A family of biaffine geometries and their resulting amalgams

McInroy, Justin Fergus (2011). A family of biaffine geometries and their resulting amalgams. University of Birmingham. Ph.D.

[img]
Preview
McInroy11PhD.pdf
PDF

Download (798kB)

Abstract

Let \(\Pi\) be a thick polar space of rank \(n\) at least three. Pick a hyperplane \(F\) of \(\Pi\) and \(H\) of \(\Pi\)\(^{\ast}\). Define the elements of a biaffine polar space \(\Gamma\) to be those elements of \(\Pi\) which are not contained in \(F\), or dually in \(H\). We show that \(\Gamma\) is a non empty geometry which is simply connected, except for a few small exceptions for \(\Pi\). We give two pairs of examples with ag-transitive groups, which lead to amalgam results for recognising either one of \(q\)\(^6\) : \(SU\)\(_3\)\((q)\) or \(G\)\(_2\)\((q)\), or one of \(q\)\(^7\) : \(G\)\(_2\)\((q)\) or \(Spin\)\(^7\)\((q)\). Also, we give details of a computer program to calculate the fundamental group of a given geometry.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Shpectorov, SergeyUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Mathematics
Funders: Engineering and Physical Sciences Research Council
Subjects: Q Science > QA Mathematics
URI: http://etheses.bham.ac.uk/id/eprint/1626

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year