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Abstract 

As high-temperature superconductor technology approaches commercial applications, for 

example superconducting magnetic energy storage, superconducting fault current limiters, 

and superconducting rotary machines for marine propulsion, it is timely to consider the 

possibility of integrating the associated control equipment into the cryostat with the 

superconductor. This may bring benefits in terms of the performance of the power 

electronics or may enable other system benefits such as higher voltage lower current 

feedthroughs which reduce heat leakage into the cryostat. 

 

This Thesis studies the performance of several DC-DC power conversion techniques at 

temperatures down to 20 K. In particular hard switching, synchronous rectifier, zero-voltage-

switching and multi-level circuit prototypes are examined, focusing on the losses in the 

semiconductor devices. The prototypes operated from 120 V and 500 V DC supplies at 

power levels up to 500 W using MOSFET devices and ultrafast, Schottky and silicon carbide 

diodes. The semiconductors were all in commercial TO220 packages. 

 

Although MOSFET on-state resistance was found to drop by a factor of approximately six at 

cryogenic temperatures, the device switching speed and switching losses were relatively 

insensitive to temperature. The diode on-state voltage increased by 20-30 % at low 

temperatures whilst reverse recovery and the associated losses decreased by a factor of up to 

ten. The total semiconductor losses in all prototypes reduced at low temperatures, typically 

exhibiting a minimum value in the region of 50-100 K. 

 

The performance of the hard switching and synchronous rectifier circuits was limited at 

cryogenic temperatures by switching losses, even though the dead time in the synchronous 

rectifier was adjusted to compensate for the increase in MOSFET gate threshold voltage at 
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low temperatures. The zero-voltage-switching prototype offered the largest reduction in 

semiconductor losses at low temperatures, the losses were reduced to 18 % of the room 

temperature value. Furthermore, since the remaining losses were almost entirely due to 

MOSFET conduction, further reductions could be easily achieved by paralleling additional 

devices. The performance of the multi-level circuits was limited by switching losses and the 

large number of series connected devices; however, a zero-voltage-switching synchronous 

rectifier variant of the circuit was suggested to overcome some of these limitations. 
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rrt  Diode reverse recovery time s 

BV  Metal-semiconductor barrier voltage drop V 

BRV  Breakdown voltage V 

*DV  MOSFET drain-source voltage at the end of 1τ  V 

DDV  Power supply DC voltage during the MOSFET transient analysis V 

FV  Forward voltage drop of the power diode at rated current V 

GHV  High level of the MOSFET gate drive voltage V 

InV  Input DC voltage V 

OV  Output DC voltage V 

RV  Voltage drop across the resistive region in a Schottky diode V 

TV  MOSFET threshold voltage V 

abV  H-bridge output voltage V 

1CInv  Instantaneous voltage across 1InC  V 

''SDv  Instantaneous MOSFET drain-source voltage V 

Fv  Instantaneous diode on-state voltage V 

GGv  Instantaneous MOSFET gate drive voltage V 

''SGv  Instantaneous MOSFET gate-source voltage V 

Inv  Instantaneous input voltage V 
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Chapter 1 

 

Introduction and literature review 

 

 

1.1 Introduction 

Superconductivity was first discovered in 1911 [1-1]; however the extreme cryogenic 

environment that was required limited the development of applications until the late 1980s 

when the discovery of high temperature superconductors [1-2, 1-3] stimulated much more 

rapid progress. The original low temperature superconductors, such as niobium-titanium 

(NbTi), require expensive refrigeration systems to operate below their critical temperatures 

of around 4.2 K [1-4]. The development of high temperature superconductors (HTS) has 

made superconductivity possible at much higher temperatures allowing the use of simpler, 

less costly and more efficient refrigeration systems. Furthermore higher current densities and 

magnetic fields can be accommodated. The HTS wires, bismuth-strontium-calcium-copper-

oxide (BSCCO) and yttrium-barium-copper-oxide (YBCO) with critical temperatures of 110 

K and 93 K respectively, have thermally and mechanically stable properties with high 

critical current levels and have made superconducting devices easier to realise [1-5, 1-6]. 

 

Applications are now emerging in a broad range of areas where the properties of 

superconductors offer the possibility of making significant performance gains. For example 

in medical imaging where superconducting coils are used to produce the high magnetic 

fields required for NMI systems and in communications where superconducting circuits are 

used to make filters with very high Q factor. In the area of electrical power engineering the 
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use of superconductors allows much higher current densities to be achieved and conduction 

losses to be virtually eliminated, enabling reductions in equipment size and weight, or 

increases in power throughout for the same size. The main superconducting power 

applications are summarised in Section 1.2. 

 

As superconducting power applications are developed the possibility arises of co-locating 

any associated power electronics equipment in the cryo-system with the superconductor, 

potentially improving the performance of the power electronics itself, or bringing other 

system level benefits. Although a significant amount of work has been published on the 

characteristics of standard power electronic devices at low temperatures, particularly on-state 

and breakdown voltages, comparatively little has been reported on the overall performance 

of complete converters. This Thesis therefore seeks to examine practically the operation and 

performance of several DC-DC converter topologies, in particular looking at the 

semiconductor performance, and to identify the most appropriate and effective circuit 

techniques. The published work on the cryogenic operation of power electronics is reviewed 

in Section 1.3. 

 

 

 

1.2 Superconducting power applications 

As new superconducting materials continue to be developed and the cost of manufacture 

continues to reduce, large scale applications are starting to appear in areas, such as electrical 

power systems, transport and rotary machines [1-7, 1-8, 1-9]. These include superconducting 

transmission lines, superconducting generators and transformers, superconducting magnet 

energy storage, fault current limiters, superconducting motors and magnetic levitation of 

trains. These applications will be briefly reviewed in the following sections. 
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1.2.1 Superconducting transmission lines 

Superconducting power cables can carry three to five times more power and provide higher 

system efficiency than conventional copper cables of similar size [1-9]. 

 

One of the first demonstrations, a 1000 MVA system was constructed utilising low 

temperature superconductors, Niobium Stannide (Nb3Sn), in flexible cables 2×115 m at 9 K 

and operated from 1982 to 1986 confirming the technical feasibility [1-10]. However, 

numerous superconducting power transmission projects including this one were cancelled for 

cost reasons [1-7, 1-10, 1-11]. 

 

More recently there has been renewed interest using HTS materials with critical 

temperatures of around 110 K and liquid nitrogen cooling (77 K) [1-7, 1-9, 1-11, 1-12]. For 

example a 3 kA, 13.2 kV AC transmission line of 200 m length was commissioned in 2006, 

developed jointly by Southwire and NKT Cables, which can carry as much current as 18 

large copper cables and approximately three times more current than other superconducting 

transmission systems that are operational or under construction [1-13, 1-14]. 

 

1.2.2 Superconducting generators and transformers 

Numerous papers describe synchronous generators which use superconducting DC field 

windings, allowing higher current densities to be used which result in higher magnetic fields 

and a more efficient and smaller machine [1-7, 1-8, 1-9, 1-15, 1-16, 1-17]. For example 

General Electric (GE) built a 100 MVA HTS superconducting generator for civil use [1-17], 

but the project was abandoned in 2006 due to economic and technical reasons [1-18]. 

However, several military programmes continued to pursue the technology to increase power 

density for applications where space or weight is restricted, such as ships and aircraft [1-18, 

1-19]. It is estimated that a 5 MW generator using YBCO could be more than ten times 

lighter than a conventional generator [1-9, 1-19]. 
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It is claimed in [1-7] that a superconducting power transformer would have half the size and 

weight of a conventional device, furthermore the fire and environmental hazards associated 

with the cooling oil in conventional transformers would be eliminated. In addition the life 

expectancy would be increased [1-7, 1-9]. In 2003 Waukesha Electric Systems and IGC 

SuperPower built and tested a 5/10 MVA 3-phase HTS transformer with primary/secondary 

voltage ratings of 24.9 kV/4.2 kV. This was the second phase of a three-stage programme 

which aims to build a 30/60 MVA unit in the final phase [1-21]. 

 

1.2.3 Superconducting magnet energy storage (SMES) 

Superconducting magnet energy storage (SMES) systems store energy in the magnetic field 

of a superconducting DC inductor, and are now commercially available offering flexible, 

reliable, and fast-acting power compensation to electrical power systems [1-22]. SMES 

systems may be used to suppress voltage sags and swells or for load levelling. Due to its 

rapid response (MW/milli-seconds), it is claimed that the SMES system described in [1-23] 

has the potential to improve power transmission stability, frequency control, sensitive load 

protection and power quality at power and energy levels of 20-200 MW and 50-500 MJ. 

American Superconductor’s D-SMES (Distributed Superconductor Magnetic Energy 

Storage) system is a mobile device that can be easily located exactly where voltage 

mitigation is needed in the network, providing up to 3 MW of instantaneous real power from 

the superconductor magnet and up to 8 MVAR reactive power [1-24]. SMES systems require 

extensive power conditioning circuits including AC-DC and DC-DC converters and filter 

components. The source of power losses in SMES systems is primarily from the power 

conditioning circuits [1-25]. 

 

1.2.4 Fault current limiters 

Fault current limiters (FCL) using high temperature superconductors have been explored 

since the late eighties [1-26 to 1-31]. These devices limit the fault current to a desired level 

by inserting impedance into the circuit, whereas they stay in the superconducting state with 
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no resistance when there is no fault [1-31]. Fault current limiters can reduce voltage 

transients during fault conditions and enable smaller, lower-rated switch gear to interrupt the 

fault [1-29, 1-30, 1-31]. Ref [1-32] describes a FCL based on American Superconductor’s 

2G HTS wire for distribution and transmission voltages up to 138 kV AC. The device limits 

the fault currents to 3-5 times the rated current [1-32]. 

 

1.2.5 HTS Motors 

The initial applications for HTS motors are likely to be in transport, particularly for naval 

and commercial ship electric propulsion, where critical size and weight savings will increase 

the design flexibility [1-33, 1-34]. Typically superconducting machines, employing 

superconducting field windings, are much more compact and lighter than conventional 

machines [1-35, 1-36, 1-37]. Advances in rotor design make a superconducting motor 

around one-third the size and one-half the weight of a conventional motor with the same 

power ratings [1-38], and a lower manufacturing cost can be achieved [1-37, 1-38]. 

Additional benefits of superconducting motors include higher efficiency even at partial load 

conditions and reduced acoustic noise due to the absence of armature teeth [1-37, 1-38]. A 5 

MW, 230 RPM, 6-pole AC synchronous motor was delivered to the U.S. Navy in July 2003 

by American Superconductor, employing a high temperature superconducting field winding 

operating at 32 K on the rotor and a conventional, copper, air-cored winding on the stator [1-

37]. Furthermore the company completed factory testing of a 36.5 MW HTS marine 

propulsion motor in March 2007 and was making preparations for the next testing phase [1-

39]. 

 

1.2.6 Magnetically levitated trains 

The superconducting, magnetically levitated train that was tested in Japan on December 2 

2003 is another example of the use of superconductor technology. The train achieved a new 

record speed of 581 km/h [1-40]. The superconducting coils, used in the prototype trains, 

were made of low temperature superconductor NbTi, which requires complex cooling 

systems to maintain the operating temperature of 4 K. Research and development 
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programmes are under way to use high temperature superconducting wires in future 

magnetically levitated trains [1-40, 1-41]. 

 

 

1.3 Review of cryogenic power electronics 

The operation of power semiconductor devices and circuits at low temperatures has received 

increasing attention as superconducting power applications have been developed. The 

cryogenic operation of power semiconductor devices can result in improved switching speed 

and lower on-state voltage than at room temperature. Particularly large benefits have been 

reported for majority carrier devices like MOSFETs operating at around 77 K, liquid 

nitrogen temperature [1-42, 1-43]. It has also been demonstrated that operation at low 

temperatures could provide other benefits, such as reduced package volume, higher current 

densities and increased reliability [1-25, 1-44, 1-45]. Several recent studies have concluded 

that there is a great potential for cryogenic power conversion in future military systems, such 

as propulsion motors and power generators on board ships and aircraft, where size and 

weight are the primary design considerations [1-46, 1-47]. 

 

This section will review the published work on the cryogenic performance of silicon power 

semiconductor devices, followed by germanium and silicon germanium devices. Research on 

the cryogenic behaviour of power conversion circuits is also summarised. 

 

1.3.1 Schottky barrier diode 

A Schottky barrier diode, Figure 1-1, consists of a thin film of metal in direct contact with a 

semiconductor. The metal film is usually deposited on an n-type semiconductor, referred to 

as a metal-semiconductor rectifying contact, and an n-drift region is added to withstand the 

reverse voltage. The forward voltage FV  consists of two parts, the metal-semiconductor 

barrier voltage drop BV  and the voltage drop across the resistive region RV  as shown in (1-

1). 
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Figure 1-1 Schottky barrier diode structure and equivalent circuit 

 

RBF VVV +=  (1-1)  

FD
S

F
F JR

J
J

q
kTV += )ln(  (1-2)  

k is the Boltzmann constant, T  is the operating temperature, q  is the electron charge, FJ  is 

the forward current density, SJ  is the saturation current density and DR  is the specific 

resistance of the voltage blocking drift region, while the resistance of the n+ substrate and 

ohmic contact, CSR + , is normally negligible [1-25]. 

 

At high current densities, the dominant temperature effect on the forward voltage arises from 

the electron mobility in the drift region. The reduction in temperature leads to a dramatic 

decrease in the ohmic portion of the on-state voltage drop. The metal-semiconductor voltage 

drop faces two competing effects as temperature falls from 300 K to 77 K, a decline in 

qkT /  tending to reduce its value and a reduction in the saturation current density SJ  

tending to increase its value. The net effect is an increase in the metal-semiconductor voltage 

drop with a decrease in temperature [1-25]. Therefore, the Schottky diode forward voltage 
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may exhibit a positive or negative temperature coefficient at different temperatures and 

different currents, depending on the relative sizes of the two voltage components. 

 

The reverse bias characteristic of a Schottky diode is determined by the spreading of the 

space charge region into the n-type region. With a Schottky contact of finite area the 

breakdown voltage is limited to less than 100 V by the field concentration caused by the 

curvature of the space charge region at the edge of the contact area [1-48]. This can be 

improved by using an edge termination technique. The preferred method is the diffused p+ 

guard ring shown in Figure 1-1. Although this forms a p-n junction diode in parallel with the 

Schottky diode, the lower forward voltage of the Schottky junction ensures that the p-n 

junction is only forward biased sufficiently to inject carriers into the active region under 

surge conditions [1-48]. This type device is known either as a Schottky P-i-N (SPIN) diode, 

or as a merged power Schottky (MPS) diode [1-48]. 

 

The reduction in temperature results in much lower leakage current during the reverse bias 

operation of a Schottky diode. Theoretically the ideal breakdown voltage of a silicon 

Schottky diode is predicted to increase to twice the room temperature value at 77 K [1-25]. 

However, for MPS/SPIN diodes, under a reverse biased voltage the space charge region 

expands to shield the Schottky junction from the applied voltage by JFET action resulting 

from the diffused p+ regions [1-48]. Therefore the device tends to behave like a p-n junction 

under reverse bias conditions and the breakdown voltage falls at low temperature. 

 

1.3.2 P-i-N diode 

A P-i-N diode, Figure 1-2, consists of a heavily doped +p  type region, an intrinsic layer, 
−n , and a heavily doped +n  substrate. The −n  layer is not found in low power diodes and is 

used to absorb the depletion layer of the reverse-biased p-n junction. The thickness depends 

on the breakdown voltage of the device. Most silicon rectifiers with blocking voltages 

greater than 200 V are P-i-N diodes [1-25]. 
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Figure 1-2 P-i-N diode structure 

 

 

Ref [1-49] reported an experimental study into the behaviour of a 1200 V P-i-N diode over 

the 77-300 K temperature range. At low current, 4 A, the on-state voltage increased at low 

temperatures, whereas at high current, 10 A, 2.5 times the rated current, the on-state voltage 

fell at low temperatures. Also, the reverse recovery waveforms improved at low 

temperatures; the peak reverse current and recovery time decreased by almost an order of 

magnitude at 77 K, principally due to the reduction in carrier lifetime [1-49]. 

 

It was shown in [1-49] by examination of analytical models that at room temperature the 

total forward current is dominated by recombination in the mid region of the diode, however, 

it is dominated by the end region recombination currents at 77 K. It was also explained that 

the band gap narrowing effect, the increase in diffusion coefficients and the reduction in 

carrier lifetime should also be considered for a proper understanding of the power P-i-N 

diode operation at low temperatures. It was concluded that P-i-N diodes can be operated at 

higher frequencies and higher current densities at cryogenic temperatures as compared to 

room temperature [1-25, 1-49, 1-50]. 
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Figure 1-3 N-channel power MOSFET structure 

 

1.3.3 Power MOSFET 

The power MOSFET has a vertical structure as shown in Figure 1-3. Conduction occurs by 

majority carriers through an inversion layer that is created in the p body region underneath 

the insulated gate. The inversion layer is formed by a positive gate-source voltage; the 

electrical field attracts electrons to the surface of the p-base body region under the gate. 

Early papers on the cryogenic behaviour of MOSFETs were published in the 1970s [1-42, 1-

43], however many more papers have been published since the late 1980s [1-51 to 1-68]. 

 

Simple, lumped parameter analytical models for the power MOSFET have been used to 

explain the device operation at cryogenic temperatures [1-51, 1-61 to 1-64]. The MOSFET 

on-state resistance is made up by four main components, the resistances of the inversion, 

accumulation, JFET and drift regions. The relative sizes of these component resistances vary 

according to the design of the MOSFET. The major contribution to the on-state resistance of 

higher voltage MOSFETs is from the drift region, whereas the inversion layer tends to be the 

main contributor to the on-resistance of low voltage MOSFETs. The increase in carrier 

mobilities at low temperatures in these regions essentially determines the reduction in the 

MOSFET on-state resistance at low temperatures [1-25, 1-51]. The on-state resistances of 
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three power MOSFETs with ratings of 50 V, 250 V and 500 V were observed to decrease by 

50 %, 85 % and 90 % respectively at 77 K compared to room temperature [1-51]. 

 

At extremely low temperatures, typically below 40 K for silicon, the MOSFET on-state 

resistance tends to increase with further temperature reductions due to only a small number 

of carriers being available [1-53, 1-65]. This is referred to as carrier freeze-out, and is most 

significant in the JFET and the drift regions [1-25]. Therefore, the carrier freeze-out 

phenomenon tends to be much more obvious in higher voltage MOSFETs due to the 

dominance of the drift region resistance in these devices. 

 

Both MOSFET threshold voltage and transconductance increase at low temperatures. The 

threshold voltage was reported to increase at 77 K by about one volt compared with room 

temperature [1-51, 1-52, 1-58], which results from the fall in intrinsic carrier concentration at 

low temperatures [1-25]. A larger gate-source voltage is needed to form the inversion layer. 

The increase in transconductance is attributed to the increase in inversion layer mobility at 

low temperatures [1-25]. The transconductance of the MOSFETs tested in [1-51] was 

reported to increase by 2-3 times at 77 K. 

 

The breakdown voltage of the power MOSFET decreases at low temperatures, which is 

determined by the intrinsic p-n junction reverse breakdown behaviour. More effective impact 

ionisation at low temperatures results in avalanche breakdown occurring at reduced voltage 

levels [1-25, 1-51]. It was reported that the breakdown voltage of six different MOSFETs 

decreased by 19 – 23 % at 77 K [1-68]. 

 

The switching performance of power MOSFETs has been reported to improve at cryogenic 

temperatures [1-25, 1-51]. The MOSFET switching characteristics in [1-52, 1-57] at high 

frequency were significantly improved at cryogenic temperatures with a shorter turn-on 

delay and sharper turn-on and turn-off slopes. The turn-on time of a CoolMOS device was 

reported to decrease by up to one-third at 83 K, substantially caused by the diminished 



 

 

Chapter 1 Introduction and literature review 

 1-12 

 
Figure 1-4 N-Channel IGBT structure 

reverse recovery charge of the freewheeling diode [1-56]. However, much smaller reductions 

in the turn-on time were reported in [1-59] at low temperatures. These differences seem to be 

due to individual characteristics of the devices and also the test circuits that were used. In 

addition, the reverse current and recovery time of the body diode decrease significantly at 

low temperatures, for example they reduced by a factor of three to five at 77 K for the 

MOSFETs tested in [1-54]. These improvements at low temperatures, along with the better 

thermal conductivity of silicon suggest that the potential exists for efficiency increases and 

considerable size, weight and cost reductions[1-66 to 1-68]. 

 

1.3.4 IGBT 

The insulated gate bipolar transistor (IGBT), Figure 1-4, has a similar structure to the 

MOSFET except for the addition of a p+ layer beneath the n drift region. This structure may 

be considered to combine the advantages of a bipolar device and a MOSFET, giving the 

IGBT a high current handling capability due to the injection of minority carriers (holes) from 

the p+ substrate. However the hole injection degrades the IGBT turn-off performance 

causing a tail current that limits the device’s high frequency applications. Presently the IGBT 

technology is the preferred option for power switching devices with breakdown voltages 

over 1000 V [1-25]. 
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The PT (punch-through) and NPT (non-punch-through) IGBTs, also referred to as 

asymmetrical (with an n buffer layer) and symmetrical (without an n buffer layer) 

respectively, and the newer, trench gate IGBT, were characterised at low temperatures in 

terms of their static and dynamic behaviour, and analytical IGBT models were introduced for 

low temperature operation [1-69 to 1-77]. 

 

At low temperatures the reduction in the intrinsic carrier concentration requires a higher 

voltage level across the gate and emitter of an IGBT to form the inversion layer in the p-base 

region, resulting in an increased threshold voltage. The measured threshold voltage was 

found to increase about one volt at 77 K [1-73], and the transconductance was measured to 

increase by a factor of two at 77 K [1-73], which was attributed to the increase in inversion 

layer mobility at low temperatures [1-25]. At the rated current, the on-state voltage of an n-

channel asymmetric (PT) IGBT was reported to decrease approximately by one-third at 77 K 

[1-73]. The on-state voltages of the 600 V PT IGBT, 1700 V NPT IGBT and trench IGBT 

were observed to decrease across the 300-100 K temperature range at 100 A in [1-74 to 1-

77], principally due to the significant decrease in the MOSFET component of on-state 

voltage in the three devices. The breakdown voltage of the PT and NPT IGBT devices 

decreased approximately by 30 % over the 300-50 K range, whereas the breakdown voltage 

of the trench IGBT decreased by 60 % which was attributed to the field stop layer in the 

trench device [1-74 to 1-77]. The switching performance of the IGBT improves at low 

temperatures; the turn-off time was found to decrease by more than 60 % at 77 K due to the 

reduction in carrier lifetime [1-25, 1-73]. 

 

1.3.5 Germanium and silicon germanium devices 

An interesting avenue of research has been to examine the possibility of designing and 

fabricating devices specifically for cryogenic operation. The use of germanium instead of 

silicon has been considered since the freeze-out temperature of dopants in germanium is 

much lower than in silicon, and also the carrier mobility in germanium is higher than that in 

silicon at low temperatures. Therefore, a Ge diode can operate from room temperature down 

to 4 K and has lower forward voltage drop than does a silicon part [1-78]. 
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Ge cryogenic power device development has been undertaken by NASA and its 

collaborators. A Ge power diode with a nominal 10 A forward current has been 

demonstrated with a breakdown voltage of 400 V at temperatures down to 4 K. Also p-

channel enhancement Ge metal-insulator-semiconductor field-effect transistors (MISFETs), 

JFETs and BJTs were fabricated and characterised at temperatures down to 4 K [1-79, 1-80], 

but their current and voltage ratings were not mentioned. 

 

Power semiconductor devices based on silicon germanium (SiGe) are being developed by 

GPD Optoelectronics Corp in cooperation with Auburn University, motivated by the NASA 

deep space exploration programme [1-81]. A 50 V, 5 A SiGe heterojunction bipolar 

transistor was designed and fabricated, which was examined along with a SiGe diode in a 

100 W, 24 V/48 V, 100 kHz boost power converter at low temperatures. The conversion 

efficiency was reported to increase from 75% at room temperature to 89 % at 30 K [1-81]. 

 

1.3.6 Passive components 

Cryogenic experiments on commercially available capacitors showed that the effect of low 

temperature on the capacitor depends essentially on the dielectric medium being used [1-82, 

1-83]. Capacitors such as polypropylene, polycarbonate, mica, film and ceramic could 

operate properly at 77 K, and some capacitors had a decrease in leakage current and 

dissipation factor at low temperature. It was concluded that further experimental studies 

were required to fully characterise capacitors for potential cryogenic use [1-82, 1-83]. 

 

Magnetic cores were examined for potential applications at cryogenic temperatures [1-84]. 

Experimental results showed that molypermalloy and high flux core-based inductors 

exhibited constant inductance against temperature, whereas the inductance of ferrite-cored 

components decreased by a factor of seven from 25oC to -190oC [1-84]. The paper suggested 

that more testing was needed to evaluate these cores under long term exposure to low 

temperatures [1-84]. 
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1.3.7 Integrated circuits 

A number of commercial analogue-to-digital converters, oscillators and PWM controllers 

were evaluated at low temperatures [1-85 to 1-92]. The analogue-to-digital converters were 

reported to operate well down to -190oC [1-90]; those with an external reference were the 

most accurate [1-85]. The temperature compensated oscillator that was tested maintained 

frequency stability down to -189oC [1-85]. Some PWM controllers that were evaluated 

maintained satisfactory functionality at -190oC [1-91]. However, it was concluded that more 

comprehensive tests were required to fully characterise the performance of PWM and A/D 

chips for low temperature space missions [1-90, 1-91]. 

 

1.3.8 Commercial power supply modules 

Several commercially available DC-DC converter modules were investigated for potential 

use in future space missions [1-92 to 1-97]. These 3.3 V output modules, ranged in electrical 

power from 8 W to 13 W, and their input voltages ranged from 9 V to 75 V. The circuits 

were characterised in terms of the steady-state and dynamic performance with temperature 

from 20 °C to -180 °C. The low temperature evaluation included the output voltage 

regulation, efficiency, input and output current ripple and dynamic behaviour in response to 

temperature changes. Some modules were found to become unstable in terms of voltage 

regulation at low temperatures. 

 

1.3.9 Low power, low voltage DC-DC converters 

Developments in high temperature superconductivity and low temperature semiconductors 

have motivated the investigation of power conversion circuits at low temperatures. During 

the 1990s there has been a surge of activity in the examination of power converters at low 

temperature, mostly supported by NASA. These have mainly been low voltage circuits using 

power MOSFET devices. 
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A 42 V/28 V, 175 W, 50 kHz PWM buck DC-DC converter was designed, fabricated and 

tested at room temperature and at liquid nitrogen temperature using commercially available 

components [1-98]. The power circuit was placed in a Dewar flask and the control circuit 

was at room temperature. The efficiency was found to increase from 95.8 % at room 

temperature to 97 % at 77 K. The results summarised the overall characteristics at 77 K, but 

there was no detailed analysis of losses. 

 

The open-loop and closed-loop operation of a 50 kHz, 48±10 V/12 V, 60 W flying capacitor 

three-level PWM buck converter was reported in [1-99, 1-100] respectively at temperatures 

down to 77 K using commercially available components. Both the power and control circuits 

were located in the low temperature environment. The converter was fully functional at 77 

K. The voltage variation across the energy transfer capacitors with decreasing temperature 

resulted in up to 5 V imbalance in the open-loop operation [1-99], which was balanced by 

the charge-pump controller designed in the close-loop operation [1-100]. However, the 

conversion efficiency was found to decrease with lower operating temperature, principally 

due to larger conduction loss in the diodes [1-99, 1-100]. No detailed analysis of power 

losses in the semiconductors was undertaken. The principal conclusion of the papers was 

establishing the feasibility of operating a three-level buck converter at low temperatures. 

 

Ref [1-101] explored the operation of a 24 V/48 V, 150 W, 50 kHz boost PWM DC-DC 

converter over the temperature range of -185oC to 200oC, where the input inductor, the 

power MOSFET and rectifier were operated at low temperatures, whereas the rest of the 

power and control circuitry were at room temperature. The room temperature efficiency of 

92.2 % decreased to 89.4 % at 200oC, and to 91.5 % at -185oC. On the high temperature side, 

the efficiency decreased due to increased losses in the power MOSFET, diode, and inductor. 

However, on the low temperature side, the drop in efficiency was much less because even 

though the diode and inductor losses increased with decreasing temperatures, the power 

MOSFET loss decreased due to reductions in the conduction and switching losses [1-101]. 

The reduction in the MOSFET switching loss was attributed to the decrease in turn-on time 

and output capacitance at low temperatures [1-101]. However, that conclusion didn’t 
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consider the effect of the improvement in the diode reverse recovery on the MOSFET 

switching behaviour. 

 

The low temperature performance of a 150 W, 50 kHz, 24 V/48 V boost PWM DC-DC 

converter was reported in [1-102] at 77 K, using a molypermalloy core-based inductor and a 

BSCCO-based, high-temperature superconducting inductor. The main objective was to 

examine the low temperature operation of two types of inductor. The use of the HTS 

inductor in the converter yielded no significant performance improvement over the same 

converter with a conventional inductor [1-102]. No description of the semiconductor 

behaviour at low temperature was given. 

 

1.3.10 Soft-switching converters 

As demonstrated by numerous authors, MOSFET conduction losses reduce dramatically 

with a decrease in temperature; however the temperature dependence of the switching loss is 

more complicated and depends on the device itself, the driving circuit and the external power 

circuit. MOSFET switching waveforms were examined experimentally in [1-98] at 300 K 

and 77 K, an RC snubber was used in each case and it was concluded that the MOSFET 

switching waveforms were greatly improved with reduced turn-on oscillations. The power 

MOSFET loss analysis in [1-101] showed that the turn-off loss was almost constant over the 

temperature range. Several publications have reviewed the use of zero-voltage-switching 

circuits at low temperatures, the main contributions are summarised in the following 

paragraphs. 

 

An investigation of hard-switching and soft-switching in a boost converter at 77 K was 

reported in [1-103] and concluded that the MOSFET turn-on over current transient decreased 

almost by half in the hard-switching boost converter at 77 K compared with room 

temperature. Furthermore, the soft-switching circuit consisting of a diode, inductor and 

capacitor operated successfully at 77 K, and the MOSFET turn-on over current transient 

decreased further compared with the hard-switching operation at 77 K. 
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The performance of a 120 W, 100 kHz, 42 V/12 V phase-shifted, zero-voltage-switching, 

open-loop controlled full-bridge DC-DC converter was reported over the temperature range 

of -175oC to 25oC in [1-104], using commercially available components. The converter was 

stable across the temperature range, and a slight increase in efficiency was measured with 

decreasing temperature, since the decrease in the MOSFET and filter inductor losses were 

offset by the increase in the diode conduction loss [1-104]. It was pointed out that the use of 

synchronous rectification in place of diode rectification at the output could further improve 

the converter efficiency especially at low temperatures due to the decreased conduction loss 

of MOSFETs [1-104]. 

 

Ref [1-105] reported the operation of a 55 W, 200 kHz, 48 V/28 V zero-voltage-switching 

multi-resonant DC-DC converter at 77 K, using commercially available components. It was 

found that the values of the resonant inductor and capacitor remained approximately constant 

with temperature, therefore the switching frequency, resonant frequency and the 

characteristic impedance did not change significantly, and zero-voltage-switching was 

maintained [1-105]. There was only a slight increase in efficiency at low temperature since 

the decrease in the MOSFET on-state loss was offset by the increase in the MOSFET body 

diode conduction loss [1-105]. 

 

A hard-switching boost converter and corresponding soft-switching converters using zero-

voltage transition and multi-resonant techniques were examined at liquid nitrogen 

temperature in [1-106]. Although the zero-voltage-switching converters operated 

successfully at 77 K, the loss reduction in the main transistors was offset by the increased 

loss in the resonant components and in the diodes. For this reason the efficiency advantage 

of the soft-switching converter was lost at low temperatures. It was concluded that the soft-

switching converter with a long diode conduction interval had an even lower efficiency in 

comparison with its hard-switching counterpart [1-106]. 
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1.3.11 High power converters 

A chopper circuit made with commercially available MOSFETs and diodes, part of the 

power conditioning system for a SMES system with a rated energy of 300 J at 130 A, was 

built and tested in a cryostat at around 80 K to control the superconducting coil current [1-

107]. The power loss of the chopper was reduced to half of the value at room temperature 

and the size of the current leads was greatly reduced. It was concluded that the losses would 

decrease more by using diodes with lower on-state voltage at low temperature [1-107]. 

 

The viability of a 50 kW, MOSFET-based, three-phase inverter at 77 K was demonstrated 

for utility energy conditioning in [1-108], using a split-capacitor power supply of ±325 V 

DC and providing 400 V AC and 72 A RMS line current at 50 kHz. It was shown that the 

conduction loss could be made extremely small by using parallel MOSFETs, and that the 

switching loss could be reduced by using soft-switching techniques. Initial results showed 

that the inverter power loss was approximately 1 % of the rated power. The final aim was to 

decrease this below 0.5 % at the full 50 kW operation. It was claimed that more work was 

required to quantify the losses of the various devices in the circuit [1-108]. 

 

The patent in [1-109] described the concept of high efficiency cryogenic power conditioning 

circuit used to convert the DC output of fuel cells into suitable AC power for a vehicle 

traction drive. The cryogenic cooling was provided by the liquid hydrogen which was then 

used to supply the fuel cell. It was claimed that the converter at low temperature could 

exhibit an efficiency of greater than 99 % when driving the motor; furthermore, it was 

claimed that the reduction in size, weight and cost of the converter could be achieved [1-

109]. However, no experimental results were presented. 

 

Ref [1-110] described a patent for a magnetic resonance imaging system. The assumption 

was that the MOSFET conduction loss could be dramatically reduced by cooling and 

paralleling while the switching loss could be decreased by using suitable soft-switching 
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techniques. It was claimed that the system could generate a high magnetic field (1T-2T) for 

lower cost with higher efficiency, longer lifetime and improved reliability, compared to 

conventional systems [1-110]. 

 

1.3.12 Summary of cryogenic power electronics 

According to the foregoing review, most commercial-off-the-shelf power semiconductors 

and circuits, designed for normal operating temperatures, have the capability of operating at 

liquid nitrogen temperature, 77 K. Majority carrier devices such as MOSFETs demonstrate 

improved performance at low temperature, especially lower on-state resistance. Also, the 

switching losses in minority carrier devices, such as IGBTs and P-i-N diodes, decrease at 

low temperature due to the decrease in carrier lifetime. 

 

Motivated by the improved power device characteristics at low temperature, the evaluation 

of power conversion circuits has been performed using different conversion topologies 

usually at liquid nitrogen temperature, employing power MOSFETs and diodes. However, 

most published papers have only reported the conversion efficiency at 77 K, and there is 

little quantitative investigation of power losses for the individual semiconductor devices with 

temperature. No work was found on the performance of power conversion circuits formed by 

silicon power semiconductors operating at temperatures below 77 K. Moreover there is very 

little published work on the comparative performance of different DC-DC converter circuit 

techniques at cryogenic temperatures, for example soft-switching, synchronous rectifier and 

multi-level. 

 

 

1.4 Summary of literature review 

The foregoing literature review shows there are an increasing number of superconducting 

applications in both aerospace and terrestrial fields, creating an impetus for the development 

of cryogenic power electronics. At the same time, cryogenic semiconductor physics is 
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maturing, and silicon power semiconductors, such as power diodes, power MOSFETs and 

IGBTs, are all characterised for low temperature operation. Moreover, power 

semiconductors made from other materials, such as germanium and silicon germanium, can 

offer superior switching and on-state performance even at 30 K and appear good options to 

replace silicon devices in future deep space exploration applications. 

 

Power electronic converters are capable of operating at cryogenic temperatures, in most 

cases with reduced losses, potentially bringing benefits of increased power density. The 

potential applications include allowing spacecraft power electronics to operate cold, saving 

the cost and weight of the environmental control systems. An alternative application is the 

integration of a power converter into a cryostat with a superconducting device which may 

increase power density, and depending on the additional energy used by the cryocooler, may 

also reduce overall system losses. Furthermore, other system benefits may then be possible, 

for example the use of high voltage, low current feedthroughs into the cryo-system, which 

would reduce the heat leakage into the system and therefore reduce the load on the 

cryocooler. To enable such systems to be designed and optimised a better understanding is 

needed of power converter operation at cryogenic temperatures. 

 

 

1.5 Scope of the Thesis 

From the literature review, the reported work on the cryogenic operation of power 

conversion circuits is patchy and incomplete; there is insufficient examination of individual 

semiconductor power losses at low temperatures. The research in this Thesis focuses on the 

evaluation of semiconductor losses in several MOSFET-based converter circuit technologies 

across the temperature range 20-300 K. 

 

Chapter 2 examines the semiconductor losses in 500 W, single-transistor, step-down 

converters operating from 120 V and 500 V DC supplies at temperatures extending down to 

20 K. Power MOSFETs and several diode technologies are examined. 
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Chapter 3 explores the semiconductor losses in two two-transistor, step-down converters at 

low temperatures. The synchronous rectifier and soft-switching (zero-voltage-switching 

clamped-voltage) step-down converter are fabricated and evaluated with a 120 V DC supply 

at temperatures down to 20 K. Also, the synchronous rectifier is evaluated operating with a 

500 V DC supply. 

 

Chapter 4 describes the investigation of the semiconductor losses in the three-level, diode-

clamped, step-down converter over the temperature range 20-300 K. The prototype operates 

at 500 W from a 500 V source and at 600 W from a 600 V DC supply. A zero-voltage-

switching version of the circuit is proposed to improve the low temperature performance. 

 

Chapter 5 draws conclusions and identifies some of the priorities for further research on 

cryogenic power electronics. 
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Chapter 2 

 

Cryogenic operation of single-transistor step-down 

converters 

 

This Chapter describes the analysis and experimental measurement of the semiconductor 

losses in single-transistor step-down converters. Prototypes are examined that operate from 

120 V and 500 V supplies, and MOSFET switching devices are employed in each prototype 

along with several diodes including ultrafast, Schottky and silicon carbide types. The 

performance of the prototypes is examined at temperatures down to 20 K. 

 

 

2.1 Step-down converter operation and design 

The single-transistor step-down converter, shown in Figure 2-1, consists of a high-frequency 

switching transistor 1S  which operates with duty ratio D , freewheeling diode 1D  and output 

filter OCL − . Assuming lossless operation, the output voltage OV  is given by InDV  [2-1], 

where InV  is the DC source voltage. InC  is a decoupling capacitor which provides the high-

frequency AC component of the converter input current. The source current InI  is then 

assumed to be purely DC. 

 

Figure 2-2 displays the main waveforms of the step-down converter in the continuous 

conduction mode. Fv  is the freewheel diode voltage, Lv  is the inductor voltage, Li  is the 
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Figure 2-1 Step-down (buck) converter 
 

 
 

Figure 2-2 Idealised voltage and current waveforms in a buck converter 

inductor current with a DC component OI  and a peak-to-peak ripple LI∆ , Ov  is the output 

capacitor voltage with a DC component OV  and a peak-to-peak ripple OV∆ , 1Si  is the 

transistor current, Ci  is the input capacitor current and Inv  is the input capacitor voltage, 

which has a DC component InV  and a peak-to-peak ripple InV∆ . The difference between the 
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Table 2-1 Single-transistor converter design requirements 
Converter input voltage InV  Design 

Parameters 120 V 500 V 

Input current (A) 4 1 

Input power (W) 480 500 

Output voltage (V) 60 250 
Output current (A) 8 2 
Duty ratio 50% 50% 

Frequency (kHz) 50 50 

Input voltage ripple (V) 6 25 

Output voltage ripple (V) 0.6 2.5 

Inductor current ripple (A) 1.2 0.3 
 

DC source voltage InV  and the capacitor voltage Inv  is assumed to be dropped across the 

inductive impedance of the supply cables, which is not shown explicitly. 

 

Based on the analysis of the waveforms and again assuming lossless operation, the design 

equations for the input capacitor, the filter inductor and the output capacitor are summarised 

as below. 

S
L

O TD
I

VL )1( −
∆

=  (2-1)  

2)1(
8

1
SO

O
O TDV

VL
C −

∆
=  (2-2)  

In

SIn
In V

TDIC
∆
−

=
)1(

 (2-3)  

where ST  is the switching period. 

 

Prototype converters were designed for operation from 120 V and 500 V DC supplies 

according to the requirements listed in Table 2-1. Applying the requirements to the design 
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Table 2-2 Passive component design values 
Circuit InC  L  OC  

120 V 6.67 µF 0.5 mH 5 µF 

500 V 0.4 µF 8.3 mH 0.3 µF 

 
Table 2-3 Power MOSFET parameters at 25oC 

MOSFETs BRV  (V) )(onDSR  (Ω) 

IRFB31N20D 200 0.082 

SPP20N60C3 600 0.19 
 

Table 2-4 Power diode parameters at 25oC 
Rectifiers Type BRV  (V) FV  (V) 

MBR20200CT Silicon Schottky barrier 200 0.85 @10 A 

MUR1560 Silicon ultrafast rectifier 600 1.50 @15 A 

CSD10060 Silicon carbide Schottky barrier 600 1.80 @10 A 

 
 

equations resulted in the passive component values for the 120 V and 500 V buck converters, 

as displayed in Table 2-2. For the 120 V buck converter, the MOSFET IRFB31N20D was 

selected, and the MOSFET SPP20N60C3 was chosen for the 500 V converter. A Schottky 

barrier diode, an ultrafast diode and a silicon carbide Schottky barrier diode were selected as 

freewheel diodes. The breakdown voltage BRV  and on-state resistance )(onDSR  for the 

MOSFETs are listed in Table 2-3, and the breakdown voltage and the voltage drop FV  at the 

rated current for the diodes are listed in Table 2-4. Totally there are three 120 V converters, 

formed by the low voltage MOSFET and any one of the three diodes, and two 500 V 

converters, formed by the high voltage MOSFET and either of the two high voltage diodes. 
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Figure 2-3 Equivalent circuit for clamped inductive load switching 

 

 

2.2 Semiconductor loss analysis at room temperature 

The semiconductor losses in the single-transistor step-down converter consist of two parts, 

conduction loss and switching loss. The conduction loss depends on the forward voltage 

drop across and the current through each semiconductor device. The temperature dependence 

of MOSFET and diode forward characteristics was explained in Chapter 1, Section 1.3. The 

switching loss contains MOSFET and diode turn-on and turn-off losses. The MOSFET 

switching losses will be explained in the following sections. 

 

2.2.1 MOSFET transient analysis 

The analysis of the switching transient presented here is based on that in [2-2]. The 

MOSFET switching transient in a buck converter takes place under clamped inductive load 

conditions and the equivalent circuit is shown in Figure 2-3, where the MOSFET is modelled 

by a transconductance fsg  and three inter-electrode capacitors, the gate-source capacitor 

''SGC , the gate-drain capacitor ''DGC  and the drain-source capacitor ''SDC . The inductances of 

the drain and source leads, DL  and SL , and the resistance 'GR  of the polycrystalline silicon 

gate are all included, and GR  is the external gate resistor. 
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Figure 2-4 MOSFET turn-on and turn-off waveforms 

 

Each switching transition is divided into a sequence of consecutive intervals, plotted in 

Figure 2-4. The sketched waveforms in Figure 2-4 show the gate-source voltage ''SGv , the 

drain current Di  and the drain-source voltage ''SDv . 

 

2.2.1.1 MOSFET turn-on analysis 

Initially the MOSFET is assumed to be turned off and the load current OI  circulates through 

the freewheel diode. The gate-source voltage ''SGv  is below the threshold voltage TV , the 

drain current Di  is zero and the drain-source voltage ''SDv  equals DSv  which has a value of 

FDD VV + , FV  is the forward voltage drop of freewheel diode in Figure 2-3. The gate drive 

voltage GGv  then switches instantaneously to the high level of GHV  from zero. The 

subsequent turn-on transient is typically divided into four parts as shown in Figure 2-4. 

 

The first part is the delay time Dτ , during which capacitors ''SGC  and ''DGC  are charged via 

gate resistance 'GG RR +  and the gate voltage increases exponentially until TSG Vv =''  

according to (2-4), whilst 0=Di  and FDDDSSD VVvv +=='' . 
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Figure 2-5 Simplified equivalent circuit during 1τ  

)]/exp(1['' GGHSG tVv τ−−=  (2-4)  

where 

))(( ''''' DGSGGGG CCRR ++=τ  (2-5)  

An expression for Dτ  may be obtained by setting TSG Vv =''  and Dt τ=  in (2-4). 

)ln(
TGH

GH
GD VV

V
−

= ττ  (2-6)  

 

Once the gate-source voltage is above the threshold voltage, TSG Vv >'' , the MOSFET enters 

the second stage of the transient, denoted 1τ  in Figure 2-4, during which both drain current 

and drain-source voltage are non-zero, generating switching loss. In order to obtain 

analytical solutions for 1τ , the source lead inductance SL  is neglected. The simplified 

equivalent circuit is redrawn in Figure 2-5. 

 

During 1τ  the drain current increases from zero to OI , the current level in the inductive load, 

at which point the freewheel diode becomes reverse biased. The gate-source voltage rises 

from TV  to the plateau value fsOT gIV /+ , and the drain-source voltage drops slightly from 
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FDD VV +  due to the increasing drain current in the parasitic inductance. The gate current is 

the sum of the ''SGC  and ''DGC  charging currents in (2-7). 

'

''''
''

''
''

GG

SGGHDG
DG

SG
SGG RR

vV
dt

dvC
dt

dvCi
+
−

=+=  (2-7)  

The drain current is expressed in (2-8). 

D

SDFDDD

L
vVV

dt
di ''−+

=  (2-8)  

∫
−+

= dt
L

vVVi
D

SDFDD
D

''  (2-9)  

Summing the currents at node 'S , Figure 2-5, the source current can be expressed by (2-10), 

where the channel current equals )( '' TSGfs Vvg −  according to the MOSFET characteristic. 

dt
dvC

dt
dvCVvgi SD

SD
SG

SGTSGfsS
''

''
''

'''' )( ++−=  (2-10)  

Using Kirchhoff’s current law, the source current is the total of the gate and drain currents. 

DGS iii +=  (2-11)  

Substituting (2-7), (2-9) and (2-10) into (2-11) and re-arranging, the drain-source voltage is 

expressed in (2-12) 

])1[( 2
''

2

''
''

'
''2

''
2

'' dt
vd

C
dt

dv
RR

gLVVv
dt
vd

CL SG
SG

SG

GG
fsDFDDSD

SD
SDD +

+
+−+=+  (2-12)  

The gate-drain voltage is obtained in (2-13) by rearranging (2-7) 

dt
dvC

RR
vV

dt
dvC SG

SG
GG

SGGHDG
DG

''
''

'

''''
'' −

+
−

=  (2-13)  

Applying Laplace transforms to (2-12) and (2-13), denoting the Laplace operator by s and 

neglecting the initial voltages across the capacitors since the product of the voltage and 

capacitance is relatively small [2-2, 2-3], 
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''
2

'''''
'' 1

)(])/(1[
)(

SDD

SGSGGGfsDFDD
SD CLs

svsCRRgsLVV
sv

+

+++−+
=  (2-14)  

''

'''''''
''

)()/())((
)(

DG

SGSGGGSGGH
DG sC

svsCRRsvVsv −+−
=  (2-15)  

Using Kirchhoff’s voltage law, the gate-source voltage is the sum of ''DGv  and ''SDv  in (2-16). 

)()()( '''''' svsvsv SDDGSG +=  (2-16)  

Substituting (2-14) and (2-15) into (2-16) and rearranging, the gate-source voltage is 

expressed in (2-17). The detailed calculation is seen in Appendix 1. 

1
)( 2

2
23

3
3'' +++

=
GGG

GH
SG sss

Vsv
τττ

 (2-17)  

where 

))(( '''''''''''''
3

3 DGSDSDSGSGDGGGDG CCCCCCRRL +++=τ   

)]}(1[{ '''''
2

2 GGfsDGSDDG RRgCCL +++=τ   

Gτ  is given by (2-5). Given that the product of either two inter-electrode capacitances is 

orders of magnitude less than the single capacitance [2-1, 2-2], 3
3Gτ  is neglected. Assuming 

1)( ' >>+ GGfs RRg , which is usually the case for power MOSFETs with high drain current 

ratings [2-1, 2-2], (2-17) reduces to 

1
)(

'
2'' ++

=
GGm

GH
SG ss

Vsv
τττ

 (2-18)  

where Dfsm Lg=τ  and )( '''' GGDGG RRC +=τ . 

 

The equation (2-18) may be solved to either sinusoidal or exponential solutions [2-3]. Since 
2
Gτ  is greater than '4 Gmττ  in the converters considered in this Thesis, an exponential solution 
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is given in (2-19) for ''SGv  [2-4], assuming the initial conditions are TSG Vv =''  and 

0/ =dtdiD . 

Provided that TGS Vv >  and )(onDSDDS Riv >  during 1τ  [2-2], the drain current is calculated by 

)( '' TSGfsD Vvgi −= . Substituting for ''SGv  from (2-19) results in (2-20). 

1τ  is obtained by setting Di  equal to OI  in (2-20) and solving for t. 

 

Differentiating (2-20) to obtain an expression for dtdiD / , then substituting into (2-8) results 

in the expression for ''SDv . 

where 

2/1
'

2
'

)4(
2

GmGG

Gm
b ττττ

ττ
τ

−−
=  (2-22)  

2/1
'

2
'

)4(
2

GmGG

Gm
c ττττ

ττ
τ

−+
=  (2-23)  

 

During the third stage of the transient, denoted 2τ  in Figure 2-4, the drain-source voltage 

decreases from *DV , the value at the end of 1τ , to zero, whilst ''DGC  is charged by the gate 

current. In this period both Di  and ''SGv  remain constant with values of OI  and fsOT gIV /+  

respectively. The equivalent circuit is displayed in Figure 2-6. The analysis neglects diode 

reverse recovery, resulting in the waveforms shown in Figure 2-4. 

cb

ccbb
TGHGHSG

ttVVVv
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ττττ
−

−−−
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)/exp()/exp(
)(''  (2-19)  
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Figure 2-6 Equivalent circuit for the fall of the drain voltage 
 

Summing currents at the node 'D  in Figure 2-6 gives 

dt
dvCI

dt
dvCVvg DG

DGO
SD

SDTSGfs
''

''
''

'''' )( +=+−  (2-24)  

and the gate-source voltage is expressed in (2-25) from Figure 2-6. 

dt
dvCRRVv DG

DGGGGHSG
''

''''' )( +−=  (2-25)  

 

Since ''SGv  is constant, dtdvdtdv SDDG // '''' −= . Rearranging (2-24) and substituting (2-25) 

for ''SGv  results in 

'''''

''

)](1[
)(

DGGGfsSD

TGHfsOSD

CRRgC
VVgI

dt
dv

+++

−−
=  (2-26)  

The right hand side of (2-26) is a constant and its magnitude is denoted K, therefore 

KtVv DSD −= *''  (2-27)  

 

Practically ''DGC  increases as ''SDv  decreases. The change in ''DGC  with ''SDv , Figure 2-7, 

reduces the value of K sharply at the end of this period, slowing the fall in ''SDv . For 
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Figure 2-7 Variation in gate-drain capacitance with drain-source voltage [2-1] 

approximate calculations of switching waveforms, the capacitance is assumed to take the 

discrete values ''DGC  and '''DGC  in Figure 2-7 the transition occurring at '''' SGSD vv =  [2-1]. 

 

Accordingly, 2τ  is separated into two parts in Figure 2-4. During the first part of 2τ , ''SDv  is 

assumed to fall rapidly to ''SGv  which equals fsOT gIV /+ , while in the second part of 2τ , 

''SDv  declines much more slowly due to the increased capacitance value. The two values of K 

in (2-27) are denoted 1K  and 2K . 

'''''
1 )](1[(

)(

DGGGfsSD

OTGHfs

CRRgC
IVVg

K
+++

−−
=  (2-28)  

''''''
2 )](1[(

)(

DGGGfsSD

OTGHfs

CRRgC
IVVg

K
+++

−−
=  (2-29)  

The duration of 2τ  is determined by (2-30) 

21

*
2

/)/(
K

gIV
K

gIVV fsOTfsOTD +
+

+−
=τ  (2-30)  

 

At the end of 2τ  the MOSFET completes the main switching transition and is in the forward 

conducting state. During the final stage of the turn-on transient, denoted 3τ  in Figure 2-4, 

the MOSFET input capacitances are charged via 'GG RR +  to the gate drive voltage GHV . 
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2.2.1.2 MOSFET turn-off analysis 

Figure 2-4 also plots the four stages of the MOSFET turn-off transient. The MOSFET 

equivalent circuit of Figure 2-3 still applies, but now the initial conditions are that ''SDv  is 

almost zero and the load current OI  flows through the conducting MOSFET with 

GHSG Vv ='' . At the turn-off instant the gate supply voltage GGV  drops instantaneously to zero. 

The gate voltage begins to fall, discharging ''SGC  and ''DGC . As long as fsOTSG gIVv /'' +> , 

OI  continues to flow through the MOSFET and ''SDv  is unaffected. The time taken for ''SGv  

to fall to fsOT gIV /+  is the turn-off delay time denoted 4τ  in Figure 2-4. 

 

During the next stage of turn-off, denoted 5τ  in Figure 2-4, ''SDv  starts rising whilst the full 

load current continues to flow in the MOSFET. Di  stays constant at the value OI  and ''SGv  

remains constant at the value fsOT gIV /+ . The equivalent circuit is the same as that in 

Figure 2-6, and the analysis is similar, but with different initial conditions. The drain-source 

voltage ''SDv  rises to FDD VV +  according to Ktv SD ='' , where, to account for the non-linear 

gate-drain capacitor, K takes the values: 

''''''
3 )](1[( DGGGfsSD

TfsO

CRRgC
VgI

KK
+++

+
==  for fsOTSD gIVv /'' +<  (2-31)  

'''''
4 )](1[( DGGGfsSD

TfsO

CRRgC
VgI

KK
+++

+
==  for fsOTSD gIVv /'' +≥  (2-32)  

 

The duration of 5τ  is determined by (2-33) 

43
5

)/(/
K

gIVVV
K

gIV fsOTFDDfsOT +−+
+

+
=τ  (2-33)  
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When ''SDv  reaches FDD VV + , the diode becomes forward biased and the turn-off transient 

enters the third stage, denoted 6τ  in Figure 2-4. Di  starts to fall from OI  to zero whilst ''SDv  

rises as the circuit dictates. The equivalent circuit is then that of Figure 2-5, and the analysis 

is similar to that in the turn-on stage 1τ  with new conditions, 0=GHV  and ''SGv drops from 

fsOT gIV /+  to TV . The exponential solutions are as follows, 

cb

ccbb
fsOTSG

ttgIVv
ττ

ττττ
−

−−−
+=

)/exp()/exp(
)/(''  (2-34)  

Tfs
cb

ccbb
OTfsD VgttIVgi −

−
−−−

+=
ττ

ττττ )/exp()/exp(
)(  (2-35)  

cb

cb
OTfsDFDDSD

ttIVgLVVv
ττ

ττ
−

−−−
+++=

)/exp()/exp(
)(''  (2-36)  

6τ  is obtained by setting Di  equal to zero in (2-35) and solving for t. 

 

In the last stage, 7τ  in Figure 2-4, the MOSFET is non-conducting and the gate capacitance 

continues discharging via 'GG RR + . ''SGv  exponentially approaches zero with a time constant 

Gτ  determined by (2-5), this final stage corresponds to the delay time in the turn-on transient. 

 

2.2.1.3 MOSFET turn-on considering diode reverse recovery 

The foregoing MOSFET turn-on analysis is based on the assumption that the freewheeling 

diode 1D  is ideal in Figure 2-3. However, in practice the MOSFET turn-on waveforms will 

be modified by the reverse recovery of the freewheel diode. The transistor turn-on 

waveforms are plotted in Figure 2-8 considering the diode reverse recovery. 

 

When the MOSFET is in the off state and the diode conducts the current OI , and minority 

carriers are stored in the diode. When the MOSFET turns on, negative current flows through 

the diode, which actively sweeps out the minority carriers stored in the junction. The current 
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Figure 2-8 Transistor turn-on waveforms considering diode reverse recovery [2-4] 

rate of change is typically limited by the turn-on of the MOSFET, the package inductance 

and other stray inductances present in the external circuit; therefore the peak magnitude of 

the reverse current RRI  depends on the external circuit, and can be many times larger than 

the forward current OI , Figure 2-8 (b). 

 

The reverse recovery charge rQ  is defined as the time integral of the reverse current during 

the reverse recovery period rrt , the interval of )( 02 tt −  in Figure 2-8 [2-5]. 

dtiQ
t

t
Fr ∫=

2

0

||  (2-37)  

Approximating the waveform by straight lines, rQ  can be expressed as 

)()(
2
1)(

2
1

020102 tt
dt

dittttIQ F
RRr −−=−=  (2-38)  

where dtdiF /  is the rate of fall of the diode current. 
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Diodes in which the interval )( 12 tt − is short compared to )( 01 tt − , Figure 2-8, are called 

abrupt-recovery diodes, and so rrttt ≈− 01 . Equation (2-38) may be simplified into (2-39) 

for the rQ  calculation in abrupt-recovery diodes [2-5, 2-6]. 

2

2
1

rr
F

r t
dt

diQ =  (2-39)  

 

Diode reverse recovery affects the MOSFET switching waveforms as indicated in Figure 2-8 

(a). The MOSFET drain current must now rise to the load current level plus the peak diode 

reverse recovery current before the diode can block reverse voltage and allow ''SDv  to fall. 

As a result the MOSFET turn-on loss increases. The instantaneous power dissipated in the 

MOSFET is also sketched in Figure 2-8 (c), and the additional energy lost is (2-40). 

∫=
2

0

''

t

t
DSDMOSFET dtivW  (2-40)  

 

For an abrupt-recovery diode, the integral can be evaluated simply, ''SDv  is then equal to DDV  

for essentially the entire diode recovery interval 01 tttrr −≈ , and FOD iIi −= . 

rDDrrODD

t

t
FODDMOSFET QVtIVdtiIVW +=−= ∫

1

0

)(  (2-41)  

where rDDQV  and rrODD tIV  correspond to the areas A and B, Figure 2-8 (c). The diode 

recovery leads directly to the average additional power loss SMOSFET fW , where Sf  is the 

switching frequency. 

 

2.2.2 Switching loss validation at room temperature 

The single-transistor step-down converter employs power MOSFET IRFB31N20D to switch 

8 A ( OI ) with 120 V ( DDV ) at 50 kHz, and two gate resistors with 20 Ω and 5.6 Ω were used 

to control the drain current rising and decreasing times respectively with VVGH 12= . The 
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Table 2-5 IRFB31N20D parameters at 25oC 
Parameter Units Typ. 

fsg  S 17 

DL  nH 10 

TV  V 4 

''SGC  pF 2292 

''DGC  pF 50 

'''DGC  pF 1000 

''SDC  pF 170 
 

MOSFET parameters related to the switching loss calculation are listed in Table 2-5, which 

were obtained from the IRFB31N20D datasheet. Values of the MOSFET lead inductances 

are typically in the region of 5-15 nH [2-2], so nHLD 10= . 

 

The MOSFET drain-source voltage and drain current during the individual switching 

intervals were calculated using the foregoing analytical equations (2-20), (2-21), (2-26) to 

(2-33), (2-35) and (2-36). The circuit stray inductance, which was principally attributed to 

the planar bus bar connecting the MOSFET and diode to the input capacitor InC , was 

estimated to be 70 nH by the inductance calculation for parallel conducting sheets in [2-7]. 

So DL  was increased to 80 nH. Also the diode output capacitance of 100 pF was included by 

increasing the MOSFET output capacitance to 270 pF. The durations of principal switching 

intervals were obtained using the equations (2-20), (2-30), (2-33) and (2-35), and are listed 

in Table 2-6 for the MOSFET turn-on and turn-off transitions. 

 

The 120 V buck converters were tested at room temperature with three different power 

diodes, ultrafast, Schottky and silicon carbide Schottky diodes. The measured switching 

times are listed in Table 2-6 from the experimental waveforms, denoted by Ult, Sch and SiC 

respectively. The discrepancies in the predicted and measured values of 2τ  were attributed to 

the diode reverse recovery process. Otherwise the predictions show good agreement with the 

measurements considering the approximations made in the analysis. 
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Table 2-6 Calculated and measured MOSFET turn-on and turn-off times 
Measured values Items Units Calculated Ult Sch SiC 

τ1 ns 25 28 27 29 

τ2 ns 30 47 31 26 

τ5 ns 14 15 16 19 

τ6 ns 23 17 18 21 

di/dt (rising) A/ns 0.32 0.29 0.30 0.28 

di/dt (falling) A/ns 0.35 0.47 0.44 0.38 
 

Table 2-7 Calculated and measured MOSFET turn-on and turn-off losses 
Measured values Switching loss Units Calculated Ult Sch SiC 

MOSFET turn-on W 0.70 3.22 2.00 1.03 

MOSFET turn-off W 0.95 0.57 0.54 0.51 

 
 

The switching losses were calculated by time integration of the device current and voltage 

product multiplied by the switching frequency, Table 2-7, using the calculated and measured 

switching waveforms, Figure 2-9. Examination of Figure 2-9 shows that there is a large 

pulse of forward current through the MOSFET at turn-on in the prototype with the ultrafast 

diode due to the diode reverse recovery, which was thought to account for the large 

difference in the predicted and measured MOSFET turn-on losses. Using the equations (2-

39) and (2-41), di/dt (50 A/µs) and reverse recovery time (60 ns) from the ultrafast diode 

data sheet, the additional MOSFET turn-on loss was calculated to be 3.4 W. The di/dt in the 

practical waveforms is however over six times this figure. 

 

The difference in the MOSFET turn-off losses between the predicted and measured values 

may be caused by the piecewise linear approximation for the MOSFET non-linear gate-drain 

capacitance. Moreover, in practice both drain-source capacitor and transconductance are 

dependent on the drain-source voltage, which, however, are constant in the analytical 
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Figure 2-9 Predicated and measured MOSFET switching waveforms: (a) turn-on, (b) 
turn-off; blue: analytical result; green: with ultrafast diode; red: with Schottky diode; 

black: with SiC diode 

calculations. The turn-off oscillations at about 29 MHz in the measured waveforms were 

attributed to the stray inductance ringing with device capacitance. The natural frequency of 

the stray inductance (80 nH) and the device capacitance (270 pF) is 34.2 MHz. 
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Figure 2-10 Cold chamber cross section 

 

 

2.3 Cryogenic system introduction 

The cryogenic system is built around a COOLPOWER 120 T cold head from Leybold 

Vacuum GmbH which is powered by a sealed liquid helium cooling circuit. The temperature 

of the cold head can be decreased to 20 K in approximately 50 minutes, and the refrigeration 

unit has a cooling capacity of 120 W at 80 K providing the capability to operate power 

conversion circuits and power devices continuously at low temperatures. 

 

Figure 2-10 shows the cross section of the cold chamber. The test sample is mounted on the 

cold head inside the chamber. The cold head diameter is 120 mm. A vacuum jacket 

surrounds the cold head to prevent convection heating of the devices and water 

condensation. The vacuum is provided by a two-stage pumping system, a turbo molecular 

pump Turbotronik NT10 backed by a rotary vane pump Trivac D4B. The vacuum level is 

monitored by a vacuum gauge ITR 90. During the cryogenic tests, the pressure inside the 

cold chamber is below 10-6 bar. Under that vacuum level voltages in the region of 600 V can 

be safely used in the chamber. A dry nitrogen supply is used to release the vacuum after the 

experimental work to avoid condensation of water vapour. 
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The cold chamber has two feedthroughs for connection with the sample. One feedthrough is 

employed for high power connections, on the left hand side in Figure 2-10, and a 12-pin 

instrumentation feedthrough on the right hand side is used for signal connections, where 8 

pins are used for control signals and measurement and 4 pins for the temperature monitor. 

The temperature sensing diode has an accuracy of ± 1 K for temperatures below 100 K and 

may be mounted directly next to or on top of a particular component in the test circuit. 

 

A second temperature sensing diode is embedded within the cold head along with a 160 W 

heater coil, Figure 2-10. Together with an external power supply and control loop shown in 

Appendix 2, the diode and heater coil provide a mechanism for regulating the cold head 

temperature within the range 20-120 K. Photographs of the overall experimental system are 

shown in Appendix 3. 

 

 

2.4 Power semiconductor characteristics at low temperatures 

The on-state and breakdown voltage characteristics of the MOSFETs and diodes were 

measured using high precision multi-meters. In the case of the on-state measurement, an 8 A 

current pulse was used for the low voltage components and a 2 A pulse for the high voltage 

devices. The duration of the current pulse was about one second. The MOSFET gate-source 

voltage was set at 12 V during the on-state tests. The breakdown voltage characteristics were 

measured with a 1 MΩ resistor connected in series with the device, and the MOSFET gate 

and source were shorted together. The breakdown voltage was taken to be the voltage at 

which the leakage current was 100 µA. The threshold voltages of the IRFB31N20D were 

also measured at the drain currents of 0.25 mA, 0.5 mA 1.0 mA and 10 mA using high 

precision multi-meters, and the device transconductance was estimated by using curve fitting 

techniques to obtain the gradient of the linear part of the GSD vi ,  curves measured by a digital 

oscilloscope. The test circuits are displayed in Appendix 4. 
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Figure 2-11 Measured MOSFET on-state resistances, VVGS 12=  

AI D 8=  for the IRFB31N20D and AI D 2=  for the SPP20N60C3 

 

2.4.1 Power MOSFET characteristics at low temperatures 

The on-state resistances of the IRFB31N20D and SPP20N60C3 MOSFETs are plotted in 

Figure 2-11 over the temperature range 20-300 K. The error between the measured device 

case temperature and the junction temperature was estimated using the data sheet thermal 

resistance to be 3 oC at room temperature. At low temperatures the junction-to-case 

temperature difference becomes lower due to the decreased thermal resistance of the 

material, the thermal conductivity of silicon and many substrates increases by a factor 5-10 

at 77 K [2-8]. 

 

The IRFB31N20D, Figure 2-11, has a minimum resistance at 50 K of 10.3 mΩ, less than 

one-sixth of the room temperature value under the forward current of 8 A. The SPP20N60C3 

on-state resistance at 2 A current reaches a minimum of 26.8 mΩ at 70 K, less than one-fifth 

of the room temperature value. 

 

These results appear to be inconsistent with most published work on the subject, where, as 

described in Section 1.3.3, higher voltage MOSFETs tend to exhibit a larger reduction in 

)(onDSR  at cryogenic temperatures than do low voltage devices. This is due to the greater 



 

 

Chapter 2 Cryogenic operation of single-transistor step-down converters 

 2-23 

 
Figure 2-12 Structure of MOSFET: (a) conventional, (b) CoolMOS 

temperature sensitivity of the drift region resistance, which is normally the dominant 

resistance in high voltage devices [2-9]. 

 

The smaller than expected reduction in the on-state resistance of the SPP20N60C3 device 

was attributed to the device’s CoolMOS structure, Figure 2-12, whereby compensation p-

stripes are inserted in the vertical drift region. The doping of the drift region is then 

increased by an order of magnitude and the vertical p-stripes compensate the surplus current 

conducting n-charges [2-10]. Using this technique, the on-state resistance of a 600 V 

MOSFET can be decreased to one-fifth of that of a conventional device [2-10]. 

 

The increase in resistance at very low temperature, Figure 2-11, results from reduced carrier 

availability, referred to as carrier freeze-out. The carrier freeze-out effect is more significant 

in the JFET and the drift regions which dominate the resistance of MOSFETs with high 

voltage ratings [2-9]. 

 

Figure 2-13 displays the breakdown voltage of the IRFB31N20D and SPP20N60C3 at 

temperatures down to 20 K from 300 K. As expected, both breakdown voltages decrease 

with a reduction in temperature. The breakdown voltage of the SPP20N60C3 reduces by 
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Figure 2-13 Measured MOSFET breakdown voltages 

more than 24 % at 20 K compared with room temperature, and the reduction is 23 % for the 

IRFB31N20D. 

 

The threshold voltages are plotted in Figure 2-14 for the IRFB31N20D across the 

temperature range 20-300 K at the drain currents of 0.25 mA, 0.5 mA 1.0 mA and 10 mA. 

The threshold voltage increases by 24-29 % at 20 K, attributed to the fall in intrinsic carrier 

concentration at low temperatures resulting in a larger gate-source voltage being needed to 

form the inversion layer [2-9]. The variation in transconductance is plotted in Figure 2-15, 

and it increases by 70 % at 20 K due to the increase in inversion layer mobility at low 

temperatures [2-9]. The increase in threshold voltage is similar to that reported in the 

literature for other devices, Section 1.3.3; however the increase in transconductance is much 

lower than that reporting elsewhere, suggesting that the change in transconductance is device 

dependent. 

 

Using the threshold voltage and transconductance at 20 K and the switching loss calculations 

in Section 2.2.2, the turn-on loss was calculated and increased from 0.70 W at room 

temperature, Table 2-7, to 0.96 W, whereas the turn-off loss decreased from 0.95 W at room 

temperature, Table 2-7, to 0.73 W, not considering the variation in the gate resistance and 

inter-electrode capacitances at low temperatures. This suggests that the total MOSFET 

switching losses will not vary significantly at cryogenic temperatures. 
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Figure 2-14 Measured threshold voltages for the IRFB31N20D 
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Figure 2-15 Measured transconductance for the IRFB31N20D 

 

Apart from the on-state resistance, the breakdown voltage, the threshold voltage and the 

transconductance which change significantly with temperature, many of the parameters in 

the equations presented for the analysis of MOSFET switching behaviour such as the 

parasitic capacitances and inductances are relatively insensitive to temperature, a small 

reduction in the values of the parasitic capacitances has been reported in [2-9, 2-11, 2-12] at 

very low temperatures. Together these effects are likely to result in a small increase in 

switching speed and a reduction in switching losses; however the extent of the change will 

vary between devices and circuit applications. 
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2.4.2 Power diode characteristics at low temperatures 

The on-state voltages of the three diodes at 8 A are plotted in Figure 2-16 against case 

temperature from 300 K to 20 K. At room temperature the temperature difference between 

junction and case was estimated to be 6-8 oC. This will reduce at low temperature due to the 

significant decrease in the thermal resistance. Figure 2-16 shows that the silicon carbide 

diode has the largest voltage drop while the Schottky diode has the lowest. The overall trend 

seen in each of the three sets of measured data is an increase in voltage at low temperatures. 

The proportionate increase is greatest for the MBR20200CT, 30 %, and smallest for the 

MUR1560, 20 %. The slightly different shapes seen in the three sets of data were attributed 

to the differing contributions made to the total on-state voltages by the blocking drift region 

which has a positive temperature coefficient and the metal-semiconductor voltage drop in the 

Schottky devices which has a negative temperature coefficient and the p-n junction voltage 

drop in the P-i-N diode which also has a negative temperature coefficient. The MUR1560 

and CSD10060 on-state voltages at 2 A are plotted in Figure 2-17 where the changed 

contributions of the two parts of the on-state voltages account for the differences with the 8 

A measurements. 

 

Figure 2-18 displays the breakdown voltages of the diodes in the temperaure range 20-300K. 

Both the silicon Schottky and the ultrafast diodes have positive temperature coefficients in 

their breakdown voltages; however there is a negative temperature coefficient in the 

breakdown voltage of the silicon carbide diode. At low temperatures the leakage current in 

SiC diodes is dominated by band-to-band tunnelling [2-13], not impact ionisation as in p-n 

junctions [2-14]. The breakdown voltage due to the tunnelling effect has a negative 

temperature coefficient [2-15]. Therefore, the SiC diode breakdown voltage rises with 

decreasing temperature. However, the second generation silicon carbide diodes have a 

breakdown voltage with a positive temperature coefficient [2-16]. 
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Figure 2-16 Measured diode on-state voltages at 8 A 
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Figure 2-17 Measured diode on-state voltages at 2 A 
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Figure 2-18 Measured diode breakdown voltages 
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Figure 2-19 Single-transistor step-down converter prototype 

 

 

2.5 Analysis of the semiconductor losses in the 120 V converters 

at low temperatures 

The power converter was fabricated by screwing the MOSFET and diode onto a copper 

plate, 110 × 60 mm, for mounting onto the cold head. A PCB was used to form the power 

circuit and gate driver connections. The photograph of the prototype is shown in Figure 2-19. 

 

Gate driving signals generated at room temperature were passed into the chamber via the 

signal feedthrough. The gate driver integrated circuit was located inside the chamber close to 

the semiconductor devices, but not in direct contact with the cold head. During the cryogenic 

experiments the minimum temperature of the driver integrated circuit was around 200 K, 

much higher than the cold head temperature. 

 

Figure 2-20 shows the layout for the cryogenic experiments. The input and output power 

connections were passed into the cold chamber by the power feedthrough, which is on the 

left hand side of the cold chamber, Figure 2-20. Planar copper bus bars were used to reduce 
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Figure 2-20 Prototype circuit inside the cold chamber 

parasitic circuit inductance between the feedthrough and the converter in the cold chamber. 

The input decoupling capacitors were located outside the chamber and beside the power 

feedthrough. The output filter was situated at room temperature next to the input capacitors. 

The signal feedthrough is on the right hand side of the cold chamber. 

 

By configuring the converter with the input decoupling capacitors outside the cold chamber, 

the MOSFET and diode currents and voltages could be easily measured outside the chamber. 

A LeCroy current probe was used to measure the currents. The switching losses were 

obtained by multiplying switching frequency and the time integral of the device voltage and 

current products, whilst the on-state losses were calculated from a knowledge of the current, 

the static characteristics in Figures 2-11, 2-16 and 2-17 and the equations (2-42) and (2-43). 

The measured device losses were confirmed by measurement of the converter input and 

output powers using high resolution multimeters and measurement of the inductor losses. 

DRIP onDSRMSMOSFETCond )(
2

_ =  (2-42)  

)1(_ DVIP FAVDiodeCond −=  (2-43)  
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The cold head temperature was first decreased to 20 K and then increased to room 

temperature. During the warming process measurements were taken at a set of temperature 

points, every 10 K from 20 K to 100 K and every 40 K from 100 K to 300 K, taking care to 

ensure that thermal equilibrium had been reached inside the chamber at each temperature 

point. 

 

 

2.5.1 120 V buck converter with an ultrafast diode 

Figure 2-21 (a) plots the total semiconductor losses in the step-down converter with the 

MUR1560 ultrafast diode in the temperature range 20-300 K, along with the conduction and 

switching losses. The losses in the individual devices are displayed in Figures 2-21 (b) and 

(c). 

 

The total semiconductor loss decreases approximately by one-third at 20 K compared to the 

room temperature value, due to the reductions both in the conduction and switching losses, 

Figure 2-21 (a). The reduction in the switching loss is three times the reduction in the 

conduction loss across the temperature range, Figure 2-21 (a). The reduction in the 

IRFB31N20D MOSFET on-state loss is offset by the increase in the diode conduction loss, 

Figure 2-21 (b), the total conduction loss decreases by one-sixth at cryogenic levels. The 

total switching loss decreases by 60 % over the range 300-20 K, Figure 2-21 (c), which is 

largely due to the reduction in the diode reverse recovery. To illustrate the improvement in 

diode reverse recovery, the diode turn-off currents are plotted in Figure 2-22, where the peak 

reverse recovery current decreases by a factor of four, the reverse recovery time reduces by 

more than a half, and the reverse recovery charge drops by a factor of seven at 20 K 

compared to room temperature. 
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(a) Total semiconductor losses 
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(b) Conduction losses 
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(c) Switching losses 

Figure 2-21 Semiconductor losses in the buck converter with 
IRFB31N20D MOSFET, MUR1560 ultrafast diode 

WPVVVV LoadOIn 480,60,120 ===  
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Figure 2-22 MUR1560 turn-off currents in the buck converter with 

IRFB31N20D MOSFET, WPVVVV LoadOIn 480,60,120 ===  
Temperature ranges from 20 K to 100 K in steps of 10 K 

and from 100 K to 300 K in steps of 40 K 

 

The switching losses in the MOSFET and diode during the MOSFET turn-off transient are 

only a small proportion of the total switching loss at room temperature, moreover both vary 

little with temperature, remaining nearly constant in Figure 2-21 (c). In addition the 

MOSFET turn-on and turn-off intervals were found to decrease only slightly at low 

temperatures. The invariance of the MOSFET switching behaviour with temperature is in 

accordance with expectations based on the analysis in Section 2.2 and the measured variation 

in threshold voltage and transconductance, Section 2.4.1. 

 

 

2.5.2 120 V buck converter with a Schottky diode 

Figure 2-23 (a) plots the total semiconductor losses in the step-down converter with the 

MBR20200CT Schottky diode across the temperature range 20-300 K, together with the 

conduction and switching losses. The losses in the individual semiconductors are displayed 

in Figures 2-23 (b) and (c). 

 



 

 

Chapter 2 Cryogenic operation of single-transistor step-down converters 

 2-33 

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

11

Temperature (K)

P
ow

er
 L

os
s 

(W
)

Total
Conduction
Switching

 
(a) Total semiconductor losses 
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(b) Conduction losses 
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(c) Switching losses 

Figure 2-23 Semiconductor losses in the buck converter with 
IRFB31N20D MOSFET, MBR20200CT Schottky diode 

WPVVVV LoadOIn 480,60,120 ===  
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Figure 2-24 MBR20200CT turn-off currents in the buck converter with 

IRFB31N20D MOSFET, WPVVVV LoadOIn 480,60,120 ===  
Temperature ranges from 20 K to 100 K in steps of 10 K 

and from 100 K to 300 K in steps of 40 K 

 

The total semiconductor loss decreases by one-fourth at 100 K due to the reductions both in 

the conduction loss and in the switching loss, Figure 2-23 (a). The losses remain 

approximately constant in the range 100-20 K. 

 

The overall pattern of loss reduction at low temperatures is very similar to that seen with the 

P-i-N diode, however, the total losses are lower due to the superior characteristics of the 

Schottky diode at all temperatures. The conduction losses decrease by one-fifth in the 

temperature range 300-20 K, Figure 2-23 (b), resulting from the combined effects of the 

decreasing on-state loss in the MOSFET and the increasing conduction loss in the diode. The 

principal contribution to the switching loss reduction is from the decrease both in the 

MOSFET turn-on loss and in the diode turn-off loss, Figure 2-23 (c), which results in the 

total switching loss at cryogenic levels reducing by more than one-third compared to room 

temperature. The other two components of switching loss vary little across the temperature 

range. 
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The decrease in the switching loss is due to the improvement in the diode reverse recovery at 

low temperatures, since the MOSFET switching properties change only slightly at low 

temperatures. Figure 2-24 plots the diode turn-off current at all temperatures. The peak 

reverse recovery current drops by 70 %, the reverse recovery time decreases almost by half 

and the reverse recovery charge reduces by a factor of three over the range 300-20 K. 

 

Theoretically, the Schottky diode has no reverse recovery, however as explained in Section 

1.3.1 the presence of the p+ guard ring creates a p-n junction in parallel with the Schottky 

junction [2-14] and this is responsible for the reverse recovery behaviour. 

 

 

2.5.3 120 V buck converter with a silicon carbide Schottky diode 

Figure 2-25 (a) plots the total semiconductor losses in the buck converter with the silicon 

carbide diode, CSD10060, over the temperature range 20-300 K, along with the conduction 

and switching losses. Figures 2-25 (b) and (c) display the losses in individual devices. 

 

The total semiconductor loss has a minimum at approximately 140 K, Figure 2-25 (a). The 

variation in loss with temperature is determined by the conduction loss since the switching 

loss changes little. At higher temperatures the conduction loss falls with a drop in 

temperature due to the reduction in MOSFET resistance, however, at lower temperatures the 

increasing diode voltage dominates and the overall loss rises. 

 

The switching losses, Figure 2-25 (c), have no significant variation across the temperature 

range. The SiC diode turn-off currents are plotted in Figure 2-26 at temperatures of 20 K, 60 

K 100 K and 300 K. No apperant change is found either in the reverse recovery current or in 

the reverse recovery time. The MOSFET switching losses are again consistent with analysis 

in Section 2.2 and the measured variation in threshold voltage and transconductance at low 

temperatures Section 2.4.1. 
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(a) Total semiconductor losses 
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(b) Conduction losses 
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(c) Switching losses 

Figure 2-25 Semiconductor losses in the buck converter with 
IRFB31N20D MOSFET, CSD10060 silicon carbide diode 

WPVVVV LoadOIn 480,60,120 ===  
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Figure 2-26 CSD10060 turn-off currents in the buck converter with 

IRFB31N20D MOSFET, WPVVVV LoadOIn 480,60,120 ===  

 

2.5.4 Summary of the semiconductor losses in the 120 V converters 

Figure 2-27 summarises the total semiconductor losses in the three 120 V converters 

delivering 480 W to a 60 V load, whilst Figures 2-28 and 2-29 show the breakdown of total 

semiconductor loss into conduction and switching losses respectively. The total 

semiconductor loss for the prototypes with the silicon diodes has positive temperature 

coefficient, Figure 2-27, due to the reductions both in conduction and in switching losses at 

low temperatures [2-17]. There are significant reductions in the switching loss for both 

prototypes, Figure 2-29, due to the improved diode reverse recovery at low temperatures [2-

17]; however, the reduction in conduction losses is limited by the increase in the diode on-

state losses, Figure 2-28. 

 

The SiC-diode based prototype shows the worst performance at low temperatures due to the 

large on-state voltage of the SiC diode. The increase in the SiC diode on-state loss outweighs 

the reduction in the MOSFET conduction loss at cryogenic temperatures and the total 

semiconductor loss at 20 K is only slightly lower than that at room temperature, Figure 2-27, 

however, the switching loss is the smallest of the three circuits and changes little with 

temperature, Figure 2-29. 
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Figure 2-27 Semiconductor losses in the 120/60 V, 480 W single-transistor prototypes 
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Figure 2-28 Conduction losses in the 120/60 V, 480 W single-transistor prototypes 
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Figure 2-29 Switching losses in the 120/60 V, 480 W single-transistor prototypes 
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Operating the converters with a different transistor duty ratio will have little effect on the 

switching losses, however, the distribution of the conduction loss between MOSFET and 

diode will change leading to a different variation in overall loss with temperature. For 

example with a larger duty ratio the reduction in overall losses at low temperature will be 

greater. 

 

 

 

2.6 Analysis of the semiconductor losses in the 500 V converters 

at low temperatures 

Two buck converters were built using the SPP20N60C3 MOSFET and either the ultrafast 

diode, MUR1560, or the silicon carbide diode, CSD10060. Both prototypes were operated 

from a 500 V supply and delivered 500 W to a 250 V load, the switching frequency being 50 

kHz. 

 

2.6.1 500 V buck converter with an ultrafast diode 

Figure 2-30 (a) plots the total semiconductor losses, the conduction and switching losses, in 

the temperature range 20-300 K for the converter using the MUR1560 ultrafast diode. The 

losses in the individual semiconductors are displayed in Figures 2-30 (b) and (c). 

 

The total semiconductor loss decreases approximately by a factor of two with a decrease in 

temperature from 300 K to 20 K, Figure 2-30 (a), principally due to the 55 % reduction in 

the switching loss; the conduction loss changes little across the temperature range and only 

contributes a small proportion of the total semiconductor loss due to the reduced current 

level in the 500 V prototypes. 
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(a) Total semiconductor losses 
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(b) Conduction losses 
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(c) Switching losses 

Figure 2-30 Semiconductor losses in the buck converter with 
SPP20N60C3 MOSFET, MUR1560 ultrafast diode 

WPVVVV LoadOIn 500,250,500 ===  
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Figure 2-31 MUR1560 turn-off currents in the buck converter with 

SPP20N60C3 MOSFET, WPVVVV LoadOIn 500,250,500 ===  

The MOSFET turn-on loss decreases by a factor of four and the diode turn-off loss reduces 

by a half, Figure 2-30 (c), both contributing to the significant reduction in the total switching 

loss at 20 K. The other two components of switching loss have small proportions at room 

temperature and change little with temperature. The large reduction in the switching loss is 

mainly attributed to the improved diode reverse recovery at low temperatures. The 

MUR1560 turn-off currents at 500 V are plotted at temperatures of 20 K, 60 K 100 K and 

300 K in Figure 2-31, where the peak reverse recovery current decreases by 60 %. 

 

 

2.6.2 500 V buck converter with a silicon carbide Schottky diode 

Figure 2-32 (a) plots the conduction loss, switching loss and sum of the two over the 

temperature range 20-300 K for the SiC-diode (CSD10060) based prototype. Figures 2-32 (b) 

and (c) display the losses in the individual semiconductor devices. 

 

The total semiconductor loss changes little with temperature, Figure 2-32 (a). The switching 

loss dominates, accounting for nearly 80 % of the total loss, and remains approximately 

constant over the temperature range. The conduction loss shows a small increase at very low 

temperatures, Figure 2-32 (a), due to the higher diode on-state voltage. 
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(a) Total semiconductor losses 
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(b) Conduction losses 
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(c) Switching losses 

Figure 2-32 Semiconductor losses in the buck converter with 
SPP20N60C3 MOSFET, CSD10060 silicon carbide diode 

WPVVVV LoadOIn 500,250,500 ===  
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Figure 2-33 CSD10060 turn-off currents in the buck converter with 

SPP20N60C3 MOSFET, WPVVVV LoadOIn 500,250,500 ===  

 

The SiC diode turn-off currents are plotted in Figure 2-33 at four temperatures, 20 K, 60 K, 

100 K and 294 K, where no appreciable change is observed either in the reverse recovery 

current or in the reverse recovery time. 

 

 

2.6.3 Summary of semiconductor losses in the 500 V converters 

Figure 2-34 plots the total semiconductor losses and switching losses for the 500 V 

prototypes. The SiC-diode based converter yields relatively small losses at higher 

temperatures and below 140 K it loses the advantage. The switching loss dominates the total 

semiconductor loss for both prototypes. It decreases by over a half at 20 K in the ultrafast 

diode based prototype whilst in the SiC prototype it is constant across the temperature range. 

The conduction losses are not displayed since they are relatively small. 
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Figure 2-34 Semiconductor losses in the 500/250 V, 500 W single-transistor prototypes 

 

 

 

2.7 Conclusions 

• The on-state resistance of the IRFB31N20D MOSFET drops by a factor of six 

at 50 K, and the breakdown voltage decreases by 23 %. The SPP20N60C3 

CoolMOS device has a lower on-state resistance at room temperature than 

conventional high-voltage MOSFETs with the same die size; however the 

proportionate decrease of resistance at low temperature is slightly less 

significant than that in the lower voltage device, attributed to the CoolMOS 

structure. The breakdown voltage of the SPP20N60C3 shows a similar decrease 

at low temperature to that in the IRFB31N20D. 

• The reduction in the total semiconductor losses at cryogenic temperatures was 

limited by the increase in diode conduction losses. 

• The MOSFET switching characteristic has very little improvement at low 

temperatures. No appreciable variation was observed in the switching speed, 
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which was consistent with the static measurement of threshold voltage and 

transconductance. 

• Large reductions in the switching losses related to diode reverse recovery were 

observed in the silicon diode prototypes at low temperature, however, reverse 

recovery effect remained a significant source of loss. No reverse recovery 

effects were noticeable in the SiC diode based prototype. 

• The prototype performance at low temperature could be further improved by 

placing the input capacitor inside the cold chamber to reduce the stray 

inductance and associated losses. 
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Chapter 3 

 

Cryogenic operation of two-transistor step-down 

converters 

 

This Chapter investigates the semiconductor losses over the temperature range 20-300 K in 

two types of DC-DC step-down converter formed by two MOSFETs: one being a 

synchronous rectifier operating from 120 V and 500 V DC supplies, and the second a soft-

switching buck converter operating from a 120 V DC supply. The semiconductor losses in 

these prototypes are compared with those in the single-transistor step-down converters 

presented in the last Chapter. The objective is to examine ways of improving converter 

efficiency at cryogenic temperatures, in particular by eliminating diode conduction, diode 

reverse recovery and transistor switching losses. 

 

 

3.1 Synchronous rectifier 

The single-transistor step-down converter discussed in Chapter 2 employs a diode to 

freewheel the inductor current when the transistor is in the off-state. The diode on-state 

voltage can limit the conversion efficiency, especially for very low converter output 

voltages. However, even using Schottky diode technology, physical limitations prevent the 

diode forward voltage from being reduced below around 0.3 V [3-1]. On the other hand the 

on-state resistance of a MOSFET can be lowered almost without limit either by increasing 

the die size or by paralleling discrete devices [3-1, 3-2]. 
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Figure 3-1 Step-down converter with synchronous rectifier 

 

Furthermore, the limitation on circuit performance imposed by diode voltage drop becomes 

more significant at low temperatures since the diode on-state voltage tends to increase whilst 

the on-state resistance of a MOSFET falls. The potential benefits of operating a converter at 

very low temperatures may therefore be limited by the behaviour of the diodes. 

 

One approach to overcoming this problem is the synchronous rectifier technique, which has 

been developed in recent years for very low output voltage switched-mode power supplies, 

typically output voltages less than 3 V. The synchronous rectifier technique involves 

replacing the freewheel diode by a low voltage MOSFET as shown in the step-down 

converter in Figure 3-1. 1S  is the switching transistor that determines the converter output 

voltage whilst 2S  is the synchronous rectifier. When 1S  turns off the inductor current will 

tend to freewheel through the body diode of 2S , however, if 2S  is switched on, reverse 

conduction will occur through the channel, diverting current away from the body diode, 

providing that the on-state resistance of 2S  is sufficiently low. Reverse current flow through 

the MOSFET channel can occur since the device operates by majority carrier conduction. 

 

To illustrate the principle, the forward vi −  characteristics are compared in Figure 3-2 of the 

IRFB31N20D MOSFET and a fast recovery rectifier 1N3891 ( AIVV AVBD 12,200 == ) with 

the model provided by [3-3]. It is seen that in this particular case the MOSFET voltage drop 

is lower than that of the diode for currents up to approximately 12 A, resulting in lower 

conduction losses. 
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Figure 3-2 Forward voltage comparison of a synchronous rectifier and diode at 25oC 

 

The relative temperature coefficients of diode on-state voltages and MOSFET on-state 

resistances suggest that the synchronous rectifier technique may offer significant benefits for 

cryogenic power conversion. 

 

In the following sections two step-down DC-DC converter topologies that use synchronous 

rectifiers are examined at low temperatures. The first circuit uses a hard-switching 

synchronous rectifier operating from 120 V and 500 V DC supplies, whilst in the second the 

synchronous rectifier is soft-switching operating from 120 V. 

 

3.1.1 Synchronous rectifier design 

The synchronous rectifier circuit was designed to operate from two voltage levels, 120 V and 

500 V. The detailed design requirements are listed in Table 3-1, and are the same as those 

used for the single-transistor converters in Chapter 2. 

 

The input capacitor, output filter inductor and capacitor were chosen based on the results of 

applying the design requirements to the equations (2-1), (2-2) and (2-3), resulting in the 

same passive component values as used in Chapter 2, Table 2-2. For the 120 V synchronous 
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Table 3-1 Synchronous rectifier design requirements 
Converter input voltage InV  Design 

Parameters 120 V 500 V 

Input current (A) 4 1 

Input power (W) 480 500 

Output voltage (V) 60 250 
Output current (A) 8 2 
Duty ratio 50% 50% 

Frequency (kHz) 50 50 

Input voltage ripple (V) 6 25 

Output voltage ripple (V) 0.6 2.5 

Inductor current ripple (A) 1.2 0.3 
 

rectifier circuit the MOSFET IRFB31N20D was chosen, and the MOSFET SPP20N60C3 

was selected for the 500 V circuit. Both are the same as used in Chapter 2, Table 2-3. 

 

Using the same passive components as in the single-transistor step-down converters, the 

synchronous rectifier was realised by replacing the freewheel diode with another power 

MOSFET. The control signals were generated at room temperature and transferred into the 

cold chamber via the signal feedthrough. An IR2110 level shifting gate driver integrated 

circuit was located inside the cold chamber next to the MOSFETs; however it was not in 

direct contact with the cold head. During testing its temperature did not fall below 200 K. 

The output filter, the input decoupling capacitor and filter were left at room temperature 

outside the cold chamber, allowing the individual device currents to be measured. Planar bus 

bars were used to minimise the stray inductance of the power circuit connections between 

the power devices and the feedthrough. Figure 3-3 displays the picture of the 120 V 

synchronous rectifier prototype, which was placed inside the cold chamber. 
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Figure 3-3 120 V synchronous rectifier prototype 

 

3.1.2 Gate control strategy 

Precise control is required for the two MOSFETs in the synchronous rectifier. To avoid 

shoot through, a dead time, DeadT , is usually introduced between the turn-off of one device 

and the turn-on of the other, during which time the inductor current is carried through the 

body diode of the MOSFET 2S  in Figure 3-1. To analyse the dead time operation, Figure 3-

4 plots the schematic waveforms of the individual MOSFET gate-source voltages and the 

current commutation during the switching transients. 

 

When the 1S  gate voltage, 1GSv , drops from the plateau value during the turn-off process, 

Figure 3-4 (a), the inductor current begins commutating from 1S  to the 2S  body diode until 

1GSv  falls to the threshold voltage TV  at the end of period 1T , Figure 3-4 (a). During the 

interval 2T , 1GSv  decreases to zero and 1S  is in the off-state, the inductor current flows 

through the 2S  body diode. A short duration of dead time, DeadT , is then inserted during 

which no driving signal is applied to either MOSFET, and the inductor current continues 

freewheeling through the body diode of 2S . At the end of DeadT  the gate-source voltage is 

applied to 2S , but no current flows through 2S  until 2GSv  rises to TV  at the end of period 
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Figure 3-4 MOSFET switching waveforms: (a) turn-off of 1S  and turn-on of 2S , 

(b) turn-off of 2S  and turn-on of 1S ; 1Si : current through 1S ; 2Si : current through 2S ; 

Diodei : current through the body diode of 2S  

3T . 2GSv  increases from TV  during interval 4T , whilst the inductor current is diverted from 

the 2S  body diode to the channel. There is no plateau period in 2GSv  since the drain source 

voltage is already zero. 

 

Figure 3-4 (b) plots the transient in which the inductor current commutates from 2S  back to 

1S . During the interval 5T , Figure 3-4 (b), 2GSv  decreases to TV  whilst the channel current 

diverts to the body diode. At the start of interval 6T  the body diode takes over the inductor 

current completely. The current then freewheels through the body diode until the end of 

period 7T  when 1GSv  increases to TV . During 8T  the inductor current commutates from the 

2S  body diode to 1S  whilst 1GSv  increases from TV  to the plateau value. 
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Examination of Figure 3-4 shows that the 2S  gate-source voltage waveform is different to 

that of 1S , principally due to the operation in the third quadrant of the DSD vi ,  plane. The 

conduction of the 2S  body diode prior to the channel results in zero voltage switching, 

during which the drain-source voltage of 2S  is virtually zero. Therefore there is no charge 

flow through the Miller capacitance. As a result the plateau region of the 2S  gate voltage 

plot is not visible, the waveform shows an exponential charging and discharging of the input 

capacitor [3-4], Figure 3-4. 

 

The conduction of the body diode has two drawbacks, increased conduction loss due to the 

larger on-state voltage, and increased switching losses due to the body diode reverse 

recovery during the 1S  turn-on transient. Both decrease the converter efficiency and limit the 

application of the synchronous rectifier to low voltage levels [3-4]. To decrease the body 

diode conduction, the dead time may be decreased and the gate-source voltages for both 

MOSFETs are even overlapped, providing that the instant when GSv  of the out-going 

MOSFET falls below TV  occurs before GSv  of the incoming MOSFET increases to TV  [3-

5]. 

 

To illustrate how this improves the switching waveforms, Figure 3-5 plots the amplitude of 

the measured peak reverse recovery current through the 2S  body diode with different dead 

times for the 120 V synchronous rectifier at room temperature supplying 60 V output to a 

480 W load. The dead time is defined as the time interval between the instant of the gate-

source voltage approaching zero for 2S  and rising from zero for 1S . A 4 Ω gate resistor was 

used to control the 1S  switching speed. The peak reverse recovery current has a minimum 

value of 10.8 A at -40 ns, Figure 3-5, where the negative sign implies that the two driving 

signals are overlapping. The minimum peak reverse current is less than half the value that is 

measured with a dead time of 50 ns. Further decreases in the dead time below -40 ns may 

result in shoot though and thereby increase the current. The 2S  turn-off currents are plotted 

in Figure 3-6 with dead times of 50 ns and -40 ns respectively at room temperature. 
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Figure 3-5 Amplitude of peak reverse current against dead time in the 120 V 

synchronous rectifier at 20oC with a 60 V, 480 W output 
 
 

 
 

Figure 3-6 2S  turn-off currents with dead time of 50 ns (left) and -40 ns (right) at 
20oC for the 120 V synchronous rectifier with a 60 V, 480 W output 

 

The optimum value of dead time is dependent on the gate threshold voltage of the MOSFETs 

and will therefore vary with temperature. At reduced temperature the increase in gate 

threshold voltage will require further reductions in the dead time to minimise switching 

losses. The threshold voltage of the IRFB31N20D at low temperature examined in Chapter 2 

is re-plotted in Figure 3-7 with that of SPP20N60C3. Both increase by more than 1 V at 

temperatures down to 20 K. When the circuit was tested at low temperatures the dead time 

was adjusted at each temperature to minimise the peak reverse recovery current through the 
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Figure 3-7 Gate threshold voltages, AIVV DDSGS µ250, ==  
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Figure 3-8 Gate-source voltages for the 120 V synchronous rectifier at 20oC: (a) turn-

off of 2S  and turn-on of 1S , (b) turn-off of 1S  and turn-on of 2S  

2S  body diode. Due to limitations of the number of pins on the feedthrough, it was not 

possible to measure the individual gate-source voltages and the actual dead times that were 

used, however, the dead time was reduced at low temperatures by approximately 10 ns. 

 

To protect against false turn-on of 2S  which may occur due to current injected into the gate 

through the gate-drain capacitance as the drain voltage rises rapidly, a negative bias of -5 V 

was placed on the gate-source in the off-state. Figure 3-8 plots the driving signals for the 120 

V synchronous rectifier, where the 2S  driving signal has -5 V off-state level. The dead time 

is set at -40 ns during the 2S  turn-off and 1S  turn-on interval, Figure 3-8 (a). During 1S  
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Table 3-2 Calculated and measured switching losses in the 120 V synchronous 
rectifier at 20oC 

Switching loss Units Calculated Measured 

1S  turn-on W 0.27 0.74 

1S  turn-off W 0.76 0.34 

2S  turn-on W 0 0.04 

2S  turn-off W 0.58 0.44 
 

turn-off and 2S  turn-on transient, the dead time has little effect on the switching waveforms 

and it was set to zero, Figure 3-8 (b). 

 

3.1.3 Semiconductor losses at room temperature 

Before testing the circuits at low temperature, the losses were first examined at room 

temperature and compared with design predictions. The circuit operated from a 120 V source 

at 50 kHz and delivered 480 W at 60 V to the load. The MOSFET parameters are the same 

as used in Chapter 2, Table 2-5. 

 

The MOSFET drain-source voltage and drain current during the individual switching 

intervals were calculated using the equations (2-20), (2-21), (2-26) to (2-33), (2-35) and (2-

36) from Chapter 2. Considering the stray inductance and the output capacitor of the other 

MOSFET, DL  was increased to 80 nH and the output capacitance was increased to 340 pF. 

The switching losses were calculated by time integration of the current and voltage products 

multiplied the switching frequency and are listed in Table 3-2 for both MOSFETs, along 

with the measured switching losses in the 120 V synchronous rectifier at room temperature. 

 

The predicted and measured switching waveforms are plotted in Figure 3-9 for 1S . There is a 

large pulse of forward current through 1S  at turn-on in the measured waveform due to the 

reverse recovery of the 2S  body diode, which was thought to account for the large difference 
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Figure 3-9 Predicated and measured 1S  switching waveforms: (a) turn-on, (b) turn-

off; blue: analytical results; black: measured waveforms 

in the predicted and measured 1S  turn-on losses. The difference in the 1S  turn-off losses 

between the predicted and measured values may be caused by the piecewise linear 

approximation for the MOSFET non-linear gate-drain capacitance. In particular when 1S  

turns off, the voltage across 2S  falls and the 2S  capacitance will rise; however, this effect is 

not included in the calculations. Since the conduction of 2S  body diode prior to the channel 

ensures the zero-voltage turn-on, the 2S  turn-on loss is calculated as zero. The measured 

turn-off loss in 2S  is due to the reverse recovery of the 2S  body diode. The oscillations in 

the measured waveforms at around 28 MHz were attributed to the stray inductance ringing 

with device capacitance. The natural frequency of the stray inductance (80 nH) and the 

MOSFETs drain-source capacitance (340 pF) is 32 MHz. 
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Table 3-3 Measured conduction losses in the 120 V prototypes at 20oC 
Semiconductor loss Syn Sch Ult SiC 

Conduction losses (W) 4.01 4.92 6.00 7.31 

 

The measured conduction losses in the 120 V synchronous rectifier are compared with the 

values in the single-transistor buck converters at room temperature in Table 3-3. The 

conduction losses in the synchronous rectifier circuit reduce by 18 %, 33 % and 45 % 

compared with the values in the single-transistor converters with the Schottky, ultrafast and 

SiC diodes respectively. 

 

 

3.1.4 Analysis of the semiconductor losses in the synchronous rectifiers at 

low temperatures 

The synchronous rectifier was examined across the temperature range 20-300 K. Using the 

same layout as in Chapter 2, the currents and voltages for each MOSFET were measured 

outside the cold chamber. The switching losses were obtained by multiplying the switching 

frequency by the time integral of the device voltage and current products, whilst the on-state 

losses were calculated from a knowledge of the current, the static characteristic in Figure 2-

11, and using the equation (2-42). The measured device losses were also confirmed by 

measurement of the inductor losses and the converter input and output powers using high 

resolution multimeters. 

 

3.1.4.1 120 V synchronous rectifier 

Figure 3-10 (a) plots the semiconductor losses in the 120 V synchronous rectifier across the 

temperature range 20-300 K and Figures 3-10 (b) and (c) display the losses in the individual 

semicondcutor devices, where the prototype operated with the optimised dead time at all 

temperatures. 
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(a) Total semiconductor losses 
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(b) Conduction losses 
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(c) Switching losses 

Figure 3-10 Semiconductor losses in the synchronous rectifier with two IRFB31N20D 
MOSFETs, WPVVVV LoadOIn 480,60,120 ===  
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Figure 3-11 2S  turn-off currents in the synchronous rectifier with two IRFB31N20D 

MOSFETs, WPVVVV LoadOIn 480,60,120 ===  

The total semiconductor loss at cryogenic temperatures is approximately one-third of the 

room temperature value, Figure 3-10 (a), which is due to the significant reduction in the 

conduction loss. Both MOSFETs have the same on-state losses due to the approximately 

equal conducting durations, and the total conduction loss at 50 K is approximately 16 % of 

the room temperature value, Figure 3-10 (b). However, the switching loss changes little over 

the temperature range, Figure 3-10 (a) and (c). The 2S  turn-off currents are plotted in Figure 

3-11 at temperatures of 20 K, 60 K, 100 K and 294 K. No apparent reduction is observed 

either in the reverse recovery current or in the reverse recovery time, except that the ringing 

amplitude decreases at low temperatures. 

 

 

3.1.4.2 500 V synchronous rectifier 

Figure 3-12 (a) displays the total semiconductor losses, conduction and switching losses in 

the synchronous rectifier operating from a 500 V source over the temperature range 20-300 

K. The circuit used two SPP20N60C3 devices. The losses in the individual semicondcutor 

devices are plotted in Figures 3-12 (b) and (c). The prototype operated with the dead time 

adjusted to minimise the peak reverse recovery current of the 2S  body diode at each 

temperature. The dead time was approximately -20ns. No gate resistors were added. 
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(a) Total semiconductor losses 
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(b) Conduction losses 
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(c) Switching losses 

Figure 3-12 Semiconductor losses in the synchronous rectifier with two SPP20N60C3 
MOSFETs, WPVVVV LoadOIn 500,250,500 ===  
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Figure 3-13 2S  turn-off currents in the synchronous rectifier with two SPP20N60C3 

MOSFETs, WPVVVV LoadOIn 500,250,500 ===  

The total semiconductor loss is approximately constant across the temperature range, Figure 

3-12 (a), due to the almost constant switching losses. Examination of the switching losses 

shows that all four components change little with temperature, Figure 3-12 (c). Although the 

on-state losses of both MOSFETs decrease with a decrease in temperature, Figure 3-12 (b), 

these losses are too small to make any difference to the total semiconductor loss. 

 

Figure 3-13 displays the 2S  turn-off currents at temperatures of 20 K, 60 K, 100 K and 294 

K. No appreciable change is found either in the reverse recovery current or in the reverse 

recovery time. Only the current ringing effect decreases dramatically at low temperatures. 
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3.2 Soft-switching buck converter 

Although the synchronous rectifier offers a significant reduction in the conduction loss at 

low temperatures due to the diode-less configuration, the switching loss remains significant 

and is the dominant loss at low temperature in the results reported in the previous section. 

Moreover the residual switching loss is almost independent of temperature, Figure 3-10 and 

3-12. Therefore, a soft-switching technology is desirable to diminish or eliminate the 

switching losses. 

 

3.2.1 Soft-switching circuit selection 

In broad terms there are two classes of soft switching techniques, those which create a 

natural current zero and enable device turn-off without loss, known as zero-current-

switching (ZCS) circuits, and those which create a natural voltage zero to allow loss-less 

turn-on, known as zero-voltage-switching (ZVS) circuits [3-6]. ZCS circuits have the 

disadvantage that turn-on losses and diode reverse recovery losses remain, however, in ZVS 

circuits the remaining turn-off losses can be controlled by using capacitor snubbers. 

 

A ZVS technique was chosen, and to enable straightforward implementation a circuit was 

selected which required a minimum of additional components and which did not increase the 

MOSFET off-state voltages, important due to the reduction in breakdown voltage at low 

temperatures. Therefore, a zero-voltage-switching clamped-voltage (ZVS-CV) topology was 

chosen as shown in Figure 3-14. Only two additional snubber capacitors and a small filter 

inductor are required to modify the synchronous rectifier circuit in Section 3.1. The ZVS-CV 

technique employs a resonant-transition during the switching interval of short but finite 

duration to realise zero voltage switching in both MOSFETs, and the off-state voltage of 

each MOSFET is clamped at the input voltage level [3-7]. Moreover, the ZVS-CV converter 

may still use the transistor duty ratio for output voltage control. The negative side is that the 
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Figure 3-14 ZVS-CV soft-switching circuit 

 
 

Figure 3-15 ZVS-CV ideal main waveforms 

conduction losses increase due to the increased ripple current level in the filter inductor. The 

inductor must be chosen such that the inductor current transiently reverses as described in 

the following section. 

 

 

3.2.2 ZVS-CV circuit operation and design 

The idealised circuit waveforms for a complete period are plotted in Figure 3-15. The 

waveforms show the gate-source voltages of the two MOSFETs, the drain-source voltage of 

2S , 2Sv , and the inductor current Li . A small dead time is present in the gate-source voltages 

and the inductor current is seen to have a large ripple component reversing for a short period 

of time. As a result, each MOSFET conducts in the reverse direction, either through the body 

diode or channel, immediately before conducting in the forward direction. Furthermore each 

transition of the 2Sv  waveform is initiated by the turn-off of one of the MOSFETs as 

described below. 
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Figure 3-16 Zero-voltage commutation from 2S  to 1S  [3-7] 

Figure 3-16 illustrates the positive-going transition of 2Sv  and the commutation of current 

from 2S  to 1S . Figure 3-16 (a) shows that the inductor current Li  is initially carried by 2S  

since the inductor current is now negative. After 2S  turns off the current is transferred to the 

snubber capacitors 1rC  and 2rC , charging 2rC  and discharging 1rC  in a controlled manner, 

Figure 3-16 (b), and the voltage 2Sv  then rises to InV  from zero whilst the voltage across 1S  

decreases from InV  to zero. At the instant that 2Sv  rises above InV , the 1S  body diode starts 

conducting, Figure 3-16 (c), allowing 1S  to turn on at zero voltage [3-7], Figure 3-16 (d). 

The turn-off loss in 2S  will be low due to the presence of 1rC  and 2rC  and the controlled 

rise of 2Sv , whilst the turn-on loss in 1S  will be virtually zero. 

 

The negative-going transition of 2Sv  is plotted in Figure 3-17 during which Li  commutates 

from 1S  to 2S . 1S  carries a positive current Li  in Figure 3-17 (a) since the inductor current 

is now positive. The turn-off of 1S  forces Li  to commutate from 1S  to 1rC  and 2rC , Figure 

3-17 (b), and the voltage on 2rC  decreases from InV  to zero whilst 1rC  charges from zero to 
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Figure 3-17 Zero-voltage commutation from 1S  to 2S  

InV . After 2Sv  reduces to zero the body diode of 2S  is forward biased and carries Li , Figure 

3-17 (c). 2S  can then be switched on under zero voltage conditions, Figure 3-17 (d). Similar 

to the first transition, the turn-off loss in 1S  may be limited by appropriate choice of the 

snubber capacitors, whilst the turn-on loss in 2S  will be virtually zero. 

 

To achieve the low-loss zero-voltage-switching, the inductor current must transiently 

reverse. Therefore the ratio LK  in equation (3-1) must be greater than two. 

O

L
L I

IK ∆
=  (3-1)  

where LI∆  is the peak-to-peak inductor ripple current and the load current, OI , is 

R
VI O

O =  (3-2)  
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LI∆  may be calculated by (3-3) since the dead time is relatively small compared to the 

switching period ST . 

S
OIn

L DT
L

VVI −
=∆  (3-3)  

where D is the duty ratio of 1S . Substituting (3-1) and (3-2) into (3-3) gives 

S
L

RTD
K

L )1(1
−=  (3-4)  

provided that InO DVV = . 

 

Whilst LK  must be greater than two, it is desirable to keep it as small as possible to limit the 

conduction losses. LK  was initially selected to be 2.4, and the required inductance was 

calculated to be 31.3 µH using (3-4). The precise value must be confirmed by considering 

the turn-off transient of 2S ; the current must be sufficiently negative at the switching instant 

to ensure that the snubber capacitors are completely charged/discharged. First the snubber 

capacitors must be chosen by considering the 1S  turn-off transient. 

 

Considering the 1S  turn-off transient and the residual switching loss, snubber capacitor 

values may be determined. The 1S  drain current may be approximated by (3-5) as the device 

turns off. 

)1(max
f

LD T
tIi −=  (3-5)  

where maxLI  is the maximum inductor current, assumed to remain constant during the 

transition, and fT  is the fall time of the drain current, calculated as 40 ns at room 

temperature using (2-35) in Chapter 2. 
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The current through the snubber capacitor 1rC  is calculated in (3-6) assuming that 

rrr CCC == 11 . The voltage across the snubber capacitor 1rC , which is also the drain-source 

voltage of 1S , is obtained in (3-7) by integrating (3-6) and dividing by rC . 

f

L
Cr T

tIi
2

max=  (3-6)  

fr

L
S TC

tIv
4

2
max

1 =  (3-7)  

 

The energy dissipated in 1S  during turn-off is obtained by integrating the product of (3-5) 

and (3-7) over the interval 0=t  to fT , giving (3-8) 

r

fL
offS C

TI
Q

48

22
max

_1 =  (3-8)  

 

Two 2.2 nF, 160 V polystyrene capacitors were selected for the snubbers. The drain-source 

capacitances of the MOSFETs are effectively in parallel with the snubbers and result in a 

total value for rC  across each MOSFET of 2.37 nF. With this value of capacitance the turn-

off energy in 1S , calculated from (3-8), is 4.22 µJ, resulting in an average power dissipation 

of 0.21 W. The turn-off energy loss in 2S  was negligibly small as the commutation current 

is very much lower than that in 1S . 

 

The duration of the voltage transitions were calculated using (3-9) to be 34 ns and 490 ns for 

the 1S  and 2S  turn-off transients, assuming that the inductor current is constant during the 

transition. The dead times were therefore set at 50 ns and 600 ns. 

minmax/

2

L

Inr

I
VCt =  (3-9)  
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Figure 3-18 Transient waveforms: (a) 1S  turn-off transient, (b) 2S  turn-off transient in 

the ZVS-CV converter with two IRFB31N20D MOSFETs 
WPVVVV LoadOIn 480,60,120 ===  

 

3.2.3 ZVS-CV converter room temperature test 

Figure 3-18 plots the drain-source voltages of the individual MOSFET devices during the 

two transient intervals along with the inductor current at room temperature. During the 1S  

turn-off transient the inductor current is at its maximum, and the voltage transition takes 

about 50 ns, Figure 3-18 (a); however, it takes more than 600 ns for the voltage transition 

when 2S  turns off due to the small value of the inductor current at this instant, Figure 3-18 

(b). 
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Figure 3-19 Semiconductors and drive circuit for the 120V ZVS-CV converter 

Since the inductor current flows through one or other of the MOSFETs, the total 

semiconductor conduction loss may be calculated from the RMS inductor current and the 

MOSFET )(onDSR . The RMS value of the inductor current is obtained by (3-10) from [3-8], 

giving the conduction loss as 6.30 W. The total semiconductor loss was also confirmed by 

the measured inductor losses and the input and output powers. 

2
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3.2.4 Analysis of the semiconductor losses in the 120 V ZVS-CV converter 

at low temperatures 

The zero-voltage-switching clamped-voltage converter prototype, Figure 3-19, was bolted on 

top of the cold head inside the cold chamber and tested in the same manner as the previous 

converter prototypes. 

 

Since the snubber capacitors were soldered directly across the drain and source of the 

individual MOSFET devices, only the MOSFET voltage switching waveforms were 
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Figure 3-20 Transient voltages in the ZVS converter at a number of temperatures over 
the range 20-300 K with two IRFB31N20D MOSFETs, 

WPVVVV LoadOIn 480,60,120 ===  

recorded by the digital oscilloscope. The measured semiconductor losses were also 

confirmed by measurement of the converter input and output powers using high resolution 

multimeters and measurement of the inductor losses. 

 

Figure 3-20 plots the transient drain-source voltages for the individual MOSFETs at all 

temperatures. The waveforms on the left hand side, Figure 3-20, are the 1S  and 2S  drain-

source voltages during the 1S  turn-off transient, while the transient voltages during the 2S  

turn-off are on the right hand side. All voltage waveforms change very little over the 

temperature range 20-300 K. Therefore, the zero-voltage-switching is maintained and the 

switching loss is around 0.21 W determined by the 1S  turn-off loss. 

 

Figure 3-21 plots the total semiconductor loss along with the conduction and switching 

losses at temperatures down to 20 K from 300 K. The total semiconductor loss decreases by 

more than a factor of five at low temperatures, and at 50 K it is approximately 18 % of the 

room temperature value. 
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Figure 3-21 Semiconductor losses in the ZVS converter 

with two IRFB31N20D MOSFETs, WPVVVV LoadOIn 480,60,120 ===  

The results confirm that the circuit works well over the entire temperature range. There is a 

large reduction in the semiconductor loss as the temperature falls, and since the losses are 

largely due to conduction, the losses could be reduced by connecting additional devices in 

parallel. Furthermore, the switching losses could be reduced by increasing the snubber 

capacitors; however this would require a larger ripple current in the inductor. 

 

 

3.3 Summary of the semiconductor losses in the 120 V 

prototypes 

Figure 3-22 plots the total semiconductor losses in the converters with 120 V input, 

including the three single-transistor buck converters described in Chapter 2 and the two two-

transistor buck converters, whilst Figures 3-23 and 3-24 show the breakdown of the total 

semiconductor losses into conduction and switching losses respectively. All the 120 V 

prototypes are listed in Table 3-4, and the number in the three Figures is related to the 

prototype in Table 3-4. 
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Table 3-4 120 V, 480 W prototypes list 
1 Hard-switching converter with an ultrafast diode 

2 Hard-switching converter with a silicon Schottky diode 

3 Hard-switching converter with a SiC Schottky diode 
4 Synchronous rectifier 
5 Zero-voltage-switching converter 

 

 

 

Figure 3-22 shows that the soft-switched and the synchronous rectifier prototypes offer the 

lowest semiconductor losses. At room temperature the synchronous rectifier has a slight 

advantage due to its significantly lower conduction loss, Figure 3-23; the peak current levels 

in the soft-switching converter are much higher due to the very large inductor ripple current. 

However, at very low temperature the conduction losses in both prototypes reduce 

substantially due to the reduction in the MOSFET on-state resistance, but the switching loss 

remains around 1.5 W in the synchronous rectifier, Figure 3-24, whereas it is 0.21 W for the 

soft-switching circuit, less than one-seventh of the value in the synchronous rectifier. 

Therefore, at cryogenic temperatures the soft-switching prototype has superior performance. 
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Figure 3-22 Semiconductor losses in the 120 V prototypes 
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Figure 3-23 Conduction losses in the 120 V prototypes 
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Figure 3-24 Switching losses in the 120 V prototypes 
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3.4 Conclusions 

• The synchronous rectifier has the capability of operating from high voltage 

levels, 120 V and 500 V. And the peak reverse current through the 2S  body 

diode was less than half the value measured with a dead time of 50 ns in the 120 

V synchronous rectifier, using the optimised dead time control. However, the 

increase in the threshold voltage at low temperature required the dead time to be 

reduced at cryogenic temperatures. 

• The temperature invariant switching losses limited the performance of the 

synchronous rectifier circuit at cryogenic temperatures whereas the much lower 

switching losses in the zero-voltage-switching circuit allowed the overall losses 

to fall almost in proportion with the reduction in the MOSFET on-state 

resistance. The total semiconductor loss at 50 K in the zero-voltage-switching 

circuit was 18 % of the room temperature value and the losses could easily be 

reduced further by adding additional MOSFETs in parallel. 

• An additional advantage of the synchronous rectifier over the diode based circuits 

is that the semiconductor conduction losses will be largely independent of duty 

ratio for a specific output current. 
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Chapter 4 

 

Cryogenic operation of three-level diode-clamped step-

down converters 

 

This Chapter describes the performance of the multi-level step-down converter at low 

temperatures. A three-level, diode-clamped, DC-DC step-down converter is chosen for 

design and prototyping to operate from 500 V and 600 V DC supplies. Power MOSFETs are 

employed in the prototypes with ultrafast and silicon carbide diodes. The semiconductor 

losses are evaluated in the temperature range 20-300 K. Finally a zero-voltage-switching 

version of the multi-level converter is proposed to overcome the switching loss limitations of 

the circuit. 

 

 

4.1 Three-level converter design and operation 

One possible application for power electronics in a cryogenic environment is for the control 

of the DC current in a superconducting coil, for example the field coil in a superconducting 

synchronous machine, or the coil of a superconducting magnet energy storage device 

(SMES). The DC supply in these examples could be at quite a high voltage, implying the use 

of high voltage MOSFETs or IGBTs in the step-down DC-DC converter [4-1, 4-2, 4-3]. To 

enable the use of lower voltage MOSFETs, which have the attraction of lower on-state 

resistance and therefore lower losses, a multi-level circuit is considered [4-4, 4-5, 4-6]. In 

general, an n-level step-down converter imposes a maximum off-state voltage across the 
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Figure 4-1 Three-level, diode-clamped DC-DC converter 

devices of )1/( −nVIn , where InV  is the DC supply voltage. Multi-level circuits overcome the 

voltage sharing problems of simply connecting devices in series. 

 

4.1.1 Three-level, diode-clamped, step-down converter design 

A three-level, diode-clamped converter is shown in Figure 4-1. Two transistors are 

connected in series in each leg, 1TS  and 3TS  in leg a, 2TS  and 4TS  in leg b. Two series 

connected capacitors, 1InC  and 2InC , are used to divide the supply voltage into two equal 

levels of 2/InV , and the clamping diodes, 1CD  and 2CD , limit the maximum voltage across 

each transistor to 2/InV . 

 

The complete set of sub-topologies of the three-level converter is displayed in Figure 4-2, 

assuming continuous conduction of the current in the filter inductor L. It is seen that different 

sub-topologies produce different voltages across the output, abv , Figure 4-1. By appropriate 

choice of the sub-topologies and the durations of the sub-topologies, the local average of abv  

can be controlled to any desired value in the range InabIn VvV <<− . For a unidirectional 

inductor current Li , the direction of power flow depends on the polarity of the average abv . 
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Figure 4-2 Sub-topologies of the three-level converter [4-4] 
 

Figure 4-2 shows that more than one sub-topology is available to achieve 2/Inab Vv −= , 0 

and 2/InV , therefore through careful use of the redundant states, PWM schemes can be 

developed to reduce switching losses and output current ripple, and also to maintain the 

charge balance of the two series connected capacitors [4-4]. The basic principle is to operate 
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Table 4-1 Three-level two-quadrant control strategy [4-4] 
Operating Range Active Subtopologies PWM Strategies 

-1<VO/VIn<-0.5 (7), (8), (9) ST1, ST2: PWM control 
ST3, ST4: Always Off 

-0.5<VO/VIn<0 (6), (8), (9) ST1, ST2: PWM control 
ST3, ST4: Always Off 

0<VO/VIn<0.5 (2), (3), (6) ST1, ST2: Always On 
ST3, ST4: PWM control 

0.5<VO/VIn<1 (1), (2), (3) ST1, ST2: Always On 
ST3, ST4: PWM control 

 

the converter only with the sub-topologies which produce output voltage levels directly 

adjacent to the required OV  at any given time. This results in reduced switching losses and 

filter inductor current ripple [4-4]. The active sub-topologies and switch control strategies 

for different ranges of OV  are listed in Table 4-1, in which the sub-topology numbers refer to 

those in Figure 4-2. In each of the operating ranges listed in Table 4-1, the pair of devices 

that are switched are operated in an interleaved manner; the devices being switched on in 

alternate half cycles for a time SDT , where D is the duty ratio and ST  is the period. 

 

The principal waveforms are shown in Figure 4-3 for the operation with 75 % duty ratio. 

Since 1TS  and 2TS , are permanently on their control signals are not plotted. When 3TS  is 

switched on, 4TS  is already on and the circuit configures into sub-topology (1), Figure 4-2. 

Current flows through 1TS , 2TS , 3TS , 4TS  and the output filter, increasing the output 

inductor current. When 4TS  turns off, 3TS  is still on and the circuit is switched into sub-

topology (3), Figure 4-2, where the inductor current freewheels through 1TS , 2TS , 3TS  and 

the diode 2CD . The subsequent turn-on of 4TS  at the start of the next half-cycle then changes 

the circuit again into sub-topology (1), Figure 4-2, which increases the inductor current. 

When 3TS  turns off, 4TS  continues to conduct and the circuit is switched into sub-topology 

(2), Figure 4-2, the inductor current freewheels through 1TS , 2TS , 4TS  and the diode 1CD  

until 3TS  turns on and the cycle repeats. The off-state voltages across 3TS  and 4TS  are 

2/InV  and the frequency of the inductor ripple current is twice the switching frequency, 

Figure 4-3. 
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Figure 4-3 Main waveforms at 75% duty ratio 

 

By examining the abv  waveform, the average converter output voltage may be calculated as: 

In
S

SInSSIn
O DV

T
TDVTDTVV =

−+−−
=

2/
])1(2/))1(2/([

 (4-1)  

By similar consideration of the waveforms at transistor duty ratios below 0.5, the voltage 

conversion ratio may again be given by the expression in equation (4-1). 

 

Considering the inductor volt-second balance, the peak-to-peak inductor current ripple may 

be calculated by equation (4-2). 
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L
tvI L

L
∆

=∆  (4-2)  

where t∆  is defined in Figure 4-3. Substituting 2/SS TDTt −=∆  and rearranging (4-2), the 

output inductor value may be calculated using (4-3). 

L

SOIn

I
TDVVL

∆
−−

=
2

)12)((
 (4-3)  

Assuming the inductor ripple current flows entirely in the output capacitor the peak-to-peak 

output voltage ripple may be expressed in (4-4) 

422
11 SL

OO

O
O

TI
CC

QV ∆
×=

∆
=∆  (4-4)  

where OQ∆  is the charge flow to/from the capacitor each half cycle, Figure 4-3. Rearranging 

(4-4) and substituting for LI∆  from (4-3), the output capacitance is obtained in (4-5). 

O

SOIn
O VL

TDVV
C

∆
−−

=
32

)12)(( 2

 (4-5)  

Considering a constant source current InI , Figure 4-1, the input capacitor, 1InC , is charged 

during the off-time of 3TS , and discharged when 4TS  is off, Figure 4-3. The capacitance may 

be calculated using (4-6) 

In

SIn

In

In
In V

TDI
V
QC

∆
−

=
∆
∆

=
)1(

 (4-6)  

where InQ∆  is the charge flow to/from the capacitor each half cycle, Figure 4-3. 

 

To allow the operation of the converter to be examined at two input voltage levels and duty 

ratios, prototypes were designed to operate with 5.0=D  from a 500 V supply and with 

75.0=D  from a 600 V supply, all transistors switching at 50 kHz. The 500 V results will 

then be compared with those from the 500 V prototypes described in Chapters 2 and 3. 
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Table 4-2 Three-level buck converter design requirements 
Input Voltage (V) 500 600 

Input Current (A) 1 1 

Input Power (W) 500 600 

Output Voltage (V) 250 450 

Output Current (A) 2 1.33 

Duty Ratio 0.5 0.75 

Frequency (kHz) 50 50 

Input Voltage Ripple (V) 25 30 

Output Voltage Ripple (V) 2.5 4.5 

Inductor Current Ripple (A) 0.3 0.2 
 

Table 4-3 Three-level converter passive component design values 

Circuit  
Input Capacitor 

( 21 , InIn CC ) 
Filter Inductor 

(L) 
Filter Capacitor 

( OC ) 

500 V 800 nF 4.17 mH 150 nF 

600 V 333 nF 3.75 mH 56 nF 

 

 

The detailed design requirements of the two three-level, buck converters are listed in Table 

4-2. Applying the design requirements to the equations (4-3), (4-5) and (4-6), the values of 

the input capacitor, filter inductor and capacitor are calculated and listed in Table 4-3. 

 

4.1.2 Three-level, diode-clamped, step-down converter fabrication 

Two 400 V, 2.2 µF polyester capacitors were chosen as the input capacitors, 1InC  and 2InC . 

Four power MOSFETs, IRFIB7N50A ( CRVV o
onDSBR 25@52.0,500 )( Ω== ), were used as 

the switching transistors. Two silicon carbide Schottky barrier diodes, CSD10120 

( VVVV FBR 6.1,1200 ==  at 10 A and 25oC), were employed as the bridge diodes, 1TD  and 

2TD . Two ultrafast diodes, MUR1560 ( VVVV FBR 5.1,600 ==  at 15 A and 25oC), were used 
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as the voltage-clamping diodes, 1CD  and 2CD . Totally, there were ten components in the 

conversion circuit, which were all mounted on a round copper plate with 120 mm diameter 

and connected by a PCB board. A second pair of prototypes was built by replacing the 

ultrafast voltage-clamping diodes with the silicon carbide Schottky diodes, CSD06060 

( VVVV FBR 6.1,600 ==  at 6 A and 25oC). A UC3524 PWM integrated circuit was used to 

generate the driving signals for the MOSFETs 3TS  and 4TS . The MOSFETs 1TS  and 2TS , 

were held permanently on using floating 12 V supplies. 

 

 

4.2 Single device characteristic at low temperatures 

To enable the device losses to be determined in the converters, the on-state resistances and 

voltages of the devices were measured at the converter operating current levels using the 

methods described previously. 

 

4.2.1 MOSFET on-state resistance at low temperatures 

The power MOSFET IRFIB7N50A on-state resistance was measured over the temperature 

range 20-300 K at the currents of 2 A and 1.33 A, using the test configurations described in 

Chapter 2, Section 2.4.1. 

 

Figure 4-4 plots the on-state resistances across the temperature range at two current levels. 

There is no significant difference between the resistances at 1.33 A and 2 A. The on-state 

resistance has a minimum value of 52 mΩ at 70 K, one eighth of the room temperature 

value. The proportionate decrease in on-state resistance is much greater than that measured 

for the CoolMOS SPP20N60C3 device, Figure 2-11, which was assumed to be due to the 

conventional structure of the IRFIB7N50A. 
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Figure 4-4 Measured on-state resistance for the IRFIB7N50A 

 

 

 

4.2.2 Diode on-state voltage at low temperatures 

The on-state voltages of the ultrafast diode MUR1560 and the silicon carbide Schottky 

barrier diode CSD06060 were examined across the range 20-300 K at the forward currents of 

2 A and 1.33 A, using the method in Chapter 2, Section 2.4.2. Both on-state voltages, Figure 

4-5, show the same temperature dependencies as described in Chapter 2, Section 2.4.2 over 

the temperature range, and the on-state voltage increases with the increase in forward 

current. However, the on-state voltage of the CSD06060 diode is slightly higher that that of 

the CSD10060. 
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Figure 4-5 Measured on-state voltages for the CSD06060 and MUR1560 

 

 

4.2.3 Capacitor characteristics at low temperatures 

The 400 V, 2.2 µF polyester capacitor was tested at low temperatures. The capacitance and 

the series resistance were measured using the Agilent 4284A precision LCR meter at 

temperatures down to 20 K. Figure 4-6 plots the capacitance at 50 kHz and 100 kHz over the 

temperature range 20-300 K, while Figure 4-7 shows the dissipation factor. The capacitance 

is insensitive to temperature, decreasing by 5.6 % at 20 K compared to room temperature. 

There is no significant difference between the capacitances at the two frequencies. The 

dissipation factor decreases with a decrease in temperature due to the reduction in the 

equivalent series resistance. These results are consistent with those reported in the literature 

for similar capacitor types [4-7, 4-8]. The RMS current through the input capacitor is to be 

0.5 A based on the waveforms, Figure 4-3. The power loss in each capacitor is calculated to 

be 3.75 mW due to the equivalent series resistance at room temperature, which will decrease 

with a decrease in temperature. Therefore the power loss in the input capacitors is very small 

and can be omitted at all temperatures. 
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Figure 4-6 Measured capacitance for the 400 V, 2.2 µF polyester capacitor 
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Figure 4-7 Measured dissipation factor for the 400 V, 2.2 µF polyester capacitor 
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Figure 4-8 Three-level, diode-clamped, step-down converter prototype 

 

 

4.3 Analysis of the semiconductor losses in the three-level 

converters at low temperatures 

Figure 4-8 shows the three-level, diode-clamped, step-down converter prototype. The 

capacitors 1InC  and 2InC  were clamped to the copper base plate to ensure that they operate at 

low temperature. Figure 4-9 displays the cryogenic test layout. The prototype was mounted 

on the cold head in the vacuum chamber, the input and output filters were on the left hand 

side outside the chamber, and the PWM control signals conveyed by the signal feedthrough 

were on the right hand side. An 8-pin power feedthrough, Figure 4-10, was used to connect 

the circuit points labelled in Figure 4-10 (b) to the outside of the vacuum chamber. 

Therefore, the circuit connection between the voltage-clamping diodes and the mid-point of 

the input capacitors was made outside the cold chamber. This was necessary in order to 

monitor the currents in the voltage-clamping diodes, but has the disadvantage of introducing 

stray inductance into the circuit connections. The wires were practically cut as short as 

possible and twisted to minimise the stray inductance. 
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Figure 4-9 Three-level prototype cryogenic test layout 
 

 
Figure 4-10 Schematic connection for the power feedthrough 

 

The converter operation was examined at a set of temperature points over the range of 20-

300 K and the switching losses were obtained by the switching frequency multiplied by the 

time integral of the device voltage and current product, whilst the on-state losses were 

calculated by equations (4-7), (4-8) and (4-9) from a knowledge of the current level and the 

device characteristics in Figures 4-4 and 4-5. The measured semiconductor losses were 

confirmed by measurement of the converter input and output powers using high resolution 

multimeters and measurement of the inductor losses. 

)(
2

2&1_ 2 onDSRMSSTSTCond RIP ××=  (4-7)  
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DRIP onDSRMSSTSTCond ×××= )(
2

4&3_ 2  (4-8)  

)1(22&1_ DVIP FAVDCDCCond −×××=  (4-9)  

 

 

4.3.1 Ultrafast diode based, three-level, buck converter (500 V supply) 

To operate with a duty ratio of 0.5, sub-topologies (1) and (6), Figure 4-2, were used and the 

MOSFETs 3TS  and 4TS  were switched in synchronism. 

 

The ultrafast diode MUR1560 based, three-level prototype was tested at low temperatures 

operating from a 500 V supply. Figure 4-11 (a) plots the total semiconductor losses in the 

temperature range 20-300 K, along with the conduction and switching losses. Figures 4-11 

(b) and (c) display the losses in the individual semiconductors. 

 

The total semiconductor loss decreases nearly by a half at 100 K, Figure 4-11 (a), due to the 

40 % reduction in the switching loss and 60 % decrease in the conduction loss; below 100 K 

the total loss is insensitive to temperature, since both the switching and conduction losses 

change little. Figure 4-11 (b) shows that the MOSFET conduction losses decrease 

significantly, offset by the increase in the diode conduction losses. The switching losses in 

the MOSFETs dominate the total switching loss, Figure 4-11 (c), especially at low 

temperature. The switching loss in 3TS , 1CD  and 2CD  decreases almost by a half across the 

range, whereas the 4TS  switching loss decreases slightly. 
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(a) Total semiconductor losses 

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Temperature (K)

P
ow

er
 L

os
s 

(W
)

Total Conduction
IRFIB7N50As
MUR1560s

 
(b) Conduction losses 
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(c) Switching losses 

Figure 4-11 Semiconductor losses in the three-level converter with IRFIB7N50A 
MOSFETs and MUR1560 diodes, WPVVVV LoadOIn 500,250,500 ===  
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Figure 4-12 1CD  (MUR1560) diode turn-off currents in the three-level converter 

WPVVVV LoadOIn 500,250,500 ===  

 

The reduction in the switching loss at low temperature, Figure 4-11, was attributed to the 

improvement in the ultrafast diode reverse recovery as described in Chapter 2. Figure 4-12 

plots the turn-off currents of 1CD  at 20 K, 60 K, 100 K and 294 K. The peak reverse 

recovery current decreases by two-thirds and the reverse recovery time decreases by a half at 

100 K, below 100 K the decrease becomes relatively small. 

 

4.3.2 SiC diode based, three-level, buck converter (500 V supply) 

The silicon carbide diode CSD06060 based, three-level, prototype was tested at low 

temperatures operating from 500 V. Figure 4-13 (a) plots the total semiconductor losses, the 

conduction and switching losses in the temperature range 20-300 K. The losses in the 

individual semiconductors are displayed in Figures 4-13 (b) and (c). 

 

The total semiconductor loss decreases by 30 % at 80 K compared to 300 K, Figure 4-13 (a), 

essentially due to the 50 % reduction in the conduction loss, although the decrease in the 

MOSFET conduction losses is offset by the increase in the diode conduction losses, Figure 

4-13 (b). All switching losses change little with temperature, Figure 4-13 (c), attributed to 

the temperature-invariant SiC diode switching property as observed in Chapter 2. 
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(a) Total semiconductor losses 
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(b) Conduction losses 
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(c) Switching losses 

Figure 4-13 Semiconductor losses in the three-level converter with IRFIB7N50A 
MOSFETs and CSD06060 diodes, WPVVVV LoadOIn 500,250,500 ===  
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Table 4-4 500 V, 500 W prototypes list 
1 Ultrafast diode based single-transistor step-down converter, Section 2.6.1 

2 SiC diode based single-transistor step-down converter, Section 2.6.2 

3 Synchronous rectifier, Section 3.1.4.2 
4 Ultrafast diode based three-level step-down converter, Section 4.3.1 
5 SiC diode based three-level step-down converter, Section 4.3.2 

 

 

 

4.3.3 Summary of the semiconductor losses in the 500 V prototypes 

The 500 V, 500W prototypes that have been examined in this Thesis at low temperatures are 

listed in Table 4-4. 

 

The total semiconductor losses in the five converters are plotted in Figure 4-14 in the 

temperature range 20-300 K, whilst Figures 4-15 and 4-16 display the breakdown of the total 

semiconductor losses into conduction and switching losses respectively. The numbering of 

the curves in the Figures follows the list in Table 4-4. 

 

Comparing the results in Figure 4-14, the losses in the multi-level circuit are the highest at 

room temperature and are just below that of the synchronous rectifier at low temperature. All 

the circuits show fairly high semiconductor losses and the losses do not exhibit such a large 

reduction at low temperatures as was seen for the lower voltage circuits, Figure 3-22. This is 

due to a combination of factors, but mainly the lower current levels in the circuits, the large 

number of devices in the multi-level circuits, especially diodes, and the high switching losses 

in all circuits. 
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Figure 4-14 Total semiconductor losses in the 500 V prototypes 
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Figure 4-15 Conduction losses in the 500 V prototypes 
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Figure 4-16 Switching losses in the 500 V prototypes 
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4.3.4 Three-level buck converter cryogenic operations (600 V supply) 

To operate with a duty ratio of 0.75, sub-topologies (1), (2) and (3), Figure 4-2, were used 

and the MOSFETs 3TS  and 4TS were switched at 50 kHz as shown in Figure 4-3. 

 

The ultrafast diode and SiC diode based three-level, step-down converters were tested at low 

temperatures, operating from a 600 V supply and delivering 600 W to a 450 V resistive load. 

The total semiconductor losses for both converters are plotted in Figure 4-17, while the 

breakdown of the total semiconductor losses into the conduction and switching losses are 

plotted in Figures 4-18 and 4-19 respectively. 

 

Compared with the results from the multi-level circuits at 500 V, Figures 4-14 to 4-16, the 

data in Figures 4-17 to 4-19 show very similar trends; however, the total losses are lower due 

to the lower current in the devices and the reduced conduction times for the voltage-

clamping diodes. 
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Figure 4-17 Total semiconductor losses in the 600 V prototypes 
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Figure 4-18 Conduction losses in the 600 V prototypes 
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Figure 4-19 Switching losses in the 600 V prototypes 
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4.4 Three-level, zero-voltage-switching, step-down converter 

Evaluation of the semiconductor losses in the three-level, step-down converters shows that 

the total semiconductor loss, conduction loss and switching loss are higher than in the 

corresponding single-transistor step-down converters, although they are more sensitive to 

temperature, Figure 4-14. The increase in losses is essentially due to the increased number of 

devices. 

 

The conduction losses in the three-level circuit could be reduced at low temperature by using 

a synchronous rectifier for the voltage-clamping diodes. Furthermore the switching losses 

could be virtually eliminated by using zero-voltage-switching techniques, as discussed in 

Chapter 3. Therefore, a novel three-level, ZVS, step-down converter is introduced in Figure 

4-20, where the voltage-clamping diodes, 1CD  and 2CD , are replaced by the MOSFETs, 1CS  

and 2CS . A snubber capacitor is connected across the drain and source of each MOSFET. 

The output inductor has a bi-directional current due to the reduced inductor value and the 

inductor current charges/discharges the snubber capacitors in a lossless manner at each 

MOSFET turn-off instant. The individual MOSFETs are triggered on only after the 

corresponding body diode is forward conducting, achieving zero-voltage-switching. 

 

Considering the converter operation at 25 % duty ratio as an example, the two MOSFETs, 

1TS  and 2TS , are permanently on, while the MOSFETs, 3TS  and 4TS , are switched on in 

alternate half cycles with 25 % duty ratio. The MOSFETs, 1CS  and 2CS , are triggered in 

anti-phase with 3TS  and 4TS  respectively, a dead time being inserted to allow charging 

/discharging of the snubber capacitors. The ideal waveforms are shown in Figure 4-21, 

where the control signals for 1TS  and 2TS  are omitted since they are permanently on, the 

other MOSFET control signals, the voltages across the snubber capacitors and the inductor 

current are plotted. The waveforms are defined in the circuit diagram of Figure 4-20. 
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Figure 4-20 Three-level, ZVS, step-down converter 
 

 
 

Figure 4-21 Ideal waveforms for the three-level ZVS converter, 25.0=D  
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Figure 4-22 Sub-topologies for the three-level, ZVS converter operating with 25.0=D  

The sub-topologies that the converter is switched through are plotted in Figure 4-22 for the 

three-level, ZVS converter with the power transfer from InV  to OV . In sub-topology (a), 

Figure 4-22, 3TS  and 4TS  are off whilst 1CS , 2CS , 1TS  and 2TS  are on. The inductor current 

freewheels through 1TS , 2TS , 1CS , and 2CS , falling and eventually reversing. The zero-

voltage-switching transient that occurs when 1CS  turns off is shown in Figure 4-23. The 

inductor current charges/discharges the snubber capacitors across 1CS  and 3TS  in a 

controlled manner, Figure 4-23 (b), until the body diode of 3TS  becomes forward biased, 

Figure 4-23 (c). 3TS  is then switched on, Figure 4-23 (d), and the converter is in sub-

topology (b), Figure 4-22. The inductor current increases, becoming positive again, and 

flows through 1TS , 2TS , 3TS  and 2CS . 
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Figure 4-23 Zero-voltage commutation from 1CS  to 3TS  
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Figure 4-24 Zero-voltage commutation from 3TS  to 1CS  
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Table 4-5 Three-level, ZVS, one-quadrant control strategy 
Operating Range Active Subtopologies PWM Strategies 

0<VO/VIn<0.5 (a), (b), (c) ST1, ST2: Always On 
ST3, ST4: PWM control 

0.5<VO/VIn<1 (b), (c), (d) ST1, ST2: Always On 
ST3, ST4: PWM control 

 

The complementary zero-voltage-switching transient is displayed in Figure 4-24 when 3TS  

turns off. The positive inductor current charges and discharges the snubber capacitors, Figure 

4-24 (b), until the body diode of 1CS  is forward biased, Figure 4-24 (c), which allows 1CS  to 

turn on at zero voltage, Figure 4-24 (d). The converter is then back in sub-topology (a), 

Figure 4-22. 

 

Similarly a zero-voltage-switching transient occurs as the inductor current is commutated 

between 4TS  and 2CS . In this way the circuit is switched into sub-topology (c), Figure 4-22, 

and back into sub-topology (a), Figure 4-22, in the second half of the switching cycle. 

 

The active sub-topologies and control strategies for different ranges of positive OV  are listed 

in Table 4-5, in which the sub-topology letters refer to those in Figure 4-22. In each of the 

operating ranges listed in Table 4-5, the pair of devices that are switched are operated in an 

interleaved manner; the devices being switched on in alternate half cycles for an interval of 

SDT , where D is the duty ratio and ST  is the period. 

 

The operation of the three-level, ZVS, step-down converter was simulated in Saber at 25 % 

duty ratio with a 600V supply. The value of the filter inductor was 60 µH, and the switching 

frequency was 50 kHz. The resistance of the load was 37.5 Ω. Each power MOSFET was 

modelled by an ideal switch, an anti-parallel diode and a 0.8 nF snubber capacitor. A short 

dead time, 400 ns, was inserted after each MOSFET turns off in order to complete the 

resonant transition. All these values were calculated based on the method in Chapter 3, 
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Figure 4-25 Three-level, ZVS simulation circuit in Saber operating with 25.0=D  

Section 3.2.2 for the two-level zero-voltage-switching circuit. The simulation circuit is 

displayed in Figure 4-25. The schematic in Saber is shown in Appendix 7. 

 

The simulation waveforms are plotted in Figure 4-26 for two cycles, showing the control 

signals of the individual MOSFETs, the filter inductor current, the individual MOSFET anti-

parallel diode currents, and the voltage and current across and through each MOSFET. The 

zero-voltage-switching happens in the vicinity of the maximum and minimum (negative) 

inductor currents, i_L. Take a pair of MOSFETs 2CS  and 4TS  as an example. The voltages 

across their snubber capacitors, v_ob and v_b, increase and decrease in a controlled manner, 

ensuring zero-voltage turn-on for each MOSFET after the body diode forward conduction, 

i_DC2 and i_DT4 in Figure 4-26. Switching losses in the three-level, ZVS converter are then 

virtually eliminated. Therefore, the total semiconductor loss equals the sum of the MOSFET 

conduction losses in (4-10). 

)(
24 onDSRMSConductionSemi RIPP ×==  (4-10)  
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where )(onDSR  is the MOSFET on-state resistance. The total semiconductor loss in the three-

level, ZVS converter operating at 25 % duty ratio is then 59.8 W at room temperature using 

IRFIB7N50A MOSFETs, and would decrease by a factor of eight at cryogenic temperatures 

according to the measured device characteristics, Figure 4-4. This value is only slightly 

below that measured in the practical circuits due to the much higher inductor ripple current 

that is required for zero-voltage-switching. The losses could be reduced by paralleling 

additional MOSFETs. 

 

The three-level, ZVS, step-down converter was also simulated at duty ratios of 75 % and 50 

%. The simulation schematics are displayed in Appendix 7. At 75 % duty ratio the control 

strategy is similar to that with 25 % duty ratio, whereas at 50 % duty ratio the MOSFETs, 

3TS  and 4TS , are triggered simultaneously by PWM signals, 1CS  and 2CS  are controlled by 

the complementary signals related to 3TS  and 4TS . Simulation waveforms are plotted in 

Figures 4-27 and 4-28 respectively containing the same items and the zero-voltage-switching 

is achieved operating with these two duty ratios. Therefore, the semiconductor losses 

assuming IRFIB7N50A MOSFETs are calculated to be 6.0 W and 13.1 W at room 

temperature with 75 % and 50 % duty ratios respectively. 
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Figure 4-26 Simulation waveforms operating with 25.0=D  
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Figure 4-27 Simulation waveforms operating with 75.0=D  
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Figure 4-28 Simulation waveforms operating with 5.0=D  
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4.5 Conclusions 

• All the multi-level circuits showed fairly high semiconductor losses and the 

losses did not exhibit such a large reduction at low temperatures as was seen for 

the lower voltage circuits, Chapters 2 and 3. This was due to a combination of 

factors, but mainly the lower current levels in the circuits, the large number of 

devices in the multi-level circuits, especially diodes, and the high switching 

losses in all circuits. 

• The SiC diode based three-level converters had nearly constant switching losses, 

and the reduction in the total semiconductor loss at low temperature was 

primarily attributed to the reduced conduction loss. However, both the 

conduction and switching losses decreased with a decrease in temperature for the 

ultrafast diode based three-level converters. 

• A three-level, ZVS, step-down converter was introduced to decrease the large 

conduction and switching losses in the three-level, diode-clamped converter. 

Simulation waveforms verified the operating principles at 25 %, 50 % and 75 % 

duty ratios. 
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Chapter 5 

 

Conclusions and further work 

 

 

5.1 Introduction 

Advances in high temperature superconductor technology since the 1980s have stimulated 

the development of superconducting devices for a range of electrical power applications, 

such as high-voltage transmission, magnetically levitated trains, superconducting magnetic 

energy storage, superconducting fault current limiters and superconducting rotary machines. 

Many of these superconducting applications require power conditioning systems which 

include PWM control, AC to DC converters and DC to AC converters to interface the power 

at room temperature with the superconducting coils at cryogenic temperatures. 

 

The operation of semiconductors at low temperatures offers many advantages, such as lower 

on-state voltages in majority carrier devices due to higher carrier mobilities, faster switching 

speeds in minority carrier devices due to reduced carrier lifetimes. However, on-state losses 

may be increased in some device types such as diodes, and freeze-out effects tend to limit 

device performance at extremely low temperatures. In order to understand better the 

performance of power electronic devices operating at low temperatures and also to identify 

the most appropriate circuit techniques for low temperature power conversion, this Thesis 

presents an experimental investigation into the performance of several DC-DC converter 

topologies at temperatures down to 20 K. In particular the semiconductor losses are 

examined in detail. 
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5.2 Contributions of the Thesis 

The DC-DC step-down converters were built using commercial-off-the-shelf (COTS) 

devices, principally MOSFETs and diodes, and were mounted on a copper plate inside a cold 

chamber where the temperature could be controlled down to 20 K. The power losses in the 

semiconductors were examined over a wide range of temperatures from 300 K down to 20 

K. The switching losses were calculated from measured switching waveforms, whilst the 

conduction losses were calculated from the measured current and static device 

characterisation data. The contributions of the Thesis are summarised in the following 

sections. 

 

5.2.1 Device characteristics and semiconductor losses in the single-

transistor step-down converters 

The results from the static characterisation tests on the MOSFET and diode devices were 

largely consistent with the work reported in the literature; MOSFET on-state resistance fell 

at low temperature by up to a factor of six, the reduction being greater for higher voltage 

devices, however the proportionate reduction in resistance in the high voltage CoolMOS 

device was less than that observed in devices with a traditional structure. The diodes all 

exhibited an increase in on-state voltage at cryogenic temperatures at the current levels 

considered, the increase in the junction voltage being greater than the reduction in the 

voltage dropped across the drift region resistance. The breakdown voltage of all devices 

tested fell by around 20-24 % at cryogenic temperatures, apart from in the SiC Schottky, 

which showed a small increase, and this was attributed to the dominance of tunnelling 

breakdown in first generation of SiC diodes. The MOSFET gate threshold voltage and 

transconductance both increased at cryogenic temperatures; the change in threshold voltage 

(approximately 1 V) being quite consistent with the results reported in the literature for other 
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devices, however the increase in transconductance is much more device dependent, a 70 % 

increase was measured in this work compared with values of up to 200-300 % in some 

publications. 

 

The MOSFET switching characteristics changed very little at cryogenic temperatures and 

this behaviour was consistent with that predicted by the standard equivalent circuit based 

analysis of the switching behaviour and the observed changes in threshold voltage and 

transconductance. 

 

In contrast the switching behaviour of all the silicon diodes, Schottky and ultrafast, improved 

significantly at low temperatures, the peak reverse recovery current and reverse recovery 

time reduced by up to 75 % and 50 % respectively. The SiC diode showed no reverse 

recovery effects at any temperature. 

 

The reduction in the total semiconductor losses in the converter prototypes at cryogenic 

temperatures was limited by the increase in diode conduction losses. With the duty ratio of 

50 % that was used in the experimental prototypes, the total semiconductor losses fell by 

around 26-33 % in the low voltage, silicon diode prototypes. Using the same devices, a 

much greater reduction in loss would be exhibited by a converter operating at higher duty 

ratio due to the increased dominance of MOSFET conduction. In the higher voltage, silicon 

diode prototypes the reduction in loss at cryogenic temperatures was much greater, almost 50 

%, due to the increased dominance of switching losses. The reduction in switching losses 

was almost entirely due to the improvement in diode reverse recovery at low temperatures, 

however, reverse recovery still remained a significant source of loss. The change in total 

semiconductor loss at low temperatures in the silicon carbide prototypes was very much 

smaller, principally due to the absence of diode reverse recovery at all temperatures. In all 

prototypes it was seen that switching losses and diode conduction losses were the main 

limitations to achieving increased conversion efficiency at cryogenic temperatures. 
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The prototype performance at low temperatures could be improved with a better optimised 

layout, in particular placing the input capacitor inside the cold chamber would allow the 

stray inductance and associated switching losses to be reduced. 

 

5.2.2 Semiconductor losses in the two-transistor step-down converters 

The synchronous rectifier concept was seen to work well in both the 120 V and 500 V 

prototypes, however to minimise the conduction of the body diode and the associated reverse 

recovery transient, it was necessary to optimise the dead time for each operating temperature 

due to the variation in gate threshold voltage with temperature. The 120 V prototype 

exhibited a 65 % reduction in total semiconductor losses at cryogenic temperatures, 

however, the efficiency at low temperature was again limited by switching losses, which 

varied little with temperature. The total semiconductor losses in the high voltage prototype 

varied little with temperature due to the dominance of switching losses. 

 

The much lower switching losses in the zero-voltage-switching circuit allowed the overall 

losses to fall almost in proportion with the reduction in the MOSFET on-state resistance. The 

total semiconductor loss at 50 K in the zero-voltage-switching circuit was 18 % of the room 

temperature value and the losses could easily be reduced further by adding additional 

MOSFETs in parallel. Another advantage of the synchronous rectifier over the diode based 

circuits is that the semiconductor conduction losses will be largely independent of duty ratio 

for a specific output current. 

 

5.2.3 Semiconductor losses in the three-level step-down converters 

The multi-level prototypes showed fairly high semiconductor losses and the losses did not 

exhibit such a large reduction at low temperatures as was seen for the lower voltage circuits, 

which was due to a combination of factors, but mainly the lower current levels in the 

circuits, the large number of devices, especially diodes, and the high switching losses in all 

circuits. To reduce the semiconductor losses in the multi-level circuits, the synchronous 

rectifier and zero-voltage-switching techniques examined in Chapter 3 were successfully 
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applied to the circuit, resulting in a new topology that was verified by Saber simulation at 25 

%, 50 % and 75 % duty ratios. Theoretically the semiconductor losses are almost entirely 

MOSFET conduction losses, resulting in the total semiconductor losses falling at low 

temperature in proportion with the reduction in MOSFET resistance. 

 

 

 

5.3 Conclusion 

It has been demonstrated that one of the most promising ways to minimise the 

semiconductor losses in small, cryogenic DC-DC converters is to use synchronous rectifier 

and zero-voltage-switching techniques. In this way the losses at cryogenic temperatures fall 

in proportion with the reduction in MOSFET resistance, typically being less than 20 % of the 

room temperature value. Further reduction in the losses could be achieved by paralleling 

additional devices. Furthermore, it has been shown how these techniques may be extended to 

multi-level topologies, allowing operation at higher voltages with low voltage MOSFETs. 

 

 

 

5.4 Further work 

Immediate further work in this area should consider the incorporation of passive devices, 

inductors, transformers and capacitors into the cryogenic environment and the optimum 

overall design of the converter. 

 

Further characterisation and modelling of semiconductor devices are needed to underpin the 

design of cryogenic converters. Based on an understanding of device behaviour at cryogenic 

temperatures, research is needed to understand the maximum power density that can be 

achieved. 
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In the longer term, customised devices and new device materials should be investigated 

which may offer improved low temperature performance. Research is also required on the 

packaging, lifetime and reliability of devices that are operated in a cryogenic environment. 
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Appendix 1 

MOSFET gate-source voltage calculation 

The detailed gate-source voltage calculation is processed by substituting (2-14) and (2-15) 

into (2-16) and rearranging. 
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Set the intermediate parameters: A, B and C 
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Rearranging the above equation (A1-7) gives 
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]1))(()]}(1[{ ''''''''''
2 ++++++++ SGDGGGGGfsDGSDD CCRRsRRgCCLs  

(A1-8) 

 

Set the following time constants to simplify the calculation. 
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Therefore, the gate-source voltage expression is simplified to 
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Considering the source stray inductance SL , the gate-source voltage expression is simplified 

to the following equation [A1-1]. 
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where  
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)(' SDfsm LLg +=τ  (A1-14) 

)( '''' GGDGG RRC +=τ  (A1-15) 

))(( ''''' SGDGGGG CCRR ++=τ  (A1-16) 

 

The drain-source voltage in (2-21) and (2-36) is recalculated considering the source stray 

inductance SL  [A1-1, A1-2]. 
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Figure A2-1 Schematic diagram of the temperature control circuit 

 

 
 

Figure A2-2 PCB design of the temperature control circuit (zoom out): top layer (left) 
and bottom layer (right) 

 

 

Appendix 2 

Temperature control circuit 
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Figure A3-1 Overview of the cryogenic experimental system 

 
 

 
Figure A3-2 Experimental layout 
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Figure A3-3 Cold chamber and compressor 
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Figure A4-1 Test circuit for MOSFET on-state resistance 
 
 

 
 

Figure A4-2 Test circuit for diode on-state voltage 
 
 

 
 

Figure A4-3 Test circuit for MOSFET breakdown voltage 
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Figure A4-4 Test circuit for diode breakdown voltage 
 
 

 
 

Figure A4-5 Test circuit for MOSFET threshold voltage 
 
 

 
 

Figure A4-6 Test circuit for MOSFET transconductance 
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Figure A5-1 PCB design of the step-down conversion circuit (zoom out): top layer (left) 
and bottom layer (right) 
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Power conversion circuits inside cold chamber 
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Figure A5-2 PCB design of the three-level, diode-clamped conversion circuit (zoom 
out): top layer (left) and bottom layer (right) 
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Figure A6-1 Schematic diagram of the three-level converter control circuit 
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Three-level converter PWM control circuit 
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Figure A6-2 PCB design of the three-level converter control circuit (zoom out): top 
layer (left) and bottom layer (right) 

 
 

 
 

Figure A6-3 Photograph of the three-level converter control circuit 

 

 

 

 



 

 

Appendix 7 Three-level ZVS converter simulation schematics 

 A-13 

 
 

Figure A7-1 Three-level, ZVS converter simulation circuit at 25 % duty ratio in Saber 

 

 

Appendix 7 

Three-level ZVS converter simulation schematics 
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Figure A7-2 Three-level, ZVS converter simulation circuit at 75 % duty ratio in Saber 
 
 

 
 

Figure A7-3 Three-level, ZVS converter simulation circuit at 50 % duty ratio in Saber 

 

 


	Binder1
	TitlePage
	Abstract
	Dedication
	Acknowledgement
	ListofAbbreviationsandSymbols

	Binder2
	Chapter1 Introduction and literature review
	Chapter2 Basic buck converter
	Chapter3 Two transistors buck converter
	Chapter4 Mutilevel buck converter
	Chapter5 Conclusions and further work
	Publication.pdf
	Appendices




