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ABSTRACT 

 

Mass spectrometry-based metabolomics aims to study endogenous, low molecular weight 

metabolites and can be used to examine a variety of biological systems. To substantially 

increase the accuracy of metabolite identification and increase coverage of the 

metabolome detected by high-resolution (HR) mass spectrometry I developed, optimised 

and/or employed several analytical and bioinformatics methods. Biological samples 

contain thousands of metabolites that are related through specific substrate-product 

transformations. This prior biological knowledge together with a mass error surface, 

which represents the mass accuracy of peak differences within mass spectra, were 

employed to significantly reduce the false positive rate of metabolite identification. To 

maximise the sensitivity of the Thermo LTQ FT Ultra mass spectrometer, the existing 

direct-infusion SIM-stitching acquisition parameters (Southam et al., 2007) were re-

optimised, yielding a ca. 3-fold increase in sensitivity. Finally, relative isotopic 

abundance measurements (RIA) using HR direct-infusion MS were characterised on the 

two most popular Fourier transform MS instruments (FT-ICR and Oribitrap) using the re-

optimised SIM-stitching acquisition parameters. Several novel observations regarding 

RIA measurements were reported. Utilising these RIA characterisations within a putative 

metabolite identification pipeline increased the number of single true empirical formula 

assignments compared to using accurate mass alone. To conclude, analytical and 

bioinformatics methods developed in this thesis have successfully facilitated the putative 

identification of hundreds of metabolites in several metabolomics studies.
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CHAPTER ONE: 

INTRODUCTION1 

1  

                                                

1 Parts of this chapter, including Figure 1.2 - 1.4, are in preparation to be published in Methods in 

Molecular Biology Series by Cambridge University Press (Weber & Viant, 2010a). 
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1.1 Overview 

Biology has become an increasingly data-rich subject. The accumulating amount of 

biological data harvested using high-throughput “omics” technologies (e.g. genomics, 

proteomics, transcriptomics and metabolomics) has necessitated the development of new 

and improved analytical and bioinformatics methods (Romero et al., 2006). 

Metabolomics, one of the newest “omics” sciences, can be defined as the study of 

endogenous, low molecular weight molecules or metabolites and can be used to examine 

a variety of biological systems, from single cells to tissues, organs, or even whole 

organisms (Fiehn, 2002; Oliver et al., 1998). Mass spectrometry (MS) has proven to be 

an indispensable analytical tool to measure and study metabolites (Junot et al., 2010; 

Villas-Bôas et al., 2005). Here I present several novel and improved analytical and 

bioinformatics methods to collect and annotate high-throughput high-resolution (HR) MS 

data. 

This introduction is divided into eight sections describing various aspects of the field of 

metabolomics and the research subsequently presented within this thesis. First, Section 

1.2 provides a general overview of metabolomics, related research fields and 

applications. Metabolomics uses non-targeted and targeted strategies to study the whole 

or specific parts of the metabolome (i.e. complete collection of metabolites); both 

approaches are described in Section 1.3. These approaches require a variety of platforms, 

techniques and methodologies, from which the advantages and disadvantages of the most 

popular analytical platforms (i.e. nuclear magnetic resonance (NMR) spectroscopy and 

MS) are detailed in Sections 1.4 and 1.5. In addition Section 1.6 highlights HR (direct 

infusion (DI)) FTMS, the focus of this thesis, as being one of the most appropriate 
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platforms for sensitive, accurate and high-throughput analysis of metabolites. Section 1.7 

describes and explains the principles of the most standard processing steps that are 

required to convert raw spectral data into accurate and precise HR Fourier transform (FT) 

mass spectra. The interpretation of these HR FT mass spectra is essential to study 

biological systems and to yield new biological knowledge. An overview of challenges, 

including examples, that are involved in the interpretation and annotation of high 

resolution mass spectra of biological origin are described in Section 1.8. Finally, the 

introduction concludes with the objectives of the research presented here. 

 

1.2 Systems biology and Metabolomics 

“The whole is greater than the sum of its parts” is one of Aristotle’s (384-322 BC, 

Metaphysica) famous quotes. From a biology perspective it describes the principle that an 

entire biological system determines the behaviour of its separate components. This is now 

considered as the central dogma in multidimensional or systems biology (Kitano, 2002). 

The emergence of studying entire biological systems has been encouraged by the 

different “omics” tools (e.g. genomics, transcriptomics, proteomics and metabolomics) 

and the vast amount of associated high-throughput data (Romero et al., 2006). Building 

comprehensive biological models/systems that take functional networks (e.g. cellular 

metabolism, signaling and gene expression) into account is a demanding challenge. This 

is mainly caused by the complexity of biological processes, which are not static and 

homogeneous in space, and therefore require dynamic and spatially resolved data 

regarding the cell types and environmental conditions.  
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Three different strategies are typically applied to reconstruct and study biological 

systems: (i) top-down (Brenner et al., 2001; Bruggeman & Westerhoff, 2007), (ii) 

bottom-up  (Brenner et al., 2001; Bruggeman & Westerhoff, 2007) and (iii) middle-out 

(Brenner et al., 2001). (i) The top-down approach identifies molecular interaction 

networks on the basis of correlated molecular behaviour between components of the 

entire system based on genome-wide "omics" data. The entire system is decomposed in a 

levelled manner, whereby each level or component, closer to the “bottom” of the system, 

provides more details until the most primitive level is reached. An iterative process is 

applied to measure correlations between these different levels or components, which 

potentially result in the discovery of new and essential links between molecular 

components that play a role in the behaviour of the system. This iterative process 

includes perturbation of the system, collection of high-throughput experimental data, 

analysis of experimental data, hypothesis testing and data integration. Whilst the top-

down approach gives insights by decomposing the system from the top level, (ii) the 

bottom-up approach starts from the bottom and characterises the interactive behaviour 

(e.g. enzyme kinetics) of each subsystem or base element. These experimentally derived 

characterisations are eventually combined together to predict behaviour of the entire 

(sub)system. (iii) The middle-out approaches involve system reconstruction based on a 

level for which there is a good understanding of the experimental data and molecular 

processes. This level is then used to improve the understanding of the total system by 

linking this to knowledge and experimental data of higher and lower levels of the system. 

Several studies that utilise one or a combination of the three strategies described above 

have been successfully carried out in the last few years (Kell, 2004), including 
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reconstruction of metabolic networks (Förster et al., 2003; Goelzer et al., 2008; Herrgård 

et al., 2008), deterministic (Srivastava et al., 2002; Twycross et al., 2010), stochastic 

(Srivastava et al., 2002; Twycross et al., 2010; Wilkinson, 2009) and constraint-based 

modeling (Mahadevan et al., 2006; Sun et al., 2009) and metabolic flux analysis 

(Kohlstedt et al., 2010; Zamboni & Sauer, 2009). 

Metabolomics (also referred to as metabonomics (Nicholson et al., 1999)) (Fiehn, 2002), 

now a well-established scientific field, contributes to systems biology by providing an 

additional dimension of biological data. It enables the state of a biological system to be 

measured at a particular time within a certain environmental context which therefore 

reflects phenotypic changes (Brown et al., 2005; Fiehn, 2002). More precisely, these 

metabolic snapshots represent quantitative and qualitative measurements of the 

intermediates and products of enzymatic reactions, i.e. metabolites, which are represented 

by lipids, amino acids, carbohydrates, hormones etc., providing more insights into 

upstream gene and protein activity (Griffin & Shockcor, 2004). Metabolites can be 

defined as endogenous or exogenous; where biologically catabolised metabolites in the 

cell or organism are defined as endogenous and the latter as metabolites that are 

consumed by organisms, such as food nutrients and pharmaceuticals (Dunn, 2008). The 

overall sizes of metabolic snapshots or metabolomes remain somewhat unknown. Several 

estimates have been proposed, ranging from many hundred metabolites in yeast 

(Herrgård et al., 2008), several thousand in humans (Wishart et al., 2009) up to a several 

hundred thousand in plants (Fiehn, 2002). 

The concept of studying metabolite levels or metabolic profiles in biological systems has 

been around for several decades. Although the term “metabolomics” and “metabolome” 
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were not used (Oliver et al., 1998) until the late 1990s, the first studies regarding 

metabolic profiles were presented in the early 1970s (Horning & Horning, 1971; Pauling 

et al., 1971). However, interest in the field has increased exponentially in the last ten 

years and since both terms were accepted by the biosciences community the number of 

publications per year, indexed by Web of Knowledge using the keywords “metabolomics 

or metabonomics” has increased from tens in 2002, through a few hundered in 2005, up 

to more than a thousand in 2010 (Figure 1.1) (Griffiths et al., 2010). This increased 

popularity has arisen from the success of various “omics” methodologies/techniques and 

the realisation of the power of metabolomics to characterise phenotypes at the molecular 

level. 

As mentioned previously, metabolomics is a key-player in systems biology. It has been 

applied concurrently in a growing number of fields including drug development (Wishart, 

2008a); human health (Watkins & German, 2002); disease diagnosis (Ellis et al., 2007; 

Kaddurah-Daouk et al., 2008); environmental science and toxicology (Aliferis & 

Chrysayi-Tokousbalides, 2010; Bundy et al., 2009); and nutrition and food science (Astle 

et al., 2007; Wishart, 2008b). 

In general the aim of all fields in relation to metabolomics is to characterise biological 

indicators (i.e. biomarkers) or profiles that are involved in general biological and 

pathogenic processes, or pharmacologic responses to drugs treatments. These can then be 

used to define molecular mechanisms and, monitor organisms or environmental systems. 

Numerous applications have been reported that show the benefit of metabolomics to 

characterise biomarkers and study molecular mechanisms in microbial (Bradley et al., 
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2009), plant (Tarpley et al., 2005), environmental (Taylor et al., 2010; Taylor et al., 

2009) and mammalian (Lewis et al., 2008) systems. 
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Figure 1.1 Number of publications in each year indexed by Web of Knowledge using the keywords 

“metabolomics or metabonomics” during the period 1999 - 2010.
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1.3 Overview of metabolomics strategies 

Metabolomics strategies attempt to achieve the precise and accurate quantification and 

identification of all metabolites, also referred to as non-target analysis (Dunn et al., 

2005). Unfortunately, this unbiased strategy is limited by the sensitivity and specificity of 

available analytical techniques and data processing methods which, so far, result in 

incomplete coverage of the metabolome. Furthermore, the number of available 

bioinformatics tools and databases for metabolite identification is small and incomplete 

(Aliferis & Chrysayi-Tokousbalides, 2010; Brown et al., 2009), which results in 

measurements of signal that are unknown. The work presented in this thesis describes 

novel and improved methods for metabolite identification (in HR FT mass spectra) and 

therefore contributes to this non-targeted approach.  

Nevertheless, a more global non-targeted approach has been widely used in 

metabolomics to overcome the challenge of annotating all observed signals, called 

metabolic fingerprinting (Dunn et al., 2005; Ellis et al., 2007). This less comprehensive 

but often high throughput analysis uses signal profiles of spectra to screen, examine and 

compare samples of different biological status or origin. These non-target signal profiles 

represent multivariate data (i.e. m/z and associated intensities) and so metabolic 

fingerprinting analyses typically necessitate unsupervised and supervised multivariate 

statistical methods (Boccard et al., 2010). Principal components analysis (PCA), an 

unbiased multivariate statistical method that reduces the dimensionality of a data while 

retaining most of the variation, is often used to assess similarities and differences 

between MS samples (i.e. phenotypes) and determine whether samples can be grouped 
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(Ringner, 2008). Partial least squares discriminant analysis (PLS-DA) and Partial least 

squares regression (PLSR) are examples of supervised multivariate statistical methods, 

and used for the classification of samples and regression analysis, respectively (Boccard 

et al., 2010). Cross-validation and permutation testing are typically included in such 

supervised statistical analysis (or models) to avoid over-fitting of the data. Although 

metabolomics is by nature multivariate, it is possible to utilise univariate analyses, such 

as analysis of variance (ANOVA) and t-test. A false discovery type correction is required 

to avoid incorrect significance level calculations for this type of multiple comparison 

analysis which involves large datasets (Benjamini & Hochberg, 1995). 

Targeted metabolite analysis involves identification and quantification of limited 

preselected compounds (i.e. part of a predefined group of compounds (e.g. lipids) or 

specific chosen metabolic pathway) (Griffiths et al., 2010). There are several platforms 

and techniques that suit targeted analysis, such as liquid chromatography (LC) MS and 

tandem MS (MS/MS) (see next section for more details). The last non-targeted approach 

to mention is the global measurement of extracellular metabolites (e.g. in cell culture 

media) called metabolic footprinting and is similar to metabolic fingerprinting (Mapelli et 

al., 2008).  

 

1.4 Analytical platforms to perform metabolomics  

A variety of platforms using different analytical methodologies have been developed in 

order to cover the requirements of the different metabolomics strategies (see Section 1.3). 

An ideal platform to measure metabolite levels can be described as follows (Lenz & 

Wilson, 2007): able to perform direct sample analysis, i.e. without the need for sample 
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preparation; high-throughput; unbiased with respect to metabolite class; both highly and 

equally sensitive to all compounds in the sample; robust and reproducible with a wide 

dynamic range; and all these criteria should be combined with enough information to 

allow the identification of key metabolites. Currently, none of the available platforms can 

supply all of these properties, which results in a trade-off between technologies and 

objectives (see Figure 1.2). 

Currently, NMR and MS are the most common analytical techniques used to measure 

metabolite levels (Dunn et al., 2005; Junot et al., 2010; Viant et al., 2003; Weljie et al., 

2006). Whilst NMR is known as a robust, reproducible and quantitative technique (Keun 

et al., 2002; Lewis et al., 2007; Weljie et al., 2006), widely accepted as a successful 

platform in metabolomics, MS-based metabolomics is gaining popularity since it 

provides significantly greater sensitivity (Dettmer et al., 2007). Nevertheless, MS does 

suffer from higher analytical variation, and is considered to be less quantitative in 

comparison to NMR. 
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Figure 1.2 The trade-off between analytical platforms (underlined) and some of the objectives of 

metabolomics analysis, adapted from Dunn et al. (2005). DI-MS - direct infusion mass spectrometry;  

NMR – nuclear magnetic resonance spectroscopy; LC-MS - Liquid chromatography-mass spectrometry; 

GC-MS – gas- chromatography mass spectrometry; MS/MS – tandem mass spectrometry. 
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Briefly, NMR uses a magnetic field to spin active nuclei (e.g. 1H, 13C, 31P and 15N). Their 

nuclear energy states become quantised when this take place. Transitions from low to 

high energy states may be induced by the absorption of energy in the form of incident 

electromagnetic radiation. When a photon of the correct energy strikes such a nucleus, 

the resonance condition is met and a transition is induced. Different nuclei within the 

same molecule may experience different magnetic field strengths due to differences in the 

local electronic environment. This results in differences in their resonant frequencies and 

is referred to as the chemical shift (Williams & Fleming., 1995). In pulsed-Fourier 

transform NMR (FT-NMR) (Williams & Fleming., 1995), many frequencies are excited 

at once through the application of a short and intense burst of radio frequency radiation. 

Following this initial excitation, the nuclei slowly return to their low energy states, 

emitting the previously absorbed energy. This release of energy is measured as a time 

domain free induction decay (FID) emission signal (Williams & Fleming., 1995). This 

time domain signal is converted into a frequency domain NMR spectrum through Fourier 

transformation, which deconstructs the waveform into the individual frequencies of the 

nuclei in the sample. To date 1H NMR is the most common NMR technique used in 

metabolomics. This is for two reasons: (i) 1H nuclei are present in almost all metabolites 

making this approach non-biased and; (ii) 1H nuclei have the highest relative sensitivity 

of all naturally occurring spin-active nuclei, leading to the highest signal intensity. A 

typical 1H NMR spectrum presents a profile of peaks where each peak corresponds to a 

hydrogen nucleus in a particular chemical functional group of a particular metabolite. 

The intensity of each peak reflects the abundance of the type of hydrogen atom giving 

rise to it. As previously mentioned, a metabolite with multiple functional groups 
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containing 1H nuclei will exhibit a series of peaks in the NMR spectrum. Spectra can 

increase in complexity when a mixure of metabolites is measured (e.g. real biological 

sample) and therefore prior metabolite structural knowledge (reference databases) can 

help to identify signals from within the NMR spectrum that presents a mixture of 

metabolites. 

MS is introduced in more detail below as it has been used throughout the present work. 

Although the field of metabolomics provides several successful approaches to analyse 

metabolites, it suffers from a lack of direct comparability and integration as data is 

measured by multiple platforms with different protocols. 

 

1.5 Mass spectrometry 

MS involves the ionisation of neutral compounds (M) from within a sample, which are 

then accelerated into the mass analyser, separated according to their mass to charge ratio 

(m/z) and detected to produce a mass spectrum (intensity versus m/z). To achieve this, 

MS instruments consist of three components (Figure 1.3): (i) ion source, (ii) mass 

analyser and (iii) detector. Additionally, a computer system is required to control the 

mass spectrometer and, process and store the data that is collected. 
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Figure 1.3 Schematic block diagram of a typical mass spectrometer operation, adapted from (Dunn, 2008). 

Samples are introduced via an inlet system to an ion source were positively or negatively charged ions are 

created. Ions are subsequently separated according to their m/z ratio in the mass analyser prior to detection 

either physically at a detector or as an image current of ion orbital frequencies. A computer system is used 

to control all instrument parameters and, process and store collected data. 
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Prior to ionisation, several separation techniques such as gas chromatography (GC) 

(Dunn, 2008), liquid chromatography (LC) (Dunn, 2008) and capillary electrophoresis 

(CE) (Monton & Soga, 2007) are often used to reduce ionisation suppression (Annesley, 

2003) and improve quantification and identification (Dunn et al., 2005; Griffiths et al., 

2010; Villas-Bôas et al., 2005). Separation techniques transform a mixture of compounds 

into distinct groups that differ by chemical and physical properties. Separation is 

typically presented as retention time, i.e. the time before a compound elutes from the 

chromatograph to enter the (i) ion source.  

Only compounds that are sufficiently volatile and thermally stable are suitable for GC 

separation (Bedair & Sumner, 2008; Dunn, 2008). Therefore sample preparation is often 

required, prior to GC, to make metabolites, such as sugars and amino acids, volatile and 

thermally stable. It is likely that this type of sample preparation introduces variability in 

the data. GC separates the mixture of compounds, after the solution vaporises, regarding 

their relative interaction with the coating of the separation column and the carrier gas 

(e.g. helium), respectively named stationary phase and mobile phase (Dunn, 2008). 

Although, GC is one of the widely accepted separation techniques in mass spectrometry, 

LC, including high performance (HP)LC (Wilson et al., 2005), is increasingly more 

popular. A mixture dissolved in the mobile phase (e.g. water, acetonitrile, methanol and 

ethanol) enters a column under high pressure and separation of the compounds occurs 

based on the structure of the compounds and the specifications of the column (e.g. 

stationary phase, dimension size, pore size, column dimension) (Dunn, 2008; Pitt, 2009). 

Also, here the retention time is measured, which in this case is dependent on the pressure 

used, the nature of the stationary phase, solvent composition and column temperature. CE 



17 

is a separation technique that is less often used in MS-based metabolomics. However, 

several successful applications have been presented recently (Ramautar et al., 2011). This 

technique separates compounds based on charge and size (Ramautar et al., 2011; Villas-

Bôas et al., 2005). The benefits of separation techniques are at the expense of longer 

analysis time, making this less cost effective particularly in terms of high-throughput MS.  

GC and LC, most commonly used in mass spectrometry-based metabolomics, are 

typically followed by different types of ion sources as both techniques require different 

environments to ionise compounds prior to detection (Dunn, 2008). GC is typically 

followed by electron ionisation (EI) or chemical ionisation (CI) to ionise compounds in a 

gas-phase environment. In short, EI uses electron beams to cause ionisation by electron 

ejection from the analyte or by analyte decomposition. Alternatively CI uses a reagent 

gas (e.g. ionised methane using EI) and high pressure conditions to transfer a proton from 

the reagent to the analyte. Electrospray ionisation (ESI) and atmospheric-pressure 

chemical ionisation (APCI) are the most common ionisation techniques applied to ionise 

compounds after LC analysis prior to detection. APCI is similar in principal to CI, but 

allows the ionisation of liquid samples as the sample is heated and vaporised before 

ionisation (Dunn, 2008). Finally, matrix-assisted laser desorption/ionization (MALDI) 

can be used with LC, and is often coupled with a time-of-flight TOF MS instruments 

(Macha & Limbach, 2002). MALDI is based on the bombardment of compounds with a 

laser light to initiation ionisation. The sample is mixed with a matrix solution and applied 

to a sample support/plate, and then dried to form a crystallised surface (Macha & 

Limbach, 2002). The matrix transforms the energy of the laser light into excitation 

energy for the sample, which leads to the formation of ions on the surface (Macha & 
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Limbach, 2002). Ionisation techniques, as mentioned above, are mainly divisible into two 

types: soft ionisation, which keeps the majority of compounds intact during ionisation 

(e.g. ESI and MALDI) and hard ionisation techniques that produce ions and/or fragments 

(e.g. EI, CI and APCI). 

ESI without prior separation techniques, which allows high-throughput MS, has been 

used throughout the work presented here (Villas-Bôas et al., 2005). As mentioned 

previously, DI ESI suffers from ionisation suppression. Ionisation suppression (i.e. 

compounds that compete to ionise) is highly dependent on the structures of the 

compounds in the sample undergoing ionisation (Annesley, 2003). For example, 

compounds with a greater proton affinity may cause ionisation suppression of less polar 

compounds, which affects the amount of ions of each type of compound that reaches the 

detector (Annesley, 2003). Other components, such as salts, buffers and other additives, 

may also influence this process (Annesley, 2003). Several analytical techniques different 

from separation techniques have been presented to minimise this, such as optimised 

sample preparation (Buhrman et al., 1996) and improved ESI techniques (e.g. nano-ESI) 

(Annesley, 2003; Hop et al., 2005). ESI uses electrical energy to transfer positive or 

negative ions (charged molecules) from the sample into the gas-phase prior to MS 

analysis. Aside from the existing ions in solution several other ion products may be 

formed. Several phenomena occur during ionisation including fragmentation, 

evaporation, collisions and ionic interactions (Bruins, 1998). Although, the exact process 

of ionisation is somewhat unclear it involves three main steps (Bruins, 1998). First, a 

spray comprising of charged droplets is formed, by creating potential difference between 

a needle and a capillary in a nebulising gas (e.g. nitrogen) environment. Secondly, 
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charged droplets or ions (charge residue model or the ion evaporation method (Kebarle, 

2000)) undergo evaporation which results in smaller ion clouds or separated ions. Finally, 

the highly charged ion clouds and single ions enter the instrument (capillary) and 

evaporate further where possible. As with most other ionisation techniques, this 

ionisation process is highly dependent on the structure of the compound(s) and the 

composition of the sample. Ideally, both ionisation modes (i.e. positive and negative) 

should be used to maximise metabolome coverage. Ions occurring within the sample or 

formed during ionisation comprise of the following molecule structures: 

- Molecular ion – i.e. [M]±; 

- (de-)protonated ion – i.e. [M ± H]±; 

- Adducts – e.g. [M + Na]+, [M + K]+, [M + Cl]- and [M + CHCOO]- ; 

- Fragments - the neutral structure may fragment into multiple smaller molecules 

which subsequently ionise in the aforementioned ways. 

 

Once the compounds are ionised a (ii) mass analyser is used to determine the m/z values 

of all gas-phase ions. A variety of MS analysers have been employed in the field of 

metabolomics, including TOF MS (Kind et al., 2009; Timischl et al., 2008), quadrupole 

mass filters/ion traps (Kind et al., 2009; Koulman et al., 2007; March, 1997), ion 

cyclotron resonance (ICR) MS (Marshall et al., 1998) and Orbitrap (Hu et al., 2005).  

To improve control and performance (e.g. sensitivity, selectively filtering ions of a 

particular m/z value or region and fragmentation) of MS metabolomics analysis several 

combinations of MS analysers have been employed, including triple-quadrupole MS 

(QqQ – two quadrupole mass analysers separated by a quadrupole collision cell (Stolker 
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et al., 2004)) and a linear ion trap with either an FT-ICR analyser or an Orbitrap analyser 

(Kiefer et al., 2008; Taylor et al., 2009).  

Time-of-flight MS works on the principle that ions of different m/z with the same kinetic 

energy travel at different speeds (i.e. the lower the mass the higher the speed) (Brown & 

Lennon, 1995). During TOF analysis, ions are accelerated using an electric field and the 

time taken for them to reach a (iii) detector in a field-free region is measured, which is 

directly proportional to their m/z (Brown & Lennon, 1995). 

The quadrupole mass analyzer acts as an ion filter and is similar to the quadrupole ion 

trap (March, 1997). The quadrupole ion trap is designed to pass the ions rather than 

collect the ions. The filtering of the quadrupole mass analyser involves the passage of a 

beam of ions through the centre of four parallel rods into a detector system (March, 

1997). Radio frequency (RF) voltages are applied to the rods, causing certain ions to 

repel from the quadrupole and therefore only the ions that are not repelled will continue 

their stable trajectory to detector system. 

The quadrupole ion trap can be used on the front end of HR FT mass spectrometers (e.g. 

FT-ICR and Orbitrap), allowing accumulation of certain ions before their passage to the 

detector cell (Douglas et al., 2005; Hager, 2002). It uses specific RF waveforms to the 

electrode to create a 2D or 3D field to trap ions (Douglas et al., 2005; Hager, 2002). The 

3D ion trap utilises a circular electrode with two ellipsoid caps on the top and bottom to 

create a 3D field (Douglas et al., 2005). The linear trap consists of four parallel electrodes 

evenly spaced to create a cylindrical ion trapping region with open ends (Hager, 2002). 

The small size and enclosed shape of 3D traps makes ion trapping relatively inefficient in 

comparison to the linear ion trap. The process of the linear ion trap involves the 
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transmission of beams of ions through the centre of four parallel rods. Specific RF 

voltages are applied to the rods, whilst static DC potentials are applied to block the ends 

of the trap. All ions stored in the trapping field are ejected together for detection. 

HR FTMS, a type of MS that uses electrostatic and/or magnetic forces to detect 

metabolites, is introduced in more detail below (section 1.6) as it has been used 

throughout the present work. HR FT mass spectrometers are usually combined with a 

linear ion trap to filter and accumulate ions prior to detection.  

 

1.6 HR FTMS 

HR FTMS has been accepted as the most advanced type of mass spectrometry to measure 

charged molecules or ions, represented by FT-ICR MS (Marshall et al., 1998) and 

Orbitrap technologies (Hu et al., 2005). HR FTMS instruments are usually equipped with 

an ionisation source and linear ion trap to ionise the sample and regulate the number of 

ions that enter the ICR cell for ion detection (Section 1.5). In addition, the linear ion trap 

is often used to select certain ions of interest for further and more extensive analysis (e.g. 

fragmentation analysis, such as tandem and multiple-stage tandem mass spectrometry 

(MSn)) (Wang et al., 2000). Regulating the number of ions that enter the ICR cell for ion 

detection is important to maximise sensitivity while maintaining high mass accuracy 

(Senko et al., 1997; Soule et al., 2010; Southam et al., 2007). The linear ion trap uses a 

control loop, named automatic gain control (AGC), to maintain the ion injection time to 

collect a predefined number of ions set by the user (i.e. AGC target) for each scan. 

FT-ICR MS uses a magnetic field, up to 14.5 T, and electrostatic forces to trap ions in the 

ICR detector cell. The trapped ions, which undergo cyclotron motion, are not detectable 
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at this stage. The radius of the cyclotron motion is too small and the motion of the ions is 

not in phase. Therefore RF forces are applied to the field to increase the cyclotron radius 

of the ions and to let them move coherently in phase (i.e. low m/z ions having a higher 

cyclotron frequency than high m/z ions and ions of the same m/z have the same cyclotron 

frequency) (Hu et al., 2005). The net charge of packages of ions that pass close to two 

electrode detector plates (opposite each other) is recorded as a function of time (i.e. free 

induction decay (FID)). Fourier transform is finally used to deconvolute the signals into 

their constituent frequencies, which can then be converted into m/z since ion frequency is 

directly proportional to m/z. 

The Orbitrap utilises a detector cell comprising an outer “barrel-shaped” electrode and a 

central spindle electrode. Electrostatic forces are applied to the spindles, which traps the 

ions in the detector cell and causes them to orbit around and oscillate along the central 

spindle (Hu et al., 2005). Similarly to the FT-ICR, the ion oscillation is recorded by 

detector plates, which is then converted to m/z. 

The detection systems used by the FT-ICR and Orbitrap analysers allow higher mass 

accuracy and resolution compared to more traditional TOF MS and quadrupole mass 

analysers. Unlike the Orbitrap, the FT-ICR possesses a super-conducting magnet, which 

makes the system physically bigger and more expensive with higher running costs than 

the Orbitrap. However, FT-ICR MS has the highest mass accuracy (i.e. ≤1 parts per 

million (ppm)) and resolution (i.e. ≤ 1,000 K, full width at half maximum (FWHM)) of 

all commercially available mass spectrometers. 

Analytical methods which improve the performance of mass spectrometers, such as 

sensitivity and mass accuracy, are essential to maximise the detection of the metabolome 
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and assist in metabolite identification. Therefore, Southam et al. (2007) have published a 

spectral stitching strategy which collects a series of adjacent selected ion monitoring 

(SIM) windows using DI ESI FT-ICR MS, increasing the sensitivity and dynamic range 

of the analysis while maintaining high mass accuracy. For example, consider a low 

abundance ion, X. If a wide scan range (containing X) is used, only a relatively small 

number of X ions will be present (assuming the total number of ions is fixed by the 

automatic gain control (AGC), yielding a low signal-to-noise ratio (SNR). However, for a 

narrow scan range, X has a much higher relative abundance and this increases the SNR. 

Concurrently, space-charge effects are kept constant throughout, so mass accuracy is not 

reduced (Southam et al., 2007). To yield a single mass spectrum, these SIM windows are 

aligned and then “stitched” together. The more recent Thermo Scientific LTQ FT Ultra 

has a larger trap volume in its ICR detector cell compared to previous systems, which 

allows a larger radius of ion cyclotron motion and considerably reduces space-charge 

effects meaning it is possible to increase sensitivity without compromising mass 

accuracy. Therefore, a re-optimisation of the SIM-stitching acquisition parameters was 

carried out as part of the present work (see Chapter 4). 
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Figure 1.4 Schematic representation of the workflow for (1) collection, (2) processing and (3) 

identification of signals in HR FT mass spectra.  
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1.7 Data handling of HR FT mass spectrometry data 

Raw data recorded using HR FTMS consists of multiple pre-processed files and 

associated transient (i.e. time-domain) files. Each pre-processed file, usually produced by 

a commercial mass spectrometer, corresponds to a specific sample and includes detailed 

information regarding the MS experiment that has been performed (e.g. acquisition 

parameters, external calibration and mass spectral data). Several commercial, e.g. 

Xcalibur (Thermo Scientific), and open-source software packages, e.g. MZmine 2 

(Pluskal et al., 2010), XCMS (Smith et al., 2006) and Midas (Freitas et al., 2003), are 

available to the user to process the pre-processed files or to convert them into more 

general formats, e.g. mzXML (Lin et al., 2005) or a peak list (i.e. m/z values and 

associated intensities). Unfortunately, the majority of software packages do not allow the 

user to process transient data, which limits the flexibility and control over spectral 

processing and potentially results in less accurate and sensitive mass spectra. Although 

the available protocols to process transient data can vary, the main steps are normally 

indistinguishable, and are as follows: transient averaging; Fourier transform; peak 

detection and calibration (see Figure 1.4 and Figure 1.5). 

The summation of transients (see Figure 1.5a) in the time domain provides a gain in the 

SNR. Since the noise in a transient signal is normally distributed, a reduction of √N times 

the noise level is achieved, where N is the number of averaged transients. Next, 

apodisation is required to reduce the discontinuities (known as Gibb's oscillations) at the 

beginning and end of a frequency-domain peak. This is a result of the abrupt start and end 

of the transient signal. Applying the Hanning window function reduces Gibb's 

oscillations at the expense of overall intensity and resolution of the signal (see  
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Figure 1.5b and Figure 1.5d). Although, the Hanning window function is the most 

commonly used one in HR FTMS, several others exist and the trade-offs between them 

have been reported previously (Brenna & Creasy, 1989). 

Prior to Fourier transform zero-filling can be applied to increase the total number of data 

points in the processed spectrum, i.e. 2mN where m = number of times zero-filling is 

applied and N = the original number of data points in the transient (see Figure 1.5c and d) 

(Comisarow & Melka, 1979). It results in a beneficial smoothing of the signal, hence 

improving the ability to locate peaks. Finally, the time domain data is transformed into 

frequency domain data using a discrete fast Fourier transform (FFT) (see Figure 1.5d). 
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Figure 1.5 Representation of several processing steps for a particular SIM scan (m/z 280-380): (a) transient 

summation, (b) Hanning apodization, and (c) zero-filling. Panel (d) represents the effect of several 

processing steps on a single peak after Fourier transform, specifically: dotdash (-    -   ): without applying 

Hanning function or zero-filling; dash (           ): after zero filling only, and solid (           ): after applying 

Hanning function and zero filling.  
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High mass accuracy and precision are essential for metabolite identification and, 

therefore, calibration is an important step for achieving the lowest possible mass error. 

External and internal calibration are achieved by mapping frequency domain peaks (i.e. 

in Hz) to m/z domain, using a calibration equation with (i) pre-defined calibration 

parameters (derived from instrument calibration) or (ii) a list of defined calibrants with 

known exact masses that occur in the mass spectrum, respectively. A variety of 

calibration equations that are available (e.g. m/z = A/f + B/(f2), A = ion charge density 

and trap geometry, B = magnetic field strength, f = frequency) have been extensively 

discussed by Zhang et al. (2005). Peak-detection, or peak-picking, required for 

calibration can be divided into two steps. Firstly, an accurate estimation of noise in the 

spectrum is required to avoid false peak detection, and secondly either peak height or 

area is measured (both providing information on relative quantification) to distinguish 

real peaks from the estimated noise level. HR FT mass spectra include many different 

types of noise, including technical and biological. A signal-free region is required from 

which the noise level can be measured (Limbach et al., 1993). Peaks are usually allocated 

using constraints, shape criteria or fitting-models (e.g. local maxima, centroid and 

interpolation). 

Despite the processing described above, a proportion of the “peak list” generated will still 

include noise. For the work presented here, a three-stage signal filter was used to 

discriminate authentic metabolite signals from this noise (Payne et al., 2009). This 

approach requires that each sample is analysed in triplicate. Then the first stage of 

filtering comprises of a hard SNR threshold (typically >3.5) for peak picking, followed 

by a “replicate filter” and finally a “sample filter”. The replicate filter requires that a 
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signal deemed “real” is present in at least 2 out of the 3 replicate measurements. The 

sample filter then requires that this signal is present in at least 50% typically of all 

samples measured in a given study. In addition, a fourth “filter” can be applied, whereby 

peaks observed in the solvent blank spectra are also removed from the dataset.  

Prior to statistical analysis, as introduced in Section 1.3, the intensities of the mass 

spectral data are normalised, e.g. central tendency, linear regression, and locally weighted 

regression, to remove systematic bias while preserving biological information, and also 

pre-treated to deal with missing values (Callister et al., 2006). 
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1.8 Automated metabolite identification of HR FT mass spectra 

Processed HR FT mass spectra, as described above, yield complicated profiles typically 

comprised of thousands of peaks arising from: molecular ions (i.e. [M - e]+); (de-

)protonated ions (i.e. [M±H]±); adducts (e.g. [M + Na]+); naturally occurring isotopes 

(e.g. 13C12Cn-1) and fragments of metabolites (e.g. from in-source fragmentation). Overall, 

the identification of signals can be divided into non-structural (i.e. identification of an 

empirical (or chemical) formula, CcHhNnOoPpSs, Figure 1.4) and structural assignments 

(i.e. leading to a unique metabolite and name, Figure 1.4). Compounded by the finite 

mass accuracy of HR FTMS, a single peak is typically assigned multiple empirical 

formulae (particularly for ions >300 m/z), which in turn, can represent numerous 

naturally-occurring structural isomers. Without additional information, such as that 

provided by chromatographic retention time and/or by fragmentation patterns from 

tandem mass spectrometry and MSn, the definitive identification of metabolic peaks is 

impossible (Sumner et al., 2007). Accordingly, it is well-established that a high number 

of false positive peak assignments occur during metabolite identification (Matsuda et al., 

2009). Furthermore, although there has been considerable progress in the development 

and availability of bioinformatic tools and databases (e.g. Kyoto Encyclopedia of Genes 

and Genomes (KEGG) (Kanehisa et al., 2008), Human Metabolome Database (HMDB) 

(Wishart et al., 2009), KNApSAcK (Shinbo et al., 2006), BioCyc (Caspi et al., 2010)) for 

visualisation and identification (Aliferis & Chrysayi-Tokousbalides, 2010; Brown et al., 

2009), they remain incomplete and therefore unidentified signals in mass spectra are 

commonplace.  
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To link mass spectral data to metabolic content, spectral peaks must first be assigned to 

single, correct empirical formulae using the so-called Diophantine equations (See 

Equation 1) (Junot et al., 2010). Although, HR FTMS can measure highly mass accurate 

spectra, only in certain cases can a single empirical formula be assigned correctly to a 

low mass value (typically <200 m/z), as shown in Figure 1.6. Increasing the mass 

accuracy increases the likelihood of assigning the correct empirical formula, however, 

definitive assignment using mass measurements alone is practically unachievable due to 

technical limitations of available mass spectrometers. Nevertheless, internal calibration 

can improve the mass accuracy significantly, for example, up to a root-mean-square mass 

error of 0.18 ppm (Southam et al., 2007). 

 

 

 

Masspositive ion (m/z) ± mass error boundary (m/z) = [12.0000*12Ca + 1.0078*1Hb + 

14.0031*14Nc + 15.9949*16Od + 30.9738*31Pe + 31.9721*32Sf + 23Na*22.9898] - 

electron*0.0005 

Equation 1 A typical Diophantine equation to calculate empirical formulae (containing carbon, hydrogen, 

nitrogen, oxygen, potassium, sulfur and sodium) for a sodium adduct [M + Na]+ in a particular mass range. 
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Figure 1.6 Percentages of theoretical peaks with a single correct empirical formula assignment without 

(“no rules”) and with (“rules”) the use of heuristic rules and carbon isotopic information (Cobserved ± Cn), for 

three different carbon error ranges. The third group shows the false negative (“FN”) rate after using 

heuristic rules. The data presented is based on four theoretical peak lists, each peak list represents a 

different mass range and comprises of 50 adduct/ion masses selected randomly from the modified KEGG 

COMPOUND database (Kanehisa et al., 2008). 
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To reduce the false positive assignment of incorrect empirical formulae and to increase 

the number of “true positive” correct assignments, several criteria can be utilised. First, 

restricting the elements and elemental ranges (e.g. C1-to-34) included in the calculation 

minimises the number of unrealistic empirical formulae assignments whilst saving 

computational time. For most biological studies focusing on polar metabolites, formulae 

comprised of 12C,1H,14N,16O,31P and 32S will satisfy the assignment of most natural 

compounds. The maximum absolute number of each element in the formula can be 

calculated by dividing the observed mass by the elemental mass (e.g. 170.05782/12.0 for 

carbon). However, Kind and Fiehn (2007) have shown the appropriacy of even stricter 

limits.  

Observed peaks correspond to charged molecular ions and adducts of neutral metabolites 

requiring addition of several atoms and molecules, predominantly [M + H]+, [M + 23Na]+ 

and [M + 39K]+ for positive ion mode and [M – H]-, [M + 35Cl]- and [M + 37Cl]- for 

negative ion mode, depending on the composition of the biological matrix. Further 

constraints are typically used to evaluate the empirical formulae generated, such as the 

nitrogen rule and valence considerations. The heuristic rules, again developed by Kind 

and Fiehn (2007), set elemental limits which assess the likelihood of each elemental 

composition and clearly increase the number of single correct assignments, particularly 

for low masses (<300 m/z) as shown in Figure 1.6. However, a small number of false 

negative assignments are observed as a result of the filters being set too strictly (see 

Figure 1.6). Even with strict constraints the number of single correct assignments is 

relatively small for higher mass ranges (>300 m/z).  
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Finally, for further improvement in the accuracy of putative metabolite identification, 

relative isotopic abundance (RIA) measurements can be used, i.e. originating in the fact 

that 13C12Ca-1
1Hb

14Nc
16Od

31Pe
32Sf has a natural abundance of 1.1% relative to the parent 

peak 12Ca
1Hb

14Nc
16Od

31Pe
32Sf. The ratio of these peak intensities provides an estimate of 

the number of carbon atoms in the formula, which can potentially be used to further filter 

the assignments of empirical formulae from mass measurements alone. HR FT mass 

spectrometers are of particular value here as they have the ability to distinguish closely 

spaced peaks (isotopic distributions), for example, [12Ca
1Hb

14Nc
16Od

31Pe
32Sf+

41K]+ and 

[12Ca
1Hb

14Nc
16Od

31Pe
34S32Sf-1+

39K]+ which differ by only 0.0022 Da. Characterising the 

accuracy and precision of RIA FT measurements in HR mass spectra is important before 

such a method can be applied. Furthermore, high sensitivity is important for accurate RIA 

measurements for two reasons: (i) isotope peaks may not be detected in mass spectra if 

the instrument’s sensitivity is too low; (ii) the accuracy and precision of RIA 

measurements is highly dependent on the measured signal intensity (Xu et al., 2010). 

When an RIA prediction accuracy of ±1 carbon atoms (for a given empirical formula) is 

applied for the ranges 100-200 and 200-300 m/z, more than 90% of the peaks are 

assigned a single correct empirical formula, highlighting the value of RIA measurements 

for improving empirical formulae assignments. 

Alternatively, a probabilistic model using statistics, a posterior probability distribution 

over the set of empirical formulae assignments, and a predefined list of biochemical 

transformations to produce a list of the most likely empirical formulae assignments, has 

been investigated by Rogers et al. (2009). These predefined biochemical reactions 

include, for example, ±H2O for condensation/dehydration reactions and ±HO3P for 



35 

phosphorylation/dephosphorylation reactions. Further improvement was achieved by the 

inclusion of isotopic information. The success of this particular approach highlights the 

value of prior biochemical knowledge of endogenous reactions for improving the 

confidence of empirical formulae identification.  

Assigning empirical formulae or mass measurements to putative structural identities or 

metabolite names is the next goal. The latter is generally achieved via automated searches 

against a compound database (what I term a “single-peak search”), such as KEGG 

(Kanehisa et al., 2008). The mass accuracy of the MS analysis, search threshold (i.e. 

mass tolerance) and quality (density, completeness, correctness and specificity) of the 

compound database used all play an important role in the success of automated database 

searches. The greater the density of the database, the more metabolite entries for a given 

mass range, i.e. search window, and the more likely the search will result in a high false 

positive rate as one empirical formula typically occurs as numerous different structural 

isomers (Matsuda et al., 2009). Incomplete databases will obviously result in a higher 

false positive rate, while inaccuracies result in redundant assignments. A lack of 

organism specificity in the database will also cause a high false positive rate, as some 

metabolites will only be found in certain organisms and tissues (Weber & Viant, 2010b). 

Although some organism-specific databases exist, such as the Human Metabolome 

DataBase (HMDB) (Wishart et al., 2009) for human and EcoCyc (Keseler et al., 2009) 

for Escherichia coli, they are currently limited in number (Aliferis & Chrysayi-

Tokousbalides, 2010; Brown et al., 2009). Advancements of analytical techniques and 

careful annotation of the metabolite signals have the potential to improve the situation in 

the near future.  
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In addition to the “single-peak search” approach described above, several more 

sophisticated strategies that integrate prior biological knowledge to improve the accuracy 

of metabolite identification have been published (Breitling, Pitt & Barrett, 2006; 

Breitling, Ritchie, Goodenowe, Stewart & Barrett, 2006; Brown et al., 2009; Gipson et 

al., 2008; Jourdan et al., 2008; Rogers et al., 2009). Chapter 3 includes a more extended 

introduction followed by the novel work that was carried out here to contribute to more 

accurate, automated (putative) metabolite identification in MS-based metabolomics. It is 

important to emphasise that the final list of putatively identified empirical formulae or 

structural identities are, if required, further analysed using additional analytical 

techniques such as MSn fragmentation to fulfil the requirements proposed by the 

Metabolome Standard Initiative (MSI) (Sumner et al., 2007). 
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1.9 Research Objectives 

The aim of this work is to develop novel methods and improve existing methods to 

measure and subsequently annotate HR MS data, and to apply these methods to real-

world metabolomics studies. The specific research objectives are therefore: 

1. Review, investigate and develop methods that integrate prior biological and 

spectral knowledge to reduce incorrect assignments in automated metabolite 

identification (Chapter 3); 

2. Re-optimise acquisition parameters for the direct infusion SIM-stitching method 

(developed originally for a Thermo Scientific LTQ FT (Southam et al., 2007)) on 

a Thermo Scientific LTQ FT Ultra to maximise sensitivity and mass accuracy. 

This will therefore allow a more complete and precise identification of 

metabolites (Chapter 4); 

3. Characterise the accuracy and precision of RIA measurements in HR MS, 

conducted by two leading FTMS instruments (i.e. Thermo Scientific LTQ FT 

Ultra and Thermo Scientific LTQ Orbitrap) (Chapter 5); 

4. Investigate to what extent RIA in HR MS spectra contribute to decreased 

incorrect assignments in automated metabolite identification (Chapter 5); 

5. Review and investigate several applications in MS-based metabolomics that make 

use of methods developed in this work (Chapter 3). 
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CHAPTER TWO: 

MATERIALS AND METHODS 

2  



39 

This section will detail general methods that were used in more than one experimental 

chapter. Methods that were unique to a single experimental section of this thesis will be 

detailed in the chapter where they were used. 

 

2.1 Preparation biological samples and chemical standards
2
 

Biological samples, (Human K562 myeloid leukaemia cells (Tiziani et al., 2009) and 

freshwater flea (Daphnia magna) (Taylor et al., 2009), Chapter 3; liver samples from a 

marine flatfish (the Dab, Limanda limanda) (Southam et al., 2008), Chapters 4 and 5) 

were homogenised in methanol 8 µL/mg wet tissue mass (all solvents HPLC grade, 

Fisher Scientific, Loughborough, UK) and water (2.5 µL/mg) (Wu et al., 2008). 

Homogenisation was carried out for 20 sec at 64,000 rpm using a Precellys-24 bead-

based homogeniser (Fisher Scientific). Homogenates were transferred into 1.8 mL glass 

vials using glass Pasteur pipettes and chloroform (8 µL/mg added with a Hamilton 

syringe, Fisher Scientific) and water (4 µL/mg) were added (Wu et al., 2008). The 

samples were vortexed for 30 sec, allowed to stand on ice for 10 min and then 

centrifuged at 2500-g, (4 °C). The polar and non-polar phases were carefully transferred 

into fresh 1.8 mL glass vials using a Hamilton syringe. Polar extracts were dried using a 

centrifugal evaporator (Thermo Scientific Savant, Holbrook, NY) and stored at -80°C 

until analysis. Non-polar extracts were stored at -80°C, and these were not used in this 

thesis. Prior to analysis, polar extracts were resuspended in 3 times their original volume 

                                                

2 Experimental work, regarding biological samples, described in this section was performed by Drs. S. 

Tiziani, A. Southam and N. Taylor. 
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of 80:20 v/v methanol:water with either 0.25% formic acid for positive ionisation mode 

(Fisher Scientific), or 20 mM ammonium acetate for negative ionisation mode (Fisher 

Scientific). 

A solution of 0.0005% PEG200 and 0.0005% PEG600 (Sigma-Aldrich, UK) was 

prepared in 80:20 v/v methanol:water with 0.25% formic acid (all HPLC grade, Fisher 

Scientific, UK). Frozen liver samples from a marine flatfish (Southam et al., 2008) were 

extracted and prepared as described above and aliquots equivalent to 1.5 mg of biomass 

were dried. These extracts were each resuspended in 75 µl of the polyethylene glycol 

(PEG) solution, and samples were pooled. This solution is referred to as BioPEG and 

used for the re-optimisation of the SIM-stitching acquisition parameters (Chapter 4) and 

the characterisation of HR FTMS isotopic abundance measurements (Chapter 5). 

 

2.2 Direct infusion mass spectrometry 

Prior to analysis, samples were centrifuged (5,000-g) for 10 minutes, and the supernatant 

(>5 µL) was loaded into a standard 96-well sample plate (Abgene, Epsom, UK). The 

sample plate was sealed with foil using a heat-sealing device (Thermo-sealer, Abgene). 

Samples were analysed using a hybrid 7T FT-ICR mass spectrometer (LTQ FT or LTQ 

FT Ultra, Thermo Electron Corp., Bremen, Germany) equipped with a chip-based direct 

infusion nanoelectrospray ionisation assembly (TriVersa, Advion Biosciences, Ithaca, 

NY). During sample analysis, the 96-well sample plate sits on a cooler plate within the 

NanoMate/TriVersa, which retains the samples at 10°C. The sample is picked up from 

the 96-well sample plate using a new disposable plastic tip each time, placed against a 

new electrospray nozzle and an electric current is applied to the chip, which initiates 
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nanoelectrospray of the sample. Nanoelectrospray conditions comprised a 200 nL/min 

flow rate, 0.3 psi backing pressure and ±1.7 kV electrospray voltage (positive or negative 

ion mode), controlled by ChipSoft software (version 8.1.0, Advion Biosciences). For the 

LTQ FT each sample was analysed in triplicate using the SIM-stitching FT-ICR method 

from m/z 70–500 (SIM windows of 30 m/z overlapping by 10 Da), as reported previously 

(Southam et al. 2007). Parameters included an AGC target of 1×105 and the mass 

resolution (defined for an ion at m/z 400) was fixed at 100 K throughout, and data was 

recorded for 5 min 45 sec per replicate analysis. All parameters mentioned above were 

re-optimised for the LTQ FT Ultra as part of this thesis, and detailed in Chapter 4. 

 

2.3 Data processing 

Data were obtained either as processed mass spectra with associated peak lists (Xcalibur, 

version 2.0, Thermo Electron), or as transient files (i.e. scans recorded in the time 

domain), which were processed using the SIM-stitching algorithm (Southam et al., 2007), 

including averaging of transients, Hanning apodisation, zero filling once, and application 

of a fast Fourier transformation (see Chapter 1). Next, all adjacent SIM windows (see 

Section 1.2) were stitched together using the same SIM-stitching algorithm (Southam et 

al., 2007). All peaks with a SNR below 3.5 were rejected, and then each mass spectrum 

was internally calibrated using two-parameter equation (i.e. m/z = A/f + B/(f2), A = ion 

charge density and trap geometry, B = magnetic field strength, f = frequency) and a pre-

defined calibrant list of known metabolites. Calibrated mass spectra were processed using 

a three-stage signal filtering algorithm (Payne et al., 2009): (i) signals in the mass spectra 

were selected as peaks if above a SNR of 3.5:1; (i) peaks were only retained if present in 
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at least two out of three replicate measurements (1.5 ppm spread), and peaks in the 

extract blank were removed from the biological mass spectra unless twice as intense as in 

the biological samples (1.5 ppm spread); and (iii) peaks were only retained if present in at 

least 50% of all biological samples (2.0 ppm spread). 

Finally, the signal intensity matrix after three-stage signal filtering was further processed 

by the addition of missing values (Sangster et al., 2007), normalised using the 

probabilistic quotient method (Dieterle et al., 2006), and generalised log transformed 

(Parsons et al., 2007). Although, the final steps to process the signal intensity matrix are 

not essential for the work presented in this thesis, they are part of the automated pipeline 

used to process mass spectral datasets as described previously by Taylor et al. (2009). 

 

2.4 Metabolite identification 

Putative identification of metabolites is an important part of the presented work in this 

thesis. The next two sections describe the general approaches that were used to putative 

identify metabolites in HR mass spectra (see Chapter 3, 5 and 6). Both approaches are 

extensively validated and integrated into MI-Pack as part of Chapter 3. 

 

2.4.1 Putative identification of empirical formulae 

Between zero and many potential empirical formulae (CCHHNNOOPPSS) were calculated 

for each of the experimentally detected peaks in the data matrix described above. This 

was achieved using a custom-written elemental composition calculator (in Python and 

SQLite, as part of MI-Pack, see Chapter 3), in which the elements were restricted (Kind 
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& Fiehn, 2007), see each experimental section of chapter for more details on restrictions. 

In addition, since the observed peaks correspond to charged molecular ions or adducts of 

the neutral metabolites, the masses of the several common positive or negative ion 

adducts were effectively added to the elemental composition calculator. In practice, the 

calculation was conducted for each positive ion peak, allowing for [M + H]+, [M + Na]+ 

and [M + 39K]+, or each negative ion peak, allowing for [M – H]-, [M + 35Cl]-,  

[M + 37Cl]-. Only those empirical formulae with an absolute mass error of 1.0 ppm (see 

each experimental section of each chapter for more details regarding mass accuracy) were 

recorded, and then all potential formulae were filtered using four heuristic rules reported 

by Kind and Fiehn (2007). Specifically: (i) restricted number of atoms per element, (i) 

Lewis and Senior rules, (i) H/C ratio, and (iv) elemental ratio of N, O, P, and S versus C. 

Note that these rules were applied to the neutral metabolites following subtraction of the 

adduct, e.g. applied to [C5H9NO2] not to [C5H9NO2 + Na]+. In some cases, the 13C isotope 

of CCHHNNOOPPSS was identified, allowing the approximate determination of the number 

of carbon atoms in the molecule based upon the intensity ratio of the 12C and 13C peaks, 

which is more precisely characterised for HR FTMS in Chapter 5. 

 

2.4.2 Putative identification of metabolite names 

The putative metabolite identity of each of the observed peaks was determined based 

upon accurate mass measurements, which was achieved using custom-written script (in 

Python and SQLite, as part of MI-Pack, see Chapter 3) and the KEGG database 

(Kanehisa et al., 2008). First the KEGG LIGAND database was downloaded and the 

exact mass of each entry was re-calculated based on the associated empirical formula; 
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this served to increase the mass accuracy to 6 decimal places. Then the exact mass of 

each entry (neutral compound) was modified to allow for the formation of several ions 

listed above. For example, the database record for glucose (KEGG ID C00031, m/z 

180.063390) was extended by different adduct masses such as m/z 203.052611 for 

[glucose + Na]+, m/z 215.032792 for [glucose + 35Cl]-, etc. Next the m/z values of all the 

experimentally observed peaks were compared to the modified KEGG data and matches 

with an absolute mass error of 1.0 ppm were recorded (see each experimental section of 

each chapter for more details regarding mass accuracy). See Chapter 3 for a detailed 

report and discussion on novel methods to improve putative identification of metabolites. 

 

2.5 Hardware and Software 

2.5.1 High performance computing cluster architecture 

Two high performance computing cluster architectures, named BlueBEAR 

(http://www.bear.bham.ac.uk/) and Xenia (http://www.biochemistry.bham.ac.uk/hpcc/), 

were used to run computationally expensive jobs (e.g. calculating empirical formulae). 

Less extensive jobs were performed on a dual-core processor desktop system. 

Specifications of each system are detailed in the next three sections.  

 

2.5.1.1 BlueBEAR cluster  

- 384 twin dual-core processors (4 cores/node) 64-bit 2.6 GHz AMD Opteron 2218 

- Total of 1536 cores (8 and 16 (16 cores) GB memory)  
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- 4 quad-processor dual-core (8 cores/node) 64-bit 2.6 GHz AMD Opteron 8218 

(32 GB of memory) 

- 150 TB storage (IBM's - general parallel file system (GPFS)) 

- Operating software: Scientific Linux 5.2. 

2.5.1.2 Xenia cluster 

- 32 twin dual-core processors (4 cores/node) 64bit 2.4 GHz AMD64 

- Total of 128 cores (8 GB memory) 

- 10 TB of RAID 5 storage 

- Operating software: Red Hat Enterprise Linux 4 (RHEL4) 

2.5.1.3 Dual-core processor desktop system 

- Dell Dimension E520 

- Intel® CoreTM 2 Duo processors (E6300) @ 1.86 GHz 

- 2 GB of memory 

- 160 GB hard disk 

- Operating software: Windows XP (http://www.microsoft.com/windows/) and 

Ubuntu (http://www.ubuntu.com) 

2.5.2 Application software and programming languages 

The following application software and programming languages were used to perform 

data analysis and programming throughout the presented work: 

- Matlab (The Mathworks, http://www.mathworks.co.uk) 

o Bioinformatics Toolbox (The Mathworks, http://www.mathworks.co.uk) 
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o SIM-stitching algorithm (Southam et al., 2007) 

o Statistics Toolbox (The Mathworks, http://www.mathworks.co.uk) 

- Microsoft Office 2003 (http://office.microsoft.com) 

- Molecular Weight Calculator (http://ncrr.pnl.gov/software/) 

- Mozilla Firefox web browser (http://www.mozilla.com) 

- MySQL (http://www.mysql.com) 

- Python programming language (http://www.python.org) 

o Rpy (http://rpy.sourceforge.net) 

o Parallel Python (http://www.parallelpython.com) 

o Numpy (http://numpy.scipy.org) 

- Putty (http://www.chiark.greenend.org.uk/~sgtatham/putty/) 

- R programming language (http://www.r-project.org) 

- SQLite (http://www.sqlite.org) 

- SQLite Manager (http://code.google.com/p/sqlite-manager/) 

- WinScp (http://winscp.net/) 

- Xcalibur (Thermo Electron) 

- Chenomx NMR Suite (version 5.0; Chenomx Inc., Canada) 
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CHAPTER THREE: 

MI-PACK: INCREASED CONFIDENCE OF 

METABOLITE IDENTIFICATION IN MASS SPECTRA 

BY INTEGRATING ACCURATE MASSES AND 

METABOLIC PATHWAYS3 

3  

                                                

3 Parts of this Chapter have been published in Chemometrics and Intelligent Laboratory Systems (Weber & 

Viant, 2010b). Applications of putative identification of metabolites in biological HR FT-ICR mass spectra 

presented in this Chapter have been published in Metabolomics (Taylor et al., 2009) and Toxicological 

Sciences (Taylor et al., 2010). 
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3.1 Introduction 

3.1.1 Putative identification of metabolites in biological HR FT-ICR mass 

spectra 

HR FTMS is a leading technique for measuring metabolites in biological samples (Dunn, 

2008; Giavalisco et al., 2008; Han et al., 2008; Taylor et al., 2009; Zhang et al., 2009). 

However, automatic identification of the hundreds or potentially thousands of metabolites 

detected remains one of the greatest challenges in metabolomics, and is critical for 

generating new knowledge of biological systems (Breitling et al., 2008). While tandem 

mass spectrometry (MS/MS) and MSn can identify the structures of selected metabolites, 

it is a less feasible approach for the automated assignment of many thousands of peaks, 

particularly if high sample throughput is required. Ideally, information intrinsic to a high 

resolution wide-scan mass spectrum can at least provide putative metabolite 

identifications (Sumner et al., 2007). Subsequently a limited number of putatively 

identified metabolites that are found to be of particular importance to the biological 

phenomena being investigated can be analysed by MS/MS to confirm their identity. 

Putative metabolite identification can in principle be achieved using accurate mass 

measurements, typically by searching against a database on a peak-by-peak basis (here 

termed "single-peak search") (Kind & Fiehn, 2006; Smith et al., 2006). However a single 

accurate mass measurement can be assigned to one or more empirical formula(e) of the 

form [CAHBNCODPESF+adduct]±. Furthermore each formula can occur in different 

chemical structures, each representing a unique metabolite; e.g. C6H12O6 at 180.06339 Da 

corresponds to several carbohydrate metabolites. This complexity, together with the 
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technology-limited mass accuracy of any mass spectrometer, the occurrence of thousands 

of metabolites in nature and the somewhat low number of available species- and 

metabolite-specific databases (e.g. KNApSAcK and HMDB) (Brown et al., 2009; Draper 

et al., 2009; Shinbo et al., 2006; Wishart et al., 2009), has the potential to induce a high 

false positive rate (FPR) of metabolite identification, in particular for a single-peak 

search. 

Kind and Fiehn (2007) published a set of 'golden rules' (implemented here) to remove 

empirical formulae that were incorrectly assigned to an accurate mass, thus helping to 

reduce this error rate. A second strategy to increase the accuracy of metabolic 

identification is to use prior biological knowledge of the interconnectivity of metabolites 

into metabolic networks. Previously, prior knowledge has been implemented into the 

annotation of a high resolution mass spectrum using mass differences between pairs of 

peaks (Breitling, Pitt & Barrett, 2006; Breitling, Ritchie, Goodenowe, Stewart & Barrett, 

2006; Jourdan et al., 2008). For example, Gipson et al. (2008) used a clustering method 

and biological database to assign a peak-pair to a substrate-product biochemical reaction. 

Although this approach is dependent upon well-defined peak shapes from liquid 

chromatography (LC) data, and hence not generalisable to all high resolution mass 

spectra (in particular to direct infusion MS), it demonstrates how prior knowledge of 

metabolic pathways can increase the confidence of metabolite identification. 

Subsequently, Rogers et al. (2009) reported an elegant probabilistic method that 

compared observed mass differences of peak pairs to a list of common biochemical 

reactions in order to assign the most likely empirical formulae to the peaks. These 

predefined biochemical reactions included, for example, ±H2O for 
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condensation/dehydration reactions and ±HO3P for phosphorylation/dephosphorylation 

reactions. The success of this particular approach demonstrates the value of prior 

knowledge of types of biochemical reactions for improving the confidence of identifying 

empirical formulae. Brown et al. (2009) also employed mass differences to increase 

confidence in metabolite identification, specifically utilising differences in adduct and 

fragment patterns, rather than bio-transformations. Some of the identification strategies 

described above depend on the reliability and completeness of existing metabolic 

networks, e.g. KEGG. Therefore recent progress in the reconstruction of metabolic 

networks is highly relevant to these strategies to improve the accurate representation of 

biochemical, metabolic and signaling networks, ultimately improving metabolite 

annotation (Herrgård et al., 2008). 

Error rates for metabolite identification are inherently dependent upon both the actual 

technology-limited mass accuracy of the MS and the mass error range used in the 

identification algorithm. MS techniques with high mass accuracy (e.g. FTMS with 0.18 

ppm root-mean-square mass error (Southam et al., 2007)) are ideal. However, if the 

selected mass error range for the algorithm is too small relative to this instrumental error, 

some metabolites that are present will not be identified; i.e. a high false negative rate 

(FNR). Conversely, if the mass error range is set too large, there will be many incorrect 

assignments; i.e. a high FPR. Therefore to maximise the accuracy of metabolite 

identification it is important to determine the instrumental error over the entire mass 

spectrum and use this to define the mass error range for the identification algorithm. 

While it is routine to calculate mass errors of individual metabolites in a spectrum by 

comparing the theoretical and measured mass/charge (m/z) values, the errors associated 
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with the mass differences of peak pairs have not previously been reported. These errors 

should be characterised experimentally to maximally exploit peak-pair differences for 

metabolite identification. 

Here I present the Metabolite Identification Package (MI-Pack) that incorporates several 

modules to support metabolite identification in mass spectra. The core identification 

algorithm is based on an approach of mapping an experimentally-derived empirical 

formula difference of a peak-pair to a known empirical formula difference between 

substrate-product pairs derived from KEGG (Kanehisa et al., 2008), which I term 

transformation mapping (TM). This uses a similar concept to that reported by Rogers et 

al. (2009), except instead of using a predefined list of common biochemical reactions to 

identify empirical formulae, here our algorithm exploits prior knowledge of metabolite 

interconnectivity from the KEGG database to improve the accuracy of identifying 

metabolite names. This is achieved according to the assumptions that metabolites within 

a particular pathway will all ionise and that they are all present at detectable 

concentrations. As an additional extension to the Gipson et al. (2008) and Rogers et al. 

(2009) studies, and to further increase the accuracy of metabolite identification, I have 

developed a novel semi-automated method to calculate the instrumental errors associated 

with peak differences. This generates an error surface that is a function of both the mass 

difference and the average m/z of a peak-pair. The TM algorithm and mass error surface 

are extensively validated and compared against the most widely used method for the 

identification of metabolite names, the single-peak search (for a range of ppm mass 

measurement errors). This employed four types of dataset: (i) simulated dataset 

comprising a list of metabolite masses extracted from one KEGG pathway to demonstrate 
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the TM algorithm; (ii) experimental mass spectra of human cancer cells to derive a FPR 

(i.e. for peaks incorrectly identified as non-human metabolites in a human sample); (iii) 

simulated dataset comprising of randomly generated peak lists to calculate a second FPR 

(i.e. for random peaks incorrectly identified as metabolites); and (iv) experimental NMR 

spectra of the same human cancer cells as above, to determine the FNR for metabolite 

identification, i.e. known metabolites that were not identified. Metabolite Identification 

Package (MI-Pack) and details of implementation and use are freely available from 

http://www.biosciences-labs.bham.ac.uk/viant/mipack/. 

 

3.1.2 Applications 

The research presented in this Chapter has focused on the development of algorithms to 

assist the experimentalist in automatically assigning putative metabolite identities. During 

the last three years, to demonstrate the value of these algorithms in real-world examples, I 

have contributed to several applied research projects. Here I present several applications 

of automated putative identification of metabolites for two different organisms (Daphnia 

magna and Salmonella enterica serovar typhimurium) as part of three different studies. 

Two of these three studies have been published (Taylor et al., 2010; Taylor et al., 2009). 

Several novel and non-novel identification approaches were applied, including empirical 

formulae assignments, “Single-Peak Search” (SPS) and “Transformation Mapping” (TM) 

all part of MI-Pack. In addition, for one of the three studies the re-optimised SIM-

stitching acquisition parameters (see Chapter 4) were used to collect the MS dataset. I 

focus upon the results of the automated putative metabolite identification, not on the 
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biological questions being addressed in the research. However, for completeness, a brief 

introduction to all three studies is provided below. 

3.1.2.1 Metabolic profiling of Daphnia magna using FT-ICR mass spectra for 

toxicity screening (Taylor et al., 2009) 

Currently there is a surge of interest in exploiting toxicogenomics to screen the toxicity of 

chemicals, enabling rapid and accurate categorisation into classes of defined mode-of-

action (MOA), and prioritizing chemicals for further testing. Direct infusion FT-ICR  

MS-based metabolomics can provide a sensitive and unbiased analysis of metabolites and 

therefore has considerable potential for chemical screening. The water flea, Daphnia 

magna, is an Organisation for Economic Co-operation and Development (OECD) test 

species and is utilised internationally for toxicity testing. However, no metabolomics 

studies of this species have been reported. Here we optimised and evaluated the 

effectiveness of FT-ICR MS metabolomics for toxicity testing in D. magna. It was 

confirmed that high-quality mass spectra can be recorded from as few as 30 neonates 

(<24 h old; 224 µg dry mass) or a single adult daphnid (301 µg dry mass). An OECD 24 

h acute toxicity test was conducted with neonates at copper concentrations of 0, 5, 10, 25 

and 50 µg l-1. A total of 5447 unique peaks were detected reproducibly, of which 4768 

were assigned at least one empirical formula and 1017 were putatively identified based 

upon accurate mass measurements (using algorithms developed in Chapter 3). Significant 

copper-induced changes to the daphnid metabolome, consistent with the documented 

MOA of copper, were detected thereby validating the approach. In addition, N-

acetylspermidine was putatively identified as a novel biomarker of copper toxicity. 

Collectively, these results highlight the excellent sensitivity, reproducibility and mass 
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accuracy of FT-ICR MS, and provide strong evidence for its applicability to high-

throughput screening of chemical toxicity in D. magna. 

 

3.1.2.2 Discriminating between different acute chemical toxicities via changes in 

the daphnid metabolome (Taylor et al., 2010) 

Previous work (see Section 3.1.2.1) has shown that mass spectra can be recorded from 

whole-organism homogenate or haemolymph of single adult Daphnia magna. Here we 

develop multivariate models and discover perturbations to specific metabolic pathways 

that can discriminate between the acute toxicities of four chemicals to D. magna using 

FT-ICR MS metabolomics. We focus on model toxicants (cadmium, fenvalerate, 

dinitrophenol, and propranolol) with different MOAs. First, we confirmed that a toxicant-

induced metabolic effect could be determined for each chemical in both the haemolymph 

and the whole-organism metabolome, with between 9 and 660 mass spectral peaks 

changing intensities significantly, dependent upon toxicant and sample type. 

Subsequently, supervised multivariate models were built that discriminated significantly 

all four acute metabolic toxicities, yielding mean classification error rates (across all 

classes) of 3.9 and 6.9% for whole-organism homogenates and haemolymph, 

respectively. Following extensive peak annotation (using algorithms developed in 

Chapter 3), we discovered toxicant-specific perturbations to putatively identified 

metabolic pathways, including propranolol-induced disruption of fatty acid metabolism 

and eicosanoid biosynthesis and fenvalerate-induced disruption of amino sugar 

metabolism. We conclude that the metabolic profiles of whole daphnid homogenates are 

more discriminatory for toxicant action than haemolymph. Furthermore, our findings 
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highlight the capability of metabolomics to discover early-event metabolic responses that 

can discriminate between the acute toxicities of chemicals. 

 

3.1.2.3 Metabolomics to discover and identify molecules exported by the AcrAB-

TolC multi-drug resistant efflux pump in S. typhimurium 

Efflux pumps are attractive drug targets to reduce unwanted export of antibiotics from 

cells. However, the understanding of the natural roles of efflux pumps (AcrAB-TolC of S. 

typhimurium in this particular study) and their contribution to host-pathogen interactions 

is incomplete. An understanding of how the efflux pump affects pathogenicity is 

fundamental to the development of new drug treatments whether the host is plant, animal 

or human. The AcrAB-TolC pump forms a tri-partite complex; (i) AcrA is a periplasmic 

adaptor protein that links AcrB and TolC; (ii) AcrB is an integral cytoplasmic membrane 

protein; (iii) TolC is an outer membrane protein. The presence and absence of the pump 

AcrAB-TolC (or parts of the pump) and the effect on the resistance of the Salmonella to 

several compounds have been widely investigated (Karatzas et al., 2007; Ricci & 

Piddock, 2009a; Ricci & Piddock, 2009b). The overall aim of this preliminary 

metabolomics study is to identify the natural substrate molecules exported by AcrAB-

TolC thereby providing new data on the molecular basis of pathogenicity of Salmonella 

enterica. This was achieved using a MS metabolic footprinting approach, the re-

optimised SIM-stitching method in Chapter 4, and the algorithms developed in this 

Chapter collectively enabling the putative identification of these exported compounds 

into the media. 
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3.2 Material and methods 

3.2.1 Experimental and Simulated datasets
4
 

3.2.1.1 Experimental NMR and HR FT-ICR mass spectra of cell extracts 

Human K562 myeloid leukaemia cells (n=18 biological samples) were cultured, the 

intracellular metabolites extracted, and one-dimensional 1H NMR spectra measured and 

processed, all as reported previously (Tiziani et al., 2009). Metabolites were identified 

using the Chenomx NMR Suite (version 5.0; Chenomx Inc., Canada). Direct infusion  

FT-ICR mass spectra of the identical cancer cell extracts were measured and processed as 

described in Sections 2.1 - 2.3 (LTQ FT, see Table 4.2). Each mass spectrum comprised 

of ca. 4350 m/z values and intensities, and the final peak list after noise removal 

contained 3925 entries. 

 

3.2.1.2 Experimental HR FT-ICR mass spectra of Daphnia magna and Salmonella 

typhimurium 

The culturing of Daphnia magna as well as the biomass optimisation study and toxicity 

testing (to copper, cadmium, dinitrophenol (DNP), fenvalerate and propranolol) where 

performed as described by Taylor et al. (2009, 2010). 

                                                

4 Experimental work described in this section was performed by Drs. S. Tiziani, J. Kirwan, M. Webber and 

N. Taylor. 
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S. typhimurium wild type (L354, n=6) and mutant strains (L644, L742 and L976, each 

n=6) were cultured as described before (Webber et al., 2009). Once cultured, the S. 

typhimurium cells were removed and 0.5 ml media was flash frozen in liquid nitrogen 

and diluted 1:2 v/v with methanol and 0.25% formic acid, further diluted 1 in 5 with 

80:20 v/v methanol:water and 0.25% formic acid to make a final concentration of 74:16 

v/v methanol:water. 

Analyses were conducted using a hybrid 7-Tesla linear ion trap FT-ICR mass 

spectrometer (LTQ FT or LTQ FT Ultra, Thermo Scientific, Germany) equipped with a 

Triversa chip-based nanoelectrospray ion source (Advion Biosciences, NY, USA). 

Nanoelectrospray conditions (controlled by ChipSoft software version 8.1.0, Advion 

Biosciences) comprised 0.5 psi backing pressure, +1.7 kV electrospray voltage and ca. 

200 nL/min sample flow rate. A mass resolution of 100,000 and maximum linear ion trap 

fill-time of 1s were fixed throughout the analyses (see Table 3.1, Section 2.2  and Table 

4.2)). 

Mass spectra were processed using the SIM-stitching algorithm (see Southam et al., 2007 

and Section 2.3) and the three-stage signal filtering algorithm detailed in Payne et al., 

2009 and Section 2.3. 
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Table 3.1 Overview of experimental details for DI FT-ICR MS metabolomics studies. D1, D2, S1 

correspond to the studies summarised in Sections 3.1.2.1, 3.1.2.2 and 3.1.2.3, respectively. 

Study Classes 
No. of 

samples 

Total no.  

of samples 

m/z 

range 

Ion 

mode 

D1 
(1) Control exposure copper - 0 µg l-1 6 

30# 70-500* + / - 
(2) Exposure copper - 5,10,25 and 50 µg l-1 (4×6) 24 

      

D2 

(1a) Control - whole organism 10 

100# 70-500* - 
(1b) Exposure 4 chemicals - whole organism (4×10) 40 

(2a) Control - haemolymph 10 

(2b) Exposure 4 chemicals - haemolymph (4×10) 40 

      

S1 
(1) Control - L354 6 

24# 70-590** + 
(2) modified strains - L644, L742 and L976 3×6 (18) 

#measured in triplicate, *SIM-stitching parameters Thermo FT LTQ (table 4.2), **SIM-stitching parameters Thermo 

FT LTQ Ultra (table 4.2) 
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3.2.1.3 Simulated mass spectrum metabolic cycle 

The KEGG identifiers of 16 small-molecule metabolites (M) occurring in the KEGG-

representation of the tricarboxylic acid (TCA) cycle were extracted and then each was 

randomly assigned to one of three potential adduct forms ([M + H]+, [M + Na]+ or  

[M + 39K]+). The accurate masses of these 16 adducts were then obtained from the 

modified database, described below, to generate the simulated peak list. 

 

3.2.1.4 Simulated random mass spectra 

Mass spectra comprising of randomly located peaks, although with realistic m/z values 

(i.e. clustered around integral m/z) were simulated as reported previously (Payne et al., 

2009). To achieve this, the simulation used prior knowledge of the peak distribution of 

the cancer cell mass spectra recorded above. In total 51 peak lists were generated, each 

containing ca. 4000 m/z values and intensities (see supplementary information by Payne 

et al. (2009)). 
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Figure 3.1 Schematic representation of (a) the overall processing workflow for KEGG and mass spectral 

data, and (b) the metabolite identification workflow for the single-peak and TM approaches. (c) Example of 

the TM algorithm for three enzymatically-related metabolites in the TCA cycle, showing the peaks in the 

mass spectrum, the transformations between peak pairs (1, 2, 3), and their mapping to direct and indirect 

transformations stored in MI-DB. 
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3.2.2 Methods 

3.2.2.1 Metabolite identification database (MI-DB and MI-hDB) 

The KEGG COMPOUND database (Kanehisa et al., 2008), containing ca. 15,500 

metabolites, was downloaded (March 2009) and the exact mass of each compound re-

calculated using the associated empirical formula (i.e. by multiplying the number of each 

element by the exact mass of that element, for all elements in the formula) (Wieser & 

Berglund, 2009); this increased the mass accuracy to 6 decimal places. The exact mass of 

each neutral compound was modified to account for the formation of three potential 

adduct forms, [M + H]+, [M + Na]+ and [M + 39K]+ (Draper et al., 2009); e.g. glycine 

(KEGG identifier C00037, m/z 75.03203) was modified to m/z 76.03931 for [glycine+H]+ 

and m/z 98.02125 for [glycine+Na]+ etc. All modified compound records were stored in a 

new database (MI-DB) (Figure 3.1a). Next the KEGG REACTION database (Kanehisa et 

al., 2008), containing ca. 11,340 substrate-product pairs (here termed "direct reactant 

pairs"), was downloaded (March 2009) and parsed to the MI-DB. Subsequently, all direct 

reactant pairs were joined by an SQL statement to obtain "indirect reactant pairs" (i.e. 

two metabolites that are not directly linked by an enzyme, but that share a common third 

metabolite to which they are both enzymatically connected; Figure 3.1c). The empirical 

formula difference and mass difference of each direct and indirect reactant pair was 

added to each entry; e.g. for the substrate-product pair [oxaloacetic acid+H]+ and 

[phosphoenolpyruvic acid+Na]+, the empirical formula difference and mass difference 

were represented by [-C+H+O+P+H+-Na+] and m/z 35.97650. A transformation reference 

list, comprising the information for all direct and indirect reactant pairs (mass differences 

and associated transformations), was inserted into the MI-DB (Figure 3.1a). Finally, to 
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generate an equivalent human-specific database (MI-hDB), a reference list of human 

compound identifiers was obtained from the "human" KEGG pathways, i.e. using human 

classified compounds and pairs. All parsing-scripts were written in Python (including 

SQLite, http://www.python.org) and form modules of MI-Pack. 

 

3.2.2.2 Assignment of peak patterns 

This section describes the method used to locate specific peak patterns in experimental 

mass spectra in order to measure particular peak differences. The patterns sought 

included: (i) 13C–12C patterns (m/z difference of 1.00336), (ii) various patterns between 

adducts of metabolites (e.g. [M + 39K]+ – [M + Na]+, m/z 15.97394,  

[M + Na]+ – [M + H]+, m/z 21.98195, and [M + 39K]+ – [M + H]+, m/z 37.95588), and (iii) 

phosphorylation reactions ([M + PO3H + adduct]+ – [M + adduct]+, m/z 79.96633). These 

peak differences were subsequently used to estimate the mass error associated with peak 

differences over the mass range m/z 70 – 500 (i.e. mass error surface).  

The assignment of peak patterns comprises 5 steps and is illustrated here for adduct 

patterns. 

1. For each of the 18 experimental peak lists (of cancer cell extracts), seven de-

adducted lists were calculated by subtracting the accurate masses of seven 

potential adducts; i.e. subtracting an electron (e), proton (H+), or various metal 

ions, for the adduct forms [M - e]+, [M + H]+, [M + Na]+, [M + 39K]+, [M + 41K]+,  

[M + 2Na - H]+, and [M + 239K - H]+. 
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2. All de-adducted lists, for each experimental peak list, were concatenated and 

sorted from low to high mass. This resulted in all the adduct forms of any one 

metabolite becoming centered on the neutral mass of M. 

3. Adduct patterns were identified from each final modified peak list by locating 

these “clusters” of peaks that lay within an m/z error range of 1.5 ppm (>3 times 

the largest experimental mass error reported for our FT-ICR method (Southam et 

al., 2007)) based on the highest original mass starting with the highest m/z value. 

For each identified adduct pattern the original measured masses and the names of 

the adduct ions were recorded. 

4. Peak pairs (i.e. part of a larger peak pattern or sometimes the entire peak pattern) 

were located within defined mass range windows, starting at 70 Da. The mass 

range of each window corresponded to the sum of the mass difference being 

searched for plus 10 Da. The next mass range window started at the highest peak 

assigned in the previous window.  

5. Finally, the experimental mass differences of the various peak pairs used (e.g. [M 

+ Na]+ - [M + H]+, [M + 39K]+ - [M + H]+ and [M + 39K]+ - [M + Na]+), were 

calculated for each mass range window that was defined. 

The same method was applied to select 12C-13C patterns and phosphorylation reactions, 

except that the first step of the method was slightly different. An original peak list and a 

“subtracted” peak list (subtracting m/z 1.00336 for 12C-13C patterns or m/z 79.96633 for 

phosphorylation reactions) were concatenated to make up 18 final modified peak lists for 

each of both types of peak patterns. 
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3.2.2.3 Rules for confidence in peak-pattern assignment 

Several rules were applied to reject coincidental matches and increase confidence in peak 

identification (i.e. to reject a peak-pair that has the same mass difference as a 12C-13C 

pair, but which does not in fact arise from those isotopes).  

1. For adduct patterns, only patterns comprising of ≥3 adducts were retained (except 

for patterns at low mass, from m/z 70-150).  

2. Illogical adduct patterns were rejected, when the pattern included a [M + 41K]+ 

peak without the higher abundance [M + 39K]+ peak. 

3. For carbon isotopes (12C, 13C), only peak pairs with an allowed 12C/13C intensity 

ratio were retained (see Section 3.2.2.4).  

4. Only peak patterns were retained when their m/z values could be assigned to at 

least one identical neutral empirical formula within an accuracy of 1.5 ppm. To 

achieve this, a custom-written elemental composition calculator (including rules 

by Kind and Fiehn, 2007) was used (part of MI-Pack). 

Only adduct patterns comprising of ≥3 adducts were retained as described above (section 

3.2.2.2). Therefore using seven adduct forms increased the number of retained adduct 

patterns. At the same time it increased the confidence of selecting adduct patterns as it 

lowered the number of wrong (random) pattern assignments. Consequently it resulted in a 

more robust mass error surface. 

The 3 adduct forms ([M + H]+, [M + 39K]+ and [M + Na]+) used for construction of the  

MI-DB were chosen as they are the most common ion forms in direct infusion-based MS. 

This has been confirmed by several colleagues in our field (e.g. (Brown et al., 2009; 

Draper et al., 2009; Taylor et al., 2009). Table 8.1 represents this finding as most of the 
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NMR-detected metabolites are identified in the mass spectra by one or more of the 3 

main adducts. Other adducts forms, e.g. [M + 2Na - H]+, and [M + 239K - H]+, were not 

used to minimise false assignments and hence the FPR . 

 

3.2.2.4 Confidence in the assignment of carbon isotope patterns 

Several studies have shown that 12C–13C isotope patterns in mass spectra are important to 

increase confidence in metabolite identification (Giavalisco et al., 2008; Kind & Fiehn, 

2007). 12C–13C isotopes show a well defined intensity pattern (e.g. 13C has a relative 

abundance of 1.1% compared to 12C) which was used in this study to increase the 

confidence in the assignments of carbon isotope patterns. This peak pair is one of the 

peak patterns that was used for estimating the mass error for peak differences (see 

above). 

Our approach used the following strategy, effectively extracting prior knowledge of 

metabolite empirical formulae from KEGG. First, all unique formulae were obtained 

from the MI-DB for the mass range 0 - 500 Da and were divided in multiple 10 Da 

windows. For each 10 Da window the minimum and maximum number of carbon atoms 

from known metabolites were derived by simply inspecting the empirical formulae in that 

mass range. Both values were then multiplied by 1.1 % to calculate the estimated 

minimum and maximum peak abundance arising from the one 13C-containing metabolite 

(relative to the all 12C metabolite) over the defined mass range. From those estimated one 

13C-containing peak abundances, all 12C abundances were calculated and plotted as a 

function of the average mass range (Figure 3.2). Linear regression was applied to retrieve 
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the estimated linear equation to calculate the minimum and maximum 12C versus 13C 

abundances for a particular mass. The application of these criteria is shown in Table 3.2. 

 

 

 

 

 

 

Figure 3.2 Minimum and maximum abundance of 12C versus 13C based on all formulae (0-500 Da) in the 

KEGG database. 
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Table 3.2 Examples of experimental 12C-13C patterns in mass spectra of human cancer cell extracts. The 

experimental 12C to 13C abundance was compared to the theoretical minimum and maximum abundances 

described above, and classified as a real (true) or non-real (false) isotope pattern. 

peak12C 

(m/z) 

peak13C 

(m/z) 

Intensity 

peak12C 

Intensity 

peak13C 

Minimum 

abundance 

(theoretical)a 

Maximum. 

abundance 

(theoretical)b 

Abundance 

(experimental)c 
Criteriad 

229.15618 230.15960 66384.00 11228.04 81.48 95.46 85.53 true 

292.95931 293.96299 11013.45 10993.69 76.58 94.10 50.04 false 

330.27653 331.28004 32288.16 7087.93 73.71 93.31 82.00 true 

360.33058 361.33411 11272.27 6821.34 71.40 92.66 62.30 false 

388.28221 389.28554 35293.71 9383.07 69.26 92.07 79.00 true 

443.27295 444.27603 2007.07 5415.45 65.03 90.90 27.04 false 

444.28180 445.28507 199948.60 44524.89 64.96 90.88 81.79 true 

aMinimum theoretical abundance = -0.0768 * m/z value peak12C + 99.1, bMaximum theoretical abundance 

= -0.0213 * m/z value peak12C + 100.3, cExperimental abundance = Intensity peak12C / (Intensity peak12C + 

Intensity peak13C), dExperimental abundance > Minimum theoretical abundance and Experimental 

abundance < Maximum theoretical abundance 
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3.2.2.5 Mass error surface for peak differences 

A mass error surface representing the error associated with the differences between peak 

pairs was generated as a function of both the mass difference and the average m/z of a 

peak-pair (Figure 3.1). Our approach was based upon identifying particular peak pairs in 

the experimental mass spectra with confidence (see Section 3.2.2.3 and 3.2.2.4) from 

which errors were calculated by comparing the theoretical and measured mass 

differences. Peak pairs comprised of (i) 13C-12C patterns (difference of m/z 1.00336), (ii) 

various patterns between adducts of metabolites ( [M + 39K]+ - [M + Na]+, m/z 15.97394; 

[M + Na]+ - [M + H]+, m/z 21.98195; and [M + 39K]+ - [M + H]+, m/z 37.95588), and (iii) 

phosphorylation reactions ([M + PO3H + adduct]+ - [M + adduct]+, m/z 79.96633). The 

mass error tolerance used to initially locate the peaks was 1.5 ppm, which is >3 times 

larger than the maximum mass error reported for our FT-ICR approach  

(Southam et al., 2007). The peak pairs were then grouped into defined mass ranges in 

terms of their average m/z values (see Section 3.2.2.3). For each mass range and type of 

peak-pair, the multiple observations were visualised using a boxplot, any outliers were 

deleted, and the final mass error estimated as twice the standard deviation of a fitted 

normal distribution. Then the mass error surface was derived by interpolating between 

these errors, average m/z values and theoretical peak-pair differences. All processing, 

analyses and visualisations were executed using custom-written Python code (including 

SQLite, http://www.python.org) supported by the R scripting language (http://www.r-

project.org/). 
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3.2.2.6 Metabolite identification algorithms 

Two identification algorithms were employed (summarised in Figure 3.1b). The single-

peak search simply compared the m/z values of all experimentally observed peaks, one at 

a time, against the MI-DB, and recorded all matches within a defined mass error (default 

value of ≤1.0 ppm, although errors ranging from ≤0.2 to ≤1.0 ppm were investigated). 

The TM approach calculated the m/z differences of all experimentally observed peak 

pairs and then compared these to the known mass differences in the KEGG-derived 

transformation reference list (see above). A match was made if the error between 

experimental and theoretical m/z differences was less than the threshold defined by the 

mass error surface. Each match, comprising of the experimentally measured peak-pair, 

mass difference and associated empirical formula difference (hereafter termed a 

transformation; Figure 3.1c), was recorded as a potential direct or indirect reactant pair. 

The matches were then mapped by SQL joining statements to the direct and indirect 

reactant pairs in MI-DB based on the transformation. Although the joining statement is 

mainly based on transformations, multiple starting points in the form of KEGG 

compound identifiers (i.e. a peak located within 1.0 ppm of a known metabolite in 

KEGG) are required to initiate the TM algorithm. This strategy avoids mapping the 

wrong reactant pair in the MI-DB as several reactant pairs in this database can be 

separated by the same transformation. It is also important to note that this approach 

requires high accuracy of the m/z values of these single “starting point” peaks. The TM 

algorithm then operated under one of three mapping constraints to improve the flexibility 

and robustness of metabolite identification (Figure 3.1c): map experimental observations 

to direct transformations only (default setting); to direct-or-indirect transformations 
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(more flexible, recording a match even when a shared metabolite is not detected; e.g. 

even if fumaric acid is not detected, both succinic acid and malic acid are still identified, 

see Figure 3.1c); or to direct-and-indirect transformations (more robust, recording a 

match only when two "downstream" metabolites are present; e.g. if malic acid, fumaric 

acid and succinic acid occur in the mass spectrum, malic acid is identified as it forms a 

direct reactant pair with fumaric acid and indirect pair with succinic acid). These 

examples are given for the simplified case of only 3 metabolites, which is obviously not 

the case for real experimental data. All metabolite identification scripts have been written 

in Python (including SQLite) (http://www.python.org) and form modules of MI-Pack. 

 

3.2.3 Putative metabolite identification of Daphnia magna and Salmonella 

typhimurium HR FT-ICR mass spectra  

Peaks were assigned an empirical formula(e) using MI-Pack software (see table 3.2), 

based upon their accurate mass measurement and, where available, 12C/13C intensity 

ratios were used to estimate the number of carbon atoms. In many cases, each empirical 

formula was putatively assigned a metabolite name using the “single-peak search” or the 

“transformation mapping” approach (direct transformations only, see table 3.2). 
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Table 3.3 Overview details used for putative metabolite identification of for DI FT-ICR mass spectra. D1, 

D2 and S1 correspond to the studies summarised in Sections 3.1.2.1, 3.1.2.2 and 3.1.2.3, respectively. 

Study 
No. of 

peaklists 

Strategy for putative  

identification 

Adduct types 

included 

Mass 

error 

tolerance 

(ppm) 

Atom 

ranges 

allowed* 

D1 1 

Empirical formula 
calculator 

 
Single-peak search (SPS) 

 
[M + H]+, [M + Na]+,  

[M + 39K]+, [M + 41K]+,  
[M + 2Na - H]+,  
[M + 239K - H]+ 

 
<0.75 

 
12C0-34 

H0-72 

N0-15 

O0-19 

P0-4 
32S0-3 

 

 
[M + e]-, [M - H]-,  

[M + 35Cl]-, [M + 37Cl]-,  
[M + Na - 2H]-,  
[M + 39K - 2H]-,  
[M + acetate]- 

 
      

D2 8** 

Empirical formula 
calculator 

 
Transformation mapping 

(TM) 

[M - H]-, [M + 35Cl]-,  
[M + 37Cl]- 

≤1.0 

 
12C0-34 
13C0-1 

H0-72 

N0-15 

O0-19 

P0-4 
32S0-3 
34S0-1 

Na35Cl0-4 

Na37Cl0-4 

 

      

S1 1 

Empirical formula 
calculator 

 
Transformation mapping 

(TM) 

[M + H]+, [M + Na]+,  
[M + 39K]+, [M + 41K]+ 

≤1.0 

 
12C0-34 
13C0-1 

H0-72 

N0-15 

O0-19 

P0-4 
32S0-3 
34S0-1 

 

*empirical formula assignments only, **one peaklist for each of the four chemicals (whole organism and 
haemolymph) 
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3.3 Results and Discussion 

3.3.1 Demonstration of TM algorithm using simulated data 

The value of the TM algorithm was demonstrated by comparing it against a single-peak 

search using a simulated peak list of 16 TCA cycle metabolites. All 16 metabolites were 

identified by both identification strategies (Table 8.1). However the single-peak search, 

using the MI-DB, falsely identified 35 metabolite names (of a total of 51 matches, giving 

a FPR of 69%). This high error rate is caused by many metabolites having the same exact 

mass and empirical formulae; e.g. nine metabolites have an exact mass of m/z 192.02700, 

all of which were assigned by the single-peak search even though only two of these 

metabolites (citric and isocitric acid) are part of the TCA cycle. In comparison, the TM 

algorithm falsely identified only 17 metabolites, reducing the number of false positive 

assignments by more than 50%. This highlights the substantial improvement offered by 

the TM algorithm for metabolite identification, gained by using prior knowledge of 

enzymatic relations between reactant pairs. Most reactant pairs comprised of a substrate 

and product with different empirical formulae (Figure 3.1c). Some reactions however 

involve only a structural rearrangement with no net loss or gain of atoms. These result in 

a false positive identification even for the TM algorithm; e.g. even though such structural 

rearrangements do not explicitly occur in the TCA cycle, the TM algorithm falsely 

identified maleic acid (not part of TCA cycle) as it is a structural isomer and product of 

correctly identified fumaric acid (part of TCA cycle). This resulted in one false positive 

identification of m/z 139.00018 ([M + Na]+) for the TM algorithm yet, for the single-peak 

search, two falsely identified metabolites (two isomers for this m/z value) were identified, 

again highlighting the improvement offered by the TM approach. 
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Three mapping constraints can be used in the TM approach. Following the validation of 

the 'direct transformation' (default) constraint, see above, the other two constraints were 

applied to the TCA cycle both successfully identifying all 16 metabolites. Compared to 

the default constraint, the direct-or-indirect transformation constraint resulted in only one 

additional false identification, which is again ca. 50% lower than the number of false 

identifications using a traditional single-peak search. The more robust constraint, direct-

and-indirect transformations, decreased the number of false identifications by three. 

Although this constraint increases the confidence in those metabolites that are identified, 

it has the potential to not identify a metabolite that is present in the mass spectrum (see 

Section 3.3.4). Overall, all three constraints significantly decreased the false positive 

identification error rate compared to a single-peak search. 

 

3.3.2 Mass error surface for peak-pair differences 

A novel semi-automated approach to estimate mass errors associated with peak 

differences in experimental mass spectra was developed (Figure 3.3). The resulting mass 

error surfaces, represented as both absolute and relative errors, are shown in Table 3.4. 

Errors were calculated for peak differences in the range m/z 0-80 only. This range was 

selected for two reasons. First, peak differences >80 m/z are not particularly abundant and 

are not so well distributed throughout the mass spectra. Second, as the empirical 

cumulative distribution of all substrate-product mass differences (selected from MI-DB) 

showed that ca. 80% of these are below 80 Da (Figure 3.4a), thus representing the most 

important range. In principle, the mass error surface could be extrapolated beyond this 

range using mass differences such as mono- to disaccharides, fatty acids to glycerides and 
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lipids. A wider mass range of the mass spectrum is required as the abundance of these 

mass differences is particular low in the mass range m/z 70-500. However, exploiting 

other types of mass differences could be of high interest for lipid analysis where 

particular mass differences occur in high numbers in particular ranges of the mass 

spectrum. Nevertheless, here I focused on actual, more reliable empirical peak 

differences. The initial location of peaks assumed a maximum mass error of 1.5 ppm. If 

this value was unrealistically small, compared to the experimental error, the mass error 

surface would have underestimated the errors. However, Figure 3.4b clearly shows that 

all the experimental observations lie well within this error range. Having confirmed that I 

have not underestimated the errors, the considerable improvement (i.e. smaller mass error 

tolerances) from using empirically-derived mass errors of peak-pair differences compared 

to using a fixed maximum mass error on both peaks (Jourdan et al., 2008) can be seen in 

Table 8.2; e.g. for a peak-pair spacing of 2.01565 m/z (i.e. H2) in the range m/z 300.00000 

to 302.01565, the mass error surface has a ca. 3-fold smaller error than a fixed 1.0 ppm 

error approach. It is also worth noting that the relative mass errors associated with peak 

differences can be dramatically larger than one might expect in high mass accuracy FT-

ICR MS. For example, 13C-12C peak-pair differences near m/z 400 have an error of >300 

ppm, reinforcing the importance of using an empirically derived error surface to 

maximise the accuracy of metabolite identification in the TM algorithm. 
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Figure 3.3 Mass error surface derived from experimental mass spectral data (human cancer cell extracts), 

which represents (a) absolute mass error (Da) and (b) relative mass error (ppm) associated with the mass 

difference between a pair of peaks. This error is a function of both the mass difference of the peak-pair as 

well as the mean of the m/z values of multiple peaks present within a sliding window between 70 and 500 

Da. 
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Figure 3.4 (a) Empirical cumulative distribution of all modified reactant-pair mass differences confirming 

that ca. 80% of substrate-product reactions involve a mass change of <80 Da. (b) Boxplot containing 280 

[M + Na]+ - [M + 39K]+ peak-pair differences occurring in the range m/z 217-248; eight measurements were 

rejected as outliers. The horizontal dotted line illustrates the theoretical m/z difference of 15.97394, and the 

two horizontal dashed lines illustrate the fixed 1.5 ppm error boundaries. (c) Same data as in b (with 

outliers removed) represented as a histogram. The absolute mass error was estimated as twice the standard 

deviation of a fitted normal distribution (here, m/z ±0.00014). (d) All estimated absolute mass errors for the 

[M + Na]+ - [M + 39K]+ peak-pair differences. The error estimated from c is marked by a box. 
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3.3.3 Assessment of false positive rates for metabolite identification 

Incorrect (i.e. false positive) metabolite identification represents a significantly 

underestimated problem in MS based metabolomics. Therefore, to examine and compare 

the robustness of the single-peak search (initially with default mass error ≤1.0 ppm) and 

TM identification strategies, two types of FPRs were determined: (i) the incorrect 

identification of non-human metabolites within experimental mass spectra of human 

cancer cell extracts, by comparing identification results between the MI-DB (i.e. for all 

species) and the human-specific MI-hDB; and (ii) the incorrect identification of random 

peaks as metabolites in simulated mass spectra. Table 3.4 summarises the numbers of 

observed peaks (in the mass spectra), de-adducted m/z values and named KEGG 

metabolites that have been putatively identified in these datasets, using both identification 

strategies. FPRs for incorrect assignment of non-human metabolites were calculated from 

the ratio of non-human assignments to the total number of assignments (e.g. for a single-

peak search, 2116 metabolites - 678 / 2116 = 68.0% error rate; Figure 3.5a). This 

calculation provides a lower limit on the FPR since there may also be false assignments 

of some human metabolites. The default TM algorithm is >4 times more effective at not 

incorrectly identifying non-human metabolites compared to a single-peak search, with a 

FPR of only 15.9%. This considerable difference in error rates arises in part because the 

human metabolites in a human cancer cell are strongly related to each other via direct and 

indirect enzymatic transformations; i.e. the metabolites are linked in non-random 

networks. The two other mapping constraints in the TM algorithm had a logical but 

minor affect on the FPRs (Figure 3.5a). Considering the 3925 peaks in the cancer cell 

mass spectra, the single-peak search identified (including incorrect assignments) ca. 20% 
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while the TM algorithm identified ca. 11%, based on the MI-hDB. This relatively low 

number of assignments is caused by several factors, including that only three adducts  

([M + H]+, [M + Na]+, [M + 39K]+) were considered yet several others can form in the ion 

source (Draper et al., 2009), that in-source fragmentation was not considered, and that the 

KEGG database is known to be incomplete. Even these low percentages however equate 

to >250 metabolites (or de-adducted m/z values) putatively identified in the mass spectra, 

using the TM algorithm, which is >5 times greater than for a typical NMR metabolomics 

study (Southam et al., 2008; Tiziani et al., 2009). 
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Table 3.4 Summary of the total number (3925) of observed peaks, “de-adducted” m/z values and named 

metabolites that were assigned in the final peak list of human cancer cells and in simulated random mass 

spectra (average of 51 random peak lists), using a single-peak search or TM algorithm with three different 

constraints. Two databases were employed, one containing metabolites from all species (MI-DB) and the 

other being human-specific (MI-hDB). 

 Observed peaks 

“De-adducted” 

m/z values 
Metabolite names 

 DB hDB DB hDB DB hDB 

Human cancer cell extract peak list       

Single-peak search 795 437 646 305 2116 678 

TM (Direct) 411 370 289 247 629 529 

TM (Direct-or-indirect) 445 396 319 271 729 612 

TM (Direct-and-indirect) 367 325 252 214 528 451 

Simulated random peak lists       

Single-peak search 179 58 174 53 408 106 

TM (Direct) 21 18 17 15 35 29 

TM (Direct-or-indirect) 37 32 33 27 75 59 

TM (Direct-and-indirect) 10 9 7 7 15 13 
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Figure 3.5 (a) Error rates for the false positive identification of non-human metabolites within human 

cancer cell mass spectra, for different identification algorithms. (b) Error rates for the false positive 

identification of non-human metabolites within human cancer cell mass spectra, for single-peak search 

using different ppm errors. (c) Error rates for the incorrect assignment of metabolites within simulated 

random mass spectra, for different identification algorithms and for the MI-DB and human-specific MI-

hDB. 
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The calculations above for the single-peak search were based on matches with a mass 

error ≤1.0 ppm, which is a commonly used error boundary for metabolite identification in 

high resolution mass spectra (Kind & Fiehn, 2006; Kind & Fiehn, 2007). However, to 

provide a fair comparison between the single-peak search (with fixed mass error) and TM 

approach (with mass error surface), the single-peak search was repeated over a series of 

mass measurement errors. As anticipated, a smaller ppm error decreases the number of 

human and non-human named metabolite assignments from 2116 (for 1.0 ppm mass 

error) to 1629 (for 0.5 ppm), which increases the likelihood of missing correct 

assignments (i.e. increases the FNR). Against this, the FPR does decrease as a function of 

decreasing ppm mass error (Figure 3.5b), but only very slightly. This latter result in 

particular highlights the significant benefit of the TM approach (Figure 3.5a) versus a 

single-peak search, even when an unrealistically low 0.2 ppm mass error is employed for 

the single-peak approach. 

Incorrectly assigning metabolites to random peaks and noise, which are inherent to mass 

spectra even when using strict noise filters during spectral processing (Payne et al., 

2009), also reduces the accuracy of metabolite identification. FPRs for incorrectly 

assigning random peaks were calculated by referencing the number of incorrect 

assignments (simulated random dataset) to the total number of assignments (cancer cell 

dataset); e.g. for a single-peak search using the MI-DB, 408 incorrect metabolite 

assignments / 2116 = 19.3% error rate (Figure 3.5c). This FPR was >3 times lower for the 

default TM algorithm, at only 5.6%. With the more robust mapping constraint this error 

decreases to 2.8%. If the human-specific MI-hDB is employed, the error rate decreases 
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somewhat for the single-peak search only, but remains ca. 3 times larger than for the TM 

algorithm (Figure 3.5c). 

Having considered two error rates associated with false metabolite identifications, I have 

clearly documented the significant advantage of the TM algorithm compared to a single-

peak search. The enzymatic relationships between metabolites play an essential role in 

this improved performance, confirming that inclusion of prior biological knowledge 

provides one route to more robust metabolite identification. Furthermore, the source of 

prior knowledge also impacts on the error rates; e.g. for the default TM algorithm a total 

of 629 and 529 metabolites are putatively identified from the MI-DB and MI-hDB 

respectively. This difference almost certainly reflects a greater number of false positive 

assignments when using the considerably larger database. Therefore, a further strategy 

for improving the accuracy of metabolite identification is to use species-specific 

databases, though these are still somewhat scarce (Brown et al., 2009). 

 

3.3.4 Assessment of false negative rates for metabolite identification 

As shown above, the TM algorithm identifies fewer metabolites in the mass spectra of 

human cancer cell extracts than a single-peak search (see Table 3.4). The data 

demonstrate that this results, at least in part, from the lower FPR of the TM algorithm. 

However the mapping constraints imposed by TM, that identified metabolites must be 

directly or indirectly enzymatically linked to other identified metabolites, might result in 

some metabolites within the cancer cells remaining unidentified (i.e. effectively a false 

negative assignment). Arguably, this could partly contribute to the reduction in the 

number of identified metabolites using the TM approach. To assess the FNR, I first 
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confirmed the assignments of some metabolites within the same cancer cell extracts using 

a complementary analytical method, NMR spectroscopy. A total of 39 cellular 

metabolites were identified in the NMR spectra, of which 26 were subsequently 

confirmed to be present in the positive ion FT-ICR mass spectra using manual methods 

(using a 1.0 ppm mass error range and searching for only the [M + H]+, [M + Na]+ or [M 

+ 39K]+ adducts). The remaining 13 metabolites were not detected as ions of any of these 

three adduct forms, preferring to form negative ions only. The FNRs of a single-peak 

search and TM algorithm were evaluated by their effectiveness at identifying these 26 

confirmed metabolites in the cancer cell mass spectra (see Table 3.5). 
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Table 3.5 Summary of the number of metabolites identified (and percentage of total), out of a maximum of 

26 compounds confirmed by NMR spectroscopy, using a single-peak search and TM algorithm. 

 No. of metabolites identified 

 
with unique 

name 
with >1 name

a
 Not identified

b
 

Single-peak search 3 (11.5%) 23 (88.5%) 0 (0.0%) 

TM (Direct) 8 (30.8%) 17 (65.4%) 1 (3.8%) 

TM (Direct-or-indirect) 5 (19.2%) 21 (80.8%) 0 (0.0%) 

TM (Direct-and-indirect) 6 (23.1%) 16 (61.5%) 4 (15.4%) 
ai.e. includes false positive assignment, bi.e. represents a false negative assignment 
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The single-peak search identified all 26 metabolites, whilst the default TM algorithm 

successfully identified 25 of these compounds (yielding a FNR of 3.8%). This failure to 

identify citric acid, due to the mapping constraints of the default TM algorithm (direct 

transformations only), did not occur when a direct-or-indirect transformation constraint 

was used and all 26 metabolites were identified. Conversely, the more robust direct-and-

indirect constraint increased the FNR to 15.4%. Considering those metabolites that were 

identified unambiguously, both the single-peak search and default TM algorithm 

identified glutathione, pantothenic acid and taurine, yet the TM algorithm additionally 

identified creatine, phosphoethanolamine, glycine, methionine and succinic acid as 

unique hits. This >2-fold increase in unambiguous identification further highlights the 

superior performance of the TM approach versus the traditional method. The remaining 

metabolite identifications were ambiguous in that the NMR-confirmed metabolites 

occurred at identical m/z values to other compounds. However, even for this case the TM 

algorithm yielded fewer false positive assignments than the single-peak search; e.g. the 

single-peak search resulted in 4 false positive and 1 true assignment of tyrosine, whereas 

the default TM algorithm yielded only 1 false positive and 1 true assignment. 

Considering all metabolites assigned to more than one name, the TM algorithm is >3 

times more effective at decreasing the FPR. Consistent with our results above (default 

TM algorithm generated 50 named metabolites, and the single-peak search generated 151 

names; see Table 8.3). 

As anticipated I have demonstrated that the constraints imposed by the TM algorithm, via 

the inclusion of prior biological knowledge, causes a non-zero FNR for metabolite 

identification (i.e. if a metabolite is present in a sample that is not directly or indirectly 
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enzymatically related to another identified metabolite, it will not itself be identified). 

However, this FNR of <5% is trivial relative to the advantage of the TM approach for 

drastically reducing the FPRs. 

 

3.3.5 Applications – Putative identification of metabolites in biological HR 

FT-ICR mass spectra 

Here three putative identification strategies were employed to three different studies. In 

the first strategy, empirical formulae were assigned to the peaks using an elemental 

composition calculator with appropriate constraints. In addition, in cases where carbon 

isotope patterns were detected, the 12C-13C ratio was used to calculate the approximate 

number of carbon atoms in the metabolite. The second strategy utilised the high mass 

accuracy of the FT-ICR measurements to match the observed m/z values of the peaks to 

putative metabolite identities in a modified KEGG LIGAND database. Finally, for the 

third strategy the TM algorithm was applied. 

The number of matches (empirical formula(e) and metabolite names(s)) per peak ranged 

from zero to many and are show in Table 8.4 and 8.5. A summary of the total number of 

peaks observed, and the number of empirical formula(e) and metabolite name 

assignments are summarised in Table 3.6. When positive ion mode was used to record 

spectra (SIM-stitching acquisition parameters for the LTQ FT in this case), significantly 

less peaks were observed (see Table 3.6, study D1). This may reflect that the majority of 

the metabolites (i.e. chemical structures) in this particular sample type are more likely to 

form negative adducts during ionisation. Although the majority of peaks (73%-91%) in 

all three studies were assigned at least one empirical formula (including false positive 
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assignments), several remained unassigned. This is likely to arise due to the presence of 

isotopes or alternative adducts which were not included in the assignment algorithms. A 

few hundred peaks were assigned to one or many metabolite names using TM or SPS. 

The incompleteness of the KEGG database, used for both algorithms, is the underlying 

reason for the low proportion of putative identified peaks. Putative identification 

algorithms, such as TM, are highly dependent on the completeness of existing metabolic 

networks such as KEGG. Therefore, reconstruction of existing and novel metabolic 

networks is required to ultimately improve annotation of mass spectra. Furthermore, the 

number of assignments using SPS was significantly higher compared to TM. Dataset D1 

and S1 have approximately the same number of peaks but different number of 

assignments (see Table 3.6). However, both MS datasets represent a different set of 

metabolites (D1: metabolome versus S1: AcrAB-TolC exported compounds into the 

media), which complicates the comparison. As shown in Chapter 3, ~68% of the SPS 

assignments are false-positives in comparison to ~16% for TM.  

Several empirically-calculated numbers of carbon atoms derived from the 12C-13C 

intensity ratio are consistent with the actual empirical formula assignments (see Table 8.4 

and Table 8.5). The incorporation of RIA characterisation into MI-Pack is essential future 

work as explained in Chapter 7. Note that none of the metabolite assignments reported in 

this Chapter can be regarded as definitive since they depend only on accurate mass and 

therefore do not fulfil the Metabolomics Standards Initiative criteria for metabolite 

identification (Sumner et al., 2007). 
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Table 3.6 Summary of the total number of peaks in positive and/or negative ion FT-ICR MS datasets of D. 

magna (D1 and D2) and S. typhimurium (S1), and the number of those peaks that could be assigned 

empirical formula(e) and putative metabolite identities. D1, D2 and S1 correspond to the studies 

summarised in Sections 3.1.2.1, 3.1.2.2 and 3.1.2.3, respectively. 

Number of peaks Positive ion mode Negative ion mode 

Study D1
a
 S1 D1

a
 D2

b
 

Total (after signal filtering)c 1848 2051 3599 5627 

Assigned to ≥1 empirical formulae 1478 (80%) 1487 (73%) 3290 (91%) 5007 (89%) 

Assigned to unique empirical formula 675 (37%) 393 (19%) 231 (6%) 469 (8%) 

Assigned to ≥1 KEGG LIGAND ID 283SPS (15%) 115TM (6%) 734SPS (20%) 158TM (3%) 
aFollowing removal of assignments in which the match was a non-endogenous metabolite such as a drug, 

plasticiser or pesticide (Taylor et al., 2009), bAverage number over 8 peaklists, cPayne et al. (2009), 

SPSSingle-peak search, TMTransformation Mapping. 
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In addition to the general discussions above regarding putative identification of the three 

MS datasets, it is worth mentioning several other successful findings that were previously 

published in Metabolomics (Taylor et al., 2009) and Toxicological Sciences (Taylor et 

al., 2010). 

Automated putative metabolite identification of thousands of peaks in the MS dataset 

used for investigating copper toxicity in D. magna has resulted in a list of putative 

metabolites that are potentially involved in oxidative stress (Taylor et al., 2009). These 

were selected based on top weighted peaks calculated using a PLS-DA model. Although, 

the list included mainly amino acids, one particular metabolite named N-acetylspermidine 

was putatively identified as a novel marker for copper toxicity. Based on this particular 

metabolite and the available related literature the following hypothesis was constructed 

by Taylor et al. (2009): “We hypothesise that the known induction of reactive oxygen 

species (ROS) due to copper exposure also increases the activity of spermidine/spermine 

N-acytyltransferase (SSAT) in D. magna, resulting in the observed increase in N-

acytylspermidine”. Although the focus of this study was the optimisation and evaluation 

of the effectiveness of DI FT-ICR MS metabolomics for toxicity testing in D. magna, the 

ability to determine and putatively identify metabolic changes has a huge potential in the 

future of ecotoxicogenomics research. 

A subsequent investigation into whether different acute chemical toxicities can be 

discriminated via changes in the Daphnid metabolome also included putative 

identification of metabolites (Taylor et al., 2010). In this case eight large MS datasets 

were annotated and investigated (see Table 8.4). Based upon the putative annotation and 

significant fold changes of peak intensities between different sample classes (controls and 
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toxicants), several observations were reported. For example, a unique increasing trend of 

multiple fatty acid and oxylipid metabolites was induced by propranolol (Taylor et al., 

2010). This observation was then more extensively investigated (using KEGG pathways 

and other putatively identified metabolites) and linked to the disruption of the eicosanoid 

biosyntheses pathway (KEGG pathway ko00590). This example of metabolic biomarker 

discovery again clearly shows the benefit of putative identification of MS datasets. 

Finally, the overall aim of the third application was to identify natural substrate 

molecules exported by AcrAB-TolC to provide new data on the molecular basis of 

pathogenicity of S. typhimurium. First, the 1478 peaks were putatively assigned to one or 

more empirical formulae and 675 of these assignments were assigned to a single 

empirical formula. Applying the TM algorithm to the 2051 peaks resulted in 115 peaks 

being assigned to one or many metabolite name(s). Although further analysis is required, 

this dataset of putatively identified peaks has the potential to guide the study to identify 

natural substrate molecules exported by AcrAB-TolC and construct novel hypothesis, as 

shown for the two D. magna studies above.  
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3.4 Conclusions 

Metabolite identification is of central importance to all metabolomics studies as it 

provides the route to new knowledge. Here I have documented extremely high FPRs of 

metabolite identification (up to 68%) for the traditional method of automated database 

searching accurate masses on a single-peak-by-peak basis. I therefore confirm the recent 

conclusion of Draper et al. (2009) that the annotation of a large proportion of peaks in 

high resolution mass spectra of metabolite mixtures is not possible by this simple 

approach. Biological samples are not, however, composed of random mixtures of 

metabolites, but instead comprise of thousands of compounds that are related through 

specific chemical transformations that ultimately form large metabolic networks. Here I 

have demonstrated how prior biological knowledge of transformations between substrate-

product pairs, extracted from the KEGG database, can significantly decrease FPRs of 

metabolite identification while maintaining minimal FNRs compared to the single-peak 

search. Integral to this improved accuracy of metabolite identification is a novel method 

to determine the mass errors associated with peak-pair differences, which generates a 

mass error surface. Overall, our transformation mapping approach with mass error 

surface (using the default constraint of mapping to direct transformations only) is >4 

times more effective at not incorrectly identifying non-human metabolites in a human 

sample (error rate of 15.9%), and >3 times more effective at not incorrectly identifying 

random peaks as metabolites (error rate of 5.6%). Furthermore, by comparing the FT-ICR 

MS data against NMR measurements of the same biological samples, I have confirmed a 

low FNR for metabolite identification of only 3.8%. Our findings also confirm that error 

rates can be reduced by using a species-specific database, and demonstrate that the FPR 
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and FNR are dependent on the accuracy of the database(s) employed. Since all metabolite 

databases and metabolic reconstructions are currently incomplete, in particular for lipid 

metabolism (Nookaew et al., 2008), further improvements of these resources are urgently 

required. The methods reported here could, following minor alterations (e.g. data 

compatibility and integration of other data sources), utilise reconstructions of metabolic 

networks and therefore further contribute to the field of systems biology. Furthermore, 

although this study has focused on positive ion mass spectra, the methods and principles 

are equally applicable to negative ion data by considering the different types of ions 

formed (e.g. [M - H]- and [M + 35Cl]- instead of [M + H]+ and [M + Na]+). Overall, I 

conclude that inclusion of prior biological knowledge in the form of known metabolic 

pathways provides one route to more accurate putative metabolite identification in MS 

based metabolomics. The next step towards more robust metabolite identification is to 

include further experimental measurements, such as retention time data from LC-MS 

studies. 

In addition, I have demonstrated the application of several algorithms and analytical 

methods (see Chapter 4) for putative identification of metabolites. This has been achieved 

for two different sample types (i.e. D. magna and S. typhimurium), using two different 

metabolomics strategies, fingerprinting and footprinting. The MS datasets recorded in 

positive ion mode resulted in significantly less peaks in comparison to the datasets 

recorded in negative ion mode. This suggests that certain chemical structures are more 

likely to form negative ions. Between 6% and 37% of the peaks in the different datasets 

were assigned to a single empirical formula and the percentage of peaks assigned to one 

or many empirical formulae varied from 73% up to 91%. The highest percentage of 
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single empirical formulae assignments was found for mass spectra recorded in positive 

ion mode. However, even when appropriate constraints were applied to filter down the 

number of empirical formula(e) assignment(s) many false positives were found (Kind & 

Fiehn, 2007). A small percentage of the peaks of each dataset were assigned to one or 

many metabolite names (SPS ≤20% and TM ≤6%). Incompleteness of the database used 

for identification is likely the main reason for this observation, and therefore 

reconstruction of metabolic networks, as already mentioned, is highly important to 

improve the accuracy and completeness of metabolite identification. Nevertheless, the 

incomplete putative identification of MS data has still shown to be successful for guiding 

ecotoxicogenomics research as shown in the two studies by Taylor et al., (2009, 2010). 
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CHAPTER FOUR: 

RE-OPTIMISATION OF SIM-STITCHING 

PARAMETERS FOR THE LTQ FT ULTRA5 

4 6 

                                                

5 Parts of this chapter, including Figure 4.2, 4.3, 4.5, 4.8 and table 4.2, have been published in Analytical 

Chemistry (Weber et al., 2011). 
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4.1 Introduction 

HR FTMS, including FT-ICR MS (Marshall et al., 1998) and Orbitrap technologies (Hu 

et al., 2005), has become a leading analytical platform in metabolomics (Junot et al., 

2010). Analytical methods that maximise the sensitivity and mass accuracy are essential 

to enable the detection of as large a proportion of the metabolome as possible and to 

assist in metabolite identification. To achieve this goal we previously developed the SIM-

stitching method for direct infusion HR FTMS, which is based upon the collection and 

subsequent ‘stitching’ together of multiple adjacent SIM scans (Southam et al., 2007). 

The upgrade of our LTQ FT to an LTQ FT Ultra, with a larger trap volume in its ICR 

detector cell, provided an opportunity to re-optimise the SIM-stitching acquisition 

parameters and further improve the quality of metabolomics analysis. The more advanced 

ICR detector cell, of the LTQ FT Ultra, allows a larger radius of ion cyclotron motion, 

therefore considerably more charges can be trapped without an increase in space-charge 

effects. This results in higher sensitivity without compromising mass accuracy. 

The objectives to achieve this goal are therefore to carry out the analytical tests 

developed by (Southam et al., 2007) for wide-scan, high dynamic range DI FT-ICR MS 

analysis of complex biological mixtures of low molecular weight metabolites. The 

optimisation process was applied to a chemically defined mixture of PEG, as well as to 

real biological samples. The chemically defined mixture enabled assessment of the mass 

accuracy of the Thermo Scientific LTQ FT Ultra as a function of the number of ions 

transferred into the ICR detector cell, and was also used to assess the mass accuracy of 

the SIM-stitching method. Liver extracts were used to determine the ideal width of each 

SIM window, and to assess the improvement in dynamic range by comparing the total 
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number of peaks detected using the former SIM-stitching approach and the re-optimised 

SIM stitching approach. In addition, the intensity profiles across SIM-stitched mass 

spectra were investigated as done previously by (Payne et al., 2009). 
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4.2 Material and methods 

4.2.1 Preparation of standards and biological samples for HR FTMS 

PEG standards, fish liver extract samples, BioPEG (i.e. polar metabolites from a fish liver 

extract resuspended in a 80:20 v/v methanol:water solution with 0.25% formic acid, 

0.0005% PEG200 and 0.0005% PEG600 (Sigma-Aldrich, UK)) were prepared as 

described in more detail in Section 2.1. 

 

4.2.2 HR FTMS 

Analyses were conducted using a hybrid 7-Tesla linear ion trap FT-ICR mass 

spectrometer (LTQ FT Ultra, Thermo Scientific, Germany) equipped with a Triversa 

chip-based nanoelectrospray ion source (Advion Biosciences, NY, USA). 

Nanoelectrospray conditions (controlled by ChipSoft software version 8.1.0, Advion 

Biosciences) comprised 0.5 psi backing pressure, +1.7 kV electrospray voltage and ca. 

200 nL/min sample flow rate. All analyses were recorded in positive ion mode. A mass 

resolution of 100,000 and maximum linear ion trap fill-time of 1 sec were fixed 

throughout the analyses (see Section 2.2 for more details). 
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4.2.3 Optimisation of number of ions transferred to ICR cell 

To optimise the AGC target, BioPEG or PEG alone was directly infused into the mass 

spectrometer and a mass range of m/z 300-400 was acquired using the wide SIM mode at 

R=100,000. The AGC target was varied from 1×105, 2.5×105, 5×105, 7.5×105, 1×106, 

2.5×106, 5×106 to 1×107. In addition, the scan mode “narrow SIM” (Thermo Scientific 

terminology) was investigated using the standard fixed window width of 30 Da for a 

mass range of m/z 340-370. Analyses were conducted in triplicate (n=3 mass spectra of 

prepared PEG standards). 

 

4.2.4 Optimisation of SIM window size 

Several “wide scan” (Thermo Scientific terminology) SIM window sizes centered on m/z 

200 were investigated (i.e. 200, 150, 100, 75, 50, 40, 30 Da) as shown in Figure 4.1. The 

number of transients recorded for AGC targets of 5×105 and 1×106 was kept in 

proportion to the size of the window (i.e. ca. 15 transients for 100 Da window and ca. 30 

transients for 200 Da window), so that the overall acquisition time is constant and 

therefore comparable. The average peak count was calculated over several shared m/z 

regions (m/z 185-215, 185-190, 190-195, 195-205, 205-210 and 210-215), as shown in 

Figure 4.1. Analyses were conducted in triplicate (n=3 mass spectra of fish liver extract 

samples). 
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Figure 4.1 Experimental design for the study that re-optimised the SIM window size by counting the 

number of peaks within several shared m/z ranges (six different colours) for several different window sizes 

(grey, m/z 30, 40, 50, 75, 100, 150 and 200). 
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4.2.5 Ion intensity across the SIM window 

To evaluate signal loss at the ends of each SIM window (termed ‘edge-effects’ (Payne et 

al., 2009; Soule et al., 2010; Southam et al., 2007), several wide SIM scans of m/z 100 

(each shifted by 5 m/z, Figure 4.2) were recorded using an AGC target of 1×106. The 

intensities of several carbon isotope-pairs were measured at different positions 

throughout the SIM scan to determine the extent of the edge-effects (Figure 4.2). 

 

4.2.6 Quantification of dynamic range in biological mass spectra 

The following window widths using scan mode “wide scan” and an AGC target of 1×106 

were compared to quantify the overall sensitivity (i.e. dynamic range) and mass accuracy 

in biological mass spectra: m/z 75, m/z 125 and m/z 150. Overlapping regions for each of 

these window sizes were altered (see Table 4.1) to keep the total m/z range of the final 

SIM-stitched mass spectra approximately the same. The overall acquisition time was kept 

to 5.25 min which is identical to the protocol for the LTQ FT (Southam et al., 2007). 

Analyses were conducted in triplicate (n=3 mass spectra of prepared BioPEG sample). 

Peaks were counted in the mass range of m/z 80 – 485 after signal filtering was applied 

(Payne et al., 2009), i.e. a SNR threshold of ≥7 and only peaks that occur in at least 2-

out-of-3 replicate mass spectra were maintained, both used previously for mass spectra 

collected on the LTQ FT (Southam et al., 2007)). 
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Table 4.1 Parameters used for the comparison of observed number of peaks for the original  

(Southam et al., 2007) and the re-optimised SIM-stitching protocols. *removed from each end of the SIM 

window. 

Size of SIM window 

(m/z) 

Overlap 

(m/z) 

Total range 

(m/z) 

Number of 

SIM Windows 

AGC 

target 

Mass 

spectrometer 

30 10 (5*) 70-500 21 1×105 LTQ FT 

75 40 (15*) 70-495 11 1×106 LTQ FT Ultra 

100 45 (15*) 70-500 7 1×106 LTQ FT Ultra 

150 57 (15*) 70-499 4 1×106 LTQ FT Ultra 

 

 

 

 

Figure 4.2 Schematic representation of the experimental design to characterise ‘edge effects’ for a m/z 100 

wide SIM scan. Several PEG isotope pairs were measured across the window, in this case the figure shows 

one particular PEG isotope pair as an example (m/z 217.10465 and m/z 218.10800). This enabled the 

intensities of these peaks to be measured as a function of their position within the SIM scan. 
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4.2.7 Data processing 

Mass spectra collected for re-optimisation were processed using the SIM-stitching 

algorithm (Southam et al., 2007) (see Chapter 2 for more details).  

 

4.2.8 Calibration of mass spectra 

Spectra collected for optimisation of the number of ions transferred to the ICR cell 

(section 4.2.3) and the quantification of dynamic range in biological mass spectra (section 

4.2.6) were internally calibrated, either by a single calibration using all identified PEG 

peaks or by multiple calibration using calibrants chosen at random. For multiple 

calibration (Section 4.2.3), calibrants (18 PEG peaks in total, m/z 300-400) occurring 

within spectra (i.e., PEG peaks ([(C2H4O)n+H2O+H]+, [(C2H4O)n+H2O+Na]+, 

[(C2H4O)n+H2O+K]+ and carbon isotopes of all three) within ≤1.5 ppm mass error 

tolerance were randomly divided into two equal subsets. One subset was used for 

calibration (ca. 9 PEG peaks) and the other for mass error measurements (ca. 9 PEG 

peaks). To retrieve reliable mass error measurements this process was repeated 100 times. 

Other mass spectra were non-random internally calibrated using the calibrants mentioned 

above (Sections 4.2.4 - 4.2.6). 
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4.3 Results and Discussion 

4.3.1 Optimisation of the number of ions transferred to the ICR cell 

The more advanced ICR detector cell, of the LTQ FT Ultra, allows a larger radius of ion 

cyclotron motion, therefore considerably more charges can be trapped without an 

increase in space-charge effects. This results in higher sensitivity without compromising 

mass accuracy. In theory, the AGC target (i.e. the number of charges to be transferred 

from the front-stage ion trap to the ICR detector cell) would be set extremely low to 

achieve near perfect mass accuracy. However, lowering the AGC target reduces 

sensitivity and so a compromise must be reached. Therefore, the number of charges 

transferred from the LTQ to the ICR detector cell was optimised to maximise sensitivity 

whilst minimising the mass error. AGC target values of 1×105 up to 1×106 yielded similar 

mass errors (root-mean-squared (RMS) error of 0.12-0.18 ppm and maximum absolute 

error of 0.27-0.61 ppm, at R=100,000; Figure 4.3). As the AGC target increased beyond 

1×106 a trend towards higher RMS errors emerged, likely caused by increased space-

charge effects. Therefore an AGC target of 1×106 was selected corresponding to an RMS 

mass error of 0.16 ppm and maximum absolute mass error of 0.29 ppm. This maximum 

mass error was considerably better than the 0.48 ppm error recorded previously on the 

LTQ FT, while the RMS mass error was similar (Southam et al., 2007). Scan mode 

“narrow SIM” was also investigated, however, the fixed window size of 30 Da for this 

scan mode resulted in a low number of observed calibrants for random internal 

calibration (e.g. an increase in AGC target (≥ 1×105) resulted in the disappearance of 

calibrants at the edges of the SIM window). Internal calibration is essential for measuring 
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the decrease of mass accuracy caused by space-charge effects and for that reason scan 

mode “narrow SIM” was not investigated further in this study. The primary advantage of 

this newly optimised method is that 10 times as many charges enter the ICR detector cell 

thereby allowing increased detection sensitivity. 



105 

 

 

 

 

 

 

 

Figure 4.3 Effect of the number of ions transferred to the ICR detector cell on the absolute mass accuracy 

of 9 non-calibrated  PEG compound m/z measurements, after (n=100) random internal calibrations, in a m/z 

100 wide SIM window (m/z 300-400). A total of 18 PEG compounds (i.e. 9 of them used for calibration 

versus 9 of them used to measure mass accuracy) were used, including [(C2H4O)n + H2O + H]+, [(C2H4O)n 

+ H2O + Na]+, [(C2H4O)n + H2O + 39K]+, [(C2H4O)n + H2O + 41K]+ and carbon isotopes of all four. Solid 

bars denote the average root-mean-squared (RMS) mass error, and the error bars represent the average 

maximum absolute mass error. 
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4.3.2 Optimisation of SIM window size 

The next optimisation step included the maximisation of the number of ions detected with 

the optimised AGC target of 1×106 and also with an additional AGC target of 5×105. Fish 

liver extract samples were analysed using seven increased SIM window sizes, each 

sharing a common m/z 30 region centered on the theoretical m/z value of 200 (Figure 

4.2). Although both AGC targets have a similar trend in the average number of observed 

peaks, the highest number of average peaks was observed for an AGC target of 1×106, 

which confirms the findings in Section 4.3.1 (see Figure 4.4). As shown by  

Southam et al. (2007) the number of peaks observed increases for SIM windows with a 

narrower mass range. A similar observation was also observed for the average peak 

counts in our study, but only for the shared regions m/z 195-205 in windows size up to 

100 Da (red) and in particular for an AGC target of 5×105 (e.g. 150 peaks for 30 Da 

window versus 86 peaks for a 100 Da). Surprisingly the average number of observed 

peaks for this particular m/z region increases again for window sizes ≥ m/z 150 (yellow). 

This trend was also found for the regions m/z 205 - 210 and m/z 210 – 215, except that 

the increase in the average number of peaks started at a window size of 100 Da. 

Furthermore, the average number of peaks for several shared regions for a window size 

30 Da (i.e. m/z 185-190, m/z 205-210 and m/z 210-215) and 40 Da (i.e. m/z 185-190 and 

m/z 210-215, particular for 1×106) were proportionally smaller in comparison to the other 

SIM window sizes. This is a result of the decrease in signal at the lower- and upper-end 

of the window. This also explains the difference in average peak count over the total 

shared region (black). Edge effects were characterised up to 15 Da at each end of the 

window (see Section 4.3.3). Therefore SIM window sizes m/z 30, m/z 40 and m/z 50 were 
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excluded from further investigation as more than 50% of the window is discarded to 

avoid edge effects. Overall, both 5×105 and 1×106 AGC targets demonstrated a similar 

profile as mentioned before except for the region m/z 195-205 (red). For an AGC target 

of 5×105 there was a decrease in the number of peaks for the first 3 window sizes (i.e. m/z 

30, 40, 50), which was not the case for an AGC target of 1×106. The observation of 

similar peak counts for relatively small window sizes (i.e. m/z 10 up to 30) was also 

mentioned by Southam et al. (2007). By considering that, (i) ~200 ions of the same 

metabolite are required to generate a detectable signal in the ICR cell (Marshall et al., 

1998), (ii) a total of only 1×105 ions are transferred to the ICR cell as determined by the 

AGC, and (iii) the narrower the SIM window the fewer different metabolites are 

transferred to the cell and, therefore, the greater the likelihood that a low-abundance 

metabolite will be present in sufficient ion number to be detected. It appears, however, 

that the reduction in acquisition time for windows narrower than m/z 30 counteracts any 

sensitivity benefit that would be gained by a further reduction of window size (i.e. there 

is insufficient signal averaging to increase the SNR to detect more peaks). In conclusion, 

window sizes m/z 75, m/z 100 and m/z 150 were selected for further investigation. 
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Figure 4.4 Effect of window size on the average number of peaks in several shared m/z ranges detected in 

BioPEG for two different AGC targets: (a) 5×105 and (b) 1×106. 
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4.3.3 Ion Intensity across the SIM window 

The loss of signal intensity at the ends of a SIM window (‘edge effect’) was characterised 

by measuring the intensities of several PEG isotope pairs at different locations across an 

m/z 100 SIM window (Figure 4.2). The empirically-derived carbon differences of these 

PEG carbon isotope pairs (theoretical number of carbons versus experimental derived 

carbons, see Chapter 5) increases or decreases dramatically in the lower and upper 15 Da 

regions of each scan (Figure 4.5) in comparison to the empirically-derived carbon 

differences derived from the centre of the SIM window. Finally, these regions were 

chosen to be excluded during spectral processing so that they did not contribute to the 

SIM-stitched mass spectrum, which resulted in an overlapping region of m/z 30 for each 

adjacent window. 

The intensity across a 100 Da SIM scan was also investigated for several groups of peaks 

(see Figure 4.6) Similar profiles were measured (e.g. measured signal intensity increases 

as the peak moves across the SIM window) as reported previously by Payne et al. (2009) 

(see Figure 4.6a). However, several additional profiles were observed. For example, 

signal intensities that were constant for the first half of the window, increased in the 

second half of the window (see Figure 4.6d). The profiles also show the “edge effect” 

reported above, which is presented by the disappearance or decrease of signal intensity in 

the lower and upper ends of the window. Next, two different SNR thresholds (i.e. ≥3.5 

and ≥35) were used to examine if these signal intensity profiles are affected by noise. 

Although, profiles based on peaks selected with a less strict SNR filter were somehow 

noisier, the overall profiles of both SNR thresholds are similar (see Figure 4.6). The trend 

of the gradients of all signal intensity profiles is shown in Figure 4.7 and is considerably 
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different from the increasing gradient shown previously (Payne et al., 2009). Therefore 

the increasing linear function that was parameterised by Payne et al. (2009) does not 

fulfil the correction of signal intensities measured by the re-optimised SIM-stitching 

protocol. Further investigation would be needed to parameterise this new signal intensity 

trend. 

The quality of SIM-stitched mass spectra is partly dependent on the performance of 

waveform ion-isolation method used in the linear ion trap to select ions in a certain m/z 

range (i.e. SIM window) prior to detection in the ICR cell. Several waveform ion-

isolation methods for the linear ion trap have been reported previously with mass-

selective instability filtering the most commonly applied for linear ion traps as it is here 

(Song et al., 2009; Soni & Cooks, 1994). This type of ion filtering is typically done by 

adjusting the RF and DC components of the linear ion trap to cause excitation of a range 

of ions. Unwanted ions are then subsequently ejected from the ion trap leaving the 

trapped ions of interested behind. It is not uncommon that ions close to the edges of the 

RF/DC stability field are discriminated or completely ejected due the field imperfection, 

which causes the “edge effects” as shown in Figures 4.4 and 4.5 (Song et al., 2009). 

Additionally, it is not unlikely that the type of waveform ion-isolation method in some 

manner has an effect on the overall signal intensity profile of the SIM window as shown 

in Figures 4.6 and 4.7. 
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Figure 4.5 Cdiff (see Chapter 5) for several PEG isotope pairs in the range m/z 70-590 measured across 

multiple SIM window m/z ranges (measured as shown in Figure 4.2), showing larger and therefore less 

accurate Cdiff values for isotope pairs measured close to the lower and upper edges of the SIM window. The 

vertical dashed lines, m/z 15 from each end, indicate the recommended cutoff for m/z 100 wide SIM 

windows. 
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Figure 4.6 The abundance of several signals relative to their mean values as measured across multiple SIM 

windows (100 Da) with two different SNR thresholds (four figures on the left side: ≥3.5 and four figures on 

the right side: ≥35.0). (a, b) peaks in the range m/z 185-195 (c, d) peaks in the range m/z 295-305 (e, f) 

peaks in the range m/z 435-445 (g, h) peaks in the range m/z 515-525.  
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Figure 4.7 The gradient of the measurement intensity error for a selection of peaks for two different signal-

to-noise ratio thresholds, ≥3.5 and ≥35, located between 70 and 600 m/z. 
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4.3.4 Quantification of dynamic range in biological mass spectra 

The final step was to optimise the SIM window width to maximise the number of peaks 

detected (using AGC target of 1×106 and removing 15 m/z from each end of each SIM 

window). After signal filtering (Payne et al., 2009), the LTQ FT Ultra detected ca. 3 

times more peaks than was achieved previously (Southam et al., 2007) with relatively 

little dependency on the SIM window width (Figure 4.8). A SIM window width of m/z 

100 was selected, with the final optimised method using 7 SIM windows overlapping by 

m/z 30, to cover m/z 70-590. This region contains the highest density of polar 

metabolites. See Table 4.2 for summary of optimal acquisition parameters. Given that the 

final method comprised of fewer SIM windows than before, the total acquisition time was 

much reduced (now only 2.25 min/sample), which along with improved sensitivity and 

mass accuracy, is advantageous for high-throughput metabolomics. 

 



115 

 

 

 

 

 

 

 

Figure 4.8 Number of peaks detected in positive ion direct infusion FT-ICR SIM-stitched mass spectra of 

liver extracts following 2-out-of-3 replicate filtering (Payne et al., 2009). This highlights the ca. 3-fold 

increase in sensitivity using the re-optimised SIM-stitching method on an LTQ FT Ultra mass spectrometer 

compared to the original method on an LTQ FT (Southam et al., 2007). Re-optimisation shows relatively 

little dependency on the SIM window width, with m/z 100 selected for the final method. 
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Table 4.2 Parameters for direct infusion SIM-stitching method implemented originally on a Thermo LTQ 

FT mass spectrometer (Southam et al., 2007) and re-optimised here on a Thermo Scientific LTQ FT Ultra. 

*Scan mode: Wide SIM. **Including a 30 s start delay of dummy scans. 

Parameter LTQ FT LTQ FT Ultra 

AGC target 1×105 1×106 

SIM scan range  m/z 30 m/z 100* 

Overlap of SIM scans  
m/z 10 (m/z 5 removed  

from each end) 
m/z 30 (m/z 15 removed 

 from each end) 

Time for each SIM scan  
(no. of transients) 

15 sec (10) 15 sec (10) 

Total range m/z 70-500 m/z 70-590 

Total number of overlapping SIM 
scans 

21 7 

Total acquisition time per sample ** 5 min 45 sec 2 min 15 sec 
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4.4 Conclusions 

Direct infusion SIM-stitching was re-optimised for the LTQ FT Ultra, resulting in a ca. 3-

fold increase in sensitivity, shorter analysis time (2.25 min versus 5.75 min), and ultra-

high mass accuracy (rms error 0.16 ppm and maximum absolute error of 0.29 ppm) 

compared to our previous method implemented on a LTQ FT (rms error 0.18 ppm and 

maximum absolute error of 0.48 ppm). Intensity across a wide scan SIM window and a 

total SIM-stitched mass spectrum were investigated. The intensities of ions were severely 

reduced up to 15 Da at each end of the wide scan SIM window. To compensate for this 

“edge effect” adjacent windows were overlapped by a region of 30 Da, and 15 Da was 

discarded from each end. This results in seven adjacent windows representing a mass 

spectrum from m/z 70 up to m/z 590. The overall trend of the gradients of all signal 

intensity profiles of several peaks across a SIM-stitched mass spectrum was considerably 

different from the increasing gradient shown previously (Payne et al., 2009). Further 

investigation is required to parameterise this new signal intensity trend. 
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CHAPTER FIVE: 

CHARACTERISATION OF ISOTOPIC ABUNDANCE 

MEASUREMENTS IN HIGH-RESOLUTION FT-ICR 

AND FT-ORBITRAP MASS SPECTRA FOR IMPROVED 

CONFIDENCE OF METABOLITE IDENTIFICATION6 

5  

                                                

6 The contents of this Chapter, including the figures, have been published in Analytical Chemistry (Weber 

et al., 2011). 
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5.1 Introduction 

The high mass accuracy and resolution of HR FT MS instruments, together with 

strategies to improve their dynamic range, e.g. SIM-stitching (Southam et al., 2007; 

Chapter 4), provide the critical combination of specifications for DIMS to investigate the 

metabolome in detail (Soule et al., 2010). However, automated identification of the 

thousands of signals arguably remains the greatest challenge in metabolomics. This 

includes assigning one (or more) empirical formula(e) to each peak in the mass spectrum, 

assigning metabolite name(s) to these empirical formula(e) and, for definitive 

identification, further analytical measurements such as, liquid chromatography and/or 

fragmentation (MSn) (Brown et al., 2011; Wolf et al., 2010)(Brown et al., 2011; 

Heinonen et al., 2008; Wolf et al., 2010). 

Here I focus on the primary step in metabolite identification, namely assigning empirical 

formula(e) to accurate mass measurements. High mass accuracy greatly facilitates this 

process by allowing a small mass error tolerance during searches, thus reducing the 

number of potential empirical formula(e) found. Heuristic rules and restrictions can be 

applied to remove incorrect elemental compositions (e.g. the number and type of atoms, 

and atom ratios), ultimately yielding the most likely empirical formula(e) (Kind & Fiehn, 

2007). However, the number of potential empirical formulae per peak increases 

significantly with m/z; e.g. whereas m/z = 148.00389 can be assigned to a single formula, 

m/z = 450.01864 has 47 possible assignments (for ≤1 ppm mass error tolerance and [C0-

34H0-72N0-15O0-19P0-7S0-8+H or Na or K]+). Consequently, further strategies must be 

employed to reduce false-positive assignments and improve confidence in metabolite 

identification. Relative isotopic abundance (RIA) measurements (from isotope-pairs such 
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as 12Cn and 13C12Cn-1, or 32Sn and 34S32Sn-1) can in principle be highly informative for 

assigning empirical formula(e) by providing an estimate of the numbers of atoms present. 

Kind & Fiehn (2006) and others reported a considerable benefit of incorporating RIA into 

empirical formula(e) determination (Kaufmann, 2010; Miura et al., 2010); e.g. for a peak 

at m/z = 500.00000 (assuming 3 ppm mass accuracy), 33 potential empirical formulae can 

be assigned, yet on adding RIA measurements (assuming 2% accuracy) this decreases to 

only 3 possible assignments. This demonstrates the value of RIA measurements in cases 

where the intensity measurements are accurate, but how appropriate is this assumption 

for HR FTMS instruments used in metabolomics? 

It has been demonstrated that FT-ICR MS RIA measurements of a PEG solution are 

relatively poor above m/z 500, with absolute errors in the number of carbons ranging 

from 0 to 96 (Stenson et al., 2003). Using the same type of instrument, a precision of 

±1.6 carbons was reported for peaks <500 m/z with a SNR ≥25 for a natural organic 

mixture but without defined chemical standards, but this became considerably poorer for 

peaks with SNR <25 (Koch et al., 2007). Both studies reported that digital resolution and 

the bias of closely spaced cyclotron frequencies may lead to imprecise RIA 

measurements. Evaluation of RIA accuracy on an LTQ Orbitrap (m/z >600) showed that 

intensity error measurements increased when resolution was increased, with 3% accuracy 

for a resolution of R=7,500 and increasing to 10% for R=100,000 (Xu et al., 2010). It has 

also been reported that absolute mean RIA errors for an LTQ Orbitrap are 16% for 

positive ion mode and 12% for negative ion mode (Xu et al., 2010). In general, these RIA 

errors are considerably greater than those used by Kind & Fiehn (2006), drawing into 

question the value of isotopic intensity measurements in HR FTMS metabolomics. 
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Furthermore, none of the FT-ICR MS studies used the ideal sample type for 

characterising RIA, i.e. a biological extract spiked with defined chemical standards, 

leaving the benefit of RIA measurements for peak annotation in metabolomics uncertain. 

This is reiterated by Junot et al. (2010), who stated “…there is very limited information 

available in the literature about the ability of mass spectrometers to achieve accurate 

measurements of relative isotopic ion abundances”. 

Here I seek to determine the accuracies and precisions of RIA measurements on two 

leading HR FTMS platforms to definitively evaluate the extent to which such 

measurements can improve automated metabolite identification. To achieve this I had 

two specific objectives. Initially, I sought to characterise the accuracies of RIA 

measurements on the FT-ICR MS (including at ultra-high resolution: R=100,000-

750,000) and Orbitrap instruments (R=100,000), using the re-optimised stitching 

parameters (Chapter 4) and biological samples spiked with PEG standards. The second 

objective was to assess the efficacy of RIA measurements in the metabolomics workflow 

by calculating the extent to which these measurements reduce the number of empirical 

formulae in automated metabolite identification. 

 

5.2 Material and methods 

5.2.1 Preparation of standards and biological samples for HR FTMS. 

A BioPEG solution, polar metabolites from a fish liver extract resuspended in a 80:20 v/v 

methanol:water solution with 0.25% formic acid, 0.0005% PEG200 and 0.0005% 

PEG600 (Sigma-Aldrich, UK), was prepared as described in more detail in Section 2.1. 
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5.2.2 HR FTMS 

Analyses were conducted using either a hybrid 7-Tesla linear ion trap FT-ICR mass 

spectrometer (LTQ FT Ultra, Thermo Scientific, Germany) or a hybrid LTQ Orbitrap 

Velos mass spectrometer (Thermo Scientific) both equipped with a Triversa chip-based 

nanoelectrospray ion source (Advion Biosciences, NY, USA). Nanoelectrospray 

conditions (controlled by ChipSoft software version 8.1.0, Advion Biosciences) 

comprised 0.5 psi backing pressure, +1.7 kV electrospray voltage and ca. 200 nL/min 

sample flow rate (see Section 2.2 and Table 4.2 for more details). 

To determine RIA accuracies for the LTQ FT Ultra (n=100 mass spectra, at R=100,000) 

and LTQ Orbitrap Velos (n=30 mass spectra), using the optimised acquisition parameters 

(see Chapter 4), BioPEG was analysed at R=100,000. In addition the effect of resolution 

on RIA error was assessed by analysing BioPEG in positive ion mode on the LTQ FT 

Ultra, at R=100,000, 200,000, 400,000 and 750,000 (n=3 mass spectra each). 

 

5.2.3 Data processing 

Transient MS data from the LTQ FT Ultra were processed using the SIM-stitching 

algorithm (Southam et al. (2007)). Spectra were internally calibrated (i.e. PEG peaks 

([(C2H4O)n+H2O+H]+, [(C2H4O)n+H2O+Na]+, [(C2H4O)n+H2O+K]+ and carbon isotopes 

of all three) within ≤1.5 ppm mass error tolerance). Data collected on the Orbitrap were 

processed as externally calibrated raw files (using Xcalibur, Thermo Scientific) as the 

transient data was not available. To facilitate comparison of the LTQ FT Ultra and 
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Orbitrap data, the LTQ FT Ultra data was additionally processed as externally calibrated 

raw files in Xcalibur. 
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RIA accuracy calculations in FT mass spectra were based mainly on intensities ratios of 

carbon isotope-pairs of known PEG peaks. Therefore, all observed peaks in each mass 

spectrum were compared to a list of theoretical masses for parent (12Cn) and isotopic 

(13C12Cn-1) PEG standards. Only isotope-pairs for which both peaks have a mass error of 

<1.0 ppm (for internally calibrated spectra) or <1.5 ppm (externally calibrated spectra) 

were used. The intensities of these carbon isotope-pairs were used to estimate the 

theoretical number of carbon atoms present. Cdiff was calculated by subtracting the 

theoretical number of carbons from the empirically-calculated value (1). The same 

procedure was repeated for oxygen and potassium RIA measurements assuming 18O16On-

1: 0.20% natural abundance and [M + 39K]+-[M + 41K]+: 6.73%. Presentation of RIA 

measurements in this format makes the interpretation informative and easy to implement, 

in particular for defining ranges to identify empirical formula(e) with confidence. In 

addition to Cdiff, RIA errors as a percentage were calculated for the Orbitrap RIA 

measurements to allow comparison to previous studies (Xu et al., 2010). 

Empirical formula(e) were calculated for each parent PEG peak (from the isotope-pairs) 

that appeared in >50% of the BioPEG LTQ FT Ultra mass spectra. The type and number 

of atoms were restricted as follows: [C0-34H0-72N0-15O0-19P0-7S0-8+H or Na or K]+ with a 

mass error tolerance of ≤1 ppm. Neutral empirical formula(e) (C6H12O6 and not 
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[C6H12O6+H]+) were then filtered using heuristic rules (Kind & Fiehn (2007)). 

Formula(e) calculations, data mining and statistics were performed using the R-scripting 

language and Python, including MI-Pack (see Section 2.4.1). 
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5.3 Results and Discussion 

5.3.1 Accuracy of relative isotopic abundance measurements by FT-ICR MS 

The matrices of biological samples used in metabolomics studies can complicate HR 

FTMS measurements, e.g. by introducing ion suppression and/or enhancement 

(Annesley, 2003). Here, to maximise applicability to real samples, the characterisation of 

RIAs was performed on known PEG peaks spiked into a biological matrix. Furthermore, 

the PEG standards were diluted to cover the intensity distribution of the biological 

metabolites. Specifically, as shown in Figure 5.1, the two SNR distributions are 

sufficiently similar which makes this study relevant to biological mass spectra collected  

using Thermo Fisher FT instruments (in particular the LTQ FT Ultra). Carbon-13 is the 

most widely detected natural isotope in mass spectra of complex metabolite mixtures and 

therefore the focus here. The PEG-spiked biological extracts were analysed repeatedly 

(n=100 mass spectra) over a wide mass range (m/z 70-590), generating ca. 2700 12Cn - 

13C12Cn-1 PEG peak-pair intensity measurements, which were used to calculate the 

number of carbons in the standards. The calculated Cdiff values are strongly dependent on 

the SNR of 13C12Cn-1-containing PEG peaks (Figure 5.2). For example, low intensity 

peaks (SNR of 13C12Cn-1 ≥3.5 and <50) exhibit a standard deviation (SD) of the error in 

the number of carbons of 2.38; mid intensity peaks (SNR ≥50 and <250) have a SD=1.52 

carbons; whilst high intensity peaks (SNR ≥250 and <500) exhibit a SD=0.68 carbons. 

Interestingly, the mean of the error in the number of carbons for each of these three 

groups of peak intensities is -0.41, -0.15 and -0.52, respectively. These negative values 

imply that most of the empirically-calculated numbers of carbons are lower than the 
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theoretical values, an effect reported previously for FT-ICR MS (Figure 5.3) (Koch et al., 

2007). This offset is observed even for measurements in which the 12Cn and 13C12Cn-1 

peak intensities are high and very highly correlated (R2≈1.0; Figure 5.3c). In addition to 

13C measurements, both 18O and 41K isotopes were detected for several PEG standards, 

the latter as [M + 41K]+ adducts (Figure 5.3b and d). Note that these findings are not 

dependent on the data pre-processing methods (i.e. our custom-written SIM-stitching 

algorithms) as similar results were produced using Xcalibur 2.1 (see Figure 5.4 and 

Figure 5.5). The development of methods for pre-processing mass spectral data 

(including peak integration) is important to improve the accuracy of RIA measurements, 

as presented by Xu et al. (2010) To facilitate comparisons between datasets the data 

obtained by pre-processing using the SIM-stitching algorithm versus Xcalibur (version 

2.1) were compared (Figure 5.4). In total, approximately 30% more carbon isotope pairs 

(≥3.5 SNR for 13C12Cn-1 peak) were measured using the SIM-stitching algorithm (n=40 

mass spectra). For carbon isotope pairs observed using both pre-processing methods and 

using peak height as a measure of quantity, the following means and standard deviations 

of the carbon errors were calculated: SIM-stitching -0.54±1.54 carbons and Xcalibur -

1.19±1.51 carbons. Based upon these preliminary results the SIM-stitching algorithm 

appears to outperform Xcalibur by detecting more isotope pairs and with greater 

accuracy. Peak height versus integrated peak area (SIM-stitching algorithm only) was 

also compared and no significant differences were observed (Figure 5.5), except for one 

outlier that was caused by two overlapping peaks increasing the area of the 13C-

containing peak (Figure 5.6). 
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Overall, our initial conclusion is that RIA measurements can provide useful information 

on the numbers of atoms for the more intense peaks, which again highlights the 

importance of using analytical methods that maximise signal intensity such as the SIM-

stitching approach. 
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Figure 5.1 Distribution of signal-to-noise ratios for several PEG and biological metabolite 13C12Cn-1 

measured signals in the range m/z 70-590 (n=100 mass spectra of BioPEG). (a) SNR of 13C12Cn-1 peak 

≤500. (b) SNR of 13C12Cn-1 peak ≤100.  
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Figure 5.2 Characterisation of the accuracy of RIA measurements on the LTQ FT Ultra. Cdiff values 

(empirically-calculated number of carbons minus actual number) of several PEG standards, measured in a 

biological sample matrix, are plotted against the signal-to-noise ratios of the 13C12Cn-1-containing PEG 

peaks. Inset shows a subset of the data, highlighting the particularly large RIA errors at low signal-to-noise. 

One group of PEG isotope-pair measurements (m/z = 503.30621, [(C2H4O)11+H2O+H]+) was visually 

classified as an outlier (gray box). All spectral processing was conducted using the SIM-stitching algorithm 

(Southam et al., 2007). 
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Figure 5.3 Intensity correlations between isotope pairs and associated Cdiff distributions for two (parent) 

PEG peaks. (a) m/z 195.12270; [12C8H18O5 + H]+ and [13C12C7H18O5 + H]+; R2=0.89; (b) m/z 195.12270; 

[C8H18
16O5 + H]+ and [C8H18

18O16O4 + H]+; R2=0.39; (c) m/z 453.20966; [12C18H38O10 + K]+ and 

[13C12C17H38O10 + K]+; R2=1.00; (d) m/z 453.20966; [C18H38O10 + 39K]+ and [C18H38O10 + 41K]+;  

R2=0.99. 
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Figure 5.4 Comparison of the accuracy of isotope intensity measurements on a LTQ FT Ultra, using two 

types of data pre-processing (Xcalibur and the SIM-stitching algorithm (Southam et al., 2007)). (a) Cdiff 

values for several PEG isotope pairs in the range m/z 70-590 versus the signal-to-noise ratio of the 13C12Cn-1 

peak. (b) Bivariate plot of Cdiff values indicating the similarity of the two pre-processing methods. 

 

 

 

 

 

 



132 

 

 

 

 

 

 

 

 

Figure 5.5 Bivariate plot of Cdiff values of several PEG isotope pairs in the range m/z 70-590 for two 

different measures of signal quantity (i.e. peak height and peak area). Analyses were performed using an 

LTQ FT Ultra and all spectral processing was conducted using the SIM-stitching algorithm (Southam et al., 

2007). 
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Next, the effect of increasing mass resolution on RIA errors was evaluated, with the 

expectation that higher resolution decreases the likelihood of overlapping peaks and 

therefore improves the accuracy of RIA measurements (Soule et al., 2010). Several 

resolution settings (100,000 to 750,000) were investigated on the LTQ FT Ultra, resulting 

in a stepwise decrease in peak widths (Figure 5.6). The increased resolution was, 

however, offset by longer signal acquisition times of ions in the ICR (doubling the 

resolution requires double the acquisition time of each SIM scan), making ultra-high 

resolution analyses less attractive for high-throughput metabolomics. Furthermore, 

contrary to expectations, increased resolution led to significantly greater errors between 

empirically-calculated and theoretical numbers of carbons (Figure 5.7a). This shift 

towards larger negative errors as resolution increases, is consistent with that reported 

previously for the LTQ Orbitrap.(Xu et al., 2010) I rationalise that this is mainly caused 

by the reduction in signal intensities in the ultra-high resolution spectra. Said reduction is 

at least partially caused by the signal deterioration that occurs when the acquisition time 

is increased, as longer acquisition times necessarily record a greater amount of noise, 

overall reducing the SNR. Arguably, the acquisition of additional SIM scans would offset 

this deterioration of signal intensity, but the longer acquisition times would be less 

compatible with high-throughput FTMS analysis. This reduction in signal intensities is 

clearly evident from the decrease in the number of 12Cn - 13C12Cn-1 PEG isotope-pairs 

detected as resolution increases (Figure 5.7b), with ca. 50% fewer isotope-pairs at 

R=750,000 versus R=100,000. The reduction in SNR will clearly have an adverse effect 

on the RIA errors, based upon our earlier findings (Figure 5.2). Several other decreasing 

and/or increasing trends regarding ultra-high resolution and SNR were observed (Figure 
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5.8) that may relate to isotopic beat patterns (Easterling et al., 1999; Erve et al., 2009) but 

further investigation would be needed to clarify these trends. From these data, it can be 

concluded that a mass resolution of 100,000 is most appropriate for FT-ICR MS 

metabolomics based upon the need for high-throughput and accurate RIA measurements 

to assist metabolite identification. 

 

 

 

 

 

 

Figure 5.6 Effect of resolution on the peak widths of several PEG and unidentified biological metabolite 

signals measured using a Thermo Scientific LTQ FT Ultra. Resolution was varied from 100,000 up to 

750,000, significantly reducing the peak widths but also decreasing the signal intensities. 
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Figure 5.7 (a) Cdiff for 15 PEG standards, plotted against four LTQ FT Ultra resolution settings from 

100,000 to 750,000 (each n=3 BioPEG replicate spectra). (b) The average number of 12Cn - 
13C12Cn-1 PEG 

isotope-pairs detected as a function of resolution between m/z 70-590 (error bars represent SD). 

Collectively these data highlight the loss of sensitivity and the significant reduction in the accuracy of RIA 

measurements as mass resolution is increased. 
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Figure 5.8 (a) The average signal-to-noise ratio (12Cn) of several PEG peaks relative to their mean values 

as measured across four different resolutions (n=3 mass spectra of BioPEG). (b) The average signal-to-

noise ratio (13C12Cn-1) of several PEG peaks relative to their mean values as measured across four different 

resolutions (n=3 mass spectra of BioPEG). 
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5.3.2 Comparison of accuracies and precisions of isotopic abundance 

measurements by the Orbitrap and FT-ICR MS 

A similar study investigating RIA accuracy was also conducted on the Orbitrap. Identical 

samples, SIM-stitching acquisition parameters (LTQ FT Ultra settings, Table 4.1) and 

data-processing (Xcalibur 2.1) were used to enable direct comparison to the FT-ICR MS 

dataset. Qualitatively, the RIA accuracies of the Orbitrap and FT-ICR MS followed a 

similar trend, with Cdiff being strongly dependent on the SNR of the 13C12Cn-1-containing 

PEG peaks and with low intensity peaks giving the largest errors (Figure 5.9a). On closer 

inspection, however, peaks with a SNR ≥3.5 and ≤15 had substantially larger Cdiff values 

for the Orbitrap compared to the FT-ICR. To further highlight this finding, >50% of all 

Cdiff values for the Orbitrap were >3 carbons, compared to only 6.5% for the FT-ICR MS 

(Figure 5.9b and Figure 5.10). At higher SNR, both instruments showed diminishing Cdiff 

values. Unlike the FT-ICR MS, for which Cdiff values asymptotically approaches a small 

negative value (i.e. a mean±SD offset of -0.57±0.98 carbons for PEG peaks with SNR 

≥50 and ≤500, when calculated using Xcalibur 2.1), the Cdiff values for the Orbitrap 

averaged -0.31±0.67. A similar negative offset in the Cdiff values was reported for the 

Orbitrap by Xu et al. (2010) and Bruker Daltonics FT-ICR MS by Koch et al. (2007), 

suggesting this small but consistent error is inherent to HR FTMS (occurring on 

instruments from two different manufacturers). 
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Figure 5.9 Comparison of the RIA accuracies, i.e. Cdiff values, for the LTQ FT Ultra and LTQ Orbitrap 

Velos. Only measurements of 13C12Cn-1-containing PEG peaks that are common to both datasets were used. 

(a) Cdiff values of several PEG standards (measured in a biological matrix) plotted against the signal-to-

noise ratios of the 13C12Cn-1-containing PEG peaks. (b) Distribution of Cdiff values of several PEG isotope-

pairs in the range m/z 70-590 (SNR ≥3.5). All spectral processing was conducted using Xcalibur software. 
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Figure 5.10 Bivariate plot of Cdiff values facilitating the comparison of two datasets measured with two 

different FT instruments (LTQ FT Ultra versus LTQ Orbitrap Velos). All spectral processing was 

conducted using Xcalibur software. 
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Overall these results suggest that RIA measurements on the Orbitrap are less accurate 

than that for the FT-ICR MS. This could have occurred because the SIM-stitching 

acquisition parameters were optimised for the FT-ICR MS, and then implemented on the 

Orbitrap; e.g. the AGC target of 1×106 is ten times higher than the Orbitrap’s factory 

recommendation. However, a further surprising observation is that the sensitivity of the 

Orbitrap appeared lower than for the FT-ICR MS, even when using the same AGC target, 

SIM window width, resolution and scan time. Specifically, the Orbitrap detected 

reproducibly only 756±18 signals (SNR ≥3.5, across n=30 mass spectra) compared to 

1099±59 by the FT-ICR MS. The difference in instrument design (e.g. C-trap for the 

Orbitrap versus no C-trap for the LTQ FT Ultra) and/or tuning method is/are possible 

reason(s) for this difference in sensitivity. Although reducing the Orbitrap’s AGC target 

may improve the RIA accuracy and precision, it would also further decrease the 

sensitivity (Figure 5.11). Since high sensitivity is a critical requirement of a 

metabolomics analysis, the performance of the Orbitrap at lower AGC was not evaluated. 

Collection of these two comparable datasets by the same analyst, using the same samples 

and instrument parameters, suggests some benefits of the FT-ICR MS over the Orbitrap 

for metabolomics. 

The comparison of our Orbitrap measurements with previous studies is complicated by 

this being the first application of SIM-stitching on this spectrometer (Xu et al., 2010). 

Also, authors report RIA accuracies in different formats. However, here I demonstrate 

that RIA measurements using an LTQ Orbitrap Velos with SIM-stitching are particularly 

accurate, with observed absolute RIA errors of <20% accuracy for 13C12Cn-1-containing 

peaks with intensities between 1×105-1×106 compared to errors up to 60% reported 
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previously for an Orbitrap XL (Figure 5.12) (Xu et al., 2010). This greater RIA accuracy 

may arise from a combination of, the difference between Orbitrap instruments used (i.e. 

Orbitrap Velos versus Orbitrap XL), use of nanoelectrospray (Schmidt et al., 2003) 

(versus electrospray), and acquisition via higher-sensitivity SIM-stitching (versus single 

full scan) (Xu et al., 2010). 
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Figure 5.11 Average peak count ± SD (m/z 70 – 590 and signal-to-noise ratio ≥3.5) for mass spectra of 

liver extracts (n = 30 replicates) using two different HR FTMS instruments. To enable direct comparison 

both datasets were processed using Xcalibur. 
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Figure 5.12 RIA measurements using a Thermo Scientific LTQ Orbitrap Velos and the SIM-stitching 

method (Southam et al., 2007). (a) RIA errors (in form of %) plotted against the peak intensities (of 
13C12Cn-1 containing ion) of several PEG isotope pairs. (b) Expanded view of the previous figure, with RIA 

errors plotted against selected peak intensities (13C12Cn-1; intensities of 1×105 up to 1×106) of several PEG 

isotope pairs. (c) Distribution of RIA errors (13C12Cn-1; intensities of 1×105 up to 1×106) for several PEG 

isotope pairs. The dataset was collected using the LTQ Orbitrap Velos and processed using Xcalibur. 
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5.3.3 Increased confidence of metabolite identification using isotopic 

abundance measurements 

As demonstrated, the RIA measurement accuracy on both HR FTMS platforms is limited, 

particularly for peaks with low SNR. This raises the question as to whether the 

information gained about the number of carbons, oxygens, potassiums, etc. can reduce 

the number of empirical formula(e) assigned to a peak within an automated metabolite 

identification pipeline. Here I evaluate this, and report an approach to minimise the false-

positive rate of empirical formula(e) assignments. First all 27 PEG standards were 

located for which both the 12Cn and 13C12Cn-1-containing isotopes were detected in ≥50% 

of the 100 FT-ICR mass spectra of BioPEG (Payne et al., 2009). Then the the list of all 

possible empirical formulae for each of these 27 measured m/z values (for  

12Cn-containing PEG) were calculated with a mass error tolerance of 1 ppm. Only 4 of 27 

cases (14.8%) yielded a single empirical formula, with the remaining 85.2% of cases 

yielding from 2-26 possible formulae (Figure 5.13 and Figure 5.14). This again highlights 

the challenge of metabolite identification using accurate mass measurements alone.  
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Figure 5.13 Summary of the number of empirical formula(e) assigned (1: single correct assignment, >1: 

more than one assignment including correct assignment, NI: not identified or many assignments without 

correct assignment) to each of the 27 PEG standards using different identification approaches (white bar: 

without RIA filtering; gray bar: with RIA filtering but without offset correction; diagonal stripes: with RIA 

filtering and offset correction (carbon only); black bar: with RIA filtering and offset correction (carbon 

(and oxygen and/or potassium if available)). A bin size of 500 SNR was used to apply the offset correction. 
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Figure 5.14 Summary of the number of empirical formula(e) assigned to each of 27 PEG standards using 

different identification approaches for several offset corrections (bin sizes). As shown in Figure 5.3, RIA 

values that are measured precisely may still result in relatively poor RIA accuracy, which is represented by 

a negative offset (Figure 5.2). The offset was corrected using the mean of all Cdiff values in a SNR bin of 

500 (i.e. SNR ranges ≥3.5 to <500, ≥500 to <1000, ≥1000 to <1500). This SNR bin size was chosen for 

three reasons: (i) It covers the majority of signal intensity measurements in biological mass spectra (see 

Figure 5.1); (ii) smaller bin sizes are too sensitive to local corrections instead of an overall correction of the 

offset (and therefore the use of a larger bin size makes it more applicable to other MS datasets); and (iii) the 

overall error rates for the different bin sizes are similar except for the bin size ‘max’. Analyses were 

conducted using an LTQ FT Ultra and all spectral processing was conducted using the SIM-stitching 

algorithm (Southam et al., 2007). (a) Identification approach: carbon isotope only. (b) Identification 

approach: carbon isotope (and oxygen and/or potassium isotopes if available). 



147 

To assess the value of the empirical RIA characterisations for eliminating incorrect 

formulae, three types of filtering were implemented. First, using the relative isotope 

measurements from the FT-ICR mass spectra, the number of carbons present in each of 

the 27 PEG standards was estimated. Then, for each PEG peak, the theoretically 

calculated empirical formulae were discarded if the theoretical number of carbons fell 

outside of this empirical range (defined by mean±3xSD). Application of the empirical 

RIA characterisations greatly improved the metabolite identification, with 33.3% of PEG 

standards definitively assigned to a single (and correct) empirical formula, which 

represents more than a doubling of correct identifications (Figure 5.13). However, 33.3% 

of the PEG peaks remained assigned to >1 empirical formula, and a further 33.3% were 

now incorrectly assigned (either to an incorrect empirical formula or to no formula at all; 

i.e. false-negatives). The relatively high FNR is particularly concerning, but can be 

explained by the small negative offset in Cdiff (Figure 5.2 and Figure 5.9). If the 

empirically-calculated number of carbons (mean±3xSD) does not include a correction for 

this offset, the actual number of carbons in the correct empirical formula can lie outside 

this range. Therefore, our second filtering strategy additionally included an offset 

correction (i.e. the empirical range for the number of carbons defined as mean±3xSD-

offset). Calculating the offset was the next challenge, since it showed dependency upon 

the SNR (Figure 5.2 and Figure 5.9). Following a thorough analysis (Figure 5.14 and 

Figure 5.15), I implemented a method whereby different offset corrections (i.e. mean Cdiff 

values) were used for different SNRs (of the 13C12Cn-1-containing peaks), specifically for 

each of the ranges ≥3.5 to <500, ≥500 to <1000, ≥1000 to <1500. This second filtering 

strategy not only successfully reduced the occurrence of false-negative assignments to 2 
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(one of these peaks corresponds to the outlier in Figure 5.2), but also further increased the 

number of PEG standards definitively assigned to a single correct empirical formula to 

44.4% (Figure 5.13). 

In addition to 13C isotopic abundances, the FT-ICR mass spectra of BioPEG comprised of 

further isotopes, including 18O and 41K. The third filtering strategy additionally included 

the refinement of empirical formulae using these isotopes in the same manner as for 13C, 

except no offset was applied due to a lack of appropriate measurements to characterise 

the possible effect. This final automated filtering algorithm for eliminating incorrect 

empirical formula(e) further increased the number of PEG peaks assigned to one correct 

empirical formula to 51.9% (Figure 5.13). In summary, incorporation of RIA 

characterisation for 13C, 18O and 41K resulted in a ca. 3.5-fold reduction in the number of 

incorrect empirical formulae being assigned and a ca. 3-fold increase in the number of 

compounds that can be assigned a single correct empirical formula, compared to an 

unfiltered approach. Importantly, this equates to assigning the correct formula to >50% of 

the PEG peaks measured from m/z 70-590, which is particularly encouraging when 

extrapolated to assigning metabolites in a biological sample. 
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Figure 5.15 Summary of the number of empirical formula(e) assigned to each of 27 PEG standards using 

several different filtering approaches. A SNR bin size of 500 was used to apply the offset correction (see 

Figure S13). Analyses were conducted using an LTQ FT Ultra and all spectral processing was conducted 

using the SIM-stitching algorithm (Southam et al., 2007). 
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5.4 Conclusions 

Using the re-optimised DI SIM-stitching method for the LTQ FT Ultra (Chapter 4), RIA 

measurements were characterised on the LTQ FT Ultra and LTQ Orbitrap, revealing that 

RIA accuracies decrease with decreasing SNR. Additionally, a negative offset was 

discovered between the number of carbons calculated from the RIA measurements and 

that predicted theoretically. Increasing resolution on the LTQ FT Ultra reduced the 

sensitivity and consequently decreased the quality of RIA measurements. While the LTQ 

Orbitrap and LTQ FT Ultra showed similar RIA accuracies and precisions when isotope-

pairs had mid-to-high SNR (e.g. >15), the LTQ Orbitrap performed less well for low 

SNR peaks. Additionally, the LTQ FT Ultra showed a 40% higher sensitivity than the 

LTQ Orbitrap when using SIM-stitching. However, our Orbitrap data achieved a ca. 3-

fold improvement in absolute RIA accuracy compared to a previous study (Xu et al., 

2010), which may originate from the increased sensitivity of SIM-stitching. Finally, when 

RIA characterisations for 13C, 18O and 41K were integrated into an automated peak 

identification pipeline, we demonstrated an approximately 3-fold increase in the number 

of correct single empirical formula assignments. Overall, we therefore conclude that RIA 

measurements on HR FTMS instruments can significantly improve the putative 

identification of metabolites in metabolomics applications. 
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CHAPTER SIX: 

CONCLUSIONS 

6  
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Putative metabolite identification can in principle be achieved using accurate mass 

measurements using a single-peak search. However a single accurate mass measurement 

can be assigned to one or more empirical formula(e). Furthermore each formula can 

correspond to different chemical structures ultimately leading to very high FPRs of 

identification. This complexity has stimulated the development of novel and improved 

bioinformatics and analytical methods to measure and subsequently annotate HR MS 

data, and to apply these methods to real-world metabolomics studies. At the start of this 

thesis five objectives were stated in order to achieve the overall aim (see Section 1.8). 

How well these objectives were addressed and what further work is required to fulfil 

these objectives is discussed here. 

Chapter 3 describes the TM algorithm (part of MI-Pack) which uses metabolite 

interconnectivity from the KEGG database to putatively identify metabolites by name. 

The principle behind the algorithm is based on mapping an experimentally-derived 

empirical formula difference for a pair of peaks to a known empirical formula difference 

between substrate-product pairs derived from KEGG. I also developed a novel semi-

automated method to calculate a mass error surface associated with experimental peak-

pair differences. Compared to the traditional identification method of database searching 

accurate masses on a single-peak-by-peak basis, the TM algorithm together with the mass 

error surface reduces the FPR of identification by >4-fold, while maintaining a minimal 

FNR.  

The findings also confirmed that error rates can be reduced by using species-specific 

databases, and demonstrate that the FPR and FNR are dependent on the accuracy of the 

database(s) employed. Since all metabolite databases and metabolic reconstructions are 
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currently incomplete, further improvements of these resources are urgently required. The 

methods reported here could, following minor alterations (e.g. data compatibility and 

integration of other data sources), utilise reconstructions of metabolic networks and 

therefore further contribute to the field of systems biology. The next step towards more 

robust metabolite identification is to include further experimental measurements, such as 

retention time data from LC-MS studies and MS/MS. Nevertheless, the mass error 

surface, putative identification of metabolite names, and calculation of false positive and 

FNRs collectively advance and improve the traditional single-peak search. I conclude that 

prior biological knowledge in the form of metabolic pathways provides one route to more 

accurate metabolite identification. 

Second, to enable high metabolome coverage and accurate metabolite identification, MS 

methods must have high sensitivity and mass accuracy. The higher the mass accuracy the 

smaller the number of empirical formula(e) assignments for a single peak. Therefore 

optimal acquisition parameters are required to mimimise space-charge effects that occur 

in the detector cell of HR FT-ICR mass spectrometers. The LTQ FT Ultra has a larger 

trap volume in its ICR detector cell than the earlier LTQ FT model, allowing a larger 

radius of ion cyclotron motion and considerably reduced space-charge effects, and hence 

increased sensitivity (i.e. allowing more ions into detector cell) without compromising 

mass accuracy. Therefore, re-optimisation of SIM-stitching was conducted on the LTQ 

FT Ultra (see Chapter 4), which achieved a ca. 3-fold sensitivity increase compared to the 

original method while maintaining a root-mean-squared mass error of 0.16 ppm. 

Although the re-optimised acquisition parameters allows an improvement to both 

sensitivity and mass accuracy in mass spectra, the LTQ FT Ultra does not fully resolve 
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metabolome coverage and the issue of multiple false positive assignments to a single 

mass measurement. Additionally, the results of the re-optimisation study have highlighted 

a systematic error in the intensity measurements whereby the intensity of a peak is 

dependent upon its location within the SIM range being measured, resulting in inaccurate 

quantification. The overall trend observed was considerably different from the increasing 

trend shown previously (Payne et al., 2009). Further investigation is required to 

parameterise this new signal intensity trend to avoid inaccurate quantification.  

Currently there is limited information available on the accuracy and precision of relative 

isotopic abundance (RIA) measurements using high-resolution direct-infusion mass 

spectrometry (HR DIMS), and it is unclear if this information can benefit automated peak 

annotation in metabolomics. Therefore, as part of this thesis I have characterised the 

accuracy and precision of RIA measurements on the Thermo Scientific LTQ FT Ultra 

and LTQ Orbitrap Velos mass spectrometers as part of Chapter 5. I showed that the 

quality as measured by the accuracy and precision of empirically-derived carbons of RIA 

measurements is highly dependent on SNR, with RIA accuracy increasing with higher 

SNR. Furthermore, a negative offset between the theoretical and empirically-calculated 

numbers of carbon atoms was observed for both mass spectrometers. Increasing the 

resolution of the LTQ FT Ultra lowered both the sensitivity and the quality of RIA 

measurements. Overall, although the errors in the empirically-calculated number of 

carbons can be large, I demonstrated that RIA measurements do improve automated 

putative peak annotation, increasing the number of single empirical formula assignments 

by >3-fold compared to using accurate mass alone. Further work is now required to 
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incorporate these RIA characterisations into MI-Pack, to allow exclusion of false positive 

formulae assignments. 

None of the metabolite assignments can be regarded as definitive since they depend only 

on accurate mass and therefore do not fulfil the Metabolomics Standards Initiative criteria 

for metabolite identification (Sumner et al., 2007). Additional analytical techniques are 

required to meet the requirements for definitive identification, such as LC-MS and 

MS/MS. Although the studies in this thesis have focused on positive ion mass spectra 

which are the most common ion forms, the methods and principles are equally applicable 

to negative ion data as shown in Section 3.3.5. However, the formation of positive and 

negative ions is highly depended on the sample matrix (i.e. type of sample) and modifiers 

added. Therefore, more investigation is needed to further understand the complexity of 

HR FT mass spectra and ultimately improve metabolite identification. 

To conclude, all the bioinformatics and analytical methods developed and improved as 

part of this thesis have significantly increased the accuracy of putative metabolite 

identification in HR FT mass spectra and have proved to be a successful guidance to 

define future targeted analysis as shown in Section 3.3.5. 
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Table 8.1 Theoretical m/z value, type of adduct form, metabolite identity and number of false positive assignments for the different identification strategies of all 

metabolites that are part of the simulated mass spectrum (TCA cycle). A zero ppm error was used for the identification approaches as the list comprises of 

theoretical masses, which are identical to the mass values in the MI-DB. 

No. 
Theoretical 

m/z value 

Adduct 

form 
Metabolite name; (KEGG identifier) 

No. of false positive assignments 

(named metabolites) 

Single-peak 

search 

TM TM TM 

(direct) (direct-or-indirect) (direct-and-indirect) 

1 126.97920 [M + 39K]+ pyruvic acid; (C00022) 2 1 1 1 

2 135.02880 [M + H]+ malic acid; (C00149) 3 1 1 1 

3 139.00018 [M + Na]+ fumaric acid; (C00122) 2 1 1 1 

4 147.02880 [M + H]+ oxoglutaric acid; (C00026) 4 2 2 2 

5 154.99510 [M + Na]+ oxalacetic acid; (C00036) 2 1 1 1 

6 156.98977 [M + 39K]+ succinic acid; (C00042) 2 1 1 1 

7 168.98965 [M + H]+ phosphoenolpyruvic acid; (C00074) 1 1 1 1 

8 197.00566 [M + Na]+ cis-aconitic acid; (C00417) 2 1 1 0 

9 213.00058 [M + Na]+ oxalosuccinic acid; (C05379) 0 0 0 0 

10 215.01623 [M + Na]+ isocitric acid; (C00311) 7 3 3 2 

11 230.99016 [M + 39K]+ citric acid; (C00158)  7 3 3 2 

12 426.05225 [M + H]+ thiamine diphosphate; (C00068) 0 0 0 0 

13 492.06041 [M + Na]+ 
2-(alpha-hydroxyethyl)thiamine diphosphate; 
(C05125) 

0 0 0 0 

14 550.06589 [M + Na]+ 3-carboxy-1-hydroxypropyl-thpp; (C05381) 0 0 0 0 

15 832.11501 [M + Na]+ acetyl-coA; (C00024) 0 0 0 0 

16 906.09442 [M + 39K]+ succinyl-coA; (C00091) 3 2 3 2 

   Total no. of false positive assignments:  35 17 18 14 
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Table 8.2 Illustrative examples of the sizes of errors associated with peak differences for a “fixed error” versus mass error surface approach. Comparison of the 

two error handling approaches clearly shows the improvement of the mass error surface, which measures an ca. 3-fold smaller mass error for relatively small 

peak differences in high mass ranges. Such peak differences cover most of the enzymatic reactions in the KEGG database as shown in Figure 3.4a. 

 

Theoretical mass spectral data Fixed error approach From mass error surface 
Fold 

improvement  

of mass error 

surface Peak A 

(m/z) 

Peak B 

(m/z) 
Peak difference 

1.0 ppm 

error peak 

A (m/z) 

1.0 ppm error 

peak B (m/z) 

Total 

error (m/z) 

Relative  

error 

(ppm)a 

Absolute 

error (m/z) 

Relative 

error 

(ppm) 

Mean 

relative error 

(peak A and 

peak B)b 

200.00000 201.00336 1.00336 (13C–12C ) ± 0.00020 ± 0.00020 ± 0.00040 ± 399.66 ± 0.00009 ± 87.36 ± 0.22 4.6 

300.00000 301.00336 1.00336 (13C–12C ) ± 0.00030 ± 0.00030 ± 0.00060 ± 598.99 ± 0.00020 ± 195.46 ± 0.33 3.1 

400.00000 401.00336 1.00336 (13C–12C ) ± 0.00040 ± 0.00040 ± 0.00080 ± 798.32 ± 0.00033 ± 327.76 ± 0.41 2.4 

200.00000 202.01565 2.01565 (H2) ± 0.00020 ± 0.00020 ± 0.00040 ± 199.45 ± 0.00009 ± 44.24 ± 0.22 4.5 

300.00000 302.01565 2.01565 (H2) ± 0.00030 ± 0.00030 ± 0.00060 ± 298.67 ± 0.00021 ± 102.42 ± 0.35 2.9 

400.00000 402.01565 2.01565 (H2) ± 0.00040 ± 0.00040 ± 0.00080 ± 397.89 ± 0.00035 ± 172.38 ± 0.44 2.3 

200.00000 215.02348 15.02348 (CH3) ± 0.00020 ± 0.00022 ± 0.00042 ± 27.62 ± 0.00020 ± 13.34 ± 0.48 2.1 

300.00000 315.02348 15.02348 (CH3) ± 0.00030 ± 0.00032 ± 0.00062 ± 40.94 ± 0.00029 ± 19.45 ± 0.47 2.1 

400.00000 415.02348 15.02348 (CH3) ± 0.00040 ± 0.00042 ± 0.00082 ± 54.25 ± 0.00059 ± 39.10 ± 0.72 1.4 

200.00000 243.98983 43.98983 (CO2) ± 0.00020 ± 0.00024 ± 0.00044 ± 10.09 ± 0.00017 ± 3.83 ± 0.38 2.6 

300.00000 343.98983 43.98983 (CO2) ± 0.00030 ± 0.00034 ± 0.00064 ± 14.64 ± 0.00045 ± 10.16 ± 0.70 1.4 

400.00000 443.98983 43.98983 (CO2) ± 0.00040 ± 0.00044 ± 0.00084 ± 19.19 ± 0.00063 ± 14.35 ± 0.75 1.3 
aRelative error calculated as total error / peak difference (ppm), bRelative error calculated as absolute error / ((peak A + peak B) / 2) * 0.000001 (ppm) 
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Table 8.3 Name of metabolite identified by NMR spectroscopy, corresponding observation in FT-ICR mass spectrum, and number of false positive assignments 

for the different identification strategies. The numbers of true positive assignments for the different identification strategies are as follows: 26 for single-peak 

search, 25 for TM (direct), 26 for TM (direct-or-indirect), and 22 for TM (direct-and-indirect). Entries marked by a box correspond to false negative assignments 

and were not identified by one of the selected identification approaches. The NMR and FT-ICR MS data were collected from identical biological samples, human 

cell extracts. 
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No. 
Name of metabolite detected by 

NMR (KEGG identifier) 
Measured m/z values (including adduct form) 

No. of false positive assignments (named metabolites) 

Single-

peak 

search 

TM TM TM 

(direct) 
(direct-or-

indirect) 

(direct-and- 

indirect) 

1 glycine; (C00037) 76.03931 [M + H]+, 98.02126 [M + Na]+, 113.99519 [M + 39K]+ 2 0 1 0 
2 beta-alanine; (C00099) 112.03690 [M + Na]+ 7 3 4 3 

3 alanine; (C00041) 112.03690 [M + Na]+ 7 3 4 3 

4 sarcosine; (C00213) 112.03690 [M + Na]+ 7 3 4 3 

5 lactic acid; (C00186) 113.02092 [M + Na]+ 7 3 4 2 

6 proline; (C00148) 116.07061 [M + H]+, 138.05258 [M + Na]+, 154.02647 [M + 39K]+ 2 1 1 1 
7 valine; (C00183) 118.08627 [M + H]+, 140.06823 [M + Na]+, 156.04216 [M + 39K]+ 9 2 2 2 

8 creatine; (C00300) 132.07675 [M + H]+, 154.05868 [M + Na]+, 170.03259 [M + 39K]+ 1 0 0 0 

9 isoleucine; (C00407) 132.10190 [M + H]+, 154.08384 [M + Na]+, 170.05775 [M + 39K]+ 10 3 3 3 

10 leucine; (C00123) 132.10190 [M + H]+, 154.08384 [M + Na]+, 170.05775 [M + 39K]+ 10 3 3 3 

11 asparagine; (C00152) 133.06077 [M + H]+, 155.04274 [M + Na]+, 171.01663 [M + 39K]+ 5 2 2 2 

12 phosphoethanolamine; (C00346) 142.0264 [M + H]+, 164.00834 [M + Na]+, 179.98227 [M + 39K]+ 1 0 1 0 

13 glutamine; (C00064) 147.07644 [M + H]+, 169.05833 [M + Na]+, 185.03230 [M + 39K]+ 4 2 2 1 

14 taurine; (C00245) 148.00391 [M + Na]+, 163.97784 [M + 39K]+ 0 0 0 0 

15 glutamic acid; (C00025) 148.06046 [M + H]+, 170.04234 [M + Na]+, 186.01629 [M + 39K]+ 9 6 6 5 

16 methionine; (C00073) 150.05835 [M + H]+, 172.04025 [M + Na]+, 188.01437 [M + 39K]+ 3 0 0 0 

17 succinic acid; (C00042) 156.98978 [M + 39K]+ 2 0 1 0 

18 phenylalanine; (C00079) 166.08627 [M + H]+, 188.06819 [M + Na]+, 204.04215 [M + 39K]+ 3 1 1 1 

19 aspartic acid; (C00049) 172.00064 [M + 39K]+ 2 1 1 1 

20 myo-inositol; (C00137) 181.07069 [M + H]+, 203.05262 [M + Na]+, 219.02655 [M + 39K]+ 41 12 12 10 

21 tyrosine; (C00082) 182.08120 [M + H]+, 204.06313 [M + Na]+, 220.03707 [M + 39K]+ 4 1 1 1 

22 citric acid; (C00158) 215.01626 [M + Na]+, 230.99009 [M + 39K]+ 8 1 4 1 

23 pantothenic acid; (C00864) 220.11796 [M + H]+, 242.09992 [M + Na]+, 258.07387 ([M + 39K]+ 0 0 0 0 

24 glutathione; (C00051) 308.09109 [M + H]+, 330.07283 [M + Na]+, 346.04693 [M + 39K]+ 0 0 0 0 

25 AMP; (C00020) 348.07043 [M + H]+, 370.05256 [M + Na]+, 386.02622 [M + 39K]+ 4 2 2 1 

26 ADP; (C00008) 450.01898 [M + Na]+, 465.99278 [M + 39K]+ 3 1 1 1 

  Total no. of false positive assignments:  151 50 60 44 

  Total no. of true positive assignments:  26 25 26 22 
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Table 8.4 Putative metabolite identification of a subset of peaks detected in the FT-ICR mass spectra of D. magna (whole organism) following exposure to 

cadmium. 

a) Average intensity across all samples. 

b) Not listed explicitly for cases where >5 empirical formulae can be identified. 

c) Calculated for the specified ion form of the empirical formula. 

d) Error between the observed and theoretical masses, presented as parts per million of the theoretical mass. 

e) Number of carbon atoms derived from the 12C - 13C isotope intensity pattern (when observed). 

f) Derived from the transformation mapping approach for metabolite identification, described in Chapter 3. Not listed explicitly for cases where >5 putative 

metabolite names can be identified. 



 

185

 

Observed  Identification 

m/z 
Average 

intensity
a
 

 Empirical formula
b
 Ion form 

Theoretical 

mass (Da)
c
 

Mass 

error 

(ppm)
d
 

No. C 

atoms
e
 

Putative metabolite name(s)
f
 

         
78.95889 4476.5  0     0 
78.95905 5658.3  0     0 
79.00352 14514.2  0     0 
79.00368 22502.1  0     0 
79.95720 4769.6  0     0 
79.95736 7571.7  0     0 
80.97472 18333.3  0     0 
80.97488 28180.9  CH2O2 [M+Cl]- 80.97488 -0.02  ["Formate"] 
81.96996 4794.6  0     0 
81.97012 4426.7  0     0 
82.97176 8445.7  0     0 
82.97193 10467.9  CH2O2 [M+(37Cl)]- 82.97193 -0.02  ["Formate"] 
87.00859 13015.4  0     0 
87.00876 18824.1  C3H4O3 [M-H]- 87.00877 -0.10  ["3-Oxopropanoate", "Pyruvate"] 
88.04023 9801.5  0     0 
88.04040 14666.4  C3H7NO2 [M-H]- 88.04040 -0.03  ["D-Alanine", "L-Alanine", "beta-Alanine"] 

89.99585 4490.6  0     0 
90.02758 5428.6  0     0 
91.00350 52625.5  0     0 
91.00368 79520.5  C2H4O4 [M-H]- 91.00368 -0.04  0 
91.99893 13767.0  0     0 
92.01132 32417.4  0     0 
92.01150 59291.4  0     0 
92.92802 14770.2  [NaCl] [M+Cl]- 92.92802 -0.05  0 
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94.92507 9152.8  [Na(37Cl)] [M+Cl]- 94.92507 -0.05  0 
94.92507 9152.8  [NaCl] [M+(37Cl)]- 94.92507 -0.05  0 
96.95985 4869.2  0     0 
96.96010 25420.0  0     0 
96.96962 6185.3  0     0 
97.02950 5416.1  C5H6O2 [M-H]- 97.02950 -0.04  0 
103.04007 5820.8  C4H8O3 [M-H]- 103.04007 0.01  ["(R)-3-Hydroxybutanoate"] 
105.02005 2878.6  0     0 
113.02441 4001.2  C5H6O3 [M-H]- 113.02442 -0.08  ["2-Hydroxy-2,4-pentadienoate"] 
114.05604 6671.7  C5H9NO2 [M-H]- 114.05605 -0.11  ["D-Proline", "L-Proline"] 
126.90498 108366.6  0     0 
141.01656 3800533.1  C2H2N6O2 [M-H]- 141.01665 -0.62  0 

…. ….  …. …. …. …. …. …. 

203.03260 52924.7  C5H12O6 [M+Cl]- 203.03279 -0.94  0 
203.08148 7497.4  C5H13N6OP [M-H]- 203.08157 -0.45  0 
203.08261 109406.4  C11H12N2O2 [M-H]- 203.08260 0.04 11.6 ["L-Tryptophan"] 
203.10373 12721.9  C8H16N2O4 [M-H]- 203.10373 -0.01  0 
203.88987 8614.5  CHNO3S[Na(37Cl)] [M+(37Cl)]- 203.88984 0.14  0 
203.99077 28690.4  C2H5N5O3[NaCl] [M-H]- 203.99059 0.90 4.9 0 
203.99077 28690.4  C3H7N5S[Na(37Cl)] [M-H]- 203.99061 0.77 4.9 0 
203.99077 28690.4  C3(13C)H6N4[NaCl] [M+Cl]- 203.99063 0.71 4.9 0 
203.99077 28690.4  C5H7N3O2S2 [M-H]- 203.99069 0.37 4.9 0 
204.02642 21499.8  C6(13C)H8N2O3 [M+Cl]- 204.02625 0.84 5.8 0 
204.02642 21499.8  C7(13C)H10N2S [M+(37Cl)]- 204.02628 0.70 5.8 0 
204.08595 14007.4  C10(13C)H12N2O2 [M-H]- 204.08596 -0.03 11.6 0 
205.01755 30016.4  C10H6N2O [M+Cl]- 205.01741 0.66  0 
205.01755 30016.4  C5H10N2O3[Na(37Cl)] [M-H]- 205.01754 0.05  0 
205.01755 30016.4  C7H10O5S [M-H]- 205.01762 -0.34  0 
205.02730 10309.6  C7H11O5P [M-H]- 205.02714 0.80  0 
205.02730 10309.6  C8H10O4 [M+Cl]- 205.02731 -0.06  ["2-Hydroxy-6-oxo-octa-2,4-dienoate"] 

205.02730 10309.6  C9H12OS [M+(37Cl)]- 205.02734 -0.19  0 
205.02730 10309.6  C2H8N8P2 [M-H]- 205.02744 -0.69  0 
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205.03539 37605.4  C11H8N2 [M+(37Cl)]- 205.03520 0.93  0 
205.03539 37605.4  C7H10O7 [M-H]- 205.03538 0.06  0 
205.06372 13727.6  C8H15O4P [M-H]- 205.06352 0.97  0 
205.06372 13727.6  C9H14O3 [M+Cl]- 205.06370 0.11  0 
205.06372 13727.6  C10H16S [M+(37Cl)]- 205.06372 -0.02  0 
205.12341 50459.2  C13H18O2 [M-H]- 205.12340 0.03  0 
205.88692 12351.0  C4HNOS4 [M-H]- 205.88683 0.46  0 
206.09535 26045.1  C8H18NO3P [M-H]- 206.09516 0.94  0 
206.09535 26045.1  C9H17NO2 [M+Cl]- 206.09533 0.09  0 
206.98029 13236.7  C4H10N2P2[Na(37Cl)] [M-H]- 206.98032 -0.15  0 
206.98029 13236.7  C4H2N6O[NaCl] [M-H]- 206.98036 -0.32  0 
206.98029 13236.7  C6H10O2P2S [M-H]- 206.98040 -0.54  0 
206.98029 13236.7  C7H4N4S2 [M-H]- 206.98046 -0.84  0 
207.06847 8305.1  0     0 
207.06966 71835.5  C6H16N2O2[Na(37Cl)] [M-H]- 207.06957 0.41  0 
207.06966 71835.5  C8H16O4S [M-H]- 207.06966 0.02  0 
207.07935 34825.8  C8H17O4P [M-H]- 207.07917 0.86  0 
207.07935 34825.8  C9H16O3 [M+Cl]- 207.07935 0.02  0 
207.07935 34825.8  C10H18S [M+(37Cl)]- 207.07937 -0.11  0 
207.11572 10130.7  C9H21O3P [M-H]- 207.11556 0.79  0 
207.11572 10130.7  C10H20O2 [M+Cl]- 207.11573 -0.06  0 
208.06492 8893.4  C5H15N3O2[Na(37Cl)] [M-H]- 208.06482 0.46  0 

…. ….  …. …. …. …. …. …. 

472.33727 1350.8  C13H43N15O2S [M-H]- 472.33721 0.13  0 
472.33727 1350.8  C18H45N11[NaCl] [M-H]- 472.33729 -0.03  0 
472.33727 1350.8  C27H49NO3 [M+(37Cl)]- 472.33770 -0.90  0 
472.88357 3614.4  310     0 
472.97068 3983.5  237     0 
473.07632 14536.5  120     0 
473.15234 5836.5  58     0 
473.26095 42823.1  14     0 
473.27433 9933.3  14     0 
473.32876 4172.4  C30H42N4O [M-H]- 473.32858 0.37  0 
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473.32876 4172.4  C21H48N4O5 [M+(37Cl)]- 473.32892 -0.34  0 
473.32876 4172.4  C27H52[Na(37Cl)] [M+(37Cl)]- 473.32902 -0.56  0 
473.32876 4172.4  C22H48N6OP2 [M-H]- 473.32921 -0.95  0 
473.32876 4172.4  C16H45N12P [M+(37Cl)]- 473.32923 -0.99  0 
473.34974 3691.8  C27H46N4O3 [M-H]- 473.34971 0.05  0 
473.34974 3691.8  C28H53OP [M+(37Cl)]- 473.34985 -0.24  0 
474.26445 36644.2  26    19.2 0 
474.93752 3229.4  276     0 
475.15507 4170.3  49     0 
475.17687 19218.5  43     0 
475.26800 7730.6  29    19.2 0 
475.34479 6881.3  C27H54[Na(37Cl)] [M+(37Cl)]- 475.34467 0.24  0 
475.34479 6881.3  C22H50N6OP2 [M-H]- 475.34486 -0.14  0 
475.34479 6881.3  C16H47N12P [M+(37Cl)]- 475.34488 -0.18  0 
475.34479 6881.3  C23H49N6P [M+Cl]- 475.34503 -0.51  0 
475.38115 5478.1  C23H54N6P2 [M-H]- 475.38124 -0.20  0 
476.05960 6550.0  118     0 
476.20260 68225.2  30     0 
476.23144 15318.9  25     0 
476.28045 19209.2  10    24.3 0 
477.02955 12147.5  172     0 
477.28395 5143.8  19    24.3 0 
477.36060 16916.7  C27H56[Na(37Cl)] [M+(37Cl)]- 477.36032 0.58 28.9 0 
477.36060 16916.7  C22H52N6OP2 [M-H]- 477.36051 0.19 28.9 0 
477.36060 16916.7  C23H51N6P [M+Cl]- 477.36068 -0.18 28.9 0 
477.37365 6975.7  C33H50O2 [M-H]- 477.37380 -0.32  0 
478.36403 5369.0  6    28.9 0 
478.87518 2273.3  334     0 
478.90111 5562.0  310     0 
478.98844 30489.8  241     0 
479.07170 10143.9  125     0 
479.25016 4486.3  23     0 

…. ….   …. …. …. …. …. …. 
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Table 8.5 Putative metabolite identification of a subset of peaks detected in the FT-ICR mass spectra of S. typhimurium. 

a) Average intensity across all samples (L354, L644, L742 and L976). 

b) Not listed explicitly for cases where >5 empirical formulae can be identified. 

c) Calculated for the specified ion form of the empirical formula. 

d) Error between the observed and theoretical masses, presented as parts per million of the theoretical mass. 

e) Number of carbon atoms derived from the 12C - 13C isotope intensity pattern (when observed). 

f) Derived from the transformation mapping approach for metabolite identification, described in Chapter 3. Not listed explicitly for cases where >5 putative 

metabolite names can be identified. 
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Observed  Identification 

m/z 
Average 

intensity
a
 

 Empirical formula
b
 Ion form 

Theoretical 

mass (Da)
c
 

Mass 

error 

(ppm)
d
 

No. C 

atoms
e
 

Putative metabolite name(s)
f
 

         
70.03424 144391.7  0     0 
74.46765 3419.6  0     0 
75.02905 14362.1  0     0 
77.04181 30287.8  0     0 
80.94781 5593.9  0     0 
84.08074 12127.4  C5H9N [M+H]+ 84.08078 -0.42  0 
86.09639 113681.8  C5H11N [M+H]+ 86.09643 -0.41  0 
87.09975 6418.7  0     0 
90.05492 19299.3  C3H7NO2 [M+H]+ 90.05496 -0.39  ["Alanine", "D-Alanine", "L-Alanine", 

"Sarcosine", "beta-Alanine"] 

90.97662 13604  C2H3PS [M+H]+ 90.97659 0.37  0 
96.92175 6450.6  0     0 
103.05420 8031.2  C8H6 [M+H]+ 103.05423 -0.26  0 
104.05282 7749.6  C4H9NS [M+H]+ 104.05285 -0.26  0 
104.10696 9998.4  C5H13NO [M+H]+ 104.10699 -0.29  0 
106.95055 5747.9  0     0 
110.07124 25849  C5H7N3 [M+H]+ 110.07127 -0.30  0 
112.03687 15525.4  C3H7NO2 [M+Na]+ 112.03690 -0.27  ["Alanine", "D-Alanine", "L-Alanine", 

"Sarcosine", "beta-Alanine"] 

115.08656 4458.3  C5H10N2O [M+H]+ 115.08659 -0.26  0 
116.07057 31834.2  C5H9NO2 [M+H]+ 116.07061 -0.30  ["D-Proline", "L-Proline"] 
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118.08623 239122.6  C5H11NO2 [M+H]+ 118.08626 -0.22  ["4-Methylaminobutyrate", "5-
Aminopentanoate", "Betaine", "L-Valine"] 

119.08958 14448.3  0     0 
120.08075 132096  C8H9N [M+H]+ 120.08078 -0.21  0 
121.08410 9904.7  0     0 
125.07092 4086.4  C6H8N2O [M+H]+ 125.07094 -0.16  ["Methylimidazole acetaldehyde"] 

127.08657 8979.4  C6H10N2O [M+H]+ 127.08659 -0.15  0 

…. ….  …. …. …. …. …. …. 

227.07910 405435.4  C11H12N2O2 [M+Na]+ 227.07910 0.00 11.0 ["L-Tryptophan"] 
227.07910 405435.4  C6H15N2O5P [M+H]+ 227.07914 -0.16 11.0 0 
227.07910 405435.4  C8H16N2O3 [M+K]+ 227.07925 -0.67 11.0 ["N2-Acetyl-L-lysine", "N6-Acetyl-L-

lysine"] 
227.10264 53878.2  C10H14N2O4 [M+H]+ 227.10263 0.02  ["Porphobilinogen"] 
227.11387 21346.5  C9H14N4O3 [M+H]+ 227.11387 0.01  ["Carnosine"] 
227.13901 7451.9  C11H18N2O3 [M+H]+ 227.13902 -0.04  0 
227.15836 23216  0     0 
228.08246 49211  C10(13C)H12N2O2 [M+Na]+ 228.08245 0.02 11.0 0 
228.08246 49211  C5(13C)H15N2O5P [M+H]+ 228.08249 -0.14 11.0 0 
228.08246 49211  C7(13C)H16N2O3 [M+K]+ 228.08261 -0.65 11.0 0 
228.08246 49211  C5H13N3O7 [M+H]+ 228.08263 -0.74 11.0 0 
228.13427 30526.8  C10H17N3O3 [M+H]+ 228.13427 0.01  0 
228.14550 18004.3  C9H17N5O2 [M+H]+ 228.14550 -0.01  0 
228.17066 44547.1  C11H21N3O2 [M+H]+ 228.17065 0.03  0 
229.10053 20976.4  C10H16N2O2S [M+H]+ 229.10053 0.02  0 
229.11828 77295.7  C10H16N2O4 [M+H]+ 229.11828 -0.02  0 
229.12952 26841.5  C9H16N4O3 [M+H]+ 229.12952 0.01  ["Deoxyguanidinoproclavaminic acid"] 

229.15467 667562.1  C11H20N2O3 [M+H]+ 229.15467 0.00  0 
230.11354 94717.8  C9H15N3O4 [M+H]+ 230.11353 0.03  0 
230.14993 25478.5  C10H19N3O3 [M+H]+ 230.14992 0.05  0 
230.15803 81882.2  0     0 
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231.09755 28639.3  C9H14N2O5 [M+H]+ 231.09755 0.00  0 
231.17031 164313.7  C11H22N2O3 [M+H]+ 231.17032 -0.04  0 
231.97239 26158  C5H2N7P [M+(41K)]+ 231.97221 0.79  0 

231.97239 26158  C6H3N5S2 [M+Na]+ 231.97221 0.77  0 
231.97239 26158  C3H7N5OS2 [M+K]+ 231.97236 0.11  0 
231.97239 26158  C6HNO9 [M+H]+ 231.97241 -0.09  0 
231.97239 26158  C3H5N5O3S [M+(41K)]+ 231.97259 -0.86  0 

232.89664 20406.1  C8H2P2S [M+(41K)]+ 232.89652 0.50  0 

233.09545 11889.7  C9H16N2O3S [M+H]+ 233.09544 0.04  0 
233.12606 149312.3  C11H18N2O2 [M+Na]+ 233.12605 0.05  0 
234.02442 58651.9  C4H13N5S2 [M+K]+ 234.02440 0.09  0 
234.02442 58651.9  C7H7NO8 [M+H]+ 234.02445 -0.11  0 
234.02442 58651.9  C4H11N5O2S [M+(41K)]+ 234.02462 -0.87  0 

234.08492 81315.1  C9H13N3O3 [M+Na]+ 234.08491 0.03  0 
234.08492 81315.1  C6H17N3O4 [M+K]+ 234.08507 -0.63  0 
234.12941 18498  0     0 
234.14485 23358.2  C9H19N3O4 [M+H]+ 234.14483 0.07  0 

…. ….  …. …. …. …. …. …. 

454.30263 32516.5  C11H39N15O2 [M+(41K)]+ 454.30239 0.53  0 

454.30263 32516.5  C22H39N5O5 [M+H]+ 454.30240 0.51  0 
454.30263 32516.5  C17H36N13P [M+H]+ 454.30270 -0.16  0 
454.30263 32516.5  C19H42N7O2P [M+Na]+ 454.30298 -0.78  0 
454.30263 32516.5  C15H39N11O3S [M+H]+ 454.30308 -1.00  0 
454.70246 36518.3  C6HO2P3S8 [M+H]+ 454.70280 -0.74  0 
454.70246 36518.3  C8H2P2S8 [M+K]+ 454.70291 -0.99  0 
455.17515 22053.1  25     0 
455.21397 183145.8  17     0 
456.10192 19678  37     0 
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456.21711 35482.1  16     0 
456.23565 107249  12     0 
456.28190 75989.9  9     0 
456.31823 36907.5  C22H41N5O5 [M+H]+ 456.31805 0.40  0 
456.31823 36907.5  C17H38N13P [M+H]+ 456.31835 -0.27  0 
456.31823 36907.5  C19H44N7O2P [M+Na]+ 456.31863 -0.88  0 
456.73748 53718.7  7     0 
457.15434 22764.1  30     0 
457.19065 29777.2  22     0 
457.26589 54206.4  9     0 
457.27709 26286.6  9     0 
457.28503 18456.7  C19H43N6OPS [M+Na]+ 457.28489 0.31  0 
457.28503 18456.7  C30H36N2O2 [M+H]+ 457.28495 0.17  0 
457.28503 18456.7  C15H40N10O2S2 [M+H]+ 457.28499 0.09  0 
457.28503 18456.7  C24H49OPS [M+(41K)]+ 457.28545 -0.92  0 

457.28503 18456.7  C15H32N14O3 [M+H]+ 457.28546 -0.93  0 
458.19872 30754.4  18     0 
458.22477 73274.4  16     0 
458.26111 38462.8  10     0 
458.29749 24530.3  7     0 
459.18513 35199.1  24     0 
459.19642 36871.3  26     0 
459.24514 37481  14     0 
460.27673 51593.5  9     0 
460.31307 19610.1  C31H42NP [M+H]+ 460.31276 0.67  0 
460.31307 19610.1  C21H41N5O6 [M+H]+ 460.31296 0.24  0 
460.31307 19610.1  C18H45N9S [M+(41K)]+ 460.31314 -0.15  0 

460.31307 19610.1  C16H38N13OP [M+H]+ 460.31327 -0.43  0 
460.31307 19610.1  C23H48N3P3 [M+H]+ 460.31339 -0.69  0 
461.22449 25653.8  17     0 

…. ….   …. …. …. …. …. …. 
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