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Abstract

In this thesis a connectionist model for affordance-guided selective attention for action
is presented. The selective attention for action model (SAAM) is aimed at modelling
the direct route from vision to action using Gibson’s affordances to describe actions.
In the model complex affordances are encoded in grasp postures. It is shown that
this is a viable method to realise affordances. By deriving complex affordances from
grasp postures which in turn are derived from grasp affordances and invariants in
the visual information, the model implements a hierarchical structure of affordances
as postulated in Gibson’s affordance concept. This is a novel way of implementing
affordances in a computational model. Three studies were conducted to explore the
model. The grasp postures generated by SAAM are verified in Study 1 by comparing
them with human grasp postures. These grasps were collected in an experiment
which used the same stimulus shapes as the model. In Study 2 the attentional
behaviour of SAAM is investigated. It is shown that the model is able to select only
one of the objects in visual inputs showing multiple objects as well as selecting the
appropriate action category (described by a grasp type). Furthermore, it is shown
that the bottom-up selection of the model can be influenced by top-down feedback of
action intentions. In Study 3 the findings of Study 2 are applied to stimuli showing
two hand-tools (pliers and hammer) to clarify how the findings of Study 2 link to
complex affordances and action intentions. The results demonstrate that SAAM offers
a novel and powerful way to implement complex affordances. Possibilities for further
experimentation and extensions of the model are discussed.
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Introduction
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1 Motivation

Complex interactions with objects in our environment play an important role in our

daily lives. Even a seemingly simple task like driving a nail into a wall involves a

number of steps: First, we have to find the hammer and a nail amongst all the other

tools and materials in our toolbox, then we need to grasp both correctly so that we

can hammer effectively without injuring ourselves and, finally, we can drive the nail

into the wall. Doing this successfully does not only depend on our intention to drive

the nail into the wall but much more crucially on knowledge about the actions which

the objects in our toolbox afford. Moreover, we need to know precisely how to perform

the chosen action with a specific tool for effective interaction.

Traditionally, it has been assumed that objects in the environment are identified

in an object recognition process in the visual system and that actions are linked

to categorical representations of objects. Hence, in the example above the hammer

would first be identified as a hammer and then a hammer action which is linked to the

‘hammer’ object category could be triggered. In the last decades, though, research

in action perception produced much evidence supporting a different theory (see

Chapter 3). This theory proposes that visual perception for action takes place

independently of normal object recognition and that two different pathways exist in

the human brain for each form of perception (Ungerleider & Mishkin, 1982; Riddoch,

Humphreys, & Price, 1989; Milner & Goodale, 1995). Furthermore, the route from

vision to action is often connected to Gibson’s affordances (J. J. Gibson, 1966,

2



1 Motivation

1979). In the affordance concept opportunities for actions are assumed be derived

directly from invariants in the visual information. Gibson argued, that by successively

combining invariants, a hierarchy of affordances accrues which expresses increasingly

complexer actions.

In my research I set out to develop a connectionist model of the direct route from

vision to action based on Gibsonian affordances. In this model affordances of objects

are expressed in the grasp postures used to handle the objects. The model discovers

affordances of objects by generating such grasp postures based on the information

available in the visual field. It will be demonstrated that this is a viable approach

for expressing affordances and, furthermore, an implementation of the hierarchical

structure of affordances postulated by Gibson. The hierarchical structure is a crucial

property of the model and – to my best knowledge – a novel property in computational

models of affordances. To verify that the grasp postures produced by the model

resemble human grasp postures, data of grasps used by humans is collected in an

experiment and compared to the grasps created by the model.

An important aspect in the scenario described earlier is that it requires the involve-

ment of selective attention, e. g. ignoring the irrelevant contents of the toolbox and

identifying the action-relevant item. Hence, this aspect also forms a crucial part of

the exploration of the model presented here. It will be shown that attention for action

can be guided by affordances. Moreover, I will demonstrate that action intentions

can influence the discovery of affordances and, thus, yielding a top-down control of

affordance-guided visual attention for action.

The aim of the model presented in this thesis is – in a nutshell – to derive complex

action categories for object use from simple action parameters extracted from visual

information only and to thereby model effects of selective attention for action and

action intentions.

3



1 Motivation

Organisation of the thesis In Chapter 2 research on grasping is reviewed. Grasping

serves an important role in our interaction with objects and forms the foundation

of my model. The review on grasping is intended to provide a better understanding

of different grasp postures and methods to represent grasps. Chapter 3 first sum-

marises experimental work on the perception of action which led to the development

of dual route models for visual perception (Sec. 3.1). In the second part of the

chapter affordances as a theory for the processes in the direct route for action are

discussed (Sec. 3.2). Models aiming at grasping, affordances or perception for action

are reviewed in Chapter 4. The Selective Attention for Action Model (SAAM) is

presented in Chapter 5. Alongside the model, a first assessment of the model results is

presented and compared with data from a behavioural study in humans. In Chapter 6

the model is extended to incorporate classification abilities and action intentions.

Using simulations of ‘real-life’ objects it is demonstrated in Chapter 7 how complex

affordances are modelled in SAAM. In Chapter 8 the findings of the studies are

discussed. The thesis concludes with an outlook in Chapter 9. The two appendices

contain additional information about the experiment in Study 1 (App. A) and detailed

parameter specifications for all simulations (App. B).

4



2 Grasping

Interactions with objects can occur in infinitely different ways. A ball, for example,

can be kicked or thrown, a chair can be sat on or stood upon, and a jug can be filled

or emptied, to name but a few. However, a common way of interacting with an object

is to grasp it and then use it in a subsequent action. In my research I concentrate on

this type of object use because it has an interesting property: The way in which an

object is grasped tells one something about the subsequent action that is performed

with this object (Napier, 1956). This permits to encode affordances of objects by

describing how an object is grasped. Furthermore, not only opportunities for action

can be expressed in this way but also action intentions of agents. By preparing

to perform a specific grasp, an agent expresses its intention of executing a specific

subsequent action.

According to the Oxford Dictionary ‘to grasp’ means “to seize and hold firmly” (Soa-

nes & Hawker, 2008). The problem with this definition is, however, that it comprises

a myriad of very different grasps. Is the object grasped with only one or with both

hands? Is it a grasp to get control of an object or to hold on to something? Is it at all

an object that is grasped? – These questions highlight just some of the variations in

grasping. To understand how different types of grasps can be distinguished amongst

these variations, literature about grasp taxonomies is reviewed in this chapter. Using

these classifications and the requirements for a computational model of grasping, it

will be defined how ‘grasping’ is understood in this thesis and ways to encode grasps

5



2 Grasping

in my computational model will be explored.

2.1 Grasping in a Computational Model

A computational model of human grasping needs a way of describing and encoding

grasps. Furthermore, a model which focuses on the effects of opportunities for action

and action intentions on visual attention requires a representation of grasps which

has certain properties: The representation must be able to represent actions while

at the same time being related to the visual field in order for action to function as

a selective factor in visual attention. It is therefore beneficial if the representation

of grasps is spatially related to the information in the visual field. In addition to

being linked to the visual field, grasps must be encodable using visually available

information only. The reason for this is that the grasps need to be encoded before

they are actually executed. Thus, only visual information is available at that point.

The process which generates the encoded grasps furthermore needs to be simple in

terms of computational complexity so that it can be performed continuously. This

requirement is founded in the experiments summarised in Chapter 3 which showed

that affordances have an effect on participants’ behaviour even when no action is

required in a task. If the extraction of affordances were a difficult – i. e. demanding

– task, such effects should not be observed. Since grasps in my model do not only

encode hand postures but also affordances and action intentions, their encoding must

be detailed enough to include information about the posture that the hand will adopt

in a grasp in addition to the grasp location. Finally, the chosen grasp encoding must

be implementable in a neuronal network in a biologically plausible way.

To gain a deeper understanding of human grasp postures and their relation to

actions, I will review grasp classifications found in the literature in the following

section.

6



2 Grasping

2.2 Classifying and Describing Grasps

Grasp classifications and descriptions have been developed in such different disciplines

as medicine, psychology and engineering for a long time. MacKenzie and Iberall

(1994) provided an extensive overview of grasp classifications found in the literature

throughout the 20th century. Their overview will be provide the basis for the summary

of grasp classifications in this section. I will, however, put an emphasis on the

applicability of the presented grasp descriptions for encoding affordances and action

intentions. To my best knowledge, MacKenzie and Iberall’s summary – even though

it is already 16 years old – still represents the current state of research in grasp

classification systems. More recent developments in research on grasping concentrated

mainly on solving the problem of grasping in robots and relied on these earlier results

for classifications of human grasps.

Grasp classifications and descriptions can be divided into two main groups. The

first group aims at identifying grasp postures humans are capable of performing and

then subdividing this plethora of different grasps into classes of physiologically or

functionally equivalent grasps. The second group, on the other hand, seeks to provide

quantitative measures to encode individual grasps at a certain level of detail. I will

first review grasp taxonomies highlighting how functional features of grasps influence

the structure of the classifications. This demonstrates the feasibility of conveying

information about subsequent actions with different grasp postures. Additionally, it

establishes a terminology for different types of grasps. I will then present quantitative

encodings for grasps in order to find an encoding which combines the expressiveness of

the qualitative taxonomies with the implementation requirements of my computational

model.

7



2 Grasping

2.2.1 Grasp Taxonomies

Early grasp classifications from the first half of the 20th century were mostly motivated

by the search for schemes to describe injuries and the resulting losses of grasping

capabilities in a standardised way. An important publication from this time is Slocum

and Pratt’s article in which they introduced the terms ‘grasp’, ‘pinch’ and ‘hook’ to

distinguish the main classes of prehensile contact which are still used today (Slocum

& Pratt, 1944).1 They defined “[g]rasp [. . . ] as the combined action of the fingers

against the opposed thumb and the palm of the hand” and “[p]inch [. . . ] as the

apposition of the tip of the thumb against the pads of the opposing fingers” (Slocum

& Pratt, 1944, p. 535, italics in the original; see Fig. 2.1a and 2.1b). The feature

which separates these two classes is the utilisation of the palm in the ‘grasp’ posture.

This involvement of the palm in a ‘grasp’ facilitates a safe and powerful contact

between hand and object. Pinches lack this force component but their reliance on the

fingers and the thumb only allows for much more precise and dexterous prehension

instead. Interestingly, Slocum and Pratt described the role of the palm in grasps in an

almost Gibsonian way: “The breadth of the palm affords a wide base for stability and

balance” (Slocum & Pratt, 1944, p. 535). However, it is worth noting that, apart from

this statement, Slocum and Pratt defined their prehension classes solely in anatomical

and physiological terms.

This is also true for their definition of the ‘hook’. In a ‘hook’, the hand adopts

a posture with the “fingers [. . . ] flexed, so that their pads lie parallel and slightly

away from the palm” (Slocum & Pratt, 1944, p. 536). This posture can most easily

1Slocum and Pratt actually described four types of prehension. Additionally to the three types
discussed here, they defined a ‘multiple pinch’ which is same as the pinch only that instead of the
finger pads the finger tips are used to hold the object. The reason for this differentiation is the
need for an intact metacarpal arch in order to perform a multiple pinch (Slocum & Pratt, 1944,
p. 536). Since this distinction has not been picked up by later authors (probably because it is
only relevant in the light of injures and amputations), I also do not differentiate between pinches
with the finger tips and pinches with the finger pads but simply consider both as pinches here.

8



2 Grasping

(a) Pinch or precision-grasp (b) Grasp or power-grasp (c) Hook-grasp

Figure 2.1: Hand postures illustrating the three basic grasp types.

be understood if one imagines carrying a (heavy) suitcase with one hand on the

handle (see Fig. 2.1c). The ‘hook’ differs from the other two classes fundamentally

because control of the object is established only by opposing an external force affecting

the object (e. g. gravity when carrying a suitcase) whereas in a ‘grasp’ or ‘pinch’ the

object is clamped in a system of forces established between the fingers and the thumb

or palm. Because of the absence of an internal system of forces in the ‘hook’ posture,

it requires considerably less strength and dexterity in the hand. However, this comes

at a great loss in control over the object. From Slocum and Pratt’s points of view

as surgeons, though, the low physiological demands of the ‘hook’ posture instead of

these functional differences were the most important reason for including it in their

taxonomy.

Emphasising Functional Features

It was in 1956 that Napier considered prehension from a new perspective. At first

sight his classification appears to be very similar to Slocum and Pratt’s. He called

Slocum and Pratt’s ‘grasp’ a ‘power-grip’ and defined it as “[...] a clamp formed by the

partly flexed fingers and the palm, counter pressure being applied by the thumb lying

more or less in the plane of the palm”. The ‘pinch’ was relabelled as a ‘precision-grip’

meaning that “[t]he object [is] pinched between the flexor aspects of the fingers and
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the opposing thumb” (Napier, 1956). The ‘hook’ was classified as a non-prehensile

movement which Napier did not consider in his article. While this definition of the

classes describes almost the same prehensile hand postures as Slocum and Pratt’s

classification, the change of names was not merely a stylistic difference but showed

a new understanding of prehension: by choosing terms which describe functional

features of prehensile actions Napier focused his classification on the question why

certain prehensile actions are chosen instead of only asking which prehensile postures

the human hand can adopt.

Consequently, Napier looked at factors which influence the choice of a specific type

of prehension. He first noted that the shapes and sizes of the objects which are

handled during activities are among these factors (Napier, 1956, p. 902). Yet, he also

pointed out that the influence of the subsequent action (i. e. ‘intended activity’ in his

words) is most important: “While it is fully recognised that the physical form of the

object may in certain conditions influence the type of prehension employed it is clear

that it is in the nature of the intended activity that finally influences the pattern of

the grip” (Napier, 1956, p. 906). Napier then argued that different actions require

different levels of power and precision; by varying the finger positions – especially the

orientation of the thumb – the amount of force and dexterity provided by a grip can

be adjusted to meet the requirements of an action.

MacKenzie and Iberall argued that Napier’s insight was to recognize this relation

between requirements for power and precision in actions and the ability of the hand

to exercise power and precision grips (MacKenzie & Iberall, 1994, p. 23). Napier’s

observation bears a noteworthy similarity to Gibson’s affordances which, as I will

describe in more detail in Sec. 3.2, link abilities of agents with features of objects. In

Napier’s view, however, interaction with the environment requires abilities while in

Gibson’s notion the environment offers opportunities for actions.

Napier’s conclusions on the functional aspects of grasping were confirmed by an
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observational study by Cutkosky and Wright (1986) in which the researchers presented

a taxonomy of grasps from a workshop environment. The authors analysed grasps

used in workshops and classified them by their power and dexterity properties. The

resulting classification showed the existence of a smooth transition from powerful

grasps with low levels of dexterity to very dexterous but not powerful grasps. Cutkosky

and Wright suggested that this smooth transition comes with the adaptation of generic

grasps postures for specific objects. While (generic) task-directed grasps like the

‘precision’- or ‘power-grasp’ possess either power or dexterity properties, the adaptation

of a task-directed grasp posture for a concrete object results in the combination of

both properties in the final grasp. This reflects Napier’s theory that the power and

precision properties of grasps depend on the object being grasped. For example,

Cutkosky and Wright subdivided Napier’s precision grasp class depending on the

positions of the fingers. A ‘circular precision grip’ in which the fingers and the thumb

are placed on the outline of a circle allows, for instance, to exert more strength then

an ‘opposed thumb precision grip’ in which the fingers are placed on a straight line

opposed by the thumb. Cutkosky and Wright’s data also showed that different objects

were indeed handled with different grasps as I assume in my approach of encoding

action intentions for different objects by describing different grasp postures.

It is notable that Cutkosky and Wright’s taxonomy can be linked (informally) to the

idea of critical points (see Sec. 3.2.2). Each grasp class in the taxonomy is suitable for

a range of object shapes. However, if shapes differ to much – which can be interpreted

as a form of critical point – a transition to another grasp class takes place.

Virtual Fingers and Opposition Spaces

So far, we only considered three main classes of grasps. However, it is obvious

that these three classes do not cover all types of prehension humans are capable of.

Cutkosky and Wright, e. g., also observed a grasp posture called ‘lateral pinch’ in
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(a) ‘Lateral pinch’ (b) ‘Adduction grip’

Figure 2.2: Hand postures for more specialised grasp types.

which the thumb presses against the side of the index finger, that is used, for instance,

when turning a key in a lock (see Fig. 2.2a). Another common hand posture is the

‘adduction grip’ which is used to hold small objects (most notably cigarettes) between

the lateral surfaces of two fingers (Kamakura, Matsuo, Ishii, Mitsuboshi, & Miura,

1980, see Fig. 2.2b). These two types of grasps do not fall into any of the classes

defined by the above taxonomies. Furthermore, all the classifications defined their

grasp classes based on anatomical descriptions even when the taxonomy was actually

aimed at describing the functional properties of grasps (e. g., Napier’s classification).

In order to overcome these limitations, Iberall, Bingham, and Arbib (1986) de-

veloped the ‘opposition space’ taxonomy. It builds on the notion of ‘virtual fingers’

devised by Arbib, Iberall, and Lyons (1985) and uses the direction of the force vector

between two virtual fingers to define an ‘opposition space’ which then classifies the

grasp.

The idea of ‘virtual fingers’ is derived from the observation that the fingers of the

hand are often used together as if they were one larger finger, or that the palm acts

like a large and powerful finger. Arbib et al. named such groups of fingers or such a

utilisation of the palm ‘virtual fingers’ and defined three types (labelled VF1 to VF3)

of them each with a specific functional role. VF1 and VF2 are two virtual fingers

which always oppose each other like, for instance, the thumb and the fingers in a
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(a) ‘Palm opposition’ (b) ‘Pad opposition’ (c) ‘Side opposition’

Figure 2.3: Hand postures with opposition spaces overlaid. The green plane shows
the orientation of the palm, the yellow bar the orientation of the opposition vector
between VF1 and VF2.

‘pinch’. VF3 is defined to counteract to external forces (like the ‘hook’). While VF1

and VF2 are always used together VF3 can be used on its own or as part of a grasp

involving VF1 and VF2 as well.

Virtual fingers combine parts of the hand which perform a common functional

task in a grasp into one virtual effector. Grasps can then be described using virtual

effectors instead of directly referring to the anatomy of the hand. In order to describe

how the virtual fingers are used in a grasp, Iberall et al. (1986) developed the concept

of ‘opposition spaces’. An ‘opposition space’ is defined as the orientation of the force

vector between VF1 and VF2 in relation to the surface of the palm. This definition

leads to three different types of opposition (see Fig. 2.3): In ‘pad opposition’ the force

vector between VF1 and VF2 is parallel to the surface of the palm and perpendicular

to the width of the hand. In ‘side opposition’ the force vector is also parallel to the

palm but directed parallel to the width of the hand (MacKenzie and Iberall call this

“transverse”). Finally, in ‘palm opposition’ the force vector is normal to the surface

of the palm. These types of opposition translate to power-grasps, pinches, lateral

pinches and adduction grips as follows: If VF1 are the fingers and VF2 is the palm

and they are in palm opposition, then this resembles a power-grasp. If the thumb is

acting as VF1 and the fingers as VF2 with pad opposition, this results in a pinch,
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and if the opposition is changed to side opposition, it becomes a lateral pinch. An

adduction grip can be described by the index finger as VF1 and the middle finger as

VF2 with side opposition.

The comparison of the anatomically defined grasp classes with virtual fingers and

opposition spaces showed that it is possible to describe all types of grasps within a

single framework using these two concepts. Compared to the other taxonomies, virtual

fingers and opposition spaces have the advantage of constructing different grasp classes

from a small set of components instead of describing each class separately. However,

the major improvement over earlier classifications is the abstraction from the actual

anatomy of the hand through the introduction of virtual fingers. By focusing on the

functional components of a grasp (‘virtual fingers’) and their interaction (‘opposition

spaces’) it became possible to describe grasps based on function. It is worth noting,

however, that properties like strength and dexterity of a grasp are not defined explicitly

any more but must be derived from the type of opposition space and the mapping

of the physical fingers to the virtual fingers. Nevertheless, the two concepts provide

valuable insights in a compact systematic and non-anatomical description of grasps.

2.2.2 Quantitative Grasp Encodings

While qualitative classifications of grasps allow to distinguish different types of grasps,

they cannot describe individual grasp postures and, in particular, where the grasps

are directed to in the environment of an agent. These two points, however, are dealt

with by many quantitative grasp encodings. Three encodings will be considered here:

First, MacKenzie and Iberall’s (1994) quantitative description of ‘virtual fingers’ and

‘opposition spaces’ will be briefly explained, followed by Jeannerod’s (1981), and

Smeets and Brenner’s (1999) descriptions.

The systematic classification approach of ‘virtual fingers’ and ‘opposition spaces’

makes this classification a good candidate for an extension with a quantitative grasp
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encoding. MacKenzie and Iberall (1994) suggested such an extension. Their encoding

constituted of the types of opposition being used in a grasp and the mapping between

physical and virtual fingers. The configuration of the virtual fingers was described in

great detail by defining length, width and orientation of each virtual finger as well

as the orientations of the applied forces (the opposition spaces; Iberall, Torras, &

MacKenzie, 1990). Additionally, the amount of force and sensory information available

to and from the virtual fingers was given. This quantitative encoding allowed to

describe the static postures of the hand and, moreover, the system of forces spanned

by the fingers in a very detailed way. For example, a grasp to hold a pen could be

described as pad opposition with the thumb as VF1 and the index and middle finger

as VF2. The width of VF1 would be one finger (the thumb), its length would be

defined as the distance from the first carpometacarpal joint to the tip of the thumb,

and its orientation would be perpendicular to the surface of the palm. VF2 would have

a width of two fingers (index and middle finger) and its length would be measured

from the second and third carpometacarpal joints to the tips of the index and middle

finger; its orientation would also be perpendicular to the surface of the palm. Because

the fingers are in pad opposition, the forces exerted by the fingers would be parallel to

the surface of the palm and opposing each other. The example shows that MacKenzie

and Iberall’s encoding was based on a description of a system of forces similar to those

used in mechanical engineering (see Mason, 2001, e. g.). This and the large number of

properties and variables made the description of grasps very complex. The encoding

also only described grasps in relation to the hand but not where they are located in

the environment of the agent. Thus, it is not possible to link grasp descriptions with

locations in the visual field which is one of the requirements of a grasp description for

my model.

In contrast to the qualitative classifications and to MacKenzie and Iberall’s quantit-

ative description, the Jeannerod’s and Smeets and Brenner’s descriptions were not
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developed with the aim of describing grasp postures but the hand and finger positions

during reach-to-grasp movements. Hence, these descriptions included the position of

the hand in the encoding. However, an accurate description of the final grasp posture

is only of minor importance for these encodings since their main application lies in

research of hand movements and hand apertures before adopting the actual grasp

posture. In particular, Jeannerod’s classic description of grasps used only the opening

of the hand (grasp width) to describe the grasp posture. This makes this encoding

unsuitable to describe grasp postures in my model because it is not possible to express

complex affordances and action intentions with it.

Smeets and Brenner’s encoding, on the other hand, allows a more detailed descrip-

tion of the grasp posture since it encodes the position of individual fingers. This

allows for a more accurate description of precision grasp postures than Jeannerod’s

description but has, of course, limitations when describing power grasps since the palm

is not included in the description. Furthermore, Smeets and Brenner only encoded the

positions of the thumb and the index finger which further reduced the expressiveness

of the encoding. Nonetheless the idea of describing hand postures with the position

of the individual fingers is a simple and elegant approach to the problem of grasp

encoding. The original encoding from Smeets and Brenner can easily be extended to

include all fingers instead of only the thumb and the index finger. It would even be

possible to include other parts of the hand as well; for instance, the position of the

centre of the palm could be encoded in the same fashion.

2.3 A Definition of Grasping

The review of the grasp taxonomies showed some of the various different grasp postures

humans are capable of performing, many of which considerably differ in the way they

are executed. For example, grasps with VF3 are very different to grasps with VF1
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and VF2. For the purpose of my research, it is necessary to define ‘grasping’ as it is

understood in my thesis more precisely.

All grasp classifications reviewed above showed that grasping is commonly con-

sidered an activity which involves only one hand2. Hence, my definition is also

restricted to single-handed grasps only. Secondly, grasping in the context of this work

is used as a means to describe action intentions and affordances of objects. Against

this background, my definition can be further restricted to cover only those grasps

which are directed towards objects with the aim of using the objects in a subsequent

action. Since grasps are performed with the intention of establishing physical control

of an object in order to use it, the grasp types covered by my definition can also

be constrained by excluding grasps which only use VF3 (i. e. ‘hook’ grasps) because

such grasps provide only limited control over the grasped objects. Thus, not many

affordances and action intentions can be expressed with them. On the other hand,

their execution is quite distinct from grasps performed with VF1 and VF2 which

makes it difficult to handle both variants within one model. Moreover, VF3 grasps

are not always considered to be a prehensile action (e. g., Napier excludes them). For

these reasons only grasps using VF1 and VF2 will be included in my definition.

Based on these assumptions and the resulting restrictions, the term ‘grasping’ as it

is used in this thesis is defined as follows:

To use one hand to establish physical control of an object so that it can

be used in a subsequent action. At least two surfaces of the hand must

exert opposing forces in order to hold the object.

This definition covers all grasp types introduced by the grasp taxonomies presented

above except for the hook grasp. It also only defines the minimum requirements for a

grasp; in reality there are, however, a number of other properties which can often be

2There are publications on two-handed grasping but they form a separate body of literature.
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observed during grasping and which improve the stability of a grasp. These properties

are the placement of the grasp around the seized object’s centre of mass and the

placement of the fingers so that object movement in all directions is physically blocked

by a finger (this is termed ‘form-closure’, see Bicchi, 1995 for details). However,

since these characteristics may – depending on the subsequent action – not always

be desired in a grasp, they are not included in the definition but I will still consider

them in the discussion of my model.

2.4 Conclusions

I turned my attention towards grasping in this chapter with the aim of finding a

method to encode affordances and action intentions. The review of grasp classifications

showed that grasps can express different functional properties of actions which are

performed with an object once it has been grasped. Napier in particular was aware

of this relation between grasps and subsequent activities. He even described his

observations in an almost Gibsonian way. The grasp classifications strongly support

the idea of using grasps as a means of encoding affordances and action intentions.

The grasp taxonomies also showed that three main classes of grasps are consistently

distinguished which mark various basic functional properties of grasps. These classes

are the ‘hook’, the ‘power-grasp’ and the ‘precision-grasp’. Some more advanced

classifications also describe additional types of grasps but these three are common

to all presented taxonomies. They emphasise major functional differences like the

opposition of the grasp to an external force, or whether a grasp mainly provides

strength or dexterity.

While qualitative grasp taxonomies allow to distinguish functionally different types

of grasps, these grasp descriptions are not linked to the visual input space which,

as I argued, is necessary for my model. Quantitative descriptions are often capable
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of providing this connection but they also often lack the abilities to describe differ-

ent types of grasps (especially Jeannerod’s model). Smeets and Brenner, however,

developed an encoding of grasps which is able to describe grasps in relation to the

environment of the agent while keeping a level of detail which allows to describe

different types of grasps. When the types of grasps, which can be described in Smeets

and Brenner’s model, are compared with the three basic grasp classes it becomes clear

that it only supports pinch-type grasps. However, these grasps show a high variability

(e. g. Cutkosky, 1989) depending on the subsequent action, which makes them suitable

to describe a subset of human activities.

This review on grasping provided valuable insights into different types of grasps

and their relation to affordances and action intentions. The identification of different

grasp classes will help to understand the abilities and limitations my computational

model might have. Additionally, Smeets and Brenner’s model was identified as a good

candidate for an encoding to be used in my model.
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Research in the last decades showed that vision and action systems in the brain are

not separate but tightly linked together. Many studies provide diverse evidence for a

close interaction between vision and action. For example, Craighero, Fadiga, Umilta,

and Rizzolatti (1996) assumed that an object, when seen, automatically evokes motor

representations describing actions involving the object. To test this hypothesis the

authors used a priming paradigm with a prime indicating the orientation of an object

which the participants were asked to grasp. The study showed that congruent primes

improved reactions times in the subsequent grasping response. The authors interpreted

these data as evidence that visual stimuli can evoke motor representations for objects

and that an automatic visuomotor transformation exists. However, the reaction time

effect was only observed when the prime was shown before the grasping action was

initiated. This suggests that grasps are not planned on-line during the reach-to-grasp

movement but that at least the main characteristics of a grasp (like the orientation of

the hand) are planned before initiating the action.

In a series of experiments Ellis and Tucker investigated effects of different physical

object properties on actions. Effects of left-right orientation of an object and wrist

rotation were analysed in Tucker and Ellis (1998). In the experiments participants

were asked to decide whether an object was upright or inverted. In one experiment the

participants then had to respond with a left- or right-hand key press and in another

experiment by rotating their hand left or right. Unknowingly to the participants
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the objects either had their handles oriented to the left or to the right or they were

rotated. The results of the experiments showed faster reaction times when orientation

of the handle or the object rotation and the required response were congruent. Tucker

and Ellis concluded that these data supported the idea of an automatic priming of

visuomotor processes.

In another study, Tucker and Ellis investigated the influence of priming objects

compatible with either a power- or a precision grasp on an unrelated response made

with a power or precision grasp (Tucker & Ellis, 2001). Again, it was found that

reaction times in the congruent condition (e. g., a power grasp response towards

an object graspable with a power grasp) were faster than the reaction times in the

incongruent condition. These findings were confirmed in an fMRI study by Grèzes,

Tucker, Armony, Ellis, and Passingham (2003). The authors found increased activity

within the premotor cortex in incongruent trials which they concluded resulted from

a competition between the different grasps required for the object and the response.

Tucker and Ellis (2004) showed that active object representations were enough to

trigger affordance compatibility effects.

In a study using positron emission tomography (PET) Grèzes and Decety (2002)

explored neural correlates which may be linked to motor representations arising during

visual perception of objects. It was found that cortical areas commonly linked to

motor representations were active during visual perception irrespective of the task the

participants were asked to perform. Grèzes and Decety interpreted this as evidence

for automatic activation of potential actions. Further evidence was found in a study

by Grafton, Fadiga, Arbib, and Rizzolatti (1997). In this study PET was used to

investigate activation of premotor areas during presentation of real objects. Consistent

with Grèzes and Decety’s results, the outcome of Grafton et al.’s study showed an

activation of premotor areas irrespective of subsequent tasks.

Interestingly, recent experimental evidence does not only indicate that affordances
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prime actions but also that visual attention is directed towards action relevant

locations. Using event-related potentials (ERPs) Handy, Grafton, Shroff, Ketay,

and Gazzaniga (2003) observed that tools presented in the right (participants were

right-handed) and lower visual fields systematically attracted spatial attention. These

results were confirmed using event-related fMRI. In a later study Handy and Tipper

(2007) replicated their study with a cohort of left-handed participants. Similar evidence

for attentional effects of affordances was found in a study with patients with visual

extinction by di Pellegrino, Rafal, and Tipper (2005). Visual extinction is considered

to be an attentional deficit in which patients, when confronted with several objects,

fail to report the objects on the left side of body space. In contrast, when presented

with only one object, patients can respond to the object irrespective of its location.

di Pellegrino et al. demonstrated that the attentional deficit could be alleviated when

the handle of a cup points towards the left. The authors suggested that an affordance

is automatically extracted by visual system and supports attentional selection.

Bekkering and Neggers (2002) investigated effects of action intentions in a visual

search task. Participants were instructed to either perfom a grasping or a pointing

task towards objects with different orientations and colours. Using eye-tracking it

was found that in the grasping condition participants made fewer saccades towards

objects with the wrong orientation than in the pointing condition. The number of

saccades towards objects with the wrong colour was the same in both conditions. The

authors suggested that these results showed that action intentions can influence the

perception of action-relevant features of objects. They concluded that this can be

best explained as a selection-for-action process.

The idea that action plays a special role in visual search is also supported by

Humphreys and Riddoch (2001). They reported a patient who was not able to find

objects when their name or a description of their form was given but when it was

described what the objects were used for he was able to find the objects. Similar
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separations between semantic knowledge about objects and action knowledge about

objects were found in other experiments as well which led to the development of dual

routes models.

3.1 Dual Route Models

Building on earlier work by Ungerleider and Mishkin (1982), Milner and Goodale (1995)

suggested a now classical dual route model for vision and action. They postulated the

existence of at least two pathways in the human brain along which visual perception is

mediated. These pathways are usually referred to by their localisation in the brain as

the ‘dorsal route’ and the ‘ventral route’ or by their function as the ‘where’- and the

‘what’-system. The latter names show that the two pathways have been linked with

different aspects of visual perception. The dorsal route is thought to be responsible for

online visuomotor control of prehensile actions (i. e. reaching and grasping) – hence it

is dubbed the ‘where’-system. The ventral stream on the other hand is assumed to be

required for object recognition and therefore called ‘what’-system.

Milner and Goodale’s dual-route model only incorporated simple reaching and

grasping actions. Riddoch et al. (1989), however, postulated an extended dual route

model which included more complex actions as well. The model distinguished between

a route via structural knowledge and a route via semantic knowledge about objects.

In this model visual input is linked through structural knowledge with action patterns.

Auditory input on the other hand is linked through semantic knowledge with action

patterns. Finally, structural knowledge and semantic knowledge are linked with each

other (see Fig. 3.1). In contrast to the dorsal/ventral stream distinction the action

path in this model is not involved in online visuomotor control but activates complex

action patterns based on combining structural knowledge with the visual input.
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Figure 3.1: The dual route model as it has been suggested by Humphreys and
Riddoch (2003).

Evidence for Riddoch et al.’s model stems from experiments with patients with

optic aphasia, semantic dementia and visual apraxia. Optic aphasia refers to a

condition in which patients are impaired at naming visually presented objects; semantic

dementia is linked to a loss of semantic knowledge about objects; visual apraxia,

in contrast, describes a condition where perception of semantic object knowledge

persists but the performance of actions in response to visually presented objects

is impaired. These three disorders can be linked to different parts of the model.

Optic aphasia is considered to be caused by a lesion in the link between structural

and conceptual knowledge. Semantic dementia has been linked with degeneration

of semantic knowledge and visual apraxia with a loss of structural knowledge (see

Humphreys & Riddoch, 2003 for a review).

Studies with normal subjects provided further evidence for a direct route from

vision to action. Rumiati and Humphreys (1998), for instance, analysed errors

which participants made when they had to gesture object use or name a visually

presented object under deadline conditions. The authors found that during gesturing

participants made more errors due to visual similarities (e. g., making a shaving

gesture when a hammer is shown) and less errors due to semantic relations of response
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and object (e. g., responding with a sawing gesture to a hammer) compared to when

they named the object. It was also found that auditory presentation of the object

names did not produce visual similarity errors.

3.2 Affordances

The direct pathway from vision to action is often linked to Gibson’s affordance theory

(J. J. Gibson, 1966, 1979). Affordances can, for a start, be defined as opportunities

for action which the environment offers to an agent. This definition can be illustrated

with a cup being present in the environment so that an agent can drink from it. In

this example the cup affords a drinking-action for the agent; hence, it can be said

that a drink affordance exists in this agent-environment-system.

While the general concept of affordances is easy to understand, a closer examination

of the literature revealed many differences in the interpretation of the details of the

concept. Şahin et al. (2007) argued that these differences are (among other reasons)

partly down to the fact that J. J. Gibson did not develop a conclusive definition of

affordance but expected it to evolve further over time. Additionally, the authors

argued that J. J. Gibson was only interested in the perception aspect of affordances

so that he did not consider other aspects of the concept in his research (Şahin et al.,

2007). Consequently, the understanding of affordances in the context of my work need

to be clarified. In order to do this, J. J. Gibson’s original affordance concept will be

summarised and experiments will be reviewed which specifically aimed at showing

effects which support the affordance concept. I will also look at the question where

affordance are located within the agent-environment system to provide a frame of

reference for a discussion of the location of affordances in my computational model

later. Finally, I will discuss the micro-affordance concept because it is particularly

directed at affordance effects in grasping.
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3.2.1 On the Nature of Affordances

The affordance concept as it was introduced above focused on describing action

opportunities in the environment of an agent. J. J. Gibson, however, defined the term

with a much broader meaning as the following quote shows:

“[T]he affordances of the environment are what it offers the animal, what

it provides or furnishes, either good or ill.” (J. J. Gibson, 1979, p. 127;

italics in the original)

In this characterisation affordances appear to be a special type of properties in

the environment which express any form of potential active and passive interaction

between agents and the environment. The example of the cup’s drinking affordance,

however, makes clear that affordances cannot merely be a special form of properties

of the environment but must also depend on the abilities of agents. If the agent

in the example does not have hands to grasp the cup, the cup does not facilitate

drinking for this agent. Hence, no drinking affordance exists with regard to this agent.

Consequently, J. J. Gibson states that affordances mean “something that refers to

both the environment and the animal [. . . ]. It implies the complementary of the

animal and the environment” (J. J. Gibson, 1979, p. 127).

This rather “hazy” (Şahin et al., 2007, p. 447) definition has sparked a lively debate

about the nature of affordances and a number of authors attempted to formalise the

concept (Turvey, 1992; Greeno, 1994; Sanders, 1997; Stoffregen, 2003; Chemero, 2003,

and others). The first formalisation presented by Turvey (1992) regarded affordances

as dispositional properties of the environment combined with dispositional properties

of the actor. In his view affordances constitute an ontological category and “[. . . ]

exist independently of perceiving or conception” (Turvey, 1992, p. 174). A similar

viewpoint was taken by Greeno (1994) who also rooted affordances in the environment

and complemented them with abilities in the agent.
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Because of this separation between affordances and environment on the one side and

abilities and actor on the other, Turvey’s and Greeno’s theorisings were criticised for

“[. . . ] reinvigorat[ing] the very subject-object dichotomy that the ecological approach

so brilliantly overcomes" (Sanders, 1997, p. 97). Sanders was the first to argue that

affordances should be seen as ontological primitives and defined with a relativistic

approach linking the agent and the environment. Following the relativistic route,

Stoffregen (2003) and Chemero (2003) defined affordances as emergent properties

of the agent-environment system (Stoffregen) or as the relations between features

of the environment and abilities of an agent (Chemero). These two interpretations

are similar to Warren, Jr. and Whang’s (1987) view who adopted the position that

affordances are located in the relation of the agent and the environment: “Perceiving

an affordance [. . . ] implies perceiving the relation between the environment and the

observer’s own action system” (Warren, Jr. & Whang, 1987, p. 371). It is important

to note here that Warren, Jr. and Whang wrote that the affordance is perceived. Thus,

they assumed that the affordance is not constructed in the brain from a previously

perceived representation but rather perceived directly. This understanding is in line

with J. J. Gibson’s view:

“The perceiving of an affordance is not a process of perceiving a value-free

physical object to which meaning is added in a way that no one has been

able to agree upon; it is a process of perceiving a value-rich ecological

object.” (J. J. Gibson, 1979, p. 140)

This theory of perceiving the meaning of objects directly without mediating pictures

or representations has become known as ‘direct perception’ (J. J. Gibson, 1979, p. 147).

It is based on two assumptions: Firstly, in ‘direct perception’ the environment is

assumed to not be perceived as a simple two-dimensional image on the retina1 but as

1I only consider visual perception here. The theory, however, applies to other types of perception
as well.
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an “ambient optic array” (J. J. Gibson, 1979, p. 114). The optic array is different

from an image on the retina as it provides richer information about the environment

than a matrix containing only luminance and colour information does. This concept

is probably best understood by looking at the analogy of a plain picture of an object

compared to a holographic reproduction of same object (Michaels & Carello, 1981,

p. 23). Despite being only a flat plate like the normal picture the hologram still

contains the complete three-dimensional optical structure of the object. Other authors

have linked direct perception to the optical flow, which describes how positions change

in two consecutive images (Warren, Jr., 1988). It has been argued that the optical flow

is perceived when moving through the environment and that the information encoded

in it plays an important role in recognising objects in the environment. Secondly,

Gibson postulated that animals do not perceive their environment in absolute measures

but rather in terms of relations. This can be illustrated with an example from audio

perception: Most people recognize a melody by the intervals between the notes rather

than by perceiving the actual frequency of each note when played on a particular

instrument (Michaels & Carello, 1981, p. 25). This allows to identify the melody even

when environmental conditions and the absolute frequencies change. Because of this

insensitivity to changes J. J. Gibson called such sensations ‘invariants’ (J. J. Gibson,

1979, p. 310).

The basic building blocks of ‘direct perception’ are on a much more physical level

compared to the concept of affordances. The two concepts are, however, assumed to

be linked by applying the concept of invariants to unique combinations of invariants

as well. J. J. Gibson argues that such combinations or ‘compound invariants’ are

invariants themselves. By combining compound invariants, a hierarchy of invariants

can be constructs which finally leads to high-order invariants specifying even complex

affordances (J. J. Gibson, 1979, p. 141). Reproducing this hierarchy of affordances will

be an important part of my computational model. E. J. Gibson argued that invariants
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are learned during childhood by interacting with the environment through activities

like touching, mouthing, or shaking in order to “[narrow] down from a vast manifold

of (perceptual) information to the minimal, optimal information that specifies the

affordance of an event, object, or layout” (E. J. Gibson, 2003).

E. J. Gibson’s argument shows that knowledge about invariants and subsequently

about affordances is acquired through interaction of the animal with its environ-

ment. As it was already pointed out earlier in this chapter affordances are seen

to relate (Warren, Jr. and Whang) or “impl[y] the complementary” (J. J. Gibson)

between the animal and the environment. J. J. Gibson pointed out that this is also

true for the information that specifies an affordance: “An affordance [. . . ] points two

ways, to the environment and to the observer. So does the information to specify an

affordance” (J. J. Gibson, 1979, p.141). This means that affordances are specified

by combining (or relating) knowledge about the agent’s own body with information

about invariants in the environment (which are a kind of relation, too).

3.2.2 Experimenting with Affordances

At the beginning of this chapter I reviewed experiments which explored the links

between vision and action. While the results of these experiments can often be

interpreted with the help of the affordance theory, they did not attempt to investigate

affordances and invariants as such. To explore these components of the affordance

theory, a special experimental paradigm was developed. Based on the postulated

perception of relations between properties of the environment and the observer’s own

action system it has been concluded that information for affordances uses a ‘body-

related’ metric (Warren, Jr., 1984). Such an intrinsic measure describes properties

of the environment with respect to a property of the observer’s action system. For

example, in Warren, Jr. and Whang’s (1987) study of walking through apertures

the width of apertures in a wall A was set in relation to the shoulder width S as
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L

Lu
Ll

Rc

Figure 3.2: Warren, Jr.’s (1984) biomechanical model of stair-climbing. He assumes
that the maximal riser height Rc = L+ Lu � Ll.

π = A/S. This combination resulted in unit-less numbers which are known as

pi-numbers (Warren, Jr., 1984). Because of their relation to a body measure the

pi-numbers were independent of the actual size of observers.

In the experimental paradigm the pi-numbers were used to establish two points

within the range of possible pi-values: Firstly, critical points needed to be identified.

At these points an affordance appears, disappears or changes into a different one.

This is, e. g., the size of an object at which a person grasping it switches from a single

handed grasp to a bimanual grasp. Secondly, optimal points need to be identified.

These are the points in the pi-number range where the energy necessary to perform an

action is minimal (Warren, Jr., 1984). After establishing critical and optimal points

the paradigm required that it is verified whether critical points and optimal points

can be perceived visually prior to action execution. This is obviously necessary to

rule out the possibility that these points are identified only during action execution.

Warren, Jr.’s (1984) seminal work on the perception of a stair-climbing affordance

illustrates how the paradigm outlined above is accomplished in a concrete study. In

the first of the three experiments in Warren, Jr.’s study participants were chosen so
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that the group could be split in a short one and tall one representing the 2nd and

98th percentile of normal adult male heights. Then the participants’ upper, lower

and overall leg length was measured. Using a simple biomechanical model Warren,

Jr. calculated the maximum riser height for stair-climbing without support of the

hands (see Fig. 3.2 for details) and related it to the leg length of his participants.

This resulted in a mean pi-number of π = 0.88, meaning that the critical riser height

was Rc = 0.88L. To check if this theoretical value corresponded with the participants’

visual perception of the maximal riser height, they were shown photographs projected

on a well depicting a two step stair with different riser heights. Subjects were then

asked to fill in an answer sheet judging whether the stairs were climbable without

using the hands. Furthermore, for each judgement participants were asked to provide

a confidence rating on a scale from one to seven.

The results of the experiment showed that the group of tall participants perceived

higher risers as still climbable than the ‘short’ group did. However, when looking at

riser height relative to participants’ leg length the differences between the two groups

disappeared. Moreover the pi-values where the percentage of climbable judgements

dropped below 50% (so the majority of subjects regarded higher risers as not-climbable)

were 0.88 for the short group and 0.89 for the tall group. These values corresponded

well with the previously theoretically established pi-value. In addition to the analysis

of judgements, Warren, Jr. also compared the confidence ratings of the participants

to riser heights and pi-numbers because he expected to see a drop in confidence of

judgement around the critical points. His analysis showed this effect and confirmed

the outcomes of the judgement’s analysis.

After demonstrating that critical points can be perceived visually, the second

experiment of Warren, Jr.’s study aimed at discovering the optimal riser heights for

stair climbing. In order to do this subjects climbed steps with different riser heights

on a stairmill while oxygen consumption was measured. Based on this data Warren,
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Jr. calculated the total energy per step cycle divided by the vertical work performed.

This was set in relation to π = R/L like before and yielded a mean pi-value of 0.26

for both groups showing the optimal point is the same for short and tall subjects.

With the optimal point known Warren, Jr. investigated in the last experiment of

his study whether optical riser height can be visually perceived as well. In this final

experiment participants were asked to first judge which of two stairs would be easier

to climb and then to rate the climbability of stairs on a scale from one to seven. The

stairs were presented on photographs like in the first experiment. Again, the ratings

and the judgements were compared against π = R/L showing that preferred riser

heights coincided closely with the pi-numbers for the optimal point determined in

experiment two. Thus, evidencing that optimal riser heights can be perceived visually.

Warren, Jr.’s study demonstrates how body-related measures are used to verify

affordances experimentally. Many studies have been conducted which look at different

types of actions and affordances. These studies investigated affordances for reaching

and grasping (Hallford, 1983; Solomon, Carello, Grosofsky, & Turvey, 1984), sitting

and stair climbing (Mark, 1987), passing through apertures (Warren, Jr. & Whang,

1987) and other behaviours (see Şahin et al., 2007; Mark, 1987 for summaries).

However, despite the high number of studies the underlying methodology using pi-

numbers to define body-related measures is very similar in all of them (Şahin et al.,

2007).

In summary the example of the stair climbing study demonstrated that affordances

can easily be described with pi-numbers and that one affordance covers a range of

values with critical and optimal points marking the boundaries and maxima. Thus,

we can expect to see variations in the execution of an affordance which should vary

around an optimal point but should not stretch over critical points.
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3.2.3 Micro-Affordances

In the discussion of the affordance concept so far actions – even complex ones – were

regarded as entities, without considering the huge variations which can be observed

within a single type of action. An approach which provides a way to account for these

variations are Ellis and Tucker’s (2000) micro-affordances. The concept picks up the

idea of a direct link between actions or action opportunities and objects; apart from

this, though, micro-affordances are very distinct from Gibson’s affordances.

The most palpable difference is the level at which micro-affordances are defined.

Instead of affording entire sequences of actions like Gibson’s affordances, micro-

affordances facilitate only particular realisations of specific components of an action.

In Ellis and Tucker’s (2000) experiments, for example, these components are grasp

type (power or precision grasp) and wrist rotation. In the grasp type experiment all

objects afforded grasping but some of them required a precision grasp and others a

power grasp. When participants were presented with one of these objects and then

asked to respond to a high or low pitch tone with either a precision or a power grasp

on a special response device, Ellis and Tucker found a compatibility effect between the

grasp type required for the object and the response required for the tone. Since the

objects were not relevant for the task, Ellis and Tucker concluded that the grasp type

which was compatible with the objects was facilitated because the objects afforded

this particular type of grasping. The same was found for the wrist rotation component

of grasping. Micro-affordances explain these compatibility effects as the result of a

bottom-up process which extracts specific execution parameters for actions. Gibson’s

affordances do not capture such sub-action affordance effects.

In another contrast to Gibson’s affordances Ellis and Tucker emphasised that

micro-affordances are associated with a representation of an object and are not

directly perceived in a Gibsonian sense. However, the authors argued that action

components potentiated by a micro-affordances are intrinsic to the representation

33



3 From Vision to Action

of an object. Thus, it is not a completely arbitrary symbolic representation of an

action opportunity but a representation which “[has] direct associations between vision

and action” (Ellis & Tucker, 2000, p. 468). While this appears to be contradicting

Gibson’s understanding of affordances, Gibson’s emphasis on direct perception must

be seen in the context of his time when reasoning in symbolic categories was popular.

Against this background it becomes clear that direct perception meant above all the

absence of symbolic representations but not the absence of representations at all.

Processing of information in the brain obviously needs some form of representation to

encode the perceived information in electrical signals. However, such representations

can be either symbolic or more low-level patterns directly linked to the perceived

pattern of information. Essentially, Gibson argued that knowledge about actions is

not derived from symbolic representations but from patterns describing the visual

information more directly and in relation to action execution. Hence, the role of

representation in Gibsonian affordances and micro-affordances is not that different at

all. Micro-affordances share with Gibson’s affordances the notion of linking objects

and the actions they afford. However, while Gibson’s affordances focus on the direct

perception of action opportunities in an the environment, Ellis and Tucker pursue the

idea that micro-affordances are a motor-oriented representation of actions constructed

within the brain.

Finally, Ellis and Tucker see micro-affordances as dispositional properties of an

observer’s nervous system rather than as properties of the environment or the relation

between environment and observer. The authors speculated that micro-affordances

develop in the brain due to the involvement of motor components in the representation

of visual objects.
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Action

The problem of identifying opportunities for action and the planning of grasps has

been tackled in a number of computational models. Foremost, the problem is regularly

encountered in robotics research (e. g., Lam, Ding, & Liu, 2001; Montesano, Lopes,

Bernardino, & Santos-Victor, 2007; Saxena, Driemeyer, & Ng, 2008; Bohg & Kragic,

2010). However, the designs of the models and algorithms developed in this area are

mostly driven by the technical requirements of robots and not by biological plausibility

of the processes. For instance, the grippers of robots are usually much simpler than

the human hand; most have only two or three “fingers” with limited flexibility and

dexterity. This heavily restricts the number of different grasp postures that these

models can adopt. Visual attention is also not normally taken into consideration in

these models.

However, modelling is also used as a tool for understanding action and grasping in

psychology. Research in this area has produced different models ranging from models

for grasp execution and grasp postures to models for recognition of affordances in the

visual input and visual attention for action. In the remainder of this chapter these

models are reviewed whereby the focus lies on their suitability for modelling complex

affordances and action-guided visual attention since these are the main aims of the

model presented in this thesis.
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Smeets and Brenner’s Model Smeets and Brenner (1999) presented a model which

built on their idea of using the individual positions of the finger tips to describe

grasps (see Sec. 2.2.2). Their model aimed at modelling the characteristics of the

finger movement during reach-to-grasp movements, though, and not at modelling

how grasp postures are generated for different objects. This is reflected by the input

their model required: It consisted of the initial and final finger positions and the

time required for the movement. Additionally, only movements of the thumb and

the index finger were modelled which limited the number of grasps that could be

described. To calculate the position of the thumb and the finger at each point in

time, the model used a minimum-jerk approach (Flash & Hogan, 1985). Because of

its focus on reach-to-grasp movements Smeets and Brenner’s model is obviously only

of minor interest within the context of my work. However, the description of hand

postures during grasping with the position of the individual fingers is an interesting

aspect of the model which I already discussed in Chapter 2. Additionally, there is the

possibility of using my model to generate the final finger positions required as input

by Smeets and Brenner’s model and thus linking both models together. I will come

back to this point in the general discussion (Chapter 8).

Iberall and Fagg’s Model In contrast to Smeets and Brenner’s model, the model

developed by Iberall and Fagg (1996) was specifically aimed at modelling hand postures

of human grasps. The model was strongly based on the concept of virtual fingers

and opposition spaces (see Sec. 2.2.1). The input into the model was a parametric

description of the object to be grasped (e. g., the length and diameter of a cylinder),

a numerical measure of task difficulty, and a description of the characteristics of

the hand (hand width and length). The model was constructed from three neural

networks each of which computed a specific parameter of the grasp postures. These

parameters were the physical fingers used in virtual finger 2 (VF2), the type of
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Figure 4.1: Overview of the FARS model (Fagg & Arbib, 1998). The graphic shows
a simplified version of the model in which the modules in the inferior premotor
cortex and the ones responsible for motor control are not shown individually. The
component of most relevance here is the AIP module which received input from
the visual input via the dorsal and the ventral stream and combined it with motor
information to produce a grasp posture. Fagg and Arbib argrued that affordances
manifested in this combination.

opposition space and the opening size of the hand. The neural networks in the model

were backpropagation networks with one hidden layer and real human grasp postures

were used as a training set. Iberall and Fagg’s model showed that the input and

output of the model are highly structured but contain no information about the

spatial location of the object to be grasped and the produced grasp. This makes

the model unsuitable for modelling visual attention for action: Only single objects

can be presented to the model and these already need to be preprocessed to extract

structural information about the object dimensions. Furthermore, this information

about the object is not linked to the visual field any more so that spatial attention

based on action-relevant features of objects cannot be modelled. It is also important

to note that Iberall and Fagg only concentrated on modelling grasping and did not

link their model to Gibson’s affordance theory.
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The FARS Model Fagg and Arbib (1998) developed the FARS model (Fagg-Arbib-

Rizzolatti-Sakata-Model) which not only simulated grasping but also incorporated

Milner and Goodale’s dual route theory and links to Gibson’s affordances. The model

focused more on motor control than on visual perception for action. It was linked

directly to brain areas and its objective was to predict the firing patterns of brain

areas as well as of individual neurons.

The model used a complex coding for input objects involving the object type (sphere,

cylinder, or block) and dedicated sets of neurons for each object type to encode the

dimensions of the different objects. The extraction of these parameters from the

visual input was not modelled. Grasps were described by encoding grasp type, grasp

orientation and aperture. The authors constructed their model from a number of

modules which they directly linked to brain areas for vision and motor control; this is

reflected in the names of the modules (Fig. 4.1). The model focused not on the early

stages of visual perception for action but on the transition from visual information

to motor control. In the model this transition was located in an AIP (anterior

intraparietal area) module where information about objects from the dorsal and

the ventral stream was associated with units in the AIP which represented grasp

parameters. A central element of the model was the loop between the AIP module

and an F5 (part of the inferior premotor cortex) module which was involved in grasp

execution. This loop ensured that the grasp specification in the AIP module was

updated during grasp execution. The F5 module contained units describing the

current state of the grasp (hold, release, flexion, etc).

Fagg and Arbib’s model was geared more towards motor control of grasping then

towards visual perception for grasping. In contrast to the model presented in this

thesis, the FARS model did not simulate effects of the grasps planned in the AIP on

visual attention. Moreover, the connection from the visual cortex via the dorsal and

ventral streams was only uni-directional in the model and, thus, preventing the AIP
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from influencing visual attention. The extraction of affordances from the visual input

was not of included in the model. Fagg and Arbib argued that affordances manifest in

the AIP module where the object features are associated with the grasp parameters.

This is in line with Stoffregen and Chemero’s definitions of affordances as relations

between the environment and the abilities of an animal.

Cisek’s Model of the Affordance Competition Hypothesis Cisek (2007) intro-

duced the affordance competition hypothesis to explain the processing of action

relevant visual information in the brain. The hypothesis suggests that decisions for

actions are the result of a competition between opportunities for action in the envir-

onment (affordances) and task demands of the observer. This competition process

is assumed to take place continuously and resulting in selective attention to action

relevant visual information. The competition processes are supposed to occur not only

within cortical areas in the dorsal stream but also between different cortical systems

in order to identify the most promising target locations for action. Cisek pointed out

that the representations of actions at the end of the dorsal route in the fronto-parietal

cortex are neither explicit representations of objects or motor plans but instead a

mixture of both. These representations could include for instance the direction of

the grasp movement or saccade targets. This shows a remarkable similarity to the

micro-affordance concept (Sec. 3.2.3) which aimed at describing representations of

components of actions by including both visual and motor information.

In a computational model of a cued reach-decision task (Fig. 4.2) Cisek linked the

affordance competition hypothesis to the neural substrate (Cisek, 2007). The model

was designed to explain data from an experiment in which a primate was first shown

two differently coloured potential target locations positioned on a circle followed by a

colour cue in the centre of the screen. The colour of this cue indicated which of the

two potential target locations shown before was the actual target. The cue was then
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Visual Input

Motor Output

Red Blue

Figure 4.2: Overall structure of Cisek’s model for reach- planning (adapted from
Cisek, 2007). Populations of neurons are organised in layers which transform
information from the visual input into motor commands. Only a subset of the
neurons in each layer is shown. The layers which show six neurons react to any
stimuli while the layers labelled with ‘red’ and ‘blue’ denote layers which only
respond to red and blue stimuli. They colour sensitive layers also have a lower
spatial resolution than the other layers; hence, only three neurons are shown in
these layers. The layers are linked by topographical connections. The layers for
red and blue stimuli also project topographically; this is indicated by the grey area
linking these layers with the previous and following layers.

followed by an arrow which indicating the direction of the reach movement towards

the target location and served as a ‘GO’ signal. After the ‘GO’ signal the monkey

had to make a movement in direction of the target location (Cisek & Kalaska, 2005).

Neural activity in the dorsal premotor cortex and in the primary motor cortex was

recorded. The model was constructed from layers of populations of leaky-integrator

neurons which were linked topographically and related to brain regions along the

dorsal stream in the brain. In each population every neuron had a preferred direction,

and stimuli lying in this direction triggered its activity. Within each population the

neurons had excitatory connections to neurons which responded to similar directions
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and inhibitory connections to neurons tuned to different directions. Additionally, the

neurons had a passive decay of activity and received noise. During reach-planning the

coloured stimuli observed in the visual input activated the neurons which preferred

the direction in which the stimuli were located. These activations propagated through

the layers and the competition between inhibitory and excitatory connections resulted

in a decision for a direction to reach to. Using this model Cisek was able to replicate

patterns of neural activation from experimental data.

Cisek’s model is notable for demonstrating how a direct link between visual per-

ception and motor control can be established by using a consistent encoding along

the dorsal route. This can be construed as an implementation of Gibson’s direct

perception. However, the understanding of affordances in the model is very restricted

– especially in contrast to Gibson’s broad definition. The model focused only on the

direction of a reach-movement and did – in contrast to the model developed in my

work – not include more complex actions like grasping. Nonetheless, Cisek’s model is

a good example that demonstrated how parameters for actions can be derived directly

from visual input.

Ward’s Model Modelling visual attention was the main aim of the model developed

by Ward (1999). His model did, however, not only simulate visual attention for

action but also incorporated the selection of action parameters. In order to simulate

attention for action, the input into the model consisted of the contents of the visual

array and of a specification of the intended action. Furthermore, Ward integrated

the dorsal stream as well as the ventral stream in his model. This is reflected in the

existence of ‘what’, ‘where’ and ’how’ systems in his model (Fig. 4.3). The ‘what’

system represented the ventral stream and recognised object shapes and colours,

the ‘where’ and ‘how’ systems stood for the dorsal stream with the ‘where’ system

identifying target locations and the ‘how’ system encoding action intentions. These
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Figure 4.3: Overview of Ward’s model for selective action (adapted from Ward, 1999).
Units in grey boxes have inhibitory connections (except for the feature maps) and
the different subsystems are linked with excitatory connections.

three systems were linked by three additional systems each of which combined the

information from two of the former systems in a ‘conjunctive code’: The ‘what’ and

‘where’ systems were connected via feature maps in the visual array, the ‘what’ and

‘how’ systems were linked via a ‘grasp’ system which allowed to describe different

types of grasps, and ‘where’ and ‘how’ systems were linked via feature maps which

encoded action target locations in the ‘reach’ system. All six systems were linked to

each other with excitatory connections. Within each system units were linked with

inhibitory connections. The input into the model was specified by setting the contents

of the feature maps in the visual array to represent the visual input. The intended

action was fed as top-down information from other brain systems (not included in
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the model) into the model by activating one of the action type units (grab or point)

in the ‘how’ system and one of the colour units in the ‘what’ system. During the

simulation the excitatory and inhibitory connections in the model triggered a selective

process which after a while produced a stable state of the system. In this state each

of the systems described a parameter for executing the intended action.

To illustrate how his model operated, Ward provided an example explaining how

the model specified an action and selected an object for it when it was asked to grab

the red object while being presented with a stimulus showing a red vertical bar on

the left and a blue horizontal bar on the right. First, the feature maps in the visual

array of the model were initialised according to the input stimulus. The intended

action was fed into the model by activating the ‘red’ unit in the ‘what’ system and

the ‘grab’ unit in the ‘how’ system . All initial values were constantly applied during

the simulation. At the beginning of the simulation the activation in the feature maps

of the visual array propagated to the location map in the ‘where’ system and to the

colour and orientation units in the ‘what’ system. Since two objects with different

colours, orientations and in different locations were described in the visual array the

activations balanced each other. However, the additional input that was applied to

the ‘red’ unit produced an imbalance in the model. The stronger activation of the

‘red’ unit led to an increased activation of the colour map for red in the visual array.

This in turn resulted in a stronger activation of the left side in the location map in the

‘where’ system which fed back its activation into all feature maps of the visual array.

Hence, objects in the left half of the feature maps received more support than the ones

on the right side. Since the red vertical bar was on the left side the corresponding

units in the ‘what’ system gained an advantage over the units representing blue and

horizontal. At the same time the sustained initialisation of the ‘grab’ unit in the ‘how’

system activated the units in the ‘grasp’ system and supported the units in the ‘grab’

feature map of the ’reach’ system. Combined with the orientation selection from the
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‘what’ system this resulted in the activation of a vertical grab in the ‘grasp’ system;

in the ‘reach’ system the activity from the ‘where’ system led in conjunction with

the activation from ‘grab’ unit in the ‘how’ system to a selection of the left half of

the ‘grab” feature map. Thus, at the end of the simulation the action parameters

were specified in the ‘grasp’ system and the object was selected in all feature maps.

While this example showed that action-based object selection and action specification

is possible with Ward’s model, it is interesting to note that the model is not able

to model bottom-up action selection without specifying an intended action (grab or

point). In particular it is notable that selection in situations like in the stimulus

above would not work because the model had no intrinsic biases for neither colour

nor orientation. This limits the possibilities of modelling visual attention for action

with this model in a bottom-up fashion.

However, Ward used his model mainly to investigate the effects of visual extinction

in patients and to determine how functionality was dissociated between the different

systems of the model. Of most interest in relation to my research is, however, his

investigation of effects of action intentions on perception. Ward explored these effects

in simulations in which the ‘where’ system was lesioned on the left side (by applying

an inhibitory bias). He found that the ‘grab’ action was less sensitive to the damage

then the ‘point’ action. He suggested that this was caused by the additional support

from the ‘grasp’ system in the ‘grab’ simulation.

4.1 Conclusion

The models reviewed here approached the route from vision to action from very

different perspectives. Some models focused exclusively on motor control and others

only looked at visual attention for action. Interestingly, most models made no or only

a few references to affordances. Most notably, no model combined visual attention,
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affordances and complex actions. Also, most models required structured descriptions

of the objects in the visual input which makes it difficult to interpret them in a

Gibsonian sense considering J. J. Gibson’s understanding of the direct perception of

affordances.
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Part II

The Selective Attention for Action

Model
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5 Study 1: Modelling Human-like

Grasp Postures

In the following three chapters the Selective Attention for Action Model (SAAM)

is presented. The model generates finger positions for grasping objects which are

presented in a visual input field. SAAM is introduced in three steps: First, a version

of the model is presented which only utilises bottom-up information from the visual

input to produce grasps. Then, in the next chapter, the model is extended to also

classify grasp types (e. g., power or precision grasps) and to integrate top-down

information about desirable grasps. Finally, in Study 3, I demonstrate how SAAM

models affordances and action intentions for tool-use.

This chapter starts with a qualitative and a mathematical description of the initial

version of the model, followed by a presentation of first simulation results. Then

an experiment is reported in which information about human grasp postures were

collected. Finally, the simulation results and the experimental data are compared.

5.1 The Selective Attention for Action Model

The Selective Attention for Action Model follows ideas developed in the Selective

Attention for Identification Model (SAIM; Heinke & Humphreys, 2003). Like SAIM

it uses a soft-constraint satisfaction approach to select an area in the visual field.

47



5 Study 1: Modelling Human-like Grasp Postures
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Figure 5.1: Overall structure of the Selective Attention for Action Model. The model
has two main components: the visual feature extraction stage which preprocesses
the visual input and the hand network which does the actual computation of grasp
postures. In the hand network two-dimensional arrays of neurons encode the
position of each finger. These maps are connected with each other and receive their
input from the visual feature extraction stage.

However, the constraints used and the output which is generated are very different in

both models.

Figure 5.1 shows an overview of SAAM. The input consists of black&white images.

The output of the model is generated in five ‘finger maps’ which are part of a ‘hand

network’. The finger maps encode the finger positions which are required for producing

a stable grasp of the object in the input image. At the heart of SAAM’s operation is

the assumption that stable grasps are generated by taking into account two types of

constraints: ‘geometrical constraints’ derived from the object shape and ‘anatomical

constraints’ imposed by the hand anatomy. It is important to note that SAAM has
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Figure 5.2: Example of the visual input after the
geometric constraints were applied. The image
shows the output of the horizontally oriented filter
combined with the weighted output of the vertic-
ally oriented filter. The sign of the activation on
the edges is used to separate edges at the bottom
side of the stimulus object (white lines) from edges
at the top and vertical sides (black lines).

no notion of the forces and torques which need to be balanced in a stable grasp but it

relies solely on its constraints to construct a stable grasp posture (see Mason, 2001 for

examples on the calculation of forces in grasps). This point will be discussed further

in the general discussion in Chapter 8.

In order to ensure that the hand network satisfies the constraints, SAAM follows an

approach suggested by Hopfield and Tank (1985). In this soft-constraint satisfaction

approach, constraints define activity patterns in the finger maps that are permissible

and others that are not. Then, an energy function is defined for which the minimal

values are generated by just these permissible activity values. To find these minima, a

gradient descent procedure is applied resulting in a differential equation system. The

differential equation system defines the topology of a biologically plausible network.

The mathematical details of this energy minimisation approach are given in the next

section. Here, I focus on a qualitative description of the two types of constraints and

their implementation.

The geometrical constraints are extracted from the shape of the object in the visual

feature extraction stage. To begin with, obviously only edges constitute suitable

contact points for grasps (see Fig. 5.2). Furthermore, edges have to be perpendicular

to the direction of the forces exerted by the fingers and the thumb. Hence, only edges

with a horizontal orientation make up good contact points since only horizontal hand

orientations are considered in the model. This restriction to horizontal edges does
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5 Study 1: Modelling Human-like Grasp Postures

however not need to be met by all fingers strictly. For a stable grasp it is usually

sufficient if the thumb and two other fingers are on horizontal edges. The remaining

fingers can be placed on the vertical edges without loosing stability. On the contrary,

this can even contribute to a firmer grasp of an object because the fingers on the

vertical edges can prevent sideways movement of the object (thus, two-dimensional

form-closure1 can be achieved; e. g., Bicchi, 1995). Hence, the restriction to horizontal

edges is loosened for fingers (not for the thumb, though) to also include vertical edges

but with reduced activation compared to the horizontal edges. The edge detectors

are implemented using Gabor filters. These filters have been shown to resemble the

processes in the primary visual cortex (Daugman, 1985; Field, 1987; Petkov, 1995).

To exert a stable grasp, thumb and fingers need to be located at opposite sides of

an object. This requirement is realized by separating the output of the horizontally

oriented Gabor filter according to the direction of the gradient change at the edge. In

fact, the algebraic sign of the response differs at the bottom of a 2D-shape compared to

the top of a 2D-shape. Now, if one assumes the background colour to be white and the

object colour to be black, the signs of the Gabor filter responses indicate appropriate

locations for the fingers and the thumb (see Fig. 5.1 and 5.2 for an illustration). In

the output of the vertically oriented Gabor filter the gradient change is ignored and

all edges are added to the input of the finger maps. The results of the visual feature

extraction feed into the corresponding thumb and finger maps providing the hand

network with the geometrical constraints. Note that, of course, the assumptions about

the object- and background-colours represent a strong simplification. On the other

hand, this mechanism can be interpreted as mimicking the result of stereo vision. In

such a resulting ‘depth image’ real edges suitable for thumb or fingers could be easily

1‘Form-closure’ means that an object is held by blocking each possible direction of movement with
a finger. In a form-closure grasp no force needs to be exerted to hold the object in place. A
two-dimensional form-closure grasp of a square, for example, can be achieved by placing one
finger at each side of the square.
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Figure 5.3: Excitatory connections between the finger maps in the hand network.
Connections exist only between neighbouring fingers and between each finger and
the thumb. Further connections between the fingers do not exist because the weight
maps between the fingers effectively form a transitive chain of constraints linking
all fingers and making such connections redundant. The excitatory connections
project in both directions using a transposed version of the weight map for the
feedback projection. The �-operator indicates a convolution of the source finger
map with the weight map. For clarity the finger maps show only 4� 4 neurons; in
reality each map consists of at least 512� 512 neurons (depending on the study).
The activation shown in the weight maps is also only exemplary.

identified.

The anatomical constraints implemented in the hand network take into account

that the human hand cannot form every arbitrary finger configuration to perform

grasps. For instance, the maximum grasp width is limited by the size of the hand

and the arrangement of the fingers on the hand makes it impossible to place the

index, middle, ring, and little finger in another order than this one.2 After applying

the energy minimisation approach, these anatomical constraints are implemented by

2The anatomical constraints can be linked to Warren, Jr.’s pi-numbers (see Sec. 3.2.2). The hand
network contains an implicit description of grasping related properties of the hand anatomy:
During grasp generation this description is matched with the geometrical constraints extracted
from the visual input. Thus, a relation between the object in the visual input and the hand
anatomy is established. This means that grasp generation in SAAM is implicitly guided by a
body-related measure which can be described with pi-numbers. This aspect will be discussed
further in Sec. 8.4.

51



5 Study 1: Modelling Human-like Grasp Postures

excitatory connections between the finger maps in the hand network (see Fig. 5.1

and 5.3). Figure 5.3 also illustrates the weight matrices of the connections. Each

weight matrix defines how every single neuron of one finger map projects into another

finger map. The direction of the projection is given by the arrows between the finger

maps. For instance, neurons in the thumb map feed their activation along a narrow

stretch into the index finger map, in fact, encoding possible grip sizes. Each neuron

in the target map sums up all activation fed through the weight matrices. Note that

all connections between the maps are bi-directional whereby the feedback path uses

the transposed weight matrices of the feed-forward path. This is a direct result of

the energy minimisation approach and ensures an overall consistency of the activity

pattern in the hand network since, for instance, the restriction in grip size between

thumb and index finger applies in both directions. Finally, since a finger can be

positioned at only one location, a winner-takes-all mechanism was implemented in

all finger maps. In the next chapter I will show that this selection mechanism also

implements global selection mimicking selective attention.

5.1.1 Mathematical Details of the Model

This section documents the mathematical details of the Selective Attention for Action

Model.

Visual Feature Extraction

The filter kernels in the visual feature extraction process are two Gabor filters which

are horizontally and vertically oriented. For edge detection only the real part of the

complex filter response is required (Daugman, 1985; Field, 1987; Petkov, 1995):

K = e
x′2+γ2y′2

2σ2 cos(2π
x0

λ
+ ψ) (5.1)
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with x0 = x cos θ + y sin θ and y0 = x sin θ + y cos θ.

In the response of the horizontally oriented Gabor filter the top edges of the object

are marked by negative values while the bottom edges are marked by positive values

in the filter response3. This filter characteristic is used to feed the correct input with

the geometrical constraints applied into the finger maps and the thumb map. The

finger maps receive the negated filter response after all positive activations have been

set to zero. The thumb map, on the other hand, receives the filter response with all

negative activations set to zero:

R
(f, h)
IJ =


�R(h)

IJ if R
(h)
IJ � 0,

0 else.

(5.2)

R
(t)
IJ =


R

(h)
IJ if R

(h)
IJ � 0,

0 else.

(5.3)

with R
(h)
IJ = IIJ �Kh whereby IIJ is the visual input image and Kh a horizontally

oriented Gabor filter kernel.

The output R
(v)
IJ = IIJ �Kv of the vertically oriented Gabor filter Kv is added to

the horizontal filter response that feeds into the finger maps. The direction of the

gradient change is ignored:

R
(f)
IJ = R

(f, h)
IJ +


rR

(v)
IJ if R

(v)
IJ > 0,

�rR(v)
IJ else.

(5.4)

The factor r controls the activation of the vertical edges in relation to the horizontal

ones.

3The filter parameters need to be chosen appropriately.
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Finally, in order to normalize the amplitude of the filter response across different

input images, a sigmoid function is applied to R
(f/t)
IJ :

I
(f/t)
IJ =

1

1 + e�sR
(f/t)
IJ +m

(5.5)

The parameters s and m are chosen so that the value of the sigmoid function is

0 + ε at position 0 and 1� ε at position 1.

The Hand Network

An energy function approach is used to satisfy the anatomical and geometrical

constraints of grasping. Hopfield and Tank (1985) suggested this approach where

minima in the energy function are introduced as a network state in which the

constraints are satisfied. In the following derivation of the energy function, parts of

the whole function are introduced, and each part relates to a particular constraint.

At the end, the sum of all parts leads to the complete energy function, satisfying all

constraints.

The units y
(f)
IJ of the hand network make up five fields. Each of these fields encodes

the position of a finger. y
(1)
ij encodes the thumb, y

(2)
ij encodes the index finger, and so

on to y
(5)
ij for the little finger. For the anatomical constraint of possible finger positions,

the energy function is based on the Hopfield associative memory approach (Hopfield,

1982):

Emem(yI) = �
∑
ij

i6=j

Tij � yi � yj. (5.6)

The minimum of the function is determined by the matrix TIJ . For Tijs greater

than zero, the corresponding yis should either stay zero or become active in order to

minimize the energy function. In the associative memory approach, TIJ is determined
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by a learning rule. Here, TIJ is chosen so that the hand network fulfils the anatomical

constraints. These constraints are satisfied when units in the finger maps that encode

finger positions of anatomically feasible postures are active at the same time. Hence,

the Tij for these units should be greater than zero, and for all other units, Tij should

be less than or equal to zero. This leads to the following equation:

Eexc(y
(G)
IJ ) = �

5∑
f=1

∑
g

g 6=f

∑
ij

L∑
s=�L
s6=0

L∑
r=�L
r 6=0

T (f 7!g)
sr � y(g)

ij � y
(f)
i+s,j+r. (5.7)

In this equation T
(f 7!g)
SR denotes the weight matrix from finger f to finger g.

The fact that each finger map should encode only one position is a further constraint.

The implementation of this constraint is based on the energy function proposed

by Mjolsness and Garrett (1990):

EWTA(yI) = a � (
∑

i

yi � 1)2 �
∑

i

yi � Ii. (5.8)

This energy function defines a winner-takes-all (WTA) behaviour where Ii is the

input and yi is the output of each unit. This energy function is minimal when

all yi are zero except one, and when the corresponding input Ii has the maximal

value of all inputs. Applied to the hand network where each finger map requires a

WTA-behaviour, the first part of the equation turns into:

Einh(y
(F )
IJ ) =

∑
f

(
∑
ij

y
(f)
ij � 1)2. (5.9)

The input part of the original WTA-equation is modified to take the geometrical

constraints into account:

Einp(y
(F )
IJ ) = �

∑
f

∑
ij

wf � y(f)
ij � I

(t/f)
ij (5.10)
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These terms drive the finger maps towards choosing positions at the input object

which are maximally convenient for a stable grasp. The wf -factors were introduced to

compensate the effects of the different number of excitatory connections in each finger

map.

The Complete Model To consider all constraints, all energy functions are combined,

leading to the following complete energy function:

Ehand(y
(F )
IJ ) = aexc �Eexc(y

(F )
IJ ) + ainh �Einh(y

(F )
IJ ) + ainp �Einp(y

(F )
IJ ). (5.11)

The parameters aexc/inh/inp weight the different constraints against each other. These

parameters are chosen in a way that SAAM successfully selects contact points at

objects in single-object and multiple-object input images. The second condition

is particularly important to demonstrate that SAAM can mimic affordance-based

guidance of attention. Moreover, and importantly, SAAM has to mimic human-style

contact points. Hereby, not only the parameters aexc/inh/inp are relevant but also

the weight matrices of the anatomical constraints which strongly influence SAAM’s

behaviour.

Gradient Descent The energy function defines minima at certain values of yi. To

find these values, a gradient descent procedure can be used:

τ ẋi = �∂E(yI)

∂yi

. (5.12)

The factor τ is anti-proportional to the speed of descent.
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In the Hopfield approach, xi and yi are linked together by the sigmoid function:

yi =
1

1 + e�m � (xi�s)
. (5.13)

Additionally, the energy function includes a leaky integrator so that the descent

turns into

τ ẋi = �xi �
∂E(yI)

∂yi

. (5.14)

Using these two assertions, the gradient descent is performed in a dynamic, neural-

like network where yi can be related to the output activity of neurons, xi the internal

activity, and ∂E(yI)/∂yi gives the input to the neurons. Applied to the energy

function of SAAM, it leads to a dynamic unit (neuron) which forms the hand network:

τ ẋ
(f)
ij = �x(f)

ij �
∂Ehand(y

(F )
IJ )

∂y
(f)
ij

. (5.15)

To execute the gradient descent on a computer, a temporarily discrete version of

the descent procedure was implemented using the CVODE-library (Hindmarsh et al.,

2005).

Stop Criterion

The model includes a stop criterion for the gradient descent procedure. The iteration

process finishes when

8f 2 F,max(y
(f)
IJ ) � t(f) (5.16)

becomes true. The parameters t(f) define the required minimum activation in each

finger map. If a simulation does not reach these levels of activation, it is aborted after
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bar concave irregular pyramid trapezium t-shape

0�

90�

180�

270�

Table 5.1: The objects and the orientations in which they were presented in Study 1.
The conditions bar 0� and bar 180� as well as bar 90� and bar 270� are obviously
encoding the same stimuli. However, to keep the experiments and the analyses
simple, all four orientations were treated as separate conditions.

the differential equation solver reached time tmax. The stop criterion enables SAAM

to simulate reaction times.

5.2 Simulating Grasps

The simulations in this first study aimed at exploring the basic abilities of SAAM to

produce finger positions suitable for grasping objects. Of particular interest was the

question how the generated grasps compare to grasps performed by humans.

5.2.1 Method

Six objects were designed and presented in four different orientations (Table 5.1).

The objects were chosen so that they did not resemble any real, familiar tools. This
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was done to prevent an influence of knowledge about tool use when the objects were

later used in experiments with human participants. Despite this, the objects did, of

course, resemble familiar shapes to varying extends; especially shapes similar to the

bar and the t-shape can be encountered often in everyday life (e. g., in the letters

‘I’ and ’‘T’). Nonetheless, the shapes were considered not to be strongly linked to

graspable objects and hence deemed suitable for inclusion in the study. Even, if this

assumption proofed wrong, it would result in an interesting difference between the

grasps created by the model and the grasps observed in humans due to the model not

having this link between the shapes and real-life graspable objects.

The shapes were also designed to be graspable in more than one way and with

varying difficulty. Difficulty was not formally assessed but it was assumed that objects

with short and irregular edges would be harder to grasp than ones with long, straight

edges. Finally, the objects were not only presented in orientations which allowed

SAAM to comfortably grasp the objects but also in orientations in which grasping the

objects with horizontal grasps (the only grasp orientation supported by the model)

was difficult or impossible. These experimental conditions were included to test how

the model would handle situations where no good grasp was possible. Additionally,

these conditions allow for assessing how humans, who can change the orientation of

their hands, handle these objects in contrast to the model.

Simulation Parameters The parameters for the simulations were chosen as follows:

aexc = 0.4, ainh = 3.3, and ainp = 13.0. In the gradient descent procedure the

parameters were τ = 0.7, m = 80.0, and s = 1.0. The threshold for the stop criterion

of the simulations was set to t(F ) = 0.995. The maximum simulation time was

tmax = 4.0. A complete list of all parameters including the Gabor filter parameters

can be found in appendix B.1.
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(a) Centre points and poly-
gons for the weight maps
between thumb and fin-
gers. The different di-
mensions of the polygons
reflect the different flex-
ibility of the fingers in
relation to the thumb.
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(b) Centre points and poly-
gons for the weight maps
between pairs of fingers.
The fingers were not ar-
ranged in a straight line
to mirror the finger pos-
itions in a relaxed hand
posture.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Modified Gaussian func-
tion which was mapped
onto the polygon radii.
The function had a min-
imum activation within
the polygon area and
dropped to zero outside
of this area.

Figure 5.4: The weight matrices were constructed from polygons defining an area
within a finger can move in relation to another finger. The activation in these
areas was defined by rotating a Gaussian function around the centre points of the
polygons and scaling the x-axis so that x = 0.0 was at the centre points of the
polygons and x = 1.0 on the outlines of the polygons. Fingers are coloured as
follows: thumb–red, index finger–green, middle finger–blue, ring finger–cyan, little
finger–pink.

The Weight Matrices The weight matrices T
(f 7!g)
SR were designed based on the

author’s right hand. The matrices formed a crucial part of SAAM as the encoded the

anatomical constraints of the grasping hand. The design of these maps was required

on the one side to match the hand anatomy and on the other side to be suitable for the

energy minimisation approach in the hand network. The latter required in particular

that the maps for different pairs of fingers formed an at least roughly consistent grasp

posture overall. To practically achieve this, the hand anatomy was encoded in the

hand maps in a slightly simplified way. The activation in the weight matrices was

derived from a Gaussian function to ensure a smooth transition from the strongly

activated central regions of the map to the less strongly activated margins. Since the

area in which two fingers can be positioned relatively to each other does not match
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Figure 5.5: Example of a complete weight map show-
ing the activation projected from the thumb (at the
centre of the image) to the index finger.

the elliptical outline of a simple two-dimensional Gaussian function, the weight maps

were created by rotating a one-dimensional Gaussian function around the centre of

a polygon while scaling the function so that its maximum was always at the centre

point and the minimum at the edges of the polygon. The centre point described

the most comfortable finger position, and the outline of the polygon delimited the

area within the finger could be placed at all. Figure 5.4 shows the centre points and

outlines used for the creation of the weight matrices. Figure 5.4c shows the modified

Gaussian function which was mapped on the polygon radii. The Gaussian function

was modified to produce a minimal activation at all points within the polygon:

f(x) =
1

1 + ∆
(e−

x2

2σ2 + ∆) (5.17)

This function was mapped to the radii of the polygons so that f(0) was at the

centre point and f(1) on the outline of the polygon. All values outside the polygon

were set to zero. The values of the parameters were set to ∆ = 0.5 and σ = 0.5.

Figure 5.5 shows an example of what the final weight maps looked like.

5.2.2 Results and Discussion

Simulations were run for all 24 experimental conditions shown in Table 5.1. First,

the finger positions created by SAAM are reported, followed by a discussion of the

reaction times of the model.
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(a) Pyramid 90� (b) Bar 90�

Figure 5.6: Two examples of the activation in the finger maps at the end of the
simulations. For each simulation, the activations in all five maps were added and
plotted in one graph. Additionally, the outline of the object in the visual field was
drawn on the bottom plane of the coordinate system. In both graphs the position
of the thumb is indicated by the peak on the bottom-left facing edge of the object.
In the pyramid 90�-plot the other fingers followed a normal right-handed grasp. In
the bar 90�-plot index and middle finger were on the left side of the object and
the other two on the right side. Furthermore, the plot of the pyramid 90� shows
an interesting artefact: The blue line pointed to by the red arrow indicates how
the activation was projected between the finger maps by the weight maps. While
the most activation concentrated on the selected finger position in each map, the
inhibition process did not fully suppress the other positions which also received
activation through the weight maps; this resulted in the blue line indicating a slight
difference in activation of these positions in comparison to the positions which
received no activation at all. Hence, the graph shows a weakly activated area in
the shape of the activation pattern in the weight maps. This demonstrates how the
weight maps project between the finger maps.

Finger Positions Figures 5.7 and 5.8 depict the activation in the finger maps at the

end of the simulations. In addition, Fig. 5.6 shows 3D-plots of the final activations

in the finger maps for two of the simulations. These plots demonstrate how the

activations were distributed within the maps in successful simulations where clear

finger positions developed (Fig. 5.6a) and in less successful ones where SAAM did not

generate a clear grasp posture (Fig. 5.6b). Finally, Figure 5.10 shows the time course
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Figure 5.7: Finger positions produced by SAAM (part 1; thumb–red, index finger–
green, middle finger–blue, ring finger–cyan, little finger–pink). The positions with
maximum activation are highlighted with circles; the maxima are at the centre of
the circles.
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Figure 5.8: Finger positions produced by SAAM (part 2; thumb–red, index finger–
green, middle finger–blue, ring finger–cyan, little finger–pink). The positions with
maximum activation are highlighted with circles; the maxima are at the centre of
the circles.
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of the maximum level of activation in the finger maps for all simulations.

First, the simulation results are discussed with a close focus on the activation

patterns which were observed in the finger maps. Scrutinisation of these patterns

helped to understand the crucial role that the anatomical constraints in the weight

maps play for grasp generation in SAAM. The weight maps are responsible for some

characteristic behaviours of the model. To start with, the model did not select a

unique position for each finger in the finger maps but a small region along the edge

of the objects instead (see Fig. 5.6a, for example). One could now conclude that

the WTA process in the hand network was not functioning as intended. However,

a close examination of the factors involved in the calculation of the activations

offers a different explanation. Due to the method with which the weight maps were

constructed, they contained lines of constant activation which were parallel to the

edges of their polygon-outline. If such an isoline of activation coincided with an

edge of the object, then a whole area in the finger maps received a constant level

of activation. This was, of course, additionally affected by overlaps of weight maps

projecting from different positions and finger maps. This could alleviate the effect but

this did not necessarily happen since many of the isolines in different weight maps had

the same direction. Obviously, the WTA process can not select a winner in such a

situation where no neuron has an advantage over all other neurons. The activations of

the fingers on bar 90�/bar 270� (Fig. 5.7) are particularly good examples of coinciding

isolines and edges. Figure 5.5 shows that the weight maps had long vertical isolines

due to the shape of the polygons which defined their pattern of activation. This led to

long lines of activation on the sides of the edge of the bar object which meant all these

positions were equally feasible for grasping. This behaviour of the model provides

additional information about the generated grasp postures: If a range of positions in

the finger maps has equal activation, this means that there is not just one optimal

finger configuration for grasping an object but a number of configurations which fit
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the geometric and anatomic constraints of the model equally well. By activating all

these positions, the WTA process informs us that there are different ways to grasp an

object, none which is preferable to the others.

In addition to not selecting unique finger positions, the vertical bar object illustrates

another behaviour which emerged from the design of the weight matrices and edge

detectors. The example weight map (Fig. 5.5) shows that the longer the isolines were

the smaller was their activation; combined with the reduced activation of vertically

oriented edges in the input this led to long stretches of small activation in the finger

maps which are clearly visible in the output of the simulation. These indicate that

with the given geometric and anatomic constraints the model was not able to generate

a good grasp of the object. The soft-constraint satisfaction approach of SAAM allows

the model to produce only weak activations in such conditions to express that with

the given constraints the object may be grasped but that the grasp is not a good one.

The activation of regions instead of unique positions made it necessary to define how

a unique finger position can be derived from the finger maps for further analysis. First,

all positions with maximum activation were selected in each map. This reduced the

size of the regions already heavily because, despite looking completely homogeneous,

there still were slight differences in the activation of each position with the centre

of the activated area having the maximum activation. The exact reason for this

distribution of the activation remains unclear but it is most likely due to the modified

Gaussian function which has a very small gradient at the top as well. For most objects

this selection of positions with maximum activation resulted already in a single finger

position. In simulations where more than one position had maximal activations the

centre of gravity of all these activations was chosen as the actual finger position. The

selected positions are marked by circles in Figures 5.7 and 5.8; the midpoints of the

circles are at the selected finger positions. The activation at these positions is shown

in Fig. 5.10.
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Figure 5.9: Grasp of a very long bar. This simulation
shows that SAAM’s preference for grasps around the
centre of gravity is not due to the length of the bar.
Please note that the plot has been resized for printing.
The visual input was twice as large as in the simulation
of the normal bar.

Overall, the results demonstrate that SAAM is able to select finger positions on a

wide range of different objects. The positions seem to be anatomically feasible, i. e.

the fingers were not swapped and the thumb was always placed below the fingers.

Exceptions from this good performance are the outputs for bar 90�, bar 270� and,

to a lesser extent, for irregular 0�, irregular 180�, pyramid 0�, pyramid 180� and

t-shape 270�. These objects were, however, not well suited for the horizontal grasp

postures which SAAM used. The distance between the objects’ top and bottom edges

was greater then the maximum grasp width of SAAM’s ‘hand’ which is implicitly

encoded in the weight maps between thumb and fingers. In the simulations of

the pyramidal and irregular shapes as well as the t-shape the effects of the object

length were smaller compared to the bar; small horizontal edges on these objects

still presented opportunities for the model to create a horizontal grasp. The slowly

increasing activations for some of the fingers in these simulations (see Fig. 5.10)

indicate though that the model had difficulties finding finger positions on these

objects.

In the bar 0� and bar 180� simulations, the grasps were placed around the centre of

gravity (Fig. 5.9 shows that this also works with longer bars). Even though SAAM has

no dedicated mechanism to extract the centre of gravity from an object. However, the

activation of finger positions in the hand network increases the more distant a position

is from the ends of an edge because this allows the weight maps to accumulate more
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activation from other finger positions. If, for instance, the thumb was placed directly

at the bottom left corner of the bar, it would not receive any input from the index

finger because the finger would no longer be placed on the bar at all. Hence, positions

located closer to the centre of the bar are more desirable for the thumb (and also

for the index finger which receives part of its activation from the thumb). Therefore,

finger positions near the centre of edges are preferred. This is an emergent property

of the model.

The grasps produced in the simulations for concave 0�, concave 180�, concave 270�,

and trapezium 90� are good examples of how SAAM utilised the vertical edges for

finger placement when the top edge of an object was not wide enough to place all four

fingers along it comfortably. In such cases the model positioned the index and little

finger on vertical edges and only left the middle and ring finger on the top edge. This

behaviour automatically emerged when the top edge was too short to place all fingers

in a straight line because the lateral fingers would then be placed in empty space

where no activation from visual input would be supporting them. Thus, the vertical

edges provided a better location for these fingers and, consequently, the model selected

these positions. A similar result could be observed in the trapezium 180� simulation.

There the top edge provided enough space for all fingers but the distance such a grasp

would require between the thumb and the little finger would result in a less favourable

grasp than placing the little finger at the side of the trapezium. Interestingly, this

did not happen in the mirror-inverted simulation with the trapezium 0�. Here, the

index finger was placed on the top edge and not on the left-hand side of the object.

The reason for this difference becomes clear when one looks at the weight maps in

figure 5.4a: In these maps the optimal vertical distance between the little finger and

the thumb is much less then the optimal vertical distance between the index finger and

the thumb. Furthermore, the finger/finger weight maps have a preference for edges

with a slight slant towards the right. Together these two properties are responsible
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for the differing grasp postures in the two orientations of the trapezium.

These examples demonstrate how the anatomical constraints implemented in the

weight maps guide the selection of finger positions in SAAM. I also showed that the

inhibition introduced by WTA process plays a major role in the selection process.

It has already been mentioned that this also affects the temporal behaviour of the

model. This will be discussed in greater detail now.

Reaction Times Because of the stop criterion in the model, simulations terminated

as soon as they had generated a grasp with a minimum level of activation for each

finger. Since the activation can be understood as a measure of how the model judges

the quality of a finger position, the stop criterion ensures that the model terminates

as soon as it has produced a good-enough4 grasp. Consequently, the duration of

a simulation can be interpreted as its reaction time which is required in order to

produce a grasp which can be potentially performed. Table 5.2 lists the duration

of each simulation and Fig. 5.10 illustrates how the maximum activation in the

finger maps developed over time. The table shows that the simulation duration

varied considerably in the 24 conditions. Most simulations reached the termination

threshold well within tmax but there are also six simulations (denoted by ‘> 4.0’ in

the table) which did not exceed the threshold level within the time limit. Except for

the trapezium 180� condition, these are all simulations which were already discussed

in the previous section because of the poor grasp postures they produced. The failure

to produce reaction time results for these objects confirms the point that the model

was not able to generate good grasps for these objects with the given the geometrical

and anatomical constraints. This does, however, not apply to the trapezium 180�

condition in which both, finger maps and maximum activation plots, indicate a good

4The meaning of good-enough depends, of course, on what the produced grasp is used for. If, for
instance, a fragile piece of china is to be grasped, then a good-enough grasp must certainly meet
a much stricter threshold than a grasp towards a plastic cup.
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Figure 5.10: Time course of the maximum activation in the finger maps. Please
note the different scales on the x-axes. The y-axes have the same scale in all plots.
Fingers are coloured as follows: thumb–red, index finger–green, middle finger–blue,
ring finger–cyan, little finger–pink.

70



5 Study 1: Modelling Human-like Grasp Postures

activation in all finger maps. Nonetheless, the activation of the little finger (which is

0.9885) stayed slightly under the threshold level and thus prevented the simulation

from finishing. A similar behaviour can be observed in the bar 0� and bar 180�

conditions; here the little finger stayed also below the threshold but other than in

the trapezium 180� simulation, the activation finally increased enough to pass the

threshold. A close examination of the time course of the activation for the little finger

in the trapezium 180� simulation indicates that the same might happen there if the

simulation ran longer.

bar concave irregular pyramid trapezium t-shape

0� 3.574 0.378 > 4.0 1.530 0.687 0.998
90� > 4.0 0.451 0.311 0.530 0.452 1.532

180� 3.574 0.867 > 4.0 > 4.0 > 4.0 2.442
270� > 4.0 0.562 0.522 0.682 0.818 1.279

Table 5.2: Duration of the simulations. Times written as > 4.0 denote simulations
which were aborted because they reached the maximum simulation time tmax.

The two horizontally oriented bars also highlight a characteristic of the reaction

times: Thin objects like the two bars and the two horizontally oriented t-shapes

tended to be grasped more slowly than larger objects. The plots of the time course

of the activation show that the initial activation increase was quick and comparable

to other objects but it did not reach the threshold levels. Only after some time the

activation concentrated enough in one position so that the threshold was passed. This

is likely to be an effect of small activations in the areas of the weight maps which

encode small grasps.

Apart from slower reaction times for smaller objects, the durations of the simulations

show no obvious patterns. It will be interesting to see if – given the relative simplicity

of the objects – the same reaction time differences can also be observed in humans.
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Figure 5.11: The length of the participants’ hands was
measured from the ball of the thumb to the tip of the
middle finger.

5.3 Where Do Humans Grasp Objects? – An

Experiment

We have seen that SAAM is capable of creating finger positions for grasping an object

in the visual field. But do these finger positions match the grasps produced by humans?

To answer this question and to gain a deeper insight into the positioning of individual

fingers on simple objects during grasping, an experiment with human participants was

conducted. In the experiment participants were asked to grasp objects resembling the

stimuli used in the simulations and move them onto a glass plane where a picture of

their grasp was taken. The finger positions were then extracted from the photographs,

analysed and finally compared with the grasps produced by the simulations.

5.3.1 Method

Participants Seventeen participants (eleven female) took part in the experiment.

Mean age was 24.7 years and the age range was 19 to 37 years. All participants

reported to be right handed. The length of the hand of each participant was measured

from the thenar to the tip of the middle finger to give an indication of hand size (see

Fig. 5.11). The mean hand length was 16.71 cm and lengths ranged from 13 cm

to 20 cm. All participants were postgraduate or undergraduate students at the
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Figure 5.12: The experimental set-up. In the centre was a large board on which the
object stimuli were presented; on both sides of it were two smaller boards with glass
panes and cameras behind to take pictures of the grasps.

University of Birmingham. They received either course credits or £5 in exchange for

their participation.

Apparatus Figure 5.12 shows the experimental set-up. Participants were seated on

a stool with an adjustable seat in front of a white wooden board which was 60 cm

wide and high and tilted at 45�. In the centre of the board was a base plate located

which had a big centre pin to hold an object and a small adjustment pin to fixate the

object in one orientation. Additionally, a micro-switch was embedded in the plate

which was triggered when an object was placed on the board or removed from it.

A button box was positioned in front of the board. Participants were asked to

place their hand on this button at the start of each trial. Above the board was a

computer screen installed that displayed information to guide the participant and the

experimenter through the experiment.

On both sides of the board were smaller boards (30 cm� 60 cm) set-up which had
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Figure 5.13: Example of the objects used in the experi-
ment.

a glass plane in the centre which was 25 cm wide and high. The boards were also

positioned at a 45� angle so that the subjects could comfortably place their hands on

the glass planes. Behind the glass planes were web cams installed which allowed the

experimenter to take pictures of the finger positions on objects placed on the glass

plane.

The participants wore liquid crystal glasses which could be toggled between a

transparent and an opaque state to control the participants’ visual perception (PLATO

glasses; Milgram, 1987). When being opaque the glasses appeared milky but did not

shade the eyes. Hence, the perceived luminance did not change when the glasses

changed state.

The computer screen, the micro-switch on the board, the button box, the cameras

and the liquid crystal glasses were connected to a computer running E-Prime 2.0. A

second screen and a keyboard were connected to the computer and placed next to the

experimental set-up up so that the experimenter was able to comfortably control the

experiment.

The experimental set-up allowed the experimenter to control when participants saw

the object, measure when they started their grasp movement and when the object was

picked up. The cameras recorded the finger positions used in the grasp of the object.

Materials Based on the shapes designed for the simulations (see Table 5.1) six

wooden objects were made. The objects were 2.2 cm thick and their size was scaled
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to retain the relationship between the size of the hand and the size of the objects in

the simulations. Due to different hand sizes in participants this could, of course, only

be done approximately. The exact dimensions and weights of all objects are listed

in Appendix A.1. They were painted black and had a number of holes at the back

to allow mounting them on the board in different orientations. An example of the

objects is shown in Fig. 5.13.

Design The experiment was a within-subjects design with 24 experimental conditions

(six objects in four orientations, see Table 5.1). Each condition was presented four

times resulting in 96 trials per participant. At the beginning of the experiment were 4

practise trials to familiarize the participants with the experimental procedure. There

were no planned breaks in the experiment but participants could ask for a break at

any time.

Procedure Participants completed a short questionnaire specifying their age, gender,

handedness and hand length. Then they read instructions explaining the experiment

and their task (see Appendix A.2 for the exact instruction text). Additionally, the

experimenter ensured that participants understood that the objects should be grasped

with the fingers and not clenched using the palm.

At the beginning of each trial a message appeared on the screen asking the par-

ticipants to focus on the board and warning them that the experimenter will close

the glasses. Once the glasses were closed the experimenter placed one of the objects

on the board in front of the participants. Afterwards the participants were asked

to press down the button with the palm of their right hand (see Fig. 5.14). After

a 2000 ms delay the glasses opened. As soon as the participants lifted their hand

from the button the glasses were closed again so that the grasp movement had to

be performed blind. This was done in order to prevent participants from letting the
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button go first and only then decide which grasp to perform. Furthermore, it allowed

to distinguish two components in the participants’ reaction: pre-grasp planning and

grasp-execution. This is important because SAAM only models grasp planning based

only on information available prior to grasp execution. By closing the glasses after

the grasp movement was initiated, corrections of the planned grasp posture based

on online updates of the grasp plan during grasp execution should be minimized in

the experiment. Once the participants had lifted the object of the board the glasses

were opened again and an instruction to place the object in front of one of the two

cameras appeared on the screen. The left and right cameras were chosen randomly to

ensure that participants did not know beforehand to which board they would have to

move the object because this could have affected their grasp. This is known as the

‘end-state comfort’; Rosenbaum observed that grasps of objects can be influenced by

the final position to which an object is moved to in a subsequent move-action after the

object has been grasped. He argued that grasp postures are chosen so that the grasps

are most comfortable at final position of the movement (see Rosenbaum, Halloran, &

Cohen, 2006 for details about this effect). Since the focus of this study (and SAAM in

general) was not on the effects of action plans on grasp postures but on the effects of

object affordances on grasps, the experiment was designed to prevent the participants

from planning sequences of actions. Finally, at the end of the trial the experimenter

took a photograph of the grasp used by the participants and they gave the object

back to the experimenter.

The experiment lasted approximately 45 min. After they completed the experiment,

participants were debriefed and received course credits or money.
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Figure 5.14: Initial hand position at the beginning of each
trial in the experiment.

5.3.2 Results and Discussion

The experiment was analysed in two ways: First, an analysis of the grasps used for

the different objects was performed. Second, pairwise comparisons of the reaction

times in the different conditions were calculated.

Analysis of Finger Positions In order to perform an analysis of the grasps, the

positions of the fingers and the objects were marked in the photographs taken during

the experiment (see Fig. 5.15a). Using two marked locations on the object, the finger

positions were then transformed5 so that they could be drawn on a standardised

version of the object (see Fig. 5.15b). Finally, the finger positions were mapped to

the nearest edge of the object. This step was introduced because in the simulations

the finger position is (implicitly) defined as the position where the finger touches the

object. The mapping step harmonises the meaning of finger position in the simulations

and the experiment and eliminates variations introduced by inaccurate marking of

fingers in the experiment. Moreover, the mapped finger positions can be represented

on a one-dimensional scale by measuring their position along the outline of the object.

This representation was developed because it simplifies the comparison of grasps

which will prove particularly helpful for comparing the experimental data with the

5The transformation included only translation, scaling and rotation. Thus, complex distortions
could not be corrected for. However, due to the set-up of the cameras and the position of the
objects on the glass plane these distortions were minimal and not deemed a problem for further
analysis.
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(a) Picture showing the
marked positions of the
fingers and the object.
The pictures were taken
from behind the object;
therefore, the photo and
the marked finger pos-
itions are mirror-inver-
ted.

(b) The positions extrac-
ted from the photograph
were mirrored and trans-
formed so that they are
aligned to a standard-
ised representation of the
object. The object is
presented viewed from
above in the same orient-
ation in which the parti-
cipants saw it.

(c) The Finger positions
were then mapped to
the outline of the object.
The inset shows the po-
sition of the fingers on
a linear plot of the ob-
ject outline. The num-
bers indicate how the lin-
ear plot maps to the out-
line of the object. They
were arbitrarily assigned
to the corners of the ob-
ject.

Figure 5.15: Analysis of the photographs collected in the experiment. The object
shown in this example is trapezium 0�.

simulation results. Figure 5.15c shows an example for a completely processed trial;

the inset illustrates how the finger positions are distributed along a linear plot of the

outline of the object.

Finger Positions The finger positions for all 24 conditions are shown in Fig. 5.16

and 5.17. Overall, the results showed that there were one or two preferred ways of

grasping each of the objects. Since SAAM was restricted to horizontal grasps only,

the grasps in the experiment were grouped into horizontal and vertical grasps. The

grasps were classified as horizontal if the thumb was placed on a downwards facing

edge and as vertical if the thumb was placed on a leftwards facing edge. In the t-shape

conditions eleven grasps were excluded from the analysis because the thumb was
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Figure 5.16: Grasps observed in the experiment (part 1). See Fig. 5.15c for an
explanation of the linear plots. Fingers are coloured as follows: thumb–red, index
finger–green, middle finger–blue, ring finger–cyan, little finger–pink.
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Figure 5.17: Grasps observed in the experiment (part 2). See Fig. 5.15c for an
explanation of the linear plots. Fingers are coloured as follows: thumb–red, index
finger–green, middle finger–blue, ring finger–cyan, little finger–pink.
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Figure 5.18: This graph shows the proportion of horizontally oriented grasps versus
the ratio of object width to height. If an object was not grasped horizontally, it
was grasped vertically (other grasps were excluded from the analysis). Objects with
ratios less than one were presented in a vertical orientation, objects with a ratio
greater then one were horizontally oriented.

placed on the rounded parts of the shape (i. e. the line segments between nodes 1–2

and 7–8 in the plots of the t-shape in Fig. 5.17) which can be classified neither as

horizontal nor as vertical. The data showed that in each condition one of the two

grasp orientations was preferred depending on the height and width of the objects. To

further investigate this relationship between the likelihood of a horizontal grasp and

the ratio of object width to height, a logistic model was fitted to the data. Logistic

regression analysis was performed yielding

ln

(
Y

Y − 1

)
= −2.933 + 2.469r (5.18)

with Y being the predicted probability for a horizontal grasp and r being the ratio

of object width to height (Table 5.3; see A.1 for details of the definitions of object

width and height).

According to the logistic model, the log of the odds for a horizontal grasp is

positively related to the width/height ratio of the grasped object (p < 0.001; Table 5.4).
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bar concave irregular pyramid trapezium t-shape

0� 3.710 0.840 0.420 0.480 1.000 2.320
90� 0.270 1.190 2.390 2.090 1.000 0.430

180� 3.710 0.840 0.420 0.480 1.000 2.320
270� 0.270 1.190 2.390 2.090 1.000 0.430

Table 5.3: Width-to-height ratios of all objects and orientations. Values less than
one indicate vertically oriented objects; values greater than one denote horizontally
oriented objects.

This means larger ratios (i. e. horizontally oriented objects) were linked with higher

proportions of horizontal grasps while smaller ratios (vertically oriented objects)

were linked with higher proportions of vertical grasps. This relationship is shown in

Fig. 5.18; detailed results of the analysis are summarised in Table 5.4. The analysis

of grasp orientation confirmed the observation that the grasp orientation depended

on the object width and height. This is an important result considering that SAAM

only implemented horizontal grasp postures. I will return to this in the comparison of

simulation and experiment.

Predictor β Wald’s χ2 df p

Constant �2.933 286.914 1 < 0.001
W/H-Ratio 2.469 258.106 1 < 0.001

Test χ2 df p

Likelihood ratio test 814.949 1 < 0.001

Table 5.4: Logistic regression analysis of width-to-height ratio and grasp orientation.
The analysis was conducted with SciPy 0.8.0 and statsmodels 0.2.0.6

Apart from the discrimination between vertical and horizontal grasps, the results

give an impression of the variation observed in grasping. The fingers were clearly not

positioned arbitrarily but there was still a fair amount of variation in the choice of

finger positions. For example, in the pyramid 90� condition the index finger was not

6SciPy is available on http://www.scipy.org/. The statsmodels toolkit can be retrieved from
http://scikits.appspot.com/statsmodels.
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only placed on varying locations on one step of the pyramid but even on different steps

altogether. Similar variations can be found in the other orientations of the pyramid

as well as in the conditions which showed the irregular object. Since the other objects

had longer edges, variations in finger positioning on these objects only affected the

position of the fingers along the edges but not the chosen edge segment. For example,

in the bar 0� condition the fingers were always placed on the same two edges and only

the exact position varied. Though, to some extent an exception from this were the

concave and trapezium objects because they had a width-to-height ratio close to 1.0.

The analysis of horizontal and vertical grasps showed that such objects were grasped

horizontally as well as vertically. This obviously produced finger positions on at least

two edges depending on whether the participants used a horizontal or vertical grasp.

The grasps on the concave 180� and the trapezium 180� exemplified this. The thumb,

for instance, was placed at the bottom edge as well as on the left edge of the object.

However, on each edge the variation of the finger positions was similar to those in the

other objects.

An interesting result is the location of the fingers on the concave and trapezium

objects. In the description of the visual feature extraction stage of the SAAM (Sec. 5.1)

I discussed the possibility of placing fingers not only on the top edges of an object

but also on the sides. The finger positions on the trapezium and the concave objects

prove that this way of positioning the fingers is not merely a theoretical option but is

actually used by humans. Trapezium 90� and trapezium 180�, in particular, illustrate

how fingers were moved to vertical edges of the object if the space on horizontal edges

was not sufficient for all fingers.

Reaction Times Two reaction times were measured. The first measure was the

time from when the glasses became transparent until the participants released the

orange button (RT 1). The second measure was the time between releasing the button
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and lifting the object (RT 2). The first reaction time measure can be interpreted as

preparation time or planning time for the grasp while the second one is essentially the

duration of the reach-to-grasp movement.

Both reaction time measures were analysed separately. For both datasets pairwise

comparisons of all conditions were carried out using related-samples t-tests with

Bonferroni adjustments to compare reaction time differences between the different

objects and orientations. The reaction times from each participant were averaged

using the median. The full results can be found in Appendix A.

The comparison of the RT 1 times revealed no significant pairs, and the RT 2 times

showed only two significant pairs (of 276). A reason for this could be the relatively low

number of samples per condition (4 per participant � 17 participants). Furthermore,

it needs to be considered that all objects had a good size for grasping and clearly

identifiable surfaces for placing the fingers on which made grasping them easy despite

their different shapes. Thus, the effect of the different orientations and objects on the

reaction times might be very small. Since I mainly focused on the analysis of finger

positions in my work, the comparison of reaction time differences in the experiment

and the simulations was not pursued any further. However, it needs to be noted that

the absence of significant effects in the reaction time data is not an indicator that the

data describing finger positions are not significant. While the planning and execution

times for grasps might only show very little differences for various objects, the final

grasp posture can still be very different depending on the object shape as the analysis

in the previous section showed. Therefore, the finger positions can safely be analysed

despite the lack of significant reaction time data.
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5.4 Comparison of Simulated Grasps and

Experimental Results

SAAM aims at reproducing human grasp postures. Hence, the grasps of objects it

produces should be similar to the grasps humans make on the same objects. To

verify this, the simulation results were compared with the experimental data. In

order to do this, a metric for the similarity of grasps was developed. This metric

was then used to measure how similar SAAM’s grasps were to the grasps observed in

the experiment. The comparison is accompanied by a comparison of the significant

reaction time results from the experiment with the reaction time differences observed

in the simulations.

5.4.1 A Similarity Metric for Grasps

It is reasonable to assume that two grasp postures are similar if the fingers are in

similar positions in both grasps. This means, the smaller the distances between all

pairs of corresponding fingers are in two grasps, the more similar are these grasps.

Here, the distances between the fingers are measured along the perimeter of the

objects (these are effectively the distances between the lines plotted on the insets

of Fig. 5.16 and 5.17). A Gaussian function is then used to normalise the distances

measured between pairs of corresponding fingers. This function yields one if two

fingers are in exactly the same position and declines towards zero with increasing

distance between two fingers:

q(f1, f2) = e
−h(f1−f2)2

2σ2 (5.19)
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with

h(x) =


x if jxj < l/2,

l � jxj else.

(5.20)

The parameters f1 and f2 denote the positions of two fingers on the object perimeter

and l the length of the object perimeter. Since the distance between two points on

a closed outline can be measured in two directions, the helper function h(x) was

introduced to always select the shorter of the two distances. The parameter σ of the

Gaussian bell curve defines the range of acceptable distances.

Since all corresponding fingers should be in similar positions, the scores of all finger

pairs are multiplied to calculate the similarity metric for two grasps g1 and g2:

Q(g1, g2) =
5∏

f=1

q(g
(f)
1 , g

(f)
2 ). (5.21)

To compare a grasp g with a set S of other grasps, e. g., when comparing a

simulation result with the grasps made in the experiment, the mean of the similarity

scores between g and each individual grasp in S is calculated:

Q(g, S) =
1

jSj
∑

s

Q(g, s) (5.22)

The similarity metric rates each grasp on a scale between 0 and 1. A score of zero

means that a grasp is unique and no grasp in S is in similar to it. A score of one, on

the other hand, means that a grasp perfectly matches all grasps in S. This essentially

implies that all grasps in S and the grasp g have all their fingers at exactly the same

positions.

It is not only possible to compare a single grasp with a set of other grasps but also

to compare all grasps within the set with each other. This is achieved by calculating

the similarity of each grasp in the set with the rest of the grasps in the set. Hence,
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for each g 2 S the score Q(g, S n fgg) is calculated. This yields a list of scores

characterising the distribution of the grasps in S on the object. Many high scores

in this list indicate a high similarity of the grasps in the set. The absence of any

high scores on the other hand indicates a high variation of grasp positions because no

grasp has many others in its vicinity.

In the analysis the parameter σ of the Gaussian bell curve in the similarity measure

was derived from the variations of the finger positions the experiment. In each

condition the standard variation of the finger positions of each finger was calculated;

σ was then set to the mean of the standard variations. The standard variation was

chosen as the basis for the calculation of σ because it ensured that the similarity

measure accepted grasps in a vicinity which had a width that corresponded to the

width of the distribution of the grasps in the experiment. The reasoning behind this

is that if grasps in the experiment varied widely then similarity should be less strictly

defined compared to a set of grasps with very small variation. To make the similarity

score comparable across conditions the mean of the standard variations was chosen

as the final value for σ. It shall be noted that the similarity scores were robust for

different values of σ. The scores differed in size but the relation between two scores

did not change.

5.4.2 Results and Disussion

Finger Positions Figures 5.19 and 5.20 show how the grasps produced by SAAM

compared to the grasps observed in the experiment. To create these charts, the

grasps from the experiment were used to create a reference set for each experimental

condition. Then, the grasps in each set were scored compared to the other grasps

in the same set as described in the previous paragraph. Finally, the scores of the

SAAM’s grasps were calculated using the experimental reference sets. The scores of
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the simulation results are coloured in red and highlighted with an arrow if necessary.

All scores were sorted by value so that the grasps with the highest similarity scores are

at the right side of the graphs. Thus, the further a simulated grasp is located on the

right side of a chart the more similarity it has to the grasps from the experiment. The

two charts below each plot of grasp scores show the finger positions of the simulated

grasp (top plot) and the finger positions from the experiment (bottom plot).

SAAM can only perform horizontally orientated grasps. However, the experimental

results revealed that humans preferred to grasp the objects in some of the conditions

with vertically oriented grasps. The comparison charts (Fig. 5.19 and 5.20) show that

the SAAM performed particularly bad on objects which were vertically oriented. This

coincides with the predictions made by the grasp orientation model (see Eq. 5.18).

Figure 5.21 demonstrates how the probability for a horizontal grasp as predicted by

the logistic model (see Sec. 5.3.2) is linked to the performance of SAAM which was

defined as the similarity score of the simulation divided by the observed maximum

score per condition. The graph clearly shows that a poor performance of SAAM is

linked to objects which humans preferred to grasp with a vertical grasp. However,

SAAM’s limitation to horizontal grasps forced it to some form of horizontal grasp

which was obviously different from the vertical grasps humans used. As it has been

pointed out already, the model in such cases often only produced low activations

thereby indicating that the generated grasp posture was not very good.

Apart from providing an explanation for the poor similarity of some of SAAM’s

grasps, Fig. 5.21 also shows that the simulation results in the remaining conditions

were very good. The simulated grasps consistently scored high in relation to the

observed maximum score.

Reaction Times Since the pairwise comparisons of RT 1 times from the experiment

showed no significant results, the temporal behaviour of the model was not compared
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Figure 5.19: Comparison of experimental data and simulation results (simulation
results are marked red; part 1). The linear plots below the main charts illustrate
how the simulated finger positions (top) compared to the finger positions in the
experiment (bottom).
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Figure 5.20: Comparison of experimental data and simulation results (simulation
results are marked red; part 2). The linear plots below the main charts illustrate
how the simulated finger positions (top) compared to the finger positions in the
experiment (bottom).
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Figure 5.21: This graph compares the probability for a horizontal grasp as it is
predicted by the logistic model (see Sec. 5.3.2) with the similarity score that the
simulation yielded in relation to the observed maximum similarity score.

with the experimental data.

5.5 Summary

Study 1 showed that grasps created by SAAM were, in general, anatomically feasible.

The comparison with the experimental data confirmed this; SAAM produced grasps

which had a high similarity to the grasps made in the experiment. On vertically

oriented objects, however, SAAM’s results differed from the experimental data. While

humans were able to rotate their hand and grasp such objects with a vertical grasp,

SAAM was restricted to horizontal grasps. Hence, the grasps it produced on vertical

objects had not much similarity with human grasp postures. Despite this, SAAM’s

grasps were not impossible for humans to make, though, and still anatomically

feasible. A possible experiment could investigate whether a restriction to horizontal

grasp postures would lead humans to make similar grasps on vertically oriented objects

as SAAM did.

In the simulations with vertically oriented objects, the activation in the finger maps
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also developed more slowly than in simulations with horizontally oriented objects.

Additionally, these simulations showed how the model handled inputs where a number

of equally feasible grasps was possible. In these cases the model resorted to activating

all positions which might be part of a grasp. In simulations where no good grasps could

be found on the input, the activation of the selected positions was reduced, though,

indicating that the model judged these positions not as optimal for grasping because

they did not match the anatomical constraints very well. This can be understood as a

rating of grasp quality: A grasp which requires an awkward grasp posture is more

likely to fail (i. e. the seized object is dropped) than one which is comfortable.

SAAM’s ability to express how good it considered a grasp to be, allowed to use a

threshold-criterion to stop the simulations once a good-enough grasp was generated.

A good-enough grasp is a grasp which satisfies the anatomical constraints well enough

so that it is unlikely that the grasp would fail during its execution. Depending on

the task the acceptable risk of failing can, of course, differ. The durations of the

simulations matched the observations described above. When SAAM was able to

create a good grasp, the simulation duration was short. When SAAM could not create

a good grasp, the simulations took longer and in some cases did not terminate at all

before the cut-off time. The simulation durations also showed that thin objects (i. e.

the bar and the t-shapes) were grasped more slowly than bigger objects. This is in line

with the observation that precision grasps are slower than power grasps (Derbyshire,

Ellis, & Tucker, 2006) assuming that objects handled with precision grasps are usually

smaller than objects handled with power grasps.

In the experiment that accompanied the simulations no significant reaction time

differences were observed for grasp planning (RT 1). The reaction times for grasp

execution (RT 2) showed only two significant pairs of reaction times. Because of

this low number of significant results, the reaction time data were not analysed any

further.
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The simulations revealed two notable properties which emerged from the constraint

satisfaction process: First, SAAM’s grasps of the horizontally oriented bar were placed

around its centre of gravity. This is remarkable since SAAM does not contain any

mechanism to recognise an object’s centre of gravity. This behaviour emerged solely

from the constraint satisfaction process in the hand network. Second, the model was

able to place fingers on the vertical edges of the object when the space on the top

edges was not sufficient to place all fingers there or when the grasp span would be to

large. As a side effect this also improved the stability of the grasp postures because

object movement was restricted in all four directions (two-dimensional form-closure;

Bicchi, 1995). The experiment showed that this behaviour of the model was not

artificial but matched the behaviour of humans who also produced form-closure grasps

on the same objects.

It is important to note that SAAM has no notion of the forces and torques which

need to be balanced to achieve a stable grasp of an object (see, for instance, Mason,

2001 for examples on the calculation of forces in grasps). In SAAM the geometrical

and anatomical constraints implicitly ensure that the forces exerted by the thumb and

the fingers form a stable opposition space. The geometrical constraints, for example,

ensure that thumb and fingers are located on opposite edges of the object. The ability

of the hand network to grasp objects around their centre of gravity is another example

of how SAAM implicitly constructs a stable grasp. This method of finding stable

grasp points is much simpler than an accurate calculation of the positions by taking

into account all forces exerted by fingers. The comparison with the experimental data

showed that it is nonetheless sufficient to identify stable grasp points.
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Two-Object Simulations

In Study 1 I demonstrated that SAAM can generate finger positions for grasps of single

objects and that these grasps are similar to the grasps made by humans. However, a

central aspect of my work is selective attention for action. Hence, I will now turn to

exploring SAAM’s abilities to produce grasps for objects in multi-object situations.

By producing a grasp for one of multiple objects in the visual input SAAM performs

a selection which can be interpreted as attentional behaviour.

In addition to investigating the emergence of selective attention, I will also extend

SAAM to classify the grasps it produces. This extension enables SAAM to recognise

different types of grasps, for example, precision and power grasps. Grasp classification

makes attentional selection in SAAM twofold: Different grasp locations compete as

well as different grasp types. I will first demonstrate with single-object simulations

that grasp type selection works in SAAM. Then I will present results of multi-object

simulations showing that selection of grasp location and selection of grasp type also

work together.

Grasps can be chosen by intentions. In SAAM the grasp classification module has

a top-down path which can be used to model this. By preferring one grasp type over

others an intention of grasping an object in a specific way can be expressed. Study 2c

explores this behaviour.
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6.1 Extending SAAM: The Grasp Template Network

The classification of grasps in SAAM is implemented with templates describing the

characteristic finger positions for specific types of grasps. Grasp types can be derived

from the grasp taxonomies discussed in Chapter 2. SAAM’s restriction to two

dimensions however limits the choices for different grasp types. Nonetheless, grasp

postures like the precision grip or power grip can be approximated by creating grasp

types for grasps with either a small or a wide grasp span. The templates describe the

characteristic finger positions of specific grasps types. Obviously, the templates need

to be independent of the location of the absolute finger positions in the visual input.

Hence, the templates need to define the positions of the fingers in a certain grasp type

relatively to each other. This is achieved by constructing template maps in the same

way as the weight maps for the anatomical constraints. However, the template maps

do not encode the anatomically feasible spatial relationships between pairs of fingers

but the relationships which are characteristic for a certain grasp type. In other words:

the templates define characteristic configurations for pairs of fingers. A template is

selected if the activation in the finger maps matches the finger configuration defined

in the template.

The templates are part of a grasp template network. This network is linked to the

hand network through a bottom-up path and a top-down path. The bottom-up path

from the hand network to the grasp template network implements the classification

capabilities of the model. It can be used independently of the top-down path. The

top-down path provides the reverse connection. It can be used to manipulate the

choice of finger positions in the hand network based on the activated grasp template.

I will first describe both pathways qualitatively before going into the mathematical

details of their implementation in the model.
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Figure 6.1: Integration of the bottom-up path of the grasp template network into the
original model. For clarity only two of the five finger maps in the hand network
are shown with the excitatory connections between them. Furthermore, only one
connection into the grasp template network is shown per finger map. In the real
model each finger map has one link to the grasp template network for each excitatory
connection it has with another finger map. In the figure only two templates are
shown. This can, of course, be changed to as many templates as necessary.

6.1.1 Bottom-Up Path

Figure 6.1 illustrates how the bottom-up path of the grasp template network connects

with SAAM’s other components. The new network has one output unit per grasp

type. Each grasp type is defined by a template consisting of a set of template maps.

These maps describe those relative positions of the fingers which constitute a grasp of

the encoded type. Thus, the template maps are similar to the weight maps in the

hand network; only that they describe the relative positions of the fingers allowed

in a certain grasp type instead of all anatomically feasible finger positions. The

template maps are defined for the same pairs of fingers as the weight maps in the
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hand network (see Fig. 5.3). The activations of the output units of the grasp template

network depend on how well the grasp postures described in the templates match with

the finger positions generated by the hand network. This matching is calculated in

three steps: First, each template map is applied to one of the finger maps it refers to

in the same way as the weight maps in the hand network project activation between

the finger maps. Thence, the result of this calculation has the same size as a finger

map and describes the positions for the second finger in relation to the first one which

are permitted by the grasp type template. Second, this result is compared to the other

finger map to which the template map refers. This is done by multiplying the result

from step one with the finger map to select only those positions which are permitted

by the grasp type. Third, the result of step two are summed and added across all

template maps of grasp type to yield the activation of the output unit. Thus, a unit

is strongly activated when all its template maps match the grasp posture in the finger

maps and weakly activated if only a small number of its template maps match the

grasp posture generated by the hand network. Finally, a winner-takes-all mechanism

ensures that eventually only the best-matching template is selected.

6.1.2 Top-Down Path

The grasp template network can not only classify grasps but the classification result

also feeds back into the hand network to guide grasp generation. Figure 6.2 shows how

this feedback path is embedded in the model. The template maps in each template

are weighted with the activation of output neuron for the template set and then

added to their corresponding weight maps in the hand network. This enables the

grasp template network to modify the anatomical constraints (which are encoded in

the weight maps) dynamically during grasp generation. Thus, the definition of what

constitutes a grasp is not fix any more but can be adapted either depending on the
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Figure 6.2: Illustration of the top-down path which links the output of the grasp
template network with the hand network. Only one feedback path is shown; in the
actual model all template maps feed back into the corresponding weight maps.

objects currently present in the visual input or based on external intentions1. In order

to allow the model to adapt the weight maps independently of their current contents,

the template maps are added to instead of multiplied with the weight maps in the

hand network. To my best knowledge this implementation of a feedback path is a

novel way of implementing top-down feedback in attentional models. The implications

this has will be discussed in Chapter 8.

6.1.3 Mathematical Details

The visual feature extraction stage of SAAM is the same as before. The grasp

template network is integrated in the original model by adding a new term to the

1In the simulations this is realised by using different initial values for different templates to express
a preference for a grasp type.
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energy function of the hand network. This modification turns the energy function

into a function with one input variable for the output of the hand network and one

for the output of the grasp template network. When the energy function is derived in

order to perform the gradient descent procedure, it splits into a separate equation for

each network.

The Grasp Template Network

Equation 5.7, which defines the excitatory connections in the hand network, is modified

to include the activation of the template units:

Etpl
exc(y

(G)
IJ , y

tpl
K ) = �

5∑
f=1

∑
g

g 6=f

∑
ij

L∑
s=�L
s6=0

L∑
r=�L
r 6=0

T (k:f 7!g)
sr � y(g)

ij � y
(f)
i+s,j+r, (6.1)

with

T (k:f 7!g)
sr = T (f 7!g)

sr + atpl

∑
k

w(k:f 7!g)
sr � ytpl

k .

The term w
(k:f 7!g)
SR denotes the weight matrix which describes the allowed positions

of finger g in relation to finger f in the k-th template. The weight matrices in the

template map are multiplied with the activation of the template (ytpl
k ) and added to

the weight maps of the hand network. Only one grasp type should be selected once

a grasp has been generated. This constraint is implemented with the same winner-

takes-all (WTA) approach as in the hand network (see Eq. 5.8 and 5.9). However,

only the WTA-part of the equation is used and the input part is ignored:

Etpl
inh(ytpl

K ) = (
∑

k

ytpl
k � 1)2. (6.2)

The Complete Model With these changes and additions the new complete energy

function for the model becomes
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Etpl
total(y

(F )
IJ , y

tpl
K ) = ahand/tpl

exc �Etpl
exc(y

(F )
IJ , y

tpl
K ) + ainh �Einh(y

(F )
IJ )+

ainp �Einp(y
(F )
IJ ) + atpl

inh �E
tpl
inh(ytpl

K ). (6.3)

Please note that I diverge here slightly from the strict energy function by allowing

different excitation factors ahand
exc and atpl

exc for the hand network and the grasp template

network. Simulations produced better results when the excitations into both networks

were not symmetric.

Gradient Descent The gradient descent procedure is the same as in the first version

of the model (see Eq. 5.12 and 5.13) but with the new energy function. This leads

to two equations describing the hand network and the grasp template network. The

gradient descent in the hand network is

τ ẋ
(f)
ij = �x(f)

ij �
∂Etpl

hand(y
(F )
IJ , y

tpl
K )

∂y
(f)
ij

. (6.4)

The gradient descent of the hand network is only different from the original version

of SAAM when the top-down path is enabled (i. e. atpl 6= 0). If factor atpl in the

energy function is zero, then the variable ytpl
K has no effect on the gradient descent in

the hand network.

The equation for the gradient descent in the grasp template network is

τ tplẋtpl
k = �xtpl

k �
∂Etpl

hand(y
(F )
IJ , y

tpl
K )

∂ytpl
k

. (6.5)

Here, the template factor atpl is merged with the atpl
exc factor and is not assigned

a separate value. This also evades problems when atpl is set to zero to disable the
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top-down path in SAAM. Otherwise the derivation for the grasp template network

would become zero and grasp classification would not be possible.

Stop Criterion

A winner in the grasp template network can only develop once finger positions in

the hand network begin to emerge. To prevent the model from stopping before the

grasp template network has chosen a winner, the stop criterion was modified. The

new stop criterion checks if one of the output neurons in the grasp template network

is above a certain threshold ttpl instead of relying on the activations in the finger

maps. Additionally, simulations are aborted when the threshold activation level is not

exceeded after time tmax.

6.2 Simulations

Three sets of simulations were run with the extended version of SAAM. The results are

presented in this section. First, I will demonstrate in Study 2a that the classification

mechanism described above can indeed identify different grasp postures. The limits

of this classification method will be also pointed out. Next I will show in Study 2b

that the model is able to select one of two objects presented in the visual input.

Moreover, I will explain that in conjunction with the classification abilities of SAAM

this selection process can be understood as visual attention for action. Study 2a

and 2b only investigated the bottom-up path of the grasp template network; the

top-down path was disabled in these simulations. The top-down path will be explored

in Study 2c. It will be shown how the grasp template network can utilise preferences

for specific grasp types to guide object selection to suitable objects. Additionally,

simulations will demonstrate that the top-down path also allows to select different

grasps on one object.
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6.2.1 Study 2a: Classification Abilities of the Model

This study aimed at testing whether the grasp template network is able to classify

different grasp postures. The grasp template network contained three templates in

this study which were designed based on two criteria: First, the grasps encoded in the

templates obviously needed to be suitable for the objects used in the simulations. To

achieve this, the design of the templates was based on the grasp postures observed in

Study 1. Additionally, it was ensured that the different templates represented different

types of grasps as they were observed in the simulations in Study 1. Second, the

template definitions were derived from the grasp taxonomies discussed in Chapter 2.

The two grasp types most consistently distinguished in all classifications are the

power and the precision grip. While SAAM’s restriction to two dimensions prevented

encoding the different spatial orientation of the opposition space in these grasp types,

they could still be approximated by designing a template with a wide grasp span for

power grasps and one with a small grasp span for precision grasps. In addition to

these two types, the previous simulations showed grasps which aimed at achieving

form-closure of the grasped object (e. g., trapezium 90� or concave 0�). The ‘circular

precision grip’ from Cutkosky’s (1989) grasp taxonomy offers a good foundation for

such a template. This posture describes a grasp were the fingers are placed roughly

on a semicircle. The three types of grasp postures were termed: a ‘small grasp’, a

‘large grasp’ and ‘circular grasp’. The small and large grasp were not called precision

and power grasp since the were only approximations of these grasps. The template

maps are described in detail in the next section. The grasp templates were used to

classify the grasps which SAAM produced in the Study 1.
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Method

Stimuli The same objects and orientations as in Study 1 were used. However, the

six stimuli2 which were shown to be more suited for vertical grasps then for horizontal

ones were removed from the stimuli set because of SAAM’s restriction to horizontal

grasps.

Also, bar 180� and bar 0� were not treated as separate conditions any more. Only

bar 0� remained in the stimuli set.

Parameters The parameters and weight maps of the hand network were not changed

compared to Study 1. The parameters for the grasp template network were atpl
exc =

0.002 and atpl
inh = 6.0. In the gradient descent procedure for the grasp template network

the parameters were τ tpl = 6.0, mtpl = 300.0, and stpl = 0.3. The output neurons of

the grasp template network were initialised with 0.5.

The template activation threshold was set to ttpl = 0.999. The stop criterion based

on finger activation was removed. The maximum simulation time was set to tmax = 4.0.

A complete list of parameters can be found in appendix B.2.

Templates Three grasp templates were added to the grasp template network. One

for the classification of large grasps, one for small grasps and one for circular grasps.

The template maps were constructed in the same way as the weight maps between

the fingers (see Sec. 5.2.1). Figure 6.3 shows the polygons which were used to define

the template maps and the Gaussian function which was used to fill the polygon

areas. While the polygons for the weight maps mark a hard border for the finger

movement (due to anatomical constraints) this is not the case for the template maps.

There is no hard threshold for deciding if a grasp is of a certain type or not but

2Bar 90◦, bar 270◦, irregular 0◦, irregular 180◦, pyramid 0◦, pyramid 180◦, t-shape 90◦, and
t-shape 270◦.
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Figure 6.3: Defintion of the template maps. The left hand-side plots show the
polygons which were used to define the template maps between thumb and fingers.
The right hand-side ones the polygons for the finger-to-finger template maps.
Fingers are coloured as follows: thumb–red, index finger–green, middle finger–blue,
ring finger–cyan, little finger–pink. Figure d shows the Gaussian curve which
defined the activation within the polygons in the template maps.

instead there is a soft threshold for the transition between different types of grasps. A

grasp does not suddenly belong to a certain grasp type just because one finger moved

past a polygon border. Therefore, the Gaussian function in the template maps did

not include a base level of activation throughout the polygon but smoothly dropped

to zero at the edges of the polygons.

The polygons for the different grasp types were defined so that the small grasp

template covered all grasps which were roughly as wide as the bar object and where

the fingers were on a horizontal line; the large grasp covered everything from there

to the maximum hand width; and the circular grasp template covered most other

grasps but in particular those which achieved form-closure. The greater coverage of

the circular grasp is because the template allows more variation between the fingers
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Figure 6.4: Time course of the activation in the template units. The different
templates are coloured as follows: red–small grasp, green–circular grasp, blue–large
grasp. Please note that the time axis is scaled differently in each plot.

compared to the other two templates. Many grasps were covered by the large grasp

template as well as the circular grasp template. It will be interesting to see how the

model handled conflicts between the two templates.

Results and Discussion

The finger positions and time courses of the activations in the finger maps were the

same as in the previous simulations because the feedback loop was not activated.

Therefore, only the template activations in grasp template network are presented

in Fig. 6.4. The simulation times are listed in Table 6.1. Due to the modified stop

criterion these changed compared to the timings in Study 1.

The plots of the time courses of the template activations showed that the classi-

fication worked in general and that the grasps of the different objects were classified

appropriately. A close examination of the plots revealed that the competition in the

grasp template network depended on the similarity of the different templates. The
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bar concave irregular pyramid trapezium t-shape

0� 0.925 > 4.0 – – 2.444 0.863
90� – 1.657 2.479 0.789 0.997 –

180� – 3.151 – – 0.717 1.011
270� – 0.582 > 4.0 0.754 0.334 –

Table 6.1: Duration of the simulations. Times written as > 4.0 denote simulations
which were aborted because the reached the maximum simulation time tmax.

small grasp and the large grasp templates differed only in the grasp size (i. e. distance

between fingers and thumb) and not in the relative placement of the fingers. In

simulations with objects where all fingers were placed on a straight edge this led to

strong competition between the two templates (e. g., in condition bar 0� and irregu-

lar 270�). The circular grasp template, in contrast, differed much more and therefore

received much less activation in such simulations. In simulations where the generated

grasp matched the circular grasp template the opposite behaviour was observed. The

circular grasp template was quickly activated and not much competition occurred

between between the large and small grasp templates. Prime examples of this were

pyramid 90� and irregular 90�. However, some of the other simulations in which the

circular grasp template was selected showed that the large grasp template tended

to decline more slowly than the small grasp template. The reason for this was a

relatively similar grasp size in the large grasp and circular grasp templates. This effect

can be seen in the simulations of concave 90�, trapezium 90� and trapezium 180�.

Another very interesting simulation is that of the concave 180�. In this simulation

the large grasp first appeared to emerge as the winner from the WTA in the grasp

template network but after some time the circular grasp template gained activation

and finally the grasp was classified as circular. This effect was caused by the model

first placing the index finger on the top edge of the object, and only after about

0.7 time units it was moved to the side of the object. This shift of the position is
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marked by the small drop of activation in the time course of the finger map activation.

Once the finger position changed, the grasp template network began to shift its

selection from the large grasp template to the circular grasp template. This behaviour

of the model demonstrated that the grasp template network is able to readjusting its

selection during grasp-planning if the output of the hand networks changes.

The time course of the template activation (Fig. 6.4) in the two simulations of the t-

shape stood out compared to the other simulations. The sudden drops in the activation

were most likely caused by the inhibition in the grasp template network because with

stronger inhibition factors (atpl
inh) similar effects were observed in simulations of other

objects, too. The influence of the head of the t-shape made it rather difficult for the

model to decide on a grasp and consequently on a grasp template. If one or two of

the fingers were placed on the head part of the object the grasp would not be a small

grasp any more but also neither a large nor a circular grasp. This ambiguities made

it difficult for the grasp template network to classify the grasp. Similar, but much

less dramatic effects of ambiguous template matching can be seen in the simulations

of trapezium 0� and irregular 270� which were very slowly activated and – in case of

the trapezium – showed even a phase of stagnation before the final selection occurred.

The grasps for both objects showed that they were not exclusively matched by one

template and matched neither template perfectly. Therefore, the grasp template

was only able to classify the grasp once the hand network had produced strong and

localised outputs.

6.2.2 Study 2b: Two Object Scenes

The simulations in the last section showed that the grasp template network in SAAM

can classify different types of grasps. Now, I will demonstrate that this does not only

work with single-object inputs but with multiple-object inputs as well. As before, the
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results showed that SAAM selected a grasp-type template. They also showed that all

fingers were placed on only one of the objects in the visual input. Together these two

selection processes for grasp type and grasp location can be interpreted as attentional

selection for action.

Method

Stimuli The stimuli were designed using a subset of six objects from the previous

simulations. The stimuli contained two objects each which were placed randomly in

the visual field with roughly the same space between the border and the object as

before to avoid border effects. Two objects per grasp template set were chosen based

on the results from the previous simulation set. Three of the stimuli were devised to

test selection in SAAM when both objects were graspable with grasps of the same

type. Bar 0� and t-shape 0� activated the small grasp template, pyramid 90� and

trapezium 90� the circular grasp template, and trapezium 270� and pyramid 270� the

large grasp template. The other three stimuli presented all possible combinations of

two objects matching different grasp types. Trapezium 270� and bar 0� matched the

large and small grasp templates, t-shape 0� and pyramid 90� the small and circular

grasp templates, and trapezium 90� and trapezium 270� the circular and large grasp

templates.

Parameters and Templates The same parameters and templates as in the previous

study (Sec. 6.2.1) were used. The inputs were, however, twice as wide and high as

in the previous simulations to accommodate all objects without reducing their size.

Remarkably, the increased input size required no modifications to the simulation

parameters.
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Figure 6.5: Output of the bottom-up simulations with two-object stimuli. Fingers
are coloured as follows: thumb–red, index finger–green, middle finger–blue, ring
finger–cyan, little finger–pink.
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Figure 6.6: Maximum activation in the finger maps of the bottom-up simulations with
two-object stimuli. Fingers are coloured as follows: thumb–red, index finger–green,
middle finger–blue, ring finger–cyan, little finger–pink.

Results and Discussion

The results (Fig. 6.5) showed that SAAM was able to perform a selection of one

of two objects. Hence, selection of grasp location does work. The finger positions

generated here were not different from the finger positions which were created in the

single object simulations before. In addition to selecting a grasp location, Fig. 6.7

shows that a grasp type was selected as well. The correct templates for the chosen

objects were selected. The time courses of the template activations showed that the

final grasp type was selected early during the simulations, and no shifts of activation

between different grasp types occurred later during the simulations. This indicates an

early selection of the object. This is confirmed by the time courses of the maximum

activation in the finger maps (Fig. 6.6) which also showed a quick and smooth rise of

the activation without any drops which would indicate a major change in the selected

finger positions.

Table 6.2 compares the simulation times of the multi-object simulations and

the previous single-object simulations. These results showed that the multi-object

simulations were generally slower than the simulation of the selected object on its

own. Only in the last simulation (trapezium 90�/trapezium 270�) the multi-object
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Figure 6.7: Template activation in the bottom-up simulations with two-object stimuli.
The templates are coloured as follows: red–small grasp, green–circular grasp, blue–
large grasp. Please note that the time axis is scaled differently in each plot.

simulation was marginally faster for unknown reasons. Not surprisingly, the selected

object in the multi-object simulations was mostly the one which was grasped faster

in the single-object simulations. In the two simulations with trapezium 270� was,

however, the opposite behaviour observed: Despite being grasped much faster than

the pyramid 270� and the trapezium 90�, the trapezium 270� was not selected for

grasping in the two-object simulations. The reason for this was the size of the objects.

While it was still easily graspable, the activation of the trapezium 270� was reduced

compared to smaller objects in early phases of the simulation because the activation

in the thumb-finger weight maps decreased with increasing grasp size (please refer to

Fig. 5.4 for details of the distribution of activity in the weight maps). Positions along

edges which were further apart received therefore less activation then ones which were

closer together. Hence, the pyramid 270� and the trapezium 90� had initially a small

advantage which led to their selection even when it eventually took longer to properly

select the final finger positions than for trapezium 270�.
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Stimulus (Object 1/Object 2) Both Objects Object 1 Object 2

bar 0�/t-shape 0� 1.031 0.925 0.863
trapezium 270�/bar 0� 0.366 0.334 0.925
pyramid 90�/trapezium 90� 0.794 0.789 0.997
t-shape 0�/pyramid 90� 0.808 0.863 0.789
trapezium 270�/pyramid 270� 0.769 0.334 0.754
trapezium 90�/trapezium 270� 0.989 0.997 0.334

Table 6.2: Duration of simulations with two objects in comparison to the times
from the single object simulations presented in Sec. 6.2.1. The objects which were
selected in the two-object simulations are printed in bold.

6.2.3 Study 2c: Modulating Grasp Selection

The last study showed that SAAM is able to classify grasps and also to perform

selection of objects in visual inputs with multiple objects. These properties of the

model emerged from the bottom-up path alone. The top-down path of the grasp

template network was explored in this final study. First, the two-object stimuli from

the previous study were simulated again. However, this time the grasp template

network preferred one grasp type over the others. The results showed that this affected

the selection processes in SAAM producing different results depending on the grasp

type preferences.

In addition to the two-object stimuli, two new inputs were designed. One stimulus

contained two objects which were positioned so that they could be grasped separately

or together depending on the grasp size. This design of this stimulus was motivated

by research on action relations within groups of objects. For example, Riddoch,

Humphreys, Edwards, Baker, and Willson (2003) showed that pairs of objects which

were arranged correctly for using them together (e. g., a bottle with the corkscrew

placed at its top end) increased performance in patients with extinction3 compared

3Extinction is a neurological disorder in which patients cannot perceive a stimulus presented in one
hemisphere if another stimulus is shown in the other hemisphere at the same time. However, if
only a single stimulus is presented, it is perceived in either hemisphere.
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to incorrectly positioned objects (see also Humphreys et al., 2010 for a review on

research on action relations between objects). The simulation of two objects which

can be grasped either separately or together is, of course, a simplification but it

still shows that affordances and action intentions are not restricted to single objects.

In Chapter 9 I will make suggestions how this could be extended to more complex

arrangements of objects. The other new stimulus showed an object which could be

grasped in two different ways. The simulations with these stimuli demonstrated that

grasp type preferences are not restricted to selecting different objects in multi-object

inputs but can also be utilized to guide grasp generation on single objects or groups

of objects.

Method

Stimuli Five stimuli were used. Three displayed multi-object inputs. The stimuli

from the previous study which displayed objects suitable for different grasp types were

chosen. Additionally, two new stimuli were designed. One contained two horizontal

bars which were positioned close together so that the could be either grasped together

or separately (see Fig. 6.11). This stimulus was included to test whether the top-down

path in SAAM can be used to model decisions for grasping one or all objects of a

group. The other one showed an object constructed by combining a bar 0� and a

trapezium 90� (see Fig. 6.12). The intention of this object was to test whether the

top-down path in SAAM can be utilised to generate different grasps on a single object.

Parameters and Templates The simulation parameters are the same as in the last

study. Only the template factor atpl was changed to 4.0 to activate the top-down

path. The output neurons of the grasp template network were initialised with 0.3 for

the two non-preferred grasp type templates and 0.7 for the template of the preferred

grasp type.
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The template maps were also the same as before (Fig. 6.3). The activation of the

weight maps in the hand network was, however, reduced to account for the additional

activation from the top-down path. This was achieved by multiplying the weight

maps in the hand network with 0.3. The polygon outlines of the activated areas were

not changed.

Results and Discussion

The simulations were divided in five sets. Each set contained the simulations of

one stimulus with preferences for the different grasp types. Before discussing the

simulations in detail, it shall be noted that the finger positions in the simulations

were different from the ones produced by the bottom-up-only simulations. This was

obviously caused by the addition of the template maps to the combined weight maps.

Therefore, the generated grasp postures in most simulations closely resembled the

activated template. Notably deviations will be pointed out during the discussion.

Trapezium 270� and Bar 0� Figure 6.8 shows the results of the three simulations

with the trapezium 270�/bar 0� stimulus. The previous simulations demonstrated

that these objects were grasped with a large and a small grasp, respectively. By

providing a stronger initial activation for one these two templates, object and grasp

selection in SAAM could be directed towards either of the two objects (see Fig. 6.8a

and 6.8b). The finger activation plots show that a grasp location was selected quickly.

The template activation on the other hand developed much more slowly. Overall

however, the simulations ran much faster compared to the simulations without the

top-down path. This was due the stronger activation in the combined weight maps

compared to the original maps in the hand network.

The template activation plots also show that the template which matched the non-

selected object still had a higher activation (� 0.2) compared to the third template
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(a) Preference for small grasps

(b) Preference for large grasps

(c) Preference for circular grasps

Figure 6.8: Simulation results for trapezium 270�/bar 0�. The templates are coloured
as follows: red–small grasp, green–circular grasp, blue–large grasp. Fingers are
coloured as follows: thumb–red, index finger–green, middle finger–blue, ring finger–
cyan, little finger–pink.
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which matched neither of the objects.

The last of the three simulations (Fig. 6.8c) had a preference for the circular grasp

type. This type did not describe a grasp which was really suitable for either of the two

objects. Hence, SAAM could not simply follow the top-down preference and select the

object which was best matched by the preferred template; instead, SAAM had to rely

on the grasp preferences of the bottom-up path to select one of the objects. Reflecting

the result from the simulation with only the bottom-up path enabled, SAAM chose to

grasp the large object. However, the generated grasp posture differed. Because of the

preference for circular grasps, SAAM placed the little finger at the right-hand edge of

the trapezium 270� instead of on the top edge. Consequently, the grasp was classified

as a circular grasp. The large grasp template still stayed relatively strongly activated,

though. This indicated a partial match of the generated grasp with the large grasp

template and a general possibility of grasping the object with a large grasp as well.

T-shape 0� and Pyramid 90� The second set of simulations with the t-shape 0�/

pyramid 90� stimulus showed a behaviour similar to the first three simulations (see

Fig. 6.9). A preference for small grasps triggered a grasp of the t-shape 0� while a

preference for circular grasps produced a grasp posture for the pyramid 90�. Due

to the influence of the circular grasp template, the grasp posture used to grasp the

pyramid differed from the one created in the bottom-up-only simulations. While

previously each finger was placed on a different step, now the ring and middle finger

were both placed on the top of the pyramid. The behaviour in the simulation with a

preference for large grasps, which did not fit either of the objects, was very different

from the corresponding simulation in the first set, though. The preferred large grasp

template had the strongest activation for some time before the selection switched over

to the small grasp template which finally became the winner. The t-shape 0� was

selected because the large grasp template reinforced postures where all fingers were
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(a) Preference for small grasps

(b) Preference for large grasps

(c) Preference for circular grasps

Figure 6.9: Simulation results for t-shape 0�/pyramid 90�. The templates are coloured
as follows: red–small grasp, green–circular grasp, blue–large grasp. Fingers are
coloured as follows: thumb–red, index finger–green, middle finger–blue, ring finger–
cyan, little finger–pink.
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on a straight line. This caused the selection to initially focus on the t-shape 0�. Once

the fingers were activated strong enough the thumb was placed on the bottom edge

of the object which then caused the template activation to switch over to the small

grasp template. The delayed activation of the thumb can be seen in the time course

of the finger activation.

Trapezium 90� and Trapezium 270� The same effect – a reinforcement of horizont-

ally aligned finger positions – was observed in the last set of simulations (Fig. 6.10).

When a small grasp was preferred, the trapezium 270� was selected because of its

straight edge suitable for positioning the fingers horizontally aligned. The template

activation plot shows the same change from the small grasp template to the large

grasp template as the pyramid 90�/t-shape 0� simulation only that the curves for

the large and small grasp template activations were swapped. The time course of

the finger activation also showed the same delay in the increase of the maximum

activation in the thumb map as before.

While the selection of either of the two objects worked well for the other two stimuli,

this was not the case in this set of simulations. Preference for the large grasp template

generated a grasp of the trapezium 270� as expected. Preference for the circular

grasp template, on the other hand, did not lead to a grasp of the trapezium 90� as

one would assume because of the congruence of the circular grasp template and the

grasps produced on trapezium 90� in the earlier simulations. Instead a circular grasp

on the trapezium 270� was produced similar to the grasp posture generated in the

simulation with the trapezium 270�/bar 0� stimulus with a preference for circular

grasps. This is a surprising result because in the previous bottom-up-only simulations

the trapezium 90� was preferred over the trapezium 270� although the latter was

grasped faster. One would expect that a preference for circular grasps would support

the bottom-up path in selecting finger positions at the trapezium 90� making it even
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(a) Preference for small grasps

(b) Preference for large grasps

(c) Preference for circular grasps

Figure 6.10: Simulation results for trapezium 90�/trapezium 270�. The templates
are coloured as follows: red–small grasp, green–circular grasp, blue–large grasp.
Fingers are coloured as follows: thumb–red, index finger–green, middle finger–blue,
ring finger–cyan, little finger–pink.
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easier for the model to select the object. However, it must be considered that the

combined weight maps were different from the original weight maps. Firstly, the

activation of the original weight maps was not as strong as before, and secondly, all

three template maps – including the ones for the non-preferred grasp types – were

added to the combined weight maps. Even though they were only weakly activated,

the large grasp and the small grasp template introduced support for grasp postures

with horizontally aligned fingers positions in the combined weight maps. This led

to an initial selection of the trapezium 270� which could not be overwritten by the

circular grasp template despite it being much stronger activated. The circular grasp

template was, however, still strong enough to enforce its grasp type leading to a

circular grasp of the trapezium 270�.

Two Bar 0� Objects Another multi-object simulation was conducted to test if

grasp preferences can also be used to differentiate between grasping one object from

a group of objects and grasping all of them. To simulate this, two bar 0� objects

were presented close together so that a large grasp could embrace both objects.

Figure 6.11a shows a bottom-up preference to grasp both objects together when no

top-down feedback was applied.4 When top-down preferences for either large or small

grasps were enabled though, the model could be controlled to grasp either both or

only one of the objects. Figure 6.11c shows that a preference for large grasps produced

a grasp which included both bars, and a small grasp preference produced a grasp of

only one of the bars (Fig. 6.11b). Which of the two bars was grasped could not be

controlled since grasp selection is translation-invariant in SAAM. In order to control

this, an extension of the model would be required which inhibits grasp-planning for

certain positions in the visual input.

4The bottom-up simulation used weight maps with non-reduced activity like the other bottom-up-
only simulations in Study 2b did because of the absence of additional top-down activity.
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(a) No top-down feedback

(b) Small grasp preference

(c) Large grasp preference

Figure 6.11: Simulation results for two bar 0� objects. The templates are coloured
as follows: red–small grasp, green–circular grasp, blue–large grasp. Fingers are
coloured as follows: thumb–red, index finger–green, middle finger–blue, ring finger–
cyan, little finger–pink.
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(a) No top-down feedback

(b) Small grasp preference

(c) Circular grasp preference

Figure 6.12: Simulation results for bar&trapezium object. The templates are coloured
as follows: red–small grasp, green–circular grasp, blue–large grasp. Fingers are
coloured as follows: thumb–red, index finger–green, middle finger–blue, ring finger–
cyan, little finger–pink.
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Bar&Trapezium Object These simulations showed that the top-down path in

SAAM cannot only be used to guide selection in multi-object simulations but also to

control the grasp postures which are used on a single object. Figure 6.12 shows how

SAAM grasped an object which could be grasped either with a circular or a small

grasp. The bottom-up simulation (Fig. 6.12a) of the object showed that neither side

had a bottom-up preference and the grasp was placed close to the centre of gravity of

the object instead. The top-down path, however, allowed to control the grasp posture:

When a small grasp was preferred, the fingers were placed on the bar-shaped end of

the object. When a circular grasp was preferred then SAAM selected finger positions

on the trapezium-shaped side of the object. This demonstrates how the top-down

path can be utilised to grasp objects in different ways.

6.3 Summary

In Study 2a and 2b the classification abilities of SAAM’s grasp template network were

explored. The three templates used in this study were derived from power, precision,

and circular precision grip postures which were commonly identified in different grasp

taxonomies (see Chapter 2). Study 2a confirmed that the grasp template network

was able to classify grasps in single object inputs. The simulations revealed that

competition between templates which shared properties (e. g., horizontally aligned

finger positions or grasp size) increased when an object congruent with these properties

was grasped. The simulation of the concave 180� stimulus demonstrated that the

grasp template network could also re-adjust to changes of finger positions during the

simulation.

The simulations with the t-shape in Study 2a, however, highlighted some difficulties

of the grasp template network to select a template. The grasp of the t-shape did not

fit the templates very well. Hence, the grasp template network required strong and
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6 Study 2: Grasp Classification and Two-Object Simulations

localised finger positions in the hand network before it was able to select one of the

templates. Interestingly, this behaviour disappeared in the two-object simulations. It

is not exactly clear why the effect disappeared in the two-object simulations. Most

likely, the increased input into the grasp template network – due to the larger visual

field – reduced the inhibition in the network. Test simulations showed that greater

inhibition values increased the observed fluctuations of template activation.

In Study 2b stimuli with two objects in the visual input were tested in order to

assess object selection as well as grasp type selection in SAAM. Grasp type selection

confirmed the results from Study 2a. The presence of a second object in the visual

input had no effect on the created grasp posture; grasps did not differ from the ones

observed in single object simulations. The simulations also showed that the model

was able to select one of the objects presented in the visual input. This behaviour can

be interpreted as visual attention for action because preparing a movement towards

an object means selecting the object for action. Furthermore, the selection of a grasp

posture can be understood as selection of an action. This will be further explored in

Study 3.

In most two-object simulations the object which was faster in single-object sim-

ulations was the one which was selected. However, the simulations with the

trapezium 270� showed that this was not always true. Despite being the fastest

object in the single-object simulations, the trapezium 270� was not selected in the

two-object simulations because the other objects in the input scenes better matched

the anatomical constraints of the hand. This showed that fast grasp planning is not

necessarily linked to anatomically good grasps and that selection in multiple-object

simulations does not only depend on the speed of grasp-planning but also on the

anatomical constraints.

The reaction times in the two-object simulations were – except for one result –

slower than in the single object simulations. The time course of the activation in the
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6 Study 2: Grasp Classification and Two-Object Simulations

finger maps showed a delayed increase of the activation in the two-object simulations

compared to the single object ones. This was probably caused by more activation

being fed into the hand network from the visual feature extraction stage (because

there were more edges in the visual input) which slowed the WTA process down.

In Study 2c the top-down path of the model was enabled and used to simulate

preferences for certain grasp postures. Overall the top-down path produced an

increased activation in the combined weight maps compared to the simulations using

only the bottom-up path. This increased the overall simulation speed. The results of

the simulations showed that preferences for a certain grasp posture enabled the model

to guide selection in the hand network towards objects suitable for the preferred grasp

posture. The generated grasps were, however, different from the grasps generated by

the bottom-up-path alone due to the influence of the template maps on the selection

process. This resulted in grasp postures which resembled the selected grasp template

as closely as the selected object allowed.

The overlap of the different templates in the combined weight maps turned out

to cause unexpected effects in some simulations. For example, two of the templates

positioned the fingers similarly (the small and the large grasp). In some simulations

this resulted in preference for objects which allowed such placement of the fingers

even when a different template was preferred because the added activation of the

non-preferred templates reached almost the same levels as the preferred template.

Because of this effect, the simulation failed to grasp the trapezium 90� despite a

preference for circular grasps in simulations with trapezium 90� and trapezium 270�.

This also demonstrated that object selection in SAAM is only driven by matching

anatomical constraints and geometrical constraints and not by identifying the objects

as such.

If a grasp template was preferred which was not suitable for either object in the

visual input then the model exhibited one of two behaviours: It either kept the
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6 Study 2: Grasp Classification and Two-Object Simulations

preferred template activated and grasped one of the objects with an adapted grasp

posture not normally used on this object, or it overwrote the grasp template preference

and grasped one of the objects while selecting the template matching the generated

grasp best. The choice of the model depended on whether one of the objects could be

grasped with an alternative grasp which matched the preferred template as it was the

case in trapezium 270�/bar 0� simulation, for example. If none of the objects could

be grasped with such an adapted grasp then the model grasped one of the objects,

and the choice depended on which objects matched better the current activation in

the weight matrices. In response to the changing grasp posture the grasp template

network shifted the selection from the preferred grasp template to the best matching

one (simulations with trapezium 90�/trapezium 270� and t-shape 0�/pyramid 90�).

As in the bottom-up simulations the activation of the non-selected templates indicated

how well they matched the current grasp posture in the finger maps.

Apart from two object simulations with a focus on object selection, Study 2c also

included two stimuli to investigate whether grasp preferences could also be used for

more function-oriented decisions. The first stimulus presented two objects in an

arrangement allowing to grasp either one of the objects or both together. The results

of the simulations showed that preference for either large or small grasps enabled

the model to choose between grasping both objects or grasping only one of them.

The second stimulus showed only one object. However, this object could be grasped

either with a small grasp or a circular grasp. The simulations showed that the finger

positions selected by the hand network could be influenced by the grasp template

network to either grasp the part of the object which was suitable for a small grasp or

for a circular grasp. This finding is similar to the observation that SAAM was able

to find alternative grasps on objects when no object directly matched the preferred

grasp template in the two-object simulations.
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7 Study 3: Affordances and Action

Intentions

The objects used in the studies so far had no specific function linked to them. Grasping

actions could be performed with them but none of the objects had an associated

function it could be used for. Therefore, apart from affordances for grasping no other

affordances were investigated in the first two studies. To overcome this limitation

and to demonstrate that SAAM cannot only recognise affordances for grasping but

other, more complex affordances as well, simulations of grasping hand tools (pliers and

hammer) are presented in this final study. This study did not add any new functionality

to SAAM but aimed at showing how the representations of affordances and action

intentions in SAAM can be linked to affordances of real objects and intentions to

use them. Napier’s observation that different objects require different specific grasps

to properly use them provides the theoretic background for incorporating complex

affordances into the model (Napier, 1956). Therefore, affordances for actions will be

described by describing their specific grasps.

In the first set of simulations the recognition of affordances was investigated

when there is no top-down guidance of the selection process. In the second set

the ability to guide selection of affordances and objects through SAAM’s top-down

path was explored. The results showed that the action intentions expressed by the

127



7 Study 3: Affordances and Action Intentions

top-down influence allowed to prefer certain affordances over others and to discover

new affordances of objects.

7.1 Study 3a: Affordances

The first study in this chapter explored SAAM’s ability to recognise affordances in the

environment. In the studies presented in chapter 6 the templates in the grasp template

network described merely grasp postures suitable for grasping different objects. Now,

templates of grasp postures were chosen which additionally encoded actions which

could be performed with an object hold with the grasp described by the template.

Thus, by classifying a grasp SAAM also discovers what subsequent action could be

executed with the object when it was held with this specific grasp. In other words:

SAAM found out which complex affordance an object had. Obviously, the affordance

which was recognised depended on the grasp posture which was generated by the

bottom-up path of the model. The implications this has for the argument about where

affordances exist within the object-observer system will be discussed in the general

discussion.

Method

Stimuli Two objects were designed which depicted a hammer and pliers viewed in

an orientation suitable for right-handed usage. Three different stimuli were prepared

with the two hand tools: Two single-object stimuli showing each object separately in

the centre of the visual input field and a multi-object stimuli which showed both tools

placed randomly in the visual input field. The input in the multi-object simulations

was twice as wide and high than in the single-object simulations. The stimuli are

shown in Fig. 7.2. Different object dimensions in the figures are because of the
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(a) Pliers grasp template
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(b) Hammer grasp template

Figure 7.1: Template maps for representing grasps to use a hammer and to use pliers.
Fingers are coloured as follows: thumb–red, index finger–green, middle finger–blue,
ring finger–cyan, little finger–pink.

different sizes of the visual input field. The objects had the same size in single and

multiple-object simulations.

Parameters and Templates The simulations used the same parameters as the

simulations described in Sec. 6.2.1. The top-down path was switched off. The grasp

template network contained two templates representing a grasp for using pliers and a

grasp for using a hammer. They were constructed in the same way as before. The

polygons which defined the finger positions for each grasp type are shown in Fig. 7.1.

The same Gaussian function as in the template maps of the first study was used (see

Fig. 5.4c).

Results and Discussion

The results of the simulations of bottom-up affordance recognition are shown in

Fig. 7.2. The simulation of the pliers stimuli (see Fig. 7.2a) produced no unexpected

results. The generated finger positions are sensible for using the pliers and the

use-pliers template was activated indicating a selection of use-pliers action. The

simulation terminated quickly once the use-pliers template was fully activated. In

contrast, the simulation of the hammer stimuli worked less well (see Fig. 7.2b). The

finger positions created by SAAM are obviously not suitable for using the hammer.
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(a) Single-object simulation with pliers stimulus.

(b) Single-object simulation with hammer stimulus.

(c) Multiple object simulation with pliers and hammer stimulus.

Figure 7.2: Simulations without top-down feedback. Template activation colours are
red for pliers-use and green for hammer-use. Fingers are coloured as follows: thumb–
red, index finger–green, middle finger–blue, ring finger–cyan, little finger–pink.
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This is however not too surprising, because the simulation of the t-shape 180� stimuli

in Chapter 5 already showed a tendency of the model to grasp t- or hammer-shaped

objects close to their thick end. The reason for this was the better fit of the wider

object parts with the optimal grasp width. On the hammer the thumb could only be

placed on the bottom edge of the handle due to the object geometry. While fingers

could be positioned at the top edge of the handle this was not the optimal grasp

width encoded in the hand maps. Therefore, the model preferred to place the index

and middle finger on the head of the hammer. There, the two fingers quickly gained

activation (see time course of the finger activation) because of the input from the

thumb and mutual reinforcement due to their horizontally aligned positioning. The

remaining fingers were then positioned as well as possible in relation to the index and

middle finger. With more fingers becoming stronger activated the thumb activation

also increased which can be seen in the finger-activation plot. Interestingly, SAAM

classified the generated grasp as a hammer-use grasp despite it being clearly different

from the template and not suitable for using the hammer. The reason for this was

that in these simulations only two grasp types were defined neither of which fitted the

generated grasp. Hence, the WTA process in the grasp template network could only

select the least bad fitting template which happened to be the hammer-use template.

This was because the finger configuration with the parallel arrangement of the index

and middle finger and the ring and little finger as well as the grasp width had a more

similarity to the hammer-use than the pliers-use template. The slow increase of the

activation of the hammer-use template – in contrast to the pliers-use template in

the previous simulation – and the final level of activation indicated that the selected

template did not match well, though. Also, because the hammer-use template was

not fully activated it never reached the threshold defined by the stop criterion and

the simulation terminated only after reaching tmax.

This outcome of the simulation is interesting because it shows that sometimes
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knowledge is required to use an object properly. If the hammer is just grasped without

any intention of using it (as it was done here) a grasp close to the head is perfectly

fine and even sensible considering the weight distribution in a hammer. However,

when there is the intention of using the hammer a specific grasp at the handle is

required. How such an intention can be expressed and modelled with SAAM will be

explored in the next section.

After having discussed the results from the single-object simulations it is not

surprising that in the multi-object simulation (see Fig. 7.2c) the pliers are selected

and the pliers-use template is activated. The finger positions and time courses of

finger and template activation do not differ significantly from the simulation of the

pliers stimulus alone.

7.2 Study 3b: Action Intentions

After having shown that the grasp template network can extract affordances from

the visual input, the final set of simulations explored whether action intentions (i. e.

preferences for certain affordances) could also be simulated with SAAM. By preferring

one grasp type over the other SAAM can express the intention of executing the action

associated with this grasp type.

Method

Stimuli The same stimuli as in Study 3a were used.

Parameters and Templates Parameters and templates were the same as in the

simulations for modelling affordances. The top-down-path was, however, activated

with the template factor set to atpl = 4.0. The output neurons of the grasp template

network were initialised to 0.6 for the preferred grasp and 0.4 for the non-preferred
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grasps. The weight maps in the hand network were set to the same reduced activity

as in the previous top-down simulations (see Sec. 6.2.3).

Results and Discussion

The simulations of the pliers stimulus worked well no matter which grasp type was

preferred. In both cases the same grasp posture was produced and the pliers-use

template was selected (see Fig. 7.3a and 7.3b). The simulation with a preference for

hammer-use ran slightly longer than the other one because the template activation

obviously needed to change from the hammer-use to the pliers-use template. Because

of the stronger activation of the hammer-use template in the first simulation, the

combined weight maps did not fit the pliers handle as well as in the second simulation

which resulted in a slower increase of the finger activations. Once the template

activation had shifted enough over to the pliers-use template, the increase of the finger

activation became faster and comparable to the second simulation where the pliers-use

template was preferred from the beginning. The action intentions worked as expected

on the pliers stimulus: an intention to use the pliers increases the speed of the grasp

generation. If an intention (‘use hammer’ in this case) could not be realised with the

available objects then the bottom-up affordances overwrote the intention.

Compared to the previous bottom-up affordance simulation, the hammer stimulus

simulations with action intentions produced interesting results (see Fig. 7.3c and 7.4a).

While the hammer had only a (bottom-up) affordance for grasping as it was shown

in the previous simulations, the introduction of action intentions produced different

grasps than before. The fingers were no longer placed around the head of the hammer

but on the handle so that the hammer could be used properly. The development of

the time course in the hammer simulations was similar to the time course of the pliers

simulations. When a hammer-grasp was preferred, the simulation ran faster than when

pliers usage was intended. Like in the pliers simulation which had a preference for the
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(a) Pliers with top-down activation of the use-hammer template

(b) Pliers with top-down activation of the use-pliers template

(c) Hammer with top-down activation of the use-hammer template

Figure 7.3: Top-down simulations of single-object stimuli. Template activation
colours are red for pliers-use and green for hammer-use. Fingers are coloured as
follows: thumb–red, index finger–green, middle finger–blue, ring finger–cyan, little
finger–pink.
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(a) Hammer with the top-down activation of the use-pliers template

(b) Tools with pliers-use preference

(c) Tools with hammer-use preference

Figure 7.4: Top-down simulations of multiple-object stimuli. Template activation
colours are red for pliers-use and green for hammer-use. Fingers are coloured as
follows: thumb–red, index finger–green, middle finger–blue, ring finger–cyan, little
finger–pink.
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use-pliers grasp the simulation of the hammer stimulus with an initial preference for

the pliers-use template took longer because the template activation needed to shift

from one template to the other first.

The last two simulations were again simulations with multiple objects. It was

tested whether the action intentions can guide object selection. The results shown in

Fig. 7.4b and 7.4c confirm this. An intention to use the pliers generated a grasp of

the pliers; an intention to use the hammer created a grasp of the hammer which was

suitable for using the hammer.

The simulation results confirm SAAM’s ability to use action intentions to control

on which object the generated grasp is placed and how the object is grasped. This

demonstrates how action intentions can guide visual attention for action. It was

shown that this works to guide grasp generation in single object stimuli to prepare for

specific actions as well as in multi-object stimuli where additionally an object needs

to be selected.

7.3 Summary

In Study 3 the findings from Study 2 were applied to stimuli showing ‘real’ hand

tools. These examples illustrate more clearly than the functionless objects used in

the previous studies how SAAM’s behaviours are linked with affordances and action

intentions. First, Study 3a showed how the two hand tools were grasped when only

bottom-up affordances were taken into consideration to make a grasp decision. In

these bottom-up simulations grasps on both hand tools were produced. The grasp of

the pliers was suitable for using the tool. The grasp for the hammer, however, was not

suitable for using it for hammering but only for holding the tool. For both tools the

appropriate template was activated indicating the action associated with the object.

The hammer-use template was not fully activated, though, which indicated that the
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grasp posture encoded in the template was not deemed to match the created grasp

well-enough. Considering that the grasp created on the hammer was not suitable

for hammering, this was a good result. It must also be considered that only two

templates were available. Hence, the model was forced to select one of it and could

not say that neither matched at all.

Study 3b explored how action-intentions influenced the grasp decisions of SAAM.

First, it showed that planning to make a hammer-use grasp changed the grasp of

the hammer to one suitable for using the tool. Second, intentions allowed the model

to select the tool which matched the intended action. The single object simulations

showed that the model was still able to overwrite these intentions when no suitable

object was available. This might seem unnatural at first sight but since the model

has no mechanism to not create a grasp at all, this result is not surprising. Obviously,

some higher level processes are necessary to stop grasping if it is realised that no

suitable object for the intended action is available.
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General Discussion
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8 General Discussion

The general discussion is organised in four sections: First, the architecture of the

model and the findings from the studies are summarised. Then, the model will be

discussed in the context of grasping and visual attention, followed by a discussion of

the role of affordances in SAAM. This chapter concludes with a comparison of SAAM

and the models presented in Chapter 4.

8.1 Summary of the Model

The full version of SAAM has two main pathways: a bottom-up and a top-down path.

The bottom-up path starts with a visual extraction stage in which edge detectors

mark locations in the visual input which meet the geometrical constraints of grasping

– namely horizontal and vertical edges. The output of the horizontal edge detector is

separated into edges at the top and edges at the bottom side of objects. The top-side

edges are fed into the finger maps of the hand network and the bottom-side edges

into the thumb map. The finger maps receive additional input from the vertical edge

detector. These have reduced activation, though, compared to the horizontal edge

detector. In the hand network weight maps project activation between the finger

maps. The weight maps encode the anatomically possible positions for one finger in

relation to another finger. By following a gradient descent procedure the model finds

the finger positions which best match the geometrical and anatomical constraints.

139



8 General Discussion

The grasp posture generated by the model is represented in the activations of the

finger maps in the hand network.

In Study 2 SAAM was extended with the grasp template network. This additional

network enabled the model to classify the grasp postures described by the finger

positions in the output of the hand network. Optionally, a top-down path can be

activated to feed information about preferred finger positions from the grasp template

network back into the hand network. The grasp template network compares the finger

positions from the hand network with grasp postures encoded in template weight

maps and selects the best matching template. If the top-down path of the model is

activated, the template maps are applied to the original weight maps in the hand

network so that the combined weight maps have a bias towards the grasp described

by the template.

The abilities of SAAM were explored in three studies which are summarised in

the following sections. In Study 1 simple grasp generation in the hand network was

tested and the results were compared with experimental data. Study 2 investigated

grasp classification and top-down guidance in single and multiple object simulations.

Study 3 applied the results from Study 2 to a ‘real-life’ example to demonstrate how

complex affordances and action intentions are handled in SAAM.

8.1.1 Findings in Study 1: Evaluation of SAAM’s Grasps

Study 1 explored the bottom-up path of SAAM. The aim of this first study was

to demonstrate that SAAM is capable of generating grasp postures in general and,

moreover, that these grasp postures are anatomically feasible and similar to the grasps

humans use for the same tasks. In order to assess the similarity of simulated grasp

postures and experimentally collected grasps, a measure was defined which allowed

to estimate how well a grasp fitted in a group of reference grasps. A grasp received

140



8 General Discussion

a high rating if its fingers were positioned in close proximity to the fingers of many

grasps of the reference group. To compare the simulated grasps and the experimental

grasps the experimental grasps were used as the reference group. However, in order to

interpret the rating score for the simulated grasp, each experimental grasp was rated

against all other grasps in the reference group as well. The score for the simulated

grasps could then be compared against the ratings of the experimental grasps. The

results demonstrated that the simulated grasps rated consistently high compared to

the grasps from the experiment. This showed that SAAM was able to produce grasp

postures which used finger positions similar to the ones many human participants

chose. An exception of this were the grasps of the vertically oriented objects. Due

to the restriction to horizontally oriented grasp postures, the model could not create

grasps which matched their human counterparts because humans preferred to rotate

their hands when grasping vertically oriented objects. This observation was confirmed

by fitting a logistic model to the width/height-ratio of the objects in relation to the

grasp orientation.

The results of the simulations showed that SAAM was able not only to select a

position for each finger but also to convey additional information about the generated

grasp: First, the results showed that the size of the activated area for each finger

depended on the number of possible finger positions. In cases where more than one

grasp posture was equally supported by the geometrical and anatomical constraints,

SAAM did not randomly select one of these postures but instead activated all possible

finger locations. Second, the activation level of each finger depended on how well

the position of the finger fitted the anatomical and geometrical constraints. Grasps

which fitted the constraints well were assumed to provide more stable grasps than

ones which fitted the constraints less well. The required grasp stability obviously

depends on the object that it is grasped and the action the object will be used in. In

SAAM this was reflected by the stop threshold criterion. A grasp posture was deemed
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as suitable if all finger activations were stronger than a pre-defined threshold. Of

course, in an advanced version of SAAM this threshold could be adapted based on

the requirements of the task that is performed. In Study 1 the threshold was set to a

high level to ensure that clear grasp postures were produced. A number of simulations

failed to reach this threshold (mainly simulations with vertically oriented objects);

these simulations were aborted after a time-out.

The simulation durations showed that grasps for thin objects (i. e. the bar and

the t-shapes) were slower than for larger objects. This is in line with experimental

data from Derbyshire et al. (2006) who observed that precision grasps were slower

than power grasps (see also Tucker & Ellis, 2001). Furthermore, this supports the

idea that the templates introduced in Study 2 were approximations of power and

precision grasp postures. Hence, the small grasp template which matched the grasps

of the bar and t-shape approximated a precision grasp while the large grasp template

represented power-grasps.

In the experiment in Study 1 reaction times were measured. However, the analysis

revealed almost no significant differences between the different conditions. Therefore,

these data were not further analysed and not compared with the simulation data.

The simulations in Study 1 revealed two emergent properties of SAAM. First,

SAAM placed the fingers around the centre of gravity of the object despite there being

no mechanism to discover the centre of gravity. Second, SAAM was able to place

fingers on vertical edges of the objects if the space available on the horizontal edges

was not sufficient or if the grasp span were to wide. By doing this the model created

grasps which achieved two-dimensional form closure (i. e. movements were blocked in

all directions by fingers). The experimental data confirmed that these properties can

be observed in grasps made by humans as well.

Finally, an important aspect of SAAM is that it achieved human like grasps without

doing explicit calculations of forces and torques. The geometrical and anatomical
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constraints in the hand network implicitly define the requirements for a stable grasps.

This method provides a much simpler way to generate stable grasp postures compared

to a calculation based on the forces and torques which occur in a grasp (see, for

instance, Mason, 2001 for examples on the calculation of forces in grasps).

8.1.2 Findings in Study 2: Grasp Classification and Selective

Attention

After having demonstrated the basic functionality of SAAM in Study 1, I set out

in Study 2 to first investigate the grasp classification abilities of the grasp template

network and then the new abilities of SAAM which emerged from the activation of

the top-down path between the grasp template network and the hand network.

Study 2a tested whether the grasp template network was generally able to clas-

sify the grasp postures produced by the hand network in single object bottom-up

simulations. The grasp template network contained three different grasp templates

which were modelled based on power grasp, precision grasp and circular precision grip

postures. These postures were commonly distinguished in the grasp taxonomies which

I discussed in Chapter 2. Study 2a demonstrated that the grasp template network

was able to select a grasp template based on the grasp produced by the hand network.

This showed that the classification of grasps into different grasp type categories works.

Since the different grasp types represented different functional categories of grasps,

these results can be interpreted as a selection for action. An important aspect of

this selection process was that it only relied on functional object features and did

not utilise semantic information about the seized object. Hence, the selection of an

action in SAAM can be understood as the discovery of an object’s affordance. In line

with this interpretation, the simulation results revealed that competition in the grasp

template network was stronger between templates which shared functional features,
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e. g., similar relative finger positions, compared to templates which differed more.

Study 2b aimed at exploring whether SAAM’s selection for action mechanism

worked only on single object inputs or also on displays containing more than one

object. Additionally, this study brought SAAM’s ability for object selection into

focus. While the grasp template network selected an action, the hand network was

responsible for selecting an object in the visual field and generate the parameters

required for executing the chosen action with the object. The simulations in Study 2b

demonstrated that SAAM was able to perform these tasks by selecting a single object

in the visual field as well as selecting the appropriate grasp template at the same

time. The selection of an object for action in the hand network can be interpreted as

visual attention for action because in order to select an object visually for action it is

not important focus on the object as such but instead to specify how it is used in an

action. This aspect of the model will be discussed further in Section 8.3.

The object which was selected by SAAM in the two-object simulations could be

predicted in most cases by comparing the simulation durations from Study 1. The

object with the shorter simulation duration was usually the winner in the two-object

simulations. The only exception was the trapezium 270� stimulus which was not

selected in simulations despite very short simulation durations in Study 1. This

exception is interesting because it showed that object selection depended obviously

not only on the speed of grasp generation but also on the conformance of the generated

grasp posture with the anatomical constraints. The example of the trapezium 270�

demonstrated that an object could be selected for action if it fitted the anatomical

constraints better then other objects in the visual field even when it took SAAM

longer to find this good match. Therefore, it can be concluded that quickly grasped

objects did not necessarily draw the focus of attention (for action) towards themselves.

In contrast it is more likely that fast objects were often fast in the first place because

they provided an easily identifiable good match with the anatomical constraints.
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In the final part of Study 2 the top-down path which connected the grasp template

network and the hand network was activated in order to enable SAAM to guide object

selection based on preferences for certain grasp postures. The simulation results of

Study 2c showed that this guidance through the top-down path worked well and in

most simulations SAAM selected the object which fitted the preferred grasp posture

best. Additionally, it was observed that the grasp postures in Study 2c differed

from the grasp postures created by earlier simulations without top-down feedback.

Obviously, this was caused by the modification of the weight maps in the hand network

during the simulations. It highlights the capabilities of the top-down path to not only

guide object selection towards specific objects but also to directly influence the grasp

posture which is produced. In the last two simulations of Study 2c this behaviour was

utilised to guide finger placement to different parts of an object.

The modification of the combined weight maps during grasp planning is a powerful

method to incorporate feedback into the hand network. However, the combination of

the three different template maps and the original weight maps was highly dynamic

and did not always produce the expected results. For example, overlapping activations

from different template and weight maps could result in very strong regions of

activation in the combined weight maps which were difficult for other templates to

exceed even when they were preferred over the others. In some simulations this effect

proved to have caused unexpected results.

The simulations in Study 2c also demonstrated that SAAM could adapt in situations

when no object matched the preferred grasp template. In these cases either one of the

objects would be grasped with a grasp not normally used for it, or one of the objects

was grasped with a different grasp than the one described by the preferred template.

In this case the classification in the grasp template network changed to reflect the

actual grasp posture.

Above, I discussed that grasp classification in SAAM can be understood as the
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discovery of an object’s affordance. Consistent with this interpretation the behaviour

of the top-down path can be seen as the processing of action intentions in the model.

By preferring a certain grasp type, e. g., for power grasps, over the other SAAM

indicates an intention to perform a ‘power grasp’ action.

8.1.3 Findings in Study 3: Affordances and Action Intentions

Study 3 was conducted with the intention to apply SAAM to a ‘real-life’ example

in order to better demonstrate how its behaviour can be explained as affordances

and action intentions. This was achieved by presenting two hand-tools (hammer and

pliers) in the visual input and by using grasp templates which resembled the grasps

used when handling the two tools.

The bottom-up simulations in Study 3a aimed at showing how SAAM discovered

the affordances of the tools directly from the visual input. This worked worked very

well for the pliers stimulus. The ‘pliers-use’ grasp template was activated to indicate

that the object in the visual input has an affordance for being used as pliers, and

the hand network selected finger positions at the handle of the pliers. In contrast,

the simulation of the hammer stimulus did not yield the expected result. The grasp

template activated the hammer template but this activation was not strong enough

to exceed the stop criterion threshold. This meant, SAAM was not able to properly

discover the affordance for using the hammer. The reason for this was the grasp

posture which was selected by the hand network. Instead of grasping the hammer

at the handle, it generated a grasp around the head of the hammer. Obviously, it is

not a good idea to use a hammer while holding it like this. Nonetheless the grasp is

appropriate for carrying the hammer. These two simulations revealed an important

aspect of bottom-up affordances in SAAM: They only included information about

the shape of the object and the anatomical constraints; no knowledge about using

146



8 General Discussion

specific objects was incorporated in the affordance discovery. The case of the hammer

showed that SAAM could not derive a hammer-use grasp purely through bottom-up

affordances. The fact that a hammer needs to be grasped as far a way from the centre

of gravity as possible is something that cannot be derived from the visual input alone.

In order to investigate how grasp creation changed when additional knowledge was

available, the top-down path was enabled in the simulations in Study 3b. The results

showed that two things can be achieved by including top-down knowledge about

object use. First, it enabled the model to discover if an object could be grasped in a

way for using it in a specific task. The simulations of the hammer stimulus proved

that this worked: Instead of grasping the hammer around the head, the model used

its knowledge to guide the hand network to produce a grasp at the handle of the

hammer.1 Second, the top-down knowledge allowed the simulation of action intentions.

By preferring a grasp suitable for using the hammer, SAAM could be directed to

select the hammer instead of the pliers and vice versa.

The next section explains the special role of grasping in SAAM. In the follow-

ing sections two aspects of the simulations in Study 2 and Study 3 are discussed

further. First, relations between visual attention for action and visual attention for

identification are highlighted, then SAAM’s connection to affordances is discussed.

8.2 The Role of Grasping in SAAM

Grasping plays an important role for specifying actions and finding affordances in

SAAM. Based on Napier’s (1956) observation that the way we grasp an object

1It must be noted that the extend to which SAAM can include knowledge about functional object
use in the grasp templates is, of course, limited. This is partly due to the limitation of SAAM
to two dimensions and partly a general restriction of the expressiveness of grasps. Obviously, it
would be difficult to guide grasp selection to a specific position on a uniform object which has no
variations in its shape (for instance a long pole). This limitation could be overcome by extending
preprocessing of the visual input. For example, only edges in a specific area of the object could
be fed into the hand network to enforce a grasp generation within this part of the object.
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tells us how we use this object in a subsequent action, I developed the idea to use

grasp postures as an encoding for affordances and action intentions. The simulations

demonstrated that this is viable method to implement affordances. However, the

rationale behind this method and its realisation in SAAM still needs to be explained.

In the model the connection between grasp postures and complex actions proposed

by Napier is made in the grasp template network. This network matches the grasp

postures generated by the hand network to prototypical grasp postures for specific

actions (grasp templates). For example, in Study 3 the grasp template network

identified grasp postures either as a grasp for hammering or as a grasp for using the

pliers. Additionally, the hand network makes a connection between grasp postures

and objects in the visual input. Together these two connections – in the grasp

template network and in the hand network – establish a path linking objects to

actions and, thus, realising affordances. Thereby, the grasp postures in the finger

maps are the crucial element of this path: They enable SAAM to link objects in the

visual input to complex actions defined in the grasp template network. Of course, the

link between objects and actions is not uni-directional but also connects actions to

objects enabling the model to describe action intentions with grasp postures as well.

This was demonstrated in Study 2c and Study 3b.

8.3 SAAM in the Context of Visual Attention

Selective attention for action is, of course, linked to visual attention for identification.

Discussing SAAM against this background provides some interesting insights. This

involves the visual feature extraction stage, the model in general, and the top-down

path in particular.
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8.3.1 Visual Feature Extraction

The visual feature extraction stage of SAAM forms a crucial part of the model’s

architecture. It identifies locations in the visual input where features of the environ-

ment suitable for interacting with it might be. In SAAM Gabor-based edge detectors

are used to find such locations. As I argued in Chapter 5, Gabor-filters are used

because they are a biologically plausible implementation of edge detectors (Daugman,

1985; Field, 1987; Petkov, 1995). This plausibility does, however, not explain for

what reason these filters developed in the brain at all. Work by Olshausen and

Field suggested that Gabor-type filters developed in the striate cortex (V1) because

they are capable of extracting high-order relations between visual structures which

are often found in natural images (Olshausen & Field, 1996a, 1996b). While this

explains why this specific type of edge detector developed in the mammalian brain,

it does still not explain for what purpose edge detectors are required in the first

place. Olshausen and Field argued that the filters provided an efficient representation

for further processing in the brain. SAAM demonstrates this but, furthermore, it

provides a broader explanation for the existence of the edge detectors: Edges need to

be identified in the brain because they mark locations in the environment which are

suitable for grasping. One might argue now that edge detectors are also found in other

mammals which are not able to grasp objects (like cats, e. g.). However, in general

it can be observed that edges mark disruptions in the continuous fabrics that make

up the environment. Such locations are obviously usable for grasping but also for

non-grasping interaction, e. g., manipulation with the mouth or the paws. Hence, it is

important for animals to recognise these locations which form the basis for interaction

and consequently a basis for affordances as well.
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Figure 8.1: Overall structure of the Selective Attention for Identification Mod-
el (SAIM; adapted from Heinke & Humphreys, 2003). The visual input feeds into
the selection network which selects a region in it. The contents network maps this
region into the focus of attention (FOA). The knowledge network compares the
contents of the FOA with templates of known objects and directs the selection
process in the selection network towards locations showing the object which matches
the selected template.

8.3.2 SAAM, SAIM and Biased Competition

SAAM’s architecture was inspired by the Selective Attention and Identification

Model (SAIM; Heinke & Humphreys, 2003). Both models are similar in their aim of

modelling selection in multiple object scenes. However, the factors that guide the

selection process and the encoding of the results are very different: SAAM selects

objects for action based on affordances and expresses its selection by producing the

parameters needed to execute a grasping action. SAIM, on the other hand, selects

objects based on their salience and the selected object is projected into a ‘focus of

attention’ for further processing.

SAIM is constructed from three individual neural networks (see Fig. 8.1). The

‘selection network’ is at the heart of the model. It selects which parts of the visual input
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are mapped into the focus of attention. Within the network excitatory connections

activate neighbouring positions in the visual field while inhibitory connections enforce

a one-to-one mapping between positions in the visual input and the output of the

model. The actual output of the model is computed in the ‘contents network’ which

receives the mapping computed by the selection network and uses it to project a

portion of the visual input into the focus of attention. Finally, the ‘knowledge network’

adds template units corresponding to stored knowledge about objects to SAIM. The

network matches the contents of the focus of attention with the object templates in

the knowledge network. The activation of the template units is then fed back into the

selection network forming a top-down path in the model.

The analogue structures of SAIM’s selection and knowledge networks in SAAM are

the hand network and the grasp template network. A counterpart to the contents

network does not exist in SAAM because the hand network directly produces the

desired output. The similarities between SAIM and SAAM exist not only on the

architectural level but continue within the neural networks: The networks in both

models use a combination of excitatory and inhibitory connections between neurons

to guide the bottom-up selection process (in the hand and the selection network) as

well as the top-down selection process (in the two template networks).

In SAAM the excitatory connections in the hand network activate neurons which

satisfy the anatomical constraints defined in the weight maps. SAIM’s weight matrices

in the selection network, in contrast, define a neighbourhood constraint which en-

codes properties of objects. For example, neurons become active when the neurons

representing neighbouring input locations are active thus encoding the spatial layout

of objects. In both networks inhibitory connections enforce a selection process which

selects the neurons which best satisfy the constraints defined in the weight matrices

of the excitatory connections. It is because of the different weight matrices that the

hand network in SAAM selects finger positions and the selection network in SAIM
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produces a mapping from the visual field to the focus of attention.

The excitatory connections of the two template networks define matchings between

the model output and the templates. The templates are constraints for specific output

patterns. Hence, the process can again be interpreted as a constraint satisfaction

problem. As in the other networks of SAAM and SAIM, inhibitory connections exist

in both template networks which select the template which is matched (or satisfied)

best by the model output.

This system of two counteracting processes – an excitatory one which activates

neurons satisfying domain-specific constraints and an inhibitory one which selects a

subset of these neurons – may represent a general principle for information processing

in attentional systems. Thereby, the weight matrices play a crucial part, because they

define the constraints that stimuli need to satisfy in order to draw attention, and

they consequently define what is behaviourally important within a specific attentional

system.

Interestingly, the architecture of both models, SAIM and SAAM, follows the

biased competition model which Desimone and Duncan (1995) posited to explain

mechanisms of selective visual attention (Desimone & Duncan, 1995; Desimone, 1998).

In the biased competition model the visual input is processed in parallel and all

stimuli in the visual field compete for attention. In order to guide attention to

the behavioural relevant locations the competition is influenced by bottom-up and

top-down biases. Bottom-up biases guide the competition towards the selection of

salient stimuli; top-down biases enable an animal to direct the competition towards

behavioural relevant stimuli. Depending on the behaviour these top-down biases

can vary widely. The description of the top-down biases for a certain behaviour has

been termed “attentional template” (Duncan & Humphreys, 1989). In SAIM and

SAAM the competition is distributed across two networks: The bottom-up part of

the competition is computed in the selection and hand network while the top-down
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part is processed in the knowledge and grasp template network.

The individual networks in SAIM and SAAM are also consistent with the biased

competition model. Work by Desimone and Duncan argued that two synaptic

mechanisms can be distinguished in brain areas for visual perception. The first

mechanism specifies which inputs of a neuron cause it to fire and the second one

specifies which inputs allow a cell to fire (Desimone & Duncan, 1995). While Desimone

and Duncan have not linked these two mechanisms directly to excitatory and inhibitory

connections between neurons, these connections can be made in SAAM: The first

mechanism reflects the functionality of the excitatory connections and the second

can be associated with the inhibitory connections in SAIM and SAAM. This further

supports the idea that the opposing excitatory and inhibitory processes in SAIM and

SAAM signify a general principle.

The same functional separation of the two types of neural connections can also be

observed in Cisek’s computational model (see Chapter 4; Cisek, 2007). In this model

excitatory connections propagate activation in certain locations between different

layers of neurons while within each layer inhibitory connections generate a process to

select one of these locations. In line with Desimone and Duncan’s biased competition

hypothesis Cisek interprets these interactions in and between different cortical areas

as a competitive process (between affordances in this case). This means that the basic

principles behind SAAM and Cisek’s model are quite similar. However, while Cisek’s

model explores competition between affordances at a low level looking only at very

simple affordances, SAAM attempts to investigate competition between high-level

affordances in a connectionist framework.
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8.3.3 The Top-Down Path

The discussion of the bottom-up path showed that the weight matrices play a crucial

role in the implementation of a model’s specific functionality. This observation leads

to another interesting point of SAAM’s architecture: The weight maps of the hand

network in SAAM are not static but dynamically modulated with the top-down

feedback from the grasp template network. To my best knowledge this is a novel

method of applying a top-down bias in a connectionist model for visual attention. In

SAIM and other models, feedback from the top-down path is applied to the visual

input in order to facilitate bottom-up selection of stimuli which satisfy the top-down

bias. For example, Deco and Zihl (2001) presented a model in which top-down

information feeds back into feature maps through excitatory connections to activate

specific locations in these maps (see Heinke & Humphreys, 2005, for a review of

connectionist models for visual attention). In contrast, the visual input in SAAM

does not change during execution; top-down feedback is only applied to the weight

maps of the hand network.

By modulating its weight maps SAAM alters the definition of what make an

anatomically feasible grasp dynamically during grasp generation. This means, it

changes the constraints which stimuli must satisfy in order to be considered as

behavioural relevant. As I argued above, these constraints in the weight matrices of

a network are a model’s defining characteristic. Hence, defining the constraints of a

model essentially means implementing a specific selection process in the model. So,

when SAAM modifies its weight maps during execution, it effectively dynamically

adapts its selection process.
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8.4 Affordances

SAAM was developed with Gibson’s theory of affordances in mind. Study 3 demon-

strated how the processes in the model can be related to affordances and action

intentions. This topic requires further discussion. In Sec. 3.2 two propositions con-

cerning the localisation of affordances within the agent-environment system were

discussed: Turvey (1992) and Greeno (1994) located affordances in the environment,

attached to objects, and existing independently of an agent’s perception. The other

school of thought argued that affordances only emerge from the relation between

features in the environment and abilities of an agent (Stoffregen, 2003; Chemero,

2003). SAAM provides support for the latter theory. The weight maps in SAAM

encode the constraints imposed on possible grasp postures by the anatomy of the

hand. Thus, they specify the abilities of the agent to grasp objects. These abilities are

then matched in the hand network with the edges which were detected as features of

the environment. Only if these edges are in a configuration which fits the anatomical

constraints, finger positions may be produced, classifying the object to which the

edges belong to as graspable. Hence, ‘graspability’ emerges from the conjunction of

features and abilities in the hand network; because, in order “[t]o be graspable, an

object must have opposite surfaces separated by a distance less than the span of the

hand” (J. J. Gibson, 1979, p. 133).

An important aspect of the affordance theory is the direct perception of affordances

in the ‘ambient optic array’ (J. J. Gibson, 1979, p. 114). Obviously, SAAM does not

actually retrieves its input from an ambient optic array in the Gibsonian sense, but

uses a plain image containing only luminance information instead. This simplification

was made because of the complexity involved in creating a realistic image of the

ambient optic array in the computer. The images used by SAAM can be seen as a

very simplified version of the ambient optic array. However, they still provide enough
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information for SAAM to find locations suitable for placing the fingers in a grasp.

A more advanced version of the model could, of course, use a better approximation

of the ambient optic array and extract additional information from it in its visual

feature extraction stage. For example, binocular input images would allow to retrieve

depth information from the environment. This information could be used to discover

additional surfaces on which the fingers could be placed. Such improvements of the

visual extraction stage would not change the hand network. It would still receive

an activity map indicating locations where fingers could be placed, only that this

map is now compiled from different sources of information in the ambient optic array.

Interestingly, this map is very similar to the ‘retinotopic neural map’ which forms the

first layer of the ‘affordance competition framework’ by Cisek (2008). The neurons in

the retinotopic neural map represent the retinal space and their activity “reflects the

likelihood that something of interest occupies [their] location in retinal space” (Cisek,

2008, p. 213). Since SAAM models grasping, locations of interest are obviously those

that are suitable for finger placement.

8.4.1 A Hierarchy of Affordances

The affordance theory postulates a hierarchy of increasingly complex affordances

constructed from ‘invariants’ and ‘compound invariants’ (see Sec. 3.2). Modelling this

structure in a connectionist model was one of the main targets of my work. I will

now show how SAAM’s architecture matches this hierarchy of affordances. Within

the affordance framework the information which is used to build the map of finger

positions is known as invariants of the ambient optic array (J. J. Gibson, 1979, p. 310).

As I explained earlier, invariants describe fixed (i. e. invariant) relations within the

ambient optic array. Edges mark such a relation: a sharp boundary between two

visually distinct regions. The edge detectors in SAAM’s visual feature extraction
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stage discover these invariants and encode them in the map of locations suitable for

placing the fingers. The process of generating a grasp from this information in the

finger maps in the hand network is then, again, a process of discovering invariants.

This time, however, fixed relations between invariants are explored. J. J. Gibson

termed such relations ‘compound invariants’. In the hand network the weight maps

define which relationships can exist between the invariants in the network’s input

with regard to the hand of the actor. E. J. Gibson argued that these relationships

are learned during childhood through interaction with the environment (E. J. Gibson,

2003). A future version of SAAM could explore the possibility of generating the

hand maps through learning. This would, however, require feedback during learning

which not only indicates the general feasibility of a grasp posture and its ability to

hold an object firmly but also the comfort of performing the grasp. This information

could be acquired either with an accurate computer model of the physiognomy of the

human hand or by using an actual robot arm with appropriate sensors which provide

information whether a grasp was successful and how comfortable2 the posture for the

robot was.

Recognition of compound invariants cannot only be observed in the hand network

but also in the grasp template network. This network represents the processing of the

highest, most complex, manifestation of affordances in SAAM. The templates in the

grasp template network define invariants of finger positions in the output of the hand

network which represent grasp postures for specific actions. Therefore, activation of

the corresponding template units represents the existence of affordances for these

actions in the visual field. Interestingly, the term affordance can be applied to the

output of every stage of SAAM: The visual feature extraction stage detects locations

2‘Comfort’ is, of course, not an intuitive measure to collect in a technical system. One way of
defining such a measure could be based on the energy which is required to adopt a specific posture
with a robot arm. Such an approach would also reflect Warren, Jr.’s experiments in which he
measured the energy consumption of humans to find the most comfortable riser height of steps
and the optimal points for a stair-climbing affordance (Warren, Jr., 1984).
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with an affordance for finger placing, the hand network finds configurations of these

locations which are graspable, and the grasp template network discovers affordances

for complex actions.

8.4.2 Invariants as Body-Related Relative Features

A final aspect of invariants which shall be discussed here, is their relation to the

body of the actor. Warren, Jr. explored this aspect in his experiments in which he

related the size of bodily parts and objects to each other (e. g., hand length related

to object width) by defining pi-numbers (Warren, Jr., 1984; Warren, Jr. & Whang,

1987; see Sec. 3.2.2 for details). The design of SAAM’s hand network shows a striking

similarity to the rationale behind Warren, Jr.’s experiments: The weight maps in the

hand network relate the anatomy and physiognomy of the (modelled) actor’s hand to

the objects the actor sees. The effects of this relation on the generated grasps were

described in Studies 1 and 2; depending on how object shapes and hand anatomy

matched, the outcome of the different simulations varied widely. The multi-object

simulations in Study 2 and 3 showed how some objects were preferred over others

because they better matched the activity patterns in the weight maps. In Warren,

Jr.’s experiments optima for an affordance and changes from one affordance to another

were termed ‘optimal points’ and ‘critical points’ in the pi-number range. It is an

interesting question, if optimal and critical points can be determined for the hand

encoded in SAAM. An experiment which could provide a baseline for such an study

was presented by Newell, Scully, Tenenbaum, and Hardiman (1989). In this study the

number of fingers used to grasp different sized cubes was investigated. Changes in the

number of fingers used to grasp a cube would mark the critical points in this task.
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8.4.3 Micro-Affordances

Above, all outputs of the different networks in SAAM were interpreted as descrip-

tions of increasingly complex affordances. However, in Sec. 3.2.3 the concept of

micro-affordance (Ellis & Tucker, 2000) was introduced to explain the facilitation of

components of an action in contrast to complete actions like Gibsonian affordances do.

For instance, while Gibson would argue that an object has an affordance for grasping,

in the micro-affordance concept an object would have a micro-affordance for a specific

orientation of the hand in a grasp. Micro-affordances offer another interpretation of

the output of the visual feature extraction stage and, in particular, the hand network

of SAAM. Both components recognise features of objects in the visual input which

give rise to specific grasps. The visual feature extraction finds, for instance, locations

in the visual field which afford finger placings suitable for horizontally oriented grasps.

Hence, locations representing a ‘horizontal grasp’ micro-affordance are selected. The

hand network is slightly different because it does not explicitly define and encode

different feature dimensions representing micro-affordances. Rather, micro-affordances

for object features like potential grasp widths or grasp types are implicitly defined in

the weight maps and indirectly encoded in the output of the hand network. Instead

of outputting, for instance, a grasp type and a grasp span, the model outputs the

exact position of each individual finger. Thus, grasp span and grasp type are provided

implicitly and indirectly in the output.

Tucker and Ellis pointed out that micro-affordances have – in contrast to Gibson’s

affordances – a representation, and this representation is directly associated with

vision and action. The finger positions generated in the hand network can be seen as

such a (combined) representation of micro-affordances. They are directly extracted

from the visual input and still linked to it by the same frame of reference. However,

at the same time the representation contains information for the motor system to
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plan a grasping action (e. g., by linking SAAM to Smeets and Brenner’s model as

suggested in Sec. 8.5). Micro-affordances are assumed to be “dispositional properties

of a viewer’s nervous system” (Ellis & Tucker, 2000, p. 466). Hence, they are fully

specified in the observer and do not depend on the object or the environment. This is

different from the understanding of affordances in SAAM which are situated in the

conjunction between object features and the abilities which are encoded in the hand

matrices.

8.5 Comparison with Other Models

In Chapter 4 models for visual attention and action were reviewed. None of the

models discussed there combined visual attention, affordances and complex actions.

One of the aims of the development of SAAM was to build a model which combined

these three functions.

SAAM modelled the perception of visual affordances. The model worked directly

on the information in the visual field instead of relying on preprocessed information

about objects. This enabled SAAM to handle arbitrary objects and inputs containing

multiple objects. This is essential for modelling visual attention. In contrast to some

of the reviewed models (Fagg and Arbib’s model and Ward’s model), SAAM did not

include a semantic route for object recognition.

Similar to Cisek’s (2007) model, SAAM used a consistent encoding for actions

throughout the model. This was achieved by using finger positions for the descriptions

of grasp postures similar to the representation suggested by Smeets and Brenner.

However, instead of modelling only the position of the thumb and the index finger,

the positions of all five fingers were encoded in the finger maps. Complex actions were

described in SAAM by specifying their characteristic grasp postures as Napier (1956)

suggested. The similarity of the grasp encoding in SAAM (vision-oriented) and Smeets
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and Brenner’s (1999) model (action oriented) demonstrate that this representation

can link vision and action, thus, describing affordances for grasping and possibly

more complex actions. An extended version of SAAM may be able to be linked to a

computational version of Smeets and Brenner’s model so that not only grasp planning

but also grasp execution can be modelled.
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I set out to build a connectionist model for complex affordances and action intentions.

In this thesis I explored many properties of this model. However, there are more

behaviours in SAAM which would be interesting to explore, especially in connection

with further experimental work. Starting points for such explorations are outlined in

the next section before I conclude my work with some final considerations.

9.1 Outlook

In the general discussion I already mentioned some opportunities for further research

based on SAAM. These ideas are summarised here and additional experiments are

suggested and outlined.

9.1.1 Extensions of the Model and Additional Simulations

Currently, SAAM only relies on black and white differences in the visual input. This

is only a poor approximation of the ambient optic array. This could be improved

by using stereo images as input and computing a disparity image. Sudden changes

of depth in this image mark potential borders of objects. Hence, an edge detector

applied to the disparity image should be able to identify locations which may be

suitable for grasping. These information could be combined with the colour based

edge detectors. Such an enhanced visual feature extraction stage would, of course,
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also permit new experiments to investigate how different features like depth-based

edges and colour-based edges contribute to grasp-planning in humans.

On the motor-control end SAAM could be extended to also execute the grasps

it planned; therefore, simulating the complete route from vision to action and not

stopping after grasp planning as it does at the moment. One way to extend the

model into motor control would be to link it with Smeets and Brenner’s model. The

similarity of the encoding for grasps in both models would make this relatively easy.

Having a model which is able to model visual perception for action as well as

action execution offers new possibilities: For example, such a model can be used

to learn the anatomical constraints in the weight maps instead of using predefined

patterns of activation. To learn the anatomical constraints the model would start

producing random grasps and then use the feedback from the grasp execution to

evaluate whether the chosen positions constituted a successful and comfortable grasp

and save this information in the weight maps. Over time this should produce weight

maps which represent the anatomic abilities of the hand closely.

An extended evaluation of the model could take Warren, Jr.’s critical and optimal

points into account (see Sec. 3.2.2). This would be particularly interesting in combin-

ation with learnt weight maps because their structure might not be as clear as in the

manually designed maps used here. One experiment to investigate this, is Newell et

al.’s (1989) experiment which assessed the relation between the size of a cube and the

number of fingers used to grasp it. However, other experiments could also assess the

relationship between hand length, object height and vertical and horizontal grasps.

Such experiments could also take the initial orientation of the hand into account to

test whether this affects the critical point at which a grasp changed from horizontal

to vertical orientation or vice versa.

In one of the simulations in Study 2c (Sec. 6.2.3) I tested SAAM’s abilities to

model grasp generation and action selection based on action relations within groups
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Figure 9.1: Overview of a bi-manual version of SAAM which could be used to model
action relations between groups of objects in greater depth.

of objects. This was motivated by research by Riddoch et al. who showed that action

relations between objects can support perception (see Sec. 6.2.3 for more details).

However, the action relations investigated by Riddoch et al. were much more complex

than the one simulated in Study 2c. For example, one of the object pairs they

used was a bottle and a corkscrew while SAAM only used two bar-shaped objects.

In order to explore such action relations between objects further, SAAM needs to

be extended (see Fig. 9.1). Actions involving two objects are typically performed

using both hands. Hence, SAAM would need to be duplicated so that each hand is

represented by a separate hand network and grasp template network. Of course, the

weight maps and template maps would need to be mirrored in the networks for the left

hand. The left and right hand version of SAAM would be linked together by a network

which connects to the two grasp template networks and encodes combinations of grasp

types for both hands which constitute an action relation (e. g., a hammer-use grasp

for the right hand and a small grasp to hold the nail for the left hand). Additionally,

the hand networks of each hand would be connected to each other. Through these

connections each hand could support locations for the other hand which constitute

a good position for performing a combined action. These links would be similar to
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the connections between fingers in each hand network in so far as they describe the

relative positions of the hands to each other. Since suitable positions for each hand

depend on the action relation selected by the new network introduced above, this

network would need to modify the weight maps used to project activation between the

hand networks to fit to the current action. This is, of course, similar to the top-down

feedback from the grasp template network in the current version of SAAM.

Finally, SAAM could be linked to a model for visual attention for identification (e. g.,

SAIM; see Sec. 8.3.2). Such a combination would constitute a complete implementation

of Humphreys and Riddoch’s (2003) dual route theory (see Sec. 3.1). Consequently,

the architecture of the extended model could be similar to the Naming and Action

Model (NAM, see Sec. 3.1). In this extension SAAM would implement a direct route

for action and SAIM a semantic route. Both models could be linked at two points:

First, the visual fields of both models could be connected so that a selection in one

model increases the saliency of the selected area in the visual field of the other model.

This connection would correspond to the link between stored structural knowledge

and semantic knowledge in NAM. Second, the grasp templates in SAAM could be

connected to templates of objects in SAIM for which the provide a suitable grasp. This

would give SAIM access to stored action patterns. The connection would therefore

correspond to the link between semantic knowledge and stored action patterns in

NAM. Such a model would not only simulate the complete dual pathway including

the semantic route in addition to the action route but would also allow to design

experiments to examine the interaction and relationship of the two routes.

9.1.2 Further Experimental Verification

The grasps generated by SAAM in single-object simulations were verified with experi-

mental data in Study 1. One possibility for further verifications would a comparison
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A

B

C

D E

Figure 9.2: Examples of objects which might at first sight be perceived as functionless
but when action intentions are present, they may be perceived as tools. For example,
object A can be used as a baton if held at the rounded end and as a drumstick
if held at the thin end; object B can be used a primitive hammer if held around
its upper side; when object C is seen as the handle of an umbrella, it should be
grasped at the straight part of the handle; object D can be used as a grinder when
the hand is placed in the coving on the top edge of the object; and object E can be
used as club when the hand is placed at one of the ends.

of the temporal behaviour of the model in single-object simulations to reaction time

differences observed in humans. However, another – wider – field for experimental

verification are the multi-object simulations. In this section experiments are outlined

which can verify SAAM’s results in such simulations.

Grasp Postures

Study 1 showed that on vertically oriented objects SAAM created grasps which differed

from human grasp postures due to its restriction to horizontal grasp postures. An

experiment could apply the same restriction to human participants by asking them to

only perform horizontal grasp postures. It would be interesting to see whether the

resulting grasps match the grasps SAAM created on vertical objects.

In Study 3 SAAM predicted that grasp postures change when objects are grasped

with the intention of using them instead of simply holding them. An experiment
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to verify this prediction could use objects like the ones shown in Fig. 9.2. These

objects do not have an intrinsic function, and a näıve participant would be likely to

produce a grasp which is purely chosen for its comfort and stability. If participants

are however told that the objects have a function, then the grasps should change to

reflect the grasp posture needed for using the objects according to their function. This

change would reflect the activation of the top-down path in SAAM which leads to the

incorporation of complex affordances into the generation of the grasp posture.

Attention

SAAM showed a clear preference for some objects in multiple object simulations. A

comparison of the choice made by the model and the choices humans would make

could ameliorate the verification of the behavioural plausibility of the model. An

experimental set-up to identify objects which humans prefer is however not straight

forward. A pilot study aiming at investigating this question by presenting participants

with two objects and asking them to choose one of them showed that the objects

are perceived equally graspable and choices were made at random. This is not too

surprising considering the amount of practise humans have on grasping. The simplicity

and low demand of the task thus may have led the participants to entertain themselves

during the experiment by exploring all objects. Choosing objects which vary more

widely in their perceived graspability is not a solution for this problem, because

this would require knowledge of the graspability (which is the target measure of

the investigation) beforehand. The approach to compare reaction time differences

for grasps in single object displays has also not proven successful as I discussed in

Chapter 6. This is most likely also because of the general simplicity of the grasping

task for humans. One approach to make the task more difficult would be to use a

search task with present/absent trials in which multiple objects are presented and the

participants need to find the target object first before grasping it. The target in this
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task could be defined, for instance, either by its shape or by its colour. A odd-one out

search is also possible to further increase the difficulty of the task. Reaction times for

different target objects could then be compared to establish the graspability of each

object. An supplemental experiment in which participants respond with key-presses

to whether the target object is present or absent would allow to account for reaction

times effects attributed to different visual saliency of the objects. A different approach

to solve the problem of task difficulty would be to increase the cognitive demand of

the experiment with an unrelated task. Participants could, for instance, be instructed

to play a simple computer game with a joystick held in one hand. The game would

then require them to hold down a button with the other hand but at certain points

lifting one of the objects would be required to perform an action in the computer

game (e. g., picking some item up). In such a difficult task minor differences in the

graspability of an object may become apparent. Another approach to find differences

in the graspability of the objects would be to ask participants to rate all objects on

their perceived graspability. This might, however, lead the participants to judge the

objects based on analytic reasoning about graspability instead of assessing the actual

graspability of the objects.

Priming

Another approach to investigating action and affordances in experiments is the

presentation of a prime which might be associated with an action (through affordances

or other means) prior to the execution of an action task by the participant. Researchers

tried different types of stimuli as primes (e. g., Craighero et al., 1996; Bekkering &

Neggers, 2002; Borghi et al., 2007; Vingerhoets, Vandamme, & Vercammen, 2009).

These stimuli can be broadly categorised into those showing an object that affords a

specific action, those showing the execution of a specific action directly, and those

priming a certain characteristic of the action, for instance the orientation of a grasping
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action. Object primes can be construed as a form of priming based directly on visual

affordances. In contrast, priming by showing the execution of an action can be

interpreted as a trigger for a mental simulation of the action which causes the motor

system to prepare for this action which then in turn affects perception for action. The

priming of certain properties of actions can be interpreted similar to object primes

only that it relies on concrete feature dimensions instead of complex affordances. This

links this form of priming closely to micro-affordances. All three priming methods

can be – to varying extents – simulated with SAAM.

Object priming can be achieved in SAAM in two ways: One way is to initialise

the templates in the grasp template network with different activations to simulate

a behavioural preference caused by a prime. The other way is to place the prime in

the visual input of the model and replace it during the simulation with the actual

target thus simulating the actual perception of the prime during the trial. During

prime presentation the model should produce a grasp for the prime and select a

matching template. When the target is then presented the grasp posture should be

adapted to fit the target. If prime and target are compatible, this process should

benefit from the preselected finger positions as well as the preselected grasp template.

Depending on the similarity of the shapes of prime and target and their position

in the visual input, the preselected finger positions might, however, not support

grasp generation but delay it because the target requires the fingers in different

positions than the prime even when both objects are still compatible with the same

template. Using these methods, different experiments can be simulated with SAAM.

For example, the prime could show an object compatible with a large or a small grasp

and afterwards an object suitable for either grasp could be shown (an object similar

to the one used in Study 2c). The generated grasps should then differ depending on

the prime. This can, of course, be also combined with a search display instead of a

single object. Considering cognitive demands the latter might also be more likely to
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produce successful results in an experiment with human subjects.

The method of displaying a prime in the visual input cannot only be used to

model object priming but also to model the priming of specific feature dimensions.

Since features are implicitly described in the hand network, this is very similar to

object priming, though. The main difference between object priming and feature

priming in SAAM is in the level of specification: While an object prime is expected

to affect the grasp template activated in the grasp template network, a feature prime

should only prime components of specific grasp posture in the hand network. This

could be, for instance, a wide or small distance between the fingers and the thumb.

Hence, feature prime might best be explored in a version of SAAM without top-down

feed-back in order to dissociate priming-effects of complex affordances from the effects

of micro-affordances.

Priming by showing the execution of an action cannot be directly modelled in

SAAM since the model can only perceive affordances and has no means of recognising

action gestures. Though, it would be possible to simulate experiments which showed

static hand postures used during grasping as primes (e. g., Borghi et al., 2007). Such

an experiment would, however, still require to prime certain grasp postures directly in

the grasp template network by initialising them accordingly due to SAAM’s restriction

to affordance perception. Alternatively, a priming experiment in humans could explore

how humans react when they are primed for a certain grasp posture but cannot execute

this grasp in the subsequent action. It is an interesting question if the grasp postures

or the reaction times are affected like SAAM predicts.

Effect of the Initial Hand Position

Finally, SAAM could also be used to investigate effects of initial hand positions on

grasping. To achieve this, the finger maps could be initialised with specific finger

positions to indicate an initial posture of the hand. Simulations could then test how
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different start positions affect the simulation duration and the generated grasp posture.

Such simulations could easily be verified with an experiment in which participants are

instructed to place there hands differently in each trial. For example, they could be

asked to adopt either a power or precision grasp posture.

9.2 Conclusions

The aim of my thesis was to develop and explore a connectionist model which

used an affordance-based approach to find and select opportunities for action in

the environment as well as to generate the parameters required for executing the

selected action. The result of this work was the Selective Attention for Action

Model (SAAM). This model simulated a direct route from vision to action. It

detected complex affordances and the associated action parameters directly from

the information available in the visual input field. The model implemented this

process through a hierarchy of affordances for increasingly complex actions. This was

demonstrated in three studies.

In Study 1 I showed that SAAM’s grasp postures for objects resembled the grasps

humans produced when grasping these objects. The comparison was based on data

collected in an experiment in which human grasp postures were recorded while

participants grasped the same stimulus shapes as those which were used in the

simulations.

In addition to the bottom-up path which was explored in Study 1, SAAM also had

a top-down path to incorporate stored knowledge into the model. This extension was

introduced and explored in Study 2. I showed that the top-down process in SAAM not

only allowed control of object selection but also of grasp posture and grasp placement

on an object. Furthermore, I demonstrated that the top-down path even allowed to
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make choices between grasping one object or a whole group of objects by preferring

small or large grasps.

Study 2 demonstrated that SAAM exhibited behaviour which can be understood as

selective attention for action. The model was able to select one of two objects in the

visual input as well as the appropriate action category (defined by the grasp type)

for using the selected object. Moreover, this bottom-up choices could be influenced

through top-down feedback based on action intentions. In addition to the attentional

behaviour, the first two studies revealed two notable emergent properties: First, it

emerged that SAAM was able to create form-closure grasps on appropriate objects.

Second, SAAM was also capable of positioning the fingers around the centre of mass

of objects without explicitly identifying the centre of mass first.

In Study 3 simulations with hand-tools were presented to demonstrate more clearly

how affordances and action intentions were handled in the model. It was shown that

SAAM was able to identify affordances of objects as well as to guide visual selection

towards objects suitable for an intended action. This showed how invariants can

be combined to create affordances describing high-level actions. It also showed how

basic action-parameters (grasp location) can be implicitly included in the affordance

description. This demonstrated that the model fits well into Gibson’s affordance

framework. Additionally, Study 3 showed that grasp postures are a viable method to

encode affordances for complex actions as Napier (1956) suggested.

SAAM combined excitatory and inhibitory processes. I argued that the specific

implementation of these two processes in SAAM might show a general principle of

information processing in attentional systems whereby the excitatory process finds

salient locations and the inhibitory process performs the selection. Additionally,

SAAM also showed a novel way of integrating top-down information in a model for

selective attention by modifying the weight maps of the excitatory connections instead

of the visual input.
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In addition to the work presented here, the possibilities for further experimentation

and extensions of the model described in the outlook underline SAAM’s potential and

versatility for researching the route from vision to action in a computational model.
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A Additional Information about the

Experiment in Study 1

This appendix contains additional information about the materials which were used

in Study 1 (Chapter 5). Additionally, it contains lists of all pairwise comparisons of

both reaction times (RT 1 and RT 2) which were collected in the experiment.

A.1 Object Dimensions

The objects were cut from a plywood board with plastic veneer and painted in silk

black. The weights of the objects are listed in the following table:

Object Weight

Bar 97 g
Concave 170 g
Irregular 170 g
Pyramid 156 g
Trapezium 162 g
T-shape 140 g

The objects were 2.2 cm thick; their other dimensions are shown in the figure below.

The coloured lines indicate how object width (red) and height (green) were measured

to calculate the width-to-height ratio for the logistic regression analysis.
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1cm

A.2 Instructions used in the Experiment

Participants received the following instructions:

Hi!

Thank you for taking part in this study.

It is an experiment about grasping. You are asked to grasp a number of

objects and in each trial a picture of your grasp is taken.

During the experiment you are wearing special glasses which can be turned

opaque by the computer. While you cannot see the experimenter will
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place an object on the board in front of you. Then she will ask you to hold

down the large orange button with the palm of your hand. Two seconds

later the glasses will become transparent again and you should pick up

the object quickly. However, as soon as you release the orange button the

glasses will close again and you have do your grasp blindly.

After you have picked up the object the glasses become transparent again

and arrow appears on the screen to tell you on which camera panel you

should place the object. Place the object onto the camera panel and hold

it on the glass pane. Try NOT TO CHANGE your grasp while doing this.

The experimenter will take a picture of your hand posture and ask you to

return the object to her.

You can withdraw from this experiment at any time. If you want a break

during the experiment – just ask for one!

A.3 Reaction Times for Button Release

These reaction times were measured from the point when the glasses became trans-

parent until the participants released the orange button. The following table lists the

results of pairwise comparisons of all objects. Significant reaction time differences are

highlighted with a grey background.

Comparison t-Test Result

bar 0� (M = 476.03 ms, SD = 137.57)

> bar 90� t(16) = 0.490, p = 0.63
> bar 180� t(16) = 1.820, p = 0.09
> bar 270� t(16) = 0.840, p = 0.41
< concave 0� t(16) = �0.610, p = 0.55
< concave 90� t(16) = �0.410, p = 0.68
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< concave 180� t(16) = �0.310, p = 0.76
< concave 270� t(16) = �0.460, p = 0.65
< irregular 0� t(16) = �1.030, p = 0.32
> irregular 90� t(16) = 3.240, p = 0.005
> irregular 180� t(16) = 0.140, p = 0.89
> irregular 270� t(16) = 0.080, p = 0.93
< pyramid 0� t(16) = �0.930, p = 0.37
> pyramid 90� t(16) = 2.750, p = 0.01
> pyramid 180� t(16) = 0.410, p = 0.69
> pyramid 270� t(16) = 0.460, p = 0.65
> trapezium 0� t(16) = 0.700, p = 0.49
> trapezium 90� t(16) = 0.050, p = 0.96
< trapezium 180� t(16) = �0.620, p = 0.55
> trapezium 270� t(16) = 1.420, p = 0.17
> t-shape 0� t(16) = 0.420, p = 0.68
> t-shape 90� t(16) = 0.220, p = 0.83
> t-shape 180� t(16) = 0.060, p = 0.95
< t-shape 270� t(16) = �0.670, p = 0.51

bar 90� (M = 467.62 ms, SD = 143.97)

> bar 180� t(16) = 0.830, p = 0.42
> bar 270� t(16) = 0.420, p = 0.68
< concave 0� t(16) = �0.800, p = 0.43
< concave 90� t(16) = �0.680, p = 0.50
< concave 180� t(16) = �0.900, p = 0.38
< concave 270� t(16) = �1.200, p = 0.25
< irregular 0� t(16) = �1.590, p = 0.13
> irregular 90� t(16) = 3.080, p = 0.007
< irregular 180� t(16) = �0.380, p = 0.71
< irregular 270� t(16) = �0.420, p = 0.68
< pyramid 0� t(16) = �1.540, p = 0.14
> pyramid 90� t(16) = 2.190, p = 0.04
< pyramid 180� t(16) = �0.170, p = 0.86
> pyramid 270� t(16) = 0.130, p = 0.90
> trapezium 0� t(16) = 0.190, p = 0.85
< trapezium 90� t(16) = �0.710, p = 0.49
< trapezium 180� t(16) = �1.300, p = 0.21
> trapezium 270� t(16) = 0.680, p = 0.50
< t-shape 0� t(16) = �0.010, p = 0.99
< t-shape 90� t(16) = �0.160, p = 0.87
< t-shape 180� t(16) = �0.280, p = 0.78
< t-shape 270� t(16) = �1.820, p = 0.09

bar 180� (M = 454.38 ms, SD = 127.83)

< bar 270� t(16) = �0.130, p = 0.90
< concave 0� t(16) = �1.800, p = 0.09
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< concave 90� t(16) = �1.170, p = 0.26
< concave 180� t(16) = �1.460, p = 0.16
< concave 270� t(16) = �1.660, p = 0.12
< irregular 0� t(16) = �2.420, p = 0.03
> irregular 90� t(16) = 2.110, p = 0.05
< irregular 180� t(16) = �0.950, p = 0.36
< irregular 270� t(16) = �1.130, p = 0.27
< pyramid 0� t(16) = �1.680, p = 0.11
> pyramid 90� t(16) = 2.160, p = 0.05
< pyramid 180� t(16) = �0.900, p = 0.38
< pyramid 270� t(16) = �0.420, p = 0.68
< trapezium 0� t(16) = �0.370, p = 0.71
< trapezium 90� t(16) = �1.190, p = 0.25
< trapezium 180� t(16) = �1.770, p = 0.10
< trapezium 270� t(16) = �0.120, p = 0.90
< t-shape 0� t(16) = �0.640, p = 0.53
< t-shape 90� t(16) = �0.880, p = 0.39
< t-shape 180� t(16) = �0.980, p = 0.34
< t-shape 270� t(16) = �1.790, p = 0.09

bar 270� (M = 456.91 ms, SD = 116.82)

< concave 0� t(16) = �1.340, p = 0.20
< concave 90� t(16) = �0.700, p = 0.50
< concave 180� t(16) = �1.100, p = 0.29
< concave 270� t(16) = �1.070, p = 0.30
< irregular 0� t(16) = �1.370, p = 0.19
> irregular 90� t(16) = 1.720, p = 0.11
< irregular 180� t(16) = �0.620, p = 0.54
< irregular 270� t(16) = �0.620, p = 0.54
< pyramid 0� t(16) = �1.200, p = 0.25
> pyramid 90� t(16) = 1.500, p = 0.15
< pyramid 180� t(16) = �0.440, p = 0.66
< pyramid 270� t(16) = �0.230, p = 0.82
< trapezium 0� t(16) = �0.180, p = 0.86
< trapezium 90� t(16) = �0.660, p = 0.52
< trapezium 180� t(16) = �1.210, p = 0.24
> trapezium 270� t(16) = 0.020, p = 0.98
< t-shape 0� t(16) = �0.340, p = 0.74
< t-shape 90� t(16) = �0.550, p = 0.59
< t-shape 180� t(16) = �0.790, p = 0.44
< t-shape 270� t(16) = �1.160, p = 0.26

concave 0� (M = 485.56 ms, SD = 144.88)

< concave 90� t(16) = �0.010, p = 0.99
> concave 180� t(16) = 0.110, p = 0.91
< concave 270� t(16) = �0.020, p = 0.99
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< irregular 0� t(16) = �0.540, p = 0.59
> irregular 90� t(16) = 2.770, p = 0.01
> irregular 180� t(16) = 0.480, p = 0.64
> irregular 270� t(16) = 0.450, p = 0.66
< pyramid 0� t(16) = �0.530, p = 0.60
> pyramid 90� t(16) = 2.870, p = 0.01
> pyramid 180� t(16) = 0.830, p = 0.42
> pyramid 270� t(16) = 0.710, p = 0.49
> trapezium 0� t(16) = 0.820, p = 0.42
> trapezium 90� t(16) = 0.400, p = 0.69
< trapezium 180� t(16) = �0.200, p = 0.85
> trapezium 270� t(16) = 1.440, p = 0.17
> t-shape 0� t(16) = 0.630, p = 0.54
> t-shape 90� t(16) = 0.500, p = 0.62
> t-shape 180� t(16) = 0.520, p = 0.61
< t-shape 270� t(16) = �0.130, p = 0.90

concave 90� (M = 485.94 ms, SD = 179.98)

> concave 180� t(16) = 0.080, p = 0.94
< concave 270� t(16) = �0.000, p = 1.00
< irregular 0� t(16) = �0.420, p = 0.68
> irregular 90� t(16) = 2.100, p = 0.05
> irregular 180� t(16) = 0.420, p = 0.68
> irregular 270� t(16) = 0.420, p = 0.68
< pyramid 0� t(16) = �0.520, p = 0.61
> pyramid 90� t(16) = 1.730, p = 0.10
> pyramid 180� t(16) = 0.810, p = 0.43
> pyramid 270� t(16) = 0.700, p = 0.49
> trapezium 0� t(16) = 1.290, p = 0.21
> trapezium 90� t(16) = 0.400, p = 0.69
< trapezium 180� t(16) = �0.140, p = 0.89
> trapezium 270� t(16) = 1.200, p = 0.25
> t-shape 0� t(16) = 0.880, p = 0.39
> t-shape 90� t(16) = 0.480, p = 0.64
> t-shape 180� t(16) = 0.290, p = 0.78
< t-shape 270� t(16) = �0.120, p = 0.91

concave 180� (M = 483.00 ms, SD = 171.13)

< concave 270� t(16) = �0.170, p = 0.86
< irregular 0� t(16) = �0.850, p = 0.41
> irregular 90� t(16) = 2.500, p = 0.02
> irregular 180� t(16) = 0.430, p = 0.68
> irregular 270� t(16) = 0.370, p = 0.72
< pyramid 0� t(16) = �1.010, p = 0.33
> pyramid 90� t(16) = 2.600, p = 0.02
> pyramid 180� t(16) = 0.600, p = 0.56
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> pyramid 270� t(16) = 0.610, p = 0.55
> trapezium 0� t(16) = 0.570, p = 0.57
> trapezium 90� t(16) = 0.410, p = 0.69
< trapezium 180� t(16) = �0.580, p = 0.57
> trapezium 270� t(16) = 1.030, p = 0.32
> t-shape 0� t(16) = 0.490, p = 0.63
> t-shape 90� t(16) = 0.320, p = 0.75
> t-shape 180� t(16) = 0.310, p = 0.76
< t-shape 270� t(16) = �0.300, p = 0.76

concave 270� (M = 485.97 ms, SD = 166.89)

< irregular 0� t(16) = �0.790, p = 0.44
> irregular 90� t(16) = 2.870, p = 0.01
> irregular 180� t(16) = 1.100, p = 0.29
> irregular 270� t(16) = 0.660, p = 0.52
< pyramid 0� t(16) = �0.850, p = 0.41
> pyramid 90� t(16) = 2.620, p = 0.02
> pyramid 180� t(16) = 0.930, p = 0.37
> pyramid 270� t(16) = 1.000, p = 0.33
> trapezium 0� t(16) = 0.860, p = 0.40
> trapezium 90� t(16) = 1.060, p = 0.31
< trapezium 180� t(16) = �0.340, p = 0.74
> trapezium 270� t(16) = 1.370, p = 0.19
> t-shape 0� t(16) = 0.980, p = 0.34
> t-shape 90� t(16) = 0.440, p = 0.66
> t-shape 180� t(16) = 0.440, p = 0.66
< t-shape 270� t(16) = �0.230, p = 0.82

irregular 0� (M = 499.24 ms, SD = 186.31)

> irregular 90� t(16) = 2.860, p = 0.01
> irregular 180� t(16) = 1.230, p = 0.24
> irregular 270� t(16) = 1.230, p = 0.24
< pyramid 0� t(16) = �0.250, p = 0.81
> pyramid 90� t(16) = 2.880, p = 0.01
> pyramid 180� t(16) = 1.500, p = 0.15
> pyramid 270� t(16) = 1.420, p = 0.18
> trapezium 0� t(16) = 1.150, p = 0.27
> trapezium 90� t(16) = 1.220, p = 0.24
> trapezium 180� t(16) = 0.590, p = 0.56
> trapezium 270� t(16) = 1.960, p = 0.07
> t-shape 0� t(16) = 1.220, p = 0.24
> t-shape 90� t(16) = 0.850, p = 0.41
> t-shape 180� t(16) = 1.070, p = 0.30
> t-shape 270� t(16) = 0.470, p = 0.65

irregular 90� (M = 422.85 ms, SD = 103.88)
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< irregular 180� t(16) = �2.980, p = 0.009
< irregular 270� t(16) = �2.670, p = 0.02
< pyramid 0� t(16) = �2.580, p = 0.02
< pyramid 90� t(16) = �0.520, p = 0.61
< pyramid 180� t(16) = �2.600, p = 0.02
< pyramid 270� t(16) = �1.790, p = 0.09
< trapezium 0� t(16) = �1.910, p = 0.07
< trapezium 90� t(16) = �2.960, p = 0.009
< trapezium 180� t(16) = �2.770, p = 0.01
< trapezium 270� t(16) = �2.040, p = 0.06
< t-shape 0� t(16) = �2.010, p = 0.06
< t-shape 90� t(16) = �2.720, p = 0.02
< t-shape 180� t(16) = �2.190, p = 0.04
< t-shape 270� t(16) = �3.390, p = 0.004

irregular 180� (M = 473.24 ms, SD = 147.59)

< irregular 270� t(16) = �0.060, p = 0.95
< pyramid 0� t(16) = �1.190, p = 0.25
> pyramid 90� t(16) = 1.950, p = 0.07
> pyramid 180� t(16) = 0.230, p = 0.82
> pyramid 270� t(16) = 0.490, p = 0.63
> trapezium 0� t(16) = 0.480, p = 0.64
< trapezium 90� t(16) = �0.180, p = 0.86
< trapezium 180� t(16) = �0.930, p = 0.36
> trapezium 270� t(16) = 0.930, p = 0.37
> t-shape 0� t(16) = 0.340, p = 0.74
> t-shape 90� t(16) = 0.040, p = 0.97
< t-shape 180� t(16) = �0.060, p = 0.95
< t-shape 270� t(16) = �1.140, p = 0.27

irregular 270� (M = 474.35 ms, SD = 157.22)

< pyramid 0� t(16) = �0.990, p = 0.34
> pyramid 90� t(16) = 2.780, p = 0.01
> pyramid 180� t(16) = 0.360, p = 0.72
> pyramid 270� t(16) = 0.330, p = 0.75
> trapezium 0� t(16) = 0.420, p = 0.68
< trapezium 90� t(16) = �0.050, p = 0.96
< trapezium 180� t(16) = �0.930, p = 0.37
> trapezium 270� t(16) = 0.990, p = 0.34
> t-shape 0� t(16) = 0.300, p = 0.77
> t-shape 90� t(16) = 0.080, p = 0.94
< t-shape 180� t(16) = �0.010, p = 0.99
< t-shape 270� t(16) = �0.680, p = 0.50

pyramid 0� (M = 504.62 ms, SD = 209.78)

> pyramid 90� t(16) = 2.220, p = 0.04
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> pyramid 180� t(16) = 1.270, p = 0.22
> pyramid 270� t(16) = 1.440, p = 0.17
> trapezium 0� t(16) = 1.180, p = 0.26
> trapezium 90� t(16) = 1.330, p = 0.20
> trapezium 180� t(16) = 0.610, p = 0.55
> trapezium 270� t(16) = 1.530, p = 0.14
> t-shape 0� t(16) = 1.150, p = 0.27
> t-shape 90� t(16) = 0.860, p = 0.40
> t-shape 180� t(16) = 0.850, p = 0.41
> t-shape 270� t(16) = 0.690, p = 0.50

pyramid 90� (M = 430.38 ms, SD = 116.70)

< pyramid 180� t(16) = �2.070, p = 0.06
< pyramid 270� t(16) = �1.150, p = 0.27
< trapezium 0� t(16) = �1.170, p = 0.26
< trapezium 90� t(16) = �2.310, p = 0.03
< trapezium 180� t(16) = �2.740, p = 0.01
< trapezium 270� t(16) = �1.480, p = 0.16
< t-shape 0� t(16) = �1.460, p = 0.16
< t-shape 90� t(16) = �1.860, p = 0.08
< t-shape 180� t(16) = �2.130, p = 0.05
< t-shape 270� t(16) = �2.610, p = 0.02

pyramid 180� (M = 469.59 ms, SD = 155.73)

> pyramid 270� t(16) = 0.210, p = 0.84
> trapezium 0� t(16) = 0.330, p = 0.75
< trapezium 90� t(16) = �0.400, p = 0.69
< trapezium 180� t(16) = �0.990, p = 0.34
> trapezium 270� t(16) = 0.860, p = 0.40
> t-shape 0� t(16) = 0.090, p = 0.93
< t-shape 90� t(16) = �0.090, p = 0.93
< t-shape 180� t(16) = �0.200, p = 0.84
< t-shape 270� t(16) = �1.260, p = 0.22

pyramid 270� (M = 464.47 ms, SD = 147.34)

> trapezium 0� t(16) = 0.070, p = 0.95
< trapezium 90� t(16) = �0.490, p = 0.63
< trapezium 180� t(16) = �0.930, p = 0.37
> trapezium 270� t(16) = 0.390, p = 0.70
< t-shape 0� t(16) = �0.170, p = 0.86
< t-shape 90� t(16) = �0.300, p = 0.77
< t-shape 180� t(16) = �0.380, p = 0.71
< t-shape 270� t(16) = �1.230, p = 0.24

trapezium 0� (M = 463.06 ms, SD = 140.69)

< trapezium 90� t(16) = �0.550, p = 0.59
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< trapezium 180� t(16) = �0.810, p = 0.43
> trapezium 270� t(16) = 0.360, p = 0.72
< t-shape 0� t(16) = �0.360, p = 0.72
< t-shape 90� t(16) = �0.460, p = 0.65
< t-shape 180� t(16) = �0.360, p = 0.72
< t-shape 270� t(16) = �1.240, p = 0.23

trapezium 90� (M = 475.15 ms, SD = 152.58)

< trapezium 180� t(16) = �0.870, p = 0.40
> trapezium 270� t(16) = 1.030, p = 0.32
> t-shape 0� t(16) = 0.440, p = 0.67
> t-shape 90� t(16) = 0.110, p = 0.91
> t-shape 180� t(16) = 0.020, p = 0.98
< t-shape 270� t(16) = �1.310, p = 0.21

trapezium 180� (M = 490.94 ms, SD = 177.76)

> trapezium 270� t(16) = 1.470, p = 0.16
> t-shape 0� t(16) = 0.830, p = 0.42
> t-shape 90� t(16) = 0.550, p = 0.59
> t-shape 180� t(16) = 0.610, p = 0.55
> t-shape 270� t(16) = 0.100, p = 0.92

trapezium 270� (M = 456.38 ms, SD = 127.06)

< t-shape 0� t(16) = �0.610, p = 0.55
< t-shape 90� t(16) = �0.840, p = 0.41
< t-shape 180� t(16) = �0.860, p = 0.40
< t-shape 270� t(16) = �1.640, p = 0.12

t-shape 0� (M = 467.85 ms, SD = 151.00)

< t-shape 90� t(16) = �0.170, p = 0.87
< t-shape 180� t(16) = �0.230, p = 0.82
< t-shape 270� t(16) = �1.200, p = 0.25

t-shape 90� (M = 472.06 ms, SD = 110.98)

< t-shape 180� t(16) = �0.100, p = 0.92
< t-shape 270� t(16) = �0.610, p = 0.55

t-shape 180� (M = 474.65 ms, SD = 140.97)

< t-shape 270� t(16) = �0.500, p = 0.62
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A.4 Reaction Times for Object Lift

These reaction times were measured from the release of the orange button until the

micro-switch in the object mount was triggered which happened when the object was

lifted. Significant reaction time differences are highlighted with a grey background.

Comparison t-Test Result

bar 0� (M = 710.15 ms, SD = 187.44)

> bar 90� t(16) = 1.410, p = 0.18
> bar 180� t(16) = 2.780, p = 0.01
> bar 270� t(16) = 4.490, p < 0.001
> concave 0� t(16) = 3.400, p = 0.004
> concave 90� t(16) = 3.400, p = 0.004
> concave 180� t(16) = 3.440, p = 0.003
> concave 270� t(16) = 3.930, p = 0.001
> irregular 0� t(16) = 1.290, p = 0.22
> irregular 90� t(16) = 2.300, p = 0.04
> irregular 180� t(16) = 1.620, p = 0.12
> irregular 270� t(16) = 0.830, p = 0.42
> pyramid 0� t(16) = 2.060, p = 0.06
> pyramid 90� t(16) = 2.330, p = 0.03
> pyramid 180� t(16) = 1.550, p = 0.14
> pyramid 270� t(16) = 1.120, p = 0.28
> trapezium 0� t(16) = 0.880, p = 0.39
> trapezium 90� t(16) = 3.660, p = 0.002
> trapezium 180� t(16) = 2.960, p = 0.009
> trapezium 270� t(16) = 4.580, p < 0.001
> t-shape 0� t(16) = 2.110, p = 0.05
> t-shape 90� t(16) = 3.270, p = 0.005
> t-shape 180� t(16) = 1.990, p = 0.06
> t-shape 270� t(16) = 1.920, p = 0.07

bar 90� (M = 681.00 ms, SD = 179.68)

> bar 180� t(16) = 3.310, p = 0.004
> bar 270� t(16) = 4.880, p < 0.001
> concave 0� t(16) = 4.640, p < 0.001
> concave 90� t(16) = 3.090, p = 0.007
> concave 180� t(16) = 4.500, p < 0.001
> concave 270� t(16) = 3.480, p = 0.003
< irregular 0� t(16) = �0.010, p = 0.99
> irregular 90� t(16) = 2.550, p = 0.02
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> irregular 180� t(16) = 0.900, p = 0.38
< irregular 270� t(16) = �0.360, p = 0.72
> pyramid 0� t(16) = 1.540, p = 0.14
> pyramid 90� t(16) = 1.930, p = 0.07
> pyramid 180� t(16) = 0.820, p = 0.42
< pyramid 270� t(16) = �0.040, p = 0.97
< trapezium 0� t(16) = �0.170, p = 0.87
> trapezium 90� t(16) = 3.240, p = 0.005
> trapezium 180� t(16) = 3.160, p = 0.006
> trapezium 270� t(16) = 5.570, p < 0.001
> t-shape 0� t(16) = 1.770, p = 0.10
> t-shape 90� t(16) = 3.760, p = 0.002
> t-shape 180� t(16) = 1.480, p = 0.16
> t-shape 270� t(16) = 0.860, p = 0.40

bar 180� (M = 629.47 ms, SD = 185.81)

> bar 270� t(16) = 1.200, p = 0.25
> concave 0� t(16) = 0.910, p = 0.38
> concave 90� t(16) = 1.220, p = 0.24
> concave 180� t(16) = 1.110, p = 0.28
> concave 270� t(16) = 0.070, p = 0.94
< irregular 0� t(16) = �2.600, p = 0.02
< irregular 90� t(16) = �0.350, p = 0.73
< irregular 180� t(16) = �1.620, p = 0.13
< irregular 270� t(16) = �2.620, p = 0.02
< pyramid 0� t(16) = �1.610, p = 0.13
< pyramid 90� t(16) = �0.610, p = 0.55
< pyramid 180� t(16) = �1.550, p = 0.14
< pyramid 270� t(16) = �2.300, p = 0.04
< trapezium 0� t(16) = �2.610, p = 0.02
> trapezium 90� t(16) = 0.320, p = 0.76
> trapezium 180� t(16) = 1.460, p = 0.16
> trapezium 270� t(16) = 3.140, p = 0.006
< t-shape 0� t(16) = �0.390, p = 0.70
> t-shape 90� t(16) = 1.080, p = 0.30
< t-shape 180� t(16) = �1.680, p = 0.11
< t-shape 270� t(16) = �1.520, p = 0.15

bar 270� (M = 604.91 ms, SD = 174.53)

< concave 0� t(16) = �0.410, p = 0.69
> concave 90� t(16) = 0.470, p = 0.64
< concave 180� t(16) = �0.490, p = 0.63
< concave 270� t(16) = �1.390, p = 0.18
< irregular 0� t(16) = �3.420, p = 0.004
< irregular 90� t(16) = �1.560, p = 0.14
< irregular 180� t(16) = �2.450, p = 0.03
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< irregular 270� t(16) = �3.950, p = 0.001
< pyramid 0� t(16) = �3.000, p = 0.009
< pyramid 90� t(16) = �1.510, p = 0.15
< pyramid 180� t(16) = �3.440, p = 0.003
< pyramid 270� t(16) = �4.190, p < 0.001
< trapezium 0� t(16) = �2.830, p = 0.01
< trapezium 90� t(16) = �0.640, p = 0.53
> trapezium 180� t(16) = 0.680, p = 0.51
> trapezium 270� t(16) = 2.440, p = 0.03
< t-shape 0� t(16) = �1.210, p = 0.25
< t-shape 90� t(16) = �0.230, p = 0.82
< t-shape 180� t(16) = �2.970, p = 0.009
< t-shape 270� t(16) = �2.730, p = 0.01

concave 0� (M = 614.38 ms, SD = 192.91)

> concave 90� t(16) = 0.850, p = 0.41
< concave 180� t(16) = �0.030, p = 0.98
< concave 270� t(16) = �0.630, p = 0.54
< irregular 0� t(16) = �2.660, p = 0.02
< irregular 90� t(16) = �1.080, p = 0.30
< irregular 180� t(16) = �2.050, p = 0.06
< irregular 270� t(16) = �3.230, p = 0.005
< pyramid 0� t(16) = �2.840, p = 0.01
< pyramid 90� t(16) = �1.310, p = 0.21
< pyramid 180� t(16) = �2.870, p = 0.01
< pyramid 270� t(16) = �3.050, p = 0.008
< trapezium 0� t(16) = �2.710, p = 0.02
< trapezium 90� t(16) = �0.370, p = 0.72
> trapezium 180� t(16) = 1.170, p = 0.26
> trapezium 270� t(16) = 3.010, p = 0.008
< t-shape 0� t(16) = �0.880, p = 0.39
> t-shape 90� t(16) = 0.250, p = 0.80
< t-shape 180� t(16) = �2.060, p = 0.06
< t-shape 270� t(16) = �2.340, p = 0.03

concave 90� (M = 588.97 ms, SD = 159.73)

< concave 180� t(16) = �0.830, p = 0.42
< concave 270� t(16) = �1.430, p = 0.17
< irregular 0� t(16) = �2.540, p = 0.02
< irregular 90� t(16) = �1.380, p = 0.19
< irregular 180� t(16) = �2.160, p = 0.05
< irregular 270� t(16) = �2.660, p = 0.02
< pyramid 0� t(16) = �2.080, p = 0.05
< pyramid 90� t(16) = �2.110, p = 0.05
< pyramid 180� t(16) = �1.930, p = 0.07
< pyramid 270� t(16) = �2.800, p = 0.01
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< trapezium 0� t(16) = �3.970, p = 0.001
< trapezium 90� t(16) = �1.070, p = 0.30
> trapezium 180� t(16) = 0.150, p = 0.89
> trapezium 270� t(16) = 2.000, p = 0.06
< t-shape 0� t(16) = �1.360, p = 0.19
< t-shape 90� t(16) = �0.700, p = 0.50
< t-shape 180� t(16) = �2.090, p = 0.05
< t-shape 270� t(16) = �2.860, p = 0.01

concave 180� (M = 614.76 ms, SD = 171.57)

< concave 270� t(16) = �0.640, p = 0.53
< irregular 0� t(16) = �3.360, p = 0.004
< irregular 90� t(16) = �1.060, p = 0.31
< irregular 180� t(16) = �2.580, p = 0.02
< irregular 270� t(16) = �3.290, p = 0.005
< pyramid 0� t(16) = �3.210, p = 0.005
< pyramid 90� t(16) = �1.370, p = 0.19
< pyramid 180� t(16) = �2.470, p = 0.03
< pyramid 270� t(16) = �3.240, p = 0.005
< trapezium 0� t(16) = �3.250, p = 0.005
< trapezium 90� t(16) = �0.360, p = 0.73
> trapezium 180� t(16) = 1.120, p = 0.28
> trapezium 270� t(16) = 3.080, p = 0.007
< t-shape 0� t(16) = �0.940, p = 0.36
> t-shape 90� t(16) = 0.270, p = 0.79
< t-shape 180� t(16) = �2.400, p = 0.03
< t-shape 270� t(16) = �2.270, p = 0.04

concave 270� (M = 627.97 ms, SD = 179.00)

< irregular 0� t(16) = �2.290, p = 0.04
< irregular 90� t(16) = �0.500, p = 0.62
< irregular 180� t(16) = �1.570, p = 0.13
< irregular 270� t(16) = �2.820, p = 0.01
< pyramid 0� t(16) = �1.770, p = 0.10
< pyramid 90� t(16) = �0.810, p = 0.43
< pyramid 180� t(16) = �1.510, p = 0.15
< pyramid 270� t(16) = �3.540, p = 0.003
< trapezium 0� t(16) = �3.060, p = 0.008
> trapezium 90� t(16) = 0.300, p = 0.77
> trapezium 180� t(16) = 1.260, p = 0.23
> trapezium 270� t(16) = 3.190, p = 0.006
< t-shape 0� t(16) = �0.380, p = 0.71
> t-shape 90� t(16) = 0.820, p = 0.43
< t-shape 180� t(16) = �1.740, p = 0.10
< t-shape 270� t(16) = �3.190, p = 0.006
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irregular 0� (M = 681.24 ms, SD = 185.13)

> irregular 90� t(16) = 1.450, p = 0.17
> irregular 180� t(16) = 1.040, p = 0.32
< irregular 270� t(16) = �0.260, p = 0.80
> pyramid 0� t(16) = 0.880, p = 0.39
> pyramid 90� t(16) = 1.560, p = 0.14
> pyramid 180� t(16) = 0.540, p = 0.60
< pyramid 270� t(16) = �0.020, p = 0.99
< trapezium 0� t(16) = �0.160, p = 0.88
> trapezium 90� t(16) = 2.530, p = 0.02
> trapezium 180� t(16) = 2.300, p = 0.04
> trapezium 270� t(16) = 3.960, p = 0.001
> t-shape 0� t(16) = 1.710, p = 0.11
> t-shape 90� t(16) = 2.950, p = 0.009
> t-shape 180� t(16) = 1.170, p = 0.26
> t-shape 270� t(16) = 0.570, p = 0.57

irregular 90� (M = 637.88 ms, SD = 203.88)

< irregular 180� t(16) = �1.070, p = 0.30
< irregular 270� t(16) = �2.730, p = 0.01
< pyramid 0� t(16) = �1.480, p = 0.16
< pyramid 90� t(16) = �0.270, p = 0.79
< pyramid 180� t(16) = �1.200, p = 0.25
< pyramid 270� t(16) = �2.600, p = 0.02
< trapezium 0� t(16) = �1.740, p = 0.10
> trapezium 90� t(16) = 0.680, p = 0.50
> trapezium 180� t(16) = 1.860, p = 0.08
> trapezium 270� t(16) = 3.260, p = 0.005
< t-shape 0� t(16) = �0.040, p = 0.97
> t-shape 90� t(16) = 1.430, p = 0.17
< t-shape 180� t(16) = �0.970, p = 0.35
< t-shape 270� t(16) = �1.230, p = 0.24

irregular 180� (M = 663.21 ms, SD = 193.16)

< irregular 270� t(16) = �0.900, p = 0.38
> pyramid 0� t(16) = 0.060, p = 0.95
> pyramid 90� t(16) = 1.030, p = 0.32
< pyramid 180� t(16) = �0.070, p = 0.94
< pyramid 270� t(16) = �0.910, p = 0.37
< trapezium 0� t(16) = �0.920, p = 0.37
> trapezium 90� t(16) = 2.160, p = 0.05
> trapezium 180� t(16) = 1.940, p = 0.07
> trapezium 270� t(16) = 4.210, p < 0.001
> t-shape 0� t(16) = 1.340, p = 0.20
> t-shape 90� t(16) = 2.020, p = 0.06
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> t-shape 180� t(16) = 0.190, p = 0.85
< t-shape 270� t(16) = �0.130, p = 0.90

irregular 270� (M = 688.26 ms, SD = 196.48)

> pyramid 0� t(16) = 1.370, p = 0.19
> pyramid 90� t(16) = 1.450, p = 0.17
> pyramid 180� t(16) = 1.000, p = 0.33
> pyramid 270� t(16) = 0.330, p = 0.74
> trapezium 0� t(16) = 0.130, p = 0.90
> trapezium 90� t(16) = 2.740, p = 0.01
> trapezium 180� t(16) = 3.610, p = 0.002
> trapezium 270� t(16) = 4.260, p < 0.001
> t-shape 0� t(16) = 1.470, p = 0.16
> t-shape 90� t(16) = 4.410, p < 0.001
> t-shape 180� t(16) = 1.240, p = 0.23
> t-shape 270� t(16) = 0.830, p = 0.42

pyramid 0� (M = 662.06 ms, SD = 177.59)

> pyramid 90� t(16) = 0.830, p = 0.42
< pyramid 180� t(16) = �0.180, p = 0.86
< pyramid 270� t(16) = �0.980, p = 0.34
< trapezium 0� t(16) = �0.860, p = 0.40
> trapezium 90� t(16) = 1.810, p = 0.09
> trapezium 180� t(16) = 2.560, p = 0.02
> trapezium 270� t(16) = 4.260, p < 0.001
> t-shape 0� t(16) = 0.800, p = 0.43
> t-shape 90� t(16) = 2.810, p = 0.01
> t-shape 180� t(16) = 0.140, p = 0.89
< t-shape 270� t(16) = �0.180, p = 0.86

pyramid 90� (M = 644.26 ms, SD = 186.92)

< pyramid 180� t(16) = �0.670, p = 0.51
< pyramid 270� t(16) = �1.530, p = 0.15
< trapezium 0� t(16) = �1.940, p = 0.07
> trapezium 90� t(16) = 1.030, p = 0.32
> trapezium 180� t(16) = 1.600, p = 0.13
> trapezium 270� t(16) = 3.930, p = 0.001
> t-shape 0� t(16) = 0.250, p = 0.80
> t-shape 90� t(16) = 1.360, p = 0.19
< t-shape 180� t(16) = �0.790, p = 0.44
< t-shape 270� t(16) = �0.950, p = 0.36

pyramid 180� (M = 665.29 ms, SD = 201.66)

< pyramid 270� t(16) = �0.650, p = 0.52
< trapezium 0� t(16) = �0.540, p = 0.60
> trapezium 90� t(16) = 1.400, p = 0.18
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> trapezium 180� t(16) = 3.300, p = 0.004
> trapezium 270� t(16) = 4.690, p < 0.001
> t-shape 0� t(16) = 0.750, p = 0.47
> t-shape 90� t(16) = 2.310, p = 0.03
> t-shape 180� t(16) = 0.230, p = 0.82
< t-shape 270� t(16) = �0.030, p = 0.98

pyramid 270� (M = 681.62 ms, SD = 206.20)

< trapezium 0� t(16) = �0.140, p = 0.89
> trapezium 90� t(16) = 3.220, p = 0.005
> trapezium 180� t(16) = 2.630, p = 0.02
> trapezium 270� t(16) = 4.470, p < 0.001
> t-shape 0� t(16) = 1.640, p = 0.12
> t-shape 90� t(16) = 3.170, p = 0.006
> t-shape 180� t(16) = 1.250, p = 0.23
> t-shape 270� t(16) = 1.020, p = 0.32

trapezium 0� (M = 684.76 ms, SD = 171.51)

> trapezium 90� t(16) = 3.510, p = 0.003
> trapezium 180� t(16) = 2.590, p = 0.02
> trapezium 270� t(16) = 4.510, p < 0.001
> t-shape 0� t(16) = 1.620, p = 0.13
> t-shape 90� t(16) = 3.410, p = 0.004
> t-shape 180� t(16) = 1.230, p = 0.24
> t-shape 270� t(16) = 0.930, p = 0.37

trapezium 90� (M = 622.35 ms, SD = 199.04)

> trapezium 180� t(16) = 1.010, p = 0.33
> trapezium 270� t(16) = 2.460, p = 0.03
< t-shape 0� t(16) = �0.670, p = 0.51
> t-shape 90� t(16) = 0.490, p = 0.63
< t-shape 180� t(16) = �1.780, p = 0.09
< t-shape 270� t(16) = �2.630, p = 0.02

trapezium 180� (M = 583.21 ms, SD = 194.02)

> trapezium 270� t(16) = 1.450, p = 0.17
< t-shape 0� t(16) = �1.220, p = 0.24
< t-shape 90� t(16) = �1.060, p = 0.31
< t-shape 180� t(16) = �2.140, p = 0.05
< t-shape 270� t(16) = �2.150, p = 0.05

trapezium 270� (M = 541.74 ms, SD = 159.33)

< t-shape 0� t(16) = �2.900, p = 0.01
< t-shape 90� t(16) = �2.350, p = 0.03
< t-shape 180� t(16) = �3.800, p = 0.002
< t-shape 270� t(16) = �4.590, p < 0.001
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t-shape 0� (M = 639.06 ms, SD = 219.17)

> t-shape 90� t(16) = 0.910, p = 0.37
< t-shape 180� t(16) = �0.920, p = 0.37
< t-shape 270� t(16) = �0.940, p = 0.36

t-shape 90� (M = 609.97 ms, SD = 170.81)

< t-shape 180� t(16) = �2.170, p = 0.05
< t-shape 270� t(16) = �2.080, p = 0.05

t-shape 180� (M = 659.21 ms, SD = 196.22)

< t-shape 270� t(16) = �0.320, p = 0.75
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B Simulation Parameters

B.1 Study 1

Parameter Value

Size of visual input 512� 512

Visual feature extraction (Gabor filter)

Bandwidth 2
θ 1.57
λ 3.00
γ 0.70
ψ 1.57
Activation of vertical filter 0.61

Hand network

ainh 3.3
aexp 0.4
ainp 13.0
s 1.0
m 80.0
τ 0.7
wf

[
4 2 3 3 2

]
Weight maps (Hand network)

Gauss function ∆ 0.5
Gauss function σ 0.5

Stop criteria

tmax 4.0
y-threshold t(F )

[
0.995 0.995 0.995 0.995 0.995

]
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B Simulation Parameters

B.2 Study 2a

Parameter Value

Size of visual input 512� 512

Visual feature extraction (Gabor filter)

Bandwidth 2
θ 1.57
λ 3.00
γ 0.70
ψ 1.57
Activation of vertical filter 0.61

Hand network

ainh 3.3
aexp 0.4
ainp 13.0
s 1.0
m 80.0
τ 0.7
wf

[
4 2 3 3 2

]
Weight maps (Hand network)

Gauss function ∆ 0.5
Gauss function σ 0.5

Grasp template network

atpl
inh 6.0
atpl

exp 0.002
stpl 0.3
mtpl 300.0
τ tpl 6.0
Initial template activation 0.5

Template maps (Grasp template network)

Gauss function ∆ 0.0
Gauss function σ 0.3

Stop criteria

tmax 4.0
ytpl-threshold ttpl 0.999
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B.3 Study 2b

Parameter Value

Size of visual input 1024� 1024

Visual feature extraction (Gabor filter)

Bandwidth 2
θ 1.57
λ 3.00
γ 0.70
ψ 1.57
Activation of vertical filter 0.61

Hand network

ainh 3.3
aexp 0.4
ainp 13.0
s 1.0
m 80.0
τ 0.7
wf

[
4 2 3 3 2

]
Weight maps (Hand network)

Gauss function ∆ 0.5
Gauss function σ 0.5

Grasp template network

atpl
inh 6.0
atpl

exp 0.002
stpl 0.3
mtpl 300.0
τ tpl 6.0
Initial template activation 0.5

Template maps (Grasp template network)

Gauss function ∆ 0.0
Gauss function σ 0.3

Stop criteria

tmax 4.0
ytpl-threshold ttpl 0.999
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B.4 Study 2c

Parameter Value

Size of visual input 1024� 1024

Visual feature extraction (Gabor filter)

Bandwidth 2
θ 1.57
λ 3.00
γ 0.70
ψ 1.57
Activation of vertical filter 0.61

Hand network

ainh 3.3
aexp 0.4
ainp 13.0
atpl 4.0
s 1.0
m 80.0
τ 0.7
wf

[
4 2 3 3 2

]
Weight maps (Hand network)

Gauss function ∆ 0.5
Gauss function σ 0.5
Scale factor 0.3

Grasp template network

atpl
inh 6.0
atpl

exp 0.002
stpl 0.3
mtpl 300.0
τ tpl 6.0
Initial activation of preferred template 0.7
Initial activation of non-preferred templates 0.3

Template maps (Grasp template network)

Gauss function ∆ 0.0
Gauss function σ 0.3
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Stop criteria

tmax 4.0
ytpl-threshold ttpl 0.999
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B Simulation Parameters

B.5 Study 3a

Parameter Value

Size of visual input (single object) 512� 512
Size of visual input (multiple objects) 1024� 1024

Visual feature extraction (Gabor filter)

Bandwidth 2
θ 1.57
λ 3.00
γ 0.70
ψ 1.57
Activation of vertical filter 0.61

Hand network

ainh 3.3
aexp 0.4
ainp 13.0
s 1.0
m 80.0
τ 0.7
wf

[
4 2 3 3 2

]
Weight maps (Hand network)

Gauss function ∆ 0.5
Gauss function σ 0.5

Grasp template network

atpl
inh 6.0
atpl

exp 0.002
stpl 0.3
mtpl 300.0
τ tpl 6.0
Initial template activation 0.5

Template maps (Grasp template network)

Gauss function ∆ 0.0
Gauss function σ 0.3

Stop criteria

tmax 4.0
ytpl-threshold ttpl 0.999
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B Simulation Parameters

B.6 Study 3b

Parameter Value

Size of visual input (single object) 512� 512
Size of visual input (multiple objects) 1024� 1024

Visual feature extraction (Gabor filter)

Bandwidth 2
θ 1.57
λ 3.00
γ 0.70
ψ 1.57
Activation of vertical filter 0.61

Hand network

ainh 3.3
aexp 0.4
ainp 13.0
atpl 4.0
s 1.0
m 80.0
τ 0.7
wf

[
4 2 3 3 2

]
Weight maps (Hand network)

Gauss function ∆ 0.5
Gauss function σ 0.5
Scale factor 0.3

Grasp template network

atpl
inh 6.0
atpl

exp 0.002
stpl 0.3
mtpl 300.0
τ tpl 6.0
Initial activation of preferred template 0.6
Initial activation of non-preferred templates 0.4

Template maps (Grasp template network)

Gauss function ∆ 0.0
Gauss function σ 0.3

Stop criteria

tmax 4.0
ytpl-threshold ttpl 0.999

199



B Simulation Parameters

200



References

Arbib, M. A., Iberall, T., & Lyons, D. M. (1985). Coordinated control programs for
movements of the hand. In A. W. Goodwin & I. Darian-Smith (Eds.), Hand
function and the neocortex (pp. 111–129). Berlin: Springer.

Bekkering, H., & Neggers, S. F. W. (2002). Visual search is modulated by action
intentions. Psychological Science, 13 (4), 370–374.

Bicchi, A. (1995). On the closure properties of robotic grasping. The International
Journal of Robotics Research, 14 (4), 319–334.

Bohg, J., & Kragic, D. (2010). Learning grasping points with shape context. Robotics
and Autonomous Systems , 58 (4), 362–377.

Borghi, A. M., Bonfiglioli, C., Lugli, L., Ricciardelli, P., Rubichi, S., & Nicoletti, R.
(2007). Are visual stimuli sufficient to evoke motor information? studies with
hand primes. Neuroscience Letters , 411 (1), 17–21.

Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology ,
15 (2), 181–195.

Cisek, P. (2007). Cortical mechanisms of action selection: the affordance competition
hypothesis. Philosophical Transactions of the Royal Society B: Biological
Sciences , 362 (1485), 1585–1599.

Cisek, P. (2008). The affordance competition hypothesis. In R. L. Klatzky,
B. MacWhinney, & M. Behrmann (Eds.), Embodiment, ego-space, and action
(pp. 203–246). Psychology Press.

Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal
premotor cortex: specification of multiple direction choices and final selection of
action. Neuron, 45 , 801–814.

Craighero, L., Fadiga, L., Umilta, C. A., & Rizzolatti, G. (1996). Evidence for
visuomotor priming effect. NeuroReport , 8 (1), 347–349.
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