cholesky factorization, 
TA LL=  exists 

 

Compared to relaxation iterative methods, the Conjugate Gradient method converges much 
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faster when the global matrix A  is symmetric and positive definite. For each iteration, the 

conjugate gradient method needs more operations and the global matrix needs to be 

assembled for finite element method, whereas, the relaxation methods are more 

straightforward as fewer operations are required per iteration and updates can be calculated 

directly without need to assemble the global matrix. 

 

To speed-up convergence, preconditioning techniques are used to improve the spectral 

properties of the coefficient matrix A . If the coefficient matrix is ill-conditioned, it is useful 

to use a preconditioner to increase the convergence rate of the conjugate gradient method.  

 

Other non-stationary iterative methods, like generalized minimal residual method and the 

biconjugate gradient method, are not considered in this study as their greater complexity 

makes efficient hardware implementation difficult. 
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2.7 Summary 

The numerical solution of elliptic PDEs by the finite difference method and the finite element 

method is discussed in this chapter. The two general approaches to the solution of linear 

system of equations are presented. Direct methods obtain the exact solution in a finite number 

of operations, but they are not suitable for very large sparse matrices, especially 

3-dimensional problems. Therefore, iterative methods will be considered in this research. In 

the following chapters, the history of the numerical analysis using parallel computers will be 

briefly reviewed. Furthermore, the parallel properties inside these methods will be discussed 

to obtain full utilization of the features of parallel computers.
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Chapter 3 
 

REVIEW AND ANALYSIS OF PARALLEL 

IMPLEMENTATIONS OF NUMERICAL SOLUTIONS 

3.1 Introduction 

The introduction of parallel microprocessor systems is a milestone in the history of scientific 

computing [22]. Based on Moore’s Law, the number of transistors on microprocessors 

doubles roughly every two years; its corollary is that CPU performance should also double 

approximately every two years. In 1971, the first commercially available microprocessor Intel 

4004 was launched, which employed 10 mµ  (i.e. 10000 nm) semiconductor process 

technology. Nowadays, Intel is looking at 11 nm as the next technology node after the 32 nm 

Clarkdale/Arrandale Westmere processor core launched in 2010.  

 

However, due to power and technology issues, the increasing performance of microprocessors 

has lost steam in recent years [23]. Recently, many semiconductor manufacturers have turned 

from single-core to multi-core designs in order to increase the performance of their processors. 
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Multi-core processors and multi-CPU workstations lead the trend to develop dedicated 

parallel systems as opposed to the traditional single microprocessor system. The move to 

parallel computation creates interesting new challenges for software programmers, and 

operating system and compiler developers to adapt their sequential way of thinking to a 

parallel world. However, as with any disruptive technology, this also opens the door to other 

ways of organizing computation. A number of the major supercomputing vendors such as 

Cray and SRC, traditional high-end computing servers from IBM, SGI, Sun and more recent 

companies such as Linux Networx have begun to re-cast vast farms of commodity blade 

servers into FPGA-based hybrid systems [23]. Startups Xtreme Data and DRC have 

developed interface cards to bring high-performance computing to the masses, with 

methodologies to add an FPGA directly onto a commodity PC motherboard [23]. Coupled 

with increasing pressure to decrease costs and time-to-market, reconfigurable hardware can 

provide a flexible and efficient platform for satisfying the performance, area and power 

requirements [24].  

 

In recent years, the use of a GPU (Graphic Processing Unit) to do general purpose 

(non-graphical) scientific and engineering computing has become a popular research topic, 

and has been applied to areas such as database operations [25], N-body simulation [26], 

stochastic differential equations [27] etc. The Tesla 20-series GPU is the latest CUDA 

architecture with features optimized for double precision floating point hardware support, 

with application areas including ray tracing, 3D cloud computing, video encoding, etc. [28]. 

Unlike the traditional complicated CPU, the GPU has a large number of simplified CPU-units 

but no cache. GPU performance can degrade massively if the memory access pattern required 

by the numerical algorithms is not a good match to the architecture of the GPU hardware. 
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Some work has been done to compare the performance of GPUs with FPGAs. In [29] and 

[30], for 2D convolution algorithms for video processing, the performance of the GPU was 

found to be not good enough due to the requirement of a high number of memory accesses. In 

[31], a comparative study of application behaviour on the performance and code complexity 

between GPUs and FPGAs was shown. Also in [32], the performance of applications, 

including Monte-Carlo simulation, a weighted sum algorithm and FFT, was analyzed. 

 

This chapter discusses the promise and problems of reconfigurable computing systems. An 

overview of the chip and system architecture of reconfigurable computing systems is 

presented, as well as the application of these systems. The challenges and opportunities of 

future systems are discussed. 
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3.2 Parallel Computing 

Why parallel? There are many computationally expensive problems in science and 

engineering; we want to solve them in a reasonable amount of time. So there are always 

pressures to alleviate the extremely time consuming nature of simulations. By using the latest 

and fastest processors, a shorter computation time should, in principle, be achieved. However, 

due to problems with thermal management and reliability, the clock speed of new generations 

of processors is no longer rising at a significant rate. Additionally, Gordon Moore, the 

inventor of Moore’s Law, said that Moore’s Law is dead because that transistors would 

eventually reach the limits of miniaturization at atomic levels [33]. Therefore, the introduction 

of parallel processing was a milestone in the history of computing as it provides a way to 

increase performance without increasing clock speed. Now parallel processing is used 

everywhere in real world computational applications, such as atmospheric science, 

mechanical engineering, chemistry, genetics, etc.  

 

Parallel computing, literally, is to process multiple tasks simultaneously on multiple 

processors. Simply, a given task is divided into multiple sub-tasks, which are then solved 

concurrently. The most popular way to evaluate the performance of a parallel machine is to 

compare the execution time of the best possible serial algorithm for the problem with the 

execution time of the parallel algorithm. Speed-up describes the speed advantage of the 

parallel algorithm, as in Eq. (29). 

the execution time of the fastest sequential algorithm
_ ( )

the execution time of the parallel algorithm with  processors
Speed up n

p
=  Eq. (29) 

where n represents problem size. 
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Factors such as synchronization and communication overheads prevent parallel systems from 

achieving linear speed-ups, so in practical systems the achievable speed up will not scale 

linearly with p. 
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3.3 FPGAs & Reconfigurable Computing Systems 

The first-ever Field Programmable Gate Array (FPGA) was invented by Ross Freeman in 

1985 [34]. FPGAs are arrays of reconfigurable logic blocks connected by reconfigurable 

wiring. These form the underlying flexible fabric that can be used to build any required 

function. In the past decade, the capabilities of FPGAs have been greatly improved; modern 

FPGAs also contain highly optimized dedicated functional blocks, e.g. hardware multipliers, 

memory blocks, and even embedded microprocessors. From their origins as simple glue-logic 

to the modern day basis of a huge range of reprogrammable systems, FPGAs have now 

reached sufficient speed and logic density to implement highly complex systems. The latest 

FPGA devices have multi-million gate logic fabrics capable of achieving frequencies up to 

600MHz, large on-chip memory and fast I/O resources [35].  

 

An approach to high performance computing that is growing in credibility is the use of 

FPGA-based reconfigurable hardware to form a custom hardware accelerator for numerical 

computations [36-40]. FPGAs are now widely applied in many areas that can make use of 

massive parallelism. For the right type of application, a reconfigurable computer can rival 

expensive parallel computers that are normally used to accelerate computationally expensive 

algorithms. SRAM-based FPGAs have become the workhorse [41] of many computationally 

intensive applications. This is a result of the rapid improvement in FPGA hardware of the last 

few years (Table 1). Due to technology advances of FPGAs, it has become possible to make 

an increasing level of hardware and software co-operative system available. These 

co-operative systems are used into a wide range of applications, not only high performance 

computing, but also everyday technology like mobile communication [42].. 
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Table 1 : Xilinx Devices Comparison [35]. 

Date 
(Year) 

Device 
(Series) 

Capacity 
(Gates) 

Max. Clock 
(MHz) 

1994 XCV3000 20K 30 
1999 Virtex 1 1M 120 
2000 Virtex Ⅱ 10M 200 
2002 Virtex ⅡPro 20M 300 
2005 Virtex 4 35M 500 
2006 Virtex 5 55M 550 
2009 Virtex 6 150M 600 

 

Floating-point operations on FPGAs are now approaching a level that is competitive 

compared to floating-point operations on standard microprocessors. Reconfigurable 

computing has become an attractive option for numerical computations because of its great 

performance and flexibility. The most obvious benefit of using FPGAs is performance. The 

capability of FPGAs has grown dramatically making 64 bit floating point operations feasible 

and thus their use in large scale scientific and high performance computing intriguing. Thus, 

FPGA-based reconfigurable hardware/software co-processors are suitable for use for 

algorithm acceleration, not only with low cost, but also with a great deal of functional 

flexibility [43]. 

 

Reconfigurable co-processors use FPGAs to accelerate algorithm execution by implementing 

compute-intensive calculations in the reconfigurable substrate. The strength of a 

reconfigurable processor is the ability to customize hardware for the specific requirements of 

the system. Reconfigurable hardware takes care of the regular kernels of computations that 

are responsible for a large fraction of execution time and energy, while the main processor 

executes all the remaining original algorithm tasks and manages reconfigurable specific tasks 

like reconfiguration, reading/writing memory, and I/O control. Put simply, algorithm 
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execution is partitioned between reconfigurable hardware and the main processor.  

 

Reconfigurable computing has many advantages over CPUs and ASICs (Application-Specific 

Integrated Circuits). First of all, it is possible to get greater functionality with simpler 

hardware, as all of the logic functions can be stored in the memory but not required to be 

present in FPGA at all times. Secondly, the logic functionality can be customized to perform 

exactly the operation desired, with higher computation density than CPUs. Last but not least, 

the logic design is flexible, as the functionality can be reconfigured based on the type of 

application desired by using the same resources.  

 

FPGA clock speeds tend to be an order of magnitude slower than the microprocessor [44]. As 

a general rule therefore, the FPGAs should be performing a very large number of arithmetic 

operations on each clock cycle in order to give a significant speed-up. This is done by creating 

many deep pipelines of arithmetic operations, and operating many such pipelines in parallel. 

The term pipeline refers to a set of data processing stages connected and executed in series. A 

deeper pipelined architecture has more stages in the pipeline and fewer logic gates in each 

stage, and therefore, more such computational pipelines can be operated in parallel to increase 

the throughput of the operators. Within fully pipelined designs, the computation latency can 

be fully overlapped so that the results can be generated on every clock cycle. However, very 

high levels of parallelism may lead to situations where the solution is limited by memory 

bandwidth; if there are too many parallel pipelines, then they simply become starved of data. 

Without enough data feeding the hardware, the hardware can not perform computations 

continually. Another concern with FPGA-based approaches is the time taken to transfer the 

data onto and off of the reconfigurable co-processor. These data transfer times may nullify the 
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speed gains achieved by the parallel processing within FPGAs. One more drawback of 

reconfigurable computing design is that the design tool productivity is low compared to other 

approaches, so it takes a long time to come up with a design for a particular application. 
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3.4 Parallel Implementation 

In this section, some of the previous attempts to parallelize the FDM and the FEM on 

different multiprocessor systems are discussed. These attempts are presented in chronological 

order, so that they can also be evaluated in terms of the computational resources available at 

that time.  

 

3.4.1 Parallel FDM Implementations 

The finite difference method is one of the most powerful and widely used approaches to the 

solution of Partial Differential Equations, due to its good accuracy and flexibility [13]. 

However, the finite difference method can be enormously computationally expensive, 

especially when the number of grid points becomes large. Much effort has been made to find 

an efficient solution to FDM solutions for PDEs.  

 

Some earlier efforts on the parallel implementation of the algorithms for discrete elliptic 

equations were reviewed [45]. These include the solution of Poisson’s equations implemented 

on an Illiac IV in 1972 [46], and on the TI-ASC [47] and the solution of Laplace’s equation in 

1974 [48].   

 

Long [49] describes a solution of the Boltzmann equation to model a one-dimensional shock 

wave structure, a boundary layer, and general 3-D flow fields by using the 

Bhatnagar-Gross-Krook (BGK) model combined with a finite difference scheme. The 

optimized algorithm sustained 61 GFLOPs on a 1024-node CM-5.  
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In 1994, a parallel algorithm Simple Parallel Prefix (SPP) was proposed for the compact finite 

difference scheme by Sun [50]. Compared with the traditional finite difference method, the 

compact finite difference scheme has the features of higher accuracy with smaller difference 

stencils and leads to more accurate approximations due to the smaller coefficients of the 

truncation error. The implementation of the simple parallel prefix algorithm on a 16k 

processing elements MasPar MP-1 SIMD parallel computer achieved a speed-up of 1000 

compared to the best sequential algorithm. In addition to the good performance on the SIMD 

machines, the algorithm also performed better than the sequential algorithm on a Cray 2.  

 

Several techniques used to optimize a finite difference algorithm on the CM5, a distributed 

memory parallel processing system by Thinking Machines Corporation, were presented in 

[51]. The processing nodes in the CM5 interact through the control and data networks and all 

activities are coordinated by a control processor. A fat-tree topology data network provides 

point-to-point communication between processing nodes at a rate of at least 5 Mbytes per 

second. The optimized algorithm runs almost 2 times faster than the global CMFortran code. 

 

A domain decomposition algorithm based on an implicit finite difference discretization of the 

2-D Maxwell’s equations was developed to solve the scattering problem on a multiprocessor 

vector supercomputer Cray C98 with 8 CPUs in [52]. Compared to an execution time 

obtained by sequential solution, a speed-up of 7.8 was obtained for an eight-subdomain 

solution. The domain decomposition finite difference algorithm could achieve a speed-up 

close to the physical number of available CPUs for suitable balance factors. 

 

In [53], a parallel 3-D viscoelastic finite difference code was implemented which allowed the 
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work to be distributed across several PCs connected via standard Ethernet or to be run on 

massively parallel supercomputers, like Crays. Because of poor performance of 

communication through Ethernet, the speed-up saturated at a factor of 13 when the number of 

Processing Elements (PEs) becomes larger on a PC cluster. However, the speed-up achieved 

on the Cray T3E was superlinear: a run with 343 processing elements was 370 times faster 

than a serial execution. 

 

3.4.2 Parallel FEM Implementations 

Finite element analysis (FEA) was first introduced by R. Courant (1943) [54], who utilized 

the Ritz method of numerical analysis and minimization of variational calculus to obtain 

approximate solutions to vibration systems. Turneret al in 1956 [55] established a broader 

definition of numerical analysis. They presented the element stiffness matrix for a triangular 

element for structural analysis, together with the direct stiffness method for assembling the 

elements. The term “Finite Element” was first coined by Clough in a paper describing 

applications in plane elasticity. In the early 1960s, engineers used the method for approximate 

solutions of problems in stress analysis, fluid flow, heat transfer, and other areas. In the late 

1960s and early 1970s, the FEM was applied to a wide variety of engineering problems. Since 

the rapid decline in the cost of computers and the phenomenal increase in computing power, 

FEA has produced solutions to an incredible precision. Nowadays, supercomputers are able to 

produce accurate results for all kinds of problems. The method has been generalized into a 

branch of applied mathematics for numerical modelling of physical systems in a wide variety 

of engineering disciplines, e.g., fluid dynamics and electromagnetism.  
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3.4.2.1 Finite Element Machine in NASA  

In late 1970s to the early 1980s, the Finite Element Machine [56], which contained 32 

TMS9900 processors and 32 Input/Output boards with a TMS99/4 controller as shown in 

Figure 8, was completed and successfully tested at the NASA Langley Research Center. The 

aim of this project was to build and evaluate the performance of a parallel computer for 

structural analysis. As shown in Figure 9, an array of microprocessors was connected together 

by 12 local links plus a global bus. An attached unit for floating-point operations was 

associated with each processor. Due to the local memory for each processor, the processors 

can be programmed to perform calculations independently. There is a small minicomputer as a 

front-end controller to code and compile the programs. It is a special purpose computer 

designed for the efficient solution of finite element code. The speed-up for a plane stress 

problem was a factor of 4. 
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Figure 8 : Prototype NASA Finite Element Machine Hardware [57] 

 

 

Figure 9 : FEM block diagram [57]. 
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3.4.2.2 The FEM on the Parallel Machine Cenju 

Cenju (Cenju-1), which employed the MC68020/WTL1167 as a processing element, was first 

launched in 1988. An implementation of the FEM on the parallel simulation machine Cenju 

was introduced in [58] and [59], investigating nonlinear dynamic finite element analysis, 

which is one of the most time consuming problems in FEM. There are two main stages, the 

calculation of the stiffness matrix and the solution of a set of linear equations. They present 

methods of parallelizing the assembly process by using extra buffers for each element of the 

stiffness matrix in order to reduce the synchronization overhead. A speed up of 48 times was 

achieved by eliminating the serial bottleneck on a 64 processor system. Furthermore, by 

parallelizing the solutions of linear equations, a speed-up of 2.9 was attained by parallelizing 

the Lower triangular matrix and Upper triangular matrix (LU) factorization on a 7 processor 

system. Also, a speed-up of 36 was gained by parallelizing the conjugate gradient method on a 

64 processor system.  

 

3.4.2.3 Interactive and Large Scale Finite Element Analysis in the University of 

Manchester 

The University of Manchester developed techniques to drastically reduce the time taken for 

FEA [60]. Instead of using the traditional three stage process FEA which involves: (1) 

pre-processing, (2) equation solution and (3) post-processing, these three tasks are carried out 

concurrently as a single process by using a number of algorithmic techniques as well as 

parallel and distributed computing in their new software architecture. Furthermore, the 

‘element-by-element’ approach was used, where no overall system equation need be 

assembled.  
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Their programs were run on the SGI Origin 3000 machine “Green” with 512 MIPS R12000 

processors and 512 GBytes total memory. For the direct numerical solution of the Navier 

Stokes equations in fluid mechanics, a speed-up of 256 was achieved on 256 processors, 

whilst sustaining an impressive 30% of the CSAR (Computer Services for Academic 

Research) machines’ peak performance [61]. An elastoplasticity problem was demonstrated to 

achieve 116,500 MFLOPs using up to 500 processors. Due to the novel algorithms and 

software architecture applied, which reduced the solution times by up to five orders of 

magnitude, finite element problems that are 2-3 orders of magnitude larger compared with a 

commercial off-the-shelf package could be solved.  
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3.5 FPGA-based High Performance Computer 

Although the growth of the performance of general-purpose computers and parallel 

supercomputers has been significant in the past decade, the real fraction of peak performance 

achievable for most numerical computing applications has generally been very poor. Because 

a large portion of transistors in modern commodity CPUs are utilized to provide flexible data 

flow, the prevalent computer architecture model is not very well suited for timing-consuming 

numerical computing applications. The use of supercomputers can get around this problem, 

but not everyone can afford the high costs of operating and maintaining a supercomputer. 

Therefore, there is a compelling requirement on finding a more powerful, faster but cheaper 

computer system for extremely timing-consuming numerical computing applications, 

especially for 3-D geometrical domains. 

 

Recently, due to the critical requirements for higher speed of program execution, as well as 

the fact that cluster computing systems based on conventional processors are running out of 

room to grow, the use of reconfigurable hardware to form customised hardware accelerators 

for a variety of fields, such as data mining, medical imaging, numerical computations, and 

financial analytics is growing rapidly. By applying FPGAs coprocessors, the power 

consumption and the total cost of ownership can be greatly reduced. As a result, FPGAs have 

been applied in a number of different application areas in the past few years, including [62]: 

 

� Custom hardware.  

� Prototyping and testing integrated circuits. 

� Reconfigurable hardware accelerator. 
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� High performance reconfigurable computing.  

 

FPGAs are cheaper than ASICs for small production runs and able to be reprogrammed for 

functional upgrades in the future. FPGAs are also used to prototype and test integrated 

circuits before costly dies are made. The first two areas have been the most common use of 

FPGAs since FPGAs were first launched in 1985, consistent with the original aims of FPGAs 

hardware and due to their flexibility and short design cycle. Modern FPGA devices allow 

designers to implement complete systems with minimal requirement for off-chip resources, 

which has led to research on implementation of FPGA-based hardware/software 

co-processors within general PCs, which can be used for algorithm acceleration. These will be 

discussed in detail in section 3.6. In this section, several high performance reconfigurable 

computers will be introduced. 

 

3.5.1 Finite difference analysis in a configurable computing machine 

A 2-D heat transfer simulation system using a Splash-2 configurable computing machine is 

described in [63]. As shown in Figure 10, Splash-2 consists of 16 splash array boards, an 

interface board and a SUN SPARC-2 workstation host. Each array board contains 16 

processing elements which consist of one Xilinx XC4010 FPGA and one fast static memory. 
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Figure 10 : The Splash-2 system [63]. 

 

By discretizing the physical domain of the problem, the computation was partitioned into 

many individual computations whose independence allowed for the possibility of calculating 

numerous nodes in parallel. The performance reached up to 3.5 GFLOPs using 16 Splash-2 
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boards at 20 MHz, with a speed-up of nearly 20 000 compared to the performance of the same 

simulation on a Sun SPARC-2 workstation. For this particular application, speed up was 

nearly linearly versus the number of processing elements provided.  

 

3.5.2 Langley’s FPGA-based reconfigurable hypercomputer 2001  

Several pathfinder scientific applications involving floating-point arithmetic were solved by 

NASA Langley Reconfigurable Hypercomputers [64]. A development environment and a 

graphical programming language VIVA was developed and extended by NASA Langley 

collaborating with Star Bridge. 

 

 

Figure 11 : HAL-15 Reconfigurable Computing Board with 10 Xilinx XC4062 chips 

(One FPGA located on the reverse side)[64]  
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Figure 12 : HAL-15 Reconfigurable Computing Board with 10 Xilinx XC2V6000 FPGA 

chips[65] 

 

The NASA HAL-15 Hypercomputers contain a circuit board with ten FPGAs with one FPGA 

located on the reverse side, shown in Figure 11. Each Xilinx XC4062 FPGA contained 62,000 

hardware gates, and the performance could reach 0.4 GFLOPS. Thus, the performance of one 

HAL-15 Hypercomputer is 4 GFLOPS with 10 FPGAs fitted on board. With the rapid growth 

in FPGA capability, performance has grown from 4 to 470 GFLOPS by using the “newer” 

XC2V6000 FPGAs, as shown in Figure 12. 

 

3.5.3 High performance linear algebra operations on Cray XD1 (2004) 

Several deeply pipelined and highly parallelized linear algebra operations were implemented 

on a Cray XD1 in [66]. The hardware architecture of the Cray XD1 is shown in Figure 13. 

The compute blade, which consists of two AMD Opteron processors and one Xilinx Virtex-II 

Pro FPGA, is the basic architectural unit. Each FPGA can access 16 MB SRAM and 8 GB 

DRAM through the RapidArray Processors. 6 compute blades fit into one chassis and a 

typical installation of XD1 contains 12 such chassis, connected by RapidArray external 

switches. 
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Figure 13 : Hardware Architecture of Cray XD1 [66].  

 

Due to the use of their own floating-point units, the design for 64 bit floating-point matrix 

multiply achieved a sustained performance of 2.06 GFLOPs on a single FPGA using an 

SRAM memory bandwidth of 2.1 GB/s and a DRAM memory bandwidth of 24.3 MB/s. Thus, 

148.3 GFLOPs can be gained on a 12-chassis installation of the XD1.  

 

3.5.4 FPGA-based supercomputer Maxwell (2007) 

The FPGA supercomputer “Maxwell” [67], designed as a general-purpose supercomputer for 

high-performance reconfigurable computing, was launched in 2007 at the University of 

Edinburgh in Scotland. Maxwell uses FPGAs as an alternative to conventional 

microprocessors. The system comprises a 32-way IBM BladeCentre chassis hosting 64 Xilinx 

Virtex-4 FPGAs, where the FPGA network consists of point-to-point links between the MGT 

(Multi-Gigabit Transceiver) connectors of adjacent FPGAs, as illustrated in Figure 14. Each 

blade server holds one Intel Xeon CPU and two Xilinx V4 FPGAs, XC4VLX160 on 
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Nallatech H101 plug-in PCI cards and XC4VFX100 on Alpha Data ADM-XRC_4FX plug-in 

PCI cards. 

 

The performance of MCopt (Monte Carlo option pricing), which is a mathematical finance 

model to calculate the value of an option with multiple sources of uncertainty or with 

complicated features, gains a speed-up of 300 compared to the results obtained by using the 

2.8 GHz Intel Xeon processors in the IBM blades. 

 

 

Figure 14 : FPGA connectivity in Maxwell [67]. 
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3.6 FPGA-based Reconfigurable Co-processor Implementation 

The rapid improvement in semiconductor technology in the last decade has led to a steady 

widening of the range of application areas where FPGAs can be applied to achieve massively 

parallel computation. As a result of the increasing computing power of current FPGAs, 

reconfigurable hardware has been increasingly used to form custom hardware accelerators 

within standard computers to achieve numerical computation ([68], [38], [39], [40], [69], [70] 

and [71]). An FPGA-based stand-alone seismic data processing platform was described in 

[72], and from the early 1990s, there were several efforts on FPGA-based solutions to 

accelerate the finite-difference time-domain problem [73], [74]. These applications can 

exploit the parallelism and pipelineability within the solution algorithms in a much more 

thorough way than can be done with standard uniprocessor or parallel computers using 

general-purpose microprocessors. Reconfigurable computing systems bridge the gap between 

the accessibility of general-purpose microprocessors and the performance of special-purpose 

supercomputers. 

 

Many researchers have investigated the use of parallel software and hardware approached to 

FEM acceleration, for example [75], [76], [77], [78], [79], [80] and [81]. In [76], commodity 

DRAM was used due to its large capacity and bandwidth, achieving a processing rate of 570 

MFLOPs. However this approach may not be suitable for many real world applications 

because of the long latency of DRAM memory. In [75] an implementation based around a 

sparse matrix-vector multiplier achieved 1.76 GFLOPs. Researchers have also devoted much 

effort to finding efficient data structures to store the matrix so that the number of memory 

redirections during sparse matrix-vector multiplication will be minimized, as in [82]. This 
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includes the classic Compressed Storage Row (CSR) format that was introduced to store the 

non-zero elements of the sparse matrix contiguously in memory, but the additional data 

structures, which add additional memory access operations, memory band-width pressure and 

cache interference, will affect the performance and parallelism that can be achieved [83].  

 

These solutions obtained impressive speed-up compared to contemporary PCs. Nevertheless, 

there are some obvious bottlenecks which affect the performance achieved in their 

FPGA-based system designs. In these investigations, software algorithms are directly mapped 

onto the FPGA-based systems without modifications or with only limited modifications such 

as instruction rescheduling. Normally, the existing numerical algorithms are well suited for 

commodity CPUs; however they may not be ideal for hardware designs. Therefore, 

well-modified numerical methods, which can exploit the parallelism and pipelineability 

within the algorithms, are desirable. Domain decomposition can play an important role, and 

this will be introduced in later section. 

 

Previously, due to the limitation of logic capacity, hardware designs based on reconfigurable 

accelerators always used fixed-point arithmetic. However, fixed-point arithmetic has poor 

numerical properties, i.e. smaller dynamic range and worse accuracy compared to 

floating-point arithmetic, and would not normally be regarded as acceptable, especially for an 

unpredictable problem. Recently, with the rapid improvements of speed and programmable 

logic within FPGAs, its high potential in numerical analysis using floating-point arithmetic 

has been widely noticed. As shown in [36] and [37], the floating-point arithmetic operations 

can be competitive compared to floating-point operations on general purpose PCs. In this 

research, most of the implementations were applied with 32-bit floating-point arithmetic. 
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3.7 Summary 

Numerical solutions to Partial Differential Equations usually require an extremely large 

amount of computation. The finite difference method is one of the most powerful and widely 

used approaches to the solution to PDEs, due to its good accuracy and flexibility. 

Nevertheless, it can be extremely computationally expensive, especially when the number of 

grid points becomes large. Similarly, the Finite element method usually requires the solution 

of a large system of linear equations repeatedly. Much effort has therefore been spent on 

approaches to parallelization of the kernel operations inside the methods. For a successful 

parallel computing design, the programming models should be independent of the number 

processors.  

 

An overview of the evolution of parallel computing for numerical solutions as well as a brief 

description of the current technologies was given in this chapter. A number of parallel 

implementations of the FDM and FEM were surveyed. They all suffered the same problems: 

synchronization and communication overheads between processors, as well as poor load 

balancing between processors, made the speed-up less than linear.  

 

One approach to the parallel computation of solutions is to use reconfigurable hardware to 

form custom hardware accelerators. FPGA-based reconfigurable computing systems could 

offer a more efficient way to accelerate the numerical solutions to obtain a reasonable 

speed-up at an affordable price. In this chapter, several approaches to numerically intensive 

computation have been described.  

 

In general, 3-dimensional system design for the numerical evaluation of scientific and 
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engineering problems governed by PDEs numerically is computationally demanding and data 

intensive. Solving such problems may easily take traditional CPUs a couple of days, even 

months. Good speed-up can be achieved by using the fastest supercomputers. However, the 

cost in terms of power and energy will be increased dramatically. An alternative is to build 

specific computer systems using ASICs, but this approach requires a long development period, 

and is inflexible and costly. GPUs, provide a new approach and are based around a large 

number of simplified CPU-units. Unfortunately, GPUs are not suitable for problems that are 

data-intensive due to the long latency of memory. Based on the discussion above, coupling an 

FPGA-based platform with a general processor becomes the most feasible way to build a high 

performance “poor man’s computer system” with acceptable flexibility at a reasonable cost. 

Thus, the FPGA-based reconfigurable computing system is used in this research to accelerate 

computationally intensive and data demanding numerical solutions of 3-dimensional PDE 

problems.  

 

In the following chapters, the numerical algorithms and the domain decomposition will be 

formulated and implemented in software to verify the feasibility of this research, and several 

reconfigurable computing approaches based on the implementation of FPGAs will be 

presented and evaluated. 
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Chapter 4 
 

FORMULATION OF THE NUMERICAL SOLUTION 

APPROACHES 

This chapter provides a comprehensive introduction to two numerical approaches to 

computing the solution of partial differential equations, the finite difference method and the 

finite element method. The principal stages of the algorithms and the domain decomposition 

are formulated, and a variety of iteration schemes are evaluated and discussed.  

 

Domain decomposition methods can be applied to numerical problems to break down one 

large problem into a number of smaller interconnected problems. This chapter will introduce 

the domain decomposition approaches used for the hardware and software implementation 

presented in this thesis, namely Fourier decomposition for the FDM and element-by-element 

analysis for the FEM. The 3-D problems use Fourier decomposition in order to obtain a series 

of independent 2-D sub-problems, so the 3-D problems become suitable for parallel 

computing. The element-by-element scheme reduces the memory and communication 

requirements for the solution of large linear algebra equations, because we can calculate the 

sub-domain matrix-vector multiplications in parallel without assembling the global matrix of 

FEM. These approaches were chosen in order to maximize parallelism and to minimize the 
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communication required between sub-domains.    

 

4.1 Software Implementation of Finite Difference Method 

This section formulates the domain decomposition for splitting the 3-dimensional problem 

into a series of independent 2-dimensional sub-problems using Fourier decomposition for a 

cubic 3D domain and the solution of Laplace equation using the finite difference method, and 

describes the software implementation of a FDM simulator. 

 

4.1.1 Domain discretizations 

Firstly, we use the solution of the Laplace equation for a cubic 3D domain as an example. The 

equation will be solved numerically on a grid consisting of nx , ny  and nz  grid points in 

the x , y  and z  directions respectively. For the Fourier decomposition method to be 

applicable, it is required that nz  be a power of 2 because of the use of the Fast Fourier 

Transform. The domain therefore has the appearance shown in Figure 15. For simplicity, it is 

assumed that the domain is x=[0,1], y=[0,1] and z=[0,1]. 
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Figure 15 : The 3-dimensional domain to be solved 

 

The governing 3-dimensional Laplace equation is:  

 

02 =∇ u  or 0
2

2

2

2

2

2

=
∂

∂
+

∂

∂
+

∂

∂

z

u

y

u

x

u
 Eq. (30) 

 

The Dirichlet boundary conditions are:  

 

i) 1( , )u f y z=  for 0, [0,1]x y= =  and [0,1]z =    (a) 

ii) 2 ( , )u f y z=  for 1, [0,1]x y= =  and [0,1]z =    (b) 

iii) 3( , )u f x z=  for [0,1], 0x y= =  and [0,1]z =    (c) 

iv) 4 ( , )u f x z=  for [0,1], 1x y= =  and [0,1]z =    (d) 

v) 0u =  for [0,1], [0,1]x y= =  and 0z =         (e) 

vi) 0u =  for [0,1], [0,1]x y= =  and 1z =         (f) 

Eq. (31) 
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Note that the use of a zero boundary conditions for z=0 and z=1 does not entail a loss of 

generality, since a Laplace equation and, in general, a Poisson equation with a 

non-homogeneous boundary condition: 

 

vii) 5 ( , )u f x y=  for [0,1], [0,1]x y= =  and 0z =    (g) 

viii) 6 ( , )u f x y=  for [0,1], [0,1]x y= =  and 1z =    (h)  
 

 

can be transformed to a Poisson equation satisfying (a-f) using the transformation 

5 6(1 ) ( , , ) ( , , )u u z f x y t zf x y t→ + − + during the pre-processing stage, and the inverse 

transform in the post-processing. 

 

Even though only the Laplace equation is treated in this chapter, the same procedure can be 

applied to the Poisson equation. 

 

4.1.2 Fourier Decomposition 

Here a solution method of the partial differential equation, which uses the Fast Fourier 

Transform, is introduced. In reality, a 3-D problem of size N N N× ×  is too big to be solved 

efficiently in hardware. It would need to be broken down into a series of smaller problems 

using domain decomposition methods. However, standard domain decomposition approaches, 

based on matrix partition methods, may be inefficient as each sub-domain needs to access the 

boundaries of other sub-domains, which have not been solved yet. Nevertheless, this problem 

can be solved by using Fourier decomposition methods. In this case, the 3D problem can be 

transformed into N  2D problems. These 2D problems represent the Fourier coefficients of 
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the solution in the z  direction. The important feature of this is that for a linear problem, 

these 2D problems are completely decoupled from each other, and can be solved in isolation 

from one another. As a result, the 2D problems (which are small enough to be efficiently 

solved in hardware) can be solved in parallel to give very fast solution. Alternatively, if the 

problem is linear in the y  direction, we can use the Fourier decomposition method again to 

further decompose each 2D problem down into N  1D problems, which are then solved in 

parallel. The parallelism is suitable to be implemented in hardware. We use the Fast Fourier 

Transform (discrete) [84] to obtain the Dirchlet boundary conditions and Neumann boundary 

conditions of the PDE. 

 

Consider Eq. (30) and let  

 

( ) ( ) ( ) ( ) ( )
0 1

, , , cos 2 , sin 2m m

m m

u x y z u x y m z v x y m zπ π
∞ ∞

= =

= +∑ ∑  Eq. (32) 

 

The function ( , , )u x y z  used in the Fourier decomposition is periodic in the z direction, but 

this is not a significant restriction. For a real system, the domain is finite; whether the function 

is periodic or not outside the domain in z direction is immaterial, because what happens 

outside the domain is not a problem to the method of analysis. The required behaviour within 

the domain can be obtained by an appropriate selection of the Dirchlet or Neumann boundary 

conditions. 

 

Checking the boundary conditions: 

i) at y=1, z=(0,1) and x=(0,1) we have 
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( ) ( ) ( ) ( )
0 1

( ,1, ) ,1 cos 2 ,1 sin 2m m

m m

u x z u x m z v x m zπ π
∞ ∞

= =

= +∑ ∑ . By choosing the value 

of the functions ( ),1mu x  and ( ),1mv x  so that 

( ) ( ) ( ) ( ) ( )
0 1

( ,1, ) , ,1 cos 2 ,1 sin 2m m

m m

u x z f x z u x m z v x m zπ π
∞ ∞

= =

= = +∑ ∑ .  

The boundary value of the functions can be determined by Fourier transform for 

the continuous problem. For the discrete problem, the Fast (discrete) Fourier 

transform can be used instead. 

ii) at y=0, we have  

( ) ( ) ( ) ( )
0 1

( ,0, ) ,0 cos 2 ,0 sin 2 0m m

m m

u x z u x m z v x m zπ π
∞ ∞

= =

= + =∑ ∑ . This would imply 

( ) ( ),0 ,0 0m mu x v x= =  using the orthogonality property of ( )cos 2m zπ  and 

( )sin 2m zπ . 

iii) at z=0, we have 

( ) ( ) ( ) ( ) ( )
0 1

, ,0 , cos 2 0 , sin 2 0 0m m

m m

u x y u x y m v x y mπ π
∞ ∞

= =

= + =∑ ∑   

giving ( )
0

, 0m

m

u x y
∞

=

=∑  

iv) at z=1, we have 

( ) ( ) ( ) ( ) ( )
0 1

, ,1 , cos 2 1 , sin 2 1 0m m

m m

u x y u x y m v x y mπ π
∞ ∞

= =

= ⋅ + ⋅ =∑ ∑   

also gives ( )
0

, 0m

m

u x y
∞

=

=∑  

v) at x=0, we have  

( ) ( ) ( ) ( )
0 1

(0, , ) 0, cos 2 0, sin 2 0m m

m m

u y z u y m z v y m zπ π
∞ ∞

= =

= + =∑ ∑ . This would imply 
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( ) ( )0, 0, 0m mu y v y= =  again using the orthogonal property of ( )cos 2m zπ  and 

( )sin 2m zπ . 

vi) at x=1, we have 

( ) ( ) ( ) ( )
0 1

(1, , ) 1, cos 2 1, sin 2 0m m

m m

u y z u y m z v y m zπ π
∞ ∞

= =

= + =∑ ∑ . This would imply 

( ) ( )1, 1, 0m mu y v y= =  using the orthogonality property of ( )cos 2m zπ  and 

( )sin 2m zπ . 

Using the Fourier transform, we are going to transform the partial differential equation (PDE) 

in the form of Eq.(30) into PDEs with respect to x  and y  only by putting Eq. (32) into 

Eq.(30), we have 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

0 1
2
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0 1
2
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0 1
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, cos 2 , sin 2

, cos 2 , sin 2

, cos 2 , sin 2
0

m m

m m

m m

m m

m m

m m

u x y m z v x y m z

x

u x y m z v x y m z

y

u x y m z v x y m z

z

π π

π π

π π

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

∂ +

∂

∂ +

+
∂

∂ +

+ =
∂

∑ ∑

∑ ∑

∑ ∑

 Eq. (33) 
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2 2

2 2
0 1

, 4 cos 2 , 4 sin 2

, ,
cos 2 sin 2

, ,
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m m
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m z m z

x x
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π π

∞ ∞
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∞ ∞

= =
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∑ ∑

∑ ∑

∑ ∑

 Eq. (34) 

 

Using the orthogonality properties of the cosine and sine function, which are 



Chapter 4: Formulation of the Numerical Solution Approaches 

- 68 - 

( ) ( )
1

0
cos 2 cos 2m z k z dzπ π∫

( )( ) ( )( )
1

1
2 0

cos 2 cos 2m k z m k z dzπ π = − + + ∫  


 ==

=
otherwise

mkfor

kmδ2
1

01
 

Eq. (35) 

 

( ) ( )
1

0
sin 2 sin 2m z k z dzπ π∫  

( )( ) ( )( )
1

1
2 0

cos 2 cos 2m k z m k z dzπ π = − − + ∫  


 ==

=
otherwise

mkfor

kmδ2
1

00
 

Eq. (36) 

 

( ) ( )
1

0
sin 2 cos 2m z k z dzπ π∫  

( )( ) ( )( )
1

1
2 0

sin 2 sin 2m k z m k z dzπ π = − + + ∫  0=  

Eq. (37) 

 

Eq. (34) becomes 

( ) ( )
( )

2 2
2 2

2 2

, ,
4 , 0m m

m

u x y u x y
m u x y

x y
π

∂ ∂
+ − =

∂ ∂
 Eq. (38) 

and 

( ) ( )
( )

2 2
2 2

2 2

, ,
4 , 0m m

m

v x y v x y
m v x y

x y
π

∂ ∂
+ − =

∂ ∂
 Eq. (39) 

 

subject to the boundary conditions  

i) at x=0 ( ) ( )0, 0, 0m mu y v y= =      

ii) at x=1 ( )1,m mu u y=  and ( )1,m mv v y=    

iii) at y=0 ( ) ( ),0 ,0 0m mu x v x= =   

Eq. (40) 
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iv) at y=1 ( ) ( ),1 ,1 0m mu x v x= =  

 

Thus the original 3D problem has been composed into a series of nz  2D slices 

(corresponding to different values of m  in Eq. (38) and Eq. (39)), which are decoupled and 

can be solved separately without any requirement for exchange of data or synchronization 

between the slices. 

 

The same procedure can also be applied to a time dependent problem, such as the parabolic 

diffusion equation, which represents the time dependent consolidation problem, time 

dependent electrical field problem, and heat diffusion problem, which has the form: 

t
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2

 Eq. (41) 

 

The method is even applicable to some nonlinear problems, such as the non-linear form: 
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and 
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 Eq. (44) 

 

The method is applicable as long as the domain is uniform in the direction of the Fourier 

Transform i.e. the z-direction in the current configuration and the material non-linearity is not 
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included in that direction. The principle of superposition must apply therefore only linear 

system in z direction will be allowed for Fourier decomposition to work. In civil engineering, 

Fourier decomposition is widely applicable for “long” structures, e.g. roads and dams where 

the cross section is constant for a long distance. Fourier decomposition is also widely used in 

the finite strip method and the finite layer method.  

 

4.1.3 The Finite Difference Method 

 

y∆

1,i j

mu
+

, 1i j

mu
−

, 1i j

mu
+

,i j
mu

1,i j

mu
−

x∆

 

Figure 16 : 2D finite difference grid 

 

The 2D solution domain is shown in Figure 16, covered by a two-dimensional grid of lines. 

The intersections of these grid lines are the grid points at which the finite difference solution 

to the PDE after Fourier decomposition is to be obtained. As shown in Figure 16, these 

equally spaced grid lines are perpendicular to the x and y axes and the uniform distances are 

x∆  and y∆ , respectively. The subscript i  is used to denote the physical grid lines 
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corresponding to constant values of x , where ix i x= ⋅∆ , and the subscript j  is used to 

denote the physical grid lines corresponding to constant values of y , where jy j y= ⋅∆ . 

Therefore, grid point ( , )i j  is corresponding to location ( , )i jx y  in the solution domain. 

Also, the subscript notation is used to denote the dependent variable at the grid point which 

uses the same subscript, i.e. ,( , ) i j

m i j mu x y u= .    

 

If Eq.(38) is to be solved using finite difference method then, it can be written as 

 

( ) ( )
( )

2 2
2

2 2

, ,
, 0m m

m

u x y u x y
u x y

x y
λ

∂ ∂
+ − =

∂ ∂
 Eq. (45) 

where  
2 2 24mλ π= , and Eq. (45) can be approximated as 

 

1, 1, , , 1 , 1 ,
2 ,

2 2

2 2
0

i j i j i j i j i j i j
i jm m m m m m
m

u u u u u u
u

x y
λ

+ − + −+ − + −
+ − =

∆ ∆
 Eq. (46) 

 

Choosing x y∆ = ∆ , we have   

1, 1, , 1 , 1
,

2 24

i j i j i j i j
i j m m m m
m

u u u u
u

xλ

− + − ++ + +
=

+ ∆
 Eq. (47) 

 

Eq. (47) must be modified at the boundaries. For example, at 0,1u , Eq. (47) gives a reference 

to a point outside the domain at location ( 1,0)− . If 0,1u  lies on a Dirichlet boundary, no 

update on the value of u  is performed, so Eq. (47) is not evaluated, and there is no problem. 

If 0,1u  lies on a Neumann boundary condition, the reflecting boundary condition is enforced 

by using a “virtual point” at ( 1,1)− , whose behaviour exactly mirrors the behaviour of the 
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corresponding point at ( 1,1)+ . Thus the value 1,1u−  is substituted by the value of 1,1u , and 

then the equation solved as normal. A similar procedure is applied whenever 

0, 1, 0i i nx j= = − =  or 1j ny= − .   

 

And the same procedure applied on Eq. (39), then we have 

1, 1, , 1 , 1
,

2 24

i j i j i j i j
i j m m m m
m

v v v v
v

xλ

− + − ++ + +
=

+ ∆
 Eq. (48) 

 

The value of ( ,1)mu x  and ( ,1)mv x  can be found from 

( ) ( ) ( ) ( )
0 1

( , ) ,1 cos 2 ,1 sin 2m m

m m

f x z u x m z v x m zπ π
∞ ∞

= =

= +∑ ∑  Eq. (49) 

 

4.1.4 Fourier Decomposition in the y direction and Exact Solution 

We can use the Fourier transform again for the y direction to transform the partial differential 

equation (PDE) in the form of Eq. (38) and (39) into an ordinary differential equation (ODE) 

by assuming 

( ) ( ) ( ) ( ) ( )
0 1

, cos 2 sin 2m mn mn

n n

u x y u x n y a x n yπ π
∞ ∞

= =

= +∑ ∑  Eq. (50) 

 

And 

( ) ( ) ( ) ( ) ( )
0 1

, cos 2 sin 2m mn mn

n n

v x y v x n y b x n yπ π
∞ ∞

= =

= +∑ ∑  Eq. (51) 

 

Putting Eq. (50) into Eq. (38), we have (only mu  is shown as mv  is the same but with 
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different coefficients): 
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Eq. (52) 
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Eq. (53) 

 

Using the orthogonal properties of the cosine and sine function, Eq. (53) becomes 

( )
( ) ( )

2
2 2 2

2
4 0mn

mn

d u x
m n u x

dx
π− + =

 
Eq. (54) 

 

The exact solution of Eq. (54) is 

2 2 2 2
1 2( ) sinh(2 ) cosh(2 )mnu x C m n x C m n xπ π= + + +  Eq. (55) 

 

subject to the boundary conditions  

v) at x=0 0== mm vu  

vi) at x=1 ( ) ( ) ( ) ( ) ( )
0 1

1, 1 cos 2 1 sin 2m mn mn

n n

u y u n y a n yπ π
∞ ∞

= =
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Eq. (56) 
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and the coefficients can be found using the orthogonality property of the cosine and sine 

terms. 

1 2(0) sinh(0) cosh(0) 0mnu C C= + =  Eq. (57) 

2 0C =  Eq. (58) 

 

Putting Eq. (58) into Eq. (55), we have 

2 2
1( ) sinh(2 )mnu x C m n xπ= +  Eq. (59) 

 

Therefore 
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Eq. (60) 

 

If the exact solution of Eq. (54) is not available, using the finite difference method, Eq. (54) 

can be written as 
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Eq. (61) 

where 2 2 2 24 ( )m nλ π= + . Eq. (61) can be approximated as 
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=

+ ∆  
Eq. (63) 
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For finite difference 
1 1

2 2
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2mn mn
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u u
x

u
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= + ∆   
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+ −
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sinhsinh ∆−+∆+
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( )x

xx

λ

λλ

sinh

coshsinh2 ∆
=  

( )x∆= λcosh2  ...
12

2
44

22 +
∆

+∆+=
x

x
λ

λ    Eq. (64) 

 

4.1.5 Iteration Schemes 

Based on the discussions in section 2.5, relaxation methods are considered here, because the 

matrices arising from the system of finite difference equations are generally very large and 

sparse, especially for 3-dimensional system domain.  

 

The finite difference method based on Jacobi iteration is: 

 

, 1 , 1 1, 1,1
, 2 24

k k k k

i j i j i j i jk

i j

u u u u
u

xλ
+ − − ++

+ + +
=

+ ∆
 Eq. (65) 

where the superscript ( 0,1, 2, )k k = …  denotes the iteration number, λ  is a coefficient from 

Fourier decomposition with 2 2 24mλ π= . An initial approximation ( 0)k =  must be made 

for ,i ju  to start the finite difference process. 

 

The Gauss Seidel method, which is applied to the finite difference solution to the Laplace 

equation, is as follows:  
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1 1
, 1 , 1 1, 1,( 1)

, 2 24

k k k k

i j i j i j i jGS k

i j

u u u u
u

yλ

+ +
+ − − ++

+ + +
=

+ ∆
 Eq. (66) 

 

The successive over-relaxation (SOR) method becomes like:  

 

1 ( 1)
, , , ,( )k k GS k k

i j i j i j i ju u u uω+ += + −  Eq. (67) 

where ω is a relaxation factor, which lies between 0.0 and 2.0.  

 

4.1.6 Software Implementation 

This sub-section describes and analyses the software simulation of the FDM for 1 dimension, 

2 dimensions, and 3 dimensions. A software simulator for the FDM was written in C 

Language in order to understand the processes and operations of the FDM better, to allow the 

functional verification and validation of the hardware implementation, and the most important 

is to provide a baseline against which speed is measured. Fast Fourier Transform (FFT), 

written in C based on modified Numerical Recipes Software [100], is used for Fourier 

decomposition process. The software also acts as an interface to the reconfigurable computing 

platform. 

 

The procedure used by the simulation is illustrated in Figure 17. It first reads what kind of 

FDM needs to be simulated and which boundary conditions it has. It then decides which 

method will be used, and then compares the results in different methods to get ready for the 

hardware simulation.  
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Figure 17 : 3D FDM simulation flow graph 

 

Solution of the Partial Differential Equation using the FFT, requires that the domain to be 

uniform in one of the directions and in this direction no variation of material property is 

allowed. Usually, we assume that this direction is the z -direction.  
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4.2 The Finite Element Method 

The mathematical basis of the finite element method is introduced in this section, from the 

1-D linear solid element to 3-D tetrahedral element. The basic flow chart of FEM is shown in 

Figure 5. The first step of FEM is to break up a continuous physical domain into smaller 

sub-domains, for example, triangular for 2-D domains, while tetrahedral for 3-D domains. 

Then, the mesh generation is an important step which will determine the approximation 

accuracy, however, the common mesh generation methods integrate complex data structures 

which can not be implemented effectively on hardware devices. So, the main effort is spent on 

accelerating the solution of large linear system equations.  

 

1-D linear solid element and 2-D rectangular plane strain element are introduced to explain 

basic concepts about finite element analysis. Nowadays, 3-dimensional finite element 

modelling is widely applied, which gives a more realistic solution. However, the 3-D finite 

element method requires a large amount of computation power and memory in order to solve 

the large but sparse matrix-vector system of equations while losing the ability to run on all but 

the fastest computers effectively. Therefore, an iterative element-by-element scheme is used 

for the solution of 3-D finite element analysis. 

 

4.2.1 1D Linear Solid Element 

A 1D linear solid system, with n elements connected through nodes 0-n, is shown in Figure 18. 

This is a dynamic solid element in the form of a bar with Young’s modulus E , material 

density ρ , cross-sectional area A  and element length of l . The node number 0 is free, 



Chapter 4: Formulation of the Numerical Solution Approaches 

- 79 - 

element 1 has nodes 1 and 2 while element 2 has nodes 2 and 3, and so on. The node number 

n is fixed.  

 

The Governing differential equation for dynamic behaviour is:  

2 2

2 2
0

u u
E

x t
ρ

∂ ∂
− =

∂ ∂
 Eq. (68) 

which can be written as 

2 2
2

2 2
0

u u
c

x t

∂ ∂
− =

∂ ∂
 Eq. (69) 

where 
E

c
ρ

=  is called the wave velocity. 

 

 

 

Figure 18 : 1D finite element mesh 

 

1 1 2 2( ) ( ) ( )u x N x u N x u= +  Eq. (70) 

where 1N  and 2N  are called the shape functions. 

 

A simple set of shape functions for the 1D linear element is:  

1( ) 1
x

N x
l

= −  and 2 ( )
x

N x
l

=  Eq. (71) 

when 0x = , 1 1N =  and 2 0N = , as for x l= , 1 0N =  and 2 1N = . 
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The total mass of the element iu  is eM Alρ=  and this is divided into two equal parts and, 

using the lumped mass scheme, assigned to each side node, then we have 

1 0

0 12e

Al
M

ρ  
=  

 
 Eq. (72) 

 

Direct mass lumping drives a diagonal mass matrix, which can be stored simply as a vector 

and offers computational advantages under certain simulations, such as the inverse of a 

diagonal matrix is also diagonal. 

 

Since there two nodes for a single element with one degree of freedom at each node, the 

lumped mass matrix and stiffness matrix are as follows: 

















=

2

1

10

01

2 u

uAl
uM ee

��

��
��

ρ
 Eq. (73) 

 


















−

−
=

2

1

11

11

u

u

l

EA
uK ee  Eq. (74) 

 

For the element eigenvalue problem 

eeee uMuK 2ω=  Eq. (75) 

 

The eigenvectors and eigenvalues are 









=
1

11
eu  01 =eω  Eq. (76) 

 

and 
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








−
=

1

12
eu  

ρ
ω

E

l

e 2
2 =  Eq. (77) 

 

The critical time step derives from the equation with the largest eigenvalue of the element 

eigenvalue problem Eq. (75), where max 1 2

2
max( , )e e e E

l
ω ω ω

ρ
= =  . Therefore the critical time 

step is [85] : 

 

E
ltcrit

ρ

ω
==∆

max

2
 Eq. (78) 

where the time step must be smaller than the critical time step to obtain stability for the 

explicit scheme used. 

  

From Eq.(73) and Eq.(74) , the assembled global mass matrix and stiffness matrix are in the 

form of: 

1 1

2 2

3

4

1 0 0 0 .... 1 0 0 0 ....

0 1 1 0 0 .... 0 2 0 0 ....

0 0 1 1 0 .... 0 0 2 0 ....
2 2

0 0 0 1 1 .... 0 0 0 2 ....

.... .... .... .... .... .... .... .... .... .... ....
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u u
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u
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 
 
 
 
 
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 
 

��

��

 Eq. (79) 

and 

1 1

2 2

3 3

4 4

1 1 0 0 .... 1 1 0 0 ....

1 1 1 1 0 .... 1 2 1 0 ....

0 1 1 1 1 .... 0 1 2 1 ....

0 0 1 1 1 .... 0 0 1 2 ....

.... .... .... .... .... .... .... .... .... .... ....

u u

u u
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Ku u u
l l

u u

− −     
    − + − − −    
    = =− + − − −
    
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 Eq. (80) 
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The global dynamic equation is:  

0Mu Ku+ =��  Eq. (81) 

 

Using central difference scheme, the global dynamic equation becomes 

0
2

2
=+

∆

−+
∆−∆+

t
ttttt

uK
t

uuu
M  Eq. (82) 

 

Then solve out t tu +∆ : 

M

uKt
uuu

t
ttttt

2

2
∆

−+−=
∆−∆+  Eq. (83) 

 

or applying Neumman boundary condition at x=0 and Direchlet boundary condition at x=nl  

 

1 12 0 (2 )t t t t t t t t

i i i i i i iu u u const u u u+∆ −∆

+ += − + + × − −        (i=0)   

12 0 (2 0)t t t t t t t

i i i i i iu u u const u u+∆ −∆

−= − + + × − −          (i=n) 

1 12 0 (2 )t t t t t t t t

i i i i i i iu u u const u u u+∆ −∆

− += − + + × − −       (i=1 to n-1) 

Eq. (84) 

where 
2

2

2
0

,i

E t
const

l Mi iρ

∆
= −

×
. 

 

4.2.2 2D Rectangular Plane Strain Element 

The rectangular element, one of the simplest 2D elements for 2D finite element analysis, has 4 

nodes at each corner. Consider a rectangular element, Figure 19, with nodes 1, 2, 3 and 4 with 

local coordinates (xi,yi) which are (-a,-b), (a,-b), (a,b) and (-a,b) respectively. The 

displacement at the nodes are (u1,v1), (u2,v2), (u3,v3) and (u4,v4) respectively.  
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Figure 19 : 2-dimensional rectangular plane strain elements 

 

The next step is the key finite element approximation – assuming that the displacement at any 

point within the element depends only on the displacement of the nodes therefore 
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Eq. (85) 
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Eq. (86) 

where 1N , 2N , 3N , 4N  are called the shape functions, a simple set of shape functions for 

the 4-noded element is: 
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Or 
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The mass matrix is given by 
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Using nodal integration in order to obtain a diagonal matrix, we have 
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The stiffness matrix is in the form of 
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The global dynamic equation is: 

0=+ uKuM ��  Eq. (96) 

 

using central difference scheme, the global dynamic equation becomes 
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4.2.3 3D Tetrahedral Element  

The 3D finite element method can handle greater detail and more complex characterizations 

of construction materials, thus a powerful and realistic analysis of almost any structure can be 

provided. An element by element approach is a promising one to use on FPGA based 

hardware accelerators due to the simplicity of data structures required, and also the 

minimization of communications overheads. In this sub-section, a tetrahedral element, which 

is widely used in 3D finite element analysis, is introduced.  

 

4.2.3.1 3D Mesh Generation 

In finite element analysis, the domain of the problem is discretized into a finite number of 

sub-regions or sub-domains firstly. Tetrahedrons are widely employed in 3-D finite element 

analysis to achieve the geometric discretization of the problem domain. Figure 20 shows a 

simple example of the discretization of the three dimensional solution domain into a mesh of 

4-noded tetrahedral elements. Firstly, a problem is subdivided into a number of scaled 

hexahedrons. Then the hexahedron will be subdivided into six tetrahedrons. 
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Figure 20 : Subdivision of the domain into Three-Dimensional Tetrahedral Elements 
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Then one of the six tetrahedrons in Figure 20 is assumed with global coordinates ( , , )i j kx y z  

and the displacement at the nodes are 1 1 1( , , )u v w  2 2 2( , , )u v w   3 3 3( , , )u v w  4 4 4( , , )u v w  

respectively, as in Figure 21.  

4
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z

 

Figure 21 : 3D Tetrahedral Element 

 

Next step is the key finite element approximation – Assume that the displacement at any point 

in the element depends only on the displacement of the nodes therefore 

( ) ( )∑
=

=
4

1

,,,,
i

ii uzyxNzyxu  Eq. (100) 

( ) ( )∑
=

=
4

1

,,,,
i

ii vzyxNzyxv  Eq. (101) 

( ) ( )∑
=

=
4

1

,,,,
i

ii wzyxNzyxw  Eq. (102) 

where 1N  to 4N  are called the shape functions.  

 

A simple set of shape functions are: 
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The mass matrix is given by  
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Using nodal integration, we have 
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The derivation of mass matrix and stiffness matrix can be found in [101] and [102]. The 

stiffness matrix is in the form of 
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4.2.3.2 Preconditioned Conjugate Gradient method 

As mentioned in subsection 3.3.2, iterative methods are very efficient and suitable for the 

numerical solution of three dimensional finite element analysis. Moreover, the conjugate 

gradient method is an effective algorithm for the numerical solution of symmetric positive 

definite systems Ax b=  [86]. The method proceeds by generating vector sequences of 

iterates, residuals corresponding to the iterates, and search directions used in updating the 

iterates and residuals. If the coefficient matrix A is ill-conditioned, i.e. it has a large condition 

number, it is often useful to use a preconditioning matrix M, where 1 1M A− −≈ and solve the 

system 1 1M Ax M b− −≈  instead as the rate of convergence for iterative linear solvers usually 

increases as the condition number of a matrix decreases. The main purpose of preconditioning 

is to reduce the condition number of the coefficient matrix. The simplest preconditioning 

matrix M is Jacobi preconditioning, which is a diagonal matrix comprising the diagonal 

elements of A only. 
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 Eq. (111) 

 

The algorithm of the preconditioned Conjugate Gradient method is shown below[87].  

 

1. Make an initial estimate 0x  

2.    0 0r b Ax= −          Eq. (112) 

     1
0 0h M r−=   

     0 0p h=                                                                                            

3. For k=0, 1, 2 … 



Chapter 4: Formulation of the Numerical Solution Approaches 

- 92 - 

    kk Ap=ω          Eq. (113) 
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    kkkk pxx α+=+1  

    kkkk rr ωα−=+1         Eq. (115) 

     (Until 1 22

kr bε≤ , where ||·|| denotes the L2-norm, i.e. the Euclidean norm, or           

1
22 2

k k kx x xε+ − ≤ ) 

     1
1 1k kh M r−

+ +=  

       
1 1

T

k k
k T

k k

h r

h r
β + +=  

       1 1k k k kp h pβ+ += +                                                                                 

 

4.2.3.3 Software Implementation 

A software simulator for finite element analysis has been developed for this study. It has the 

same facility as FDM simulator to communicate with the reconfigurable computing platform.  

 

Generally, the first thing the simulator does is to initialise the software environment, i.e. the 

selection of element type and the dimension of the solving problem. After that, the material 

property parameters, such as E, ν , ρ , α , l , can be supplied. Then the stiffness matrices and 

mass matrices are assembled by assigning the connectivity of elements. With the boundary 

conditions and loads, the processing can start to solve the system equations. Due to the 

domain decomposition scheme used to achieve greater parallelism, a run time comparison 
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between the sequential program and the parallel implementation on reconfigurable computing 

boards will be carried out.   

 

4.2.3.4 Domain Decomposition 

 

 

kk Ap=ω

kp

kp

kk Ap=ω

 

 

Figure 22 : Matrix Multiplication Parallelization 

 

Because the resulting system is characterized by a global stiffness matrix which is usually 

large and sparse, but needs to be generated only once, the software host is used to scatter the 

whole problem into a series of sub-problems that can be fed into parallel computing systems. 

The element-by-element (EBE) solution scheme was studied since 1983, as given in [16] [17] 

[88] [89], where the element contributions are computed independently.  

 

Based on the three-dimensional tetrahedral finite elements in Figure 20, the global stiffness 

matrix A is built up by assembling the element stiffness matrices Ke. Thus, the matrix-vector 
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multiplication Eq. (113) can be modified as shown in Figure 22. The data flow on the 

left-hand side is for the normal software solution, in which the global stiffness matrix A is 

assembled first, and then the matrix multiplication is performed. The element-by-element 

approach used for parallel computing is shown on the right-hand side of Figure 22. Instead of 

assembling the global stiffness matrix A, each local stiffness matrix Ke is directly multiplied 

its element vector pe_i, which is scattered from the conjugate gradient vector pk. Then the 

vector Kpe_i is gathered together in order to obtain the same final result as k kApω = .  

 

The basic element-by-element (EBE) solution strategy is described below: 

1. Preparation 

For elements 0,1,2,e = … , do 

obtain element matrix and vector eb  

apply appropriate boundary conditions 

End do 

2. Initial 0x  

Calculate 0 0r b Ax= −  

     Preconditioning 1
0 0h M r−=  

     0 0p h=  

3. For 0,1, 2,k = …  iterate 

Scatter p  

Element-by-element matrix-vector multiplication ke e ek pω =  

Assemble kω  from element-by-element keω  



Chapter 4: Formulation of the Numerical Solution Approaches 

- 95 - 

k

T

k

k

T

k
k

p

rh

ω
α =

         

        kkkk pxx α+=+1  

        kkkk rr ωα−=+1          

(Until 1 22

kr bε≤ , where ||·|| denotes 2-norm (Euclidean norm or 

1
22 2

k k kx x xε+ − ≤ ) 

          1
1 1k kh M r−

+ +=  

           
1 1

T

k k
k T

k k

h r

h r
β + +=  

         1 1k k k kp h pβ+ += +  

      . 

By using this domain decomposition technique, irregular mesh geometries of different shaped 

domains can be handled in order to make the method completely general and reduce the 

communication overheads in the parallel computing system. 
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4.3 Evaluation of the Software Implementation 

4.3.1 The Finite Difference method  

A software simulator based on the methods of section 4.1 was written in C language and 

compiled by Microsoft Visual C++ NET. 2003 in release mode. The simulator is capable of 

solving 3D problems under a variety of Neumann and Dirichlet boundary conditions. The 

simulator is used as a baseline for comparison with the hardware methods that will be 

developed in chapter 5. The simulator uses IEEE 754 standard double floating point 

arithmetic and was run on a 2.4 GHz Pentium 4 PC with 1GByte RAM. 

 

This section presents an evaluation of the different approaches detailed in section 4.1, 

considering both accuracy and CPU time requirements. The evaluation was carried out on a 

3D unit cubic domain using a set of boundary conditions that was chosen such that an exact 

analytical solution of the equation can be derived. This exact analytical solution was used as 

the baseline for accuracy analysis on the various numerical approaches. The Dirichlet 

boundary conditions used were as follows: 

 

)2sin()2sin()1,,( ymxmyxu ππ=  Eq. (116) 

( , , ) 0u x y z =  for [0,1]x = , [0,1]y =  and [0,1)z =  Eq. (117) 

 

All other boundaries used a Neumann boundary condition (i.e. the derivative of u normal to 

the boundary was zero). As a result of these boundary conditions, all values of u within the 

cubic domain will lie in the range 0 to 1. The number of grid lines used for the discretization 

varied from 4 to 256 in each dimension.  
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The operation of the simulator is shown in Figure 17, the solution approaches used are as 

follows:  

E3   Exact solution for 3D Laplace equation 

F_FDM2  Solution via 1D FFT in x direction and 2D FDM 

FDM3  Solution via 3D FDM 

FF_FDM1 Solution via FFT in x direction, FFT in y direction, and then 1D FDM 

F_E2  Solution via FFT in x direction, then 2D exact solution 

FF_E1  Solution via FFT in x direction, FFT in y direction, and 1D exact solution 

 

Table 2 compares the precision of each method to the exact solution and Table 3 shows the 

CPU time consumed for each method. 

 

Table 2 : Maximum Relative Error between Domain Decomposition Methods and 

Exact Solution for N×N×N cubes. 

 

Cube Size F_FDM2 FDM3 FF_FDM1 FF_E1 F_E2 

4×4×4 0.4615 0.5820 0.0000 0.3848 0.0000 

8×8×8 0.06471 0.07812 0.0000 0.05633 0.0000 

16×16×16 0.01737 0.02088 0.0000 0.01423 0.0000 

32×32×32 0.004431 0.005318 0.0000 0.003566 0.0000 

64×64×64 0.000974 0.001169 0.0000 0.000195 0.0000 

128×128×128 0.000244 0.000293 0.0000 0.000195 0.0000 

256×256×256 0.000063 0.000076 0.0000 0.000051 0.0000 

  

The relative error of the finite difference approximation results from round-off error and 

discretization error. The round-off error comes from the loss of precision due to computer 

rounding of decimal quantities, while the discretization error depends on the finite 
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approximation x∆  and y∆ . As the number of sub-divisions for the sides of the cube 

increases, a more accurate approximation is obtained and the discretization error becomes 

smaller. 

 

It can be easily seen that although F_FDM2 is not the best of the different methods, it does 

perform well when the problem size becomes larger, thus demonstrating that the 2D finite 

difference method is satisfactory for large systems.  

 

The F_E2 approach, where an FFT is applied in the x direction followed by a 2D exact 

solution, the result is identical to the exact solution of the 3D problem. This demonstrates that 

the use of a discrete FFT in solving such problems does not cause a loss of accuracy. The 

difference between the F_E2 and E3 approaches is just that one solves the problem in the 

space domain, and the other uses the spatial “frequency” domain using the discrete Fourier 

Transform, which is better as we can analyze the 3 dimension problem as a series of 2 

dimension problems. Of course, the exact analytical solution is only possible because of the 

contrived choice of boundary condition: in the general cause of more usual boundary 

conditions the 2D exact solution is not available, so the method F_E2 is not generally 

applicable. 

 

The FF_FDM1 approach, using the FFT twice and then a 1D-FDM, also produces a good 

result, and gives the same answer as the exact solution. Based on the above analysis, Fourier 

decomposition maintains the numerical property of PDEs, and the 3-dimensional problem is 

divided into n 2-dimensional sub-problems which are independent to each other. Therefore, 
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the parallel solution to PDEs using the finite difference method in this case can be easily fitted 

onto parallel computing systems.  

 

The FF_FDM1 approach imposes limitations on 2 of the dimensions (the grid resolution must 

be an exact power of two, and the material properties should be invariant in those directions). 

The F_FDM2 is therefore chosen for implementation in hardware as it provides a good 

compromise between generality and decomposition of the big problem into parallel smaller 

problems.  

 

Table 3 : Timing Cost of Different Methods for N×N×N cubes (Jacobi iteration) 

 

Timing 
(CPU seconds) 

E3 F_FDM2 FDM3 

4×4×4 6.2×10-5 1.4×10-4 6.4×10-4 

8×8×8 2.1×10-4 4.2×10-4 1.8×10-3 

16×16×16 1.3×10-3 3.3×10-3 4.4×10-2 

32×32×32 7.8×10-3 3.8×10-2 1.1×100 

64×64×64 7.8×10-2 4.7×10-1 2.9×101 

128×128×128 4.4×10-1 5.9×100 7.0×102 

256×256×256 3.5×100 7.2×101 1.7×104 

 

From Table 3, it can be seen that exact solution has the lowest CPU time consumption. 

However, most PDEs do not have an exact analytical solution so this method is not generally 

applicable. It can be seen from Table 3 that the performance of the finite difference method 

with Fourier decomposition (F_FDM2) becomes much better than the standard 3D finite 

difference approach (FDM3) when the number of grid points becomes large. Additionally, the 
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F_FDM2 approach will be much more suitable for parallelisation on an FPGA than the FDM3 

approach. So in hardware the advantage of F_FDM2 will be even larger.  

 

Table 4 : Timing cost for iterative methods of F_FDM2 (Release mode) 

 

Timing 
(CPU seconds) 

Jacobi Gauss-Seidel 
SOR 

(ω =1.5) 

4×4×4 1.1×10-4 1.5×10-4 1.7×10-4 

8×8×8 3.7×10-4 3.5×10-4 3.1×10-4 

16×16×16 2.9×10-3 2.9×10-3 1.1×10-3 

32×32×32 2.8×10-2 2.7×10-2 9.3×10-3 

64×64×64 3.4×10-1 3.1×10-1 1.1×10-1 

128×128×128 4.1×100 3.5×100 1.3×100 

256×256×256 5.2×101 4.1×101 1.4×101 

 

Table 4 compares the timing cost, which was obtained from the software simulator compiled 

in release mode by Microsoft Visual .NET 2003, for the F_FDM2 approach using three 

different relaxation methods, Jacobi iteration, Gauss-Seidel iteration and successive 

over-relaxation (SOR) iteration.  

 

Based on the above analysis, F_FDM2 is the algorithm that is chosen for implementation in 

hardware. The 3-dimensional domain is decomposed into n 2-D sub-domains, which are 

computationally independent, and the 2D sub-domains are computed in hardware.  
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4.3.2 Finite Element Method 

A software simulator was written for finite element solution of a 3D Laplace equation using 

the method shown in section 4.2.3. This software simulator was used to provide the baseline 

against which the hardware implementation would be evaluated. The simulator used IEEE 

754 standard double floating point arithmetic and was run on a 2.4 GHz Pentium4 PC with 

1GByte RAM. In this section, results are presented showing how the various iteration 

methods perform on problem formulations with varying numbers of elements. 

 

Table 5 : The number of iterations using different iteration methods for the FEM. 

 

Size(elems) SW(Jacobi) SW(CG) SW(PCG_global) SW(PCG_EBE) 

6 219 4 4 4 

48 980 19 18 18 

384 4004 56 39 39 

750 6264 70 49 49 

3,072 16018 102 78 78 

6,000 24994 121 95 95 
24,576 100000 175 150 150 

48,000 NA 211 188 188 
 

 

Table 5 shows the number of iterations required for the Jacobi method, conjugate gradient 

method and preconditioned conjugate gradient methods to achieve convergence. The final 

results of both the hardware (HW) version and the software (SW) version were identical, i.e. 

error=0. The Jacobi method has a very poor convergence characteristic in comparison with the 

preconditioned conjugate gradient method. It can be seen from Table 5 that the 

element-by-element (EBE) method (which is the method that has been chosen for hardware 
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implementation) entails no penalty compared to the more standard global formulation method. 

Table 6 shows the timing cost for different size problems implemented in software using 

different iterative methods. The Jacobi method converges slowly, and the method failed to 

converge when the matrix size becomes larger.  Due to the use of the preconditioning matrix, 

preconditioned conjugate gradient method achieves a better performance than the Conjugate 

Gradient (CG) method, as the preconditioned Conjugate Gradient method needs fewer 

iterations to converge.  

 

Table 6 : Timing (in seconds) Comparison in Different Methods 

 

Size(elems) SW(Jacobi) SW(CG) SW(PCG_global) SW(PCG_EBE) 

6 0.002575 0.000109 0.000084 0.000321 

48 0.074731 0.001985 0.001871 0.003447 

384 2.33013 0.036038 0.023366 0.045372 

750 8.99663 0.079769 0.058451 0.111514 

3,072 74.1568 0.481076 0.362953  0.826589 

6,000 224.388 1.16750 0.864280 1.84944 

24,576 4055.25 6.53732 5.64370 12.6824 

48,000 NA 15.8564 19.1038 31.7281 
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4.4 Summary 

In this chapter, the software solvers for the finite difference method and the finite element 

method have been presented. Also the performance of the different methods has been 

compared. The problem formulations chosen for solution on the parallel computing systems 

due to their good balance between computation and communication have been discussed. 

Domain decomposition was introduced to maximize the independence of the processing 

elements and to minimize the communication overhead.  

 

In the following chapters, the design and evaluation of several reconfigurable computing 

approaches based on the algorithms discussed in this chapter will be presented.
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Chapter 5 
 

FPGA-BASED HARDWARE IMPLEMENTATIONS 

5.1 Introduction 

The previous chapter outlined the specification for the system design. This chapter deals with 

the implementation of the designs on hardware, and presents the memory hierarchy and data 

caching structures needed to satisfy the computational performance requirements. 

 

Software numerical algorithms have been migrated onto FPGA-based co-processors in a 

relatively straightforward manner: while leaving almost all software subroutines still running 

on the commodity CPU of the host machine, only the most time-consuming kernel portion of 

the programs are replaced by subroutines calling for the help of FPGAs. 

 

Reconfigurable computing based on FPGAs has become regarded as acceptable for problems 

in computational mechanics that require floating-point arithmetic in order to achieve 

numerical stability and acceptable precision. In 1994, reference [90] showed the feasibility of 

implementing IEEE Standard 754 single precision floating-point arithmetic units on FPGAs 

for the first time. Since then, with the rapid growth of FPGAs in density and speed, as well as 

the introduction of on-chip ALU units that are optimized for DSP operations, highly 
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complex systems using floating-point arithmetic can be implemented within modern FPGAs. 

However, compared to fixed-point arithmetic, floating-point arithmetic operations require a 

lot more logic resource and have a lower speed. The reason why fixed-point arithmetic is 

generally regarded as undesirable is because floating-point arithmetic can represent a wider 

dynamic range2 and obtain more accurate results for PDE solution. Some recent research 

efforts have attempted to offset the undesirable features of fixed point arithmetic in order to 

achieve a balance between accuracy and efficiency. Examples include multiple word-length 

optimisation [91], which was extended to differentiable nonlinear systems in [92], and the 

Dual FiXed-point (DFX) approach [93], which combined conventional fixed-point and 

floating-point representations, and was used to simplify and speed up IIR filter 

implementation. The performance of the power, area and speed in some hardware designs can 

be efficiently increased by the use of fixed point arithmetic. For the numerical methods 

considered in this research, both the finite difference method and the finite element method 

are widely used to obtain numerical approximations for a wide variety of PDEs. For an 

unknown numerical solution, in order to maintain a high accuracy, the use of floating-point 

arithmetic is necessary. This chapter will describe approaches that use both fixed-point 

arithmetic and floating-point arithmetic within the reconfigurable hardware accelerators, as 

different architectures are formulated in order to explore the maximum extent of parallelism 

that can be achieved within the FPGAs. 

                                                        
2 Dynamic range is defined as the ratio between the maximum absolute value representable 
and the minimum positive (i.e. non-zero) absolute value representable 
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5.2 System Environment 

5.2.1 Software Interface 

This section will describe the software interface for the RC2000 (ADM-XRC-II) board [94], a 

PCI-based reconfigurable coprocessor developed by Alpha-data. The initial pre-processing is 

carried out in the software implementation which was explained in chapter 3. The boundary 

conditions are also generated for a particular problem. Then, this data is fed into either the 

Software Simulator or the Hardware Simulator. Finally, the precision of results from each of 

the two simulators and the timing costs for the different solutions are compared. This 

procedure, which is used in all the following designs, is illustrated in Figure 23.   

 

Initialization of

System

Software

Simulation

Hardware Configuration

Hardware Simulation

Results

Comparison

Generate Boundary

Condition

 

Figure 23 : Software-Hardware Design Flow. 

 

As shown in Figure 23, the steps in rounded ovals run in software, i.e. on the PC’s 

microprocessor, as formulated in chapter 4. On the other hand, the steps in rectangles run in 

hardware, i.e. on the FPGA-based reconfigurable computing board. Before the Hardware 

Simulator runs, the appropriate FPGA configuration file (the bit file) is needed to configure 
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the FPGA on the RC2000 boards, the clock rate at which the FPGA should be operated is set, 

and the initialisation data and boundary conditions are transferred into the boards’ SRAM 

banks.  

 

5.2.2 Hardware Platform 

The hardware implementations are loaded into two Celoxica RC2000 PCI bus plug-in cards 

equipped with one single Xilinx Virtex 2V6000 FPGA and one single Xilinx Virtex 

4VLX160 FPGA [95] respectively. Figure 24 shows the detail of the 2V6000 implementation 

platform [96], it is equipped with one FPGA and 24 Mbytes static RAM arranged in 6 banks 

that can be read or written simultaneously. The board plugs into a host microprocessor system 

and exchanges data with the host memory across the PCI bus.  

Figure 24 : Block diagram of the RC2000[97]. 
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The card with the Virtex 2V6000 FPGA is plugged into a 2.4 GHz Pentium 4 PC with 

1GByte RAM, and the card with the Virtex 4VLX160 FPGA is plugged into a 2.01 GHz 

Athlon 64 Processor PC with 1GByte RAM. 

 

The RC2000 is a 64 bit PCI card utilising a PLX-9656 PCI controller. It is capable of carrying 

either one or two mezzanine boards; in our case it hosts a single ADM-XRC-II board from 

Alpha-Data [94]. The mezzanine board carries the XC2V6000-4, 24Mbytes of SSRAM and 

256Mbytes of DDR memory, along with PMC and front panel connectors for interacting with 

external hardware. The SSRAM is arranged in six 32-bit wide banks. However the FPGA sits 

between it and the host, so a portion of the FPGA is always instantiated to act as a memory 

control system, arbitrating between host access and FPGA access to this shared resource.  

The control system implemented allows the host both DMA transfer and virtual address 

access to the SSRAM and the six banks are independently arbitrated to allow greater design 

flexibility.  
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Figure 25 : Block diagram of RC2000 Interface hardware components [98]. 

 

Figure 25 shows a diagram of the hardware interface, which includes 6 main hardware 

components [98]: 

1. Clock Generator uses digital clock managers to derive the system clock (clk) and 

phase aligned frequency multiplied version thereof (clk2X and clk4X) from an 

externally applied master clock that is generated on the board. It also generates 2 

appropriately de-skewed clock signals for the SRAMs.  

2. Connects provides the correct timings for the ZBT SRAM read and write operations. 

3. ZBTxrc2 handles data transfer between the host and the FPGA.  

4. SRAM_arbitrator controls the arbitration of all six SRAM banks between the host and 

the FPGA. 

5. RAM_RW generates the ‘ready’ signal indicating the data read from SRAM is valid on 

the data port. 

6. FPGA_APP is the framework which contains the user’s top level entity.  
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Figure 26 shows the interface of the hardware design in Synplify RTL view. 

 

RAM_RW FPGA_APP SRAM_Arbitrator ZBTxrc2 ConnectsClocks

 

Figure 26 : RTL view of hardware design 

 

5.2.3 Data Format 

5.2.3.1 Customised Fixed-Point Data Format 

A binary fixed-point number is usually written as I.F, where I represents the integer part, ‘.’ is 

the radix point, and F represents the fractional part. Each integer bit represents a power of two, 

and each fractional bit represents an inverse power of two. A fixed-point data type represents 

numbers within a finite range; thus positive and negative overflows must be taken care of if 

there is any result of an operation that lies outside the appropriate range. In order to make the 

design fit onto the available FPGAs, a customised 32-bit data format was chosen.  
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The use of fixed-point arithmetic reduces the complexity of the computational pipelines 

within FPGAs, thereby allowing a greater level of parallelism (and thus performance) to be 

achieved. The Laplace equation has the property that the steady state solution values are 

bounded above and below by the largest and smallest Dirichlet boundary condition 

respectively, with the result that the required dynamic range for the numerical values is easy 

to predict a priori. This means that fixed-point is relatively safe. Trials were carried out to 

determine that the fixed point range selected for use in the implementation is greater than that 

required to be equivalent to a single precision floating-point representation, without overflow.  

 

The customised 32-bit fixed-point data format is shown below in Figure 27: 

 

Figure 27 : Customised fixed-point data format. 

where 

• bi is the i
th binary digit. 

• w is the word length in bits. 

• bw-1 represents the boundary flag for the FDM. 

• bw-2 is the sign bit. 

• bw-3 is the most significant bit. 

• b0 is the least significant bit. 
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• The binary point is 26 places to the left of the LSB, as a fractional part of 2-26 gives 

sufficient precision. The integer part (excluding the sign bit) is 4 bits wide, which 

means that a maximum number of ±16 can be represented.  

 

A converter is used to convert the software IEEE 754 format into the customized fixed-point 

data format, this is implemented within the software. 

 

5.2.3.2 Floating-Point Representation 

The IEEE 754 [99] floating point format, which is the standard usually used on computers for 

32-bit single precision variables and 64-bit double precision variables, is discussed here. 

Normally scientific work requires floating-point precision. Figure 28 shows the format of an 

IEEE 754 floating-point value. Binary floating-point numbers are stored in a sign magnitude 

form where the most significant bit is the sign bit (s), exponent is the biased exponent (e), and 

fraction is the significant without the most significant bit (f). For single precision binary 

floating-point, the number is stored in 32 bits, w=32, we=8 (exponent), and wf =24 (mantissa). 

Similarly, double precision is stored in 64 bits, w=64, we=11 (exponent), and wf =52 

(mantissa). 

 

Figure 28 : Bit Fields within the Floating-Point Representation 
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There have been several efforts to develop parameterizable floating-point cores for FPGAs 

[100-102]. The design software Xilinx CORE Generator was used in our designs. This 

contains a parameterized library of pre-designed useful design components called cores. For 

the floating-point arithmetic operators, the core can be customized to allow for any required 

value of w, wf and we. There are also trade offs that can be made in terms of the latency and 

throughput of the operators [95].  

 

One point that is worth noting is that a floating-point adder is a much more complicated 

circuit than a fixed-point adder. This is because the input operands for a floating-point adder 

must be shifted until they have the same exponent prior to addition, and the resulting output 

must then be shifted to be correctly normalized. This consumes a large amount of the FPGA 

logic resource, and can also reduce the maximum speed that the circuit can achieve. By 

contrast, fixed-point arithmetic requires no special circuitry to provide input alignment or 

output normalization, but fixed-point arithmetic is useful only for a relatively restricted class 

of problems where the dynamic range of the data is small and the problem has benign error 

propagation properties. Thus, floating-point arithmetic is considerably more widely used in 

scientific calculations.  



Chapter 5: Hardware Implementations Based on FPGA 

- 114 - 

5.3 Hardware Implementations 

This section describes the hardware designs implemented in the FPGA-based reconfigurable 

computing platform within a general purpose PC. The first group of implementations applied 

several different iteration methods (detailed in section 4.1) using 32-bit customised 

fixed-point arithmetic. Use of customised fixed-point arithmetic allowed a very high degree of 

parallelism to be achieved. This is followed by the implementation of a 32-bit floating-point 

FDM solution. Due to limitations of area and speed, the memory hierarchy is rearranged to 

achieve maximum parallelism on the board with small communication overheads. Then the 

1D and 2D rectangular finite element solutions, of section 4.2.1 and section 4.2.2, are 

implemented using Xilinx System Generator in Simulink, which only supports fixed-point 

arithmetic at this time. The final implementations show an element-by-element parallelisation 

of the 3D tetrahedral element FEM solutions, explained in section 4.2.3, using floating point 

arithmetic. 

 

The hardware designs were implemented using VHDL (Very high speed integrated circuit 

Hardware Description Language) and 5 different IP (intellectual property) cores, which are 

block RAMs, fixed-point adders, fixed-point multipliers, floating-point adders and 

floating-point multipliers. Upon the completion of the design entry stage, the Synplify Pro 

8.5.1 synthesis tool is employed to generate the logic as an EDIF netlist. Then this black-box 

EDIF netlist is used as an input into Xilinx ISE 8.1, a tool that maps the logic requirement to 

the physical resources of the FPGA. The Xilinx FPGA design flow is shown in Figure 29. 
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Figure 29 : Xilinx FPGA design flow [44]. 

     

5.3.1 FPGA implementation of the Finite Difference Method 
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Figure 30 : FPGA implementation block diagram of FDM 
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Figure 30 shows a conceptual overview of the hardware implementation. There are five main 

units: 

1. An interface unit to read and write data to and from the external memory (i.e. 6 

SRAM banks on our computing boards). 

2. A control unit to synchronize all the units and check the boundary conditions. 

3. An address unit, which generates all the address signals (read and write). 

4. A write back unit to write the results of the arithmetic units back to the Block RAMs 

and check for convergence of the processing. 

5. Processing elements, which calculate out the results of the FDM. 

 

The block RAM of the FPGA is used to hold the data of 2D slices, which are required for the 

finite difference method. Several memory architectures were implemented and are discussed 

in the following sections. One of the most challenging parts of the hardware design is to 

arrange the scheduling of internal memory accesses and the exchange of data between internal 

memory and external memory.  

 

Using the formulation developed in section 4.1.2, a 3 dimensional problem has been 

decomposed into a series of nx  2D slices (corresponding to different values of m in Eq. 

(32)), which are decoupled and can be solved separately without any exchange data or 

synchronization required between the slices. By assuming x y∆ = ∆ , the formula of the finite 

difference method reduces to: 

 

1, 1, , 1 , 1
,

2 24

j k j k j k j k
j k m m m m
m

u u u u
u

yλ

− + − ++ + +
=

+ ∆
 Eq. (118) 
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In the following subsections, Jacobi, Gauss-Seidel, successive over-relaxation and Red-black 

successive over-relaxation iteration methods are respectively implemented.  

 

5.3.1.1 Fixed-Point Hardware Implementation 

The fixed-point FDM hardware design was implemented on a Celoxica RC2000 board 

containing a single Xilinx Virtex 2V6000 FPGA with 24 Mbyte SRAM. The customised 

32-bit fixed-point arithmetic was used here in order to reduce the complexity of the 

computational pipelines within the FPGA, so that a greater level of parallelism and 

performance could be achieved.  

i=0 

Memories  

i=63 

j=0 j=63 

Processing 
elements 

… 

 

Figure 31 : Architecture of the Jacobi solver within the FPGA 

 

Figure 31 shows the 32-bit customised fixed-point hardware design. The size of one 2D slice 

is nx=64 and ny=64. In order to have maximum parallelism achieved in hardware, there are 

64 columns of memory, which are used to hold the columns of values and boundary flags.  

These are stored as 32-bit fixed-point. The memory columns are implemented in dual port 

block RAM, with the read addresses and write addresses capable of being incremented in each 
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clock cycle.  Processing elements are situated between the columns of memory with one 

element responsible for the calculations of each column. With reference to Eq. (47), the 

processing element used to perform the Jacobi update is shown in Figure 32. 

 

 

 

Figure 32 : Processing element for row update by using Jacobi iteration 

 

It is partially from this parallelism of processing elements that hardware speed-ups are 

achieved. An iteration of the hardware matrix involves moving only down the number of 

elements in a column of N numbers whereas the software system iterates both across each row 

and down each column of N2 numbers.  

 

Gauss-Seidel iteration, which is able to converge faster due to the immediate use of the newly 

computed values, has also been implemented. The essential idea behind the architecture is 

similar to that of Figure 31 and Figure 32. Even faster convergence is is achieved by using 

successive over-relaxation iteration. The processing element is modified as in Figure 33.  

 

However, the data path becomes more complicated because of the data dependency between 

rows of the memory, which means that new values cannot be fed into the pipelined data path 

on every clock cycle. Thus, full pipelining cannot be achieved by using either the 
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Gauss-Seidel iteration scheme or successive over-relaxation (SOR) iteration scheme, and a 

latency must be incurred between the processing of each row. 

 

(1 )ω−
 

 

Figure 33 : Processing element for row update by using successive over-relaxation 

iteration 

 

Table 7 shows a typical set of results that illustrates the speed of each method. The results 

were taken for a 32 × 32 × 32 3D Laplace equation. The table shows the number of clock 

cycles required to compute one 2D slice using an over-relaxation parameter of 1.75ω = . 

 

Table 7 : Performance of the different approaches 

  Jacobi Gauss-Seidel SOR 

Throughput  
(rows per clock cycle) 

1 1/7 1/7 

Iterations required for 
convergence 

1338 919 197 

Matrix passes required 
for convergence 

1338 919 197 

Clock cycles required 
for convergence 

42821 205856 44128 

Operations per second 9.6 billion 1.4 billion 1.4 billion 
Memory bandwidth 7.7 GByte/s 1.1 GByte/s 1.1 GByte/s 
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The point Jacobi iteration method is very suitable for hardware implementation, giving a very 

high number of operations per second and sustained memory bandwidth utilization. 

Compared to the Jacobi method, the Gauss-Seidel and successive over-relaxation (SOR) 

methods have much superior numerical properties and converge in a lower number of 

iterations, but the pattern of data dependencies within the hardware means that the 

computation rate and memory bandwidth utilization drop significantly. As shown in Table 7, 

205,856 clock cycles are required for Gauss-Seidel convergence, and 44,128 clock cycles are 

required for successive over-relaxation (SOR), whereas Jacobi just uses 42,821 clock cycles 

for convergence. Although the successive over-relaxation method converges almost 7 times 

faster than Jacobi, the performance of the hardware implementation of successive 

over-relaxation is slower due to the data dependence between rows of the memory. This is 

further exacerbated by the fact that the additional hardware complexity required for the 

Gauss-Seidel and successive over-relaxation (SOR) methods means that a smaller number of 

computational units can fit into the FPGA.  

 

Next, the red-black successive over-relaxation scheme is considered in sub-section 5.3.1.3. 

The 2D finite difference grid is coloured with a red and black checkerboard, so the iteration 

scheme proceeds by alternating between update of the red squares and black squares. Use of 

the red-black successive over-relaxation method removes the requirement for each node to 

have immediate access to an updated value of two of its neighbours. In this case, the red-black 

successive over-relaxation gives an excellent compromise between the properties of the other 

iteration methods, which have either poor convergence characteristic or lower throughput 

(due to the pipeline data dependencies).  
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5.3.1.2 Floating-Point Hardware Implementation using Jacobi method 

In 5.3.1.1, a solution using fixed-point arithmetic was implemented in order to conserve 

hardware resources. This would enable one entire 2-D section of the problem to fit in a single 

FPGA chip. Due to the area cost of floating point arithmetic, the FPGA chip cannot 

accommodate the whole of a single 2-D slice and its associated computational pipelines 

simultaneously. It is therefore necessary to use the FPGA to implement a smaller number of 

computational pipelines, and to read and write the slice data from and to the off-chip RAM. 

Communication is completely overlapped with computation, so the pipelines can always be 

doing useful work; this is not easily achievable with standard multi-purpose processors.  

  

In this subsection, the Jacobi iteration scheme was used for the solution of the finite 

difference method using 32-bit floating-point arithmetic.  

 

Figure 34 : Architecture of data path of Jacobi scheme 

 

Figure 34 shows one of our hardware implementations with 8 columns of on-chip memory 

used within the FPGA. These are used as a cache that can hold up to eight columns of values 

for u, which are stored as 32-bit floating point. Initially these columns hold columns 0 to 7 of 
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the domain. When column 0 has been processed, column 8 is loaded from external RAM into 

the column of block RAM previously occupied by column 0. This process then repeats with 

column 9 overwriting column 1 and so on. As a result each column will undergo 7 rounds of 

calculations between download and upload. This process continues until all columns have 

been completed.  
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Figure 35 : Hardware architecture of data flow for the floating-point Jacobi solver 

 

Figure 35 shows how the computation progresses. During each epoch, the contents of one 

Block RAM are streamed through the computation units.   
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         And so on … 

Figure 36 : Scheduling of the computation in the Jacobi solver 
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The memory columns are implemented in dual port block RAM, with the read address and 

write addresses being incremented in each clock cycle. The main design challenge is to 

arrange the scheduling of memory accesses for each column, and for the exchange of data 

between on-chip memory and external memory. It can be seen from Figure 36 that one of the 

columns of memory is being loaded with new data from external memory (SRAM bank0), 

one is uploading its results to external memory (SRAM bank1), and the remaining six 

columns are involved in computation. After all the columns in SRAM bank0 have been read 

and the new data have been written into SRAM bank1, the process is started again with data 

now downloading from SRAM bank1 and uploading to SRAM bank0. This process repeats 

until the convergence is achieved. With appropriate design, 8 copies of the data path shown in 

Figure 37 can operate in parallel, producing eight results per clock cycle.  

 

Figure 37 : Processing element for row update in Floating-point Jacobi solver 

 

The datapath is shown in Figure 37. The floating-point adder and multiplier intellectual 

property (IP) cores are generated by the design software for Xilinx FPGAs in order to trade 

off latency with maximum clock frequency. The floating-point arithmetic pipeline operates at 

a 80 MHz clock rate (40 MHz PCI). It requires 28 clock cycles of total latency from the 

reading of one element’s displacements to the write back of the new displacements. As a 

result, 5 × 8 × 80M = 3.2 billion operations per second can be carried out per second using a 

memory bandwidth of 8 ×4 byte×80MHz = 2.56 GByte/s. 
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5.3.1.3 Floating-Point Hardware Implementation using Red-Black successive 

over-relaxation 

Based on the discussion in subsection 4.4.1.1, the Jacobi method, although simple and very 

suitable for hardware implementation, is well known to have poor convergence properties. On 

the other hand, the Gauss-Seidel and successive over-relaxation (SOR) methods converge 

faster than the Jacobi method, but these methods are more problematic to implement due to 

the data dependences introduced, which means operations cannot be fully pipelined. The 

computation must therefore stall until the required results have been computed. 

 

This problem can be removed by the use of the red-black successive over-relaxation iteration 

scheme. The two dimensional finite difference grids are coloured with a red and black 

checkerboard, and then 16 columns of on-chip Block RAMs are used as a cache to hold up to 

8 columns of values: the red values are stored into the first 8 block RAMs, whereas and the 

black values are stored into the remaining 8 block RAMs. Figure 38 shows one example of 

our on-chip memory architecture. Columns B_0 to B_7 hold the black grid values of columns 

0 to 7 of the domain, and columns R_0 to R_7 hold the red grid values of columns 0 to 7 of 

the domain. The processing proceeds in a manner similar to the 8 columns Jacobi scheme, 

where the following columns of the domain are continuously fed into the internal memory 

columns following the red-black order. When the red columns compute their updated values, 

using the previously computed values of black columns, the black columns only exchange the 

data to and from external memory. Conversely, when the black columns are undergoing 

update using the newly calculated values of the red columns, the red columns are exchanging 

the data with external memory. As a result of using separated on-chip memory columns to 
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store the red and black grid columns, each column will undergo 14 iterations between 

download and upload. This process continues until all columns have been completed.  

 

Figure 38 : Architecture of data path of red-black successive over-relaxation scheme 

 

Figure 39 shows 4 processing elements representing the data path between columns. In this 

example, 16 copies of the data path can operate in parallel, producing one result each per 

clock cycle. The problem of data dependence is removed by the use of the modified hardware 

design.  
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Figure 39 : Processing elements: (a) for the old red columns, (b) for the even red 

columns, (c) for the old black columns, (d) for the even black columns. 
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The floating-point arithmetic pipeline operates at a 90 MHz clock rate (45 MHz PCI). As a 

result, 6 × 16 × 90M = 8.64 billion operations per second can be carried out per second using 

a memory bandwidth of 16 ×4 byte×90MHz = 5.76 GByte/s. 

 

5.3.2 Finite Element Method 

In this section, one dimensional line finite elements, two dimensional rectangular finite 

elements and three dimensional tetrahedral finite elements are implemented in a way that 

provides efficient solutions by tackling the drawbacks of the finite element method: how to 

optimise the computationally expensive matrix decomposition for direct solution methods and 

how to optimise the matrix-vector multiplier for iterative solvers.  

 

The hardware simulation uses MathWorks Simulink with Xilinx System Generator, as this 

tool is a high-level tool and provides interactive graphical model design and simulation for 

designing high-performance systems using FPGAs. However, the Xilinx Blockset in System 

Generator only provides a fully parameterized implementation of fixed-point arithmetic, with 

no floating-point arithmetic at all. However, it is widely accepted that floating-point is 

generally required for finite element analysis. Thus, simpler one-dimensional finite element 

method is illustrated using System Generator, and the two-dimensional rectangular finite 

element method and the full three-dimensional tetrahedral finite element method 

implementations use floating-point and were coded in VHDL.   

 

5.3.2.1 One-Dimensional FEM 

An explicit 1D linear solid element mesh, with n=8, is shown in Figure 40.  
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Node 0 1 2 3 4 5
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Figure 40 : 1D finite element mesh 

 

As shown in Figure 41, 8 columns of block RAM memory are used to hold the columns of 

values for t t

iu
+∆ , which are stored as 32-bit fixed point. The memory columns are 

implemented in dual port block RAM, with the read addresses and write addresses being 

incremented in each clock cycle.  
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Figure 41 : Architecture of 1D FEM solver 

 

The processing unit used to solve Eq. (83) is shown below in Figure 42.  
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Figure 42 : Basic processing unit of 1D FEM solver in Matlab Simulink 

 

5.3.2.2 Two-Dimensional FEM  
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Figure 43 : Two-dimensional rectangular plane strain elements 

 

Figure 43 shows a regular mesh using two-dimensional rectangular plane strain elements. 

Here there are 21 elements, which produce 64 equations, giving a 64×64 global stiffness 

matrix and mass matrix respectively. The procedure for solving the 2D FEM of Eq. (98) is 

very similar to the procedure for solving the 1D FEM, but the hardware design for the 

solution of the 2D FEM becomes more complex due to the huge memory required. 

Fortunately, the global matrix can be decomposed into a series of single element matrices and 

they can be processed independently with the result assembling together at the end, as shown 

in Figure 44 below.   
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Figure 44 : Data Flow of 2D FEM Design 

 

U_now is scattered by using a Look-up Table, which holds one-element displacements’ 

address with respect to the read address of BlockRam U_now. Then each element is sent to 

the matrix multiplication block (indicated in Figure 44 with a star in its left-top corner; this 

block is expanded out in Figure 45). After matrix multiplication, u_e is gathered together as 

U_next, which contains the displacements for the next time step.  
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In Figure 45, M indicates a floating point multiplier, A indicates a floating point adder, and R 

indicates a register. Each element stiffness matrix is stored in 4 dual port block RAMs, thus 

the read-address is capable of being incremented in each clock cycle. Two clock cycles are 

needed to finish two rows accumulation, which is equivalent to one row being calculated in 

every clock cycle. The floating-point arithmetic pipeline operates at a 130 MHz clock rate (65 

MHz PCI). It requires 40 clock cycles of total latency from the reading of one element’s 

displacements to the write back of the new displacements. As a result, 8 × 18 × 130M = 18.72 

billion operations per second can be carried out per second using a memory bandwidth of 8 

×4 byte×130MHz = 4.16 GByte/s. 
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Figure 45 : Stiffness Matrix Multiplication 
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5.3.2.3 Three-Dimensional FEM 

In section 4.2.3, based on the 3-dimensional tetrahedral finite element method, the global 

stiffness matrix A is built up by the assembling of each element’s stiffness matrix Ke. Thus, 

the dataflow shown in Figure 46 on the left-hand side is used for the normal software solution, 

which assembles the global stiffness matrix A first, before performing the matrix 

multiplication. A very different approach is used in hardware as shown on the right-hand side 

diagram. In order to parallelize the matrix multiplication, the vector pk is scattered element by 

element, and multiplied by each element’s Ke, and then gather the vectors Kpe_i together in 

order to get the same result as kk Ap=ω . 

 

kk Ap=ω

kp

kp

kk Ap=ω

 

Figure 46 : Matrix Multiplication Parallelization using the element by element method. 

 

Ke is initialized in 12 block RAMs, which hold the row values of each stiffness matrix and the 

length is 72 in total. By scattering kp  to pe  and downloading pe  into SRAM in a 
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sequential element-by-element fashion, the matrix multiplication can be processed in parallel. 

Compared to the software system, whose matrix-vector multiplication requires the number of 

( (2 1)N N − ) operations, the iteration of the hardware matrix-vector multiplication only 

involves the number of ( 6N ) operations, where N stands for the number of unknowns. 

Matrix-vector multiplication is implemented in hardware, shown as below in Figure 47.  
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Figure 47 : Architecture of matrix multiplication within FPGA 

 

The calculation element (CE) is shown in Figure 48, where R indicates a register that 

introduces a one clock cycle delay. The calculation latency can be fully overlapped by the 

deeply pipelined design, thus a new data item is read and a new result is written back for each 

clock cycle (multiplication results can be generated every clock cycle).  
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where ce1 to ce4 are Clock Enable signals: when ‘ce’ is deasserted, the clock is disabled, and the state 

of the core and its outputs are maintained. 

Figure 48 : Calculation Element (CE) for 3D FEM. 
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Figure 49 : Architecture of parallel matrix multiplications within FPGA 

 

One implementation with two matrix-vector multipliers is shown in Figure 49. This was 

implemented in the Xilinx 4VLX160 FPGA on a RC2000 PCI bus plug-in card. The element 
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stiffness matrices Ke_i are first downloaded into 12 dual-port block RAMs which hold the row 

values of each stiffness matrix and the length is 72 32-bit words each. The sub-domain 

conjugate vector pe_0 and pe_1 are stored in SRAM Bank0 and SRAM Bank1 respectively, 

and then fed into Matrix-vector Multiplier block0 and block1 in each clock cycle. Finally, the 

results are written into SRAM Bank2 and Bank3 respectively as Kpe_0 and Kpe_1 in each 

clock cycle. The implementation of two matrix-vector multipliers allows the maximum 

utilization of hardware resources and exploits the scalability of parallelizing the 

element-by-element FEM.  
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5.4 Summary 

A brief introduction to the reconfigurable computing platform was given in this chapter. The 

hardware implementations of the finite difference method and the finite element method were 

described.  

 

The first reconfigurable computing approach to the finite difference method made use of 

32-bit customised fixed-point arithmetic, so this enabled one entire 2D subsection to fit in a 

single FPGA. Also Jacobi, Gauss-Seidel and Successive Over-Relaxation iteration methods 

were evaluated. Based on the same concepts, a floating-point Jacobi solver for 3D finite 

difference analysis was presented. Floating-point arithmetic was introduced as it is required 

for a wide range of numerical analysis problems. Nevertheless, as FPGAs, are increasing 

rapidly in logic capacity and speed, the loss of speed-up associated with floating-point 

arithmetic is likely to be offset in future. A more complex implementation of the finite 

difference method, which made use of red-black successive over-relaxation scheme, was also 

described.  

 

The hardware implementations of finite element analysis were based on the 

element-by-element scheme, which removes the limitation of memory requirements and 

minimizes the communication overheads compared to traditional solution approaches. 

 

The performance and results of the hardware implementations will be discussed in chapter 6, 

as well as the evaluation of the hardware parallelism achieved. 
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Chapter 6 
 

HARDWARE AND SOFTWARE COMPARISON 

6.1 Introduction 

This chapter evaluates the performance of the hardware implementations for the Finite 

Difference Method and the Finite Element Method in terms of numerical precision, speed-up, 

and cost compared with the software implementations.  

 

6.2 Numerical Precision 

Scientific computing, such as computational mechanics, involves a set of computing tasks 

traditionally solved using uniprocessors or parallel computers. Such large scale simulations 

are normally characterized by large systems of partial differential equations, which often 

involve large regular or adaptive grid structures. The conventional methods require operations 

that typically employ double-precision floating-point computations. On the other hand, 

FPGAs were originally used only for small-scale glue logic applications. In recent years, the 

performance of floating point units in FPGAs has increased significantly, as built-in hardware 

multipliers have been incorporated, so that floating point operations can be performed at rates 
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up to 230MHz. Therefore the current research was extended to use not only fixed-point 

arithmetic but also floating-point arithmetic within the reconfigurable hardware accelerators; 

however, loss of accuracy will still occur due to the limits of the number of bits used to 

represent the numbers. In considering the accuracy of the solutions produced, the main 

concepts used in numerical analysis [103] are: 

 

Precision: Precision is the maximum number of non-zero bits representable. 

Resolution: Resolution is the smallest non-zero magnitude representable.    

Absolute Error ∆: the absolute error is the distance between the number x and the estimate x’. 

'x x∆ = − . 

Relative Error : the relative error measures the error relative to the size of the number itself.  

x
δ

∆
= . 

 

Because the size (precision) of the number is determinate, in the following sections, the 

difference of numerical precision between the software and hardware implementations will be 

measured and analysed based on absolute error. 
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6.3 Speed-up 

Speed-up is a very common criterion to evaluate the performance of a parallel system. As 

shown in Eq. (119), speed-up measures how much faster a computation finishes on a parallel 

computing system than on a uni-processor machine. 

 

 
( )

_ ( )
( )p

T n
Speed up n

T n

∗

=   Eq. (119) 

 where n represents problem size. 

 p is the number of processors. 

 ( )T n∗
 is the optimal serial time to solve the computation. 

 ( )pT n  is the runtime of the parallel algorithm. 

_ ( )Speed up n  describes the speed advantage of the parallel algorithm compared to 

the best possible serial algorithm. 

 

In the following sections, the speed-up is evaluated using the best software algorithm 

presented in chapter 4 and the hardware implementations presented in chapter 5. 
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6.4 Resource Utilization 

Due to the limitations of hardware resources, resource utilization for the various 

implementations is considered. The Xilinx Virtex 2V6000 and Virtex 4VLX160 used in this 

research would have been typical of the state of the art several years ago, but newer, bigger 

and faster FPGA families are launched almost every year. Thus, a discussion is presented on 

how these designs would scale to larger and faster FPGAs, and also how the designs would 

scale to the use of 64 bit floating-point arithmetic. This is based on an extrapolation of the 

resource analysis of the hardware implementations presented in this thesis. FPGA resource 

utilization is the measure of spatial allocation of the functional units, such as on-chip memory, 

DSPs, and so on. 

 

Table 8 compares the logic, memory and arithmetic capacity of the FPGAs used in this study. 
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Table 8 : The logic, arithmetic and memory capacity of the two FPGAs used in this research [95]. 

 

Block RAM Blocks [1] 
Family FPGA CLK(MHz) 

18 Kb Max(Kb) 

Block 
multipliers/DSP 

slices [2] 
Logic slices [3] DCMs [4] 

Virtex II 2V6000 400 144 2,592 144 33,792 12 

Virtex 4 4VLX160 500 288 5,184 96 152,064 12 

 

[1] Block SelectRAM memory modules provide 18 Kb storage elements of dual-port RAM.  

[2] Each Virtex-4 DSP slice contains one 18×18 multiplier, an adder and an accumulator, whereas the Virtex II uses a dedicated 18×18 

multiplier block. 

[3] A logic slice is equivalent to about 200 2-input logic gates. Each slice contains two LUTs and two flip-flops. 

[4] DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital solutions for clock distribution delay compensation, clock 

multiplication and division, coarse- and fine-grained clock phase shifting. 
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6.5 Finite Difference Method 

Due to limitations of PC memory, only domains with 32×32×32 to 256×256×256 were 

generated, simulated and analysed. The performance of the software version was measured 

and compared with the results of the hardware version. The double/single precision 

floating-point software version was run on the same PC (2.4 GHz Pentium 4 PC with 1GByte 

RAM), and the code compiled in both debug mode and release mode. Debug mode is 

essential during development, but the downside is that it is significantly slower than its 

release-mode counterpart.  

 

6.5.1 Numerical Precision Analysis 

In this section, numerical precision is compared between hardware implementations and 

software implementations. Without using any approximations, exact analytical solutions to 

PDEs play a significant role in the proper understanding of qualitative features of many 

phenomena in various areas of natural science. Exact solutions can be used as test problems to 

verify the consistency and estimate errors of various numerical, asymptotic, and approximate 

analytical methods, but not every exact analytical solution for PDEs can be found easily. So 

far it has been supposed that the 64-bit floating-point software implementations using exact 

solutions can be considered as a benchmark versus the hardware results. However, in order to 

establish whether the results are affected by the precision applied, the 32-bit floating-point 

software was also simulated to compare against the double precision results. The absolute 

errors for each simulation are given in Table 9.  
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Table 9 : Absolute error in the hardware and software 3D FDM implementations compared to 

the double precision exact analytic solution. 

 

N 
SW_exact 

single_floating_
point 

SW_FDM 
double_floating

_point 

HW 
customised 
fixed_point 

HW 
single_floating_

point 

32 3.234259e-007 0.001459 0.001462 0.001459 

64 3.234259e-007 0.000369 0.000474 0.000358 

128 4.846198e-007 0.000092 NA* 0.000181 

256 5.123316e-007 0.000023 NA* 0.000168 

* For hardware implementations using customised fixed point arithmetic, only 32 and 64 column design can 

be fitted on the Virtex 2V6000 FPGA.  

 

As shown in Table 9, the software exact solution using single precision floating-point 

arithmetic was found to be almost identical to the software simulation using double precision 

floating-point arithmetic. The absolute errors for the FDM software simulation using double 

floating-point precision become smaller and smaller as the number of grid points is increased, 

and they are nearly identical to the errors from the hardware simulation. Therefore, the lower 

precision arithmetic used in the hardware implementations can be assumed to have safely 

satisfied the numerical requirements.  
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6.5.2 Speed-up 

6.5.2.1 Hardware Fixed-point arithmetic vs Software (debug/release mode) 

A 3-D FDM simulation using Fourier decomposition was carried out using the fixed-point 

hardware implementation, as described in section 4.3.1.1. The performance of the hardware 

version was compared with the software version in debug and release mode respectively. 

Table 10 shows the simulation time (in seconds) for different cube sizes (N=32, 64) each of 

the hardware fixed-point simulations and the software simulations compiled in debug mode. 

In order to better assess the software performance, the software simulations were re-run in 

release mode, and the results are shown in Table 11. For both of the two implementations, 

cube 32×32×32 and cube 64×64×64, T(SW) and T(SW_GS) indicate the simulation time of 

the software implementations using exact solution and Gauss-Seidel solution with Fourier 

Decomposition respectively. The hardware version uses Jacobi solution with an entire N×N 

domain fitted onto a single FPGA, giving an operation throughput up to 19.2 billion per 

second working at a clock speed of 60MHz. 

 

Table 10 : Simulation time (in seconds) for the software (SW) and the hardware (HW) 

fixed-point implementations for FDM (Debug mode). 

 

 T(HW) T(SW_GS) T(SW) 
Speed-up 
(SW_GS) 

Speed-up 
(SW) 

32 0.001787 0.177349 0.015442 99.2 8.6 

64 0.004700 2.065627 0.117739 439.5 25.1 
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Table 11 : Simulation time (in seconds) for the software (SW) and the hardware (HW) 

fixed-point implementations for FDM (Release mode). 

 

 T(HW) T(SW_GS) T(SW) Speed-up 
(SW_GS) 

Speed-up 
(SW) 

32 0.001787 0.037969 0.007454 21.2 4.2 

64 0.004700 0.495538 0.056225 105.4 12.0 
 

The results suggest that the Jacobi hardware fixed-point solution on the Virtex 2V6000 FPGA 

can outperform a 2.4 GHz Pentium4 PC with 1GByte RAM by a factor of approximate 100, 

using a full strength optimizing compiler.  

 

6.5.2.2 32 bit Floating-point Jacobi Hardware vs Software (debug/release mode) 

In this section, the performance of the single floating-point precision hardware 

implementations using the Jacobi and Red-black successive over-relaxation solutions is 

measured and compared with the software versions.  

 

As described in section 4.3.1.2, the 32 bit floating-point hardware implementations of the 

FDM using the Jacobi solution were simulated and compared with the performance of the 

software version using the Gauss-Seidel solution. Table 12 and Table 13 show a comparison 

between the speed-up achieved by the hardware simulations as compared to the software 

running on a 2.4 GHz Pentium 4 PC. There are four architectures of hardware 

implementations, with 4/8/16/24 columns of on-chip memory used within the FPGA. The 

FDM running in hardware is found to be faster than in software. Speed-ups of a factor of 

approximately 32 can readily be obtained when 24 are columns used, and a minimum 

speed-up of 4.6 times can be achieved using the 4 columns design. Given that the FPGA runs 
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at a clock speed far lower than the Pentium 4 PC microprocessor, it can be seen that the 

hardware implementations make very good use of the intrinsic parallelism of the algorithms. 
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Table 12 : Simulation time (in seconds) for the software and the 32bit floating-point hardware implementations  
for FDM using Jacobi iteration (Debug mode). 

 

T(HW_Jacobi) Speed-up 
N 

4 8 16 24 

T(SW_GS) 

4 8 16 24 

32 0.014021 0.012975 0.012451 0.011963 0.177349 12.6 13.7 14.2 14.8 

64 0.119067 0.106382 0.100040 0.096926 2.065627 17.3 19.4 20.6 21.3 

128 0.883373 0.727367 0.649363 0.600363 24.11915 27.3 33.2 37.1 40.2 

256 9.348993 7.283259 6.100391 5.858901 292.6948 31.3 40.2 48.0 50.0 

 

Table 13 : Simulation time (in seconds) for the software and the 32bit floating-point hardware implementations  
for FDM using Jacobi iteration (Release mode). 

 

T(HW_Jacobi) Speed-up 
N 

4 8 16 24 

T(SW_GS) 

4 8 16 24 

32 0.008175 0.007128 0.006900 0.006431 0.037969 4.6 5.3 5.5 5.9 

64 0.061290 0.048596 0.042253 0.040139 0.495538 8.1 10.2 11.7 12.3 

128 0.508869 0.352863 0.278529 0.248858 6.258212 12.3 17.7 22.5 25.1 

256 5.599639 3.675338 2.728999 2.392471 77.20391 13.8 21.0 28.3 32.3 
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Figure 50 shows graphically the CPU simulation times required for the various 

implementations. The simulation times are plotted against the number of grid points in the 

cube on a log-log scale for problems ranging in size from 323 grid points to 2563. The 

computing time for the software implementation grows linearly with the cube size, and the 

hardware implementations increase almost linearly. Thus, the speed-up achieved by the 

hardware does not saturate as the cube size become large. 

 

0.0010.010.1110
100

10000 100000 1000000 10000000 100000000
Size of Cube

CPU time (s) HW_4_colsHW_8_colsHW_16_colsHW_24_colsSW_GS
 

Figure 50 : 32 bit Floating Point Jacobi Implementation  
(Software compiled in release mode). 
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Figure 51a : 32bit Floating Point Jacobi Hardware Implementation Speed-up for grid points 
from  323 to 2563 (Software compiled in release mode). 
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Figure 51b : 32 bit Floating Point Jacobi Hardware Implementation Speed-up for grid points 

from  323 to 2563 (Software compiled in release mode) shown on a log-lin scale. 

 

Figure 51 shows graphically the achieved speed-up using a full strength optimizing compiler 

(Figure 51a uses a lin-lin scale and Figure 51b shows the same data on a log-lin scale). The 

speed-up grows almost linearly with the increase in the level of hardware parallelism. In 

comparison with the processing time, which depends on the problem size, the number of 
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iterations for convergence, and the level of parallelism in the hardware implementations, the 

time taken to transfer the data onto and off of the hardware board can be ignored. As shown in 

Table 14, the data transfer time from Host-to-SRAM and SRAM-to-Host is far smaller than 

the processing time when the matrix size increases. 

 

Table 14 : Transfer duration vs. processing time using the 8 column design 
(in milliseconds) 

 
Transfer IN/OUT Duration  

(in milliseconds) 
 

Matrix Size Host→SRAM SRAM→Host 
Processing 

32 0.091902 1.48631 0.763 

64 0.363960 3.14218 9.22903 

128 1.51749 3.27972 113.466 

256 4.51255 4.37582 1399.51 

 

6.5.2.3 32bit Floating-point Red-black Successive Over-Relaxation Hardware vs 

Software (debug/release mode) 

Due to the poor convergence property of the Jacobi iteration method and the data dependency 

property of Gauss-Seidel/Successive Over-Relaxation iteration methods, the red-black 

successive over-relaxation solution was implemented. The performance of hardware 

implementations using the red-black successive over-relaxation scheme, described in section 

5.3.1.3, was compared to double precision and single precision software implementations 

running on a 2.4 GHz Pentium 4 with 1 GByte of memory. As shown in the discussion in 

section 6.1, the results generated using single precision are almost identical with the results 

using double precision, so it can be concluded that the solutions obtained from both methods 

are almost equivalent. 
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The computing times for the double precision floating-point software simulation are shown in 

Table 15 and Table 16, compiled in debug mode and release mode respectively. The hardware 

implementation can achieve a speed-up of 38 compared to the 64-bit floating-point 

Gauss-Seidel software solution for a cube of dimensions 256×256×256 using a full strength 

optimizing compiler. The performance of the hardware solution is greater for larger systems, 

as the balance between data transfer and computation is improved. As the hardware 

implementation uses single precision floating-point arithmetic, the software simulator was 

modified to also use single precision to provide a fair basis for comparison. Table 17 and 

Table 18 show the performance comparison between hardware and single precision 

floating-point software solutions. The speed-up compared to the single precision 

floating-point software solutions is reduced (as the Pentium 4 processor on which the 

software simulations run is a 32 bit processor, so there is a time penalty for using double 

precision). The speed-up achieved was a factor of approximately 9. 

 

As there are 16 copies of the data path implemented in parallel onto a single chip, the 

hardware architecture can be considered to be almost equivalent to the Jacobi 16 column 

hardware implementations. The performance of the Red-black successive over-relaxation 

solution is around 35% better than Jacobi solutions.  
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Table 15 : Simulation time (in seconds) for the 64bit floating-point software and the 32bit floating-point hardware implementation  
for FDM using red-black successive over-relaxation iteration (Debug mode). 

 
T(SW_double_floating_point) Speed-up 

N T(HW_RB_SOR) 
Exact GS SOR RB_SOR Exact GS SOR RB_SOR 

32 0.012112 0.015442 0.177349 0.078719 0.078562 1.2 14.6 6.5 6.5 

64 0.095743 0.117739 2.065627 0.885003 0.858751 1.2 21.5 9.2 9.0 

128 0.595941 0.919706 24.11915 9.285473 9.284257 1.5 40.5 15.6 15.6 

256 5.488757 7.309252 292.6948 201.5683 212.5884 1.3 53.3 36.7 38.7 

 

Table 16: Simulation time (in seconds) for the 64bit floating-point software and the 32bit floating-point hardware implementation  
for FDM using red-black successive over-relaxation iteration (Release mode). 

 
T(SW_double_floating_point) Speed-up 

N T(HW_RB_SOR) 
Exact GS SOR RB_SOR Exact GS SOR RB_SOR 

32 0.006267 0.007454 0.037969 0.013575 0.01098 1.2 6.1 2.2 1.8 

64 0.038956 0.056225 0.495538 0.175817 0.147751 1.4 12.7 4.5 3.8 

128 0.221447 0.422142 6.258212 2.213882 1.842309 1.9 28.3 10.0 8.3 

256 2.022227 3.334128 77.20391 25.47644 23.38476 1.6 38.2 12.6 11.6 
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Table 17 : Simulation time (in seconds) for the 32bit floating-point software and the 32bit floating-point hardware implementation  
for FDM using red-black successive over-relaxation iteration (Debug mode). 

 

T(SW_single_floating_point) Speed-up 
N T(HW_RB_SOR) 

Exact GS SOR RB_SOR Exact GS SOR RB_SOR 

32 0.012112 0.015543 0.041901 0.021365 0.017514 1.3 3.5 1.8 1.4 

64 0.095743 0.120727 0.428179 0.18491 0.16526 1.3 4.5 1.9 1.7 

128 0.595941 0.934129 4.398881 1.660374 1.752469 1.6 7.4 2.8 2.9 

256 5.488757 7.440643 75.37364 35.3634 46.80425 1.3 13.7 6.4 8.5 

 

Table 18 : Simulation time (in seconds) for the 32bit floating-point software and the 32bit floating-point hardware implementation 
for FDM using red-black successive over-relaxation iteration (Release mode). 

 

T(SW_single_floating_point) Speed-up 
N T(HW_RB_SOR) 

Exact GS SOR RB_SOR Exact GS SOR RB_SOR 

32 0.006267 0.007467 0.014542 0.007118 0.007087 1.2 2.3 1.1 1.1 

64 0.038956 0.055767 0.155769 0.068419 0.076462 1.4 4.0 1.8 2.0 

128 0.221447 0.418622 1.568907 0.63955 0.734665 1.9 7.1 2.9 3.3 

256 2.022227 3.3196 18.88989 10.15688 11.65903 1.6 9.3 5.0 5.8 
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The hardware design of the Red-Black successive over-relaxation method was also 

implemented on a Virtex 4 LX160 FPGA. The performance of the hardware designs on the 

Virtex 2V6000 and 4V LX160 FPGAs is compared in Table 19. 

 

Table 19 : Simulation time (in seconds) for the 32bit floating-point Hardware implementation 

on different FPGA boards. 

 

N V2(110MHz) V4(180MHz) Speed-up 

32 0.006267 0.002827 2.216 

64 0.038956 0.016292 2.391 

128 0.221447 0.0813515 2.722 

 

The hardware design on the 4VLX160 FPGA ran twice as fast as the same design on the 

2V6000 FPGA. However, the clock speed is not twice as fast. The remaining difference in 

simulation time is due differences in the PCs in which the FPGA boards were used, which 

results in a different speed of execution for the software versions that are used as the baseline 

in the two cases. 

 

6.5.3 Resource Utilization 

The resource utilizations for the various implementations of the FDM are shown in Table 20. 

The use of fixed-point arithmetic in the Jacobi implementation, running at a clock speed of 60 

MHz, reduces the complexity of the computational pipelines within the hardware 

implementation, thereby allowing a greater level of parallelisms to be obtained. In order to fit 

a 64×64 subdomain onto a single chip, 64 columns of block RAM memory are used to store 

the 32bit fixed-point values. By contrast, the floating-point designs, which cannot 
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accommodate the entire 2D subdomain onto a single chip, fit an appropriate number of data 

paths instead of the full number of data paths. The on-chip resources were almost exhausted 

for the 24 columns design at a 70 MHz clock rate, compared to the simplest 4 columns design 

running at a speed of 100 MHz. Each processing element, shown in Figure 37, uses 3 

floating-point adders and 1 floating-point multiplier. In order to trade off latency with 

maximum clock frequency, the floating-point adder and multiplier are generated using 

intellectual property (IP) cores with maximum latency by Xilinx CORE Generator. On the 

Virtex 2V6000 FPGA, only logic implementation is possible for 32-bit floating-point adder, 

whereas 4 MULT18×18s can be used to assemble a 32-bit floating-point multiplier. Therefore, 

the total number of Mult18×18s used in the hardware designs is the number of columns 

implemented in hardware multiplied by 4.  The processing element for the Red-black 

successive over-relaxation solutions includes 3 floating-point adders and 2 floating-point 

multipliers, as in Figure 39. There are 8 processing elements implemented in the 32-bit 

floating-point red-black successive over-relaxation design. Thus, the red-black successive 

over-relaxation design requires more on-chip resources in order to achieve the full pipelining 

of arithmetic operations in the same way that the 8 column Jacobi design does. 
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Table 20 : Hardware Resource Utilization (FDM) on Virtex 2V6000 FPGA. 

 

 CLK (MHz) Slices % FFs % LUTs % BRAMs % Mult18×18 % 

Jacobi Fixed-point  
arithmetic (N=64) 

60 14,384 42 18,042 26 12,769 18 64 44 0 0 

4 cols 100 7,652 22 10,457 15 8,151 12 4 2 16 11 

8 cols 80 13,756 40 18,442 27 14,839 21 8 5 32 22 

16 cols 80 25,955 76 34,402 50 28,178 41 16 11 64 44 

Jacobi 32bit 
Floating-point 
arithmetic 

24 cols 70 33,790 99 50,298 74 41,787 61 26 18 96 66 

Red-black SOR 32bit 
Floating-point arithmetic 

90 19,371 57 25,747 38 21,699 32 16 11 64 44 
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6.5.4 Results Analysis 

The primary aim of this work is to implement a stable and fast solver for 3-dimensional finite 

difference solution of Laplace equations. Due to the use of Fourier decomposition, the 3-D 

problem was split into a series of independent 2-D sub-problems. The hardware designs using 

the Jacobi and Red-black successive over-relaxation iteration schemes, which were chosen as 

they are very amenable to hardware solution, were implemented and the performance of each 

was measured and compared.  

 

The accuracy of the results has been demonstrated for both hardware and software 

implementations using fixed and floating point precision. The hardware and software 

simulations are reasonably equivalent. 

 

The use of fixed-point arithmetic reduces the complexity of the computational pipelines 

within the FPGA, thereby allowing a greater level of parallelism (and thus performance) to be 

achieved.  Speed-ups of a factor of approximately 100 can readily be obtained within a 

single FPGA. As this study is concerned with the solution of the Laplace equation, the 

fixed-point range can safely be identified a priori once the required boundary conditions are 

known. Trials have been carried out to determine that the selected range is greater than that 

required for equivalence to a single precision floating point. 

 

Unfortunately, fixed-point arithmetic can not handle PDE problems with a wide dynamic 

range of data and overflow may occur, so single precision floating-point arithmetic designs 

for the Jacobi method have also been implemented in order to extend the range of problems 

for which hardware solution is beneficial. However, the floating-point arithmetic operators 
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require much larger amount of logic resource compared to their fixed-point counterparts, 

which means that fewer computational pipelines can be fitted onto a single FPGA. Because of 

the lower level of parallelism, the speed-up is only up to 32 times. However, the performance 

of the hardware implementations was improved by using the red-black successive 

over-relaxation iteration scheme, which has a much better convergence property than Jacobi. 

For the same level of parallelism, the Red-black successive over-relaxation method runs 

almost twice as fast as the Jacobi method. 
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6.6 Finite Element Method 

In order to measure the performance of the finite element hardware design, a 3D domain with 

48, 384, 3072, 6000, 24576 and 48000 elements was generated and simulated until the 

iterative methods converged. The performance of the software version was measured and 

compared with the results of the hardware version. The double precision floating-point 

software version was run on the same PC (2.4 GHz Pentuim 4 PC with 1 GByte RAM), and 

the code complied using a full strength optimizing compiler.  

 

6.6.1 Numerical Precision 

Table 21 shows the number of iterations required for both software and hardware. The first 

column, SW(Global), shows the iteration count for a software solution that assembles and 

solves the global stiffness matrix including all the zero entries. The second column shows the 

iteration count for a software solution of the element-by-element approach. The third column, 

HW_1 shows the iteration count for the hardware implementation with a single matrix-vector 

multiplier block. The fourth column shows the corresponding data for the hardware 

implementation with two parallel matrix-vector multipliers blocks. The difference in iteration 

count between the software and hardware version is due to the fact that the software version 

used double precision whereas the hardware version used 32-bit single precision. The use of 

lower precision arithmetic produces the same answer, but at the cost of a larger number of 

iterations. 
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Table 21 : Iterations required for convergence. 

Elements SW(Jacobi) SW(Global) SW(EBE) HW_1 HW_2 

6 219 4 4 4 4 

48 980 18 18 18 18 

384 4,004 39 39 39 39 

750 6,264 49 49 49 49 

3,072 16,018 78 78 79 86 

6,000 24,994 95 95 96 116 

24,576 100,000 150 150 166 166 

48,000 NA* 188 188 207 207 
*Due to the memory limitation of the PC, the Jacobi method cannot converge for the problem with 48,000 

elements. 

 

6.6.2 Speed-up 

Table 22 : Comparison of speedup obtained by hardware implementations 

 

Elements V2_HW_1(80Mhz) V4_HW_1(140Mhz) V4_HW_2(140Mhz) 

48 3.02 4.92 5.41 

384 7.46 10.36 15.32 

3,072 9.84 15.37 28.69 

6,000 10.02 15.27 29.39 

24,576 10.40 15.94 31.65 

48,000 11.66 20.30 40.58 

 

Table 22 shows a speed-up comparison between the hardware and software solutions. If 

multiple FPGAs are used, the speed up should scale linearly, since the method used gives rise 

to minimal communication overhead. The timing cost of V2_HW_1 shows the result for the 

design with a single matrix-vector multiplier block implemented on Virtex 2V6000 FPGA. 
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V4_HW_1 is the design with one single matrix-vector multiplier block and V4_HW_2 has 

two such blocks; both are implemented on the Virtex 4VLX160 FPGA. 

 

The single precision floating-point implementation operates at a 140 MHz clock rate, and 

computation within the pipelines can be fully overlapped. As a result, 24 × 5 × 140M = 16.8 

billion single precision floating point operations can be carried out per second using a 

memory bandwidth of 24 × 4 byte × 140 MHz = 13.44 GByte/s.  

. 

00.0020.0040.0060.0080.010.012
0 10000 20000 30000 40000 50000 60000Size (elements)

CPU timing (s)
Virtex2(60Mhz)Virtex2(70Mhz)Virtex2(80Mhz)Virtex4_design2(140Mhz)Virtex4_design1(140Mhz)

 

Figure 52a : FEM Hardware Timing Comparison. 
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Figure 52b : FEM Hardware Timing Comparison (shown on a log-log scale). 

 

Figure 52 shows the time required for a single Conjugate Gradient iteration using each of the 

various designs. The speed of the design scales approximately linearly in clock frequency and 

level of parallelism of the designs for problem sizes exceeding about a few hundred elements. 

For smaller problem sizes the latencies are not fully hidden, and the speed up is lower. The 

important feature shown by Figure 52 is that the speed-up does not saturate as the problem 

size becomes large. 

 

6.6.3 Resource Utilization 

Due to the use of the element-by-element scheme, the hardware resources utilization will be 

constant even when the number of elements in the mesh increases. Table 23 shows the 

percentage of the FPGA resources used for the various implementations of the FEM.. The 

Virtex 4VLX160 resources were saturated in Design 2 as the 24 calculation element (CE) 

units had depleted all DSP48 units. Design 1 has only 12 calculation elements implemented in 

hardware for both 2V6000 and 4VLX160. The resource utilization of the FPGA based 
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reconfigurable hardware is independent of the matrix size, and the solution therefore scales 

well to larger problems. As more powerful and higher density FPGAs become available, the 

number of calculation elements instantiated on the FPGA can be increased, thus giving 

greater parallelism and greater speed-up. 
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Table 23 : Hardware resource utilization (FEM). 

 FPGA 
CLK 

(MHz) 
Slices % FFs % LUTs % BRAMs % DSP48s % Mult18*18 % 

Virtex 
2V6000 

80 25,610 75 33,557 49 31,332 46 12 8 ---- ---- 48 33 
Design1 
(12 CEs) 

Virtex 
4VLX160 

140 25,439 37 32,137 23 31,912 23 12 4 48 50 ---- ---- 

Design2 
(24 CEs) 

Virtex 
4VLX160 

140 49,068 72 60,459 44 64,881 48 12 4 96 100 ---- ---- 
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6.7 Summary 

In this chapter, the results produced by the hardware and software implementations have been 

presented and compared in terms of speed-up. The precision of the hardware results has been 

investigated. The hardware implementations can achieve the same accuracy of results as the 

double precision floating-point software implementation, with the penalty that a few more 

iterations are required to reach convergence. Resource utilization has been described in order 

to analyse the scalability of hardware designs in the following chapter.     
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Chapter 7 
 

SCALABILITY ANALYSIS 

7.1 Introduction 

For the design of any large scientific numerical system, architectural scalability is one of the 

most important evaluation parameters and will affect overall system efficiency, cost and 

upgradeability significantly.  

 

A number of vendors offer platforms that enable a processor to offload computation to an 

FPGA-based accelerator, for example Cray [104] and SRC [105]. Normally, once a design has 

been implemented for one specific FPGA chip and board, the design is locked because of the 

specific memory architecture. Therefore, the design for the particular FPGA cannot be easily 

resized or transferred to a more powerful FPGA. This implies that the design can become 

outdated very quickly. 

 

In the course of implementing numerical solutions in programmable logic, it becomes obvious 

that while hardware can typically outperform software, the degree of speed-up is strongly 

dependent on a number of factors, including the size and complexity of the problem, the 

parallelism of the algorithm used, and the hardware resources available. Several hardware 
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implementations of 3-dimensional problems on one single FPGA board were described in 

chapter 5, but the speed-up achieved as shown in chapter 6 might not be enough for the 

simulations in the case of real engineering structures, which involve millions of elements. A 

high level of parallelism available in the design will offer a significant speed-up. In order to 

cater for the requirements of these structures, the scalability of our design will be analyzed. 

 

The hardware implementation is dependent upon a number of factors, such as size of 

resources, peak number of operations, throughput and latency. The main aim of the 

implementation is to achieve a good balance in terms of optimizing these factors. This chapter 

will detail the principle potential trade-offs among these factors. 
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7.2 Scalability of the Finite Difference Method design 

7.2.1 Performance of the hardware implementations of FDM 

In this part, the performance of the Jacobi FDM system using floating-point arithmetic, which 

was described in 4.3.1.2, is analyzed.  

 

Due to the area cost of floating-point arithmetic, the FPGA chip cannot accommodate the 

whole 2-D slice and its associated computational pipelines simultaneously in the way that was 

implemented in 5.3.1.1. It is therefore necessary to use the FPGA to implement a smaller 

number of computational pipelines, and to read and to write the data from and to the off-chip 

memory. There are n columns of on-chip memory within the FPGA as cache that can hold up 

to n columns of data. These n columns of data can be operated in parallel, producing one 

result on each clock cycle. It requires 28 clock cycles of total latency from the reading of n 

columns of data to the write back of the new data to these columns. In addition, computation 

within the pipeline can be fully overlapped so that the column data is updated on every clock 

cycle. As a result, using this parallelism, the total number of floating point operators is given 

in Eq. (120) and the memory usage is given in Eq. (121). 

 

Number of Floating Point Operators per clock cycle = 5nF  Eq. (120) 

 

Bandwidth = 4nF  Eq. (121) 

where F is the system clock rate. 

 

A key aspect of the design is scalability, having a hardware/software co-processor that can 
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take advantage of more logic resources on FPGAs as they become available. To illustrate the 

scalability of the current systems, several versions of the finite difference designs were 

implemented with n processing elements. Table 24 gives the performance of 32-bit floating 

point arithmetic on the 2V6000 FPGA for each number n of processing elements, where n = 4, 

8, 16 and 24 respectively. The fourth row in the table gives the performance relative to the 4 

processing element design. With more processing elements, the processor can compute more 

floating-point operations per clock cycle. However, this also results in a decrease in the clock 

frequency as more resources are used on the FPGAs. The performance almost increases 

linearly with the number of processing elements, and the operating frequency decreases due to 

congestion of the hardware implementation. Table 25 gives the performance of 64-bit floating 

point arithmetic on 2V6000 FPGA for each number of processing elements, where n = 4, 6, 8. 

Double precision floating-point arithmetic requires more logic than single precision, which 

means that a smaller number of data paths can fit onto the FPGA. Compared to single 

precision floating-point arithmetic, the deterioration of system clock frequency for double 

precision floating-point arithmetic is significant, but the performance of double floating-point 

arithmetic implementations increases nearly linearly with the number of processing elements. 

 

Table 24 : Performance of 32-bit floating point FDM using Jacobi  

on Xilinx 2V6000 FPGA. 

 

No. of PEs 4 8 16 24 

Clock Freq. 110 MHz 106 MHz 100 MHz 98 MHz 

Bandwidth 
(GB/s) 

1.8 3.4 6.4 9.4 

GFLOPS 
(Single FP) 

2.2 4.24 8.0 11.76 

Performance 
Ratio 

1.0 1.9 3.6 5.3 
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Table 25 : Performance of 64-bit floating poinr FDM using Jacobi  

on Xilinx 2V6000 FPGA. 

 

No. of PEs 4 6 8 10 

Clock Freq. 70 MHz 64 MHz 60 MHz Overmapped 

Bandwidth 
(GB/s) 

2.24 3.07 3.84 Overmappedd 

GFLOPS 
(Double FP) 

1.4 1.92 2.4 Overmapped 

Performance 
Ratio 

1.0 1.4 1.7 Overmapped 

 

7.2.2 Analysis of the restrictions 

One point that is worth noting is that a floating-point adder is much more complicated than a 

fixed-point adder. This is because the input operands for a floating-point adder must be shifted 

until they have the same exponent prior to addition, and the resulting output must then be 

shifted to be correctly normalized. This consumes a large amount of the FPGA logic resources, 

and can also reduce the maximum speed that the circuit can achieve. By contrast, fixed-point 

arithmetic requires no special circuitry to provide input alignment or output normalization. 

The large logic requirements of floating-point arithmetic mean that an insufficient number of 

data paths will fit onto the FPGA. There is a loss of speed-up due to the communication cost 

on reading the data from external RAM. Fortunately, this loss can be ameliorated by holding a 

column of data within the FPGA for many sweeps of the iteration scheme. Each column of 

block RAM can be read and written simultaneously. The internal block RAM of the FPGA is 

therefore acting as a cache with a very large I/O capability. 

 

For the floating-point arithmetic operators, Floating-point operator v2.0 of Xilinx Core 
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Generators was used to generate them from a parameterized library of pre-designed useful 

components. Tradeoffs can be made in terms of the latency, resources and maximum clock 

frequency. The maximum latency means fewer resources occupied and a faster clock speed 

achieved. The floating-point operation units in this design were chosen to work at their 

maximum latency, and then given an implementation with a higher throughput operating on 

multiple processing elements simultaneously. 

 

There is another restriction to implement a hardware design scalably. This limitation involves 

the setting up and initiation of the system. In section 4.1.6, a host processor was introduced 

that is designed to be able to configure the FPGA and to pre-process the input data, then to 

initiate transfer to the external memory connected to the FPGA. The downloading of one of 

the sub-problems is accomplished whilst the FPGA board is computing the solution of a 

previous sub-problem. This eliminates communication and synchronization delays between 

the subdomains. 

 

7.2.3 Scalability of the hardware implementation of FDM 

The design implemented in section 5.3.1 used a medium speed grade of the 2V6000 FPGA in 

the Xilinx Virtex 2 series. This FPGA would have been typical of the state-of-the-art almost 

ten years ago, but newer, bigger and faster FPGA families are launched almost every year. In 

this section, we consider how the design would scale to larger and faster FPGAs, and also 

consider how the design would scale to the use of 64-bit floating point arithmetic. 

 

Table 26 compares the logic, memory and arithmetic capacity of the FPGAs used in this study 

with the largest FPGAs available in the more modern Virtex 5 and Virtex 6 series. There are 
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four different families of Virtex 5 FPGAs: the LX series (optimized for high-performance 

logic), the LXT series (optimized for high-performance logic with low power serial 

connectivity), the SXT series (optimized for DSP and memory-intensive applications with 

low-power serial connectivity) and the FXT series (optimized for embedded processing and 

memory-intensive applications with highest-speed serial connectivity). There are two 

sub-families of Virtex 6 FPGAs: the LXT series (high-performance logic with advanced serial 

connectivity) and SXT series (highest signal processing capability with advanced 

connectivity. 
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Table 26 : The logic, arithmetic and memory capacity of FPGAs [35]. 

 

Block RAM Blocks [1] 
Family FPGA CLK(MHz) 

18 Kb 36 Kb Max(Kb) 

Block 
multipliers/DSP 

slices [2] 
Logic slices [3] 

DCMs/CMTs 
/MMCMs [4] 

Virtex II 2V6000 400 144 --- 2,592 144 33,792 12 

4VSX55 500 320 --- 5,760 512 24,576 8 
Virtex 4 

4VLX160 500 288 --- 5,184 96 152,064 12 

5VLX330 550 576 288 10,386 192 51,840 6 

5VLX330T 550 648 324 11,664 192 51,840 6 

5VSX240T 550 1,032 516 18,576 1,056 37,440 6 
Virtex 5 

5VFX200T 550 912 456 16,416 384 30,720 6 

6VLX760 600 1,440 720 25,920 864 118,560 18 
Virtex 6 

6VSX475T 600 2,128 1,064 38,304 2,016 74,400 18 
[1] Block RAMs in Virtex-5 and Virtex-6 FPGAs, which are fundamentally 36 Kbits in size, can be used as two independent 18 Kb blocks.  
[2] Each Virtex-5/6 DSP slice contains one 25×18 multiplier, an adder and an accumulator, each Virtex-4 DSP slice contains one 18×18 multiplier, an adder 
and an accumulator; whereas the Virtex-II uses a dedicated 18×18 multiplier block. 
[3] A logic slice is equivalent to about 200 2-input logic gates. Each Virtex-6 FPGA slice contains four LUTs and eight flip-flops, and each Virtex-5 slice 

contains four LUTs and four flip-flops, whereas earlier series used two LUTs and two flip-flops. 
[4] Each CMT contains two DCMs and one PLL in Virtex-5 FPGAs, and each CMT contains two mixed-mode clock managers (MMCM) in Virtex-6 FPGAs. 
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Table 27 shows the number of logic slices and block multipliers required to build fixed and 

floating point adders and multipliers in 32-bit and 64-bit wordlength. (It should be noted that 

if the FPGA runs out of block multipliers, the multipliers can instead be constructed in the 

logic slices, but this will entail a speed penalty.) The floating point cores were generated by 

Xilinx CORE GENERATOR floating-point operator v2.0 in Virtex-2 and Virtex-4, by 

floating-point operator v3.0 in Virtex-5, and by floating-point operator v5.0 in Virtex-6. The 

hardware designs of FDM were implemented on Virtex 2V6000, Virtex 4VLX160 and Virtex 

4VSX55 FPGAs, and the number of data paths that were successfully implemented on each 

FPGA is listed in Table 28. In addition, the maximum number of data paths, as shown in 

Figure 53, can be projected in Virtex-5 and Virtex-6 FPGAs by using information from their 

data sheets.  

 

 

 

Figure 53 : Processing element for row update in FDM. 
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Table 27 : The resources consumed by addition and multiplication.  
 

32-bit fixed point 64-bit fixed point 32-bit float point 64-bit float point  
Block Mult Logic slices Block Mult Logic slices Block Mult Logic slices Block Mult Logic slices 

Adder 0 16 0 32 0 329 0 692 
Multiplier 2 73 4 146 4 139 16 540 

(a) Implementation on Virtex-2 [106] [107] 
 
 

32-bit fixed point 64-bit fixed point 32-bit float point 64-bit float point  
DSP48s Logic slices DSP48s Logic slices DSP48s Logic slices DSP48s Logic slices 

Adder 0 16 0 32 0 329 0 692 
Multiplier 2 73 4 146 4 118 16 491 

(b) Implementation on Virtex-4 [106] [107] 
 
 

32-bit fixed point 64-bit fixed point 32-bit float point 64-bit float point  
DSP48Es Logic slices DSP48Es Logic slices DSP48Es Logic slices DSP48Es Logic slices 

Adder 0 8 0 16 0 141 0 265 
Multiplier 2 37 4 73 2 53 12 168 

(c) Implementation on Virtex-5 [108] [107]  
                  

 
32-bit fixed point 64-bit fixed point 32-bit float point 64-bit float point  

DSP48E1s Logic slices DSP48E1s Logic slices DSP48E1s Logic slices DSP48E1s Logic slices 
Adder 0 8 0 16 0 123 0 229 
Multiplier 2 37 4 73 2 39 10 93 

(d) Implementation on Virtex-6 [108] [109]
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The floating-point operation units in this design were chosen to work at their maximum 

latency (in order to maximize throughput). In Table 28, the maximum numbers of data paths, 

as shown in Figure 53, can be built in the various series of Xilinx FPGAs. 

 

Table 28 : The number of copies of Figure 53 that can be built in each of the FPGAs 
 

 32-bit fixed 64-bit fixed + 32-bit float 64-bit float 

2V6000 64 36 24 8 

4VSX55 64 36 16 8 

4VLX160 128 72 48 16 

5VLX330 + 288 144 108 48 

6VLX760 + 720 360 290 144 
+ The results estimated using the data in Table 26 and Table 27. 

 

The single precision floating-point implementation on the 2V6000 operates at 98 MHz and 

the double precision at 60 MHz. On the Virtex 4, the frequency of operation for the datapath 

of Figure 53 (both single and double precision) rises to 110 MHz. The optimal 

implementations for the 5VLX330 and 6VLX760 are expected to run at a saturated clock 

frequency of 130MHz, due to the behaviour of the surrounding memory. Table 29 shows how 

the capacity estimates of Table 28, combined with data on the frequency of operation of the 

data paths, translate into projections for the number of computations that can be performed 

per second in Eq. (120) and memory bandwidth in Eq. (121).  
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Table 29 : Performance and bandwidth achievable on each FPGA. 
 

Single Floating-point Precision Double Floating-point Precision 
 Performance 

(GFLOPs) 
Bandwidth 
(GByte/s) 

Performance 
(GFLOPs) 

Bandwidth 
(GByte/s) 

2V6000 11.76 9.4 2.4 3.8 

4VSX55 8.8 7.0 4.4 7.0 

4VLX160 26.4 21.1 8.8 14.1 

5VLX330+ 70.2 56.1 31.2 49.9 

6VLX760+ 188.5 150.8 93.6 149.7 

 

The aim of our study is to explore the possibilities of using the internal memory of the FPGAs 

as a cache that can supply a very high memory bandwidth to support a very large number of 

parallel pipelines. In our design, each column of block RAM can be read and written 

simultaneously. The internal block RAM of the FPGA is therefore acting as a cache with a 

very large I/O bandwidth.  

 

Moreover, it should be noted that these results refer to the speed-up achieved for a single 

FPGA board. If the problem is solved across a number n of FPGA boards, the speed-up will 

scale linearly with n for values of n less than about 16 [110]. This is due to the domain 

decomposition approach used, which renders the sub-problems independent, thus avoiding 

saturation of speed-up due to communications overheads. 
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7.3 Summary 

The purpose of this chapter was to analyze the potential for high levels of parallelism within 

the FPGAs by using very deep computational pipelines on numerical solutions for partial 

differential equations.  

 

To realize the full potential of such approaches, the underlying algorithms must be inherently 

parallelizable. Reconfigurable hardware devices have been shown to outperform 

general-purpose CPUs in the computationally intensive applications considered, because they 

can exploit a great degree of pipelinability and parallelism in the algorithm in a much more 

thorough way than can be done with uni-processor or parallel computing. 

 

Firstly, the performance at low and high levels of parallelism has been discussed. The 

performance of both single precision and double precision floating-point arithmetic 

implementations increases nearly linearly with the number of processing elements, even when 

there is a loss of system frequency due to congestion arising from the double precision 

floating-point operators. Then, the features of the system that limit the speed-up achievable 

were analysed, with a discussion of the effect that future developments in reconfigurable 

computing architecture will have on these figures. Finally, a study of how great a performance 

level can be achieved by using the largest and fastest FPGA that is currently readily available 

has been given. 

 

The method has been chosen to minimize communication overheads, maximize parallelism, to 

be scalable for large problem sizes, and to be scalable to larger FPGAs. Overall, it has been 
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clearly demonstrated that the architecture of the hardware design scales linearly with multiple 

processors working in parallel. Furthermore, the design is scalable for the features of new 

FPGAs and will provide very promising results in future. 

 

 

 



 

- 182 - 

 
 

Chapter 8 
 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

In this thesis, the hardware/software implementation of a number of numerical solutions to 

Partial Differential Equations in reconfigurable computing systems based on FPGAs has been 

investigated. After providing relevant background to PDEs, and basic methodologies of PDE 

problems, a literature review of some previous parallel implementations of solutions to PDEs 

was presented. However, due to communication overheads and load balancing problems, 

speed-ups were far less than linear. The aim of this study, consequently, is to investigate the 

inherent parallelism inside the numerical algorithms and implement the re-organized 

algorithms onto FPGAs in order to accelerate the computations. By using domain 

decomposition, the main arithmetic operations can be implemented in parallel. Details of 

these implementations have then been given. An analysis of the results of hardware 

implementations with the comparison to the software equivalents and the requirements of 

such a system has been presented. The effect on speed-up and bandwidth has been discussed 

for complex problems. 
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The following topics have been considered in this study: 

 

• FPGA-based reconfigurable computing system for the 3-D finite difference 

solution of the Laplace Equation 

A system was designed whose software host uses Fourier decomposition to 

decompose the 3D finite difference problem into a series of 2D problems that can be 

downloaded into the reconfigurable computing boards. This decomposition gives a 

much better match between the processor/memory capabilities of the FPGAs and the 

properties of the sub-problems that they are used to solve. Downloading of one of the 

sub-problems is accomplished whilst the FPGA board is computing the solution of a 

previous sub-problem. This approach is based on the efficient use of the on-chip 

RAM within the FPGA as a cache to store the working set for the current 

sub-problem, and also to perform background upload and download of data for the 

previous and following sub-problem to be tackled by the FPGA. 

 

• Reconfigurable hardware acceleration for a Preconditioned Conjugate Gradient 

solver of the 3D tetrahedral finite elements 

A novel parallel hardware architecture for the preconditioned Conjugate Gradient 

solution of an element-by-element approach to finite element analysis has been 

presented. The solution of the large linear system equations is the most 

time-consuming part of the FEM. By using an Element-by-Element (EBE) scheme, 

the large sparse matrix-vector multiplication is divided into a number of independent 

sub-multiplications in order to improve data reusability and save external memory 

accesses. The use of FPGA hardware can help to deliver the solution of the large 
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system of equations resulting from 3D FE analysis in a faster and more cost effective 

manner. 

 

• Domain decomposition for 3-D problems 

Domain decomposition is necessary for 3-D PDEs problems to be able to exploit the 

high level of parallelism that can be achieved by reconfigurable computing. The 

requirement for very high levels of parallelism means that it is important to ensure 

that the hardware pipelines do not become starved of data. By using suitable domain 

decomposition methodologies, the data independency is exploited in order to achieve 

a high throughput of data from memory and to improve the speed-up. 

 

• Parallel architectures of several iterative methods 

Stationary iterative methods and non-stationary iterative methods have been 

discussed and implemented. An efficient memory hierarchy has been adopted in 

order to alleviate the memory bandwidth bottleneck. 

 

• Customized fixed-point arithmetic operations on hardware/software 

FPGA-based co-processors 

Customized fixed-point arithmetic has been used in order to conserve hardware 

resources. This enables one entire 2-D section of the problem to fit in a single FPGA 

chip and demonstrates how well the inherent parallelism of the algorithms can be 

exploited. 

 

• Floating-point arithmetic operations on hardware/software FPGA-based 
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co-processors 

As fixed point is suitable only for a restricted class of problems, which have very 

favourable error propagation characteristics and a very small dynamic range of 

problem parameters, floating-point arithmetic is considered for the most 

implementations of this study in order to achieve a good level of accuracy. One 

consequence of the use of floating point arithmetic is that we can not fit as high a 

level of parallel computations onto the FPGA as with fixed-point arithmetic, thus 

increasing the complexity of the hardware design. An optimized memory hierarchy 

has been introduced. The significant differences between the fixed-point and 

floating-point hardware versions have been investigated.  

 

Some parts of the applications are well-suited to computation on an FPGA, while others are 

better processed in software. By using a hardware/software co-processor, it has been shown 

that a reconfigurable computing accelerator based on FPGAs can outperform software 

implementation for these computationally expensive algorithms. A speed-up of 105 has been 

achieved for 64×64×64 FDM problem using fixed-point arithmetic, and a speed-up of 38 has 

been achieved by using floating-point arithmetic. Because of the complexity of the 

floating-point arithmetic operators, a smaller number of data paths can be implemented 

parallel and the speed-up of the hardware implementation is decreased. The speed-up of the 

finite element method was a factor of 40 for a 3D tetrahedral finite element problem with 

48,000 elements using the preconditioned conjugate gradient method. 

 

This study is a good start to explore the inherent parallelism inside several numerical 

solutions to the partial differential equations and use FPGA-based reconfigurable hardware to 
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accelerate these computationally expensive problems. In civil engineering, problems such as 

the modelling of water seepage through a dam or earthquake displacement analysis may take 

several days or even longer for numerical approximation. The use of domain decompositions 

avoids saturation of speed-up due to communication overheads, so the reconfigurable 

hardware can rival expensive parallel computers to solve such timing consuming problems 

and achieve a linear speed-up without saturation as the problem size becomes large. In 

addition, because the architecture of the hardware designs scales linearly with multi-processor 

implemented in parallel, the hardware designs can be easily resized or transferred to a latest, 

largest and fastest FPGA in order achieve further speed-up.  
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8.2 Future Work 

The scalability of the parallel system has only been demonstrated on a single FPGA board. It 

would be useful to implement a system with a large number of FPGAs, as in a reconfigurable 

supercomputer, in order to evaluate how well the load can be balanced and the size of the 

communication overheads. The use of multiple FPGAs in parallel will achieve further 

speed-up. 

 

FPGAs are increasing rapidly in logic and speed, and the loss of speed-up associated with 

floating-point arithmetic can be offset by migrating to higher speed grades of more modern 

FPGAs. A larger numerical precision is desirable for this study. As more modern FPGAs 

contain more embedded multipliers, there is a much greater freedom to implement 64-bit 

floating-point precision hardware solutions in order to investigate of the effect of numerical 

precision.  

 

Solutions for other numerical PDE problems would be another useful extension of this study, 

as the problem targeted in the thesis is mainly the solution to the Laplace equation. 
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