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Abstract

Stoner Criteria in Transition Metal Oxides and Heavy Fermions

M.I. Brammall

This thesis is an examination of the uses of mean-field theory in problems of the theory

of strongly-correlated electronic systems, particularly to the problem of orbital ordering

in transition metal oxides. We will apply mean-field theory to various models for orbital

ordering of transition metal oxides, and also show that mean-field theory is not as bad an

approximation as it might initially seem.

We are also interested modelling superconductivity in heavy fermion systems. We con-

clude from our modelling on transition metal oxides that the mean-field theory we use based

on the Stoner criterion will not be adequate to model such complicated phenomena. We pro-

pose an alternate mean-field theory based on non-linear fermionic transformations which we

introduce. We suggest further improvements in the form of a non-orthogonal transformation,

which we also introduce.

As a diversion, we model frustrated antiferromagnetism on a pyrochlore lattice. The

particular material is Gd2Ti2O7. We show that there are many effects in competition with

each other. We conclude with a proposed magnetic structure which appears to be a better

fit to experimental data than previous suggestions.
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Chapter 1

Introduction

1.1 Introduction

There are two major themes discussed in this thesis. The first both in order and magnitude

of discussion is the concept of orbital ordering. The second is that of superconductivity in

strongly correlated electronic systems, namely heavy-fermion materials. In between these

two sections, we will also present some work performed on a magnetic pyrochlore system

which is unrelated to both sections, but perhaps illustrates nicely the simplicity that can be

achieved with sensible interpretations of experimental data.

We will use a particular tool to analyse models and predict the behaviour of materials, and

that is a generalisation of the Stoner criterion from Stoner’s theory of ferromagnetism[37].

This will be used almost exclusively in our modelling, for better or worse. In part three,

we show how to improve on the simple model of Stoner to incorporate correlations to some

degree while still working in a single-particle framework.

The main problem with mean-field theory is that it is a weak-coupling theory, and in

f -electron systems, we are no longer in a weak-coupling regime due to the f -electrons being

so localised. Also, for 3d systems, mean-field theory is not as good an approximation as

one might hope it is. Mean-field theory has a tendency to over-emphasise any ordering

that may be present. Further, any ordering suggested by mean-field theory is perhaps even
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non-existent in the model being approximated.

The goal of this thesis is to show that mean-field theory can be a good method of studying

strongly correlated electronic systems, and more importantly, is a non-perturbative method.

This makes it useful for describing phase transitions. Most of all, we wish to develop an

improvement to mean-field theory which works in the limit of infinite local repulsion. To

this end, we use the concept of a non-linear fermionic transformation. This takes into account

the assumed infinite repulsion between strongly correlated electrons, while still allowing a

single-particle mean-field picture of the system.

1.1.1 Orbital Ordering

The concept of an orbital ought to be familiar from studies of the Schrodinger equation for

the hydrogen atom. Indeed, it is these same orbitals that we will use, even though there

are no materials containing hydrogen modelled in this thesis. We will use them as reference

points, and when we speak of a 3d orbital, for example, we will be taking the 3d orbital of

hydrogen as a reference. We can draw the orbitals by considering surfaces of equiprobability,

just as we can draw an orbit of a particle around a massive body as a surface of equal energy.

Orbitals have angular momenta associated with them, and hence moments. We are fa-

miliar with moments ordering in spin-systems, and we call this magnetism. We have no such

succinct word for orbital ordering, and so we use can only use the term orbital ordering.

Magnetism and orbital ordering are linked, and it is common to find one coexisting with

the other. Usually, ferromagnetism is accompanied by an alternating orbital arrangement,

sometimes called an antiferro-orbital arrangement to draw an analogy with antiferromag-

netism. Conversely, antiferromagnetism is accompanied by an orbital arrangement with the

same orbitals on each atom. Again, to draw the analogy with ferromagnetism, this is often

called a ferro-orbital arrangement.

A model that is well-used, but perhaps not applicible to our work, is the Kugel-Khomskii
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model (KK) [23]. The starting Hamiltonian is the Hubbard model. The Hamiltonian is

then expanded to second order in perturbtion theory. A key component that the KK model

accounts for that we do not is the spin-orbit coupling. We assume the spins to be fixed, and

so do not describe this aspect of the problem at all. Indeed, accounting for the spin degrees

of freedom would make our line of modelling prohibitively difficult. It has been suggested

that the KK Hamiltonian gives rise to an ordered isotropic spin phase, and that an energy

gap in the spin excitations can be caused by spin-orbit interactions. Since we assume a static

background of spins throughout, we are focusing on a slightly different problem.

The style of orbital ordering in the KK model is perhaps a little inflexible for when we use

non-standard orbitals. It is, however, perhaps widely more applicible than our modelling,

which is really at the level of individual materials, and cannot really be translated verbatim

between materials. Furthermore, the KK model is best applied to a material with a Mott

insulating state. It relies on magnetic superexchange, and does the perturbation in terms of

superexchange processes. This renders it inapplicible, since our materials are metallic, and

the exchange mechanism is double exchange. It is precisely double exchange that allows us

to avoid describing the magnetism in problems of orbital ordering. None of the materials we

consider are Mott insulators.

1.2 Scope and Aims of the Thesis

The principle aim of the thesis is to show that the Stoner criterion can be used to effectively

model theoretical systems, and coupled with a good amount of common sense and a critical

mind, much progress can be made. However, we also acknowledge that sometimes we can

get nowhere using the Stoner criterion alone, and so we make transformations on the model

we are working with to make the mean-field approximations used more reliable.
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1.3 Outlook

The remainder of this part is a discussion of the experimental systems that we will model, and

some results from well-known models that are relevant to us. There are three main examples

of strongly correlated electronic system of interest to us. The first that we will come across

are the colossal magnetoresistors. The second main class of materials are the heavy fermion

materials. Related to these are the high-temperature superconductors. Finally, we will have

cause to discuss frustration in magnets. We have a long treacherous road to walk before we

can begin to model these systems, but the scenery is pleasant, and will be detailed below.

In chapter two, we examine some ideas from physical chemistry, and motivate their

application to our modelling. The first idea we consider is the Hund’s rules [41] from atomic

physics. Since we are dealing with materials often containing localised electrons, the concept

of atomic orbitals survives to quite a large extent. We can then apply Hund’s rules to

calculate the likely configuration of electronic levels. This, however, is in competition with

the electrostatic field of the crystalline environment, which can lead to splitting of the energy

levels. This is the subject of crystal field theory.

Since we will focus on problems of orbital ordering, we can expect distortions to take

place since orbitals are anisotropic for all but the zero angular momentum orbitals. Jahn

and Teller explained this in their seminal work, which we discuss in section 2.4. Orbital

ordering is the basic mechanism to achieve the distortion observed in degenerate non-linear

molecules, and so this is the relevance of the Jahn-Teller effect for us.

Chapter three sees us move into discussions of experimental systems. These are the

systems we outlined in the beginning of this introduction. As we will see, strongly correlated

electronic systems offer a wealth of phenomena. Unfortunately, this makes their modelling

difficult, and we will have to resort to approximations and focusing on the most salient

features of the materials.
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We will be unable to progress very far without models, and in chapter four we outline

important properties of the two most important models for this thesis. The first is the

Hubbard model, and is notorious for its difficulty. Later in this chapter, things get even

more complicated as we introduce the Anderson lattice which is thought to contain the

essential physics of heavy fermion materials.

The models we will employ are usually impossible to solve exactly. We are thus forced

to use some method of approximation to gain insight into their solution. This is the subject

of chapter five, and is mean-field theory. This allows us to develop effective single-particle

pictures for interacting many-particle systems. It has well documented problems, however,

and we will try to improve on these problems in the later chapters of this thesis.

In chapter six, we finally move away from introductory material, and begin to discuss

applications of the models to physical systems. We will be modelling the ordering of electrons

in the t2g representation of the cubic group.

Chapter seven continues in a similar vein to chapter six, but for a different material,

and so we have to take different things into account in our modelling. We will model the

orbital ordering for electrons in the eg sector of the representation of the cubic group in d-

orbital space. Our intention is to model a certain region of the phase diagram of the colossal

magnetoresistive manganites.

We find some weaknesses of mean-field theory when we come to discuss impurities and

fluctuations in problems involving orbital ordering in the eg representation. The concept of an

orbital Nagaoka problem is introduced in this chapter. Solving this, we find an improvement

on the mean-field solution. While the improved solution corresponds to a situation which is

perhaps not physical, the solution is mathematically a better one than the mean-field theory,

and so we should be wary of mean-field theory.

We will deviate from using the Stoner criterion in chapter nine to illustrate and expand

on some work undertaken outside of the scope of the Stoner Criterion, which is intended for
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publication. In chapter 9 we analyse the experimental literature of Gd2Ti2O7, and resolve

some inconsistencies in both the experimental and theoretical literature by predicting some

states of our own.

In the latter part of the thesis, we will begin modelling superconductivity in heavy fermion

materials, where we find competition between the RKKY and Kondo effects introduced in

this chapter. This leads to very complicated and surprising behaviour, and we will find our

modelling is not sophisticated enough to capture anything that could correspond to a real

heavy-fermion material. However, we will develop a toy-model with some ideas on how to

embellish the model into a more sophisticated theory that will capture some real features of

heavy fermion materials. Chapter ten begins the task of improving mean-field theory. We

do this by introducing the concept of a non-linear fermionic transformation. In practise,

this means constructing creation and annihilation operators where d†↑d
†
↓ is not the same as

creating a d†↓. Then we apply the transformation developed to the Anderson lattice.

This generates an effective Hubbard model description of the Anderson lattice. We

develop a mean-field theory based on the transformation. We suggest further improvements

to the non-linear transformations developed in chapter eleven by introducing the concept of

a non-linear, non-orthogonal transformation. We feel that this will provide a more physically

realistic setting for the calculation. Unfortunately, it is quite difficult to perform mean-field

theory in the manner we have used in this thesis, and so we can only outline what we will

do in the future.
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Chapter 2

Physics and Chemistry of Solids

2.1 Introduction

Before we can hope to construct models of materials, we need to be able to understand

their chemistry. This chapter is intended to outline the three most pertinent examples of

phenomena in physical chemistry that will be relevant to our modelling of material systems.

The first is a set of laws from atomic physics, called Hund’s rules which determine the

electronic configuration of the ground state of atoms.

Since we will be working with crystalline materials, it is unreasonable to expect these

laws to survive. Surprisingly, most of them do, but the crystalline environment has its

own set of energy scales which compete with Hund’s rules. The energy of the crystal field

interaction is enough to beat some of the energy scales set by Hund’s rules. These are the

crystal field levels, and divide our space of orbitals into a set of irreducible representations of

the symmetry group of the crystal. In most of the examples we look at, the crystallographic

point group will be the cubic group, usually written as Oh.

Since we will discuss mostly problems of orbital ordering in this thesis, we will have occa-

sion to refer to the Jahn-Teller effect. This is an effect that lifts the degeneracy of electronic

levels by causing an orbital ordering to distort the crystal. Jahn and Teller demonstrated

that a non-linear molecule with degeneracy would distort to remove the degeneracy. Orbital
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ordering is the typical mechanism for this lifting of degeneracy, and so the Jahn-Teller effect

is relevant to us.

Some of the materials that we model are metallic magnets, and the exchange processes

that take place in these materials are important for our modelling. The double exchange of

Zener shows us that in the materials we model, we can often ignore the spin-degree of freedom

when combining double exchange ideas with the crystal field splitting of ions. Finally, in the

heavy fermion materials that we will model, there is a competition between the RKKY and

Kondo effects, and so we must also elaborate on these effects a little.

2.2 Hund’s Rules

Hund’s rules are derived purely from phenomenological considerations[41]. They are rules

for determining the configuration of the spin and orbital angular momentum of electrons in

an atom possessing an incomplete degenerate outer shell. Some of the rules survive when

we consider molecules in a crystalline environment, and a discussion of this will follow this

section.

Hund’s rules form a hierarchy for determining the spin and orbital ground-state config-

urations of the atoms. We list the rules in order here:

1. The total spin S should be maximal.

2. The orbital angular momentum L should be maximal, with constraints provided by

the first rule and Pauli exclusion.

3. The total angular momentum J should be |L − S| for less than half-filled shells, and

L+ S for more than half-filled shells.

We may be concerned about applying Hund’s rule to a solid where there is a lower degree

of symmetry than that of an atom in free space. However, some of Hund’s rules can survive
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and be relevant in solids. This is due to the relatively high-energy scale for the first rule,

and the slightly lower energy scale for the second rule.

Even though the rules are empirical in nature, there is some justification on a theoretical

level for their existence, which we discuss here, along with some implications.

2.2.1 The First Rule

The largest relevant atomic physics energy arises from exchange. Due to the Pauli principle,

when two electrons have parallel spins they must have an antisymmetric spatial wavefunction,

whereas when the electrons have an antisymmetric spin wavefunction then they must have

a symmetric spatial wavefunction. We express this by

Ψ(r1, r2, ...., rn) = Ψ(rσ(1), rσ(2), ..., rσ(n)) (2.1)

for the symmetric case and

Ψ(r1, r2, ...., rn) = sgn(σ)Ψ(rσ(1), rσ(2), ..., rσ(n)) (2.2)

where σ(i) is a permutation of the ith-coordinate, and sgn(σ) is the sign of the permutation,

with +1 corresponding to even permutations and −1 to odd permutations.

Since the electron-electron interaction takes the form

∫
d3r1

∫
d3r2|ψ(r1, r2)|2 e2

|r1 − r2|
(2.3)

the wavefunction for parallel spins has a lower energy as it vanishes where the interaction is

maximal. This interaction leads to Hund’s first rule which is that the total spin of an open

shell is maximal.
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2.2.2 The Second Rule

The next most important energy scale controls the choice of orbitals and competes directly

with the crystal-field energy scale in transition metals. The physical source of the energy is

again electrostatic. A classical explanation is that electrons orbiting an atom are less likely

to meet if the electrons orbit the atom in the same sense. Hund’s second rule is thus that

the orbital angular momentum is maximised, subject to the restriction of Fermi statistics.

The second Hund’s rule aligning the orbital angular momentum is on a similar energy

scale to the spin energy but is a fraction of it. Subject to crystal-field splitting interferring

with Hund’s second rule, the orbital angular momentum is quenched in transition metals.

The rare earth elements, on the other hand, have such localised f-electrons that often the

third Hund’s rule is also observed.

2.2.3 The Third Rule

The third Hund’s rule originates from relativistic effects and is usually small. The effect is to

induce a coupling between an electron’s spin and its orbital angular momentum, also called

spin-orbit coupling. The result is that for the first half of the shell the total spin and total

angular momentum are anti-parallel, whereas for the second half they are parallel.

j = |l − s|, n < M

j = l + s, n > M (2.4)

For Ce the spin-orbit coupling energy is around 0.25 eV and for Yb the spin-orbit energy is

of the order of 1 eV. In comparison transition metals typically have spin-orbit couplings of

around 0.1 eV.

It is important to realise that the role of the crystal field in the rare-earths is not to

stabilise the cubic harmonics, but is more subtle. The spin-orbit effects win and so we
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cannot separate the spin from the orbital angular momentum. It is the different rather more

complicated jz states which are split by the crystal field.

2.3 Crystal Field Theory

In a spherically symmetric atom, the orbitals within a given shell are energetically degenerate,

as discussed above. In a crystalline environment, we cannot expect this degeneracy to be

present. The breaking of this symmetry is the subject of crystal field theory. It was developed

in 1929 by Hans Bethe [5]. The basic idea is that electrons in a crystalline environment are

effected by the electrostatic field of the surrounding ions. This electrostatic field is called the

crystal field. The origin of the splitting originates from the anisotropic charge distribution

of the orbitals, and hence of the charge distribution.

For a simple example, consider a transition metal oxide with a perovskite crystal struc-

ture. We restrict attention to the active L = 2 d-shell. In the x̂2 − ŷ2 and 3ẑ2 − r̂2 orbitals,

the orbitals will point directly at the oxygen anions, and therefore will experience a strong

coulombic repulsion. The x̂ŷ, ŷẑ, and ẑx̂ orbitals, however, point in between the oxygen

anions, and so will experience less coulomb repulsion. There is therefore an energetic differ-

ence between these sets of orbitals, and we have lost the 5-fold orbital degeneracy. We now

have a set of three degenerate orbitals and a set of two degenerate orbitals with a splitting

between the two.

In this section, we will develop these ideas more concretely. The splitting of the levels is

determined by the representations of the group of symmetries of the crystal. The levels are

grouped according to irreducible representations of the point group of the crystal. Group

theory can only tell us the splittings of the orbitals, and not the energetics so we are unable to

determine the sequence of the levels. An alternative is to look at inelastic neutron scattering

data, and this is often used when using group theoretic methods become complicated. This

happens quickly for f-electron systems.
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There is a systematic nomenclature for labelling point groups which is used throughout

the literature, and that is Mulliken symbols. There is an account of the nomenclature in the

book by [25] for the reader who is curious of the meaning of these symbols. For our purposes,

there are only two irreducible representations of groups of interest. That is the t2g and eg

irreducible representations of the cubic group. The L = 2 d-orbitals form a five dimensional

vector space, while the order of the cubic group is 48. Since the dimension of an irreducible

representation of a finite group must divide the order of the group, we find that the five

dimensional d-orbital vector space decomposes into an irreducible doublet representation

and an irreducible triplet representation.

Take as an example LaMnO3. The crystal structure is perovskite. There is a octahedron

of oxygen atoms surrounding every manganese atom. The platonic dual to an octahedron

is a cube, and so the octahedral group is isomorphic to the cubic group, and hence their

irreducible representations will be isomorphic. The t2g and eg representations of these groups

are thus identical, and we can talk of the same orbitals in the representations.

The story does not end here. There are also weak and strong crystal field splittings. In

the weak case, the high-spin state is realised where, taking the case of cubic splittings for

d-orbitals, the t2g sector is half-filled first, then the eg sector is half-filled. This is repeated

for the next half.

For the strong-field case, the low-spin state is realised. Following the last example, the

t2g sector is completely filled, and then the eg sector is filled. For the 3d elements, the

former situation is realised up to cobalt, and the latter for the elements past cobalt. Cobalt

containing compounds are interesting, since both situations can be realised.

2.4 The Jahn-Teller Effect

If we consider a set of orbitals lying in a shell, say the d-orbitals, then we expect the orbitals

to be split by a crystal field, which depends on the symmetry of the crystalline environment.
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In the case of d-orbitals in a cubic environment, we have splittings into the t2g and eg

representations.

If we consider the motion of a hole in an otherwise filled d-shell in a cubic environment, say

Cu2+, then there will be a degeneracy in the orbital ground state between the x̂2− ŷ2 orbital

and the 3ẑ2 − r̂2 orbital, providing there is no further lifting of the degeneracy. However,

Jahn and Teller ([19], [38]) formulated and proved a theorem which describes when a further

lifting of the degeneracy is energetically favourable.

The problem of the lifting of the orbital degeneracy was first tackled by Landau with

phenomenological arguments. He argued that the ordering of orbitals will induce a distortion

of the crystal, and this distortion of the crystal will cost an energy E1 ∝ α(δz)2, for some

energy scale α and distortion δd. This will induce a splitting between the 3ẑ2 − r̂2 and the

x̂2−ŷ2 orbital. It is then energetically favourable for two electrons to lie in the 3ẑ2−r̂2 orbital

than the x̂2 − ŷ2 orbital which gains an energy E2 ∝ −βδd with some seperate energy scale

β. The total energy associated with distorting the crystal and repopulating the electronic

levels is E1 + E2 = α(δd)2 − βδd and this energy is minimised for a distortion of the order

δd = β
2α

.

Things were not as simple as this, however. The situation was complicated by molecules

with linear geometries and orbitally degenerate ground states, such as CO2, not showing

Jahn-Teller distortions. The splitting between the orbital levels in CO2 is ∝ (δd)2, and

therefore no Jahn-Teller distortion will occur.

The doubts thrown over the simple physical arguments provided by Landau were rigourously

resolved by Jahn and Teller, who used group and representation theoretic methods to prove

that the only molecules with an orbitally degenerate ground state that do not distort to lift

the degeneracy are those with a linear geometry. However, as with most group theoretic

methods employed in physics, it can only tell us the nature of the splittings leading to the

crystalline distortion. It cannot tell us the magnitude of such effects.
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2.5 Double Exchange

Double-exchange was first proposed by Zener [43]. We take as an example to illustrate

the double exchange mechanism, and one that will be especially important to us later, the

exchange between an Mn4+ and an Mn3+ ion mediated by an intermediate oxygen atom.

The situation is illustrated in (2.1).

Figure 2.1: Double Exchange in an Mn-O-Mn chain.

Double-exchange tells us that electrons move most easily if electrons do not have to

reorient spins when moving between ions in order to avoid paying Hund’s rule energies.

Delocalisation reduces the energy, and so this leads to ferromagnetic correlations between

neighbouring ions. For us, it will be one of the most used exchange mechanisms, notably

when we discuss exchange in saturated ferromagnets.

In the case of a saturated ferromagnet, double exchange enables us to avoid describing

the spin degree of freedom in itinerant magnets. The spin is guaranteed to be of one species

only, and though the assignment of up or down to the z component of a spin is arbitrary, it

will be fixed and it will be polarised due to the large Hund’s rule penalty for hopping, as an

example, an electron in the eg sector on Mn3+ to the empty eg sector on Mn4+. The only
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degree of freedom left for the electron is which eg orbital to hop into.

2.6 Summary

We have discussed some of the more pertinent examples of phenomena in physical chemistry

relevant to our modelling. There are three such phenomena, the Hund’s rules and crystal

field theory being intimately related. The third, the Jahn-Teller effect occurs in problems of

orbital ordering, and will be one of the major concerns of this thesis. We have also discussed

an important exchange mechanism for modelling that we will perform, and this is the double

exchange mechanism. Double exchange will allow us to avoid describing spin-degrees of

freedom in certain problems of orbital ordering that we will consider.

Now that we have presented some ideas in physical chemistry, we can employ these to

describe real materials, and this is the subject of the next chapter.
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Chapter 3

Materials

3.1 Introduction

Now that we have the required aspects of physical chemistry, we are able to discuss some of

the materials that we will be interested in. We will discuss some examples of the strongly

correlated materials that we will consider in this thesis. These materials are the heavy

fermion materials and the colossal magnetoresistors. We will focus on a few representa-

tive compounds in each case, and discuss their crystal structures, phases, and electronic

phenomena in each compound. While not directly relevant to the work in this thesis, the

high-temperature superconductors are the one of the main sources of interest in strongly

correlated materials, and do bear more than a passing resemblance to the heavy fermion

materials, and so an honorary short discussion of them is made. While the high-temperature

superconductors and colossal magnetoresistive manganites are fairly generic in their phases

diagrams, the heavy-fermion compounds have a wide range of phase diagrams. We focus on

a single representative element, UPt3.

3.2 Colossal Magnetoresistors

We will proceed with investigations into colossal magnetoresistive (CMR) materials. We will

begin with an overview of the magnetoresistive effect. Following this will be a discussion of
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the manganites, which are perhaps the best understood of all the colossal magnetoresistive

materials. There are other materials displaying the CMR effect, such as Sr2FeMoO6, but we

will postpone discussion of these materials to a later chapter.

3.2.1 The Magnetoresistive Effect

The magnetoresistive effect was discovered by Lord Kelvin in 1856[39]. Experiments were

performed on samples of iron placed in a magnetic field. It was found that the resistivity

increased when the magnetic field was parallel to the direction of the current. However,

when the field was applied perpendicular to the direction of the current, it was found that

the resistivity decreased. Kelvin was able to lower the resistivity by around 5%.

Until the late 1980s, it was thought impossible to lower the resistivity of a material by

application of a magnetic field any more than Lord Kelvin was able to. However, in 1988,

two research groups independently made vast progress in increasing the magnetoresistive

ratio. The materials exhibiting this effect were trilayer Fe/Cr/Fe, and multilayer Fe/Cr

discovered independently by the groups led by Grunberg[12] and Fert[10] respectively. Both

were awarded the 2007 Nobel Prize in Physics for their efforts.

This was further improved by the discovery of CMR materials, such as the LCMO and

LSMO manganites that we will discuss extensively in this section. Here, the magnetoresistive

ratio is increased by several orders of magnitude. In contrast to the technological applicability

of the GMR materials, the CMR effect is typically displayed at low temperatures only. A

possible exception is Sr2FeMoO6, but this material is difficult to make reliably, and oxygen

leeching seems to take place in the material.

3.2.2 The CMR Manganites

The manganites are a class of materials displaying the colossal magnetoresistive effect. The

parent compound, LaMnO3 has a perovskite crystal structure, which will be one of the most
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common crystal structures we use in this thesis (figure 3.1). Since the structure is locally

octahedral, which is the platonic dual of a cube, we have a local cubic symmetry.

Manganites have a fairly long history in condensed matter physics, although certainly not

as long as magnetite, a compound we will discuss later. The first paper containing results for

manganites was presented in 1950 by Van Santen [40]. In this paper, La was replaced either

by Ca, Sr, or Ba, and results for polycrystalline samples of (La, Ca)MnO3, (La, Sr)MnO3

and (La, Ba)MnO3 were reported. The main result was the appearance of ferromagnetism

in these compounds.

Figure 3.1: Crystal Structure of the La1−xCaxMnO3 Manganites

Since we have a crystal with cubic symmetry, the d-orbitals will split as cubic crystal

fields, the t2g and eg representations. The electronic configuration is illustrated in (3.2).

As is typical for strongly correlated electronic materials, such as the high-temperature

superconductors and heavy-fermion materials, the manganites have a varied and rich phase

diagram. The phase diagram for a variety of manganites share a lot of generic features.
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Figure 3.2: Crystal Field Scheme for the La1−xAxMnO3 Manganites

The phase diagram for hole-doped La1−xSrxMnO3 is shown in figure 3.3. Certainly, there

is no agreement on the nature of all the phases observed, as would be expected for such a

complicated material. There are a variety of spin, orbital and charge orderings that occur

at various points on the phase diagram. Various discussions can be found in [7, 31]

We now move on to a discussion of the phases in the phase diagram for La1−xSrxMnO3.

At x = 0, we have the parent compound LaMnO3. Here, we have a Jahn-Teller phase which

exists at very high temperature. The orbital ordering causing the Jahn-Teller distortion is

unclear, but numerous proposals have been put forward. One proposal states the orbital

ordering is alternating 3x̂2− r̂2 and 3ŷ2− r̂2 in a staggered pattern. Whatever the nature of

the ordering, it is a tough Mott insulator.

As we dope from x = 0, double exchange mechanisms will begin to take operation, and we

have seen in the previous chapter, this leads the system towards being a ferromagnet. For a

while, the canted antiferromagnetism survives, but eventually gives way to a ferromagnetic

insulating phase, with the emergence of charge ordering at low temperatures, peaking at

x = 1/8. Further doping melts the insulating phase and the material tends towards metallic

behaviour. This region is a ferromagnetic metal, and is the region of most interest to the

CMR community. At x = 3/8, the Curie temperature for the ferromagnetism reaches its

peak.
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Figure 3.3: Generic phase diagram of the hole-doped manganites (From [28])

At x = 0.5 we find the so-called CE phase. Experiments suggest that charge is stacked

along the z-axis.

When x > 0.5, the ferromagnetic region disappears quickly, and is replaced by an anti-

ferromagnetic phase competing with a charge ordered phase. It also illustrates the strong

asymmetry in particles and holes. This in particular implies any Hubbard model approach

will only work for one of the regions in the phase diagram, since we can switch between holes

and particles in the Hubbard model at half-filling.

There is controversy over the x = 2/3 region of the phase diagram. Radaelli et. al.

[30] suggest a Wigner crystal-like arrangement, with charge spread over the material. Other

authors suggest a stripe-like phenomena is present, and charge is concentrated. There is

strong theoretical evidence that these two states are very close in energy, and hopefully the

mystery can be resolved with experiments in the near future.
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3.3 Magnetism in Pyrochlore Systems

Magnetism is pyrochlore systems is a subject of intense current interest, with most interest

in the materials exhibiting the spin-ice phenomenon. We will not have occasion to discuss

spin-ice[6] in the work that we have done, but we will discuss some aspects of the phenomena

for completeness, and to illustrate why the pyrochlore material we consider later on does not

display spin-ice behaviour, which is possibly the first phenomena that is brought to mind by

most when discussing magnetism in pyrochlore systems.

3.3.1 The Pyrochlore Crystal Structure

The pyrochlore crystal structure is slightly intimidating at first sight. It is a network of

tetrahedra and octahedra. The space group for the material is Fd-3m. The pyrochlore

materials typically have formula A2B2O7, with A and B typically rare earths or transition

metals. For our purposes, we regard it as a network of tetrahedra. The structure of pyrochlore

is shown in figure 3.4.

Figure 3.4: The Pyrochlore Structure

The tetrahedral network in pyrochlore lends itself well to materials exhibiting geometric

frustration and novel forms of magnetism. Frustration occurs when even after breaking the

symmetry, there is still some degeneracy that prevents us from singling out a ground state.

The ferromagnetic materials include the materials displaying the spin-ice phenomenom,

which we will only discuss briefly since spin-ice is tangent to our interests. On the antifer-
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romagnetic side, we have the material of interest to us, Gd2Ti2O7. Both of these materials

have interesting magnetism originating from geometric frustration.

3.3.2 Spin-Ice

Spin-ice is a material of a high degree of current interest. It is a system with spin-degrees

of freedom on a pyrochlore system. Ordinary water ice is a system exhibiting surprisingly

complex behaviour. The hydrogen bonds satisfy a ‘two in, two out’ rules. In other words,

two hydrogen atoms lie close to each oxygen atom, and two hydrogen atoms should lie away

from each oxygen atom. This arrangement leads to a large residual entropy, and is the

motivation for the moniker “spin ice”. This situation is illustrated in figure 3.5.

Figure 3.5: Ice structure. Oxygen atoms are the large vertices, and hydrogen atoms are the
small black circles. As we can see, each oxygen atom has two hydrogen atoms close by, and
two neighbours which have hydrogen atoms close by.

In spin-ice, we have the situation where two of the magnetic moments point towards

the centre of the tetrahedron, and two of the moments point away from the centre of the

tetrahedron. This situation is illustrated in figure 3.6, and the analogy between water-ice

and spin-ice is clear.
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Figure 3.6: Spin-ice

Spin-ice is an example of a frustrated ferromagnetic, in contrast to the rather more

elementary frustration found in triangular antiferromagnets, which incidentally we have cause

to discuss in section 3.3.3. Locally strong crystal field effects cause the spins to point in

or out of the local tetrahedra. Coupled with long-range dipolar interactions, this creates

quasiparticles resembling magnetic monopoles.

3.3.3 Antiferromagnets on a Pyrochlore Lattice

More relevant to the work we will undertake is an antiferromagnet on a pyrochlore lattice.

This is a highly frustrated geometry. Consider the antiferromagnetic Heisenberg model

on a triangular lattice. This is the prototypical example of geometric frustration. Since a

tetrahedron is a polyhedron formed from triangles, we can expect a large degree of frustration

in tetrahedral antiferromagnets. Further, the pyrochlore structure is a network of tetrahedra,

and so pyrochlore systems are often synonymous with frustration and novel effects can arise

from this, such as the spin-ice phenomena discussed above.
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3.4 Heavy-Fermion Materials

One of the class of strongly correlated electronic compounds that has received a lot of atten-

tion is the heavy fermion compounds. They are typically U, Ce, or Yb based intermetallics,

although Np, Pu compounds have been reported to display heavy-fermion behaviour. As

such, heavy-fermion compounds are almost invariably f-electron systems, although LiV2O4

arguably displays heavy-fermion behaviour, despite containing no elements beyond the tran-

sition series. A detailed review of heavy fermion systems can be found in the review article

by Stewart [34].

The adjective heavy stems from the large effective masses of the conduction electrons,

which can be probed directly by de Haas-van Alphen measurements. The cyclotron masses

mc of the quasiparticles in magnetic resonance measurements of the magnetisation is mea-

sured in this experiment, and are found to be in the range 102− 103me. The cyclotron mass

is obtained from the cyclotron frequency ν in a magnetic field of strength B from the relation

mc =
eB

2πν
(3.1)

Electrons in an interacting system have an effective mass m∗, and the effective mass is

usually different from the bare electron mass, me. The effective mass is said to have been

renormalised by the interactions. Heavy fermions are materials characterised by a large

effective mass of the conduction electrons.

The path to the discovery of heavy fermion materials began in the 70s with the obser-

vation of mixed-valance materials. The first heavy fermion material discovered was CeAl3.

The discovery of the enormous enhancement of the effective mass caused a certain amount of

interest. The interest in heavy fermion materials, however, really began with the discovery

of superconductivity in CeCu2Si2. by Steglich et. al. [33]

There are certain experimental signatures of heavy fermion behaviour. The first is a very
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large linear coefficient γ of the specific heat capacity C, which in temperature ranges much

smaller than the Debye and Fermi temperatures looks like

C = γT + βT 3

where γ is at least 400 mJ/f-Atom Mol K, which is perhaps a little arbitrary. By contrast,

an ordinary metal would have γ ≈ 1 mJ/f-Atom Mol K. The relation between γ and the

effective mass m∗ is

γ ∝ m∗ (3.2)

and so it is suggestive that a large γ would correspond to a large effective mass.

3.4.1 UPt3

UPt3 is a heavy fermion superconductor. UPt3 is interesting because of an antiferromagnetic

ordering between spins coexisting with superconductivity. The antiferromagnetism sets in

at TN = 5 K. The bulk superconductivity was discovered in UPt3 at Tc = 0.54 K by Stewart

et al. [35] in 1984. The superconductivity of UPt3 is complicated, and is thought to have

multiple phases of superconductivity. A detailed review can be found in the review article

[20]

Figure 3.7: Crystal Structure of UPt3

In addition to the discovery of superconductivity, Stewart et al. presented evidence

which indicated that UPt3 is a superconductor with superconductivity propagated by spin-

fluctuations. Since then, there has been a large amount of work on superconductivity of UPt3
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because of its unique nature. The dispersion of bands of UPt3 is due to the hybridization

of the U 5f shell with the Pt 5d shell. Direct overlap of the U atoms is negligible since the

minimum U-U distance is 4.13 A, which is well below the Hill limit of 3.4 A. At distances

greater than this, 5f orbitals cease to overlap and become localised moments in the absence

of hybrdisation with a conduction band.

3.5 High-Temperature Cuprate Superconductors

The high-temperature superconducting cuprates are one of the biggest reasons for the in-

tense interest that has been generated in strongly correlated electronic systems, and though

they are not directly relevant to the work performed in this thesis, not mentioning them

at all in a work on strongly correlated electrons would be a huge omission. The first high-

temperature superconductor was discovered by Bednorz and Muller in 1986 [4]. This mate-

rial was La2−xBaxCuO4, and displayed a superconducting transition around 30 K. This was

thought to be the upper-limit for phonon mediated superconductors. The critical tempera-

ture of cuprate superconductors has increased dramatically since 1986.

Although there are different families of high-temperature superconductors, there is at

least one thing common to all and that is the existence of a plane of CuO2 (figure 3.8) where

the superconductivity takes place. The phase diagram for the cuprates is fairly generic 3.9.

Figure 3.8: Copper-Oxygen Planes
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Figure 3.9: Generic phase diagram of the Cuprates

Another reason for this short section on the superconducting cuprates is that they bear

resemblance to heavy fermion systems. Indeed, the models that are thought to describe these

two systems can be mapped onto each other, at least if one takes the Anderson lattice model

and d-p model to be the models that describe the heavy-fermion materials and high-TC

superconductors respectively.

3.6 Summary

Strongly correlated materials are wide in range, and we have only discussed a few examples

here. All the materials discussed here are strongly correlated due to the Coulomb interaction

between electrons with wave-functions of short spatial extent. Strong correlations can also

exist due to reduced dimensionality, such as in organic magnets, and carbon nanotubes, but

we will not have occasion to discuss them here.

We discussed examples of the strongly correlated materials that we will attempt to model

in this thesis. We will model them with various degrees of success. The CMR manganites

and the frustrated pyrchlore antiferromagnets are modelled reasonably well, we feel. The

heavy-fermion superconductors, however, are a completely different matter, and are far more

complex and have a wide range of phase diagrams. Our modelling is thus done at the level
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of a toy-model for the heavy fermion materials.
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Chapter 4

Models

4.1 Introduction

The Hubbard model is the first of the models that we will use in this thesis to be discussed.

It was introduced by Hubbard in 1963 in a series of six papers[13, 14, 15, 16, 17, 18]. It is

perhaps the simplest models of interacting electrons that one could construct. Unfortunately,

its solution is still intractable. We must resort to approximations if we are to make any

progress in solving the model. These methods of approximation will be discussed in chapter

four.

There are rigorous results on ferromagnetism in the Hubbard model. One of the most

important for us in the Nagaoka ferromagnetism[26]. In chapter seven, we will generalise this

to a ferro-orbital arrangement, and find that the exact solvability of the problem disappears,

and we are again forced to approximation.

We then discuss an even more complicated model than the Hubbard model, the Anderson

lattice. This would seem an unreasonable thing to do, since we cannot solve even the simpler

model. However, the Hubbard model is missing an essential physical process for modelling

heavy fermion materials, and that is hybridisation. The interplay between local moments and

conduction electrons is critical for modelling heavy fermion behaviour, and also we believe

this to be the case for modelling the high-temperature superconductors.
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4.2 The Hubbard Model

The Hubbard model takes the form

H = −t
∑

<jj′>σ

c†j′σcjσ + U
∑
j

c†j↑cj↑c
†
j↓cj↓. (4.1)

cjσ is an operator that creates a valence electron on site j with spin σ. While the model

apparently is simplistic, and indeed it is simple to understand the physics behind the model.

We have electrons that are itinerant on some lattice. The electrons gain an energy t for

moving to a nearest-neighbour site, and pay an energy U if there was already an electron of

opposite spin on the site the electron hopped to. Of course, Pauli exclusion applies and so

it is not possible to hop to a site where an electron with the same spin is located. Despite

the simplicity with which one can describe the model, it is notoriously difficult to solve even

on a geometry as simple as the square lattice.

4.2.1 The Nagaoka Problem: An Exactly Solvable Limit

It is desirable to have exactly solvable limits of models, even if they do not correspond

to physically realisable situations. This is the case with the Nagaoka problem[26], which

considers the half-filled Hubbard model in the infinite U limit, with the removal of a single

particle creating a hole. It is one of the few rigourous results in magnetism, and shows the

stability of ferromagnetism in the Hubbard model.

Nagaoka studied the limit where the antiferromagnetic kinetic exchange is suppressed.

At exact half-filling, the charge degrees of freedom are completely frozen. Removing a single

electron creates a hole, and this hole delocalises on a background on spins. It turns out that

under very general conditions, the homogeneity of a completely spin-polarized background

is optimal for the propagation of the hole, thus kinetic energy favours ferromagnetism. This

is stated in the celebrated Nagaoka theorem.
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Let the number of electrons be N . If the lattice satisfies a certain connectivity condition,

then the ground state has the maximal total spin, and it is unique, apart from the trivial (N−

1)-fold spin degeneracy. The connectivity conditions require the existence of interconnecting

loops, where the loops should pass through no more than four sites. The lattice is also

required to be bipartite. This excludes the triangular lattice, which is a frustrated geometry,

and we will have cause to discuss frustrated systems further in chapter nine.

The formulation of the Nagaoka theorem makes it clear that the number of lattice sites has

to be finite. Thus when speaking of the Nagaoka theorem for say the square lattice we mean

arbitrarily large but finite pieces of the square lattice. When taking the thermodynamic

limit, we are unsure if the Nagaoka state has an extent beyond that of a point in the

phase diagram of the Hubbard model. Numerical simulations have been performed, but the

situation remains unclear. The only certainty is that more than one hole is analytically

intractable for now.

4.3 The Anderson Impurity Model

The Anderson lattice is a generalisation the model employed by Anderson[3] to describe a

magnetic impurity in a host metal. The Anderson impurity model takes the form

H = −t
∑
jσ

c†jσcj′σ + V
∑
σ

(
f †σc0σ + c†0σfσ

)
+ εf †σfσ + Uf †↑f↑f

†
↓f↓ (4.2)

where fσ is the annihilation operator for the magnetic impurity, chosen to sit somewhere on

the lattice, cjσ is a conduction electron annihilation operator at the site indexed by j, with

spin σ. The f operator is a fermion, and hence has fermionic commutation relations.

This model is similar in form to the Hubbard model, but the physical situation is com-

pletely different. Firstly, the itinerant electrons are not the strongly correlated electrons. In

the Hubbard model, there is only one species of electron, and these electrons play both roles.
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In the Anderson lattice, the strongly correlated electrons are localised, and are only able

to participate in the physics of the problem by hybridisation with the conduction electrons

governed by the term in V . The term in U is the usual on-site repulsion between strongly

correlated electrons, which in this case would be electrons on the magnetic impurity. The

term in t is the tight-binding model type transport of the conduction electrons.

4.3.1 The Kondo Effect and RKKY

In order to gain some insight it is worth studying an isolated impurity in the sea of conduction

electrons The experimental input is that of low concentrations of magnetic impurities in a

paramagnetic host. For examples, doping Mn into Cu, we do not find any magnetic ordering

at low temperatures. First we will tackle a limit of the Anderson model that of V → 0 when

the systems decouple.

There is a canonical transformation called the Schrieffer-Wolff[32] transformation that

takes us from the Anderson impurity model to the Kondo model[22]. The idea is that

we perform a Unitary transformation which is chosen to diagonalise H to order V . If

the states transform as |ψ′ >= exp(−S)|ψ >, then the Hamiltonian transforms as H →

exp(−S)H exp(S). Here, S is skew-Hermitian. We write the Hamiltonian as a Taylor series

exp(λS)H exp(−λS) = H +
∞∑
n=1

λ

n!
[S, [S, [. . . H] (4.3)

where there are n commutators in the last term on the right-hand side.

To see this, consider

d

dλ
exp(λS)O exp(−λS) = exp(λS)[S,O] exp(−λS) (4.4)

As λ→ 0, we can see

d

dλ
O = [S,O] (4.5)
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and so the derivative acts as commutation, and continuing the series, we have

exp(λS)H exp(−λS) = H + [S,H] +
1

2
[S, [S,H]] + . . . . (4.6)

Let H1 = [S,H], H2 = [S, [S,H]], and so forth.

Let H1 and S be small. Grouping terms of similar orders, we obtain

H ′ = H0 + (H1 + [S,H0]) +

(
[S,H1] +

1

2
[S, [S,H1]]

)
. (4.7)

The trick is now to find an S such that

H1 + [S,H0] = 0 (4.8)

and then

H ′ = H0 +
1

2
[S,H1] +O(δ3) (4.9)

where the second term is O(δ2).

The initial problem is then mapped onto a new problem which is second order in δ. There

are several important considerations. The first is that if there is a contribution at order δ,

then no such S exists. We cannot find an analogue in the Hubbard model, for example, due

to the lack of hybridisation. This will be of no concern to us, however. Further, the presence

of degeneracy can make the technique fail.The transformation modifies the states and the

new meaning of the operators must be carefully interpreted. We must also be able to find

S, rather than demonstrate its existence, to be able to perform the transformation.

The small parameter is assumed to be V , the hybridisation between the two systems

H0 =
∑
kσ

εkc
†
kσckσ + ∆

∑
σ

f †σfσ + Un̂f↑ n̂
f
↓
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H1 =
V√
N

∑
kσ

(
f †σckσ + c†kσfσ

)
Now let us find S, let us look at:

S0 =
∑
kσ

Akσf
†
σckσ

[H0, S0] =
∑
kσ

(
∆ + Un̂fσ̄ − εk

)
Akσf

†
σckσ ∼ H1 =

V√
N

∑
kσ

(
f †σckσ + c†kσfσ

)
which is similar to the first part of H1, but there is a second contribution so we now include:

S1 =
∑
kσ

Bkσn̂
f
σ̄f
†
σckσ

[H0, S1] =
∑
kσ

(∆ + U − εk)Bkσn̂
f
σ̄f
†
σckσ

Use S0 +S1 with carefully chosen coefficients which both cancel the term in n̂fσ̄ and reproduce

the correct coefficient in H1:

Bkσ (∆ + U − εk) + AkσU = 0

(∆− εk)Akσ =
V√
N

and hence

Akσ =
V√
N

1

∆− εk

Bkσ =
V√
N

−U
(∆− εk)(∆ + U − εk)

and then remembering that the commutator is anti-symmetric

S =
V√
N

∑
kσ

1

∆− εk

(
f †σckσ − c

†
kσfσ

)[
1− n̂fσ̄U

∆ + U − εk

]
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which can be written as

S =
V√
N

∑
kσ

(
f †σckσ − c

†
kσfσ

)[ 1− n̂fσ̄
∆− εk

+
n̂fσ̄

∆ + U − εk

]
(4.10)

The effective Hamiltonian is

1

2
[S,H1] =

V 2

2N

∑
kσ

∑
qτ

[(
f †σckσ − c

†
kσfσ

)[ 1− n̂fσ̄
∆− εk

+
n̂fσ̄

∆ + U − εk

]
,
(
f †τ cqτ + c†qτfτ

)]

=
V 2

2N

∑
kqσ

U

(εk −∆)(∆ + U − εk)

(
f †σckσf

†
σ̄cqσ̄ + c†kσcqσ̄f

†
σ̄fσ + c†kσfσc

†
qσ̄fσ̄ + c†qσ̄ckσf

†
σfσ̄

)

+
V 2

2N

∑
kqσ

[
1− n̂fσ̄
∆− εk

+
n̂fσ̄

∆ + U − εk

](
f †σfσδkq − fσf †σδkq + ckσc

†
qσ − c

†
kσcqσ

)
We can isolate three contributions

V 2

N

∑
kqσ

1

∆− εk

[
f †σfσ − c

†
kσcqσ

]
+

U

(εk −∆)(∆ + U − εk)
n̂fσn̂

f
σ̄

A ‘non-interacting’ bit which renormalises the energies and allows the conduction electrons

to ‘scatter’ off the origin.

V 2

2N

∑
kqσ

U

(εk −∆)(∆ + U − εk)

[
f †σf

†
σ̄cqσ̄ckσ + c†kσc

†
qσ̄fσ̄fσ

]

A term which connects to either vacant or doubly occupied f -atoms.

V 2

2N

∑
kqσ

U

(εk −∆)(∆ + U − εk)

[
c†kσcqσ̄f

†
σ̄fσ + c†qσ̄ckσf

†
σfσ̄ − c

†
kσcqσf

†
σ̄fσ̄ − c†qσckσf

†
σ̄fσ̄

]
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which can be rewritten as:

V 2

N

∑
kq

U

(εk −∆)(∆ + U − εk)

[
−n̂kqn̂

f + ŝkq.Ŝ
f
]

where:

n̂kq =
1

2

∑
σ

c†kσcqσ n̂f =
1

2

∑
σ

f †σfσ

ŝkq =
1

2

∑
στ

c†kσ
∑
στ

cqτ Ŝf =
1

2

∑
στ

f †σ
∑
στ

fτ

are average electron numbers and spins.

This final term is the residual interaction between the f -electron spin and the conduction

electrons. This final term is the interesting one for the magnetic impurity doped into a

paramagnetic host, and makes a connection to the Kondo Hamiltonian

H =
∑
kσ

εkc
†
kσckσ + J ŝ0.Ŝ

f

where ŝ0 is the spin operator for the conduction electrons on site zero.

J =
V 2U

(µ−∆)(∆ + U − µ)

The resolution of the Kondo Hamiltonian is that a Kondo singlet forms. The simplest

calculation which suggests this result is variational, and is due to Varma and Yafet[42].

| ψ〉 =

[
a+

∑
kσ

Akσf
†
σckσ

] ∏
εk<µ

(
c†k↑c

†
k↓

)
| 0〉

The Fermi sea is allowed to populate the f -level. It is crucial that the chosen state has

the symmetry of the unique Fermi sea and that the f -electron is not present in the reference
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state.

〈ψ | ψ〉 =| a |2 +
∑
kσ

| Akσ |2

〈ψ | H | ψ〉 =| a |2 E0 +
∑
kσ

| Akσ |2 (E0 + ∆− εk)

+
V√
N

∑
kσ

∑
εk<µ

a∗Akσ +
V√
N

∑
kσ

∑
εk<µ

aA∗kσ

Minimisation over the parameters provides:

∂

∂a∗
7→ E0a+

V√
N

∑
kσ

∑
εk<µ

Akσ = εa

∂

∂A∗kσ
7→ (E0 + ∆− εk)Akσ +

V√
N
a = εAkσ

We need to consider the cases of both a singlet and a triplet for comparison.

For the triplet case we have

∑
σ

Akσσ = Tk

(
f †↑c
†
k↓ + f †↓c

†
k↑

)

ε = E0 + ∆− εk ≥ E0 + ∆− µ = εT

while the singlet gives ∑
σ

Akσ = Sk

(
f †↑c
†
k↓ − f

†
↓c
†
k↑

)

Sk =
V√
N

a

ε+ εk −∆− E0

ε = E0 +
V 2

N

∑
k

∑
εk<µ

2

ε+ εk −∆− E0
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If we set ε ≡ εS = εT − δ then:

∆− µ− δ = 2V 2 1

N

∑
k

1

εk − µ− δ
7→ V 2

∫ µ

−∞
dερ(ε)

1

ε− µ− δ

as δ 7→ 0 there is a logarithmic divergence caused by the states near µ:

∆− µ− δ .
= V 2ρ(µ) ln

[
δ

W + µ

]

where W is the band-width:

δ ∼ W exp

(
− µ−∆

V 2ρ(µ)

)
so:

εS = εT −W exp

(
− µ−∆

V 2ρ(µ)

)
There is always a small energy gain from the situation when the local moment forms a singlet

with a conduction electron close to the Fermi surface. This is the Kondo singlet, and is the

cause of a resistance minimum in metals containing magnetic impurities.

The energy gain is non-perturbative. To all orders in perturbation theory in V , the

contribution to the energy is zero. This tendency to form a local singlet ensures that the

local moment fluctuates in direction and therefore does not lead to ordering of spins at low

temperatures.

Now we move on to the RKKY effect. If we consider the limit V → 0 in the Anderson

hamiltonian, there will be no hybridisation between the conduction electrons and the local

moments. In the absence of hybridisation, the conduction electrons form a non-degenerate

Fermi sea, while the local moments form a degenerate sea of spins. There is a method of

lifting the spin-degeneracy of the local moments by performing perturbation theory to fourth

order.

A local moment changes orientation by creating particle and hole excitations with dif-
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ferent spin orientations. These excitations then travel across to a second local moment and

annihilate by changing its orientation in a complementary way. In the intermediate state

both local moments are occupied:

From the diagram shown in figure 4.3.1, we can see that this contributes an energy

(−1)
V 4

N2

∑
kk′

θ(εk − µ)θ(µ− εk′)ei(k−k
′).(Ri−Ri′ )(−1)δτσ′δτ ′σ

1

εk −∆

1

εk′ − εk
1

εk −∆

Jij ∼
V 4

N2

∑
kk′

θ(εk − µ)θ(µ− εk′)
(εk′ − εk)(∆− εk)2

4ei(k−k
′).(Ri−Ri′ ) ∼ V 4

(∆− µ)2
χij

where χij is the paramagnetic susceptibility of the conduction electrons.

This interaction is called the RKKY interactions and dominates in metals. Magnetism

is the natural result:

H ∼ V 4

(∆− µ)2

1

N

∑
k

Ŝ−k.Ŝkχk
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In the Anderson lattice, the magnetism is perturbative while the Kondo effect is non-

perturbative. In the limit V 7→ 0 magnetism is expected to win.

4.4 The Anderson Lattice

The Anderson Lattice model is a generalisation of the impurity model to that of a lattice of

f -sites. The model is easily done by adding a sum over sites on the f operators

H = −t
∑
jσ

c†jσcj′σ + V
∑
jσ

(
f †jσcjσ + cj†jσfjσ

)
+ ε
∑
jσ

f †jσfjσ + U
∑
j

f †j↑fj↑f
†
j↓fj↓ (4.11)

There are two natural limits of the Anderson lattice. The first is the atomic limit, where

V → 0, and we have an array of local moments decoupled from the conduction electrons.

The second is the case that the penalty for double occupation vanishes, U → 0. Here,

the strongly correlated electrons decouple, and the local moments can hybridise with the

conduction electrons freely.

4.4.1 Schrieffer-Wolff and the Kondo Lattice

Schrieffer and Wolff, as we saw above, showed that the Anderson impurity model is equivalent

to the Kondo model in a certain parameter regime. This is where single impurity occupancy

is heavily favoured and double occupancy of the impurity level is prohibitively energetically

costly. The Schrieffer-Wolff transformation was introduced for deriving the Kondo impurity

model from the impurity Anderson model. The derivation of the Kondo lattice from the

Anderson lattice proceeds through the same steps, and gives essentially the same results,

except for additional f-f hopping terms. We will not outline the calculation since it is lengthy,

we have basically outlined the steps required in the impurity case, and we will not be using

the Kondo lattice model. This is due to the Kondo lattice being written in terms of spin

operators. As is well known, there is no Wick’s theorem for spin operators, and so the
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methods we will use in later chapters will not apply. For this reason, even though we will

consider the Anderson lattice in the Kondo lattice regime of infinite repulsion and at least

one f -electron present, we will work with the Anderson lattice only.

4.5 Summary

We have introduced the two models that will feature the most heavily in this thesis. The

first by order of presentation and weight is the Hubbard model. The second is the Anderson

lattice model. They are both examples of Hamiltonians which can be used to describe

strongly correlated electronic materials.

We are now at the stage where we have some insight into materials, and some standard

models to aid us in building models for individual materials. What we do not have is some

method of solving them. The models we have introduced here are usually too difficult to

solve without approximation, even though the models themselves are only approximations to

physical systems.We will introduce a method for solving models in a single particle picture

that we will use througout this thesis, and that is mean-field theory.
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Chapter 5

Mean-Field Theory

5.1 Introduction

Strongly correlated electronic systems typically require non-perturbative methods to solve

their assoicated models. Perturbative methods typically fail to describe the many-body

ground state of the system. Perturbation theory is built upon the notion that the kinetic

portion of the many-electron Schrodinger equation is the dominant part of the Hamiltonian,

and weak correlations are typically added in the form of a finite set of Feynman diagrams.

This approach does not capture even the very basic properties of strongly correlated systems

such as the generation of robust energy gaps in the spectra, of an origin different than the

well-known band gaps that lead to insulating behavior when the chemical potential lies in

those gaps.

Unfortunately, non-perturbative methods are notorious for their complexity, and lack

of coherent framework for their study. One method we can use to understand strongly

correlated materials is mean-field theory.

Mean-field theory is a tool for studying many-body physics in a single-particle picture. It

will be used quite extensively throughout this thesis, and so it is worth introducing in some

detail. In the context of the lattice models we will use exclusively, mean-field theory takes

its name from considering a particle on a given site to feel an averaged contribution from all
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particles on other lattice sites.

We consider first the Hubbard model. As discussed, the Hubbard model is

H = −t
∑

<jj′>σ

c†jσcj′σ + U
∑
j

nj↑nj↓. (5.1)

In the limit U → 0 this model is solvable, since it reduces to the tight-binding model. In the

regime U 6= 0, however, the model is in general impossible to solve in dimensions other than

one. This is unfortunate, since it is possibly the most basic model of interacting electrons

one could construct. We are then forced to resort to methods of approximation. Mean-field

theory is one such method of approximation.

To illustrate the basic ideas of mean-field theory, let us consider the term in U in (5.6). To

solve the tight-binding model, we diagonalise the Hamiltonian by a Bloch-transformation[11],

which takes us into reciprocal-space. Applying a Bloch transformation to U
∑

j nj↑nj↓ leaves

us with a mess in the interaction term, although the kinetic part of the Hamiltonian will be

diagonalised. The momentum conservation in the interaction term in reciprocal space makes

the Hamiltonian far more difficult to solve than it was in real space, where the interaction

term was diagonal.

We cannot diagonalise the Hubbard Hamiltonian in general. To proceed, we shall employ

mean-field theory to approximate the many-body effects in a single-particle picture. We

consider the interaction term to consist of averaged fields. That is, we consider the interction

term to take the form

U
∑
j

nj↑nj↓ ≈ U
∑
j

(nj↑ < nj↓ > +nj↓ < nj↑ >

− c†j↑cj↓ < c†j↓cj↑ > −c
†
j↓cj↑ < c†j↑cj↓ >

+ c†j↑c
†
j↓ < cj↑cj↓ > + < c†j↑c

†
j↓ > cj↑cj↓ (5.2)
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The first line corresponds to ẑ-axis magnetism, the second to x̂ − ŷ magnetism, and the

third to superconductivity. This replaces the correlated multi-particle Hamiltonian with a

single-particle effective Hamiltonian with rescaled physical quantities. We can see that the

term

nj↑ < nj↓ > +nj↓ < nj↑ (5.3)

corresponds to z-axis magnetism by noticing an imbalance in either the spin-up or spin-down

population will lead to the formation of a moment, and hence magnetism. The term

c†j↑c
†
j↓ < cj↑cj↓ > + < c†j↑c

†
j↓ > cj↑cj↓ (5.4)

can be seen to lead to superconductivity because a non-zero < cjσcjσ̄ > will that Cooper

pairs have started forming. For the term

c†j↑cj↓ < c†j↓cj↑ > −c
†
j↓cj↑ < c†j↑cj↓ > (5.5)

we note that < c†j↑cj↓ >< c†j↓cj↑ > can be written as (mx + imy)(mx − imy).

We can now diagonalise this mean-field Hamiltonian by employing the assumption that

the averages do not change with respect to site position, and thus the reciprocal space

mean-field Hamiltonian takes the form

H = −t
∑
kσ

(γ(k) + U < nσ̄ >)c†kσckσ. (5.6)

Here, γ(k) is the structure factor. We have diagonalised the Hamitonian in a mean-field

approximation and can easily read off the spectrum.
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5.2 Landau Mean-Field Theory

We will now move on to describe the Landau theory of phase transitions. This was introduced

by Landau to provide a framework to describe phase transitions at a classical level. This is

achieved through the concept of an order parameter. Landau theory describes the behaviour

of the free energy, G, and a function of the order parameter Θ. The choice of the order

parameter must respect the symmetry present in the description of the problem.

The idea is that the free-energy should be analytic in the order parameter, and so the

free-energy should admit a Taylor expansion in terms of the order parameter

G = G0 +G1Θ +G2Θ2 +G3Θ3 +G4Θ4 + . . . . (5.7)

We can show G1 = 0 from the condition that the free-energy is minimised in thermodynamic

equilibrium, which we assume. G3 is often equal to 0 as well. Landau theory is typically

applied to second-order phase transition, and G3 being non-zero guarantees a first-order

transition. In this thesis, we are no longer guaranteed that G3 = 0 since we will have cubic

invariants present in our system and so we must include it. However, this forces any phase

transition to be first-order, and so all the results of criticality and universality do not apply

here. The vanishing of the coefficient G2 is of particular interest to us, since this gives us

the Stoner criterion, which we now move on to discuss.

5.3 The Stoner Criterion and its Stability

We now describe one of the most used concepts in this thesis. That is the Stoner criterion

and its stability. It is used to predict where phase transitions occur as a function of the order

parameter in the Landau expansion of the free-energy. This concept comes from the Stoner

model of ferromagnetism, which we outline briefly here.

Stoner considered a simple model of ferromagnetism[37]. The observation that in a
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paramagnetic metal, the density of states is equal for both spin species is the starting point.

Applying a field will tend to order the electrons ferromagnetically. When the electrons

develop a ferromagnetic ordering, there will be a bias to one species or the other. This will

alter the density of states for both species, and there will be a gap in the energy spectrum.

When transitioning to a ferromagnet, the system will develop a spin polarisation towards

one species, which we will label as ↑ and the population that electrons will be depleted from

will be labelled ↓. The energy gain from depopulating one spin species is δεδn, and we have

to pay an energy U(n/2 + δn)(n/2− δn), and so the system will transit to a ferromagnetic

state if

−δεδn+ Uδnδn > 0 (5.8)

which is achieved when

U
δn

δε
> 1 (5.9)

or in other words

Uρ(ε) > 1 (5.10)

where ρ(ε) is the density of states.

We call the above result the Stoner Criterion for the free Fermi Gas to display ferro-

magnetism in an applied field. It is important to note that the state is itinerant. As we

will see, this Stoner criterion is the same as the expression for the Stoner criterion of the

Hubbard model to display itinerant ferromagnetism. Note that if a cubic invariant G3 term

was present, if we have no moment then G2 = 0. However, differentiating G with respect to

Θ twice, we have

Θ2 =
−G2 − 3G3Θ

6G4

(5.11)

and so even if G2 is zero, G3 may not be and ordering could have developed in the system

already. This is the first-order nature of the transition described by a non-zero G3 in the
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Landau free-energy.

5.4 Mean-Field Theory of the Hubbard Model

We now relate the Stoner model to Landau theory, and this idea will be used throughout

the thesis from the other direction. We can generalise the notion of the Stoner criterion to

other models where the order parameter is not that of a simple ferromagnet, but an order

parameter for orbital ordering. We will see that the vanishing of G2 leads to the same result

predicted by the elementary argument presented above.

The dispersion of the Hubbard model at the mean-field level takes the form

Eσ = −tγkZ + U(n+ σm) (5.12)

where γk is the structure factor, σ = ±1 in the sum, and σ as an index represents the spin.

This leads to a Gibbs free-energy of

G =
1

2N

∑
σ

∫
dγρ(γ)(Eσ − µ)fσ − TS − U(

n2

4
−m2) (5.13)

where S is the entropy. The free-energy formally depends on n,m and µ. However, it should

be clear that n depends on µ, and so we do not need to worry about n in an expansion of

the free-energy. Expanding in the order parameter, we have

G = G0 +
1

2
Gmmm

2 +

(
1

24
Gmmmm +

1

2
δµ2Gµµ +

1

2
m2δµGµmm

)
m4. (5.14)

This is minimised when δµ = 0, from which we have

δµGµµ +Gµmm = 0 (5.15)

→ δµ = −Gµmm

Gµµ

(5.16)
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which leads to the result

G = G0 +
1

2
Gmmm

2 +

(
1

24
Gmmmm −

1

8

G2
µmm

Gµµ

)
m4 (5.17)

The phase diagram of the mean-field Hubbard model on a bipartite lattice is show in

figure 5.1. It is remarkable that ferromagnetism is completely eliminated from the low doping

regime: below a lower critical density n < ncr, the ground state remains paramagnetic even

at U →∞. It has to be emphasized that the theories we are referring to here are not exact,

in the sense that we cannot be sure that the area in the phase diagram which bears the label

FM, is indeed ferromagnetic. The claims about the absence of ferromagnetism, however, are

far more dependable. In particular, Kanamori[21] brought a cogent argument to show that

the Hubbard model cannot have low density ferromagnetism in three-dimensional systems.

Figure 5.1: Phase Diagram of the Mean-Field Hubbard Model on a Cubic Lattice.

The Nagaoka state is at the centre-bottom of the phase diagram, where mean-field theory
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suggests that ferromagnetism extends from this point. Whether this can believed is still an

open question.

5.5 Mean-Field Analysis of the Anderson Lattice

We now proceed to use mean-field theory on the Anderson Lattice model (4.11), which is of

a great deal of interest to us in the latter part of this thesis. This section presents somewhat

a strawman argument, since mean-field theory is known to give a poor approximation to the

real physics of the Anderson latticen due to its overemphasis on ordering.

For ease of analysis, we will assume ferromagnetic correlations and search for order in

a square lattice. We will show that the model has ferromagnetic order in the mean-field

approximation, contrary to the heavy-fermion systems we hope to model.

We will make a mean-field approximation for the quartic term in U . We will take as our

mean-fields the number operators for the f electrons, and the magnetic contributions. Our

mean-field Hamiltonian then is

H = −t
∑
jj′σ

c†jσcj′σ + V
∑
jσ

(
f †jσcjσ + c†jσfjσ

)
+ ε
∑
jσ

f †jσfjσ

+U
∑
jσ

(
< f †jσfjσ > f †jσ̄fjσ̄− < f †jσ̄fjσ > f †jσfjσ̄

)
(5.18)

where

< f †jσfjσ > =
1

2
nσ + σmz (5.19)

< f †jσfjσ̄ > = Sx + iσSy (5.20)

We can ignore the magnetic terms in the x and y directions by quantising in the z direction,
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and writing mz = m, we have

H = −t
∑
jj′σ

c†jσcj′σ + V
∑
jσ

(
f †jσcjσ + c†jσfjσ

)
+
∑
jσ

(
ε+ U(n+ σn)f †jσfjσ

)
(5.21)

(5.22)

We can now Bloch transform this mean-field Hamiltonian to obtain

H = −tZ
∑
kσ

γkc
†
kσckσ + V

∑
kσ

(
f †kσckσ + c†jσfjσ

)
+
∑
kσ

(
ε+ U(n+ σn)f †kσfkσ

)
(5.23)

(5.24)

which is diagonal in k-space.

We can rewrite our k-space mean-field Hamiltonian as

H =
∑
kσ

[
f †kσ, c

†
kσ

]
HMF

 fkσ

ckσ

 (5.25)

where

HMF =

 ε+ U (n+ σm) V

V −tZγk

 (5.26)

Again, γk is the structure factor, and Z is the coordination number.

The eigenvalues for HMF give us the mean-field dispersion for the Anderson lattice, and

are

E(K)±σ =
−tγkZ + ε+ U (n+ σm)

2
±

√(
ε+ tγkZ + U (n+ σm)

2

)2

+ V 2 (5.27)

The next step is to find the single-particle correlations, for which we employ the method
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of Green’s functions. The correlations are given by the formula

< c†ici′ >=

∫
C

dz

2πi
f(z − µ)G(z)ii′ (5.28)

where f is the Fermi function, and G is the Green’s function for the mean-field Hamiltonian

HMF , defined by

G(z) = [z −HMF ]−1 (5.29)

and in our case is equal to

G(z) =
1

(z − (aσ − χσ))(z − (aσ + χσ))

 z − (aσ + dσ) −V

−V z − (aσ + dσ)

 (5.30)

where

aσ =
1

2
(−tγkZ + ε+ U(n+ σm)) (5.31)

dσ =
1

2
(−tγkZ − ε− U(n+ σm)) (5.32)

χσ =
√
d2
σ + V 2 (5.33)

The poles of this Green’s function reside at

zσ = aσ + σχσ (5.34)

We can now obtain the self-consistent equations for the number of f -electrons ,nf , and the
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magnetic moment, m. These are given by

n =
1

N

∑
k

(〈f †k↑fk↑〉+ 〈f †k↓fk ↓〉) (5.35)

m =
1

N

∑
k

(〈f †k↑fk↑〉 − 〈f
†
k↓fk ↓〉) (5.36)

We can find the expectation values from the Green’s functions defined above, and we find

< f †kσfkσ >=
1

4

((
1 +

χσ
dσ

)
f(aσ + dσ) +

(
1− χσ

dσ

)
f(aσ − dσ)

)
(5.37)

Inserting these into the self-consistent equations, we find

n =
1

4

((
1 +

χσ
dσ

)
f(aσ + dσ) +

(
1− χσ

dσ

)
f(aσ − dσ)

)
+

1

4

((
1 +

χσ
dσ

)
f(aσ + dσ) +

(
1− χσ

dσ

)
f(aσ − dσ)

)
(5.38)

m =
1

4

((
1 +

χσ
dσ

)
f(aσ + dσ) +

(
1− χσ

dσ

)
f(aσ − dσ)

)
+

1

4

((
1 +

χσ
dσ

)
f(aσ + dσ) +

(
1− χσ

dσ

)
f(aσ − dσ)

)
. (5.39)

We can solve these self-consistent equations numerically, and some results are discussed in

the appendix. In particular, we find for almost all ranges of parameters, we have some form

of magnetism, which is disastrous for modelling heavy fermion materials.

We can also perform a Stoner analysis on the Anderson lattice, but it is a great deal

more complicated than the case for the Hubbard model, and does not offer much of interest,

and so we omit such an analysis.
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5.6 Limitations of Mean-Field Theory

We have seen that mean-field theory predicts the Anderson lattice to exhibit ferromagnetism.

Since it is hoped that this model captures the essential physics of heavy-fermions materials,

we must find some alternative method of solving the Anderson lattice.

We note that we have effectively introduced two new species of fermion into the problem,

which are represented by a change of basis

d†k = cos θkf
†
k + sin θkc

†
k

g†k = − sin θkf
†
k + cos θkc

†
k (5.40)

Transforming this relationship into real space, we obtain

d†j =
1√
N

∑
k

exp(−ikRj)(cos θkf
†
k + sin θkc

†
k)

g†j =
1√
N

∑
k

exp(−ikRj)(− sin θkf
†
k + cos θkc

†
k) (5.41)

and placing two f electrons on the same lattice site will happen eventually in the mean-

field Anderson lattice due to the oscillatory term in Rj. We have decorrelated the strongly

correlated f -electrons, and we would like to avoid double occupancy at all costs. This is

controlled by the term in U in both the Hubbard and Anderson lattice models. If we take the

limit U →∞, then double occupation of a state with strongly correlated electrons becomes

infinitely expensive, and will be prohibited. Virtual processes such as superexchange will

still be permitted at certain special fillings. In general, however, double occupation of a

strongly correlated state will be projected out of the description of our theories.

There are various methods for achieving this. Most commonly known is the Gutzwiller

variational method. We will present a method of our own based on the Gutzwiller method

later in this thesis.
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5.7 Summary

We have introduced some basic concepts of mean-field theory, and analysed in some detail

one of the methods of performing mean-field approximations, that of the Landau theory of

phase transitions. We presented a review of Stoner’s criterion for ferromagnetism, and we

showed how this can be linked to the Landau theory of phase transitions.

We applied the Stoner criterion to the Hubbard model, and discussed the mean-field

phase diagram of the Hubbard model. The Nagaoka state is truly special, since it is a point

we can solve exactly, but moving into non-infinitesimal dopings, we are unable to say whether

the ferromagnetism extends beyond this point, even though mean-field theory predicts that

it should.

We also considered mean-field solutions of the Anderson lattice, and we can see that the

predictions of mean-field theory are unsatisfactory. We will suggest improvements to the

usual method of performing mean-field theory in chapter ten.
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Part II

Orbital Ordering, Magnetism and

Heavy Fermion Systems
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Chapter 6

Saturated Ferromagnetism in t2g
Systems

6.1 Introduction

We now move on to develop a model for a saturated ferromagnet consisting of t2g electrons.

Since the ferromagnetism is saturated, we can avoid describing the spin degree of freedom.

We are thus concerned only with the orbital degree of freedom, and we are interested in

any order that this may show. We will develop a mean-field theory based on a generalised

Hubbard model. We then find the Stoner criterion for orbital ordering.

There are various materials that we feel the theory describes at some level. The first

of these is Sr2FeMoO6. This material is a colossal magnetoresistor. We will also discuss

applying the theory we develop to the orbitally ordered state of magnetite. Also within the

possible scope of the theory is SrRuO3. This is an itinerant system, while the isoelectronic

system CaRuO3 is not. We will suggest some reasons for this, after a discussion of some

inconsistencies in the literature.
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6.2 Experimental Input

It was hoped that we would be able to describe a model for Jahn-Teller distortions in an

itinerant system, Sr2FeMoO6. However, it was found that the state described by the orbital

ordering was insulating. This suggests a mean-field approach is perhaps inappropriate to

describe the phase transition to an orbitally ordered state. Unfortunately, with the Hub-

bard model developed, the suggested improvements to mean-field theory in chapter 10 are

inappliciable.

Sr2FeMoO6 is an experimentally intriguing material and has generated a lot of interest.

We will apply the predictions of the model developed in this chapter to it. Sr2FeMoO6 shows

evidence of colossal magnetoresistive behaviour. This colossal magnetoresistive behaviour

stems from tunneling between grains [44]. The material is half-metallic, where only one spin-

species is active at the Fermi surface. It also shows a magnetic transition at TC = 400K.

It has a double perovskite crystal structure, with Fe and Mo alternately being at the

center of an octahedron of oxygen atoms. The electronic configuration of the material is

Sr2+
2 Fe3+Mo5+O2−

6 . Since the material has a perovskite crystal structure, there is a cubic

symmetry to the crystal structure and hence a crystal-field splitting into t2g and eg orbitals.

In this case, the t2g orbitals are lower in energy than the eg orbitals. The electronic

configuration is such that Fe has a half-full d-shell of ferromagnetic spins, and Mo has a

single d electron, which ought to be oppositely aligned to the Fe spins in order to gain

energy from hopping (figure 6.2).

We thus have the problem of a t2g electron moving in a background of oppositely aligned

spins. The single electron lying on the molybdenum site is spin-down and is free to hybridise

with the electrons on the oxygen atom. The electron can move to the nearest-neighbour

molybdenum by hopping onto the iron atom, then hybridising with the oxygen and a nearest-

neighbour molybdenum atom.
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Figure 6.1: Crystal Field Scheme for Sr2FeMoO6

There is an experimentally detected distortion, which suggests the possibility of orbital

ordering. This distortion, however, is quite small, and we will not seek to model it. This is

likely to be due to the ordering in the t2g sector, since this subset of orbitals experience less

coulombic repulsion in a cubic environment than will an electron in the eg sector.

Our argument rests on the gradient of the density of states. The material is essentially

planar with the relevant hopping taking place on a square lattice of alternating Fe and Mo

sites. Setting the energy at an Fe site to be zero, and the energy at an Mo site to be ∆,

the hopping Hamiltonian is represented by the matrix

 0 −tZγk

−tZγk ∆

 and thus the

dispersion is

ε(k) =
∆

2
±
√

(∆/2)2 + (tZγk)2 (6.1)

From this, we get a density of states that looks like the square lattice density of states for a

Hubbard model, but with a gap of size ∆, and we plot this density of states in figure 6.2.
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Figure 6.2: Density of States for Sr2FeMoO6 - a square lattice density of states with a gap
for the Hubbard model. Plotted is the density of states versus the chemical potential.

6.3 Model for Itinerant Magnetism in Saturated t2g
Ferromagnets

We assume that the spin is saturated, and hence we discard the possibility of spin fluctuations

in our modeling. In other words, we will ignore the spin degree of freedom. Spin-1/2 problems

come with two states, and we have three states in the t2g representation. This may suggest

that a spin-1 problem may be more appropriate. However, the three states in a spin-1

problem are not related by symmetry, while the cubic d t2g orbitals are related to each other

by rotations. This makes a spin-1 representation of the t2g sector inappropriate for our

modelling.
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We model the system as a generalised Hubbard model. The role of the spin, as mentioned

before, is now played by the t2g orbitals. We assume the electrons to be itinerant, and so

we have to take care in describing the hopping. We will assume that the hopping only takes

place beween like orbitals. By this, we mean that the x̂ŷ orbital only connects to the x̂ŷ

orbital, and not the x̂ẑ orbital or ŷẑ orbital. This enables us to only consider two-dimensional

planes of the original three-dimensional problem.

The Hubbard model for this system takes the form

H = −t
∑

<jj′>α

c†jαcj′α +
U

2

∑
j

nj(nj − 1) (6.2)

c is an electron creation operator, and j is a site index centred on molybdenum, and α labels

the orbitals. The index < jj′ >α represents a hopping between nearest neighbours mediated

by the orbital labelled by α. We wish to perform a mean-field analysis on this Hamiltonian,

and find the Stoner criterion for orbital ordering.

For fermions, n̂2
jα = n̂jα, and using this we can rewrite the above Hamiltonian as

H = −t
∑

<jj′>α

c†jαcj′α +
U

2

∑
j,α6=β

njαnjβ. (6.3)

Suppressing the factor of a half by summing only β > α, the Hamiltonian we will work with

is

H = −t
∑

<jj′>α

c†jαcj′α + U
∑
jα

njα
∑
β>α

njβ. (6.4)

The mean-field Hamiltonian is given by

H = −t
∑

<jj′>α

c†jαcj′α + U
∑
jα

njα
∑
β>α

< njβ > . (6.5)
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Since the correlation function is the same for all sites j, we can write nα =< njα >, where

nα =
1

3

(
n0 + ωαm+ ω−αm∗

)
(6.6)

where ω is a cube-root of unity which is not equal to 1. Here m is a complex order parameter

representing the occupancy of the orbitals.

The dispersion for this model is given by

Ekα = −tγkαZ + U
∑
β 6=α

nβ

= −tγkαZ + U(
∑
β

nβ − nα) (6.7)

which further simplifies to

Ekα = −tγkαZ + U(3n0 − nα)

and finally, we have

Ekα = −tγkαZ + U(2n0 − ωαm− ω−αm∗). (6.8)

6.4 The Stoner Criterion

Now we have the dispersion, we move on to find the Stoner criterion for orbital ordering.

The Gibbs free-energy takes the form

G =
∑
kα

(Ekα − µ)f(Ekα − µ)− TS − U(n2 +
1

2
|m|2). (6.9)

Expanding G in terms of m and m∗, we obtain

G = G0 +G2|m|2 +G3(m3 +m∗3) +G4|m|4 (6.10)
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The Stoner criterion is obtained from the coefficient of m2 in the expansion above at

m = 0. The Stoner criterion will tell us at which point the orbitals begin to order. This

criterion is given by

Gmm∗ = 0. (6.11)

where

Gmm∗ =
∑
γkα

(
∂2Eσ
∂|m|2

f(Ek) +
∂Eσ
∂m

∂Eσ
∂m∗

∂f(Ek)

∂Ek
− U

)
= U2∂f(Ek)

∂Ek
. (6.12)

and so at m = 0, we have

U2ρ(0) = U (6.13)

and so our Stoner criterion is

Uρ(0) = 1 (6.14)

where ρ(0) is the density of states at the Fermi energy.

The stability of the Stoner criterion is given by the next order term in the expansion. In

this case, since we are expanding with third roots of unity, we have third order terms that

contribute to the expansion, unlike in the case where we expand with second roots of unity

and all odd order terms cancel.

To calculate the stability of the Stoner criterion in this Hubbard model, we need to

calculate the coefficients of m3 and m∗3. These coefficients turn out to be the same, and are

given by the third derivative of the free-energy with respect to m or m∗. The stability of the

transition is guaranteed by

∂3G

∂m3
= −3U3

∫
dγ
dρ(γ)

dε

df

dγ
. (6.15)
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We can see the stability depends on the gradient of the density of states. The above is the

coefficient of m3, and denoting the integral by A, we have

G = G0 +G2m
2 − 6AU3|m|3 cos(3θ). (6.16)

where we have written m = |m| exp(iθ), and m+m∗ = 2|m| cos θ. We need to minimise this

over θ. We have

−6AU3d cos(3θ)

dθ
= 6AU3 1

3
sin(3θ) (6.17)

and this is zero when θ = nπ
3
, n ∈ N. However, we are interested in the minima, so we have

−6AU3d
2 cos(3θ)

dθ2
= 6AU3 1

9
cos(3θ). (6.18)

Whether we have a minimum or a maximum depends on the gradient of the density of states.

If we assume the gradient is positive, then the minima occur at the odd values of n. If the

gradient is negative, then the minima occur at odd even values of n.

6.5 Densities of States and Orbital Populations

We now move on to a more direct calculation of the occupations of the orbitals. We assume

an arbitrary density of states, and we will show that the case where one orbital is biased

in favour of two orbitals is the lower energy state. We will calculate the energy difference

between the system biasing one orbital in favour of the other two, and the system biasing

two orbitals in favour of the remaining orbital.

We consider first the case that one orbital is used in favour of two. The populations are
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then given by

n1 = n+ 2m (6.19)

n2 = n−m (6.20)

n3 = n−m. (6.21)

n1 is given by

n+ 2m =

∫ µ+δ+

−∞
dερ(ε) (6.22)

while n2 and n3 are given by

n−m =

∫ µ−δ−

∞
dερ(ε). (6.23)

δ± is the change in chemical potential from raising one orbital and lowering the other two

respectively. In the absence of this shift, we have

n =

∫ µ

∞
dερ(ε)

and so, subtracting these from the orbitals, we have

2m =

∫ δ+

0

dερ(ε+ µ) (6.24)

m =

∫ 0

−δ−
dερ(µ+ ε) (6.25)

We now consider the energies of these populations

E1 = 2

∫ µ+δ+

−∞
dεερ(ε) + 2

∫ µ−δ−

∞
dεερ(ε) (6.26)

and, noting that

E0 =

∫ µ

−∞
dε(µ+ ε)ρ(ε+ µ)
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we find

E1 = E0 +

∫ δ+

0

dε(µ+ ε)ρ(ε+ µ)− 2

∫ 0

−δ−
dε(µ+ ε)ρ(µ+ ε) (6.27)

= E0 +

∫ δ+

0

dεερ(ε+ µ)− 2

∫ 0

−δ−
dεερ(µ+ ε) (6.28)

We now consider the case that the system will bias two orbitals in favour of a third. The

populations in this case are given by

n1 = n− 2m (6.29)

n2 = n+m (6.30)

n3 = n+m (6.31)

Again, the populations are found to be

n+ 2m =

∫ µ−∆+

−∞
dερ(ε) (6.32)

n−m =

∫ µ+∆−

−∞
dερ(ε) (6.33)

and since

n =

∫ µ

−∞
dερ(ε)

we are left with, after subtracting this from the populations

2m =

∫ 0

−∆+

dερ(ε+ µ) (6.34)

m =

∫ ∆−

0

dερ(µ+ ε) (6.35)
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The energies for these are given by

E2 =

∫ µ−∆+

−∞
dεερ(ε) + 2

∫ µ+∆−

−∞
εdερ(ε). (6.36)

Using

E0 =

∫ µ

−∞
dε(µ+ ε)ρ(ε+ µ)

we have

E1 = E0 −
∫ 0

−∆+

dε(µ+ ε)ρ(ε+ µ) + 2

∫ ∆−

0

dε(µ+ ε)ρ(µ+ ε) (6.37)

= E0 −
∫ 0

−∆+

dεερ(ε+ µ) + 2

∫ ∆−

0

dεερ(µ+ ε) (6.38)

= E0 −
∫ ∆+

0

dεερ(ε+ µ) + 2

∫ 0

−∆−

dεερ(µ+ ε) (6.39)

We now move on to calculate the difference in energy between these two possibilities. We

need to make this consideration in order to determine whether the system would like to use

one orbital or two orbitals. The system will of course adopt the configuration that is lower

in energy. The energy difference is

∆E = E1 − E2 =

∫ δ+

0

dε ερ(ε+ µ)− 2

∫ 0

−δ−
dε ε+

∫ ∆+

0

dε ερ(ε+ µ)− 2

∫ 0

−∆−

dε ε

2m =

∫ δ+

0

dερ(µ+ ε) =

∫ 0

−∆+

dερ(µ+ ε)

m =

∫ 0

−δ−
dερ(µ+ ε) =

∫ ∆−

0

dερ(µ+ ε)

∫ α

0

dερ(µ+ ε) = A.
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and α is given by

α =
A

ρ0

− ρ1A
2

2ρ3
+ . . . . (6.40)

Expanding ρ, we have

ρ(µ+ ε) = ρ0 + ερ1 +
ε2

2
ρ2 + . . . (6.41)

where ρ1 = dρ
dε

, ρ2 = d2ρ
dε2

δ+ =
2m

ρ0

− 2m2ρ1

ρ3
+ . . . (6.42)

∆+ =
2m

ρ0

+
2m2ρ1

ρ3
+ . . . (6.43)

δ− =
m

ρ0

+
m2ρ1

2ρ3
+ . . . (6.44)

∆− =
m

ρ0

− m2ρ1

2ρ3
+ . . . (6.45)

Finally, we have the difference in energy between the two choices of ordering is given by

∆E = ρ

(
δ2

+ −∆2
+

2
+ δ2

− −∆2
−

)
+ ρ1

(
δ3

+ + ∆3
+

3
− 2

3
(δ3

+ + ∆3
+)

)
(6.46)

and this is equal to

= −2
ρ1

ρ3
0

m3 (6.47)

where ρ1 is the gradient of the density of states.

The choice between an insulating orbitally ordered regime and a metallic orbitally ordered

regime depends entirely on the gradient of the density of states. If the gradient is positive,

the system will elect to use one orbital to order. If the gradient is negative, however, the

system will use two orbitals to order, and we will find metallic behaviour.
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6.6 Results and Comparison to Experimental Systems

6.6.1 Sr2FeMoO6

We are at one third filling, and hence the gradient of the density of states for the material

is positive since we have the scaled square lattice density of states. The model implies that

the material will use a single orbital to order, and so will display insulating behaviour. This

is unfortunate, since we know the material to be metallic. The model as it stands is found

not to be applicible to Sr2FeMoO6.

The material is difficult to make experimentally due to disorder being hard to eliminate.

An interesting extension on the work done here would be to use a disordered approach via

an Anderson disorder model[2] for random potentials. As we have not carried out this work,

we are unsure whether the resulting model would display metallic behaviour.

6.6.2 Magnetite

Magnetite, (Fe3O4), is also a candidate for the application of the model developed in this

chapter. It has an inverse spinel crystal structure. However, we will restrict our attention to

a subset of the crystal. Magnetite undergoes a transition at 119 K, where hopping is frozen

on the octahedral complex of the spinel structure, and takes place only on the tetrahedra of

Fe3+ and Fe2+. Magnetite, however, is a very complicated material, and it is unreasonable

to expect such a simple approach to capture more than a rough overview of its properties.

We will assume that all the Fe3+ are saturated, and hence the problem is reduced to

three interpenetrating one-dimensional chains of motion. Since the density of states has a

negative gradient at this point, we would expect the material to use two bands rather than

one, as in the case of Sr2FeMoO6.

Bearing in mind the complexity of the material, we cannot draw any reasonable conclu-

sions for magnetite from such a brief examaniation for the model we have developed in this
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chapter. However, things do look promising, more so than the material we original intended

to model, and would be a great start for future work in applications of the model we have

developed.

6.6.3 Ruthenates

The particular ruthenates that we consider here are SrRuO3 and CaRuO3. They are again

locally perovskite materials, except with a great deal of distortion. This is important to our

considerations. We assumed previously that only like orbitals were connected. In the event

of distortion, it will be the case that, for example, an electron in the x̂ŷ orbital can hop into

one of the ŷẑ or ẑx̂ orbitals. We model this distortion first. As mentioned, the SrRuO3 and

CaRuO3 compounds are at least locally perovskite, and each Ru atom sees an octahedron

of O atoms surrounding it. The neighbouring octahedron is distorted relative to this.

We can model the distortion most effectively by rotating the x, y, z coordinate system 45

degrees to match the line along with the oxygen atoms make a zig-zag pattern. To describe

the distortion, we rotate to face this line, perform a rotation on the new basis by an angle θ,

which is the angle that the oxygen atoms are distorted by, and then we rotate back to the

original basis. This is achieved by the matrix

C =


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 (6.48)

The consequences of the distortion for our modelling is that while in the cases we have

considered before, the hopping only took part between orbitals of the same type. That is, the

x̂ŷ orbital only connects with the x̂ŷ orbital, and similarly with the other t2g orbitals. With

the distortion, we have the x̂ŷ orbital on one atom connecting not only to the x̂′ŷ′ orbital on

a neighbouring atom, but also to the ŷ′ẑ′ and ẑ′x̂′ orbitals on the same neighbouring atom.

70



We will clearly need to model the hopping in SrRuO3 and CaSrRuO3 very carefully, but

the model developed in this chapter quite conceivably form the basis of future work on this

material.

We note that matching any prediction of the model to experiment will be a difficult task

in itself due to the confusion in the experimental literature. For example, there are papers

claiming CaRuO3 is a paramagnet, and some claiming it is a ferromagnet. Clearly, we will

have more to contend with than interpreting predictions of a theoretical model.

6.7 Summary

We have developed a model for orbital ordering in the t2g sector for ferromagnetic itinerant

systems. We find that the resulting behaviour depends on the sign of the gradient of the

density of states. When it is positive, we will have an itinerant orbitally ordered system.

We originally thought the model would be able to describe an itinerant system displaying

Jahn-Teller distortions. The material we had in mind for this was Sr2FeMoO6. As we see

from our modelling, the Jahn-Teller phase of the material is insulating. Experimentally, the

material is complicated, and is difficult to make pure samples of. The material is known to

display colossal magnetoresistance, and this must be accompanied by an insulating phase.

This is likely the phase we describe with our modelling, if any.

The modelling is such that any material with itinerant t2g electrons could be described by

it. Two materials that potentially could be modelled are magnetite, and {Sr,Ca}RuO3. Work

has not been undertaken on these materials, but they would be the immediate candidates

for applications of the model.
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Chapter 7

Cubic Symmetric Orbitals and
Ordering

7.1 Introduction

We now construct a model for a transition metal oxide with a saturated spin and possessing

only degrees of orbital freedom in the eg sector. We had in mind the CMR manganites while

developing this model. Since the spin is saturated, we will ignore the spin degrees of freedom,

and concentrate on only the orbital degree of freedom and its ordering.

For the remainder of the investigation, we will assume that we have a saturated ferro-

magnet, and that the material is metallic. Working in the saturated ferromagnetic region

allows us to ignore the spin degrees of freedom, and simplifies the description considerably.

Unfortunately, it rules out any hope of describing the breakdown of the magnetism which is

crucial for describing the magnetoresistive phenomenon.

We consider only two energy scales. These are energies that come from atomic physics.

The Coulomb energy between electrons is dominant throughout the phase diagram, and

restricts charge fluctuations greatly. The second large atomic energy is the Hund’s coupling,

and this forces the electrons into a high-spin state. This energy allows us to fix the spin on

each atom, and thus assuming a ferromagnetic arrangement of spins, we can avoid describing

the spin degree of freedom.
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The next energy scale that is important is the hybridization between the atoms and the

oxygen ions. This energy scale leads to delocalization of the electrons. The electrons delo-

calise through double exchange, which is a second order process, and consequently dominates

the magnetic exchange which is a fourth-order process.

Finally, we have an energy scale associated with the local structural distortions.The

energy from the hybridisation competes with the energy from the local distortion of the

crystal structure throughout the phase diagram, and leads to a variety of phases. We assume

that the hybridisation is dominant, and consequently we also have a metallic phase.

7.2 eg Orbitals and Pseudospin

We begin with the consideration of the eg orbitals, in the standard cubic basis of 3z2−1 and

x2 − y2. We thus have two orbitals to work with. We consider linear combinations of these

orbitals to get two new orbitals.

c1 =
1√
3

(ω3x̂
2 + ω2

3 ŷ
2 + ẑ2)

c2 =
1√
3

(ω2
3x̂

2 + ω3ŷ
2 + ẑ2)

where ω3 is a cube-root of unity. These orbitals have now cubic symmetric charge distri-

butions, and in fact are conjugates. The charge distribution of the new cubic symmetric

orbitals are shown in figure 7.1.

We can map this problem on to that of a spin-1/2 problem, since both form a two-

dimensional vector space, and hence there exists an isomorphism between the two vector

spaces. We can do this by identifying

| ↑>= c1 (7.1)
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Figure 7.1: Charge distribution of the cubic symmetric orbitals

| ↓>= c2 (7.2)

We can get back to the standard eg orbitals by

| ↑> +| ↓>=
x̂2 − ŷ2

√
2

| ↑> −| ↓>=
2ẑ2 − x̂2 − ŷ2

√
6

For spin-half, we have the spin operators which satisfy the commutation relations

[
Ŝα, Ŝβ

]
= iεαβγŜγ (7.3)

and the anti-commutation relations

{
Ŝα, Ŝβ

}
=

1

2
δαβ. (7.4)

The magnetism is described by choosing a particular component of spin and using its expec-
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tation value as the order parameter

m = 〈Ŝz〉
(
Ŝz
)2

=
1

4
(7.5)

In an isotropic model the component chosen is arbitrary and breaks rotational symmetry. In

an anisotropic model the choice of component only lifts the residual point symmetry. The

appearance of magnetism is the generation of a non-zero value for m. Note that the space of

states can be described by quantising parallel to the direction of the magnetic moment and

then the vector cos θ
2
e−i

φ
2

sin θ
2
e+iφ

2

 (7.6)

may be interpreted as the state with the spin oriented along the direction corresponding to

{θ, φ}. We can interpret these coordinates as spherical polar coordinates for a fixed unit

radius, and that as these angles are varied the entire space is mapped out.

The cubic symmetric orbitals correspond to θ = 0, π, and these are analogous to Ising

spins where we project on to the ẑ component of the spin. For θ = ±π
2
, we are on the equator

of the sphere, and these correspond to the symmetry broken orbitals such as 3ẑ2 − 1 and

x̂2 − ŷ2. These orbitals are thus analogous to spins in the XY -model. For values inbetween

these, we have a general Heisenberg-like spin.

Since we are dealing with an itinerant problem we need to generalise to

Ŝα =
1

2

∑
σσ′

c†σσ̂
α
σσ′cσ′ (7.7)

where σ̂α are the Pauli matrices and

ŜαŜα =
1

3

∑
β

ŜβŜβ =
1

4
N̂
(

2− N̂
)

(7.8)
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where

N̂ = c†↑c↑ + c†↓c↓ (7.9)

is the number operator. This provides the appropriate behaviour when N̂=1 and guarantees

the vanishing of the orbital moment when the site is either empty or doubly occupied. Note

that N̂
(

2− N̂
)

is a projection operator which projects onto average single occupancy.

For one d-electron with no spin label, the orbital angular momentum is described by an

operator which also satisfies the commutation relations

[
L̂α, L̂β

]
= iεαβγL̂γ (7.10)

and is restricted by ∑
α

L̂αL̂α = 6 (7.11)

describing a space of five states. For perovskites there is a strong cubic symmetry term that

lifts this degeneracy down to a triply degenerate t2g subspace and the currently relevant

doubly degenerate eg subspace. This separation can be accomplished using a single central

operator

ê ≡ L̂zL̂xL̂y + L̂yL̂xL̂z

4
√

3
=
L̂xL̂yL̂z + L̂zL̂yL̂x

4
√

3

=
L̂yL̂zL̂x + L̂xL̂zL̂y

4
√

3
(7.12)

which provides a projection operator

ê2 =
P̂

4
P̂ 2 = P̂ (7.13)

which projects onto the eg subspace. When in the eg subspace the operator ê provides an

operator which can play the role of a spin-half component. The states which diagonalise the
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operator are

|↑〉 ∝ 1√
3

(
ω2x̂2 + ωŷ2 + ẑ2

)
(7.14)

|↓〉 ∝ 1√
3

(
ωx̂2 + ω2ŷ2 + ẑ2

)
(7.15)

where ω satisfies

ω3 = 1 (7.16)

1 + ω + ω2 = 0 (7.17)

and is a non-trivial cube-root of unity. These two states are the unique eg states that

maintain the cubic charge symmetry and are not expected to distort the local octahedron if

single occupied.

We may describe the full orbital space using

cos θ
2
e−i

φ
2

sin θ
2
e+iφ

2

 (7.18)

in correspondence to the spin-half problem. However, the isotropy is lost and the orbitals are

physically quite distinct in character. As well as the two complex cubic symmetric orbitals,

the states associated with θ = π
2

are also special and are both real and maximally symmetry

broken

| φ〉 ∝
(

2

3

) 1
2
[
cos

(
φ

2
+

2π

3

)
x̂2 + cos

(
φ

2
− 2π

3

)
ŷ2 + cos

(
φ

2

)
ẑ2

]
(7.19)

with | φ〉 and | φ+ π〉 forming an orthonormal basis for any value of φ. The case φ=0, π

provides the orbital basis {2ẑ2 − x̂2 − ŷ2

√
6

,
x̂2 − ŷ2

√
2

}
(7.20)
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and the cases φ=π
3
, 4π

3
and φ=2π

3
, 5π

3
yield the analogues with Cartesian axes interchanged.

The other important case is φ=π
2
, 3π

2
which yields the intriguing

{(
√

3 + 1)x̂2 − (
√

3− 1)ŷ2 − 2ẑ2

2
√

3
,

−(
√

3− 1)x̂2 + (
√

3 + 1)ŷ2 − 2ẑ2

2
√

3

}
(7.21)

which are equivalent, orthogonal orbitals of value in static orbital ordering problems but not

much use to the current investigation.

7.3 Theoretical Modelling

We work again with a Hubbard model to describe the system. The Hubbard model takes its

standard form, with the roles of spins played by the cubic symmetric orbitals

H = −t
∑

<jj′>σ

d†jσdj′σ + U
∑
j

d†j↑dj↑d
†
j↓dj↓. (7.22)

Here, σ represents the orbital degree of freedom rather than the spin degree of freedom. The

creation and annihilation operators create electrons in one of the cubic symmetric orbitals,

with fixed spin. .

As with the usual Hubbard model, the exact behaviour is intractable and a first pass at

the phase diagram can be extracted from mean-field theory. Although this overemphasises

order in general, in a full three-dimensional system it is not thought to be too unphysical

since order is usually anticipated. Even the mean-field phase diagram has complications

for our model, since the hopping energy depends on the orientation of the pseudo-spin and

consequently we need to resolve the choice of orbital as well as uncovering the relevant phase

boundaries.
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In the mean-field approximation, the Hamiltonian takes the form

H = −2Zt
∑
kσ

(
c†k↑ c†k↓

)
βk

 ck↑

ck↓


+ U

∑
k

(
c†k↑ c†k↓

) n+m3 m1 + im2

m1 − im2 n−m3


 ck↑

ck↓

 (7.23)

where

βk =

 cos(kx) + cos(ky) + cos(kz) ω cos(kx) + ω2 cos(ky) + cos(kz)

ω2 cos(kx) + ω cos(ky) + cos(kz) cos(kx) + cos(ky) + cos(kz)

 (7.24)

For convenience, we write

γk = cos(kx) + cos(ky) + cos(kz)

Γk = ω cos(kx) + ω2 cos(ky) + cos(kz)

so that we can write the Hamiltonian matrix as

HMF =

 −2Ztγk + U(n+ |m|) Γk + Um

Γ̄k + Um̄ −2Ztγk + U(n− |m|)

 (7.25)

where m is a complex number.

We can find the eigenvalues of HMF to get the band-structure

Eσ(k) = −2tγk + 2Un+ σ
√
|γk|2 + U2m2 − 2Utm(ωΓk exp(iφ) + c.c.),
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which we will write as

Eσ(k) = −2tγk + 2Un+ σ∆(k), (7.26)

As usual, we can form the Gibbs free-energy

G =
∑
kσ

(Ekσ − µ) f(Ekσ)− TS − U(n2 −m2). (7.27)

where S is the entropy.

We will calculate again the Stoner criterion. As in previous cases, this is given by the

vanishing of the quadratic coefficient in the Landau expansion. The first derivative of G is

given by

∂G

∂m
=
∑
kσ

∂Ekσ
∂m

fkσ −
∂

∂m
U(n2 −m2).

Calculating these, we find

∂Ekσ
∂m

= σ
∂∆(k)

∂m

and we find this to be

∂Ekσ
∂m

= σ
U2m− tU sin θΓ

∆
.

and also,

∂

∂m
U(n2 −m2) = −2Um.

For the Stoner criterion, we need to work with the second derivative of the Gibbs free energy,

which is given by

∂2G

∂m2
=
∑
kσ

[(
∂Ekσ
∂m

)2
∂fkσ
∂Ekσ

+
∂2Ekσ
∂m2

fkσ

]
− ∂2

∂m2
U(n2 −m2).

Now, using

∂

∂m
∆
∂∆kσ

∂m
=

(
∂∆

∂m

)2

+ ∆
∂2∆

∂m2
= U2
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we find

∂2∆

∂m2
=

1

∆

(
U2 −

(
∂∆

∂m

)2
)

and thus the second derivative of G can be written as

∂2G

∂m2
=
∑
kσ

[(
U2m− tU sin θΓ

∆

)2
∂fkσ
∂Ekσ

+
1

∆

(
U2 −

(
∂∆

∂m

)2
)
fkσ

]
− 2U.

Taking the limit as m → 0, and setting the second derivative to zero, we find the Stoner

criterion to be

1 =
U

2

∑
kσ

[(
sin θΓ

|γ̄|

)2
∂fkσ
∂Ekσ

+
1

t|γ̄|

(
1−

(
sin θΓ

|γ̄|

)2
)
fkσ

]
. (7.28)

Using the cubic symmetry of the lattice, we find that the terms in γ̄2 and γ̄∗2 vanish, and

thus we are left with

Γ2 = |γ̂|2

and the Stoner criterion for the model is simply

1 =
U

2

∑
kσ

[
sin2 θ

∂fkσ
∂Ekσ

+
1

t|γ̄|
cos2 θfkσ

]
. (7.29)

We define

B = sin2 θ
∂fkσ
∂Ekσ

(7.30)

and

A = − 1

t|γ̄|
cos2 θfkσ (7.31)

and set about calculating these quantities. The system adopts the cubic-symmetric distri-

bution orbitals when B − A is negative. We need to use an effective density of states now

to calculate where the transition occurs as a function of the chemical potential, and hence
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the doping.

7.4 Stability

As usual, the stability of the Stoner criterion is provided by the next order term in the

expansion. Thus, we have to find G3 in the Landau expansion. This is given simply by the

third derivative of the expansion at m = 0, and this is equal to

∂3G

∂m3
=
∑
kσ

(
∂3Ekσ
∂m3

fkσ + 3
∂Ekσ
∂m

∂2Ekσ
∂m2

∂fkσ
∂Ekσ

+

(
∂Ekσ
∂m

)3
∂2fkσ
∂E2

kσ

)
.

We wish to calculate this to probe the behaviour of the symmetry broken phase. In a cubic

environment, we cannot have a phase transition from cubic to tetragonal phases because of

the existence of a third-order invariant. This is relevant here

We note that

∂

∂m

(
∂2∆

∂m2

)
= −2

∂∆

∂m

∂2∆

∂m2
, (7.32)

and thus,

∂3G

∂m3
= − 3

∆

∂∆

∂m

∂2∆

∂m2
, (7.33)

and in turn, we have.

∂∆

∂m

∂2∆

∂m2
=
∂∆

∂m

(
U2 −

(
∂∆

∂m

)2
)
. (7.34)

Taking the limit m→ 0 of ∂3G
∂m3 , we find G3,

G3 = U3 sin3 θΓ3

(
3
∂2fkσ
∂E2

kσ

− 3
∂fkσ
∂Ekσ

1

t|γ|
+

fkσ
(t|γ|)2

)
(7.35)

If this quantity vanishes, for example θ = 0, then the transition being first-order is no longer

guaranteed. Interestingly, the cubic symmetric orbitals are precisely those with θ = 0,

and so calculations of the stability is irrelevant for regions where the symmetric orbitals are
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predicted to occur. To determine the stability, and hence the other transitions in the system,

we need to actually perform calculations of G3. To this end, we introduce the concept of a

joint density of states.

7.4.1 Joint Densities of States

The quantities that we require to calculate are singular. To remedy this, it is useful to

work with densities of states to control the singular nature of the quantities. We start in

reciprocal-space, using {k1, k2, k3} and want to end up using {γk, | γ̃k |, ψk} instead.

After a sequence of transformations, we will find the original flat density goes to a quite

singular density. Initially we transform to {c1, c2, c3} where

c1 = cos k1 c2 = cos k2 c3 = cos k3 (7.36)

for which

ρ(c1, c2, c3) =
1

π3

3∏
α=1

θ[1− c2
α]

[1− c2
α]

1
2

(7.37)

and then to {γ, γ̃, γ̃∗} by

γ =
c1 + c2 + c3

3
(7.38)

γ̃ =
ω−1c1 + ωc2 + c3

3
(7.39)

γ̃∗ =
ωc1 + ω−1c2 + c3

3
(7.40)

with jacobian

∂[γ, γ̃, γ̃∗]

∂[c1, c2, c3]
=

1

3
√

3
(7.41)

and then finally to {γ, | γ̃ |, ψ} defined by

γ̃ =| γ̃ | eiψ γ̃∗ =| γ̃ | e−iψ (7.42)
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with jacobian

∂[γ̃, γ̃∗]

∂[| γ̃ |, ψ]
= 2 | γ̃ | (7.43)

we arrive at

ρ(γ, | γ̃ |, ψ) =
6
√

3 | γ̃ |
π3

1∏
χ=−1

θ
[
1−

(
γ + 2 | γ̃ | cos

[
ψ + 2π

3
χ
])2
]

[
1−

(
γ + 2 | γ̃ | cos

[
ψ + 2π

3
χ
])2
] 1

2

(7.44)

=
6
√

3 | γ̃ |
π3

1∏
τ=−1

θ
[
(1 + τγ)3 − 3(1 + τγ) | γ̃ |2 +2τ | γ̃ |3 cos 3ψ

]
[
(1 + τγ)3 − 3(1 + τγ) | γ̃ |2 +2τ | γ̃ |3 cos 3ψ

] 1
2

(7.45)

where χ ∈ {−1, 0, 1} but τ ∈ {−1, 1} and the second form is useful for establishing the

symmetry property that

ρn(γ, | γ̃ |) ≡
∫ π

−π
dψρ(γ, | γ̃ |, ψ)einψ (7.46)

is real and vanishes unless n is a multiple of 3, which is a manifestation of the cubic symmetry

inherent in the problem. Note that ρ0(γ, | γ̃ |) and ρ3(γ, | γ̃ |) can be calculated once and for

all and then that the ψ dependence becomes irrelevant. This is one of the great strengths of

using joint-densities.

Note that our transition criteria satisfy

B − A =
d

dµ

∫ ∞
0

d | γ̃ || γ̃ |
∫ 1

−1

dλ

2
λρ0(µ+ λ | γ̃ |, | γ̃ |) (7.47)

3C − 3D + E = (7.48)

d2

dµ2

∫ ∞
0

d | γ̃ |
∫ 1

−1

dλ

2

3λ2 − 1

2
ρ3(µ+ λ | γ̃ |, | γ̃ |)

and so these are the equations we will work with when calculating the transition criteria.
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7.5 Comparison with Experimental Systems

We now move on to consider some of the experimentally observed facts that we will try

and marry to the predictions of our model. The first system, the manganites, was the

inspiration behind the modelling performed in this chapter, and was really the reason for the

modelling. The second system we examine is a related, but completely different, compound.

This system is the zinc-manganites. Chemically, the material is very different, but certain

analogies survive. Most notably, we find the saturated ferromagnetism so crucial to our

modelling. Since we really only require this of a transition metal oxide, we examine the

possibilities for the proposed orbital ordering in this material. Note that our modelling

depends crucially on the density of states only, providing all other assumptions are satisfied

in a justified approximation.

7.5.1 Manganites

We observe the manganites have a perovskite crystal structure. The electronic structure is

La3+
1−xA

2+
x (Mn3+Mn4+)O2−

3 , where A is divalent, such as Sr and Ca. We are left with each

manganese atom having a full t2g sub-shell, and doping with Sr introduces holes into the

system. In the parent compound, we have a single electron in eg orbitals. Doping with Sr

removes this sole electron in the eg sector, and leaves it empty.

As we saw in section 3.2.2 La1−xAxMnO3 has a rich and varied phase diagram that

renders our model inappropriate to describe much of the phase diagram. There is a high-

temperature magnetic phase involving spin and orbital ordering, with strong local distortions

of the lattice, and lattice distortions are ignored by our modelling. There are also a variety

of insulating phases, which are also ignored by our modelling. We are looking for a region of

the phase diagram that corresponds to a saturated ferromagnet, and this will leave only the

orbital degree of freedom for us to describe. We are also looking for a metallic ferromagnetic

phase, and with no structural distortion. This is the ferromagnetic metallic state without
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structural distortion. This occurs around x ≈ 0.3.

Our results for hole doped manganites are shown in figure 7.4.

Figure 7.2: Stoner criterion for hole-doped manganites. The solid curve is the quantity B−A
and represents the Stoner criterion, and is plotted against the chemical potential. When it
is negative, the system adopts the ordered state of symmetry unbroken orbitals. This occurs
at µ = ±0.3

If we ignore the region where the chemical potential is negative, the chemical potential

is the same as the doping. That is in our modelling the material LaMnO3 begins with a

half-filled band. These plots were calculated using the cubic joint density of states. We note

that the transition to cubic symmetric orbitals occurs around x ≈ 0.3, which is the region

of the phase diagram that is of most interest to us. Since this is a mean-field calculation,

we should be wary and not get too excited. The material is definitely a strongly correlated

material, and mean-field can only give us a weak-coupling prediction of the phase diagram.

We will need another argument to support the possible existence of the cubic symmetric

orbitals, which we will give in the next chapter. Even this will provide no guarantee of their

existence, and only experiment is fit to judge our theory. Unfortunately, the experiments

required to detect the cubic symmetric orbitals will be tricky since the orbitals are hexapolar
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Figure 7.3: Stability of the Stoner Criterion for Hole-Doped Manganites. We fix θ = π
2
, and.

Plotted is the quantity in 3C − 3D + E in 7.48 versus chemical potential or doping. This
determines which of the symmetry broken orbitals will be populated when the transition is
not second-order. When 3C − 3D+E is negative, we find we have the 3ẑ2− 1 orbitals, and
when it is positive we have the x̂2 − ŷ2 orbitals.

in character, and the author is unaware of a probe that could detect them.

The other transitions are determined by the stability, and occur close to µ=±1
2
. We find

that the x̂2-ŷ2 orbital is favoured for n < 0.5 and the 2ẑ2-x̂2-ŷ2 is favoured for 0.5 < n < 0.7.

The calculation of the stability is irrelevant in the region 0.7 < n < 1, where the system is

predicted to order with the cubic symmetry. For the parameter x, this transforms into cubic

symmetry for 0 < x < 0.3, the 2ẑ2-x̂2-ŷ2 orbital for 0.3 < x < 0.5 and the x̂2-ŷ2 orbital for

0.5 < x < 1.

7.5.2 Zinc Manganites

Although we had the LSMO manganites in mind when constructing the model, the theory

makes no assumptions on the form of the density of states. Therefore, we should find the

theory applicable to other systems with saturated ferromagnetic spin. One such system is

a compound formed of a partial reaction of ZnO with MnO2, mostly 2%MnO2-98%ZnO [8].
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Figure 7.4: Mean-Field Orbital Phase Diagram Based on the Calculations as illustrated in
figures 7.3 and 7.3

This system is a little more chemically complicated than the cubic manganites we considered

previously. We still have the Mn3+ and Mn4+ with double exchange, as we require [9]. To

model this system, we would have to calculate the effective density of states for this system

which is a spinel, and perform analogous calculations. These have not been performed, but

should be a straightforward extension of the theory.

7.6 Summary

We have performed a mean-field analysis on a model for cubic symmetric orbital ordering in

manganites. We saw that the modelling predicts an orbitally ordered phase at precisely the

point in the phase diagram for the manganites that we are interested in, around x ≈ 0.3.

At the mean-field level we have investigated the analogue of the Stoner criterion for the

itinerant orbital ordering of ferromagnetic eg orbitals on the cubic lattice. We find there are

three natural orbital orderings of x̂2-ŷ2, 2ẑ2-x̂2-ŷ2 orbitals and the cubic-symmetric orbitals.

At low doping we expect the x̂2-ŷ2 orbital, close to half-filling we expect the cubic-symmetric
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orbitals and inbetween we expect the 2ẑ2-x̂2-ŷ2 orbital. The most interesting possibility is

the cubic-symmetric orbitals, because there is no associated structural phase transition and

the ordering is hexapolar.

We are employing mean-field theory, which is a weak-coupling concept, and one should

be sceptical about its relevance at strong-coupling. The analogue of the Stoner criterion,

where itinerant orbital order is first predicted to occur, is quite complicated. Close to half-

filling a second-order transition into an exotic state which maintains the cubic symmetry is

predicted. Closer to the band edges a more traditional first-order transition into a symmetry-

broken state is predicted, with two-dimensional orbitals preferred at low doping and the most

one-dimensional orbitals being favoured in an intermediate region.

Technically, the fact that there exists a first-order transition means that the full calcu-

lation, where the magnetic moment itself is calculated ought to be performed but we have

got the basic idea.

89



Chapter 8

Fluctuations and Impurities in eg
Orbital Problems

8.1 Introduction

In the previous chapter, we considered a generalised Hubbard model for an electrons de-

localising in eg orbitals. We obtained an energy for this problem in a mean-field picture.

In this chapter, we challenge the validity of the mean-field picture by considering whether

fluctuations in orbital character and impurities can provide a lower energy than the simple

mean-field arguments of the previous chapter.

We will introduce the concept of an orbital Nagaoka problem with some simple examples.

We will then work with a model of a hole delocalising in an orbitally ordered background

on a perovskite lattice. This shows that the cubic symmetric orbitals are not favoured at

half-filling, despite the predictions of the previous chapter. However, this is a single-impurity

argument, and we would argue that the case of multiple impurities presents a very different

picture.
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8.2 The Orbital Nagaoka Problem

We now move on to the concept of an orbital Nagaoka problem, which is analogous to the

Nagaoka problem for spins which we discussed in section 4.2.1. We consider a lattice half-

filled with a particular configuration of orbitals, and then introduce a hole into the system

and allow the hole to delocalise.

We do this to measure the stability of the phase. Unlike the Nagaoka problem for spins,

the orbital Nagaoka problem is not solvable, and so we cannot determine exactly the lowest

energy configuration of orbitals.

8.2.1 Examples

We now consider a simple illustration of the idea we will use. We will restrict attention to

a filled system of px and py orbitals in a plane, and introduce a hole into the system, and

allow the hole to delocalise. Let us take the example where only the px orbital is used. We

will label this state as |1 >, and pictorially is represented by

|1 >=

px px px

px h px

px px px

(8.1)

In this trivial example, the hole can only move left or right, and either of these final

states is indistinguishable from the initial state due to translational invariance. Therefore,

H|1 >= −2t|1 > (8.2)

and thus, ε = −2t.

We now move on to another example where we have a line of px orbital and the remaining

orbitals are filled with py orbitals. We put the hole into the line of px orbitals, and let the
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hole delocalise again. Now, our reference state |1 > is given by

|1 >=

py py py

px h px

py py py

(8.3)

We label the initial state as |1 > and apply the Hamiltonian to get

H|1 >= −2t|1 > −2t|2 > (8.4)

where |2 > describes the state where the hole has gone into one of the half-planes of py

orbitals.

|2 >=

py h py

px py px

py py py

(8.5)

This state has energy ε = 2 + 2α, where α is to be determined.

Applying the Hamiltonian to |2 > we get

H|2 >= −t|3 > −t|1 > (8.6)

and in general, for |n| ≥ 2, we get

H|n >= −t|n+ 1 > −t|n− 1 > . (8.7)

and these offer the energies εαxn−1 = αxn−2 + αxn. We can solve these equations to obtain

ε ≈ −2.41. This is a big improvement on the energy of −2 that was available from the

uniform orbital solutions we first considered.

We can improve on this by allowing fluctuations into the picture. We begin by assuming
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a state

|θ >= cos θx̂+ sin θŷ (8.8)

and an orthogonal state

|θ >= cos θx̂+ sin θŷ (8.9)

and we apply the Hamiltonian to this state, allowing fluctuations. We begin as usual with

the state

|0 >=

θ θ θ

θ h θ

θ θ θ

(8.10)

We now obtain

H|0 > = −3t
(
cos θ(x+ x−1) + sin θ(y + y−1)

)
|0 >

− t cos θx|1 > −t cos θx−1|2 > −t sin θy|3 > −t sin θy−1|4 > (8.11)

where x = exp(ik̂x̂) and y = exp(ik̂ŷ) and

|1 >=

θ θ θ

θ h θ̄

θ θ θ

(8.12)

|2 >=

θ θ θ

θ̄ h θ

θ θ θ

(8.13)
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|3 >=

θ θ̄ θ

θ h θ

θ θ θ

(8.14)

|4 >=

θ θ θ

θ h θ

θ θ̄ θ

. (8.15)

Applying the Hamiltonian to each of these new states we find

H|1 >= −t cos θx−1|0 > −t cos θx|2 > (8.16)

H|2 >= −t cos θx|0 > −t cos θx−1|1 > (8.17)

H|3 >= −t sin θy−1|0 > −t sin θy|4 > (8.18)

H|4 >= −t sin θy|0 > −t sin θy−1|3 > (8.19)

and so the Hamiltonian matrix for this system is

H = −t



−3t (cos θ(x+ x−1) + sin θ(y + y−1)) cos θx cos θx−1 sin θy sin θy−1

cos θx−1 0 cos θx−1 0 0

cos θx cos θx 0 0 0

sin θy−1 0 0 0 sin θy

sin θy 0 0 sin θy−1 0


(8.20)
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8.3 Impurities and Fluctuations in eg d Orbital Sys-

tems

We will consider the Hubbard-like model we have developed to be at half-filling, and we will

consider the limit U →∞. We will then remove one particle in the manner of the Nagaoka

problem, and consider the motion of the hole. The Hamiltonian in this limit is

− t
2

∑
<jj′>α

(
1− c†j′ᾱcj′ᾱ

)
c†j′αc

†
jα

(
1− c†jᾱcjᾱ

)
. (8.21)

This excludes terms which involve doubly occupying a site. The Hamiltonian thus exchanges

the hole with a nearest-neighbour particle, and resembles the motion of a single particle in

an otherwise empty system.

8.4 Orbital Nagaoka Problem on a Lattice with Cubic

Symmetry

We now consider the problem of the orbitals ordering in the basis cubic symmetric orbitals

exactly. We will first work on the case that no fluctuations are permitted. We fill the system

with orbitals of the form

|θ >= cos(θ) exp(−iφ/2)|ω > + sin(θ) exp(iφ/2)|ω2 > . (8.22)

Our space thus looks like

|0 >=

θ θ θ

θ h θ

θ θ θ

(8.23)

and thus H|0 >= −3|0 >, for any choice of θ and φ , since there are 6 directions the hole

can hop. Thus, ε = −3 for an arrangement of like orbitals .
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We now work on the case that fluctuations are permitted in the system. We will introduce

an orthogonal orbital to the one we have introduced by

|θ̄ >= − sin(θ) exp(−iφ/2)|ω > + cos(θ) exp(iφ/2)|ω2 > . (8.24)

Now we focus on implementing a fixed background of our choosing onto the orbital

Nagaoka problem we are considering. This may seem artificial, but the problem is not

solvable, and we are forced into choosing background configurations of orbitals and showing

the resulting energy is lower than we previously considered. We first look to a plane of x̂2−ŷ2

orbitals first, which we will denote by x for notational convenience.

We delocalise using (nx, ny) for position and

|x, y; 0 >=
1√
N

∑
k

xnxyny |nx, ny > (8.25)

for the Bloch transform. Now, we have

|0 >=

x x x

x h x

x x x

(8.26)

|1 >=

x x x

x h z

x x x

(8.27)

|2 >=

x x x

z h x

x x x

(8.28)
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|3 >=

x z x

x h x

x x x

(8.29)

|4 >=

x x x

x h x

x z x

(8.30)

Applying the Hamiltonian to each of these states, we obtain

H|0 >= −3t

4

(
x+ x−1 + y + y−1

)
|0 > −

√
3t

4

(
x|1 > +x−1|2 > −x|3 > −x−1|4 >

)
(8.31)

H|1 >= −
√

3t

4
x−1|0 > − t

4
x−1|2 > (8.32)

H|2 >= −
√

3t

4
x|0 > − t

4
x|1 > (8.33)

H|3 >= −
√

3t

4
y−1|0 > − t

4
y−1|4 > (8.34)

H|4 >= −
√

3t

4
y|0 > − t

4
y|3 > (8.35)

The Hamiltonian matrix is thus

H = −t



3
4
(x+ x−1 + y + y−1)

√
3

4
x

√
3

4
x−1 −

√
3

4
y −

√
3

4
y−1

√
3

4
x−1 0 1

4
x−1 0 0

√
3

4
x 1

4
x 0 0 0

−
√

3
4
y−1 0 0 0 1

4
y−1

−
√

3
4
y 0 0 1

4
y 0


(8.36)
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and we wish to calculate the Green’s function

G(ε) = (ε−H)−1 . (8.37)

Using the fact the symmetry is unbroken, we have x = y = 1, and

G−1 = −t



ε+ 3
√

3
4

√
3

4
−
√

3
4
−
√

3
4

√
3

4
ε 1

4
0 0

√
3

4
1
4

ε 0 0

−
√

3
4

0 0 ε 1
4

−
√

3
4

0 0 1
4

ε


(8.38)

We now look to a cubic lattice of 3ẑ2 − 1 orbitals in an analogous way.

|0 >=

z z z

z h z

z z z

(8.39)

|1 >=

z z z

z h x

z z z

(8.40)

|2 >=

z z z

x h z

z z z

(8.41)

|3 >=

z x z

z h z

z z z

(8.42)
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|4 >=

z z z

z h z

z x z

(8.43)

Again, delocalising over all sites, we have

|x, y, z; 0 >=
1√
N

∑
n

xnxynyznz |nx, ny, nz; 0 > (8.44)

for the Bloch transform.

Again, applying the Hamiltonian to each of these states, we obtain

H|0 >= −t
(
z + z−1 +

1

4

(
x+ x−1 + y + y−1

))
|0 > −

√
3t

4

(
x|1 > +x−1|2 > −y|3 > −y−1|4 >

)
(8.45)

H|1 >= −
√

3t

4
x−1|0 > −3t

4
x−1|2 > −

√
3t

4

(
x|1 > +x−1|2 > −y|3 > −y−1|4 >

)
(8.46)

H|2 >= −
√

3t

4
x|0 > −3t

4
x|2 > −

√
3t

4

(
x|1 > +x−1|2 > −y|3 > −y−1|4 >

)
(8.47)

H|3 >= −
√

3t

4
y−1|0 > −3t

4
y−1|4 > −

√
3t

4

(
x|1 > +x−1|2 > −y|3 > −y−1|4 >

)
(8.48)

H|4 >= −
√

3t

4
y|0 > −3t

4
y|3 > −

√
3t

4

(
x|1 > +x−1|2 > −y|3 > −y−1|4 >

)
(8.49)

This time, our Hamiltonian matrix is

H = −t



3
4
(x+ x−1 + y + y−1)

√
3

4
x

√
3

4
x−1 −

√
3

4
y −

√
3

4
y−1

√
3

4
x−1 0 1

4
x−1 0 0

√
3

4
x 1

4
x 0 0 0

−
√

3
4
y−1 0 0 0 1

4
y−1

−
√

3
4
y 0 0 1

4
y 0


(8.50)

99



Again, we want to find G(ε) = [ε−H]−1. However, this time we need to cut space to make

a surface, and then we need to patch together these two subsystems.

When the hole lies in the plane, we force the rest of space to be uniform. We need to

consider ten states now



G0 G1 G1 −G1 −G1 0 0 0 0 0

G1 G2 G3 G4 G4 0 0 0 0 0

G1 G3 G2 G4 G4 0 0 0 0 0

−G1 G4 G4 G2 G3 0 0 0 0 0

−G1 G4 G4 G3 G2 0 0 0 0 0

0 0 0 0 0 G̃0 0 0 0 0

0 0 0 0 0 0 G̃0 G̃1 0 0

0 0 0 0 0 0 G̃1 G̃0 0 0

0 0 0 0 0 0 0 0 G̃0 G̃1

0 0 0 0 0 0 0 0 G̃1 G̃0



(8.51)
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which are connected by



0 0 0 0 0 −
√

2 0 0 0 0

0 0 0 0 0 0 −
√

2 0 0 0

0 0 0 0 0 0 0 −
√

2 0 0

0 0 0 0 0 0 0 0 −
√

2 0

0 0 0 0 0 0 0 0 0 −
√

2

−
√

2 0 0 0 0 0 0 0 0 0

0 −
√

2 0 0 0 0 0 0 0 0

0 0 −
√

2 0 0 0 0 0 0 0

0 0 0 −
√

2 0 0 0 0 0 0

0 0 0 0 −
√

2 0 0 0 0 0



(8.52)

8.5 Conclusions

In our study of a single hole in an otherwise singly-occupied strong-coupling system, we

considered inexactly two situations. Firstly, the uniform orbital state with fluctuations, and

secondly, the possibility of spatial localisation for the hole. Both styles of solution are seen

to be competitive with each other energetically. Unfortunately, we imposed these possibil-

ities and did not give the system a free choice. It is quite conceivable that a third, more

sophisticated solution, is ultimately preferred by the system. To investigate this possibility,

we examine the cubic-symmetric description of our model in more detail.

If we employ the cubic-symmetric basis for the orbitals, then the scale of hopping is t
2

and

there are twelve hops available. We have six that connect like orbitals, with no phase change

associated with a hop. We have another six hops that connect different cubic symmetric

orbitals, and these hope picks up a phase corresponding to one of the cube-roots of unity,
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and depends on the direction of the hopping.

Clearly, the energy is bounded by -6t, if all the hops were to be coherently accessed, but

this is not possible in practice. Indeed, for a single square, the energy is -3+
√

17
4

t=-1.78t.

This is a lot worse energetically than the -2t that is thought to be available from this simple

counting argument. However, this energy is a lot more than the single orbital energy of

-1.5t using the appropriate planar orbital. We believe that this corresponds to a form of

frustration which corresponds to issues when the hole circuits loops.

There are subtleties that plague this problem. Let us start from a random array of two

cubic-symmetric orbitals. If we delocalise the hole using orbital preserving hops, then we

achieve an energy of -3t with a state where each accessible orbital configuration is found

with equal phase and equal probability. This state is a state with all sites having the same

orbital, and that orbital is a uniform phase sum of the two cubic orbitals with amplitudes

controlled by the initial numbers of the two orbitals. These states correspond to φ=0 but

different values of θ for different initial fractions of cubic orbitals.

By using a uniform phase we promote hopping along the z-axis and we ‘project’ onto the

appropriate orbital, in this case 2ẑ2-x̂2-ŷ2. We could focus attention on 2x̂2-ŷ2-ẑ2 orbitals

if desired by picking up the appropriate cube-root of unity when hopping, to maintain the

phase of x̂2 instead of ẑ2. It is clear that we need to employ different phases in different

directions, in order to align orbitals parallel to motion, and this is quite a sophisticated

problem.

The most important observation is that this problem is very different from that of the

Nagaoka problem for the isotropic Hubbard model. Both situations rely on loops, but for

the isotropic Hubbard model, phase coherence around the loop providing either low-spin or

high-spin is the key to the solution of the problem. For the orbital Nagaoka problem, the

system would prefer different orbitals in passing round a loop in one direction from the other.

In one case we want linear superpositions of multiple motions around the loop and in the
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other we need a local choice of orbital to favour the immediate motion.

The classical picture of fixed orbitals with short-range orientation fluctuations ought to

be an excellent approximation. We believe that our symmetry-broken solution is essentially

the solution to the problem, but as with the Nagaoka problem, it is probably not physically

relevant. The interaction between different holes very soon stabilises a fluctuating solution

and the calculations suggest that the cubic-symmetric orbitals are a better starting point for

cubic-symmetric motion.
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Chapter 9

Magnetism in Pyrochlore Systems

9.1 Introduction

We now move on to examine the magnetic structure of a specific material, Gd2Ti2O7. There

exists some conflict between the prediction of neutron scatterers, and the evidence that

Mossbauer provides. We seek to address the conflict here, following our paper [1], and

provide our own interpretation of the experimental data. We show that our predicted state

is consistent with both the neutron scattering data and the Mossbauer data, but completely

different to the predictions of Bramwell et. al. [36].

The crystal structure of the material is pyrochlore, and this consists of a network of corner

sharing tetrahedra (section 3.3.1). Heisenberg antiferromagnetism is highly frustrated on a

tetrahedron, and so it is expected that other interactions will have to be taken into account

to lift the degeneracy. One of the most studied extensions is adding next-nearest neighbour

dipole interactions into a model [29]. As we will see, our modelling is inconsistent with the

theoretical literature.

Pyrochlore antiferromagnetism has been much studied as it is one of the most frustrated

geometries that can be found in real materials. There is expected to be a macroscopic

degeneracy for the nearest-neighbour Heisenberg interaction which is expected to be lifted by

much smaller interactions, which are often irrelevant in unfrustrated systems. Gd2Ti2O7 and
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Gd2Sn2O7 are the best known experimental examples of a pyrochlore lattice with dominant

nearest-neighbour Heisenberg interactions.

9.2 Experimental Input

Gd2Ti2O7 has a pyrochlore crystal structure, and the electronic configuration is Gd3+
2 Ti4+

2 O2−
7 .

This leaves Ti with a closed d-shell, and the active spin is on Gd.

Stewart et. al. performed neutron scattering experiments on a powdered sample of

Gd2Ti2O7 and concluded that the neutron scattering data can be indexed by a propagation

vector
(

1
2
, 1

2
, 1

2

)
. From this, they proposed a state with two different moments around the

tetrahedra. An illustration is show in figure 9.1. However, this state is in conflict with the

Mossbauer data, which suggests a single moment.

Figure 9.1: Magnetic Structure of Gd2Ti2O7 according to [36]

The Mössbauer experiments suggest that the spins are all equal length, and that they

are oriented perpendicular to the local crystallographic directions. We will employ these

assumptions in our modeling. They also examine the possibility of two magnetic moments

not both in the preferred planes, but only in the initial intermediate temperature phase.

An additional degree of freedom always provides a better fit, and the improvement is not

significant. The second magnetic moment is also much too large to agree with the states
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proposed by the neutron scatterers. The low temperature phase does not appear to accept

a phase with two different moments.

Figure 9.2: Planes of spin-anisotropy in tetrahedra

9.3 Theoretical Interpretation

We now marry the experimental inputs of the scattering data being indexed by
(

1
2
, 1

2
, 1

2

)
and the evidence supplied by the Mossbauer experiments. We will then use this to aid our

prediction of the magnetic structure of Gd2Ti2O7, along with a few assumptions.

For a propagation vector of
(

1
2
, 1

2
, 1

2

)
, the magnetic unit cell becomes double the primitive

tetrahedral unit cell in all directions, and so a hop on the grid illustrated in figure 9.3 picks

up a phase of ±
√
i. We may be tempted to interpret the spin labelled 3 as the opposite spin

to the spin labelled 0, but since the manner in which phases picked up is arbitrary, it is not

necessarily the same spin.

Figure 9.3: Implications of Neutron Scattering Data. A bar denotes a spin reflected with
respect to the unbarred label. (Fig:9.6
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The pyrochlore lattice has four atoms per primitive unit cell, and so the magnetic prim-

itive unit cell will contain thirty-two atoms. This is far too many for the problem to be

tractable. We will thus bear the neutron scattering data in mind, and move to interpreting

the Mossbauer data. As we discussed earlier, the experiments suggest that at low tempera-

tures, all moments are ordered with equal magnitude, and that they are ordered in planes

perpendicular to the line pointing at the centre of a tetrahedron.

We now propose an assumption, which is that in each tetrahedron, the total spin is zero.

This is only suggested by the experiments, and is not guaranteed. Assuming this, however,

will render the problem tractable. We will thus obtain a very Heisenberg-like antiferromagnet

on a tetrahedron. We can see the material is very unlike spin-ice (section 3.3.2), where the

interactions are very unheisenberg-like.

9.3.1 The Heisenberg Interaction

The experiments suggest that Gd2Ti2O7 is an excellent example of a Heisenberg antiferro-

magnet, and also suggest that the total spin in each tetrahedron is zero. We therefore seek to

find the groundstate of the antiferromagnetic Heisenberg model on a tetrahedron. It is well

known, however, that there is a high degree of frustration for this model on a tetrahedron.

We will therefore obtain a manifold of ground states.

We need to find constraints on the spins which lie in the anisotropy planes such that the

sum of our spins is zero. We employ the natural basis

Ŝ0 =

[
2

3

] 1
2

[x̂ cosx0 + ŷ cos y0 + ẑ cos z0] (9.1)

Ŝ1 =

[
2

3

] 1
2

[x̂ cosx1 − ŷ cos y1 − ẑ cos z1] (9.2)

Ŝ2 =

[
2

3

] 1
2

[−x̂ cosx2 + ŷ cos y2 − ẑ cos z2] (9.3)

Ŝ3 =

[
2

3

] 1
2

[−x̂ cosx3 − ŷ cos y3 + ẑ cos z3] (9.4)
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and couple this with the constraint

xα = zα −
2π

3
yα = zα −

2π

3
zα = yα −

2π

3
(9.5)

By construction, this ensures that the spins are in the anisotropy planes, and are also nor-

malised. We can also decompose the spin coordinates as

S0 =

(
2x̂− ŷ − ẑ√

6

)
cosx0 +

(
ŷ − ẑ√

2

)
sinx0 (9.6)

S0 =

(
2ŷ − ẑ − x̂√

6

)
cos y0 +

(
ẑ − x̂√

2

)
sin y0 (9.7)

S0 =

(
2ẑ − x̂− ŷ√

6

)
cos z0 +

(
x̂− ŷ√

2

)
sin z0. (9.8)

This relates the coordinate axes to the angles xα, yα, zα, and formulae for the other spins

follow analogously.

Our task is now to find solutions to the constraint

S0 + S1 + S2 + S3 = 0. (9.9)

The equivalent trigonometric constraints are

cosx0 + cosx1 − cosx2 − cosx3 = 0 (9.10)

cos y0 − cos y1 + cos y2 − cos y3 = 0 (9.11)

cos z0 − cos z1 − cos z2 + cos z3 = 0 (9.12)
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Firstly we break the symmetry and focus on zα. Rewriting the first two equations provides

sin

(
z0 − z3

2

)
sin

(
z0 + z3

2
− 2π

3

)
+ sin

(
z1 − z2

2

)
sin

(
z1 + z2

2
− 2π

3

)
= 0 (9.13)

sin

(
z0 − z3

2

)
sin

(
z0 + z3

2
+

2π

3

)
− sin

(
z1 − z2

2

)
sin

(
z1 + z2

2
+

2π

3

)
= 0 (9.14)

and then mixing them offers

sin

(
z0 − z3

2

)
sin

(
z0 + z3

2

)
+
√

3 sin

(
z1 − z2

2

)
cos

(
z1 + z2

2

)
= 0 (9.15)

√
3 sin

(
z0 − z3

2

)
cos

(
z0 + z3

2

)
+ sin

(
z1 − z2

2

)
sin

(
z1 + z2

2

)
= 0 (9.16)

including the third original equation as

cos

(
z0 − z3

2

)
cos

(
z0 + z3

2

)
− cos

(
z1 − z2

2

)
cos

(
z1 + z2

2

)
= 0. (9.17)
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We can now eliminate z1 and z2 to provide

s2
−
(
4s2

+ − 3
) ([

9− 8s2
+

] [
1− s2

−
]

+ 2s2
+

)
= 0 (9.18)

in terms of

s± = sin

(
z0 ± z3

2

)
(9.19)

The final solution is unphysical, so we generate two independent solutions. Firstly

sin

(
z0 − z3

2

)
= 0 ⇒ sin

(
z1 − z2

2

)
= 0 (9.20)

and consequently (modulo 2π)

z0 = z3 z1 = z2 cos z0 = cos z1 (9.21)

and the two solutions

z0 = z1 = z2 = z3 z0 = −z1 = −z2 = z3 (9.22)

Secondly,

sin2

(
z0 + z3

2

)
=

3

4
⇒ cos(z0 + z3) = −1

2
(9.23)

and from Eq.9.15 and Eq.9.16

sin

(
z1 − z2

2

)
sin

(
z0 + z3

2
− z1 + z2

2

)
= 0. (9.24)

The solution z1=z2 provides a subset of the possible solutions, and a further possibility

is

z0 + z3 = z1 + z2. (9.25)
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This leads to two further solutions

z0 + z3 =
4π

3
= z1 + z2 ⇒ x0 + x3 = 0 = x1 + x2 (9.26)

which reduces the original equations Eq.9.11 and Eq.9.12 to

cos

(
x0 −

2π

3

)
− cos

(
x1 −

2π

3

)
+ cos

(
x1 +

2π

3

)
− cos

(
x0 +

2π

3

)
= 0 (9.27)

cos

(
x0 +

2π

3

)
− cos

(
x1 +

2π

3

)
− cos

(
x1 −

2π

3

)
+ cos

(
x0 −

2π

3

)
= 0. (9.28)

This leads to the unique solution

x0 = x1 = −x2 = −x3 (9.29)

which, together with

z0 + z3 = −4π

3
= z1 + z2 ⇒ y0 + y3 = 0 = y1 + y2 (9.30)

reduces the original equations 9.10 and 9.12 to

cos

(
y0 +

2π

3

)
+ cos

(
y2 −

2π

3

)
− cos

(
y2 +

2π

3

)
− cos

(
y0 −

2π

3

)
= 0 (9.31)
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cos

(
y0 −

2π

3

)
− cos

(
y2 +

2π

3

)
− cos

(
y2 −

2π

3

)
+ cos

(
y0 +

2π

3

)
= 0 (9.32)

and the further unique solution

y0 = −y1 = y2 = −y3. (9.33)

The situation is best illustrated in 9.6. The plane illustrated is the plane normal to the

line pointing towards the centre of the tetrahedron.

Figure 9.4: Polar plot of the physical situation. The plane illustrated is the anisotropy plane
suggested by the Mossbauer experiments on the site S0 as in figure 9.2. The axes on this
figure are projection of the coordinate axes of the tetrahedral primitive unit cell onto the
anisotropy plane, and the angles x0, y0 and z0 from 9.1.

From this, we can see that restricting the spins to the anisotropy plane and the require-

ment of Heisenberg antiferromagnetism severely constrains the possible magnetic states.

These possible states are annotated in figure 9.5.

We now have to enumerate the permitted states for the entire pyrochlore unit cell. This,

however, is troublesome.

In spin-ice, the spins are oriented towards the centres of the tetrahedra, which is somewhat

a simpler problem than the one we face. The spin-ice constraint means that the ground-states
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Figure 9.5: Permitted spin configurations for the Heisenberg Antiferromagnet on a Tetrahe-
dron as labelled in Figure 9.4.

Figure 9.6: The six permitted angles for a global spin configuration according to modelling
of the Heisenberg interaction.

may be generated by propagating a solution parallel to a Cartesian direction.

We being by ignoring the possibility of barred spins and focus only on spins labelled by

n ∈ {1, 2, 3}. For the special case of z0=0, there is indeed no distinction between barred

and unbarred spins. Physically speaking, we would not expect the spins to employ arbitrary

directions and the special cases of z0 ∈ {0, 2π
3
, 4π

3
} and z0 ∈ {−π

6
, π

2
, π

6
} offer distinct extra

symmetries with both involving only twelve global spin orientations. The first provides a

restriction to three local orientations and the second finds commonality between distinct

sublattice configurations leading to the orientations:

{±ŷ ± ẑ√
2

,
±ẑ± x̂√

2
,
±x̂± ŷ√

2
}. (9.34)

This is, in our opinion, the best candidate for the magnetic structure of Gd2Ti2O7.

By employing propagation along one of the Cartesian directions, we can use a similar
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argument to the previous to investigate the degeneracy. We focus on a plane perpendicular

to the z-direction which provides the restrictions that 1 and 2 may not be neighbours in

the plane but pairs of 1 and 2 may propagate to the next plane using either 1 or 2 for the

next pair. This provides a large but seemingly not exponential degeneracy, since as well

as the new configurations from the choices of 1 and 2, there is also an associated loss from

discounting states where 1 and 2 are neighbours in the next plane. The inclusion of the bar

further complicates matters.

In our modeling, the restriction to having reversed spins is also a strong constraint. The

easiest way to enforce it is to restrict attention to z0=π
2

and then the two spins n and n̄ are

actually in opposite physical directions.

The previous problem of annotating permissible configurations in terms of the states n

now provides an elementary solution. Firstly, pure solutions where each site has the same n.

Secondly, alternating solutions where in a particular direction planes alternate between two

distinct values of n. Thirdly, tetrahedral solutions with alternating tetrahedra alternating

between two distinct values of n. Fourthly, period-four solutions where one plane in four has

a distinct value of n.

A second set of solutions may be obtained from z0=-π
6

where now the pairs {1, 2̄} {2, 3̄}

and {3, 1̄} correspond to reversed spins. Clearly by employing symmetry there are a mass

of rotation and translationally associated analogues to the possible states. Investigations

of these states demonstrate that in fact there are only two classes unrelated by symmetry,

which we can choose to be the z0=π
2

states. The first class of solution is coplanar, while the

second fully three-dimensional.

In the triangular Heisenberg ferromagnet, we find solutions that cannot be rotated into

each other, but do have reflection analogues. This is not the case with our two classes of

spin configurations. While the antiferromagnetic Heisenberg model on a triangular lattice

has the two chiral solutions that are not rotationally or translationally related, they can be
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Figure 9.7: Cage of gadolinium atoms surrounding a tetrahedron of titanium atoms.

reflected onto each other. In our case, our two styles of solution have no obvious symmetry

between them and so can be considered topologically distinct.

9.3.2 The Next-Nearest Neighbour Heisenberg Interactions

There are two natural interactions that could lift the degeneracy the antiferromagnetic

Heisenberg model on a tetrahedron provides. The first we will discuss is in some sense

the most natural. This is extending the interaction to next-nearest neighbours.

The actual additional Heisenberg interactions probably stem from pathways across ti-

tanium atoms, since the hopping matrix elements are so much larger. The cage of atoms

depicted in figure 9.7 are all expected to develop Heisenberg interactions of various strengths.

The bonds between members of the same sublattice should be largest. We employ two new

matrix elements for the additional Heisenberg interactions across the hexagons depicted in

figure 9.7, which we use λ for diametric and κλ for the remaining interactions. The structure

factor is determined by the matrix

Γk =



λ (4xyz − 1) X + 2λκxc1 Y + 2λκyc2 Z + 2λκzc3

X + 2λκxc1 λ (4xY Z − 1) z + 2λκZc3 y + 2λκY c2

Y + 2λκyc2 z + 2λκZc3 λ (4XyZ − 1) x+ 2λκXc1

Z + 2λκzc3 y + 2λκY c2 x+ 2λκXc1 λ (4XY z − 1)


(9.35)
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with,

x = cos
ky − kz

2
y = cos

kz − kx
2

z = cos
kx − ky

2
(9.36)

X = cos
ky + kz

2
Y = cos

kz + kx
2

Z = cos
kx + ky

2
(9.37)

c1 = cos kx c2 = cos ky c3 = cos kz (9.38)

as the associated parameterisation. In the absence of perturbations, this structure factor has

two degenerate bands at Γ = −1 which control the spin degeneracy. We treat the additional

perturbations as small and solve for the lifting of this degeneracy in the two degenerate

bands. Employing the parameter ε to control the eigenvalues:

Γ = −1− λ− 2λε, (9.39)

we find that the perturbed structure factor satisfies

(1−a2)ε2−2
(
a2[1+4κ]+3a2

2−a1[3a1+a3][1+κ]
)
ε+3a2

2[4κ2−1]−a3[a3+2a1][1+κ]2+9a2
1a2[1−κ2]+6a1a2a3[1+κ]−9a3

2 = 0

(9.40)

in terms of

a1 =
c1 + c2 + c3

3
a2 =

c2c3 + c3c1 + c1c2

3
a3 = c1c2c3. (9.41)

The ground-state is a function of κ, and involves a solution of the form

c1 = c2 = − cos θ c3 = 1. (9.42)

This describes a spiral that starts out with θ = π
3

when κ = 0 and ends up at the experimental

θ = π
2

with the unphysical value of κ = 1.

We conclude from this that the second-nearest-neighbour Heisenberg interactions are not

sufficient to describe the physics, and that the zone-centre state has a very poor energy. We
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have to discuss dipolar interactions to explain the experimentally observed phases.

9.3.3 The Dipolar Interaction

We now discuss the dipolar interaction, which has been discussed in the context of pyrochlore

antiferromagnetism [29]. We note that the transition is observed around 0.7 K, and the

dipolar interaction takes place at an energy scale around 1 K, and so it seems plausible

that the dipolar interactions will be relevant to modelling the material, and could lift the

degeneracy of the Heisenberg model.

Dipolar interactions take the generic form

Ĥ =
Sα.Sβ − 3Sα .̂rαβ r̂αβ.Sβ

| rαβ |3
(9.43)

where rαβ ≡ rα − rβ is a vector connecting the two interacting spins. This interaction is

mathematically taxing because it is both long-range and it relates the spin orientation to

the lattice directions which breaks spin isotropy.

We will extract the initial isotropic Heisenberg interactions which only renormalises the

existing exchange-based interactions and focus only on the second term. This second term

we will further restrict to nearest-neighbours

Ĥ = −3
∑
α>β

Sα .̂rαβ r̂αβ.Sβ. (9.44)

Solving this rescaled dipolar interaction on a single tetrahedron, we find five styles of solution

at energies {−3
2
(1+
√

17),−3, 3, 3
2
(
√

17−1), 12}. The ground-state has 86.4% of its moments

parallel. It is consequently a high energy state if the nearest-neighbour Heisenberg interaction

dominates. The next state is triply degenerate, and since it has zero , it is compatible with

the nearest-neighbour Heisenberg interaction. The third state is doubly degenerate, and

also has zero total-spin. The fourth state is not compatible as it has 13.6% of its moments
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Figure 9.8: Total-spin zero eigenstates of the short-range dipolar model, in order of energy.

parallel. Finally the fifth state also has zero total-spin. The three compatible styles of states

are depicted in figure 9.8 The crucial observation is that the two low energy states involve

spins which are perpendicular to the natural crystallographic directions pointing towards the

center of the tetrahedra, and thus the spins are in the planes indicated by the Mössbauer

experiments.

The planar spin restrictions deduced from the Mössbauer experiments can be derived from

the nearest-neighbour dipolar interactions subjected to dominant nearest-neighbour Heisen-

berg interactions. Enforcing equal length spins and including the Heisenberg constraints, we

may rewrite the dipolar interactions, Eq.(9.44), as

Ĥ =
3

4

[
(Sx0 + Sy0 + Sz0)2 + (Sx1 − S

y
1 − Sz1)2

+(−Sx2 + Sy2 − Sz2)2 + (−Sx3 − S
y
3 + Sz3)2

]
+

3

8

[
(Sx0 + Sx1 − Sx2 − Sx3 )2

+(Sy0 − S
y
1 + Sy2 − S

y
3 )2

+(Sz0 − Sz1 − Sz2 + Sz3)2
]
. (9.45)

We can minimise by zeroing each of the seven quadratics, using reality of the spins. This is

consistent and indeed uniquely specifies the three states shown in figure 9.13. In particular
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we note that the first four quadratics may be represented by

[S0.(1, 1, 1))]2 [S1.(1,−1,−1)]2

[S2.(−1, 1,−1)]2 [S3.(−1,−1, 1)]2 . (9.46)

Orienting the four spins perpendicular to their local crystallographic directions therefore

partially minimises the local dipolar energy.

9.4 Bragg Spots

One crucial experimental observation relates to the relative intensities of the Bragg spots in

the elastic neutron scattering experiments. The internal structure of our proposed states can

be probed by measuring the relative intensities of the different magnetic Bragg spots. The

itensities of the Bragg spots nearest the origin are directly related to the magnetic moments

on each of the four underlying sublattices

B0 = S0 + S1 + S2 + S3 B1 = S4 + S5 + S6 + S7 (9.47)

B2 = S8 + S9 + S10 + S11 B3 = S12 + S13 + S14 + S15

and in all our states these quantities vanish, by requirement that S0 + S1 + S2 + S3 = 0.

The actual
(

1
2
, 1

2
, 1

2

)
Bragg spot, and its symmetrically equivalent neighbours form al-

ternating Kagome planes and a sparse triangular lattice. The phase within such a plane it

kept uniform and the phase alternates between neighbouring equivalent geometries. Interest-

ingly, our antiferromagnetic ansatz directly controls this character. The Kagome planes may

be decomposed into two inversion related sets of triangles, as depicted in Fig.9.9. One set

corresponds to a set of triangular faces of tetrahedra which are completed above the plane

and the other form a set of corresponding tetrahedra which are completed below the plane.
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Figure 9.9: Kagome plane decomposed into the two inversion related triangles. The a denote
atoms that complete tetrahedra above and the b denote atoms that complete tetrahedra
below.

These atoms form the aforementioned neighbouring sparse triangular planes.

The constraint that each tetrahedron has zero total spin that we impose then enforces

the total spin in a Kagome plane to be antiparallel to both of the neighbouring triangular

planes. The relationship that neighbouring triangular planes should be antiparallel then

enforces that the total spin in each Kagome plane must vanish and consequently that the

associated Bragg spots must vanish.

Physically, the argument only depends on the nearest-neighbour Heisenberg interactions

in that each tetrahedron should have vanishing total spin. The Kagome argument of Fig.9.9

then provides that the total spin of each neighbouring plane along the (1,1,1) direction

and it analogues be antiparallel. Since the relevant Bragg spots add every second plane

with an alternating sign, the appearance of such a Bragg spot is inconsistent with the

nearest-neighbour Heisenberg interaction. We have imposed the additional constraint that

our solutions have the observed magnetic periodicity and this additionally requires that the

total-spin of each plane vanishes.

The Bragg spot at
(

1
2
, 1

2
, 1

2

)
is likely to be experimentally important, and work is being

performed to relax the constraint that the spins should lie in the anisotropy planes so strictly,

but at least be as close as can be to them so that the Bragg spot at
(

1
2
, 1

2
, 1

2

)
is present in
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our modelling.

9.5 Conclusions

Taking the above into account, we can make a prediction of the magnetic structure of

Gd2Ti2O7. The actual spin arrangment is quite difficult to depict, and so we draw one-

half of the magnetic cell for coplanar spins in figure 9.10, and for non-coplanar spins in

figure 9.11

Figure 9.10: Our prediction of the magnetic structure of Gd2Ti2O7 for Coplanar Spins. The
remainder of the lattice is difficult to depict. The basic principle is that there is periodicity
of reflected spins. Continuing the patten in the positive x-direction, if we rotate the cell
about the z-axis, we find the tetrahedron labelled B will be the tetrhedon labelled A for a
different cell. Similarly, the D tetrahedron will be a C tetrahedron for a different cell, and
not the same one as the one the B tetrahedron is mapped into. If we then reverse the spins
after the rotation, we will have the magnetic structure of the translated cell. This works
similarly for the other cartesian directions.

We may be tempted to be satisfied with the interpretation that the material is goverened

by strong nearest-neighbour antiferromagnetic Heisenberg interactions with weaker nearest-

neighbour dipolar interactions. This would be premature, however. The state predicted by

these two interactions is not the experimentally observed state. We therefore have to provide

some argument for this.

The dipolar interaction takes place on an energy scale similar to the observed transition

temperature, and so it is likely that it is relevant to the modelling of Gd2Ti2O7. However,
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Figure 9.11: Our prediction of the magnetic structure of Gd2Ti2O7 for Non-Coplanar Spins.
The translations are as in 9.10

it does not lift the degeneracy of the Heisenberg antiferromagnetism. Our calculations are

inconsistent with predictions of other theoretical studies performed by Palmer and Chalker

[29].

We have found a set of solutions based on some well-grounded assumptions, and the local

dipolar energy is much worse than the q = 0 solution that is expected from the calculations of

Palmer and Chalker. The motivation behind their calculation was the lifting of a degeneracy

that remained when the dipolar interaction was included, essentially exactly in the classical

limit at zero temperature. In our calculations we ought to have found a solution that was

degenerate with the q = 0 solution.

The states with spins of different average lengths require fluctuations to explain the

reduction in lengths, either thermal or quantum in nature. At low temperature, the entropy

measurements indicate that thermal fluctuations are irrelevant and so we are left solely with

quantum fluctuations. This is a possible explanation, because quantum fluctuations gain

energy by making spins locally antiparallel in directions perpendicular to the classical order.

They do not require any entropy, as they amount to a particular phase for the fluctuation

and not a random one.

There are various possible resolutions to the inconsistencies. Firstly, we have restricted

our calculations to states which are perpendicular to the crystal directions and this eliminates
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Figure 9.12: Possible spin configuration ignored so far.

Figure 9.13: Local dipolar ground-states when total-spin of tetrahedron vanishes.

two additional zero total-spin states from our optimisation. One is the state with spins

pointing to the centre of the cube and the other is the state depicted in figure 9.12. These

states, however, are of higher energy than the ground-state. Use of these additional states,

therefore, cannot lift us to the energy of the q = 0 solution. We can exactly solve the problem

of dominant nearest-neighbour Heisenberg and local dipolar interactions. Thus, we are

restricted to the states depicted in figure 9.13. These states, which are in the perpendicular

subspace, constitute three of the possible configurations in figure 9.8.

For the case z0 = 0 they are the three configurations with {n, n, n̄, n̄}, and we can only

construct q=0 solutions from these configurations Secondly, we have only considered the

local dipolar interaction and the longer-range contributions could overturn our argument.

Although the dipolar interaction is long-range, the divergence is irrelevant and we do not

anticipate issues here. Thirdly there might be a loop-hole in the previous theoretical ar-

guments. The previous calculations for the Heisenberg and dipolar interactions combined

calculated the effective structure factor for the classical magnetic problem, but they did not

proceed on to provide an actual magnetic solution.
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It was presumed that an appropriate magnetic solution would exist. Unfortunately, this

is not guaranteed. For classical magnetism there are additional constraints in that the

magnitude of the spin of each atom on each sublattice must independently be normalised.

For Heisenberg-like exchange models there is always an elementary spiral that will provide

a solution. In this dipolar problem, however, one needs to make a multiple-q state involving

all four appropriate q’s, and unfortunately we only live in three dimensions. It would appear

that solving the dipolar problem is harder than first imagined.
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Chapter 10

A Conjectured Improvement to
Mean-Field Theory for Strongly
Correlated Systems

10.1 Introduction

We now move on to discuss the concept of a non-linear fermionic transformation. We do this

in the hope that it will make our mean-field approximation to hamiltonians containing quartic

terms where strong correlations are present which provide constraints to fermions occupying

the same lattice site. The methods will apply to Hamiltonians containing different styles

of fermion. For example, the Anderson lattice contains the strongly correlated f-electrons,

and the conduction electrons. Further, there ought to be some connection between the two

subspaces of fermions. This is achieved by hybridisation in the Anderson lattice.

We consider the Anderson lattice, and apply the non-linear transformation that we will

construct to it. Then, we will project out one of the fermionic species. This is equivalent

to the infinite U limit of the Anderson lattice, but it will allow us to handle this limit in

a much more controllable manner than, for example, the slave boson method and dynamic

mean-field theory.

We aim to find an effective Hubbard model by constructing a transformation of the
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fermionic operators in the Anderson lattice Hamiltonian. The Anderson lattice Hamiltonian

is given by

H = −t
∑
〈jj′〉σ

c†jσcj′σ + V
∑
jσ

(f †jσcjσ + h.c) + E
∑
jσ

f †jσfjσ + U
∑
j

f †j↑fj↑f
†
j↓fj↓. (10.1)

We wish to work with the limit in which U goes to infinity in the Anderson lattice.

This means in practice that we have to project out all doubly occupied sites, so that two

f -electrons cannot be present on the same site.

We have 16 basis states that we will need to work with. Our plan is to change the c

and f basis into a new basis, which we will call d and g. We will then perform mean-field

theory on this new Hamiltonian. However, we will argue that having two g fermions present

will correspond to having two f electrons present. In mean-field theory, it is inevitable that

if one type of particle makes itself present, then we will eventually have two types of the

same particle present on the same site. Therefore, if we have one g-fermion present, then

eventually we will have another on the same site, and going back to the original basis, this

means we will have two f -electrons on the same site. This is precisely the thing we wish to

forbid. Hence, we will have to project out all the g degrees of freedom in our transformed

Hamiltonian if we wish to use a mean-field analysis of the model under the required limit.

After performing this projection, we will have an effective Hubbard model consisting of

these new d fermions. It is this Hamiltonian on which we will perform mean field theory.

10.2 The Non-Linear Basis

We now move to construct the new basis of states in terms of d and g fermions. We require

that the vacuum in the f and c basis should be mapped onto the vacuum in the d and g

basis, and so

|0〉dg = |0〉fc. (10.2)
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These vacua are equivalent and we shall drop the labels that distinguish them. For the single

particle states, we require f and c to be composed of a mix of d and g electrons, as mean-field

theory creates a mixture of electron species. We are thus led to

c†σ|0〉 =
(
sin θ1d

†
σ + cos θ1g

†
σ

)
|0〉 (10.3)

f †σ|0〉 =
(
cos θ1d

†
σ − sin θ1g

†
σ

)
|0〉 (10.4)

The two-particle states are the states that we should take more care with. We wish to

prevent double occupation of an f electron state. We wish to map singlets to singlets and

triplets to triplets. Clearly the f †σf
†
σ|0〉 state is of the most importance, since we wish to

project out the g fermions from the new basis, so it seems most sensible to choose

f †σf
†
σ̄|0〉 = g†σg

†
σ̄|0〉. (10.5)

and the analogous state for the conduction electrons is

c†σc
†
σ|0〉 =

[
cosφ√

2

(
d†σg

†
σ̄ + g†σd

†
σ

)
+ sinφd†σd

†
σ̄

]
|0〉. (10.6)

The remaining singlet is then given by

1√
2

(
f †σc
†
σ̄ + c†σf

†
σ̄

)
|0〉 =

[
−sinφ√

2

(
d†σg

†
σ̄ + g†σd

†
σ̄

)
+ cosφd†σd

†
σ̄

]
|0〉. (10.7)

f †σc
†
σ = d†σg

†
σ. (10.8)

1√
2

(
f †σc
†
σ̄ − c†σf

†
σ̄

)
=

1√
2

(
d†σg

†
σ̄ − g†σd

†
σ̄

)
(10.9)

We now work backwards, and work with the four particle states. This is simples, as there
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is only one choice

f †σf
†
σ̄c
†
σc
†
σ̄|0〉 = d†σd

†
σ̄g
†
σg
†
σ̄|0〉 (10.10)

Finally, we work with the three-particle states in terms of the four-particle states in an

analogous way to working with the one-particle states in terms of the vacuum. That is, we

call the four-particle state |F >, and consider dσ|F > and gσ|F > as operators that create a

hole. We then mix these holes as we did for the single-particle states, but we use a different

mixing angle.

f †σf
†
σ̄c
†
σ̄ =

(
cos θ2f

†
σf
†
σ̄c
†
σc
†
σ̄ + f †σf

†
σ̄c
†
σc
†
σ̄

)
|0〉 (10.11)

f †σ̄c
†
σc
†
σ̄ =

(
sin θ2d

†
σd
†
σ̄g
†
σ̄ + cos θ2d

†
σ̄g
†
σg
†
σ̄

)
|0〉 (10.12)

We will calculate the action of f †σ and c†σ on each of the d and g basis vectors, and hence

the f and c operators in the d and g basis. The basis states are summarised in tables 10.1

and 10.2.

In this section and the following, we will calculate the action of f †σ and c†σ on each of the

new basis vectors, and hence the operators themselves in the new basis.

We also need the inverted basis to calculate what the operators should transform to in

the Anderson lattice Hamiltonian.

We could calculate the basis vectors d and g in the f and c basis, and indeed we have

done. However, using this raw form of the operator is both complicated and not useful.

Indeed, the Anderson lattice is far more complicated in this basis. Since our aim is instead

to prevent double occupation of an f -site, we must project away the g electrons, and so we

will project away any g-electon creation operators from the basis defined above.
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State in f and c Basis State in d and g Basis
|0〉 |0〉
d†σ|0〉

(
cos θ1d

†
σ + sin θ1g

†
σ

)
|0〉

g†σ|0〉
(
− sin θ1d

†
σ + cos θ1g

†
σ

)
|0〉

d†σd
†
σ̄|0〉

(
cosφ√

2
(f †σc

†
σ̄ + c†σf

†
σ̄ + sinφc†σc

†
σ̄

)
|0〉

g†σg
†
σ̄|0〉 f †σf

†
σ̄|0〉

d†σg
†
σ|0〉 f †σc

†
σ|0〉

1√
2

(
d†σg

†
σ̄ + g†σd

†
σ̄

)
|0〉

(
− sinφ

2
(f †σc

†
σ̄ + c†σf

†
σ̄ + cosφc†σc

†
σ̄

)
|0〉

1√
2

(
d†σg

†
σ̄ − g†σd

†
σ̄

)
|0〉 1√

2

(
f †σc
†
σ̄ − c†σf

†
σ̄

)
|0〉

d†σd
†
σ̄g
†
σg
†
σ̄|0〉 f †σf

†
σ̄c
†
σc
†
σ̄|0〉

d†σ̄g
†
σg
†
σ̄|0〉

(
cos θ2f

†
σf
†
σ̄c
†
σc
†
σ̄ + f †σf

†
σ̄c
†
σc
†
σ̄

)
|0〉

d†σd
†
σ̄g
†
σ̄|0〉

(
f †σf

†
σ̄c
†
σc
†
σ̄ + f †σf

†
σ̄c
†
σc
†
σ̄

)
|0〉

Table 10.1: f basis states in d and g Basis

10.3 Two-Particle Projected Basis

In constructing this Hamiltonian, it is unnecessary, and indeed unhelpful to work with the

full range of states. If we included all states in the transformed basis, the periodic Anderson

model will be far more complicated than when we started. We will restrict our attention

to only the two particle states containing no g electrons. This will allow us to control the

projection of double occupancy. We will denote this projection operator by Pg.

After taking the restrictions we desire into account, we are left with only four states:

|0〉 = |0〉 (10.13)

d†σ|0〉 =
(
cos θ1f

†
σ + sin θ1c

†
σ

)
|0〉 (10.14)

d†σd
†
σ̄|0〉 =

(
cosφ√

2
(f †σc

†
σ̄ + c†σf

†
σ̄) + sinφc†σc

†
σ̄

)
|0〉 (10.15)

These are included in the non-linearly transformed basis, but since we are now projecting

out states involving the g-electrons. The basis of f and c thus is very different, and is not
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State in d and g Basis State in f and c Basis
|0〉 |0〉
f †σ|0〉

(
cos θ1d

†
σ − sin θ1g

†
σ

)
|0〉

c†σ|0〉
(
sin θ1d

†
σ + cos θ1g

†
σ

)
|0〉

f †σf
†
σ̄|0〉 g†σg

†
σ̄|0〉

c†σc
†
σ̄|0〉

(
cosφ√

2
(d†σg

†
σ̄ + g†σd

†
σ̄ − sinφd†σd

†
σ̄

)
|0〉

f †σc
†
σ|0〉 d†σg

†
σ|0〉

1√
2

(
d†σg

†
σ̄ + g†σd

†
σ̄

)
|0〉

(
sinφ√

2
(d†σg

†
σ̄ + g†σd

†
σ̄ + cosφd†σd

†
σ̄

)
|0〉

1√
2

(
d†σg

†
σ̄ − g†σd

†
σ̄

)
|0〉 1√

2

(
f †σc
†
σ̄ − c†σf

†
σ̄

)
|0〉

f †σf
†
σ̄c
†
σc
†
σ̄|0〉 d†σd

†
σ̄g
†
σg
†
σ̄|0〉

f †σ̄c
†
σc
†
σ̄|0〉

(
cos θ2d

†
σd
†
σ̄g
†
σ̄ − sin θ2d

†
σ̄g
†
σg
†
σ̄

)
|0〉

f †σf
†
σ̄c
†
σ̄|0〉

(
sin θ2d

†
σd
†
σ̄g
†
σ̄ + cos θ2d

†
σ̄g
†
σg
†
σ̄

)
|0〉

Table 10.2: f basis states in d and g Basis

an inverse of the d and g basis. This basis takes the form

Pg|0〉 = |0〉 (10.16)

Pgf
†
σ|0〉 = cos θd†σ|0〉 (10.17)

Pgc
†
σ|0〉 = sin θd†σ|0〉 (10.18)

Pgc
†
σc
†
σ̄|0〉 = sinφd†σd

†
σ|0〉 (10.19)

Pg(
1√
2

(
f †σc
†
σ̄ + c†σf

†
σ̄

)
|0〉 = cosφd†σd

†
σ|0〉 (10.20)

This reflects the fact that we have performed a projection, and so it is impossible for the

invertibility to remain intact.

10.4 Effective Hubbard Description of the Anderson

Lattice

We have the d and g operators in a two-particle projected basis, as calculated in the previous

chapter. We will now insert them into the Anderson lattice Hamiltonian to generate a
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Hubbard description of the Anderson lattice. Inserting these operators into the Anderson

lattice, we find

H = −t′
∑

<jj′>σ

(
1− αd†jσdjσ

)
d†jσdj′σ

(
1− αd†j′σdj′σ

)
+ ε′

∑
jσ

d†jσdjσ + U ′
∑
j

d†j↑dj↑d
†
j↓dj↓

(10.21)

The parameters depends on the angles θ and φ, and are related to the parameters of the

Anderson lattice by

t′ = t sin2 θ (10.22)

ε′ = ε cos2 θ + 2V cos θ sin θ (10.23)

U ′ = ε

(
cos2 φ√

2
− cos2 θ

)
+ 2V

(
cosφ sinφ

2
− cos θ sin θ

)
(10.24)

We now have an effective Hubbard model description of the Anderson Lattice model.

Unfortunately, this is still an intractable model, and so we must once again resort to mean-

field approximations. There are some differences between this Hubbard model, and the

customary Hubbard model.

10.5 Mean-Field Theory of the Effective Hubbard De-

scription

We now perform a mean-field analysis of the effective hubbard model derived above. We will

first perform a mean-field analysis with a paramagnetic background, and compare it to the

mean-field analysis we performed on the Anderson lattice. The paramagnetic background

allows us to decompose the correlations by spin.

We now have two sets of terms that we must find expectation values for. We have now
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terms in t′ as well as U ′. Let

α = 1−
(

cosφ cos θ√
2 sin θ

+ sinφ

)
(10.25)

We have

<
(

1− αd†jσ̄djσ̄
)
d†jσdj′σ

(
1− αd†j′σ̄dj′σ̄

)
= n1((1− αn0)2 − α2n2

1). (10.26)

We assume inversion symmetry, and so we have

n1 =< d†jσd
†
j′σ >=< d†j′σd

†
jσ > (10.27)

For the expectation value of the term in U ′, for now we simply decorrelate the spins to

obtain

< d†jσdjσd
†
jσ̄djσ̄ >=< d†jσdjσ >< d†jσ̄djσ̄ > (10.28)

Our mean-field Hamiltonian then takes the form

HMF = −t′
∑

<jj′>σ

(
2(1− αn0)2 + 2n1α

2)
)
d†jσdj′σ

+
∑
jσ

(ε
′
+ U

′
n0 − 2n1α(1− αn0))d†jσdjσ (10.29)

We can diagonalise this with the usual Bloch transform, and our diagonalised mean-field

Hamiltonian is then

HMF =
∑
kσ

(−t′(2(1− αn0)2 + 2n1α
2)γk − 2n1α(1− αn0)

− 2n1α(1− αn0) + ε
′
+ U

′
)d†kσdkσ (10.30)
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We can then simply optimise over θ and φ to solve this Hamiltonian. This can be done only

numerically, and unfortunately has not been completed for the submission of this thesis.

The Stoner criterion is analogue to the simple case of the Hubbard model we computed in

section 5.4. However, to obtain results, we do need to optimise over θ and φ first.

We illustrate some problems we are aware of in the next section, make some predictions

based on work that has been completed at least in part, and suggest some improvements to

the work carried out in this chapter.

10.6 Further Work

Aside from the optimisations we have to make over θ and φ for the paramagnetic mean-

field theory, we can also decompose the correlation function to include superconducting

correlations.

We anticipate superconductivity in the Anderson lattice model when t < V . This will

relate to superconductivity in high-temperature superconductors where the hybridisation

between copper and oxygen is strong, but direct oxygen-oxygen hopping is weak. Obviously,

we would have to perform these calculations to be able to comment in any amount of detail.

Performing the above non-linear transformation is fine at a mathematical level, but we

anticipate physical problems. This is related to Nozieres exhaustion, where we find if every

conduction electron forms a Kondo singlet with the local electrons, the conduction electrons

will no longer have any members left to pair with localised moments [27].

To remedy this, we suggest combining the non-linear transformation with a non-orthogonal

transformation, introduced by Long [24]. The idea here is that a general non-interacting so-

lution to the Anderson lattice takes the form

∏
k∈Kσ

[
αkf

†
kσ + βkc

†
kσ

]
| 0〉 (10.31)
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where we will treat αk and βk as variables which need to be variationally chosen. Usually

this initial state is chosen to be the solution to a non-interacting ALH, but this is not general

enough for our purpose, although such a system does play a crucial role. This state is then

Gutzwiller projected with an operator which we represent by PG.

We define new operators by

g†kσ ≡
βk
αk

c†kσ d†kσ ≡ f †kσ + g†kσ (10.32)

where the g-electrons are non-orthogonal linear combinations of the c-electrons, in terms of

which the Gutzwiller projected state is

PG
∏

k∈Kσ

d†kσ | 0〉 (10.33)

Since the projection operator acts in real-space, we consider the expansion in real-space and

observe that for each site in every contribution the only combinations that we can find are

| 0〉 d†i↑ | 0〉 d†i↓ | 0〉 d†i↑d
†
i↓ | 0〉 (10.34)

and once projected these map down to

| 0〉
[
f †i↑ + g†i↑

]
| 0〉

[
f †i↓ + g†i↓

]
| 0〉 (10.35)

[
f †i↑g

†
i↓ + g†i↑f

†
i↓ + g†i↑g

†
i↓

]
| 0〉 (10.36)

where only the final state is affected.

We define an operator which satisfies

d†iσ | 0〉 ≡
[
f †iσ + g†iσ

]
| 0〉 (10.37)
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d†iσd
†
iσ̄ | 0〉 ≡ γ

[
f †iσg

†
iσ̄ + g†iσf

†
iσ̄ + g†iσg

†
iσ̄

]
| 0〉 (10.38)

and then when γ=1 the pure state ∏
k∈Kσ

d†kσ | 0〉 (10.39)

corresponds to the previous Gutzwiller projected state.

The non-orthogonality is the crucial tool. If we choose to employ states of the form

g†iσ ≡
∑
k∈K̃

γkg
†
kσ (10.40)

then by construction, if we include enough electrons, we are forced into achieving the non-

interacting free electron ground-state to the conduction electron motion and the conduction

electrons and localised electrons are decorrelated.

After deriving an analogue of the Anderson lattice for this basis, we then intend to

perform an analogue of the non-linear fermionic transformation that we carried out previously

in this chapter. Then we wish to find the Stoner criterion for this resulting model, but what

the Stoner criterion is for a system with non-orthogonal mean-fields is certainly not clear.

10.7 Summary

We have introduced the concept of a non-linear transformation in terms of the creation and

annihilation operators of the Anderson lattice. The full transformation is of little use to us

since it will make the Anderson lattice more difficult to solve. We need to project the f

component of states in the d and g basis, since this is the only way to ensure that double-f

occupancy is never realised in a mean-field approximation.

After the mean-field approximation, we are left with a dependence on two parameters θ

and φ, in much the same way we had after performing a mean-field analysis for the problem

of orbital ordering in eg. The dependence on the parameter is much more complicated than
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in this model, however. We cannot perform the optimisation to find the values of θ and φ

the system would like as in the case of the eg orbital ordering problem.

Eventually we would like to be able to model superconductivity in heavy fermion mate-

rials. Currently, the superconducting analogue of the mean-field calculation is being carried

out, and we hope to show that superconductivity is favoured at some fillings when we have

t ¡ V in the original Anderson lattice model. This would mimic the situation for high-

temperature superconductors, where the direct oxygen-oxygen hopping is minimal, and the

supercurrent is carried by strongly correlated electrons on the copper sites hybridising with

the conduction electrons on the oxygen sites.

Modelling heavy-fermion superconductors, however, will be a greater challenge. The

Nozieres paradox suggests that pairing each conduction electron to a strongly-correlated

electron will be energetically expensive. We assume then that a conduction electron pairs

with many strongly correlated electrons. Mathematically, we can achieve this by introducing

a non-orthogonal fermionic transformation that will complement the non-linear transforma-

tion we have developed in this chapter. However, since the resulting wavefunction will not

decouple over sites, the concept of the Stoner criterion will become difficult to contend with.
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Part III

End Matter
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Chapter 11

Conclusions

In this thesis, we have chiefly been concerned with modelling orbital ordering in transition

metal oxides at the level of mean-field theory. We do this by employing a generalisation of the

Stoner criterion for ferromagnetism in Landau’s phenomological theory of phase transitions.

We see that the predictions of this approximation to various models are clear, but are liable

to mislead.

The first thing we apply the mean-field theory to is a problem of orbital ordering in

t2g problems. We hoped to find an example of an itinerant Jahn-Teller distorted system in

Sr2FeMoO6. However, if we described anything about the system at all, we described the

insulating state of the system. There are also other candidates for this line of modelling

in magnetite, and {Ca,Sr}RuO3. We have a clear plan of work to carry out on magnetite,

whereas {Ca,Sr}RuO3 is less clear. We will need to think hard about modelling the hopping

due to the strong distortions present. However, there is the possibility of describing an

itinerant Jahn-Teller distorted system in the material.

We then consider orbital ordering in eg systems. We have the colossal magnetoresistive

manganites in mind for this task. We construct eg orbitals with cubic symmetry, and model

them as anisotropic Heisenberg spins in a Hubbard model. We see that for the standard eg

orbitals, the transition to an orbitally ordered state is first order, like most orbital transitions.

However, with the cubic symmetric orbitals, the transition is second order.
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In our model of orbital ordering in eg problems, we see that while the modelling at the

Stoner level predicts orbital ordering of the cubic symmetric orbitals, we can construct an

analogue of the Nagaoka problem. While we cannot solve this exactly, we can unambiguously

show that there is a lower energy solution than the mean-field prdictions.

This leads to a desire to improve mean-field theory, especially for a problem we originally

had in mind at the start of the work on this thesis. We wish to improve on mean-field

theory for the Anderson lattice, which is thought to be an excellent model of heavy-fermion

behaviour. We see that mean-field theory would almost always predict this model to exhibit

ferromagnetism. Also, double occupation of a strongly correlated f -site becomes inevitable.

To this end, we introduce the concept of a non-linear fermionic transformation. Unfortu-

nately, there is still much to work to do on the theory. For example, we find the mean-field

theory depends on two angles, θ and φ. These control the relative mixtures of f and c elec-

trons in the quasiparticle that we are constructing. We require the energy to be minimised

as a function of these parameters. This requires a numerical approach, and time elapsed

before we were able to complete it.

We anticipate physical problems with the above procedure, and suggest further improve-

ments in the form of non-orthogonal basis states. The Stoner criterion which is a key tool in

this thesis is anticipated to become complicated with these non-orthogonal states. Indeed,

it is not clear that we will be able to recover an analogue of the Stoner criterion. This will

take a great deal more work.

Inbetween these two themes of the thesis, we have an interlude discussing antiferromag-

netism on a pyrochlore lattice, which has a great deal of geometric frustration. This is due

to the pyrochlore lattice consisting of a network of tetrahedra, which again are in some sense

a network of triangles, and Heisenberg antiferromagnetism is perhaps the most elementary

example of geometric frustration there is. We follow an argument based on two sets of ex-

periments performed on Gd2Ti2O7. The first, and in our opinion the most important is the
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neutron scattering experiments performed by Bramwell et al. However, we disagree with

their predictions. There are Mossbauer experiments performed by that suggest the multiple

moment scheme suggested by Bramwell et al. is unlikely, and that the spins are constrained

to planes that are perpendicular to the direction point towards the centre of the tetrahedron.
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Appendix A

Mean-Field Solutions of the Anderson
Lattice

A.1 Mean-Field Phases of the Anderson Lattice

We now discuss some of the phases present in the phase-diagram of the mean-field Anderson

Lattice. These are solutions to equations (5.38) and (5.39). We begin with the large U

limit, shown in A.1. Here we see the consequences of little hybridisation, at least at the

level of mean-field theory. A small moment develops in the f -electrons. Interestingly, the

conduction electrons adopt the opposite moment, and so. We see this trend continue in

figures A.2, A.3 and A.4. In figure A.5, we see the hybridisation leads to demagnetisation

at half-filling. Figure A.6 shows a trend which is complete in the limit V →∞, as shown in

figure A.7. Here, we find the hybrisation is so strong that there is no longer any difference

between the f -electrons and the conduction electrons.

For heavy fermion materials, the relevant figure is A.1. Heavy fermion materials have no

magnetic moment at all in the heavy-fermion state, and so mean-field theory as it stands is

inappropriate for their modelling. We hope to improve this situation with the program of

work outlined in chapter 10.
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Figure A.1: All figures are plotted with chemical potential on the x-axis. The solid curve is
the f -electron occupancy per spin per site, the solid dashed curve is the conduction electron
number per spin per site. The dotted curve is the magnetic moment of the f -electrons,
and the solid curve with dots is the magnetic moment of the conduction electrons, which
is generally opposite to that of the f -electrons. The general trend is that f electrons are
placed first with uniform spin, then conduction electrons are filled with little regard to their
spin. The hybridisation leads to magnetisation of the conduuction electrons. Eventually,
two f -electrons are placed on a site, which we would not expect to happen in reality.
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Figure A.2:
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Figure A.3:
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Figure A.4: V = U
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Figure A.5: V = 2U
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Figure A.6: The limit in which V is much bigger than U
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Figure A.7: Limit V →∞
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