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Abstract

is thesis proposes a novel method for allocating multi-aribute computational

resources via competing marketplaces. Trading agents, working on behalf of

resource consumers and providers, choose to trade in resource markets where the

resources being traded best align with their preferences and constraints.

Market-exchange agents, in competition with each other, aempt to provide

resource markets that aract traders, with the goal of maximising their profit.

Because exchanges can only partially observe global supply and demand

schedules, novel strategies are required to automate their search for market

niches. By applying a novel methodology, which is also used to explore, for the

first time, the generalisation ability of market mechanisms, novel aribute-level

selection (ALS) strategies are analysed in competitive market environments.

Results from simulation studies suggest that using these ALS strategies,

market-exchanges can seek out market niches under a variety of environmental

conditions.

In order to facilitate traders’ selection between dynamic competing

marketplaces, this thesis explores the application of a reputation system, and

simulation results suggest reputation-based market-selection signals can lead to

more efficient global resource allocations in dynamic environments. Further, a

subjective reputation system, grounded in Bayesian statistics, allows traders to

identify and ignore the opinions of those aempting to falsely damage or bolster

marketplace reputation.
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CHAPTER 1. INTRODUCTION

1.1 Scenario

e significant growth of Internet-enabled devices is accompanied by a

continually increasing demand for access to computational resources and

services, in order to satisfy an ever growing user base. is is resulting in current

system-centric approaches to resource allocation becoming limiting [63].

Examples of these approaches include those used to allocate resources within

paradigms such as cloud and grid computing, which oen rely on omniscient

centralised mechanisms with full knowledge of the resources under control.

Concomitant to this technological growth, the biggest untapped source of

computational power is now likely to be the combined distributed resources of

individual user machines, distributed across space and time and connected by

commonplace high-speed Internet connections. Added to this, when one

considers that most of these resources will be siing idle for long periods of time

[124], designing economic mechanisms for incentivising the provision of these

excess resources, and then allocating them to users who desire them most,

becomes of interest.

Market-based approaches [30], have been suggested as a way to efficiently

allocate resources between competing self-interested agents in distributed

seings [35, 63]. Within this field, the domain of Meanism Design concerns

itself with the design of market mechanisms whose resource allocations satisfy

certain designer-specified objectives, for example that allocations are

economically efficient, by maximising the total utility surplus across all agents.

While theoretical approaches have resulted in mechanisms that satisfy several

desirable properties in restricted seings, oen these approaches are not practical

for the design of market mechanisms is more open real-world environments.

Instead, considerable aention has been given to the empirical design and

analysis of market mechanisms [31, 136], oen using agent-based approaches

[183] to create rich coevolutionary simulation models of market-based systems
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1.1. SCENARIO

[118]. Particular aention has been given to the study of the Double Auction

market mechanism using these approaches because it allocates distributed

resources efficiently under a wide range of seings [33], and theoretical analysis

is impractical in all but the most restricted of cases [59]. Significant aention has

been given to the study of competing double auction marketplaces

[174, 160, 132, 117], and the impact their competition has on allocations of

single-aribute resources (commodities) [23].

However, computational resources are complex multi-aribute resources,

and resource consumers and providers tend to have different preferences and

constraints over aributes. is can make allocating computational resources

efficiently challenging, and lile aention has been given to studying double

auction approaches to achieving this. With that in mind, this thesis considers a

novel approach for allocating multi-aribute computational resources using

multiple competing double auction marketplaces. Within such an approach,

multiple market-exchange agents each provide double auction markets for

particular types of resources, that is, each resource exchanged within the same

market has the same aribute values. Trading agents, working on behalf of

resource consumers and providers, are expected then to select between markets

depending on which type of resource most suits their preferences and constraints

at the present time, while marketplaces, in competition with each other, are

expected to select the types of resources to be traded within their market that

most satisfy market segments within the trader populations.
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1.2 Researestions

is thesis is concerned with the design and empirical analysis of market

mechanisms for the allocation of distributed multi-aribute computational

resources, within environments where resource consumers and providers have

potentially different preferences and constraints over resource aributes, and

market mechanisms are unaware of these a priori.

In general, the overarching research questions that this thesis considers are:

• How can multi-aribute computational resources be allocated within

distributed environments which use multiple market mechanisms?

• How can we beer design mechanisms that perform well within such

models of resource allocation? Further, how can we improve the

mechanism design and analysis process to more carefully consider the

generalisation properties of these mechanisms?

e method of study used within this thesis is inspired by empirical approaches

taken within similar domains, such as for the study of double auction market

mechanisms in isolation, e.g., the JASA simulation framework [76], or double

auction market mechanisms in competition, e.g., the JCAT simulation framework

[24]. In the same spirit, the research questions posited above are studied within a

rich agent-based simulation environment, specifically developed to model both

the competition between consumers and providers over multi-aribute resources,

and the competition between marketplaces over traders that potentially have

very different preferences and constraints over resource aributes. e outcome

of simulations of these rich agent-based models of competitive behaviour is a

complex coevolutionary market-based system, where agents learn over time. As

such, care is taken when analysing this system, by using appropriate statistical

and computational methods wherever necessary. Analysis within this model is

done in both a qualitative and quantitative context. antitatively, metrics
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including: the economic efficiency of resource allocations across the system; the

profits that marketplaces generate by fees levied on traders; or the profits made

by traders from the buying and selling of resources, are used to measure the

impact of various mechanisms. alitatively, considerable thought has been

given to helping the reader visualise behaviours within this complex

market-based system, using a variety of visualisation techniques.

1.3 esis Contributions

e main contributions of this thesis are:

• A novel methodology for measuring the generalisation properties of

competing market mechanisms in coevolutionary trading environments,

and an application of the methodology to market mechanisms submied to

TAC Market Design Competitions, demonstrating its effectiveness.

• A novel approach to the allocation of multi-aribute computational

resources within distributed environments, relying on multiple competing

marketplaces satisfying market segments by running markets for certain

types of computational resource.

• e formulation of trader decision-making models for valuing

multi-aribute computational resources and reasoning over these

marketplaces, as well as a method for determining the optimal allocation of

computational resources between these traders.

• e first clear formulation of the automatic niing problem, which presents

itself when marketplaces must decide what type of resource market to offer

to traders with unknown resource preferences and constraints.

• An analysis of the effectiveness of two approaches for tackling the

automatic niching problem, using the previously developed methodology to
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measure performance in a variety of environments they are expected to

operate in.

• e first application of a reputation-based approach for facilitating

selection between double-auction marketplaces by integrating reputation

information into market-selection strategies.

• An analysis of the performance of reputation-based approaches to

market-selection, demonstrating that subjective reputation information

improves market-selection decisions, which leads to more efficient

allocations globally.

e approach to resource allocation presented within this thesis does not require

the presence of an omniscient central resource allocator, or the solving of

computationally expensive optimisation problems, in order to allocate

multi-aribute resources. e distributed nature of multiple competing

marketplaces oen results in several different types of resource market, from

which traders can migrate to the one that most satisfies their preferences and

constraints; this behaviour does not require any coordination between

marketplaces. While directly comparing this approach to other methods of

multi-aribute resource allocation is not within the scope of this thesis, this

approach is certainly suitable for allocating distributed computational resources,

because it satisfies a number of desirable properties that other approaches do not.

One of the themes underlying this thesis is generalisation and robustness,

and the contributions made throughout concern themselves, directly or indirectly,

with aempting to improve the generalisation and robustness of both market and

trader mechanisms, by designing mechanisms that perform well in a variety of

representative environments, not merely randomly generated instantiations. is

is supported by the application of a novel methodology to the assessment of some

of these mechanisms, which is also shown to, when applied to market

mechanisms previously championed in the literature, find they are brile to
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several environmental situations. Another theme within this thesis involves

competition between marketplaces, and research within this thesis concerns itself

with exploring different aspects of competition between market mechanisms. In

general, it is hoped that the methods developed for analysing the performance of

mechanisms under competition, within this thesis, can be used by anybody who

is interested in empirically analysing competition between marketplaces, be it

from a computer science, economics, or marketing, perspective.

1.3.1 Publications

e following publications have arisen out of work carried out within this thesis.

[145] E. Robinson, P. McBurney and X. Yao “How specialised are specialists?
Generalisation properties of entries from the 2008 TAC Market Design
Competition,” in proceedings of the 2009 Trading Agent Design and Analysis
Workshop (TADA 2009), IJCAI 2009, 2009.

[146] E. Robinson, P. McBurney and X. Yao “How specialised are specialists?
Generalisation properties of entries from the 2008 and 2009 TAC Market
Design Competitions,” Agent-Mediated Electronic Commerce: Designing
Trading Strategies and Meanisms, volume 59 of Lecture Notes in Business
Information Processing, pp. 178–194, Springer, 2010.

Further, work from chapters 5 and 6 is being prepared for submission to relevant

journals.

1.4 esis Outline

e remainder of this thesis progresses as follows. Beginning in Chapter 2, the

concept of computational resource allocation within a distributed utility

computing model is introduced, and future resource allocation issues are

highlighted, with particularly reference to the current limiting system-centric

approaches. e chapter considers a variety of current market-based approaches

for allocating multi-aribute resources, and highlights the unstudied approach
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considered within this thesis, of allocating computational resources using

competing double auction marketplaces.

Chapter 3 builds on gaps in the literature identified in Chapter 2.

Specifically, it highlights that current methods for analysing and measuring the

performance of market mechanisms in competitive environments have not given

much aention to the general performance of market mechanisms across a

variety of environmental situations. Within the chapter, a methodology for

measuring, both quantitatively and qualitatively, the generalisation ability of

double auction market mechanisms is presented; application of this methodology

to a variety of market mechanisms within CAT tournaments demonstrates that

many are not robust against a number of environmental changes.

In Chapter 4 a novel model for allocating computational resources via

competing double auction marketplaces is developed. In contrast to similar

models that deal with single-aribute resources, this model considers the

allocation of multi-aribute resources, and qualitative differences between the

models presents new challenges in the form of requiring new mechanisms.

Firstly, decision-making models appropriate for determining preferences over the

multi-aribute computational resources are developed, based upon marketing

models grounded in consumer theory. Using the multi-aribute utility trader

models, visualisations of trader payoffs for various resource types, demonstrate

the challenges that marketplaces face in locating the popular market niches

across a variety of trader contexts. Because typical methods for calculating the

allocative efficiency of resource allocations in single-aribute models are not

appropriate for the multi-aribute resources considered in this model, a new

algorithm is developed for making this calculation that allows the allocative

efficiency of the approach to be measured in simulations throughout the thesis.

Chapter 5 tackles the main research challenge noted in Chapters 2 and 4,

viz., how competing market-exchanges can automatically locate market niches

that satisfy segments of a trader population. To that end, the automatic niing
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problem is described, and several aribute-level selection (ALS) strategies are

proposed to tackle this problem, based upon n-armed bandit and evolutionary

optimisation, approaches. A comprehensive computational study is carried out to

assess the performance of these strategies by applying the methodology

developed in Chapter 3 within the market-based model developed in Chapter 4. In

general, simulation results show that several strategies are able to automatically

locate market niches within a variety of environmental seings, and that in many

cases competing marketplaces can self-organise to cover market niches that

satisfy all market segments within the environment, leading to desirable

allocations.

Chapter 6 complements the automatic market niching mechanisms

introduced in Chapter 5 by considering new approaches for trader

market-selection over competing marketplaces using niching mechanisms. While

reputation approaches have been widely applied in electronic marketplace

seings, no work currently addresses the suitability of reputation approaches to

signalling the expected behaviour of marketplaces. Highly reputable

marketplaces should offer resource markets that traders want to trade in, as well

as execute trades that are profitable for traders. Chapter 6 explores how

reputation approaches facilitate beer trader market-selection decisions, and

demonstrates that a subjective reputation approach, grounded in Bayesian

statistics, improves traders’ market-selection decisions, resulting in more efficient

resource allocations globally. Analysis is carried out using agent-based

simulations, while an initial investigation studying the influential properties of

certain traders is undertaken via a statistical analysis of emergent

market-recommendation networks.

Chapter 7 draws conclusions based upon the research carried out within

the thesis, reviews the contributions that this thesis has made, and discusses how

this work can be extended in the future.
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CHAPTER 2

BACKGROUND AND RELATED

WORK

To know the road ahead, ask those coming ba.
—Chinese proverb
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is chapter introduces problems associated with allocating multi-aribute

computational resources, distributed across space and time. It focusses on

market-based approaches to computational resource allocation, and highlights

the unstudied potential approach of commodifying multi-aribute resources and

allocating them via competing double auction marketplaces. Simulation

approaches for designing and analysing competing marketplaces are reviewed,

and gaps concerning approaches for measuring the general performance of

market mechanisms are highlighted. Further, some trust and reputation

approaches within electronic markets are reviewed, and it is argued that their

suitability for signalling expected marketplace behaviour needs to be further

analysed.

e rest of this chapter proceeds as follows. Section 2.1 introduces the

notion of computational resources for utility computing and the current

system-centric models governing their allocation. A distributed model of

agent-based computational resource allocation is motivated, and some desiderata

concerning such a model are considered, which current system-centric models of

resource allocation fail to meet. In Section 2.2 current approaches to market-based

resource allocation are introduced, focussing on both centralised and fully

decentralised mechanisms. e appropriateness of these mechanisms is

considered against the requirements for allocating multi-aribute resources in a

distributed environment, and it is concluded that none are strictly appropriate for

several reasons. e double auction—the market mechanism this thesis focusses

on—is introduced in Section 2.3. It is shown, however, that while efficient

resource allocations can be achieved with the mechanism, multi-aribute variants

are computationally prohibitive, and not scaleable to large systems. At this point

in the chapter, the novel approach studied within this thesis is proposed: that

multi-aribute resources could be commodified and allocated across multiple

markets run by competing market-exchanges. Section 2.4 focusses on empirical

models and approaches within the literature for studying resource allocation via
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competing marketplaces, and concludes that less aention has been given to

measuring the general performance of market mechanisms, across different

environmental seings. Section 2.5 discusses trust and reputation approaches as a

means of signalling and sanctioning behaviour in electronic marketplaces. While

much aention has been given to the application of reputation approaches in

general, almost none has been given to how approaches can be applied to

signalling marketplace behaviour in a competitive environment, and what impact

it has on resource allocations. Finally, Section 2.6 summarises the chapter, and

highlights why the work within this thesis is required.

2.1 Agent-based Computational Resource Allocation

A computational resource is an abstract term that can refer to either

computational hardware, soware, or a services composed of both. e

consumption of a computational resource involves permied access to some

computational hardware or soware for a specified amount of time. Conversely,

the provision of computational resources involves temporarily relinquishing

access to some hardware or soware, by allowing another entity access to it.

With the advent of virtualisation [7], computational hardware platforms can be

carved up into many smaller virtualised resources, each running, for example, an

entire operating system—system virtual maines—or specific instances of some

soware—process virtual maines.

System virtual machines are typically required less frequently, but for

longer periods, while process virtual machines are typically used more frequently

but for much shorter periods, and oen to run specific tasks. Regardless of the job

or function of the computational resource being used, a common feature is that

each resource usually has multiple aributes. For example, a computational

resource in the form of a system virtual machine might be described in terms of

its: memory capacity, storage capacity, CPU speed and number of CPU cores.
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Alternatively, a computational resource in the form of an image-resizing process

virtual machine might be described over its guaranteed availability and

image-resizing speed.

2.1.1 Utility computing

As Buyya et al. [22] observe, as far back as 1969, UCLA researchers—working on

the Internet’s precursor ARPANET—had already begun considering the

possibilities that might emerge from a globally connected network of

computational devices:

As of now, computer networks are still in their infancy, but as they
grow up and become sophisticated, we will probably see the spread
of ‘computer utilities’ which, like present electric and telephone
utilities, will service individual homes and offices across the country.

Kleinrock [86, p. 4.]

Much in the same way that water, gas, and electricity are public utilities, utility

computing refers to the bundling of computational resources into distinguishable

units, and then providing those resources on-demand; importantly, resources

should be made available in a way that allows the consumer to easily adjust their

utilisation.

e cloud model of utility computing

Within the commercial IT domain, the provision of on-demand computational

resources has aracted the aention of major IT vendors, including HP, IBM,

Oracle, and Amazon [63]. A new paradigm has emerged—cloud

computing—which describes the provision of location-independent resources in

an on-demand fashion. Resources are allocated to users across the Internet from a

cloud provider, usually a major IT vendor with a massive and powerful hardware

infrastructure. According to Armbrust et al. [4] the main characteristics that

separate the cloud computing model from other paradigms are: (i) the appearance

14



2.1. AGENT-BASED COMPUTATIONAL RESOURCE ALLOCATION

of infinite computational resources that scale with the user’s demand, known as

elasticity; (ii) a small barrier to entry because their are no hardware costs; and

(iii) the ability to pay for resources on-demand. Based upon these compelling

characteristics, the benefits are clear to consumers. However, as Briscoe and

Marinos [19] note, there are some fundamental issues with the cloud computing

model: (i) because massively centralised hardware infrastructures provide all

resources, when there is a failure it is massive and systemic; and (ii) because ever

decreasing hardware costs mean cloud providers are growing exponentially,

resulting in huge environmental impacts and massively under-utilised systems.

Briscoe and Marinos argues that these concerns could be overcome by the

implementation of a community cloud—a cloud provider infrastructure built on

top of individuals’ computational resources, where both consumers and providers

are distributed across the Internet.

Large-scale distributed computational resources

Combined individual machines, distributed across the Internet, are possibly the

biggest untapped computational resource, and many if not most will be siing

idle most of the time [140, 124]. Using volunteer computing models, some of this

computational power has been utilised in a distributed fashion. For example, the

SETI@home [153] and BOINC [15] projects harness users’ idle computer time to

perform distributed computational tasks. As of January 2011, the combined

computational power of BOINC volunteers sits at 4.6 petaFLOPS; currently, the

most powerful supercomputer only manages 2.5 petaFLOPS¹.

Volunteer computing projects explicitly rely on altruism from their

user-base, who provide their computational resources for running tasks delegated

by a central coordinator. While the economic benefits to consumers within a

utility computing model are clear, individual users are only likely to provide

resources if there are economic benefits to doing so. Further, among the common

¹hp://www.bbc.co.uk/news/technology-11644252
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characteristics that any utility computing model should have, Rappa [139]

identifies:

• reliability: the service or resource should be available when and where the
user needs it;

• usability: the service or resource should be simple to use at the point of use,
thus integrating into the user’s environment easily;

• utilisation rates: user demand for the services or resources may vary
significantly over time, but there should always be available capacity for
users.

Many of these objectives are in practice difficult to achieve, particularly when

one considers these desiderata in terms of large-scale, decentralised collections of

resources. For a system such as this to work, in a computational and economic

sense, it will need to operate without the intervention of human resource owners

or users. erefore, Soware Agents have been proposed to help solve resource

coordination and utilisation problems within these large-scale systems.

2.1.2 Soware agents as economic actors

According to Wooldridge and Jennings [184] a soware agent has the following

properties:

• autonomy: they operate without the direct intervention of humans or
others, and with self-control over their state and actions;

• social ability: they are able to communicate and interact with other agents;

• reactivity: they perceive their environment and react to changes within it;

• pro-activeness: they are not only reactive, and can exhibit goal-oriented,
deliberative behaviour.

e general role of soware agents is to represent, and perform tasks for, their

owners. In terms of a distributed utility computing environment, these tasks

might include: locating, valuing, and competing over resources, or coordinating

processes by which resources can be allocated across agents. As Wooldridge [183,
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pp. 7-8.] notes, no system is entirely composed of a single agent, and aention is

given to the field of multi-agent systems from two viewpoints: (i) agents as a

paradigm for soware engineering; and (ii) agents as a tool for understanding

human societies.

Agent-based Computational Economics (ACE) [167] takes a petri dish

approach to modelling economic processes, through the boom-up interactions

of economic agents in a multi-agent system, and is an example of where the

second viewpoint has had a powerful impact on the understanding of human

economies. e work carried out within this thesis, however, aligns itself more

with the first viewpoint. From an engineering perspective, as McBurney and Luck

[103] suggest: any large-scale, open and dynamic system needs to adopt the

multi-agent systems paradigm, with respect to its design and implementation. An

advantage of the multi-agent system approach is that systems can be iteratively

engineered in-vitro using a wide array of simulation tools, allowing one to

immediately see the impact system designs have on both individual and systemic,

behaviour. Further, these agent-based approaches oen require no more

complexity or implementation than necessary to model the individual

decision-making behaviours of individual actors within the system.

Economic agents

e term “economic actor” [101] specifically refers to a model of an individual

decision maker, typically eschewing non-rational actions, thus always aempting

to maximise its utility, which is used as a measure of relative happiness or

satisfaction. While at one stage modelling human behaviour in this way was

considered reasonable, such simplistic theories have given over to more

multidisciplinary concepts, such as bounded rationality [156], which is the idea

that individuals’ decision making is influenced and limited by other factors, such

as the amount of information available and how long it takes to process.

However, while economic rationality might be too strong an assumption for
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human behaviour in general, it can prove useful as a way of modelling

decision-making behaviour in soware agents. In order that soware agents are

able to perform tasks for users, there needs to be: (i) a method of specifying what

these tasks should be; and (ii) a way of specifying to the agent what actions it

should take to achieve its task. e first requirement, depending on the

environment and required tasks, can be satisfied by either hardcoding some

pre-defined behaviour, or allowing the agent to learn, perhaps under supervision.

Within a computational resource allocation system, soware agents can

work on behalf of users in either resource provision or consumption roles. Utility

theory, or more specifically in a computational resource domain, multi-aribute

utility theory, can be an effective way of allowing agents to make autonomous

decisions inline with their owners’ preferences and constraints over different

resource aributes. Within economic interactions, soware agents can be told

what actions to choose by being provided with a utility function, which the agent

can use to make a preference ordering over different possible outcomes [183,

pp. 107.]. us, faced with several choices an agent will go with the one that,

according to its utility function, will satisfy it the most. Typically, some

assumptions are made about the type of utility model used. Modern Consumer

eory [71, part i.] tells us that human preferences are best described using

ordinal utility functions, that is, described entirely in terms of rank between

alternatives. However, for decision making agents, and the algorithms they

employ, it is oen preferable to accept the more outdated theory of cardinal

utility [152], which can, if used with care, accurately model user preferences.

2.1.3 Computational resource allocation desiderata

A significant desideratum that concerns the design of resource allocation

systems, is that of facilitating economic efficiency. Specifically, when dealing with

a utilitarian model, it is the allocative efficiency of a resource allocation

mechanism that is of interest. An allocation is said to be strictly efficient iff the
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total utility of all participants involved is maximised; as a consequence, such an

allocation is also Pareto efficient. However, within the design of any large-scale,

distributed and open system, there will always be practical issues and constraints

that must be adhered to whenever possible; there are certainly objectives that

must be met when considering the suitability of approaches for allocating

distributed computational resources. Unfortunately, these practical objectives are

oen in conflict with the overarching one of allocating resources as efficiently as

possible, and tradeoffs must be made between objectives [136]. erefore, in

reality many resource allocation mechanisms are not strictly allocatively efficient,

and the role of a multi-agent system designer is to strive for efficiency while

complying with practical system constraints or alternative objectives. When

designing a distributed resource allocation mechanism, for example, one might

consider the following desiderata:

• availability: the allocation mechanism should always be available to agents,
not just across locations, but across time—it shouldn’t involve periods of
inactivity;

• robustness: the approach should be robust to failure—the entire system
should not be reliant on a single point;

• scalability: the approach should scale with the number of participants in
the system, which in the case of massively distributed utility computing,
could be thousands or more;

• expediency: users or agents should not be le waiting to receive the
outcome of an action—resources should be allocated as quickly as possible;
and

• open: there should be no barrier to entry, and the approach should not
prevent users or their agents from participating.

Current system-centric approaches used within grid and cloud computing models

for allocating resources fail to meet some of these requirements. In the main, it is

unclear how resources can be efficiently allocated within an oligopolistic

retail-inspired model. Firstly, it is likely there will be many times when there is,

for example, excess supply, but prices won’t be adjusted to reflect that. Secondly,
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acting in an oligopolistic fashion precludes users from making their

computational resources available for provision, further hindering competition.

Particularly, with the massive growth of Internet-enabled devices, and thus the

continual requirement for access to more computational services and resources,

to satisfy a growing user base, means that traditional system-centric approaches

to controlling and allocating these resources is particularly limiting [63]. In any

distributed and open system, where any agent can seek to either provide or

consume resources, it is important that agents are able to compete for resources,

so that those who value them most receive them. As Broberg et al. [20] note,

market-based approaches are a possible way of allowing participants to compete

over resources, without the need for a global overview of either side of the

system required by a system-centric approach.

2.2 Market-based Meanisms for Multi-attribute

Resource Allocation

e traditional resource allocation approaches discussed in the previous section

all have some fundamental issues, each of which may eventually prove

insurmountable. is section considers the domain of Market-based Control

(MBC) [30], in which market-based mechanisms are utilised to control the

allocation of distributed resources, oen in complex systems. MBC advocates

that, rather than allocating resources according to quantity limits and capacity

(which requires an omniscient centralised planner), a system’s resources should

instead be allocated according to economic need, as determined by price [68].

Market-based control is founded on the idea that rational self-interested agents

will compete over resources, and that they will be allocated to those who place

the highest value upon them. us, the design of the market-mechanism that

governs the resource allocation is fundamentally important for achieving the

desired objectives of the designer.
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Within the discipline of economics, the field of Meanism Design concerns

itself with the design of market-based mechanisms for resource allocation

problems [63]. Mechanism design treats the designing of mechanisms as seing

the rules of a game for self-interested agents, such that when followed in a

rational way, participants’ interactions will lead to designer-desirable outcomes

[40]. Mechanism design researchers oen have societal objectives in mind when

designing market mechanisms; a common goal is the efficient allocation of

resources, which is usually defined as the maximisation of the total utility over all

agents in the system. By using game-theoretic techniques, the challenge is to

design a mechanism that uses the strongest game-theoretic solution concept

possible [126]. Mechanism designers usually wish to build market mechanisms

that satisfy (see [136], for example) the following properties:

• incentive compatible: participants should be incentivised to report their true
preferences, usually in terms of declaring their true valuation for the good
being traded in the market;

• budget balanced: if the mechanism rewards participants to reveal their true
preferences using money, the net transfer of payments should be zero, i.e.,
the mechanism does not run at a loss;

• efficient: the allocation that the mechanism makes should (in some way) be
optimal, e.g., the total utility over all participants should be maximised;

• individually rational: participants should be beer off (in an expected sense)
using the mechanism than not.

An important result oen relied upon in mechanism design is the revelation

principle, which states that any mechanism can be turned into an

incentive-compatible direct-revelation mechanism [126, 130]. Incentive

compatibility is desirable for optimally allocating resources, while a

direct-revelation mechanism means that the only available action an agent has is

to communicate its preferences; thus, agents can only perform one action, which

is to report their preferences truthfully to the mechanisms. In such a case, very

strong claims can be made, indeed proved, about the optimality and thus power,
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of such a market mechanism. However, there are some considerable problems

with the revelation principle. While it states that any mechanism can be turned

into an incentive-compatible direct-revelation mechanism, it says nothing about

the computational cost of performing that operation [126, p. 36.], such as, for

example, polling every agent in a system for their preference type [137]. Other

strong assumptions are oen also made, such as implicitly trusting the market

mechanism, and that agents will always act rationally. us, the mechanism

design desiderata listed above, and the general approach and assumptions, are in

conflict with the desirable properties of a computational resource allocation

mechanism listed in Section 2.1.3. Some new approaches have been made to

improve the practical aspects of mechanism design, e.g., algorithmic meanism

design [115] only considers mechanisms that are computationally practical, and

trust-based meanism design [40] considers mechanisms where traders may not

fully trust each other, oen because of conflicting design objectives, the design of

appropriate mechanisms for the problem at hand is usually non-trivial [63] and

complex, and theoretical approaches are oen not practical.

2.2.1 Centralised approaes

A common mechanism for determining where resources should be allocated is to

hold an auction. e most common type of auction, the English Auction, is oen

found in auction houses dealing with art or antiques. In such an auction, bidders

shout out monotonically increasing bids until no-one wishes to improve upon the

last price submied. In the simplest seings auctions are a good method for

allocating resources to those who value them the most, because the auction

participants are oen able to get an overview of the market and the interest in

item being auctioned. Multi-aribute auctions [14, 11, 13, 26, 41] are auctions

where rather than submiing single prices, as in English Auctions, bidders are

required to submit a bundle of aributes, describing a range of different outcomes

they would be happy with, and what they would be prepared to exchange for each
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outcome. Typically, multi-aribute auctions are single-sided, and oen, as Bichler

et al. [14] note, designed in terms of facilitating procurement within complex

resource markets; an example might be a government procuring goods or services

to find the cheapest supplier that satisfies their requirements. Multi-aribute bids

are oen evaluated by the auctioneer, using a scoring-rule or utility function,

which allows it to compare bids orthogonally. How these rules are designed is an

active area of research [26, 41]. e fact that typically multi-aribute auctions

only allocate single-units within each auction, means they can be prohibitive for

allocating large volumes of resources. While multi-unit versions have however

been considered, some of the advantageous properties of the single-unit versions,

including the efficiency of allocations, is lost [14].

Combinatorial Auctions [114] are multi-unit auctions that aempt to

overcome some of the limitations of traditional multi-aribute auctions. A

combinatorial auction considers the allocation not of individual goods with

multiple aributes, but entire bundles of different goods. Examples might include

for example, the various aspects of a package holiday: flights; connections; and

hotel. Importantly, goods are said to be combinatorial only when the value of the

bundle is greater than the total of each item’s individual value [12]. While

combinatorial auctions are able to efficiently allocate resources, the winner

determination problem, that is, the optimisation problem needed to be solved to

optimally allocate resources, is a reduction of a graph clique problem, and thus

NP-hard [148]. While the problem is NP-hard, some aempts have been made

to provide more computationally reasonable estimation algorithms for calculating

optimal allocations, particularly in terms of iterative mechanism that can find

sub-optimal allocations in polynomial time [125, 126]. Similar approaches have

been proposed and evaluated in multi-aribute auction formats [163, 13].
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2.2.2 Decentralised approaes

e centralised auction-based mechanisms discussed thus far, while oen

resulting in allocatively efficient outcomes, rely on considerable amounts of

central control or global views, which is at odds with the general aims of

market-based systems—to exhibit the decentralised, robust nature of human

economies [35]. Several approaches have been proposed for the design of agents,

and in general mechanisms, for the decentralised allocation of resources. In terms

of being applicable to computational resource allocation, there are two are two

main approaches: bargaining over resources using negotiation protocols, or

broadcasting ‘take-it-or-leave-it’ posted offers across retail markets.

Lewis et al. [92] take a decentralised retail-inspired approach to the

allocation of computational resources, defining evolutionary market

agents—resource sellers that use simple evolutionary algorithms to learn

appropriate prices for selling resources. Within their model, no centralised node

or coordinator is required to manage the resource allocation process. Rather, it is

assumed that a decentralised population of resource consumers and providers are

able to interact with each other and post offers publicly to the rest of the entire

system. While Lewis et al. focussed on single-aribute resources, the approach

has also been generalised to multi-aribute cases [93]. While Lewis et al.’s

approach satisfies a number of desirable properties, such as robustness through

decentralisation, it has a number of drawbacks. It assumes that sellers have an

unlimited amount of resources, and it is unclear how efficient allocations would

be in scenarios where sellers were resource constrained, or indeed, how sellers

would ensure their prices were visible to all buyers in the system.

Bargaining agents can use a more complex formal framework for

negotiations. Some heuristic approaches to bargaining, such as Barbuceanu and

Lo [6]’s, utilise models that can order preferences over multi-aribute resources.

Bilateral negotiations progress with each agent considering an offer according to
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their valuation model and returning a (generally concessive) counter offer, or

rejecting the deal entirely. Heuristic bargaining approaches are not capable of

considering externalities, or indeed communicating outside of the bounds of the

proposal space [78], which can lead to inefficient negotiations and an inability to

communicate other important information. Argumentation approaches [128, 78]

aempt to remove some of these limitations by allowing agents to communicate,

for example, supporting arguments as to why their proposal should be accepted,

or to notify the counterparty of particular constraints that can’t be broken.

As with decentralised retail-inspired approaches, it is unclear how well

bargaining approaches result in efficient allocations across systems of distributed

agents. Work on CATNETS [53, 54] has aempted to answer these types of

question. Eymann et al. [53, 54] consider fully decentralised resource allocation

mechanisms for computational grids that rely on networks of different soware

agents acting as providers or coordinators. Each agent uses negotiation

techniques to make a trading decision, and an underlying decentralised

peer-to-peer infrastructure allows agents to communicate prices and offers.

While this approach is reasonable for small cases, as the number of participants

scales to several hundred, results in [54] suggest the fully decentralised nature

significantly affects convergence on an efficient price equilibrium.

2.2.3 Problems with existing approaes

In this section a number of centralised and decentralised market-mechanisms

have been reviewed from the perspective of multi-aribute computational

resource allocation in large-scale systems. While each approach has a number of

advantages, both approaches have significant issues or limitations, which do not

sit well with the desiderata listed in Section 2.1.3. e significant advantage of

centralised auction-based approaches is that in many cases they are able to

achieve two things: (i) elicit the true preferences of bidders; and (ii) use this

information to calculate the most efficient allocation, usually by solving an
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optimisation problem. However, these outcomes are reached at a significant cost:

• non-distributable: it is unclear how multi-aribute and combinatorial
auctions could be distributed across many locations in a large system, while
maintaining their primary advantage of allocating resources efficiently;

• one-sided: the centralised mechanisms considered thus far only install
competition in one side of a market, giving a potentially unfair advantage
the side running the auction [151];

• non-interruptible: there could be a significant gap between the
commencement of a centralised auction, and the resulting allocation,
during which time the environment or preferences of the agents may
change considerably;

• computationally prohibitive: eliciting the true preferences of agents, and
then solving the resulting allocation problem is generally NP-hard, and
near realtime resource allocations with large systems of agents seems
impossible with current computational hardware.

Some research has been undertaken to generalise multi-aribute and

combinatorial approaches to two-sided exchange markets [127, 151], but there are

still many issues remaining in terms of computational cost and the

non-interruptible nature of the mechanisms. Cliff and Bruten [35] were one of the

first to suggest that a centralised approach to resource allocation, whether via

market mechanisms or not, opposes the decentralised, robust nature of real-world

economic markets; a call was made for focussing on developing agents that are

capable bargaining behaviours, that is, to distribute the intelligence of the

mechanism across the system. In real-world free-market economies, competition

between market participants drives the allocation process. However, the fully

decentralised approaches studied in Section 2.2.2 hinder this in a number of ways:

• hidden-prices: two significant issues hinder economic competition in fully
decentralised systems—either transaction prices are private and not
available publicly, or prices are unevenly distributed across a decentralised
network;

• illiquidity: in large-scale systems, where market participants have
heterogeneous preferences and constraints, it can be hard to find suitable
trading partners;
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• barrier to entry: agents capable of multi-aribute negotiating need to have
sophisticated levels of cognitive reasoning.

Price discovery is essential to allow competition over resources and ensure that

those who value them most, receive them. In the CATNET approaches [3, 54],

however, prices have to be communicated in an ad-hoc way around the system,

potentially puing agents on the periphery at a disadvantage. Further, as Bichler

[12] notes: in bilateral bargaining situations, one-to-one negotiations determine

the price and conditions of any deal. is suggests that outcomes are

economically indeterminate, because agents with higher cognitive capabilities

will determine the conditions and prices of deals.

When Cliff and Bruten [35] highlighted the importance of distributing the

intelligence of market mechanisms by endowing market participants with

bargaining behaviours, they emphasised that to allow economic competition to

occur within a market, bargaining agents need to be able to consider other recent

trade prices when forming their own. If there is a mechanism to make price

information to available to all market participants, bargaining behaviours do not

need to be considerably complex for efficient outcomes to be achieved. Cliff and

Bruten demonstrated this by showing that a population of minimally intelligent

traders [33] can arrive at economically efficient allocations without the need for

any omniscient central mechanism controlling allocations. is mechanism, the

double auction, forms the core of the market-based system proposed within this

thesis, and is discussed in the next section.

2.3 Double Auctions

is section introduces the Double Auction—a family of two-sided auction

mechanisms where multiple potential buyers and sellers submit offers, seeking to

engage in purchase transactions over some good. As a market-mechanism for

allocating computational resources, whose providers and potential consumers are
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distributed over space and time, a double auction has some nice properties:

• institutional: as a centralised auction mechanism, it provides a single
location for participants to trade;

• price discovery: participants have access to the current market price for the
resource they are trading;

• two-sided: the double auction supports multiple buyers and sellers
simultaneously bidding in an aempt to transact.

While a centralised institutional mechanism may appear to conflict with some of

the desiderata in Section 2.1.3, e.g., by being a weak-point of failure, in reality,

multiple double auction mechanisms are easily distributed across a system, and

participants can migrate between them at will [23]. Further, double auction

mechanisms do not require knowledge of the whole system, and merely act as a

point for traders to compete over resources, rather than making any dictatorial

allocation decisions. Because they are two-sided auctions, both buyers and sellers

can compete over resources, ensuring no side of the market has an unfair

advantage.

2.3.1 Double auction basics

e term ‘double auction’ is rather misleading. While many auction mechanisms

are considered double auctions, in reality double auction is an umbrella term for

many two-sided auction types, each with different rules but sharing some

characteristics. Double auction variations are used by most of the stock and

commodity exchanges around the world, but generally each has differing rules. In

a double auction, traders simultaneously submit prices—referred to as shouts—to

the market [58]. Buyers’ shouts are known as bids, and indicate that they are

prepared to purchase at a price not exceeding their specified offer price. Sellers’

shouts are referred to as asks; an ask is an indication that the seller is prepared to

sell at a price not less than their specified offer price. Bids and asks can be

mated when their prices crossover, that is, when the bid price is at least that of
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the ask price. Once a bid and ask are matched, a transaction is formed between

the buyer and seller, and they exchange good for cash. One common type of

double auction is the clearing house auction, or call market [49]. A clearing house

auction is periodic, that is, like the classic English auction there is a period of

bidding, and then a period of allocation. Once bidding is over, the auctioneer

assesses all offers and determines which traders will be matched, and at what

price. It is common in call markets for all matched traders to transact at the same

price, which is typically known as the clearing or market price, because it is the

price at which, given all of the offers, the most transactions can be executed. An

illustrative example of how the market is cleared is given in Figure 2.1. Clearing

bids asks
14 6
14 7
13 9
12 9
10 10
9 13
9 14

Figure 2.1: Each number represents the price of an offer shouted into the mar-
ket. Once the submission period is over, the auctioneer determines the clearing (or
market) price. In this case the market price is 10. All possible trades, i.e., those on
or above the clearing price will take place with a transaction price of 10. us, the
price discovery is performed by the market mechanism rather than the traders. For
example, one bidder has over-bid and offered a price of 14, but they will only pay
the market price.

house auctions are useful for trading items that don’t have continually high

amount of interest, because they provide an extended period of time to collect

potential offers before allocating resources. Further, traders do not have to worry

about over-bidding, because the price discovery process is done by the

auctioneer. Clearing house auctions do a good job of discovering market prices, by

spending time gathering information about trader preferences, in the form of

collecting offers, resulting in more efficient allocations. However, their periodic

nature does not sit well with the desideratum that resources should be allocated
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quickly, e.g., it may be impractical for a soware agent to wait for the next

auction iteration. Further, the periodic nature means that clearing house markets

can take longer to react to exogenous environmental influences acting on the

system, such as sudden shis in supply or demand. An always-on continuous

double auction mechanism, where market prices are determined, and resources

allocated instantly, is more appropriate.

2.3.2 Continuous double auctions

Unlike the clearing house auction, an auctioneer running a continuous double

auction (CDA) clears the market as soon as two offers match. In a CDA market

traders always have an indication of the current market spread, which typically

displays the currently unmatched highest bid and lowest ask. us, traders using

the CDA market mechanism always have access to the current market price

(oen called the market quote), which is the price they must pay that instant to

either buy or sell a resource. CDA mechanisms are the double auction variants

that are most likely to be found running in financial institutions around the

world, particularly as a way of allocating heavily traded assets. It is common to

refer to the entities running CDA auctions as either market institutions, or

market-exchanges; this thesis uses the second term. Given that CDAs allocate

resources in a continuous, reactive way—as soon as two offers cross in the

market, and all at potentially different prices—the resulting allocations are oen

very efficient. Expectedly, CDAs have therefore received a large amount of

aention from within the Economics, and increasingly also the Computer Science

research communities.

Reaing competitive equilibrium with minimally intelligent traders

Competitive Equilibrium is a term used to describe the concept of equilibrium in a

two-sided exchange environment (where prices can be dictated by both supply

and demand). Equilibrium usually implies stability; if a market reaches
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competitive equilibrium, trades all tend to take place at a certain price, known as

the competitive equilibrium price (oen denoted P∗). Further, competitive

equilibrium results in allocations that are allocatively efficient, in terms of

maximising total trader utility, which is a desirable objective for a computational

resource allocation system. To understand how competitive equilibrium is arrived

�antity
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Figure 2.2: Example supply and demand curves for a resourcemarket. Supply curves
always slope upwards (the higher the price of a resource, the greater the number of
traders willing to supply the resource). Demand curves almost always slope down-
wards (the lower the price of the resource, the greater the number of trader want-
ing to purchase it). Given supply and demand schedules, the curves can be built
by iterating through all prices and recording the quantity of traders that would be
willing to trade at that price. Assuming traders can only trader a single unit, at a
price of 10, for example, five sellers would be willing to trader, but at that price 35
buyers are eager to buy, resulting in an excess demand of 30, which is inefficient in
terms of maximising total utility across all traders. Likewise, at a price of 10 there
is an excess in supply of 30− 10 = 20. However, at the equilibrium price P∗ = 20,
the quantity willing to be supplied is equal to the quantity demanded, thus the
market is at competitive equilibrium. In this the equilibrium quantity is a range
Q∗ ∈ [10–15], but the quantity exchanged will tend towards the maximum limit
[157, p. 114.].

at, and to further support the argument for the applicability of using double

auction mechanisms for allocating computational resources, example supply and

demand curves are shown in Figure 2.2. ese curves are built from the private
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valuations of a group of 35 traders who wish to consume or provide an imaginary

resource. An allocation of this resource is efficient when supply and demand are

equal, i.e., the 15 traders who can, trade at a price of 20. However, the CDA

mechanism cannot enforce this, because it does not know traders’ valuations, and

it allocates individual resources constantly, without building a picture of the

supply and demand schedules. Yet, equilibrium outcomes are achieved using this

mechanism, even in markets with relatively few traders [157, 67]. is outcome is

down to the price discovery process, specifically that traders always know what

they need to pay, at that present time, to buy or sell a resource.

e primary feature is the double auction structure: in order to
realize any gains from exchange, a trader must either seize the market
price, or accept the market price of another. is necessity both limits
each agent’s influence on prices (via Bertrand competition) and also
conveys high quality information to other agents.

Friedman[57, p. 71.]

From a Computer Science perspective, designing agent-based traders that are

capable of behaving in this way is of paramount importance for applications such

as the one this thesis is interested in.

In seminal work, Cliff and Bruten [33], building upon previous, but

ultimately incorrect conclusions [66], developed the Zero-intelligence Plus (ZIP)

trading agent, which, using simple machine learning techniques, is able to reach

competitive market equilibrium under a range of market conditions. Further, it is

a very simple algorithm which is computationally cheap to run.

2.3.3 Multi-attribute double auction approaes

Up to this point, double auctions, and particularly the continuous double auction,

have been discussed with respect to single-aribute resources. e

double-auction is, in its most common configuration, designed only to allow

traders to indirectly negotiate over price. erefore, all resources or goods that

are supplied across a typical double auction market are commodities, that is, each
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item allocated is qualitatively indifferent to any other. Within the literature, a

small number of multi-aribute double auction mechanisms have been proposed,

which will now be reviewed. Fink et al. [56, 55] have built formal models for

trading multi-aribute goods using a CDA mechanism. As an example

application, they consider a market for trading new and used cars with four

non-price aributes. Each buyer and seller is assumed to be able to specify quite

complicated constraints and preferences to the auction, e.g., “I’ll pay $200 more if

the car is red, but no more than $10,000 if it is black.” As such, traders submit

offers not as a single price, but as a bundle containing (amongst other things) a

set of car types of interest, and real-valued functions describing preferences and

constraints over those types. ere are a number of reasons why Fink et al.’s

model is not suitable for the application considered in this thesis. Firstly, in a

single-aribute CDA mechanism, when an offer is submied, it only has to be

compared to the highest (lowest) unmatched bid (ask), which is a cheap

operation. In Fink et al.’s mechanism, each offer submied, being of a

multi-aribute nature, must be compared to many unmatched offers; indeed, the

matching operation is equivalent to a single-sided multi-aribute auction’s

mechanism. Secondly, Fink et al. differentiate between indexable orders (those

that are only interested in a single type of car), and non-indexable orders (as the

example above, where a trader is interested in a range of different types of car). In

an effort to reduce computational cost, potentially more efficient allocations are

sacrificed by only matching non-indexable to indexable orders, reducing the

difficulty of the matching problem. Both Engel et al. [51] and Schnizler et al. [151]

do consider the more complicated case of optimally matching a two-sided market

where offers are submied with multiple aributes. As well as being considerably

harder than in the CDA-based mechanism used in [56, 55], the computational

complexity of the resulting optimisation problems in [51] and [151] is

considerably worse than the single-sided mechanisms discussed in Section 2.2.1.

In both [51] and [151], integer programming solutions are developed, however,
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based upon reported results, they are only feasible for real-time allocations of

computational resources between low numbers of traders, e.g. less than 100.

2.3.4 Commodifying multi-attribute resources

In practice, the continuous nature of the CDA mechanism precludes it from

optimally allocating multi-aribute resources with any kind of expedience, when

the mechanism accepts multi-aribute offers, i.e., offers specifying not just price,

but also constraints and preferences over other aributes. e rest of this section

motivates this thesis’s proposal that multi-aribute computational resources can

be allocated via competing CDA marketplaces. It discusses how the financial

world deals with allocating hundreds of thousands of multi-aribute goods every

day, how the techniques used to achieve this have begun to feed into utility

computing models, and concludes with the proposal for multi-aribute resource

allocation via competing marketplaces.

Unlike cash instruments, such as company stock, which have an equivalent

value to all market participants, more complex instruments, e.g., those that are

derived from aspects of other instruments, can have different values to different

participants, due to their multi-aribute nature. An Option is an example of a

multi-aribute financial derivative. An option contract between two parties

stipulates the buyer of the contract is entitled to, at some future point specified by

the contract, either buy or sell some underlying asset, to or from the seller of the

contract. ey have a long past², and until 1973 they were traded over the counter

(OTC). OTC transactions involve direct or indirect (via a broker) negotiation over

the aributes of the contract being exchanged. Given the distributed nature of the

global economy, and contract heterogeneity due to non-standardised aributes, it

was oen hard to find parties to trade with, and exchange would take

considerable time.

²ere are references to option-like contracts between people in the Bible [123, p. 1. ], for ex-
ample, and certainly a well-recorded instance of option contract trading for Tulips, in seventeenth
century Holland.
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e solution to this was (along with the standardisation of the various

contract aributes) the opening of the Chicago Board Options Exchange [28]

(CBOE) in 1973; with its opening began a new era of exange-traded options.

Exchange-traded options are, as the name suggests, traded over an exchange,

usually either a call market or a CDA market. e significant difference between

exchange-traded and OTC traded options, is that there is no negotiation over

non-price aributes in the exchange-traded case, that is, all non-price aributes

are fixed to some specific values. Each option contract variation is traded within

its own market, and thus there are separate auctions for each variant. To deal

with the different preferences and constraints that traders have over contract

aributes, option exchanges run multiple markets, giving traders the ability to

trade the option contract variant that best meets their preferences and

constraints. One fundamental challenge that an exchange owner faces is deciding

how many different types of markets to run, and what type of contract variant

should be traded within each market. To improve the liquidity within markets,

exchanges offer a subset of markets that have a large interest from traders. An

Type Underlying Strike Price Expiration Current Bid Current ask
CALL IBM 145 19/01/11 6.20 6.30
CALL IBM 150 19/01/11 2.96 3.00
CALL IBM 155 19/01/11 1.05 1.10
CALL IBM 160 19/01/11 0.30 0.32
PUT IBM 145 19/01/11 1.61 1.62
PUT IBM 150 19/01/11 3.45 3.55
PUT IBM 155 19/01/11 6.65 6.75
PUT IBM 160 19/01/11 10.90 11.00

Table 2.1: A fictional example of eight different option contract variations for the
same underlying asset. Each row in the table specifies a separate market for con-
tract types with the aributes specified in columns 1–4.ese aributes include the
underlying asset, whether purchaser is given the option is to buy or sell the un-
derlying (Type), at what price (Strike Price), and on what date (Expiration). Each
market is a separate auction, and the current market quote for each type of option
contract is shown in columns 5 (bid) and 6 (ask). Traders can choose to join any
of the separate markets and shout offers, according to whichever market they are
interested in.
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illustrative example is shown in Table 2.1, which lists some fictional markets for

exchange-traded IBM options. Each contract has four non-price aributes, which

traditionally would be negotiated over. Rather, these aributes are fixed at

specific levels and markets for a range of different contract variations are

provided; each market has a current market quote—the current price to buy and

sell instantiations of those contracts.

e standardisation of complex multi-aribute financial derivatives has

allowed for the emergence of commodified multi-aribute contract markets

running across distributed exchanges, lowering cognitive requirements of

automated trading strategies. Rather than having to design agents that can

negotiate over complex aributes with brokers, simple CDA trading strategies

such as ZIP can be utilised. Recently, similar exchange-based approaches have

begun to emerge within the utility computing model. Cloud providers such as

Amazon have recently begun to introduce a market-based approach³, by

providing call markets for allocating different multi-aribute computational

resources. Consumers choose the market that best meets their requirements and

submit bids for access to instances of the specified market resource. Knowing its

own supply schedule, based upon its current excess capacity, Amazon essentially

acts as multiple sellers on the sell-side of each market, clearing the markets at

prices that balance supply and demand. A selection of these resource types is

shown in Table 2.2; each of the resource types has a different market price,

dependent on the available supply and demand. Because Amazon is aware of its

hardware capacity, it has explicit knowledge of the entire supply schedule. Based

upon that, human experts can optimise the selection of aribute-levels for each of

the resource markets, to best match the demand of users, and optimise revenues.

³hp://aws.amazon.com/ec2/spot-instances/
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Compute Units (CPU) Memory Storage I/O Performance Architecture
1 1.7 GB 160 GB Moderate 32-bit
4 7.5 GB 850 GB High 64-bit
8 15 GB 1,690 GB High 64-bit
6.5 17.1 GB 420 GB Moderate 64-bit
13 34.2 GB 850 GB High 64-bit
26 68.4 GB 1,690 GB High 64-bit

Table 2.2: Six different Amazon EC2 Instance Types. Each row represents a differ-
ent type of computational resource offered on-demand by Amazon web services.
As you can see, each instance type has different aribute values, which will be
preferable to different types of consumers. Amazon provides a separate exchange
market for each resource type, and consumers submit bids for purchasing instances
of the described resources. Amazon decides which resource markets to offer based
upon its explicit knowledge of the supply schedule, i.e., it knows how much excess
capacity is in its system, and the hardware constraints of its infrastructure.

Summary

While Amazon is an example of where market-based approaches are being

considered for complex computational resource allocation, in their case they have

full knowledge of one side of the market. us, they can optimally specify what

resource markets should exist, e.g., those in Table 2.2, based upon knowledge of

their resources. However, the distributed resource providers and consumers

considered within this thesis are distributed across space and time, with different

preferences and constraints, resulting in global supply and demand schedules

being unavailable to any single entity.

One approach to computational resource allocation not yet considered in

the literature, is that resource markets could be run by multiple competing

marketplaces, with the aim that each marketplace automatically identifies a

market nie that satisfies a market segment. Market segmentation is an

economics and marketing concept that describes how a population of market

participants is segmented into different groups [89, p. 73]. ese market segments

are oen defined by the preferences and constraints of consumer and providers,

which cause them to demand similar or identical goods. In that respect,

marketplaces aempting to satisfy market segments by providing a market for a
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certain resource types face the same problem as financial derivative exchanges:

identifying and satisfying market segments within a complex environment

containing many participants with different preferences and constraints over

aributes. How the market-exchange agents running these markets

autonomously identify and satisfy market segments, to aract consumer and

providers to their market, is a research question considered in detail in Chapter 5.

It is hypothesised, however, that their self-interested nature, and thus the

competition over traders, will encourage all market niches within an environment

to be sought out and satisfied.

Recently, a small body of related research has appeared, looking at

answering research questions involving satisfaction of market segments via

multiple competing marketplaces. Cai et al. [23], for example, have empirically

investigated the emergence of market segmentation between competing

market-exchanges in a less complex single-aribute resource domain. Using an

empirical agent-based approach, they conclude that the competitive nature of

traders will result in them naturally migrating to their preferred market, ereby

creating separate markets for each segment of the trader population. Both

agent-based approaches to the design of marketplaces, and simulation

frameworks for analysing competition between them, are a major part of the

research carried out in this thesis, and form the topic of the next section.

2.4 Competition Between Marketplaces

is section focusses on the computer science literature that studies competition

between marketplaces. Particular aention is given to the various empirical

approaches that have been suggested as frameworks for the design and analysis

of double auction market-mechanisms both in isolation [31, 135, 136], and in

competition in complex environments [117, 24]. While these approaches are

certainly helpful for analysing the performance of marketplaces competing in
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dynamic environments, there has been less aention given to methods for

analysing the robustness and generalisation of market-mechanisms; this is

discussed in more detail at the end of the section.

In a global economy, stock exchanges compete against each other for

trading business, and, increasingly, against new online markets not tied to

traditional physical exchanges. In such a competitive environment, the precise

rules adopted by a marketplace may have important consequences: in aracting

(or not) traders to their exchange; in favouring (or not) certain trading strategies;

and in facilitating (or not) the matching of shouts and the execution (matching) of

trades in their market. As such, marketplaces oen use a variety of different

rules⁴ in an aempt to get a competitive edge. us, a detailed understanding of

the different potential rules for double auction markets and their impacts is

important, since a good understanding of the market rules used certainly helps in

the design of improved rules and mechanisms, and may offer clues as to how we

might eventually automate the design of entire market mechanisms.

2.4.1 Approaes to double auction marketplace design

Unfortunately, double auctions are typically poorly understood from a theoretical

perspective, in comparison to their single-sided counterparts [12, 130]. As both

Parsons et al. [130] and Phelps [137] note, while it has been shown that

single-sided mechanisms with one seller can be budget balanced, efficient and

incentive compatible, due to Myerson and Saerthwaite’s [111] impossibility

result, no exchange-based (two-sided) mechanism can achieve all three objectives.

Further, the two-sided nature of the auction means game-theoretic approaches

have only been useful for very small instances, because of the huge state-space

explosion when considering larger numbers of participants and all their possible

actions. us, given the double auction’s current mathematical intractability for

⁴For example, the New York Stock Exchange [113] use a rule known as the the NYSE rule [48, p.
84], which specifies traders must continually beer the market every time they shout an offer
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larger instances, more aention has been given to empirical analysis, particularly

through the use of simulation and agent-based modelling.

Wurman et al. [186] perhaps seeded the empirical approach to marketplace

design, when they set about parametrically specifying common auction

characteristics—rule variations—that covered a large variety of different auction

formats. Based on the approach of Wurman et al., Niu et al. [116] developed a rule

framework more specific to double auction mechanisms, which helps to tackle

design and analysis aspects of the mechanism by defining a set of policies that

constitute a double auction mechanism, and could be used as parts of agent-based

double auction implementations:

• Mating policies specify which of the submied traders’ offers should be
paired to form a transaction between the two agents;

• oting policies specify the current market bid price and ask price. ese
two prices are used by traders to help them determine what offer price they
should submit in the future.

• Shout Accepting policies either accept or reject a trader’s submied shouted
offer price;

• Clearing policies specify under what conditions the market is cleared, i.e.,
all transactions between matched offers are executed.

• Pricing policies determine, given matched bid and ask offers, at what price
the transaction should take place;

• Charging policies specify to traders what types of charges they are
subjected to when, for example, joining the exchange, placing a shout in the
market, or successfully transacting.

Based on these broad but well defined policy areas, researchers have used a

variety of techniques to explore the design space of double auctions. Within the

realm of designing and analysing single market mechanisms in isolation, with the

typical objective of designing more efficient mechanisms, research has focussed

on automating the search across the design space. Cliff [31, 32] applies an

evolutionary approach to coevolve both autonomous ZIP trading agents [34] and

a CDA market-mechanism. Specifically, Cliff uses a genetic algorithm to evolve

single vectors of real-value parameters describing properties of both the trading

40



2.4. COMPETITION BETWEEN MARKETPLACES

agent and market-mechanism behaviours. e evolutionary process results in the

finding of several novel market-mechanism that outperform well-known variants.

Phelps et al. [136] have recently introduced the Evolutionary Meanism Design

approach, wherein the problem of designing auction mechanisms can be treated

as an economic engineering problem [147] that needs to be iteratively solved,

rather than formally proved. To that end, Evolutionary Mechanism Design makes

use of empirical game theory techniques [135], as well as evolutionary

algorithms—particularly Genetic Programming techniques—to explore the design

space of double auction mechanisms [134].

2.4.2 Analysing competing marketplaces

Approaches such as [31, 136] have ostensibly been used to design marketplaces

existing in isolation, that is, in environments where there is no competition

between market mechanisms. In order to promote research into automated

mechanism design, and specifically to act as a basis for beer understanding how,

in a competitive environment, the rules adopted by marketplaces impact their

performance, a new research tournament was launched in 2007: the Trading Agent

Competition Market Design (or CAT) Tournament [24].

e CAT Tournament comprises a series of artificial parallel markets,

designed to mirror the competition between global stock markets. ese parallel

markets, called specialists, are created by entrants to the Tournament, and they

compete with one another to aract and retain traders, who are potential buyers

and sellers of some abstract commodity. In the CAT Tournament, traders are

soware agents created and operated by Tournament organisers and the

tournament entrants have to provide trading venues, in the form of specialists—a

specific name for a type of market-exchange. Each specialist agent runs a double

auction mechanism, whose rules are set within the six broad policy areas defined

by Niu et al. [116] (referred to on Page 40). Along with different potential trader

types in the environment, the multi-dimensionality of the specialists’
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performance metric creates challenges for the optimal design of specialists, since

these criteria may conflict. e rich environment created by, not only many

traders competing with each other, but also many market mechanisms competing

to aract traders, creates a potentially excellent test-bed for evaluating the effects

of different market mechanism rules.

e JCAT [77] soware, which is used to help run the tournaments, is

available freely and allows users to quickly create various environmental

conditions to evaluate specialist agents, and the effects of competition on their

performance. As such, there have been several researchers making use of the

platform to carry out either specific analyses of the various CAT tournaments

[132, 116, 117, 174, 119], or to analyse competitive marketplaces in other contexts

[158, 159, 154]. Because the entrants to the CAT tournaments do not have to

submit source code, the tournament has created interesting new research

avenues, such as how to reverse engineer market mechanism rules, based only on

observing interactions between market mechanisms and traders [117] in

competition. e CAT tournaments have also highlighted aspects of marketplace

design that are not oen considered when designing isolated mechanisms. Petric

et al. [132] found that their 2007 CAT tournament specialist: CrocodileAgent,

won the initial qualification stage of the tournament, but only managed 3rd place

in the final because other competitors noticed the strategy and mimicked it

within the final stages. In terms of research undertaken outside of the CAT

tournament, but within the context of competing marketplaces, Shi et al. [154]

use an evolutionary game theoretic approach to analyse the migration of traders

in a two-market situation, where the exchanges charge registration fees. Based on

their analysis they find that traders will almost always migrate to a single market,

but that sometimes that market might be the one charging the higher fees,

suggesting that some interesting and complex dynamics affect the relationship

between market rules and performance. Similarly, Sohn et al. [159] also consider

competition between two exchanges, and how the fee structures affect market
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share. Sohn et al. assume that for market-selection, traders have a game-theoretic

behaviour model, and will thus make rational market-selection decisions.

Running simulations, they find that as an exchange increases its entrance fees,

though extra-marginal⁵ traders are driven away immediately, there are still

several Nash equilibria⁶ where intra-marginal⁷ traders still join the exchange.

2.4.3 Generalisation and robustness issues

Using simulation tools such as JCAT can be an effective way of answering

research questions involving competition between marketplaces, as well as being

an excellent way to empirically test and analyse market mechanism performance

in general. Further, these types of analysis are examples of how rich agent-based

simulations of competing marketplaces can oen reveal results that would

otherwise be unlikely to be found by studying mechanisms in isolation.

However, it may well be the case that the performance of a market

mechanism (or indeed a buyer/seller agent) may depend heavily on the

environmental context it is situated in. For example, given the CAT game

structure, it is easy to see that some specialists may perform beer with traders of

a particular type, and/or against competing specialists using particular policies.

Niu et al. [116], for example, have shown that some of the well-performing 2007

CAT specialists have weaknesses in other situations, and therefore specialists

may be considered brile (or obversely, robust), if their performance greatly

depends (or does not) on the competitive and trader contexts of the environment.

Petric et al. [132] note, for example, that from their investigations, results of the

CAT tournament are very sensitive to the initial distribution of traders

(environmental context) between marketplaces. Because the actual CAT

⁵Extra-marginal traders are those that, at market equilibrium, bid lower or ask higher than the
competitive price, resulting in them being unable to trade.

⁶A Nash equilibrium is a game-theoretic solution concept in which no player wishes to unilat-
erally change their own strategy, and all players know the equilibrium strategies of all the other
players.

⁷Intra-marginal traders are the group of traders that successfully trade at the market equilib-
rium.
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Tournaments are only conducted over a limited number of games (typically,

three), the performance of a specialist in the Tournament is not necessarily a

good guide to that specialist’s general ability, i.e., with other trader mixes, or in

competition against different specialists.

us, there is a need to develop techniques or methodologies for measuring

the general performance of market mechanisms across a variety of environmental

contexts that a mechanism would be expected to operate in. is thesis offers

solutions for that need, and uses the contributed techniques to help design and

analyse market mechanisms. Away from the CAT tournaments, other examples

are available that highlight the potential brileness of trading strategies also.

Sohn et al. [158], for example, report that ZIP traders [34] don’t perform well in

CDA markets with biased pricing rules. LeBaron [91, pp. 37–38] note that the

seings of parameters of economic soware agents oen affects their

performance; this thesis argues that it is also not clear what effect a new

environment will have on an agent, whose parameter seings were previously

successful in others.

In summary, it is very important when designing market mechanisms that

aention is given to measuring as well as possible the general performance across

environments that the mechanism can expect be in; currently, however, there are

gaps in the literature regarding how this can be done for market mechanisms in

complex seings.

2.5 Trust and Reputation Issues in Open Electronic

Markets

Any multi-agent system relies on soware agents interacting with others to

achieve designated tasks. When the multi-agent system is open, dynamic, and

unpredictable, however, it is essential that agents are able to adapt to changes in

the environment, and learn which agents to interact with [168]. Given that
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trading partners are unlikely to repeatedly interact, there is lile fear of

non-normative behaviour being punished, and it is possible that outcomes

between self-interested agents could be unfavourable [37, p. 31]. Further, within a

large market-based environment, the fact that agents are mostly unfamiliar with

each other can lead to sub-optimal trading decisions and potentially reduce the

efficiency of allocations.

In economics, the study of information asymmetry concerns itself with

dealing with economic interactions between agents where one agent has beer

knowledge of the underlying details of the exchange. In general, there are two

types of information asymmetry: moral hazard and adverse selection. Moral

hazard occurs when one party decides to not support their part of a contractual

agreement, and instead exploits the other party by, for example, not paying for a

service provided, or not providing a service paid for [27]. It is a special case of

information asymmetry, because rather than one agent having more information

about the subject of the exchange, it has more information about its own future

actions. Adverse selection is a slightly more complex form of information

asymmetry; it can have a very detrimental affect on market performance [74].

Adverse selection was first explained by Akerlof [1], and occurs as follows. Given

a market containing variable quality products, but where buyers are unable to

perceive these quality differences before purchase, buyers will rationally assume

all products are of average quality, lowering mean prices. is then repels sellers

of high quality products, who cannot get high enough prices. e average quality

of products in the market is reduced, and once buyers learn this, average market

prices are also lowered. In the end, market failure occurs, and only the lowest

quality products are traded. In terms of double auction electronic markets,

information asymmetry can present itself in the following ways:

• adverse selection may present itself by:

– sellers altering the quality or aribute-levels of resources, such that
they differ from those expected by buyers within the market;
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– in order to reduce the costs of production and increase their profits, or
market-exchanges may not provide the service expected of traders;

• moral hazard could be exerted if agents feel protected from the risk of
sanctions that non-normative behaviour might otherwise incur:

– buyers or sellers may refuse to pay for, or provide, a resource aer the
other party has completed their part of the transaction;

– a market-exchange could extort money from traders by either not
allocating resources between them, or fabricating fraudulent
transactions to increase profits.

In real-world exchange markets, these types of counterparty risk, are protected

against by regulatory bodies, and ultimately government. Regulation enforces not

just normative behaviour in market participants, but also ensures that

market-mechanisms themselves behave correctly. However, in any open and

dynamic system, regulation by a central authority is impractical, and perhaps

prohibitive to the aim of maintaining a robust distributed system. In that case,

trust and reputation systems have been seen as an approach for facilitating the

self-regulation of multi-agent systems.

2.5.1 Notions of trust and reputation

Hardin defines trust as:

To say we trust you means we believe you have the right intentions
toward us and that you are competent to do what we trust you to do.

Hardin [70, p. 11]

In that respect, trust is a boolean property—you either trust someone or not.

Further, according to this definition, trust is contextual: you may trust an entity

to provide you with an Internet connection, but not to manage your financial

affairs. Jøsang et al. [83] refers to this type of trust as reliability trust, and while

there are other types of trust considered within the literature [82], they are all

more specific instantiations of Hardin’s definition. e decision to trust another
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individual is made by first learning—through observation, in the most basic

case—how trustworthy that individual is.

However, in large-scale distributed systems characterised by infrequent

interactions with unfamiliar partners, assessing other individuals’

trustworthiness can be challenging, if not impossible. In this case, reputation can

be used as a mechanism to build trust within these communities, and encourage

cooperative behaviours without the need for costly central enforcement [45].

Within these decentralised networks, reputation is the main tool for measuring

trustworthiness; Jøsang et al. defines reputation as:

Reputation is what is generally said or believed about a person’s or
thing’s character or standing.

Jøsang et al.[83]

While in distributed communities one may not have interacted with certain

individuals before, and thus be unable to directly measure their trustworthiness,

it is quite likely others have had direct interactions, and there is a general

publicly perceived notion of that individual. erefore, trust and reputation are

different concepts, but reputation can be used in large-scale communities to

measure another individual’s trustworthiness in the absence of directly gathered

information. From a system-wide or societal viewpoint, reputation acts in two

fundamental roles:

e primary objective of reputation mechanisms is to enable efficient
transactions in communities where cooperation is compromised by
post-contractual opportunism (moral hazard) or information
asymmetries (adverse selection).

Dellarocas [45]

us, reputation seeks to notify agents of those who are aempting to behave in a

non-normative way, and punish those who do by labelling them as appropriately.
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2.5.2 Trust and reputation approaes in electronic markets

Any trust and reputation approach within a multi-agent system relies upon the

ability of information to spread between agents within the system. In comparison

to real-world communities, online interactions introduce new challenges [44].

Some of these new challenges involve, for example: (i) identity: ensuring agents

and their reputations belong together [46]; (ii) interpretation: understanding in

what context the reputation information applies, e.g., based on the behaviour of

the providing agent [166]; (iii) accuracy: ensuring that reputation information is

honest and correct [85]; and (iv) provision: incentivising agents to provide

reputation information at all [44]. From a mechanism design perspective, for

example, mechanisms have been designed to incentivise the provision of honest

feedback. Miller et al. [106] have shown that a central mechanism using scoring

rules and side payments can elicit honest feedback from agents. With such

information, trust-based meanism design approaches such as [40] could be used

to optimally allocate resources while taking into account the trustworthiness of

agents. Aside from the underlying assumptions on agents, any mechanism that

relies upon a central trusted third-party will not scale well across large-scale

systems and themselves require regulation.

In more practical seings there are perhaps two main approaches for

facilitating agents’ trust or reputation based decisions within electronic markets.

e first is to model trustworthiness or reputation from a cognitive perspective,

which involves agents reasoning about their beliefs in other agents’ desires or

abilities in certain contexts. Different approaches for achieving this have been

considered for online seings, e.g., using subjective logic [82] or argumentation

approaches [129]. While cognitive approaches are a viable future direction, it is

unclear how well they would currently, for example, accurately model the beliefs

of all agent types that could potentially exist in a large open multi-agent system

[73].

48



2.5. TRUST AND REPUTATION ISSUES IN OPEN ELECTRONIC MARKETS

e second approach is to calculate trustworthiness as degrees of

uncertainty about the expected future behaviour of agents. ese probabilistic

approaches tend oen to be grounded within Bayesian statistics [108, 109, 80, 81],

and involve two methods. e first is to consider the trustworthiness of

individuals as processes which can be modelled over continuous distributions.

Oen a distribution such as the Beta distribution is used, because it takes two

shape parameters which can be used to represent positive and negative outcomes

to previous interactions. Typically, an agent considers the expected value and its

confidence to calculate its trustworthiness in another agent. An agent can then

form a reputation of a target agent by combining the trustworthiness they have in

the target, with the trustworthiness others have in the target. Several researchers

have recently extended this approach to consider subjective reputations [165, 97].

In such models, recommendation distributions are maintained by each agent that

weight the opinions of others according to how accurate their opinions have been

in the past. In that case reputations become subjective—the same agent’s

reputation can be considered differently by various agents. is approach has

been applied to identifying either malicious or noisy opinions within a

multi-agent system, allowing them to be ignored in the calculation of reputations.

Trust and reputation approaes in double auction markets

In terms of reputation approaches for models involving double auction

mechanisms, only a small amount of work exists within the literature. van

Valkenhoef et al. [170] consider a two-stage CDA mechanism whereby buyers

and sellers shout offers as usual, however, whenever the auctioneer matches two

traders, the buyer is given the opportunity to measure the trustworthiness of the

associated seller before commiing to the trade. Trustworthiness represents a

probability of resource delivery on the seller’s part, so when buyers only commit

to trades in which their expected utility is positive, efficient allocations are

achieved. Lu et al. [98] look at a clearing house auction where the auctioneer not
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only determines the set of traders to be matched, but also sorts them by

reputation, such that the most reputable traders get to trade with each other.

Neither of these approaches consider the behaviour or trustworthiness of

the market-mechanism itself and, in an environment containing multiple

competing marketplaces, there may certainly be a need for market-exange

reputations, when one considers them to be self-interested agents within a

distributed and open multi-agent system. Finally, the efficiency of markets is

considerably affected by both the volume of traders within them, and also the

type of traders. None of the reputation approaches have studied the impact that

making a large population of traders aware of the general profitability of market

venues will have on the efficiency of the market-based system, and aracting the

right and wrong types of traders to markets.

2.6 Summary and Conclusions

To summarise, system-centric approaches to computational resource allocation

are prohibitive and limiting when one considers the expected growth and

demand for resources in the future [63]. e large number of (likely mostly idle

[124]) individual machines across the Internet, makes them potentially a huge

untapped source of computational power, if users can be economically

incentivised to provide their resources. Such a scenario would open up the

possibility of large-scale distributed utility computing environments, where

individual users can consume and provide computational resources, delivered

across the Internet [19]. However, unlike current system-centric models of

computational resource allocation, which assume full knowledge of the supply

side of the market, allocation mechanisms are required that don’t require

knowledge of global supply and demand schedules.

Market-based approaes [63, 22, 35] have been proposed as a way of

achieving this. e continuous double auction (CDA) is an elegant mechanism
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which, when coupled with almost minimally intelligent [33] traders, achieves

highly efficient allocations, unlike more decentralised market mechanisms such as

posted-offer or bargaining models. In contrast to other centralised auction

mechanisms, multiple CDA mechanisms can be distributed throughout an

environment and, as long as traders can migrate between marketplaces, efficient

allocations can be maintained [23]. Unfortunately, because computational

resources are naturally multi-aribute in nature, and multi-aribute double

auction mechanisms require computationally prohibitive algorithms to efficiently

allocate resources, a novel approach is required. One approach that has not

received aention is to consider the allocation of multi-aribute resources using

multiple competing marketplaces. Within such an approach, multiple

market-exchanges would compete to aract traders to their resource markets,

where a particular type of computational resource is traded, and traders would

choose to trade in markets that best satisfy their preferences and constraints.

Several research challenges reveal themselves in such a model, for example in the

design of market-exchange mechanisms for choosing the types of resources to be

traded within their markets; approaches for designing and analysing mechanisms

to meet these challenges are needed.

Empirical agent-based approaches, within the paradigm of multi-agent

systems [183], have been proposed as a way to beer design and analyse market

mechanisms. In that vein, simulation frameworks for the specific study of market

mechanisms in both isolation [76] and in competition [118] have been

implemented, and several international market design tournaments have been

launched [24]. However, neither analytic nor simulation models have been

developed for studying the allocation of multi-aribute computational resources

via competing marketplaces. In terms of designing and analysing competing

market mechanisms in simulation, progress has been made by studying the

results of CAT tournaments. However, while these tournament approaches are

useful for analysing performance within certain environments, the brileness of
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some market mechanisms previously championed has been noted [116], and less

aention has been given to how the general performance of mechanisms might

be beer measured. Finally, within any open multi-agent system there may be

issues involving how to signal the expected behaviour of self-interested

participants, or how to incentivise normative actions. While trust and reputation

mechanisms have been cited as an excellent approach in general to electronic

markets, lile if any aention has been given to how these approaches can be

specifically applied to selecting between marketplaces, and the impact that

reputation has on the efficiency of allocations within those markets.

In conclusion, there is a need to investigate new approaches to

multi-aribute computational resource allocation within distributed and open

environments. Neither traditional system-centric approaches, or fully

decentralised or centralised market-based approaches, are particularly suitable to

the resource allocation scenarios considered. is thesis aims to contribute a

beer understanding of suitable market-based approaches to multi-aribute

computational resource allocation by studying a novel and interesting approach,

which relies on multiple competing marketplaces to provide markets for specific

types of computational resource.
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e review carried out in Chapter 2 reveals a gap in the literature. ere is no

clear methodology for assessing the generalisation properties of competing

market mechanisms. While economic mechanism design provides tools for

dealing with this generalisation issue, through the design of incentive compatible

mechanisms that generalise across all environments, these theoretical approaches

only allow mechanisms to be designed for very restrictive seings, and

competition between market mechanisms has not been considered. e first

research objective of this chapter is to develop a methodology for analysing the

generalisation abilities of competing market mechanisms. Such a methodology is

important for designing and analysing many types of competitive market

mechanism in simulated environments, where the generalisability of results is

very important [100]. In that vein, a methodology of this type will be particularly

useful to support other experimental simulation work later on in the thesis.

As discussed in Chapter 2, launched in 2007, the TAC Market Design

Tournament [24] (CAT Tournament) has been used as a tool to encourage

research into double auction mechanism rules. Entrants to CAT tournaments

provide market mechanism agents called specialists, who must aract as many

traders as possible to their market. Each CAT game consists of potentially

hundreds of different trading agents (provided by the organisers), and multiple

competing specialist agents (provided by the entrants). e rich environment

created by, not only many traders competing with each other, but also many

market mechanisms competing to aract traders, creates a potentially excellent

test-bed for evaluating the effects of different double auction market mechanism

rules, as used by the specialists. However, within such a complex environment, it

may be the case that specialist performance is dependent on, or correlated with,

some environmental factors. Given this, specialists may therefore be considered

brile (or obversely, robust) if their performance greatly depends (or does not) on

environmental factors. e second research goal within this chapter is to beer

understand the characteristics of the mechanisms used by the specialists,
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particularly in relation to the environmental contexts in which they operate.

us, within this chapter simulation analyses undertaken using the CAT

Tournament platform JCAT¹ are described, using some of the specialists entered

into the 2008 and 2009 CAT tournaments. Importantly, these analyses follow the

novel methodology presented within this chapter.

is chapter makes several main contributions. Firstly, it provides a

methodology for measuring, both quantitatively and qualitatively, the

generalisation ability of specialists within CAT tournaments. Secondly, by using

this methodology, it demonstrates that the specialists in the CAT Tournaments

are not robust against a number of environmental changes. For several of these

environmental factors, a change in them leads to some changes in the tournament

ranks and/or the game scores achieved by the specialists.

e rest of this chapter is organised as follows. Section 3.1 outlines the

main motivation for this work, as well as the research questions that this chapter

aims to answer. In Section 3.2 a summary of the CAT tournament is provided for

the reader, including how the games progress, and the metrics used to measure

specialist performance. Section 3.3 presents an empirical evaluation of the

generalisation abilities of some of the previous specialist market mechanisms

submied to the 2008 and 2009 CAT tournaments, using a novel methodology. e

main research findings are that the specialists entered into the 2008 and 2009

tournaments are sensitive to a number of environmental factors, and thus can be

said not to generalise well. e chapter ends in Section 3.4 with some conclusions

and proposals for future work.

3.1 Motivation and Researestions

Niu et al. [116] provided the first analysis of entrants from the first CAT

tournament, which took place in 2007. Based on some insights into the CAT game,

¹hp://jcat.sourceforge.net/
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Niu et al. developed a new specialist called MetroCat. Using all of the entrants

from the 2007 tournament, along with their own MetroCat specialist (which had

not been encountered by the 2007 entrants), Niu et al. found that none of the 2007

entrants, including the winning specialist, performed as well as MetroCat. us,

Niu et al. have shown that the well-performing 2007 CAT specialists can have

weaknesses in other situations. Niu et al. only considered how a new competitor

(MetroCat) impacted on the performance of other specialists. However, there are

other environmental factors that could impact on the performance of a specialist,

including the types of traders in the environment, and how the game is scored.

One motivation for the work within this chapter then, is to assess the impact that

other environmental factors have on the performance of specialists.

Because they are typically entered over the Internet, each simulated day

within a CAT game takes a non-trivial amount of time to complete; this is to

allow participants to receive simulation information, and make potentially

complex decisions. us, CAT games generally take a long time to

complete—usually between 5–8 hours. Because there are several potential

environmental factors of interest, there is a state-space explosion in the number

of potential game configurations, making it unfeasible to simulate all possible

configurations. Another motivation for the work in this chapter, then, is to

provide a methodology for assessing the generalisation performance of

specialists, or any other market mechanisms situated in complex environments,

without the need to run all possible simulation configurations.

Within other trading-based competitions, some methodologies have been

proposed to tackle similar problems. For example, Vetsikas and Selman [172]

described a methodology for deciding on the best bidding strategy that their

trading agent, WhiteBear, should use in the Trading Agent Competition (TAC)

classic game². Given a reduced set of possible initial ‘base-strategies’, Vetsikas

and Selman face the issue of finding the best combinations to create an overall

²hp://www.sics.se/tac/page.php?id=3
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successful bidding strategy for participating in many simultaneous auctions.

Although this approach is sensible when trying to decide on the best strategy

from an initial set of possible strategies, it is unclear how well such a best

strategy would fare against unseen strategies, i.e., other competitors in the

trading competition. Wellman et al. [176] also explore the idea of using a reduced

strategy space to allow them to evaluate potential strategies taken from their

TAC agent, Walverine. While they acknowledge that a strategy’s performance

does depend on those of its competitors, they hypothesise that an agent’s

performance should be relatively insensitive to the frequency of competitors

using identical strategies. eir methodology consists of efficiently searching a

reduced strategy space to find beer performing strategies. Both Vetsikas and

Selman’s and Wellman et al.’s approaches are appropriate when considering a

fixed initial space of potential strategies, however neither provide mechanisms to

test the robustness of a strategy in the presence of unseen competitors.

e CAT game is more complicated than the original TAC game because

there are two interacting populations—specialists and traders, both of whom

contain (or could contain) members able to learn and/or evolve, and who are

unknown in advance. us, an approach is needed to deal with domains where

there are coevolving populations of competing agents, to offer insights into the

robustness of the strategies in those populations.

e main research questions answered within this chapter are:

• How can market meanism generalisation performance be assessed

quantitatively and qualitatively in complex simulated environments with

many possible variables or factors?

• What are the generalisation properties of specialists within the CAT

Tournaments? Are all specialists robust to all environmental factors?
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3.2 e TAC Market Design (CAT) Competition

e full organisation and structure of the TAC Market Design (CAT) Tournament

is given in the game documents [24]. In this section, however, the most important

aspects will be provided. A CAT game takes place over a number of simulation

trading days, each of which consists of a number of rounds. Each round lasts a

number of tis, measured in milliseconds. e game uses a client server

architecture, with the CAT server controlling the progression of the game. CAT

clients are either traders (potential buyers or sellers) or specialists, i.e.,

marketplaces. All communication between traders and specialists is via the CAT

server.

In the standard CAT installation, four different trader strategies are

provided. Zero Intelligence – Constrained (ZIC) traders [66] shout randomly

generated prices into the market, subject to some constraints. Zero Intelligence

Plus (ZIP) traders [33] were previously discussed in Section 2.3.2. RE traders [52]

use a reinforcement learning algorithm based on a model of human learning, with

the most recent surplus or loss guiding the trader’s shouting strategy one step

ahead. Finally, GD traders [65] use past marketplace history of submissions and

transactions to generate beliefs about the likelihood of any particular bid or ask

being accepted, which is used to guide shouting strategies. ZIC are the least, and

GD are the most, sophisticated of these four types. In addition, all types of traders

in the standard CAT installation use an n-armed bandit strategy [142] for

selecting which specialist to register with on each new trading day³.

As discussed in Section 2.4.1, based on Niu et al.’s [116] rule framework,

specialists have freedom to set market rules in six broad policy areas, covering:

charging; quoting; shout accepting; trader matching; transaction pricing; and

trade clearing. Within the game, competing specialists are not aware of the exact

³An n-armed bandit strategy assumes a finite set of possible actions and learns reward distri-
butions for each action over time. e desire is to balance exploration in order to more accurately
learn reward distributions, and exploitation of the currently best reward distribution. e general
n-armed approach is discussed in more detail in Section 5.2.1.
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policies or strategies that their competitors are using, through they may aempt

to learn them from observing behaviour. Specialists know that each trader in the

environment is one of the four types, but not the overall proportions of each type

within the trader population. Accordingly, the design of a specialist seeking to

win the game cannot be optimised for only a subset of trading strategies.

In addition, the scoring metric used by the game is multi-dimensional.

Games are scored using an unweighted average of three criteria: the proportion

of traders aracted to the specialist each day (market share); the proportion of

accepted shouts which are matched (transaction success rate); and the share of

profits made by the specialist. A specialist’s tournament score is the sum of its

daily scores for all scoring days; it is important to note that not all trading days

are scoring days, and specialists are unaware which these are in an aempt to

prevent start-game and end-game effects. Specialists are ranked in descending

order of their total scores, with the specialist in rank one declared the winner of

that tournament.

As with trader types, the scoring multi-dimensionality creates challenges

for the optimal design of specialists, since these criteria may conflict. A

game-winning strategy may focus on scoring highly on different criteria at

different times in the life-cycle of a game, or against different trader types. As

was discussed in the introduction to this chapter, given this structure it is easy to

see that some specialists may perform beer with traders of a particular type,

and/or against competing specialists using particular policies. Further, each CAT

Tournament is generally only conducted over a limited number of different games

(typically, three), thus a specialists performance in a tournament is not

necessarily a good guide to that specialist’s general ability, i.e., with other trader

mixes, or in competition against different specialists not included in that

particular tournament.
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3.3 Empirical Evaluation of Entries’ Generalisation

Ability

e generalisation ability of specialists is tested using the following methodology.

Unlike the official CAT tournaments, where entrant specialists are evaluated on a

small subset of randomly chosen environments, in this work, specialists are

evaluated on a range of carefully chosen environments, based on three different

environmental contexts:

• trader context: the proportions of the four trader types in the trader
population;

• competitor context: the members of the population of competing specialists;

• scoring context: the days over which scoring takes place (defined by length
and start day).

By using different combinations of these three contexts, different tournament

variations can be generated to evaluate specialists in. Within each context,

because there are so many possible combinations/variations, it is proposed to

reduce this space by focussing on extreme (or boundary) cases. For example,

typical trader contexts might include using all of one type of trader and none of

any others, or using only the most intelligent traders (which would be GD traders

given the four types described in Section 3.2). If is hypothesised that by, for

example, entirely excluding or exclusively including certain environmental

factors, it is more likely to observe any sensitivities within specialists.

To show that some specialists’ performances can be sensitive to a number

of environmental factors, and in some cases generalise poorly, specialist

performance was measured across different tournament variations in two ways.

Firstly, by measuring the qualitative impact that tournament variations have on

each specialist’s performance; which was achieved by comparing rankings of

specialists’ mean scores for different (comparable) tournament configurations.
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Secondly, by measuring the quantitative performance impact, i.e., the change that

tournament variations have on each specialist’s score. Since the differences

introduced between tournament variations, e.g., the proportions of trader types

in the trading population, itself contributes to the performance of the specialists,

one cannot simply compare the mean scores of specialists over tournament

variations and confidently state how the specialists are able to generalise between

the two cases.

is is addressed by defining a new statistic to measure the performance of

one specialist relative to others, across a diversity of tournament variations. e

statistic, which is called the normalised performance delta of a specialist, denoted

δ̊, provides a metric for analysing how a given tournament configuration affects

the performance of the specialist. To calculate this statistic, for each specialist i,

the normalised mean score μ̊i is first calculated:

μ̊i =
μi

m∑
j=1

μj

For a single specialist i, given two normalised scores μ̊xi and μ̊yi from two

tournament variations x and y, the absolute difference dxyi between the two scores

can be calculated:

dxyi = |̊μxi − μ̊yi | (3.1)

dxyi provides a measure of how, with respect to other specialists in the tournament,

a specialist i’s performance has changed from one tournament variation to the

next. Finally, for each specialist i the normalised difference value δ̊i is calculated.

δ̊i =
dxyi

m∑
j=1

dxyj

(3.2)

In order to ascertain some statistical significance to specialist mean score values

generated from multiple tournament runs, two-tailed paired t-tests of equality of
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means were performed on certain pairs of specialists, in order to aempt to

identify whether the reported rankings were distinct. In such cases both the

t-value and p-value (using n− 1 df.) are reported. e t-test statistical test

assumes normality within the samples provided. Before any t-tests were run on

the reported data, they were first subjected to the Lilliefors Test [95], a goodness

of fit test for the Normal distribution. It was found that for all but one sample,

which is highlighted when presented, the null hypothesis that the sample is

normally distributed could not be rejected, with significance levels > 0.01 in all

cases. e non-normal sample was not required for direct comparison with any

other, thus t-tests were found to be suitable for all comparisons between samples

within the results reported in this chapter.

3.3.1 General experimental setup

Each  simulation consists of a single tournament that runs for a number of

trading days, with, in these experiments, 10 trading rounds per day, and 500ms

per round. All experiments were carried out with both the  server and all

specialist clients situated on the same local machine. e trading population size

was set at 400 traders, filled with traders taken from the four types described in

Section 3.2. Buyers and sellers were split as evenly as possible in the different

trader sub-populations. In order to achieve more statistically significant results

for each tournament variation, each was repeated 15 times, using the same

configuration, but with a different random seed. e specialist agents used in the

experiments were downloaded in a pre-compiled form from the  Agent

Repository⁴. Specifically, only entrants from the 2008 and 2009 competitions were

used, except when this was not possible⁵.

⁴hp://www.sics.se/tac/showagents.php
⁵Any specialist binaries entered into the 2008 or 2009 tournaments but not used in these exper-

iments were either unavailable, or had issues affecting their ability to be used in experiments, such
as execution or library problems.
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3.3.2 Evaluation of the 2008 competition

For the analysis of the 2008 competition, the following specialists were included in

the experiments: CrocodileAgent, DOG, iAmWildCat 2008, Mertacor1, Mertacor2,

PSUCAT, PersianCAT and jackaroo. In the rest of this section they may be referred

to as CR-08, DO-08, IA-08, M1-08, M2-08, PS-08, PC-08 and JA-08 respectively.

Over-fitting to trading population

e following set of results show that some specialists’ performances are

sensitive to different mixes of trader types in the trader population. erefore,

some specialists may be over-fied to specific types or mixes of traders. For this

set of experiments, all eight available specialists were used, and the scoring

period included all 500 trading days. Using the previously described methodology,

eight different trader mixes were identified, based on the notion of trader mixes

consisting entirely of one of the four trader types, or entirely excluding one of the

types.

Overall, it was observed that several of the specialists’ final rankings were

affected by trader mix variations, particularly Jackaroo, Mertacor1 and

Mertacor2. Table 3.1 shows the results of two tournament variations, which are

referred to as ‘just-GD’ and ‘no-GD’. e just-GD variation consisted of a trading

population made up of entirely GD traders, with equal buyers and sellers. In the

no-GD variation, the trading population was composed of equal (as possible)

proportions of RE, ZIP, and ZIC traders.

For a typical tournament variation, it was observed that in each of the 15

repetitions, scores, and thus rankings, were quite similar, leading to low σ values.

It is, however, extremely unlikely that scores would ever be identical over all

runs, due to the stochastic nature of the  environment.

Table 3.1 highlights the fact that the overall rankings for the two

tournament variations were different, most notably with changes in the middle
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Just GD Traders No GD Traders
Specialist μ σ μ σ Rank δ̊
PC-08 232.2 5.86 271.1 5.51 1, 1 0.355
M1-08 230.9 6.55 193.9 3.17 2, 4 0.364
JA-08 218.9 6.06 213.5 2.65 3, 3 0.064
M2-08 207.4 5.09 215.7 6.05 4, 2 0.067
IA-08 165.8 1.45 165.1 5.15 5, 6 0.016
DO-08 164.4 2.24 173.7 2.48 6, 5 0.078
CR-08 24.9 17.76 19.1 8.28 7, 7 0.057
PS-08 16.2 0.66 16.3 0.43 8, 8 0.001

Table 3.1: Mean, standard deviation, rank and δ̊ values for a set of tournaments
using the just-GD trader context and a set of tournaments using the no-GD trader
context. First presented in [145]. Onemean, for IA-08 and italicised was found to be
from a non-normally distributed sample. However, it was not necessary to subject
it to a statistical comparison with any other sample for the analysis carried out in
this chapter.

and lower portions. alitatively, of particular interest was the change in rank

between M1-08, M2-08 and JA-08. In simulations using the just-GD trader context,

M1-08 was rank two and M2-08 rank four, while in the no-GD context the ranks

were swapped to four and two respectively. In the just-GD case, a paired t-test of

equality of means showed that the average scores of M1-08 and M2-08 were

significantly different, with a t-value of 9.36 and a p-value < 0.001. e average

scores of M1-08 and M2-08 were 230.9 and 207.4 respectively. In the no-GD case, a

t-test resulted in a t-value of 14.04 and a p-value < 0.001. Mean scores in the

no-GD case were 193.9 for M1-08 and 215.7 for M2-08.

Further, in the just-GD case, it was observed that M1-08 and JA-08 had

ranks of two and three respectively, while in the no-GD case they had ranks of

four and three. In the just-GD case, for M1-08 and JA-08, a t-test of equality of

means resulted in a t-value of 19.09 and a p-value < 0.001, with mean scores of

230.9 for M1-08 and 218.9 for JA-08. In the no-GD case, a t-test reported a t-value

of 4.20 and a p-value < 0.001, with mean scores of 193.9 for M1-08 and 213.5 for

JA-08.

Finally, note that even a simple change of the trading population, i.e., when
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Just ZIC Traders No ZIC Traders
Specialists μ σ μ σ Rank δ̊
PC-08 276.2 11.47 244.1 4.53 1, 1 0.419
JA-08 218.6 4.71 214.6 2.49 2, 3 0.071
M2-08 213.9 8.20 224.7 5.77 3, 2 0.109
M1-08 192.1 2.72 207.0 3.76 4, 4 0.160
DO-08 170.7 2.62 180.0 2.32 5, 5 0.095
IA-08 161.6 5.15 170.7 4.09 6, 6 0.094
PS-08 16.9 0.46 16.2 0.47 7, 8 0.010
CR-08 16.8 5.07 20.4 7.90 8, 7 0.041

Table 3.2: Mean, standard deviation, rank and δ̊ values for a set of tournament
repetitions using the just-ZIC trader context, and a set of tournaments using the
no-ZIC traders context. First presented in [145].

switching to using the just-GD trader context, can make a previous winner,

PC-08, lose its winning edge. Statistically, PC-08 is not the clear winner in the

just-GD case, though it was in the official 2008 CAT Tournament when a different

trader mix was used. A t-test of equality of means between PC-08 and M1-08 in

the just-GD case showed a t-value of 0.46 and a p-value of 0.65, with mean scores

of 232.2 for PC-08 and 230.9 for M1-08. A counterpart to this situation is the

no-GD case, where PC-08 clearly outperformed M1-08. Here the t-value was 38.31

and p-value < 0.001, with mean scores of 271.1 for PC-08 and 193.9 for M1-08. is

highlights a situation where either PC-08 or M1-08 are particularly sensitive to the

proportions of GD traders in the population. e δ̊ values for PC-08 (0.355) and

M1-08 (0.364) were considerably larger than those of the other specialists, showing

a disproportionate change in performance over the two cases for both specialists.

In Table 3.2 the results of tournament using two more of the trader contexts,

‘just-ZIC’ and ‘no-ZIC’, are shown. Again, in both tournament configurations all

specialists and scoring days were used; only the trader populations were varied.

In the just-ZIC context only ZIC traders (equal number of buyers and sellers)

were used, while in the no-ZIC variation, no ZIC traders were used and the

population consisted of equal numbers of GD, RE and ZIP traders.

Running simulations using the just-ZIC and no-ZIC trader contexts
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resulted in further situations where it is not statistically clear that the rankings

between two specialists are the same across the two tournament variations,

indicating that there were generalisation problems. In the no-ZIC case, M2-08

(rank two) outperformed JA-08 (rank three). A paired t-test of equality of means

found the scores statistically different, with a t-value of 5.83 and a p-value

< 0.001. e mean scores were 224.7 for M2 and 214.6 for JA. However, in the

just-ZIC case, the mean scores between the two specialists, and thus the rankings,

were not statistically distinct. A paired t-test resulted in a t-value of 1.75 and a

p-value of 0.10. e mean scores were 213.9 for M2-08 and 218.6 for JA-08.

Table 3.2 also highlights a clear example of the performance impact that

changes in the trader population can have on a specialist. e mean score for

PC-08 in the just-ZIC case was 276.2, yet this dropped 8.83% to 244.1 in the no-ZIC

case. While the makeup of the trader population can have a significant impact on

the scores of specialists, in these two cases we see that other specialists’ scores

did not vary proportionally as much as PC-08’s. By considering the performances

changes of the other specialists, PC-08’s normalised delta value δ̊ was 0.419,

which was considerably higher than the others’.

Highlighted in Table 3.3 are other qualitative impacts that different trader

contexts had on specialists. In these tournament variations we considered the

contexts ‘just-ZIP’ and ‘no-ZIP’. Again, in both cases all specialists and scoring

days were used in the simulations. e just-ZIP variation consisted of a trading

population with only ZIP traders (equal number of buyers and sellers), while in

the no-ZIP variation equal numbers of GD, RE and ZIC traders were used in the

absence of any ZIP traders.

In the just-ZIP case M1-08 (rank three) outperformed M2-08 (rank four). A

t-test resulted in a t-value of 10.35 and a p-value < 0.001. e mean scores for

M1-08 and M2-08 were 208.0 and 189.0 respectively. However, in the no-ZIP case a

different outcome is observed, with the ranks changed to two for M2-08 and four

for M1-08. In this case, a t-test resulted in a t-value of 9.56 and a p-value < 0.001,
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Just ZIP Traders No ZIP Traders
Specialists μ σ μ σ Rank δ̊
PC-08 255.7 12.18 255.9 5.17 1, 1 0.051
JA-08 231.3 5.02 211.5 4.37 2, 3 0.281
M1-08 208.0 5.86 199.0 4.19 3, 4 0.150
M2-08 189.0 5 221.9 6.94 4, 2 0.347
IA-08 169.7 3.16 173.5 4.34 5, 6 0.008
DO-08 164.1 4.86 179.7 2.4 6, 5 0.147
CR-08 17.0 6.35 16.1 5.04 7, 8 0.014
PS-08 16.2 0.65 16.3 0.4 8, 7 0.003

Table 3.3: Mean, standard deviation, rank and δ̊ values for a set of tournament
repetitions using the just-ZIP trader context, and a set of tournaments repetitions
using the no-ZIP trader context. First presented in [145].

with means of 221.9 for M2-08 and 199.0 for M1-08.

Over-fitting to other specialists

In this set of experiments, the proportions of traders in the trader population

remain fixed, i.e., the same trader context is used throughout. However, by

running simulations using different competitor contexts, it is observed that some

specialists’ performances are sensitive to the presence of other specialists in the

marketplace. For this set of experiments, the trader population context contained

an equal mix of GD and ZIC traders. Since ZIC traders are the least, and GD the

most, sophisticated trader types, using this mix may offer the most diverse

trading, and hopefully challenging environment. In these tournaments, as with all

the previously discussed ones, all 500 trading days were counted as scoring days.

In Table 3.4 the reader can see the impact of two different competitor

contexts on the performance of some of the specialists. e first competitor

context, called ‘All Specialists’, involves allowing all the specialists to take part in

the tournament, while in the second context, called ‘Top ree’, only the three

best performing specialists from the all specialists context are present in the

tournaments. Of note is the effect that lower-ranked specialists had on the

performance of higher ranked JA-08 and M2-08. For example, in the all specialists
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All Specialists Top ree
Specialist μ σ μ σ Rank δ̊
PC-08 267.3 5.99 299.7 6.96 1, 1 0.361
JA-08 217.4 4.44 243.5 3.51 2, 3 0.293
M2-08 206.9 6.44 256.7 5.82 3, 2 0.347
M1-08 198.3 2.79 – – 4, – –
DO-08 174.4 2.81 – – 5, – –
IA-08 170.5 3.51 – – 6, – –
CR-08 18.8 5.21 – – 7, – –
PS-08 16.0 0.29 – – 8, – –

Table 3.4: Mean, standard deviation, rank and δ̊ values for a set of tournament
repetitions using the all specialists competitor context, and a set of tournaments
using the top three competitor context. e same trader and scoring contexts were
used for each variation, consisting of an equal mix of GD and ZIC traders, and
using all 500 scoring days. First presented in [145].

context, JA-08 outperformed M2-08 (t-value = 4.12, p-value = 0.001). Mean scores

for JA-08 and M2-08 were 217.5 and 206.9 respectively. Alternatively, in the top

three context, when lower ranked specialists are removed, and the remaining

three specialists compete with each other over the same traders, the rankings of

JA-08 and M2-08 switched (t-value = 8.30, p-value < 0.001). Mean scores for JA-08

and M2-08 were 243.5 and 256.72 respectively. Further, in Table 3.4 the reader may

note that the total score, when aggregated across all specialists, is significantly

different between the All Specialists and Top ree variations. e total amount

of ‘score’ available to specialists should not be considered divisible across

arbitrary numbers of specialists as within the JCAT framework due to the scoring

system and trader behaviours.

Alternatively, in Table 3.5 the impact that removing the top three specialists

has on the remaining boom five becomes clear. For these two variants, the all

specialists context was compared to the ‘boom five’ context, where the top three

specialists are removed. In a qualitative context, IA-08 did significantly beer

than DO-08 when the boom five context was used, with a t-test revealing a

t-value of 5.80 and a p-value < 0.001. e mean score for IA-08 was 215.0, while

DO-08 scored 208.7. However, when the all specialists context was used, DO-08
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All Specialists Boom Five
Specialist μ σ μ σ Rank δ̊
PC-08 267.3 5.99 – – 1, – –
JA-08 217.5 4.44 – – 2, – –
M2-08 206.9 6.44 – – 3, – –
M1-08 198.3 2.79 376.3 4.17 4, 1 0.525
DO-08 174.5 2.81 208.7 1.5 5, 3 0.198
IA-08 170.6 3.51 215.0 3.86 6, 2 0.217
CR-08 18.9 5.21 32.9 10.22 7, 4 0.044
PS-08 16.1 0.29 18.2 0.32 8, 5 0.016

Table 3.5: Mean, standard deviation, rank and δ̊ values for a set of tournament
repetitions using the all specialists competitor context, and a set of tournaments
repetitions using the boom five competitor context. e same trader and scoring
contexts were used for each variation, consisting of an equal mix of GD and ZIC
traders, and using all 500 scoring days. First presented in [145].

ranked higher than IA-08 (t-value = 3.31, p-value = 0.0051). e average score for

IA-08 was 170.6, while DO-08 scored 174.5.

With respect to the performance impact that the two tournament

variations had on specialists, it is clear that the inclusion (or likewise, exclusion)

of the three specialists PC-08, JA-08 and M2-08 clearly affected the performance

of M1-08 more than any of the remaining four. When the top three specialists

were introduced in the all specialists context, all of the other specialists’ scores

were lower, however a high normalised delta value of 0.525 for M1-08 indicated it

was considerably more sensitive to their presence.

Over-fitting to scoring period

In Sections 3.3.2 and 3.3.2 a fixed scoring period of 500 days was maintained, and

either different competitor contexts or trader contexts were considered. In this

section, examples showing that specialists are also sensitive to scoring contexts

are presented. For the following simulations, the all specialists competitor context

and the just-ZIC trader context were used. e two scoring contexts considered

here were ‘short-early’, which means using trading days 1–100 as scoring days,
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Short-early Medium-middle
(days 1–100) (days 100–300)

Specialist μ σ μ σ Rank δ̊
PC-08 50.8 1.94 158.6 7.34 1, 1 0.190
M2-08 46.0 1.86 118.8 5.19 2, 3 0.025
JA-08 39.8 0.81 124.4 3.34 3, 2 0.150
M1-08 39.5 1.01 107.7 1.80 4, 4 0.056
IA-08 35.0 1.19 89.1 3.72 5, 6 0.011
DO-08 34.0 1.09 96.4 1.46 6, 5 0.069
PS-08 16.9 0.46 0.00 0.00 7, 8 0.251
CR-08 16.8 5.07 0.00 0.00 8, 7 0.249

Table 3.6: Mean, standard deviation, rank and δ̊ values for a set of tournament rep-
etitions using the short-early scoring context and a set of tournament repetitions
using the medium-middle scoring context. For all these simulations the just-ZIC
trader contexts were used as well as the all specialists competitor context. First
presented in [145].

and ‘medium-middle’, which means using trading days 100–300 as scoring days⁶.

As would be expected, scores were lower when the short-early context was used

because the scoring period (100 days versus 200 days) is smaller.

Table 3.6 shows the effect changing the scoring period had on the

performance of the specialists. Many of the specialists’ ranks changed between

simulations using the two scoring contexts. When the short-early scoring context

was used, JA-08 had a rank of three, while M2-08 had a rank of two (t-value =

10.42, p-value < 0.001); mean scores were 46.0 for M2 and 39.8 for JA.

Alternatively, if the medium-middle scoring context was used, the ranks of M2

and JA switched. Again, scores were statistically distinct, resulting in a t-value of

3.34 and a p-value of 0.004.

3.3.3 Evalutation of the 2009 competition

For the analysis of the 2009 competition, the following specialists were included

in the experiments: Cestlavie (CE-09), Cuny.cs (CU-09), Jackaroo (JA-09),

Mertacor (ME-09), PSUCAT (PS-09), TWBB (TW-09) and iAmWildCat 2009 (IA-09). As

⁶Short and medium refer to the length of the scoring period, while early and middle refer to the
time during tournament when the scoring period is instantiated.
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Just GD Traders No GD Traders
Specialist μ σ μ σ Rank δ̊
CE-09 248.5 4.32 177.1 4.50 1,4 0.279
CU-09 200.5 6.15 158.6 6.86 2,6 0.171
JA-09 173.2 2.88 234.2 6.97 3,1 0.185
IA-09 168.5 2.84 160.8 3.22 4,5 0.049
ME-09 161.2 5.72 200.0 6.47 5,2 0.111
PS-09 138.6 9.15 178.4 2.52 6,3 0.117
TW-09 118.7 10.30 148.2 9.35 7,7 0.085

Table 3.7: Mean, standard deviation, rank and δ̊ values for a set of tournaments
using entrants to the 2009 CAT Tournament, with an environment containing just
GD and no GD traders. First presented in [146].

with the 2008 entries, the specialists were subjected to a variety of tournament

configurations using varying trading, competitor and scoring contexts. Overall,

Jackaroo was a worthy 2009 champion, as not only did it win the official 2009

CAT Tournament, it won almost 80% of the tournament variants considered,

although there was a considerable lack of generalisation in the other specialists.

However, there were some configurations that JA-09 was particularly

sensitive to. Along with CE-09, particular sensitivity was shown to GD traders.

Two different trader contexts were used here: ‘just-GD’, consisting entirely of GD

traders, and ‘no-GD’, consisting of equal amounts of RE, ZIP and ZIC traders,

with no GD traders used. Table 3.7 clearly shows that JA-09 performs relatively

poorly when a just-GD trader context is used, while it regains its top spot when

the no-GD trader context is used. Paired t-tests of equality of means between

JA-09 and CE-09 reveal t-value = 52.5 for just-GD, t-value = 24.47, and p-values

< 0.0001 in both cases.

3.3.4 Evaluation of best performers and overall progress

In this section, the top three specialists from both 2008 and 2009 are taken, and

compared against each other. Considering previous specialist performance, the

three specialists with the highest mean scores from each of the two years were

used. e specialists chosen from those entered in the 2008 competition were
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Just RE Traders No RE Traders
Specialist μ σ μ σ Rank δ̊
PC-08 230.1 5.75 153.1 5.72 1,6 0.481
JA-09 215.9 4.69 212.9 5.32 2,1 0.018
CE-09 189.4 3.10 189.5 4.43 3,4 0.001
ME-09 174.3 3.48 202.6 10.09 4,2 0.177
JA-08 169.0 3.25 178.4 3.91 5,5 0.059
ME-08 160.8 5.87 202.5 13.53 6,3 0.261

Table 3.8: Mean, standard deviation, rank and δ̊ values for a set of tournament
repetitions using the just-RE trader context and a set of repetitions using the no-
RE trader context. In these cases, the top three specialists from 2008 and 2009 were
pied against each other. First presented in [146].

Persian Cat, Mertacor and Jackaroo. From the 2009 competition entries,

Cestlavie, Jackaroo (09) and Mertacor (09) were chosen.

Overall, JA-09 was still generally the strongest specialist, though the

performance of all specialists was much closer than when considering only 2008,

or only 2009, specialists. Of particular interest, however, were two trader contexts

involving RE traders. e first, ‘just-RE’ consists of using only RE traders, while

the second, ‘no-RE’, consists of using equal numbers of GD, ZIP, and ZIC traders,

with no RE traders used. Table 3.8 show that PE-08 maintained—as it did against

2008 only specialists—its top position when the just-RE trader context was used,

but when the no-RE context was used, its rank, which was still first against

2008-only competition, plummeted to sixth. For the just-RE (no-RE) contexts, a

paired t-test of equality of means between PC-08 and JA-09 returned a t-value of

6.34 (47.33) and, in both cases, a p-value < 0.001.

By applying the methodology in Section 3.3, to the evaluation of the

generalisation properties of specialists, it has been discovered within this chapter

that a once winning specialist can over-fit to previously unseen competitors,

which would have been hard to identify without using such a methodology. is

result is of further interest because in the 2009 only experiments, JA-09 won both

the just-RE and no-RE cases, while in this case, an entry from the previous year

outperformed it, suggesting previous competitor strategies had not been
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Trader Mix 2008 Competition 2009 Competition 2008/9 Best
μ σ μ σ μ σ

Just GD 157.59 2.28 172.74 1.72 187.33 0.56
No GD 158.56 1.32 179.65 2.67 186.43 2.02
Just RE 160.52 2.25 182.00 1.22 189.96 1.98
No RE 158.13 0.66 181.03 2.09 189.87 1.66
Just ZIP 156.37 1.42 167.24 2.64 179.56 2.49
No ZIP 159.21 0.90 181.37 2.08 190.54 1.35
Just ZIC 158.35 0.97 179.72 1.80 188.16 2.11
No ZIC 159.71 1.14 181.18 2.13 189.68 1.59
GD/ZIC 158.75 0.89 180.33 1.79 191.24 1.59

Table 3.9: Mean overall specialist performance from tournaments using various
trader contexts. e highest overall scores for each trader context are emboldened.
Unsurprisingly, in all cases the 2008/09 best competitor context, consisting of the
top three specialists from each year, came out on top. e trader context that re-
sulted in the lowest overall specialist scores has been emphasised. It is of particular
interest that in all three competitor context variations, the just-ZIP trader context
results in the lowest scores. First presented in [146].

considered enough in the design of a new one.

One interesting question to ask is: what kind of overall progress is being

made by specialists in general each year? It can be answered by considering the

all specialists competitor contexts from 2008 and 2009, as well as the competitor

context formed from combining the top three specialist of each year, and then

analysing overall performance of all specialists against various trader contexts.

From Table 3.9 it is clear that specialist performances against any of the trader

contexts were on average higher for the 2009 entries than the 2008 entries, and

that when only the best performers from the two years were evaluated together,

the mean performance was even higher (emboldened in Table 3.9). However, it is

not clear as to whether this performance increase is an indicator of improved

specialist robustness, and thus year-on-year progress, or merely an artefact of the

differing sample sizes between the groups (the 2008 competition results consider

eight specialists, the 2009 seven, and the 2008/09 six).

Perhaps the most interesting finding, which would not have been visible

without such extensive experimentation, was that in all cases the just-ZIP trader
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context, consisting of a trading population of only ZIP traders, invoked the lowest

mean scores all around. Intuitively, one might expect that GD traders, using a

more sophisticated, and thus intelligent, strategy than ZIP, would be harder to

perform well against. In the 2009 and 2008/09 cases, for example, a paired t-test of

equality of means between the just-ZIP sample and the just-GD sample, returned

a t-value = 6.66 for the 2009 case, t-value = 6.53 for the 2008/09 case, and p-values

< 0.001 in both cases.

3.3.5 Discussion

is chapter has presented a methodology that allows one to evaluate and

compare specialist agents’ generalisation abilities systematically and

quantitatively. It is believed that this approach is the first to allow such properties

to be measured—especially in a coevolutionary context. is work is significant

because without such an approach, it is hard to know the true performance of

any particular agent strategy, as one cannot see how well a strategy performs

against unknown or previously unseen competing strategies, i.e., how well a

given strategy generalises and thus its robustness. Although some of the

specialists generalise beer than initially thought, this chapter’s results show that

some seemingly strong strategies can have weaknesses when competing with

certain other strategies. is is interesting because it is clear from the literature

that oen ‘best strategies’ or ‘best results’ are published, and without any further

elaboration on their generalisation ability, these results can be very misleading.

Results in this chapter also suggest that a seemingly less intelligent trading

strategy such as ZIP can be harder to perform well against than a more intelligent

one such as RE or GD. is is of particular interest because it suggests that

competing teams may be puing too much emphasis on designing and testing

specialists against only particular trading strategies. us, although it is may

seem obvious that the performance of any given strategy—whether in the CAT

game or some other competitive multi-agent system—will depend on the
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strategies being used by other agents, it is never clear how strong this

dependency is, or the resulting quantitative values such a dependency provides.

To define what ‘robustness’ of a trading or specialist strategy means is not

straightforward in the coevolutionary environment created by the CAT

tournament, let alone to actually measure such a property in a systematic and

rigorous way. e approach in this chapter, unlike others [172, 176, 116], is the

first to look at how well such designed strategies generalise to previously unseen

strategies, using the CAT competition as a case-study. It is hoped that this

approach can be used for analysing the generalisation properties of strategies not

only in other agent-based competitions involving competition between

marketplaces, but also in any agent-based simulation models within a complex

adaptive domain.

3.4 Conclusions

e generalisation ability of specialists (i.e., market mechanisms) has not been

studied previously in the literature. eoretical economic mechanism design

approaches to designing robust incentive-compatible market mechanisms, which

generalise across all trader strategies and types, involves assuming traders are

strictly rational. However, computer soware is always resource-constrained and

bug-prone, thus the designers of computational mechanisms cannot assume that

traders always act rationally or in their own self-interest. Moreover, economic

mechanism design theory has not considered competition between mechanisms,

and so has not explored competitive performance of mechanism features, nor the

generalisability of these features over different competitive environments.

e research reported in this chapter has tried to explore the generalisation

properties of market mechanisms, using the 2008 and 2009 CAT Tournament

specialists as the basis. It is unclear whether and how a market mechanism might

(intentionally or unintentionally) favour certain trading strategies, or facilitate or

75



CHAPTER 3. GENERALISATION PROPERTIES OF COMPETING MARKETPLACES

inhibit other competing market mechanisms. A specialist which performs well

under one particular tournament setup may not perform well if the setup changes

slightly. erefore, it is essential to study and understand any hidden bias that a

specialist might have built into it. is was achieved by applying a novel

methodology to assess the generalisation properties of the specialist market

mechanisms. Specifically, many  simulations were run, using a variety of

configurations, including changing both the trader and specialists populations as

well as changing the period used to generate specialist scores; importantly,

specific configurations were used that encompassed representative contexts. is

chapter shows for the first time how changes in the competition configuration

can have an impact on specialists’ performances in both a qualitative and

quantitative context.

e results of this experimental work showed that specialists can be

sensitive (and specialised) to a number of factors in the competition, including

trader strategies, other specialists, and the scoring period. Such results indicate

that an appropriate evaluation of such a competition (and other similar ones)

would need a theoretically sound framework, which can measure specialists’

generalisation abilities quantitatively. ey also point out the importance in

analysing the relationship between a winning specialist and the particular

competition setup used, so that insights into what makes a specialist beer/worse

can be gained. Further, results in this chapter have shown that a trading strategy

with less intelligence than others, i.e., ZIP, can be harder to score against,

suggesting current specialists are concentrating on performing well against more

intelligent trading strategies.

e contributions of this chapter are:

• a methodology for qualitatively and quantitatively measuring the

generalisation properties of competing market-mechanisms (specialists) in

coevolutionary trading environments.

• a statistic for measuring the relative performance change in comparable
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CAT tournament variations.

• evidence that many specialists are not robust against changes in various

environmental factors, and thus do not generalise well.

• evidence that current CAT entrants are possibly concentrating on

designing specialists to only perform well against (apparently) more

intelligent trading agents and other competitors.

Some of the materials presented in this chapter appeared as [145, 146]. In this

chapter, three major issues were identified as having a significant impact on

specialists’ performance, from the viewpoint of generalisation. However, there

are other issues to be considered, e.g., the performance (scoring) metric used in

the tournaments. It would be interesting to study the potential trade-offs

between, for example, market share and profit, perhaps using a multi-objective

approach. In terms of a theoretical framework for measuring specialists’

generalisation quantitatively, the possibility of adopting one for measuring

strategies’ generalisation ability [29] will be considered in the future.

Finally, although the CAT Tournament aims specifically to encourage

research and development of automated design of double auction mechanisms, it

is believed that the methods and techniques here have wider applicability.

Traditional analysis of situations where individuals make strategic decisions that

impact both their own and others’ welfare is traditionally carried out using game

theoretic methods [61]; oen the intention is to define and study the equilibria

present within the system of interest. Game theoretic analysis oen requires full

knowledge of the possible strategies players may take, along with full knowledge

of the outcomes or payoffs of the interactions of these strategies, so that they may

be evaluated in turn and the best strategy chosen. is very high rationality

requirement means that traditional analysis is impractical in many seings due to

the infinitely many preferences that agents may be required to keep within a

complex system.
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One approach to deal with this has been to use Evolutionary Game eory

(EGT) [102] as a framework for more accurately modelling the notion that

less-than-rational individuals tend to adapt strategies over time in response to

those being played by individuals around them, and that the dynamics created by

in such an environment lead to the equilibria within the system. EGT has been

applied with respect to multi agent systems [169] and more specifically in terms

of analysing agents’ strategies in economic games [133, 173]. While an

improvement over traditional approaches EGT still requires the game being

modelled to be normal-form, i.e., that there is complete information about all of

the possible states of the game and associated payoffs. In many interesting games

payoffs typically depend upon decisions taken by players previously, and

converting these games to normal-form requires generating huge payoff

matrices—typically impossible with current technologies. One approach to this

problem, applied to the design of market-mechanisms, similar to those studied

within this chapter, was to use Empirical Game eory [137], whereby games with

many strategies and/or stochastic payoffs can be analysed by approximating the

payoff matrix in an offline way and then using typical evolutionary game

theoretic approaches, such as replicator dynamics.

However, as discussed in Chapter 2, these game theoretic techniques have

only been applied to analysing market-mechanisms in isolation, and even

empirical game theory approaches can only deal with tens of agents within a

system, while within this chapter multiple competing marketplaces aempting to

aract hundreds of traders, are the subject of analysis. Indeed, many complex,

adaptive domains, such as those in public policy or defence, have large

sub-populations of intelligent entities who co-evolve or change dynamically in

response to each other’s actions, quickly making any analytical mathematical

models intractable. Accordingly, these domains are typically studied using

computer simulation methods, and the issue of generalisability of results then

becomes of great importance [100]. e techniques described in this chapter
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potentially have application to these other domains, and further investigations

will form future work.
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CHAPTER 4

A MODEL FOR COMPUTATIONAL

MULTI-ATTRIBUTE RESOURCE

ALLOCATION

e construction of an economic model, or of any model or theory for
that maer (or the writing of a novel, a short story, or a play) consists of
snating from the enormous and complex mass of facts called reality, a

few simple, easily-managed key points whi, when put together in
some cunning way, become for certain purposes a substitute for reality

itself.

—Evsey Domar
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In this chapter, a model describing a novel approach for allocating distributed

multi-aribute computational resources is presented. As discussed in Chapter 2,

other fully centralised or fully decentralised approaches to multi-aribute

resource allocation suffer from a number of issues, e.g., being reliant on a single

mechanism that is non-distributable and complex, or relying on complex

bargaining strategies, respectively.

Within this approach, computational resources are allocated across

distributed, competing double auction marketplaces, which choose the type of

resource to be traded within their market, while traders trade in the resource

markets that most suit their preferences and constraints. While models and

platforms for studying competition between marketplaces exist, e.g., JCAT [118],

they only consider single-aribute resource allocation. us, this chapter is

motivated by the need for a new model of both trader and marketplace behaviour,

which will enable study of the proposed approach, because unlike previous

models: (i) the resources are multi-aribute in nature, and traders have

preferences and constraints over them; and (ii) marketplaces have to specifically

choose what types of multi-aribute resources can be traded within their market.

As discussed in Chapter 2, it is not possible to say if this approach is generally

beer than any other, because all models aempt to satisfy multiple objectives. As

a result, direct comparisons with existing models would not be possible, although

approaches to potential future comparative studies are discussed in Section 4.6.

While no explicit experimental work is carried out within this chapter, it

forms an essential basis for empirical work carried out throughout the rest of the

thesis, and hopefully for other researchers interested in designing mechanisms

for distributed computational resource allocation. e main contributions of this

chapter therefore are: (i) to propose and describe a novel method for

multi-aribute resource allocation, based upon competing double auction

marketplaces; (ii) to formally define trader decision-making behaviours, based

upon marketing models grounded in consumer theory; and (iii) to provide a novel
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algorithm for solving an optimisation problem, which presents itself when a

population of traders potentially have different preferences and constraints over

multi-aribute resources.

e rest of this chapter proceeds as follows. In Section 4.1, multi-aribute

computational resources are formally described, along with the expected method

of their allocation. In Section 4.2, the expected decision-making behaviour of the

agents in the system is defined, using multi-aribute utility functions. In

Section 4.3 and Section 4.4, the meanics of the agents are described, including

the double auction policies, market-selection, and trading strategies. In

Section 4.5 the problem of measuring the allocative efficiency within the system

is identified, and a novel algorithm for measuring the utility of an optimal

allocation is defined. Finally, the chapter is concluded in Section 4.6.

4.1 Computational Resource Allocation

Computational resources are oen specified to meet both functional and

non-functional requirements [189]. Functional requirements—as well as some

non-functional requirements—can be easily quantified and commoditised, e.g,

processing power, memory capacity and storage capacity. us, many types of

computational resources could be accurately specified in terms of a bundle of

aributes. is model considers abstract computational resources, only assuming

that a resource comprises a vector π of n non-price aributes:

π = ⟨π1, π2, . . . , πn⟩ , (4.1)

where πi ∈ [0, 1] refers to the aribute-level of the i ᵗʰ aribute. Resources can be

differentiated by their type, which is defined by the levels of each of their

aributes. Two resources can be considered identical iff all of their
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aribute-levels are equal:

π1 ≡ π2 ⇐⇒ ∀j, π1
j = π2

j

Different consumers will have varying minimum resource requirements, which

must be satisfied in order that the resource is useful to them. Realistically, these

requirements might fall upon a minimum level of storage or random-access

memory for large data-oriented tasks, or processing power for time-sensitive

tasks. A user can impart these requirements on their trading agent ai using a

vector rai� of minimum constraints:

rai� =
⟨
rai�1 , r

ai
�2 , . . . , r

ai
�n
⟩
, (4.2)

where rai�j is, for example, the minimum level aribute j must meet in order to be

useful to ai.

As well as minimum constraints, consumers might not require certain

aribute to be above specific thresholds, e.g., because their tasks only require a

certain amount of memory to run. Likewise, providers may have constrained

hardware or capacity, and may only be able to provide certain aribute-levels to

consumers; a user’s laptop-based resource has different maximum aribute-levels

to a node on a high-speed computational cluster, for example. Again, these

requirements can be communicated to trading agents via a vector rai� of maximum

constraints:

rai� =
⟨
rai�1 , r

ai
�2 , . . . , r

ai
�n
⟩
, (4.3)

where rai�j is the maximum constraint on aribute j, and ∀j, rai�j ≥ rai�j . As well as

expressing preferences over different resources, multi-aribute decision theory

states that decision-makers might have preferences over the individual aributes

of a resource [84]. For consumers, represented by buying agents, preferences

describe the relative importance of each aribute, in terms of value. For
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providers, represented by selling agents, preferences describe the relative cost of

providing each of the aributes. It is assumed each trader ai maintains a vector

wai of preferences over the aributes of a resource:

wai = ⟨wai
1 ,wai

2 , . . . ,wai
n ⟩ , (4.4)

where ∀j,wai
j > 0 and

∑n
j=1 w

ai
j = 1. If the trader ai does not have preferences

over the different aributes, equal weighting is applied to all aributes:

wai =
⟨

1
n ,

1
n , . . . ,

1
n

⟩
.

4.1.1 Trading resources in distributed marketplaces

Within this model, market-exange agents provide markets for trading agents to

buy and sell computational resources. To simplify analysis, a basic assumption

made, is that each market-exchange provides a single instance of a market, in

which resources are allocated using a double auction mechanism.

Market-exchanges, along with trading agents, are considered to be self-interested

expected utility maximisers. Traders’ tasks are to maximise utility by either

buying or selling resources for as lile or as much (respectively), as possible.

Market-exchanges, on the other hand, charge fees to traders in return for access

to their market. Different fee structures can have significant impacts on aracting,

or not, traders to a market. ree main types are considered within this model:

• registration fees: are charged to traders in exchange for permission to enter
the exchange’s market and shout offers. ey are charged once per trading
day.

• transaction price fees¹: are charged to traders who successfully transact in
the market. e fee is a percentage of the transaction price, payable by both
traders involved.

• spread commission fees: again applicable to traders who successfully
transact, the spread is the difference between the two trader’s individual
offers. e spread commission fee is a percentage of the difference between
these two prices.

¹In some parts of the literature this type of fee is known as Ad Valorem—“according to value”.
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A variety of charging structures could have been implemented; the three chosen

are inspired by the CAT [24] tournament model: JCAT [77]. It is believed that by

covering market entry, and transaction-based fees, a realistic charging structure

has been used. As discussed in Chapter 2, rather than allocating resources via a

single centralised mechanism, segments of the market could be satisfied by

distributed marketplaces, each offering a market for trading a particular type of

resource. Dependent on their preferences and constraints, traders migrate to the

marketplaces that most suit them. us, within the model, market-exchanges

must—aside from running an auction mechanism—decide each trading day the

type of resource to be traded within its market. Given the charging structure

above, market-exchanges have an incentive to aract traders to their market, as

well as ensuring that as many traders as possible can trade the resource specified

by the market-exchange. Given this, resource type selection, achieved through

aribute-level selection, is vital.

e trading process

Market-based systems are oen complex, containing many economic agents

adapting and/or learning over time. Within the current model, it is assumed there

exists a set of trading agents T and a set of market-exchange agentsM. e

trading agents are assumed to consist of sets of buyers B ⊂ T and sellers S ⊂ T .

roughout this thesis, traders are generally referred to as ai ∈ T , however, in

some cases a buyer may be explicitly defined bi, or a seller sj. e market-based

system progresses each trading day via a number of stages, as follows:

1. Aribute-level selection stage: at the beginning of the trading day, each
market-exchange defines the type of resource to be traded in its market, by
selecting, and then broadcasting, the aribute-levels of that resource.

2. Daily market selection stage: next, traders decide which of the
market-exchanges they wish to join; traders may only join at most one
exchange per trading day.

3. Trading and trader learning stage: the trading day is split into a number of
trading rounds—opportunities to shout offers into the market.
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4. Venue learning stage: at the end of the trading day traders and
market-exchanges calculate their daily profit. is is used as a signal to the
decision mechanisms that dictate behaviour on the next trading day.

Each transaction θ executed by a market-exchange, can be represented as an

ordered 7-tuple that specifies: the buyer θb and seller θs involved in the

transaction; the market-exchange θm executing the transaction; the matching bid

θbid and ask θask offers; the transaction price θτ; and the type of resource

exchanged θπ .

θ = (θb ∈ B, θs ∈ S, θm ∈M, θbid, θask, θτ, θπ) (4.5)

4.2 Decision Making Models for Agents

As discussed in Chapter 2, soware agents need to be able to reason over many

states, in order that they can make decisions appropriate to completing their task.

us, within this market-based system, buyers and sellers need to have a

decision-making model that allows them to state their preferences over various

multiple-aribute computational resources. An agent’s preferences over the types

of resources defined in Section 4.1 can be formally defined using a multi-aribute

utility function, which allows a decision maker to get a conjoint utility measure

for a multi-aribute resource, based upon each of the individual aribute utilities,

by combining them according to relative importance.

4.2.1 Trader multi-attribute utility functions

Recently, other agent-based computational resource allocation models, e.g.,

[11, 13, 93], have proposed that agents make use of the additive multi-aribute

utility function introduced by Keeney and Raiffa [84], which, using their notation,

is of the form:

u(x) =
n∑

i=1

kiui(xi), (4.6)
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where u and ui are the utility functions for the entire resource x = ⟨x1, x2, . . . , xn⟩

and each individual aribute xi respectively. e utility of each aribute is

weighted according to its preferences or importance to the decision maker; the

weight of aribute i is represented by ki. However, additive functions of this type,

while combining aribute utilities according to relative importance, fail to

consider one important computational resource assumption, viz. that worthless

resources, with aributes failing to satisfy minimum constraints, should provide

zero utility. It is clear from Equation 4.6 that no maer what the utility of

individual aributes, it is not possible for one aribute xi to determine the entire

resource utility, because the utility function is purely additive.

In order that computational resource consumers’ constraints on minimum

aribute levels can be realistically modelled, a richer utility function is now

introduced that enforces the assumptions about buyers’ preferences over

resources with aributes that fail to meet these constraints. Formally, a buyer bi’s

valuation of a resource π is determined according to the following multi-aribute

valuation function υbi(π):

υbi(π) = λbi

 n∑
j=1

wbi
j ubi(πj)

× n∏
j=1

H(πj) (4.7)

Equation 4.7 has two main parts. e first part of the equation is an additive

multi-aribute utility function of the type defined in Equation 4.6, which

determines the contribution of each of the aributes of π, weighted by their

importance according to wbi
j . Because it is assumed that all aribute-levels lie on

the range [0, 1], and that
∑

w∈wbi w = 1, the conjoint utility of a resource π is

naturally scaled between zero and one. It is assumed the utility of a resource to a

buyer monotonically increases with the level of its aributes, implying that the

weighted aribute utilities of the most desirable resource sums to one. It is also

assumed that a buyer would be indifferent between an amount of money equal to

its budget constraint, λbi , and the most desirable resource. us, by scaling the
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utility of a resource by λbi , a buyer can state its valuation in terms of money.

e second part of Equation 4.7 ensures that a resource π’s utility collapses

to zero if any aributes fail to satisfy minimum constraints, regardless of the

other aribute utilities. is is achieved by checking every aribute satisfies its

minimum constraint using a Heaviside step function:

Hbi(πj) =


1 if πj ≥ rbi�j

0 otherwise,
(4.8)

where rbi�j is buyer bi’s minimum constraint for the jᵗʰ aribute. e utility

contribution of each individual aribute is calculated according to bi’s aribute

utility function ubi(πj).

ubi(πj) =


πj if rbi�j ≤ πj ≤ rbi�j

rbi�j if πj > rbi�j

0 if πj < rbi�j

(4.9)

rbi�j refers to bi’s minimum constraint for aribute j, and rbi�j refers to the maximum

constraint. ubi(πj) ensures that if an aribute has a level in excess of a bi’s

maximum constraint, it contributes no more utility than if πj = rbi�j .

Sellers, being resource providers rather than consumers, are modelled

slightly differently to buyers. Each resource type π involves a cost of production,

defined by a seller’s cost function:

csj(π) = λsj
n∑

i=1

wsj
i usj(πi), (4.10)

where usj(πi) is the cost contribution of each of the aributes of π, weighted by

their relative costs according to wsj
i ; given two aributes x and y, if wsj

x > wsj
y then

it costs more to produce a given increase in aribute x than it does in aribute y.
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e aribute cost function usj(πi) is defined as follows:

usj(πi) =


∞ if πi > rsj�i

πi otherwise
(4.11)

us, a seller is unable to provide a resource with aributes that exceed its

maximum production constraint. In all other cases, the cost of production

increases linearly with the aribute level.

Transaction payoffs

Within a double auction environment, the profit or payoff a buyer or seller gains

from a transaction is dependent on the type of resource π exchanged, the amount

of money τ exchanged (transaction price), and any associated market-exchange

costs determined by the market-exchange, which will be communicated to each

trader as a vector of costs c. When a transaction takes place, the buyer bi’s payoff

Pbi is:

Pbi(π, τ, c) = υbi(π)− τ −
∑
c∈c

c, (4.12)

while for a seller sj:

Psj(π, τ, c) = τ − csj(π)−
∑
c∈c

c (4.13)

In both cases, because agents are assumed to be able to express all their

preferences via money, the size of the payoff is equivalent to an equally sized

increase in utility.

4.2.2 Market-exange payoff function

Market-exchanges, as with trading agents, are considered utility-maximisers

within this model. A market-exchange’s utility is measured according to the

revenue generated from charging fees to traders, which, as discussed in

Section 4.1.1, potentially include registration-based fees and transaction-based
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fees. Each market-exchange mk maintains an exange member set Emk ⊂ T ,

containing the traders that have joined its market at the beginning of that trading

day. During each trading day, mk also stores all of the transactions θ that it

executes, maintaining a transaction set Θmk , containing all the transactions that

took place that day. An exchange’s daily profit Pmk is determined both by the

amount of traders that entered the market, and the transactions that the exchange

executed:

Pmk(Emk ,Θmk) = |Emk | · ζ
mk
reg +

∑
θ∈Θmk

2 · θτ · ζmk
tra + [θbid − θask] · ζmk

com, (4.14)

where ζmk
reg ∈ R≥0, ζmk

tra ∈ [0, 1] and ζmk
com ∈ [0, 1] refer to mk’s registration fee,

transaction price fee and spread commission fee levels respectively. Registration

fee revenue depends on the number of traders that joined mk’s market that day.

Both the buyer and seller pay a transaction price fee to mk, based upon the

transaction price θτ . Finally, the spread commission fee is based on the difference

between the buyer’s bid θbid, and the seller’s ask θask. From Equation 4.14 the

reader will note that there are no costs associated with running a market. is is

an intentional choice to simplify analysis in future chapters; costs could be added

to Equation 4.14 to rectify this in future work.

4.2.3 Resource allocation payoff examples

In this section, several visualisations are provided to help the reader understand

the impact that traders’ preferences and constraints have upon the outcomes of

transactions, in terms of buyer valuations, seller costs, and the total utility over

both traders. e main purpose of this section is to emphasise that a trader’s

optimal trading partner (from their perspective and from a social welfare

perspective) depends not only on price, but also on the aribute-levels of the

resource being traded—a pair of traders could trade many different resource types

with each other. Given the multi-aribute nature of the resources defined in
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Section 4.1, maximising utility over both a buyer and seller involves consideration

of the optimal levels for each resource aribute. For these examples, it is assumed

resources have two aributes, which allows visualisation of the effect of changes

to their levels.

e simplest of interactions

In the simplest of cases there exists a buyer bi and a seller sj who don’t have

preferences over the two aributes:

wbi = ⟨0.5, 0.5⟩

wsj = ⟨0.5, 0.5⟩ ,

that is, the buyer values no aribute higher than any other, and the each aribute

is equally expensive to produce more of for the seller. Sellers are assumed to have

no minimum constraints on production. Let us assume that the buyer is interested

in all but the lowest quality of resource; both vectors of minimum constraints are

therefore:

rbi� = ⟨0.2, 0.2⟩

rsj� = ⟨0, 0⟩

Next, assume that neither trader have maximum constraints on the aributes:

rbi� = ⟨1.0, 1.0⟩

rsj� = ⟨1.0, 1.0⟩
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Finally, the traders need a budget constraint, in the form of a limit price λ:

λbi = 20.0

λsj = 10.0,

where the seller’s limit price, which reflects its production cost for a given

resource, is less than the buyer’s. Because the traders have no preferences over

aributes, they are able to trade with each other under two conditions: (i) the

buyer’s budget is bigger than the seller’s, i.e., λbi ≥ λsj ; and (ii) the resource

aributes all have levels that exceed the buyer’s minimum constraints. By

running various resource types π through both the buyer’s valuation function

υbi(π), and the seller’s cost function csj(π), it is possible, as shown in Figure 4.1, to

visualise how valuations and costs change for different resource types. Further, as

shown in Figure 4.1c, it is possible see the total utility surplus ubi,sj(π) of any

given transaction over a particular resource. e total utility measure is

determined as follows:

ubi,sj(π) = υbi(π)− τ + τ − υsj(π)

= υbi(π)− υsj(π) (4.15)

For the sake of simplicity at this stage, potential market-exchanges fees are

ignored. In this example, Figure 4.1c shows that the total utility of a transaction

would be maximised if the two traders exchanged a resource π = ⟨1.0, 1.0⟩.

Further, feasible exchange is entirely dependent on the limit prices of the traders;

if the limit price of the seller is greater than that of the buyer, no trade could take

place over any type of resource.
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(c) Total Trade Utility

Figure 4.1: Each different point on the on the x and y axis describes a resource
π = ⟨x, y⟩ with the respective aribute-levels. (a) e z axis describes the buyer’s
valuation of the resource described by the two aributes; note that for resources
with levels less than the buyer’s minimum constraint, the resource has zero value.
(b) e seller has no minimum production constraints so the cost of producing
the resource increases as the levels of the aributes do. (c) e total utility of a
transaction between the buyer and seller. Any point that has a non-zero utility
would be a mutually beneficial trade; the trade with the highest utility would be
for a resource π = ⟨1.0, 1.0⟩. e exact utility each trader received would depend
on the transaction price, which would lie between the buyer’s valuation and the
seller’s cost.
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Buyers with maximum constraints

In this example, a buyer with maximum aribute constraints lower than those of

the seller is considered. Again, consider that neither trader has preferences over

the two aributes:

wbi = ⟨0.5, 0.5⟩

wsj = ⟨0.5, 0.5⟩ ,

Further, let us assume that the traders have the same minimum constraints as the

last example:

rbi� = ⟨0.2, 0.2⟩

rsj� = ⟨0.0, 0.0⟩

Also, let us assume that while the seller is able to produce resources with

aributes up to the maximum level, the buyer only requires a resource with a

constrained aribute level, e.g.:

rbi� = ⟨0.5, 0.5⟩

rsj� = ⟨1.0, 1.0⟩

Finally, let us again assume the following budget constraints:

λbi = 20.0

λsj = 10.0

Having constraints on the maximum desirable aribute levels for a resource has a

considerable impact of the buyer’s valuation, as shown in Figure 4.2. Because the

seller used in the previous example is also used here, the seller’s cost function is
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(b) Total Trade Utility

Figure 4.2: Each different point on the on the x and y axis describes a resource
π = ⟨x, y⟩with the respective aribute-levels. In this example the seller is identical
to that in Figure 4.1b. (a) e z axis describes the valuation of the different resource
types for a buyerwithmaximum constraints rbi� = ⟨0.5, 0.5⟩. Due to thesemaximum
constraints, the buyer’s valuation does not increase for resourceswith aribute lev-
els beyond its maximum constraints. (b) e total utility of a transaction between
the buyer and the seller shown in Figure 4.1b. Any point that has a non-zero utility
would be a mutually beneficial trade. While any resource with aribute-levels be-
yond the buyer’s maximum constraints would not be valued higher, it would cost
more for the seller to produce. erefore, the trade that maximises the total utility
is for a resource π = ⟨0.5, 0.5⟩.
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the same as that shown in Figure 4.1b. e immediate difference between this and

the previous simpler case, where the buyer had no maximum constraints, is that

the resource that maximises the total utility over the trade is no longer the one

with maximum values for aributes; instead, the resource type maximising utility

is π = ⟨0.5, 0.5⟩, which in this case aligns with the buyers maximum constraints.

Of course, a marketplace trying to decide on the type of resource to be traded

within its market would be unaware of these constraints a priori.

Traders with preferences over attributes

e final example to be shown involves looking at a buyer and seller that have

preferences over the two resource aributes:

wbi = ⟨0.9, 0.1⟩

wsj = ⟨0.1, 0.9⟩

In this case, the buyer strongly prefers aribute one to aribute two, meaning

that it is willing to apportion more of its budget to that resource than than the

other. e seller can produce a given increase of aribute one for less than it can

produce the same increase in aribute two, i.e., aribute one is more expensive

for the seller to produce. Let us maintain the same minimum constraints on the

traders as the previous examples:

rbi� = ⟨0.2, 0.2⟩

rsj� = ⟨0, 0⟩

To simplify this analysis, let us remove the previous buyer’s maximum constraint:

rbi� = ⟨1.0, 1.0⟩

rsj� = ⟨1.0, 1.0⟩
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Finally, in order to highlight the impact that preferences have on feasible trades,

let us again assume the following budget constraints:

λbi = 20.0

λsj = 25.0,

that is to say, the seller’s budget constraint is bigger than the buyer’s. In the

absence of preferences, if λsj > λbi then a trade can never take place, because the

seller’s costs will always be larger than the buyer’s valuations. However, as

shown in Figure 4.3, when a buyer values some aributes more than others, and a

seller is able to produce some aributes cheaper than others, it is possible for

mutually beneficial trades to take place over some resource types.

By following these examples, and considering large populations of traders

with potentially different preferences and constraints, it should become clear that

the market-exchanges’ task of choosing the resource type to be traded within

their markets is non-trivial, given that underlying trader preferences and

constraints can’t be known a priori; strategies for tackling this challenge are the

subject of Chapter 5.

4.3 Market-exange Agent Meanics

Market-exchange agents operating within this resource allocation approach

involve two main mechanisms: (i) a double action mechanism, which allows the

agent to run a double auction for allocating resources between buyers and sellers;

and (ii) a mechanism for deciding what type of resource will be traded within its

market each trading day. Section 4.2.2 described how market-exchanges are

assumed to be self-interested agents, aempting to maximise revenue generated

from charges and fees levied on traders within their market. e type of resource

traded within their market will affect the market-exchange’s profitability, and as
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Figure 4.3: Each different point on the on the x and y axis describes a resource
π = ⟨x, y⟩ with the respective aribute-levels. (a) the buyer’s valuation increases
linearly as the aribute levels of the resource increase, however, a strong pref-
erence for aribute one has rotated the valuation landscape, such that valuation
increases more dramatically for an increase in aribute one. (b) the seller’s cost in-
creases more slowly with an increase in aribute one than with aribute two. (c)
Total utility of a transaction between the buyer and seller. Because of a higher seller
budget constraint the seller’s cost csj(⟨1.0, 1.0⟩) = 25 is bigger than the buyer’s val-
uation υbi(⟨1.0, 1.0⟩) = 20. However, a mutually beneficial trade can take place over
resources with certain aributes; the total utility is maximised for the resource type
π = ⟨1.0, 0.2⟩.
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the previous section has demonstrated, selecting the aribute levels that optimise

the total utility over a transaction—which should in turn optimise the potential

revenue from such a transaction—is not always straightforward.

e method by which a market-exchange decides on the aribute-levels of

the type of resource to be traded within its market is determined by its

aribute-level selection strategy, and based upon the previous section it should be

clear that this is a challenging problem. Chapter 5 will be dealing with the design

and analysis of appropriate aribute-level selection strategies for the allocation

of multi-aribute computational resources.

4.3.1 Double auction policies

is thesis does not concern itself with the design and analysis of policies or rules

pertaining to the running of a double auction per se. As such, several previously

well-defined double auction policies are used to run market-exchange’s double

auction mechanisms throughout this thesis. e various double auction policies

used by market-exchanges are as follows.

Charging policy

At the beginning of this chapter the main assumed types of charges were outlined.

A double auction charging policy essentially outlines these charges, and specifies

under what conditions traders are subjected to them. Within this thesis, it is

assumed that these charges remain stationary for the duration of a simulation,

i.e., they do not dynamically change over time in response to any environmental

conditions. Exploration of the relative merits for using dynamic charging policies

when allocating these types of multi-aribute resources is saved for future work.

Clearing policy

As discussed in Chapter 2, a continuous double auction auction mechanism might

be more appropriate than a clearing house variant for scenarios where supply
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and demand could shi rapidly, or where it might not be practical for traders to

wait for the market to clear. As such, all market-exchanges within this model use

continuous double auction (CDA) mechanisms. From an implementation point of

view, each market-exchange uses the 4-Heap algorithm [185] to maintain

uncleared bids and asks in their market, using appropriate data structures.

Mating policy

e matching policy perhaps most commonly used in double auction

environments is the market equilibrium matching policy [104]. Within a clearing

house auction, market equilibrium involves clearing the market at the reported

supply and demand levels [117], yet these are not available in a CDA auction, so

traders are simply matched as soon as a bid and ask are compatible; if there are

multiple compatible offers they are prioritised according to time of submission.

Pricing policy

e pricing policy specifies the transaction price at which a trade takes place,

given a matching bid and ask. A discriminatory k-pricing policy [150, 8] calculates

the transaction price using a parameter κ ∈ [0, 1]. For a transaction θ, containing

the bid and ask prices θbid and θask, market-exchange mk determines the

transaction price θτ as follows:

θτ = θbid × κmk + θask × (1− κmk) (4.16)

e seing of κmk determines how favourable the transaction price is to the buyer

and seller: when κmk = 0 (κmk = 1) the transaction price is unilaterally set

according to the value of the ask (bid). e value of κmk can affect how aractive

the market is to either buyers or sellers , thus is it typical to set κmk = 0.5 when it

is desirable not to bias transaction prices towards buyers or sellers. Within this

thesis, all market-exchanges use κmk = 0.5.
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oting policy

e quoting policy determines what information is given to traders in terms of

the current prices within the market. All market-exchanges within this model use

two-sided quoting [117], which publicly states the current highest unmatched bid

and lowest unmatched ask to all traders within the market; these prices are

updated dynamically as new offers enter the market, or trades executed.

Shout accepting policy

e shout accepting policy specifies under what conditions offers shouted by

traders are accepted into the market, by the market-exchange agent. In the most

basic configuration, any shout is accepted into the market; however, it is oen

more appropriate for a market-exchange to impose some limits on the shouts

accepted, to encourage a more efficient market, and reduce excess computational

work. One shout accepting policy that encourages convergence towards the

competitive market equilibrium is the beat the quote shout accepting policy [186].

Also known as the NYSE rule, due its use on the New York Stock Exchange [113],

the policy states that only shouts that improve upon the current quote prices, i.e.,

bids (asks) that are ≥ (≤) than the highest (lowest) unmatched bid (ask), are

accepted into the market.

4.4 Trading Agent Meanics

In this section, the main mechanisms used by the trading agents within this

model are defined and discussed. Trading-agents are composed of two main parts

[23]: (i) a trading strategy that dictates at what price the buyer or seller shouts

offers into the market; and (ii) a market-selection strategy that dictates at which

market to enter each trading day. e rest of this section outlines the strategies

used, and how they are adapted for use in this multi-market approach to resource

allocation.
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4.4.1 e Zero-Intelligence Plus trading strategy

roughout this thesis, it is assumed that all trading agents will be using Cli’s

[34] Zero Intelligence Plus (ZIP) trading strategy. e two main reasons for this

choice are: (i) the ZIP strategy has been extensively analysed in double auction

seings [34, 39, 17], and ZIP traders have been shown capable of achieving

efficient allocations [34]; and (ii) the ZIP trading strategy is relatively simple

computationally, and thus scales well for use in many large-scale experiments.

As discussed in Section 2.3.2 on Page 30, ZIP agents possess the minimal

intelligence for converging, under a wide range of supply and demand schedules,

on a market’s competitive equilibrium price.

e ZIP algorithm has two main parts. e first is a deterministic algorithm

that decides which direction (if at all) the agent should adjust its current shout

price. e second part is a machine learning technique that decides by what

amount to change their shout price; the machine learning technique works as

follows. Importantly, a ZIP trader, being rational, will never shout an offer into

the market that exceeds its valuation (if a buyer) or cost (if a seller) of the type of

resource being traded in the market. us, each trading period t a ZIP trader ai

calculates its shout price ρtai by scaling its valuation vai by a profit-margin μtai :

ρtai = vai ×
[
1+ μtai

]
, (4.17)

where,

vai =


υbi(π) if ai ∈ B

csi(π) if ai ∈ S

Depending on whether the trader is a buyer or seller, vai is set as the valuation or

cost of the resource being traded within the market. Given buyers and sellers

make more profit when their transaction prices are lower and higher respectively,

a buyer’s profit margin is increased when it decreases μtai and a seller’s when it
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increases μtai . Margins must be non-negative for sellers, i.e., ∀ai ∈S , μtai ∈ [0,∞],

demonstrating that it is possible for sellers to ask any amount for their resource,

but cannot go below their valuation vai . Buyers’ margins must lie within the

range ∀ai ∈B, μtai ∈ [−1, 0]; they cannot shout more than their valuation, but they

clearly can’t shout a negative price either.

When an offer is shouted, it may be accepted by the market-exchange, and

may result in a transaction. ese outcomes influence how the profit margin, and

thus shout price, is adapted for the next trading period. Using the Widrow-Hoff

Delta Rule [179], the profit margin μt+1
ai is set by rearranging Equation 4.17 in

terms of μai and then applying an update value Δt
ai , known as the Widrow-Hoff

delta value:

μtai + 1 =
ρtai + Δt

ai
vai − 1

(4.18)

e Widrow-Hoff delta value Δt
ai aims to move a trader’s shout price towards a

target price Τai , which is determined every trading day, and depends upon

information the trader has gleaned from the market.

Δt
ai = βai ×

[
τtai − ρtai

]
, (4.19)

where βai is trader ai’s learning rate, which dictates how quickly ρai converges

towards the target Τai . e target price Τai is an elegant feature of the ZIP

algorithm. Cliff realised that while intuitively it would make sense to set Τt
ai to

last price shouted in the market qt, if ρtai ≃ qt there would be lile change in a

trader’s shout, and that “…there is a need for the agents to be constantly testing

the market, always pushing for higher margins.” [33, p. 44.]. erefore, Τt
ai is set by

randomly perturbing the last shouted price in the market (perhaps representative

of the real-world differences that traders have in their pricing strategies).

Τt
ai = Ut

ai · q
t + Ût

ai (4.20)
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Parameter Raise Price Lower Price
Umin,ai 1 1− uai
Umax,ai 1+ uai 1
Ûmin,ai 0 −ûai
Ûmax,ai ûai 0

Table 4.1: In the ZIP algorithm, the bounds for uniform distributions are adjusted
according to whether the algorithm wishes to raise or lower its shout price. uai ∈
[0, 1] and ûai ∈ [0, 1] are free parameters that agent ai would need to set.

Two types of perturbations are applied to qt: the first, Ut
ai ∈ [Umin,ai ,Umax,ai ],

scales qt across a uniform distribution; the second, Ût
ai ∈ [Ûmin,ai , Ûmax,ai ], is an

absolute perturbation.

Finally, ZIP uses momentum [69, p. 71] to dampen noise in Δt
ai , which may

arise due to the dynamic nature of shouts in the market, and thus target prices.

Rather than using Δt
ai directly, a momentum coefficient γai is applied, and a new

update rule Γai is used instead of the Δai defined in Equation 4.19.

Γt+1
ai = γai Γ

t
ai +

[
1− γai

]
Δt
ai (4.21)

Because Γai is used instead of Δai , Equation 4.18 is replaced by Equation 4.22.

μt+1
ai =

ρtai + Γtai
vai − 1

(4.22)

at concludes the machine learning techniques used to adapt a ZIP agent’s shout

price. In Algorithm 4.1, the deterministic rules that dictate the direction in which

a ZIP agent adjusts its shout price, is shown. In order to know which direction to

adjust its price in, a ZIP trader needs only to know the last shouted price q in the

market, whether that shout was accepted in to the market, and whether the shout

was a bid or an offer. Based upon that information, a ZIP trader either raises or

lowers its shout price, by adjusting the bounds of the uniform distributions that

Ut
ai and Ût

ai are drawn from in Equation 4.20. How these bounds are adjusted for

trader ai are shown in Table 4.1. For all simulation studies within this thesis,

parameters for traders using the ZIP algorithm were set similarly to Cliff and
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Algorithm 4.1 e ZIP algorithm

1: if ai ∈ S then {Trader is a seller.}
2: if last shout in market accepted at price q then
3: if ρai(t) ≤ q(t) then
4: increase profit margin (raise price).
5: end if
6: if last shout in market was a bid and ρai ≥ q and active then
7: decrease profit margin (lower price).
8: end if
9: else

10: if last shout was an offer and ρai ≥ q and active then
11: decrease profit margin (lower price).
12: end if
13: end if
14: else {Trader is a buyer.}
15: if last shout in market accepted at price q then
16: if ρai ≥ q then
17: increase profit margin (lower price).
18: end if
19: if last shout in market was a offer and ρai ≤ q and active then
20: decrease profit margin (raise price).
21: end if
22: else
23: if last shout was a bid and ρai ≤ q and active then
24: decrease profit margin (raise price).
25: end if
26: end if
27: end if
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Bruten’s [34] original simulation studies. Specifically:

∀ai∈T βai ∈ [0.1, 0.2]

γai ∈ [0.05, 0.35]

uai = 0.05

ûai = 0.05

and additionally:

∀ai∈B μ0
ai ∈ [−0.35,−0.05]

∀ai∈S μ0
ai ∈ [0.05, 0.35] (4.23)

where for all parameter ranges, the value is drawn from a Uniform distribution

bounded by the range at the beginning of the simulation; μ0
ai refers only to the

initial profit margin at time t = 0.

4.4.2 Integrating market fees

Recall that traders using the ZIP algorithm never shout offers in excess of their

valuations (buyers) or costs (sellers) of the resource type being traded in the

market. However, given that, as described in Section 4.1.1, there are several

possible charges for joining and trading within a market, it is possible that a

trader may still trade at a loss, even if their offer does not exceed their valuation

or cost. Typically, in the literature referring to deploying ZIP in a single market

situation, charges are not normally of importance in the research being carried

out, thus they are not explicitly considered. However, in a multi-market situation,

charges affect traders’ preferences over market-selection, thus they need to be

factored into ZIP’s shouting algorithm. us, market-exchange charges are

integrated into a trader’s valuation. In the case of a trader that is a buyer, i.e.,

ai ∈ B, rather than the ZIP algorithm using vai = υbi(π), it uses vai = υ̂bi(π),
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where:

υ̂bi(π) =
[
υbi(π)− ζregmk

]
×
[
1+ ζ tramk

]−1
(4.24)

First the buyer decreases its resource valuation υbi(π) by market-exchange mk’s

registration fee ζregmk
. Secondly, it considers the transaction price fee it would have

to pay if it traded at its discounted valuation, and adjusts for it by using the

multiplicative inverse of 1+ ζ tramk
. us, if the buyer were to transact at υ̂bi , then

the price the buyer paid, including all applicable charges would be equal to its

initial valuation υbi(π). For a seller aj ∈ S using the ZIP algorithm, vaj = csj(π)

becomes vj = ĉsj ; sellers need to increase their costs rather than discount them:

υ̂sj =
[
υsj(π) + ζregmk

]
×

[
1− ζtramk

]−1
(4.25)

ese mechanisms ensure that, as long as traders trade resources with the

aribute-level specified by the market-exchange mk, they will never make a loss

from successfully transacting within a market-exchange.

4.4.3 Market-selection strategy

Market-exchanges have the ability to dynamically set and vary the

aribute-levels of the resource types to be traded within their markets.

Section 4.2.3 demonstrated that trader preferences and constraints affect the

desirability of different resource types. erefore, an important aspect of a

trading agent is the mechanism by which it ooses which market-exchange, and

thus resource market, to join each trading day.

A consumer theoretic approa to market selection

Modern consumer theory supposes that resource-constrained consumers, being

rational and time-constrained (and processing-power-constrained and

memory-constrained), only consider a subset of all options available [143, 88].

Some options are immediately rejected without detailed consideration, because
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they have below-threshold values on essential aributes (so-called inept or

unacceptable options [112]). Only the contents of these subsets, termed

consideration sets [144], are then carefully deliberated over, before ultimately one

option is chosen. e options that do not score highly enough to be chosen in this

evaluation are called inert options [112].

In the same spirit, the decision-making models used by traders within this

model take a consumer marketing model approach [94]. A trader’s

market-selection strategy is designed such that it only considers a subset of

available markets each trading day, by forming a consideration set C of

market-exchanges. Market-exchanges are excluded from a trader’s consideration

set if the resource type being traded within its market is considered inept by the

trader. Buyers consider resources to be inept if one of the aribute-levels fails to

meet its minimum constraint, while sellers consider resources inept if one of the

aribute-levels is beyond their production ability, i.e., maximum constraints.

us, for a buyer bi:

Cbi = {mk ∈M : (∀πj ∈ π)(πj ≥ rbi�j )} (4.26)

where rbi�j is bi’s minimum constraint for the jᵗʰ aribute of the resource π

specified by market exchange mk. And, for a seller sj, its consideration set, Csj , is

formed as follows:

Csj = {mk ∈M : (∀πj ∈ π)(πj ≤ rsj�j)} (4.27)

Equations 4.26–4.27 ensure no buyer enters a market where the resources on offer

do not satisfy its minimum constraints, and that no seller will enter an exchange

where it would have to produce resources beyond its production capabilities.
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Market selection

Once a consideration set is formed, more careful evaluation can be made for

market-selection. It is possible for a trader to successfully trade over every

resource type defined by each of the market-exchanges within the consideration

set, however: (i) each market-exchange will potentially have different charges and

fees; and (ii) each market will have differing numbers of traders within it, and

different supply and demand schedules. us, the problem a trader faces in the

presence of competing market-exchanges is that of exploitation versus

exploration. Choosing markets from the consideration set is a similar problem to

that faced by traders in other domains, e.g, traders within the CAT tournament

must choose between all competitions’ entrants. Leveraging those strategies

[118], the problem of market-selection within the consideration set is treated as

an n-armed bandit problem. One of the simplest n-armed strategies, the ε-greedy

strategy [164], is used by traders in the CAT tournaments [24]. Each trader ai

using the strategy maintains a vector of reward values Rai :

Rai =
⟨
Rai
m1
,Rai

m2
, . . . ,Rai

m|M|

⟩
(4.28)

us, each market-exchange mk ∈M has a reward Rai
mk

associated with it;

initially at time t = 0, ∀mk , Rai
mk
(t) = 0. If during a trading day t, a trader ai joins a

market-exchange mk, then at the end of the trading day, it updates its reward

value associated with mk according to:

Rai
mk
(t+ 1) = Rai

mk
(t) + δai · [P t

ai − Rai
mk
(t)], (4.29)

where P t
ai refers to ai’s profit for trading day t, and δai to a discounting factor that

ai uses to ensure that more recent profits contribute further towards Rai
mk
, i.e., Rai

mk

becomes an exponential moving average. In all the simulations within this thesis,

δai = 0.1, which ensures that older observations are not too aggressively
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forgoen.

e ε-greedy strategy selects the market-exchange with the highest reward

according with probability ε, while a random market-exchange is chosen with

probability 1− ε times. us, ε represents the probability of exploitation (joining

the historically best market-exchange), while 1− ε represents the probability of

exploration. If no single market-exchange has the highest unique reward, then ai

chooses randomly between all market-exchanges with the join highest rewards. It

is quite common for ε = 0.1 to empirically yield the best balance between

exploration and exploitation [164, pp. 29] in terms of overall performance, and

ε = 0.1 is the seing used for all traders in simulation within this thesis.

4.5 An Algorithm for Measuring Allocative

Efficiency

One of the metrics of interest when designing and analysing resource allocation

mechanisms is the resulting allocative efficiency. e market-based system

proposed in this chapter considers multiple competing marketplaces hopefully

self-organising into market niches that satisfy market segments in a population of

traders. While the allocative efficiency within each market is expected to be

comparable to that empirically observed by other researchers working with

double auctions and ZIP agents [33], the efficiency across the entire system of

market-exchanges is of particular interest, because it will give an indication of

their abilities to carve out market niches and aract traders. As such, of primary

interest is the overall allocative efficiency of the entire system.

Recall from Chapter 2 that an allocation, i.e., a set of agents each

possessing—in this case—either some cash or a resource, is said to be efficient iff

the total utility of all agents is maximised. In practice, double-auction allocations

are oen not efficient; therefore, allocative efficiency (AE) is typically defined as a

measure of how close the total utility of an allocation is to the utility that an
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efficient allocation would otherwise generate:

AE =
U(Θ)
U(Θ∗)

, (4.30)

where U(Θ) indicates the utility gained from an allocation Θ, and U(Θ∗) refers to

the utility gained from an efficient allocation Θ∗, which is, in that sense optimal.

4.5.1 Calculating an allocation’s utility

e total utility U(Θ) gained from an allocation Θ, is simply the sum of all

individual transaction utilities within each market:

U(Θ) =
∑
θ∈Θ

U(θ) (4.31)

For each transaction θ, its utility u(θ) is dependent only on the total gain in

utility from the buyer and seller trading with each other. While both the buyer

and seller may incur registration, transaction or commission fees, which must be

paid to the exchange that generated the transaction, the total utility of all agents

involved in a transaction is only dependent on the private valuation of the buyer

and cost to the seller involved.

u(θ) = Pbi(θπ, θτ, cbi) + Psj(θπ, θτ, csj) +
∑

c∈cbi+csj

c

= υbi(θπ)− θτ −
∑
c∈cbi

c+ θτ − csj(θπ)−
∑
c∈csj

c+
∑

c∈cbi+csj

c

= υbi(θπ)− csj(θπ), (4.32)

where:

bi = θb
sj = θs

mk = θm,
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and
∑

c∈cbi+csj
c is the total revenue the market-exchange would receive from the

transaction in charges and fees levied on the two traders. Because the overall

transaction utility considers both the traders and the exchange, the utility

measure reduces down to the difference between the buyer’s valuation for the

transacted resource θπ , and the seller’s production cost. Measuring the total

utility U(Θ) of an allocation is straightforward, but calculating U(Θ∗) requires

knowledge of an efficient allocation Θ∗, which involves solving the following

optimisation problem to find the set of optimal transactions θ ∈ Θ∗.

argmax
(Θ∗)

∑
θ∈Θ∗

υbi(θπ)− csj(θπ), (4.33)

where,

bi = θb
sj = θs

In terms of single-aribute fungible resources, which are resources where only

price influences preferences over them, as Phelps [137, pp. 17–19] notes, the

problem is simple to solve. One only need know the private values of both the

buyers and sellers in the auction, since there is only one type of resource that

could be exchanged between each buyer and seller; thus a trader’s valuation or

cost is always equivalent to its limit price.

υbi = λbi

csj = λsj

Briefly, to find the optimal allocation for a single-aribute resource case, buyer

valuations are first sorted in descending order. Let Λb = {λb1 , λb2 , . . . , λbn} be the

multi-set of all buyer valuations where:

∀ij i < j =⇒ λbi ≥ λbj
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Sorting the set of seller valuations in ascending order, let Λs = {λs1 , λs2 , . . . , λsn}

be the multi-set of all seller valuations where:

∀ij i < j =⇒ λsi ≤ λsj

Finally, by iterating through Λb and Λs, each of the transactions that belong in

the optimal transaction set can be indicated by λbi ≥ λsi . However, the model

developed within this chapter is for complex multi-aribute resources, where

optimally allocating a resource from a provider to a consumer involves working

out the optimal type of resource, as well as assessing cost and value. us, the

method above defined for solving the optimisation problem in Equation 4.33,

cannot be used to find the optimal allocation for an instance of this resource

allocation model.

4.5.2 e Hungarian Algorithm for assignment problems

e Hungarian Algorithm [90, 110] is a remarkable algorithm for finding

solutions to what are classically known as assignment problems. According to

Burkard et al., assignment problems “. . .deal with the question of how to assign n

items (jobs, students) to n other items (machines, task).” [21, p. 1], such that some

overall payoff (cost) metric is maximised (or minimised), and traditionally were of

interest to operations researchers looking to improve the efficiencies or

performance of various systems. Assigning members from two sets to each other

in an optimal way is identical to the problem faced when determining an optimal

allocation of resources between a set of buyers and sellers; more formally:

Definition 4.1. (Optimal Allocation Problem): Let U be a B-by-S utility matrix,
and let uij = u(θ) be the total utility from a transaction θ between buyer i ∈ B
and seller j ∈ S , over some resource π. A set of elements (transactions) in the
utility matrix U are said to be independent if no two of them lie on the same row
or column. e problem is to choose a set of n independent transactions from U,
so that the sum of their utilities are maximum.
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Informally, buyers and sellers can only take part in at most one transaction, and

the aim is to find the set of transactions, i.e., the transaction set Θ∗, for which

total utility U(Θ∗) is maximised. e original Hungarian Algorithm usually

expected the matrix size to be m-by-m, but Munkres [110] provides an

implementation of the algorithm for non-square matrices. e algorithm itself is

strongly polynomial, with a worst case complexity of Ο(n3), where

n = max(|B|, |S|). Gerkey [64] (originally Winston [182]) provides a particularly

succinct explanation of how the algorithm progresses:

Algorithm 4.2 e Hungarian Algorithm
(1) Construct the reduced cost matrix by subtracting from each element the min-
imum element in its row and the minimum element in its column.

(2) Find the minimum number of horizontal and vertical lines required to cover
all the zeros in the reduced cost matrix. If n lines are required, then an optimal
assignment is available in the covered zeros. If fewer than n lines are required,
go to Step 3.

(3) Find the smallest nonzero uncovered element in the reduced cost matrix.
Subtract that value from each uncovered element of the reduced cost matrix
and add it to each twice-covered element in the reduced cost matrix. Go to Step
2.

Gerkey [64, pp. 20–21]

A more formal and precise description of the Hungarian Algorithm can be found

in Munkres [110].

4.5.3 Multi-attribute resource assignment problems

e Hungarian Algorithm finds a bijection of two sets that maximises (minimises)

the overall sum of payoffs (costs) for the matrix formed from the two sets. For

solving the Optimal Allocation Problem the utility matrix U needs to be populated

with transaction utilities uij = υbi(π)− csj(π). However, this is non-trivial because

of the multi-aribute nature of both the buyer and seller’s valuation and cost

functions. As observed from the trader payoff examples in Section 4.2.3, each
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resource type can provide different levels of overall utility when exchanged. us,

given a population of traders, in order to populate U and calculate the optimal

allocation, the aribute-levels of the optimum resource that could be traded

between each buyer and seller must be determined.

Definition 4.2. (Optimal Attribute-levels for a Traded Resource Problem):
Given a buyer bi ∈ B and a seller sj ∈ S , find the vector of aribute-levels that
describe the resource π, that when exchanged between bi and sj maximises the
total utility over bi and sj.

is problem is equivalent to the following optimisation problem:

u∗bi,sj = argmax
π∗
{υbi(π∗)− csj(π∗)}, (4.34)

where π∗ is the optimal type of resource that could be exchanged.

Optimal allocation problem solution

Other multi-aribute or combinatorial optimisation problems [125, 13], which

oen have complex non-linear dependencies between item aributes from

different traders, or over bundles of different items, thus making the problems

NP . However, because it is assumed agents within this model only have linear

dependencies between aribute-levels and valuations (costs), and also that the

aributes are utility independent of each other, it is possible to use a greedy

method to calculate a solution to the optimal aribute-levels for a traded resource

problem. Recall from Equation 4.1, a resource π is made up of a vector of n

aributes:

π = ⟨π1, π2, . . . , πn⟩ ,

where πl ∈ [0, 1] is the aribute-level of the l ᵗʰ aribute. Further, recall a buyer’s

multi-aribute valuation function from Equation 4.7 is defined as:

υbi(π) = λbi

[
n∑
l=1

wbi
l ubi(πl)

]
×

n∏
l=1

δ(πl).
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Let us assume, in a simple case, that the buyer has no minimum or maximum

constraints: ∀l, rbi�l = 0.0, rbi�l = 1.0; the ubi and δ(πl) terms become unity, and the

valuation function reduces to:

υbi(π) = λbi
n∑
l=1

wbi
j πl (4.35)

Assuming the same logic for a seller’s cost function csj(π) (Equation 4.10), the

overall utility of a transaction between the buyer and seller becomes:

ubi,sj = λbi

[
n∑
l=1

wbi
l πl

]
− λsj

[
n∑
l=1

wsj
l πj

]

=
n∑
l=1

λbi · wbi
l · πl − λsj · w

sj
l · πl (4.36)

Based on this analysis, and knowing that ∀l, λbiwbi
l ≥ 0 and λSjw

sj
l ≥ 0, solving the

optimisation problem in Equation 4.34 is merely a maer of either maximising or

minimising each aribute-level πl ∈ π, depending on the limit prices and

preferences in Equation 4.36. Importantly though, trader aribute constraints

should be respected:

∀πl∈π, πl ∈ [rbi�l ,min(rbi�l , r
sj
�l)]

at is, the aribute-level cannot be below the buyer’s minimum constraints or

above the seller’s maximum constraints, and there is no value in exceeding the

buyer’s maximum constraints. Given these constraints, it is possible to find π∗ by

finding the optimal level π∗
l of each aribute:

∀π∗l ∈π∗ , π∗
l =


min(rbi�l , r

sj
�l) if (λbiwbi

a )− (λsjw
sj
a) ≥ 0

rbi�l otherwise.
(4.37)

Intuitively, if the buyer gets more value out of a given increase in an

aribute-level than it costs the seller to produce said increase, maximise the

aribute within constraints. If the cost to the seller is larger than the increase in
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buyer value, then minimise the aribute level. Finally, the OMRA algorithm, for

finding the total utility U(Θ∗) of the optimal allocation Θ∗, within our

multi-aribute market-based system is presented in Algorithm 4.3.

Algorithm 4.3 Optimal Multi-aribute Resource Allocation (OMRA) Algorithm

1: Create a utility matrix U of size B-by-S .
2:

3: for all bi ∈ B do
4: for all sj ∈ S do
5: for all πl ∈ π do {find optimal resource π ≡ π∗ for bi and sj}
6: πl ← π∗ {set the aribute to the optimal level}
7: end for
8: u∗bi,sj ← max(υbi(π∗)− csj(π∗), 0) {ensure u∗bi,sj non-negative}
9: end for

10: end for
11:

12: Run Hungarian Algorithm on utility matrix U.

4.6 Conclusions and Discussion

is chapter has introduced a novel model for allocating multi-aribute

computational resources via competing marketplaces. Traders choose to trade in

the markets for resources that most satisfy their preferences and constraints,

while marketplaces choose what type of resource should be traded within their

markets. is model of resource allocation is novel because it is the first to

explicitly consider the allocation of multi-aribute resources via multiple double

auction marketplaces. Developing such a model required developing several new

behaviour models and algorithms not considered within the literature;

specifically:

• Previous approaches to modelling how traders value multi-aribute
resources [11, 163] oen consider only additive value functions [47], where
the utility of an aribute cannot affect any other. is is not representative
of the type of preferences and constraints computational consumers might
have, thus new decision-making behaviours were developed in this chapter
inspired by marketing models grounded in consumer theory.
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• As well as being able to value multi-aribute computational resources,
traders are also able to integrate charges and fees into their bidding
strategies.

• Given the multi-aribute resource trader valuation models, there are no
previous approaches for explicitly calculating the optimal allocation of
resources between traders. is chapter provided such an algorithm.

Within this chapter, by considering two-aribute computational resources,

visualisations of buyer valuation, seller cost, and total transaction surplus, for

different types of resource, demonstrated that outcomes of interactions between

traders can be significantly affected by the resource traded. is highlights the

most immediate challenge that needs to be tackled in order for this approach to

be feasible, and demonstrable:

• In order for efficient allocations to be achieved using this approach, traders
must be able to trade the resources that most match their preferences and
constraints, thus market-exchanges require strategies that allow them to
autonomously locate the market nies in the aribute-level space that most
satisfy traders. is challenge is tackled in Chapter 5.

Overall, the contributions of this chapter are:

• A model of resource allocation for multi-aribute computational resources

via competing double-auction marketplaces;

• Decision-making models for buyers and sellers based on multi-aribute

utility functions and grounded in modern consumer theory;

• Visualisations highlighting the impact that trader preferences and

constraints have on the transaction outcomes of different resource types;

• An extension to previous market-selection strategies [118, 24] using

consideration sets, which allow traders to avoid inept resources, and select

the most appropriate market to join;

• An algorithm for calculating the total utility of a system of traders with

potentially different preferences and constraints, which can be used in

future chapters to measure the allocative efficiency of the approach.
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Finally, it is not within the scope of this thesis to directly compare this model

with other approaches to multi-aribute resource allocation. is is because the

usefulness of resource allocation approaches depends on the the objectives the

system designer is trying to meet, e.g., efficiency, robustness, scaleability. us, it

is hard to compare this approach to, say, a single centralised multi-aribute

auction approach [13] or a fully decentralised CATALAXY approach [3]; however,

future work will consider multi-objective methods for at least identifying

approaches that may empirically dominate others on all considered objectives.

120



CHAPTER 5

MECHANISMS FOR MARKET

NICHING

121



CHAPTER 5. MECHANISMS FOR MARKET NICHING

In Chapter 4, a model of multi-aribute resource allocation via competing

marketplaces was proposed and formally developed. e approach proposed is,

rather than allocating complex computational multi-aribute resources via a

single centralised mechanism (computationally complex, and potentially brile)

or using fully decentralised approaches (oen requiring complex negotiating

strategies), resources could be allocated via distributed markets, using

double-auction mechanisms run by market-exchange agents. is chapter

considers, for the first time, the automatic market niing problem, where

market-exchanges must autonomously select the types of resources that should be

traded within their market in the presence of other competing and coadapting

competitors aempting to do the same. Using two reinforcement learning

approaches, several algorithms, called aribute-level selection (ALS) strategies, are

considered for dealing with the problem. Encouraged by the results from the

application of the methodology presented in Chapter 3, which suggested market

mechanisms can be brile, or obversely robust, to different environmental

factors, by applying the same methodology, the performance of the aribute-level

selection strategies are empirically assessed in a variety of representative

marketplace environmental contexts in a bid to learn more about their general

ability.

e main contributions of this chapter are: (i) to provide the first clear

description of the automatic market niching problem, and propose several

candidate aribute-level selection strategies for tackling it, based on n-armed

bandit and evolutionary optimisation approaches; (ii) to identify, via a

comprehensive computational study involving some 18,300 separate simulations,

which environmental factors influence the performance of different

aribute-level selection strategies on the automatic market niching problem; and

(iii) to demonstrate that in bilateral simulations, competing market-exchanges can

self-organise and cover all market-niches within an environment, leading to

desirable resource allocations. Although this chapter does not fully answer the
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question of which is the best aribute-level selection strategy in general, it makes

a significant step forwards towards understanding how the performance of

different aribute-level selection strategies are affected by various environmental

factors, which enables the suitability of reinforcement learning approaches to be

clearly studied, in this newly formulated problem.

e outline of the rest of this chapter is as follows. In Section 5.1, the

specific work undertaken within this chapter is more clearly motivated, the

automatic market niing problem is formulated, and specific research questions

are posed. In Section 5.2 two approaches for tackling the automatic market

niching problem are proposed, and six candidate aribute-level selection strategies

are defined. Applying the methodology developed in Chapter 3, representative

environmental contexts are defined in Section 5.3, by considering representative

trader preferences and constraints as well as market-exchange charging schemes.

In Section 5.4 the ability of aribute-level selection strategies to find market

niches is empirically assessed, while work in Section 5.5 focusses on emergent

properties of the niching process between competing marketplaces in multi-niche

environments. Finally, the chapter is concluded and a brief discussion is provided

in Section 5.6.

5.1 Motivation

e model in Chapter 4 proposes that market-exchanges can specify which type

of resource should be traded within their market, and resources can be allocated

in each market using a computationally efficient continuous double auction

mechanism. A significant question le unanswered from Chapter 4 is how

market-exchange agents should best select which types of resources should be

traded within their markets. e strategy used to make those decisions—an

aribute-level selection strategy—will significantly affect the utility, i.e., profits, of

the market-exchange agents, which are a function of volume of traders joining
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and trading within their markets.

Real-world decisions over which multi-aribute resources to provide a

market for, e.g., in Options and Futures market, or virtual machines instances in

Amazon’s Web Services portal [2], are made by experienced human experts, who

are usually fully aware of, or able to accurately estimate, supply and demand

schedules. However, market-exchange agents must make these decisions

autonomously, without human intervention. us, a detailed understanding of the

different potential aribute-level selection strategies is important, particularly if

one seeks to eventually automate the design of complete market mechanisms for

this type of resource allocation.

5.1.1 Automatic market niing

In essence, the automatic market niing problem can be summarised as follows.

At the beginning of each trading day, a market-exchange must define the type of

multi-aribute resource that can be traded within its single market. Recall, a

resource π is described over a vector of n individual aributes:

π = ⟨π1, π2, . . . , πn⟩

where πj ∈ R≥0 is the level of the j ᵗʰ aribute. Market-exchanges define the

resource to be traded in their market by seing each of the aribute-levels using

an aribute-level selection strategy; their decision is then made available to all

traders in the environment.

Traders, being expected utility maximisers, prefer markets where the

resources being traded, i.e., the aribute-levels of the chosen resource, best align

with their preferences and constraints. A reasonable assumption is that while

traders’ preferences and constraints can be unique, cohorts of traders exist within

market segments [89, p. 73]. Different market segments prefer to trade different

resources, and a natural consequence of competitive traders is that they will
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migrate to markets that satisfy their segment. Market-exchanges, also being

expected utility maximisers, therefore need to identify resource types i.e., vectors

of aribute-levels, that satisfy market segments. e process of discovering these

segments is called market niing, and the product or service that satisfies a

market segment is called a market nie. us, the automatic market niching

problem is one of finding market niches via searching the aribute-level space for

vectors of aributes that form resource which satisfy a market segment.

e main research challenge is to take this problem of finding

market-niches, frame it in a way that allows market-exchange agents to tackle it,

and develop suitable aribute-level selection strategies. However, this is

challenging for a number of reasons:

1. In realistic scenarios, trader preferences and constraints, and thus market
niches, are unknown a priori; they must be learnt over time, but they are
also a moving target, because they can change;

2. At any time, one can associate each point in the aribute-level space with
an expected reward, yet the mapping between a point in the aribute-level
space and a daily profit, i.e., the fitness function, changes over time:

(a) because the traders’ preferences and constraints may change over
time;

(b) because competing market-exchanges may advertise different or
identical aribute-levels, which may change the number and type of
trader an exchange could aract with its current aribute-levels;

3. ere is an exploration versus exploitation problem between trying new
points in aribute-level space and selecting the best found so far
[99, 72, 164];

4. Depending on how the environment—the trader population, other
competing market-exchanges, and how the traders are charged—changes,
some mechanisms that do well in one environment may not generalise well
to other unknown environments.

It is very unlikely that a single algorithm, in the form of an aribute-level

selection strategy, would be best over all environments, because the environment

is complex, adaptive, and coevolving. us, in reality there are two learning

processes going on: a population of exchanges competing and learning which
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types of resources to offer in their markets, and a population of traders competing

over resource by learning which markets to join. However, progress can be made

on this problem by identifying what impacts different environmental factors have

on market niching algorithms, and specifically what approaches work well and

why.

5.1.2 Resear questions

On such a novel problem, with a solution needing to satisfy many clear

challenges, it is not possible to initially tackle the ultimate problem of what is the

best algorithm to solve the market niching problem. Aer all, it encompasses

many aspects of decision theory [138], agent-based computational economics

[167, 91], and online machine learning [178], all with many open questions. is

chapter makes an initial start on this novel problem by working towards

answering the following research questions:

• How are candidate aribute-level selection strategies’ performance properties
affected across different environmental situations, and can any be seen to
generalise across all the environments?

• What impact do different environmental situations have on competing
aribute-level strategies’ abilities to find market nies in multi-nie
environments?

5.2 Attribute-level Selection Strategies

Aribute-level selection strategies provide market-exchange agents with a

mechanism for automatically selecting the levels of the aributes of the resources

that are traded in their markets. Different levels of resources, i.e., different points

in the aribute-level space, will affect how aractive an exchange’s market is to

traders, and thus the exchange’s ability to generate revenue from charges and

fees.
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Assuming a population of traders with potentially different preferences and

constraints over resource aributes, it is likely that certain points in the

aribute-space will correlate with market nies. at is, different segments of the

trading population would prefer to trade different types of resources. Satisfying

these market niches by providing markets for trading the most desired resources

will increase the allocative efficiency of the system, indicating overall higher

profits for traders, which in turn means more revenue for market-exchanges.

Similarly to traders having to make decisions over joining multiple

market-exchanges, market-exchanges face a tradeoff between exploration and

exploitation. ey must balance exploring the aribute-level space, by regularly

changing the type of resource they offer in their market, with exploiting the best

resource type found so far.

Given the environment is dynamic and coevolving—because of other

market-exchanges’ decisions, and trading agents’ learning—the typical revenue

generated from traders anges over time, and market-exchanges must constantly

explore the aribute-level space to identify the most lucrative types of resource

to be traded in their markets. With that in mind, it is proposed that in general,

aribute-level selection strategies follow Algorithm 5.1. In essence,

Algorithm 5.1 e general aribute-level selection strategy algorithm

1: Choose appropriate evaluation period length ℓ.
2: for all trading days t do
3: if t mod ℓ == 0 then {end of evaluation period η}
4: Qπi ← r̂ ηπi/ℓ {record mean evaluation period reward.}
5: πi ← πj {select new resource type πj (according to strategy).}
6: η← η + 1 {next evaluation period.}
7: else
8: r̂ η ← r̂ η + rt {update evaluation period reward with daily reward.}
9: end if

10: end for

aribute-level selection strategies evaluate a resource type for a number of days,

called an evaluation period. Once the evaluation period is finished, the reward in

terms of the mean daily market profit over the period, is recorded, and a new
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resource type chosen through the selection of new aribute-levels. us, the

evaluation period is used to dampen any oscillations in daily market profits due

to the dynamic nature of the environment. In all simulations within this chapter

ℓ = 10, though values between 5–15 seemed to work equally well.

5.2.1 Attribute-level selection as a bandit problem

e problem of choosing optimal aribute-levels for two aribute resources can

be framed as a multi-armed bandit problem (MAB) [9]. A MAB models a world

where an agent chooses from a finite set of possible actions (levers on a bandit

slot machine), and executing each action results in a reward for the agent

(winnings from pulling the lever). In the MAB problem formulation, rewards for

actions are distributed according to real probability distributions [164], and each

action has a distribution associated with it.

In the simplest MAB problem, the distributions associated with each lever

do not change over time [142], while some versions of the problem allow the

distribution associated with an action to change when that action is chosen, or

even allow new actions to become available over time [177]; in such a case, the

environmental state the agent finds itself in, changes. However, what sets the

aribute-level selection problem apart from these situations is that not only can

the reward distributions of chosen actions change every time an action is

executed, but the reward distributions of unosen actions can, too. is means,

for example, that an action with seemingly poor rewards over some time horizon

may in fact turn out to have excellent rewards during some future time horizon.

In the literature, bandit problems such as these are oen referred to as Restless

Bandit Problems [178].

Framing the aribute-level selection problem in this way assumes each of

the resource aributes have n discrete levels, which is not a strong assumption

given current real-world utility computing providers, such as Amazon Web

Services [2], only provide a relatively small selection of the most popular
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computational resource types. For this model, it is assumed each resource

aribute πj can take n = 5 distinct levels:

∀πj∈π πj ∈ {0.2, 0.4, 0.6, 0.8, 1.0} (5.1)

A non-zero minimum level is chosen because in reality, most if not all

computational resources need at least some level of each aribute to be desirable.

Given q aributes, there are nq = 25 possible two-aribute resource types. Each

market-exchange mk’s aribute-level selection strategy maintains an action set Π

of all possible actions,

Π = {π1, π2, . . . , πqn} (5.2)

us, each action represents a type of resource, which is a vector of

aribute-levels, and therefore a single point in the aribute-level space. Each

market-exchange mk’s ALS strategy maintains a reward set Qmk :

Qmk =
⟨
Qmk

π1
,Qmk

π1
, . . . ,Qmk

πqn

⟩
(5.3)

where Qmk
πi would be the historical reward associated with action πi. Next, some

MAB-based aribute-level selection strategies are discussed to help choose

between actions.

ε-greedy strategy

ε-greedy is one of the most widely studied and earliest used bandit strategies [164,

p. 28]. It is called a semi-uniform strategy because it explores all actions with

equal probability. ε-greedy is one of the simplest bandit strategies, and uses a

single parameter, ε ∈ [0, 1.0], to represent the probability of choosing a random

action, i.e., exploring. e strategy behaves in an exploitative way, and chooses

the action with the best historical reward, with probability 1− ε.
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ε-decreasing strategy

While ε-greedy has a static ε, i.e., one that does not change while the strategy is in

use, the ε-decreasing [164] strategy adjusts its value for ε over time according to a

predetermined schedule, based on a parameter δ ∈ [0,+∞). For a time t, ε is

determined by:

εt = min(
δ
t
, 1) (5.4)

ε-decreasing is also a semi-uniform strategy. Typically, δ is set such that the

resulting εt from Equation 5.4 is initially large, resulting in very explorative

behaviour, but eventually very exploitative behaviour.

Somax strategy

Semi-uniform strategies, when exploring, choose actions with historically bad

rewards as oen as any other. is can be detrimental when the worst actions are

very bad. e Somax [164, p. 30] bandit strategy aempts to avoid these very bad

actions by choosing all actions with probability proportional to their historical

rewards. Typically, Gibbs or Boltzmann distributions [62, p. 3] are used for

probability distributions. An action πi is selected with probability ψπi
, where:

ψπi
=

eQ
mk
πi /τ

|Q|∑
j=1

eQ
mk
πj /τ

, (5.5)

where Qmk
πi refers to the mk’s historical reward for action πi. Probabilities are

normalised across the entire reward set Q. e temperature τ shapes the

distribution; when a relatively high temperature is chosen, all actions are chosen

with approximately equal probability, while a low temperature causes a greater

gap in the probabilities of choosing different actions. At the limit τ → 0, Somax

becomes a purely greedy strategy [164, p. 30.].
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Rank-based strategy

e Rank-based strategy is a novel strategy inspired by the rank selection genetic

operator oen used to maintain diversity in genetic algorithms [107, pp. 169–170].

Like Somax, the probability of choosing an action is proportional to its historical

rewards, however, the probability of choosing it is independent of the

quantitative value of the historical reward, only its performance rank, relative to

the others. us, in the case of action πi, the probability ψi of it being chosen is:

ψi =
rank(πi)

ς

n∑
j=1

rank(πj)
ς
, (5.6)

where ς, the selection pressure, again controls the tradeoff between exploration

and exploitation. e function rank(πi) outputs the rank of action πi based upon

its historical reward Qmk
πi ; the action with the best historical reward is ranked |Q|,

while the action with the lowest ranked 1.

Rewards in non-static environments

e aribute-level selection problem is a non-stationary problem, because many

agents, through interactions over time, are learning and adapting their behaviour.

erefore, it is important that the rewards Q ∈ Q associated with the resource

types π ∈ Π, i.e., the actions, are updated appropriately. Using the same approach

traders take when updating their market-selection signals, a market-exchange mk

can update the reward Qmk
πi for action πi in the next time-step t+ 1, can be done

as follows:

Qmk
πi (t+ 1) = Qmk

πi (t) · δ
[
rtπi − Qmk

πi (t)
]

(5.7)

where rtπi is instantaneous reward that the action returned in time-step t; in this

model, that equates to the profit the market-exchange made on trading day t.
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5.2.2 Attribute-level selection as an optimisation problem

Reducing the number of possible resources an ALS strategy can choose from,

through discretising the aribute-level space, can be useful for effective

exploration. However, a possible disadvantage to this discretisation process is

that if there is a relationship between points in the aribute-level space, and the

rewards that those points provide, bandit strategies cannot leverage this, because

they do not consider the relationship between actions in the aribute-level space.

Evolutionary optimisation algorithms [187] work on the principle that

improving solutions are oen found close by, so algorithms tend to search in and

around neighbouring points in the space; this is oen appropriate if the fitness

function being optimised is continuous. However, the more discrete the fitness

landscape is, the more chance there is of encountering local optima, in which case

meta-heuristic algorithms can get stuck [42].

Recall the two-aribute resource visualisations in Section 4.2.3 on Page 91.

Within these visualisation there is certainly a relationship between some

neighbouring points in the aribute-level space and the total utility of the

transactions over the resource described by those aributes-levels. us, the

aribute-level selection problem can be framed as an optimisation problem by

re-defining the set Π of possible resource types to be vectors of real-value

aribute-levels.

Π = {π : ∀πj∈π, πj ∈ R≥0} (5.8)

erefore, resource types can be treated as potential solutions, proposed by a

evolutionary optimisation algorithm. In terms of the general aribute-level

selection strategy algorithm (Algorithm 5.1), the evaluation period η’s reward r̂ ηπi ,

for selecting resource πi, becomes the fitness assigned to the solution πi.
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1+1 ES

e 1+1 ES, or 1+1 Evolutionary Strategy [10], is a very simple evolutionary

algorithm, which harnesses the ideas of adaptation and evolution. It has a

population size of two, consisting of the current best individual (the parent), and

a candidate next solution (the offspring). Each individual represents a resource

type π in the form of a vector of two aribute-levels where, maintaining the same

range as for the bandit approach, ∀πj∈π, πj ∈ [0.2, 1.0]. When this aribute-level

selection strategy is used, a new offspring individual πo is generated each

evaluation period using a mutated copy of the the parent πp. Mutation is carried

out through perturbing each aribute-level πj ∈ πp by a value drawn from the

Gaussian distribution N(πj, σ), where σ is the standard deviation. e offspring is

used as the resource type for the exchange’s market during the next evaluation

period, and if its fitness is larger than the parent’s, it becomes the new parent:

πp ← πo ⇐⇒ r̂ ηπo > r̂ η−1
πp (5.9)

where r̂ ηπo is the reward, or fitness, that the offspring resource πo got in evaluation

period η, and r̂ η−1
πp is the fitness of the parent resource πp as of the previous

evaluation period η − 1.

Evolutionary Algorithm (EA)

An EA, or Evolutionary Algorithm is a broad term for a family of population-based

evolutionary optimisation algorithms. Unlike the the 1+1 ES, it is assumed the EA

algorithm maintains a population size of greater than two individuals at all times.

e most popular type of population based evolutionary algorithm, the genetic

algorithm, can use a variety of different genetic operators to control how the

algorithm evaluates, selects, and reproduces individuals.

Within this chapter, tournament selection [105] is used to decide which

members of the population are combined to form new offspring solutions. e
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selection technique is steady-state because the algorithm can search the solution

space without having to evaluate the entire population before proceeding. For

this strategy, k = 3 individuals are randomly selected from the population, and

evaluated over three consecutive evaluation periods η, η + 1, η + 2, by deploying

them as the resource type for the exchange’s market. From the k individuals, the

two with the highest evaluation period rewards, i.e., fitness, are recombined using

mutation and cross-over genetic operators [42, p. 300] to create two new offspring

solutions. e weakest of the k individuals is replaced by one of the offspring

individuals (selected with uniform probability).

5.3 Defining Environmental Contexts

e results of Chapter 3 showed that in general, the performance of market

mechanisms can be sensitive to a number of environmental factors, and thus

market mechanisms can be seen to be robust (or obversely, brile) to different

environments. Chapter 3’s results were aained by using a methodology for

empirically assessing the generalisation properties of the market mechanisms, via

simulations using a curated set of environmental contexts. e principal

approach of the methodology is to identify the main building blocks of the

environment—the notions that define the environment—and generate a set of

representative environments, from these.

Within this chapter, the same methodology is applied so that the

performance and impact of various aribute-level selection strategies can be

empirically analysed. e model of resource allocation considered within this

thesis assumes an environment defined in three ways: (i) by the general makeup

of the trading population, particularly in terms of their preferences and

constraints over resources; (ii) by the charging schemes used by the

market-exchanges, which affects the behaviour of traders within the trading

population; and (iii) both the presence of, and the strategies in use by, competing
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market-exchanges. Each of these individual contexts affect and change the overall

environmental context.

5.3.1 Representative trader contexts

Within this section several trader contexts are proposed, which are defined by a

population of traders, each with potentially different preferences and constraints

over the aributes of multi-aribute resources. ere are clearly many possible

ways of configuring the parameters of a population of trading agents, so it is

sensible to consider a reduced but representative set for simulations. e

methodology from Chapter 3 proposed a sensible way of reducing the number of

possible contexts by only considering boundary or extreme variations; for

example, trader mixes were typically defined by the presence or absence of only

one type of trading strategy, rather than medial mixes of different strategies.

Because this is an initial study into the performance and impact of

aribute-level selection strategies, aention is restricted to trader contexts that

have well-defined niches, due to them being easier to find. As discussed in

Section 5.1.1, a market niche is well-defined when there exists a significant

proportion of traders that all share similar preferences and constraints, and thus

prefer to trade within the same market. Further, in order to beer understand the

impact that constraints and preferences have on the performance of

aribute-level selection strategies, they are separated into different contexts. e

proposed representative niches are now described.

‘Unconstrained single nie’ trader context

e unconstrained single nie trader context is defined by the simplest possible

population of traders, held in the set T US. Each trader ai ∈ T US has the following
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preferences and constraints:

∀ai ∈ T US,

wai= ⟨0.5, 0.5⟩

rai� = ⟨1.0, 1.0⟩

∀ai ∈ B ∩ T US,

rai� = ⟨0.2, 0.2⟩

∀ai ∈ S ∩ T US,

rai� = ⟨0.0, 0.0⟩ (5.10)

us, neither buyers or sellers have any maximum constraints over aributes, and

buyers only have minimal minimum constraints. Figure 5.1 shows a visualisation

of the maximum theoretical utility (in terms of total daily profit) for a random

instance of this trader context, calculated by using the optimal multi-aribute

resource allocation algorithm, first presented in Chapter 4. Because there is only a

single well-defined market niche, in a two market-exchange environment both

exchanges would most likely have to compete over it for traders. Cai et al. [23], for

example, have observed in other domains, that competitive traders will migrate in

groups to the most profitable markets. In this system, given two identical markets

sharing a single niche, it is likely the traders will all eventually migrate to a single

market, because the increased liquidity from all being in one market increases

expected profits. us, it is likely that aribute-level selection strategies that can

quickly locate the niche may end up performing beer in bilateral simulations.

‘Constrained single nie’ trader context

e constrained single nie trader context is defined by a population of traders,

held in the set T CS. Each trader ai ∈ T CS has the following preferences and
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Figure 5.1: Maximum theoretical daily total trader profit for a randomly generated
unconstrained single nie trader context. Given the lack of preferences and max-
imum constraints, each trader ai ∈ T US would prefer to trade in a market where
π = ⟨1.0, 1.0⟩ is the type of resource being traded. us, there is a single well-
defined market niche within the aribute-space, at point ⟨1.0, 1.0⟩.

constraints:

∀ai ∈ T CS,

wai= ⟨0.5, 0.5⟩

∀ai ∈ B ∩ T CS,

rai� = ⟨0.2, 0.2⟩

rai� = ⟨0.6, 0.6⟩

∀ai ∈ S ∩ T CS,

rai� = ⟨0.0, 0.0⟩

rai� = ⟨1.0, 1.0⟩ (5.11)

As shown in Figure 5.2, the trader context also has a single market niche, but the

buyers within the population have maximum constraints resource aributes.

us, while buyers can trade with sellers for resources comprising aribute above

their maximum constraints, the total utility decreases more as constraints are
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Figure 5.2: Maximum theoretical daily total trader profit for a randomly generated
constrained single nie trader context. Each buyer ai ∈ B ∩ T CS would prefer to
trade in a market where π = ⟨≥ 0.6,≥ 0.6⟩ is the type of resource being traded. Be-
cause sellers’ production costs increase with aribute-levels, the total utility from
a transaction typically decreases as the aribute-levels increase. us, total trader
utility (in terms of profit) is maximised at the single point when resources being
traded are of the type π = ⟨0.6, 0.6⟩, indicated the presence of a well-defined niche
at that point.

exceeded, because the buyers receive no extra value and the sellers’ costs

increase. erefore, a single well-defined market niche exists at a point where

buyers are happiest and sellers’ costs are minimised, which in this example is at

the point π = ⟨0.6, 0.6⟩. In contrast to the unconstrained single niche context,

where traders’ abilities to trade with each other are only affected by their budgets,

traders within this context may find that, depending on the type of resource

being traded, their constraints make it harder to successfully trade in the market.

‘Constraint-induced nies’ trader context

e constraint-induced nies trader context is defined by a trading population

T CI that contains two sub-populations of traders, T CI
1 and T CI

2 . Each trader ai is a

member of exactly one of the sub-populations, thus:

T CI = {ai : (ai ∈ T CI
1 )⊕ (ai ∈ T CI

2 )} (5.12)
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e two sub-populations are defined as follows. e first sub-population, T CI
1 ,

contains buyers with preferences and constraints equivalent to those in the

constrained single nie trader context, previously defined in Equation 5.11:

ai ∈ B ∩ T CI
1 ⇐⇒ ai ∈ B ∩ T CS (5.13)

while the sellers have the following:

∀ai ∈ S ∩ T CI
1 ,

wai= ⟨0.5, 0.5⟩

rai� = ⟨0.0, 0.0⟩

rai� = ⟨1.0, 1.0⟩ (5.14)

e second sub-population, T CI
2 , contains traders with the following preferences

and constraints:

∀ai ∈ T CI
2 ,

wai= ⟨0.5, 0.5⟩

∀ai ∈ B ∩ T CI
2 ,

rai� = ⟨0.8, 0.8⟩

rai� = ⟨1.0, 1.0⟩

∀ai ∈ S ∩ T CI
2 ,

rai� = ⟨0.0, 0.0⟩

rai� = ⟨1.0, 1.0⟩

Within this trader context, the ideal interactions between agents within the two

trader sub-populations, leads to two well-defined market niches. e reader

should note that the relative height of the peaks does not impact on the number
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Figure 5.3: Maximum theoretical daily total trader profit for a randomly generated
constraint-induced nies trader context. Some buyers, ai ∈ B ∩ T CI

1 , would prefer
to trade in a market where π = ⟨≥ 0.6,≥ 0.6⟩ is the type of resource being traded.
Other buyers, ai ∈ B∩T CI

2 , would prefer π = ⟨1.0, 1.0⟩, and would be unwilling to
accept any resource where π = ⟨< 0.8, < 0.8⟩. Further, some sellers, ai ∈ S ∩ T CI

1 ,
can only produce resources where π = ⟨≤ 0.6,≤ 0.6⟩. is results in a situation
where total trader profits are maximised when the two populations traded within
separate markets: one market for the resource type π = ⟨0.6, 0.6⟩, and the other
market for the resource type π = ⟨1.0, 1.0⟩. erefore, there are two well-defined
market niches that market-exchanges could satisfy.

of niches in the environments. For example, suppose that the taller of the two

niches in Figure 5.3 was more than twice the height of the lower niche. Initially

one might expect two market-exchanges to share the taller niche, because half of

the total utility available there is more than that at the lower niche. However,

because traders are able to migrate easily between markets, and a larger single

market is typically more efficient than two separate markets, all the traders will

inevitably migrate to the same exchange. In such a case, the exchange that loses

the traders will be forced to move down to the second lower niche. us, to

satisfy the traders within this trader context requires multiple market-exchanges,

which must provide separate markets for each market niche. While some traders

could feasibly trade resources described by any point in the aribute-space, some

points in the space will be infeasible to many traders.
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‘Preference-induced nies’ trader context

e preference-induced nies trader context is defined by a trading population

T PI that also contains two sub-populations of traders, T PI
1 and T PI

2 . Again, each

trader ai is a member of exactly one of the sub-populations, thus:

T PI = {ai : (ai ∈ T PI
1 )⊕ (ai ∈ T PI

2 )} (5.15)

All traders have the following constraints:

∀ai ∈ T PI, rai� = ⟨1.0, 1.0⟩

∀ai ∈ B ∩ T PI, rai� = ⟨0.2, 0.2⟩

∀ai ∈ S ∩ T PI, rai� = ⟨0.0, 0.0⟩ (5.16)

though both the buyers and sellers of the two sub-populations have different

preferences:

∀ai ∈ T PI
1 , wai= ⟨0.7, 0.3⟩

∀ai ∈ T PI
2 , wai= ⟨0.3, 0.7⟩ (5.17)

With a lack of trader constraints within both populations, all resource types

could be considered within traders’ consideration sets. Preferences over the two

resource aributes will mean that, in general, a buyer ai ∈ B ∩ T PI
1 would prefer

to trade with a seller ai ∈ S ∩ T PI
2 , and vice versa, because the respective sellers

can produce more of the aributes buyers’ prefer, for less cost. e magnitude of

preference weights only affects the height of the niches, rather than their

position, thus the aributes’ values are not as important as their inequality.

141



CHAPTER 5. MECHANISMS FOR MARKET NICHING

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

50

100

150

Attribute 1
Attribute 2

T
ot

al
 A

llo
ca

tio
n 

U
til

ity

Figure 5.4: Maximum theoretical daily total trader profit for a randomly generated
preference-induced nies trader context. ere are two well-defined niches within
the landscape. At one niche, buyers from sub-population T PI

1 , i.e., those who pre-
fer aribute one to aribute two, prefer to trade with sellers from sub-population
T PI
2 , because they can provide aribute one for a lower cost than aribute two.e

preferred resource type at this niche is π = ⟨1.0, 0.2⟩. A second niche exists where
the preferred resource type is π = ⟨0.2, 1.0⟩. Within this niche, buyers from the
second sub-population T PI

2 prefer the second resource aribute, and sellers from
sub-population T PI

2 can produce it for less than resource aribute one. Overall
trader profit is maximised when two separate markets exist for the two resource
types specified. us, the two market niches require at least two market-exchanges
to provide markets.

5.3.2 Possible arging contexts

Market-exchanges are unaware of the market niches a priori, because they do not

have access to the global supply and demand schedules, or the preferences and

constraints of traders. Markets for resource types preferred by market niches are

likely to be more aractive to traders, and lead to larger volumes of trades. us,

while technically an assumption and not guaranteed, satisfying a market niche is

likely to result in increased revenue for market-exchanges. Information

asymmetries between exchanges and traders seed the difficulties that

market-exchanges face when aempting to maximise profits through the

selection of the aribute-levels of their market’s resource type.

While an exchange searches for market niches by sampling the
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aribute-level space with its ALS strategy, the revenue received from sampling a

point is influenced not only by that point’s location, but also by the charging

scheme used to generate that revenue. Further, Figures 5.1–5.4 show total trader

profits at each point, which is private information, and market-exchanges can

only glean that information by learning, using their profit signals. erefore, the

exact charging scheme and fee structure used by an exchange is important, and so

three different arging contexts, based on the charging structures defined in

Section 4.1.1 (Page 85), are considered. Rather than using combinations of

different charges, which may confound the impact each of the fee types has, they

are isolated.

‘Registration fee’ arging context

e registration fee charging context involves market-exchanges applying only

registration fees to traders who join their markets. Recall that a registration fee is

a flat-fee, i.e., the same level applies to all traders, and it is applied at the

beginning of each trading day. When this charging context is used traders may

end a trading day with a net loss if they are unable to successfully trade. One

potential problem with discovering market niches when this charging context is

in use, is that the maximum revenue available at each point in the aribute-level

space is determined only how many traders would be willing to trade the

resource type at that point. us, revenue from points near market niches may be

the same as revenue from market niches themselves, even though traders would

prefer the market niche rather than points near it.

‘Transaction price fee’ arging context

Unlike the registration fee charging context, when the transaction price fee

charging context is in use, exchanges do not charge traders to join their market.

However, for each trade executed by the market exchange, both traders involved

pay a fixed portion of the transaction price of their trade. erefore, the revenue a
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market-exchange receives when using this context monotonically increases with

the number of trades it is able to execute in its market. Because, in comparison to

other points in the aribute-space, markets occupying market niches are expected

to have a high volume of trades, it is hypothesised that exchanges using this

charging context will be beer able to discover market niches.

‘Bid/Ask spread commission’ arging context

e final charging context consider is the bid/ask spread commission charging

context. When this context is in use by exchanges, traders are free to join markets

without cost, however, a portion of the difference between the trader’s offer into

the market, and the resulting transaction price, is charged by the exchange. e

difference between a matching buyer and seller’s bid and ask price is known as

the spread. For example, given a bid ρb = 20 and an ask ρa = 10, a

market-exchange, using the k = 0.5 k-pricing policy [150] would set the resulting

transaction price τ = 15. Each trader would then be charged a proportion of the

difference between their bid: ρb − τ, or ask: τ − ρa.

Typically, the revenue generated from this charging scheme is beer at

points in the aribute-level space where more trades can occur, however, revenue

is also affected by the trading strategy in use by the traders. e more efficient

the traders are in converging on the competitive equilibrium price, the tighter the

spread gets. In a completely efficient market, where all traders were shouting the

equilibrium price, the bid/ask spread commission charging context would generate

no revenue, regardless of whether a market niche was being occupied, because all

offers shouted would be equivalent to the transaction prices.

5.4 Attribute-level Selection Strategy Performance

Within this section, the performance of the aribute-level selection (ALS)

strategies discussed in Section 5.2 is empirically analysed, via simulations using
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instantiations of the environmental contexts proposed in the previous section.

Performance is measured in two ways: (i) a quantitative measure of performance,

based upon the overall profit that a market-exchange can generate using each

ALS strategy; and (ii) a qualitative measure of relative performance, based upon

bilateral rankings. e main overarching research question addressed within this

section is:

How are candidate aribute-level selection strategies’ performance properties
affected across different environmental situations, and can any be seen to
generalise across all the environments?

In order to make a step towards answering this question, the most basic of

scenarios that still allowed for meaningful analysis was considered. Specifically,

by only considering bilateral simulations, where two market-exchanges compete

against each other, it is possible to exhaustively evaluate all representative

environmental contexts, where, from the perspective of a market-exchange using

an ALS strategy, an environmental context consists of: (i) a competing ALS

strategy being used by another market-exchange (competitor context); (ii) a

representative trading context; and (iii) a representative charging context. is

methodology follows in the spirit of the novel methodology first presented

Chapter 3 for measuring the generalisation ability of market-mechanisms.

Further, it is noted that bilateral simulation of similar double-auction mechanisms

has been used an approach by other researchers, e.g., Niu et al. [116], to analyse

the sensitivity of each mechanism to the presence of another. Within the analysis

carried out in the rest of this section, specific aention is given to the following:

• e presence of competing strategies on the performance of ALS strategies;

• e impact of charging context on the performance of ALS strategies;

• e impact of trader context on the performance of ALS strategies.

which will hopefully allow the following hypotheses to be addressed:
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Hypothesis 5.1. It is likely that the performance of ALS strategies will be sensitive
to at least some environmental contexts, because of the complex, adaptive nature of
the system. erefore no strategies will generalise well over all contexts.

Hypothesis 5.2. Ea simulation uses a specific static environmental context, with
well-defined trader nies and non-adaptive arging semes in place. erefore,
out of the bandit strategies, ε-decreasing should perform the best.

5.4.1 Experimental setup

In order to answer the research questions and hypotheses posed, the following

general experimental setup is used. Firstly, while all ALS strategies (competitor

contexts) and charging contexts are considered, only simulations involving the

unconstrained single nie and constrained single nie trader contexts, are used.

Justifications for this are as follows: (i) reducing the environmental dynamics

allows for a clearer understanding of how environmental factors impact ALS

strategies; (ii) enforcing competition over a single nie—thus excluding

cooperative equilibria outcomes—makes it clearer to see which ALS strategies can

find niches faster and hold on to them. Given this, self-play simulations, where

both exchanges use the same ALS strategy are excluded because, in these cases,

expected performance is identical. e trading population used in each trading

context comprises 300 ZIP traders, as described in Section 4.4.1 (Page 103), and is

composed of an equal number of buyers and sellers. e charging context used is

applied to both market-exchanges and remains in use for all of the simulation,

which allows the impact of both competing ALS strategies and charging context

to be analysed independently of each other.

Each simulation lasts for 5000 trading days. At the beginning of each

trading day both the market-exchanges, in accordance with their ALS strategies,

set the aribute-levels of the resource to be traded within their respective

markets. Traders then join a market and begin to trade. Based upon the charging

scheme in use, each market-exchange generates some revenue, or profit, for that
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trading day, which is used by their ALS strategies to help select the resource type

to be traded the next trading day.

antitative performance measure

Market-exchange mk’s profit is generated at the end of each trading day t

according to Equation 4.2.2 on Page 90. As a measure of performance over an

entire simulation (5000 days), the market-exange simulation profit is used,

which is simply the mean profit generated over all days.

P sim
mk

=
1
n

n∑
t=1

rtmk
, (5.18)

where P sim
mk

is mk’s simulation profit for simulation sim, which lasted n trading

days. rtmk
refers to the profit mk received on day t.

alitative performance measure

As discussed in Chapter 3, comparing only quantitative performance across

different environmental contexts is not always useful, because environmental

changes can unfairly alter aainable profits. One approach to this issue might be

to use a normalised measure of profit, such as the profit share. However,

statistical analysis becomes difficult, as normalising performance in this way

confounds the results. For example, if one strategy is particularly negatively

influenced by a change in environment, that would automatically inflate the score

of any of its opponents, even if they themselves do not strictly perform beer in

the changed environment. Instead, so that the relative performance of ALS

strategies between contexts can be qualitatively compared, the number of

simulation wins is recorded for market-exchanges using each strategy. For

example, given two market-exchanges using different ALS strategies, m1 and m2,

147



CHAPTER 5. MECHANISMS FOR MARKET NICHING

as well as a simulation sim, a ‘win’ is awarded to m1 accordingly:

win(m1,m2, sim) =


1 if P sim

m1
≥ P sim

m2

0 if P sim
m1

< P sim
m2

,

(5.19)

m1 is awarded the win in the event of a draw, but given results are in the form of

real-valued numbers, few is any draws were observed.

5.4.2 Results and analysis

e simulation methodology for the following experiments is as follows. Each

simulation is repeated 50 times, so the mean of the 50 market-exchange

simulation profit values (Equation 5.18) are reported, along with standard

deviation values. A large number of simulation repetitions provides good sample

sizes for running appropriate statistical tests.

e market-based model within this thesis leads to complex interactions

between agents, and it is unwise to assume that data samples will be normally

distributed. To overcome this assumption rigorous statistical analysis is used. To

test for normality, all data samples are subjected to the Lilliefors Test [95], a

goodness of fit test for the Normal distribution. If the null hypothesis of this test

(that the data is normally distributed) is rejected, then all reported test statistics

for that sample are provided by the non-parametric Wilcoxon Signed-rank Test

[180]. In the case of normality, equality of sample means is tested using the paired

sample T-Test.

Each simulation used the default parameters in Table 5.1. For each of the 50

simulation repetitions, budget constraints were randomly generated for all

traders, along with a new random seed for the simulation. Given the six ALS

strategies, three charging contexts, and two trader contexts, the next two sections

report and analyse results from some (6− 1)2 × 3× 2 = 150 different

148



5.4. ATTRIBUTE-LEVEL SELECTION STRATEGY PERFORMANCE

Agent Description Parameter Details

Traders
Budget Constraint λai = N(6, 0.7)

Market-Selection Strategy Page 108
Trading Strategy ZIP algorithm details: Page 103

Market-exchanges

Double-Auction Seings Page 100

Charges & Fees (Page 85)
Registration fee, ζregmk

= 0.01
Transaction tax fee, ζ tramk

= 1%
Bid/Ask fee, ζcommk

= 100%
ε-greedy ALS ε = 0.1

ε-decreasing ALS δ = 15
Somax ALS τ = 0.3

Rank-based ALS ς = 30
1+1 ES ALS σ = 0.12

EA ALS
σ = 0.12
p = 10

Table 5.1: Default parameters used in all simulations unless otherwise stated within
the text. All parameters remain fixed for the duration of each simulation. All pa-
rameters, with the exception of budget constraints remain constant over all simula-
tions. Every simulation, all budget constraints are randomly distributed according
to the Normal distribution specified, but are bounded within the range λai ∈ [2, 10].
Specific parameter seings were justified as follows: ε = 0.1 is a common choice,
and empirically found to be near-optimal for generally short numbers of plays [164,
p. 29]; δ = 15 was chosen as it gives ε-decreasing about 1/3 of the simulation’s time
to explore, before almost surely behaving greedily; τ = 0.3 was selected based upon
initial testing using various simulations; ς = 30 was chosen because, based on there
being 25 possible action ranks, it would behave greedily only 75% of the time, but
choose from the best three actions with ≈95% probability; σ = 0.12 was chosen
for 1+1 ES ALS and EA ALS because it equates to their being ≈10% of mutating
an aribute by at least much as a bandit strategy changing action does, i.e., 10% of
mutations would be equivalent to a bandit strategy choosing a new action. For the
EA ALS, a population size of 10 was chosen, which gave the best results from some
initial exploratory simulations.
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ε-dec ε-gre EA 1+1 ES Rank Somax

ε-dec 0.346 0.499 0.511 0.466 0.488
(316.0) (8.7) (209.0) (5.9) (44.1)

ε-gre 0.447 0.501 0.525 0.496 0.466
(3.5) (12.4) (147.0) (7.2) (38.8)

EA 0.305 0.269 0.350 0.287 0.345
(85.0) (54.0) 0.41 (0.8) (33.0) (5.2)

1+1 ES 0.312 0.292 0.312 0.313 0.239
(209.0) (147.0) 0.29 (506) 0.02 (2.5) 0.01 (2.7)

Rank 0.372 0.365 0.490 0.215 0.475
(−5.9) (−7.2) (12.3) 0.03 (413) (11.2)

Somax 0.203 0.177 0.261 0.171 0.293
(−44.1) (−38.8) (−5.2) 0.01 (−2.7) (−11.2)

Table 5.2: Mean simulation profit over 50 simulation repetitions for market-
exchanges using various ALS strategies, when the environmental context com-
prises the bid/ask spread commission charging and unconstrained single nie trader,
contexts. e top value in each cell are the mean simulation profits for the ALS
strategy in the respective row against the ALS strategy in the respective column.
Emboldened profits indicate they are greater than their competitor’s and they come
from statistically distinct samples. T-values are shown in parentheses under each
profit value; an emphasised t-value indicated the samples were tested using the
non-parametric statistical test. P-values ≤ 0.005 are omied, otherwise they are
shown to the le of t-values.

environmental contexts¹.

Unconstrained single nie performance

All simulations within this section involved the unconstrained single nie trader

context. In each simulation, the market-exchanges were competing over a single

population of traders who preferred to trade resources π = ⟨1.0, 1.0⟩, viz, there

was a single market niche (Figure 5.1). Results are sectioned into three tables

(Tables 5.2–5.4), with each table representing a separate charging context. Values

in each table indicate the mean market-exchange simulation profit from 50

repetitions of the simulation in that cell. Table 5.2 displays results for simulations

that took place when the bid/ask spread commission charging context was used by

¹In order to repeat each simulation 50 times, some 7,500 simulation instances were executed.
Each simulation took between 20–45 minutes of wall-clock time, running on a single core of aad
Core Xeon CPU (2.33Ghz, 8Mb L2 cache) located on a computational grid infrastructure.
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the market-exchanges. Immediately of note is that within this environmental

context, ε-greedy, arguably the simplest of all the aribute-level selection

strategies, outperforms all others. is claim is supported with p-values ≤ 0.005

for each statistical test involving ε-greedy. ε-decreasing also performs very well,

significantly outperforming all of the other except ε-greedy.

Figure 5.5 provides a closer look at the distribution of profits made by

ε-greedy and ε-decreasing, for all of their simulations against each other. Both

strategies have non-zero lower bounds on their profit, indicating they both

always found profitable parts of the aribute-level space, however, ε-decreasing

ends up closer to the lower bound in the majority of the simulations.

On examination of the market-share—a measure of how many traders were

aracted on average to each market—that each market-exchange using the

strategies achieved over a simulation, the following results are discovered.

ε-greedy achieved a mean market-share of 61.2%± 15.3 in all simulations against

ε-decreasing, which only achieved 38.8%± 15.3; a paired t-test of equality of

means returns a p-value<0.005. us, while ε-decreasing finds the same profitable

parts of the space as ε-greedy, its early exploration lead it to lose market-share for

the rest of the simulation. Figure 5.5 also provides an example of how data within

the model can be non-normally distributed, thus only running tests relying on

that assumption would be inappropriate.². In Table 5.3, displays results for

simulations that took place when the registration fee charging context was used

by the market-exchanges. Contrary to when the bid/ask spread commission

charging context is place, ε-greedy fails to statistically outperform ε-decreasing.

While ε-greedy significantly outperforms all others, the p-values for a paired

T-Test of equality of means between the ε-greedy and ε-decreasing samples, results

in a t-value of 0.35—too large to be considered significant. erefore, performance

is equitable. At this point, it is clear strategies other than ε-greedy or ε-decreasing

don’t appear to be performing to the same standard, within the two charging

²In this case, Lilliefors’ composite goodness-of-fit test reports a p-value ≤ 0.001 and a k-value
of 0.185 for ε-decreasing’s sample distribution in Figure 5.5
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Figure 5.5: Simulation profit distributions for market-exchanges using the ε-greedy
ALS strategy (le) or the ε-decreasing strategy (right), when in competition, and
using the bid/ask spread commission charging context. While profits are normally
distributed when using ε-greedy, they are not when using ε-decreasing.
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Figure 5.6: Typical behaviour of Somax (le) and 1+1 ES (right) aribute-level
selection strategies when involved in simulations using the Unconstrained Single
Nie trader and Market Registration Fee charging, contexts, against each other.
Each point represents a trading day: the x and y axes indicate the aribute-levels
chosen for that day, and the z axis indicates the profit aained for that aribute-
level choice. e Somax strategy appears to be choosing points with almost uni-
form probability, indicating its temperature τ seing is too high for this particular
environmental context. 1+1 ES performs beer in this case, but it is likely evenmore
profit could be achieved if its aribute-level choice focussed around π = ⟨1.0, 1.0⟩.
500 sequential data points are shown from a randomly chosen section of a typical
simulation.

context considered so far. For example, it appears that because the rewards, i.e.,

profits, are relatively equal for different points in the aribute-level space the
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ε-dec ε-gre EA 1+1 ES Rank Somax

ε-dec 0.834 1.297 1.117 1.010 1.341
0.35 (−1.0) (26.0) (262.0) (8.5) (67.8)

ε-gre 0.894 1.298 1.117 1.067 1.372
0.35 (1.0) (15.6) (282.0) (9.7) (47.1)

EA 0.453 0.424 0.658 0.618 1.149
(26.0) (−15.6) (331.5) (−6.8) (35.0)

1+1 ES 0.618 0.607 1.049 0.754 1.181
(262.0) (282.0) (331.5) 0.21 (506) (216.0)

Rank 0.702 0.665 1.123 0.934 1.154
(−8.5) (−9.7) (6.8) 0.21 (506) (8.6)

Somax 0.386 0.363 0.596 0.522 0.583
(−67.8) (−47.1) (35.0) (216.0) (79.0)

Table 5.3: Mean simulation profit over 50 simulation repetitions for market-
exchanges using various ALS strategies, when the environmental context com-
prises the registration fee charging and unconstrained single nie trader, contexts.
For assistance in interpreting the results, see the caption for Table 5.2

Somax ALS strategy, as show in Figure 5.6, will select between all points with

almost equal probability, highlighting the sensitivity of its temperature seing τ

to the environmental context. While the 1+1 ES ALS strategy significantly

outperforms the Somax ALS strategy, because, as shown in Figure 5.6, it is able

to converge on a profitable parts of the aribute-level space, it is unable to

compete with ε-greedy or ε-decreasing. Again, based upon simulation data this

appear to be due to it being too slow to find the optimal point in the

aribute-level space, and thus being unable to aract traders away from its

competitor. Table 5.4 displays the results for simulations that took place when the

transaction fee charging context was in place. As with the previous two charging

contexts, ε-greedy failed to be convincingly outperformed by any of the other

aribute-level selection strategies. However, it does not dominate all strategies;

for example, it does not statistically outperform Somax or 1+1 ES, indicating

either an improvement in the performance of those two strategies within this

charging context, or a decline in ε-greedy. Figure 5.7 supports the argument that

Somax and 1+1 ES actually improve in this charging context, rather than

ε-greedy declining. Notice that, unlike the registration fee context (Figure 5.6),
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both Somax and 1+1 ES find the most profitable part of the space. Overall

ε-dec ε-gre EA 1+1 ES Rank Somax

ε-dec 3.568 5.579 2.920 4.895 3.604
0.42 (−0.8) (15.8) 0.12 (476) (18.0) 0.54 (574)

ε-gre 3.766 5.413 3.814 5.015 3.970
0.42 (0.8) (11.7) 0.76 (605) (12.8) 0.73 (601)

EA 1.328 1.484 1.945 2.769 0.638
(1.0) (−11.7) (191.0) (−2.9) (0.0)

1+1 ES 4.657 3.464 4.994 4.387 2.215
0.12 (476) 0.75 (605) (191.0) 0.55 (575) 0.22 (510)

Rank 2.367 2.188 3.640 3.335 3.415
(−18.0) (−12.8) (2.9) 0.55 (575) 0.28 (525)

Somax 3.843 3.460 5.892 4.464 2.963
0.54 (574) 0.73 (601) (25.6) 0.22 (510) 0.16 (-1.4)

Table 5.4: Mean simulation profit over 50 simulation repetitions for market-
exchanges using various ALS strategies, when the environmental context com-
prises the transaction fee charging and unconstrained single nie trader, contexts.
For assistance in interpreting the results, see the caption for Table 5.2
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Figure 5.7: Typical behaviour of Somax (le) and 1+1 ES (right) aribute-level
selection strategies when involved in simulations using the unconstrained Single
Nie trader and transaction fee charging, contexts, against each other. Each point
represents a trading day: the x and y axes indicate the aribute-levels chosen for
that day, and the z axis indicates the profit aained for that aribute-level choice.
In contrast with simulations using the registration fee charging context (Figure 5.6),
the Somax strategy performs much beer, focussing on several good points in the
space, indicating its temperature seing is more appropriate for this environment.
Of further interest is that 1+1 ES also performs beer, converging correctly on the
most profitable part of the aribute-level space, π = ⟨1.0, 1.0⟩. 500 sequential data
points are shown from a random section of a typical simulation.
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performance results for ALS strategies are more equitable within the transaction

fee charging context. And, supported by data such as that provided in Figure 5.7,

many of ALS strategies can locate the most profitable part of the aribute-level

space, which is also the market niche, indicating the transaction fee charging

context may be best for finding the market niche within this trader context.
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Figure 5.8: e number of wins managed by each of the aribute-level selection
strategies for the unconstrained single nie trader context. (a) Wins are separated
according to charging context. Each strategy plays the five others 50 times, there-
fore a maximum score for a charging context would be 250. (b) All wins aggregated
across the three charging contexts. Note that the more dynamic bandit strategy, ε-
greedy outperforms ε-decreasing.

Finally for the unconstrained single nie trader context, ALS strategies are

analysed across all charging and competitor contexts, using the qualitative

performance metric outlined in Section 5.4.1. Using the win metric (Equation 5.19)

the number of wins for each ALS strategy are aggregated and presented in

Figure 5.8. Two representations of the number of are visualised. In Figure 5.8a,

which separates the wins by charging context, it becomes clear just how much of

an impact the charging context has on the performance of strategies. For

example, Somax, whose temperature was chosen experimentally via a

simulation where the transaction fee context was in place, has a serious

sensitivity to other charging contexts, due in part to its success being reliant on
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the absolute profits an action returns, rather than the relative differences between

actions’ profits. Total wins over all contexts are shown in Figure 5.8b.

Constrained single nie performance

is part of the section follows an identical methodology to the previous section,

with the exception that the constrained single nie trader context is used for all

simulations. Recall that buyers in the constrained single nie trader context

population have maximum constraints on aribute-levels, and thus the market

niches exists at a point other than π = ⟨1.0, 1.0⟩ . It is certainly true that the

unconstrained single nie and constrained single nie trader contexts are similar

in that they both have a single niche, and no traders have preferences. However,

the subtle difference of buyers having maximum constraints may make

significantly impact the performance of some ALS strategies because significant

parts of the aribute-level space are going to be undesirable to buyers. Apart

from using the constrained single nie trader context, simulation detail are

identical to the previous set.

Results for the bid/ask spread commission charging context are shown in

Table 5.5. While general performance for the ALS strategies is similar in most

cases, there are some interesting observations. Firstly, in comparison to the

unconstrained single nie simulations, reported in Table 5.2 on Page 150, ε-greedy

is no longer statistically beer than ε-decreasing. An intuitive explanation for this

may lie in this trader context having more unforgiving points in the

aribute-level space, where, if chosen, will result in buyers being unable to

trade—thus lower market-exchange profits—because buyers’ valuations don’t

meet sellers’ costs for that resource type. e fact that ε-decreasing’s total mean

profit only reduced by 40.3% between the two trader contexts, while ε-greedy’s

reduced by 49.2% supports this hypothesis. In Table 5.6, results of simulations

involving the registration fee trader context are presented. While maximum

constraints hinder a buyer’s ability to trade resource types above its constraints
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ε-dec ε-gre EA 1+1 ES Rank Somax

ε-dec 0.206 0.302 0.259 0.309 0.303
0.99 (0.0) (26.4) (8.7) (34) (62)

ε-gre 0.205 0.255 0.220 0.283 0.273
0.82 (590) (16.0) (6.4) (15) (34)

EA 0.056 0.049 0.060 0.099 0.101
(0.0) (0.0) 0.02 (-2.4) (−3.4) 0.07 (1.8)

1+1 ES 0.090 0.098 0.107 0.089 0.128
(69.0) (135) 0.04 (422) 0.9 (404) (215)

Rank 0.151 0.141 0.146 0.094 0.124
(−34.3) (−15.9) (325) 0.9 (404) (291)

Somax 0.036 0.025 0.079 0.042 0.084
(−62.4) (−34.3) 0.07 (-1.8) (−4.9) (−3.6)

Table 5.5: Mean simulation profit over 50 simulation repetitions for market-
exchanges using various ALS strategies, when the environmental context com-
prises the bid/ask spread commission charging and constrained single nie trader,
contexts. Results are similar the same set of simulations using the unconstrained
single nie trader context in Table 5.2, however, ε-greedy has lost its statistically
significant winning edge against ε-decreasing. Further, Somax is particularly sen-
sitive to this trader context versus the unconstrained single nie context—its over-
all mean profit (summed across its row) reduced by 75.9%, in comparison to the best
strategy (ε-greedy), whose equivalent profits only reduced by 49.2%. For assistance
in interpreting the results, see the caption for Table 5.2 on Page 150.

(where its valuation doesn’t meet a sellers increased costs), it is not prevented

from joining said market; it will just have a hard time trading. It is therefore

interesting to note that unlike the previous bid/ask spread commission charging

context, where ε-greedy now statistically outperforms ε-decreasing—there are

fewer unforgiving parts of the aribute-level space when you only need traders to

join your market, rather than successfully trade in it. In Table 5.7, results of

simulations involving the transaction price fee trader context are shown, and

further interesting results emerge. For example, it is the first case where ε-greedy

loses to any strategy (Somax) other than ε-decreasing; indeed even ε-decreasing

is unable to statistically beat Somax, suggesting that Somax’s configuration is

suited to this particular environment.

Finally, in Figure 5.9 the number of simulation wins is shown for each

strategy. Overall ε-decreasing performs best in this context. Given that this trader
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ε-dec ε-gre EA 1+1 ES Rank Somax

ε-dec 0.704 1.329 1.120 1.096 1.310
0.01 (-2.7) (0.0) (7.4) (14.7) (67.5)

ε-gre 0.916 1.361 1.029 1.125 1.372
0.01 (2.7) (35.9) (274) (12.7) (40.0)

EA 0.232 0.201 0.523 0.421 0.625
(0.0) (−35.9) 0.07 (451) (−11.5) (3.1)

1+1 ES 0.461 0.543 0.753 0.764 0.962
(109) (274) 0.07 (451) 0.36 (543) (136)

Rank 0.496 0.496 1.006 0.668 1.089
(−14.7) (−12.7) (11.5) 0.36 (543) (12.4)

Somax 0.260 0.197 0.438 0.287 0.345
(−67.5) (−40.0) (−3.1) (136.0) (−12.4)

Table 5.6: Mean simulation profit over 50 simulation repetitions for market-
exchanges using various ALS strategies, when the environmental context com-
prises the registration fee charging and constrained single nie trader, contexts.
Results are in general similar the same set of simulations using the unconstrained
single nie trader context in Table 5.3, however, in this trader context ε-greedy
statistically outperforms ε-decreasing. For assistance in interpreting the results, see
the caption for Table 5.2, on Page 150.

ε-dec ε-gre EA 1+1 ES Rank Somax

ε-dec 2.477 3.585 3.157 3.527 1.878
(4.4) (36.3) (114.0) (26.1) 0.02 (400)

ε-gre 1.720 3.449 3.111 3.256 1.529
(−4.4) (22.3) (104) (16.9) (322)

EA 0.292 0.252 0.449 0.642 0.053
(0.0) (0.0) (177.0) (335.0) (0.0)

1+1 ES 1.027 0.831 2.358 1.932 0.645
(114.0) (104.0) (177.0) 0.2 (331) (102.0)

Rank 0.444 0.435 1.239 1.365 1.326
(0.0) (3.0) (335.0) 0.2 (331) (298.0)

Somax 2.586 2.722 3.634 3.442 0.637
0.02 (400) (3.4) (33.9) (102.0) (298.0)

Table 5.7: Mean simulation profit over 50 simulation repetitions for market-
exchanges using various ALS strategies, when the environmental context com-
prises the transaction fee charging and constrained single nie trader, contexts.
Results differ somewhat from the unconstrained single nie trader context results
in Table 5.4. Both ε-decreasing and Somax see significant improvements over the
unconstrained single nie case. For assistance in interpreting the results, see the
caption for Table 5.2, on Page 150.

context contains buyer maximum constraints, there are more points in the

aribute-level space that result in lower numbers of feasible transactions, which
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Figure 5.9: e number of wins managed by each of the aribute-level selection
strategies for the constrained single nie trader context. (a) Wins are separated
according to charging context. Each strategy plays the five others 50 times, there-
fore a maximum score for a charging context would be 250. (b) All wins aggregated
across the three charging contexts. Compared to the equivalent data for the uncon-
strained single nie (Figure 5.8) ε-decreasing outperforms ε-greedy.

affects strategies such as ε-greedy, that uniformly explore. is is further

evidenced by the improvements seen in the Somax and Rank-based ALS

strategies—both of which proportionally explore, rather than uniformly.

Summary

In this section, six aribute-level strategies were studied via bilateral simulations

across a variety of representative environmental contexts. Overall, results from

some 7,500 simulations were reported. e main results of this significant

empirical evaluation are:

• Based upon all the empirical data, Hypothesis 5.1 is accepted. While two
strategies—ε-greedy and ε-decreasing—performed the best, both were
sensitive to certain environmental contexts, and neither dominated.

• Hypothesis 5.2, however, is rejected. Even though the environmental
contexts were static, interactions between traders and marketplaces led to
emergent dynamics, which favoured ε-greedy in many cases, thus
ε-decreasing did not dominate as hypothesised.
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• In general, strategies that depend on absolute reward values, e.g., Somax,
can be sensitive to a large number of environmental contexts because the
absolute levels of rewards change between environments.

• e only difference between EA and 1+1 ES is the size of the population.
1+1 ES generally outperformed EA, suggesting the advantages of a larger
population might be outweighed by the increased costs of evaluating it, in
the environmental contexts considered.

• Charging contexts have a significant impact on the performance of ALS
strategies, and not all strategies perform beer in certain charging contexts.

• When the environment contains traders with constraints, there is a clear
advantage, in some cases, to using ALS strategies that
proportionally—rather than uniformly—explore the aribute-level space.

us, in terms of answering the overarching research question, the performance

of aribute-level selection strategies can be significantly affected by many

factors, including competing strategies, and the charging and trader contexts

comprising the environment. Further, while ε-greedy’s performance is in general

quite robust to environmental changes, no ALS strategy can be said to dominate

all others, and thus generalise perfectly across all environmental contexts.

5.5 Market Niing in Multi-nie Environments

In this section, bilateral simulations using the constraint-induced nies and

preference-induced nies trader contexts are considered. Because these trader

contexts contain multiple market nies, outcomes involving the occupation of

each market niche by a market-exchange, are possible. However, while results in

previous section shed light on the ability of ALS strategies to compete over a

single niche, typical outcomes in environments containing multiple market niches

are unclear. As such, the overarching research question that this section takes a

step towards answering is:

What impact do different environmental contexts have on the abilities of
competing candidate aribute-level strategies to find market nies in
multi-nie environments?
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To make progress on this question, further simulation studies are carried out,

across all of the previously considered charging contexts and multi-niche trader

contexts, so that the following questions can be specifically answered:

• Which of the charging contexts facilitate the most efficient resource
allocations, and thus provide the best means for locating market niches
within these multi-niche trader contexts?

• What impact does the presence of each of the ALS strategies have on
resource allocations within the system?

• What impact does the trader context, and thus preferences and constraints,
have on the market niching process?

Experimental setup

An experimental methodology, similar to that in Section 5.4.1 is carried out

throughout this section, but with some differences. Firstly, simulated

environmental contexts include either the constraint-induced nies or

preference-induced nies, trader contexts. Secondly, rather than measuring

market-exchange profit, these results focus on the efficiency of the resource

allocations over the entire system, by using the allocative efficiency metric for

multi-aribute resource allocations, defined in Section 4.5, on Page 111.

e higher the allocative efficiency in the system, the larger the total utility

of all agents. e allocative efficiency of a perfectly efficient resource allocation is

1; however because traders always have an element of exploration in their

market-selection, completely efficient allocations are realistically unaainable.

While meaningful comparisons between efficiency of competing

market-exchanges using different ALS strategies can be made, the numbers on

there own say lile about the actual niing behaviour of the exchanges.

erefore, throughout this section, visualisations of daily selected aribute-levels

are provided, in the form of heat maps. Finally, self-play simulations are

considered within these results, because how a strategy interacts with itself does

affect the global efficiency of the system.
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5.5.1 ‘Constraint-induced nies’ environments

is set of experiments considers environmental contexts involving the

constraint-induced nies trader context. Recall that while traders within this

context have no preferences over aributes, two separate populations of buyers

exist, each with different minimum and maximum constraints. is leads to an

environment where there are two market niches in these simulations, when the

resource types π = ⟨0.6, 0.6⟩ and π = ⟨1.0, 1.0⟩ are specified. is environment

presents considerable challenges to ALS strategies. For example, because many

buyers and sellers are restricted in the types of resource they can trade, ALS

strategies that move between desirable and undesirable points in the space are

likely to repel many traders.

System-wide allocative efficiency

Table 5.8 highlights the impact that each of the aribute-level selection strategies

have on the allocative efficiency of the system, when they are present within a

simulation. Values in rows 3–8 represent the system-wide mean daily allocative

efficiency for all simulations involving that strategy. For example, values in row

three are arrived at by taking mean system-wide allocative efficiency measures of

the simulations where ε-decreasing competed against: ε-greedy; EA; 1+1 ES;

Rank-Based; Somax; and itself. In line with the previous ALS strategy

performance results, ε-decreasing and ε-greedy perform equally well. A T-Test of

equality of means fails to reject the null hypothesis that the means are identical at

significance level α = 0.005; this is not surprising given previous results.

Secondly, when ε-greedy or ε-decreasing are involved in simulations, allocations

are on average significantly more efficient, those that don’t include them.

Statistical tests, against the third best strategy support this for each charging

context. In the bid/ask spread commission context, a Wilcoxon Signed-Rank test

comparing the ε-greedy Rank-based strategies reports a p-value of < 0.005 and a
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Allocative Efficiency

Strategy
Bid/Ask Spread Registration Fee Transaction Price Fee
charging context charging context charging context

ε-decreasing 0.602 ± 0.081 0.566 ± 0.109 0.716 ± 0.068
ε-greedy 0.626 ± 0.089 0.556 ± 0.123 0.704 ± 0.080

EA 0.395 ± 0.133 0.365 ± 0.114 0.490 ± 0.119
1+1 ES 0.439 ± 0.134 0.429 ± 0.112 0.591 ± 0.148
Rank 0.553 ± 0.113 0.502 ± 0.098 0.591 ± 0.092

Somax 0.367 ± 0.152 0.305 ± 0.122 0.695 ± 0.114
Mean (all) 0.497 ± 0.163 0.452 ± 0.157 0.627 ± 0.140

Table 5.8: For each strategy, each data point provides the measure of system-wide
mean daily allocative efficiency, over all simulations involving each strategy and
its competitors. us, it captures the impact that the presence of that strategy typ-
ically has on resource allocations within the system. Results are separated into
the three different charging contexts, thus each value is the mean from a sample
of data points with size: 6 competitor variations × 50 simulation repetitions. A
value of 1.0 would indicate a 100% efficient allocation for every day of every re-
ported simulation. Emboldened values indicate highest reported efficiency across
the three charging contexts, involving the strategy within that row. Emphasised
values indicate the highest reported efficiency for any strategy involved within
that single context.

signed rank of 8,368; the same test within the registration fee context reports a

p-value of < 0.005 and a signed rank of 11,850; and in the transaction price fee

context, ε-greedy versus Somax resulted in no significant difference between the

samples at a significance level α = 0.005. Finally, in all cases, resource allocations

are improved when the transaction price fee charging context is in use. Even

though a higher fee is charged for executing a trade on resource π = ⟨1.0, 1.0⟩

than, π = ⟨0.6, 0.6⟩, with this charging context, the overall profit from selecting

niche π = ⟨0.6, 0.6⟩ is clearly greater than sharing the profits at niche

π = ⟨1.0, 1.0⟩.

Market-exange niing

While the reported efficiency values in Table 5.8 provide clues as to which of the

ALS strategies lead to the most efficient allocations in different charging contexts,

it is unclear exactly what these numbers mean in terms of actual niing
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behaviour. To beer understand ALS strategies’ niching behaviour, visualisations

are provided using data extracted from some of the simulations reported in

Table 5.8. Within the simulated constraint-induced nies trader context there
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(a) ε-greedy’s aribute-level selections.
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(b) Somax’s aribute-level selections.
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(c) EA’s aribute-level selections.

Figure 5.10: Heat maps showing the niching ability of various strategies for sim-
ulations involving the transaction price fee charging and constraint-induced nies
trader, contexts. Each location on the x and y axes is a point in aribute-level space,
and thus a resource type. Each daily aribute-level selection is ploed over all
simulations involving the respective strategy. us, the visualisations provide a
general overview of the strategy’s niching behaviour. Lighter areas chose the as-
sociated aribute-levels more oen. For bandit strategies, choices were always in
the discrete set of points {0.2, 0.4, 0.6, 0.8, 1.0}, however, using interpolation tech-
niques these reduced choices are mapped onto the real-space so that they can be
compared to the real-value strategy, i.e., Figure 5.10c. e resource types indicat-
ing the market niches that satisfy the market segments are π = ⟨0.6, 0.6⟩ and
π = ⟨1.0, 1.0⟩.

exist two market niches, at the points ⟨0.6, 0.6⟩ and ⟨1.0, 1.0⟩ in the aribute-level
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space. To get a beer understanding of the general niching behaviour of some of

the ALS strategies, heat maps were created, which allow aribute-level selection

choices to be visualised easily. A heat map is created by ploing a 2D visualisation

of aribute-level space, and colouring each point in the space according to the

frequency it was chosen by an ALS strategy. For example, each heat map in

Figure 5.10 shows all—some 1.5 million data points—daily aribute-level

selections for each of the ALS strategies in its caption, across simulations against

all competing strategies in the transaction price fee charging context.

In general, ε-greedy (Figure 5.10a) and Somax (Figure 5.10b) are able to

locate both the niches successfully, regardless of the competing strategies in the

environment. Note, Somax has a beer concentration or focus on the two niches

than ε-greedy, because it selects aribute-levels proportional to its rewards.

Further, note that Somax spends more time satisfying the market niche for

resource π = ⟨0.6, 0.6⟩, rather than π = ⟨1.0, 1.0⟩; this is because, despite rewards

being based on transaction prices (which would be higher at π = ⟨1.0, 1.0⟩), more

traders can trade π = ⟨0.6, 0.6⟩ because no sellers have minimum constraints,

thus the volume of transactions increases the profitability for the exchange.

e EA strategy (Figure 5.10c) does not perform well in this trader context.

While it regularly finds areas close to the niche π = ⟨1.0, 1.0⟩, it rarely finds the

niche at π = ⟨1.0, 1.0⟩. Recalling Figure 5.3 on Page 5.3, it is possible that the EA

strategy has trouble finding the smaller niche. Figure 5.11 shows the typical

niching behaviour for some ALS strategies in individual simulations. By running

self-play simulations, where both exchanges use the same ALS strategy, it

becomes possible to see if the behaviour of the strategies in Figure 5.10 is due to

their own strategy, or the presence of others. For example, Somax is

exceptionally well suited to this environment. Because it explores proportionally,

i.e., based on reward values, each exchange sticks to its own niche, resulting in a

stable outcome, and the highest allocative efficiency. When exchanges both use

ε-greedy, however, they encroa on each other’s niche, due to uniformly random
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(a) Typical niching behaviour of two market-exchanges using ε-greedy strate-
gies; mean allocative efficiency—76%.
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(b) Typical niching behaviour of two market-exchanges using Somax strate-
gies; mean allocative efficiency—78%.
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(c) Typical niching behaviour of two market-exchanges using EA strategies;
mean allocative efficiency—31%.

Figure 5.11: Typical niching behaviour of several aribute-level strategies when
in competition with themselves, during single simulations using the transaction
price fee charging and constraint-induced nies trader, contexts. Two niches exist:
π = ⟨0.6, 0.6⟩ and π = ⟨1.0, 1.0⟩. Somax (b) works well in self-play because each
Somax strategy sticks to its niche, while ε-greedy (a) strategies encroach on each
other; neither EA strategies (c) locate the second niche. See Figure 5.10 for help
reading the heat maps.
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exploration; inevitably both niches wont be satisfied at all times. Finally, as

Figure 5.11c highlights, neither exchange using the EA strategy is able to locate

the π = ⟨1.0, 1.0⟩ niche. is is possibly because neither strategy is able to

generate mutations that take it to the smaller second peak and thus both are

trapped in competition over a single niche, resulting in half of the buyers being

unable to trade at all.

5.5.2 ‘Preference-induced nies’ environments

Finally, the preference-induced nies environment is considered. Again, there are

two market niches, but due to trader preferences, these are located at points

corresponding to resource types π = ⟨0.2, 1.0⟩ and π = ⟨1.0, 0.2⟩. A further

difference in this trader context is that there are no infeasible parts of the

aribute-level space; all traders can potentially trade any resource type.

System-wide allocative efficiency

Based upon Table 5.9, the preference-induced nies trader context increases the

difficulty in finding market niches, resulting in overall less efficient allocations

compared to the constraint-induced nies context (Table 5.8). While relative

performance between strategies is similar to the constraint-induced nies trader

context, all allocation efficiencies are generally lower, indicating preferences

significantly affect all the strategies’ niching ability. Of particular interest is the

observation that the most efficient allocations no longer arise when exchanges

charge according to the transaction price fee charging context. Rather, the bid/ask

spread commission charging context provides a beer indication of market niches,

though not with statistical significance. However, it suggests the transaction price

fee charging context does not correlate well with the positions of

preference-induced niches.
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Allocative Efficiency

Strategy
Bid/Ask Spread Registration Fee Transaction Price Fee
charging context charging context charging context

ε-decreasing 0.566±0.107 0.420±0.054 0.495±0.033
ε-greedy 0.564±0.090 0.421±0.061 0.507±0.039

EA 0.403±0.087 0.318±0.053 0.399±0.046
1+1 ES 0.473±0.087 0.351±0.046 0.476±0.046
Rank 0.498±0.042 0.371±0.055 0.433±0.046

Somax 0.375±0.079 0.306±0.033 0.480±0.058
Mean (all) 0.480±0.118 0.365±0.070 0.463±0.060

Table 5.9: For each strategy, each data point provides the measure of system-wide
mean daily allocative efficiency, over all simulations involving each strategy and
its competitors. Results are separated into the three different charging contexts,
thus each value is the mean from a sample of data points with size: 6 competitor
variations× 50 simulation repetitions. All simulations used the preference-induced
nies trader context. A value of 1.0 would indicate a 100% efficient allocation for
every day of every reported simulation. Emboldened values indicate highest re-
ported efficiency across the three charging contexts, involving the strategy within
that row. Emphasised values indicate the highest reported efficiency for any strat-
egy involved within a single charging context.

Market-exange niing

Using the bid/ask spread commission charging context, general aribute-level

selection performance of three of the ALS strategies is provided in Figure 5.12.

Unlike similar visualisations with the constraint-induced nies trader context in

place (Figure 5.10), Somax appears to struggle to locate the niches, further

evidence for its sensitivity to the charging context. e EA strategy seems unable

to locate either of the niches, and aggregated over the many simulation runs, it

has no tendency to focus on any particular point in aribute-level space. Because

1+1 ES works in the same way, but without a population, it could be argued that

the cost of evaluating a—likely poor—population, drives away traders to the other

exchange, so no maer where EA moves to its profit does not improve, which

would explain the generally uniform coverage of the aribute-level space in

Figure 5.12c.

Finally, in Figure 5.13 typical market-niching behaviours in self-play

simulations are examined, to beer understand how well typical strategies locate
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(a) ε-greedy’s aribute-level selections.
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(b) Somax’s aribute-level selections.
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(c) EA’s aribute-level selections.

Figure 5.12: Heat maps showing the niching ability of various strategies for sim-
ulations involving the bid/ask spread commission charging and preference-induced
nies trader, contexts. Each location on the x and y axes is a point in aribute-level
space, and thus a resource type. Each daily aribute-level selection is ploed over
all simulations involving the respective strategy. us, the visualisations provide
a general overview of the strategy’s niching behaviour. Lighter areas correspond
to more frequently chosen aribute-levels. e resource types indicating the mar-
ket niches that satisfy the market segments are π = ⟨0.2, 1.0⟩ and π = ⟨1.0, 0.2⟩.
ε-greedy is able to locate either of the market niches in simulations it takes part in.
Somax, already shown to be sensitive to the bid/ask spread commission charging
context, is unable to locate the market niches, and is perhaps aracted to a very
unusual part of the space because bid/ask spreads, and thus its profits, can increase
in very inefficient markets, such as ones around π = ⟨0.2, 0.2⟩. EA has no general
tendency to regularly focus on any point in the space suggesting that its profits
are typically flat for all points, which may in part be due to driving traders away
during the evaluation of its solution population.

market niches in the preference-induced nies trader context, and thus the impact

169



CHAPTER 5. MECHANISMS FOR MARKET NICHING

that preferences and constraints have upon the market niching problem. Based

upon these individual simulations, it is clear that the preference-induced nies

trader context significantly worsens the niching ability of the ALS strategies; in

all cases allocative efficiency was worse than the equivalent simulations in

Figure 5.11. At this point, it is important to remember that the exchanges are

aempting to maximise profit, and not social welfare (which is a desired emergent

behaviour). Recall that the bid/ask spread commission charging context specifies

exchanges charge the difference between traders’ bid and ask offers, which in a

competitive market equilibrium would be zero. When market niches are satisfied,

competitive market equilibrium can be more closely approached, which reduces,

in this charging context, market-exchange profits. us, as seen by the ε-greedy

results (Figure 5.13a), some ALS strategies are focussing on points in the space

that purposely lead to less inefficient allocations than could otherwise be

achieved, in order to boost profits.

5.5.3 Summary

In terms of the overarching research question for this section, within multi-niche

environments, several factors affect ALS strategies’ abilities to find market niches.

Based upon the simulation results in this section:

• No single charging context facilitates the most efficient resource
allocations. While the transaction price fee charging context helps locate
niches in the constraint-induces nies trader context, in the
preference-induced nies the most ideal charging context (bid/ask spread
commission) rewards exchanges to maintain a slightly inefficient market
(Figure 5.13a), indicating further work is needed in this area;

• e presence of the ε-greedy, ε-decreasing, and in some cases, Somax
strategies in the environment tend to improve the efficiency of allocations,
indicating their success in tackling the automatic market niching problem;

• e EA strategy significantly under-performed, likely due to premature
convergence, indicating diversity mechanisms such as fitness-sharing
semes [149] may improve the evolutionary optimisation approach to the
market niching problem;
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(a) Typical niching behaviour of two market-exchanges using ε-greedy strate-
gies; mean allocative efficiency—64%
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(b) Typical niching behaviour of two market-exchanges using Somax strate-
gies; mean allocative efficiency—36%
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(c) Typical niching behaviour of two market-exchanges using EA strategies;
mean allocative efficiency—39%

Figure 5.13: Typical niching behaviour of several aribute-level strategies when
in competition with themselves, during single simulations using the bid/ask spread
commission charging and preference-induced nies trader, contexts. Two niches ex-
ist: π = ⟨0.2, 1.0⟩ and π = ⟨1.0, 0.2⟩. Unlike similar visualisations for simulations
involving the constraint-induced nies trader and transaction price fee trader, con-
texts (Figure 5.11), all three strategies seem unable to locate market niches to the
same accuracy, because the charging context rewards market inefficiency. See Fig-
ure 5.10 for help reading the heat maps.
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• Preferences have a significant impact on the ability of ALS strategies to find
niches.

5.6 Conclusions and Discussion

is chapter introduced the newly formulated automatic niing problem. e

automatic niching problem describes the challenge that a market-exchange agent

faces when specifying which resource type should be traded within its market.

is problem is particularly challenging because the environment is complex,

dynamic, and coevolving. Two approaches were considered for tackling the

resulting reinforcement learning problem: an n-armed bandit approach and an

evolutionary optimisation approach. Based upon these approaches, the

performance of several candidate aribute-level selection (ALS) strategies was

empirically assessed, in representative environmental contexts.

Results from this chapter showed that all candidate strategies are sensitive

to at least some environmental factors, and thus none can be seen to generalise

across all contexts, but in most environmental contexts, at least one of the

strategies performs very well, identifying the market niches in the environment.

Cai et al. [23] find that in single-aribute market environments, traders within

the same cohort migrate to similar markets, which improves efficiency. Results

within this chapter show, for a more complex multi-aribute resource allocation

domain, that not only do traders within the same cohort migrate to similar

markets, but competing market-exchanges, using ALS strategies, are able to

automatically find market niches, and in some cases self-organise to satisfy all

environmental niches, leading to the desirable allocations of complex resources.

e main contributions of this chapter are:

• e first clear formulation of the automatic market niching problem;

• e proposal of two general approaches to tackle the automatic market

niching problem;
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• A comprehensive computational study of the two approaches, instantiated

as six aribute-level selection strategies, in representative environments

that market exchanges might expect to find themselves in;

• Rigorous statistical analysis, discussion, and visualisation of the impact that

the representative environmental contexts have on the performance of the

aribute-level selection strategies. Particularly:

– how environmental contexts affect the profitability of aribute-level

selection strategies;

– how environmental contexts affect the niching ability of competing

aribute-level selection strategies in multi-niche environments.

Although this chapter has not fully answered the question of which is the best

aribute-level selection strategy in general, it has made a significant step towards

understanding how the performance of different aribute-level selection

strategies are impacted by various environmental factors, which has facilitated a

clear study of the suitability of two reinforcement learning approaches to this

newly formulated problem.

Within the environmental contexts considered, the ε-greedy and

ε-decreasing n-armed bandit ALS strategies performed the strongest of the

candidates, but the proportional nature of Somax’s strategy exhibited extremely

promising behaviour when the environmental context suited its parametric

seing. Future work will look at how useful features of these strategies can

inspire novel strategies that perform beer, and aren’t sensitive to parameter

seings. Out of the two approaches considered, the evolutionary optimisation

approach did not seem to perform as well. Being restricted to exploring

neighbourhood search space appears to be a disadvantage for the automatic

market niching problem. In many cases it appeared that the expense of having to

evaluate a population of solutions drove traders away, and even if useful

solutions were evaluated, the fitness landscape had been shied by traders
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selecting competing marketplaces. However, the ability for evolutionary

approaches to explore any part of the search space is certainly advantageous in

general, e.g, when niches aren’t well-defined, or don’t exist in points that are

represented in an ALS strategy’s action set. us, future work will consider how

the performance of evolutionary algorithms can be improved, perhaps using

fitness-sharing semes [149] to more efficiently explore the space.
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Within this thesis, trading agents have been assumed to use only private

information, in the form of historical trading profits, to form the basis of their

market-selection decisions. Further, it has been assumed that traders have been

present for the entire duration of simulations, and thus have been able to learn

appropriate market-selection signals over time, in order to identify the most

profitable markets to join. However, in real-world open marketplaces,

traders—and on longer time scales, market-exchanges—join and leave the system

at different times. Further, the recent empirical analysis of aribute-level selection

strategies in Chapter 5 has shown that over time autonomous market-exchanges’

behaviour can change, in terms of the market-niche that they satisfy, and how

aractive they are to traders, which may change traders’ preferences over them

as time progresses.

is chapter considers, for the first time, the application of a reputation

approach to the problem of facilitating market-selection in the domain of

multi-aribute resource allocation via competing marketplaces. e chapter

demonstrates via simulation studies that reputation-based market-selection

strategies can lead to more efficient resource allocations in a variety of dynamic

environments, and provides evidence to suggest that a subjective reputation

approach is very important for facilitating efficient allocations in multi-aribute

resource allocation systems. Specifically, the main contributions of this chapter

are: (i) the first application of a reputation approach to the problem of

market-selection in a multi-aribute market-based system containing competing

marketplaces; (ii) consideration of both strategic and non-strategic reputation

manipulation models, and the proposal of a novel trader behaviour model for

strategically manipulating supply and demand, in a bid to subvert marketplace

reputations; (iii) to demonstrate, via simulation studies, the applicability of both

objective and subjective reputation approaches to facilitating beer

market-selection decisions over competing marketplaces, in a variety of dynamic

and uncertain environmental seings. e rest of this chapter is organised as
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follows. First, in Section 6.1, the proposal of applying a reputation approach to

the problem of market-selection is further discussed, and specific research

questions formulated. In Section 6.2, a Bayesian statistics approach, which has

been found to be successful at predicting agent behaviour in other e-market

applications is formally introduced, and it is demonstrated how this approach can

be integrated into the market-based approach introduced in this thesis. A

Bayesian approach to reputation formation relies on accurate evidential

information, in the form of accurate reports from agents. Section 6.3 considers

different forms of information manipulation and proposes two behaviour models,

which could affect traders’ reputation-based market-selection decisions.

Section 6.4 demonstrates how a Bayesian reputation approach can be made

subjective by learning how information from different sources should be

weighted. Finally, in Section 6.5 a thorough empirical analysis is undertaken to

test several hypotheses involving the ability of both objective and subjective

reputation approaches to facilitate trader market-selection in a variety of

dynamic environments. e chapter is concluded in Section 6.6.

6.1 Motivation

One of the themes within this thesis is that of generalisation and robustness of

mechanisms within complex, adaptive market-based systems. e previous

chapter analysed mechanisms for automatically identifying and satisfying market

niches, in an effort to improve market-exchanges ability to generalise over

different trader contexts. In the same spirit, the motivation for the work in this

chapter is to improve traders’ market-selection decisions when trading in

dynamic and uncertain market environments, which also takes a step towards the

design of more robust resource allocation systems in general. On a specific level

pertaining to the market-based system studied in this thesis, the work in this

chapter is motivated by the following observations: (i) so far, the same traders
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have been assumed to exist within the system at all times, while in real-world

open marketplaces traders—and on longer time scales, market-exchanges—join

and leave the system at different times; (ii) recent empirical analysis of

aribute-level selection strategies in Chapter 5 has shown that over time,

autonomous market-exchanges’ behaviour can change, both in terms of their

market-niching, and how aractive they are to traders; and (iii) traders have to

learn over time, using only private historical profit information, based upon

direct interactions with market-exchanges, which market is best to join.

ese observations lead to questions about the expense traders incur

learning these market-selection signals, in terms of the time taken exploring

possible markets, and ultimately the cost in terms of profits sacrificed from

potentially sub-optimal decisions taken during the learning process. While for a

single static population of traders, the eventual benefits of learning accurate

market-selection signals will outweigh the initial costs aer sufficient time in the

environment, for a population under urn this may not be the case, if for

example agents leave the system before they have recovered the costs of learning

the signals. In terms of the overall impact on the system, which is always of

interest from a designer’s point of view, these dynamics can significantly hinder

efficiency of resource allocations in the system. Accurate market-selection signals

are particularly important if traders have preferences and constraints over

multi-aribute resources, and these are allocated via autonomous competing

marketplaces, because system efficiency is maximised when cohorts of traders

within the same market segment trade within the market occupying that market

niche.

As discussed in Chapter 2, reputation can act in a signalling role [141, 87],

providing publicly generated signals describing the expected behaviour of other

agents. Because reputations are leveraged from the aggregated direct experiences

of agents, they can be used by an agent to predict behaviour of another it has not

yet directly interacted with. And while private, direct observations are likely to
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be more accurate, agents joining a system may benefit more from less accurate

publicly generated signals than private ones that are expensive to learn. A small

amount of previous work has looked at the issue of trust and reputation within

continuous double-auction seings, concentrating on how the average quality of

resources sold by sellers can be signalled to buyers within the market [98, 170].

However, it uses objective measures for trust and reputation and does not

consider strategic reporting of agents. Probabilistic reputation approaches have

been proposed and developed to support agent decision-making using sound

statistical methods [80]. Further, these foundations have been built upon to enable

agents to deal with false reporting or malicious behaviour, of the type expected in

open electronic communities [166, 165, 97]. However, these subjective Bayesian

approaches have not been applied within the context of dynamic market-based

environments where agents’ preferences and rational behaviour can differ, or for

measuring the reputation of market-exchanges running multi-aribute resource

markets, whose behaviour cannot be described as simply ‘good’ or ‘bad’. Further,

the entry and exit dynamics (trader churn) of a market-based system directly

influence the outcomes of agent interactions, and thus potentially this reputation

approaches’ success in these environments.

6.1.1 Resear questions

e focus of this chapter is the applicability of subjective Bayesian reputation

approaches to the multi-aribute resource allocation model introduced in

Chapter 4. Particular focus is given to removing the assumption that traders exist

within the system for the duration of simulations, and instead it is assumed the

system possesses a constant trader urn, where traders enter and exit the system

at different times. e main research questions considered in this chapter are:

• What impact do trader urn dynamics have on traders’ profitability, and the
efficiency of resource allocations, when traders do or don’t, use reputation to
make market-selection decisions?
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• How well do objective and subjective reputation approaes deal with the
presence of strategic and non-strategic reputation information manipulation?

• How well do objective and subjective reputation approaes provide
market-selection signals to different market segments in multi-nie
environments?

• What properties do emergent recommender networks possess?

6.2 A Bayesian Reputation Approa

In this section, a reputation approach, grounded in Bayesian statistics, and based

upon the use of Beta distributions is described. e Beta distribution is a

continuous probability distribution that can be used to represent probability

distributions of binary events [80]. e beta distribution is defined in general by

two shape parameters: α and β [38]. e beta distribution is use extensively in

Bayesian statistics for estimating the posterior probability of binary events [25],

making it useful for applications that involve positive and negative experiences.

e probability density function for the beta distribution is defined as:

f(p|α, β) = pα−1(1− p)β−1∫ 1

0
uα−1(1− u)β−1du

, where 0 ≤ p ≤ 1, α, β > 0 (6.1)

e expected value of the beta distribution is simple to calculate:

E(p) = α
α + β

. (6.2)

Supposing a process has two possible outcomes: positive (h) and negative (s), then

a Beta distribution can be used to estimate the probability of observing a positive

outcome based on a history of observations. Assuming ĥ and ŝ are the frequency

of observed positive and negative outcome, the distribution for estimating the

probability of observing a positive outcome h has parameters α = ĥ+ 1 and

β = ŝ+ 1 (ensuring α, β > 0 in the absence of observations). e prior distribution

f(p|1, 1) (where α = 1, β = 1), is special, as it is also the standard Uniform
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Distribution. It can model the absence of knowledge about a process. As such, all

possible values of p are equally likely to be observed; the prior probability of

observing a positive event in a process is therefore E(p) = 0.5. More process

observations increase the confidence that the posterior probability f(p|α, β) of

observing a positive outcome of a process represents the true probability of

observing a positive outcome. Because the Beta distribution is a continuous

probability distribution—p has infinitely many values—it is not possible to assign

a finite probability to observing a specific outcome, so one assigns a probability

to a range of outcomes [175].

To estimate the confidence we have that the expected value of the beta

distribution is the true probability of observing a positive outcome of a process,

we can measure the integral of the distribution between two bounds defined by ε,

commonly done with the Beta Cumulative distribution function:

F(p) = Ip(α, β) =

∫ p

0
uα−1(1− u)β−1du∫ 1

0
uα−1(1− u)β−1du

, where 0 ≤ x ≤ 1; α, β > 0 (6.3)

In Equation 6.3, Ip(α, β) is the regularised Incomplete Beta Function. Supposing

some upper and lower bound defined by ε, confidence is estimated as follows:

γp = Ip+ε(α, β)− Ip−ε(α, β) (6.4)

Intuitively, the more observations one can make, generally the more confident

one can be about how close E(p) is to the true probability of observing a positive

outcome to the process being modelled.

6.2.1 Representing trust with Beta distributions

Reputations are formed from the aggregations of many individual’s direct

opinions of others, which are typically described by trust values. e Beta
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distribution forms the basis of market-exchange reputations system, by

representing the trust a trader has in a market-exchange. Each trading-day,

traders interacting with market-exchanges each observe three possible outcomes:

(i) the trader successfully trades with another trader, resulting in the trader

making a positive profit; (ii) the trader trades but makes zero profit, or the trader

is unable to trade but does not otherwise incur a loss; or (iii) the cost of exchange

charges are greater than any profit made from a possible trade, resulting in a net

loss. e three possible outcomes a trader ai could observe aer a trading day t in

mk’s market, are represented by οtai,mk
:

οtai,mk
=


1 if P t

ai > 0

0.5 if P t
ai = 0

0 if P t
ai < 0,

(6.5)

where P t
ai is the daily profit made by ai on day t. ough it may seem unlikely

that a trader would trade and make exactly zero profit (case two in Equation 6.5),

it is more likely that a trader might join an exchange that does not charge

registration fees, but not manage to successfully trade. In such a case it seems

unreasonable to assign the same outcome as that which a trader incurring a loss

would experience (case three), thus case two neither labels the experience

positively or negatively while still adding information to the model in the form of

a neutral experience. While the outcomes traders can expect are ternary in this

model, the shape parameters for a Beta distribution can still be updated each day

in the same way as done in similar implementations for binary outcome models

in other domains [80, 165, 97], because it is a continuous distribution. e Beta

distribution is updated aer an observation accordingly:

αt+1
ai,mk

= αt
ai,mk

+ οtai,mk

βt+1
ai,mk

= βtai,mk
+ 1− οtai,mk

(6.6)
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e interaction history between ai and mk is represented by αt
ai,mk

and βtai,mk
When

t = 0, αt
ai,mk

= βtai,mk
= 1, so that in the absence of any observations of

interactions between ai and mk, the prior Beta distribution will be formed. Finally,

trust τai,mk that a trader ai has in market-exchange mk can be defined:

τtai,mk
= E[pai,mk

|αt
ai,mk

, βtai,mk
] =

αt
ai,mk

αt
ai,mk

+ βtai,mk

(6.7)

As one can see from Equation 6.7, τtai,mk
is the expected value of the distribution

describing the probability pai,mk
that trader ai will make a profitable trade when it

next joins market-exchange mk on trading day t+ 1.

Time discounting

e dynamics of any open multi-agent system mean that either behaviours or

perception or behaviours can change over time. In accordance with previous

Bayesian reputation approaches [81, 97], the Beta distribution used to form τai,mk

is discounted at the end of every trading day t, by updating αai,mk and βai,mk
for

each market-exchange mk:

αt
ai,mk

= 1+ αt
ai,mk
× δΔt

βtai,mk
= 1+ βtai,mk

× δΔt
(6.8)

where δ ∈ [0, 1] represents the aggressiveness by which old information

contributes to current trust values, and is thus forgoen. When δ = 1.0, all

historical outcomes οai,mk contribute equally to αai,mk and βai,mk
, while when

δ = 0.0, all previous outcomes are immediately forgoen and only the most

recent interaction is considered in building the trust value. In all the simulations

Δt = 0.95, which was found to be not too aggressive. Figure 6.1 shows that in the

absence of new observations, a beta distribution (and thus trust) that ai has for mk

decays back to the prior distribution; lowering the discounting factor increases

the decaying process.

183



CHAPTER 6. IMPROVED RESOURCE ALLOCATIONS USING SUBJECTIVE
REPUTATIONS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p

f(p
)

δ = 0.9

t=1; α  = 16, β = 4, E(p) = 0.80
t=15; α  = 4.08, β = 1.61, E(p) = 0.71
t=30; α  = 1.63, β = 1.12, E(p) = 0.59
t=45; α  = 1.13, β = 1.02, E(p) = 0.52

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p
f(p

)

δ = 0.95

t=1; α  = 16, β = 4, E(p) = 0.8
t=15; α  = 7.94, β = 2.38, E(p) = 0.76
t=30; α  = 4.21, β = 1.64, E(p) = 0.71
t=45; α  = 2.49, β = 1.29, E(p) = 0.65

(b)

Figure 6.1: e effect of different time discounting factors on beta distributions
representing interaction histories. A lower discount factor of δ = 0.9 in Fig-
ure 6.1a leads to more aggressive forgeing of older information over time t =
1 . . . 15 . . . 30 . . . 45, compared to a higher value of δ = 0.95 in Figure 6.1b. is ex-
ample assumes no new observations are added each time step, thus the decaying
process reduces each distribution towards the uniform distribution.

6.2.2 Combining opinions to form reputations

Now we have defined how traders can generate trust values for market-exchanges

using beta distributions built from previous interactions, we can show how

traders can combine others traders’ trust values to form market-exchange

reputations. Again, the Beta distribution has some nice properties for forming

market-exchange reputations by combining the traders’ trust distributions they

hold for each market-exchange. Aggregating multiple separate Beta distributions

is a maer of combining the shape parameters of the associated distributions [97],

e.g., f(p|α1, β1) + f(p|α2, β2) = f(p|α1 + α2, β1 + β2). For this model, a trader ai

gathers other traders’ interaction histories with market-exchange mk, by asking
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each trader aj ∈ T for their αaj,mk and βaj,mk
values as shown in Equation 6.9.

αrep,t
ai,mk =

|T |∑
j=1,j̸=i

αt
aj,mk
− 1

βrep,tai,mk
=

|T |∑
j=1,j̸=i

βtaj,mk
− 1

(6.9)

By decreasing each αt
ai,mk

and βtai,mk
by unity other agents’ prior distributions are

removed from the reputation calculation, as their uncertainty should not

contribute. ai can then use these values to build an aggregated beta distribution

representing the combined opinions of other agents. Figure 6.2, shows visually
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(a) Four agents’ beta distributions.
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(b) A combined beta distribution.

Figure 6.2: An example of how combining beta distributions is a maer of aggregat-
ing the α and β parameters of the relevant distributions. Although two distributions
in Figure 6.2a have high expected values, i.e., 0.75 and 0.87, the expected value of
the combined distribution in Figure 6.2b is only 0.43, because a distribution with a
low expected value of 0.2 in Figure 6.2a contains many observations, and impacts
the combined distribution more.

how various beta distributions can be combined to form an aggregated beta

distribution. In this case, it is assumed that a trader ai has no direct information

on market-exchange mk, thus αai,mk = βai,mk
= 1; this is the (prior) uniform
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distribution shown in Figure 6.2a. ai asks other traders for their interaction

histories with mk, and three of them provide α and β values that form the

remaining three distributions in Figure 6.2a. Trader ai then combines these with

its own prior distribution to form an overall distribution, which it can use to

estimate the probability that joining market-exchange mk will result in a

profitable trade. In terms of this model’s application of reputation, the value ρtai,mk

is defined to represent the reputation of market-exchange mk from the point of

view of trader ai:

ρtai,mk
=

αt
ai,mk

+ αrep, t
ai,mk

αai,mk + αrep, t
ai,mk + βtai,mk

+ βrep, tai,mk

(6.10)

Equation 6.10 is the expected value of the distribution shown in Figure 6.2b; due

to Equation 6.6, ρtai,mk
includes the prior distribution when it combines the direct

information that ai has of mk with information provided by others.

6.2.3 Making market-selection decisions using trust and

reputation

Direct information is usually more accurate than indirect information obtained

from third parties [18]. One approach to this—and one followed in this model—is

to prefer to use trust when there is enough confidence in an assessment [166].

is is applied in this market-based model by specifying that traders prefer to use

trust to make market-selection decisions. However, if a trader has not interacted

enough with a market-exchange recently, then it will use publicly available

information to form a reputation of the market-exchange. e decision of which

information a trader ai will use to create a market-selection signal ςtai,aj at time t,

concerning market-exchange mk, is made as follows:

ςtai,mk
=


τtai,mk

if γai,mk
≥ γ∗ai

ρtai,mk
otherwise

(6.11)
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where γai,mk
is measured according to the Incomplete Beta Function from

Equation 6.4; γ∗ai represents a confidence threshold that agent ai uses to decide

whether it needs to use reputation information to form a market-selection signal.

In previous work in this thesis, traders have been using the ε-greedy

market-selection strategy defined in Section 4.4.3, on Page 108, which uses daily

profit to learn the market-selection signals that govern market selection. As a

basis for comparing the impact that reputation has on market-selection,

compared to private profit information, the ε-greedy market-selection strategy is

altered to incorporate reputation in the market-selection process in two ways:

(i) the discounting portion of the ε-greedy market-selection strategy is removed

because the reputation approach deals with this separately (Section 6.8); and

(ii) no reward signals are provided. Rather, each day, the market-exchange with

the highest reputation is joined with probability ε and a random exchange with

probability 1− ε.

6.3 Modelling Uncertain Market-based

Environments

is section is motivated by: (i) a desire to empirically evaluate the

appropriateness of reputation approaches for facilitating market-selection

decisions in a multi-aribute model of resource allocation; and (ii) noting that, as

defined in the previous section, the accuracy of reputation information is

dependent upon other agents’ opinions being accurate. While subjective

Bayesian approaches [165, 96] have been proposed to deal with inaccurate

reputation information, they have not been applied in this type of domain, which,

as will be described, may contain different types of agent behaviour. is section

extends the multi-aribute market-based model developed in this thesis by

introducing some of these agent behaviours, so that they can then be

incorporated into simulations to evaluate the appropriateness of subjective

187



CHAPTER 6. IMPROVED RESOURCE ALLOCATIONS USING SUBJECTIVE
REPUTATIONS

Bayesian approaches to reputation in this type of market-based model. In line

with the literature [43, 79, 165, 96], we focus on both strategic and non-strategic

non-conformist agent behaviours, but identify how they differ in this model to

others.

6.3.1 Noisy recommenders

Incorrect opinions (or recommendations), i.e., those that differ from reality, are

clearly a problem for the accuracy of reputations, which can lead to poor decision

making. Noisy Recommenders represent traders whose publicly distributed

opinion are: (i) random in nature and likely to differ from their true opinions of

the market-exchanges they are distributing recommendations about; and

(ii) likely to be provided to all agents indiscriminately. at is to say, all traders

will receive the same information. Noisy Recommenders represent traders that

might, for example: (i) have soware faults; (ii) have some process acting on the

inter-agent communication protocol that results in their opinions being

corrupted; or (iii) be programmed to specifically aempt to distort the reputation

system, but without bias to any type of trader. Noisy recommenders are

represented as a subset of all traders: T NR ⊂ T . When a noisy recommender

ai ∈ T NR is asked by another trading agent aj ∈ T for its opinion τai,mk of

market-exchange agent mk, the opinion it provides, in the form of α and β values,

is generated in a stochastic way. Firstly, randomised bias μ̇ and scale σ̇ values are

drawn from uniform distributions:

μ̇ = U(0, 1)

σ̇ = U(σ̇min, σ̇max),
(6.12)

where 0 < σ̇min ≤ σ̇max. μ̇ represents the type of opinion that ai will give

regarding market-exchange mk. e larger the value μ̇ takes, the higher the

opinion of mk that ai communicates. σ̇ represents the strength of the opinion. e

larger the value σ̇ takes, the more confidence ai states it has in its opinion of
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market-exchange mk. ai will provide its opinion in the form of an α and β pair,

calculated as follows:

α̇ai,mk = 1+ μ̇ × σ̇

β̇ai,mk
= 1+ (1− μ̇)× σ̇

(6.13)

While, other models for evaluating Bayesian reputation approaches [166, 165, 96]

consider noisily reported information, it is applied using Gaussian noise centred

in their true opinion. While this may be appropriate in the environments they

consider, e.g., when modelling communication noise or mild data corruption,

because the opinions are in expectation truthful, they don’t model well many

potential types of faulty agent. e definitions above ensure opinions provided by

noisy recommenders are entirely random, rather than simply noisy versions of

truthful information, which more closely models, for example, bugs in soware

code, which rarely result in Gaussian perturbations of truthful opinions.

6.3.2 Lying recommenders

As well as non-strategic noisy recommenders, agents oen receive strategic

opinions (recommendations) based on malicious information. Malicious opinions

are those that are provided purposely, and in an aempt to alter decisions of

other traders such that one’s own prospects are improved. Inaccurate opinions

are oen provided for two reason: (i) through the distribution of unfairly low

ratings, otherwise known as ‘bad-mouthing’; and (ii) through the distribution of

unfairly inflated high ratings [43]. Jin et al. [79] describes two different types of

lying that a malicious agent might perform, within a multi-agent reputation

system: (i) Destructive lying is a complementary strategy, i.e., one in which agents

always provide opinions contrary to the reality they have experienced; and

(ii) Collusive lying, where malicious agents form a cohort that aempts to reduce

the reputation of other competing agents, by spreading incorrect opinions in

unison. ese types lying behaviour are quite general, and can be applied to

many open multi-agent systems. However, lying agent’s strategies may be
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different in a market-based system, particularly because strategic traders rely on

the decisions of other traders in order to trade, and thus maximise profit.

erefore malicious behaviour, specific to market-based systems with two-sided

markets, needs to be considered.

e Supply and Demand Atta

Supply and demand in a market run by one of the market-exchanges will

significantly affect traders’ transaction prices. A reduction in the number of

buyers within a market, for example, will result in reduced demand for the

resource within that market, lowering transaction prices—a desirable situation for

buyers. Alternatively, an increase in the number of buyers (or a reduction in the

number of sellers), resulting in an increase in demand (or reduction in supply),

will tend to increase transaction prices within the market—a desirable situation

for sellers.

e Supply and Demand Aa occurs when a trader ai specifically decides

what type of opinion to provide to a requesting trader aj, by considering whether

aj is a competitor to ai. e aim of this strategy is to alter the supply and demand

within a market, in the hope that the price of resources in the market becomes

more favourable for the aacker. Consider, as described in Chapter 5, a trader

context T made up of populations of traders with different preferences and/or

constraints. As previously discussed, cohorts of these traders will form market

segments, and prefer to trade the same resources, which will, when market

niching is occurring, be provided by a market-exchange’s market. While traders

previously only used private information to make market-selection decisions,

with a reputation approach some traders could strategically aempt to either

aract or repel certain types of traders to or from the market they are trading in;

particularly if they had ways of identifying them easily.

Next, consider three trading agents a1, a2 and a3, each of which are

members of a subset T1 of traders occupying the same market segment, indicating
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the traders prefer to trade the same resources. Two traders (a1 and a2) are buyers,

while the other (a3) is a seller. Each agent would prefer to join the same resource

markets, and, in a longterm cooperative manner, each would be beer off by

sharing information about market-selection with each other, hopefully

encouraging more traders in the segment to join and creating a healthy market.

Assume that a1 is asked by a2 and a3 for its opinion of market-exchange mk. If one

assumes that a1, a buyer, is aware that a2 is a buyer and that a3 is a seller, if a1 was

using the supply and demand aack strategy, it would provide a truthful opinion

to a3, and a malicious and dishonest opinion to a2. us, the intended result of the

supply and demand aack, is to encourage traders you wish to trade

with—buyers try and aract sellers, seller try and aract buyers—to the same

market as you (by supplying truthful opinions), and to discourage competing

traders from joining the same market as you, with the intention of altering the

supply or demand in your favour. More formally, a trader ai who is using the

Supply and Demand Aa will provide an opinion to another trader aj, regarding

market-exchange mk, in the form of α̈ and β̈ values, as follows:

α̈ai,mk =


βai,mk

if {ai, aj} ⊂ Ts ∧ ({ai, aj} ⊂ B) ∨ {ai, aj} ⊂ S))

αai,mk otherwise

β̈ai,mk
=


αai,mk if {ai, aj} ⊂ Ts ∧ ({ai, aj} ⊂ B) ∨ {ai, aj} ⊂ S))

βai,mk
otherwise

(6.14)

where B and S are the sets of all buyers and sellers respectively, and Ts refers to a

subset of traders all interested in the same type resource type, and thus from the

same market segment s. us, ai provides either honest opinions to a trader who

it may wish to trade with (or who poses no competitive threat), and dishonest

opinions to those traders who are directly competing over the same resources; as

shown in Equation 6.14, dishonest opinions are provided in the form of opposite

opinions.
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6.3.3 Trader urn

Trader churn is an important aspect of the extension to Chapter 4’s model

considered in this chapter. In many multi-agent systems, agent churn is a reality,

as agents leave and join the system. In P2P systems, the notion of node urn has

been well studied [162, 161], with overall conclusions suggesting that it is an

important aspect of any dynamic system, which should be considered when

designing multi-agent systems [36].

However, subjective Bayesian reputation approaches have not yet

considered the impact that trader churn within a market-based system might

have on the effectiveness of the reputation mechanism. Trader churn may have a

significant impact on the performance of the system. In other applications it is

oen the case that all agents are either universally good or bad, thus, when a new

agent joins the system it can be given reputation information informing it of the

bad agents to avoid (either interacting with, or using opinions o). However, in

this system new agents have to learn, via reputation information, more subtle

differences, such as that some markets may be good to one trader, but the same

market bad to another. erefore, it is important that the reputation approach can

accurately provide useful information to newcomers in the system, as well as be

robust to information loss from traders leaving. Trader churn describes the

process of traders entering and leaving the system over time. Specifically trader

churn is defined in this model as:

• Trader Entry: when new traders enter the system with a lack of any
knowledge about the behaviour of other traders, and thus have uncertain
market-selection signals;

• Trader Exit: when traders who have spent time interacting with other
traders and market-exchanges in the environment leave the system.
Importantly, when these traders leave, all the private information they have
on market-exchanges is also removed from the system.
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6.4 A Subjective Reputation Approa for Uncertain

Environments

Section 6.2 described an objective reputation system. Unlike some applications

where an objective reputation system is applicable [120, 121, 98, 188], it is

hypothesised that in a multi-aribute market-based system, an objective

reputation system will not be as effective as a subjective reputation system. In

any marketplace where consumer preferences differ, subjective reputation

mechanisms should be be more advantageous, because they consider agents’

preferences when forming reputations. is section considers subjective Bayesian

reputation approaches [166, 165, 97], and applies them within the context of this

market-based model, so that the effectiveness of this approach can be evaluated in

the next section. In this model, there are two main reasons why a subjective

approach is important:

• Heterogenous trader types: some traders, due to preferences or constraints
on aributes, will not be interested in the same resources. While one
market-exchange may be held in high regard by one portion of the trader
population, it may not be in other sections or segments of the trader
population. Unfortunately, market-exchange reputations in an objective
system are equivalent across traders.

• Inaccurate Recommendation Information: again, because all opinions are
considered equally when forming objective reputations, it is not possible to
distinguish between accurate and inaccurate opinions, which can lead to
undeserved poor reputations [5], or likewise inflated good reputations [43].

us, a mechanism is needed to help each trader learn which other traders’

opinions it should incorporate into market-exchange reputations, and to what

degree each should be weighted.

6.4.1 Recommendation weights for trader opinions

As previously defined in Equation 6.9, a trader generates a reputation of a

market-exchange in the form of a beta distribution that combines multiple
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distributions, based on other traders’ interaction histories. By using a

recommendation weight—in the form of the function φ(ai, aj)—that defines how

useful trader ai considers trader aj’s opinions to be, trader ai can calculate a

personal and subjective distribution to describe market-exchange mk, as shown in

Equation 6.15.

αrep,t
ai,mk

=

|T |∑
j=1,j̸=i

φ(ai, aj)
[
αt
aj,mk
− 1

]

βrep,tai,mk
=

|T |∑
j=1,j̸=i

φ(ai, aj)
[
βtaj,mk

− 1
]

(6.15)

e reputation ρtai,mk
, which represents the reputation of market-exchange mk,

from the perspective of ai can be calculated in the same way as it was initially, in

Equation 6.10 on Page 186, but with αrep,t
ai,mk and βrep,tai,mk

defined according to

Equation 6.15. While Equation 6.15 still considers all publicly available

information, unlike the objective version, each opinion is weighted

independently. Some opinions are likely to be so unhelpful that their inclusion in

the calculation of ρtai,mk
would not help trader ai at all. A trader can exclude these

opinions from the calculation of αrep,t
ai,mk and βrep,tai,mk

, by giving them a

recommendation weight of zero, as follows:

φ(ai, aj) =


γ̂ai,aj if γ̂ai,aj ≥ γ̂∗ai

0 otherwise
(6.16)

As one can see from Equation 6.16, the actual recommendation weight from

trader ai to trader aj is represented by γ̂ai,aj , and the function φ(ai, aj) either

returns γ̂ai,aj if it exceeds a minimum threshold γ̂∗ai , or zero otherwise; thus,

traders in the system must have a recommendation weight of at least γ̂∗ai for

trader ai to consider their opinions at all.
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6.4.2 Learning recommendation weights

Next, how a trader learns γ̂ai,aj over time, is described. As with the rest of the

Bayesian reputation approach, one can use a Beta distribution to model the

process that describes the probability of trader ai receiving a useful opinion from

a trader aj, and set γ̂ai,aj as the expected value of this distribution. When ai built

trust τai,mk in market-exchange mk, it updated αai,mk and βai,mk
according to the

outcome οai,mk of interactions with mk. It does something similar to update γ̂ai,aj ,

by updating α̂ai,mk and β̂ai,mk
according to how useful an opinion given by another

trader aj was. To do this, however, one needs to quantify what useful opinion

means. Liu and Issarny [97, 96] describe a technique for quantifying whether an

opinion was useful, which is adapted for this model, though with new notation

applied. e technique works as follows: once a trader ai has interacted with a

market-exchange mk at time t, it takes each of the independent opinion

distributions it received from other traders at time t− 1, and measures how

accurately those opinion distributions each predicted the outcome of the

interaction ai had with mk. From Equation 6.5, it is known that an outcome

between ai and mk depends on whether or not ai traded and made a profit on the

exchange, and is the form οai,mk ∈ {0, 0.5, 1.0}. erefore, to measure how

accurately an opinion from trader aj to ai at time t− 1 predicts οtai,mk
, one sees how

much of f(p|αt−1
aj,mk

, βt−1
aj,mk

) falls into the range [οtai,mk
− εai , οtai,mk

+ εai ], as follows:

Λaj,t
ai,mk =

∫ min(οtai,mk
+εai ,1)

max(οtai,mk
−εai ,0)

uα
t−1
aj,mk−1

(1− u)β
t−1
aj,mk

−1du∫ 1

0
uα

t−1
aj,mk−1

(1− u)β
t−1
aj,mk

−1du

= Itοtai,mk
+εai

(αt−1
aj,mk

, βt−1
aj,mk

)− Itοtai,mk
−εai

(αt−1
aj,mk

, βt−1
aj,mk

)

(6.17)

In Equation 6.17, Λaj,t
ai,mk measures the probability of an interaction outcome οai,mk

between ai and mk, falling in the range [οai,mk − εai , οai,mk + εai ], according to the

opinion provided by trader aj. e term Itοtai,mk
is the Regularised Incomplete Beta
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Function, which is the cumulative distribution function for the Beta distribution.

Calculating Λaj,t
ai,mk forms only part of the technique for measuring the usefulness

of aj’s opinion. Next, Λaj,t
ai,mk is compared to the probability of οtai,mk

falling into the

range [οtai,mk
− εai , οtai,mk

+ εai ] according to the prior beta distribution, which we

measure as:

Λmin,t
ai,mk

= Itοtai,mk
+εai

(1, 1)− Itοtai,mk
−εai

(1, 1) (6.18)

Λaj,t
ai,mk and Λmin,t

ai,mk
can then be compared to ascertain just how useful trader aj’s

opinion was:

ο̂aj,tai,mk
= max(min(Λaj,t

ai,mk − Λmin,t
ai,mk

+ 0.5, 1.0), 0.0) (6.19)

Equation 6.19 ensures that the usefulness of an opinion, ο̂aj,tai,mk
, from trader aj to ai,

regarding mk, falls in the range [0, 1]. If Λaj,t
ai,mk > Λmin,t

ai,mk
then trader ai can treat

trader aj’s opinion as useful, since it provides a more accurate probability of οt−1
ai,mk

falling into the range [οtai,mk
− εai , οtai,mk

+ εai ] than the prior beta distribution; in

such a case ο̂aj,tai,mk
> 0.5. On the other hand, if it is the case that Λaj,t

ai,mk < Λmin,t
ai,mk

then aj has provided an opinion to ai that is less useful than the one that would be

provided by the prior distribution, viz the reputation for mk formed by ai using

information from aj would have been more accurate if ai had excluded the

opinion from aj; in such a case ο̂aj,tai,mk
< 0.5. Finally, if the opinion from aj’s

distribution is equally useful to the usefulness of one from a prior distribution

then ο̂aj,tai,mk
= 0.5. Once the usefulness of an opinion ο̂aj,tai,mk

has been calculated, it

can be used to update the shape parameters α̂ai,aj and β̂ai,aj for the beta

distribution that is being used to provide ai’s recommendation weight for aj:

α̂t+1
ai,aj = α̂t

ai,aj + ο̂tai,aj
β̂
t+1

ai,aj = β̂
t
ai,aj + 1− ο̂tai,aj

(6.20)

us, this distribution is updated in the same way as the one that is used for

calculating trust values in Equation 6.6 on Page 182. Finally, the recommendation
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weight that trader ai maintains for trader aj, in terms of the expected value of the

beta distribution formed from α̂ai,aj and β̂ai,aj can be defined:

γ̂ai,aj = E[pai,aj |α̂ai,aj , β̂ai,aj ] =
α̂ai,aj

α̂ai,aj + β̂ai,aj
,where α̂ai,aj , β̂ai,aj > 0 (6.21)

Recall that when using the objective reputation system in Section 6.2, a trader

uses only trust as its market-selection signal, if it believes that it has enough

confidence in its trust value of a market-exchange, which is based on information

gathered from previous direct interactions (Equation 6.7). If if finds that it is not

confident enough in its own trust value, it will seek the opinions of others, and

form a reputation value by combining others’ opinions with its own trust, which

will then be used as the market-selection signal. In order to decide whether to use

reputation in market-selection signal formation, a parameter γ∗ai , representing the

confidence threshold trader ai needs to be set. Using the subjective approach,

however, this parameter can be removed from the system, and replaced by γ̂∗ai ,

which sets the threshold at which opinions are excluded. By always considering

other traders’ opinions, and using φ(ai, aj) to decide on their inclusion (and to

what degree of influence), a trader does not need to make an either/or decision

between its own direct information and publicly available information, but can

make a more fine-grained decision, which can be based on some public

information, rather than based on no public information or all of it. In terms of

the subjective reputation system, once reputation ρtai,aj has been formed in

Equation 6.10, using the subjectively weighted values from Equation 6.15 the

market-selection signal simply becomes:

ςtai,aj = ρtai,aj (6.22)

Given this approach, the decision step involving whether to use exclusively trust

or reputation is removed, and they will be combined when making

market-selection decisions. Trust based on direct interactions always has a
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recommendation weight of 1.0, however the constant adjusting of

recommendation weights for the other traders means that the influence of

reputation information on market-selection can be adapted over time, according

to the environmental situation. is section concludes with an example of the

difference a subjective reputation system approach can make over an objective

one. In Figure 6.2 on Page 185, four separate beta distributions (three of which

were opinions from other traders) were objectively aggregated to form a

reputation using a combined Beta distribution, the expected value of which was

the objective reputation value. In Figure 6.3, the same four distributions are

assumed but with recommendation weights associated with them. e prior

distribution shown in this example belongs to the trader ai seeking opinions, thus

it has a recommendation weight γ̂ai,ai = 1.0. Figure 6.3a plots the various beta
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α  = 1 * 1.0 + (7−1) * 0.8 + (6−1) * 0.65 = 9.05
β = 1 * 1.0 + (1−1) * 0.8 + (2−1) * 0.65 = 1.65
E(p) = 0.84

(b)

Figure 6.3: e same collection of beta distributions as first shown in Figure 6.2a
(Page 185) but weighted according to recommendation weights γ̂. Note that when
combined, one of the distributions is disregarded in the calculation, due to its γ̂ =
0.1 value being below a threshold value (set at γ̂∗ = 0.65).e resulting distribution
has a high expected value of 0.84, unlike the unweighted one in Figure 6.2b, which
has an expected value of 0.43.

distributions formed from ai’s unknown prior distribution, and the opinions of

the other traders, weighted by the associated recommendation weights. Unlike
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the distributions in Figure 6.2a, the recommendation weights move the

distributions closer to the unknown prior distribution by an amount proportional

to their recommendation weight. When these distributions are combined, one of

them is ignored because their recommendation weight does not exceed the

recommendation threshold—in this example γ∗ai = 0.65. e remaining two

opinion distributions, and the trust distribution, which is the prior, due to ai’s

lack of direct interactions with the market-exchange in question, are combined to

form the overall reputation distribution in Figure 6.3b. In this example, the

market-selection signal ςai,mk = ρai,mk
= E[pai,mk

|α̂ai,mk , β̂ai,mk] = 0.84, which is in

stark contrast to the objective reputation information, where all available sources

were included, resulting in ςai,mk = 0.43.

6.5 An Empirical Analysis of Reputation Approaes

In this section, both the objective and subjective Bayesian reputation approaches

described in this chapter are empirically assessed within a variety of

environmental contexts. Experiments in Section 6.5.1 concern the impacts of

trader churn on the system, and the impact a basic objective Bayesian approach

has. In Sections 6.5.2 and 6.5.3 false reporting is considered, in terms of the two

recommender behaviour models previously introduced, and a subjective

reputation approach is compared to an objective approach. Finally, in

Section 6.5.4 an initial statistical analysis is carried out on the formation and

emergence of recommendation networks between traders.

6.5.1 e effects of trader urn on system performance

is section addresses the following research question:

What impact does trader urn have on traders’ profitability and the overall
allocative efficiency in the system, and to what extent can reputation
information improve these metrics?
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is set of experiments is concerned with the impact that trader churn, as

described in Section 6.3.3, has on the allocative efficiency of the market-based

system under two experimental variants: (i) when traders use the ε-greedy

market-selection strategy that uses private historical profit; and (ii) when traders

use the reputation-based market-selection strategy defined in Section 6.2.3, on

Page 186. Recall that some unsuitable market-exchanges, e.g., those whose

resource markets don’t satisfy constraints, will be considered inept and not make

it into traders’ consideration sets. However, a trader needs time to learn which of

the exchanges that are in the consideration set will result in the most profitable

trades when joined. In a large system, with many competing market-exchanges in

the environment, one would imagine several market-exchanges would end up

competing over market niches, resulting in traders having many choices in their

consideration sets. For a new trader—a newcomer–learning which of these

exchanges would be most profitable to join takes time, and without any form of

public information about previous trader profits made in the markets, newcomer

trading agents will likely make costly mistakes learning which of the

market-exchanges are most profitable. Based on this reasoning, the following

hypothesis is formed:

Hypothesis 6.1. Allocative efficiency will be higher when traders have access to the
reputations of market-exanges, because reputation information provides a
market-selection signal to traders, whi in the absence of reputation they would
otherwise have to spend time learning directly.

Experimental setup

Hypothesis 6.1 is tested using the following simulation environment. To simulate

the scenario of multiple exchanges competing over the same niche, nine

market-exchanges are simulated. To simplify analysis, each market-exchange

provides the same market for trading resources with aribute-levels of

π = ⟨1.0, 1.0⟩. However, each exchange has different charging schemes. Results in

Chapter 5 suggested that it is difficult to correlate explicit charges and fees with
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Number of Registration Transaction Bid/Ask
Market-exchanges Fee Fee Commission

3 0.01 0.01% 0.0%
3 0.05 0.02% 0.0%
3 0.02 0.03% 0.0%

Table 6.1: ree types of charging scheme were split equally across nine market-
exchanges. For more details on charging schemes see Section 4.1.1, on Page 85.
While it may seem intuitive that the cheapest market-exchange is best to join,
Shi et al. [154] has shown that there exist Nash equilibria in environments with
competing marketplace where all traders migrate to more expensive markets. It is
therefore non-trivial for a trader to know initially which market-exchange is best
to join each day.

how profitable a market may be. Many other factors effect market-selection, and

because one market-exchange is cheaper than others, does not mean that it will

be the best market to join [154], because complex dynamics based on the volumes

of traders within each market affect where they migrate to, and thus which

market is most profitable. erefore, it is non-trivial for a trader to know initially

which market-exchange is best to join each day. Table 6.1 provides details of how

charging schemes were instantiated on market-exchanges. For these simulations

the unconstrained single nie defined in Section 5.3.1 (Page 135) was used, which

meant all exchanges and traders competed over the same market niche. At all

times there were 300 traders within the system; every time a new trader joined

the system, a trader was randomly selected to leave the system. Each newcomer

trader was randomly initialised according to the same parameters as the other

traders, i.e., with budgets constraints in the same range. Each simulation lasted

for 5000 trading days, and was repeated 50 times. For this analysis the distributed

nature of traders, and that they may not be able to communicate with all others is

not considered; thus, when calculating reputations, all traders can access all

others’ opinions. Further, this set of experiments only concerns itself with the

impact of churn, thus there are no noisy recommenders or lying agents in the

system. e exploration parameter used in both the reputation-based and private

value based market-selection strategies was set to the most common value
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ε = 0.1.

Experimental results

Hypothesis 6.1 was tested by running two sets of experimental simulations. In the

first set, traders use the ε-greedy strategy to learn market-selection signals based

upon their historical profit in markets. In the second set of simulations the traders

used the reputation-based market-selection strategy (Section 6.2.3), where they

choose between market-exchanges by calculating their reputations from asking

other traders within the system. Both sets of experiments were executed with

varying levels of trader urn in the system, ranging from 0%–10%. e same level

of churn was maintained for the duration of a simulation. Figure 6.4 shows the
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Figure 6.4: Overall mean system allocative efficiency for varying levels of trader
churn. Each point represents the mean system efficiency resulting from the type
of simulation defined by the churn rate (x axis). ‘Private Information Only’ refers
to simulation where traders can only use their own profit information to make
market-selection decisions, while ‘Reputation Information’ refers to simulations
where traders can ask other traders for opinions on market-exchanges, and use the
resulting reputations to make market-selection decisions. As the plot shows, in the
absence of any reputation information to form a market-selection signal for new
traders, allocative efficiency is reduced as the proportion of new traders increases.
Allocative efficiency is measured using the algorithm defined in Chapter 4.

impact that both trader urn and the presence or absence of reputation has on

the allocative efficiency of the system; there are a number of interesting
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observations. Firstly, in the absence of churn, both private information and

reputation information based approaches lead to allocations with similar

efficiencies: 92% and 91.6% respectively. A t-test of equality of means¹ returns a

p-value < 0.005, which although significant, the performance between the two is

very close with only a 0.4% difference in efficiency. is result is not surprising,

because private direct information is always more accurate, and in the absence of

churn traders can recoup the cost of learning, but the reputation approach

certainly does not substantially reduce the efficiency of allocations. However, as

the experimental variations are run with increasing levels of daily churn, the

detrimental affect that trader churn has on the allocative efficiency of the system

becomes apparent. Even at low levels of churn, if newcomer traders can leverage

reputation information, they can locate the best markets faster, and much more

efficient allocations are observed. ere is a clear statistical significance between

the two setups for the 2–10% churn cases; for example, a t-test of equality of

means for the 10% case returns a p-value < 0.005 and a t-value of 15.11. When

reputation is available, newcomer traders can quickly be notified via other

traders’ opinions, which of the exchanges are the best to join, which leads to

more traders trading in the same market, and thus more efficient outcomes. While

the trend in Figure 6.4 suggests that increases in churn always affects efficiency,

this is likely because the dynamics created by traders joining and leaving can

affect the equilibrium price of the market, which the traders must learn to adapt

to, using their ZIP pricing algorithms.

Finally, Figure 6.5 shows the impact that trader churn has on the proportion

of system profits the traders keep, in the absence of presence of reputation. While

the manner in which the total utility—measured as profit—of an allocation is split

between exchanges and traders does not affect that allocation’s efficiency, it is of

interest to know what impact the reputation approach has on traders’ share of

system profits. In the absence of reputation, trader profit-share drops as churn

¹All simulation allocative efficiency data samples tested within this chapter were found to be
normally distributed.
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Figure 6.5: Given the overall mean system utility, as measured in profits, this figure
shows the proportion of total system profits kept by the trader population. e re-
mainder of the profits are taken by the market-exchanges through fees and charges.
When the traders use the reputation approach to market-selection, they join the
more profitable markets faster, because they use others’ opinions to form market-
exchange reputations. As the simulations are repeated with increasing levels of
churn, trader profits are generally maintained at the same level in the reputation
approach. However, in the absence of reputation the impact of newcomer traders
making costly mistakes exploring different market becomes apparent.

increases, consistent with newcomer traders joining expensive markets or ones

they can’t trade in—part of the private learning process. With the reputation

approach, however, there is no distinguishable drop in trader profit-share as

churn increases because market-selection signals can be provided by reputation

information.

6.5.2 Dealing with noisy recommenders

In this and the next sections, comparisons between a subjective and objective

reputation approach and are made. Of particular interest is how each of these

approaches deal with: (i) different types of recommender traders; and (ii) trader

contexts with traders that have different preferences and constraints over

resources, and thus prefer different niches. e following research questions are

of immediate interest:
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• How well do objective and subjective reputation approaes provide
market-selection signals to traders in multi-nie environments?

• What impact do increasing levels of noisy recommenders have on resource
allocations when objective and subjective reputation approaes are utilised?

Traders who are satisfied by different market niches will prefer to trade in

different resource markets. erefore, positive or negative opinions may be

helpful or unhelpful to different traders in a multi-niche environment.

Hypothesis 6.2. Market-selection signals that are formed using a subjective
reputation approa will be more accurate than those formed using an objective
reputation approa, because traders can subjectively adjust the importance of
different traders’ opinions in forming market-selection signals.

And, in terms of the second research question above:

Hypothesis 6.3. In the presence of noisy recommenders, resource allocations will
always be more efficient when market-selection signals are formed using a subjective
approa, because it enables traders to identify noisy recommenders and ignore their
opinions.

Experimental setup

is section is concerned with environments where reputation approaches are

assumed to be required, and is investigating differences between an objective and

subjective approach. In adherence, the system is assumed to have a reasonable

amount of churn (10%) at all times. Further, in the spirit of extending the previous

Chapter’s work, market-exchanges are now able to adjust their aribute-levels, in

this case using ε-greedy aribute-level selection strategies. Again, nine

market-exchanges are considered, with the same charging schemes in Table 6.1.

In terms of traders, the constraint-induced nies trader context (Section 5.3.1,

Page 135), where there are multiple niches, is used. erefore, in this set of

experiments, nine market-exchanges are adapting in an aempt to find market

niches within an environment where 300 traders have potentially different

preferences and constraints over resources, creating dynamic environments and

difficult market-selection decisions for new traders.
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Noisy recommenders are chosen randomly at initialisation time. If a noisy

recommender leaves the system it is replaced by a new one; further, a new trader

has the same preferences and constraints as the one its replaces, but a randomly

generated budget constraint. Noisy recommenders use: σ̇min = 10, σ̇max = 30,

which allowed for reasonably strong opinions. e Bayesian reputation

mechanism’s parameters, aer some initial exploratory simulations, were chosen

inline with other studies that have made use of similar Bayesian approaches [97].

Traders discount their opinions according to Δt = 0.95; confidence bounds on

Beta distributions are measured using ε = 0.4; when using the objective approach

the confidence threshold γ∗ai = 0.6, while for the subjective approach the

recommendation weight threshold, used to indicate when to completely ignore

an agent’s opinions was set to γ̂∗ai = 0.6.

Experimental results

Each data point reported is the mean value from 50 simulation repetitions. We

first test Hypothesis 6.2 by comparing allocative efficiency values for two

experimental variations: one using the objective reputation approach in

Section 6.2, and one using the subjective approach described in Section 6.4. When

traders used the objective approach and there were no noisy recommenders,

mean allocative efficiency was 44.0%± 3.9% versus 66.1%± 3.7% when the

subjective system was in place. A t-test of equality of means resulted in a p-value

< 0.005, thus these means are statistically distinct and Hypothesis 6.2 can be

accepted. Figure 6.6 presents results from simulations with varying proportions of

noisy recommender in the trader population. Simulations with 0%–50% of noisy

recommenders were considered. e allocative efficiency of the system was

significantly higher for all simulations where the subjective approach was used,

therefore Hypothesis 6.3 is accepted. Rather interestingly, allocative efficiency is

maintained even when 50% of the traders are providing random opinions, with

the subjective reputation approach in use. Without the support of the subjective
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Figure 6.6: Mean system allocative efficiency for simulations involving varying lev-
els of noisy recommenders in the trader population. A subjective reputation ap-
proach is quite resilient to very high levels of noisy recommenders, and accurate
market-selection signals are still available even when 50% of the population is pro-
viding random opinions. By observing the results for 0% noisy recommenders it is
possible to accept Hypothesis 6.2.

reputation approach, noisy recommenders certainly have a harmful impact in the

system, as seen by a reduction in allocative efficiency for proportions of 30% or

more. Figure 6.7 shows the incremental change in allocative efficiency as the

proportion of noisy recommenders is increased. Again, efficiency loss gets worse

in the objective reputation case, as the proportion of noisy recommenders

decreases. Clearly, the subjective reputation system is performing very well, in

terms of allowing traders to ignore noisy recommenders. Finally in this section,

trader recommendation connection dynamics are analysed. Recall that if ai’s

recommendation weight γ̂ai,aj of aj is in excess threshold γ̂∗ai = 0.65, ai uses aj’s

opinion in reputation calculation, otherwise it is ignored. e following

definitions, using the constraint-induced nies trader context notation introduced
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Figure 6.7: Incremental change in allocative efficiency experiments with increas-
ing proportions of noisy recommenders. Not only does an objective reputation ap-
proach result in reduced efficiency as noisy recommenders increase, but the change
in efficiency getsworse as the proportion of noise recommenders increases. Provid-
ing an explanation for some efficiency increases with noisy recommendations, e.g.,
from 0–10%, requires further investigation, but it is expected that it is increasing
the explorative nature of traders, which may suggest that ε seing used for their
reputation-based market-selection strategies may not be optimal.

in Section 5.3.1, are provided to help label different cohorts of traders:

B1 = {ai ∈ T : ai ∈ B ∩ T CI
1 }

B2 = {ai ∈ T : ai ∈ B ∩ T CI
2 }

S1 = {ai ∈ T : ai ∈ S ∩ T CI
1 }

S2 = {ai ∈ T : ai ∈ S ∩ T CI
2 }

Due to constraints in the constraint-induced nies trader context, B1 and B2

buyers prefer to trade in the same markets as S1 and S2 traders respectively. us,

to a trader ai ∈ B1, for example, the opinions of a trader aj ∈ B2 ∪ S2 are not

going to be helpful, because they are interested in different market niches.

Figure 6.8 visualises the mean frequency of recommendation weights γ̂ai,aj ≥ γ̂∗ai
(considered maintained recommendation connections) between different cohorts of
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Figure 6.8: Mean frequency of recommender connections maintained between dif-
ferent cohorts of traders. Cohorts are identified as follows. ‘B’ refers to buyer and
‘S’ to seller, traders. ‘1’ and ‘2’ refer to different preference and constraint seings.
Traders in this trader context prefer to trade one of two types of resource, thus there
are twomarket niches in the environment, whichmarket-exchangeswill try to find.
‘B1’ and ‘S1’ traders would prefer a separate market to ‘B2’ and ‘S2’ traders. ere-
fore, opinions from traders in ‘1’ cohorts will not be helpful to traders in ‘2’ cohorts,
and if traders’ recommendation weights for other decrease below the confidence
threshold they will ignore the associated traders’ opinions. Firstly, the subjective
approach enables traders to only maintain recommendation connections (and thus
consider opinions) to traders that are helpful. Secondly, as the proportion of noisy
traders increases, traders ignore their opinions, as evidenced by a general reduction
in connections. One side effect of noisy recommenders is that due to their random
recommendations, a small proportion of otherwise useless recommenders in fact
provide (by chance) useful recommendations. is is seen in the small increase in
some connection frequencies.
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traders using the subjective reputation approach. ere are two interesting

observations: (i) traders maintain more recommendation connections to traders

whose opinions are helpful to them, i.e, are interested in the same markets; and

(ii) less recommendation connections are maintained as the proportion of noisy

recommenders increases. is suggests that not only does the subjective

approach enable traders to identify noisy recommenders and ignore them, but it

also appears to enable traders to identify and consider opinions from traders who

are interested in the same markets.

6.5.3 Dealing with lying recommenders

e empirical comparison between objective and subjective reputation

approaches is continued in this set of experiments by assessing the impact of

lying recommenders. e main research question to answer in this section is:

What impact do increasing levels of lying recommenders have on resource
allocations when objective and subjective reputation approaes are utilised?

Based upon the success of the previous experiments an intuitive hypothesis

would be:

Hypothesis 6.4. In the presence of lying recommenders, resource allocations will
always be more efficient when market-selection signals are formed using a subjective
approa, because it enables traders to identify lying recommenders and ignore their
opinions.

An experimental setup identical to the last set of experiments is used, with the

exception that lying recommenders are used instead of noisy recommenders.

Experimental Results

Each simulation was repeated 50 times, and mean results are reported. Again,

experimental variations with increasing numbers of lying recommenders are

carried out, as shown in Figure 6.9. In a similar fashion to the experiments
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Figure 6.9: Mean allocative efficiency for simulations involving various levels of
lying recommenders that are using the Supply and Demand Aa. Lying recom-
menders, because of their strategic information manipulation, are very damaging
to the overall system efficiency, when, in the objective reputation approach, their
opinions are considered equally to others. Lying recommenders specifically try to
disrupt market equilibria to increase their own profits, which leads to inefficient
allocations. Traders using the subjective reputation approach, however, are able to
ignore the opinions of traders using this aack, resulting in the maintenance of
high allocative efficiencies even when 50% of the opinions in the system are lies.

involving noisy recommenders, we find that the even with half of the trader

population aempting to subvert the reputation of some market-exchanges,

allocative efficiency is maintained only when the subjective reputation system is

in use. Of particular interest is that the impact of lying recommenders is far more

detrimental to the system than noisy recommenders, yet the subjective reputation

approach still performs equally well. us, Hypothesis 6.4 is also accepted.

Figure 6.10 clearly shows that as the proportion of Lying Recommenders is

increased, the change in system allocative efficiency is minimal, while when the

objective reputation approach is used, efficiencies get progressively worse as the

proportion of liars increases. Finally, a recommender connection analysis is

performed and visualised in Figure 6.11. In contrast to the noisy recommender

simulations (Figure 6.8), only certain cohorts of traders have their connections

reduced as the number of liars using the Supply and Demand Aa increases.
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Figure 6.10: As with the experiments looking at the proportion of noisy recom-
menders, in this set of experiments the use of an objective reputation system results
in the incremental change in allocative efficiency geing worse as the proportion
of lying traders increases.

us, lying traders will only have their opinions ignored by a section of the

population, because they still provide truthful opinions to other sections. is is a

useful property in these types of market-based system where opinions may be

both helpful and unhelpful to different traders.

6.5.4 Recommender Network analysis

is section analyses some of the topological properties of the recommender

networks that emerge within the system. A recommender network is a directed

graph containing all the trader in the system, where an edge from trader ai to

trader aj indicates that ai uses aj’s opinion when forming reputations of

market-exchanges. Formally, given a recommender network graph G(T ,E),

where T is the set of all traders and E ⊂ T × T is the set of directed edges

between traders, in the form of ordered pairs
(
ai, aj

)
, which satisfy:

γ̂ai,aj ≥ γ̂∗ai ⇐⇒
(
ai, aj

)
∈ E, (6.23)
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Figure 6.11: Mean frequency of recommender connections maintained between dif-
ferent cohorts of traders in simulations where there are varying proportions of
lying recommenders. For explanations of the cohort labels and associated types
see Figure 6.8 and Section 6.5.2. An increase in lying recommender proportions re-
sults in traders reducing the number of recommender connections it maintains to
its own type. is is because lying recommenders only lie to traders who they are
in competition with. For example, in the top le figure ‘B2’ traders ignore more
‘B2’ traders as the proportion of liars increase (top le), but the recommendation
frequencies of helpful traders, e.g., ‘S2’ traders (that may also be liars), are not sig-
nificantly effected. erefore, the subjective reputation approach allows traders to
ignore or include selected types of traders when forming reputations, even if those
traders’ opinions are helpful or unhelpful to other traders.
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where γ̂ai,aj is the recommendation weight ai holds for aj and γ̂∗ai is ai’s confidence

threshold for including other traders’ opinions. e recommendation weight

learning process that occurs when agents are using the subjective reputation

approach is particularly interesting, and understanding more about the resulting

recommendation networks may help take a step towards the beer design of

reputation approaches for multi-aribute resource allocation systems. e

overarching research question within this section is:

What kinds of topological properties do recommender networks, emerging as a
result of trader learning processes, possess?

As well as wishing to visualise the recommender networks in order to

qualitatively analyse some of the topological properties, a statistical quantitative

analysis of the recommender hierary is carried out. In many real-world

marketplaces and social hubs there exist influential entities that

coordinate—intentionally or not—the decisions of other entities in the system, by

facilitating consensus between other system participants. Examples of these

influencers might include newspaper critics, financial advisors, or prominent

academics. ese types of networks can be useful in distributed systems,

particularly if consensus and coordination are desirable properties. Such

properties are certainly useful for the model studied within this thesis, because it

can encourage the self-organisation of traders into markets that satisfy their

market niche, leading to more efficient resource allocations. Of particular interest

is whether the recommendation weight learning process within the subjective

reputation approach results in the emergence of influential traders that might

provide useful opinions to many traders, thus imposing consensus on

market-selection.

ere are many ways to measure how influential a trader is. Graph

theorists, for example, might look at the centrality [16] of the trader in the

recommender network, but given our recommendation network is weighted, that

analysis doesn’t capture the notion of influence very well. Rather, by asking each
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trader for their favoured recommenders, e.g., their top three by recommendation

weight strength, and then building a new Favourite Recommender graph, based on

that information from all traders, a more meaningful analysis can be performed.

Definition 6.1. (Favourite Recommender Graph): is a subgraph Ĝ k(T ,E k) of the
recommendation network graph G(T ,E), where the Favourite Recommender
Graph edge set E k contains for each ai at most k ordered pairs of edges
(ai, aj) ∈ E k. In the case that ai has more than k edges (ai, aj) in the
recommendation network graph edge set E, the k edges (ai, aj) ∈ E with the
largest γ̂ai,aj values are put into E k, subject to γ̂ai,aj ≥ γ̂∗ai .

erefore, based on Definition 6.1, the Favourite Recommender Graph will be a

subgraph of the recommender network graph where for each trader vertex

ai ∈ T , the trader’s strongest k recommendation weights to other traders are

represented as directed outgoing edges (ai, aj). If k = |T | − 1 then

Ĝ k(T ,E k) ≡ G(T ,E), while in the case that k = 1, each trader in the graph has at

most one outgoing edge to the trader whose opinions they find most helpful.

Given an ordered pair (ai, aj) ∈ E k, aj is defined as a favoured recommender of ai.

Measuring the number of incoming edges that each trader has (its

in-degree) in a Favoured Recommender Graph, it is possible to build an in-degree

frequency distribution, and reveal the proportion of traders that are generally

favoured more than others (and thus have a high in-degree). However, in many

topologies it is common for some vertices to have more edges than others, even

when randomly generated. To know whether an underlying mechanism is

responsible for the in-degree distribution of the Favourite Recommender Graph

(rather than it being a random artefact), one can compare a Favourite

Recommender Graph frequency distribution to one that is randomly generated

using the same recommender network supergraph.

Definition 6.2. Random Recommender Graph: A Random Recommender Graph
G̃ k(T ,E k) is a subgraph of a recommender network graph G(T ,E). It is formed
in almost exactly the same way as the Favourite Recommender Graph Ĝ k(T ,E k)
in Definition 6.1, with following difference: rather than selecting the top k
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ordered pairs (ai, aj) according to ai’s recommendation weight for each aj, for
each ai, k pairs are randomly chosen from the set of pairs (ai, aj) ∈ E, subject to
γ̂ai,aj ≥ γ̂∗ai . us, G̃ k(T ,E k) is a random subgraph of G(T ,E), where each trader
ai has at most k outgoing edges.
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Figure 6.12: In-degree frequency density functions for the Favourite Recommender
Graph and the Random Recommender Graph, built from a recommendation network
graph taken from a typical simulation. e Favourite Recommender Graph has a
longer tail, indicating that most traders are not considered favoured recommenders
by any other traders (le side of distribution), but a few traders are considered
favoured recommenders by many traders (right side of distribution). erefore, a
few traders within the system are very influential. Because the Random Recom-
mender Graph is randomly generated from the same supergraph, and the distribu-
tions are statistically distinct, it is argued that a non-random process is responsible
for the emergence of these influential traders.

In Figure 6.12, the in-degree frequency distributions for a Favourite

Recommender Graph from a typical simulation, is calculated and ploed, where

k = 3. Firstly, many traders have an in-degree of zero, indicating that most

traders are not considered favoured recommenders by others, however a few

traders have very high in-degrees, indicating that in some cases up to 40 traders

(13% of the population) consider them as one of their favoured recommenders.

e Kolmogorov–Smirnov² (KS) test non-parametrically tests the null hypothesis

²e K-S test assumes that a continuous empirical CDF [155] is provided, as this allows the KS
statistic to converge to a well behaved distribution, as the sample size approaches infinity; thus the
KS test in the discrete case is an approximation.
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that the frequency of events observed in two independent samples are consistent

with each other, i.e., arise from the same distribution. Williams [181] provides

several arguments as to why the Kolmogorov–Smirnov test may be more

accurate than the more commonly used Pearson’s Chi-Squared Test [131], which

also only allows one to compare against a theoretical distribution. Performing the

KS test on the two distributions shown in Figure 6.12 reveals that the null

hypothesis—the samples are from the same distribution—can be rejected, and

thus they are statistically distinct distributions. e reported p-value < 0.005, and

the KS test statistic = 0.2179; the two samples were made up of 350,000

observations each. is suggests that the subjective reputation system is capable

of allowing these types of hierarchies to emerge.

Visualising Recommender Networks

is section provides the reader with some visualisations of recommender

networks from typical simulations. To do this, the Java Universal Network and

Graph Framework [122] was integrated into the simulation framework, which

allows traders to be visualised as vertices and recommendation weights as edges.

ere were several initial motivations for analysing the networks in this way:

(i) it is not clear from only performing in-degree and out-degree frequency

analysis, who traders connect to; and (ii) what impact do trader preferences and

constraints or profitability have on the connections they maintain? e network

visualisations are typical of a simulation that contains either 300 constraint-based,

or preference-based traders. Each trader ai can have many out-going

recommendation weights γ̂ai,aj to other traders aj ∈ T that satisfy γ̂ai,aj ≥ γ̂∗ai .

However, visualising all of these connections leads to a very dense graph, which is

hard to analyse, so instead the Favourite Recommender Graph is visualised where

k = 3. e following visualisations provide support to the previous result,

namely: most traders have a low in-degree, while a few have a high in-degree.

Further, they provide evidence to show the self-organising properties of the
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subjective-reputation approach. Figure 6.13 visualises a Favourite Recommender

Figure 6.13: A visualisation of a typical Favoured Recommender Graph from a sim-
ulation using a constraint-induced nies trader context, at a single point in time.
Different shades indicate traders that belong to different market segments and thus
prefer to trade in different markets, i.e., darkly (lightly) shaded traders in gen-
eral find the opinions from other darkly (lightly) shaded traders helpful. Buyers
are coloured blue and sellers red. Extra-marginal traders—those who have recently
failed to successfully trade—are drawn with a square, while intra-marginal—those
who have recently traded—traders are drawn with a circle. Edges between traders
are directed such that an out-going edge from trader ai to aj means that ai uses the
opinions of aj to form reputations of market-exchanges, i.e., γ̂ai,aj ≥ γ̂∗ai . A force-
based algorithm [60] is used to position the traders within the space. Traders can
have at most k = 3 outgoing edges, but potentially up to |T | − 1 incoming edges.
e more incoming and outgoing connections a vertex has, the more centrally it is
positioned.

Graph from a snapshot of a simulation containing multiple niches, and thus

traders who prefer different market segments. Notice several observations:

1. Traders with similar resource preferences, i.e., prefer the same market
niche, are generally highly connected;
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2. Extra-marginal traders don’t share many connections with intra-marginal
traders, but they do tend to share connections with ea other. is suggests
that if—due to an exchange selecting a new resource type—a beer market
becomes available, they can quickly share that information with each other;

3. Extra-marginal traders also tend to be more connected to all trader types
(indicated by dark and lighter shades connecting). is may facilitate the
quick spreading of information regarding the previous point.

Finally, the reader may notice a reasonable amount of connectivity between some

intra-marginal dark red sellers, and traders of other types, i.e, lightly coloured.

is is because traders that are dark can provide all resource types (they have no

minimum aribute-level constraints) to any buyer, thus they share opinions on

market-selection. Figure 6.14 visualises a Favourite Recommender Graph of a

simulation containing traders from the preference-induced nies trader context.

Because these traders don’t have constraints (only preferences over aributes),

there are fewer extra-marginal traders (traders can trade resources with any

aribute-levels). Due to the lower extra-marginal traders, more traders tend to

connect together, as there is less chance an opinion results in a trader not

trading—thus all opinions are generally more helpful.

6.6 Conclusions and Discussion

Prior to this chapter, trading agents only considered their own private

information when making market-selection decisions, which was an expensive

initial process when entering the system involving having to always directly join

markets to evaluate their suitability. is chapter considered, for the first time, the

application of a subjective reputation approach, grounded in Bayesian statistics,

to the problem of facilitating market-selection in the novel multi-aribute model

of resource allocation studied throughout this thesis. Inline with real-world open

and dynamic multi-agent systems, this chapter considers an extension to the

multi-aribute market-based model, by assuming trader urn exists within the

model, which is defined as different traders joining and leaving at different times.
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Figure 6.14: A visualisation of a typical Favoured Recommender Graph from a sim-
ulation using a preference-induced nies trader context, at a single point in time.
In the preference-induces nies trader context, there are two market niches. ere-
fore, there are again dark and lightly shaded traders. Buyers that prefer the first
resource aribute, and sellers that can provide the first aribute at less cost, are
lightly shaded. While those who prefer and can supply more cheaply, the second
aribute, are darkly shaded. While one trader appears to be heavily linked to both
types of trader in the population, situations such as this tend to appear and dis-
appear quite oen when viewing simulations, presenting some interesting future
work tomore closely analyse the dynamics of the recommender networks. All other
details are explained in Figure 6.13.

While other subjective Bayesian approaches [166, 165, 97] have considered

both noisy and manipulative information, the domains they consider are different

to the market-based model in this chapter, and it is unclear of the effectiveness of

these approaches in multi-aribute resource allocation models. is chapter made

progress in this direction by designing two new behaviour models: Noisy

Recommenders, which are designed to mimic potentially faulty soware agents,

and Lying Recommenders, which using the Supply and Demand Aa, are

engineered to specifically manipulate the reputation system such that it directly
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improves their profit margins.

Using these, as well as a variety of market conditions, this chapter

empirically analyses both the impact that churn has on the efficiency of resource

allocations, and impact that a subjective reputation approach has on efficiency.

Results demonstrated that in the absence of reputation, system churn reduces the

allocative efficiency of the system dramatically as it increases, while when traders

use reputation information this loss is significantly reduced. Further, results also

demonstrated that the subjective reputation approaches were also able to deal

with the presence of significant proportions of noisy and lying recommenders

without any measurable loss to system efficiency.

erefore, the contributions of this chapter are:

• e proposal and application of a subjective reputation approach to tackle

the problem of market-selection in a market-based environment containing

multiple competing marketplaces;

• Models of two types of trader behaviour expected within a multi-aribute

market-based model: Noisy Recommenders, and Lying Recommenders, who

aempt to strategically manipulate reputation information to alter supply

and demand in a two-sided market;

• Experimental evidence showing not only that reputation information

improves market-selection signals under dynamic scenarios, leading to

more efficient resource allocations, but that a subjective reputation

approach allows traders to maintain connections to helpful recommenders

and ignores harmful or inaccurate ones;

• An initial analysis of the properties of emergent recommender networks,

using visualisation techniques and a novel statistical graph reduction

approach to measure the influential properties of traders using the

subjective reputation approach.
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is chapter does not claim that the reputation approach used is necessarily the

best, and as such does not compare performance of different reputation systems.

e main aim of the chapter was to see what impact reputation, in terms of

publicly shared market-selection decisions, had on the outcomes of the system.

While previous work has already shown subjective reputation approaches can

work well in the presence of malicious or false information, this chapter has

advanced the state-of-the-art by showing that subjective reputation information

can also be very important in market-based systems for allowing cohorts of

traders to signal to each other which markets they should all join, thus improving

market segmentation, and the efficiency of allocations.

Statistical analysis of typical recommender networks found that while a

large proportion of traders were no-ones’ favoured recommenders, a few were

highly favoured by many. is leads to frequency distributions that are

remarkably similar (though not identical) to Pareto distributed networks [171],

and large interconnected networks similar to those found in other studies of

social networks used for spreading gossip or opinions [190]. Because these

approaches appear to lead to highly influential groups of traders, which

encourages cohesive decisions within the population, future work should look at

any negative effects this process may cause. For example, phenomena such as

Groupthink [75], where a tightly-knit group of individuals fail to effectively

examine all alternatives in favour having a consensus view, might actually lead to

sub-optimal market-selection in some cases. Further, weighted recommendation

networks of type studied in this chapter might encourage a type of

disconfirmation bias [50], where conflicting traders are overwhelmed by

third-party information supporting one view when they are a small group may

have conflicting information. Further work will explore these phenomena further,

overall focussing on the design of more effective and robust reputation

approaches for trader market-selection.
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is thesis has studied a novel approach for allocating multi-aribute

computational resources in distributed, dynamic and open environments. e

approach considers multiple competing marketplaces offering double auction

markets for specific types of computational resources, while resource consumers

and providers, using decision-making behaviours inspired by marketing models

grounded in consumer theory, choose between markets according to whichever

best satisfies their preferences and constraints. e approach satisfies a number of

properties desirable in distributed utility computing environments (see

Section 2.1.3). Specifically, the approach is:

• robust: because it does not rely on a single centralised co-ordinator or
mechanism;

• scaleable: because more marketplaces can be added without the need to
coordinate or communicate with any existing ones;

• expedient and available: because it uses a continuous mechanism to allocate
resources between traders as soon as two matching traders submit
matching offers;

• open: because traders do not need to have complex bidding or bargaining
strategies, and the public nature of marketplaces means all trader have
equal access to prices within a market.

While approaches to single-aribute resource allocation via competing

marketplaces have been considered within the literature before, effectively

allocating multi-aribute resources in a similar way required tackling several

challenges, as well as developing a new market-based model. In Chapter 4, a

model of multi-aribute resource allocation via competing marketplaces was

formally described, and mechanisms describing agent behaviour developed, as

well as an algorithm for measuring the efficiency of the market-based system

during simulation.

Chapter 5 considered the automatic niing problem, which exists because it

is desirable that market-exchanges are able to autonomously locate and compete

over the market niches that most satisfy segments of the trader population; this
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particularly challenging due to the multiple learning processes occurring in the

environment. Approaches for tackling this challenge, using aribute-level

selection (ALS) strategies were proposed and analysed, and results suggested that

under a variety of conditions, market-exchanges were able to locate the market

niche(s) that most satisfied various market segments, leading to efficient

outcomes. Further to this, the novel methodology developed in Chapter 3 for

quantitatively and qualitatively assessing the generalisation properties of market

mechanisms, was applied to the study of ALS strategy performance. Results of a

comprehensive computational study revealed that although no ALS strategy was

robust against all environmental conditions, a number of environmental factors

that affected ALS strategy performance were discovered, hopefully taking a step

towards designing more robust strategies in the future.

Finally, Chapter 6 considered a more dynamic extension to the model, in

which traders continually leave the system, while new ones join, as might be

expected in a real-world distributed and open seing. Under such conditions the

dynamic nature of marketplaces makes learning accurate market-selection signals

potentially expensive for new traders. Chapter 6 considered the application of a

Bayesian statistics reputation approach to the problem of facilitating traders’

market-selection decisions, and demonstrated that subjective reputation-based

market-selection strategies lead to more efficient resource allocations in a variety

of dynamic environmental seings. As well as subjective reputation

information—where traders value different traders’ opinions

differently—enabling traders to ignore spurious opinions within the system, the

information also enabled them to identify influential traders. is leads to more

consensual market selection by traders in general, resulting in higher volume and

more liquid markets, leading to more efficient resource allocations.
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7.1 Summary of esis Contributions

In summary, this thesis has made the following main contributions:

• A novel methodology for measuring the generalisation properties of

competing market mechanisms in coevolutionary trading environments.

e methodology was applied to market mechanisms submied to TAC

Market Design Competitions, and showed that a number of these

mechanisms did not generalise across environmental situations,

demonstrating the methodology’s appropriateness.

• A novel approach for allocating distributed multi-aribute computational

resources, using multiple competing marketplaces, which each satisfy

market segments by running markets for specific types of computational

resource.

• e formulation of decision-making models for traders, which allows them

to value multi-aribute computational resources, and reason over

marketplaces offering these, using marketing models grounded in consumer

theory.

• An algorithm for calculating the optimal allocation of multi-aribute

computational resources between traders with different preferences and

constraints over resource aributes, using combinatorial optimisation

methods.

• e first clear formulation of the automatic niing problem, which presents

itself when marketplaces must decide what type of resource market to offer

to traders with unknown and diverse resource preferences and constraints,

and within an environment with competing marketplaces aempting to do

the same.
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• A thorough empirical analysis of the effectiveness of n-armed bandit and

evolutionary optimisation market niching strategies for tackling the

automatic niching problem, within a variety of representative

environmental situations.

• e first application of a reputation-based approach for facilitating

selection between double-auction marketplaces by integrating reputation

information into market-selection strategies.

• An analysis of the performance of reputation-based approaches to

market-selection, demonstrating that subjective reputation information

improves market-selection decisions, which leads to more efficient

allocations globally.

In terms of market-based approaches to multi-aribute resource allocation, the

approach advocated and studied within this thesis sits—with purposeful

pragmatism—somewhere between fully decentralised and fully centralised

models of resource allocation. Allocating multi-aribute computational resources

via multiple competing marketplaces creates a distributed market-based

environment, where traders are free to migrate between various institutional

exchanges, and thus do not rely upon any single mechanism. Further, allocations

are oen very efficient because: (i) traders are aware of market prices and, when a

reputation approach is used, aware of the most profitable markets, thus no

individual trader is at a disadvantage; and (ii) market-exchanges, using

aribute-level selection-strategies, are in many cases able to locate the market

niches that most satisfy traders’ preferences and constraints. erefore, the

approach, and thus contributions within this thesis supporting the approach, are

significant, because the approach represents a valid alternative to either fully

decentralised (robust but economically inefficient) or fully centralised

(economically efficient but computationally prohibitive and brile), models of

multi-aribute resource allocation. However, this thesis does not claim that this
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approach is generally beer than any other, only that it satisfies designer

objectives, and therefore is suitable, for the application envisaged, viz., the

allocation of distributed multi-aribute computational resources between

self-interested soware agents.

One of the underlying issues in this thesis was generalisation and

robustness, particularly in terms of double auction market mechanisms competing

in dynamic and open environments. e complexities of these coevolutionary

systems preclude using theoretical approaches to design mechanisms that can

generalise across all environments or situations. us, significant research effort

focusses on empirical approaches to the design of more robust market

mechanisms, which generalise well across environments. In that respect,

contributions made within this thesis are significant for two reasons: (i) the

mechanisms developed within this thesis are adaptive by design—in their absence

the market-based system would be less robust against various environmental

factors; and (ii) the methodology developed for empirically assessing the

generalisation properties of market mechanisms can be used by others working in

this research area, to guide the design of mechanisms that generalise beer.

Finally, much of the work carried out within this thesis involves exploring

aspects of competition between marketplaces. To that end, several techniques

were developed for discovering not just mechanisms’ sensitivities to competitors,

but also for visualising the outcomes of complex interactions between competing

market mechanisms. In that case, it is hoped that these methods and techniques

will be useful for anybody that is interested in analysing competition between

marketplaces, be it from a computer science, economics, or marketing,

perspective.
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7.2 Future Work

is thesis is a stepping stone towards the design of robust and efficient

market-based approaches to computational resource allocation in large-scale

distributed systems. erefore, in this last section, some future work is outlined,

by considering some of the limitations of the work described within this thesis.

is thesis did not claim that the approach studied was the best approach to

tackling computational resource allocation problems, only that it was suitable. It

is hard to directly compare this approach to others, such as fully decentralised or

fully centralised approaches, because ‘beer’ is multi-objective in nature,

encompassing, for example: economic efficiency, scaleability, and robustness.

However, it would be interesting and important to directly compare this

approach with others across the multiple objectives, so that other researchers or

practitioners could beer understand what approach would suit their needs best.

To make this assessment, the methodology developed in Chapter 3 could be

extended so that it considers performance within multiple dimensions, when

assessing the generalisation properties of market mechanisms within different

environments. Potentially, a researcher or practitioner could then beer design

mechanisms for the environments they are expected to operate in.

In terms of directly improving the market-based approach studied in this

thesis, a significant next step would be to consider more generalised versions of

the model, which would have properties closer to those expected within a

real-world implementation. Specifically, the model presented in Chapter 4 is

purposely simplified to ease analysis within this thesis. All resources modelled in

this thesis had two non-price aributes, yet it is quite common for real-world

computational resources to have more for example [2], so an important next step

is to consider the impact of resources with higher numbers of aributes. Another

simplifying step was to create very clear market segments, which aided the

identification of well-defined market niches, in the form of resource types that
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large proportions of the trader population clearly preferred. Increasing the

number of resource aributes, and making market segments less clear, potentially

has significant impacts on the performance of market-exchanges’ aribute-level

selection-strategies. While results suggested in Chapter 5 that bandit strategies

significantly out-performed evolutionary optimisation approaches, as the

dimensionality of the aribute-level space increases and the market segmentation

in the trader population becomes less clear, it is less likely that bandit strategies’

action sets will contain the resource types that most satisfy available market

segments. In such a case, the aractiveness of evolutionary optimisation

approaches, which can select any point in the resource-aribute space, increases.

Indeed, Chapter 5 did not claim that n-armed bandit approaches were beer than

evolutionary optimisation approaches in general, only in the representative

environments considered within the constraints of the model studied. It is

possible, for example, that diversity techniques such as fitness-sharing semes

[149] will improve evolutionary ALS strategy performance in higher-dimensional

resource-aribute spaces.

Finally, Chapter 6 considered using reputation only in a signalling role, but

not in a sanctioning role. A very important extension to this work is to consider

the potential issue of market failure that could occur if this model is situated

within real-world open distributed systems. Market failure can occur in

real-world markets when there is either adverse selection [1] or moral hazard

[27]. And, because of the considerable distance among trading partners, both

types of information asymmetry are possible [37, p. 31]. Real-world financial

exchanges deal with moral hazard under the term counterparty risk, and they

mitigate against it by demanding all market participants leave enough margin in

their accounts—suitable funds for the exchange to reimburse any party that loses

out in a transaction. Within this model, market-exchange reputation is even more

important, because exchanges would be required to be trusted with participants’

funds.
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Adverse selection behaviour might include sellers intentionally entering a

market and providing resources that are not of the same type as those described.

Two approaches for dealing with this include the use of a two-stage mechanism,

such as [170], or, perhaps more preferably, allowing traders to factor in losses and

incorrect resource provision into marketplace reputation. In that case,

market-exchanges would be incentivised to actively monitor which types of seller

are allowed into their markets, or perhaps incentivise good behaviour by

charging fees according to seller performance. In general, this type of research

begins to reach into many other areas, including computer security, economics,

and network theory.
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Well, I don’t, I don’t really think that the end can be assessed. . . uh as of
itself as being the end because what does the end feel like? It’s like

saying when you try to extrapolate the end of the universe you say if the
universe is indeed infinite then how—what does that mean? How far is,
is, is all the way and then if it stops what’s stoppin’ it and what’s behind
what’s stoppin’ it, so what’s the end, you know, is my question to you. . .

—is Is Spinal Tap (1984)


