

SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

USING RECONFIGURABLE COMPUTING

By

Jing Hu

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Electrical, Electronic and Computer Engineering

College of Engineering and Physical Sciences

The University of Birmingham

May 2010

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

The University of Birmingham

 Electronic, Electrical and Computer Engineering

Degree of Doctor of Philosophy

 in Electronic and Electrical Engineering

Solution of Partial Differential Equations using Reconfigurable

Computing

 Jing Hu

PhD Thesis

Supervisor: Dr Steven F. Quigley

 Prof Andrew Chan

2010 The University of Birmingham

ABSTRACT

This research undergone is an inter-disciplinary project with the Civil Engineering

Department, which focuses on acceleration of the numerical solutions of Partial differential

equations (PDEs) describing continuous solid bodies (e.g. a dam or an aircraft wing).

Numerical techniques for solutions to PDEs are generally computationally demanding and

data intensive. One approach to acceleration of their numerical solutions is to use FPGA based

reconfigurable computing boards.

The aim of this research is to investigate the features of various algorithms for the numerical

solution of Laplace’s equation (the targeted PDE problem) in order to establish how well they

can be mapped onto reconfigurable hardware accelerators. Finite difference methods and

finite element methods are used to solve the PDE and they are characterized in terms of their

operation count, sequential and parallel content, communication requirements and amenability

to domain decomposition. These are then matched to abstract models of the capabilities of

FPGA-based reconfigurable computing platforms. The performance of different algorithms is

compared and discussed. The resulting hardware design will be suitable for platforms ranging

from single board add-ins for general PCs to reconfigurable supercomputers such as the Cray

XD1. However, the principal aim in this research has been to seek methods that perform well

on low-cost platforms.

In this thesis, several algorithms of solving the PDE are implemented on FPGA-based

reconfigurable computing systems. Domain decomposition is used to take advantage of the

embedded memory within the FPGA, which is used as a cache to store the data for the current

sub-domain in order to eliminate communication and synchronization delays between the

sub-domains and to support a very large number of parallel pipelines. Using Fourier

decomposition, the 32bit floating-point hardware/software design can achieve a speed-up of

38 for 3-D 256×256×256 finite difference method on a single FPGA board (based on a

Virtex2V6000 FPGA) compared to a software solution implemented in the same algorithm on

a 2.4 GHz Pentium 4 PC which supports SSE2. The 32 bit floating-point hardware-software

coprocessor for the 3D tetrahedral finite element problem with 48,000 elements using the

preconditioned conjugate gradient method can achieve a speed-up of 40 for a single FPGA

board (based on a Virtex4VLX160 FPGA) compared to a software solution.

To my lovely daughterTo my lovely daughterTo my lovely daughterTo my lovely daughter

ACKNOWLEDGEMENTS

I would like to thank:

• My two supervisors Dr. Steven F. Quigley and Prof. Andrew H.C. Chan, for all

their outstanding supervision, valuable advice and great guidance throughout my

PhD study;

• The CVCP for the Overseas Research Scholarship and University of

Birmingham, School of Engineering Scholarship, for giving financial support for

this research;

• My colleagues, Dr Sridhar Pammu, Lin A Win, Edward JC Stewart, Dr

Abdellatif Abu-Issa, Phaklen Ehkan, Lin Zhang and so on, in room 435 (which

was room 439 before the Department refurbishment), for sharing their research

experience and knowledge;

• My friends, Dr Qing Liu, Hongwei Hu, Ronghua Zhu and so on, for making the

time spent in Birmingham so enjoyable;

• My parents (Yueying Wang and Zhiqun Hu) and my husband (Dr Yebin Shi), last

but far from least, for their unwavering support and understanding

 TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 Introduction……………………………………………………………………….. 1

1.2 Contribution of this thesis………………………………………………………… 4

1.3 Thesis organisation……………………………………………………………….. 6

CHAPTER 2 BACKGROUND 9

2.1 Introduction of Partial Differential Equations……………………………………. 10

 2.1.1 Boundary conditions………………………………………………….. 14

2.2 Finite difference method………………………………………………………….. 15

2.3 Finite element method……………………………………………………………. 18

2.4 Direct methods……………………………………………………………………. 21

2.5 Iteration methods…………………………………………………………………. 23

 2.5.1 Jacobi Method………………………………………………………… 23

 2.5.2 Gauss Seidel Method…………………………………………………. 25

 2.5.3 Successive Over-relaxation (SOR) Method…………………………... 25

 2.5.4 Red-black Successive Over-relaxation……………………….............. 27

 2.5.5 Convergence…………………………………………………………... 28

2.6 Conjugate Gradient Method………………………………………………………. 30

2.7 Summary………………………………………………………………………….. 33

CHAPTER 3 REVIEW AND ANALYSIS OF PARALLEL

IMPLEMENTATIONS OF NUMERICAL SOLUTIONS

34

3.1 Introduction……………………………………………………………………….. 34

3.2 Parallel Computing……………………………………………………………….. 37

3.3 FPGAs & Reconfigurable Computing Systems…………………………………... 39

3.4 Parallel Implementation…………………………………………………………... 43

 3.4.1 Parallel FDM Implementations……………………………………….. 43

 3.4.2 Parallel FEM Implementations……………………………………….. 45

3.5 FPGA based High Performance Computer……………………………………….. 50

 3.5.1 Finite difference analysis in a configurable computing machine……... 51

 3.5.2 Langley’s FPGA-based reconfigurable hypercomputer (2001)………. 53

 3.5.3 High performance linear algebra operations on Cray XD1 (2004)…… 54

 3.5.4 FPGA-based supercomputer Maxwell (2007)………………………... 55

3.6 FPGA-based Reconfigurable Co-processor Implementation……………………... 57

3.7 Summary………………………………………………………………………….. 59

CHAPTER 4 FORMULATION OF THE NUMERICAL SOLUTION

APPROACHES

61

4.1 Software Implementation of the Finite Difference Method………………………. 62

 4.1.1 Domain discretizations………………………………………………... 62

 4.1.2 Fourier Decomposition……………………………………………….. 64

 4.1.3 The Finite Difference Method………………………………………… 70

 4.1.4 Fourier Decomposition in the y direction and Exact Solution………... 72

 4.1.5 Iteration Schemes……………………………………………………... 75

 4.1.6 Software Implementation……………………………………………... 76

4.2 The Finite Element Method………………………………………………………. 78

 4.2.1 1D Linear Solid Element……………………………………………… 78

 4.2.2 2D Rectangular Plane Strain Element………………………………… 82

 4.2.3 3D Tetrahedral Element………………………………………………. 86

4.3 Evaluation of the Software Implementation……………………………………… 96

 4.3.1 The Finite Difference Method………………………………………… 96

 4.3.2 Finite Element Method………………………………………………... 101

4.4 Summary………………………………………………………………………….. 103

CHAPTER 5 FPGA-BASED HARDWARE IMPLEMENTATIONS 104

5.1 Introduction……………………………………………………………………….. 104

5.2 System Environment……………………………………………………………… 106

 5.2.1 Software Interface…………………………………………………….. 106

 5.2.2 Hardware Platform……………………………………………………. 107

 5.2.3 Data Format…………………………………………………………… 110

5.3 Hardware Implementations……………………………………………………….. 114

 5.3.1 FPGA implementation of the Finite Difference Method……………… 115

 5.3.2 Finite Element Method………………………………………………... 129

5.4 Summary………………………………………………………………………….. 138

CHAPTER 6 HARDWARE AND SOFTWARE COMPARISON 139

6.1 Introduction……………………………………………………………………….. 139

6.2 Numerical Precision………………………………………………………………. 139

6.3 Speed-up………………………………………………………………………….. 141

6.4 Resource Utilization………………………………………………………………. 142

6.5 Finite Difference Method…………………………………………………………. 144

 6.5.1 Numerical Precision Analysis………………………………………… 144

 6.5.2 Speed-up………………………………………………………………. 146

 6.5.3 Resource Utilization…………………………………………………... 156

 6.5.4 Results Analysis………………………………………………………. 159

6.6 Finite Element Method…………………………………………………………… 161

 6.6.1 Numerical Precision…………………………………………………... 161

 6.6.2 Speed-up………………………………………………………………. 162

 6.6.3 Resource Utilization………………………………………………… 164

6.7 Summary………………………………………………………………………….. 167

CHAPTER 7 SCALABILITY ANALYSIS 168

7.1 Introduction……………………………………………………………………….. 168

7.2 Scalability of the Finite Difference Method design………………………………. 170

 7.2.1 Performance of the hardware implementations of FDM……………... 170

 7.2.2 Analysis of the restrictions……………………………………………. 172

 7.2.3 Scalability of the hardware implementations of FDM………………... 173

7.3 Summary………………………………………………………………………….. 180

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 182

8.1 Conclusions……………………………………………………………………….. 182

8.2 Future Work………………………………………………………………………. 187

REFERENCES 188

APPENDIX: PUBLICATIONS 203

LIST OF FIGURES

Figure 1 : 2-D Solution Domain for FDM 13

Figure 2 : Solution domain for an equilibrium problem 14

Figure 3 : Solution domain of 2D Laplace Equation and finite difference grid 16

Figure 4 : Pattern of global matrix of 3-D finite difference mesh 17

Figure 5 : Flow chart for the finite element algorithm 19

Figure 6 : Two-dimensional Red-Black Grid 28

Figure 7 : The method of Conjugate Gradients 30

Figure 8 : Prototype NASA Finite Element Machine Hardware 47

Figure 9 : FEM block diagram 47

Figure 10 : The Splash-2 system 52

Figure 11 : HAL-15 Reconfigurable Computing Board with 10 Xilinx XC4062 chips
(One FPGA located on the reverse side)

53

Figure 12 : HAL-15 Reconfigurable Computing Board with 10 Xilinx XC2V6000
FPGA chips

54

Figure 13 : Hardware Architecture of Cray XD1 55

Figure 14 : FPGA connectivity in Maxwell 56

Figure 15 : The 3-dimensional domain to be solved 63

Figure 16 : 2D finite difference grid 70

Figure 17 : 3D FDM simulation flow graph 77

Figure 18 : 1D finite element mesh 79

Figure 19 : 2-dimensional rectangular plane strain elements 83

Figure 20 : Subdivision of the domain into 3 Dimensional Tetrahedral Elements 86

Figure 21 : 3D Tetrahedral Element 87

Figure 22 : Matrix Multiplication Parallelization 93

Figure 23 : Software-Hardware Design Flow 106

Figure 24 : Block diagram of the RC2000 107

Figure 25 : Block diagram of RC2000 Interface hardware components 109

Figure 26 : RTL view of hardware design 110

Figure 27 : Customised fixed-point data format 111

Figure 28 : Bit Fields within the Floating Point Representation 112

Figure 29 : Xilinx FPGA design flow 115

Figure 30 : FPGA implementation block diagram of FDM 115

Figure 31 : Architecture of the Jacobi solver within the FPGA 117

Figure 32 : Processing element for row update by using Jacobi iteration 118

Figure 33 : Processing element for row update by using successive over-relaxation
 iteration

119

Figure 34 : Architecture of data path of Jacobi scheme 121

Figure 35 : Hardware architecture of data flow for the floating-point Jacobi solver 122

Figure 36 : Scheduling of the computation in the Jacobi solver 124

Figure 37 : Processing element for row update in Floating-point Jacobi solver 125

Figure 38 : Architecture of data path of red-black successive over-relaxation scheme 127

Figure 39 : Processing elements: (a) for the old red columns, (b) for the even red
columns, (c) for the old black columns, (d) for the even black columns

128

Figure 40 : 1D finite element mesh 130

Figure 41 : Architecture of 1D FEM solver 130

Figure 42 : Basic processing unit of 1D FEM solver in Matlab Simulink 131

Figure 43 : Two-dimensional rectangular plane strain elements 131

Figure 44 : Data Flow of 2D FEM design 132

Figure 45 : Stiffness Matrix Multiplication 133

Figure 46 : Matrix Multiplication Parallelization using the element by element method 134

Figure 47 : Architecture of matrix multiplication within FPGA 135

Figure 48 : Calculation Element (CE) for 3D FEM 136

Figure 49 : Architecture of parallel matrix multiplications within FPGA 136

Figure 50 : 32 bit Floating Point Jacobi Implementation 150

Figure 51 : 32 bit Floating Point Jacobi Hardware Implementation Speed-up 151

Figure 52 : FEM Hardware Timing Comparison 163

Figure 53 : Processing element for row update in FDM 176

LIST OF TABLES

Table 1 : Xilinx Devices Comparison 40

Table 2 : Maximum Relative Error between Domain Decomposition methods and
 Exact Solution for N×N×N cubes

97

Table 3 : Timing Cost of Different Methods for N×N×N cubes (Jacobi iteration) 99

Table 4 : Timing cost for iterative methods of F_FDM2 100

Table 5 : The number of iterations using different iteration methods for the FEM 101

Table 6 : Timing (in seconds) Comparison in Different Methods 102

Table 7 : Performance of the different approaches 119

Table 8 : The logic, arithmetic and memory capacity of the two FPGAs used in this
research

143

Table 9 : Absolute error in the hardware and software 3D FDM implementations
compared to the double precision exact analytic solution

145

Table 10 : Simulation time (in seconds) for the software and the hardware fixed-point
implementations for FDM (Debug mode)

146

Table 11 : Simulation time (in seconds) for the software and the hardware fixed-point
implementations for FDM (Release mode)

147

Table 12 : Simulation time (in seconds) for the software and the 32bit floating-point
hardware implementations for FDM using Jacobi iteration (Debug mode)

149

Table 13 : Simulation time (in seconds) for the software and the 32bit floating-point
hardware implementations for FDM using Jacobi iteration (Release mode)

149

Table 14 : Transfer duration vs. processing time using the 8 column design 152

Table 15 : Simulation time (in seconds) for the 64bit floating point software and the
32bit floating-point hardware implementations for FDM using red-black
successive over-relaxation iteration (Debug mode)

154
Table 16 : Simulation time (in seconds) for the 64bit floating point software and the

32bit floating-point hardware implementations for FDM using red-black
successive over-relaxation iteration (Release mode)

154
Table 17 : Simulation time (in seconds) for the 32bit floating point software and the

32bit floating-point hardware implementations for FDM using red-black
successive over-relaxation iteration(Debug mode)

155
Table 18 : Simulation time (in seconds) for the 32bit floating point software and the

32bit floating-point hardware implementations for FDM using red-black
successive over-relaxation iteration (Release mode)

155

Table 19 : Simulation time (in seconds) for the 32bit floating-point Hardware
implementation on different FPGA boards

156

Table 20 : Hardware Resources Utilization (FDM) on Virtex 2V6000 FPGA 158

Table 21 : Iteration required for convergence 162

Table 22 : Comparison of speed-up obtained by hardware implementations 162

Table 23 : Hardware resources utilization (FEM) 166

Table 24 : Performance of 32-bit floating point FDM using Jacobi 171

Table 25 : Performance of 64-bit floating point FDM using Jacobi 172

Table 26 : The logic, arithmetic and memory capacity of FPGAs 175

Table 27 : The resources consumed by addition and multiplication 177

Table 28 : The number of copies of Figure 53 that can be built in each of the FPGAs 178

Table 29 : Performance and bandwidth achievable on each FPGA 179

ACRONYMS & ABBREVIATIONS

ASIC Application-Specific Integrated Circuit

BRAM Block RAM

CE Calculation Element

CG Conjugate Gradient

CLB Configurable Logic Block

CSR Compressed Storage Row

CUDA Compute Unified Device Architecture

DSP Digital Signal Processor/Processing

EBE Element-by-Element

FDM Finite Difference Method

FEA Finite Element Analysis

FEM Finite Element Method

FF Flip-flop

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GPU Graphic Processing Unit

GS Gauss Seidel

HW Hardware

I/O Input/Output

IP Intellectual Property

LUT Look Up Table

ODE Ordinary Differential Equation

PC Personal Computer

PCG Preconditioned Conjugate Gradient

PCI Peripheral Component Interconnect

PDE Partial Differential Equation

PE Processing Element

PLD Programmable Logic Device

RAM Random-access Memory

SIMD Single Instruction Multiple Data

SOR Successive Over-Relaxation

SW Software

SRAM Static Random-access Memory

VHDL Very high speed integrated circuit Hardware Description Language

- 1 -

Chapter 1

INTRODUCTION

1.1 Introduction

The Finite Difference Method (FDM) is one of the simplest and most straightforward ways of

solving Partial Differential Equations (PDEs). The PDE is converted, by transforming the

continuous domain of the state variables to a network or mesh of discrete points, into a set of

finite difference equations that can be solved subject to the appropriate boundary conditions.

The Finite Element Method (FEM) is a widely used engineering analysis tool to obtain an

approximate solution for a given mathematical model of a structure, as well as being used in

the approximation of the solutions of partial differential equations. Finite Element Analysis

(FEA) is widely applied to model a material or design that will be affected by various

environmental factors, such as stress, temperature and vibration. FEA usually requires the

solution of a large system of linear equations repeatedly. In industry, there is a requirement to

reduce the time taken to obtain results from FEA software. In three dimensions, in order to

reduce the memory requirements, iterative solvers are typically used to solve these systems.

Chapter 1: Introduction

- 2 -

Of the iterative algorithms available, the Conjugate Gradient method is one of the most

effective iterative approaches to the solution of symmetric positive definite sparse systems of

linear equations, as it converges in a finite number of steps.

FDM and FEM are both extremely computationally expensive, especially for 3-D problems.

Much effort has therefore been made to explore the degree of parallelism on parallel computer

systems in order to achieve a high speed-up of the simulation that is proportional to the

number of processors used. Unfortunately, because of problems such as load balancing,

synchronization and communication overheads, these systems could not achieve an ideal

linear speed-up.

One of the approaches to high performance computing that is growing in credibility is the use

of reconfigurable hardware to form custom hardware accelerators for numerical computations.

This can be achieved through the use of Field Programmable Gate Arrays (FPGAs), which are

large arrays of programmable logic gates and memory. FPGAs can be reconfigured in real

time to provide large parallel arrays of simple processors that can co-operate with the host

computer to solve a problem much faster and more efficiently. In recent years, Graphics

Processing Units (GPUs) computing has also become a popular trend in high performance

computing due to their massively parallel simplified CPU-units. However, for data-intensive

numerical problems, such as FDM and FEM, the performance of GPUs can degrade because

the memory accesses required by such numerical algorithms have a long latency which cannot

always be hidden by pipelining.

FPGAs have evolved rapidly in the last few years, and have now reached sufficient speed and

Chapter 1: Introduction

- 3 -

logic density to implement highly complex systems. FPGAs are being applied in many areas

to accelerate algorithms that can make use of massive parallelism, such as bioinformatics [1],

real-time image processing [2], data mining [3], communication networks [4], etc. The rapid

improvement in hardware capabilities in the last few years has steadily widened the range of

prospective application areas. One promising application area is the use of FPGA-based

reconfigurable hardware to form custom hardware accelerators within standard computers for

numerical computations. In this research, the term “reconfigurable computing” is used to refer

to any use of an FPGA co-processor, not restricted only to run-time reconfigurable

applications.

As a poor man’s supercomputer, FPGA co-processors are more expensive than general

purpose GPUs, but they are still more easily affordable than expensive parallel computers.

FPGAs within desk-top systems open a new window to low cost hardware acceleration. It is

therefore desirable to explore how well the FDM and FEM can be mapped onto an

FPGA-based reconfigurable computing platform.

Chapter 1: Introduction

- 4 -

1.2 Contribution of this thesis

This thesis presents a study of the use of reconfigurable hardware using FPGAs to accelerate

implementations of the FDM and the FEM. An emphasis within this thesis is to find

formulations that can perform well on low-cost platforms. In practice, this means seeking

algorithms that have very low communications and synchronization overheads, as low-cost

platforms tend to be characterized by low bandwidth for communications between FPGA

boards and the host. The major contributions made by this work are as follows:

� A novel approach was taken to accelerate the finite difference method to solve a

three-dimensional Laplace equation on a single FPGA. Both fixed-point arithmetic

and floating-point arithmetic were investigated, and the performance of hardware

based on 32-bit customised fixed-point arithmetic and 32-bit floating-point

arithmetic was compared.

� A novel parallel hardware architecture for a preconditioned Conjugate Gradient

solver was presented to solve the finite element equations using an

element-by-element storage scheme.

� A domain decomposition technique has also been employed. Fourier decomposition

was applied to the FDM to eliminate communication and synchronization delays

between the sub-domains, whilst ensuring that the pattern of memory accesses is

easy and efficient to implement. An element-by-element (EBE) approach was

chosen for the FEM to efficiently handle sparse problems without requiring

complicated data structures that inhibit the efficiency of hardware implementation.

Chapter 1: Introduction

- 5 -

The use of the element-by-element storage scheme also reduces the RAM

requirement.

� Compared to an equivalent software solution on a 2.4GHz Pentium4 PC, a speed-up

of 38 was achieved for solution of a 3-D Laplace equation using a 256×256×256

finite difference method using 32-bit floating-point arithmetic on the reconfigurable

computing board with a Virtex2V6000 FPGA, whereas, a speed-up of 105 was

achieved for a 64×64×64 FDM problem by using customized fixed-point arithmetic.

For the finite element method, the 32bit floating-point hardware-software

coprocessor for the 3D tetrahedral finite element problem with 48,000 elements

using the preconditioned conjugate gradient method achieved a speed-up of 40 for a

single FPGA board (based on a Virtex4VLX160 FPGA) compared to a software

solution.

� Predictions of scalability are presented as to how well the hardware architecture

would map onto larger FPGAs and larger number of FPGAs. The effects of data

precision and additional resources are also considered.

� An analysis of speed-up has been carried out. It demonstrates that the performance

of the hardware implementations is determined mainly by the available FPGA

resources, with communication bandwidth and synchronization overheads between

FPGAs and the host machine imposing relatively modest limitations.

Chapter 1: Introduction

- 6 -

1.3 Thesis organisation

Chapter 2 introduces the basic concepts of Partial Differential Equations and their solution.

Direct methods and iterative methods are formulated, and their feasibility is considered.

Chapter 3 presents a brief review of reconfigurable computing in parallel processing.

Chapter 4 introduces the two most widely used general solution techniques of PDEs: the finite

difference method (FDM) and the finite element method (FEM). The FDM is used to solve a

3-dimensional Laplace equation. Because the FDM can be extremely computationally

expensive, especially when the number of grid points becomes large, Fourier decomposition

is used to split the 3-D problem into a series of 2-D sub-problems, which can each be farmed

out to a different FPGA (or fed sequentially through a single FPGA). The FEM, also widely

used as an approximation for the solutions of PDEs, is also discussed in chapter 4.

Chapter 5 describes several hardware designs that were implemented onto a reconfigurable

computing board. The first is a very compact design of an FDM implementation, which uses a

customized 32-bit fixed-point arithmetic to fit the parallel computational units and working

memory for an entire self-contained domain onto a single FPGA. The second is a more

complex implementation, which extends the work to use floating-point arithmetic in order to

avoid the poor numerical properties of fixed-point arithmetic. However, the impact of the

larger logic requirements of floating-point arithmetic operators cannot be ignored: the number

of parallel pipelines must be reduced due to the limitation of hardware resources. Furthermore,

an element-by-element preconditioned Conjugate Gradient iterative solver for the solution of

Chapter 1: Introduction

- 7 -

a 3D FE analysis has been implemented using 32-bit floating-point arithmetic on a single

FPGA.

In chapter 6, the hardware implementations are compared with software implementations in

terms of speed-up and numerical precision. Furthermore, the performance of several hardware

implementations is compared based on logic requirements, clock rates, and error propagation

etc. The floating-point hardware implementation of the finite difference method gives a factor

of 24 speed-up compared to the software version, whereas the floating-point hardware

implementation of the finite element method gives a factor of 40 speed-up. More

sophisticated iteration schemes are examined in hardware and the data dependences are

discussed. The Red-Black successive over-relaxation (SOR) method is judged to be a

particularly attractive approach due its benign pattern of data dependencies and simple data

path.

Chapter 7 describes how the hardware designs can be modified to enhance the performance

(in terms of speed and efficiency) and discusses the bottlenecks of parallel computing. The

whole of the reconfigurable computing system is considered: the limitations on the speed of

communication between board and host, the memory resources and also the embedded

microprocessors and multipliers on future FPGAs. A projection of how a typical system can

be implemented and how well the system performs is presented. Based on the hardware

implementations on Virtex II and Virtex 4 FPGAs, an estimate on how well the design can be

scalable to take advantage of the properties of future FPGAs is also presented and discussed.

Some of the main parameters that impact the performance of the hardware designs are

discussed in Chapter 5. Also projections are made as to how much hardware will be needed

Chapter 1: Introduction

- 8 -

and what level of speed-up could be expected.

Chapter 8 discusses the conclusions of the study, and gives some recommendations for

possible future work.

- 9 -

Chapter 2

BACKGROUND

The history of research on partial differential equations (PDEs) goes back to the 18th century.

One of the most important phenomena in the application of PDEs in science and engineering

since the Second World War has been the impact of high speed digital computation [5].

Numerical analysis can be considered as a branch of analytical applied mathematics. There is

a variety of numerical techniques for solving PDEs, such as the finite difference method [6],

finite element method [7], finite volume method [8], boundary element method [9], meshfree

method [10], and the spectral method [11]. The finite element method and finite volume

method are widely used in engineering to model problems with complicated geometries; the

finite difference method is often regarded as the simplest method [12]; the meshfree method is

used to facilitate accurate and stable numerical solutions for PDEs without using a mesh.

This chapter provides a comprehensive guide to two numerical approaches to solution of

partial differential equations, the finite difference method and the finite element method.

Chapter 2: Background

- 10 -

2.1 Introduction of Partial Differential Equations

Partial differential equations (PDEs) are used to formulate problems involving functions of

several independent variables; the equations are expressed as a relationship between a

function of two or more independent variables and the partial derivatives of this function with

respect to these independent variables. The order of the highest derivative defines the order of

the equation. PDEs are widely used in most fields of engineering and science, where many

real physical processes are governed by partial differential equations [13]. Moreover, in recent

years, there has been a dramatic increase in the use of PDEs in areas such as biology,

chemistry, computer science and in economics.

PDEs fall roughly into these three classes, which are [13]

♦ Elliptic PDEs

♦ Parabolic PDEs

♦ Hyperbolic PDEs

If all of the partial derivatives appear in linear form and none of the coefficients depends on

the dependent variable, then it is called a linear partial differential equation [13]. Otherwise,

the PDE is non-linear if the coefficients depend on the dependent variable or the derivatives

appear in a non-linear form. For example, consider the following two equations:

2

2

f f

t x
α

∂ ∂
=

∂ ∂
 Eq. (1)

where x and t are the independent variables, f is the unknown function, and α is the

coefficient, and

Chapter 2: Background

- 11 -

0
f f

f
x y

∂ ∂
+ =

∂ ∂
 Eq. (2)

where x and y are the independent variables, and f is the unknown function.

Eq. (1) is the one-dimensional diffusion equation, which is a linear PDE, whereas, Eq. (2) is

nonlinear because the coefficient of
f

x

∂

∂
 is the function f .

The 3 dimensional Laplace equation (3) for a function (, ,)x y zφ , which is a classical

example of an elliptic linear PDE, describes the electrostatic potential in the absence of

unpaired electric charge, or describes steady-state temperature distribution in the absence of

heat sources and sinks in the domain under study in heat and mass transfer theory [14].

2 2 2

2 2 2
0

x y z

φ φ φ∂ ∂ ∂
+ + =

∂ ∂ ∂
 or 2 0φ∇ = Eq. (3)

where x , y and z are the independent variables, φ is the unknown function, and 2∇ is

the Laplacian operator.

The equation is supplemented by initial and/or boundary conditions in order for a solution to

be found. Laplace’s equation is a second-order homogeneous partial differential equation. (An

equation is classified as homogeneous if the unknown function or its derivatives appear in

each term). The Poisson equation (4) (which represents a steady state seepage problem with

source term, an electrical field problem with source term, or a steady state heat transfer

problem with heat sources) is the non-homogeneous form of the Laplace equation:

Chapter 2: Background

- 12 -

2 2 2

2 2 2
(, ,)

u u u
F x y z

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 or 2 (, ,)u F x y z∇ = Eq. (4)

where the non-homogeneous term (, ,)F x y z is application dependent.

In electrostatics, the three-dimensional Poisson’s equation (5) defines the relationship between

the electrostatic potential and the electric charge density [14]:

2 2 2

2 2 2
0x y z

φ φ φ ρ

ε

∂ ∂ ∂
+ + = −

∂ ∂ ∂
 or 2

0

ρ
φ

ε
∇ = − Eq. (5)

where 0ε is the vacuum permittivity, ρ is the charge density and (, ,)F x y z is presented as a

constant value
0

ρ

ε
− .

The appearance of the non-homogeneous term (, ,)F x y z can greatly complicate the exact

solution of the Poisson equation, however, it does not change the general features of the PDEs,

nor does it usually change or complicate the numerical method of solution [13]. Consequently,

the solution of the linear homogeneous Laplace’s equation, which is a common elliptic PDE,

is considered in the whole thesis. All of the following discussions can be applied directly to

the numerical solution of the Poisson equation, because the non-homogeneous term is simply

added to the numerical approximation of the Laplace equation at each node or computational

location.

Generally, various methods can be used to reduce the governing PDEs to a set of ordinary

differential equations (ODEs). Unfortunately, only a limited number of special types of

elliptic equations can be solved analytically. The most dramatic progress in PDEs has been

Chapter 2: Background

- 13 -

achieved in the last century with the introduction of numerical approximation methods that

allow the use of computers to solve PDEs in most situations for general geometries and under

arbitrary external conditions, even though there are still a large number of hurdles to be

overcome in practice.

The analytical solution of a two-dimensional elliptic equation is produced by calculating a

function with the space co-ordinates x and y, which satisfies the partial differential equation at

every point of area S which is bounded by a plane closed curve C, and satisfies certain

conditions at every point on the boundary curve C as shown in Figure 1. Unfortunately, only a

limited number of special types of elliptic equations can be solved analytically. In other cases,

numerical approximation methods are necessary.

Figure 1 : 2-D Solution Domain for FDM.

In the following sections, the two widely used numerical approximation methods, the finite

difference method (FDM) and the finite element method (FEM), will be introduced in the

Chapter 2: Background

- 14 -

context of the Laplace’s equation, which is a classical elliptic PDE that can be solved using

relaxation methods [6].

2.1.1 Boundary conditions

There are three types of boundary conditions [13]:

1. Dirichlet boundary condition: the value of the function is specified.

2. Neumann boundary condition: the value of the derivative normal to the

boundary is specified.

3. Mixed boundary condition: A combination of the function and its normal

derivative is specified on the boundary.

Figure 2 illustrates the closed solution domain Ω(x1,x2) and its boundary Γ. Equilibrium

problems are steady-state problems in closed domains Ω(x1,x2) in which the solution f(x1,x2) is

governed by an elliptic PDE subject to boundary conditions specified at each point on the

boundary Γ of the domain.

Figure 2 : Solution domain for an equilibrium problem.

Chapter 2: Background

- 15 -

2.2 Finite difference method

The Finite Difference Method (FDM) is one of the numerical approximation methods that are

frequently used to solve partial differential equations [13]. The continuous physical domain is

discretized into a discrete finite difference grid in order to approximate the individual exact

partial derivatives in the PDE by algebraic finite difference approximations, then the

approximations are substituted into the PDE to form a set of algebraic finite difference

equations and, finally, the resulting algebraic equations are solved [13].

For technical purposes, FDMs can give solutions accurately, so they are as satisfactory as one

calculated from analytical solutions [6]. Figure 3 shows a solution domain which is covered

by a two-dimensional finite difference grid. The finite difference solution to the PDE is

obtained at the intersections of these grid lines. Assuming that f is an unknown function of

the independent variables x and y, the x-y plane is subdivided into sets of rectangles of sides

x∆ and y∆ . The subscript i is used to denote the physical grid lines corresponding to

constant values of x, where ix i x= ⋅ ∆ , and the subscript j is used to denote the physical grid

lines corresponding to constant values of y, where jy j y= ⋅∆ . Additionally, a

three-dimensional physical domain can be obtained by a three dimensional grid of planes

perpendicular to the coordinate axes in a similar manner, where the subscripts i , j and k

denote the physical grid planes perpendicular to the x , y and z axes. The grid point

(, ,)i j k represents location (, ,)i j kx y z in the solution domain.

Chapter 2: Background

- 16 -

i,ji-1,j i,j-1 i+1,ji,j+1
x

y
P(ih,jk)

Figure 3 : Solution domain of 2D Laplace Equation and finite difference grid [6].

By using a second-order central difference approximation, the two-dimensional Laplace

equation (3) becomes

1, 1, , , 1 , 1 ,

2 2

2 2
0i j i j i j i j i j i jf f f f f f

x y

+ − + −+ − + −
+ =

∆ ∆
 Eq. (6)

Solving Eq. (6) for ,i jf yields

2 2
1, 1, , 1 , 1

, 22(1)
i j i j i j i j

i j

f f f f
f

β β

β
+ − + −+ + +

=
+

 Eq. (7)

where β is the grid aspect ratio
x

y
β

∆
=

∆
.

When the grid aspect ratio β is unity, i.e. x∆ = y∆ , Eq. (7) simplifies to

Chapter 2: Background

- 17 -

1, 1, , 1 , 1
, 4

i j i j i j i j

i j

f f f f
f

− + − ++ + +
= Eq. (8)

or

1, 1, , 1 , 1 ,4 0i j i j i j i j i jf f f f f− + − ++ + + − = Eq. (9)

This can be solved by either of two approaches. The first approach assembles the contribution

of each point into a global matrix, which can be written as follows:

0,0

0,1

0,2

0,3

0,4

1,0

1,1

1,2

4 1 0 0 0 1

1 4 1 0 0 0 1 0

0 1 4 1 0 0 0 1

0 0 1 4 1 0 0 0 1

0 0 0 1 4 1 0 0 0 1

1 0 0 0 1 4 1 0 0 0 1

1 0 0 0 1 4 1 0 0 0

1 0 0 0 1 4 1 0 0

1 0 0 0 1 4 1 0

0 1 0 0 0 1 4 1

1 0 0 0 1 4

f

f

f

f

f

f

f

f

−  
  −  
  −
  

−  
  −
  

−  
  −
  

−  
  
 
 −
 

− 
 −  

�

�

� � � � � � �

�

�

�

0,0

0,1

0,2

0,3

0,4

1,0

1,1

1,2

b

b

b

b

b

b

b

b

  
  
  
  
  
  
  
  
  

=  
  
  
  

   
   
   
   
     

�

�

�

�

Figure 4 : Pattern of global matrix of 3-D finite difference mesh

and the global matrix is then inverted by direct methods, such as Gauss Elimination. The

second approach is to repeatedly apply Eq. (8) across all points in an iterative fashion until

convergence is reached. Convergence is guaranteed as the global matrix in Figure 4 is

diagonally dominant for the finite difference method. The direct methods and iterative

methods for solving the system equations are presented in section 2.4 and 2.5.

Three-dimensional problems can be solved by including the finite difference approximations

Chapter 2: Background

- 18 -

of the exact partial derivatives in the third direction. It is more complicated than

two-dimensional problems as the size of the system of PDEs increases dramatically and the

computation becomes expensive.

2.3 Finite element method

The finite element method is considered as the most general and well understood PDEs

solution available. “The finite element method replaces the original function with a

function that has some degree of smoothness over the global domain but is piecewise

polynomial on simple cells, such as small triangles or rectangles.”[12]

The essential idea of the finite element method is to approach the continuous functions of the

exact solution of the PDE using piecewise approximations, generally polynomials [15]. A

complex system is constructed with points called nodes which make a grid called a mesh.

This mesh is programmed to contain the material and structural properties which define how

the structure will react to predefined loading conditions in the case of structural analysis.

Nodes are assigned at a predefined density throughout the material depending on the

anticipated stress levels of a particular area.

Thus, a basic flow chart of FEM is shown in Figure 5. First, the spatial domain for the

analysis is sub-divided by a geometric discretization based on a variety of geometrical data

and material properties using a number of different strategies. Generally, the solution domain

is descretized into triangular elements or quadrilateral elements, which are the two most

common forms of two-dimensional elements. Then, the element matrices and forces are

Chapter 2: Background

- 19 -

formed; then the system equations are assembled and solved. Finally, the results are

post-processed so that the results are presented in a suitable form for human interaction.

Figure 5 : Flow chart for the finite element algorithm.

The finite element method is used to model and simulate complex physical systems. The

continuous functions are discretized into piecewise approximations, so the whole system is

broken to many, but finite parts. However, the finite element method can be extremely

computationally expensive and the available memory can be exhausted, especially when the

number of grid points becomes large. The resulting system of equations may be solved either

by direct methods or iterative methods such as Jacobi, Gauss Seidel, Conjugate Gradients or

other advanced iterative methods such as the Preconditioned Conjugate Gradient (PCG)

method, Incomplete Cholesky Conjugate Gradient method and GMRES. The direct method

can provide the accurate solution with minimal round-off errors, but it is computationally

expensive in terms of both processing and memory requirements, especially for large matrices

and three dimensional problems because the original zero entries will be filled in during the

elimination process. The global matrix for linear structural problems is a symmetric positive

Chapter 2: Background

- 20 -

definite matrix. In general, it is also large and sparse. Consequently, the iterative methods are

more efficient and more suitable for parallel computation but with lower accuracy (though a

higher accuracy can be obtained at the expense of computational time) and the risk of a slow

convergence rate.

Instead of assembling the global matrix, element stiffness matrices can be used directly for

iterative solution techniques. An element-by-element approximation for finite element

equation systems was presented in [16], and applied in the context of conventional parallel

computing in [17]. This approach is very memory efficient (despite the fact that more memory

is required than storing just the non-zero elements as in the CSR structure introduced in

section 3.6), computationally convenient and retains the accuracy of the global coefficient

matrix.

Chapter 2: Background

- 21 -

2.4 Direct Methods

Direct methods for solving the system equations theoretically deliver an exact solution in

arbitrary-precision arithmetic by a (predictable) finite sequence of operations based on

algebraic elimination. Gauss elimination, Gauss Jordan elimination and LU factorization are

some of the examples of direct methods.

Consider the system of linear algebraic equations,

Ax b= Eq. (10)

where matrix A is the coefficient n n× matrix obtained from the system of equations.

The Gauss elimination procedure is summarized as follows [18]:

1. Define the n n× coefficient matrix A , and the 1n× column vectors x and

b ,

11 12 1 1 1

21 22 2 2 2

1 2

n

n

n n nn n n

a a a x b

a a a x b

a a a x b

     
     
     =
     
     
     

�

�

� � � � � �

�

 Eq. (11)

2. Perform elementary row operations to reduce the matrix into the upper triangular

form

11 12 1 1 1

22 2 2 20

0 0

n

n

nn n n

a a a x b

a a x b

a x b

′ ′ ′ ′     
     ′ ′ ′
     =
     
     

′ ′     

�

�

� � � � � �

�

 Eq. (12)

Chapter 2: Background

- 22 -

3. Solve the equation of the n th row for nx , then substitute back into the equation

of the (1)n − th row to obtain a solution for 1nx − , etc., according to the formula

1

1 n

i i ij j

j iii

x b a x
a = +

 
′ ′= − 

′  
∑ Eq. (13)

The number of operations required by Gauss elimination method is 3 2(/ 3 / 3)N n n n= − + .

The Gauss-Jordan method, the matrix inverse method, the LU factorization method and the

Thomas algorithm are variations or modifications of the Gauss elimination method. The

Gauss-Jordan method requires more operations than the Gauss elimination method, which is

3 2(/ 2 / 2)N n n n= − + . The matrix inverse method is simple but not all matrices have an

inverse (there is no inverse matrix if the matrix’s determinant is zero, i.e. singular, and no

unique solution for the corresponding system of equations). The LU method requires

34 / 3 / 3N n n= − multiplicative operations, which is much less than Gauss elimination,

especially for large systems.

When either the number of equations is small (100 or less), or most of the coefficients in the

equations are non-zero, or the system domain is not diagonal, or the system of equations is ill

conditioned1 direct elimination methods would normally be used. Otherwise, an alternative

solution method for the system of equations is an iterative method. This is desirable when the

number of equations is large, especially when the system matrix is sparse [13].

1 The condition number of a matrix is the ratio of the magnitudes of its maximum and
minimum eigenvalues. A matrix is ill conditioned if its condition number is very large.

Chapter 2: Background

- 23 -

2.5 Iteration Methods

Beside the direct approach, the iterative approach is another common approach used to solve

the system of PDEs. Direct methods are systematic procedures; whereas, iterative methods are

asymptotical procedures with an iterative approach. Generally, direct methods are better for

full or banded matrices, whereas, iterative methods are better for large and sparse matrices,

especially for those arising from 3-dimensional PDEs. By assuming an initial guess solution

vector (0)x , iterative methods attempt to solve a system of equations by finding successive

approximations and this procedure is repeated until the solution converges to some prescribed

tolerance. If the matrix is diagonally dominant (i.e. the magnitude of the diagonal entry in

every row of the matrix is larger than or equal to the sum of the magnitudes of all the other

entries in this row), or extremely sparse, iterative methods are generally more efficient ways

to solve the system of equations than direct methods. Stationary iterative methods and

non-stationary iterative methods are the two main classes of iterative methods to solve a

system of linear equations. Stationary iterative methods are called stationary because the same

operations are performed on the current iteration vectors for every iteration (i.e. the

coefficients are iteration-independent). Non-stationary iterative methods have

iteration-dependent coefficients. In this sub-section, several stationary iterative approaches

that are easy to solve and analyse will be presented.

2.5.1 Jacobi Method

The Jacobi method is the simplest algorithm for solving a system of linear equations. Due to

the simultaneous iteration of all values, the Jacobi method is also called the method of

Chapter 2: Background

- 24 -

simultaneous iteration, where all values of 1k
x

+ depend only on the values of k
x . The

process is then iterated until it converges.

Consider Eq. (10), written in index notation:

,
1

n

i j j i

j

a x b
=

=∑ (1, 2,...,)i n= Eq. (14)

The solution vector ix becomes

1

, ,
1 1,

1 i n

i i i j j i j j

j j ii i

x b a x a x
a

−

= = +

 
= − − 

 
∑ ∑ (1, 2,...,)i n= Eq. (15)

An initial solution vector (0)x is chosen. The superscript in parentheses denotes the iteration

number, where zero denotes the initial solution vector.

Substituting the initial vector (0)x into Eq.(15), the first improved solution vector (1)x is

then

1
(1) (0) (0)

, ,
1 1,

1 i n

i i i j j i j j

j j ii i

x b a x a x
a

−

= = +

 
= − − 

 
∑ ∑ (1, 2,...,)i n= Eq. (16)

After the k th iteration step, the solution vector (1)kx + is

1
(1) () ()

, ,
1 1,

1 i n
k k k

i i i j j i j j

j j ii i

x b a x a x
a

−
+

= = +

 
= − − 

 
∑ ∑ (1, 2,...,)i n= Eq. (17)

This procedure is iterated until it converges to some specified criterion. Eq.(17) can be

re-written in an equivalent way as

Chapter 2: Background

- 25 -

(1) () ()
,

1,

1 n
k k k

i i i i j j

ji i

x x b a x
a

+

=

 
= + − 

 
∑ (1, 2,...,)i n= Eq. (18)

The Jacobi algorithm is simple and easy to implement on a parallel computing system,

because the order of processing the equations is immaterial. However, from the point of view

of numerical analysis, the Jacobi method has a poor convergence property in comparison to

other iterative methods. Consequently, the Gauss Seidel and successive over-relaxation (SOR)

methods are introduced in the following sub-sections.

2.5.2 Gauss Seidel Method

Compared to the independence among all values of (1)kx + in the Jacobi method, the Gauss

Seidel method uses the most recently computed values of all ix in all computations

immediately. Thus, the solution vector (1)k

ix
+ is

1
(1) () (1) ()

, ,
1,

1 i n
k k k k

i i i i j j i j j

j j ii i

x x b a x a x
a

−
+ +

= =

 
= + − − 

 
∑ ∑ (1, 2,...,)i n= Eq. (19)

Because the most recent values of ix are used in the calculations, the Gauss Seidel method

generally converges faster than Jacobi method [13].

2.5.3 Successive Over-Relaxation (SOR) Method

The successive over-relaxation (SOR) method is a numerical method used to speed up the

Chapter 2: Background

- 26 -

convergence of the Gauss-Seidel method. Here, ω is a relaxation factor. The successive

over-relaxation method is equivalent to the Gauss-Seidel method when 1ω = . The Gauss

Seidel procedure to compute the new value GS

ix ; then the successive over-relaxation update

applies a scaled version of the Gauss-Seidel update, where ω is the scaling factor:

1
(1) () (1) ()

, ,
1,

i n
k k k k

i i i i j j i j j

j j ii i

x x b a x a x
a

ω −
+ +

= =

 
= + − − 

 
∑ ∑ (1, 2,...,)i n=

Eq. (20)

Eq. (20) can be written in terms of the solution value GS

ix from Gauss Seidel iteration

method to yield

()(1) () (1) ()k k GS k k

i i i i
x x x xω+ += + − (1, 2,...,)i n= Eq. (21)

Based on Ostrowski’s Theorem [19]:

If A is symmetric and positive definite, then for any (0, 2)ω ∈ and any starting vector

(0)x , the successive over-relaxation (SOR) iterates converge to the solution Ax b= .

When ω <1.0, the system of equations is under-relaxed. When ω =1.0, Eq. (21) becomes the

Gauss Seidel method. When ω >2.0, the iterative method may diverge. When 1.0<ω <2.0, the

system of equations is over-relaxed. The maximum rate of convergence is achieved for some

optimum value of the over-relaxation factor ω , which lies between 1.0 and 2.0 [13]. The

optimum value of ω depends on the size of the system of equations and the nature of the

equations. However, there is no good general method for determining the optimal ω rather

than searching by numerical experimentation for a optimal ω .

Chapter 2: Background

- 27 -

2.5.4 Red-black Successive Over-Relaxation

With the optimal choice of ω , the successive over-relaxation (SOR) iterative method is the

recommended method, which converges much faster than the Jacobi and Gauss Seidel

methods [13]. However, in both the Gauss Seidel and successive over-relaxation (SOR)

methods, the update of the (1)k + th element depends on the update of the k th elements, as

in Eq. (19) and Eq. (21). There is data dependency between elements and their neighbours.

This causes a problem if one attempts to perform the updates in parallel, as the computation of

Eq. (19) and Eq. (20) must wait until the required elements have been computed. In this

sub-section, Red-black successive over-relaxation, a parallel scheme for the traditional

successive over-relaxation method, is introduced.

Imagine that the two dimensional finite difference grids are coloured with a red and black

checkerboard as in Figure 6. With this red-black group identification strategy, it is

immediately apparent that the solution at the red square (R) depends only on its four

immediate black neighbours. Similarly, the solution at the black square (B) depends only on

its four red neighbours. The iteration scheme proceeds by alternating between update of the

red squares and the black squares. So on an odd-numbered pass of the matrix, only the red

squares are updated, using the previously computed values of the black squares. On an

even-numbered pass, the black squares are updated using the newly computed values of the

red squares. The use of the red-black scheme removes the requirement for each element to

have immediate access to an updated value of some of its neighbours.

Chapter 2: Background

- 28 -

R R R R

R R R R

R R R R

R

R R R R

R R R

R R R R

R

R

R

R

R

R

R

R

B B B B

B B B B

B B B B

B B BB

B B B B

B B B B

B B B B

B B B B

Figure 6 : Two-dimensional Red-Black Grid.

2.5.5 Convergence

The iterative methods attempt to solve the system of PDEs by finding successive

approximations to the solution from an initial approximation. Convergence of an iteration

method is achieved when the maximum relative error of the whole system is smaller than the

tolerance ε required, i.e.
(1)

max

k exact

i i

exact

i

x x

x
ε

+ −
≤ . Since the exact solution is unknown in most

situations, the relative error at any step in the iterative process is based on the change in the

values being calculated from one step to the next. Thus, convergence is assumed to be

achieved when
1

max

k k

i i

k

i

x x

x
ε

+ −
≤ . “The iterative methods require diagonal dominance to

guarantee convergence” [13]. Some non-diagonally dominant problems can be rearranged by

transforming to an equivalent diagonally dominant problem in a straightforward way, such as

row interchanges. Some non-diagonally dominant system may converge for certain initial

solution vectors, but convergence is not assured. Diagonal dominance requires that

Chapter 2: Background

- 29 -

1,

n

ii ij

j j i

a a
= ≠

≥ ∑ (1, 2,...,)i n= Eq. (22)

with the inequality satisfied for at least one equation.

Based on the discussion in section 2.2, the system of finite difference equations arising from

the five-point second-order central difference approximation of the Laplace equation is

always diagonally dominant [13]. Therefore, convergence is assured when the iteration

methods are applied on the finite difference approach to the solutions of PDEs.

Chapter 2: Background

- 30 -

2.6 Conjugate Gradient Method

The conjugate gradient (CG) method, named from the fact that it generates a sequence of

conjugate vectors, is a non-stationary method for numerical solution. The method proceeds by

generating vector sequences of iterates, residuals corresponding to the iterates, and searching

the directions used in updating the iterates and residuals [20]. The residuals of the iterates are

the gradients of a quadratic functional. Figure 7 demonstrate the performance of Conjugate

Gradient (CG) for two variables.

Figure 7 : The method of Conjugate Gradients [21].

The method of Conjugate Gradient is:

Consider Eq. (10),

Chapter 2: Background

- 31 -

(0) (0) (0)d r b Ax= = − Eq. (23)

() ()
()

() ()

T

i i

i T

i i

r r

d Ad
α = Eq. (24)

(1) () () ()i i i ix x dα+ = + Eq. (25)

(1) () () ()i i i ir r Adα+ = − Eq. (26)

(1) (1)
(1)

() ()

T

i i

i T

i i

r r

r r
β + +

+ = Eq. (27)

(1) (1) (1) ()i i i id r dβ+ + += + Eq. (28)

This method can be used effectively when the coefficient matrix A is :

♦ Symmetric (i.e.
TA A=)

♦ Positive definite, defined equivalently as:

• All eigenvalues are positive

• 0Tx Ax > for all nonzero vectors x

• A Cholesky factorization,
TA LL= exists

Compared to relaxation iterative methods, the Conjugate Gradient method converges much

Chapter 2: Background

- 32 -

faster when the global matrix A is symmetric and positive definite. For each iteration, the

conjugate gradient method needs more operations and the global matrix needs to be

assembled for finite element method, whereas, the relaxation methods are more

straightforward as fewer operations are required per iteration and updates can be calculated

directly without need to assemble the global matrix.

To speed-up convergence, preconditioning techniques are used to improve the spectral

properties of the coefficient matrix A . If the coefficient matrix is ill-conditioned, it is useful

to use a preconditioner to increase the convergence rate of the conjugate gradient method.

Other non-stationary iterative methods, like generalized minimal residual method and the

biconjugate gradient method, are not considered in this study as their greater complexity

makes efficient hardware implementation difficult.

Chapter 2: Background

- 33 -

2.7 Summary

The numerical solution of elliptic PDEs by the finite difference method and the finite element

method is discussed in this chapter. The two general approaches to the solution of linear

system of equations are presented. Direct methods obtain the exact solution in a finite number

of operations, but they are not suitable for very large sparse matrices, especially

3-dimensional problems. Therefore, iterative methods will be considered in this research. In

the following chapters, the history of the numerical analysis using parallel computers will be

briefly reviewed. Furthermore, the parallel properties inside these methods will be discussed

to obtain full utilization of the features of parallel computers.

- 34 -

Chapter 3

REVIEW AND ANALYSIS OF PARALLEL

IMPLEMENTATIONS OF NUMERICAL SOLUTIONS

3.1 Introduction

The introduction of parallel microprocessor systems is a milestone in the history of scientific

computing [22]. Based on Moore’s Law, the number of transistors on microprocessors

doubles roughly every two years; its corollary is that CPU performance should also double

approximately every two years. In 1971, the first commercially available microprocessor Intel

4004 was launched, which employed 10 mµ (i.e. 10000 nm) semiconductor process

technology. Nowadays, Intel is looking at 11 nm as the next technology node after the 32 nm

Clarkdale/Arrandale Westmere processor core launched in 2010.

However, due to power and technology issues, the increasing performance of microprocessors

has lost steam in recent years [23]. Recently, many semiconductor manufacturers have turned

from single-core to multi-core designs in order to increase the performance of their processors.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 35 -

Multi-core processors and multi-CPU workstations lead the trend to develop dedicated

parallel systems as opposed to the traditional single microprocessor system. The move to

parallel computation creates interesting new challenges for software programmers, and

operating system and compiler developers to adapt their sequential way of thinking to a

parallel world. However, as with any disruptive technology, this also opens the door to other

ways of organizing computation. A number of the major supercomputing vendors such as

Cray and SRC, traditional high-end computing servers from IBM, SGI, Sun and more recent

companies such as Linux Networx have begun to re-cast vast farms of commodity blade

servers into FPGA-based hybrid systems [23]. Startups Xtreme Data and DRC have

developed interface cards to bring high-performance computing to the masses, with

methodologies to add an FPGA directly onto a commodity PC motherboard [23]. Coupled

with increasing pressure to decrease costs and time-to-market, reconfigurable hardware can

provide a flexible and efficient platform for satisfying the performance, area and power

requirements [24].

In recent years, the use of a GPU (Graphic Processing Unit) to do general purpose

(non-graphical) scientific and engineering computing has become a popular research topic,

and has been applied to areas such as database operations [25], N-body simulation [26],

stochastic differential equations [27] etc. The Tesla 20-series GPU is the latest CUDA

architecture with features optimized for double precision floating point hardware support,

with application areas including ray tracing, 3D cloud computing, video encoding, etc. [28].

Unlike the traditional complicated CPU, the GPU has a large number of simplified CPU-units

but no cache. GPU performance can degrade massively if the memory access pattern required

by the numerical algorithms is not a good match to the architecture of the GPU hardware.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 36 -

Some work has been done to compare the performance of GPUs with FPGAs. In [29] and

[30], for 2D convolution algorithms for video processing, the performance of the GPU was

found to be not good enough due to the requirement of a high number of memory accesses. In

[31], a comparative study of application behaviour on the performance and code complexity

between GPUs and FPGAs was shown. Also in [32], the performance of applications,

including Monte-Carlo simulation, a weighted sum algorithm and FFT, was analyzed.

This chapter discusses the promise and problems of reconfigurable computing systems. An

overview of the chip and system architecture of reconfigurable computing systems is

presented, as well as the application of these systems. The challenges and opportunities of

future systems are discussed.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 37 -

3.2 Parallel Computing

Why parallel? There are many computationally expensive problems in science and

engineering; we want to solve them in a reasonable amount of time. So there are always

pressures to alleviate the extremely time consuming nature of simulations. By using the latest

and fastest processors, a shorter computation time should, in principle, be achieved. However,

due to problems with thermal management and reliability, the clock speed of new generations

of processors is no longer rising at a significant rate. Additionally, Gordon Moore, the

inventor of Moore’s Law, said that Moore’s Law is dead because that transistors would

eventually reach the limits of miniaturization at atomic levels [33]. Therefore, the introduction

of parallel processing was a milestone in the history of computing as it provides a way to

increase performance without increasing clock speed. Now parallel processing is used

everywhere in real world computational applications, such as atmospheric science,

mechanical engineering, chemistry, genetics, etc.

Parallel computing, literally, is to process multiple tasks simultaneously on multiple

processors. Simply, a given task is divided into multiple sub-tasks, which are then solved

concurrently. The most popular way to evaluate the performance of a parallel machine is to

compare the execution time of the best possible serial algorithm for the problem with the

execution time of the parallel algorithm. Speed-up describes the speed advantage of the

parallel algorithm, as in Eq. (29).

the execution time of the fastest sequential algorithm
_ ()

the execution time of the parallel algorithm with processors
Speed up n

p
= Eq. (29)

where n represents problem size.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 38 -

Factors such as synchronization and communication overheads prevent parallel systems from

achieving linear speed-ups, so in practical systems the achievable speed up will not scale

linearly with p.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 39 -

3.3 FPGAs & Reconfigurable Computing Systems

The first-ever Field Programmable Gate Array (FPGA) was invented by Ross Freeman in

1985 [34]. FPGAs are arrays of reconfigurable logic blocks connected by reconfigurable

wiring. These form the underlying flexible fabric that can be used to build any required

function. In the past decade, the capabilities of FPGAs have been greatly improved; modern

FPGAs also contain highly optimized dedicated functional blocks, e.g. hardware multipliers,

memory blocks, and even embedded microprocessors. From their origins as simple glue-logic

to the modern day basis of a huge range of reprogrammable systems, FPGAs have now

reached sufficient speed and logic density to implement highly complex systems. The latest

FPGA devices have multi-million gate logic fabrics capable of achieving frequencies up to

600MHz, large on-chip memory and fast I/O resources [35].

An approach to high performance computing that is growing in credibility is the use of

FPGA-based reconfigurable hardware to form a custom hardware accelerator for numerical

computations [36-40]. FPGAs are now widely applied in many areas that can make use of

massive parallelism. For the right type of application, a reconfigurable computer can rival

expensive parallel computers that are normally used to accelerate computationally expensive

algorithms. SRAM-based FPGAs have become the workhorse [41] of many computationally

intensive applications. This is a result of the rapid improvement in FPGA hardware of the last

few years (Table 1). Due to technology advances of FPGAs, it has become possible to make

an increasing level of hardware and software co-operative system available. These

co-operative systems are used into a wide range of applications, not only high performance

computing, but also everyday technology like mobile communication [42]..

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 40 -

Table 1 : Xilinx Devices Comparison [35].

Date
(Year)

Device
(Series)

Capacity
(Gates)

Max. Clock
(MHz)

1994 XCV3000 20K 30
1999 Virtex 1 1M 120
2000 Virtex Ⅱ 10M 200
2002 Virtex ⅡPro 20M 300
2005 Virtex 4 35M 500
2006 Virtex 5 55M 550
2009 Virtex 6 150M 600

Floating-point operations on FPGAs are now approaching a level that is competitive

compared to floating-point operations on standard microprocessors. Reconfigurable

computing has become an attractive option for numerical computations because of its great

performance and flexibility. The most obvious benefit of using FPGAs is performance. The

capability of FPGAs has grown dramatically making 64 bit floating point operations feasible

and thus their use in large scale scientific and high performance computing intriguing. Thus,

FPGA-based reconfigurable hardware/software co-processors are suitable for use for

algorithm acceleration, not only with low cost, but also with a great deal of functional

flexibility [43].

Reconfigurable co-processors use FPGAs to accelerate algorithm execution by implementing

compute-intensive calculations in the reconfigurable substrate. The strength of a

reconfigurable processor is the ability to customize hardware for the specific requirements of

the system. Reconfigurable hardware takes care of the regular kernels of computations that

are responsible for a large fraction of execution time and energy, while the main processor

executes all the remaining original algorithm tasks and manages reconfigurable specific tasks

like reconfiguration, reading/writing memory, and I/O control. Put simply, algorithm

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 41 -

execution is partitioned between reconfigurable hardware and the main processor.

Reconfigurable computing has many advantages over CPUs and ASICs (Application-Specific

Integrated Circuits). First of all, it is possible to get greater functionality with simpler

hardware, as all of the logic functions can be stored in the memory but not required to be

present in FPGA at all times. Secondly, the logic functionality can be customized to perform

exactly the operation desired, with higher computation density than CPUs. Last but not least,

the logic design is flexible, as the functionality can be reconfigured based on the type of

application desired by using the same resources.

FPGA clock speeds tend to be an order of magnitude slower than the microprocessor [44]. As

a general rule therefore, the FPGAs should be performing a very large number of arithmetic

operations on each clock cycle in order to give a significant speed-up. This is done by creating

many deep pipelines of arithmetic operations, and operating many such pipelines in parallel.

The term pipeline refers to a set of data processing stages connected and executed in series. A

deeper pipelined architecture has more stages in the pipeline and fewer logic gates in each

stage, and therefore, more such computational pipelines can be operated in parallel to increase

the throughput of the operators. Within fully pipelined designs, the computation latency can

be fully overlapped so that the results can be generated on every clock cycle. However, very

high levels of parallelism may lead to situations where the solution is limited by memory

bandwidth; if there are too many parallel pipelines, then they simply become starved of data.

Without enough data feeding the hardware, the hardware can not perform computations

continually. Another concern with FPGA-based approaches is the time taken to transfer the

data onto and off of the reconfigurable co-processor. These data transfer times may nullify the

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 42 -

speed gains achieved by the parallel processing within FPGAs. One more drawback of

reconfigurable computing design is that the design tool productivity is low compared to other

approaches, so it takes a long time to come up with a design for a particular application.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 43 -

3.4 Parallel Implementation

In this section, some of the previous attempts to parallelize the FDM and the FEM on

different multiprocessor systems are discussed. These attempts are presented in chronological

order, so that they can also be evaluated in terms of the computational resources available at

that time.

3.4.1 Parallel FDM Implementations

The finite difference method is one of the most powerful and widely used approaches to the

solution of Partial Differential Equations, due to its good accuracy and flexibility [13].

However, the finite difference method can be enormously computationally expensive,

especially when the number of grid points becomes large. Much effort has been made to find

an efficient solution to FDM solutions for PDEs.

Some earlier efforts on the parallel implementation of the algorithms for discrete elliptic

equations were reviewed [45]. These include the solution of Poisson’s equations implemented

on an Illiac IV in 1972 [46], and on the TI-ASC [47] and the solution of Laplace’s equation in

1974 [48].

Long [49] describes a solution of the Boltzmann equation to model a one-dimensional shock

wave structure, a boundary layer, and general 3-D flow fields by using the

Bhatnagar-Gross-Krook (BGK) model combined with a finite difference scheme. The

optimized algorithm sustained 61 GFLOPs on a 1024-node CM-5.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 44 -

In 1994, a parallel algorithm Simple Parallel Prefix (SPP) was proposed for the compact finite

difference scheme by Sun [50]. Compared with the traditional finite difference method, the

compact finite difference scheme has the features of higher accuracy with smaller difference

stencils and leads to more accurate approximations due to the smaller coefficients of the

truncation error. The implementation of the simple parallel prefix algorithm on a 16k

processing elements MasPar MP-1 SIMD parallel computer achieved a speed-up of 1000

compared to the best sequential algorithm. In addition to the good performance on the SIMD

machines, the algorithm also performed better than the sequential algorithm on a Cray 2.

Several techniques used to optimize a finite difference algorithm on the CM5, a distributed

memory parallel processing system by Thinking Machines Corporation, were presented in

[51]. The processing nodes in the CM5 interact through the control and data networks and all

activities are coordinated by a control processor. A fat-tree topology data network provides

point-to-point communication between processing nodes at a rate of at least 5 Mbytes per

second. The optimized algorithm runs almost 2 times faster than the global CMFortran code.

A domain decomposition algorithm based on an implicit finite difference discretization of the

2-D Maxwell’s equations was developed to solve the scattering problem on a multiprocessor

vector supercomputer Cray C98 with 8 CPUs in [52]. Compared to an execution time

obtained by sequential solution, a speed-up of 7.8 was obtained for an eight-subdomain

solution. The domain decomposition finite difference algorithm could achieve a speed-up

close to the physical number of available CPUs for suitable balance factors.

In [53], a parallel 3-D viscoelastic finite difference code was implemented which allowed the

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 45 -

work to be distributed across several PCs connected via standard Ethernet or to be run on

massively parallel supercomputers, like Crays. Because of poor performance of

communication through Ethernet, the speed-up saturated at a factor of 13 when the number of

Processing Elements (PEs) becomes larger on a PC cluster. However, the speed-up achieved

on the Cray T3E was superlinear: a run with 343 processing elements was 370 times faster

than a serial execution.

3.4.2 Parallel FEM Implementations

Finite element analysis (FEA) was first introduced by R. Courant (1943) [54], who utilized

the Ritz method of numerical analysis and minimization of variational calculus to obtain

approximate solutions to vibration systems. Turneret al in 1956 [55] established a broader

definition of numerical analysis. They presented the element stiffness matrix for a triangular

element for structural analysis, together with the direct stiffness method for assembling the

elements. The term “Finite Element” was first coined by Clough in a paper describing

applications in plane elasticity. In the early 1960s, engineers used the method for approximate

solutions of problems in stress analysis, fluid flow, heat transfer, and other areas. In the late

1960s and early 1970s, the FEM was applied to a wide variety of engineering problems. Since

the rapid decline in the cost of computers and the phenomenal increase in computing power,

FEA has produced solutions to an incredible precision. Nowadays, supercomputers are able to

produce accurate results for all kinds of problems. The method has been generalized into a

branch of applied mathematics for numerical modelling of physical systems in a wide variety

of engineering disciplines, e.g., fluid dynamics and electromagnetism.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 46 -

3.4.2.1 Finite Element Machine in NASA

In late 1970s to the early 1980s, the Finite Element Machine [56], which contained 32

TMS9900 processors and 32 Input/Output boards with a TMS99/4 controller as shown in

Figure 8, was completed and successfully tested at the NASA Langley Research Center. The

aim of this project was to build and evaluate the performance of a parallel computer for

structural analysis. As shown in Figure 9, an array of microprocessors was connected together

by 12 local links plus a global bus. An attached unit for floating-point operations was

associated with each processor. Due to the local memory for each processor, the processors

can be programmed to perform calculations independently. There is a small minicomputer as a

front-end controller to code and compile the programs. It is a special purpose computer

designed for the efficient solution of finite element code. The speed-up for a plane stress

problem was a factor of 4.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 47 -

Figure 8 : Prototype NASA Finite Element Machine Hardware [57]

Figure 9 : FEM block diagram [57].

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 48 -

3.4.2.2 The FEM on the Parallel Machine Cenju

Cenju (Cenju-1), which employed the MC68020/WTL1167 as a processing element, was first

launched in 1988. An implementation of the FEM on the parallel simulation machine Cenju

was introduced in [58] and [59], investigating nonlinear dynamic finite element analysis,

which is one of the most time consuming problems in FEM. There are two main stages, the

calculation of the stiffness matrix and the solution of a set of linear equations. They present

methods of parallelizing the assembly process by using extra buffers for each element of the

stiffness matrix in order to reduce the synchronization overhead. A speed up of 48 times was

achieved by eliminating the serial bottleneck on a 64 processor system. Furthermore, by

parallelizing the solutions of linear equations, a speed-up of 2.9 was attained by parallelizing

the Lower triangular matrix and Upper triangular matrix (LU) factorization on a 7 processor

system. Also, a speed-up of 36 was gained by parallelizing the conjugate gradient method on a

64 processor system.

3.4.2.3 Interactive and Large Scale Finite Element Analysis in the University of

Manchester

The University of Manchester developed techniques to drastically reduce the time taken for

FEA [60]. Instead of using the traditional three stage process FEA which involves: (1)

pre-processing, (2) equation solution and (3) post-processing, these three tasks are carried out

concurrently as a single process by using a number of algorithmic techniques as well as

parallel and distributed computing in their new software architecture. Furthermore, the

‘element-by-element’ approach was used, where no overall system equation need be

assembled.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 49 -

Their programs were run on the SGI Origin 3000 machine “Green” with 512 MIPS R12000

processors and 512 GBytes total memory. For the direct numerical solution of the Navier

Stokes equations in fluid mechanics, a speed-up of 256 was achieved on 256 processors,

whilst sustaining an impressive 30% of the CSAR (Computer Services for Academic

Research) machines’ peak performance [61]. An elastoplasticity problem was demonstrated to

achieve 116,500 MFLOPs using up to 500 processors. Due to the novel algorithms and

software architecture applied, which reduced the solution times by up to five orders of

magnitude, finite element problems that are 2-3 orders of magnitude larger compared with a

commercial off-the-shelf package could be solved.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 50 -

3.5 FPGA-based High Performance Computer

Although the growth of the performance of general-purpose computers and parallel

supercomputers has been significant in the past decade, the real fraction of peak performance

achievable for most numerical computing applications has generally been very poor. Because

a large portion of transistors in modern commodity CPUs are utilized to provide flexible data

flow, the prevalent computer architecture model is not very well suited for timing-consuming

numerical computing applications. The use of supercomputers can get around this problem,

but not everyone can afford the high costs of operating and maintaining a supercomputer.

Therefore, there is a compelling requirement on finding a more powerful, faster but cheaper

computer system for extremely timing-consuming numerical computing applications,

especially for 3-D geometrical domains.

Recently, due to the critical requirements for higher speed of program execution, as well as

the fact that cluster computing systems based on conventional processors are running out of

room to grow, the use of reconfigurable hardware to form customised hardware accelerators

for a variety of fields, such as data mining, medical imaging, numerical computations, and

financial analytics is growing rapidly. By applying FPGAs coprocessors, the power

consumption and the total cost of ownership can be greatly reduced. As a result, FPGAs have

been applied in a number of different application areas in the past few years, including [62]:

� Custom hardware.

� Prototyping and testing integrated circuits.

� Reconfigurable hardware accelerator.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 51 -

� High performance reconfigurable computing.

FPGAs are cheaper than ASICs for small production runs and able to be reprogrammed for

functional upgrades in the future. FPGAs are also used to prototype and test integrated

circuits before costly dies are made. The first two areas have been the most common use of

FPGAs since FPGAs were first launched in 1985, consistent with the original aims of FPGAs

hardware and due to their flexibility and short design cycle. Modern FPGA devices allow

designers to implement complete systems with minimal requirement for off-chip resources,

which has led to research on implementation of FPGA-based hardware/software

co-processors within general PCs, which can be used for algorithm acceleration. These will be

discussed in detail in section 3.6. In this section, several high performance reconfigurable

computers will be introduced.

3.5.1 Finite difference analysis in a configurable computing machine

A 2-D heat transfer simulation system using a Splash-2 configurable computing machine is

described in [63]. As shown in Figure 10, Splash-2 consists of 16 splash array boards, an

interface board and a SUN SPARC-2 workstation host. Each array board contains 16

processing elements which consist of one Xilinx XC4010 FPGA and one fast static memory.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 52 -

Figure 10 : The Splash-2 system [63].

By discretizing the physical domain of the problem, the computation was partitioned into

many individual computations whose independence allowed for the possibility of calculating

numerous nodes in parallel. The performance reached up to 3.5 GFLOPs using 16 Splash-2

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 53 -

boards at 20 MHz, with a speed-up of nearly 20 000 compared to the performance of the same

simulation on a Sun SPARC-2 workstation. For this particular application, speed up was

nearly linearly versus the number of processing elements provided.

3.5.2 Langley’s FPGA-based reconfigurable hypercomputer 2001

Several pathfinder scientific applications involving floating-point arithmetic were solved by

NASA Langley Reconfigurable Hypercomputers [64]. A development environment and a

graphical programming language VIVA was developed and extended by NASA Langley

collaborating with Star Bridge.

Figure 11 : HAL-15 Reconfigurable Computing Board with 10 Xilinx XC4062 chips

(One FPGA located on the reverse side)[64]

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 54 -

Figure 12 : HAL-15 Reconfigurable Computing Board with 10 Xilinx XC2V6000 FPGA

chips[65]

The NASA HAL-15 Hypercomputers contain a circuit board with ten FPGAs with one FPGA

located on the reverse side, shown in Figure 11. Each Xilinx XC4062 FPGA contained 62,000

hardware gates, and the performance could reach 0.4 GFLOPS. Thus, the performance of one

HAL-15 Hypercomputer is 4 GFLOPS with 10 FPGAs fitted on board. With the rapid growth

in FPGA capability, performance has grown from 4 to 470 GFLOPS by using the “newer”

XC2V6000 FPGAs, as shown in Figure 12.

3.5.3 High performance linear algebra operations on Cray XD1 (2004)

Several deeply pipelined and highly parallelized linear algebra operations were implemented

on a Cray XD1 in [66]. The hardware architecture of the Cray XD1 is shown in Figure 13.

The compute blade, which consists of two AMD Opteron processors and one Xilinx Virtex-II

Pro FPGA, is the basic architectural unit. Each FPGA can access 16 MB SRAM and 8 GB

DRAM through the RapidArray Processors. 6 compute blades fit into one chassis and a

typical installation of XD1 contains 12 such chassis, connected by RapidArray external

switches.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 55 -

Figure 13 : Hardware Architecture of Cray XD1 [66].

Due to the use of their own floating-point units, the design for 64 bit floating-point matrix

multiply achieved a sustained performance of 2.06 GFLOPs on a single FPGA using an

SRAM memory bandwidth of 2.1 GB/s and a DRAM memory bandwidth of 24.3 MB/s. Thus,

148.3 GFLOPs can be gained on a 12-chassis installation of the XD1.

3.5.4 FPGA-based supercomputer Maxwell (2007)

The FPGA supercomputer “Maxwell” [67], designed as a general-purpose supercomputer for

high-performance reconfigurable computing, was launched in 2007 at the University of

Edinburgh in Scotland. Maxwell uses FPGAs as an alternative to conventional

microprocessors. The system comprises a 32-way IBM BladeCentre chassis hosting 64 Xilinx

Virtex-4 FPGAs, where the FPGA network consists of point-to-point links between the MGT

(Multi-Gigabit Transceiver) connectors of adjacent FPGAs, as illustrated in Figure 14. Each

blade server holds one Intel Xeon CPU and two Xilinx V4 FPGAs, XC4VLX160 on

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 56 -

Nallatech H101 plug-in PCI cards and XC4VFX100 on Alpha Data ADM-XRC_4FX plug-in

PCI cards.

The performance of MCopt (Monte Carlo option pricing), which is a mathematical finance

model to calculate the value of an option with multiple sources of uncertainty or with

complicated features, gains a speed-up of 300 compared to the results obtained by using the

2.8 GHz Intel Xeon processors in the IBM blades.

Figure 14 : FPGA connectivity in Maxwell [67].

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 57 -

3.6 FPGA-based Reconfigurable Co-processor Implementation

The rapid improvement in semiconductor technology in the last decade has led to a steady

widening of the range of application areas where FPGAs can be applied to achieve massively

parallel computation. As a result of the increasing computing power of current FPGAs,

reconfigurable hardware has been increasingly used to form custom hardware accelerators

within standard computers to achieve numerical computation ([68], [38], [39], [40], [69], [70]

and [71]). An FPGA-based stand-alone seismic data processing platform was described in

[72], and from the early 1990s, there were several efforts on FPGA-based solutions to

accelerate the finite-difference time-domain problem [73], [74]. These applications can

exploit the parallelism and pipelineability within the solution algorithms in a much more

thorough way than can be done with standard uniprocessor or parallel computers using

general-purpose microprocessors. Reconfigurable computing systems bridge the gap between

the accessibility of general-purpose microprocessors and the performance of special-purpose

supercomputers.

Many researchers have investigated the use of parallel software and hardware approached to

FEM acceleration, for example [75], [76], [77], [78], [79], [80] and [81]. In [76], commodity

DRAM was used due to its large capacity and bandwidth, achieving a processing rate of 570

MFLOPs. However this approach may not be suitable for many real world applications

because of the long latency of DRAM memory. In [75] an implementation based around a

sparse matrix-vector multiplier achieved 1.76 GFLOPs. Researchers have also devoted much

effort to finding efficient data structures to store the matrix so that the number of memory

redirections during sparse matrix-vector multiplication will be minimized, as in [82]. This

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 58 -

includes the classic Compressed Storage Row (CSR) format that was introduced to store the

non-zero elements of the sparse matrix contiguously in memory, but the additional data

structures, which add additional memory access operations, memory band-width pressure and

cache interference, will affect the performance and parallelism that can be achieved [83].

These solutions obtained impressive speed-up compared to contemporary PCs. Nevertheless,

there are some obvious bottlenecks which affect the performance achieved in their

FPGA-based system designs. In these investigations, software algorithms are directly mapped

onto the FPGA-based systems without modifications or with only limited modifications such

as instruction rescheduling. Normally, the existing numerical algorithms are well suited for

commodity CPUs; however they may not be ideal for hardware designs. Therefore,

well-modified numerical methods, which can exploit the parallelism and pipelineability

within the algorithms, are desirable. Domain decomposition can play an important role, and

this will be introduced in later section.

Previously, due to the limitation of logic capacity, hardware designs based on reconfigurable

accelerators always used fixed-point arithmetic. However, fixed-point arithmetic has poor

numerical properties, i.e. smaller dynamic range and worse accuracy compared to

floating-point arithmetic, and would not normally be regarded as acceptable, especially for an

unpredictable problem. Recently, with the rapid improvements of speed and programmable

logic within FPGAs, its high potential in numerical analysis using floating-point arithmetic

has been widely noticed. As shown in [36] and [37], the floating-point arithmetic operations

can be competitive compared to floating-point operations on general purpose PCs. In this

research, most of the implementations were applied with 32-bit floating-point arithmetic.

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 59 -

3.7 Summary

Numerical solutions to Partial Differential Equations usually require an extremely large

amount of computation. The finite difference method is one of the most powerful and widely

used approaches to the solution to PDEs, due to its good accuracy and flexibility.

Nevertheless, it can be extremely computationally expensive, especially when the number of

grid points becomes large. Similarly, the Finite element method usually requires the solution

of a large system of linear equations repeatedly. Much effort has therefore been spent on

approaches to parallelization of the kernel operations inside the methods. For a successful

parallel computing design, the programming models should be independent of the number

processors.

An overview of the evolution of parallel computing for numerical solutions as well as a brief

description of the current technologies was given in this chapter. A number of parallel

implementations of the FDM and FEM were surveyed. They all suffered the same problems:

synchronization and communication overheads between processors, as well as poor load

balancing between processors, made the speed-up less than linear.

One approach to the parallel computation of solutions is to use reconfigurable hardware to

form custom hardware accelerators. FPGA-based reconfigurable computing systems could

offer a more efficient way to accelerate the numerical solutions to obtain a reasonable

speed-up at an affordable price. In this chapter, several approaches to numerically intensive

computation have been described.

In general, 3-dimensional system design for the numerical evaluation of scientific and

Chapter 3: Review and Analysis of Parallel Implementations of Numerical Solutions

- 60 -

engineering problems governed by PDEs numerically is computationally demanding and data

intensive. Solving such problems may easily take traditional CPUs a couple of days, even

months. Good speed-up can be achieved by using the fastest supercomputers. However, the

cost in terms of power and energy will be increased dramatically. An alternative is to build

specific computer systems using ASICs, but this approach requires a long development period,

and is inflexible and costly. GPUs, provide a new approach and are based around a large

number of simplified CPU-units. Unfortunately, GPUs are not suitable for problems that are

data-intensive due to the long latency of memory. Based on the discussion above, coupling an

FPGA-based platform with a general processor becomes the most feasible way to build a high

performance “poor man’s computer system” with acceptable flexibility at a reasonable cost.

Thus, the FPGA-based reconfigurable computing system is used in this research to accelerate

computationally intensive and data demanding numerical solutions of 3-dimensional PDE

problems.

In the following chapters, the numerical algorithms and the domain decomposition will be

formulated and implemented in software to verify the feasibility of this research, and several

reconfigurable computing approaches based on the implementation of FPGAs will be

presented and evaluated.

- 61 -

Chapter 4

FORMULATION OF THE NUMERICAL SOLUTION

APPROACHES

This chapter provides a comprehensive introduction to two numerical approaches to

computing the solution of partial differential equations, the finite difference method and the

finite element method. The principal stages of the algorithms and the domain decomposition

are formulated, and a variety of iteration schemes are evaluated and discussed.

Domain decomposition methods can be applied to numerical problems to break down one

large problem into a number of smaller interconnected problems. This chapter will introduce

the domain decomposition approaches used for the hardware and software implementation

presented in this thesis, namely Fourier decomposition for the FDM and element-by-element

analysis for the FEM. The 3-D problems use Fourier decomposition in order to obtain a series

of independent 2-D sub-problems, so the 3-D problems become suitable for parallel

computing. The element-by-element scheme reduces the memory and communication

requirements for the solution of large linear algebra equations, because we can calculate the

sub-domain matrix-vector multiplications in parallel without assembling the global matrix of

FEM. These approaches were chosen in order to maximize parallelism and to minimize the

Chapter 4: Formulation of the Numerical Solution Approaches

- 62 -

communication required between sub-domains.

4.1 Software Implementation of Finite Difference Method

This section formulates the domain decomposition for splitting the 3-dimensional problem

into a series of independent 2-dimensional sub-problems using Fourier decomposition for a

cubic 3D domain and the solution of Laplace equation using the finite difference method, and

describes the software implementation of a FDM simulator.

4.1.1 Domain discretizations

Firstly, we use the solution of the Laplace equation for a cubic 3D domain as an example. The

equation will be solved numerically on a grid consisting of nx , ny and nz grid points in

the x , y and z directions respectively. For the Fourier decomposition method to be

applicable, it is required that nz be a power of 2 because of the use of the Fast Fourier

Transform. The domain therefore has the appearance shown in Figure 15. For simplicity, it is

assumed that the domain is x=[0,1], y=[0,1] and z=[0,1].

Chapter 4: Formulation of the Numerical Solution Approaches

- 63 -

Figure 15 : The 3-dimensional domain to be solved

The governing 3-dimensional Laplace equation is:

02 =∇ u or 0
2

2

2

2

2

2

=
∂

∂
+

∂

∂
+

∂

∂

z

u

y

u

x

u
 Eq. (30)

The Dirichlet boundary conditions are:

i) 1(,)u f y z= for 0, [0,1]x y= = and [0,1]z = (a)

ii) 2 (,)u f y z= for 1, [0,1]x y= = and [0,1]z = (b)

iii) 3(,)u f x z= for [0,1], 0x y= = and [0,1]z = (c)

iv) 4 (,)u f x z= for [0,1], 1x y= = and [0,1]z = (d)

v) 0u = for [0,1], [0,1]x y= = and 0z = (e)

vi) 0u = for [0,1], [0,1]x y= = and 1z = (f)

Eq. (31)

Chapter 4: Formulation of the Numerical Solution Approaches

- 64 -

Note that the use of a zero boundary conditions for z=0 and z=1 does not entail a loss of

generality, since a Laplace equation and, in general, a Poisson equation with a

non-homogeneous boundary condition:

vii) 5 (,)u f x y= for [0,1], [0,1]x y= = and 0z = (g)

viii) 6 (,)u f x y= for [0,1], [0,1]x y= = and 1z = (h)

can be transformed to a Poisson equation satisfying (a-f) using the transformation

5 6(1) (, ,) (, ,)u u z f x y t zf x y t→ + − + during the pre-processing stage, and the inverse

transform in the post-processing.

Even though only the Laplace equation is treated in this chapter, the same procedure can be

applied to the Poisson equation.

4.1.2 Fourier Decomposition

Here a solution method of the partial differential equation, which uses the Fast Fourier

Transform, is introduced. In reality, a 3-D problem of size N N N× × is too big to be solved

efficiently in hardware. It would need to be broken down into a series of smaller problems

using domain decomposition methods. However, standard domain decomposition approaches,

based on matrix partition methods, may be inefficient as each sub-domain needs to access the

boundaries of other sub-domains, which have not been solved yet. Nevertheless, this problem

can be solved by using Fourier decomposition methods. In this case, the 3D problem can be

transformed into N 2D problems. These 2D problems represent the Fourier coefficients of

Chapter 4: Formulation of the Numerical Solution Approaches

- 65 -

the solution in the z direction. The important feature of this is that for a linear problem,

these 2D problems are completely decoupled from each other, and can be solved in isolation

from one another. As a result, the 2D problems (which are small enough to be efficiently

solved in hardware) can be solved in parallel to give very fast solution. Alternatively, if the

problem is linear in the y direction, we can use the Fourier decomposition method again to

further decompose each 2D problem down into N 1D problems, which are then solved in

parallel. The parallelism is suitable to be implemented in hardware. We use the Fast Fourier

Transform (discrete) [84] to obtain the Dirchlet boundary conditions and Neumann boundary

conditions of the PDE.

Consider Eq. (30) and let

() () () () ()
0 1

, , , cos 2 , sin 2m m

m m

u x y z u x y m z v x y m zπ π
∞ ∞

= =

= +∑ ∑ Eq. (32)

The function (, ,)u x y z used in the Fourier decomposition is periodic in the z direction, but

this is not a significant restriction. For a real system, the domain is finite; whether the function

is periodic or not outside the domain in z direction is immaterial, because what happens

outside the domain is not a problem to the method of analysis. The required behaviour within

the domain can be obtained by an appropriate selection of the Dirchlet or Neumann boundary

conditions.

Checking the boundary conditions:

i) at y=1, z=(0,1) and x=(0,1) we have

Chapter 4: Formulation of the Numerical Solution Approaches

- 66 -

() () () ()
0 1

(,1,) ,1 cos 2 ,1 sin 2m m

m m

u x z u x m z v x m zπ π
∞ ∞

= =

= +∑ ∑ . By choosing the value

of the functions (),1mu x and (),1mv x so that

() () () () ()
0 1

(,1,) , ,1 cos 2 ,1 sin 2m m

m m

u x z f x z u x m z v x m zπ π
∞ ∞

= =

= = +∑ ∑ .

The boundary value of the functions can be determined by Fourier transform for

the continuous problem. For the discrete problem, the Fast (discrete) Fourier

transform can be used instead.

ii) at y=0, we have

() () () ()
0 1

(,0,) ,0 cos 2 ,0 sin 2 0m m

m m

u x z u x m z v x m zπ π
∞ ∞

= =

= + =∑ ∑ . This would imply

() (),0 ,0 0m mu x v x= = using the orthogonality property of ()cos 2m zπ and

()sin 2m zπ .

iii) at z=0, we have

() () () () ()
0 1

, ,0 , cos 2 0 , sin 2 0 0m m

m m

u x y u x y m v x y mπ π
∞ ∞

= =

= + =∑ ∑

giving ()
0

, 0m

m

u x y
∞

=

=∑

iv) at z=1, we have

() () () () ()
0 1

, ,1 , cos 2 1 , sin 2 1 0m m

m m

u x y u x y m v x y mπ π
∞ ∞

= =

= ⋅ + ⋅ =∑ ∑

also gives ()
0

, 0m

m

u x y
∞

=

=∑

v) at x=0, we have

() () () ()
0 1

(0, ,) 0, cos 2 0, sin 2 0m m

m m

u y z u y m z v y m zπ π
∞ ∞

= =

= + =∑ ∑ . This would imply

Chapter 4: Formulation of the Numerical Solution Approaches

- 67 -

() ()0, 0, 0m mu y v y= = again using the orthogonal property of ()cos 2m zπ and

()sin 2m zπ .

vi) at x=1, we have

() () () ()
0 1

(1, ,) 1, cos 2 1, sin 2 0m m

m m

u y z u y m z v y m zπ π
∞ ∞

= =

= + =∑ ∑ . This would imply

() ()1, 1, 0m mu y v y= = using the orthogonality property of ()cos 2m zπ and

()sin 2m zπ .

Using the Fourier transform, we are going to transform the partial differential equation (PDE)

in the form of Eq.(30) into PDEs with respect to x and y only by putting Eq. (32) into

Eq.(30), we have

() () () ()

() () () ()

() () () ()

2

0 1
2

2

0 1
2

2

0 1
2

, cos 2 , sin 2

, cos 2 , sin 2

, cos 2 , sin 2
0

m m

m m

m m

m m

m m

m m

u x y m z v x y m z

x

u x y m z v x y m z

y

u x y m z v x y m z

z

π π

π π

π π

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

∂ +

∂

∂ +

+
∂

∂ +

+ =
∂

∑ ∑

∑ ∑

∑ ∑

 Eq. (33)

() () () ()

()
()

()
()

()
()

()
()

2 2 2 2

1 1

2 2

2 2
0 1

2 2

2 2
0 1

, 4 cos 2 , 4 sin 2

, ,
cos 2 sin 2

, ,
cos 2 sin 2

m m

m m

m m

m m

m m

m m

u x y m m z v x y m m z

u x y v x y
m z m z

y y

u x y v x y
m z m z

x x

π π π π

π π

π π

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

+

∂ ∂
= +

∂ ∂

∂ ∂
+ +

∂ ∂

∑ ∑

∑ ∑

∑ ∑

 Eq. (34)

Using the orthogonality properties of the cosine and sine function, which are

Chapter 4: Formulation of the Numerical Solution Approaches

- 68 -

() ()
1

0
cos 2 cos 2m z k z dzπ π∫

()() ()()
1

1
2 0

cos 2 cos 2m k z m k z dzπ π = − + + ∫


 ==

=
otherwise

mkfor

kmδ2
1

01

Eq. (35)

() ()
1

0
sin 2 sin 2m z k z dzπ π∫

()() ()()
1

1
2 0

cos 2 cos 2m k z m k z dzπ π = − − + ∫


 ==

=
otherwise

mkfor

kmδ2
1

00

Eq. (36)

() ()
1

0
sin 2 cos 2m z k z dzπ π∫

()() ()()
1

1
2 0

sin 2 sin 2m k z m k z dzπ π = − + + ∫ 0=

Eq. (37)

Eq. (34) becomes

() ()
()

2 2
2 2

2 2

, ,
4 , 0m m

m

u x y u x y
m u x y

x y
π

∂ ∂
+ − =

∂ ∂
 Eq. (38)

and

() ()
()

2 2
2 2

2 2

, ,
4 , 0m m

m

v x y v x y
m v x y

x y
π

∂ ∂
+ − =

∂ ∂
 Eq. (39)

subject to the boundary conditions

i) at x=0 () ()0, 0, 0m mu y v y= =

ii) at x=1 ()1,m mu u y= and ()1,m mv v y=

iii) at y=0 () (),0 ,0 0m mu x v x= =

Eq. (40)

Chapter 4: Formulation of the Numerical Solution Approaches

- 69 -

iv) at y=1 () (),1 ,1 0m mu x v x= =

Thus the original 3D problem has been composed into a series of nz 2D slices

(corresponding to different values of m in Eq. (38) and Eq. (39)), which are decoupled and

can be solved separately without any requirement for exchange of data or synchronization

between the slices.

The same procedure can also be applied to a time dependent problem, such as the parabolic

diffusion equation, which represents the time dependent consolidation problem, time

dependent electrical field problem, and heat diffusion problem, which has the form:

t

u
C

z

u

y

u

x

u

∂

∂
=

∂

∂
+

∂

∂
+

∂

∂
2

2

2

2

2

2

 Eq. (41)

The method is even applicable to some nonlinear problems, such as the non-linear form:

() () () 0,,,
2

2

=
∂

∂
+









∂

∂

∂

∂
+






∂

∂

∂

∂

z

u
yxk

y

u
yxk

yx

u
yxk

x
zyx Eq. (42)

() () () ()zyxg
z

u
yxk

y

u
yxk

yx

u
yxk

x
zyx ,,,,,

2

2

=
∂

∂
+









∂

∂

∂

∂
+






∂

∂

∂

∂
 Eq. (43)

and

() () () ()
t

u
tyxC

z

u
tyxk

y

u
tyxk

yx

u
tyxk

x
zyx

∂

∂
=

∂

∂
+









∂

∂

∂

∂
+






∂

∂

∂

∂
,,,,,,,,

2

2

 Eq. (44)

The method is applicable as long as the domain is uniform in the direction of the Fourier

Transform i.e. the z-direction in the current configuration and the material non-linearity is not

Chapter 4: Formulation of the Numerical Solution Approaches

- 70 -

included in that direction. The principle of superposition must apply therefore only linear

system in z direction will be allowed for Fourier decomposition to work. In civil engineering,

Fourier decomposition is widely applicable for “long” structures, e.g. roads and dams where

the cross section is constant for a long distance. Fourier decomposition is also widely used in

the finite strip method and the finite layer method.

4.1.3 The Finite Difference Method

y∆

1,i j

mu
+

, 1i j

mu
−

, 1i j

mu
+

,i j
mu

1,i j

mu
−

x∆

Figure 16 : 2D finite difference grid

The 2D solution domain is shown in Figure 16, covered by a two-dimensional grid of lines.

The intersections of these grid lines are the grid points at which the finite difference solution

to the PDE after Fourier decomposition is to be obtained. As shown in Figure 16, these

equally spaced grid lines are perpendicular to the x and y axes and the uniform distances are

x∆ and y∆ , respectively. The subscript i is used to denote the physical grid lines

Chapter 4: Formulation of the Numerical Solution Approaches

- 71 -

corresponding to constant values of x , where ix i x= ⋅∆ , and the subscript j is used to

denote the physical grid lines corresponding to constant values of y , where jy j y= ⋅∆ .

Therefore, grid point (,)i j is corresponding to location (,)i jx y in the solution domain.

Also, the subscript notation is used to denote the dependent variable at the grid point which

uses the same subscript, i.e. ,(,) i j

m i j mu x y u= .

If Eq.(38) is to be solved using finite difference method then, it can be written as

() ()
()

2 2
2

2 2

, ,
, 0m m

m

u x y u x y
u x y

x y
λ

∂ ∂
+ − =

∂ ∂
 Eq. (45)

where
2 2 24mλ π= , and Eq. (45) can be approximated as

1, 1, , , 1 , 1 ,
2 ,

2 2

2 2
0

i j i j i j i j i j i j
i jm m m m m m
m

u u u u u u
u

x y
λ

+ − + −+ − + −
+ − =

∆ ∆
 Eq. (46)

Choosing x y∆ = ∆ , we have

1, 1, , 1 , 1
,

2 24

i j i j i j i j
i j m m m m
m

u u u u
u

xλ

− + − ++ + +
=

+ ∆
 Eq. (47)

Eq. (47) must be modified at the boundaries. For example, at 0,1u , Eq. (47) gives a reference

to a point outside the domain at location (1,0)− . If 0,1u lies on a Dirichlet boundary, no

update on the value of u is performed, so Eq. (47) is not evaluated, and there is no problem.

If 0,1u lies on a Neumann boundary condition, the reflecting boundary condition is enforced

by using a “virtual point” at (1,1)− , whose behaviour exactly mirrors the behaviour of the

Chapter 4: Formulation of the Numerical Solution Approaches

- 72 -

corresponding point at (1,1)+ . Thus the value 1,1u− is substituted by the value of 1,1u , and

then the equation solved as normal. A similar procedure is applied whenever

0, 1, 0i i nx j= = − = or 1j ny= − .

And the same procedure applied on Eq. (39), then we have

1, 1, , 1 , 1
,

2 24

i j i j i j i j
i j m m m m
m

v v v v
v

xλ

− + − ++ + +
=

+ ∆
 Eq. (48)

The value of (,1)mu x and (,1)mv x can be found from

() () () ()
0 1

(,) ,1 cos 2 ,1 sin 2m m

m m

f x z u x m z v x m zπ π
∞ ∞

= =

= +∑ ∑ Eq. (49)

4.1.4 Fourier Decomposition in the y direction and Exact Solution

We can use the Fourier transform again for the y direction to transform the partial differential

equation (PDE) in the form of Eq. (38) and (39) into an ordinary differential equation (ODE)

by assuming

() () () () ()
0 1

, cos 2 sin 2m mn mn

n n

u x y u x n y a x n yπ π
∞ ∞

= =

= +∑ ∑ Eq. (50)

And

() () () () ()
0 1

, cos 2 sin 2m mn mn

n n

v x y v x n y b x n yπ π
∞ ∞

= =

= +∑ ∑ Eq. (51)

Putting Eq. (50) into Eq. (38), we have (only mu is shown as mv is the same but with

Chapter 4: Formulation of the Numerical Solution Approaches

- 73 -

different coefficients):

() () () ()

() () () ()

() () () ()

2

0 1

2

2

0 1

2

2 2

0 1

cos 2 sin 2

cos 2 sin 2

4 cos 2 sin 2 0

mn mn

n n

mn mn

n n

mn mn

n n

u x n y a x n y

x

u x n y a x n y

y

m u x n y a x n y

π π

π π

π π π

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

 
∂ + 
 

∂

 
∂ + 
 +

∂

 
− + = 

 

∑ ∑

∑ ∑

∑ ∑

Eq. (52)

()
()

()
()

() () () ()

() () () ()

2 2

2 2
0 1

2 2

0 1

2 2

0 1

cos 2 sin 2

4 cos 2 sin 2

4 cos 2 sin 2

mn mn

n n

mn mn

n n

mn mn

n n

d u x d a x
n y n y

dx dy

n u x n y a x n y

m u x n y a x n y

π π

π π π

π π π

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

+

 
= + 

 

 
+ + 

 

∑ ∑

∑ ∑

∑ ∑

Eq. (53)

Using the orthogonal properties of the cosine and sine function, Eq. (53) becomes

()
() ()

2
2 2 2

2
4 0mn

mn

d u x
m n u x

dx
π− + =

Eq. (54)

The exact solution of Eq. (54) is

2 2 2 2
1 2() sinh(2) cosh(2)mnu x C m n x C m n xπ π= + + + Eq. (55)

subject to the boundary conditions

v) at x=0 0== mm vu

vi) at x=1 () () () () ()
0 1

1, 1 cos 2 1 sin 2m mn mn

n n

u y u n y a n yπ π
∞ ∞

= =

= +∑ ∑

Eq. (56)

Chapter 4: Formulation of the Numerical Solution Approaches

- 74 -

and the coefficients can be found using the orthogonality property of the cosine and sine

terms.

1 2(0) sinh(0) cosh(0) 0mnu C C= + = Eq. (57)

2 0C = Eq. (58)

Putting Eq. (58) into Eq. (55), we have

2 2
1() sinh(2)mnu x C m n xπ= + Eq. (59)

Therefore

() ()
2 2

2 2

sinh 2
1

sinh 2
mn mn

m n x
u x u

m n

π

π

+
=

+
Eq. (60)

If the exact solution of Eq. (54) is not available, using the finite difference method, Eq. (54)

can be written as

()
()

2
2

2
0mn

mn

d u x
u x

dx
λ− =

Eq. (61)

where 2 2 2 24 ()m nλ π= + . Eq. (61) can be approximated as

1 1 0
2 0

2

2
0mn mn mn

mn

u u u
u

x
λ

−+ −
− =

∆
Eq. (62)

or

1 1
0

2 22
mn mn

mn

u u
u

xλ

−+
=

+ ∆
Eq. (63)

Chapter 4: Formulation of the Numerical Solution Approaches

- 75 -

For finite difference
1 1

2 2
0

2mn mn

mn

u u
x

u
λ

−+
= + ∆

For exact solution =
+ −

0

11

mn

mnmn

u

uu () ()
()xA

xxAxxA

λ

λλλλ

sinh

sinhsinh ∆−+∆+

() ()
()x

xx

λ

λλ

sinh

coshsinh2 ∆
=

()x∆= λcosh2 ...
12

2
44

22 +
∆

+∆+=
x

x
λ

λ Eq. (64)

4.1.5 Iteration Schemes

Based on the discussions in section 2.5, relaxation methods are considered here, because the

matrices arising from the system of finite difference equations are generally very large and

sparse, especially for 3-dimensional system domain.

The finite difference method based on Jacobi iteration is:

, 1 , 1 1, 1,1
, 2 24

k k k k

i j i j i j i jk

i j

u u u u
u

xλ
+ − − ++

+ + +
=

+ ∆
 Eq. (65)

where the superscript (0,1, 2,)k k = … denotes the iteration number, λ is a coefficient from

Fourier decomposition with 2 2 24mλ π= . An initial approximation (0)k = must be made

for ,i ju to start the finite difference process.

The Gauss Seidel method, which is applied to the finite difference solution to the Laplace

equation, is as follows:

Chapter 4: Formulation of the Numerical Solution Approaches

- 76 -

1 1
, 1 , 1 1, 1,(1)

, 2 24

k k k k

i j i j i j i jGS k

i j

u u u u
u

yλ

+ +
+ − − ++

+ + +
=

+ ∆
 Eq. (66)

The successive over-relaxation (SOR) method becomes like:

1 (1)
, , , ,()k k GS k k

i j i j i j i ju u u uω+ += + − Eq. (67)

where ω is a relaxation factor, which lies between 0.0 and 2.0.

4.1.6 Software Implementation

This sub-section describes and analyses the software simulation of the FDM for 1 dimension,

2 dimensions, and 3 dimensions. A software simulator for the FDM was written in C

Language in order to understand the processes and operations of the FDM better, to allow the

functional verification and validation of the hardware implementation, and the most important

is to provide a baseline against which speed is measured. Fast Fourier Transform (FFT),

written in C based on modified Numerical Recipes Software [100], is used for Fourier

decomposition process. The software also acts as an interface to the reconfigurable computing

platform.

The procedure used by the simulation is illustrated in Figure 17. It first reads what kind of

FDM needs to be simulated and which boundary conditions it has. It then decides which

method will be used, and then compares the results in different methods to get ready for the

hardware simulation.

Chapter 4: Formulation of the Numerical Solution Approaches

- 77 -

Figure 17 : 3D FDM simulation flow graph

Solution of the Partial Differential Equation using the FFT, requires that the domain to be

uniform in one of the directions and in this direction no variation of material property is

allowed. Usually, we assume that this direction is the z -direction.

Initialisation of
System

Generate boundary
Conditions

FFT in One
of the

Dimensions

Finite Difference
Method

Exact Solution

Decomposing the 3D
Structure into 2D Planes

Compare the
Results

N 2D Planes
FDM

(SW/HW)

Chapter 4: Formulation of the Numerical Solution Approaches

- 78 -

4.2 The Finite Element Method

The mathematical basis of the finite element method is introduced in this section, from the

1-D linear solid element to 3-D tetrahedral element. The basic flow chart of FEM is shown in

Figure 5. The first step of FEM is to break up a continuous physical domain into smaller

sub-domains, for example, triangular for 2-D domains, while tetrahedral for 3-D domains.

Then, the mesh generation is an important step which will determine the approximation

accuracy, however, the common mesh generation methods integrate complex data structures

which can not be implemented effectively on hardware devices. So, the main effort is spent on

accelerating the solution of large linear system equations.

1-D linear solid element and 2-D rectangular plane strain element are introduced to explain

basic concepts about finite element analysis. Nowadays, 3-dimensional finite element

modelling is widely applied, which gives a more realistic solution. However, the 3-D finite

element method requires a large amount of computation power and memory in order to solve

the large but sparse matrix-vector system of equations while losing the ability to run on all but

the fastest computers effectively. Therefore, an iterative element-by-element scheme is used

for the solution of 3-D finite element analysis.

4.2.1 1D Linear Solid Element

A 1D linear solid system, with n elements connected through nodes 0-n, is shown in Figure 18.

This is a dynamic solid element in the form of a bar with Young’s modulus E , material

density ρ , cross-sectional area A and element length of l . The node number 0 is free,

Chapter 4: Formulation of the Numerical Solution Approaches

- 79 -

element 1 has nodes 1 and 2 while element 2 has nodes 2 and 3, and so on. The node number

n is fixed.

The Governing differential equation for dynamic behaviour is:

2 2

2 2
0

u u
E

x t
ρ

∂ ∂
− =

∂ ∂
 Eq. (68)

which can be written as

2 2
2

2 2
0

u u
c

x t

∂ ∂
− =

∂ ∂
 Eq. (69)

where
E

c
ρ

= is called the wave velocity.

Figure 18 : 1D finite element mesh

1 1 2 2() () ()u x N x u N x u= + Eq. (70)

where 1N and 2N are called the shape functions.

A simple set of shape functions for the 1D linear element is:

1() 1
x

N x
l

= − and 2 ()
x

N x
l

= Eq. (71)

when 0x = , 1 1N = and 2 0N = , as for x l= , 1 0N = and 2 1N = .

Chapter 4: Formulation of the Numerical Solution Approaches

- 80 -

The total mass of the element iu is eM Alρ= and this is divided into two equal parts and,

using the lumped mass scheme, assigned to each side node, then we have

1 0

0 12e

Al
M

ρ  
=  

 
 Eq. (72)

Direct mass lumping drives a diagonal mass matrix, which can be stored simply as a vector

and offers computational advantages under certain simulations, such as the inverse of a

diagonal matrix is also diagonal.

Since there two nodes for a single element with one degree of freedom at each node, the

lumped mass matrix and stiffness matrix are as follows:

















=

2

1

10

01

2 u

uAl
uM ee

��

��
��

ρ
 Eq. (73)


















−

−
=

2

1

11

11

u

u

l

EA
uK ee Eq. (74)

For the element eigenvalue problem

eeee uMuK 2ω= Eq. (75)

The eigenvectors and eigenvalues are









=
1

11
eu 01 =eω Eq. (76)

and

Chapter 4: Formulation of the Numerical Solution Approaches

- 81 -










−
=

1

12
eu

ρ
ω

E

l

e 2
2 = Eq. (77)

The critical time step derives from the equation with the largest eigenvalue of the element

eigenvalue problem Eq. (75), where max 1 2

2
max(,)e e e E

l
ω ω ω

ρ
= = . Therefore the critical time

step is [85] :

E
ltcrit

ρ

ω
==∆

max

2
 Eq. (78)

where the time step must be smaller than the critical time step to obtain stability for the

explicit scheme used.

From Eq.(73) and Eq.(74) , the assembled global mass matrix and stiffness matrix are in the

form of:

1 1

2 2

3

4

1 0 0 0 1 0 0 0

0 1 1 0 0 0 2 0 0

0 0 1 1 0 0 0 2 0
2 2

0 0 0 1 1 0 0 0 2

....

u u

u u
Al Al

Mu u

u

ρ ρ

     
    +     
    = =+
    

+     
         

�� ��

�� ��

�� ��

��

3

4

....

u

u

 
 
 
 
 
 
 
 

��

��

 Eq. (79)

and

1 1

2 2

3 3

4 4

1 1 0 0 1 1 0 0

1 1 1 1 0 1 2 1 0

0 1 1 1 1 0 1 2 1

0 0 1 1 1 0 0 1 2

....

u u

u u
EA EA

Ku u u
l l

u u

− −     
    − + − − −    
    = =− + − − −
    

− + −    
         

 
 
 
 
 
 
 
 

 Eq. (80)

Chapter 4: Formulation of the Numerical Solution Approaches

- 82 -

The global dynamic equation is:

0Mu Ku+ =�� Eq. (81)

Using central difference scheme, the global dynamic equation becomes

0
2

2
=+

∆

−+
∆−∆+

t
ttttt

uK
t

uuu
M Eq. (82)

Then solve out t tu +∆ :

M

uKt
uuu

t
ttttt

2

2
∆

−+−=
∆−∆+ Eq. (83)

or applying Neumman boundary condition at x=0 and Direchlet boundary condition at x=nl

1 12 0 (2)t t t t t t t t

i i i i i i iu u u const u u u+∆ −∆

+ += − + + × − − (i=0)

12 0 (2 0)t t t t t t t

i i i i i iu u u const u u+∆ −∆

−= − + + × − − (i=n)

1 12 0 (2)t t t t t t t t

i i i i i i iu u u const u u u+∆ −∆

− += − + + × − − (i=1 to n-1)

Eq. (84)

where
2

2

2
0

,i

E t
const

l Mi iρ

∆
= −

×
.

4.2.2 2D Rectangular Plane Strain Element

The rectangular element, one of the simplest 2D elements for 2D finite element analysis, has 4

nodes at each corner. Consider a rectangular element, Figure 19, with nodes 1, 2, 3 and 4 with

local coordinates (xi,yi) which are (-a,-b), (a,-b), (a,b) and (-a,b) respectively. The

displacement at the nodes are (u1,v1), (u2,v2), (u3,v3) and (u4,v4) respectively.

Chapter 4: Formulation of the Numerical Solution Approaches

- 83 -

0100 02 03 04 05 06

10 11 12 13 14 15 16

20 21 22 23 24 25 26

(-a, b) (a, b)

(-a, -b) (a, -b)

Single

Element

Figure 19 : 2-dimensional rectangular plane strain elements

The next step is the key finite element approximation – assuming that the displacement at any

point within the element depends only on the displacement of the nodes therefore

() ()∑
=

=
4

1

,,
i

ii uyxNyxu

Eq. (85)

() ()∑
=

=
4

1

,,
i

ii vyxNyxv

Eq. (86)

where 1N , 2N , 3N , 4N are called the shape functions, a simple set of shape functions for

the 4-noded element is:

() 







−








−=

b

y

a

x
yxN 11

4

1
,1 Eq. (87)

() 







−








+=

b

y

a

x
yxN 11

4

1
,2 Eq. (88)

() 







+








+=

b

y

a

x
yxN 11

4

1
,3 Eq. (89)

() 







+








−=

b

y

a

x
yxN 11

4

1
,4 Eq. (90)

Chapter 4: Formulation of the Numerical Solution Approaches

- 84 -

Or

() 







+








+=

ii

i
y

y

x

x
yxN 11

4

1
, Eq. (91)

The mass matrix is given by






























=

∫ ∫

∫ ∫

− −

− −

j

j

b

b

a

a

ji

b

b

a

a

ji

ee
v

u

dydxNN

dydxNN

tuM
��

��
��

0

0

ρ Eq. (92)

Using nodal integration in order to obtain a diagonal matrix, we have



















=

j

j

ee
v

u
tabuM

��

��
��

10

01
ρ Eq. (93)

Or

































































=

4

4

3

3

2

2

1

1

10000000

01000000

00100000

00010000

00001000

00000100

00000010

00000001

v

u

v

u

v

u

v

u

tabuM ee

��

��

��

��

��

��

��

��

�� ρ Eq. (94)

The stiffness matrix is in the form of

Chapter 4: Formulation of the Numerical Solution Approaches

- 85 -

()
()()

()




































∂

∂

∂

∂
∂

∂
∂

∂























−

−
−

−



















∂

∂

∂

∂
∂

∂

∂

∂

−+

−
=

∫ ∫
− − j

j
b

b

a

a

jj

j

j

ii

ii

ee

v

u
dydx

x

N

y

N

y

N
x

N

x

N

y

N

y

N

x

N

E
uK

0

0

12

21
00

01
1

0
1

1

0

0

211

1

ν

ν
ν

ν
ν

ν

νν

ν

 Eq. (95)

The global dynamic equation is:

0=+ uKuM �� Eq. (96)

using central difference scheme, the global dynamic equation becomes

0
2

2
=+

∆

−+
∆−∆+

t
ttttt

uK
t

uuu
M Eq. (97)

Then solve out
tt

u
∆+

:

M

uKt
uuu

t
ttttt

2

2
∆

−+−=
∆−∆+ Eq. (98)

Or

ii

t

i

tt

i

tt

i Kuconstuuu ×++−=
∆−∆+ 02 Eq. (99)

where
2

,

0i
i i

t
const

tab Mρ

∆
= −

×

Chapter 4: Formulation of the Numerical Solution Approaches

- 86 -

4.2.3 3D Tetrahedral Element

The 3D finite element method can handle greater detail and more complex characterizations

of construction materials, thus a powerful and realistic analysis of almost any structure can be

provided. An element by element approach is a promising one to use on FPGA based

hardware accelerators due to the simplicity of data structures required, and also the

minimization of communications overheads. In this sub-section, a tetrahedral element, which

is widely used in 3D finite element analysis, is introduced.

4.2.3.1 3D Mesh Generation

In finite element analysis, the domain of the problem is discretized into a finite number of

sub-regions or sub-domains firstly. Tetrahedrons are widely employed in 3-D finite element

analysis to achieve the geometric discretization of the problem domain. Figure 20 shows a

simple example of the discretization of the three dimensional solution domain into a mesh of

4-noded tetrahedral elements. Firstly, a problem is subdivided into a number of scaled

hexahedrons. Then the hexahedron will be subdivided into six tetrahedrons.

e_slices
e_rows

e_cols

5

8 7

3

21

4

6
c_length

b_length

a_length

Single Element

5

1

2

4

5

2

6

4

4

2

6

3

5

4

6

8

8

6

7

3

8

4

6

3

 3D Tetrahedral Elements
3D Problem

Figure 20 : Subdivision of the domain into Three-Dimensional Tetrahedral Elements

Chapter 4: Formulation of the Numerical Solution Approaches

- 87 -

Then one of the six tetrahedrons in Figure 20 is assumed with global coordinates (, ,)i j kx y z

and the displacement at the nodes are 1 1 1(, ,)u v w 2 2 2(, ,)u v w 3 3 3(, ,)u v w 4 4 4(, ,)u v w

respectively, as in Figure 21.

4

1

2

3
x

y

z

Figure 21 : 3D Tetrahedral Element

Next step is the key finite element approximation – Assume that the displacement at any point

in the element depends only on the displacement of the nodes therefore

() ()∑
=

=
4

1

,,,,
i

ii uzyxNzyxu Eq. (100)

() ()∑
=

=
4

1

,,,,
i

ii vzyxNzyxv Eq. (101)

() ()∑
=

=
4

1

,,,,
i

ii wzyxNzyxw Eq. (102)

where 1N to 4N are called the shape functions.

A simple set of shape functions are:

()
















+++=+++==

44

33

22

44

33

22

44

33

22

444

333

222

1111

444

333

222
1

1

1

1

1

1

1

1

1

1

6

1

1

1

1

1

6

1
,,

yx

yx

yx

z

xz

xz

xz

y

zy

zy

zy

x

zyx

zyx

zyx

V
zdycxba

zyx

zyx

zyx

zyx

V
zyxN Eq. (103)

Chapter 4: Formulation of the Numerical Solution Approaches

- 88 -

() zdycxba

zyx

zyx

zyx

zyx

V
zyxN 2222

444

333

111

2

1

1

1

1

6

1
,, +++== Eq. (104)

() zdycxba

zyx

zyx

zyx

zyx

V
zyxN 3333

444

222

111

3

1

1

1

1

6

1
,, +++== Eq. (105)

() zdycxba

zyx

zyx

zyx

zyx

V
zyxN 4444

333

222

111

4

1

1

1

1

6

1
,, +++== Eq. (106)

or

() zdycxbazyxN iiiii +++=,, Eq. (107)

with

444

333

222

111

1

1

1

1

6

zyx

zyx

zyx

zyx

V = .

The mass matrix is given by









































=

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

− − −

− − −

− − −

j

j

j

c

c

b

b

a

a

ji

c

c

b

b

a

a

ji

c

c

b

b

a

a

ji

ee

w

v

u

dzdydxNN

dzdydxNN

dzdydxNN

uM

��

��

��

��

00

00

00

ρ Eq. (108)

Using nodal integration, we have

Chapter 4: Formulation of the Numerical Solution Approaches

- 89 -

































=

j

j

j

ee

w

v

u
V

uM

��

��

��

��

100

010

001

4

ρ
 Eq. (109)

The derivation of mass matrix and stiffness matrix can be found in [101] and [102]. The

stiffness matrix is in the form of

Chapter 4: Formulation of the Numerical Solution Approaches

- 90 -

()
()()

()

()

()

























































∂

∂

∂

∂
∂

∂

∂

∂
∂

∂

∂

∂
∂

∂
∂

∂
∂

∂







































−

−
−

−
−

−
−−

−−

−−

























∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

−+

−
= ∫

j

j

j

V

jj

jj

jj

j

j

j

iii

iii

iii

ee

w

v

u

dV

x

N

y

N
x

N

z

N

y

N

z

N
z

N

y

N
x

N

x

N

y

N

z

N

x

N

z

N

y

N

y

N

z

N

x

N

E
uK

0

0

0

00

00

00

12

21
00000

0
12

21
0000

00
12

21
000

0001
11

000
1

1
1

000
11

1

000

000

000

211

1

ν

ν
ν

ν
ν

ν
ν

ν

ν

ν
ν

ν

ν

ν
ν

ν

ν

ν

νν

ν

Eq. (110)

Chapter 4: Formulation of the Numerical Solution Approaches

- 91 -

4.2.3.2 Preconditioned Conjugate Gradient method

As mentioned in subsection 3.3.2, iterative methods are very efficient and suitable for the

numerical solution of three dimensional finite element analysis. Moreover, the conjugate

gradient method is an effective algorithm for the numerical solution of symmetric positive

definite systems Ax b= [86]. The method proceeds by generating vector sequences of

iterates, residuals corresponding to the iterates, and search directions used in updating the

iterates and residuals. If the coefficient matrix A is ill-conditioned, i.e. it has a large condition

number, it is often useful to use a preconditioning matrix M, where 1 1M A− −≈ and solve the

system 1 1M Ax M b− −≈ instead as the rate of convergence for iterative linear solvers usually

increases as the condition number of a matrix decreases. The main purpose of preconditioning

is to reduce the condition number of the coefficient matrix. The simplest preconditioning

matrix M is Jacobi preconditioning, which is a diagonal matrix comprising the diagonal

elements of A only.

,
0

iiA i j
M

otherwise

=
= 


�

�
 Eq. (111)

The algorithm of the preconditioned Conjugate Gradient method is shown below[87].

1. Make an initial estimate 0x

2. 0 0r b Ax= − Eq. (112)

 1
0 0h M r−=

 0 0p h=

3. For k=0, 1, 2 …

Chapter 4: Formulation of the Numerical Solution Approaches

- 92 -

 kk Ap=ω Eq. (113)

 k

T

k

k

T

k
k

p

rh

ω
α =

 Eq. (114)

 kkkk pxx α+=+1

 kkkk rr ωα−=+1 Eq. (115)

 (Until 1 22

kr bε≤ , where ||·|| denotes the L2-norm, i.e. the Euclidean norm, or

1
22 2

k k kx x xε+ − ≤)

 1
1 1k kh M r−

+ +=

1 1

T

k k
k T

k k

h r

h r
β + +=

 1 1k k k kp h pβ+ += +

4.2.3.3 Software Implementation

A software simulator for finite element analysis has been developed for this study. It has the

same facility as FDM simulator to communicate with the reconfigurable computing platform.

Generally, the first thing the simulator does is to initialise the software environment, i.e. the

selection of element type and the dimension of the solving problem. After that, the material

property parameters, such as E, ν , ρ , α , l , can be supplied. Then the stiffness matrices and

mass matrices are assembled by assigning the connectivity of elements. With the boundary

conditions and loads, the processing can start to solve the system equations. Due to the

domain decomposition scheme used to achieve greater parallelism, a run time comparison

Chapter 4: Formulation of the Numerical Solution Approaches

- 93 -

between the sequential program and the parallel implementation on reconfigurable computing

boards will be carried out.

4.2.3.4 Domain Decomposition

kk Ap=ω

kp

kp

kk Ap=ω

Figure 22 : Matrix Multiplication Parallelization

Because the resulting system is characterized by a global stiffness matrix which is usually

large and sparse, but needs to be generated only once, the software host is used to scatter the

whole problem into a series of sub-problems that can be fed into parallel computing systems.

The element-by-element (EBE) solution scheme was studied since 1983, as given in [16] [17]

[88] [89], where the element contributions are computed independently.

Based on the three-dimensional tetrahedral finite elements in Figure 20, the global stiffness

matrix A is built up by assembling the element stiffness matrices Ke. Thus, the matrix-vector

Chapter 4: Formulation of the Numerical Solution Approaches

- 94 -

multiplication Eq. (113) can be modified as shown in Figure 22. The data flow on the

left-hand side is for the normal software solution, in which the global stiffness matrix A is

assembled first, and then the matrix multiplication is performed. The element-by-element

approach used for parallel computing is shown on the right-hand side of Figure 22. Instead of

assembling the global stiffness matrix A, each local stiffness matrix Ke is directly multiplied

its element vector pe_i, which is scattered from the conjugate gradient vector pk. Then the

vector Kpe_i is gathered together in order to obtain the same final result as k kApω = .

The basic element-by-element (EBE) solution strategy is described below:

1. Preparation

For elements 0,1,2,e = … , do

obtain element matrix and vector eb

apply appropriate boundary conditions

End do

2. Initial 0x

Calculate 0 0r b Ax= −

 Preconditioning 1
0 0h M r−=

 0 0p h=

3. For 0,1, 2,k = … iterate

Scatter p

Element-by-element matrix-vector multiplication ke e ek pω =

Assemble kω from element-by-element keω

Chapter 4: Formulation of the Numerical Solution Approaches

- 95 -

k

T

k

k

T

k
k

p

rh

ω
α =

 kkkk pxx α+=+1

 kkkk rr ωα−=+1

(Until 1 22

kr bε≤ , where ||·|| denotes 2-norm (Euclidean norm or

1
22 2

k k kx x xε+ − ≤)

 1
1 1k kh M r−

+ +=

1 1

T

k k
k T

k k

h r

h r
β + +=

 1 1k k k kp h pβ+ += +

 .

By using this domain decomposition technique, irregular mesh geometries of different shaped

domains can be handled in order to make the method completely general and reduce the

communication overheads in the parallel computing system.

Chapter 4: Formulation of the Numerical Solution Approaches

- 96 -

4.3 Evaluation of the Software Implementation

4.3.1 The Finite Difference method

A software simulator based on the methods of section 4.1 was written in C language and

compiled by Microsoft Visual C++ NET. 2003 in release mode. The simulator is capable of

solving 3D problems under a variety of Neumann and Dirichlet boundary conditions. The

simulator is used as a baseline for comparison with the hardware methods that will be

developed in chapter 5. The simulator uses IEEE 754 standard double floating point

arithmetic and was run on a 2.4 GHz Pentium 4 PC with 1GByte RAM.

This section presents an evaluation of the different approaches detailed in section 4.1,

considering both accuracy and CPU time requirements. The evaluation was carried out on a

3D unit cubic domain using a set of boundary conditions that was chosen such that an exact

analytical solution of the equation can be derived. This exact analytical solution was used as

the baseline for accuracy analysis on the various numerical approaches. The Dirichlet

boundary conditions used were as follows:

)2sin()2sin()1,,(ymxmyxu ππ= Eq. (116)

(, ,) 0u x y z = for [0,1]x = , [0,1]y = and [0,1)z = Eq. (117)

All other boundaries used a Neumann boundary condition (i.e. the derivative of u normal to

the boundary was zero). As a result of these boundary conditions, all values of u within the

cubic domain will lie in the range 0 to 1. The number of grid lines used for the discretization

varied from 4 to 256 in each dimension.

Chapter 4: Formulation of the Numerical Solution Approaches

- 97 -

The operation of the simulator is shown in Figure 17, the solution approaches used are as

follows:

E3 Exact solution for 3D Laplace equation

F_FDM2 Solution via 1D FFT in x direction and 2D FDM

FDM3 Solution via 3D FDM

FF_FDM1 Solution via FFT in x direction, FFT in y direction, and then 1D FDM

F_E2 Solution via FFT in x direction, then 2D exact solution

FF_E1 Solution via FFT in x direction, FFT in y direction, and 1D exact solution

Table 2 compares the precision of each method to the exact solution and Table 3 shows the

CPU time consumed for each method.

Table 2 : Maximum Relative Error between Domain Decomposition Methods and

Exact Solution for N×N×N cubes.

Cube Size F_FDM2 FDM3 FF_FDM1 FF_E1 F_E2

4×4×4 0.4615 0.5820 0.0000 0.3848 0.0000

8×8×8 0.06471 0.07812 0.0000 0.05633 0.0000

16×16×16 0.01737 0.02088 0.0000 0.01423 0.0000

32×32×32 0.004431 0.005318 0.0000 0.003566 0.0000

64×64×64 0.000974 0.001169 0.0000 0.000195 0.0000

128×128×128 0.000244 0.000293 0.0000 0.000195 0.0000

256×256×256 0.000063 0.000076 0.0000 0.000051 0.0000

The relative error of the finite difference approximation results from round-off error and

discretization error. The round-off error comes from the loss of precision due to computer

rounding of decimal quantities, while the discretization error depends on the finite

Chapter 4: Formulation of the Numerical Solution Approaches

- 98 -

approximation x∆ and y∆ . As the number of sub-divisions for the sides of the cube

increases, a more accurate approximation is obtained and the discretization error becomes

smaller.

It can be easily seen that although F_FDM2 is not the best of the different methods, it does

perform well when the problem size becomes larger, thus demonstrating that the 2D finite

difference method is satisfactory for large systems.

The F_E2 approach, where an FFT is applied in the x direction followed by a 2D exact

solution, the result is identical to the exact solution of the 3D problem. This demonstrates that

the use of a discrete FFT in solving such problems does not cause a loss of accuracy. The

difference between the F_E2 and E3 approaches is just that one solves the problem in the

space domain, and the other uses the spatial “frequency” domain using the discrete Fourier

Transform, which is better as we can analyze the 3 dimension problem as a series of 2

dimension problems. Of course, the exact analytical solution is only possible because of the

contrived choice of boundary condition: in the general cause of more usual boundary

conditions the 2D exact solution is not available, so the method F_E2 is not generally

applicable.

The FF_FDM1 approach, using the FFT twice and then a 1D-FDM, also produces a good

result, and gives the same answer as the exact solution. Based on the above analysis, Fourier

decomposition maintains the numerical property of PDEs, and the 3-dimensional problem is

divided into n 2-dimensional sub-problems which are independent to each other. Therefore,

Chapter 4: Formulation of the Numerical Solution Approaches

- 99 -

the parallel solution to PDEs using the finite difference method in this case can be easily fitted

onto parallel computing systems.

The FF_FDM1 approach imposes limitations on 2 of the dimensions (the grid resolution must

be an exact power of two, and the material properties should be invariant in those directions).

The F_FDM2 is therefore chosen for implementation in hardware as it provides a good

compromise between generality and decomposition of the big problem into parallel smaller

problems.

Table 3 : Timing Cost of Different Methods for N×N×N cubes (Jacobi iteration)

Timing
(CPU seconds)

E3 F_FDM2 FDM3

4×4×4 6.2×10-5 1.4×10-4 6.4×10-4

8×8×8 2.1×10-4 4.2×10-4 1.8×10-3

16×16×16 1.3×10-3 3.3×10-3 4.4×10-2

32×32×32 7.8×10-3 3.8×10-2 1.1×100

64×64×64 7.8×10-2 4.7×10-1 2.9×101

128×128×128 4.4×10-1 5.9×100 7.0×102

256×256×256 3.5×100 7.2×101 1.7×104

From Table 3, it can be seen that exact solution has the lowest CPU time consumption.

However, most PDEs do not have an exact analytical solution so this method is not generally

applicable. It can be seen from Table 3 that the performance of the finite difference method

with Fourier decomposition (F_FDM2) becomes much better than the standard 3D finite

difference approach (FDM3) when the number of grid points becomes large. Additionally, the

Chapter 4: Formulation of the Numerical Solution Approaches

- 100 -

F_FDM2 approach will be much more suitable for parallelisation on an FPGA than the FDM3

approach. So in hardware the advantage of F_FDM2 will be even larger.

Table 4 : Timing cost for iterative methods of F_FDM2 (Release mode)

Timing
(CPU seconds)

Jacobi Gauss-Seidel
SOR

(ω =1.5)

4×4×4 1.1×10-4 1.5×10-4 1.7×10-4

8×8×8 3.7×10-4 3.5×10-4 3.1×10-4

16×16×16 2.9×10-3 2.9×10-3 1.1×10-3

32×32×32 2.8×10-2 2.7×10-2 9.3×10-3

64×64×64 3.4×10-1 3.1×10-1 1.1×10-1

128×128×128 4.1×100 3.5×100 1.3×100

256×256×256 5.2×101 4.1×101 1.4×101

Table 4 compares the timing cost, which was obtained from the software simulator compiled

in release mode by Microsoft Visual .NET 2003, for the F_FDM2 approach using three

different relaxation methods, Jacobi iteration, Gauss-Seidel iteration and successive

over-relaxation (SOR) iteration.

Based on the above analysis, F_FDM2 is the algorithm that is chosen for implementation in

hardware. The 3-dimensional domain is decomposed into n 2-D sub-domains, which are

computationally independent, and the 2D sub-domains are computed in hardware.

Chapter 4: Formulation of the Numerical Solution Approaches

- 101 -

4.3.2 Finite Element Method

A software simulator was written for finite element solution of a 3D Laplace equation using

the method shown in section 4.2.3. This software simulator was used to provide the baseline

against which the hardware implementation would be evaluated. The simulator used IEEE

754 standard double floating point arithmetic and was run on a 2.4 GHz Pentium4 PC with

1GByte RAM. In this section, results are presented showing how the various iteration

methods perform on problem formulations with varying numbers of elements.

Table 5 : The number of iterations using different iteration methods for the FEM.

Size(elems) SW(Jacobi) SW(CG) SW(PCG_global) SW(PCG_EBE)

6 219 4 4 4

48 980 19 18 18

384 4004 56 39 39

750 6264 70 49 49

3,072 16018 102 78 78

6,000 24994 121 95 95
24,576 100000 175 150 150

48,000 NA 211 188 188

Table 5 shows the number of iterations required for the Jacobi method, conjugate gradient

method and preconditioned conjugate gradient methods to achieve convergence. The final

results of both the hardware (HW) version and the software (SW) version were identical, i.e.

error=0. The Jacobi method has a very poor convergence characteristic in comparison with the

preconditioned conjugate gradient method. It can be seen from Table 5 that the

element-by-element (EBE) method (which is the method that has been chosen for hardware

Chapter 4: Formulation of the Numerical Solution Approaches

- 102 -

implementation) entails no penalty compared to the more standard global formulation method.

Table 6 shows the timing cost for different size problems implemented in software using

different iterative methods. The Jacobi method converges slowly, and the method failed to

converge when the matrix size becomes larger. Due to the use of the preconditioning matrix,

preconditioned conjugate gradient method achieves a better performance than the Conjugate

Gradient (CG) method, as the preconditioned Conjugate Gradient method needs fewer

iterations to converge.

Table 6 : Timing (in seconds) Comparison in Different Methods

Size(elems) SW(Jacobi) SW(CG) SW(PCG_global) SW(PCG_EBE)

6 0.002575 0.000109 0.000084 0.000321

48 0.074731 0.001985 0.001871 0.003447

384 2.33013 0.036038 0.023366 0.045372

750 8.99663 0.079769 0.058451 0.111514

3,072 74.1568 0.481076 0.362953 0.826589

6,000 224.388 1.16750 0.864280 1.84944

24,576 4055.25 6.53732 5.64370 12.6824

48,000 NA 15.8564 19.1038 31.7281

Chapter 4: Formulation of the Numerical Solution Approaches

- 103 -

4.4 Summary

In this chapter, the software solvers for the finite difference method and the finite element

method have been presented. Also the performance of the different methods has been

compared. The problem formulations chosen for solution on the parallel computing systems

due to their good balance between computation and communication have been discussed.

Domain decomposition was introduced to maximize the independence of the processing

elements and to minimize the communication overhead.

In the following chapters, the design and evaluation of several reconfigurable computing

approaches based on the algorithms discussed in this chapter will be presented.

- 104 -

Chapter 5

FPGA-BASED HARDWARE IMPLEMENTATIONS

5.1 Introduction

The previous chapter outlined the specification for the system design. This chapter deals with

the implementation of the designs on hardware, and presents the memory hierarchy and data

caching structures needed to satisfy the computational performance requirements.

Software numerical algorithms have been migrated onto FPGA-based co-processors in a

relatively straightforward manner: while leaving almost all software subroutines still running

on the commodity CPU of the host machine, only the most time-consuming kernel portion of

the programs are replaced by subroutines calling for the help of FPGAs.

Reconfigurable computing based on FPGAs has become regarded as acceptable for problems

in computational mechanics that require floating-point arithmetic in order to achieve

numerical stability and acceptable precision. In 1994, reference [90] showed the feasibility of

implementing IEEE Standard 754 single precision floating-point arithmetic units on FPGAs

for the first time. Since then, with the rapid growth of FPGAs in density and speed, as well as

the introduction of on-chip ALU units that are optimized for DSP operations, highly

Chapter 5: Hardware Implementations Based on FPGA

- 105 -

complex systems using floating-point arithmetic can be implemented within modern FPGAs.

However, compared to fixed-point arithmetic, floating-point arithmetic operations require a

lot more logic resource and have a lower speed. The reason why fixed-point arithmetic is

generally regarded as undesirable is because floating-point arithmetic can represent a wider

dynamic range2 and obtain more accurate results for PDE solution. Some recent research

efforts have attempted to offset the undesirable features of fixed point arithmetic in order to

achieve a balance between accuracy and efficiency. Examples include multiple word-length

optimisation [91], which was extended to differentiable nonlinear systems in [92], and the

Dual FiXed-point (DFX) approach [93], which combined conventional fixed-point and

floating-point representations, and was used to simplify and speed up IIR filter

implementation. The performance of the power, area and speed in some hardware designs can

be efficiently increased by the use of fixed point arithmetic. For the numerical methods

considered in this research, both the finite difference method and the finite element method

are widely used to obtain numerical approximations for a wide variety of PDEs. For an

unknown numerical solution, in order to maintain a high accuracy, the use of floating-point

arithmetic is necessary. This chapter will describe approaches that use both fixed-point

arithmetic and floating-point arithmetic within the reconfigurable hardware accelerators, as

different architectures are formulated in order to explore the maximum extent of parallelism

that can be achieved within the FPGAs.

2 Dynamic range is defined as the ratio between the maximum absolute value representable
and the minimum positive (i.e. non-zero) absolute value representable

Chapter 5: Hardware Implementations Based on FPGA

- 106 -

5.2 System Environment

5.2.1 Software Interface

This section will describe the software interface for the RC2000 (ADM-XRC-II) board [94], a

PCI-based reconfigurable coprocessor developed by Alpha-data. The initial pre-processing is

carried out in the software implementation which was explained in chapter 3. The boundary

conditions are also generated for a particular problem. Then, this data is fed into either the

Software Simulator or the Hardware Simulator. Finally, the precision of results from each of

the two simulators and the timing costs for the different solutions are compared. This

procedure, which is used in all the following designs, is illustrated in Figure 23.

Initialization of

System

Software

Simulation

Hardware Configuration

Hardware Simulation

Results

Comparison

Generate Boundary

Condition

Figure 23 : Software-Hardware Design Flow.

As shown in Figure 23, the steps in rounded ovals run in software, i.e. on the PC’s

microprocessor, as formulated in chapter 4. On the other hand, the steps in rectangles run in

hardware, i.e. on the FPGA-based reconfigurable computing board. Before the Hardware

Simulator runs, the appropriate FPGA configuration file (the bit file) is needed to configure

Chapter 5: Hardware Implementations Based on FPGA

- 107 -

the FPGA on the RC2000 boards, the clock rate at which the FPGA should be operated is set,

and the initialisation data and boundary conditions are transferred into the boards’ SRAM

banks.

5.2.2 Hardware Platform

The hardware implementations are loaded into two Celoxica RC2000 PCI bus plug-in cards

equipped with one single Xilinx Virtex 2V6000 FPGA and one single Xilinx Virtex

4VLX160 FPGA [95] respectively. Figure 24 shows the detail of the 2V6000 implementation

platform [96], it is equipped with one FPGA and 24 Mbytes static RAM arranged in 6 banks

that can be read or written simultaneously. The board plugs into a host microprocessor system

and exchanges data with the host memory across the PCI bus.

Figure 24 : Block diagram of the RC2000[97].

 PCI Bus

PCI

Interface

PLX9656

XC2V6000

FF1152

SSRAM Bank
4MBytes

SSRAM Bank
4MBytes

SSRAM Bank
4MBytes

SSRAM Bank
4MBytes

SSRAM Bank
4MBytes

SSRAM Bank
4MBytes

256MB
DDR RAM

PMC
Connector

Front Panel
Connector

Chapter 5: Hardware Implementations Based on FPGA

- 108 -

The card with the Virtex 2V6000 FPGA is plugged into a 2.4 GHz Pentium 4 PC with

1GByte RAM, and the card with the Virtex 4VLX160 FPGA is plugged into a 2.01 GHz

Athlon 64 Processor PC with 1GByte RAM.

The RC2000 is a 64 bit PCI card utilising a PLX-9656 PCI controller. It is capable of carrying

either one or two mezzanine boards; in our case it hosts a single ADM-XRC-II board from

Alpha-Data [94]. The mezzanine board carries the XC2V6000-4, 24Mbytes of SSRAM and

256Mbytes of DDR memory, along with PMC and front panel connectors for interacting with

external hardware. The SSRAM is arranged in six 32-bit wide banks. However the FPGA sits

between it and the host, so a portion of the FPGA is always instantiated to act as a memory

control system, arbitrating between host access and FPGA access to this shared resource.

The control system implemented allows the host both DMA transfer and virtual address

access to the SSRAM and the six banks are independently arbitrated to allow greater design

flexibility.

Chapter 5: Hardware Implementations Based on FPGA

- 109 -

S
R

A
M

 A
R

B
IT

R
A

T
O

R

F
R

O
M

 T
H

E
 H

O
S

T

Figure 25 : Block diagram of RC2000 Interface hardware components [98].

Figure 25 shows a diagram of the hardware interface, which includes 6 main hardware

components [98]:

1. Clock Generator uses digital clock managers to derive the system clock (clk) and

phase aligned frequency multiplied version thereof (clk2X and clk4X) from an

externally applied master clock that is generated on the board. It also generates 2

appropriately de-skewed clock signals for the SRAMs.

2. Connects provides the correct timings for the ZBT SRAM read and write operations.

3. ZBTxrc2 handles data transfer between the host and the FPGA.

4. SRAM_arbitrator controls the arbitration of all six SRAM banks between the host and

the FPGA.

5. RAM_RW generates the ‘ready’ signal indicating the data read from SRAM is valid on

the data port.

6. FPGA_APP is the framework which contains the user’s top level entity.

Chapter 5: Hardware Implementations Based on FPGA

- 110 -

Figure 26 shows the interface of the hardware design in Synplify RTL view.

RAM_RW FPGA_APP SRAM_Arbitrator ZBTxrc2 ConnectsClocks

Figure 26 : RTL view of hardware design

5.2.3 Data Format

5.2.3.1 Customised Fixed-Point Data Format

A binary fixed-point number is usually written as I.F, where I represents the integer part, ‘.’ is

the radix point, and F represents the fractional part. Each integer bit represents a power of two,

and each fractional bit represents an inverse power of two. A fixed-point data type represents

numbers within a finite range; thus positive and negative overflows must be taken care of if

there is any result of an operation that lies outside the appropriate range. In order to make the

design fit onto the available FPGAs, a customised 32-bit data format was chosen.

Chapter 5: Hardware Implementations Based on FPGA

- 111 -

The use of fixed-point arithmetic reduces the complexity of the computational pipelines

within FPGAs, thereby allowing a greater level of parallelism (and thus performance) to be

achieved. The Laplace equation has the property that the steady state solution values are

bounded above and below by the largest and smallest Dirichlet boundary condition

respectively, with the result that the required dynamic range for the numerical values is easy

to predict a priori. This means that fixed-point is relatively safe. Trials were carried out to

determine that the fixed point range selected for use in the implementation is greater than that

required to be equivalent to a single precision floating-point representation, without overflow.

The customised 32-bit fixed-point data format is shown below in Figure 27:

Figure 27 : Customised fixed-point data format.

where

• bi is the i
th binary digit.

• w is the word length in bits.

• bw-1 represents the boundary flag for the FDM.

• bw-2 is the sign bit.

• bw-3 is the most significant bit.

• b0 is the least significant bit.

Chapter 5: Hardware Implementations Based on FPGA

- 112 -

• The binary point is 26 places to the left of the LSB, as a fractional part of 2-26 gives

sufficient precision. The integer part (excluding the sign bit) is 4 bits wide, which

means that a maximum number of ±16 can be represented.

A converter is used to convert the software IEEE 754 format into the customized fixed-point

data format, this is implemented within the software.

5.2.3.2 Floating-Point Representation

The IEEE 754 [99] floating point format, which is the standard usually used on computers for

32-bit single precision variables and 64-bit double precision variables, is discussed here.

Normally scientific work requires floating-point precision. Figure 28 shows the format of an

IEEE 754 floating-point value. Binary floating-point numbers are stored in a sign magnitude

form where the most significant bit is the sign bit (s), exponent is the biased exponent (e), and

fraction is the significant without the most significant bit (f). For single precision binary

floating-point, the number is stored in 32 bits, w=32, we=8 (exponent), and wf =24 (mantissa).

Similarly, double precision is stored in 64 bits, w=64, we=11 (exponent), and wf =52

(mantissa).

Figure 28 : Bit Fields within the Floating-Point Representation

Chapter 5: Hardware Implementations Based on FPGA

- 113 -

There have been several efforts to develop parameterizable floating-point cores for FPGAs

[100-102]. The design software Xilinx CORE Generator was used in our designs. This

contains a parameterized library of pre-designed useful design components called cores. For

the floating-point arithmetic operators, the core can be customized to allow for any required

value of w, wf and we. There are also trade offs that can be made in terms of the latency and

throughput of the operators [95].

One point that is worth noting is that a floating-point adder is a much more complicated

circuit than a fixed-point adder. This is because the input operands for a floating-point adder

must be shifted until they have the same exponent prior to addition, and the resulting output

must then be shifted to be correctly normalized. This consumes a large amount of the FPGA

logic resource, and can also reduce the maximum speed that the circuit can achieve. By

contrast, fixed-point arithmetic requires no special circuitry to provide input alignment or

output normalization, but fixed-point arithmetic is useful only for a relatively restricted class

of problems where the dynamic range of the data is small and the problem has benign error

propagation properties. Thus, floating-point arithmetic is considerably more widely used in

scientific calculations.

Chapter 5: Hardware Implementations Based on FPGA

- 114 -

5.3 Hardware Implementations

This section describes the hardware designs implemented in the FPGA-based reconfigurable

computing platform within a general purpose PC. The first group of implementations applied

several different iteration methods (detailed in section 4.1) using 32-bit customised

fixed-point arithmetic. Use of customised fixed-point arithmetic allowed a very high degree of

parallelism to be achieved. This is followed by the implementation of a 32-bit floating-point

FDM solution. Due to limitations of area and speed, the memory hierarchy is rearranged to

achieve maximum parallelism on the board with small communication overheads. Then the

1D and 2D rectangular finite element solutions, of section 4.2.1 and section 4.2.2, are

implemented using Xilinx System Generator in Simulink, which only supports fixed-point

arithmetic at this time. The final implementations show an element-by-element parallelisation

of the 3D tetrahedral element FEM solutions, explained in section 4.2.3, using floating point

arithmetic.

The hardware designs were implemented using VHDL (Very high speed integrated circuit

Hardware Description Language) and 5 different IP (intellectual property) cores, which are

block RAMs, fixed-point adders, fixed-point multipliers, floating-point adders and

floating-point multipliers. Upon the completion of the design entry stage, the Synplify Pro

8.5.1 synthesis tool is employed to generate the logic as an EDIF netlist. Then this black-box

EDIF netlist is used as an input into Xilinx ISE 8.1, a tool that maps the logic requirement to

the physical resources of the FPGA. The Xilinx FPGA design flow is shown in Figure 29.

Chapter 5: Hardware Implementations Based on FPGA

- 115 -

Figure 29 : Xilinx FPGA design flow [44].

5.3.1 FPGA implementation of the Finite Difference Method

Interface unit Control unit

Block Rams
(Internal FPGA

memory)

Write back unit
(check convergence)

Address unit

Processing

Elements

32×2

32×N

32×N

32×N

32×N

addra

addrb

Figure 30 : FPGA implementation block diagram of FDM

Chapter 5: Hardware Implementations Based on FPGA

- 116 -

Figure 30 shows a conceptual overview of the hardware implementation. There are five main

units:

1. An interface unit to read and write data to and from the external memory (i.e. 6

SRAM banks on our computing boards).

2. A control unit to synchronize all the units and check the boundary conditions.

3. An address unit, which generates all the address signals (read and write).

4. A write back unit to write the results of the arithmetic units back to the Block RAMs

and check for convergence of the processing.

5. Processing elements, which calculate out the results of the FDM.

The block RAM of the FPGA is used to hold the data of 2D slices, which are required for the

finite difference method. Several memory architectures were implemented and are discussed

in the following sections. One of the most challenging parts of the hardware design is to

arrange the scheduling of internal memory accesses and the exchange of data between internal

memory and external memory.

Using the formulation developed in section 4.1.2, a 3 dimensional problem has been

decomposed into a series of nx 2D slices (corresponding to different values of m in Eq.

(32)), which are decoupled and can be solved separately without any exchange data or

synchronization required between the slices. By assuming x y∆ = ∆ , the formula of the finite

difference method reduces to:

1, 1, , 1 , 1
,

2 24

j k j k j k j k
j k m m m m
m

u u u u
u

yλ

− + − ++ + +
=

+ ∆
 Eq. (118)

Chapter 5: Hardware Implementations Based on FPGA

- 117 -

In the following subsections, Jacobi, Gauss-Seidel, successive over-relaxation and Red-black

successive over-relaxation iteration methods are respectively implemented.

5.3.1.1 Fixed-Point Hardware Implementation

The fixed-point FDM hardware design was implemented on a Celoxica RC2000 board

containing a single Xilinx Virtex 2V6000 FPGA with 24 Mbyte SRAM. The customised

32-bit fixed-point arithmetic was used here in order to reduce the complexity of the

computational pipelines within the FPGA, so that a greater level of parallelism and

performance could be achieved.

i=0

Memories

i=63

j=0 j=63

Processing
elements

…

Figure 31 : Architecture of the Jacobi solver within the FPGA

Figure 31 shows the 32-bit customised fixed-point hardware design. The size of one 2D slice

is nx=64 and ny=64. In order to have maximum parallelism achieved in hardware, there are

64 columns of memory, which are used to hold the columns of values and boundary flags.

These are stored as 32-bit fixed-point. The memory columns are implemented in dual port

block RAM, with the read addresses and write addresses capable of being incremented in each

Chapter 5: Hardware Implementations Based on FPGA

- 118 -

clock cycle. Processing elements are situated between the columns of memory with one

element responsible for the calculations of each column. With reference to Eq. (47), the

processing element used to perform the Jacobi update is shown in Figure 32.

Figure 32 : Processing element for row update by using Jacobi iteration

It is partially from this parallelism of processing elements that hardware speed-ups are

achieved. An iteration of the hardware matrix involves moving only down the number of

elements in a column of N numbers whereas the software system iterates both across each row

and down each column of N2 numbers.

Gauss-Seidel iteration, which is able to converge faster due to the immediate use of the newly

computed values, has also been implemented. The essential idea behind the architecture is

similar to that of Figure 31 and Figure 32. Even faster convergence is is achieved by using

successive over-relaxation iteration. The processing element is modified as in Figure 33.

However, the data path becomes more complicated because of the data dependency between

rows of the memory, which means that new values cannot be fed into the pipelined data path

on every clock cycle. Thus, full pipelining cannot be achieved by using either the

Chapter 5: Hardware Implementations Based on FPGA

- 119 -

Gauss-Seidel iteration scheme or successive over-relaxation (SOR) iteration scheme, and a

latency must be incurred between the processing of each row.

(1)ω−

Figure 33 : Processing element for row update by using successive over-relaxation

iteration

Table 7 shows a typical set of results that illustrates the speed of each method. The results

were taken for a 32 × 32 × 32 3D Laplace equation. The table shows the number of clock

cycles required to compute one 2D slice using an over-relaxation parameter of 1.75ω = .

Table 7 : Performance of the different approaches

 Jacobi Gauss-Seidel SOR

Throughput
(rows per clock cycle)

1 1/7 1/7

Iterations required for
convergence

1338 919 197

Matrix passes required
for convergence

1338 919 197

Clock cycles required
for convergence

42821 205856 44128

Operations per second 9.6 billion 1.4 billion 1.4 billion
Memory bandwidth 7.7 GByte/s 1.1 GByte/s 1.1 GByte/s

Chapter 5: Hardware Implementations Based on FPGA

- 120 -

The point Jacobi iteration method is very suitable for hardware implementation, giving a very

high number of operations per second and sustained memory bandwidth utilization.

Compared to the Jacobi method, the Gauss-Seidel and successive over-relaxation (SOR)

methods have much superior numerical properties and converge in a lower number of

iterations, but the pattern of data dependencies within the hardware means that the

computation rate and memory bandwidth utilization drop significantly. As shown in Table 7,

205,856 clock cycles are required for Gauss-Seidel convergence, and 44,128 clock cycles are

required for successive over-relaxation (SOR), whereas Jacobi just uses 42,821 clock cycles

for convergence. Although the successive over-relaxation method converges almost 7 times

faster than Jacobi, the performance of the hardware implementation of successive

over-relaxation is slower due to the data dependence between rows of the memory. This is

further exacerbated by the fact that the additional hardware complexity required for the

Gauss-Seidel and successive over-relaxation (SOR) methods means that a smaller number of

computational units can fit into the FPGA.

Next, the red-black successive over-relaxation scheme is considered in sub-section 5.3.1.3.

The 2D finite difference grid is coloured with a red and black checkerboard, so the iteration

scheme proceeds by alternating between update of the red squares and black squares. Use of

the red-black successive over-relaxation method removes the requirement for each node to

have immediate access to an updated value of two of its neighbours. In this case, the red-black

successive over-relaxation gives an excellent compromise between the properties of the other

iteration methods, which have either poor convergence characteristic or lower throughput

(due to the pipeline data dependencies).

Chapter 5: Hardware Implementations Based on FPGA

- 121 -

5.3.1.2 Floating-Point Hardware Implementation using Jacobi method

In 5.3.1.1, a solution using fixed-point arithmetic was implemented in order to conserve

hardware resources. This would enable one entire 2-D section of the problem to fit in a single

FPGA chip. Due to the area cost of floating point arithmetic, the FPGA chip cannot

accommodate the whole of a single 2-D slice and its associated computational pipelines

simultaneously. It is therefore necessary to use the FPGA to implement a smaller number of

computational pipelines, and to read and write the slice data from and to the off-chip RAM.

Communication is completely overlapped with computation, so the pipelines can always be

doing useful work; this is not easily achievable with standard multi-purpose processors.

In this subsection, the Jacobi iteration scheme was used for the solution of the finite

difference method using 32-bit floating-point arithmetic.

Figure 34 : Architecture of data path of Jacobi scheme

Figure 34 shows one of our hardware implementations with 8 columns of on-chip memory

used within the FPGA. These are used as a cache that can hold up to eight columns of values

for u, which are stored as 32-bit floating point. Initially these columns hold columns 0 to 7 of

Chapter 5: Hardware Implementations Based on FPGA

- 122 -

the domain. When column 0 has been processed, column 8 is loaded from external RAM into

the column of block RAM previously occupied by column 0. This process then repeats with

column 9 overwriting column 1 and so on. As a result each column will undergo 7 rounds of

calculations between download and upload. This process continues until all columns have

been completed.

0 2 71

1 3 82

2

4

8

2

5

0

2

5

5

2

4

9

m e m o ry

P ro c e s s in g E le m e n t

Figure 35 : Hardware architecture of data flow for the floating-point Jacobi solver

Figure 35 shows how the computation progresses. During each epoch, the contents of one

Block RAM are streamed through the computation units.

Chapter 5: Hardware Implementations Based on FPGA

- 123 -

Chapter 5: Hardware Implementations Based on FPGA

- 124 -

 And so on …

Figure 36 : Scheduling of the computation in the Jacobi solver

Chapter 5: Hardware Implementations Based on FPGA

- 125 -

The memory columns are implemented in dual port block RAM, with the read address and

write addresses being incremented in each clock cycle. The main design challenge is to

arrange the scheduling of memory accesses for each column, and for the exchange of data

between on-chip memory and external memory. It can be seen from Figure 36 that one of the

columns of memory is being loaded with new data from external memory (SRAM bank0),

one is uploading its results to external memory (SRAM bank1), and the remaining six

columns are involved in computation. After all the columns in SRAM bank0 have been read

and the new data have been written into SRAM bank1, the process is started again with data

now downloading from SRAM bank1 and uploading to SRAM bank0. This process repeats

until the convergence is achieved. With appropriate design, 8 copies of the data path shown in

Figure 37 can operate in parallel, producing eight results per clock cycle.

Figure 37 : Processing element for row update in Floating-point Jacobi solver

The datapath is shown in Figure 37. The floating-point adder and multiplier intellectual

property (IP) cores are generated by the design software for Xilinx FPGAs in order to trade

off latency with maximum clock frequency. The floating-point arithmetic pipeline operates at

a 80 MHz clock rate (40 MHz PCI). It requires 28 clock cycles of total latency from the

reading of one element’s displacements to the write back of the new displacements. As a

result, 5 × 8 × 80M = 3.2 billion operations per second can be carried out per second using a

memory bandwidth of 8 ×4 byte×80MHz = 2.56 GByte/s.

Chapter 5: Hardware Implementations Based on FPGA

- 126 -

5.3.1.3 Floating-Point Hardware Implementation using Red-Black successive

over-relaxation

Based on the discussion in subsection 4.4.1.1, the Jacobi method, although simple and very

suitable for hardware implementation, is well known to have poor convergence properties. On

the other hand, the Gauss-Seidel and successive over-relaxation (SOR) methods converge

faster than the Jacobi method, but these methods are more problematic to implement due to

the data dependences introduced, which means operations cannot be fully pipelined. The

computation must therefore stall until the required results have been computed.

This problem can be removed by the use of the red-black successive over-relaxation iteration

scheme. The two dimensional finite difference grids are coloured with a red and black

checkerboard, and then 16 columns of on-chip Block RAMs are used as a cache to hold up to

8 columns of values: the red values are stored into the first 8 block RAMs, whereas and the

black values are stored into the remaining 8 block RAMs. Figure 38 shows one example of

our on-chip memory architecture. Columns B_0 to B_7 hold the black grid values of columns

0 to 7 of the domain, and columns R_0 to R_7 hold the red grid values of columns 0 to 7 of

the domain. The processing proceeds in a manner similar to the 8 columns Jacobi scheme,

where the following columns of the domain are continuously fed into the internal memory

columns following the red-black order. When the red columns compute their updated values,

using the previously computed values of black columns, the black columns only exchange the

data to and from external memory. Conversely, when the black columns are undergoing

update using the newly calculated values of the red columns, the red columns are exchanging

the data with external memory. As a result of using separated on-chip memory columns to

Chapter 5: Hardware Implementations Based on FPGA

- 127 -

store the red and black grid columns, each column will undergo 14 iterations between

download and upload. This process continues until all columns have been completed.

Figure 38 : Architecture of data path of red-black successive over-relaxation scheme

Figure 39 shows 4 processing elements representing the data path between columns. In this

example, 16 copies of the data path can operate in parallel, producing one result each per

clock cycle. The problem of data dependence is removed by the use of the modified hardware

design.

Chapter 5: Hardware Implementations Based on FPGA

- 128 -

(1)ω−

,_ new

i ju red

,_ old

i ju red

, 1_ old

i ju black +

, 1_ old

i ju black −

,_ old

i ju black

1,_ old

i ju black +

(1)ω−

,_ new

i ju red

,_ old

i ju red

, 1_ old

i ju black +

, 1_ old

i ju black −

,_ old

i ju black

1,_ old

i ju black −

(1)ω−

,_ new

i ju black

,_ old

i ju black

, 1_ old

i ju red +

, 1_ old

i ju red −

,_ o ld

i ju red

1,_ old

i ju red −

(1)ω−

,_ new

i ju black

,_ old

i ju black

, 1_ old

i ju red +

, 1_ old

i ju red −

,_ old

i ju red

1,_ old

i ju red +

Figure 39 : Processing elements: (a) for the old red columns, (b) for the even red

columns, (c) for the old black columns, (d) for the even black columns.

Chapter 5: Hardware Implementations Based on FPGA

- 129 -

The floating-point arithmetic pipeline operates at a 90 MHz clock rate (45 MHz PCI). As a

result, 6 × 16 × 90M = 8.64 billion operations per second can be carried out per second using

a memory bandwidth of 16 ×4 byte×90MHz = 5.76 GByte/s.

5.3.2 Finite Element Method

In this section, one dimensional line finite elements, two dimensional rectangular finite

elements and three dimensional tetrahedral finite elements are implemented in a way that

provides efficient solutions by tackling the drawbacks of the finite element method: how to

optimise the computationally expensive matrix decomposition for direct solution methods and

how to optimise the matrix-vector multiplier for iterative solvers.

The hardware simulation uses MathWorks Simulink with Xilinx System Generator, as this

tool is a high-level tool and provides interactive graphical model design and simulation for

designing high-performance systems using FPGAs. However, the Xilinx Blockset in System

Generator only provides a fully parameterized implementation of fixed-point arithmetic, with

no floating-point arithmetic at all. However, it is widely accepted that floating-point is

generally required for finite element analysis. Thus, simpler one-dimensional finite element

method is illustrated using System Generator, and the two-dimensional rectangular finite

element method and the full three-dimensional tetrahedral finite element method

implementations use floating-point and were coded in VHDL.

5.3.2.1 One-Dimensional FEM

An explicit 1D linear solid element mesh, with n=8, is shown in Figure 40.

Chapter 5: Hardware Implementations Based on FPGA

- 130 -

Node 0 1 2 3 4 5

U0 U1 U2 U3 U4 U5

6 7

U6 U7

Figure 40 : 1D finite element mesh

As shown in Figure 41, 8 columns of block RAM memory are used to hold the columns of

values for t t

iu
+∆ , which are stored as 32-bit fixed point. The memory columns are

implemented in dual port block RAM, with the read addresses and write addresses being

incremented in each clock cycle.

71Block Ram 0

Processing

Unit 1

Processing

Unit 0

Processing

Unit 7

Boundary

condition

Boundary

condition

Figure 41 : Architecture of 1D FEM solver

The processing unit used to solve Eq. (83) is shown below in Figure 42.

Chapter 5: Hardware Implementations Based on FPGA

- 131 -

Figure 42 : Basic processing unit of 1D FEM solver in Matlab Simulink

5.3.2.2 Two-Dimensional FEM

0100 02 03 04 05 06

10 11 12 13 14 15 16

20 21 22 23 24 25 26

(-a, b) (a, b)

(-a, -b) (a, -b)

Single

Element

Figure 43 : Two-dimensional rectangular plane strain elements

Figure 43 shows a regular mesh using two-dimensional rectangular plane strain elements.

Here there are 21 elements, which produce 64 equations, giving a 64×64 global stiffness

matrix and mass matrix respectively. The procedure for solving the 2D FEM of Eq. (98) is

very similar to the procedure for solving the 1D FEM, but the hardware design for the

solution of the 2D FEM becomes more complex due to the huge memory required.

Fortunately, the global matrix can be decomposed into a series of single element matrices and

they can be processed independently with the result assembling together at the end, as shown

in Figure 44 below.

Chapter 5: Hardware Implementations Based on FPGA

- 132 -

K
U

C

k
u
c
_
e

k
u
_
e

K
U

C

U
_

n
e

x
t

U
_

n
e

x
t

U
_

n
o

w

U
_

n
o

w

U
_

b
e

fo
re

u
_
e

U
_

n
o

w

U
_

b
e

fo
re

C
o

n
ta

n
ts

Figure 44 : Data Flow of 2D FEM Design

U_now is scattered by using a Look-up Table, which holds one-element displacements’

address with respect to the read address of BlockRam U_now. Then each element is sent to

the matrix multiplication block (indicated in Figure 44 with a star in its left-top corner; this

block is expanded out in Figure 45). After matrix multiplication, u_e is gathered together as

U_next, which contains the displacements for the next time step.

Chapter 5: Hardware Implementations Based on FPGA

- 133 -

In Figure 45, M indicates a floating point multiplier, A indicates a floating point adder, and R

indicates a register. Each element stiffness matrix is stored in 4 dual port block RAMs, thus

the read-address is capable of being incremented in each clock cycle. Two clock cycles are

needed to finish two rows accumulation, which is equivalent to one row being calculated in

every clock cycle. The floating-point arithmetic pipeline operates at a 130 MHz clock rate (65

MHz PCI). It requires 40 clock cycles of total latency from the reading of one element’s

displacements to the write back of the new displacements. As a result, 8 × 18 × 130M = 18.72

billion operations per second can be carried out per second using a memory bandwidth of 8

×4 byte×130MHz = 4.16 GByte/s.

T
e

rm
1

T
e

rm
2

T
e

rm
3

T
e

rm
4

4 Dual Port BlockRams

to store stiffness matrix

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

M

M

M

M

M

M

M

A

A

A

A
M

A

A

R
A

R
A

T1,2,3,4

u_e

u
_

e

Stiffness Matrix

Ku_e0

Ku_e1

Figure 45 : Stiffness Matrix Multiplication

Chapter 5: Hardware Implementations Based on FPGA

- 134 -

5.3.2.3 Three-Dimensional FEM

In section 4.2.3, based on the 3-dimensional tetrahedral finite element method, the global

stiffness matrix A is built up by the assembling of each element’s stiffness matrix Ke. Thus,

the dataflow shown in Figure 46 on the left-hand side is used for the normal software solution,

which assembles the global stiffness matrix A first, before performing the matrix

multiplication. A very different approach is used in hardware as shown on the right-hand side

diagram. In order to parallelize the matrix multiplication, the vector pk is scattered element by

element, and multiplied by each element’s Ke, and then gather the vectors Kpe_i together in

order to get the same result as kk Ap=ω .

kk Ap=ω

kp

kp

kk Ap=ω

Figure 46 : Matrix Multiplication Parallelization using the element by element method.

Ke is initialized in 12 block RAMs, which hold the row values of each stiffness matrix and the

length is 72 in total. By scattering kp to pe and downloading pe into SRAM in a

Chapter 5: Hardware Implementations Based on FPGA

- 135 -

sequential element-by-element fashion, the matrix multiplication can be processed in parallel.

Compared to the software system, whose matrix-vector multiplication requires the number of

((2 1)N N −) operations, the iteration of the hardware matrix-vector multiplication only

involves the number of (6N) operations, where N stands for the number of unknowns.

Matrix-vector multiplication is implemented in hardware, shown as below in Figure 47.

0 4321 5 9876
1

1

1

0

CE_0 CE_10 CE_11CE_2CE_1

peK_0 K_5

0
1
2

8
7
6
5
4
3

9

11
10

0
1
2

8
7
6
5
4
3

9

11
10

Kpe_0 Kpe_1 Kpe_2 Kpe_10 Kpe_11

p
ip

e
lin

e
 d

a
ta

32

32 32 32 32 32

32 32 32 32 32

Figure 47 : Architecture of matrix multiplication within FPGA

The calculation element (CE) is shown in Figure 48, where R indicates a register that

introduces a one clock cycle delay. The calculation latency can be fully overlapped by the

deeply pipelined design, thus a new data item is read and a new result is written back for each

clock cycle (multiplication results can be generated every clock cycle).

Chapter 5: Hardware Implementations Based on FPGA

- 136 -

+
R

R R

+ R R

+
R R +

R
K_e

pe

ce1 ce2
ce3

ce4

Kpe

where ce1 to ce4 are Clock Enable signals: when ‘ce’ is deasserted, the clock is disabled, and the state

of the core and its outputs are maintained.

Figure 48 : Calculation Element (CE) for 3D FEM.

Matrix-vector

Multiplier_0

Matrix-vector

Multiplier_1

0 4321 5 9876
1

1

1

0

K_0 K_5

0
1
2

8
7
6
5
4
3

9

11
10

0
1
2

8
7
6
5
4
3

9

11
10

p
ip

e
lin

e
 d

a
ta

C
G

_
v

e
c

to
r_

p
e

_
1

 (S
R

A
M

 B
a

n
k

1
)

C
G

_
v

e
c

to
r_

p
e

_
0

 (S
R

A
M

 B
a

n
k

0
)

p
ip

e
lin

e
 d

a
ta

3232

Kpe_0 Kpe_1

Kpe_1 (SRAM Bank 3)Kpe_0 (SRAM Bank 2)

Figure 49 : Architecture of parallel matrix multiplications within FPGA

One implementation with two matrix-vector multipliers is shown in Figure 49. This was

implemented in the Xilinx 4VLX160 FPGA on a RC2000 PCI bus plug-in card. The element

Chapter 5: Hardware Implementations Based on FPGA

- 137 -

stiffness matrices Ke_i are first downloaded into 12 dual-port block RAMs which hold the row

values of each stiffness matrix and the length is 72 32-bit words each. The sub-domain

conjugate vector pe_0 and pe_1 are stored in SRAM Bank0 and SRAM Bank1 respectively,

and then fed into Matrix-vector Multiplier block0 and block1 in each clock cycle. Finally, the

results are written into SRAM Bank2 and Bank3 respectively as Kpe_0 and Kpe_1 in each

clock cycle. The implementation of two matrix-vector multipliers allows the maximum

utilization of hardware resources and exploits the scalability of parallelizing the

element-by-element FEM.

Chapter 5: Hardware Implementations Based on FPGA

- 138 -

5.4 Summary

A brief introduction to the reconfigurable computing platform was given in this chapter. The

hardware implementations of the finite difference method and the finite element method were

described.

The first reconfigurable computing approach to the finite difference method made use of

32-bit customised fixed-point arithmetic, so this enabled one entire 2D subsection to fit in a

single FPGA. Also Jacobi, Gauss-Seidel and Successive Over-Relaxation iteration methods

were evaluated. Based on the same concepts, a floating-point Jacobi solver for 3D finite

difference analysis was presented. Floating-point arithmetic was introduced as it is required

for a wide range of numerical analysis problems. Nevertheless, as FPGAs, are increasing

rapidly in logic capacity and speed, the loss of speed-up associated with floating-point

arithmetic is likely to be offset in future. A more complex implementation of the finite

difference method, which made use of red-black successive over-relaxation scheme, was also

described.

The hardware implementations of finite element analysis were based on the

element-by-element scheme, which removes the limitation of memory requirements and

minimizes the communication overheads compared to traditional solution approaches.

The performance and results of the hardware implementations will be discussed in chapter 6,

as well as the evaluation of the hardware parallelism achieved.

- 139 -

Chapter 6

HARDWARE AND SOFTWARE COMPARISON

6.1 Introduction

This chapter evaluates the performance of the hardware implementations for the Finite

Difference Method and the Finite Element Method in terms of numerical precision, speed-up,

and cost compared with the software implementations.

6.2 Numerical Precision

Scientific computing, such as computational mechanics, involves a set of computing tasks

traditionally solved using uniprocessors or parallel computers. Such large scale simulations

are normally characterized by large systems of partial differential equations, which often

involve large regular or adaptive grid structures. The conventional methods require operations

that typically employ double-precision floating-point computations. On the other hand,

FPGAs were originally used only for small-scale glue logic applications. In recent years, the

performance of floating point units in FPGAs has increased significantly, as built-in hardware

multipliers have been incorporated, so that floating point operations can be performed at rates

Chapter 6: Hardware and Software Comparison

- 140 -

up to 230MHz. Therefore the current research was extended to use not only fixed-point

arithmetic but also floating-point arithmetic within the reconfigurable hardware accelerators;

however, loss of accuracy will still occur due to the limits of the number of bits used to

represent the numbers. In considering the accuracy of the solutions produced, the main

concepts used in numerical analysis [103] are:

Precision: Precision is the maximum number of non-zero bits representable.

Resolution: Resolution is the smallest non-zero magnitude representable.

Absolute Error ∆: the absolute error is the distance between the number x and the estimate x’.

'x x∆ = − .

Relative Error : the relative error measures the error relative to the size of the number itself.

x
δ

∆
= .

Because the size (precision) of the number is determinate, in the following sections, the

difference of numerical precision between the software and hardware implementations will be

measured and analysed based on absolute error.

Chapter 6: Hardware and Software Comparison

- 141 -

6.3 Speed-up

Speed-up is a very common criterion to evaluate the performance of a parallel system. As

shown in Eq. (119), speed-up measures how much faster a computation finishes on a parallel

computing system than on a uni-processor machine.

()

_ ()
()p

T n
Speed up n

T n

∗

= Eq. (119)

 where n represents problem size.

 p is the number of processors.

 ()T n∗
 is the optimal serial time to solve the computation.

 ()pT n is the runtime of the parallel algorithm.

_ ()Speed up n describes the speed advantage of the parallel algorithm compared to

the best possible serial algorithm.

In the following sections, the speed-up is evaluated using the best software algorithm

presented in chapter 4 and the hardware implementations presented in chapter 5.

Chapter 6: Hardware and Software Comparison

- 142 -

6.4 Resource Utilization

Due to the limitations of hardware resources, resource utilization for the various

implementations is considered. The Xilinx Virtex 2V6000 and Virtex 4VLX160 used in this

research would have been typical of the state of the art several years ago, but newer, bigger

and faster FPGA families are launched almost every year. Thus, a discussion is presented on

how these designs would scale to larger and faster FPGAs, and also how the designs would

scale to the use of 64 bit floating-point arithmetic. This is based on an extrapolation of the

resource analysis of the hardware implementations presented in this thesis. FPGA resource

utilization is the measure of spatial allocation of the functional units, such as on-chip memory,

DSPs, and so on.

Table 8 compares the logic, memory and arithmetic capacity of the FPGAs used in this study.

Chapter 6: Hardware and Software Comparison

- 143 -

Table 8 : The logic, arithmetic and memory capacity of the two FPGAs used in this research [95].

Block RAM Blocks [1]
Family FPGA CLK(MHz)

18 Kb Max(Kb)

Block
multipliers/DSP

slices [2]
Logic slices [3] DCMs [4]

Virtex II 2V6000 400 144 2,592 144 33,792 12

Virtex 4 4VLX160 500 288 5,184 96 152,064 12

[1] Block SelectRAM memory modules provide 18 Kb storage elements of dual-port RAM.

[2] Each Virtex-4 DSP slice contains one 18×18 multiplier, an adder and an accumulator, whereas the Virtex II uses a dedicated 18×18

multiplier block.

[3] A logic slice is equivalent to about 200 2-input logic gates. Each slice contains two LUTs and two flip-flops.

[4] DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital solutions for clock distribution delay compensation, clock

multiplication and division, coarse- and fine-grained clock phase shifting.

Chapter 6: Hardware and Software Comparison

- 144 -

6.5 Finite Difference Method

Due to limitations of PC memory, only domains with 32×32×32 to 256×256×256 were

generated, simulated and analysed. The performance of the software version was measured

and compared with the results of the hardware version. The double/single precision

floating-point software version was run on the same PC (2.4 GHz Pentium 4 PC with 1GByte

RAM), and the code compiled in both debug mode and release mode. Debug mode is

essential during development, but the downside is that it is significantly slower than its

release-mode counterpart.

6.5.1 Numerical Precision Analysis

In this section, numerical precision is compared between hardware implementations and

software implementations. Without using any approximations, exact analytical solutions to

PDEs play a significant role in the proper understanding of qualitative features of many

phenomena in various areas of natural science. Exact solutions can be used as test problems to

verify the consistency and estimate errors of various numerical, asymptotic, and approximate

analytical methods, but not every exact analytical solution for PDEs can be found easily. So

far it has been supposed that the 64-bit floating-point software implementations using exact

solutions can be considered as a benchmark versus the hardware results. However, in order to

establish whether the results are affected by the precision applied, the 32-bit floating-point

software was also simulated to compare against the double precision results. The absolute

errors for each simulation are given in Table 9.

Chapter 6: Hardware and Software Comparison

- 145 -

Table 9 : Absolute error in the hardware and software 3D FDM implementations compared to

the double precision exact analytic solution.

N
SW_exact

single_floating_
point

SW_FDM
double_floating

_point

HW
customised
fixed_point

HW
single_floating_

point

32 3.234259e-007 0.001459 0.001462 0.001459

64 3.234259e-007 0.000369 0.000474 0.000358

128 4.846198e-007 0.000092 NA* 0.000181

256 5.123316e-007 0.000023 NA* 0.000168

* For hardware implementations using customised fixed point arithmetic, only 32 and 64 column design can

be fitted on the Virtex 2V6000 FPGA.

As shown in Table 9, the software exact solution using single precision floating-point

arithmetic was found to be almost identical to the software simulation using double precision

floating-point arithmetic. The absolute errors for the FDM software simulation using double

floating-point precision become smaller and smaller as the number of grid points is increased,

and they are nearly identical to the errors from the hardware simulation. Therefore, the lower

precision arithmetic used in the hardware implementations can be assumed to have safely

satisfied the numerical requirements.

Chapter 6: Hardware and Software Comparison

- 146 -

6.5.2 Speed-up

6.5.2.1 Hardware Fixed-point arithmetic vs Software (debug/release mode)

A 3-D FDM simulation using Fourier decomposition was carried out using the fixed-point

hardware implementation, as described in section 4.3.1.1. The performance of the hardware

version was compared with the software version in debug and release mode respectively.

Table 10 shows the simulation time (in seconds) for different cube sizes (N=32, 64) each of

the hardware fixed-point simulations and the software simulations compiled in debug mode.

In order to better assess the software performance, the software simulations were re-run in

release mode, and the results are shown in Table 11. For both of the two implementations,

cube 32×32×32 and cube 64×64×64, T(SW) and T(SW_GS) indicate the simulation time of

the software implementations using exact solution and Gauss-Seidel solution with Fourier

Decomposition respectively. The hardware version uses Jacobi solution with an entire N×N

domain fitted onto a single FPGA, giving an operation throughput up to 19.2 billion per

second working at a clock speed of 60MHz.

Table 10 : Simulation time (in seconds) for the software (SW) and the hardware (HW)

fixed-point implementations for FDM (Debug mode).

 T(HW) T(SW_GS) T(SW)
Speed-up
(SW_GS)

Speed-up
(SW)

32 0.001787 0.177349 0.015442 99.2 8.6

64 0.004700 2.065627 0.117739 439.5 25.1

Chapter 6: Hardware and Software Comparison

- 147 -

Table 11 : Simulation time (in seconds) for the software (SW) and the hardware (HW)

fixed-point implementations for FDM (Release mode).

 T(HW) T(SW_GS) T(SW) Speed-up
(SW_GS)

Speed-up
(SW)

32 0.001787 0.037969 0.007454 21.2 4.2

64 0.004700 0.495538 0.056225 105.4 12.0

The results suggest that the Jacobi hardware fixed-point solution on the Virtex 2V6000 FPGA

can outperform a 2.4 GHz Pentium4 PC with 1GByte RAM by a factor of approximate 100,

using a full strength optimizing compiler.

6.5.2.2 32 bit Floating-point Jacobi Hardware vs Software (debug/release mode)

In this section, the performance of the single floating-point precision hardware

implementations using the Jacobi and Red-black successive over-relaxation solutions is

measured and compared with the software versions.

As described in section 4.3.1.2, the 32 bit floating-point hardware implementations of the

FDM using the Jacobi solution were simulated and compared with the performance of the

software version using the Gauss-Seidel solution. Table 12 and Table 13 show a comparison

between the speed-up achieved by the hardware simulations as compared to the software

running on a 2.4 GHz Pentium 4 PC. There are four architectures of hardware

implementations, with 4/8/16/24 columns of on-chip memory used within the FPGA. The

FDM running in hardware is found to be faster than in software. Speed-ups of a factor of

approximately 32 can readily be obtained when 24 are columns used, and a minimum

speed-up of 4.6 times can be achieved using the 4 columns design. Given that the FPGA runs

Chapter 6: Hardware and Software Comparison

- 148 -

at a clock speed far lower than the Pentium 4 PC microprocessor, it can be seen that the

hardware implementations make very good use of the intrinsic parallelism of the algorithms.

Chapter 6: Hardware and Software Comparison

- 149 -

Table 12 : Simulation time (in seconds) for the software and the 32bit floating-point hardware implementations
for FDM using Jacobi iteration (Debug mode).

T(HW_Jacobi) Speed-up
N

4 8 16 24

T(SW_GS)

4 8 16 24

32 0.014021 0.012975 0.012451 0.011963 0.177349 12.6 13.7 14.2 14.8

64 0.119067 0.106382 0.100040 0.096926 2.065627 17.3 19.4 20.6 21.3

128 0.883373 0.727367 0.649363 0.600363 24.11915 27.3 33.2 37.1 40.2

256 9.348993 7.283259 6.100391 5.858901 292.6948 31.3 40.2 48.0 50.0

Table 13 : Simulation time (in seconds) for the software and the 32bit floating-point hardware implementations
for FDM using Jacobi iteration (Release mode).

T(HW_Jacobi) Speed-up
N

4 8 16 24

T(SW_GS)

4 8 16 24

32 0.008175 0.007128 0.006900 0.006431 0.037969 4.6 5.3 5.5 5.9

64 0.061290 0.048596 0.042253 0.040139 0.495538 8.1 10.2 11.7 12.3

128 0.508869 0.352863 0.278529 0.248858 6.258212 12.3 17.7 22.5 25.1

256 5.599639 3.675338 2.728999 2.392471 77.20391 13.8 21.0 28.3 32.3

Chapter 6: Hardware and Software Comparison

- 150 -

Figure 50 shows graphically the CPU simulation times required for the various

implementations. The simulation times are plotted against the number of grid points in the

cube on a log-log scale for problems ranging in size from 323 grid points to 2563. The

computing time for the software implementation grows linearly with the cube size, and the

hardware implementations increase almost linearly. Thus, the speed-up achieved by the

hardware does not saturate as the cube size become large.

0.0010.010.1110
100

10000 100000 1000000 10000000 100000000
Size of Cube

CPU time (s) HW_4_colsHW_8_colsHW_16_colsHW_24_colsSW_GS

Figure 50 : 32 bit Floating Point Jacobi Implementation
(Software compiled in release mode).

Chapter 6: Hardware and Software Comparison

- 151 -

0510
152025
3035

0 5 10 15 20 25 30Number of Cols in HW
Speed-up 3264128256

Figure 51a : 32bit Floating Point Jacobi Hardware Implementation Speed-up for grid points
from 323 to 2563 (Software compiled in release mode).

051015
20253035

1 10 100Number of Cols in HW
Speed-up 3264128256

Figure 51b : 32 bit Floating Point Jacobi Hardware Implementation Speed-up for grid points

from 323 to 2563 (Software compiled in release mode) shown on a log-lin scale.

Figure 51 shows graphically the achieved speed-up using a full strength optimizing compiler

(Figure 51a uses a lin-lin scale and Figure 51b shows the same data on a log-lin scale). The

speed-up grows almost linearly with the increase in the level of hardware parallelism. In

comparison with the processing time, which depends on the problem size, the number of

Chapter 6: Hardware and Software Comparison

- 152 -

iterations for convergence, and the level of parallelism in the hardware implementations, the

time taken to transfer the data onto and off of the hardware board can be ignored. As shown in

Table 14, the data transfer time from Host-to-SRAM and SRAM-to-Host is far smaller than

the processing time when the matrix size increases.

Table 14 : Transfer duration vs. processing time using the 8 column design
(in milliseconds)

Transfer IN/OUT Duration

(in milliseconds)

Matrix Size Host→SRAM SRAM→Host
Processing

32 0.091902 1.48631 0.763

64 0.363960 3.14218 9.22903

128 1.51749 3.27972 113.466

256 4.51255 4.37582 1399.51

6.5.2.3 32bit Floating-point Red-black Successive Over-Relaxation Hardware vs

Software (debug/release mode)

Due to the poor convergence property of the Jacobi iteration method and the data dependency

property of Gauss-Seidel/Successive Over-Relaxation iteration methods, the red-black

successive over-relaxation solution was implemented. The performance of hardware

implementations using the red-black successive over-relaxation scheme, described in section

5.3.1.3, was compared to double precision and single precision software implementations

running on a 2.4 GHz Pentium 4 with 1 GByte of memory. As shown in the discussion in

section 6.1, the results generated using single precision are almost identical with the results

using double precision, so it can be concluded that the solutions obtained from both methods

are almost equivalent.

Chapter 6: Hardware and Software Comparison

- 153 -

The computing times for the double precision floating-point software simulation are shown in

Table 15 and Table 16, compiled in debug mode and release mode respectively. The hardware

implementation can achieve a speed-up of 38 compared to the 64-bit floating-point

Gauss-Seidel software solution for a cube of dimensions 256×256×256 using a full strength

optimizing compiler. The performance of the hardware solution is greater for larger systems,

as the balance between data transfer and computation is improved. As the hardware

implementation uses single precision floating-point arithmetic, the software simulator was

modified to also use single precision to provide a fair basis for comparison. Table 17 and

Table 18 show the performance comparison between hardware and single precision

floating-point software solutions. The speed-up compared to the single precision

floating-point software solutions is reduced (as the Pentium 4 processor on which the

software simulations run is a 32 bit processor, so there is a time penalty for using double

precision). The speed-up achieved was a factor of approximately 9.

As there are 16 copies of the data path implemented in parallel onto a single chip, the

hardware architecture can be considered to be almost equivalent to the Jacobi 16 column

hardware implementations. The performance of the Red-black successive over-relaxation

solution is around 35% better than Jacobi solutions.

Chapter 6: Hardware and Software Comparison

- 154 -

Table 15 : Simulation time (in seconds) for the 64bit floating-point software and the 32bit floating-point hardware implementation
for FDM using red-black successive over-relaxation iteration (Debug mode).

T(SW_double_floating_point) Speed-up

N T(HW_RB_SOR)
Exact GS SOR RB_SOR Exact GS SOR RB_SOR

32 0.012112 0.015442 0.177349 0.078719 0.078562 1.2 14.6 6.5 6.5

64 0.095743 0.117739 2.065627 0.885003 0.858751 1.2 21.5 9.2 9.0

128 0.595941 0.919706 24.11915 9.285473 9.284257 1.5 40.5 15.6 15.6

256 5.488757 7.309252 292.6948 201.5683 212.5884 1.3 53.3 36.7 38.7

Table 16: Simulation time (in seconds) for the 64bit floating-point software and the 32bit floating-point hardware implementation
for FDM using red-black successive over-relaxation iteration (Release mode).

T(SW_double_floating_point) Speed-up

N T(HW_RB_SOR)
Exact GS SOR RB_SOR Exact GS SOR RB_SOR

32 0.006267 0.007454 0.037969 0.013575 0.01098 1.2 6.1 2.2 1.8

64 0.038956 0.056225 0.495538 0.175817 0.147751 1.4 12.7 4.5 3.8

128 0.221447 0.422142 6.258212 2.213882 1.842309 1.9 28.3 10.0 8.3

256 2.022227 3.334128 77.20391 25.47644 23.38476 1.6 38.2 12.6 11.6

Chapter 6: Hardware and Software Comparison

- 155 -

Table 17 : Simulation time (in seconds) for the 32bit floating-point software and the 32bit floating-point hardware implementation
for FDM using red-black successive over-relaxation iteration (Debug mode).

T(SW_single_floating_point) Speed-up
N T(HW_RB_SOR)

Exact GS SOR RB_SOR Exact GS SOR RB_SOR

32 0.012112 0.015543 0.041901 0.021365 0.017514 1.3 3.5 1.8 1.4

64 0.095743 0.120727 0.428179 0.18491 0.16526 1.3 4.5 1.9 1.7

128 0.595941 0.934129 4.398881 1.660374 1.752469 1.6 7.4 2.8 2.9

256 5.488757 7.440643 75.37364 35.3634 46.80425 1.3 13.7 6.4 8.5

Table 18 : Simulation time (in seconds) for the 32bit floating-point software and the 32bit floating-point hardware implementation
for FDM using red-black successive over-relaxation iteration (Release mode).

T(SW_single_floating_point) Speed-up
N T(HW_RB_SOR)

Exact GS SOR RB_SOR Exact GS SOR RB_SOR

32 0.006267 0.007467 0.014542 0.007118 0.007087 1.2 2.3 1.1 1.1

64 0.038956 0.055767 0.155769 0.068419 0.076462 1.4 4.0 1.8 2.0

128 0.221447 0.418622 1.568907 0.63955 0.734665 1.9 7.1 2.9 3.3

256 2.022227 3.3196 18.88989 10.15688 11.65903 1.6 9.3 5.0 5.8

Chapter 6: Hardware and Software Comparison

- 156 -

The hardware design of the Red-Black successive over-relaxation method was also

implemented on a Virtex 4 LX160 FPGA. The performance of the hardware designs on the

Virtex 2V6000 and 4V LX160 FPGAs is compared in Table 19.

Table 19 : Simulation time (in seconds) for the 32bit floating-point Hardware implementation

on different FPGA boards.

N V2(110MHz) V4(180MHz) Speed-up

32 0.006267 0.002827 2.216

64 0.038956 0.016292 2.391

128 0.221447 0.0813515 2.722

The hardware design on the 4VLX160 FPGA ran twice as fast as the same design on the

2V6000 FPGA. However, the clock speed is not twice as fast. The remaining difference in

simulation time is due differences in the PCs in which the FPGA boards were used, which

results in a different speed of execution for the software versions that are used as the baseline

in the two cases.

6.5.3 Resource Utilization

The resource utilizations for the various implementations of the FDM are shown in Table 20.

The use of fixed-point arithmetic in the Jacobi implementation, running at a clock speed of 60

MHz, reduces the complexity of the computational pipelines within the hardware

implementation, thereby allowing a greater level of parallelisms to be obtained. In order to fit

a 64×64 subdomain onto a single chip, 64 columns of block RAM memory are used to store

the 32bit fixed-point values. By contrast, the floating-point designs, which cannot

Chapter 6: Hardware and Software Comparison

- 157 -

accommodate the entire 2D subdomain onto a single chip, fit an appropriate number of data

paths instead of the full number of data paths. The on-chip resources were almost exhausted

for the 24 columns design at a 70 MHz clock rate, compared to the simplest 4 columns design

running at a speed of 100 MHz. Each processing element, shown in Figure 37, uses 3

floating-point adders and 1 floating-point multiplier. In order to trade off latency with

maximum clock frequency, the floating-point adder and multiplier are generated using

intellectual property (IP) cores with maximum latency by Xilinx CORE Generator. On the

Virtex 2V6000 FPGA, only logic implementation is possible for 32-bit floating-point adder,

whereas 4 MULT18×18s can be used to assemble a 32-bit floating-point multiplier. Therefore,

the total number of Mult18×18s used in the hardware designs is the number of columns

implemented in hardware multiplied by 4. The processing element for the Red-black

successive over-relaxation solutions includes 3 floating-point adders and 2 floating-point

multipliers, as in Figure 39. There are 8 processing elements implemented in the 32-bit

floating-point red-black successive over-relaxation design. Thus, the red-black successive

over-relaxation design requires more on-chip resources in order to achieve the full pipelining

of arithmetic operations in the same way that the 8 column Jacobi design does.

Chapter 6: Hardware and Software Comparison

- 158 -

Table 20 : Hardware Resource Utilization (FDM) on Virtex 2V6000 FPGA.

 CLK (MHz) Slices % FFs % LUTs % BRAMs % Mult18×18 %

Jacobi Fixed-point
arithmetic (N=64)

60 14,384 42 18,042 26 12,769 18 64 44 0 0

4 cols 100 7,652 22 10,457 15 8,151 12 4 2 16 11

8 cols 80 13,756 40 18,442 27 14,839 21 8 5 32 22

16 cols 80 25,955 76 34,402 50 28,178 41 16 11 64 44

Jacobi 32bit
Floating-point
arithmetic

24 cols 70 33,790 99 50,298 74 41,787 61 26 18 96 66

Red-black SOR 32bit
Floating-point arithmetic

90 19,371 57 25,747 38 21,699 32 16 11 64 44

Chapter 6: Hardware and Software Comparison

- 159 -

6.5.4 Results Analysis

The primary aim of this work is to implement a stable and fast solver for 3-dimensional finite

difference solution of Laplace equations. Due to the use of Fourier decomposition, the 3-D

problem was split into a series of independent 2-D sub-problems. The hardware designs using

the Jacobi and Red-black successive over-relaxation iteration schemes, which were chosen as

they are very amenable to hardware solution, were implemented and the performance of each

was measured and compared.

The accuracy of the results has been demonstrated for both hardware and software

implementations using fixed and floating point precision. The hardware and software

simulations are reasonably equivalent.

The use of fixed-point arithmetic reduces the complexity of the computational pipelines

within the FPGA, thereby allowing a greater level of parallelism (and thus performance) to be

achieved. Speed-ups of a factor of approximately 100 can readily be obtained within a

single FPGA. As this study is concerned with the solution of the Laplace equation, the

fixed-point range can safely be identified a priori once the required boundary conditions are

known. Trials have been carried out to determine that the selected range is greater than that

required for equivalence to a single precision floating point.

Unfortunately, fixed-point arithmetic can not handle PDE problems with a wide dynamic

range of data and overflow may occur, so single precision floating-point arithmetic designs

for the Jacobi method have also been implemented in order to extend the range of problems

for which hardware solution is beneficial. However, the floating-point arithmetic operators

Chapter 6: Hardware and Software Comparison

- 160 -

require much larger amount of logic resource compared to their fixed-point counterparts,

which means that fewer computational pipelines can be fitted onto a single FPGA. Because of

the lower level of parallelism, the speed-up is only up to 32 times. However, the performance

of the hardware implementations was improved by using the red-black successive

over-relaxation iteration scheme, which has a much better convergence property than Jacobi.

For the same level of parallelism, the Red-black successive over-relaxation method runs

almost twice as fast as the Jacobi method.

Chapter 6: Hardware and Software Comparison

- 161 -

6.6 Finite Element Method

In order to measure the performance of the finite element hardware design, a 3D domain with

48, 384, 3072, 6000, 24576 and 48000 elements was generated and simulated until the

iterative methods converged. The performance of the software version was measured and

compared with the results of the hardware version. The double precision floating-point

software version was run on the same PC (2.4 GHz Pentuim 4 PC with 1 GByte RAM), and

the code complied using a full strength optimizing compiler.

6.6.1 Numerical Precision

Table 21 shows the number of iterations required for both software and hardware. The first

column, SW(Global), shows the iteration count for a software solution that assembles and

solves the global stiffness matrix including all the zero entries. The second column shows the

iteration count for a software solution of the element-by-element approach. The third column,

HW_1 shows the iteration count for the hardware implementation with a single matrix-vector

multiplier block. The fourth column shows the corresponding data for the hardware

implementation with two parallel matrix-vector multipliers blocks. The difference in iteration

count between the software and hardware version is due to the fact that the software version

used double precision whereas the hardware version used 32-bit single precision. The use of

lower precision arithmetic produces the same answer, but at the cost of a larger number of

iterations.

Chapter 6: Hardware and Software Comparison

- 162 -

Table 21 : Iterations required for convergence.

Elements SW(Jacobi) SW(Global) SW(EBE) HW_1 HW_2

6 219 4 4 4 4

48 980 18 18 18 18

384 4,004 39 39 39 39

750 6,264 49 49 49 49

3,072 16,018 78 78 79 86

6,000 24,994 95 95 96 116

24,576 100,000 150 150 166 166

48,000 NA* 188 188 207 207
*Due to the memory limitation of the PC, the Jacobi method cannot converge for the problem with 48,000

elements.

6.6.2 Speed-up

Table 22 : Comparison of speedup obtained by hardware implementations

Elements V2_HW_1(80Mhz) V4_HW_1(140Mhz) V4_HW_2(140Mhz)

48 3.02 4.92 5.41

384 7.46 10.36 15.32

3,072 9.84 15.37 28.69

6,000 10.02 15.27 29.39

24,576 10.40 15.94 31.65

48,000 11.66 20.30 40.58

Table 22 shows a speed-up comparison between the hardware and software solutions. If

multiple FPGAs are used, the speed up should scale linearly, since the method used gives rise

to minimal communication overhead. The timing cost of V2_HW_1 shows the result for the

design with a single matrix-vector multiplier block implemented on Virtex 2V6000 FPGA.

Chapter 6: Hardware and Software Comparison

- 163 -

V4_HW_1 is the design with one single matrix-vector multiplier block and V4_HW_2 has

two such blocks; both are implemented on the Virtex 4VLX160 FPGA.

The single precision floating-point implementation operates at a 140 MHz clock rate, and

computation within the pipelines can be fully overlapped. As a result, 24 × 5 × 140M = 16.8

billion single precision floating point operations can be carried out per second using a

memory bandwidth of 24 × 4 byte × 140 MHz = 13.44 GByte/s.

.

00.0020.0040.0060.0080.010.012
0 10000 20000 30000 40000 50000 60000Size (elements)

CPU timing (s)
Virtex2(60Mhz)Virtex2(70Mhz)Virtex2(80Mhz)Virtex4_design2(140Mhz)Virtex4_design1(140Mhz)

Figure 52a : FEM Hardware Timing Comparison.

Chapter 6: Hardware and Software Comparison

- 164 -

0.000010.00010.0010.010.11 10 100 1000 10000 100000
Size (elements)

CPU timing (s)
Virtex2(60Mhz)Virtex2(70Mhz)Virtex2(80Mhz)Virtex4_design2(140Mhz)Virtex4_design1(140Mhz)

Figure 52b : FEM Hardware Timing Comparison (shown on a log-log scale).

Figure 52 shows the time required for a single Conjugate Gradient iteration using each of the

various designs. The speed of the design scales approximately linearly in clock frequency and

level of parallelism of the designs for problem sizes exceeding about a few hundred elements.

For smaller problem sizes the latencies are not fully hidden, and the speed up is lower. The

important feature shown by Figure 52 is that the speed-up does not saturate as the problem

size becomes large.

6.6.3 Resource Utilization

Due to the use of the element-by-element scheme, the hardware resources utilization will be

constant even when the number of elements in the mesh increases. Table 23 shows the

percentage of the FPGA resources used for the various implementations of the FEM.. The

Virtex 4VLX160 resources were saturated in Design 2 as the 24 calculation element (CE)

units had depleted all DSP48 units. Design 1 has only 12 calculation elements implemented in

hardware for both 2V6000 and 4VLX160. The resource utilization of the FPGA based

Chapter 6: Hardware and Software Comparison

- 165 -

reconfigurable hardware is independent of the matrix size, and the solution therefore scales

well to larger problems. As more powerful and higher density FPGAs become available, the

number of calculation elements instantiated on the FPGA can be increased, thus giving

greater parallelism and greater speed-up.

Chapter 6: Hardware and Software Comparison

- 166 -

Table 23 : Hardware resource utilization (FEM).

 FPGA
CLK

(MHz)
Slices % FFs % LUTs % BRAMs % DSP48s % Mult18*18 %

Virtex
2V6000

80 25,610 75 33,557 49 31,332 46 12 8 ---- ---- 48 33
Design1
(12 CEs)

Virtex
4VLX160

140 25,439 37 32,137 23 31,912 23 12 4 48 50 ---- ----

Design2
(24 CEs)

Virtex
4VLX160

140 49,068 72 60,459 44 64,881 48 12 4 96 100 ---- ----

Chapter 6: Hardware and Software Comparison

- 167 -

6.7 Summary

In this chapter, the results produced by the hardware and software implementations have been

presented and compared in terms of speed-up. The precision of the hardware results has been

investigated. The hardware implementations can achieve the same accuracy of results as the

double precision floating-point software implementation, with the penalty that a few more

iterations are required to reach convergence. Resource utilization has been described in order

to analyse the scalability of hardware designs in the following chapter.

- 168 -

Chapter 7

SCALABILITY ANALYSIS

7.1 Introduction

For the design of any large scientific numerical system, architectural scalability is one of the

most important evaluation parameters and will affect overall system efficiency, cost and

upgradeability significantly.

A number of vendors offer platforms that enable a processor to offload computation to an

FPGA-based accelerator, for example Cray [104] and SRC [105]. Normally, once a design has

been implemented for one specific FPGA chip and board, the design is locked because of the

specific memory architecture. Therefore, the design for the particular FPGA cannot be easily

resized or transferred to a more powerful FPGA. This implies that the design can become

outdated very quickly.

In the course of implementing numerical solutions in programmable logic, it becomes obvious

that while hardware can typically outperform software, the degree of speed-up is strongly

dependent on a number of factors, including the size and complexity of the problem, the

parallelism of the algorithm used, and the hardware resources available. Several hardware

Chapter 7: Scalability Analysis

- 169 -

implementations of 3-dimensional problems on one single FPGA board were described in

chapter 5, but the speed-up achieved as shown in chapter 6 might not be enough for the

simulations in the case of real engineering structures, which involve millions of elements. A

high level of parallelism available in the design will offer a significant speed-up. In order to

cater for the requirements of these structures, the scalability of our design will be analyzed.

The hardware implementation is dependent upon a number of factors, such as size of

resources, peak number of operations, throughput and latency. The main aim of the

implementation is to achieve a good balance in terms of optimizing these factors. This chapter

will detail the principle potential trade-offs among these factors.

Chapter 7: Scalability Analysis

- 170 -

7.2 Scalability of the Finite Difference Method design

7.2.1 Performance of the hardware implementations of FDM

In this part, the performance of the Jacobi FDM system using floating-point arithmetic, which

was described in 4.3.1.2, is analyzed.

Due to the area cost of floating-point arithmetic, the FPGA chip cannot accommodate the

whole 2-D slice and its associated computational pipelines simultaneously in the way that was

implemented in 5.3.1.1. It is therefore necessary to use the FPGA to implement a smaller

number of computational pipelines, and to read and to write the data from and to the off-chip

memory. There are n columns of on-chip memory within the FPGA as cache that can hold up

to n columns of data. These n columns of data can be operated in parallel, producing one

result on each clock cycle. It requires 28 clock cycles of total latency from the reading of n

columns of data to the write back of the new data to these columns. In addition, computation

within the pipeline can be fully overlapped so that the column data is updated on every clock

cycle. As a result, using this parallelism, the total number of floating point operators is given

in Eq. (120) and the memory usage is given in Eq. (121).

Number of Floating Point Operators per clock cycle = 5nF Eq. (120)

Bandwidth = 4nF Eq. (121)

where F is the system clock rate.

A key aspect of the design is scalability, having a hardware/software co-processor that can

Chapter 7: Scalability Analysis

- 171 -

take advantage of more logic resources on FPGAs as they become available. To illustrate the

scalability of the current systems, several versions of the finite difference designs were

implemented with n processing elements. Table 24 gives the performance of 32-bit floating

point arithmetic on the 2V6000 FPGA for each number n of processing elements, where n = 4,

8, 16 and 24 respectively. The fourth row in the table gives the performance relative to the 4

processing element design. With more processing elements, the processor can compute more

floating-point operations per clock cycle. However, this also results in a decrease in the clock

frequency as more resources are used on the FPGAs. The performance almost increases

linearly with the number of processing elements, and the operating frequency decreases due to

congestion of the hardware implementation. Table 25 gives the performance of 64-bit floating

point arithmetic on 2V6000 FPGA for each number of processing elements, where n = 4, 6, 8.

Double precision floating-point arithmetic requires more logic than single precision, which

means that a smaller number of data paths can fit onto the FPGA. Compared to single

precision floating-point arithmetic, the deterioration of system clock frequency for double

precision floating-point arithmetic is significant, but the performance of double floating-point

arithmetic implementations increases nearly linearly with the number of processing elements.

Table 24 : Performance of 32-bit floating point FDM using Jacobi

on Xilinx 2V6000 FPGA.

No. of PEs 4 8 16 24

Clock Freq. 110 MHz 106 MHz 100 MHz 98 MHz

Bandwidth
(GB/s)

1.8 3.4 6.4 9.4

GFLOPS
(Single FP)

2.2 4.24 8.0 11.76

Performance
Ratio

1.0 1.9 3.6 5.3

Chapter 7: Scalability Analysis

- 172 -

Table 25 : Performance of 64-bit floating poinr FDM using Jacobi

on Xilinx 2V6000 FPGA.

No. of PEs 4 6 8 10

Clock Freq. 70 MHz 64 MHz 60 MHz Overmapped

Bandwidth
(GB/s)

2.24 3.07 3.84 Overmappedd

GFLOPS
(Double FP)

1.4 1.92 2.4 Overmapped

Performance
Ratio

1.0 1.4 1.7 Overmapped

7.2.2 Analysis of the restrictions

One point that is worth noting is that a floating-point adder is much more complicated than a

fixed-point adder. This is because the input operands for a floating-point adder must be shifted

until they have the same exponent prior to addition, and the resulting output must then be

shifted to be correctly normalized. This consumes a large amount of the FPGA logic resources,

and can also reduce the maximum speed that the circuit can achieve. By contrast, fixed-point

arithmetic requires no special circuitry to provide input alignment or output normalization.

The large logic requirements of floating-point arithmetic mean that an insufficient number of

data paths will fit onto the FPGA. There is a loss of speed-up due to the communication cost

on reading the data from external RAM. Fortunately, this loss can be ameliorated by holding a

column of data within the FPGA for many sweeps of the iteration scheme. Each column of

block RAM can be read and written simultaneously. The internal block RAM of the FPGA is

therefore acting as a cache with a very large I/O capability.

For the floating-point arithmetic operators, Floating-point operator v2.0 of Xilinx Core

Chapter 7: Scalability Analysis

- 173 -

Generators was used to generate them from a parameterized library of pre-designed useful

components. Tradeoffs can be made in terms of the latency, resources and maximum clock

frequency. The maximum latency means fewer resources occupied and a faster clock speed

achieved. The floating-point operation units in this design were chosen to work at their

maximum latency, and then given an implementation with a higher throughput operating on

multiple processing elements simultaneously.

There is another restriction to implement a hardware design scalably. This limitation involves

the setting up and initiation of the system. In section 4.1.6, a host processor was introduced

that is designed to be able to configure the FPGA and to pre-process the input data, then to

initiate transfer to the external memory connected to the FPGA. The downloading of one of

the sub-problems is accomplished whilst the FPGA board is computing the solution of a

previous sub-problem. This eliminates communication and synchronization delays between

the subdomains.

7.2.3 Scalability of the hardware implementation of FDM

The design implemented in section 5.3.1 used a medium speed grade of the 2V6000 FPGA in

the Xilinx Virtex 2 series. This FPGA would have been typical of the state-of-the-art almost

ten years ago, but newer, bigger and faster FPGA families are launched almost every year. In

this section, we consider how the design would scale to larger and faster FPGAs, and also

consider how the design would scale to the use of 64-bit floating point arithmetic.

Table 26 compares the logic, memory and arithmetic capacity of the FPGAs used in this study

with the largest FPGAs available in the more modern Virtex 5 and Virtex 6 series. There are

Chapter 7: Scalability Analysis

- 174 -

four different families of Virtex 5 FPGAs: the LX series (optimized for high-performance

logic), the LXT series (optimized for high-performance logic with low power serial

connectivity), the SXT series (optimized for DSP and memory-intensive applications with

low-power serial connectivity) and the FXT series (optimized for embedded processing and

memory-intensive applications with highest-speed serial connectivity). There are two

sub-families of Virtex 6 FPGAs: the LXT series (high-performance logic with advanced serial

connectivity) and SXT series (highest signal processing capability with advanced

connectivity.

Chapter 7: Scalability Analysis

- 175 -

Table 26 : The logic, arithmetic and memory capacity of FPGAs [35].

Block RAM Blocks [1]
Family FPGA CLK(MHz)

18 Kb 36 Kb Max(Kb)

Block
multipliers/DSP

slices [2]
Logic slices [3]

DCMs/CMTs
/MMCMs [4]

Virtex II 2V6000 400 144 --- 2,592 144 33,792 12

4VSX55 500 320 --- 5,760 512 24,576 8
Virtex 4

4VLX160 500 288 --- 5,184 96 152,064 12

5VLX330 550 576 288 10,386 192 51,840 6

5VLX330T 550 648 324 11,664 192 51,840 6

5VSX240T 550 1,032 516 18,576 1,056 37,440 6
Virtex 5

5VFX200T 550 912 456 16,416 384 30,720 6

6VLX760 600 1,440 720 25,920 864 118,560 18
Virtex 6

6VSX475T 600 2,128 1,064 38,304 2,016 74,400 18
[1] Block RAMs in Virtex-5 and Virtex-6 FPGAs, which are fundamentally 36 Kbits in size, can be used as two independent 18 Kb blocks.
[2] Each Virtex-5/6 DSP slice contains one 25×18 multiplier, an adder and an accumulator, each Virtex-4 DSP slice contains one 18×18 multiplier, an adder
and an accumulator; whereas the Virtex-II uses a dedicated 18×18 multiplier block.
[3] A logic slice is equivalent to about 200 2-input logic gates. Each Virtex-6 FPGA slice contains four LUTs and eight flip-flops, and each Virtex-5 slice

contains four LUTs and four flip-flops, whereas earlier series used two LUTs and two flip-flops.
[4] Each CMT contains two DCMs and one PLL in Virtex-5 FPGAs, and each CMT contains two mixed-mode clock managers (MMCM) in Virtex-6 FPGAs.

Chapter 7: Scalability Analysis

- 176 -

Table 27 shows the number of logic slices and block multipliers required to build fixed and

floating point adders and multipliers in 32-bit and 64-bit wordlength. (It should be noted that

if the FPGA runs out of block multipliers, the multipliers can instead be constructed in the

logic slices, but this will entail a speed penalty.) The floating point cores were generated by

Xilinx CORE GENERATOR floating-point operator v2.0 in Virtex-2 and Virtex-4, by

floating-point operator v3.0 in Virtex-5, and by floating-point operator v5.0 in Virtex-6. The

hardware designs of FDM were implemented on Virtex 2V6000, Virtex 4VLX160 and Virtex

4VSX55 FPGAs, and the number of data paths that were successfully implemented on each

FPGA is listed in Table 28. In addition, the maximum number of data paths, as shown in

Figure 53, can be projected in Virtex-5 and Virtex-6 FPGAs by using information from their

data sheets.

Figure 53 : Processing element for row update in FDM.

Chapter 7: Scalability Analysis

- 177 -

Table 27 : The resources consumed by addition and multiplication.

32-bit fixed point 64-bit fixed point 32-bit float point 64-bit float point
Block Mult Logic slices Block Mult Logic slices Block Mult Logic slices Block Mult Logic slices

Adder 0 16 0 32 0 329 0 692
Multiplier 2 73 4 146 4 139 16 540

(a) Implementation on Virtex-2 [106] [107]

32-bit fixed point 64-bit fixed point 32-bit float point 64-bit float point
DSP48s Logic slices DSP48s Logic slices DSP48s Logic slices DSP48s Logic slices

Adder 0 16 0 32 0 329 0 692
Multiplier 2 73 4 146 4 118 16 491

(b) Implementation on Virtex-4 [106] [107]

32-bit fixed point 64-bit fixed point 32-bit float point 64-bit float point
DSP48Es Logic slices DSP48Es Logic slices DSP48Es Logic slices DSP48Es Logic slices

Adder 0 8 0 16 0 141 0 265
Multiplier 2 37 4 73 2 53 12 168

(c) Implementation on Virtex-5 [108] [107]

32-bit fixed point 64-bit fixed point 32-bit float point 64-bit float point

DSP48E1s Logic slices DSP48E1s Logic slices DSP48E1s Logic slices DSP48E1s Logic slices
Adder 0 8 0 16 0 123 0 229
Multiplier 2 37 4 73 2 39 10 93

(d) Implementation on Virtex-6 [108] [109]

Chapter 7: Scalability Analysis

- 178 -

The floating-point operation units in this design were chosen to work at their maximum

latency (in order to maximize throughput). In Table 28, the maximum numbers of data paths,

as shown in Figure 53, can be built in the various series of Xilinx FPGAs.

Table 28 : The number of copies of Figure 53 that can be built in each of the FPGAs

 32-bit fixed 64-bit fixed + 32-bit float 64-bit float

2V6000 64 36 24 8

4VSX55 64 36 16 8

4VLX160 128 72 48 16

5VLX330 + 288 144 108 48

6VLX760 + 720 360 290 144
+ The results estimated using the data in Table 26 and Table 27.

The single precision floating-point implementation on the 2V6000 operates at 98 MHz and

the double precision at 60 MHz. On the Virtex 4, the frequency of operation for the datapath

of Figure 53 (both single and double precision) rises to 110 MHz. The optimal

implementations for the 5VLX330 and 6VLX760 are expected to run at a saturated clock

frequency of 130MHz, due to the behaviour of the surrounding memory. Table 29 shows how

the capacity estimates of Table 28, combined with data on the frequency of operation of the

data paths, translate into projections for the number of computations that can be performed

per second in Eq. (120) and memory bandwidth in Eq. (121).

Chapter 7: Scalability Analysis

- 179 -

Table 29 : Performance and bandwidth achievable on each FPGA.

Single Floating-point Precision Double Floating-point Precision
 Performance

(GFLOPs)
Bandwidth
(GByte/s)

Performance
(GFLOPs)

Bandwidth
(GByte/s)

2V6000 11.76 9.4 2.4 3.8

4VSX55 8.8 7.0 4.4 7.0

4VLX160 26.4 21.1 8.8 14.1

5VLX330+ 70.2 56.1 31.2 49.9

6VLX760+ 188.5 150.8 93.6 149.7

The aim of our study is to explore the possibilities of using the internal memory of the FPGAs

as a cache that can supply a very high memory bandwidth to support a very large number of

parallel pipelines. In our design, each column of block RAM can be read and written

simultaneously. The internal block RAM of the FPGA is therefore acting as a cache with a

very large I/O bandwidth.

Moreover, it should be noted that these results refer to the speed-up achieved for a single

FPGA board. If the problem is solved across a number n of FPGA boards, the speed-up will

scale linearly with n for values of n less than about 16 [110]. This is due to the domain

decomposition approach used, which renders the sub-problems independent, thus avoiding

saturation of speed-up due to communications overheads.

Chapter 7: Scalability Analysis

- 180 -

7.3 Summary

The purpose of this chapter was to analyze the potential for high levels of parallelism within

the FPGAs by using very deep computational pipelines on numerical solutions for partial

differential equations.

To realize the full potential of such approaches, the underlying algorithms must be inherently

parallelizable. Reconfigurable hardware devices have been shown to outperform

general-purpose CPUs in the computationally intensive applications considered, because they

can exploit a great degree of pipelinability and parallelism in the algorithm in a much more

thorough way than can be done with uni-processor or parallel computing.

Firstly, the performance at low and high levels of parallelism has been discussed. The

performance of both single precision and double precision floating-point arithmetic

implementations increases nearly linearly with the number of processing elements, even when

there is a loss of system frequency due to congestion arising from the double precision

floating-point operators. Then, the features of the system that limit the speed-up achievable

were analysed, with a discussion of the effect that future developments in reconfigurable

computing architecture will have on these figures. Finally, a study of how great a performance

level can be achieved by using the largest and fastest FPGA that is currently readily available

has been given.

The method has been chosen to minimize communication overheads, maximize parallelism, to

be scalable for large problem sizes, and to be scalable to larger FPGAs. Overall, it has been

Chapter 7: Scalability Analysis

- 181 -

clearly demonstrated that the architecture of the hardware design scales linearly with multiple

processors working in parallel. Furthermore, the design is scalable for the features of new

FPGAs and will provide very promising results in future.

- 182 -

Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis, the hardware/software implementation of a number of numerical solutions to

Partial Differential Equations in reconfigurable computing systems based on FPGAs has been

investigated. After providing relevant background to PDEs, and basic methodologies of PDE

problems, a literature review of some previous parallel implementations of solutions to PDEs

was presented. However, due to communication overheads and load balancing problems,

speed-ups were far less than linear. The aim of this study, consequently, is to investigate the

inherent parallelism inside the numerical algorithms and implement the re-organized

algorithms onto FPGAs in order to accelerate the computations. By using domain

decomposition, the main arithmetic operations can be implemented in parallel. Details of

these implementations have then been given. An analysis of the results of hardware

implementations with the comparison to the software equivalents and the requirements of

such a system has been presented. The effect on speed-up and bandwidth has been discussed

for complex problems.

Chapter 8: Conclusions and Future Work

- 183 -

The following topics have been considered in this study:

• FPGA-based reconfigurable computing system for the 3-D finite difference

solution of the Laplace Equation

A system was designed whose software host uses Fourier decomposition to

decompose the 3D finite difference problem into a series of 2D problems that can be

downloaded into the reconfigurable computing boards. This decomposition gives a

much better match between the processor/memory capabilities of the FPGAs and the

properties of the sub-problems that they are used to solve. Downloading of one of the

sub-problems is accomplished whilst the FPGA board is computing the solution of a

previous sub-problem. This approach is based on the efficient use of the on-chip

RAM within the FPGA as a cache to store the working set for the current

sub-problem, and also to perform background upload and download of data for the

previous and following sub-problem to be tackled by the FPGA.

• Reconfigurable hardware acceleration for a Preconditioned Conjugate Gradient

solver of the 3D tetrahedral finite elements

A novel parallel hardware architecture for the preconditioned Conjugate Gradient

solution of an element-by-element approach to finite element analysis has been

presented. The solution of the large linear system equations is the most

time-consuming part of the FEM. By using an Element-by-Element (EBE) scheme,

the large sparse matrix-vector multiplication is divided into a number of independent

sub-multiplications in order to improve data reusability and save external memory

accesses. The use of FPGA hardware can help to deliver the solution of the large

Chapter 8: Conclusions and Future Work

- 184 -

system of equations resulting from 3D FE analysis in a faster and more cost effective

manner.

• Domain decomposition for 3-D problems

Domain decomposition is necessary for 3-D PDEs problems to be able to exploit the

high level of parallelism that can be achieved by reconfigurable computing. The

requirement for very high levels of parallelism means that it is important to ensure

that the hardware pipelines do not become starved of data. By using suitable domain

decomposition methodologies, the data independency is exploited in order to achieve

a high throughput of data from memory and to improve the speed-up.

• Parallel architectures of several iterative methods

Stationary iterative methods and non-stationary iterative methods have been

discussed and implemented. An efficient memory hierarchy has been adopted in

order to alleviate the memory bandwidth bottleneck.

• Customized fixed-point arithmetic operations on hardware/software

FPGA-based co-processors

Customized fixed-point arithmetic has been used in order to conserve hardware

resources. This enables one entire 2-D section of the problem to fit in a single FPGA

chip and demonstrates how well the inherent parallelism of the algorithms can be

exploited.

• Floating-point arithmetic operations on hardware/software FPGA-based

Chapter 8: Conclusions and Future Work

- 185 -

co-processors

As fixed point is suitable only for a restricted class of problems, which have very

favourable error propagation characteristics and a very small dynamic range of

problem parameters, floating-point arithmetic is considered for the most

implementations of this study in order to achieve a good level of accuracy. One

consequence of the use of floating point arithmetic is that we can not fit as high a

level of parallel computations onto the FPGA as with fixed-point arithmetic, thus

increasing the complexity of the hardware design. An optimized memory hierarchy

has been introduced. The significant differences between the fixed-point and

floating-point hardware versions have been investigated.

Some parts of the applications are well-suited to computation on an FPGA, while others are

better processed in software. By using a hardware/software co-processor, it has been shown

that a reconfigurable computing accelerator based on FPGAs can outperform software

implementation for these computationally expensive algorithms. A speed-up of 105 has been

achieved for 64×64×64 FDM problem using fixed-point arithmetic, and a speed-up of 38 has

been achieved by using floating-point arithmetic. Because of the complexity of the

floating-point arithmetic operators, a smaller number of data paths can be implemented

parallel and the speed-up of the hardware implementation is decreased. The speed-up of the

finite element method was a factor of 40 for a 3D tetrahedral finite element problem with

48,000 elements using the preconditioned conjugate gradient method.

This study is a good start to explore the inherent parallelism inside several numerical

solutions to the partial differential equations and use FPGA-based reconfigurable hardware to

Chapter 8: Conclusions and Future Work

- 186 -

accelerate these computationally expensive problems. In civil engineering, problems such as

the modelling of water seepage through a dam or earthquake displacement analysis may take

several days or even longer for numerical approximation. The use of domain decompositions

avoids saturation of speed-up due to communication overheads, so the reconfigurable

hardware can rival expensive parallel computers to solve such timing consuming problems

and achieve a linear speed-up without saturation as the problem size becomes large. In

addition, because the architecture of the hardware designs scales linearly with multi-processor

implemented in parallel, the hardware designs can be easily resized or transferred to a latest,

largest and fastest FPGA in order achieve further speed-up.

Chapter 8: Conclusions and Future Work

- 187 -

8.2 Future Work

The scalability of the parallel system has only been demonstrated on a single FPGA board. It

would be useful to implement a system with a large number of FPGAs, as in a reconfigurable

supercomputer, in order to evaluate how well the load can be balanced and the size of the

communication overheads. The use of multiple FPGAs in parallel will achieve further

speed-up.

FPGAs are increasing rapidly in logic and speed, and the loss of speed-up associated with

floating-point arithmetic can be offset by migrating to higher speed grades of more modern

FPGAs. A larger numerical precision is desirable for this study. As more modern FPGAs

contain more embedded multipliers, there is a much greater freedom to implement 64-bit

floating-point precision hardware solutions in order to investigate of the effect of numerical

precision.

Solutions for other numerical PDE problems would be another useful extension of this study,

as the problem targeted in the thesis is mainly the solution to the Laplace equation.

- 188 -

REFERENCES:

[1] A. Jacob, J. Lancaster, J. Buhler, and R. D. Chamberlain, "FPGA-accelerated seed

generation in Mercury BLASTP," in Proceedings of the 15th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines: IEEE Computer Society, 2007.

[2] B. D. Ruijsscher, G. N. Gaydadjiev, J. Lichtenauer, and E. Hendriks, "FPGA

accelerator for real-time skin segmentation," 2006 IEEE/ACM/IFIP workshop on

Embedded Systems for Real Time Multimedia, pp. pp. 93-97, 2006.

[3] Z. K. Baker and V. K. Prasanna, "Efficient Hardware Data Mining with the Apriori

Algorithm on FPGAs," in Proceedings of the 13th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines: IEEE Computer Society, 2005.

[4] A. Das, S. Misra, S. Joshi, J. Zambreno, G. Memik, and A. Choudhary, "An efficient

FPGA implementation of principle component analysis based network intrusion

detection system," in Proceedings of the conference on Design, automation and test in

Europe Munich, Germany: ACM, 2008.

[5] H. Brezis and F. Browder, "Partial differential equations in the 20th century,"

Advances in Mathematics, vol. 135, pp. 76-144, Apr 15 1998.

[6] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference

Methods. Oxford: Oxford University Press, 1978.

[7] G. Strang and G. Fix, An analysis of the finite element method: Englewood Cliffs,

Prentice Hall, 1973.

- 189 -

[8] R. LeVeque, Finite volume methods for hyperbolic problems. Cambridge: Cambridge

University Press, 2002.

[9] P. K. Banerjee, Boundary element methods in engineering. London: McGraw-Hill,

1994.

[10] G. R. Liu, Mesh Free Methods. Singapore: CRC Press, 2002.

[11] D. Gottlieb and S. Orzag, Numerical Analysis of Spectral Methods: Theory and

Applications. Philadephia: SIAM, 1977.

[12] Y. Saad, Iterative methods for sparse linear systems: Philadelphia SIAM, 2003.

[13] J. D. Hoffman, Numerical Methods for Engineers and Scientists. Singapore:

McGraw-Hill, Inc., 1992.

[14] A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and

Scientists. Hoboken: CRC Press Company, 2002.

[15] A. J. Davies, The finite element method: a first approach. Oxford: Oxford University

Press, 1980.

[16] T. J. R. Hughes, I. Levit, and J. Winget, "An element-by-element solution algorithm

for problems of structural and solid mechanics," Computer Methods in Applied

Mechanics and Engineering, vol. 36, p. 241, 1983.

[17] G. F. Carey, E. Barragy, R. McLay, and M. Sharma, "Element-by-element vector and

parallel computations," Communications in Applied Numerical Methods, vol. 4, pp.

299-307, 1988.

- 190 -

[18] E. W. Weisstein, "Gaussian Elimination." vol. 2010: MathWorld-A Wolfram Web

Resource.

[19] G. Golub and J. M. Ortega, Scientic Computing: An Introdction with Parallel

Computing. New York: Academic Press INC, 1993.

[20] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.

Pozo, C. Romine, and H. V. d. Vorst, Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, 2nd Edition. Philadelphia, PA: SIAM, 1994.

[21] J. R. Shewchuk, "An Introduction to the Conjugate Gradient Method without the

Agonizing Pain," 1994.

[22] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, "The Landscape

of Parallel Computing Reseach: A View from Berkeley," EECS Department,

University of California, Berkeley UCB/EECS-2006-183, December 18 2006.

[23] P. Chow and M. Hutton, "Integrating FPGAs in high-performance computing:

introduction," in Proceedings of the 2007 ACM/SIGDA 15th international symposium

on Field programmable gate arrays Monterey, California, USA: ACM, 2007.

[24] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu, "An overview of

reconfigurable hardware in embedded systems." vol. 2006: Hindawi Publishing Corp.,

2006, pp. 13-13.

[25] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, "Fast computation

of database operations using graphics processors," in Proceedings of the 2004

- 191 -

International Conference on Management of Data, 2004.

[26] L. Nyland, M. Harris, and J. Prins, "Fast N-Body simulation with CUDA." In GPU

GEMs 3. H. Nguyen, ed. Addison-Wesley, 2007.

[27] M. Januszewski and M. Kostur, "Accelerating numerical solution of stochastic

differential equations with CUDA," Computer Physics Communications, vol. 181, pp.

183-188, 2010.

[28] A. Humber, "New NVIDIA Tesla GPUs Reduce Cost of Supercomputing by A Factor

of 10." vol. 2010, 2009.

[29] B. Cope, P. Y. K. Cheung, W. Luk, and S. Witt, "Have GPUs made FPGAs redundant

in the field of video processing?," in Field-Programmable Technology, 2005.

Proceedings. 2005 IEEE International Conference on Singapore, 2005.

[30] B. Cope, "Implementation of 2D Convolution on FPGA, GPU and CPU," Imperial

College, College Report.

[31] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, "Accelerating compute intensive

applications with GPUs and FPGAs," in In 6th IEEE Symposium on Application

Specific Processors, Anaheim CA USA, 2008.

[32] L. W. Howes, P. Price, O. Mencer, O. Beckmann, and O. Pell, "Comparing FPGAs to

graphics accelerations and the Playstation 2 using a unified source description," in

Proceeding of the 2006 International Conference of Field Programmable Logic and

Applications, 2006, pp. 1-6.

- 192 -

[33] M. Dubash, "Moore's Law is dead, says Gordon Moore." vol. 2010, 2005.

[34] Xilinx, "How Xilinx Began.", http://www.xilinx.com/company/history.htm, 2009.

[Accessed May 24, 2010]

[35] http://www.xilinx.com/products/devices.htm. [Accessed May 24, 2010]

[36] G. R. Morris and V. K. Prasanna, "An FPGA-based floating-point Jacobi iterative

solver," in Parallel Architectures,Algorithms and Networks, 2005. ISPAN 2005.

Proceedings. 8th International Symposium on, 2005, pp. 420-427.

[37] G. Gokul, L. Zhuo, S. Choi, and V. A. P. V. Prasanna, "Analysis of high-performance

floating-point arithmetic on FPGAs," in Parallel and Distributed Processing

Symposium, 2004. Proceedings. 18th International, 2004, p. 149.

[38] J. Foertsch, J. Johnson, and P. Nagvajara, "Jacobi load flow accelerator using FPGA,"

in Power Symposium, 2005. Proceedings of the 37th Annual North American, 2005, p.

448.

[39] E. Motuk, R. Woods, and S. Bilbao, "FPGA-based hardware for physical modelling

sound synthesis by finite difference schemes," in Field-Programmable Technology,

2005. Proceedings. 2005 IEEE International Conference on, 2005, p. 103.

[40] K. D. Underwood and K. S. Hemmert, "Closing the Gap: CPU and FPGA Trends in

Sustainable Floating-Point BLAS Performance," in Proceedings of the 12th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines: IEEE

Computer Society, 2004.

- 193 -

[41] P. A. Cundall, "A discontinuous future for numerical modelling in geomechanics,"

Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, vol. 149,

pp. 41-47, Jan 2001.

[42] N. Tredennick and B. Shimamoto, "Reconfigurable systems emerge," in Proceedings

of the 2004 International Conference on Field Programmable Logic and Its

Applications, ser. Lecture Notes in Computer Science, 2004, pp. 2-11.

[43] S. Hauck, "The roles of FPGAs in reprogrammable systems," Proceedings of the IEEE,

vol. 86, pp. 615-638, April 1998.

[44] www.xilinx.com/support/sw_manuals/xilinx8/index.htm. [Accessed May 24, 2010]

[45] J. M. Ortega and R. G. Voigt, "Solution of Partial Differential Equations on Vector and

Parallel Computers," Society for Industrial and Applied Mathematics, vol. 27, 1985.

[46] J. Ericksen, "Iterative and direct methods for solving Poisson's euqation and their

adaptability to ILLIAC IV," Univ Illinois, Urbana-Champaign 1972.

[47] http://research.microsoft.com/en-us/um/people/gbell/Computer_Structures_Principles_

and_Examples/c sp0769.htm. [Accessed May 24, 2010]

[48] L. Hayes, "Comparative analysis of iterative techniques for solving Laplace's equation

on the unit square on a parallel processor," in Dept. Mathematics. vol. M. S. Austin:

Univ. Texas, 1974.

[49] L. N. Long and J. Myczkowski, "Solving the Boltzmann equation at 61 gigaflops on a

1024-node CM-5," in Supercomputing '93. Proceedings, 1993, pp. 528-534.

- 194 -

[50] X.-H. Sun and R. D. Joslin, "A Massively Parallel Algorithm for Compact Finite

Difference Schemes," in Proceedings of the 1994 International Conference on

Parallel Processing - Volume 03: IEEE Computer Society, 1994.

[51] M. M. Shearer, "Computational optimization of finite difference methods on the

CM5," Parallel Computing, vol. 22, pp. 465-481, March 1996.

[52] Y. Lu and C. Y. Shen, "A Domain Decomposition Finite-Difference Method for

Parallel Numerical Implementation of Time-Dependent Maxwell's Equations," IEEE

TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 45, pp. 556-562, March

1997.

[53] T. Bohlen, "Parallel 3-D viscoelastic finite difference seismic modelling," Computers

& Geosciences, vol. 28, pp. 887-899, Oct. 2002.

[54] Peter Widas, "Introduction to Finite Element Analysis,"

 http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/num/widas/history.html,

April 8th, 1997. [Accessed May 24, 2010]

[55] M. J. Turner, R. W. Clough, H. C. Martin, and L. P. Topp, "Stiffness and deflection

analysis of complex structures," J. Aeronautical Society, vol. 23, 1956.

[56] O. O. Storaasli, L. Adams, J. Knott, T. Crockett, and S. W. Peebles, "The Finite

Element Machine: An Experiment in Parallel Processing," in Proc. Symposium on

Advances & Trends in Structural & Solid Mechanics Washington DC, 1982.

[57] R. E. Fulton, "The finite element machine: an assessment of the impact of parallel

- 195 -

computing on future finite element computations." vol. 2: Elsevier Science Publishers

B. V., 1986, pp. 83-98.

[58] T. Nakata, Y. Kanoh, N. Koike, H. Okumura, K. Ohtake, T. Nakamura, and M. Fukuda,

"Evaluation of finite element analysis on the parallel simulation machine Cenju," in

NAL, Proceedings of the Ninth NAL Symposium on Aircraft Computational

Aerodynamics, 1991, pp. 83-89.

[59] Y. Kanoh, T. Nakata, H. Okumura, K. Ohtake, and N. Koike, "Large deformation

finite element analysis on the parallel machine Cenju," NEC research & development,

vol. 34, pp. 350-359, 1993.

[60] Lee Margetts, http://www.rcs.manchester.ac.uk/research/avp. [Accessed May 24,

2010]

[61] L. Margetts, M. Pettipher, and I. Smith, "Parallel Finite Element Analysis," in CSAR

Focus, 10 ed, pp. 7-8.

[62] R. Baxter, S. Booth, M. Bull, G. Cawood, K. D'Mellow, X. Guo, M. Parsons, J. Perry,

A. Simpson, and A. Trew, "High-Performance Reconfigurable Computing - the View

from Edinburgh," in Proceedings of the Second NASA/ESA Conference on Adaptive

Hardware and Systems: IEEE Computer Society, 2007.

[63] K. J. Paar and P. M. Athanas, "Accelerating finite-difference analysis simulations with

a configurable computing machine," Microprocessors and Microsystems, vol. 21, pp.

223-235, 30 December 1997.

[64] O. Storaasli, R. C. Singleterry, and S. Brown, "Scientific Applications on a NASA

- 196 -

Reconfigurable Hypercomputer," in 5th Military and Aerospace Programmable Logic

Devices (MAPLD) Conference, 2002.

[65] O. Storaasli, "Computing Faster without CPUs: Scientific Applications on a

Reconfigurable, FPGA-based Hypercomputer," in 6th Military and Aerospace

Programmable Logic Devices (MAPLD) Conference, 2003.

[66] Z. Ling and K. P. Viktor, "High Performance Linear Algebra Operations on

Reconfigurable Systems," in Proceedings of the 2005 ACM/IEEE conference on

Supercomputing: IEEE Computer Society, 2005.

[67] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew,

A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain, and G. Genest,

"Maxwell - a 64 FPGA Supercomputer," in Proceedings of the Second NASA/ESA

Conference on Adaptive Hardware and Systems: IEEE Computer Society, 2007.

[68] C. Benjamin, S. n, fer, F. Q. Steven, and H. C. C. Andrew, "Scalable Implementation

of the Discrete Element Method on a Reconfigurable Computing Platform," in

Proceedings of the Reconfigurable Computing Is Going Mainstream, 12th

International Conference on Field-Programmable Logic and Applications:

Springer-Verlag, 2002.

[69] Z. Ling and K. P. Viktor, "Sparse Matrix-Vector multiplication on FPGAs," in

Proceedings of the 2005 ACM/SIGDA 13th international symposium on

Field-programmable gate arrays, Monterey, California, USA, 2005, pp. 63-74.

[70] G. R. Morris and V. K. Prasanna, "Sparse Matrix Computations on Reconfigurable

- 197 -

Hardware." vol. 40: IEEE Computer Society Press, 2007, pp. 58-64.

[71] A. R. Lopes and G. A. Constantinides, "A High Throughput FPGA-Based Floating

Point Conjugate Gradient Implementation," in Proceedings of the 4th international

workshop on Reconfigurable Computing: Architectures, Tools and Applications

London, UK: Springer-Verlag, 2008.

[72] M. Bean and P. Gray, "Development of a high-speed seismic data processing platform

using reconfigurable hardware," in Expanded Abstracts of Society of Exploration

Geophysicists (SEG) International Exposition and 67th Annual Meeting, 1997, pp.

1990-1993.

[73] J. R. Marek, M. A. Mehalic, and A. J. Terzuoli, "A dedicated VLSI architecture for

Finite-Difference Time Domain (FDTD) calculations," in 8th Annual Review of

Progress in Applied Computational Electromagnetic, 1992, pp. 546-553.

[74] P. Placidi, L. Verducci, G. Matrella, L. Roselli, and P. Ciampolini, "A custom VLSI

architecture for the solution of FDTD Equations," IEICE Transactions on Electronics,

vol. E85-C, pp. 572-577, 2002.

[75] Y. El-Kurdi, D. Giannacopoulos, and W. J. Gross, "Hardware Acceleration for

Finite-Element Electromagnetics: Efficient Sparse Matrix Floating-Point

Computations With FPGAs," Magnetics, IEEE Transactions on, vol. 43, p. 1525,

2007.

[76] C. Dufour, J. Belanger, S. Abourida, and V. A. L. V. Lapointe, "FPGA-Based

Real-Time Simulation of Finite-Element Analysis Permanent Magnet Synchronous

- 198 -

Machine Drives," in Power Electronics Specialists Conference, 2007. PESC 2007.

IEEE, 2007, p. 909.

[77] D. Gregg, C. M. Sweeney, C. McElroy, F. A. C. F. Connor, S. A. M. S. McGettrick, D.

A. M. D. Moloney, and D. A. G. D. Geraghty, "FPGA Based Sparse Matrix Vector

Multiplication using Commodity DRAM Memory," in Field Programmable Logic and

Applications, 2007. FPL 2007. International Conference on, 2007, p. 786.

[78] G. A. Gravvanis and K. M. Giannoutakis, "Parallel approximate finite element inverse

preconditioning on distributed systems," in Parallel and Distributed Computing, 2004.

Third International Symposium on/Algorithms, Models and Tools for Parallel

Computing on Heterogeneous Networks, 2004. Third International Workshop on, 2004,

p. 277.

[79] P. Subramaniam and N. Ida, "A parallel algorithm for finite element computation," in

Frontiers of Massively Parallel Computation, 1988. Proceedings., 2nd Symposium on

the Frontiers of, 1988, p. 219.

[80] L. Yu, K. Ramdev, and K. K. Tamma, "An efficient parallel finite-element-based

domain decomposition iterative technique with polynomial preconditioning," in

Parallel Processing Workshops, 2006. ICPP 2006 Workshops. 2006 International

Conference on, 2006, p. 6 pp.

[81] E. M. Ortigosa, L. F. Romero, and J. I. Ramos, "Parallel scheduling of the PCG

method for banded matrices rising from FDM/FEM," J. Parallel Distrib. Comput., vol.

63, pp. 1243-1256, 2003.

- 199 -

[82] J. Sun, G. Peterson, and O. Storaasli, "Sparse Matrix-Vector Multiplication Design on

FPGAs," in Field-Programmable Custom Computing Machines, 2007. FCCM 2007.

15th Annual IEEE Symposium on, 2007, p. 349.

[83] G. Goumas, K. Kourtis, N. Anastopoulos, V. A. K. V. Karakasis, and N. A. K. N.

Koziris, "Understanding the Performance of Sparse Matrix-Vector Multiplication," in

Parallel, Distributed and Network-Based Processing, 2008. PDP 2008. 16th

Euromicro Conference on, 2008, p. 283.

[84] M. G. Ancona, Computational Methods for Applied Science and Engineering: An

Interactive Approach. Paramus USA: Rinton Press, 2003.

[85] M. R. Gosz, Finite Element Method: Applications in Solids, Structures, and Heat

Transfer. USA: CRC Press, 2005.

[86] D. J. Evans, The analysis and application of sparse matrix algorithms in the finite

element method. London: Academic Press, 1973.

[87] B. H. V. Topping and A. I. Khan, Parallel Finite Element Computations. Edinburgh:

Saxe-Coburg Publications, 1996.

[88] S. W. Bova and G. F. Carey, "A distributed memory parallel element-by-element

scheme for semiconductor device simulation," Computer Methods in Applied

Mechanics and Engineering, vol. 181, p. 403, 2000.

[89] T. J. R. Hughes, R. M. Ferencz, and J. O. Hallquist, "Large-scale vectorized implicit

calculations in solid mechanics on a Cray X-MP/48 utilizing EBE preconditioned

conjugate gradients," Comput. Methods Appl. Mech. Eng., vol. 61, pp. 215-248, 1987.

- 200 -

[90] B. Fagin and C. Renard, "Field Programmable Gate Arrays and Floating Point

Arithmetic," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.

2, pp. 365-367, September 1994.

[91] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "Wordlength optimization for

linear digital signal processing," IEEE Transaction on CAD of Integrated Circuits and

Systems, vol. 22, pp. 1432-1442, 2003.

[92] G. A. Constantinides, "Word-length optimization for differentiable nonlinear systems,"

ACM Transaction on Design Automation of Electronic Systems, vol. 11, pp. 26-43,

2006.

[93] C. T. Ewe, "Dual fixed-point: an efficient alternative to floating-point computation for

DSP applications," in Field Programmable Logic and Applications, 2005.

International Conference on, 2005, pp. 715-716.

[94] http://www.alpha-data.co.uk/products.php?product=adm-xrc-ii. [Accessed May 24,

2010]

[95] www.xilinx.com/products/silicon_solutions/fpgas/virtex/. [Accessed May 24, 2010]

[96] www.agilityds.com/literature/rc2000_datasheet_01000_hq_screen.pdf. [Quick View

accessed May 24, 2010]

[97] J. Hu, E. Stewart, S. Quigley, and A. Chan, "Solution of the 3D finite difference

equations using parallel reconfigurable hardware accelerators," in the Eighth

International Conference on Computational Structures Technology, 2006.

- 201 -

[98] L. A. Win, "RC2000 (ADM-XRC-II) API v1.04," 2006.

[99] IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std. 754-1985.

[100] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Numerical Recipes

in FORTRAN 77: The art of scientific computing. Cambridge. Cambridge University

Press, 1992.

[101] Peter P. Silvester and Ronald L. Ferrari. Finite Elements for Electrical Engineers,

Third Edition. Cambridge, Cambridge University Press, 1996.

[102] Singiresu S. Rao. The Finite Element Method in Engineering. Oxford, Elsevier

Butterworth-Heinemann, 2005.

[103] A. Wood, Introduction to Numerical Analysis. Harlow: Addison-Wesley,1999.

[104] http://www.cray.com/Home.aspx. [Accessed May 24, 2010]

[105] http://www.srccomp.com/index.asp. [Accessed May 24, 2010]

[106] "Xilinx ISE CORE GENERATOR floating-point operator v2.0.pdf."

[107] M. Bečvář and P. Štukjunger, "Fixed-Point Arithmetic in FPGA," Acta Polytechnica,

vol. 45, pp. 67-72, 2005.

[108] "Xilinx ISE CORE GENERATOR floating-point operator v3.0.pdf."

[109] "Xilinx ISE CORE GENERATOR floating-point operator v5.0.pdf."

[110] B. Carrion Schafer, S. F. Quigley, and A. H. C. Chan, "Acceleration of the Discrete

- 202 -

Element Method (DEM) on a reconfigurable co-processor," Computers & Structures,

vol. 82, p. 1707, 2004.

- 203 -

APPENDIX: PUBLICATIONS

International conference papers

1) J. Hu, EJC Stewart, SF Quigley, AHC Chan, “FPGA-based reconfigurable computing

system for the three-dimensional finite difference solution of the Laplace Equation”, the

14th Annual Conference of the Association for Computational Mechanics in Engineering

(ACME) 2006.

2) J Hu, EJC Stewart, SF Quigley and AHC Chan, “Solution of the 3D Finite Difference

Equations using Parallel Reconfigurable Hardware Accelerators”, the Eighth

International Conference on Computational Structures Technology 2006.

3) J Hu, EJC Stewart, SF Quigley and AHC Chan, “FPGA-based Acceleration of 3D Finite

Difference Floating Point Solution of the Laplace Equation”, the 15th Annual Conference

of the Association for Computational Mechanics in Engineering (ACME) 2007.

4) J Hu, SF Quigley and AHC Chan, “Reconfigurable Hardware Acceleration for a

Preconditioned Conjugate Gradient Solver of the 3D Tetrahedral Finite Elements”, the

16th Annual Conference of the Association for Computational Mechanics in Engineering

(ACME) 2008.

5) J Hu, SF Quigley and AHC Chan, “Reconfigurable Hardware Acceleration for a

Preconditioned Conjugate Gradient Solver of the 3D Tetrahedral Finite Elements”, the

Ninth International Conference on Computational Structures Technology 2008.

International conference posters

6) J Hu, Steven F. Quigley, Andrew Chan, “An Element-by-element Preconditioned

Conjugate Gradient Solver of 3D Tetrahedral Finite Elements on an FPGA Coprocessor”,

the 18th International Conference on Field Programmable Logic and Applications 2008.

