

SURFACE TRIANGULATION AND THE DOWNSTREAM

EFFECTS ON SURFACE FLATTENING

By

SUDHEER SINGH PARWANA

A thesis submitted to the

University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

Geometric Modelling Group

Manufacturing and Mechanical Engineering

University of Birmingham

December 2010

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

i

SYNOPSIS

Surface triangulation is an active area of research due to its wide usage in a range of different

computer aided applications, including computer aided design (CAD), manufacture (CAM)

and finite element analysis (FEA). Although these applications are used to create, interrogate,

manipulate and analyse surfaces, internally they actually approximate the surface geometry

using a triangulation and then operate on the triangles, making them triangulation dependant

algorithms. However, despite the reliance on the triangulation by the downstream application,

there is very little work which has been focused on the inherent affects of the underlying

triangulation on the performance or result of the application. Therefore, the impact of the

triangulation on the downstream application is still not well known or defined.

This thesis investigates triangulation and the downstream effects on the triangulation

dependant method of surface flattening. Two novel topics are explored, notably right angle

triangulation configurations (RATCs) and axis of minimum principal curvature (AMPC)

influenced triangulations, each which was found to have an impact on the triangulation

dependant method of surface flattening.

ii

Right angle triangles (RATs) are commonly used throughout surface flattening. However,

given a set of uniformly sampled points, there are many different ways in which the diagonals

can be placed to form a final triangulation consisting of RATs. These different configurations

of edges are introduced as RATCs. To investigate the effects of RATCs on surface flattening,

three global configurations are proposed; regular, diamond and chevron. In addition, local

variations of RATCs are explored by fitting RATCs that best approximated the local Gaussian

curvature of the original surface.

Also considered is the influence of triangulation developability and its effects on flattening.

Developable surfaces should flatten without inducing any area or shape distortion. However,

it is shown that the transfer of this developabilty information from the surface to the

triangulation can be lost. It is established that skewing the vertices of a triangulation so that

no triangle edges followed along the AMPC, causes the flattening to induce distortion. As the

shape of a triangulation is defined by its edges, if no edges follow along the AMPC, this

means that the triangulation will not inherit this shape characteristic. Therefore, a new

method is proposed to triangulate a surface, whilst ensuring that one edge of every triangle

follows along the general direction of the AMPC.

This thesis also introduces a new efficient and robust parametric trimmed surface

triangulation method. Efficiency is gained during trimmed curve tracing by minimising the

number of cells processed. Key features are the efficient tracing algorithm and knowledge of

orientation of the trimming curves is not required. This approach also minimises the

occurrence of degenerate triangles and copes with holes independently of the grid size.

iii

ACKNOWLEDGEMENTS

First, I would like to express my gratitude and upmost thanks to my supervisor Dr. Robert

Cripps for his guidance, support and friendship throughout my PhD journey. I would also

like to thank Prof. Alan Ball and the entire GMG team for their wonderful insight and

encouragement whenever I needed inspiration.

Thank you to Delcam International, and in particular the PS-Exchange team, for providing me

with valuable industrial work experience and hands-on training in programming.

I am indebted to my parents (Surrinder and Parmod), my sisters (Jyoti and Pooja) and my

wife (Harjeet) for all their support and love throughout this PhD and my life.

This research was funded by ESPRC under the Doctoral Training Award programme

(EP/P502322/1) and Delcam International.

Finally, I would like to dedicate this work to my beautiful daughter Anaya.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1

1.1 NUBS Curves and Surfaces ... 5

1.1.1 B-Spline Basis Functions ... 6

1.1.2 B-Spline Curve ... 7

1.1.3 B-Spline Surface ... 9

1.2 Knot Vectors .. 11

1.2.1 Knots and the Parameter Domain ... 11

1.2.2 Knot Spans .. 12

1.2.3 Knot Insertion ... 12

1.3 Subdivision of NUBS .. 13

1.3.1 Uniform Subdivision .. 14

1.3.2 Bézier Uniform Subdivision ... 16

1.3.3 Geometric Subdivision ... 16

1.3.4 Subdivision Overview .. 16

1.4 Surface Differential Geometry ... 17

1.4.1 Unit Normal Vector .. 17

1.4.3 Gaussian Curvature .. 21

1.4.4 Surface Curvature Classifications .. 21

1.5 Trimmed NUBS Surfaces .. 22

1.6 Triangle Mathematics .. 23

1.6.1 Orientation of Triangle Vertices (2D only) .. 23

1.6.2 Point within a Triangle (2D only)... 24

1.6.3 Triangle Centre of Gravity ... 25

1.6.4 Triangle Perimeter .. 25

1.6.5 Triangle Area .. 25

1.6.6 Barycentic Area of a Triangle .. 25

1.6.7 Triangle Normal ... 26

1.6.8 Triangle Circumcircle (2D only) .. 27

1.6.9 Triangle Aspect Ratio ... 28

1.7 Triangulation Representation ... 28

1.8 Thesis Structure and Objectives .. 30

CHAPTER 2: SURFACE TRIANGULATION ... 32

2.1 Polygon Triangulation ... 33

2.1.1 Simple Polygon definition .. 34

2.1.2 Ear Clipping .. 34

2.2 2D Delaunay triangulation ... 35

2.2.1 Circumcircle Property... 35

2.2.2 Algorithms .. 36

2.2.3 Delaunay Triangulation and Trimmed Surfaces ... 36

2.3 Advancing Front Method ... 37

2.3.1 Boundary Edge Subdivision ... 37

2.3.2 Point Generation from the Current Front ... 38

2.3.3 Algorithms .. 39

2.4 Trimmed Surface Structured Triangulation Methodology .. 39

2.5 Rockwood et al. triangulation .. 42

2.6 Kumar and Manocha triangulation .. 46

2.7 Luken Triangulation .. 48

2.8 Piegl and Tiller Triangulation .. 50

2.9 Sadoyan et al. triangulation ... 52

2.10 Discussion .. 53

CHAPTER 3: NEW EFFICIENT AND ROBUST TRIANGULATION SCHEME 60

3.1 Cell Generation and Representation .. 61

3.2 Triangulation Overview ... 63

3.3 Tracing & Polygon Generation Details ... 64

3.3.1 Cell Labelling ... 64

3.3.2 Cell Edge Crossing Lists .. 66

3.3.3 Tracing Process .. 66

3.3.4 Tracing Degenerate Cases .. 68

3.4 Polygon Generation ... 70

3.4.1 Process Edge Crossing Lists ... 70

3.4.2 Right Edge Checking .. 71

3.4.3 Right Edge Checking Degenerate Case .. 73

3.4.4 Contained Cells Polygon Generation ... 73

3.5 Polygon Triangulation ... 74

3.6 Case Studies ... 74

3.6.1 Efficiency.. 74

3.6.2 Crack Reduction ... 78

3.6.3 Skinny Triangles ... 81

CHAPTER 4: SURFACE FLATTENING ... 87

4.1 McCartney et al. Algorithm ... 88

4.1.1 Circle Intersection Algorithm ... 89

4.1.2 Energy Release Method .. 91

4.2 Cader et al.‟s Flattening Method ... 94

4.2.1 Cosine Algorithm ... 94

4.2.2 Mapping Order ... 96

4.3 Accuracy Measurements .. 97

4.3.1 Improved Accuracy Flattening Measures ... 98

4.4 Discussion .. 99

4.4.1 Highly Curved Surfaces Problem ... 100

4.4.2 Long Thin Triangles Problem .. 102

4.4.3 Flattening Algorithm Stability Solution ... 103

4.4.4 Seed Triangle and Mapping Order ... 104

CHAPTER 5: RIGHT ANGLE TRIANGLE CONFIGURATIONS 106

5.1 Right Angle Triangle Configuration Definition .. 107

5.2 Global Right Angle Triangle Configurations .. 109

5.2.1 Global RATC Test .. 110

5.3 Motivation for a Consistent RATC .. 113

5.3.1 Surface Approximation... 115

5.4 Optimised RATC Algorithm ... 117

5.5 Gaussian Curvature Approximation .. 120

5.5.1 Current Gaussian Curvature Approximation .. 120

5.5.2 Approximation Method Limitation .. 122

5.5.3 Area Errors ... 124

5.5.4 Experimental Validation ... 125

5.5.5 Improved Gaussian Curvature Approximation... 128

5.6 Gaussian Curvature Optimised RATC Testing ... 131

5.6.1 Results .. 131

5.6.2 Gaussian Curvature Approximation Analysis .. 137

5.6.3 Flattening Analysis ... 138

CHAPTER 6: TRIANGULATION DEVELOPABILITY ... 145

6.1 Developable Surface Triangulation Problem ... 146

6.2 Minimum Principal Curvature Line Hypothesis .. 154

6.3 Algorithm Overview .. 155

6.3.1 Minimum Principal Curvature Direction Strips ... 155

6.3.2 Curvature Polylines and Triangulation ... 156

6.3.3 Boundary Edge Curvature Polylines and Triangulation 158

6.4 Algorithm Details .. 160

6.5 Principal Axis Triangulation Testing ... 167

6.5.1 Results .. 168

6.5.2 Gaussian Curvature Approximation Analysis .. 172

6.5.3 Flattening Analysis ... 174

CHAPTER 7: CONCLUSIONS AND FUTURE WORK ... 175

REFERENCES ... 181

1

Chapter 1

INTRODUCTION

Computer aided engineering (CAE) is now a mature technology that has been widely adopted

by industry. CAE suites are a composite of many diverse systems used through a product‟s

development pipeline, including computer aided design (CAD), manufacture (CAM) and

finite element analysis (FEA) packages. The use of CAE can aid in reducing lead times

(Cader et al., 2005) and hence reduce costs in rapid prototyping, testing and production.

These factors have contributed to CAE‟s wide usage in industry, thus encouraging much

research and development.

In order to use CAE, a virtual representation of an object is required which can be

characterised in a number of different ways. One type of representation uses discrete data

(Cripps and Cook, P.R., 1999), where a model is acquired as a set of points (Figure 1.1).

These points can then be strategically joined with edges to create a set of triangles that

approximates the original shape, known as a triangulation or mesh. Understanding the data

provided and knowing how to interpret the points can be a difficult task as it is not guaranteed

that the points will be acquired in a logical and structured manner. Furthermore, the points

2

are an approximation of the original geometry; therefore the integrity of the model may be

compromised. Triangulation optimisation (also known as remeshing) techniques can be used

to modify the density and uniformity of triangles within a triangulation and have been well

studied (Shimada and Gossard, 1998; Shu and Boulanger, 2000; Wang et al., 2006).

However, these methods do not guarantee that any new points, edges or triangles created will

necessarily lie on the original model geometry.

An alternative approach is to use a mathematical representation of a model such as a

collection of surfaces (Kumar et al., 2001) (Figure 1.2). Again, to use many CAE

applications, these mathematical models must be approximated as a set of triangles. In this

case the mathematical definitions are evaluated to generate a list of points that are then

connected together to form a triangulation (Rockwood et al., 1988; Kumar and Manocha,

1995, 1996; Piegl and Tiller, 1998). The advantage here is that the point density, and hence

accuracy of the approximation can be controlled with a guarantee that any new points

sampled will lie on the actual model (Piegl and Tiller, 1998). Furthermore, the points can be

generated in a structured way, making the triangulation process more efficient and robust

(Sadoyan et al., 2006).

Figure 1.1 Point based model of a BAE systems stylised canopy.

3

Surfaces provide a high degree of freedom for modellers when constructing complex

geometries (Rogers and Adams, 1990; Piegl and Tiller, 1997). Therefore, this thesis will be

concerned with surfaces that are represented as non-uniform rational B-splines (NURBS),

more specifically focusing on non-rational forms (NUBS). This representation of surfaces is

conventionally adopted throughout industry due to its properties and flexibility in shape

manipulation and design (Rogers and Adams, 1990). Another advantage of NUBS form is

that they inherently encompass another powerful and widely used representation called Bézier

(Piegl and Tiller, 1997) as a subset. Therefore, NUBS curves and surface can be decomposed

and converted into Bézier form (Section 1.2.3); a feature that has been used in existing

triangulation algorithms (Rockwood et al., 1988; Kumar and Manocha, 1995, 1996).

Once a NUBS surface has been triangulated, it can then be used for a wide range of CAE

downstream applications such as interrogations, visualisations, computer numerical control

(CNC) machine path generation, FEA and flattening. As these methods only have access to

the initial surface geometry through its triangulation, they could be characterised as

„triangulation dependant‟ processes (Parwana and Cripps, 2009).

Figure 1.2 Surface model of the same canopy model shown in Figure 1.1.

4

Despite there being many different algorithms available for generating a triangulation from a

surface representation, little attention has been targeted on the downstream effects of the

triangulation on different engineering applications. For this reason, choosing a triangulation

algorithm, to approximate a surface, comes down to a user‟s personal preference.

Furthermore, the geometric characteristics transferred from the initial surface to the

triangulation and the impact this has on a downstream application are not well understood

(Parwana and Cripps, 2009).

This thesis will study surface triangulation and investigate the effects it imposes on the

performance of surface flattening. Flattening is a triangulation dependant method which is

used by industries such as shoe, ceramic decoration and textiles (McCartney et al., 1999;

Wang et al., 2002; Cadar et al., 2005). The purpose is to iteratively map a three-dimensional

(3D) triangulation into a two-dimensional (2D) plane (Chapter 4). It is known that altering

algorithm parameters can cause different results from a flattening simulation (Cadar et al.,

2005) (Section 4.2); however this thesis will aim to isolate specific behaviours that are solely

attributed to changes in the triangulation.

This thesis will predominantly investigate the effects of right angle triangles (RATs) on

flattening. As RATs can be easily generated from a uniformly sampled grid of points they are

commonly used throughout research and industry (McCartney et al., 1999; Wang et al., 2002).

A new triangulation variable called right angle triangle configurations (RATCs) is introduced

(Parwana and Cripps, 2009), which refers to the connectivity of RATs within a triangulation,

and its impact on flattening is investigated. In addition, this thesis will investigate and

5

establish specific surface characteristics that can have an influence on the flattening result.

These characteristics will then be incorporated into the final triangulation to better reflect the

surface geometry and flattening simulations.

The remainder of this chapter will provide details of the NUBS definition of curves and

surfaces, as well as their characteristics. A brief review of some differential geometry

elements will also be provided. It will then present details of how a triangulation topology is

represented, for computational purposes, along with some triangle mathematics which will aid

in the understanding of this thesis. The chapter will conclude with an overview of the thesis

structure by outlining the contents of each chapter.

1.1 NUBS Curves and Surfaces

NUBS curves and surfaces are used widely among commercial CAD software systems such

as Dessault‟s Catia and Delcam‟s PowerShape. Since they are parametrically defined

polynomial entities, they are well suited for software implantation (Lockyer, 2007).

The B-Spline basis was originally developed for statistical data smoothing by Schoenburg

(1946) before Cox (1972) and de Boor (1972) both independently presented a more

numerically stable recursive definition that allowed the basis functions to be established more

efficiently. These B-Spline basis were then introduced to CAGD in the context of

parametrically defined curves by Riesenfeld (1973) and later extended to NURBS form by

Versprille (1975).

6

1.1.1 B-Spline Basis Functions

The B-Spline basis functions can be calculated using the recurrence formula (Cox, 1972; de

Boor, 1972, 2001) since it is the most useful for computer implementation.

The pth degree (order p+1) B-Spline basis function is calculated as a function of a non-

decreasing sequence of real numbers, ui, called knots defined by the knot vector U, defined as

0 1{ , , }ru uU
1i iu u , 0 2i r (1.1)

The number of knots is r.

The ith normalised B-Spline basis function,
, ()i pN u , is defined as

1

,0

1 if
()

0 otherwise

i i

i

u u u
N u (1.2a)

1

, , 1 1, 1

1 1

() () ()
i pi

i p i p i p

i p i i p i

u uu u
N u N u N u

u u u u
 (1.2b)

where the quotient 0/0 = 0.

The kth derivative of the
, ()i pN u is denoted as ()

, ()k

i pN u and is given by (Piegl and Tiller

(1997)),

(1) (1)

, 1 1, 1()

,

1 1

() ()
()

k k

i p i pk

i p

i p i i p i

N u N u
N u p

u u u u

0 1

0 1

i r

k p
 (1.3)

If the knot vector is of the form

11

{0, ,0,1, ,1}
pp

U (1.4)

the normalised B-Spline basis functions are equivalent to the Bernstein polynomials (Piegl

and Tiller, 1997), which are used as the basis functions for the Bézier form. Knot vectors of

7

the form (1.4), i.e. the end knots have multiplicity p+1 with no repeated interior knots, are

called open clamped knot vectors.

1.1.2 B-Spline Curve

A pth degree NURBS curve is defined by

,

0

,

0

()

()

()

n

i p i i

i

n

i p i

i

N u w

u

N u w

P

C
1

0i

p r p

w

u u u
 (1.5)

where Pi are the 2D or 3D control points, wi are the weights and Ni,p(u) are the pth degree B-

Spline basis functions defined on the non-uniform open clamped knot vector

1 2

1 1

{ , , , , , , , , }p r p

p p

a a u u b bU (1.6)

For a single curve span, the number of control points n is always equal to the order of the

curve and the number of knots 1r n p (Figure 1.3).

The weights are applied to the individual control points and act as magnets, where a control

point, Pi, with a weight value greater (less) than the other control points will attract (repel) the

curve towards (away from) Pi (Figure 1.4). Ensuring that 0iw for 0 i n will produce a

Figure 1.3 An example of a degree 3 NURBS curve.

P2

P3 P1

u = 0

u = 1

Control polygon

NURBS curve P0

8

curve that will be completely contained within the convex hull of the control points

(O‟Rourke, 2001). Furthermore, if
iw c i where 0c , there is no bias on the curve and

(1.5) is reduced to non-rational form (NUBS)

,

0

() ()
n

i p i

i

u N uC P
1p r pu u u (1.7)

The basis functions are defined on the knot vector shown in (1.6).

The NUBS curve can be differentiated with respects to the parameter u. The first and second

derivatives, Cu(u) and Cuu(u) are given by

(1)

,

0

() ()
n

u i p i

i

u N uC P
1p r pu u u (1.8)

(2)

,

0

() ()
n

uu i p i

i

u N uC P
1p r pu u u (1.9)

w0 = w1 = w2 = w3 = 1 w0 = w1 = w3 = 1, w2 = 3

w0 = w1 = w3 = 1, w2 = 0.2

w0

w1 w2

w3

Figure 1.4 Degree 3 NURBS curve and the changes applied to the shape by altering the

magnitude of the weight values.

9

1.1.3 B-Spline Surface

A NURBS surface is a bi-directional extension of the curve form, where a surface of degree p

in the u direction and degree q in the v direction is defined by

, , , ,

0 0

, , ,

0 0

() ()

(,)

() ()

n m

i p j q i j i j

i j

n m

i p j q i j

i j

N u N v w

u v

N u N v w

P

S

1

1

, 0

p r p

q s q

i j

u u u

v v v

w

 (1.10)

where Pi,j is the control polygon net, wi,j weights, and
, ()i pN u and

, ()j qN v are the

normalised B-Spline basis functions defined on the clamped knot vectors

1 2

1 1

{ , , , , , , , , }p r p

p p

a a u u b bU (1.11)

 1 2

1 1

{ , , , , , , , , }q s q

q q

c c v v d dV (1.12)

The number of control points in the u and v directions is always 1n p and 1m q

respectively and the number of knots in the u and v directions is 1r n p and

1s m q respectively. Figure 1.5, shows an example of a NURBS surface and illustrates

how the 2D parameter domain is mapped into 3D object space to form the surface.

10

The non-rational definition of the surface (NUBS) is given by
, ,i jw c i j resulting in

, , ,

0 0

(,) () ()
n m

i p j q i j

i j

u v N u N vS P
1 1,p r p q s qu u u v v v (1.13)

The basis functions are defined on the knot vectors shown in (1.11) and (1.12).

B-Spline surfaces can be differentiated with respects to both u and v. The first derivatives,

Su(u, v) and Sv(u, v) are given by

(1)

, , ,

0 0

(,) () ()
n m

u i p j q i j

i j

u v N u N vS P ,
1 1,p r p q s qu u u v v v (1.14)

(1)

, , ,

0 0

(,) () ()
n m

v i p j q i j

i j

u v N u N vS P ,
1 1,p r p q s qu u u v v v (1.15)

The mixed partial derivative Suv(u, v) is given by

(1) (1)

, , ,

0 0

(,) () ()
n m

uv i p j q i j

i j

u v N u N vS P ,
1 1,p r p q s qu u u v v v (1.16)

The second derivatives, Suu(u, v) and Svv(u, v) are given by

u v 0,0

1,0

1,1

0,1

0.5,0.5

Figure 1.5 Shows a surface defined on the parameter plane, where u,v [0,1], and the

mapping from 2D to 3D object space to form the surface.

11

 (2)

, , ,

0 0

(,) () ()
n m

uu i p j q i j

i j

u v N u N vS P ,
1 1,p r p q s qu u u v v v (1.17)

 (2)

, , ,

0 0

(,) () ()
n m

vv i p j q i j

i j

u v N u N vS P ,
1 1,p r p q s qu u u v v v (1.18)

1.2 Knot Vectors

The knot vectors define the parameter domain of the NUBS and can be used to convert NUBS

into Bézier. The following properties of knots are explained in the context of NUBS curves

but equally apply to surfaces.

1.2.1 Knots and the Parameter Domain

Knots u0 and
1ru are the minimum and maximum limits of the parameter domain

respectively. The NUBS curve is defined between the parameter values determined by knots

1pu and
1r pu (Figure 1.6).

A knot vector with end knots repeated p+1 times ensures that the curve starts at the first

control point, since
1o pu u , and ends at the final control point, since

1 1r r pu u . This type

of knot vector is called open clamped. Unless otherwise stated, the remainder of this thesis

assumes all knot vectors to be open clamped between 0 and 1.

Figure 1.6 Shows the different cubic NUBS curves generated by altering the knot

vectors.

U = {0,0,0,0,1,1,1,1}

u = 0.5

u = 0 u = 1

U = {0,0,0,0,0.5,1,1,1}

u = 0.5

u = 0 u = 1

U = {0,0,0,0.5,1,1,1,1}

u = 0.5

u = 0 u = 1

12

1.2.2 Knot Spans

Since the knot vector is intrinsically connected to the parameterisation of the curve, the

number of knot spans, where a knot span is present when
1i iu u , 0 2i r , equals the

number of curve spans (Figure 1.7). Therefore, in general, assuming that a knot vector (with r

knots) has no repeating interior knots, the number of pth degree curve spans cs is given by

 2 1cs r p (1.19)

Having repeated interior knots has the effect of reducing the degree continuity between the

curve spans (Piegl and Tiller (1997)).

1.2.3 Knot Insertion

A pth degree NUBS curve, consisting of cs spans, can be subdivided using knot insertion and

involves strategically inserting knots into the current knot vector, then adding and adjusting

control points to yield a new description for the same curve. By inserting multiple knots so

that each interior knot has multiplicity p will generate enough control points to represent each

curve span as a pth degree Bézier segment (Figure 1.8).

Figure 1.7 A degree 3 NUBS curve with three curve spans.

1
st
 Span

2
nd

 Span

3
rd

 Span

13

The modification of control points is based on de Casteljau‟s algorithm, which is a Bézier

subdividing technique. Knot insertion is not directly used in this thesis, therefore the details

have been omitted. Full details can be found in Piegl and Tiller (1997).

1.3 Subdivision of NUBS

Many trimmed surface triangulation algorithms require the subdivision of the initial surface

into rectangular cells and the subdivision of curves into linear segments (Figure 1.9).

There are two general methods of subdivision: uniform and geometric. This subsection

explains the basic concepts and differences between the two methods in the context of curves,

however they can be extended bi-directionally to apply to surfaces.

U = {0,0,0,0,1,1,1,1}

(a)

U = {0,0,0,0,0.5,0.5,0.5,1,1,1,1}

(b)

Figure 1.8 (a) Shows an degree 3 open clamped NUBS curve. (b) Shows the same curve

after knot insertion.

14

1.3.1 Uniform Subdivision

Uniform subdivision of a curve is where the parameter domain is split at equal intervals. The

parameter increment is a function of the number of steps, which is calculated in real space. It

is calculated in this manner so that the distance between consecutive points on the curve in

real space does not exceed a user specified tolerance.

Therefore, if a NUBS curve is defined within the parameter domain [umin, umax], and the

number of steps that the curve should be split into is stepu, then the parameter increment,

uincrement for the subdivision is defined as

max min
incerment

u

u u
u

step
 (1.20)

u

v

(a)

(b) (c)

Figure 1.9 (a) Uniformly subdivided surface parameter domain. (b) Curve and (c) its

approximation using linear segments.

15

Despite its simplicity, uniform subdivision can be problematic for NUBS curves. This is

because a single NUBS curve can be a piecewise representation of multiple curves over a

single parameter domain (Section1.2.2); however, this does not guarantee that the

parameterisation will be distributed evenly across all the piecewise curves.

For example, the NUBS curve represented in Figure 1.10 consists of two curve spans. The

curve has been subdivided into 20 steps with an equal parameter increment. As can be seen

the 10 points on the first span are more tightly packed than the second span. If the user

required that the sizes of each linear segment be the same (within an acceptable tolerance) this

would not always be possible using uniform subdivision and the NUBS representation

directly.

To rectify this problem, each NUBS curve span, between the knot interval 1[,]i iu u , can be

subdivided using a different parameter increment. This will result in a final subdivision

where the lengths of the linear segments approximating the curves are the same (within a

tolerance).

Curve span 1

Curve span 2

u = 0.5

u = 0

u = 1

Figure 1.10 NUBS curve with two spans and unevenly distributed parameterisation.

16

1.3.2 Bézier Uniform Subdivision

An alternative approach for improving the uniform subdivision of a NUBS curve is to convert

each curve span into a Bézier curve segment, using knot insertion (Section 1.2.3). A Bézier

curve represents a single curve span that is evenly distributed over the parameter range [0, 1].

Therefore, each Bézier curve can be subdivided independently to ensure that the lengths of the

linear segments approximating the original NUBS curve are the same (within a tolerance).

This method has been adopted in some existing triangulation algorithms (Rockwood et al.,

1988; Kumar and Manocha, 1995, 1996).

1.3.3 Geometric Subdivision

Geometric (also known as adaptive) subdivision is a method which is suitable for

approximating both Bézier and NUBS since it is performed with respect to the geometric

shape of the actual curve. The main aim of geometric subdivision is to only have as few

linear segments as is absolutely necessary (Piegl and Tiller, 1997). Therefore, the methods

generally subdivide a curve at unevenly spaced parameter intervals, which are calculated

based on different geometric characteristics such as arc length, tangent angle or normal angle.

Geometric subdivision is not directly used in this thesis, therefore the details have been

omitted. Full details can be found in Czerkawski (1996).

1.3.4 Subdivision Overview

Uniform subdivision is simple, fast and efficient computationally, making it ideal for

applications which require the subdivision of multiple curves or surfaces in real-time. A

complication can occur if the NUBS curves or surfaces have to be converted into Bézier;

17

however this is a small price to pay for the simplicity and speed. Uniform subdivision tends

to over sample a curve or surface and subdivide it into more elements than is absolutely

necessary (Piegl and Tiller, 1998).

Geometric subdivision varies the approximation of the curves and surfaces depending on the

local geometry reducing the number of elements required. However, it can be complicated to

implement, particularly for surfaces, and is not very fast which makes it undesirable for

applications which require real-time performance.

1.4 Surface Differential Geometry

Surface differential geometry can be used to gather a greater understanding of a surface‟s

shape characteristics. This subsection will present some elements which will be used

throughout this thesis.

1.4.1 Unit Normal Vector

Given a NUBS surface definition, it is often useful to know the normal direction to the

surface at a given point S(u, v) (Section 1.4.2). The tangent vectors for the parameter curves

in the u and v directions are defined as Su(u, v) and Sv(u, v) respectively (Figure 1.11). The

unit normal vector is perpendicular to both tangents vectors and is given by

(,) (,)
(,)

(,) (,)

u v

u v

u v u v
u v

u v u v

S S
n

S S
 (1.21)

18

1.4.2 Principal Curvatures and Directions

Principal curvatures can be used to provide a better interpretation of a surface‟s shape

characteristics. At a single point on a surface, the curvature values vary depending in which

direction it is being evaluated. For example, Figure 1.12 shows a cylinder surface which has

unit radius. In the u direction the curvature is zero, however in the v direction the curvature is

one.

In general there is a minimum and maximum curvature value for every point on a surface,

called principal curvatures, however, in general, these will not necessarily follow the u and v

Figure 1.12 Principal curvature directions on a unit radius cylinder.

Zero curvature direction

(Minimum principal curvature

direction)

Unit curvature direction

(Maximum principal curvature

direction)

Figure 1.11 Surface normal vector.

.

Sv(u, v) Su(u, v)

n

u v

19

directions. Therefore, each principal curvature value also has an associated direction, which

is specified within the parameter domain of the surface. When mapped to 3D, the principal

curvature directions will always be perpendicular to each other (Nutbourne and Martin, 1988).

The derivation of the principal curvatures and directions uses the first fundamental matrix,

G(u, v), and second fundamental matrix, D(u, v) (Faux and Pratt, 1985), of the surface define

as

(,) (,) (,) (,)
(,)

(,) (,) (,) (,)

u u u v

u v v v

u v u v u v u v
u v

u v u v u v u v

S S S S
G

S S S S
 (1.22)

and

(,) (,) (,) (,)
(,)

(,) (,) (,) (,)

uu uv

uv vv

u v u v u v u v
u v

u v u v u v u v

n S n S
D

n S n S
. (1.23)

Let u be a 2D vector with the values du and dv which are small changes in the surface u and

v parameter directions respectively. Then the equation for the principal curvatures,
p
, and

directions, u , is defined as

((,) (,)) 0pu v u vD G u (1.24)

or

00 00 01 01() () 0p pd g du d g dv (1.25)

10 10 11 11() () 0p pd g du d g dv (1.26)

where the dij and gij are the i
th

 and j
th

 components of the first and second fundamental form

matrices respectively.

20

Eliminating du and dv gives

2

00 11 00 11 01 01(,) (2) (,) 0p pu v g d d g g d u vG D (1.27)

From here the minimum (
min

) and maximum (
max

) curvatures can be obtained and

substituted into Equations (1.25) and (1.26) to extract the ratio of du:dv for the principal

directions (Faux and Pratt, 1985). For example, substituting
min

 into (1.25) and (1.26) will

give

0 1 0a du a dv and
0 1 0b du b dv

where a0, a1, b0 and b1 are constants. Re-arranging the above will give

0 0 1 1() ()a b du b a dv

which can then be used to calculate the ratio of du:dv

1 1

0 0

()

()

b adu

dv a b

Therefore, the principal direction for
min

 is
1 1()du b a and

0 0()dv b a (Figure 1.13).

The principal direction for
max

 can be calculated analogously.

Figure 1.13 Principal direction.

v

u

Principal direction

dv

(,)u v

du

a0

a1 b1

b0

21

1.4.3 Gaussian Curvature

The product of the two principal curvatures is known as the Gaussian curvature (Nutbourne

and Martin, 1988)
min maxGK . It can also be expressed as a ratio between the determinants

of the first and second fundamental form matrices,

(,)

(,)
G

u v
K

u v

D

G
 (1.28)

1.4.4 Surface Curvature Classifications

Consider the local area to a point p on any 3D surface. The curvature on the local area can be

of various types depending upon the nature of the principal curvatures min and max

(Lipschutz, 1969). These principal curvatures will lie on mutually perpendicular planes that

contain the point p (Figure 1.14).

A surface that has zero for one or both of the principal curvatures is called a developable.

Surfaces with non-zero curvatures with different signs are called hyperbolic. Surfaces with

non-zero curvatures of the same sign are called elliptical.

Developable Hyperbolic Elliptical

Point P Curvature
min Curvature

max

Figure 1.14 Three different types of principal curvature surface definitions.

22

3D surfaces that are defined as developable have the property that they can be flattened into

the 2D without causing any distortion of tearing to the original shape (Rogers and Adams,

1990; McCartney et al., 1999). This topic will be covered in more detail in Chapter 4.

1.5 Trimmed NUBS Surfaces

A trimmed surface enables complicated 3D geometric shapes to be described using

quadrilateral based NUBS surfaces. Given an underlying 3D NUBS base surface, (,)u vS ,

consider a number of orientated trimming loops which are defined in terms of (,)u vS . Each

trimming loop consists of 2D NUBS curves, () ((), ())t u t v tC , where ()u t and ()v t are the

2D coordinates and can be substituted into (,)u vS to get the 3D coordinates of the curve.

The 2D curves must be fully contained within the parameter domain of the surface (Figure

1.15).

v

u

Base surface parameter domain

Trimming region

Outside trimming loop

Inside trimming loop

(c)

(b) (a)

Figure 1.15 (a) Original 3D base surface. (b) Trimmed 3D surface. (c) Base surface

parameter domain with the 2D trimming loops.

23

The purpose of the orientated loops is to define the boundaries of the surface, where the part

of the surface located to the left of the loop is kept. By convention, an anti-clockwise loop

(outside loop) defines the outside boundary of the surface, and a clockwise loop (inside loop)

defines the inside boundaries (Kumar and Manocha, 1995, 1996). This concept of orientated

loops is known as the curve handedness rule (Rockwood et al.,1988).

1.6 Triangle Mathematics

This subsection will introduce some triangle mathematics which will be used throughout this

thesis to evaluate and operate on triangulations. In each subsection, the triangle, t, will be

defined by the three vertices p0, p1 and p2. The triangle and points can be either 2D or 3D.

1.6.1 Orientation of Triangle Vertices (2D only)

The orientation of 2D triangle points is important for many applications (Schneider and

Eberly, 2003). Given a 2D triangle t, if p2 is located to the left of the line with direction

1 0p p , then the points are in anti-clockwise. If p2 is located to the right of the line, then they

are in clockwise order. If pi = (xi, yi) then

 0 1 2

0 1 2

1 1 1

det x x x

y y y

 (1.29)

Let tol be a zero tolerance value, then δ > tol means the triangle vertices are in anti-clockwise

order and δ < -tol indicates a clockwise ordering. If

tol ,

then the triangle vertices are all collinear and the triangle is degenerate (Figure 1.16). For

non-degenerate triangles, the orientation of a triangle (i.e. clockwise or anti-clockwise) can be

24

changed be reversing the ordering of the vertices. Unless otherwise stated, it will be assumed

that all triangles used throughout the remainder of this thesis will have vertices in anti-

clockwise order.

1.6.2 Point within a Triangle (2D only)

Given a 2D triangle t and a 2D point, pn, a common problem is to establish whether pn is

contained within t. Assuming that the points of t are in anti-clockwise order, the point pn can

be checked against each consecutive edge using (1.29). If pn is located to the left of every

edge (i.e. tol), then it is within the triangle (Figure 1.17).

Figure 1.17 (a) pn is inside the triangle as it is located to the left of every edge. (b) pn is

outside the triangle as it is located to the right of edge (p1, p2).

p0

p1

p2

pn

(a) (b)

p0 p2

p1

pn

tol δ < tol

Figure 1.16 Triangle vertex orientations.

Anti-clockwise Clockwise

p0

p1

p2 p2

p1

p0

δ < -tol δ > tol

25

1.6.3 Triangle Centre of Gravity

The centre of gravity, pcog, sometimes referred to as the centroid, of triangle t is given by

(O‟Rourke, 2001)

0 1 2

3
cog

p p p
p (1.30)

1.6.4 Triangle Perimeter

The perimeter, pt, of triangle t is given by (Schneider and Eberly, 2003)

 0 1 1 2 2 0tp p p p p p p (1.31)

1.6.5 Triangle Area

The area, At, of triangle t is given by (Schneider and Eberly, 2003)

0 1 1 2 2 0

2
tA

p p p p p p
 (1.32)

1.6.6 Barycentic Area of a Triangle

The barycentric area, Abc, of a triangle, t, is given by the area of the quadrilateral defined by a

triangle vertex pn, pcog, and the mid-points of the triangle edges incident to pn (Figure 1.18),

which is equivalent to:

3

t
bc

A
A (1.33)

26

1.6.7 Triangle Normal

Let pa be the vector p1 - p0 and let pb be p2 - p0 for a triangle where the vertices are in anti-

clockwise order, then the normal vector, nt, to triangle t (Figure 1.19) is given by (O‟Rourke,

2001)

 t a bn p p (1.34)

where the unit normal vector, nut, is given by

t

ut

t

n
n

n
 (1.35)

Figure 1.19 Triangle normal vector.

nt

 pq

pn

 ps

pcog

Edges incident

to pn Barycentric area

Figure 1.18 Barycentric area of a triangle.

27

1.6.8 Triangle Circumcircle (2D only)s

The circle that passes through all the vertices of triangle t is called the circumcircle; its centre

(point pc) is called the circumcentre and its radius, r, is known as the circumradius (Figure

1.20) (Schneider and Eberly, 2003). Let

0 2 0 1 0() ()a p p p p , 1 2 1 0 1() ()a p p p p , 2 0 2 1 2() ()a p p p p

0 1 2b a a , 1 2 0b a a and 2 0 1b a a .

Then

 0 1 1 2 2 0

0 1 2

()()()

2()

a a a a a a
r

b b b
 (1.36)

1 2 0 2 0 1 0 1 2

0 1 2

() () ()

2()
c

b b b b b b

b b b

p p p
p (1.37)

pc

c

 p1

p0

 p2

Circumcircle for

points p0, p1 and p2.

 r

Figure 1.20 Triangle and its circumcirle.

28

1.6.9 Triangle Aspect Ratio

The aspect ratio of a triangle is ratio between the longest edge length and the smallest

amplitude. Given a triangle, t, with vertices p0, p1 and p2, the edge lengths can be calculated

using

010 ppl , 121 ppl , 202 ppl (1.38)

The longest edge is the one with the longest length, llong (l2 in Figure 1.21).

The smallest amplitude will always be perpendicular to the longest edge. This amplitude,

asmall, is calculated by taking an edge length other than llong, say l1 in Figure 1.21, and then

asmall = l1cosα where α = θ-90º.

Therefore, the aspect ratio, aratio is given by

long

ratio

small

l
a

a
 (1.39)

1.7 Triangulation Representation

In general, triangulations of surfaces have a large number of triangles which need to be stored

in a robust manner and operated on efficiently. To make this possible, triangulations are

Figure 1.21 Aspect ratio of a triangle.

 p0

 p2

p1

l1

l0

l2

θ

29

generally stored in lists of their topological elements, namely vertices, edges and triangles.

Whilst compiling these lists, an additional measure is taken to establish and store the

relationships between the topological elements. For example, each edge will store pointers to

the two vertices that define it and two pointers to the faces that are incident to it.

The relationships between the topological elements are listed below:

1. Each vertex has n pointers to incident edges and n pointers to incident triangles.

2. Each edge has 2 pointers to the vertices define its end points and 2 pointers the

triangles incident to this edge.

3. Each triangle has 3 pointers to the vertices and 3 pointers to the edges that define it.

By storing a triangulation in this relational manner, queries such as “which triangles are

incident to a desired vertex” can be executed efficiently without incurring the overhead of

having to search through all the topological lists to calculate the answer, thus increasing data

retrieval efficiency.

To improve the robustness and consistency of data, it is also required that every triangle has a

consistent orientation of points, i.e. anti-clockwise or clockwise. Conventionally, anti-

clockwise orientation of triangle points is used as this ensures that the normal to a triangle

face will point outwards, which is useful for downstream task such as creating lighting effects

in visualisations.

30

1.8 Thesis Structure and Objectives

The remaining chapters of this thesis, and their contents, will be as follows:

Chapter 2 will present a literature review on existing surface triangulation methods and

approaches. It will begin fairly general and then be more focused towards trimmed surface

triangulation methods using a tracing approach. The reason for this is because triangulation

of a trimmed surface is more complex, which has resulted in this particular area of research

being more active and producing many different algorithms.

Chapter 3 will present a detailed description of the trimmed surface triangulation scheme

developed, in particular focusing attention of how trimmed surfaces are traced efficiently by

only searching through cells that intersect the trimming loops (Cripps and Parwana, 2011).

Chapter 4 will give an introduction into surface flattening. It will give a review of the

McCartney et al. (1999) and Wang et al. (2002) methods before presenting the Geometric

Modelling Group (GMG) flattening scheme (Cader et al., 2005), which was derived from

these original methods. The GMG method produces an approach for determining the

positions of 3D points in 2D which is equivalent to the intersection of circles methods

presented by both McCartney et al. and Wang et al.. This corresponding method allows for

runtime modifications of the flattened triangulation making the method more efficient.

Chapter 5 will introduce the concept of right angle triangle configurations (RATCs) within a

triangulation. The objectives here will be established whether different the RATCs, generated

from the same point sampling, will change the final flattening results, and if so, which RATC

31

would be the best overall choice in terms of algorithm stability and generating minimal

distortion. To investigate this, it will introduce three global configurations and then

demonstrate the effects of each configuration on surface flattening (Parwana and Cripps,

2009). A new method for generating a RATC, that changes locally based on the Gaussian

curvature approximation, will be introduced. In addition, the method for approximating the

Gaussian curvature from a triangulation will be improved to deal with varying vertex

valencies within a triangulation. Furthermore, the three global and Gaussian curvature

RATCs will be tested on the application of flattening using two industrial surfaces.

Chapter 6 will show that having a developable surface does not intrinsically imply that the

surface triangulation of that surface will be developable. This can have interesting

implications on the result of a surface flattening by inducing distortion (Parwana and Cripps,

2009). Identifying this problem, the objective of this chapter will be to establish a new

method for generating a triangulation from a surface that will attempt to maximise the

inheritance of developability (shape characteristic) from the initial surface.

Chapter 7 will conclude the thesis and provide possible avenues to future work.

32

Chapter 2

SURFACE TRIANGULATION

There are a large number of algorithms which have been developed for triangulating a

surface. These can be categorised as structured and unstructured (Frey and George, 2000). A

structured triangulation is an approximation that is generally uniform and has a noticeable

pattern, where as an unstructured triangulation is the opposite. An example of each can be

seen in Figure 2.1.

This chapter will review a variety of triangulation generation algorithms which can be used to

triangulate trimmed surfaces. Trimmed surfaces are complex geometries and the triangulation

of these surfaces is a non-trivial task, thus encouraging much research leading to many

algorithms. The main aim of this thesis is to investigate the downstream effects imposed on

Figure 2.1 (a) Structured and (b) unstructured triangulation.

(a) (b)

33

flattening by triangulations that are structured. Structured triangulations are commonly used

for surface flattening (McCartney et al., 1999; Wang et al., 2002; Cadar et al., 2005; Parwana

and Cripps, 2009) and provide some interesting degrees of freedom, which have not been

explored. Investigating these variables should provide valuable insight into how subtle

changes in a triangulation can affect the downstream method of surface flattening. This will

be discussed in more detail in Section 2.10.

For completeness, unstructured triangulation generation methods will also be introduced in

this chapter. Sections 2.1 to 2.9 will present the different triangulation algorithms and Section

2.10 will discuss the differences, advantages and disadvantages of the methods.

A common requirement of many algorithms is the ability to triangulate polygons and sets of

points. As these form the basis of many triangulation algorithms, these are introduced first.

2.1 Polygon Triangulation

A classic problem in computer graphics is to decompose a simple polygon into a set of

triangles. Every simple polygon admits a triangulation, where a simple polygon with n

vertices consists of exactly n-2 triangles (de Berg et al., 2000). Although there are many

different algorithms available for polygon triangulation (Clarkson et al., 1989; Seidel, 1991;

de Berg et al., 2000; O‟Rourke, 2001), the ear clipping method is presented due to it relative

simplicity.

34

2.1.1 Simple Polygon definition

By definition, a simple polygon is an ordered sequence of n vertices p0, …, pn-1. It is assumed

that the vertices are orientated in anti-clockwise order. Each consecutive pair of vertices is

connected by an edge 1(,)i ie p p , (where i is treated as modulo n, i.e. xn = x0). A simple

polygon edge can only intersect at the vertices and each vertex is incident to exactly two

edges (Figure 2.2).

2.1.2 Ear Clipping

An ear of a polygon is a triangle formed by consecutive vertices pi, pi+1, and pi+2 where no

other polygon vertex lies within the triangle. Vertex pi+1 is the ear tip, and the line joining

vertices pi and pi+2 is called a diagonal (Figure 2.3(a)). Once an ear is found, the triangle is

constructed by inserting a diagonal and removing the ear tip, forming a new polygon with n-1

vertices. This process is continued until only three vertices remain. Due to the nature of this

method, the triangulation generated is not necessarily unique, as a different starting vertex

(a) (b) p0

p1

p2

p3

p5

p4

p7

p6

0e 7e

4e

Figure 2.2 (a) Simple polygon. (b) Non-simple polygon.

35

could remove ears in a different order, thus altering the final triangulation. Figure 2.3, shows

a working example of this method performed on a polygon with n = 7 vertices.

2.2 2D Delaunay triangulation

Another recognised problem in computer graphics is to generate a non-intersecting set of

triangles from a set of n 2D points 0 1, , nP p p , where the points of P form the vertices of

the triangles. This can be achieved by using the Delaunay triangulation technique, which was

first proposed by Boris Delaunay in 1934 (de Berg et al., 2000).

2.2.1 Circumcircle Property

The fundamental property of a planar Delaunay triangulation is that the circumcircle of any

triangle, within the triangulation, may have no other points of the set P within it, apart from

the points scribing the circumcircle (Watson, 1981) as shown in Figure 2.4. Due to this

property, the Delaunay triangulation maximises the minimum angle of any triangle. In

(e)

ear tip

(a) (b) (c) (d)

legal diagonal

illegal diagonal

Figure 2.3 (a) A polygon with a legal and illegal diagonal.

(a) - (d) Ear clipping process and (e) final

triangulation.

36

addition, the boundary edges of a Delaunay triangulation form the convex hull of the original

points set P (O‟Rourke, 2000). Furthermore, the Delaunay triangulation of any set of points P

will produce a unique solution (de Berg et al., 2000; O‟Rourke, 2001; Schneider and Eberly,

2003). This statement will be explored in Section 2.10.

2.2.2 Algorithms

Many algorithms exist for the construction of a Delaunay triangulation from a set of points.

A direct implementation uses a divide and conquer or randomised incremental approach (de

Berg et al., 2000; O‟Rourke, 2001; Schneider and Eberly, 2003). However, as unstructured

triangulation methods are quite involved and not the direct subject of this thesis the details of

their implementations have been omitted. Full details can be found in Schneider and Eberly

(2003).

2.2.3 Delaunay Triangulation and Trimmed Surfaces

Although the Delaunay triangulation method was originally created to triangulate an

unstructured set of points, the method has been adopted into some existing algorithms for

generating a triangulation from a trimmed surface. Sheng and Hirsch (1992) present a method

 pi

 pj

pk

pl

(a)
 pi

 pj

pk

pl

(b)

Figure 2.4 (a) Legal and (b) illegal triangle within a Delaunay triangulation.

37

for triangulating a trimmed parametric surface, based on partitioning the parameter space and

a Delaunay triangulation. First, a maximum 2D triangle edge size, Ω, is determined by using

a „flatness criteria‟ (Peterson, 1994). This ensures that when the triangle is mapped into 3D it

does not deviate from the surface by more than some user specified tolerance. Once the

surface and trimming curves have been subdivided, the points located within the trimming

region are identified and triangulated using a Delaunay triangulation.

Piegl and Richards (1995) generalised this method for trimmed NURBS surfaces. In addition,

the points located within the trimming region are established by using a simple scan-line-type

algorithm, as used in raster graphics to fill polygons (Foley et al., 1995).

As the Delaunay triangulation of surfaces is complex and not the main focus of this thesis,

full details of existing algorithms have been omitted. However, a comprehensive survey of

existing methods for triangulating a trimmed surface using a Delaunay triangulation can be

found in Frey and George (2000).

2.3 Advancing Front Method

The advancing front method (AFM) is used to generate an unstructured triangulation from

surfaces which may or may not be trimmed.

2.3.1 Boundary Edge Subdivision

The method begins by defining the 2D exterior boundary edges of the trimming region, within

the parameter domain of the surface, and subdividing them geometrically into piecewise

linear segments. This ensures that the linear segments will have the same length, within a

38

user defined tolerance, when mapped into 3D. These 2D piecewise linear boundary edges are

called the front (Figure 2.5).

2.3.2 Point Generation from the Current Front

The next stage is to generate new points, within the parameter domain of the surface, towards

the interior of the trimming region from the current front (Figure 2.5). Once generated, these

new interior points will be connected with the points of the front to form a list of triangles

(Figure 2.5(b)). In addition, the piece-wise linear curve produced by inscribing the interior

points generated will form the new current front.

The point generation process is accomplished by taking a linear segment from the front, with

end points p0 and p1, and then determining an optimum position for p2 such that the edge

lengths and interior angles of the triangle (p0, p1, p2) are the same, within a user specified

tolerance, when mapped back into 3D (Frey and George, 2000). On determining the position

of p2, edge (p0, p1) is removed from the current front and edges (p0, p1) and (p1, p2) are added

(b)

Trimming Region

(a)

Current front Previous front

Figure 2.5 Trimming region of a surface parameter domain. (a) Initial front. (b) New

front and triangles generated after one iteration.

39

(Figure 2.6), thus updating the current front. This process of generating triangles and

updating the front is repeated until the interior region has been completely covered by

triangles.

2.3.3 Algorithms

As with Delaunay triangulation, many algorithms exist for the construction of an AFM

triangulation from a surface. The main difference between the algorithms is the point

generation process, which is largely dependant on the geometric criteria provided for the

triangle shapes. A comprehensive account of many AFM methods can be found in Frey and

George (2000) for trimmed surfaces and Wu and Wang (2005) for triangulating a regular

parametric surface.

2.4 Trimmed Surface Structured Triangulation Methodology

The general methodology adopted by many existing algorithms for generating a structured

triangulation from a trimmed surface is very similar. Therefore, to aid in understanding the

triangulation algorithms presented in this chapter, a generic process is presented.

p0

p1

p2

(a)

p0

p1

p2

(b)

Figure 2.6 (a) New point generated from current front. (b) Updated front.

Current front

40

Parameter domain triangulation

Trimmed surface triangulation algorithms generally operate within the 2D parameter domain

of the NURBS surface. This considerably reduces the complexity of the problem, and is

convenient as the trimming loops are defined in the 2D parameter plane of the surface.

Subdivision of the parameter domain

The surface parameter domain is subdivided, either uniformly or geometrically, into a grid of

points. In some instances, the points are strategically generated to construct a grid of

rectangular cells. The NURBS surface definition is used to determine the number of intervals

that the parameter domain should be subdivided into and is governed by its characteristics

such as tangent, curvature or flatness.

Approximating the curves

The trimming curves are subdivided into linear segments either uniformly or geometrically.

The number of subdivisions for the NURBS curve is governed by its characteristics such as

tangent and curvature.

Identifying points/cells with trimming region

The linear approximations of the trimmed curves are superimposed onto the points/cells to

establish whether they are inside or outside of the trimming region, within a user specified

tolerance. Essentially, if a point (cell) is fully located within an outside loop and is not

contained within any inside loop, then that point (cell) is within the trimming region. Points

(cells) within the trimming region are stored for triangulation, while the others are discarded.

Cells partially within trimming region

When using cells, many will be located partially within the trimming region. This is because

a trimming curve will intersect and pass through it (Figure 2.7). Therefore, the cells located

41

along the boundary edges of the trimming regions require a little more attention before they

can be triangulated. Cell based algorithms record the intersections between cells/trimming

loops and then convert these boundary edge cells into polygons (Figure 2.7). These polygons

are then stored for triangulation, along with the cells completely within the trimming region.

Triangulation

If working with points, the 2D parameter domain points are triangulated using the Delaunay

triangulation technique.

When working with cells, the stored polygons are triangulated to form an overall 2D

triangular representation of the initial model. The triangulation of a polygon with four points

(e.g. all cells completely contained within the trimming region) is a special case that is

simplified by adding a diagonal (Figure 2.7(b)). It is worth noting that it is around the

Diagonal
Convert cell into

polygon Triangulate polygon

(b) (c) (d)

(a)

Partially inside the trimming region

Inside the trimming region

Outside the trimming region

Figure 2.7 (a) Cell classification within the parameter domain of a surface. Methods used

for triangulation (b) inside and (c)-(d) partially inside cells.

42

boundary edges of a trimmed surface that the triangle shapes can become non-uniform

(unstuructured) (Figure 2.7(d)).

Mapping back to 3D

The final stage of a triangulation algorithm is to map the 2D triangulation into 3D. This is

done by taking the 2D coordinates of triangle vertices, in terms of u and v, and substituting

them into the original 3D surface definition to get the corresponding 3D coordinates.

Sections 2.5 to 2.9 will each present a different structured triangulation algorithm that utilises

this general methodology to triangulate a trimmed NURBS surface. The triangulation

methods will be presented in chronological order.

2.5 Rockwood et al. triangulation

Rockwood et al. triangulation (Rockwood et al., 1989) was developed to render trimmed

surfaces in real-time, making it ideal for graphical visualisation. The method produces a

view-driven triangulation of a trimmed surface, altering the density of the triangulation

depending on its distance from the current view point.

Converting to NURBS to Bézier

The first stage of the algorithm is to convert the initial NURBS surface and curves into

rational Bézier form using knot insertion (Section 1.2.3). The trimming loops must also be

subdivided along the new patch boundaries to maintain a valid trimmed surface representation

43

(Section 1.5). Therefore, additional curves are added along the patch boundaries, to restrict

the trimming region to individual patches (Figure 2.8).

Once the trimmed surface is fully converted, each patch is triangulated independently. The

lists of triangles are then merged into a single list to produce an overall triangulation of the

initial surface.

Subdividing Surface and Trimming Loops

Each patch is subdivided into a rectangular grid, and each trimming curve is decomposed into

piecewise linear segments so that the edge lengths of the triangles do not exceed a user

specified tolerance in 3D space.

Let 3 be the projection from image space to screen space for a (n, m)
th

 degree rational Bézier

patch with 3D control points Pi,j and weights wi,j, then the number of steps in the u and v

directions (between 0 and 1), nu and nv, which will guarantee triangle edge lengths in screen

space are less than a specified tolerance, tol, (Rockwood et al. 1989) are given by

Figure 2.8 (a) Original parameter domain and trimming cuvres. (b) New parameter

domains post Bézier subdivision.

44

, 3 , 1, 3 1,

,

2 max

min()

i j i j i j i j

u

i j

n w w
n

tol w

P P

0 1

0

i n

j m
 (2.1)

, 3 , , 1 3 , 1

,

2 max

min()

i j i j i j i j

v

i j

m w w
n

tol w

P P

0

0 1

i n

j m
 (2.2)

The parameter increment, which will guarantee a screen space steps less than tol, is given by

1
u

u

step
n

 and
1

v

v

step
n

 (2.3)

The number of steps nt that a p
th

 degree trimming curve, with control points Pi and weights wi,

has to be partitioned into to ensure that each linear segment in screen space is less than stepu

or stepv, respectively, is given by

1 1max

min()

i i i i

t

u i

p w w
n

step w

P P
 0 1i p (2.4)

1 1max

min()

i i i i

t

v i

p w w
n

step w

P P
 0 1i p (2.5)

Rockwood et al. (1989) state that if the curve is horizontal and only increments in u, then

(2.4) is to be used. If the curve is vertical and only increments in v, then (2.5) is to be used.

For all other curves, the maximum of (2.4) and (2.5) is to be used. Therefore, the parameter

step size for the curve, stept, is given by

1
t

t

step
n

 (2.6)

UV Monotone trimming regions

The next stage is to calculate the maxima and minima (extrema points) of the trimming

curves, which are then used to split the piecewise curves into uv monotone segments

(Rockwood et al., 1988). Vertical and horizontal lines can then be extended and intersected

45

from these points to form uv monotone regions within the surface (Figure 2.9). This pre-

processing step helps to speed the actual triangulation process.

Tiling and Coving

The final stage of the algorithm is to superimpose a lattice of points a distance of stepu and

stepv apart over the uv monotone region, and segmenting the trimming curves into points

which are stept apart. A fast and simple triangulation method called tiling and coving is used

(Rockwood et al., 1988) and is made possible as the trimming regions are uv monotonic. The

triangulation is performed in strips of cells, where a v-strip and a u-strip are represented as

shown in Figure 2.10.

v

u

v-strip

u-strip

Figure 2.10 Triangulation is performed in strips.

Figure 2.9 Converting the trimming region into uv monotone sections.

v

u

extrema points

46

2.6 Kumar and Manocha triangulation

Kumar and Manocha (1995) present a triangulation scheme which is optimised for the

rendering of trimmed surfaces. This algorithm introduced a technique which traces the

trimming loops onto the surface, thus reducing the amount of pre-processing.

Converting NURBS to Bézier

First the original NURBS surface and trimming loops are converted into rational Bézier form

using knot insertion.

Subdividing Surface and Trimming Loops

Each rational Bézier patch is uniformly subdivided into a grid of rectangular cells, with the

step sizes in the u and v directions, nu and nv, given by

2 max((,))u

u

u v
n

tol

S
, (2.7)

2 max((,))v

v

u v
n

tol

S
, (2.8)

where tol is a user specified tolerance for the maximum triangle size and max((,))u u vS

corresponds to the maximum partial derivative with respects to u in the domain [0,1] × [0,1].

nv is calculated analogously (Kumar and Manocha, 1996).

The trimming curves are polygonised into linear segments similarly, with the parameter step

size, nt, given by

2 max(())t

t

t
n

tol

C
, (2.9)

where ()t tC is the derivative of the curve with respects to t.

47

Tracing the Trimming Loops

Each trimming curve is then traced onto the rectangle uv-cells. This is achieved by

systematically working through the trimming loop linear segments and recording any

intersections that occur between them and the cell edges. Each cell is then labelled as being

inside (active), outside (inactive) or partially inside (partially active) within the trimming

region (Figure 2.11). There are two categories of partially active cells, known as prime-active

and pseudo-active. A cell is prime-active when there are points of the trimming loops

contained within it and pseudo-active when the cell contains no points. Each strip of cells is

then evaluated to establish whether they are active or inactive, where an inactive strip is one

where all the cells within it are classified as outside.

In addition, each end point of a curve line segment that causes an edge crossing is labelled to

indicate whether it is an exit or entry point (Figure 2.11).

Figure 2.11 Cell labelling scheme adopted by Kumar and Manocha.

Fully active

Prime-active

Pseudo-active

Prime-active

Inactive
Enter point

Exit point

Active u-strip

48

Converting Boundary Edge Cells to Polygons

Once the tracing process has been completed, the next stage is to merge any intersected cells

with the trimming curves and create polygons around the boundary edges of the trimming

region (Figure 2.12).

Triangulation of cells

Triangulation of the cells is performed in strips. Each new strip is searched to check whether

it is active or inactive. For active strips, any cells that have been converted into polygons are

triangulated using polygon triangulation. Inactive strips are skipped as no cells within them

require triangulation, thus helping to increase the efficiency of this triangulation step.

2.7 Luken Triangulation

Luken (1996) presents an algorithm which triangulates a trimmed NURBS surface directly

rather than decomposing it into Bézier and triangulating each patch independently.

Figure 2.12 Converting cell A into a polygon.

Edge crossings
Cell A converted into a polygon

A

u

v

49

Working with NURBS Directly

The algorithm begins by subdividing the base NURBS surface into a global grid of cells.

Although no mathematical details are provided, Lukens suggests that three separate step size

calculations be performed on the surface which will generate multiple step sizes, nu and nv, for

the u and v directions respectively. Once the step sizes have been determined, the largest nu

and nv will be used to subdivide the entire NURBS surface. The cells generated will

guarantee to produce triangle sizes that meet a user specified criteria, throughout the whole

NURBS surface, when mapped to 3D space.

The suggested calculations for the step sizes are:

1. The number of steps for each patch using a calculation similar to that of Rockwood

(1989) or Kumar and Manocha (1995).

2. The number of steps based on the chord length criterion (Piegl and Tiller, 1997).

3. The number of steps based on the chordal deviation criterion (Piegl and Tiller, 1997).

The subdivision of the trimming curves is performed in the same manner as for the surface.

Clipping Strips of Cells

The next stage of the algorithm is to place the linearly approximated trimming loops onto the

cell grid and calculate intersections between them. This process is performed in strips of

cells. A v-strip is defined as a horizontal strip of cells with the same minimum and maximum

v coordinates. A u-strip is defined analogously. The method involves clipping the whole grid

to one v-strip, and then clipping the v-strip to a u-strip so that essentially only one cell is being

operated on (Figure 2.13).

50

The intersections between this cell and any trimming loops are recorded. If no intersections

occur, the process is repeated on the next u-strip. If any intersections do occur, the cell is

converted into a polygon and immediately triangulated using any polygon triangulation

algorithm (e.g. ear clipping presented in Section 2.1 would be acceptable) and stored. When

all the u-strips have been operated on, the grid is then clipped to the next v-strip and the whole

process repeats until no v-strips remain.

2.8 Piegl and Tiller Triangulation

The algorithm presented by Piegl and Tiller (1998) performs a trimmed surface triangulation

based on the geometry of the initial shape.

Adaptive Subdivision of Curves and Surfaces

This method, like Lukens (1996), operates on the NURBS directly and uses an adaptive

subdivision of the curves and surfaces based on their geometries. The trimming loops are

subdivided using a 4-point cubic Bézier curve fitting technique and the surfaces are

subdivided using a flatness algorithm, presented by Peterson (1994).

v

u

v-strip

u-strip

Figure 2.13 Clipping the uv-strips.

51

Modified Tracing Approach

The method uses a modified tracing scheme of Kumar and Manocha (1995, 1996). It requires

that cells of the grid are labelled as one of five different categories (Figure 2.14):

1. IN: Cell completely within trimming region.

2. OUT: Cell completely outside trimming region.

3. OVER: Cell partially inside trimming region.

4. ON: Cell completely contains a trimming loop.

5. ONANDOVER: Cell partially within trimming region and fully contains a trimming

loop.

Converting Boundary Edge Cells into Polygons

Once the intersections between the polygonised curve and the surface cells have been

calculated, the next stage is to merge any ON, OVER and ONANDOVER cells, along with the

trimming curves that intersect them, into polygons.

Figure 2.14 Piegl and Tiller tracing labelling convention.

ON AND OVER

OUT

OUT

OVER OVER OVER

OVER

OVER

IN

IN

Trimming

region

ON

52

2D Delaunay Triangulation of Points

The final stage is to take the vertices defining the cells or polygons within the trimming

region and triangulating them using 2D Delaunay triangulation (Section 2.2).

2.9 Sadoyan et al. triangulation

Sadoyan et al. (2006) presented a tracing scheme based triangulation algorithm.

Subdividing the NURBS based on the knot vectors

The first stage is to subdivide the base surface into a grid of cells. There are two methods

presented for the determination of the u and v partition lines. The first operates as a function

of the surface curvature, where the density of the grid increases in more curved areas and

reduces in flatter areas. However, calculating the first and second derivatives can be

computationally expensive, therefore the authors present a more efficient method, which is

specific to NURBS.

Sadoyan et al. state that typically for NURBS surfaces and curves, the number of knot vectors

to define the surface tends to grow with the curvature of the surface. Therefore the number of

steps, nu and nv, that the parameter domain should subdivided into can be defined as

 un K "Number of u knot vectors" (2.10)

 vn K "Number of v knot vectors" (2.11)

where K is an application dependent constant. For example, for visualisation applications it

may vary between 1 and 10 (Sadoyan et al., 2005). The larger the value of K, the more dense

the lattice will become, therefore, for applications where the level of detail is more important

53

a higher value of K should be used. For applications where speed and efficiency are the

priority, a smaller value of K can be used. The author did not provide any bounds for the

value of K.

The NURBS trimming curves are subdivided using the same principle as for the surface.

Tracing and Triangulation

The next stage is to trace the approximated curves onto the cells, which is achieved in two

steps. The first step evaluates each cell against all trimming loops to establish whether it is

inside, outside or partially inside the trimming region. Cells outside the trimming region are

discarded, whilst cells inside and partially inside the trimming region are stored.

The second step is to generate polygons from the stored cells. Inside cells are converted into

polygons using their corners, whilst partially inside cells are converted into polygons by

merging them with any trimming curves that intersect it. Once the polygons have been

generated, they are triangulated using ear clipping (Section 2.1.2).

2.10 Discussion

Rockwood et al. (1989) present a method that converts the initial NURBS surfaces and

trimming curves into Bézier form, before decomposing them into uv monotone regions. This

requires a large amount of pre-processing and introduces extra data in the form of new

boundary curves. In addition, there is no guarantee that the adjacent uv monotone regions will

be subdivided at the same points along their boundaries edges. This can cause misalignment

between triangles on adjacent patches resulting in cracks within the triangulation of a single

NURBS trimmed surface (Sheng and Hirsch, 1992).

54

Kumar and Manocha (1995) also produce a triangulation scheme, tailored towards real-time

rendering of trimmed surfaces, and use a similar approach to Rockwood et al., in terms of

converting the surfaces to Bézier and performing a uniform subdivision. However, they

develop better bounds for uniformly triangulating the surface domain into fewer cells, and

compute trimming regions without partitioning them into monotonic regions. A tracing

scheme is introduced, which has found universal acceptance. A complex labelling system is

used to avoid introducing extra points into the linear segments at segment/cell edge

intersections. The situation where a trimming loop is completely contained within a single

cell is not considered. This can occur when a design contains small holes, which are used in

engineering designs as assembly features, manufacturing aides, or as means of stiffening or

weight reduction.

Lukens (1996) presents an algorithm for triangulating a trimmed surface directly in its initial

NURBS definition. However, the surface and curve subdivision method adopted has a

tendency to over sample, producing many more triangles than is necessary. Furthermore, the

method presented is purely theoretical and no implementation details or results are presented,

making it difficult to assess.

Peterson (1994) creates a triangulation directly from a NURBS definition. Surfaces are

adaptively subdivided, using knot refinement, based on the flatness of the control polygon

(Peterson, 1994; Piegl and Tiller, 1997). The subdivided surface is then triangulated by

inserting a diagonal within every cell created throughout the subdividing process. However,

Peterson does not consider trimmed surfaces.

55

Piegl and Tiller (1998) extend Peterson‟s triangulation method to trimmed surfaces and

adopted a simplified tracing method, similar to that of Kumar and Manocha (1995), to

determine which parts of the cells are located within the trimming region. This method makes

no assumptions regarding the parametric continuity of the surface. The tracing, as with Kumar

and Manocha‟s approach, has to consider every cell, which causes many redundant checks.

Shu and Boulanger (2000) describe a tracing triangulation method which is performed within

the parameter domain. The parameter domains of the surfaces and curves are adaptively

subdivided using Peterson‟s (1994) control polygon flatness method, after which the trimming

curves are then traced onto these cells to establish whether they are located outside, inside or

partially inside the trimming region. However, very little detail is provided on the actual

methodology used to trace the trimming curves, and degenerate cases, such as trimming

curves completely contained within a cell and touch points are not considered. A touch point

is defined as an end point of a trimming curve linear segment that is located on cell edge.

There also seems to be no allowances for inside trimming curves which are used to describe

holes within a surface.

Sadoyan et al. (2006) present a tracing method, similar to that of Piegl and Tiller (1998), and

produce a robust uniform triangulation algorithm. Their method is generalised to operate on

any trimmed surface which is parametrically defined and utilises a tracing process which can

handle most degenerate cases. The polygons are then generated from these cells and

triangulated using ear clipping (Section 2.1.2). No provisions are made for the situation

where a trimming loop is contained within a single cell.

56

As with all existing structured triangulation methods, the tracing process requires that every

cell, generated within the parameter domain, has to be processed with respects to every

trimming loop to establish its trimming status. This can be an inefficient process for the

situation especially where the trimming region forms a small proportion of the original

surface. In addition, all the trimmed surface triangulation algorithms referenced above

require trimming curves to have a pre-defined orientation, i.e. clockwise or anti-clockwise

order.

In addition to structured triangulation schemes, unstructured triangulation generation

approaches have been proposed, particularly within the field of FEA (Frey and George, 2000).

In general, these algorithms require that the triangles within the final triangulation conform to

some geometric criterion (i.e. edge/triangle sizes and shapes) and are as close to equilateral as

possible. This is because elements that have high aspect ratios (one angle significantly

smaller or larger than the other) can reduce both the solution precision and speed of its

convergence (Shimada and Gossard, 1998; Shu and Boulanger, 2000). The methods operate

by producing an initial triangulation of the surface using techniques such as the AFM

(Lohner and Parikh, 1988; Frey and George, 2000) or Delaunay triangulation (Watson, 1981;

Field, 1991). In general, the methods utilised to generate surface points, for the triangulation,

are computationally intensive processes because of the geometric constraints that are imposed

(Shimaga and Gossard, 1998). In addition, as the triangulation techniques adopted are

incremental techniques, the integrity of each new triangle created must be checked against

previous triangles, requiring a large number of calculations. Furthermore, triangulating

trimmed parametric surfaces require that a triangulation of the entire surface be created first

before establishing which triangles are located IN, OUT or on the BOUNDARY of the

57

trimming region (Shimada and Gossard, 1998; Frey and George, 2000; Wu and Wang, 2005).

For the situation where the trimmed surface forms a small portion of the underlying surface,

this can produce a very large number of redundant calculations.

The Delaunay triangulation has a useful property of maximising the minimum angle of each

triangle by using the circumcircle property. It is also claimed that it works towards generating

a unique solution for the triangulation from a given set of points. However, this removes any

flexibility for a user to manipulate the triangulation, as any changes made to the topology may

cause the triangulation to no longer conform to a Delaunay triangulation, making it illegal.

Furthermore, there is ambiguity in this method for the situation where more than three points

lie on the circumcircle. Sugihara and Inagaki (1995) make the observation that in this

situation, the polygon generated by the points on the circle will always be convex (i.e. simple

polygon); therefore, a polygon triangulation method can be performed. However, this implies

a unique solution will not be able to be achieved as a polygon triangulation algorithm is

affected by its start point. Furthermore, the property of maximising the minimum angle will

be compromised.

The AFM has the useful property of generating triangles of high quality that comply closely

with desired geometric criteria. However, the resulting triangulation is largely controlled by

the boundary edges of the trimming region. Therefore, any irregular triangle shapes that are

formed tend to be within the centre of the trimming region, at the point where the fronts have

been merged together. In addition, like the Delaunay triangulation, the triangulation

algorithm does not provide much freedom in terms of topological manipulation, due to the

initial geometric constraints imposed. Although a single solution may be considered as a

58

positive attribute, the constraints imposed mean that changing the topology elements to check

whether a different triangulation would yield a better approximation of the surface is not

possible. This limitation prevents exploration of interesting triangulation variables, which

could provide more insight into their downstream effects.

Structured triangulations provide flexibility, in terms of manipulating the topology, which

could offer valuable insight into understanding the downstream effects of triangulation on

flattening. Recent structured triangulation algorithms begin by subdividing the parameter

domain uniformly into a grid of cells. Any cells located fully within the trimming region are

triangulated into right angle triangles by adding a diagonal. The placement of the diagonal

within these cells introduces an interesting degree of freedom that has not been studied before,

and will be explored in detail in Chapter 5.

Another advantage of structured triangulations is that any irregular shaped triangles are

restricted to the boundary edges, which results in a more uniform triangulation within the

interior of the trimming region. As the boundary edges have no effect on the interior region,

the entire underlying surface can be triangulated as a whole using a structured triangulation

scheme. This triangulation can then be flattened into 2D and then the trimming boundaries

can be mapped onto this 2D definition to recover the trimming region, if required.

Structured triangulations are also commonly used in the area of surface flattening.

McCartney et al. (1999) and Wang et al. (2002) triangulate trimmed and non-trimmed

surfaces using Piegl and Tiller‟s (Section 2.8) approach. Cadar et al. (2005) worked solely

with non-trimmed surfaces, which were triangulated using a uniform subdivision and right

59

angle triangles. Part of motivation behind this thesis was prompted by Cadar et al.‟s

suggestion that triangulation could have a downstream effect on flattening. Therefore, to

investigate this claim, a structured triangulation approach will be used as in previous studies

(McCartney et al., 1999; Wang et al., 2002) and industry (Cader et al., 2005).

Little research has been reported on the downstream effects of triangulation on engineering

applications. The topic of triangles with high aspect ratios has been touched upon in a variety

of different areas. Shimada and Gossard (1998) noted that in FEA long thin triangles are not

desired as they can cause a simulation to be less stable. Small changes in displacement of

triangle vertices, during a simulation, can considerably change the shapes of triangles that

have high aspect ratios, with the danger that the vertices could all become collinear. This will

create degenerate triangles which can induce errors into an FEA simulation and cause the

method to converge slower towards the solution. Wang et al. (2002) found that long thin

triangles in surface flattening simulations can cause errors in the final results. This flattening

error will be discussed in more detail in Section 4.4. Piegl and Tiller (1997) and Kumar et al.

(2001) state that long thin triangles are unwanted in triangulations generated for visualisations

as they can induce unnaturally looking lighting effects and creasing in a surface rendering.

It is clear that triangulation attributes can have an effect on downstream applications.

However, no further triangulation attributes or their downstream effects have been reported

on.

60

Chapter 3

NEW EFFICIENT AND ROBUST TRIANGULATION SCHEME

This chapter presents a new efficient and robust tracing scheme for triangulating trimmed

parametric surfaces (Cripps and Parwana, 2011). Efficiency is gained over existing

triangulation methods (Rockwood et al., 1989; Kumar and Manocha, 1995, 1996; Luken,

1996; Piegl and Tiller, 1998; Shu and Boulanger, 2000; Sadoyan et al., 2006) by exploiting

the fact that all trimming regions are conventionally defined by closed loops of trimming

curves, and adopting a uniform cell shape and enhanced data structure (Section 3.1) to

minimise the number of cells processed. Key features are the efficient tracing algorithm and

knowledge of orientation of the trimming curves is not required. Cells are generated by

subdividing the surface parameter domain; however each cell must be represented in a

specific way to achieve the tracing efficiency. Therefore this topic is introduced first

followed by full details of this new triangulation algorithm. The chapter will conclude by

presenting a case study that compares this new approach against the Rockwood et al. (1989)

approach (Section 2.5), an existing trimmed surface structured triangulation scheme that is

still widely used in industry.

61

3.1 Cell Generation and Representation

A trimmed surface is defined by a 3D parametric surface and a set of 2D trimming curves

lying on the surface as shown in Section 1.5. It is essential that the curves are fully contained

within the uv parameter domain of the surface (Section 1.5).

Generally the trimming curves have pre-defined orientations before any processing

commences (Rockwood et al., 1989; Kumar and Manocha, 1995, 1996; Luken, 1996; Piegl

and Tiller, 1998; Shu and Boulanger, 2000; Sadoyan et al., 2006), however, providing that

each curve forms a closed loop, no further ordering information is required for the proposed

algorithm.

Kumar and Manocha (1995) present a useful method for identifying trimming curves that

intersect each other and propose an algorithm to split them up so that they no longer intersect.

However, in general, trimming loops should not intersect, as it provides no valid geometric

interpretation of a trimming region. Therefore, many schemes (Rockwood et al., 1989;

Luken, 1996; Piegl and Tiller, 1998; Shu and Boulanger, 2000; Sadoyan et al., 2006),

including the one presented in this chapter, assumed that no trimming curve intersects any

other.

Cells, Ci,j, are generated from the parameter domain by using uniform subdivision (Rockwood

et al., 1989; Kumar and Manocha, 1995, 1996; Sadoyan et al., 2006). The advantage of

uniform subdivision (Figure 3.1 (a)) is that it ensures rectangular cells, which are required to

perform efficient tracing of the trimming loops. However, it is noted that a non-uniform

subdivision of the parameter domain could be achieved by adopting a quad-tree subdivision

62

approach (Frey and George, 2000) as shown in Figure 3.1(b). This will produce varying

densities of cells whilst maintaining a regular rectangular shape, thus having a negligible

impact on the tracing process and triangulation efficiency.

Once the subdivision has been completed, the surface parameter domain is represented as a

collection of rectangular cells, with nodes and edges indexed as shown in Figure 3.2. As the

cell corners are right angles, only the minimum and maximum points of each cell are needed

to define it; cell edges and end point coordinates can be recovered (Figure 3.2). To simplify

the tracing process (Section 3.3.3) each edge is considered to have a start and end point (half

edge concept (de Berg et al., 1998)), and the edges are configured in anticlockwise order.

Thus, when traversing the cell edges, if the current edge location is BOTTOM, eB, the next

edge would be RIGHT, eR and the previous edge would be LEFT, eL.

Figure 3.2 Cell, Ci,j, nomenclature.

i

j

RIGHT: eR

min (a, b)

max (f, g)

BOTTOM: eB

TOP: eT

LEFT: eL

Ci,j

Ci,j+1

Ci+1,j

Ci+1,j+1

Figure 3.1 Subdivided surface parameter domains. (a) Uniform. (b) Quad-tree.

(a) (b)

63

By representing the edges as half edges, each edge has a direction of motion and as the cells

are rectangular, many operations can be reduced to a 1D problem. For example, to check

whether a point pi was to the right or collinear with the TOP edge, eT , only the y coordinate

of pi would need to be checked against the ray line y = g (Figure 3.3).

In addition, any points located on a particular edge can be sorted in order from front to back

using only one coordinate.

3.2 Triangulation Overview

This section provides an overview of the methodology of the proposed trimmed surface

triangulation algorithm. Details of the tracing process and polygon generation are given in

Sections 3.3 and 3.4. Initially, the surface is subdivided into a grid of rectangular cells. The

trimming loops are polygonised into piecewise linear segments and traced onto the cell

structure to determine the cells that are needed for trimming loop triangulation. The tracing

process conceptually involves walking around each trimming loop, moving from cell to cell,

and recording all the cell/loop intersections. Only the cells which intersect the trimming

curves are operated on during the tracing. The tracing process identifies all the cells along the

boundary edges of the trimmed surface, which will be used, along with the cell/loop

intersection data, to determine which cells are located inside the trimming region. Cells

within the trimming regions can then be converted into polygons and triangulated. Once a list

TOP: eT

y = g

p1

p2

p0

Figure 3.3 Checking points against eT.

1) p0 to left of eT

2) p1 to collinear eT

3) p0 to right of eT

64

of polygons has been generated, the final triangulation is completed using ear clipping

(Section 2.1.2). The major features of the proposed method are the tracing of the trimming

loops, which is achieved efficiently because of the adopted labelling scheme, and the polygon

generation. These will be described in detail in the following sections.

3.3 Tracing & Polygon Generation Details

The first stage is to trace the trimming loops onto the cell structure, whilst labelling the cells

that have been intersected. The labelling and tracing processes are carried out in parallel,

however, it is instructive to introduce the cell labelling first. This is followed by the

description of how the intersection data is stored, which enables the polygonisation of the

cells to be carried out efficiently. Tracing is described next, followed by the polygon

generation algorithm.

3.3.1 Cell Labelling

All cells are initially labelled as being OUTSIDE,
O

ji,C , the trimming region. Each

polygonised trimming loop is selected in turn, and a search is performed to locate a cell which

contains the first point of the polyline loop, within a tolerance. A point is said to be contained

if it lies within the cell or on a cell edge. This trimming loop is then traversed by moving

through the polyline linear segments and checking for any intersections with the cell edges.

Any cell that is intersected by a trimming loop is labelled INTERSECT,
†

i,jC , and the

intersection data is stored (Section 3.3.2). If a trimming loop is completely contained within a

cell (no intersections), it is labelled CONTAINED,
C

ji,C . Where a cell is intersected and has a

65

trimming loop fully contained within it, it is labeled as INTERSECT and CONTAINED,
†C

i,jC .

Figure 3.4 illustrates the tracing process.

Only the cells that intersect the trimming loops will have been processed during the tracing

step. Consequently, many cells located completely within the trimming region will still be

classed as
O

ji,C , when they are in fact located INSIDE,
I

ji,C . However, these cells do not need

to be processed as their trimming status (i.e. whether they are
I

ji,C or
O

ji,C) can be determined

during the polygon generation process (Section 3.4) using the data retained from the tracing.

This reduces the number cells which need to be operated on compared to existing methods

(Rockwood et al., 1989; Kumar and Manocha, 1995, 1996; Luken, 1996; Piegl and Tiller,

1998; Shu and Boulanger, 2000; Sadoyan et al., 2006) which check the status of every cell

against each trimming loop. For large complex surfaces with few trimmed regions, this

reduction can be significant (Section 3.6.1).

†C

i,jC

(a) (b)

O

ji,C
C

ji,C
†

i,jC

Figure 3.4 Cell labelling. (a) Pre-tracing. (b) Post-tracing.

66

3.3.2 Cell Edge Crossing Lists

During the trimming loop tracing the intersection data is stored in edge crossing lists (Ek),

which are an extension of the data structure presented by Sadoyan et al. (2006). When a

trimming loop enters a cell through an intersection of the cell edge, it is stored in a new Ej as

an ENTER point, εj (Figure 3.5). After εj, the points, pi, of the piecewise trimming loop are

then appended to Ej until it leaves the cell through another intersection point. This is stored as

a LEAVE point, ℓj (Figure 3.5). A typical Ej is given by: {εj, p0, p1, … , pn−1, pn, ℓj}.

It is worth noting that a single cell can have many Ej‟s (Figure 3.5(b)). The cell edge crossing

list is extended to include a flag for each εj and ℓj, indicating at which edge the intersection

occurred. These edge flags are used in the polygon generation process (Section 3.4).

3.3.3 Tracing Process

The tracing begins by performing a search on the cell structure to find a cell that completely

contains the start point of a trimming loop. Once located, a new E0 is created and the first

point added. The first linear segment, L0, of the loop is selected and checked against the cell

to identify if an intersection occurs. Each linear segment Lj will have an associated direction:

i.e. it has a start point and an end point. Determining if each polyline segment intersects a cell

(a) ℓj

p1

j

c1

c4 c2

c3

(b)

ℓj

ℓj+2

j

j+2

p1

p2

ℓj+1

j+1

c1

c2 c3

c4

Figure 3.5 Edge crossing lists for cell †

i, jC . (a) Single. (b) Multiple loops.

67

edge is inefficient since many will not. Therefore, an intersection identification check is

introduced to avoid unnecessary calculations. If the end point of the current Lj is located to

the right of a cell edge; an intersection has taken place. As the cell edges are represented as

half edges and each cell is rectangular, this is a 1D problem. To check if the end point of Lj is

to the right of eT or eB, only the y values need to be compared and for eR or eL only the x

values. To make the polygon generation process more efficient in handling degenerate cases,

the intersection identification process must be performed on the cell edges in anti-clockwise

order starting from eT (i.e. eT → eL → eB → eR).

If no intersection is identified, then the end point of Lj is inserted into the current Ej for this

cell and the next Lj+1 of the trimming loop is checked. If an intersection is identified, the

intersection point is calculated using standard linear intersection techniques (Schneider and

Eberly, 2003) and is added to the cell Ej as ℓj, which terminates Ej. The cell label is changed

from
O

i,jC to
†

i,jC . The next cell coincident to the intersected edge is then processed. For

example, if the current cell is Ci,j and the intersection occurred at eR, then the next cell to be

traced is indexed Ci+1,j; if the intersection occurred at eT , then the next cell is Ci,j+1, etc. A

new Ej+1 is created and the leave point ℓj from Ej is the enter point εj+1 for Ej+1. The enter

edge flag assigned for εj+1 is the opposite edge at which ℓj occurred. For example, if the leave

edge for Ci,j was eR, then the enter edge for Ci+1,j is eL.

After tracing a trimming loop, E0 for each new trimming loop tracing will be incomplete, i.e.

it will not have an enter point, ε0, because the tracing started within the first cell. Likewise,

there will be an incomplete En at the end of the tracing as it will have returned to the original

cell and not have a leave point, ℓn. Therefore, E0 and En are merged at the end of the tracing

68

to create a complete Ek for the first cell. If no intersections occur between a loop and the cell

edges, Ci,j is labelled as
C

i,jC .

3.3.4 Tracing Degenerate Cases

The intersection identification check is sufficient to handle the degenerate cases as shown in

Figures 3.6 and 3.7.

Touch points: In Figure 3.6(a), the end point of L1, p2, is a touch point with respect to eR. As

p2 is not to the right of any edge, the intersection is ignored and p1 is added to Ek. L2 is

collinear with eR and since p3 is not located to the right of eR, the intersection will again be

ignored with respects to this edge. However the intersection will be flagged when compared

against eT, as the end point is located to the right of that cell edge.

Next cell identification 1: When traversing the cells, the edge checking eliminates the need to

determine which cell contains the end point of the current linear segment. This also removes

the degenerate case where the end point is not located in an adjacent cell. Figure 3.6(b)

illustrates an example of where the linear segment intersects the current cell through eR.

While searching for the cell which contains p2, the adjacent cell (shaded in Figure 3.6(b)),

p1

p2

Current cell

being

traced

L 1

L2

p1
p2

p3

(a) (b)

Figure 3.6 Tracing: degenerate cases.

69

would be missed from the tracing since it does not contain the end point. The proposed

method is able to identify this case.

Next cell identification 2: The final degenerate case is when an intersection occurs at the start

or end point of a cell edge, i.e. a cell corner (Figure 3.7). A further check has to be made to

establish which cell is next to be traced:

• If the intersection is at the start (end) point, then if the points of the piecewise linear

segment are collinear, within a tolerance, with the previous (next) cell edge (Figure

3.7(b)), the next cell to be processed is the cell adjacent to the intersected cell edge.

Otherwise, it is the cell diagonally incident to the start (end) point (Figure 3.7(a)).

For example, Figure 3.7(a) shows a case where Lj intersects eT at its start point. It also

intersects eR at its end point, but as eT is always checked first, the intersection would be

calculated with respects to this edge (Section 3.3.3). The points of Lj are then checked to

determine whether they are collinear with the previous edge. As the cell edges are orientated

in anti-clockwise order, this will mean that the points will be checked against eR. In this case

the points are not collinear, and the next cell to be traced is the cell located at the diagonal.

(a)

p1

p2 Diagonally

incident cell

p1

p2

Adjacent cell

Current cell

being traced

(b)

Figure 3.7 Tracing: degenerate cases.

70

Figure 3.7(b) illustrates the case when points are collinear with the previous edge. Therefore,

the next cell to be traced is the cell incident to the edge at which the intersection occurred.

3.4 Polygon Generation

Once the tracing is complete, the next stage is to generate polygons from the appropriate cells

which will then be triangulated. The method used to generate the cells is similar to that of

Weiler and Atherton (1977) and Sadoyan et al. (2006), but has been extended to check if eR of

the cell is completely contained within the polygon generated from the cell.

3.4.1 Process Edge Crossing Lists

The cells are processed in rows from left to right. For every row, any cells labelled
O

i,jC are

ignored until a
†

i,jC or a
†C

i,jC is reached. The polygon generation begins by taking
†

i,jC and

creating a new polygon using the points from its Ek. The polygon is completed by traversing

the cell edges in anti-clockwise order; adding the end point of each cell edge until the enter

edge of the Ek is reached. In the situation where the Ek enters and leaves though the same cell

edge, if ℓj is behind εj on that cell edge, the polygon is complete. Otherwise, traverse the cell

edges and add the cell edge end points to complete the polygon (Figure 3.8(a)).

If more than one Ek exists for a single cell, once the points of the first Ej have been appended

to the polygon, an additional check must be carried out during the cell edge traversal. If any

remaining Ek‟s enter in front of the current position on the current cell edge (i.e. εj+1 for the

polygon in Figure 3.8(b)), the points from the new Ej+1 are added to the polygon. The

traversal process is then continued until all the Ek‟s have been used or the original enter edge

71

from Ej is reached, completing this polygon. In the situation where a polygon has been

completed and some Ek‟s remain for that cell, a new polygon is created and the polygon

generation process is repeated for the remaining Ek‟s.

Once
†

i,jC is converted into a polygon, using the Ej‟s collected from tracing, they are stored

for later triangulation. If a
†C

i,jC is reached, an additional measure must be taken to establish

whether the contained trimming loop(s) are holes or part of the trimming region. In general,

no trimming loops should intersect. Therefore, if a point from the trimming loop is contained

within any polygon generated from the cell, the loop defines a hole. Otherwise a new

polygon is created using the loop points, and stored for triangulation.

3.4.2 Right Edge Checking

Since the tracing process only checks cells that intersect the trimming loops, many cells are

classed as
O

i,jC when they are in fact within the trimming region. Therefore, in parallel with

the polygon generation a check determines whether the right edge (eR) of the cell is

completely contained within any polygon(s) generated. If eR is not completely contained

(a) ℓj

p1

j

c1

c4 c2

c3

Polygon points

j, p1, ℓj, c1, c2, c3, c4

Polygon 1 points

j+2, p2, ℓj+2, c2

(b)

ℓj

ℓj+2

j

j+2

p1

p2

ℓj+1

j+1

c1

c2 c3

c4

Polygon 1 points

j, p1, ℓj, j+1, ℓj+1, c4

Figure 3.8 Polygons & edge crossing lists for cell †

i, jC . (a) Single. (b) Multiple loops.

72

within the polygon (Figure 3.9(a)-(b)) any
O

,ji 1C cells are ignored until another intersected

cell is reached. However, if eR is completely within the polygon (Figure 3.9(c)) and the next

cell in the row is not an intersected cell, then all
O

,ji 1C between the current cell and the next

intersected cell in the row are definitely inside the trimming region. This is because trimming

boundaries are conventionally represented as closed loops and must intersect a row of cells at

least twice. Therefore, any ,

I

i jC will always be contained between two
†

i,jC within any given

row. The status of these
O

,ji 1C cells is changed to
I

,ji 1C and they are converted into

polygons, using their corners. Once an intersected cell is reached, the polygon generation and

checking is repeated to establish the status of the next cells in the current row. It is observed

that
O

i,jC and
I

i,jC cannot be located incident to each other in the same row.

The status of this right edge criterion is established by simply checking the enter and leave

edge flags for each Ek. For example, if the trimming loop enters the cell through eT and

leaves through eB, then the resulting polygon will fully contain eR of the cell. However, if the

trimming loop enters the cell through eL and leaves through eT, then the resulting polygon will

not contain eR. By performing similar tests for all Ek‟s, it can be established whether eR is

j+1

ℓj

(b)

eR not fully in polygons

ℓj+1

j

p

(c)

eR fully in polygon

ℓj

j

p

(a)

eR not in polygon

j

ℓj

p

Figure 3.9 Polygons generated from
†

i,jC and edge crossing data.

73

fully contained within the polygon. If multiple Ek‟s make up a single polygon and any

individual Ek establishes that eR is not fully within the polygon, then eR is not in the polygon.

3.4.3 Right Edge Checking Degenerate Case

In general, edge flag checking provides enough information to determine the status of eR, and

in turn to determine the trimming status of
O

i,jC . The edge criterion deals with the case where

eR (cell labelled A in Figure 3.10) is fully within the polygon, and the next cell in the row is

not within the trimming region. No extra checks are needed because the tracing method

ensures that the enter edge for this Ek is eB and the leave edge is eT. Checking only the edge

flags means that eR is not considered inside the polygon, resulting in the degenerate case being

handled correctly.

3.4.4 Contained Cells Polygon Generation

During the polygon generation process, any
C

i,jC cells are handled immediately by checking

their status. Since the trimming loop is fully contained within
C

i,jC , it will have no outside

influence on the status of any adjacent cells. Therefore, if the contained cell is
I

i,jC the

A

Leave edge = eT

Enter edge = eB

A

Figure 3.10 Right edge checking: degenerate case

.

74

trimming loop defines a hole and is stored with the polygon generated from the cell corners.

Otherwise, if the cell is
O

i,jC , the trimming loop is converted into a polygon and stored.

As the orientations of the trimming loops are not known, polygon generation and right edge

checks must be carried out in a specific manner detailed in above.

3.5 Polygon Triangulation

The final task is to triangulate the list of polygons. For ease of implementation, the ear

clipping algorithm (Section 2.1.2) was utilised to triangulate the polygons, which has O(n
3
)

running time. A more efficient method, such as Seidel‟s (1991) randomised polygon

triangulation algorithm which has a running time of O(nlog*n), would improve the efficiency

of the proposed algorithm.

3.6 Case Studies

This section presents three case studies illustrating the different performance aspects of the

proposed triangulation scheme (Cripps and Parwana, 2011). The trimmed surfaces used in

each case study are in NUBS form, and the resulting triangulation for each test will be

compared against the equivalent trimmed surface triangulation generated using the Rockwood

et al. algorithm.

3.6.1 Efficiency

Existing methods of tracing generally process every parametric cell for each trimming loop to

determine whether it is within the trimming region or not. This can result in many redundant

75

calculations on cells to generate the final triangulation. Since the proposed method only

operates on cells that intersect with trimming loops, no other cells need to be processed,

improving the efficiency of the triangulation generation. The triangulation algorithm has been

implemented in C++ using OpenGL and run on a standard Pentium 2 22.GHz processor.

Throughout the case studies the tolerances used for point coincidence and point/edge

intersections was 1.0×10
−6

.

Trimmed surface triangulations for a range of NUBS surfaces are shown in Figure 3.11. The

cells generated by subdividing the parameter domain of the original untrimmed surface have

been mapped into the original untrimmed 3D surface and shown in grey.

The ‟G‟ letter shape consists of an untrimmed spherical NUBS surface with a single trimming

loop and was constructed as a simple test piece. The lamp backing, the car rear panel and the

car chassis are test models provided by Delcam Plc (2010). The lamp backing consists of a

non-closed curved hemispherical NUBS surface and 3 trimming loops. The outside edge and

centre hole within the lamp backing are each formed by a single loop. The car rear side panel

(Figure 3.11(c)) consists of a non-closed spherical NUBS and 2 trimming loops; a single

exterior boundary and a hole. Finally the model toy car chassis (Figure 3.11(d)) consists of a

simple plane and 12 trimming loops; an exterior boundary, a central cut-away and 10 holes.

The triangulation results for each model in terms of the number of cells that had to be

processed in the triangulation construction are given in Table 3.1.

76

Surface Loops Cells
Cells

Traced
% Traced

Tracing Time

(ms)
Triangles

2D Triangulation

Time (ms)

G 1 1792 48 2.68 2.87 294 3.073

Lamp 3 5500 416 7.56 49.54 5638 37.34

Car body 2 760 128 16.82 44.60 1449 32.29

Chassis 12 25 30 120.00 4.33 344 25.46

Table 3.1 Trimmed NUBS surface tracing and 2D triangulation times.

(a)

(c) (d)

(b)

Figure 3.11 Triangulation and underlying NUBS surfaces. (a) G letter shape. (b) lamp

backing. (c) car rear panel. (d) car chassis.

.

77

Figures 3.11(a)-(c) show that the majority of the original untrimmed surfaces are not part of

the final trimmed surfaces. In addition, many cells generated from the untrimmed surface do

not intersect the trimming loops. Therefore, checking a large proportion of these cells to

determine their trimming status would be very inefficient. With the proposed tracing

approach, the percentage of cells that were processed and traced to generate the final

triangulations was 2.68% for the ‟G‟ shape, 7.56% for the lamp backing and 16.82% for the

car rear panel. The resulting triangulations consist of 294 and 5638 and 1449 triangles for the

‟G‟ shape, lamp backing and car panel respectively. Even with the relatively small number of

traced cells, the proposed tracing still provides sufficient information to determine the

trimming status of the remaining untraced cells. This makes the operation of the modified

tracing method very efficient. The car chassis (Figures 3.11(d)) is an example where the

trimmed surface forms the majority of the original untrimmed surface. Larger cell sizes, i.e.

less dense grids, commonly result in cells with multiple trimming loops and loops contained

within a single cell. This model has 8 such trimming loops (Figures 3.11(d)). A total of 30

cells required tracing against the 12 trimming curves to construct the final triangulation

comprised of 344 triangles. Table 1 also gives the time to perform the tracing and construct

the 2D triangulation; showing that the processing time is dependent on the number of cells

traced not the number of cells in the parametric grid. To demonstrate how this relationship

can improve the efficiency of generating a triangulation, for surfaces with large cell densities,

Table 3.2 shows the time taken to produce the triangulation in milliseconds for the test models

which have been over sampled.

78

Surface Loops Cells
Cells

Traced

%

Traced

Tracing Time

(ms)
Triangles

2D Triangulation

Time (ms)

G 1 179200 446 0.25 10.33 3633 41.87

Lamp 3 137500 2066 1.50 78.57 100819 371.33

Car body 2 76000 1314 1.73 64.49 73215 238.30

Chassis 12 78400 1994 2.54 56.42 72124 268.74

Table 3.2 Over sampled trimmed NUBS surface tracing and 2D triangulation times.

Corresponding to the models in Table 3.1, the number of cells has been increased by factors

of 100, 25, 100 and 3136 for the ‟G‟ shape, lamp backing, car panel and chassis surfaces

respectively. Despite these very large cell densities, a higher proportion of cells do not

contain intersections compared to that of the original test and the percentage of cells traced by

the trimming boundaries is therefore reduced. This illustrates that the relative efficiency of

the proposed method is dependent on the number of cells that have to be traced, not on the

density of the final triangulation. In addition, the time taken to trace only increased by factors

of 4, 2, 2 and 13 for the ‟G‟ shape, lamp backing, car panel and chassis surfaces respectively,

further highlighting the efficiency of the proposed method.

3.6.2 Crack Reduction

To illustrate the fact that the proposed method will not introduce unwanted cracks into a

single NUBS surface triangulation, a trimmed NUBS surface of a car part was triangulated

using the Rockwood et al. and the proposed tracing method. The resulting triangulations are

given in Figures 3.12 and 3.13 respectively.

79

Figure 3.12(a) clearly shows that the Rockwood et al. approach converts the initial NUBS

surface into Bézier patches, and then further partitions these patches and trimming curves into

uv monotone regions. These regions are then triangulated individually, creating a piecewise

triangulation of the entire NUBS surface. It can be seen that the density of triangles varies

between the different regions, as each is subdivided uniformly depending on the surface

curvature of the region. In order to create these regions, additional trimming curves are

(a)

(b)

Figure 3.12 Trimmed surface triangulation using Rockwood. (b) Rendered surface.

.

80

introduced along the new patch boundaries. However, since adjacent patches can have

different densities of triangles, this can result in non-coincident triangle vertices along the

boundary edges on adjacent patches. Due to this, cracks can appear in the rendering of a

single trimmed surface as shown in Figure 3.12(b). Whilst these cracks maybe small,

Rockwood et al.‟s method requires that highly curved surfaces be oversampled to reduce the

crack sizes from appearing visually in a final rendering.

Figure 3.13(a) shows the resulting triangulation of the same NUBS surface using the proposed

method.

As can be seen, there is also a change in the density of the triangles in different regions. This

is because a single NUBS may be composed of many different Bézier surface patches. Since

the parameter domain was subdivided uniformly across the whole NUBS surface, this has

caused a change in density of uv spacings in the different Bézier patches. However, despite

this density change, no discontinuities occur in the triangulation; the cells are always

connected along the different patch boundaries hence there are no cracks in the rendering of a

single trimmed surface. This has the advantage that fewer triangles can be used to triangulate

highly curved surfaces, without inducing cracks into a single NUBS surface compared to a

method based on converting the NUBS into a collection of Bézier patches, e.g. Rockwood et

al.‟s (Figure 3.13(b)).

81

3.6.3 Skinny Triangles

The triangulation of a trimmed surface is needed for a downstream engineering application.

Results from any application are dependent on the quality of the triangulation in order to

produce the best possible result (Shimada and Gossard, 1998; Parwana and Cripps, 2009).

The occurrence of triangles with large aspect ratios, i.e. long thin triangles, is a triangulation

feature that can produce unexpected behaviour from the downstream applications. Therefore,

(a)

(b)

Figure 3.13 Trimmed surface triangulation using proposed method. (b) Rendered surface.

.

82

this type of triangle should be avoided as much as possible. Nonetheless, some existing

methods, e.g. Rockwood et al.‟s, produce more triangles with large aspect ratios than is

absolutely necessary. These triangulations can be refined by using a post processing

remeshing technique (Shimada and Gossard, 1998; Shu and Boulanger, 2000; Wang et al.,

2006) to make the triangles more uniform. However, the computational time taken for this

step increases proportionally with the number of triangles that have to be modified. The

proposed triangulation method has been optimised to efficiently generate a mesh for CAD,

but generates a triangulation that is more uniform than Rockwood et al.‟s. The percentage of

triangles with high aspect ratios is also reduced because of the subdivision method and

triangulation methodology utilised. Since the proposed new tracing approach generates a

more uniform initial triangulation efficiently, this should aid in the computation and time

taken for the remeshing process.

This is best illustrated for a simple planar trimmed surface with many trimming loops as for

the toy car chassis shown in Figure 3.14.

This trimmed surface is the planar base of a toy car chassis, and consists of a single NUBS

plane surface with 12 trimming loops. Rockwood et al.‟s, method produces many triangle

shapes with very high aspect ratios (Figure 3.14(a)). Since the trimming regions must be

decomposed into uv monotone sections, these skinny triangles cannot be avoided.

83

The triangulation of the same surface using the proposed method is shown in Figure 3.14(b)

and the triangles are much more uniform. Any triangles of undesirable aspect ratios are

confined to the trimming curve boundaries. Tables 3.3 and 3.4 show different ranges of

triangle aspect ratio values and the amount of triangles, as a percentage of the total

triangulation, in each aspect ratio range for the Rockwood et al. and new triangulation

approach respectively. Graph 3.1 shows a scatter diagram of the results in these tables.

(a)

(b)

Figure 3.14 Triangulation of a trimmed surface. (a) Rockwood. (b) Proposed.

.

84

Tables 3.3 and 3.4 Aspects ratios of triangles within the triangulation.

Rockwood et al. triangulation

 Aspect ratios
Percentage of

triangles (%)

1 - 1.5 0.1

1.5 - 2 1.6

2 - 2.5 1.7

2.5 - 3 1.1

3 - 4 2.4

4 - 6 3.7

6 - 10 4.6

10 - 15 6.9

15 - 25 7.9

25 - 50 12.4

50 - 100 21.4

100 - 300 21.7

300 - 1000 8.9

1000 - 10000 4.1

10000 - 100000 0.2

> 100000 1.3

New triangulation approach

Aspect ratios
Percentage of

triangles (%)

1 - 1.5 1.5

1.5 - 2 2.9

2 - 2.5 6.1

2.5 - 3 4.7

3 - 4 7.6

4 - 6 7.8

6 - 10 10.2

10 - 15 7.8

15 - 25 14.2

25 - 50 19.5

50 - 100 7.8

100 - 300 7.0

300 - 1000 2.9

1000 - 10000 0

10000 - 100000 0

> 100000 0

85

Graph 3.1 Aspects ratios of triangles within the triangulation.

From the tables and graph it can be seen that the majority of triangles in the new approach

come under a smaller aspect ratio range than the Rockwood et al. approach. This results in

triangles that are more uniform and reduces the number of long thin triangles. Furthermore,

the minimum and maximum aspect ratios for the proposed triangulation approach were 1.19

and 870.93 respectively. However, the Rockwood et al. approach had a minimum aspect ratio

of 1.50 and a maximum ratio of ∞ (i.e. triangle vertices were all collinear) creating a

degenerate triangle. These long thin triangles (Figure 4.13(a)) are created because the surface

86

has many small curves and loops which have forced the Rockwood et al. method to generate

unnecessary uv-monotone regions. Furthermore, the subdivision methods adopted by

Rockwood et al. tend to over sample the number of points generated in an attempt to reduce

the occurrence of cracks along the boundary edges when the regions are stitched back

together. This, compounded with the tiling and coving method, used to triangulate the

boundary edges, produces many degenerate triangles as has been noted by Rockwood et al.

(1989).

87

Chapter 4

SURFACE FLATTENING

The method of surface flattening, sometimes referred to as unwrapping, is used to map a 3D

surface onto a 2D plane (Figure 4.1), and is applicable to industries that manufacture shoes,

clothing and decorations for textiles and ceramics. These fields of work all involve making

an item from a 2D material, which will ultimately be placed onto a 3D model, such as a tea

pot or human body part. In conventional practice, a 2D pattern is designed manually by a

field expert, which is then used to create the item from the 2D material. Once completed, it is

placed onto the 3D model, after which alterations can be made to produce a better fit.

Designing an initial 2D pattern is a specialised craft and can be a complicated task. However,

use of flattening simulation allows a designer to create the final 3D model, which can then be

flattened to produce a 2D pattern. It has been shown that this approach can produce 2D

patterns that have a better initial fit as well as decreased production lead-times (Wang et al.,

2002; Cader et al., 2005).

A widely used method for flattening 3D surfaces is to first approximate the geometry as a set

of 3D triangles, then map the 3D triangular facets into 2D as presented by McCartney et al.

88

(1999) and later modified by Cader et al. (2005). The triangles are sequentially flattened into

2D by starting from a seed triangle and then operating on the triangles that share an edge with

any flattened triangle.

As the original 3D triangulation will be mapped into the 2D plane of the seed triangle, some

distortion may occur within the flattened triangulation (McCartney et al., 1999; Parwana and

Cripps, 2009), which is dependent on the surface curvature. If a surface is developable

(Section 1.4.4), then there will be no distortion when it is flattened, otherwise, there will be

some distortion depending on the magnitude of the curvature (McCartney et al., 1999).

This chapter will present the details of both the McCartney et al. (1999) and Cader et al.

(2005) flattening processes. It will also present known surface and algorithmic characteristics

that can have an effect on the final flattening result.

4.1 McCartney et al. Algorithm

One of the most widely used algorithms for flattening is McCartney et al.‟s method

(McCartney et al., 1999). This method begins by triangulating the surface using Piegl and

(a) (b)

Figure 4.1 Cone section. (a) 3D triangulation. (b) unwrapped triangulation.

89

Tiller‟s (1998) triangulation approach, which generates a set of triangles, T, consisting of

mainly right angle triangles. An initial flattening is then produced by constraining the edge

lengths of each triangle in 2D to be the same as the corresponding 3D triangle.

4.1.1 Circle Intersection Algorithm

The first triangle to be flattened is chosen from the triangulation and is known as the seed

triangle, ts, that has the 3D vertices, (p0, p1, p2), (Figure 4.2(a)) and edge lengths

010 ppl , 121 ppl , 202 ppl (4.1)

The first two vertices are placed into 2D using the coordinates)0,0(0p and)0,(01 lp . The

next stage is to create two 2D circles C0 and C1, which have the centre points 0p , and
1p , as

well as radii l0, and l1 respectively. The position of the third vertex
2p in 2D is determined by

the intersection point between C1 and C2 (Schneider and Eberly, 2003) (Figure 4.2(b)).

p0 p1

p2

l0

l1 l2

C1 C0

l0

l1 l2

0p
1p

2p

Figure 4.2 (a) 3D triangle. (b) 2D flattening of 3D triangle.

(a) (b)

θ

90

Once the seed is flattened, any triangle in T that shares an edge with ts may be flattened next.

As the next triangle will share an edge with ts, two of its points will already have been

flattened. Therefore, only the third vertex needs to be calculated and this is done by using the

circle intersection method.

Instances where all three vertices of a triangle have already been flattened will occur during

the process, which will mean that one vertex in 3D may have more than one position in 2D.

This can be illustrated in Figure 4.3(a) where the 3D triangle, t, is next to be flattened,

however, all of its vertices have already been mapped into 2D. Therefore, when mapping t

into 2D by determining a new position for p2, if the surface is non-developable, the circles, C0

and C1, may intersect at a different point than that of
2p (Figure 4.3(b)). When

2p is

connected to 0p and
1p this will cause tearing or overlapping (Figure 4.4). If the surface is

developable, the multiple 2D positions will all be the same, within tolerance, and therefore no

distortion should occur.

p0

p1

p2

l1

l2

Figure 4.3 (a) 3D triangulation. (b) Constrained flattening.

t Figure 4.3 (a) 3D triangle. (b) 2D flattening of 3D triangle.

0p

1p
2p 2p

l1

l2

91

4.1.2 Energy Release Method

To remove any distortion which can arise from flattening surfaces with non-zero Gaussian

curvature, McCartney et al. use an energy release method to reduce strain energy from the

flattened triangulation, thus attempting to reconnect the topology. The strain energy

associated with an edge, e = (p0, p1), is given by

2

0 1 0 1
0 1 0 1

0 1

()
(, , ,) 0.5energyf

p p p p
p p p p

p p
 (4.2)

where p0 and p1 are the 3D vertices of the edge and 0p and 1p are the flattened 2D vertices of

the edge. The energy release method takes each vertex, ip , in the flattened triangulation and

attempts to move it an incremental distance of d in four orthogonal directions iap , ibp , icp ,

idp as shown in Figure 4.5. McCartney do not state how to determine d .

(a) (b)

Figure 4.4 Examples of (a) overlapping and (b) tearing in a 2D flattening.

92

Suppose that the 3D equivalent vertex of ip , in the original 3D triangulation was connected

to the vertices pp , qp , rp , sp , then each vertex would have an associated energy value of Ei,

which is the sum of the strain energy for all connected edges, i.e.

(, , ,) (, , ,)

(, , ,) (, , ,)

i energy i p i p energy i q i q

energy i r i r energy i s i s

E f f

f f

p p p p p p p p

p p p p p p p p
 (4.3)

Each orthogonal test move is then tried on vertex ip and the total new strain energy value

calculated and stored. For example, moving ip to iap (Figure 4.5) would yield the strain

energy value Eia given by:

(, , ,) (, , ,)

(, , ,) (, , ,)

ia energy i p ia p energy i q ia q

energy i r ia r energy i s ia s

E f f

f f

p p p p p p p p

p p p p p p p p
 (4.4)

The energy values Eib, Eic, Eid for the test moves ibp , icp , idp respectively, are calculated in a

similar way. The maximum energy reduction, iE , caused by an orthogonal movement is

then calculated by max{(),(),(),()}i i ia i ib i ic i idE E E E E E E E E . If iE is greater

than a user defined energy threshold, Et, then the orthogonal movement associated with iE

Figure 4.5 Orthogonal trial movements for energy release.

iap

ibp

icp

idp

pp qp

rp
sp

93

will be applied to vertex ip . A value less than or equal to Et, within tolerance, will mean that

ip is not considered for movement.

The energy release process is then applied to all vertices connected to ip , eventually

removing strain energy for every vertex within the flattened topology. The process is

terminated when no further reductions of strain energy are greater than Et. This can mean that

a single vertex can be tested many times making this a very computational intensive process.

This can be illustrated by a result presented by McCartney et al. (1999), in which they

flattened a section of a torus with the dimensions shown in Figure 4.6.

The proportion of the torus used and the number of triangles was not provided in the results.

However, for an energy threshold of Et = 1e
-4

, the energy release process took over 6 minutes

to complete. It is stated that a value of Et = 3e
-4

, is a good compromise between accuracy and

processing time, however, a simulation with this value still took over 3 minutes (McCartney

et al., 1999).

Figure 4.6 Part of a torus.

R100

R150

R400

94

A way to resolve these long processing times would be to iteratively change the topology as

distortion occurs in the system. However, due to the circle intersection method employed,

runtime modifications of the flattened topology are not possible and have to be postponed

until the end. This is because flattened vertices act as centre points for circles and moving a

vertex will essentially move a possible centre of a circle. Over time, this movement can

accumulate so that the distance between the centre points is large enough to force the circles

to no longer intersect one another.

4.2 Cader et al.’s Flattening Method

Cadar et al. (2005) proposed an improvement to McCartney et al.‟s algorithm, which is

essentially a modification of the McCartney et al. flattening scheme. The modified algorithm

utilises a cosine method to determine the position of the triangle vertices in 2D, which is

equivalent to McCartney et al.‟s intersection of circles approach.

4.2.1 Cosine Algorithm

In the case of the seed triangle, ts = (p0, p1, p2), the first two vertices would be flattened using

the same method as McCartney et al. The edge lengths, given by (4.1), are then used to

calculate the subtended angle θ at p0 (Figure 4.3(a)) using the cosine rule

20

2

1

2

2

2

01

2
cos

ll

lll

Therefore, the coordinates of the three flattened vertices),,(210 ppp which preserve the 3D

edge lengths of the original triangle, are given as

)0,0(0p ,)0,(0l1p ,)sin,cos(22 ll2p

95

As in McCartney‟s algorithm, once a seed has been selected, this method continues to flatten

triangles incident to previously unwrapped triangles. However, flattening these remaining

triangles is a little more complicated compared to flattening the seed. The process is

illustrated with an example.

Figure 4.7(a) shows triangles t0 and t1. t0 has already been mapped into 2D, 0t , (Figure

4.7(b)), so t1 is the next triangle to be processed and shares an edge with t0 and vertex p3 of t1

is the only vertex position to be determined in 2D. The edge lengths and angle θ are

calculated ensuring that the angle is the one which is incident to the start point of the half

edge (ps) which is incident to t1 (Figure 4.7(c)).

t0

t1

θ

t0

t1

θ

ps
p3

(a)

(c)

Figure 4.7 Cosine flattening process. Blue triangles are 3D and green 2D. (a) 3D

triangulation. (b) Seed flattened. (c) Identifying ps and which vertex to flatten.

θ

θ

β

(d)

(b)

1t

0t

0t

(e)

1t

0t

sp

3p

96

Once θ has been calculated, the new positions of the two vertices are calculated relative to the

ps of the shared half edge as shown in Figure 4.7(d).

As can be seen in Figure 4.7(d), the final stage is to rotate the triangle into the correct

position. This is done by calculating angle β, again using the cosine rule, and then rotating p2

though β about the start point of the incident half edge (Figure 4.7(e)). This method is

continued until all triangles have been flattened.

This process produces a result which is equivalent to the circle intersection method

(McCartney et al., 1999), but has the advantage that it allows for runtime modifications of the

flattened triangulation, which eliminates any tearing or overlapping as they occur. Therefore,

in the situation where a duplicate 2D position for an existing flattened vertex has to be

calculated, an unbiased average of the two different positions is taken to create a single

position. It is again worth noting that if the surface is developable, the position of the two

vertices will be the same, within tolerance.

4.2.2 Mapping Order

Cader et al. (2005) also present a method for pre-determining the order in which a 3D

triangulation will be flattened into 2D. This is opposed to McCartney et al.‟s method which

determines the next triangle to be flattened on the fly and in no logical order. The seed

triangle is denoted as level 0 and will be the first triangle to be flattened. Any triangle which

shares an edge with the seed triangle will be denoted level 1, and any triangle which shares an

edge will a triangle from level 1 will be denoted as level 2, etc.

97

The order in which triangles are flattened can change the final flattening result and is an

ambiguity currently present in some methods. Therefore, given a 3D triangulation and a seed

triangle, two implementations of the McCartney et al. method could easily yield completely

different flattening results, due to the ambiguity in the mapping order. Using a consistent

mapping order can reduce this ambiguity, resulting in more consistent results when flattening

a surface. In addition, due to the circular nature of the mapping order, it flattens the

triangulation evenly around the seed, which ensures that any distortion is distributed evenly

throughout the entire surface.

4.3 Accuracy Measurements

The accuracy of a flattening simulation can be assessed using differences in area and shape as

proposed by Wang et al. (2002). The area difference measures the change in surface area pre-

and post-flattening. The relative area difference is given by

o f

o

A A
A

A
 (4.5)

where oA is the original area of the 3D surface and fA is the area of the 2D flattened surface.

Since analytical forms of the flattened surface cannot be determined, the areas are

approximated by summing the triangles areas within each triangulation, i.e.

1

0

n
o o

i

i

A and

1

0

n
f f

i

i

A (4.6)

where
o

i is the area of the i
th

 triangle from the 3D triangulation consisting of n triangles and

f

i is the are of the i
th

 flattened triangle.

98

The shape difference measures the change in the surface curve lengths pre- and post-

flattening, where the curve length is defined as the length of an arbitrary iso-parameter line on

the surface. The final relative edge length difference is given by

o f

o

L L
S

L
 (4.7)

Where L
o
 is the actual curve length of the curve segment on the original surface and L

f
 is the

corresponding curve length in the flattened model. Again, analytical forms of the curve

length cannot be determined for the flattened model, so L
o
 and L

f
 are approximated by

summing the length of each edge in the corresponding triangulation, i.e.

1

0

m
o o

j

j

L E and
1

0

m
f f

j

j

L E (4.8)

where
o

jE is the edge length of the j
th

 edge in the 3D triangulation consisting of m edges and

f

jE is the edge length of the j
th

 edge in the flattened triangulation.

4.3.1 Improved Accuracy Flattening Measures

Although the measures presented in (4.5) and (4.7) are used widely, it is noted that they can

give misleading results, which can portray an incorrect result. This is because it is very

possible to induce large amounts of area distortion within a flattening of a triangulation, yet

achieve δA = 0. For example, during the flattening of 10 triangles, 5 triangles could increase

in area by a half and 5 triangles could reduce in area by a half after flattening. Summing these

area changes, the total area after flattening would be the same as the original 3D area. This

would imply that no area distortion took place, yet clearly every triangle induced distortion.

Therefore, this measure would give a poor reflection of the actual distortion induced. This

argument is analogues for the shape change.

99

Therefore, two new additional measures are defined to reflect the measure of distortion after

flattening more accurately. The first is defined as the absolute area change given by

1

0

n
o f

i i

i

A (4.9)

The second is defined as the absolute shape change given by

1

0

m
o f

j j

j

S E E (4.10)

In each of these measures, the absolute difference in area (shape) per triangle (edge) is

measured and summed together, meaning that all distortions will be accounted for in this

measurement.

4.4 Discussion

McCartney et al. (1999) present a triangular based approach for flattening a 3D triangulation

into the 2D plane of the seed triangle, by constraining the edge lengths of the 3D triangles.

Due to the circle intersection procedure adopted, if the surface is non-developable, the initial

flattening of the surface may induce tearing or overlapping of triangular facets. It is also

stated that if the surface is developable, then the triangulation of that surface will also flatten

without distortion. To remove any tearing or overlapping, an iterative energy release method

is used to reconnect the triangulation. No definitive mapping order for the triangulation

flattening is provided; meaning that different implementations of this technique can

essentially flatten the triangles in a different order. This can be a problem, as noted by Cader

et al. (2005), since the order in which the triangles are flattened into 2D can effect the

resulting flattening.

100

The energy release method adopted by McCartney et al. is a very computationally intensive

task which has to test many different solutions for a new point position before settling on the

final answer. The large computational time is due to the fact that the energy release method

must be used as a post-processing step on the entire flattened structure. This is imposed on

the algorithm because runtime modification of vertex positions can cause the flattening to fail

in situations where the cumulative movement of the points becomes so much that the circles

no longer intersect.

In practice, surface flattening is used on developable or non-developable surfaces with very

small curvature (almost developable); therefore, Cader et al. (2005) presented a flattening

method that constrains the edges lengths of triangles and produces a result equivalent to

McCartney et al. By utilising a cosine method rather than an intersection of circles, Cader et

al. were able to incorporate runtime modifications into their algorithm. Therefore, multiple

2D positions for a single 3D vertex can be removed immediately by taking the unbiased

average of the points.

4.4.1 Highly Curved Surfaces Problem

As the method of Cadar et al. proposed an improvement to McCartney et al.‟s algorithm, it is

adopted as a suitable scheme with which to demonstrate the effects of triangulation.

However, as the method has been optimised for almost developable surfaces, problems can

arise when working with highly curved surfaces. For these types of surfaces, the averaging

process can induce large changes to the shape of flattened triangles and cause them to flip

from anti-clockwise to clockwise as illustrated in Figure 4.8. Figure 4.8(a) shows two

101

incident triangles 0 (, ,)0 1 2t p p p and 1 2 3 4(, ,)t p p p which have been flattened into 2D.

Vertices 0p and
4p represent the same vertex in 3D and need to averaged to establish a single

position in 2D to reconnect the triangles. Therefore, the updated triangle vertices become

0 (, ,)a 1 2t p p p and 1 2 3(, ,)at p p p , however, this has caused 0t to change from anti-

clockwise to clockwise (Figure 4.8(b)).

This inconsistency in the vertex orientations means that even after the attempt has been made

to reconnect the triangles, it will still produce an invalid topology. Furthermore, overlapping

of triangles will remain within the triangulation because of this orientation inconsistency, as

shown in Figure 4.8(b), which is highly undesirable. This invalid topology will mean that the

algorithm will no longer operate correctly and cause a spiralling effect as shown in Figure 4.9.

The result will be an unacceptable flattening.

(a) (b)

Before averaging Post averaging

Figure 4.8 Highly curved surfaces problem. (a) Triangles before and (b) after averaging.

0p

1p

2p

3p

4p

1t
0t

ap

0p

1p

2p

3p

4p

102

4.4.2 Long Thin Triangles Problem

As Cader et al.‟s approach has been optimised for almost developable surfaces, it may suggest

that the spiralling effect caused by highly curves surfaces would not occur; however, this is

not the case as it can also be induced by triangles with high aspect ratios. Numerical

calculations based on the vertices of triangles with high aspect ratios can be unstable. Thus,

during the averaging process such triangles can become highly susceptible to change of

orientation as shown in Figures 4.10. Figure 4.10 is similar to the case shown in Figure 4.8,

however, it is noted that triangles with high aspect ratios are more unstable and can cause

vertex orientations to flip with small changes in vertex positions.

Figure 4.9 (a) Initial 3D triangulation. (b) Failed flattening (solid white triangle is seed).

.

(b) (a)

103

Therefore, a flattening success criterion is established so that, if during a flattening

simulation, a triangle flips from anti-clockwise to clockwise, the simulation is immediately

terminated and deemed a failure. Furthermore, a definition for „almost developable‟ is

proposed based on this triangle orientation flipping. Given a non-developable surface,

multiple flattening simulations of this surface can be performed by using each triangle within

the 3D triangulation as a seed triangle. If, for any seed triangle, the flattening simulation is

completed successfully with no triangle orientation flipping, then the surface is deemed as

„almost developable‟. Otherwise, if every flattening simulation failed, due to a triangle

orientation flip, then the surface is not considered as „almost developable‟.

4.4.3 Flattening Algorithm Stability Solution

The problem of vertex orientation flipping caused by triangles with high aspect ratios

suggests that when flattening a trimmed surface, it is best to flatten the entire underlying

surface as a rectangular patch with nicely shaped triangles. The trimming curves can then be

mapped onto the 2D flattening. This will ensure that triangles with high aspect ratios, which

generally occur along the boundary edge of a trimmed surface triangulation, are not dealt with

0p

1p

2p

3p

4p
ap

0p

4p

2p

1p
3p

(a) (b)

Before averaging Post averaging

Figure 4.10 High aspect ratio problem. (a) Triangles before and (b) after averaging.

104

during the flattening process. This can greatly enhance the stability of the flattening

algorithm.

4.4.4 Seed Triangle and Mapping Order

McCartney et al. and Cader et al. noted that the choice of seed triangle can affect the final

flattening. As the flattened seed triangle geometry is constrained, any distortion spreads

outwards from this seed triangle. This can be seen illustrated in Figure 4.11, where the 3D

surface (Figure 4.11(a)) has been flattened twice using two different seed triangles (indicated

by the solid white triangles in (Figures 4.11(b)-(c)), resulting in completely different

flattening results.

It can be useful, during a flattening simulation, to find the optimum seed triangle that causes

the least change in area between the original 3D triangulation and the flattened counterpart.

This essentially approximates the change in surface area, which can be a useful indicator for

checking the quality of flattening result (Wang et al., 2002). Therefore, an optimum seed

triangle can be found by performing multiple flattening simulations on a single 3D

triangulation, each time using a different triangle as the seed. The areas change induced can

Figure 4.11 (a) 3D triangulation. (b) Result 1. (c) Result 2.

(a) (b) (c)

105

be recorded and then compared to find which seed triangle caused the least difference, i.e.

making it the optimum seed.

Cader et al. also noted that an aspect that can affect the final output is the mapping order and

therefore established a consistent method for pre-determining the order in which the triangles

will be flattened. This ensures a consistent implementation of this technique by ensuring that

given a seed triangle, the flattening result will always be the same.

106

Chapter 5

RIGHT ANGLE TRIANGLE CONFIGURATIONS

Structured triangulation schemes for approximating trimmed surfaces are widely used

throughout CAE as an input for downstream applications, including surface flattening

(McCartney et al., 1999; Cader et al., 2005). The advantage of structured triangulation

schemes is that any irregular shaped triangles, particularly those with high aspect ratios, are

confined to the boundary edges of the surfaces, whilst maintaining a uniform triangulation

within the interior of the surface. This can be beneficial to applications, such as surface

flattening, where triangles with high aspect ratios can cause problems during the course of a

simulation (Section 4.4).

Apart from along the boundary edges, in general, structured triangulation schemes tend to use

right angled triangles (RATs) (Rockwood et al., 1988; Peterson, 1994; Kumar and Manocha,

1996; Piegl and Tiller, 1998; Sadoyan et al., 2006), as they are easily generated from the cell

data structures that are used to partition a surface‟s parameter domain and establishing which

portions of the surface are within the trimming region (Section 2.4). However, RATs offer an

interesting variable in terms of their connectivity which can change the final result of a

107

surface flattening simulation. This novel connectivity issue will be the main focus of this

chapter.

5.1 Right Angle Triangle Configuration Definition

Given a surface parameter domain which has been sampled to generate a triangulation

consisting of equilateral triangles, using all the vertices, there is only one set of equilateral

triangles that will fit this point sampling (Figure 5.1(a)).

The Delaunay triangulation method (Section 2.2) triangulates a set of points by maximising

the minimum angle of all the triangles. This method is said to create a unique solution

(O‟Rourke, 2001) as it is attempting to make the triangles as close to equilateral as possible,

which is known to have a unique solution (de Berg et al., 2000). However, there is ambiguity

in this method for the situation where more than three points lie on the circumcircle of a

triangle (Sugihara and Inagaki, 1995) (Section 2.10). Therefore, a uniformly distributed grid

Circumcircle

t0

t1

p0

p1 p2

p3

(a) (b)

Figure 5.1 (a) Triangulation consisting of equilateral triangles. (b) Circumcircle of each

right angle triangle, t0 and t1, has four points on it.

108

of 2D points would not yield a single solution using Delaunay triangulation as each triangle

would have a minimum of four vertices on its circumcircle (Figure 5.1(b)).

Uniformly sampled grids of points are commonly used in many structured triangulation

algorithms (Sections 2.4-2.9, Section 3.1). These sampled points are connected to form

rectangular cells, which are then triangulated into RATs by adding diagonals. The placement

of the diagonal is not unique as there are two choices (Figure 5.2). In both cases the triangles

generated by inserting a diagonal will be RATs.

As there are only two solutions for the placement of the diagonal from a single cell, the

number of permutations for the diagonal placement in n cells can be modelled as a binary

permutation. Therefore, the number of right angle triangle configurations (RATCs) that can

be generated from a grid consisting of n cells is:

Number of RATCs = 2n (5.1)

As n increases, the number of RATCs increases exponentially, which can result in an

unmanageable number of different triangulations being generated from a uniformly sampled

grid, all consisting of RATs. As an example, 100 cells would generate 1.26765e
30

 different

RATCs. Typical structured triangulations consist of many hundreds, even thousands of cells

which must be triangulated in RATs. Suggesting a method that would generate every

Figure 5.2 Diagonal placement.

109

possible RATC for a uniformly sampled grid of points and then checking the flattening results

for each RATC would not be sensible. For example, given a triangulation consisting of 200

triangles (generated from 100 cells), if it takes 1 second to find the optimum seed for each

RATC, then the time taken to find the optimum seed for all the RATC permutations of this

point sampling (neglecting the time taken to generate the RATC) would be 4e
22

 years. In

reality, finding the optimum seed triangle and form each RATC could take several minutes,

taking into account the density of the triangulation, making this an even more unrealistic task.

This motivates the investigation into whether different RATCs affect surface flattening and

attempting to establish which RATC would be best suited to this downstream application.

5.2 Global Right Angle Triangle Configurations

In practice, a small number of RATCs are actually used to triangulate a grid of points, and

these tend to be the same, within four incident cells, over the whole triangulation, i.e.

globally. Two global RATCs were noted from previous work on surface flattening, and a

novel third configuration is proposed. These three global RATCs will be used throughout the

analysis and testing process in this thesis and are defined as:

1. Regular configuration, used by McCartney et al. (1999) and Wang et al. (2002)

(Figure 5.3(a)).

2. Diamond configuration, used by Cader et al. (2005) (Figure 5.3(b)).

3. Chevron configuration (Figure 5.3(c)).

All three configurations are legal RAT triangulations generated from the same point sampling,

and each produces a different flattening result as demonstrated in Section 5.2.1.

110

5.2.1 Global RATC Test

To consider the effects of RATC on the flattening process, a non-developable NUBS test

surface (Figure 5.4) was sampled uniformly in the parameter domain using a 60 60 grid of

points and triangulated in each of the three different global configurations. This point

sampling ensured that the area of the model approximated by the triangulation was within 1%

of the original surface area value.

Figure 5.4 Test surface.

Figure 5.3 Global right angle triangle configurations.

Regular Diamond Chevron

111

Each triangulation consisted of 6962 triangles, which was flattened using Cader et al.‟s

(2005) flattening method and the same seed triangle. The choice of seed triangle can change

the result of a flattening simulation (Section 4.4.4); therefore the seed used in the tests was

specifically chosen because it was defined by the same vertices and edges in each of the three

configurations, thus giving an unbiased starting point to each flattening simulation. The

flattening results for the three triangulations are given in Table 5.1 and Figures 5.5-5.7. The

seed triangle is shaded in solid black to show its location.

Number of triangles in each triangulation 6962

Global RATC
No. of triangles

flattened

Area Change

(δA)

Shape Change

(δS)
Successful

Diamond 5903 -15.23% -15.74% No

Chevron 6962 -0.27% -0.05% Yes

Regular 6962 -0.18% -0.08% Yes

Figure 5.5 (a) Diamond RATC 3D triangulation. (b) Flattening result.

Seed

Table 5.1 Global RATC test flattening results.

112

As can be seen from Table 5.1, the flattening process is dependent on the global configuration

of the triangulation. In the diamond configuration, only 82% of the triangles were processed

before the flattening failed. This was caused by a triangle orientation flipping to clockwise

during the averaging process (Section 4.4.1). In contrast, the chevron configuration resulted

in the triangulation flattening successfully with an area change of -0.27%, where the negative

value indicates a reduction in area. An unmodified version of this flattening would cause the

triangulation to have overlapping triangles or gaps between triangles. However, the averaging

process removes overlaps and tears, thus triangle areas can increase or decrease in these

Figure 5.7 (a) Regular RATC 3D triangulation. (b) Flattening result.

Seed

Figure 5.6 (a) Chevron RATC 3D triangulation. (b) Flattening result.

Seed

113

regions. The flattening was further improved by using the regular configuration, which

reduced the area change by 33% compared to the chevron configuration.

It can be seen from Figure 5.7, that whilst the regular configuration induced less change in

area, it produced some noticeable creasing in the top right corner of the final flattening. In

contrast, the chevron triangulation resulted in visually less creasing (Figure 5.6). This is

reflected in the resulting shape change coefficients, which were -0.08 and -0.05 for the regular

and chevron coefficients respectively, where the negative value indicates a compression of the

original edges. This implies that for this particular surface and seed triangle, the chevron

configuration preserves the original shape better than the regular configuration.

5.3 Motivation for a Consistent RATC

Currently, the failure of a surface flattening of this nature would be solely attributed either to

the type of triangulation, i.e. triangle shape, triangle size, or flattening algorithm. However, it

has been shown that the performance of the flattening algorithm is also dependent on the

configuration of RATs.

When using a triangulation for a downstream engineering application, much effort is put into

the creation of the application algorithm to ensure that any configuration ambiguities are

removed. For example, Cader et al. (2005) noted that a flattening simulation could be

affected by the mapping order of the 3D triangles, therefore an edge based mapping order was

introduced (Section 4.2.2) to remove this variable. However, despite the measures put into

place to make flattening algorithms more robust, they are still triangulation dependent

114

algorithms. Therefore, to achieve a more robust flattening simulation, efforts must be made to

remove any ambiguities from the initial 3D triangulation, i.e. RATC.

Section 5.2.1 showed that different RATCs can have an impact on the resulting surface

flattening. However, the question of which RATC is best suited for surfaces that require

flattening still remains. It would appear that the chevron and regular configurations provide a

better mapping than that of the diamond configuration, however, which of these two

configurations is better suited for flattening is unclear. Furthermore, it will be worth

investigating whether a RATC that varies locally, depending on the local characteristics of the

surface, would be better suited than a global configuration.

In the field of discrete data triangulation and remeshing (Frey and George, 2000; Meek and

Walton, 2000; Dyn et al., 2001), triangulation choices, made from a given set of points, are

determined by locally evaluating the curvature (generally Gaussian or mean) from the mesh to

ensure that the distribution of curvature is smooth over the entire mesh. Although making the

Gaussian curvature smooth over the triangulation does not necessarily guarantee a good

approximation, the idea of matching a triangulation to better approximate a surface

characteristic is a topic which is worth exploring.

Therefore, the remainder of this chapter will firstly present a method for generating a locally

varying RATC, within a triangulation, to best match the Gaussian curvature of the original

surface. This local RATC and the three global RATCs (Section 5.2) will be applied to the

triangulations of two almost developable surfaces. The results will then be analysed and

compared to establish which type of RATC is best suited for surface flattening.

115

5.3.1 Surface Approximation

In Section 5.2.1, each RATC was generated from the same set of points, yet still produced

varying flattening results. One of the contributing factors that could have affected the results

could be the quality of the original surface approximation by the triangulation.

Each RATC inherits positional accuracy from the surface because the triangle vertices are

guaranteed to lie on the surface; however, the connectivity of these points (i.e. placement of

triangle edges between points) could affect the approximation of other geometric

characteristics. For example, let p be a vertex in a 3D triangulation, which is incident to the

triangles ti, where i = 0, 1, …, n. To estimate the unit normal at p, the unit normal of each ti

(Section 1.6.7) would need to be generated first (Figure 5.8) and then averaged to estimate the

unit normal vector at p. As triangles are planar polygons, different configurations of triangles

incident to p, could yield different values for the unit normal vectors for each triangle. This is

illustrated in Figure 5.8 where changing the configuration from regular to the chevron altered

the triangle unit normal vectors shown in blue. Once averaged, these unit normal vectors may

give different values at p.

Figure 5.8 Triangles incident to p and normal estimations.

p
p

Regular configuration Chevron configuration

116

When generating points, directly from a surface, little effort is put into ensuring that the

triangulation configuration approximates the original surface characteristics as well as

possible. This motivates the investigation into finding a RATC that will best approximate the

geometrical characteristics of the original surface.

Therefore a greedy algorithm (Cormen et al., 2001) is proposed to establish the optimum

RATC that will best approximate a specific surface characteristic, known as the RATC

controller. The algorithm will find the optimum RATC, for a triangulation generated from a

uniformly sampled grid of points, which best approximates the RATC controller of the

original surface. By doing this for each RATC controller, a well defined RATC solution will

be generated from any triangulation generated from this data set, which will vary locally, and

remove any ambiguities which could be induced into any flattening simulations. These

triangulations will also provide a premise to evaluate whether a global configuration or locally

distributed RATC configuration provides a better flattening result.

The surface characteristic that will be used to the control the RATC configuration of a

triangulation will be the Gaussian curvature, as this measure is commonly used to evaluate the

shape of 3D surfaces (i.e. developable surfaces) in surface flattening (McCartney et al., 1999;

Cader et al., 2005). Details for approximating this characteristic from a triangulation will be

provided in Sections 5.5.

117

5.4 Optimised RATC Algorithm

The optimised RATC is defined as the configuration that best approximates the Gaussian

curvature of the original surface at the sampled points. The greedy algorithm created for

determining the optimum RATC is detailed below.

Stage 1: Subdividing the Surface

Given a NUBS surface, S(u, v), defined over the normalised parameter domain u,v [0,1]

(Section 1.2.1), the first stage is to represent the parameter plane as a uniformly subdivided

m n grid of points in the u and v directions respectively. The uv grid points and their

indices are organised as shown in Figure 5.9.

Stage 2: Calculate Surface Gaussian Curvature Values

The S(u, v) is then evaluated at each uv grid point to find the Gaussian curvature, KG, at that

parameter value. Each KG is stored for the appropriate uv grid point as shown in Figure 5.9.

During this stage, an additional check will be performed to establish the uv grid point that has

the largest magnitude of Gaussian curvature. This uv grid point will be stored as pg(imax, jmax),

Figure 5.9 Nomenclature and data stored for each uv point in a grid.

u

v 0

1

2

3

0 1 2 3

i = 2

j = 2

KG

Data stored for

each i, j position.

m = 5

n = 5
position

(2, 2)

4

4

118

and will form the initial starting point for the greedy algorithm. This is done to ensure that the

RATs are configured to estimate highly curved regions of the surface more accurately, as

these have more impact on the flattening simulation.

Stage 3: Generating Optimum RATC

The method starts from uv grid point pg(imax, jmax). The 8 adjacent vertices are extracted from

the subdivided grid (Figure 5.10).

These vertices are mapping into 3D and stored as four cells, which are then triangulated 16

times, each time using different combinations of diagonal placements between the cells

(Section 5.1). For each triangulation, the KG approximation will be calculated at the 3D

mapped point of pg(imax, jmax) (Section 5.5). The triangulation configuration that produces the

least absolute difference between the actual and approximated KG will be chosen as the local

configuration for these points.

The remainder of the points are then processed in rows, which is outlined in Stage 4, and then

this process is repeated for the next point. However, it is worth noting that as this is a greedy

algorithm, only the first uv grid point will have to test 16 different configurations. For

Figure 5.10 Grid points adjacent to pg(i, j).

uv points adjacent to pg(imax, jmax)
pg(imax, jmax)

119

example, when the second point is being processed, two of the four cells will have already

been triangulated (Figure 5.11). Therefore, only two cells will have the freedom to be tested

for different configurations, meaning that there will only be 4 (i.e. 2
2
) new configurations that

will need to be checked.

Stage 4: Points Processing Order

Once the optimum local configuration has been found for pg(imax, jmax), the remaining uv

points are processed, using the method shown in Stage 3, incrementing i by 1, while i < m.

Once a row has been processed the next row to be processed will be j+1, while j < n.

However, as this method starts from index (imax, jmax), increments of i+1 and j+1 will only

process grid points with larger index positions than (imax, jmax). Therefore, a second pass,

which travels in the opposite direction, must be carried out to process uv grid points with

lower indices (Figure 5.12). The increments will be i-1, while i > 0 and then j-1, while j > 0.

Stages 3 and 4 are repeated until the entire grid of points has been processed.

Figure 5.11 Grid points adjacent to pg(i, j).

pg(imax, jmax)
Unprocessed

cells

Neighbouring

cells

Point being

processed

120

5.5 Gaussian Curvature Approximation

The Gaussian curvature is a measure commonly used in surface flattening (McCartney et al.,

1999; Cader et al., 2005) and remeshing (Meek and Walton, 2000; Dyn et al., 2001). This

section will present a method which is commonly used to calculate an approximation of

Gaussian curvature from a surface triangulation.

5.5.1 Current Gaussian Curvature Approximation

Given a triangulation, T, the Gaussian curvature at the point, p, can be estimated by using the

triangles incident to p (Dyn et al., 2001).

Figure 5.12 Grid point processing directions.

First pass

Second pass

uv grid point pg(imax, jmax)

121

Let ti, i = 0, 1, …, n, be the triangles incident to p, in anti-clockwise order, and let αi be the

interior angle of triangle ti, incident to p (Figure 5.13). Also, let γi be the outer angle made

between successive triangles (ti, ti+1(mod n)) edges that are opposite to p. This gives

0 0

n n

i i

i i

 (5.2)

The Gauss-Bonnet, in the topological case, reduces to

0 0

2 2
n n

G i i

i iA

K dA (5.3)

where the total area of the triangles is

0

n

i

i

AT (5.4)

and i is the area of triangle ti. Therefore, assuming the curvature is constant in the local

neighbourhood, the Gaussian curvature, KG, is given by

0

2

/ 3

n

i

i
GK

AT

 (5.5)

Figure 5.13 Nomenclature for Gauss-Bonnet estimation.

t0

t1

t2

t3

t4

t5
α0

α1

α2
α3

α4

α5

γ3

γ2

γ1

γ0

γ4

γ5

122

where AT/3 is equivalent to the barycentric area of the triangles (Section 1.6.6).

5.5.2 Approximation Method Limitation

This Gaussian curvature approximation algorithm is commonly used in remeshing and

discrete data triangulation (Frey and George, 2000; Meek and Walton, 2000; Dyn et al.,

2001). In general, these methods are operating on smooth data and triangulations that define

equilateral triangles, which ensure that every vertex within the triangulation has a valency of

six. However, a consistent vertex valency, throughout an entire triangulation, is not

necessarily guaranteed when using RATs. Therefore, (5.5) will not necessarily work very

well for triangulations consisting of RATC with varying valencies, due to the area portion of

the algorithm.

To calculate the Gaussian curvature local to a point p, using (5.5), the barycentric area

(Section 1.6.6) is required. This area ensures that only the local area to the vertex p is taken,

thus minimising the amount of bias from other neighbouring vertices. However, this local

area value can change when using RATs, which can change the Gaussian curvature estimation

at p. Consider 9 planar vertices, where each cell has unit area as shown in Figure 5.14.

1 1

1

1

Figure 5.14 Nine vertices where the area for each cell is 1.

123

For these points, there is a possibility of 16 different RATC that could be generated, however,

only the 3 shown in Figure 5.15 will be considered, as these show the minimum (4), median

(6) and maximum (8) valencies which can be generated from the point sampling at p.

In each of these 3 configurations, the sum of the internal angles would be the same; however,

they would generate different values for the local triangulation and barycentric areas as shown

in Table 5.2.

 Triangulations from Figure 5.15

 (a) (b) (c)

Valency of p 4 6 8

Total Local Area 2 3 4

Barycentric Area 0.67 1 1.33

For almost planar vertices, the sum of the internal angles for each configuration would be

similar; however, the changes in the barycentric area would cause differences in the Gaussian

curvature approximation using (5.5) at the vertex p. The discussion of which RATC valency

would produces the best approximation using (5.5) is given below.

Figure 5.15 RAT triangulation with valency (a) 4, (b) 6 and (c) 8.

(b) (a) (c)

p p

p

Table 5.2 Triangulation Areas.

124

5.5.3 Area Errors

Given a set of points, sampled for RATs, the optimum local area which should be

approximated to ensure that the area is distributed evenly across all points, would be the

square areas shown in Figure 5.16, where the square around p would be generated by using

the centre points of the four adjacent cells to p.

Assuming that all the points have the dimensions shown in Figure 5.14, the local area around

each point p, which would give an unbiased area distribution, would be 1. It can be seen from

Table 5.2, that the only configuration which would meet this unit area requirement for the

barycentric area, is where the valency of the points was 6. A valency of 4 gives less area (i.e.

larger Gaussian approximation) and a valency of 8 gives a greater area (i.e. smaller Gaussian

approximation) (Figure 5.17).

Figure 5.16 Unbiased local area partitioning of a uniformly sampled grid.

Barycentric areas at

vertices

Valency 6

125

5.5.4 Experimental Validation

To validate this theory, the Gaussian curvature was calculated using (5.5) on the triangulation

of an almost developable surface. The RATCs were locally varied at random to produce

differing valencies. The surface was taken from a trimmed surface definition of an industrial

model defining a section of a car backlight, provided by Pilkington Group Limited

(Pilkington, 2010).

Figure 5.18(a) shows the Gaussian curvature approximated from the triangulation and Figure

5.18(b) shows the absolute difference between Gaussian curvature of the actual surface and

the equivalent approximation from the triangulation, at the same 3D vertex positions.

Figure 5.17 Uneven area distributions from a uniformly sampled grid.

p

Valency 4

Valency 8

Barycentric area at

vertices

126

The minimum and maximum Gaussian curvatures from the actual surface, at the sampled

points, were 0.000024 and 0.000097 respectively. However, due to (5.5), the minimum

Gaussian curvature approximation was underestimated by 13% and the maximum was

overestimated by 19%. Given the relatively low curvature values of the surface, these

approximation errors are relatively significant. Also, rapid fluctuations in the Gaussian

curvature approximation (Figure 5.18(b)) were seen to occur around points where the valency

(a)

(b)

Figure 5.18 (a) Gaussian curvature approximated by the triangulation. (b) Difference

between surface Gaussian curvature and approximation from the triangulation.

127

was not six. This observation was validated by mirroring the RATC of Figure 5.18 with

respects to the v axis in the parameter domain, then mapping these points into 3D (Figure

5.19), thus changing the location of the valencies.

The results of this test illustrated the same results as the first test, in that the Gaussian

curvature is approximated best at the triangle vertices that have a valency of six (Figure 5.20).

Figure 5.19 Mirroring the RATC in the parameter domain of the surface.

u

v

u

v

Mirror

configuration

128

5.5.5 Improved Gaussian Curvature Approximation

To remove any biases caused by varying valencies within a triangulation, an area

compensation factor (ACF) is applied to the area portion of (5.5), which is defined as:

6
CFA

valency of p
 (5.6)

(a)

(b)

Figure 5.20 (a) Gaussian curvature approximated by the triangulation. (b) Difference

between surface Gaussian curvature and approximation from the triangulation.

129

Therefore, the improved algorithm to calculate the Gaussian curvature, KG, approximated

from a triangulation at vertex p is given by

0

2

/ 3

n

i

i
G

CF

K
A AT

 (5.7)

where αi and AT are defined as in Section 5.5.1.

Applying this area compensation factor has shown to improve the Gaussian curvature

approximation generated from a triangulation, when compared against (5.5). To illustrate this

improvement, the 3D triangulation shown previously in Figure 5.20 of Section 5.5.4, was re-

used to calculate the Gaussian curvature approximation using (5.7). Figure 5.21(a) shows the

Gaussian curvature approximated from the triangulation and Figure 5.21(b) shows the

absolute difference between Gaussian curvature of the actual surface and the equivalent

approximation from the triangulation, at the same 3D vertex positions. The error scale in

Figure 5.21(b) is the same as in Figure 5.20(b) to illustrate the relative improvement.

130

It can be seen that the occurrence of fluctuations in the Gaussian curvature, caused by the

varying valencies, has been reduced. In addition, the accuracy of the minimum and maximum

Gaussian curvature approximations has been improved. The minimum curvature was

underestimated by 8% and the maximum was calculated exactly, within a tolerance of 1e-6,

meaning they corresponded closer to the curvatures of the original surface when using (5.7).

In the previous test (Section 5.5.4), the maximum absolute difference between the curvature

(a)

(b)

Figure 5.21 (a) Gaussian curvature approximated by the triangulation. (b) Difference

between surface Gaussian curvature and approximation from the triangulation.

131

approximation and the actual curvature value was 0.000023, however, this has been reduced

by 79% to 0.000005. This improvement can be seen graphically in Figure 5.21, which has

less curvature fluctuations than Figures 5.18(b) and 5.20(b).

5.6 Gaussian Curvature Optimised RATC Testing

This section will test the quality of the Gaussian curvature approximated from a triangulation

generated by using the optimised RATC algorithm shown in Section 5.4. Two almost

developable surfaces were used during the testing process. Both surface were taken from

trimmed surfaces, where one defined a rear light (the same as in Section 5.5), and the other

defined a car windscreen. Both surfaces were provided by Pilkington Group Limited. Using

the optimised RATC algorithm (Section 5.4), each surface was triangulated to get a RATC

that best approximated the Gaussian curvature of the original surface. Using the same point

sampling, the surfaces were also triangulated using the 3 global configurations introduced in

Section 5.2. The improved Gaussian curvature approximations (5.7) of all triangulation will

be compared.

Each triangulation was also put through a flattening simulation to find the optimum seed

triangle (Section 4.4.4) that induced the least distortion in terms of the change of absolute

area, A (4.9). The optimum seed flattening results will be presented and analysed to

establish more insight into the effects of triangulation on flattening.

5.6.1 Results

The actual 3D surface areas for the backlight and windscreen surfaces are 362035mm
2
 and

475724mm
2
 respectively. To ensure that the surface area approximated by the 3D

132

triangulation was within a 2mm
2
 tolerance of the original area, the backlight and windscreen

surfaces were subdivided into 60 60 and 70 70 points respectively.

The topological data generated for each RATC was the same for each surface as they used the

same initial point sampling and triangle type (i.e. RATs). The triangulation data for each

surface definition can be seen in Table 5.3.

Surface No. Vertices No.Edges No. Triangles

Backlight 3600 10561 6962

Windscreen 4960 14421 9522

The actual surface minimum, KGmin, and maximum, KGmax, Gaussian curvatures evaluated at

the sampled points are shown in Table 5.4.

Surface KGmin KGmax

Backlight 0.000019 0.000096

Windscreen 0.000002 0.000089

Tables 5.5 and 5.6 show the Gaussian curvature approximations generated from each RATC

triangulation for the backlight and widescreen surface respectively. Each table shows:

1. The minimum and maximum KG approximations.

2. The minimum and maximum absolute difference between KG of the actual surface and

the equivalent approximation from the triangulation, at the same 3D vertex positions.

Table 5.3 Topological data.

Table 5.4 Surface Gaussian Curvature.

133

3. KG difference per vertex, which is the average of the total sum of the absolute

difference over all the vertices of the triangulation.

Configuration KGmin KGmax
Min KG

diff

Max KG

diff

KG diff per

vertex

Chevron 0.000013 0.000099 0 0.000006 0.0000008

Diamond 0.000005 0.000102 0 0.000034 0.00000121

Regular 0.000018 0.000098 0 0.000004 0.00000077

RATC Optimised 0.000019 0.000098 0 0.000004 0.00000077

Configuration KGmin KGmax
Min KG

diff

Max KG

diff

KG diff per

vertex

Chevron 0.000002 0.000094 0 0.000008 0.00000035

Diamond 0.000002 0.000096 0 0.000009 0.00000061

Regular 0.000002 0.000094 0 0.000008 0.00000034

RATC Optimised 0.000002 0.000092 0 0.000007 0.00000031

The optimum seed triangle flattening results for each RATC can be seen in Tables 5.7 and 5.8

for the backlight and windscreen triangulations respectively. For these specific industrial

models, an area difference tolerance of 0.1mm
2
 was used, as area changes above this

tolerance, after flattening, will be considered as significant. Each table shows:

1. Absolute percentage area change between the original 3D and flattened triangulations.

2. The average area change per triangle. This is calculated by summing all area changes

greater than a tolerance of 0.1mm
2
 and dividing by the number of such triangles.

3. Absolute percentage shape change between the original 3D and flattened

triangulations.

Table 5.5 Backlight triangulation Gaussian curvature approximations.

Table 5.6 Windscreen triangulation Gaussian curvature approximations.

134

4. The average shape change per edge. This is calculated by summing all shape changes

greater than a tolerance of 0.1mm and dividing by the number of such edges.

5. The percentage of triangles used as the seed within each triangulation that generated a

successful flattening result.

Configuration ΔA (%)
Average ΔA

(mm
2
)

ΔS (%)
Average ΔS

(mm)

Seed Success

(%)

Chevron 0.49 0.405 0.134 0.515 54

Diamond 0.492 0.457 0.135 0.601 34

Regular 0.475 0.4 0.137 0.591 92

RATC Optimised 0.478 0.428 0.128 0.589 30

Configuration ΔA (%)
Average ΔA

(mm
2
)

ΔS (%)
Average ΔS

(mm)

Seed Success

(%)

Chevron 0.192 0.220 0.052 0.314 69

Diamond 0.205 0.294 0.057 0.38 26

Regular 0.178 0.209 0.058 0.322 90

RATC Optimised 0.181 0.317 0.055 0.461 20

The flattened triangulations for the backlight and windscreen surfaces, for each RATC, can be

seen in Figures 5.22 and 5.23 respectively. Each triangulation also has a colour shading,

showing the triangles that had a change in absolute area. The optimum seed triangle positions

are shown as solid black and white in the wireframe and colour shadings respectively.

Table 5.7 Backlight surface triangulation flattening results.

Table 5.8 Windscreen surface triangulation flattening results.

135

Area difference (mm
2
)

Figure 5.22 Backlight surface flattening results for (a) chevron, (b) diamond, (c) regular

and (d) Gaussian curvature optimised RATCs.

(a)

(b)

(c)

(d)

136

Area difference (mm
2
)

Figure 5.23 Windscreen surface flattening results for (a) chevron, (b) diamond, (c) regular

and (d) Gaussian curvature optimised RATCs.

(a)

(b)

(c)

(d)

137

5.6.2 Gaussian Curvature Approximation Analysis

It can be seen from Tables 5.5 and 5.6 that the triangulation which was optimised for the

Gaussian curvature generated the closest curvature approximation to the original surface. In

general, the curvature approximations generated from all the RATCs were reasonable;

however, the diamond RATC generated the most noticeable difference between the

configurations. The diamond RATC produced the worst estimates for KGmin and KGmax. For

the backlight surface, it underestimated KGmin by 73% and overestimated KGmax by 6%, and for

the windscreen surface, it overestimated KGmax by 8%. The Gaussian curvature RATC

optimised triangulation yielded better results, approximating KGmin exactly, and overestimated

KGmax by only 2% and 3 % for the backlight and windscreen surfaces respectively.

In addition, the diamond configuration also had the highest average KG difference per vertex

over the entire surface. Figure 5.24 illustrates the absolute difference between Gaussian

curvature of the backlight surface and the equivalent approximation from the triangulation, at

the same 3D vertex positions for the Gaussian curvature optimised RATC and diamond

configuration triangulations. It can be seen that the diamond configuration had accumulated

more points with higher Gaussian curvature differences than the optimised triangulation. By

using the optimised triangulation, the average KG difference per vertex was improved by 37%

and 49% for the backlight and windscreen surfaces respectively.

138

The relatively poor approximation of Gaussian curvature is attributed to the constant flipping

of barycentric area magnitudes between vertices with valency 4 and 8, which are the extreme

valencies. Although the improved Gaussian curvature approximation method has greatly

enhanced the estimation values, this global configuration still does not compare well against

the others. However, a useful feature about the triangulation generated by the Gaussian

curvature RATC optimised was that, given a starting point, a well defined triangulation for

both point sets was achieved. Therefore, using this method can help remove ambiguity by

providing a consistent configuration, which can be useful when comparing different flattening

methods.

5.6.3 Flattening Analysis

Tables 5.7 and 5.8 shows that the regular and RATC optimised triangulations generated the

best flattening results for the optimum seed triangle. The diamond configurations

accumulated the most amount of distortion for the area, followed by the chevron, optimised

RATC and regular configurations. This is interesting as it may be interpreted that the

Figure 5.24 Absolute difference per vertex between the surface Gaussian curvature and the

(a) Gaussian curvature optimised and (b) diamond RATC.

139

triangulation that approximated the Gaussian curvature closest, also generated the best

flattening results. Although a better approximation of the surface is no doubt a contributor to

the success of the flattening, as illustrated by the results above, it is noted that the seed

success rate for the optimised RATC was the lowest in every test. The reason for this low

success rate is due to the order in which the triangles were flattened. To illustrate this, the 3

global configurations will be analysed first.

For each global RATC a different mapping order for each triangulation was generated (Figure

5.25), despite using the same edge based mapping order method presented by Cader et al.

(2005).

This is because for each RATC the triangles can be made up of different vertices, which

means that their edges will be incident to different triangles. These topological differences

mean that the mapping order will not be the same for each RATC, hence the flattening result

Figure 5.25 Different mapping orders.

Chevron Diamond Regular

Seed End of

simulation

Mapping Order

140

may not be the same. Further experimental evidence has shown that out of the 3 global

configurations, the regular and chevron configurations give better flattening results and seed

success rates, compared to the diamond configuration (Parwana and Cripps, 2009). This is

because both of these configurations ensure that every vertex within the triangulation,

excluding the boundary edges, is incident to 6 triangles (i.e. valency 6). For these two

configurations, the number of triangles and averaged points (AP) processed per level, for the

given mapping order are the same (Table 5.9-5.10). It can be seen that both the number of

triangles processed and the number of averaged points per level increase linearly, producing a

consistent mapping order.

Regular Configuration Mapping Order Data

Level Seed 1 2 3 4 5 6 7 8 9 10 11

No. Triangles/Level 1 3 6 9 12 15 18 21 24 27 30 33

Total No. Triangles 1 4 10 19 31 46 64 85 109 136 166 199

No. AP/Level 0 0 0 3 3 6 6 9 9 12 12 15

Total No. AP 0 0 0 3 6 12 18 27 36 48 60 75

Chevron Configuration Mapping Order Data

Level Seed 1 2 3 4 5 6 7 8 9 10 11

No. Triangles/Level 1 3 6 9 12 15 18 21 24 27 30 33

Total No. Triangles 1 4 10 19 31 46 64 85 109 136 166 199

No. AP/Level 0 0 0 3 3 6 6 9 9 12 12 15

Total No. AP 0 0 0 3 6 12 18 27 36 48 60 75

Furthermore, for the regular and chevron configurations, the number of triangles, nt, within

the n
th

 level of a mapping order can be defined as:

Table 5.9 Regular RATC mapping order.

Table 5.10 Chevron RATC mapping order.

141

0

(1)
1 3 1 3

2

n

t

i

n n
n i (5.8)

In contrast, the number of triangles and averaged points processed per level in the diamond

mapping order is completely different and does not increment linearly (Table 5.11).

Diamond Configuration Mapping Order Data

Level Seed 1 2 3 4 5 6 7 8 9 10 11

No. Triangles/Level 1 3 5 8 11 13 16 19 21 24 27 29

Total No. Triangles 1 4 9 17 28 41 57 76 97 121 148 177

No. AP/Level 0 0 1 1 4 5 5 8 9 9 12 13

Total No. AP 0 0 1 2 6 11 16 24 33 42 54 67

No. Duplicate AP/Level 0 0 0 0 0 0 0 3 0 0 3 0

Apart from the seed, the number of triangles processed in each level increases in the

following pattern: 2, 3, 3, 2 , 3, 3, 2,…. Neglecting the first two levels of the diamond

configuration mapping order, the number of averaged points processed per level also changes

in a non-linear fashion. These irregular increments are because the valency of the vertices,

within this triangulation, varies between 4 and 8 amongst adjacent vertices. These varying

valencies also cause an additional problem in that a single vertex can be averaged twice

during a flattening simulation (Table 5.11). From level 6, the number of points averaged

more than once per level follows the pattern of: 3, 0, 0, 3, 0, 0, 6, 0, 0, 6,…. This duplicate

averaging of a single vertex does not occur in the chevron or regular configurations, which

will have contributed to the higher seed triangle success rates.

Table 5.11 Diamond RATC mapping order.

142

The optimised RATC triangulation ensures that the Gaussian curvature approximation is the

best, but at the compromise of the vertex valencies being more irregular across the entire

surface. For each of the surfaces, the valencies generated by the optimised RATC

triangulation can be seen in Table 5.12.

 Num of vertices with…

Surface Valency 4 Valency 5 Valency 6 Valency 7 Valency 8

Backlight 58 103 3007 173 23

Windscreen 41 90 4357 100 36

These varying valencies produce far more irregular mapping orders (Figure 5.26), thus

contributing to the lower seed success rates. Nevertheless, despite the low success rate, the

fact that the triangulation approximates the Gaussian curvature more accurately may have

contributed to the minimum distortion of the optimum flattening. It was also noted that the

majority of vertices within the optimised RATCs had a valency of 6; minimising the

irregularity of the mapping order, which may have helped achieve a good optimum flattening.

However, further work would need to be carried out to understand this more rigorously.

Table 5.12 Gaussian curvature optimised RATC vertex valencies.

143

The importance of the mapping order is further highlighted by the placement of the optimum

seed triangle. This test, and other experimental evidence, has shown that for almost

developable surfaces, the optimum seed location is generally towards the centre of the

triangulation. By placing a seed closer to the central region of the triangulation, it essentially

reduces the number of levels which are created in the mapping order, which in turn, reduces

the number of points that are averaged. It also ensures that the distribution of area and shape

distortion is spread more evenly through the entire triangulation.

Interestingly, the regular configuration generated the least change in absolute area for both

surfaces, but also had the largest absolute shape change. It is possible for two triangles to

have different edge lengths but the same area. Therefore, during flattening a triangle‟s edges

may have distorted in a manner such that the 2D triangle generated preserved the original

area. The shape of a triangulation is defined by its edges, which are defined by its vertices.

Figure 5.26 Flattening mapping orders for (a) backlight and (b) windscreen triangulations.

(a) (b)

Seed End of

simulation

Mapping Order

144

Therefore, sampling points from a surface so that the triangulation inherits the shape of the

original surface better could aid in the preservation of shape during flattening. This work is

carried out in Chapter 6.

The Gaussian curvature RATC optimised triangulation generated good quality Gaussian

curvature approximations and relatively good flattening results. However, the regular

configuration appeared to be the best choice of RATC because of its overall success in terms

of approximating the Gaussian curvature well, producing the least area change and the highest

seed triangle success rate, i.e. algorithm stability. The diamond configuration was the least

successful and therefore would not be a good choice for any triangulation being used for

flattening.

145

Chapter 6

TRIANGULATION DEVELOPABILITY

Chapter 5 concentrated on establishing the best connectivity between a given set of points, to

achieve the best possible surface flattening. However, in the same way that a triangulation

dependent algorithm can only perform as well as its triangulation, a triangulation can only be

as good as the underlying points that define it.

When sampling points from the surfaces in Chapter 5, a uniform subdivision method was

used, which took no surface characteristics into consideration to decide the point‟s positional

placements. In a topological sense, the points, which are the lowest level of detail, are joined

by edges to create an approximation of the original surface structure (i.e. shape). Although an

acceptable configuration has been established, the quality of the triangulation may be

enhanced further by sampling the points in such a way that the edges which will be created

from the points will better reflect the shape of the original surface.

146

This chapter will investigate changing the triangulation‟s vertices and the downstream effects

on flattening. It will also present a new triangulation method to approximate the original

surface‟s shape better, which will help aid in developing a better flattening result.

There are many different surface characteristics which can be used for determining the

positions for points to be sampled. However, the characteristic used in this chapter is the axis

of minimum principal curvature (AMPC). To motivate the reason for its usage and how it

could preserve the shape of a 3D triangulation during flattening, a novel test performed on a

developable surface and its triangulation will be presented first.

6.1 Developable Surface Triangulation Problem

Developable surfaces are ideally suited to surface flattening as they are the only surface

definition that will map from 3D to 2D without causing any distortion to the original shape

(McCartney et al., 1999; Wang et al., 2002). Although this statement is undoubtedly true, it

is not necessarily true for a CAE flattening simulation because at no point is the surface

definition directly flattened. The surface is first approximated as a set of triangles, which are

then sequentially mapped into 2D. During the triangulation process, the transfer of geometric

information from the original surface to the triangulation can get lost, meaning that the

triangulation no longer approximates a developable surface. Therefore, the resulting surface

flattening will induce distortion, giving an erroneous result.

Consider a developable surface defining part of a cylinder which has zero curvature along

constant v values as shown in Figure 6.1.

147

Test 1: Uniformly Subdivided Parameter Domain

This surface was first uniformly subdivided into a grid of 20 20 points, evaluated at equally

spaced parametric points (ui, vi), which was then triangulated into a regular RATC. This grid

density has been chosen for illustration and demonstration purposes, whilst producing a

reasonable area approximation (within 5% of the original surface area). In addition, the

regular RATC was used within the triangulation because it is widely adopted by many

structured triangulation schemes (Rockwood et al., 1989; Piegl and Tiller, 1998; Sadoyan et

al., 2006) and was found to provide the best flattening results in Chapter 5. The triangulation

consisted of 772 triangles and was flattened using the Cader et al. (2005) algorithm.

To give an unbiased comparison from the results, the optimum seed triangle was determined

that resulted in the least change in area after flattening (i.e. distortion). Figure 6.2 shows the

original 3D triangulation of the surface and the flattened 2D triangulation. Figure 6.2 also

shows the percentage absolute change in area, ∆A (4.9), and shape, ∆S (4.10), between the 3D

triangulation and the 2D flattening (Figure 6.2(a)) and both the minimum (KGTmin) and

Figure 6.1 Cylinder part surface.

radius = 1m
length = 1m

148

maximum (KGTmax) Gaussian curvature approximations derived from the 3D triangulation

using (5.7) (Figure 6.2(b)). The line of zero principal curvature (LZPC), which is parallel to

the AMPC is also shown on the 3D triangulation. It is noted that all the strings of sampled

points, in the u and v directions, lie parallel to the axis of principal curvatures.

As would be expected, no deformation was induced when this triangulation was mapped into

2D, within tolerances of 1mm and 1mm
2
 for ∆A and ∆S respectively. In addition, the

Gaussian curvature approximated by the triangulation was zero over of entire surface.

Test 2: Points Skewed in the u Parameter Direction

The surface was re-sampled using the same grid size. This time, points in the u direction were

skewed by distorting the parameter spacing along one boundary and linearly blending to the

opposite fixed boundary (Figure 6.3(a)). The amount of skew, which is applied to a single

Figure 6.2 (a) 3D triangulation of part cylinder. (b) Flattened triangulation.

v

u

v

u

Line of zero

principal curvature

∆A = 0.000 %

∆S = 0.000 %

(a) (b)

KGTmin = 0.0

KGTmax = 0.0

149

boundary point, is defined as shown in Figure 6.3(b), where 0% is no skew and 100% is

moving the current point fully to the position of next boundary point along that boundary

edge. Experimental evidence has shown that increasing the percentage of skew has the effect

of increasing the amount of distortion induced within a triangulation.

Therefore, a skew of 90% was applied to the point sampling to help illustrate the effect of

skewing the parameterisation in the u parameter. The points in the v direction remained fixed,

following constant values of v (Figure 6.4(a)).

Figure 6.3 (a) Skewed points in the u parameter direction. (b) Definition of skew amount.

Fixed boundary

points

Skewed

boundary points

v

u

Skew amount

0%

50%

100%

(a) (b)

150

Despite the skew imposed in the u parameter direction on the triangulation, the strings of

points in the v direction continued to follow along the LZPC. Therefore, at least two points

(i.e. one edge) of every triangle followed the LZPC, meaning that the triangulation topology

inherited enough information from the original surface to approximate a developable surface

(Parwana and Cripps, 2009) and flatten without distortion, to within tolerance (Figure 6.4(b)).

Test 3: Points Skewed in the v Parameter Direction

A third grid of points was sampled where the u values were kept constant and the v values

were skewed by 90%, using the same approach as before. In this case, the v parameter values

were no longer parallel to the LZPC (i.e. AMPC) (Figure 6.5(a)). Further, no string of points

followed the LZPC meaning that the topological information of the triangulation no longer

represents a developable surface. This resulted in a distorted flattening of the triangulation,

i.e. greater than tolerance (Figure 6.5(b)).

Figure 6.4 (a) 3D triangulation of part cylinder. (b) Flattened triangulation.

v

u

v

u

Line of zero

principal curvature

∆A = 0.000 %

∆S = 0.000 %

(a) (b)

KGTmin = 0.0

KGTmax = 0.0

151

Figure 6.6 shows the 2D flattening and the magnitudes of positional movement for each

flattened vertex, i.e. the difference between its original flattened position and its final position

after any runtime modifications (vertex averaging as described in Section 4.2.1).

Figure 6.6 Flattened triangulation showing vertex positional movement.

v

u
Vertex positional

movement (m)

Figure 6.5 (a) 3D triangulation of part cylinder. (b) Flattened triangulation.

v

u

v

u

Line of zero

principal curvature

∆A = 0.00136 %

∆S = 0.0006 %

(a) (b)

KGTmin = 0.0004

KGTmax = 0.006

152

Figure 6.7 shows the 2D flattening and the area difference between the 3D triangles and their

corresponding flattened triangles. It can be seen that the regions of the flattened model that

have vertex positional movement are the same regions that have an area change.

The distortion caused by this 3D triangulation is an unexpected result for a developable

surface, since such a surface should flatten without any vertex positional movement or

triangle area change (McCartney et al., 1999; Wang et al., 2002). It is noted that whilst ∆A

and ∆S are small, i.e. 0.00136% and 0.006% respectively (Figures 6.6 and 6.7), the flattening

results shown above were generated by the optimum seed triangle (Section 4.4.4). Therefore,

when flattening this 3D triangulation with other seed triangles, larger magnitudes for area and

shape changes were generated with the maximum ∆A and ∆S being 0.02% and 0.025%

respectively. Furthermore, the method used to skew the parameterisation kept all points along

3 boundary edges fixed and used a linear blending method, thus maintaining a well defined

triangulation. Increasing the severity of the skewing, in the v parameter direction (i.e.

direction of zero curvature), can cause the results from a flattening simulation to get worse

and even fail (Parwana and Cripps, 2009). This is illustrated in the following example.

Figure 6.7 Flattened triangulation showing triangle area difference.

.

v

u
Area difference

(m
2
)

153

The cylinder part was subdivided again into a grid of 20×20 points and triangulated into 722

triangles. Before triangulating points, a linear skew of 90% was applied in both the u and v

directions. To make the points placement more erratic, the skewing was only applying to

points pi,j, for i,j=1, 3, …, 19, where i and j are the vertex indices in the u and v directions

respectively. This would cause the grid of points to oscillate and be more irregular as shown

in Figure 6.8.

In this case, the maximum ∆A and ∆S generated from the flattening was 9.26% and 2.83%

respectively. Furthermore, out of the 722 simulations performed on this triangulation, only

375 (i.e. 52%) flattened without failure. As in Figure 6.5, the strings of vertices for the

triangulation in Figure 6.8 do not follow along the LZPC. In addition, as the severity of the

skewing in the latter‟s triangulation has been increased, it has inherited less developability

from the surface. This is evident from KGTmax, which has increased by a factor of 6 from the

triangulation shown in Figure 6.5.

The increased skewing has also produced many long thin triangles in the triangulation. An

explanation for the 48% seed triangle failure rate could be due to these long thin triangles, as

v

u KGTmin = 0.000

KGTmax = 0.037

∆A = 0.512 %

∆S = 0.083 %

Figure 6.8 Skew severity increased.

.

Zero line of

principal curvature

154

they are numerically unstable and can cause triangle orientation flipping during averaging

(Section 4.4.2). However, this may not be the case as experimental evidence has suggested

that triangles with high aspect ratios do not induce deformation or algorithm failure for

developable surfaces. This is because, multiple 2D flattened positions for a single 3D point

will be coincident, within a numerical tolerance, for developable surfaces. Therefore, the

averaging process will not cause any distortion to be induced. Therefore, as the triangulation

shown in Figure 6.8 is approximating a surface with non zero Gaussian curvatures (i.e. non-

developable), it is possible for distortion and triangle orientation flipping to occur during

vertex averaging.

6.2 Minimum Principal Curvature Line Hypothesis

It was shown in Section 6.1 that the triangulation of a developable surface may not

necessarily be developable. To ensure developabilty was inherited from a surface, it is

suggested that should be sampled along the LZPC. This would ensure that every triangle

would have one edge that followed the AMPC, meaning that the triangulation‟s shape (i.e.

edges) would more accurately approximate the original developable surface‟s structure.

For non-developable surfaces, experimental evidence has shown that surfaces with larger

Gaussian curvatures induce larger amounts of area and shape distortion into the final

flattening result. However, as the surfaces being used throughout this thesis are almost

developable, it is suggested that aligning the sampled points along the AMPC would generate

a triangulation that would inherit the characteristic of developability better. Inheriting more

155

developability in the triangulation‟s shape would have the effect of minimising the amount of

shape distortion, which in turn should induce less area distortion into a flattening simulation.

Currently, no methods exist for generating a triangulation from a surface definition by

sampling points along the axis of minimum (or maximum) principal curvature. Therefore, a

new algorithm is proposed which will subdivide the parameter domain of a developable or

almost developable surface, where the direction of the point sampling will be influenced by

the AMPC. The points being sampled must be generated in such a way that they create cells,

which can then be triangulated by adding a diagonal, i.e. simulating a structured triangulation.

6.3 Algorithm Overview

This section will provide an overview of the algorithm to subdivide and triangulate the

parameter domain a surface, which is influenced by the AMPC. Full details of each stage will

be provided in Section 6.4.

6.3.1 Minimum Principal Curvature Direction Strips

The method begins by uniformly subdividing the parameter domain into m n points, where

m and n are determined so that the area approximation of the triangulation is the same as the

original area within a numerical tolerance. These points will then be used to establish the

modal minimum principal curvature direction (MPCD) (i.e. u direction or v direction)

(Section 6.4, Stage 2). As almost developable surfaces are being used, the MCPD will

generally follow one direction consistently. Therefore, the most occurring (i.e. modal) MCPD

is used.

156

Once calculated, the parameter domain will be subdivided into r strips of cells, which follow

the modal MPCD (Figure 6.10). Details of determining r will be provided in Section 6.4,

Stage 3. The remainder of this overview will assume the strips follow the v direction. The

approach for the u direction is analogous.

6.3.2 Curvature Polylines and Triangulation

Each strip is then individually operated on to find a curvature polyline, which follows the

AMPC in the modal MPCD (Section 6.4, Stage 4). The curvature polyline must be fully

contained within each strip, which will ensure that no two curvature polylines intersect

(Figure 6.11). It is noted that, in some situations, a strip may not have a curvature polyline

that is fully contained within it. In this case, these strips will remain empty after this step

(Figure 6.11).

u direction

Figure 6.10 Subdividing parameter domain r strips for (a) u and (b) v modal minimum

principal curvature directions.

v

u

(b) (a)

v

u

v

direction

157

The next stage is to generate intermediate curvature polylines to ensure that the distance

between adjacent points along v = 0 (u = 0 for u modal MPCD) is no more than the step size

1/m (1/n for u direction). Therefore, the number of intermediate curvature polylines, np,

needed to meet this step size requirement is calculated (Section 6.4, Stage 6) and then the new

polylines are inserted by linearly blending between the two polylines being operated on

(Figure 6.12).

Figure 6.11 Generating curvature polylines for each parameter domain strips.

v

u

Curvature polylines

Empty strips

modal minimum

principal curvature

direction

v = 0

Strips

158

The curvature polylines can then be converted into a grid of cells, which are then triangulated

by adding a diagonal to each cell (Figure 6.13).

6.3.3 Boundary Edge Curvature Polylines and Triangulation

After this initial triangulation, parts of the parameter domain located outside of the first and

last curvature polylines may still remain un-triangulated (Figure 6.13). Therefore, new points

will need to be generated to fill these un-triangulated regions by offsetting the outer curvature

polylines outwards, by a step size of 1/m (1/n for u direction). This process will be performed

on each of the un-triangulated regions (Figure 6.13) until a curvature polyline is generated

where all of the points are located outside of the parameter domain (Figure 6.14). The points

of these offset curvature polylines are then revisited and modified by clamping any polyline

points outside the parameter domain to the nearest vertical (horizontal for u direction)

parameter domain edge (i.e. u = 0, u = 1) (Figure 6.15). These offset points are then

converted into cells and triangulated in the same manner as the interior points, with an

Figure 6.12 Generated new curvature lines to meet the step size requirement.

v

u

Original

curvature polylines

v = 0

New

curvature polylines

Strips

159

additional check to see whether the cell points are all collinear, i.e. the u coordinates of all

points are the same, within tolerance (v coordinate for u direction). If this occurs, the cell is

collinear (i.e. degenerate) and is not triangulated (Section 6.4, Stage 8).

Figure 6.14 Offset curvature polylines generated.

v

u

Offset

curvature polylines

Offset

curvature polylines,

with all points

outside of domain

Figure 6.13 Triangulated and un-triangulated regions of parameter domain.

v

u

Un-triangulated

regions

160

6.4 Algorithm Details

This section will provide full details of the different algorithm stages outlined in Section 6.3.

Stage 1: Subdividing the Surface

Given a NUBS surface, S(u, v), defined over the normalised parameter domain u,v [0,1]

(Section 1.1.3), the first stage is to represent the parameter plane as a uniformly subdivided

m n grid of points. m and n are user defined quantities, which define the mesh density. In

this thesis, m and n were chosen so that the approximation of the triangulation area was within

a tolerance of 2mm
2
 of the original surface area.

Figure 6.15 Clamping points outside of the parameter domain to the nearest edge.

v

u

u = 0 u = 1

Points clamped to

domain edges u = 0

and u = 1

161

Stage 2: Establish Minimum Principal Curvature Direction

The next stage is to evaluate the surface‟s principal curvatures and directions at each grid

point using the method shown in Section 1.4.2. At each of these points, the minimum

curvature κmin and its direction (dumin, dvmin) is checked to establish which parameter direction

the minimum curvature line is following. If min mindu dv , then the AMPC tends towards

the u (horizontal) direction, otherwise if min mindu dv , then it is tending towards the v

(vertical) direction. If the two directions are equal, within a zero tolerance, then no direction

is recorded. After evaluating the surface at all the grid points, the modal direction will be

taken to be the MPCD. If there were no directions recorded, during this testing phase, or the

modal values for each direction are the same, then both directions have the same influence in

which case either the u or v direction can be used.

The remainder of this algorithm will assume that the MPCD tends towards the vertical

direction (v). The method used for the horizontal direction (u) is analogous.

Stage 3: Splitting the Surface into Regions

The next stage is to subdivide the parameter domain into strips of rectangular regions along

the minimum principal curvature direction. For the vertical direction, the parameter domain

will be split into r = m/2 strips (n/2 strips for horizontal direction) as shown in Figure 6.16(a).

162

The next stage is to take each strip and subdivide the v direction into n-1 cells (m-1 for

horizontal direction) and then partition the bottom edge of the cell (i.e. along v=0 edge) into a

set of s points P = {p0, p1, …, ps-1} (Figure 6.16(b)). The number for subdivisions, s, is user

specified where a larger number will generate a greater number of curvature polylines for a

single strip. This will have the effect of performing more comparisons between curvature

polylines to find one which has the least horizontal range (Stage 4). Larger values of s will

make a curvature influence more accurate, but at the cost of longer processing times.

Experimental evidence has shown that a value between 5 and 10 is more than sufficient for

almost developable surfaces.

Figure 6.16 (a) Subdividing parameter domain vertically into m/2 strips. (b) Generating

cells from a strips and subdividing v=0 into nums points.

v

u

Vertical

direction

n -1

cells

P

(a) (b)

v = 0

163

Stage 4: Generating Polylines of Minimum Curvature

The generation of the minimum curvature polyline begins by taking the first point, p0(u0, v0),

and calculating the MPCD, from the actual surface. This direction, (du0, dv0) (Figure

6.17(a)), is used to generate a straight line, l0, which is bounded between v = v0 and v = v0 +

1/(n -1), has the gradient dv0/du0 and passes through p0. A second line, l1 = v0 + 1/(n - 1), is

generated which is parallel to the u axis. The intersection point, pint, between l0 and l1 is

calculated and then joined with p0 to form the first polyline segment of the principal curvature

line (Figure 6.17(b)).

To complete the minimum principal curvature polyline, this process is repeated by evaluating

each pint for its MPCD. This iterative process is continued until the cell edge v=1 is reached,

which will terminate the current polyline (Figure 6.18). The minimum polyline plmin, for this

strip is stored. The next minimum curvature polyline will be then be generated by starting the

process from then next point in the set P.

Figure 6.17 (a) Vertical principal curvature direction at p0 and (b) intersection between l0

and l1.

v

u

(du0, dv0)
pint

p0

l0

l1

v = 0

v = 1
(a) (b)

164

Each time a new curvature polyline is created, its horizontal range will be checked against the

current plmin (Figure 6.19). If the current curvature polyline has a smaller horizontal range

than plmin, then this current polyline will be stored as plmin, otherwise it will be rejected. This

will ensure that the straightest minimum curvature polyline is retained for each strip.

By fully containing each minimum curvature polyline within a strip, no adjacent polylines

will intersect. However, when generating the polylines, in some cases, lines l0 and l1 may not

Smaller horizontal

range

Larger horizontal

range

Figure 6.19 Comparing two horizontal ranges of curvature polylines.

Figure 6.18 Vertical curvature polyline generated from p0.

p0
v = 0

v = 1

Vertical principal

curvature direction

Intersection points

165

intersect. This will mean that l0 will have an end point outside of the strip boundaries. As the

polyline is no longer fully contained within a strip, this could cause intersection with adjacent

polylines. Therefore, if l0 and l1 do not intersect, the current polyline is deemed invalid and

any previous segments contributing to it are rejected. The process is then restarted using the

next point in the set P. As a consequence of this check, it may be possible for a strip not to

have a plmin. This is not a problem, as these empty strips are filled by strategically creating

new curvature polylines as shown in Stage 6.

Stage 5: Checking Minimum Curvature Polylines

Once all the strips have been processed, if no plmin polylines were generated for any strips,

this implies that the strips were too narrow and therefore must be altered to generate some

minimum curvature polylines for this surface. Therefore, the method returns to Stage 3 and

subdivides the parameter domain into r - 1 strips, before Stages 4 and 5 are repeated. This

process is continued until at least one minimum curvature polyline is generated.

Stage 6: Linearly Blending Between Minimum Curvature Polylines

The plmin polylines generated may have gaps between them which exceed the required u

direction step size along v = 0. Therefore, new curvature polylines may need to be generated

between existing pairs to ensure this step size criterion is met. The number of polylines, np,

needed in between consecutive pairs of polylines, pli and plj, is determined by taking the first

point of each polyline, pi(ui, vi) and pj(uj, vj) (i.e. points along the v=0 boundary) and using:

() 2p j in u u m (6.1)

For minimum curvature polylines defined in the u direction, the number of intermediate

polylines needed is:

166

() 2p j in v v n (6.2)

The new polylines, plk, k=0, 1, …, np-1, are generated by linearly blending between pli and

plj, to generate the required polylines.

Stage 7: Triangulation Minimum Curvature Polylines

Once a full set of minimum curvature polylines has been generated, they will represent a

structured grid of non-intersecting point-strings which can be converted into cells. These

cells will then be triangulated by adding a diagonal, i.e. regular configuration. This regular

configuration has been chosen as it was found to give the best flattening results in Chapter 5

(Section 5.6.3). It will also allow for a direct comparison between a regular RATC generated

from a uniformly sampled grid, and one which has been generated by following the „ideal‟

AMPC. The flattening results for each method will be presented and compared in Sections

6.5 and 6.6.

Stage 8: Triangulating Boundary Edges

After triangulating between the minimum curvature polylines, it possible that parts of the

surface, located on either side of the current triangulation, may still need to be triangulated

(Figure 6.13).

To triangulate these parts of the surfaces, new points will be generated by offsetting the outer

minimum curvature polylines by a set size of 1/m (1/n for u direction). The offsetting of the

polylines is continued until a polyline is generated, where all the points are located outside the

parameter domain. The offset polylines are then revisited, and any points that are contained

167

outside of the parameter domain are clamped to the nearest vertical parameter domain edge

(horizontal edge for u direction).

The final stage is to generate cells between pairs of offset polylines, and triangulate them by

adding a diagonal. Two checks must be carried out when creating the cell to ensure that they

will form non-degenerate triangles. First, if all the points of a cell are collinear, with

tolerance, (i.e. all have the same u coordinate), then the cell is degenerate and not

triangulated. Secondly, if any two points of the cell are coincident, within a zero tolerance,

then the duplicate point is removed and the 3 remaining points are used to generate a triangle

(Figure 6.20(b)).

6.5 Principal Axis Triangulation Testing

This section will analyse the quality of the flattening results generated by a triangulation that

attempts to align the points along the AMPC. The backlight and windscreen surfaces will be

used again as the test pieces. A comparison will also be conducted between the flattening

u = 1

p2 = p3

p1 p0

u = 0

p2 = p3

p1 = p1

Figure 6.20 (a) Cell points all collinear. (b) 2 cell points are coincident.

(a) (b)

168

results generated from this triangulation and the uniformly sampled regular RATC

triangulations from Section 5.6.1.

Each triangulation will be put through multiple flattening simulations to find the optimum

seed triangle that induces the least absolute area (A) distortion. In addition, the Gaussian

curvature of the triangulation will also be analysed to check the quality of its approximation.

6.5.1 Results

To ensure the surface area approximated by the 3D triangulation was within a 2mm
2
 tolerance

of the original area, the backlight and windscreen surfaces were subdivided into 62 62 and

70 70 points respectively (Figure 6.21).

For almost developable surfaces, in general, the minimum principal curvature lines generated

by this triangulation algorithm will not necessarily follow along the iso-parameter lines of the

surface. Therefore, many long thin triangles will be formed along the boundary edges of the

surface. Figure 6.22 shows the long thin triangles generated along the boundary edges for the

Figure 6.21 (a) Backlight and (b) windscreen surface 3D triangulations.

.

(a) (b)

169

windscreen surface. These long thin triangles could cause algorithm instability during

flattening (Section 4.4).

Therefore, to make the flattening algorithm more stable, these long thin triangles were

removed (Figure 6.23). This was done during the boundary edge triangulation process

(Section 6.4, Stage 8) by only triangulating cells where the distance between every pair of

points was more than 1mm. Removing these long thin boundary edge triangles is completely

feasible for trimmed surfaces, where the un-triangulated cells are outside of the trimming

region (Section 4.4.3).

Figure 6.22 Long thin triangles along the boundaries of the windscreen surface

triangulation.

.

170

The triangulation data for each surface definition can be seen in Table 6.1.

Surface No. Vertices No. Edges No. Triangles

Backlight 3542 10381 6840

Windscreen 4901 14392 9492

The minimum, KGmin, and maximum, KGmax, Gaussian curvatures evaluated from the surface

sampled points are shown in Table 6.2.

Surface KGmin KGmax

Backlight 0.000022 0.000098

Windscreen 0.000002 0.000088

Table 6.3 shows the Gaussian curvature approximations generated from each triangulation for

the backlight and windscreen surface.

Figure 6.23 (a) Backlight and (b) windscreen surface 3D triangulations.

.

(b)

Table 6.1 Topological data.

Table 6.2 Surface Gaussian Curvature.

(a)

171

Configuration KGmin KGmax
Min KG

diff

Max KG

diff

KG diff per

vertex

Backlight 0.000021 0.000098 0 0.000004 0.00000074

Windscreen 0.000002 0.000091 0 0.000009 0.00000031

The optimum seed triangle flattening results for each surface triangulation can be seen in

Table 6.4. For comparison, Table 6.5 shows the flattening data for the regular RATC tests

that were performed in Section 5.6.

Surface ΔA (%)
Average ΔA

(mm
2
)

ΔS (%)
Average ΔS

(mm)

Seed Success

(%)

Backlight 0.452 0.378 0.131 0.548 88

Windscreen 0.16 0.196 0.052 0.299 90

Surface ΔA (%)
Average ΔA

(mm
2
)

ΔS (%)
Average ΔS

(mm)

Seed Success

(%)

Backlight 0.475 0.4 0.137 0.591 92

Windscreen 0.178 0.209 0.058 0.322 90

The flattened triangulations for the backlight and windscreen surfaces, for each AMPC

influenced triangulation, can be seen in Figures 6.24. Each triangulation also has a colour

shading, showing the triangles that had a change in absolute area. The optimum seed triangle

positions are shown as solid black and white in the wireframe and colour shadings

respectively. Figure 6.25 shows the flattening results generated from the regular RATC

triangulations, using a uniformly sampled grid, from Section 5.6.

Table 6.3 Backlight triangulation Gaussian curvature approximations.

Table 6.4 Principal curvature influenced triangulation flattening results.

Table 6.5 Regular RATC triangulation (regular grid) flattening results.

172

6.5.2 Gaussian Curvature Approximation Analysis

It can be seen from Table 6.3 that the AMPC influenced triangulations generated good

approximations for the Gaussian curvature. For the backlight surface, KGmin was relatively

underestimated by 5% and for the windscreen surface KGmax was relatively overestimated by

4%. These Gaussian curvatures cannot be directly compared to the regular RATC

triangulation results from Chapter 5, as the curvatures are evaluated at different points

Figure 6.24 (a) Backlight and (b) Windscreen flattening results from AMPC influenced

triangulations.

(a)
Area difference (mm

2
)

(b)

173

along the surface, thus giving different Gaussian curvature values. However, it is noted that

the average KG difference per vertex, for the entire principal curvature triangulation, was less

than the regular RATC triangulation, generated from a uniformly sampled grid, by 4% and

9% for backlight and windscreen respectively (Section 5.6.1, Tables 5.5 and 5.6). This is

essentially indicating that the Gaussian curvature approximation across all points was closer

to the actual values than the regular triangulation in Section 5.6.

Figure 6.25 (a) Backlight and (b) Windscreen flattening results from regular RATC

triangulations using a uniformly sampled grid of points.

(a)
Area difference (mm

2
)

(b)

174

The Gaussian curvature is the product of the minimum and maximum principal curvatures

(Section 1.4.3). Therefore, by taking the influence of the MPCD when sampling points, the

triangulation topological data inherited this characteristic more accurately, which resulted in a

better approximation of the Gaussian curvature. This suggests that having the triangulation

vertices influenced by both the directions of principal curvature could enhance the quality of

the Gaussian curvature approximation. However, further research would need to be

conducted for this to be established.

6.5.3 Flattening Analysis

In terms of the flattening results, the magnitude of area and shape distortion caused by the

AMPC influenced triangulations was reduced, when compared with the regular RATC

triangulations from Section 5.6. The amount of absolute area distortion has been reduced by

5% and 10% for the backlight and windscreen triangulations respectively. Furthermore, the

magnitudes of the absolute shape distortion were also improved by 4% and 10% for the

backlight and windscreen triangulations respectively.

These improvements are attributed to the fact that the AMPC influenced triangulations

inherited more developability information by ensuring that one edge of every triangle

followed along the modal AMPC. Therefore, when flattening these edges, they will undergo

less geometrical change, as they follow along lines of minimum principal curvature. As the

edges define the shape of the triangulation (Section 4.3), this will result in less shape

distortion, which will cause less area distortion. This reduction in distortion can be seen in

Table 6.4. Furthermore, the average area change per triangle and average shape change per

edge was also improved from the regular RATC triangulation from Section 5.6.

175

Chapter 7

CONCLUSIONS AND FUTURE WORK

This thesis investigated triangulation and the downstream effects on surface flattening. Two

novel topics were explored, notably RATCs and AMPC influenced triangulations, each of

which was found to have an impact on the triangulation dependant method of surface

flattening.

RATs are commonly used throughout research and literature (Section 2.10, Section 4.1).

However, given a set of n cells, generated from uniformly sampled points, there are 2
n

different ways in which the diagonals could be placed to form a final triangulation consisting

of RATs. These different combinations of edges were introduced as RATCs. The choice of

RATC is an ambiguity currently existing in literature. For example, McCartney et al. (1999)

and Cadar et al. (2005) both present flattening algorithms using different RATCs. This can

make it difficult to compare data as the RATCs are not consistent and the impact of each on

flattening is not understood (Parwana and Cripps, 2009).

176

To investigate the effects of RATCs three global configurations were proposed, notably

regular, diamond and chevron (Section 5.2). In addition, local variations of RATCs were also

explored. Rather than randomly changing the local RATC of a triangulation, a new method

was presented to locally fit RATCs that best approximated the local Gaussian curvature of the

original surface (Section 5.4). The advantage of locally varying RATCs based on a surface

characteristic was that a well defined solution would be generated, removing any ambiguities

when choosing a RATC.

During the development of this optimised RATC algorithm, it was found that the current

method used to approximate the Gaussian curvature from a triangulation (Section 5.5.2) did

not work well for triangulations consisting of RATs with varying valencies (i.e. locally

changing RATCs). Therefore, the Gaussian curvature approximation algorithm was improved

by applying an area compensation factor (Section 5.5.5) to account for these valency changes.

The Gaussian curvature optimised RATC and three global RATCs were applied to two almost

developable surfaces, which were then flattened and compared (Section 5.6). The flattening

results presented, for each configuration, were those produced by the optimum seed triangle

(i.e. seed triangle that induced the least absolute area change). For both surfaces, the

optimised RATC triangulations generated the closet Gaussian curvature approximation to the

original surface. The diamond configuration was found to generate the worst approximation

because the vertex valencies of the points, within the triangulation, varied between 4 and 8,

which are the extreme valencies (Section 5.6.2). From the three global RATCs, the regular

configuration was found to produce the best Gaussian approximation, which was very close to

the optimised RATC (Section 5.6.1).

177

In terms of flattening, the regular configuration was found to produce the least change in

absolute area, followed by the optimised RATC. The diamond configuration was found to

induce the largest absolute area distortion. The improved flattening results of the regular

configuration were attributed to the fact that the valency of every triangle within the

triangulation was the same. Unlike the diamond configuration, this consistent vertex valency

ensured that a regular mapping order was generated when the triangulation was being

flattened (Section 5.6.3). The power of the regularity of the vertex valencies was further

highlighted by the fact that the regular configuration had the highest seed triangle success

rate, making this RATC the most stable. The optimised RATC also had many varying

valencies, which caused it, like the diamond configuration, to have a very low seed success

rate. However, despite the low success rate, the flattening result generated by the optimised

RATC was still good as it approximated the original surface characteristics well. Although

this result was distinguished from the case studies in Section 5.6, further work would be

suggested to perform an in-depth investigation into the influence of Gaussian curvature driven

triangulations and the downstream effects on flattening. This study could provide valuable

feedback, which could be used to create an improved method and error analysis for

approximating Gaussian curvature from a triangulation.

In addition to seed success rates, the optimum seed triangle was commonly used throughout

this thesis when comparing the performance of different triangulations on flattening. The

seed triangle placement is an interesting factor and it was found that optimum seed triangle

was generally located towards the centre of a surface. This is because it reduces the number

of levels which are generated by the mapping order, reducing the number of triangles that

178

need average, which reduces the amount of distortion. The method that was used to

determine the optimum seed triangle was to trial every triangle within the triangulation as the

seed, flattening the triangulation and then retrospectively choosing the triangle that induced

the least absolute change in area. However, this method was very inefficient and time

consuming for triangulations with large densities. Therefore, a suggestion for future work is

to further investigate the optimum seed position and establish a method that identifies its

position by analysing the shape of the triangulation.

The regular configuration was found to produce the best overall flattening result in terms of

absolute area change and seed success rate. However, it was observed that the Gaussian

curvature optimised RATC performed better in terms of absolute shape change. This was

attributed to the fact that the Gaussian curvature optimised triangulation inherited the shape of

the original surface better than the regular configuration. To explore this idea of surface

shape preservation within a triangulation, another interesting study was performed on the

influence of triangulation developability and the effects on flattening. Developable surfaces

should flatten without inducing any area or shape distortion. However, it was shown that the

transfer of this developabilty information from the surface to the triangulation can be lost

(Section 6.1). It was established, through experimental evidence, that skewing the vertices of

a triangulation in a particular manner, so that no triangle edges followed along the AMPC,

would cause the flattening to induce distortion. As the shape of a triangulation is defined by

its edges, by having no edges follow along the AMPC meant that the triangulation did not

inherit this shape characteristic.

179

Therefore, a new method was proposed to triangulate a surface, whilst ensuring that one edge

of every triangle followed the general direction of the AMPC (Section 6.3). This

triangulation scheme was found to improve the surface flattening of an almost developable

surface. By inheriting the developability of the original surface better, the absolute shape

change of the triangulation after flattening was reduced when compared against the regular

configuration triangulations of Section 5.6. It was also found that this triangulation

approximated the Gaussian curvature of the original surface more accurately than this regular

configuration (Section 6.2). It is suggested that ensuring that the edges follow both the axis of

minimum and maximum principal curvature, may help improve the Gaussian curvature

further. In addition, as the principal directions are always perpendicular at any given 3D

point, this method may also be useful in generating triangulations that truly consist of RATs

in real space. Therefore another suggestion for future work is to further investigate and

understand the effects of preserving and maintaining the developability of a triangulation.

The current method could be improved by using C
2
 continuous polylines rather than just C

1
 to

improve the approximation for the AMPC. This work could also be extended by formulating

a method that generates these polylines and classifies the developability before any flattening

is performed. This investigation could be the key to establishing a definite measure to define

an almost developable surface, which is still an ambiguity which remains within this area of

work. For example, the curvature of the polylines generated from the AMPC could be a

measure of the developability.

This thesis also introduced a new efficient and robust parametric trimmed surface

triangulation method (Chapter 3). Efficiency was gained during trimmed curve tracing by

minimising the number of cells processed. Key features were the efficient tracing algorithm

180

and knowledge of orientation of the trimming curves is not required (Cripps and Parwana,

2011). The method is applicable to NUBS surfaces and operates on the untrimmed surface,

constructing a rectangular parametric grid onto which the trimming curves are traced. This

approach also minimises the occurrence of degenerate triangles and copes with holes

independently of the grid size.

181

REFERENCES

de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O. (2000), Computational

Geometry Algorithms and Applications, Second Edition, Springer-Verlag, ISBN 3-540-

65620-0.

de Boor, C. (1972), On calculating with B-Splines, Journal of Approximation Theory, 6, pp.

50-62.

Cader, R.A., Ball, A.A. and Cripps, R.J. (2005), Pattern shape design for ceramic ware: an

integrated solution, International Journal of Computer Integrated Manufacturing, 19(3), 287-

293.

Clarkson, K., Tarjan, R.E. and van Wyk, C.J. (1989), A fast Las Vegas algorithm for

triangulating a simple polygon, Discrete Computer Geometry, 4, pp. 423-432.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001), Introduction to Algorithms,

Second Edition, The Massachusetts Institute of Technology, ISBN 0-262-03293-7.

182

Cox, M.G. (1972), The numerical evaluation of B-Splines, Institute of Mathematics and its

Application, 10, pp. 134-149.

Cripps, R.J. and Cook, P.R. (1999), Point based CADCAM, Advances in Manufacturing

Technology XIII, Proceedings of the 15
th

 National Conference of Manufacturing Research,

University of Bath, 6-8 September, pp. 149-153.

Cripps, R.J. and Parwana, S.S. (2011), A robust efficient tracing scheme for triangulating

trimmed parametric surfaces, Computer-Aided Design, 43, pp. 12-20.

Czerkawski, A.M. (1996), Fitting Procedures for Curves and Surfaces, Ph. D. Thesis,

Geometric Modelling Group, The University of Birmingham, UK.

Delcam Plc (2010), www.delcam.co.uk, [26 June 2010].

Dyn. N., Hormann, K., Kim, S. and Levin, D. (2001), Optimizing 3D triangulations using

discrete curvature analysis, Mathematical Methods in CAGD: Oslo 2000 Nashville,

Vanderbilt University Press, pp. 135-146.

Faux, I.D. and Pratt, M.J. (1985), Computational Geometry for Design and Manufacture, Ellis

Horwood Limited, ISN 0-8531-2114-1.

Field, D.A. (1991), A generic Delaunay triangulation algorithm for finite element meshes,

Advances in Engineering Software, 13, pp. 263-272.

http://www.delcam.co.uk/

183

Foley, J.D, van Dam, A., Feiner, S.K. and Hughes, J.F. (1995), Computer Graphics-

Principles and Practice, Second Edition, Pearson Education, ISBN 0-321-2105-65.

Frey, P.J, George, P-L. (2000), Mesh Generation Application to Finite Elements, HERMES

Science Publishing, ISBN 1-903398-00-2.

Kumar, G.V.V.R., Srinivasan, P., Shastry, K.G. and Prakash, B.G. (2001), Geometry based

triangulation of multiple trimmed NURBS surfaces, Computer-Aided Design, 33, pp. 439-

454.

Kumar, S. and Manocha, D. (1995), Efficient rendering of trimmed NURBS surfaces,

Computer-Aided Design, 27(7), pp. 509-521.

Kumar, S. and Manocha, D. (1996), Interactive Display of Large Scale NURBS models, IEEE

Transactions on Visualisation and Computer Graphics, 2(4), pp. 323-336.

Lipschutz, M.M. (1969), Schaum's Outline of Differential Geometry, McGraw-Hill,

ISBN 0-070-37985-8.

Lockyer, P.S. (2007), Controlling the Interpolation of NURBS Curves and Surfaces, Ph. D.

Thesis, Geometric Modelling Group, The University of Birmingham, UK.

Lohner, R. and Parikh, P. (1988), Generation of three-dimensional unstructured grids by the

advancing front method, International Journal for Numerical Methods in Fluids, 8, pp. 1135-

1149.

184

Luken, W.L. (1996), Tessellation of trimmed NURB surfaces, Computer-Aided Geometric

Design, 13, pp. 163-177.

McCartney, J., Hinds, B.K. and Seow, B.L. (1999), The flattening of triangulated surfaces

incorporating darts and gussets, Computer-Aided Design, 31, pp. 249-260.

Meek, D.S. and Walton, D.J. (2000), On surface normal and Gaussian curvature

approximations given data sampled from a smooth surface, Computer-Aided Geometric

Design, 14(6), pp. 521-543.

Nutbourne, A.W. and Martin, R.R. (1988), Differential Geometry Applied to Curve and

Surface Design (Volume 1: Foundations), Ellis Horwood Limited, ISBN 0-7458-0140-4.

O‟Rourke, J. (2001), Computational Geometry in C, Second Edition, Cambridge University,

ISBN 0-521-64976-5.

Parwana, S.S. and Cripps, R.J. (2009), Surface triangulation and the downstream effects on

flattening, Mathematics of Surfaces XIII, 13
th

 IMA International Conference, York, 7-9

September, pp. 293-306.

Peterson, J. W. (1994), Tessellation of NURBS surfaces, In Graphics Gems IV, Academic

Press, ISBN 0-123-36155-9, pp. 286-320.

185

Piegl, L.A and Richard, A.M. (1995), Tessellating trimmed NURBS surfaces, Computer-

Aided Design, 27(1), pp. 16-26.

Piegl, L.A. and Tiller, W. (1997), The NURBS Book, Second Edition, Springer-Verlag, ISBN

3-540-61545-8.

Piegl, L.A. and Tiller, W. (1998), Geometry based triangulation of trimmed NURBS surfaces,

Computer-Aided Design, 30(1), pp. 11-18.

Pilkington Group Limited (2010), www.pilkington.com, [26 June 2010].

Riesenfeld, R.F. (1973), Applications of B-Spline Approximation to Geometric Problems of

Computer-Aided Design, Ph. D. Thesis, Syracuse University.

Rockwood, A., Heaton, K. and Davis, T. (1989), Real-time rendering of trimmed surfaces,

ACM Computer Graphics, 23(3), pp. 107-116.

Rogers, D.F. and Adams, J.A. (1990), Mathematical Elements for Computer Graphics,

Second Edition, McGraw-Hill, ISBN 0-07-100289-8.

Sadoyan, H., Zakarian, A., Avagyan, V. and Mohanty, P. (2006), Robust uniform

triangulation algorithm for computer aided design, Computer-Aided Design, 38, pp. 1134-

1144.

http://www.pilkington.com/

186

Schneider, P.J. and Eberly, D.H. (2003), Geometric Tools for Computer Graphics, Morgan

Kaufmann, ISBN 1-558-60594-0.

Schoenburg, I.J. (1946), Contributions to the problem of approximation of equidistant data by

analytical functions, Applied Mathematics, 4(1), pp. 45-99; 112-141.

Shimada, K. and Gossard, D.C. (1998), Automatic triangular mesh generation of trimmed

parametric surfaces for finite element analysis, Computer-Aided Geometric Design, 15, pp.

199-222.

Shu, C. and Boulanger, P. (2000), Triangulating Trimmed NURBS Surfaces, Curve and

Surface Design: Saint Malo, Vanderbilt University Press, ISBN 0-826-51356-5.

Seidel, R. (1991), A simple and fast randomised algorithm for computing trapezoidal

decompositions and triangulating polygons, Computational Geometry Theory and

Application, 1(1), pp. 51-64.

Sheng, X. and Hirsch, B.E. (1992), Triangulation of trimmed surfaces in parametric space,

Computer-Aided Design, 24(8), pp. 437-444.

Shimada, K. and Gossard, D.C. (1998), Automatic triangular mesh generation of trimmed

parametric surfaces for finite element analysis, Computer-Aided Geometric Design, 15, pp.

199-222.

187

Shu, C. and Boulanger, P. (2000), Triangulating Trimmed NURBS Surfaces, Curve and

Surface Design: Saint Malo, Vanderbilt University Press, ISBN 0-826-51356-5.

Sugihara, K. and Inagaki, H. (1995), Why is the 3D Delaunay triangulation difficult to

construct?, Information Processing Letters, 54, pp. 275-280.

Versprille, K.J. (1975), Computer-aided Deisgn Applications of the Rational B-Spline

Approximation Form, Ph. D. Thesis, Syracuse University, Syracuse, NY.

Wang, C.C.L., Smith, S.S-F. and Yuen, M.M.F. (2002), Surface flattening based on energy

model, Computer-Aided Design, 34, pp. 823-833.

Wang, D., Hassan, O., Morgan, K. and Weatherill, N. (2006), EQSM: An efficient high

quality surface grid generation method based on remeshing, Computer Methods in Applied

Mechanics and Engineering, 195, pp. 5621-5633.

Weiler, K. and Atherton, P. (1977), Hidden surface removal using polygon area sorting, ACM

SIGGRAPH Computer Graphics, 11(3), pp. 214-222.

