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SYNOPSIS 

 

Surface triangulation is an active area of research due to its wide usage in a range of different 

computer aided applications, including computer aided design (CAD), manufacture (CAM) 

and finite element analysis (FEA).  Although these applications are used to create, interrogate, 

manipulate and analyse surfaces, internally they actually approximate the surface geometry 

using a triangulation and then operate on the triangles, making them triangulation dependant 

algorithms.  However, despite the reliance on the triangulation by the downstream application, 

there is very little work which has been focused on the inherent affects of the underlying 

triangulation on the performance or result of the application.  Therefore, the impact of the 

triangulation on the downstream application is still not well known or defined. 

 

This thesis investigates triangulation and the downstream effects on the triangulation 

dependant method of surface flattening.  Two novel topics are explored, notably right angle 

triangulation configurations (RATCs) and axis of minimum principal curvature (AMPC) 

influenced triangulations, each which was found to have an impact on the triangulation 

dependant method of surface flattening. 
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Right angle triangles (RATs) are commonly used throughout surface flattening.  However, 

given a set of uniformly sampled points, there are many different ways in which the diagonals 

can be placed to form a final triangulation consisting of RATs.  These different configurations 

of edges are introduced as RATCs.  To investigate the effects of RATCs on surface flattening, 

three global configurations are proposed; regular, diamond and chevron.  In addition, local 

variations of RATCs are explored by fitting RATCs that best approximated the local Gaussian 

curvature of the original surface.  

 

Also considered is the influence of triangulation developability and its effects on flattening.  

Developable surfaces should flatten without inducing any area or shape distortion.  However, 

it is shown that the transfer of this developabilty information from the surface to the 

triangulation can be lost.  It is established that skewing the vertices of a triangulation so that 

no triangle edges followed along the AMPC, causes the flattening to induce distortion.  As the 

shape of a triangulation is defined by its edges, if no edges follow along the AMPC, this 

means that the triangulation will not inherit this shape characteristic.  Therefore, a new 

method is proposed to triangulate a surface, whilst ensuring that one edge of every triangle 

follows along the general direction of the AMPC.   

 

This thesis also introduces a new efficient and robust parametric trimmed surface 

triangulation method.  Efficiency is gained during trimmed curve tracing by minimising the 

number of cells processed.  Key features are the efficient tracing algorithm and knowledge of 

orientation of the trimming curves is not required.  This approach also minimises the 

occurrence of degenerate triangles and copes with holes independently of the grid size. 
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Chapter 1 

INTRODUCTION 

 

Computer aided engineering (CAE) is now a mature technology that has been widely adopted 

by industry.  CAE suites are a composite of many diverse systems used through a product‟s 

development pipeline, including computer aided design (CAD), manufacture (CAM) and 

finite element analysis (FEA) packages.  The use of CAE can aid in reducing lead times 

(Cader et al., 2005) and hence reduce costs in rapid prototyping, testing and production.  

These factors have contributed to CAE‟s wide usage in industry, thus encouraging much 

research and development.  

 

In order to use CAE, a virtual representation of an object is required which can be 

characterised in a number of different ways.  One type of representation uses discrete data 

(Cripps and Cook, P.R., 1999), where a model is acquired as a set of points (Figure 1.1).  

These points can then be strategically joined with edges to create a set of triangles that 

approximates the original shape, known as a triangulation or mesh.  Understanding the data 

provided and knowing how to interpret the points can be a difficult task as it is not guaranteed 

that the points will be acquired in a logical and structured manner.  Furthermore, the points 
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are an approximation of the original geometry; therefore the integrity of the model may be 

compromised.  Triangulation optimisation (also known as remeshing) techniques can be used 

to modify the density and uniformity of triangles within a triangulation and have been well 

studied (Shimada and Gossard, 1998; Shu and Boulanger, 2000; Wang et al., 2006).  

However, these methods do not guarantee that any new points, edges or triangles created will 

necessarily lie on the original model geometry.      

 

An alternative approach is to use a mathematical representation of a model such as a 

collection of surfaces (Kumar et al., 2001) (Figure 1.2).  Again, to use many CAE 

applications, these mathematical models must be approximated as a set of triangles.  In this 

case the mathematical definitions are evaluated to generate a list of points that are then 

connected together to form a triangulation (Rockwood et al., 1988; Kumar and Manocha, 

1995, 1996; Piegl and Tiller, 1998).  The advantage here is that the point density, and hence 

accuracy of the approximation can be controlled with a guarantee that any new points 

sampled will lie on the actual model (Piegl and Tiller, 1998).  Furthermore, the points can be 

generated in a structured way, making the triangulation process more efficient and robust 

(Sadoyan et al., 2006). 

Figure 1.1 Point based model of a BAE systems stylised canopy. 
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Surfaces provide a high degree of freedom for modellers when constructing complex 

geometries (Rogers and Adams, 1990; Piegl and Tiller, 1997).  Therefore, this thesis will be 

concerned with surfaces that are represented as non-uniform rational B-splines (NURBS), 

more specifically focusing on non-rational forms (NUBS).  This representation of surfaces is 

conventionally adopted throughout industry due to its properties and flexibility in shape 

manipulation and design (Rogers and Adams, 1990).  Another advantage of NUBS form is 

that they inherently encompass another powerful and widely used representation called Bézier 

(Piegl and Tiller, 1997) as a subset.  Therefore, NUBS curves and surface can be decomposed 

and converted into Bézier form (Section 1.2.3); a feature that has been used in existing 

triangulation algorithms (Rockwood et al., 1988; Kumar and Manocha, 1995, 1996). 

 

Once a NUBS surface has been triangulated, it can then be used for a wide range of CAE 

downstream applications such as interrogations, visualisations, computer numerical control 

(CNC) machine path generation, FEA and flattening.  As these methods only have access to 

the initial surface geometry through its triangulation, they could be characterised as 

„triangulation dependant‟ processes (Parwana and Cripps, 2009).   

Figure 1.2 Surface model of the same canopy model shown in Figure 1.1. 

 



4 

 

 

Despite there being many different algorithms available for generating a triangulation from a 

surface representation, little attention has been targeted on the downstream effects of the 

triangulation on different engineering applications.  For this reason, choosing a triangulation 

algorithm, to approximate a surface, comes down to a user‟s personal preference.  

Furthermore, the geometric characteristics transferred from the initial surface to the 

triangulation and the impact this has on a downstream application are not well understood 

(Parwana and Cripps, 2009).    

 

This thesis will study surface triangulation and investigate the effects it imposes on the 

performance of surface flattening.  Flattening is a triangulation dependant method which is 

used by industries such as shoe, ceramic decoration and textiles (McCartney et al., 1999; 

Wang et al., 2002; Cadar et al., 2005).  The purpose is to iteratively map a three-dimensional 

(3D) triangulation into a two-dimensional (2D) plane (Chapter 4).  It is known that altering 

algorithm parameters can cause different results from a flattening simulation (Cadar et al., 

2005) (Section 4.2); however this thesis will aim to isolate specific behaviours that are solely 

attributed to changes in the triangulation.   

 

This thesis will predominantly investigate the effects of right angle triangles (RATs) on 

flattening.  As RATs can be easily generated from a uniformly sampled grid of points they are 

commonly used throughout research and industry (McCartney et al., 1999; Wang et al., 2002).  

A new triangulation variable called right angle triangle configurations (RATCs) is introduced 

(Parwana and Cripps, 2009), which refers to the connectivity of RATs within a triangulation, 

and its impact on flattening is investigated.  In addition, this thesis will investigate and 
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establish specific surface characteristics that can have an influence on the flattening result.  

These characteristics will then be incorporated into the final triangulation to better reflect the 

surface geometry and flattening simulations.   

 

The remainder of this chapter will provide details of the NUBS definition of curves and 

surfaces, as well as their characteristics.  A brief review of some differential geometry 

elements will also be provided.  It will then present details of how a triangulation topology is 

represented, for computational purposes, along with some triangle mathematics which will aid 

in the understanding of this thesis.  The chapter will conclude with an overview of the thesis 

structure by outlining the contents of each chapter.   

 

1.1 NUBS Curves and Surfaces 

NUBS curves and surfaces are used widely among commercial CAD software systems such 

as Dessault‟s Catia and Delcam‟s PowerShape.  Since they are parametrically defined 

polynomial entities, they are well suited for software implantation (Lockyer, 2007).   

 

The B-Spline basis was originally developed for statistical data smoothing by Schoenburg 

(1946) before Cox (1972) and de Boor (1972) both independently presented a more 

numerically stable recursive definition that allowed the basis functions to be established more 

efficiently.  These B-Spline basis were then introduced to CAGD in the context of 

parametrically defined curves by Riesenfeld (1973) and later extended to NURBS form by 

Versprille (1975).  
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1.1.1 B-Spline Basis Functions 

The B-Spline basis functions can be calculated using the recurrence formula (Cox, 1972; de 

Boor, 1972, 2001) since it is the most useful for computer implementation.   

 

The pth degree (order p+1) B-Spline basis function is calculated as a function of a non-

decreasing sequence of real numbers, ui,  called knots defined by the knot vector U, defined as  

0 1{ , , }ru uU   
1i iu u ,  0 2i r          (1.1) 

The number of knots is r. 

The ith normalised B-Spline basis function, 
, ( )i pN u , is defined as 

1

,0

1     if 
( )

0    otherwise

i i

i

u u u
N u             (1.2a) 

1

, , 1 1, 1

1 1

( ) ( ) ( )
i pi

i p i p i p

i p i i p i

u uu u
N u N u N u

u u u u
         (1.2b) 

where the quotient 0/0 = 0. 

The kth derivative of the 
, ( )i pN u  is denoted as ( )

, ( )k

i pN u  and is given by (Piegl and Tiller 

(1997)), 

( 1) ( 1)

, 1 1, 1( )

,

1 1

( ) ( )
( )

k k

i p i pk

i p

i p i i p i

N u N u
N u p

u u u u
 

0 1

0 1

i r

k p
        (1.3) 

If the knot vector is of the form 

    
11

{0, ,0,1, ,1}
pp

U           (1.4) 

the normalised B-Spline basis functions are equivalent to the Bernstein polynomials (Piegl 

and Tiller, 1997), which are used as the basis functions for the Bézier form.  Knot vectors of 
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the form (1.4), i.e. the end knots have multiplicity p+1 with no repeated interior knots, are 

called open clamped knot vectors.   

1.1.2 B-Spline Curve 

A pth degree NURBS curve is defined by 

,

0

,

0

( )

( )

( )

n

i p i i

i

n

i p i

i

N u w

u

N u w

P

C   
1

0i

p r p

w

u u u
             (1.5) 

where Pi are the 2D or 3D control points, wi are the weights and Ni,p(u) are the pth degree B-

Spline basis functions defined on the non-uniform open clamped knot vector 

1 2

1 1

{ , , , , , , , , }p r p

p p

a a u u b bU          (1.6) 

For a single curve span, the number of control points n is always equal to the order of the 

curve and the number of knots 1r n p  (Figure 1.3).   

 

The weights are applied to the individual control points and act as magnets, where a control 

point, Pi, with a weight value greater (less) than the other control points will attract (repel) the 

curve towards (away from) Pi (Figure 1.4).  Ensuring that 0iw  for 0 i n  will produce a 

Figure 1.3 An example of a degree 3 NURBS curve. 

 

P2 

P3 P1 

u = 0 

u = 1 

Control polygon 

NURBS curve P0 
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curve that will be completely contained within the convex hull of the control points 

(O‟Rourke, 2001).  Furthermore, if 
iw c i  where 0c , there is no bias on the curve and 

(1.5) is reduced to non-rational form (NUBS) 

,

0

( ) ( )
n

i p i

i

u N uC P    
1p r pu u u         (1.7) 

The basis functions are defined on the knot vector shown in (1.6).   

 

 

The NUBS curve can be differentiated with respects to the parameter u.  The first and second 

derivatives, Cu(u) and Cuu(u) are given by 

(1)

,

0

( ) ( )
n

u i p i

i

u N uC P    
1p r pu u u         (1.8) 

(2)

,

0

( ) ( )
n

uu i p i

i

u N uC P    
1p r pu u u         (1.9) 

w0 = w1 = w2 = w3 = 1 w0 = w1 = w3 = 1, w2 = 3 

 

w0 = w1 = w3 = 1, w2 = 0.2 

 

w0  

w1  w2  

w3  

Figure 1.4 Degree 3 NURBS curve and the changes applied to the shape by altering the 

magnitude of the weight values. 
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1.1.3 B-Spline Surface 

A NURBS surface is a bi-directional extension of the curve form, where a surface of degree p 

in the u direction and degree q in the v direction is defined by 

, , , ,

0 0

, , ,

0 0

( ) ( )

( , )

( ) ( )

n m

i p j q i j i j

i j

n m

i p j q i j

i j

N u N v w

u v

N u N v w

P

S   

1

1

, 0

p r p

q s q

i j

u u u

v v v

w

        (1.10) 

where Pi,j is the control polygon net, wi,j weights,  and 
, ( )i pN u  and 

, ( )j qN v  are the 

normalised B-Spline basis functions defined on the clamped knot vectors 

1 2

1 1

{ , , , , , , , , }p r p

p p

a a u u b bU          (1.11) 

   1 2

1 1

{ , , , , , , , , }q s q

q q

c c v v d dV          (1.12) 

The number of control points in the u and v directions is always 1n p  and 1m q  

respectively and the number of knots in the u and v directions is 1r n p  and 

1s m q  respectively.  Figure 1.5, shows an example of a NURBS surface and illustrates 

how the 2D parameter domain is mapped into 3D object space to form the surface.  
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The non-rational definition of the surface (NUBS) is given by
, ,i jw c i j  resulting in 

, , ,

0 0

( , ) ( ) ( )
n m

i p j q i j

i j

u v N u N vS P  
1 1,p r p q s qu u u v v v       (1.13) 

The basis functions are defined on the knot vectors shown in (1.11) and (1.12). 

B-Spline surfaces can be differentiated with respects to both u and v.  The first derivatives, 

Su(u, v) and Sv(u, v) are given by 

(1)

, , ,

0 0

( , ) ( ) ( )
n m

u i p j q i j

i j

u v N u N vS P , 
1 1,p r p q s qu u u v v v       (1.14) 

(1)

, , ,

0 0

( , ) ( ) ( )
n m

v i p j q i j

i j

u v N u N vS P , 
1 1,p r p q s qu u u v v v       (1.15) 

The mixed partial derivative Suv(u, v) is given by 

 
(1) (1)

, , ,

0 0

( , ) ( ) ( )
n m

uv i p j q i j

i j

u v N u N vS P , 
1 1,p r p q s qu u u v v v       (1.16) 

The second derivatives, Suu(u, v) and Svv(u, v) are given by 

u v 0,0 

1,0 

1,1 

0,1 

0.5,0.5 

Figure 1.5 Shows a surface defined on the parameter plane, where u,v [0,1], and the 

mapping from 2D to 3D object space to form the surface.   
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 (2)

, , ,

0 0

( , ) ( ) ( )
n m

uu i p j q i j

i j

u v N u N vS P , 
1 1,p r p q s qu u u v v v       (1.17) 

 (2)

, , ,

0 0

( , ) ( ) ( )
n m

vv i p j q i j

i j

u v N u N vS P ,  
1 1,p r p q s qu u u v v v       (1.18) 

1.2 Knot Vectors 

The knot vectors define the parameter domain of the NUBS and can be used to convert NUBS 

into Bézier.  The following properties of knots are explained in the context of NUBS curves 

but equally apply to surfaces. 

1.2.1 Knots and the Parameter Domain 

Knots u0 and 
1ru  are the minimum and maximum limits of the parameter domain 

respectively.  The NUBS curve is defined between the parameter values determined by knots 

1pu  and 
1r pu  (Figure 1.6).  

 

A knot vector with end knots repeated p+1 times ensures that the curve starts at the first 

control point, since 
1o pu u , and ends at the final control point, since 

1 1r r pu u .  This type 

of knot vector is called open clamped.  Unless otherwise stated, the remainder of this thesis 

assumes all knot vectors to be open clamped between 0 and 1. 

Figure 1.6 Shows the different cubic NUBS curves generated by altering the knot 

vectors. 

 

 

U = {0,0,0,0,1,1,1,1} 

u = 0.5 

u = 0 u = 1 

U = {0,0,0,0,0.5,1,1,1} 

u = 0.5 

u = 0 u = 1 

U = {0,0,0,0.5,1,1,1,1} 

u = 0.5 

u = 0 u = 1 
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1.2.2 Knot Spans 

Since the knot vector is intrinsically connected to the parameterisation of the curve, the 

number of knot spans, where a knot span is present when 
1i iu u , 0 2i r , equals the 

number of curve spans (Figure 1.7).  Therefore, in general, assuming that a knot vector (with r 

knots) has no repeating interior knots, the number of pth degree curve spans cs is given by 

     2 1cs r p                 (1.19) 

Having repeated interior knots has the effect of reducing the degree continuity between the 

curve spans (Piegl and Tiller (1997)).   

 

1.2.3 Knot Insertion 

A pth degree NUBS curve, consisting of cs spans, can be subdivided using knot insertion and 

involves strategically inserting knots into the current knot vector, then adding and adjusting 

control points to yield a new description for the same curve.  By inserting multiple knots so 

that each interior knot has multiplicity p will generate enough control points to represent each 

curve span as a pth degree Bézier segment (Figure 1.8).   

Figure 1.7 A degree 3 NUBS curve with three curve spans. 

 

 

1
st
 Span 

2
nd

 Span 

3
rd

 Span 
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The modification of control points is based on de Casteljau‟s algorithm, which is a Bézier 

subdividing technique.  Knot insertion is not directly used in this thesis, therefore the details 

have been omitted.  Full details can be found in Piegl and Tiller (1997).   

 

1.3 Subdivision of NUBS 

Many trimmed surface triangulation algorithms require the subdivision of the initial surface 

into rectangular cells and the subdivision of curves into linear segments (Figure 1.9).   

 

There are two general methods of subdivision: uniform and geometric.  This subsection 

explains the basic concepts and differences between the two methods in the context of curves, 

however they can be extended bi-directionally to apply to surfaces.   

 

U = {0,0,0,0,1,1,1,1} 

 

(a) 

U = {0,0,0,0,0.5,0.5,0.5,1,1,1,1} 

 

(b) 

Figure 1.8 (a) Shows an degree 3 open clamped NUBS curve.  (b) Shows the same curve 

after knot insertion.   
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1.3.1 Uniform Subdivision 

Uniform subdivision of a curve is where the parameter domain is split at equal intervals.  The 

parameter increment is a function of the number of steps, which is calculated in real space.  It 

is calculated in this manner so that the distance between consecutive points on the curve in 

real space does not exceed a user specified tolerance.  

 

Therefore, if a NUBS curve is defined within the parameter domain [umin, umax], and the 

number of steps that the curve should be split into is stepu, then the parameter increment, 

uincrement for the subdivision is defined as 

max min
incerment

u

u u
u

step
          (1.20) 

u 

v 

(a) 

(b) (c) 

Figure 1.9 (a) Uniformly subdivided surface parameter domain.  (b) Curve and (c) its 

approximation using linear segments.   
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Despite its simplicity, uniform subdivision can be problematic for NUBS curves.  This is 

because a single NUBS curve can be a piecewise representation of multiple curves over a 

single parameter domain (Section1.2.2); however, this does not guarantee that the 

parameterisation will be distributed evenly across all the piecewise curves. 

 

For example, the NUBS curve represented in Figure 1.10 consists of two curve spans.  The 

curve has been subdivided into 20 steps with an equal parameter increment.  As can be seen 

the 10 points on the first span are more tightly packed than the second span.  If the user 

required that the sizes of each linear segment be the same (within an acceptable tolerance) this 

would not always be possible using uniform subdivision and the NUBS representation 

directly. 

 

To rectify this problem, each NUBS curve span, between the knot interval 1[ , ]i iu u , can be 

subdivided using a different parameter increment.  This will result in a final subdivision 

where the lengths of the linear segments approximating the curves are the same (within a 

tolerance). 

Curve span 1 

Curve span 2 

u = 0.5 

u = 0 

u = 1 

Figure 1.10 NUBS curve with two spans and unevenly distributed parameterisation. 
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1.3.2 Bézier Uniform Subdivision 

An alternative approach for improving the uniform subdivision of a NUBS curve is to convert 

each curve span into a Bézier curve segment, using knot insertion (Section 1.2.3).  A Bézier 

curve represents a single curve span that is evenly distributed over the parameter range [0, 1].  

Therefore, each Bézier curve can be subdivided independently to ensure that the lengths of the 

linear segments approximating the original NUBS curve are the same (within a tolerance).  

This method has been adopted in some existing triangulation algorithms (Rockwood et al., 

1988; Kumar and Manocha, 1995, 1996). 

 

1.3.3 Geometric Subdivision 

Geometric (also known as adaptive) subdivision is a method which is suitable for 

approximating both Bézier and NUBS since it is performed with respect to the geometric 

shape of the actual curve.  The main aim of geometric subdivision is to only have as few 

linear segments as is absolutely necessary (Piegl and Tiller, 1997).  Therefore, the methods 

generally subdivide a curve at unevenly spaced parameter intervals, which are calculated 

based on different geometric characteristics such as arc length, tangent angle or normal angle.  

Geometric subdivision is not directly used in this thesis, therefore the details have been 

omitted.  Full details can be found in Czerkawski (1996).   

 

1.3.4 Subdivision Overview 

Uniform subdivision is simple, fast and efficient computationally, making it ideal for 

applications which require the subdivision of multiple curves or surfaces in real-time.  A 

complication can occur if the NUBS curves or surfaces have to be converted into Bézier; 
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however this is a small price to pay for the simplicity and speed.  Uniform subdivision tends 

to over sample a curve or surface and subdivide it into more elements than is absolutely 

necessary (Piegl and Tiller, 1998). 

 

Geometric subdivision varies the approximation of the curves and surfaces depending on the 

local geometry reducing the number of elements required.  However, it can be complicated to 

implement, particularly for surfaces, and is not very fast which makes it undesirable for 

applications which require real-time performance.  

 

1.4 Surface Differential Geometry 

Surface differential geometry can be used to gather a greater understanding of a surface‟s 

shape characteristics.  This subsection will present some elements which will be used 

throughout this thesis. 

1.4.1 Unit Normal Vector 

Given a NUBS surface definition, it is often useful to know the normal direction to the 

surface at a given point S(u, v) (Section 1.4.2).  The tangent vectors for the parameter curves 

in the u and v directions are defined as Su(u, v) and Sv(u, v) respectively (Figure  1.11).  The 

unit normal vector is perpendicular to both tangents vectors and is given by 

( , ) ( , )
( , )

( , ) ( , )

u v

u v

u v u v
u v

u v u v

S S
n

S S
         (1.21) 
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1.4.2 Principal Curvatures and Directions 

Principal curvatures can be used to provide a better interpretation of a surface‟s shape 

characteristics.  At a single point on a surface, the curvature values vary depending in which 

direction it is being evaluated.  For example, Figure 1.12 shows a cylinder surface which has 

unit radius.  In the u direction the curvature is zero, however in the v direction the curvature is 

one.   

 

In general there is a minimum and maximum curvature value for every point on a surface, 

called principal curvatures, however, in general, these will not necessarily follow the u and v 

Figure 1.12 Principal curvature directions on a unit radius cylinder. 

 

Zero curvature direction  

(Minimum principal curvature 

direction) 

Unit curvature direction  

(Maximum principal curvature 

direction) 

Figure 1.11 Surface normal vector.  
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directions.  Therefore, each principal curvature value also has an associated direction, which 

is specified within the parameter domain of the surface.  When mapped to 3D, the principal 

curvature directions will always be perpendicular to each other (Nutbourne and Martin, 1988).   

 

The derivation of the principal curvatures and directions uses the first fundamental matrix, 

G(u, v), and second fundamental matrix, D(u, v) (Faux and Pratt, 1985), of the surface define 

as  

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , )

u u u v

u v v v

u v u v u v u v
u v

u v u v u v u v

S S S S
G

S S S S
        (1.22)

   

and 

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , )

uu uv

uv vv

u v u v u v u v
u v

u v u v u v u v

n S n S
D

n S n S
.        (1.23) 

Let u  be a 2D vector with the values du and dv which are small changes in the surface u and 

v parameter directions respectively.  Then the equation for the principal curvatures, 
p
, and 

directions, u , is defined as  

( ( , ) ( , )) 0pu v u vD G u           (1.24) 

or 

00 00 01 01( ) ( ) 0p pd g du d g dv          (1.25) 

10 10 11 11( ) ( ) 0p pd g du d g dv          (1.26) 

where the dij and gij are the i
th

 and j
th

 components of the first and second fundamental form 

matrices respectively. 
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Eliminating du and dv gives 

 

2

00 11 00 11 01 01( , ) ( 2 ) ( , ) 0p pu v g d d g g d u vG D          (1.27) 

 

From here the minimum (
min

) and maximum (
max

) curvatures can be obtained and 

substituted into Equations (1.25) and (1.26) to extract the ratio of du:dv for the principal 

directions (Faux and Pratt, 1985).  For example, substituting 
min

 into (1.25) and (1.26) will 

give 

0 1 0a du a dv       and       
0 1 0b du b dv  

where a0, a1, b0 and b1 are constants.  Re-arranging the above will give 

0 0 1 1( ) ( )a b du b a dv  

which can then be used to calculate the ratio of du:dv 

1 1

0 0

( )

( )

b adu

dv a b
 

Therefore, the principal direction for 
min

 is 
1 1( )du b a  and 

0 0( )dv b a  (Figure 1.13).  

The principal direction for 
max

 can be calculated analogously.  

 
Figure 1.13 Principal direction. 
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u 

Principal direction 

dv

( , )u v

du

a0 

a1 b1 

b0 
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1.4.3 Gaussian Curvature 

The product of the two principal curvatures is known as the Gaussian curvature (Nutbourne 

and Martin, 1988)
min maxGK .  It can also be expressed as a ratio between the determinants 

of the first and second fundamental form matrices, 

    
( , )

( , )
G

u v
K

u v

D

G
           (1.28) 

1.4.4 Surface Curvature Classifications 

Consider the local area to a point p on any 3D surface.  The curvature on the local area can be 

of various types depending upon the nature of the principal curvatures min  and max  

(Lipschutz, 1969).  These principal curvatures will lie on mutually perpendicular planes that 

contain the point p (Figure 1.14). 

 

A surface that has zero for one or both of the principal curvatures is called a developable.  

Surfaces with non-zero curvatures with different signs are called hyperbolic. Surfaces with 

non-zero curvatures of the same sign are called elliptical.   

 

Developable Hyperbolic Elliptical 

Point P Curvature 
min  Curvature 

max  

Figure 1.14 Three different types of principal curvature surface definitions. 
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3D surfaces that are defined as developable have the property that they can be flattened into 

the 2D without causing any distortion of tearing to the original shape (Rogers and Adams, 

1990; McCartney et al., 1999).  This topic will be covered in more detail in Chapter 4. 

1.5 Trimmed NUBS Surfaces 

A trimmed surface enables complicated 3D geometric shapes to be described using 

quadrilateral based NUBS surfaces.  Given an underlying 3D NUBS base surface, ( , )u vS , 

consider a number of orientated trimming loops which are defined in terms of ( , )u vS .  Each 

trimming loop consists of 2D NUBS curves, ( ) ( ( ), ( ))t u t v tC , where ( )u t  and ( )v t  are the 

2D coordinates and can be substituted into ( , )u vS  to get the 3D coordinates of the curve.  

The 2D curves must be fully contained within the parameter domain of the surface (Figure 

1.15).   

 

v 

u 

Base surface parameter domain 

Trimming region 

Outside trimming loop 

Inside trimming loop 

(c) 

(b) (a) 

Figure 1.15 (a) Original 3D base surface.  (b) Trimmed 3D surface. (c) Base surface 

parameter domain with the 2D trimming loops. 
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The purpose of the orientated loops is to define the boundaries of the surface, where the part 

of the surface located to the left of the loop is kept.  By convention, an anti-clockwise loop 

(outside loop) defines the outside boundary of the surface, and a clockwise loop (inside loop) 

defines the inside boundaries (Kumar and Manocha, 1995, 1996).  This concept of orientated 

loops is known as the curve handedness rule (Rockwood et al.,1988). 

 

1.6  Triangle Mathematics 

This subsection will introduce some triangle mathematics which will be used throughout this 

thesis to evaluate and operate on triangulations.  In each subsection, the triangle, t, will be 

defined by the three vertices p0, p1 and p2.  The triangle and points can be either 2D or 3D. 

1.6.1 Orientation of Triangle Vertices (2D only) 

The orientation of 2D triangle points is important for many applications (Schneider and 

Eberly, 2003).  Given a 2D triangle t, if p2 is located to the left of the line with direction 

1 0p p , then the points are in anti-clockwise.  If p2 is located to the right of the line, then they 

are in clockwise order.  If pi = (xi, yi) then 

    0 1 2

0 1 2

1 1 1

det x x x

y y y

           (1.29) 

Let tol be a zero tolerance value, then δ > tol means the triangle vertices are in anti-clockwise 

order and δ < -tol indicates a clockwise ordering.  If  

tol , 

then the triangle vertices are all collinear and the triangle is degenerate (Figure 1.16).  For 

non-degenerate triangles, the orientation of a triangle (i.e. clockwise or anti-clockwise) can be 
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changed be reversing the ordering of the vertices.  Unless otherwise stated, it will be assumed 

that all triangles used throughout the remainder of this thesis will have vertices in anti-

clockwise order. 

 

1.6.2 Point within a Triangle (2D only) 

Given a 2D triangle t and a 2D point, pn, a common problem is to establish whether pn is 

contained within t.  Assuming that the points of t are in anti-clockwise order, the point pn can 

be checked against each consecutive edge using (1.29).  If pn is located to the left of every 

edge (i.e. tol ), then it is within the triangle (Figure 1.17).  

 

Figure 1.17 (a) pn is inside the triangle as it is located to the left of every edge.  (b) pn is 

outside the triangle as it is located to the right of edge (p1, p2). 

 

p0 

p1 

p2 

pn 

(a) (b) 

p0 p2 

p1 

pn 

tol δ  < tol 

Figure 1.16 Triangle vertex orientations. 
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1.6.3 Triangle Centre of Gravity 

The centre of gravity, pcog, sometimes referred to as the centroid, of triangle t is given by 

(O‟Rourke, 2001) 

0 1 2

3
cog

p p p
p          (1.30) 

1.6.4 Triangle Perimeter 

The perimeter, pt, of triangle t is given by (Schneider and Eberly, 2003) 

    0 1 1 2 2 0tp p p p p p p         (1.31) 

1.6.5 Triangle Area 

The area, At, of triangle t is given by (Schneider and Eberly, 2003) 

    
0 1 1 2 2 0

2
tA

p p p p p p
        (1.32) 

1.6.6 Barycentic Area of a Triangle 

The barycentric area, Abc, of a triangle, t, is given by the area of the quadrilateral defined by a 

triangle vertex pn, pcog, and the mid-points of the triangle edges incident to pn (Figure 1.18), 

which is equivalent to: 

3

t
bc

A
A          (1.33) 
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1.6.7 Triangle Normal 

Let pa be the vector p1 - p0 and let pb be p2 - p0 for a triangle where the vertices are in anti-

clockwise order, then the normal vector, nt, to triangle t (Figure 1.19) is given by (O‟Rourke, 

2001) 

     t a bn p p           (1.34) 

where the unit normal vector, nut, is given by  

     
t

ut

t

n
n

n
          (1.35) 

 

Figure 1.19 Triangle normal vector. 

 

nt 

 

     

               pq 

 

 

pn 

 

    

                  

 

 

 

       ps 

 

 

pcog 

Edges incident 

to pn Barycentric area 

Figure 1.18 Barycentric area of a triangle. 
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1.6.8 Triangle Circumcircle (2D only)s 

The circle that passes through all the vertices of triangle t is called the circumcircle; its centre 

(point pc) is called the circumcentre and its radius, r, is known as the circumradius (Figure 

1.20) (Schneider and Eberly, 2003).  Let 

0 2 0 1 0( ) ( )a p p p p ,     1 2 1 0 1( ) ( )a p p p p ,     2 0 2 1 2( ) ( )a p p p p  

0 1 2b a a ,     1 2 0b a a  and     2 0 1b a a . 

Then 

 0 1 1 2 2 0

0 1 2

( )( )( )

2( )

a a a a a a
r

b b b
             (1.36) 

 
1 2 0 2 0 1 0 1 2

0 1 2

( ) ( ) ( )

2( )
c

b b b b b b

b b b

p p p
p         (1.37) 

    

pc

c 

 

     

               p1 

 

 

p0 

 

    

                  

 

 

 

       p2 

Circumcircle for 

points p0, p1 and p2. 

   r 

Figure 1.20 Triangle and its circumcirle. 
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1.6.9 Triangle Aspect Ratio 

The aspect ratio of a triangle is ratio between the longest edge length and the smallest 

amplitude.  Given a triangle, t, with vertices p0, p1 and p2, the edge lengths can be calculated 

using  

010 ppl ,    121 ppl ,   202 ppl           (1.38) 

The longest edge is the one with the longest length, llong (l2 in Figure 1.21). 

 

The smallest amplitude will always be perpendicular to the longest edge.  This amplitude, 

asmall, is calculated by taking an edge length other than llong, say l1 in Figure 1.21, and then 

asmall = l1cosα where α = θ-90º. 

 

Therefore, the aspect ratio, aratio is given by 

   
long

ratio

small

l
a

a
          (1.39) 

1.7  Triangulation Representation 

In general, triangulations of surfaces have a large number of triangles which need to be stored 

in a robust manner and operated on efficiently.  To make this possible, triangulations are 

Figure 1.21 Aspect ratio of a triangle. 
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generally stored in lists of their topological elements, namely vertices, edges and triangles.  

Whilst compiling these lists, an additional measure is taken to establish and store the 

relationships between the topological elements.  For example, each edge will store pointers to 

the two vertices that define it and two pointers to the faces that are incident to it.   

 

The relationships between the topological elements are listed below: 

1. Each vertex has n pointers to incident edges and n pointers to incident triangles. 

2. Each edge has 2 pointers to the vertices define its end points and 2 pointers the 

triangles incident to this edge. 

3. Each triangle has 3 pointers to the vertices and 3 pointers to the edges that define it. 

By storing a triangulation in this relational manner, queries such as “which triangles are 

incident to a desired vertex” can be executed efficiently without incurring the overhead of 

having to search through all the topological lists to calculate the answer, thus increasing data 

retrieval efficiency.   

 

To improve the robustness and consistency of data, it is also required that every triangle has a 

consistent orientation of points, i.e. anti-clockwise or clockwise.  Conventionally, anti-

clockwise orientation of triangle points is used as this ensures that the normal to a triangle 

face will point outwards, which is useful for downstream task such as creating lighting effects 

in visualisations. 
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1.8  Thesis Structure and Objectives 

The remaining chapters of this thesis, and their contents, will be as follows: 

 

Chapter 2 will present a literature review on existing surface triangulation methods and 

approaches.  It will begin fairly general and then be more focused towards trimmed surface 

triangulation methods using a tracing approach.  The reason for this is because triangulation 

of a trimmed surface is more complex, which has resulted in this particular area of research 

being more active and producing many different algorithms.   

 

Chapter 3 will present a detailed description of the trimmed surface triangulation scheme 

developed, in particular focusing attention of how trimmed surfaces are traced efficiently by 

only searching through cells that intersect the trimming loops (Cripps and Parwana, 2011).   

 

Chapter 4 will give an introduction into surface flattening.  It will give a review of the 

McCartney et al. (1999) and Wang et al. (2002) methods before presenting the Geometric 

Modelling Group (GMG) flattening scheme (Cader et al., 2005), which was derived from 

these original methods.  The GMG method produces an approach for determining the 

positions of 3D points in 2D which is equivalent to the intersection of circles methods 

presented by both McCartney et al. and Wang et al..  This corresponding method allows for 

runtime modifications of the flattened triangulation making the method more efficient. 

 

Chapter 5 will introduce the concept of right angle triangle configurations (RATCs) within a 

triangulation.  The objectives here will be established whether different the RATCs, generated 

from the same point sampling, will change the final flattening results, and if so, which RATC 
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would be the best overall choice in terms of algorithm stability and generating minimal 

distortion.  To investigate this, it will introduce three global configurations and then 

demonstrate the effects of each configuration on surface flattening (Parwana and Cripps, 

2009).  A new method for generating a RATC, that changes locally based on the Gaussian 

curvature approximation, will be introduced.  In addition, the method for approximating the 

Gaussian curvature from a triangulation will be improved to deal with varying vertex 

valencies within a triangulation.  Furthermore, the three global and Gaussian curvature 

RATCs will be tested on the application of flattening using two industrial surfaces. 

 

Chapter 6 will show that having a developable surface does not intrinsically imply that the 

surface triangulation of that surface will be developable.  This can have interesting 

implications on the result of a surface flattening by inducing distortion (Parwana and Cripps, 

2009).  Identifying this problem, the objective of this chapter will be to establish a new 

method for generating a triangulation from a surface that will attempt to maximise the 

inheritance of developability (shape characteristic) from the initial surface. 

 

Chapter 7 will conclude the thesis and provide possible avenues to future work. 
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Chapter 2 

SURFACE TRIANGULATION 

 

There are a large number of algorithms which have been developed for triangulating a 

surface.  These can be categorised as structured and unstructured (Frey and George, 2000).  A 

structured triangulation is an approximation that is generally uniform and has a noticeable 

pattern, where as an unstructured triangulation is the opposite.  An example of each can be 

seen in Figure 2.1. 

 

This chapter will review a variety of triangulation generation algorithms which can be used to 

triangulate trimmed surfaces.  Trimmed surfaces are complex geometries and the triangulation 

of these surfaces is a non-trivial task, thus encouraging much research leading to many 

algorithms.  The main aim of this thesis is to investigate the downstream effects imposed on 

Figure 2.1  (a) Structured and (b) unstructured triangulation. 

 

(a) (b) 
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flattening by triangulations that are structured.  Structured triangulations are commonly used 

for surface flattening (McCartney et al., 1999; Wang et al., 2002; Cadar et al., 2005; Parwana 

and Cripps, 2009) and provide some interesting degrees of freedom, which have not been 

explored.  Investigating these variables should provide valuable insight into how subtle 

changes in a triangulation can affect the downstream method of surface flattening.  This will 

be discussed in more detail in Section 2.10.   

 

For completeness, unstructured triangulation generation methods will also be introduced in 

this chapter.  Sections 2.1 to 2.9 will present the different triangulation algorithms and Section 

2.10 will discuss the differences, advantages and disadvantages of the methods. 

 

A common requirement of many algorithms is the ability to triangulate polygons and sets of 

points.  As these form the basis of many triangulation algorithms, these are introduced first.   

 

2.1 Polygon Triangulation 

A classic problem in computer graphics is to decompose a simple polygon into a set of 

triangles.  Every simple polygon admits a triangulation, where a simple polygon with n 

vertices consists of exactly n-2 triangles (de Berg et al., 2000).  Although there are many 

different algorithms available for polygon triangulation (Clarkson et al., 1989; Seidel, 1991; 

de Berg et al., 2000; O‟Rourke, 2001), the ear clipping method is presented due to it relative 

simplicity. 
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2.1.1 Simple Polygon definition 

By definition, a simple polygon is an ordered sequence of n vertices p0, …, pn-1.  It is assumed 

that the vertices are orientated in anti-clockwise order.  Each consecutive pair of vertices is 

connected by an edge 1( , )i ie p p , (where i is treated as modulo n, i.e. xn = x0).  A simple 

polygon edge can only intersect at the vertices and each vertex is incident to exactly two 

edges (Figure 2.2).  

2.1.2 Ear Clipping 

An ear of a polygon is a triangle formed by consecutive vertices pi, pi+1, and pi+2 where no 

other polygon vertex lies within the triangle.  Vertex pi+1 is the ear tip, and the line joining 

vertices pi and pi+2 is called a diagonal (Figure 2.3(a)).  Once an ear is found, the triangle is 

constructed by inserting a diagonal and removing the ear tip, forming a new polygon with n-1 

vertices.  This process is continued until only three vertices remain.  Due to the nature of this 

method, the triangulation generated is not necessarily unique, as a different starting vertex 

(a) (b) p0 

p1 

p2 

p3 

p5 

p4 

p7 

p6 

0e 7e

4e

Figure 2.2  (a) Simple polygon.  (b) Non-simple polygon. 
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could remove ears in a different order, thus altering the final triangulation.  Figure 2.3, shows 

a working example of this method performed on a polygon with n = 7 vertices.   

 

2.2 2D Delaunay triangulation 

Another recognised problem in computer graphics is to generate a non-intersecting set of 

triangles from a set of n 2D points 0 1, , nP p p ,  where the points of P form the vertices of 

the triangles.  This can be achieved by using the Delaunay triangulation technique, which was 

first proposed by Boris Delaunay in 1934 (de Berg et al., 2000). 

 

2.2.1 Circumcircle Property 

The fundamental property of a planar Delaunay triangulation is that the circumcircle of any 

triangle, within the triangulation, may have no other points of the set P within it, apart from 

the points scribing the circumcircle (Watson, 1981) as shown in Figure 2.4.  Due to this 

property, the Delaunay triangulation maximises the minimum angle of any triangle.  In 

(e) 

ear tip 

(a)  (b) (c) (d) 

legal diagonal 

illegal diagonal 

Figure 2.3 (a) A polygon with a legal and illegal diagonal.    

(a) - (d) Ear clipping process and (e) final 

triangulation. 
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addition, the boundary edges of a Delaunay triangulation form the convex hull of the original 

points set P (O‟Rourke, 2000).  Furthermore, the Delaunay triangulation of any set of points P 

will produce a unique solution (de Berg et al., 2000; O‟Rourke, 2001; Schneider and Eberly, 

2003).  This statement will be explored in Section 2.10. 

 

2.2.2 Algorithms 

Many algorithms exist for the construction of a Delaunay triangulation from a set of points.  

A direct implementation uses a divide and conquer or randomised incremental approach (de 

Berg et al., 2000; O‟Rourke, 2001; Schneider and Eberly, 2003).  However, as unstructured 

triangulation methods are quite involved and not the direct subject of this thesis the details of 

their implementations have been omitted.  Full details can be found in Schneider and Eberly 

(2003). 

2.2.3 Delaunay Triangulation and Trimmed Surfaces 

Although the Delaunay triangulation method was originally created to triangulate an 

unstructured set of points, the method has been adopted into some existing algorithms for 

generating a triangulation from a trimmed surface.  Sheng and Hirsch (1992) present a method 

 pi 

 pj 

pk 

pl 

(a) 
 pi 

 pj 

pk 

pl 

(b) 

Figure 2.4 (a) Legal and (b) illegal triangle within a Delaunay triangulation. 
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for triangulating a trimmed parametric surface, based on partitioning the parameter space and 

a Delaunay triangulation.  First, a maximum 2D triangle edge size, Ω, is determined by using 

a „flatness criteria‟ (Peterson, 1994).  This ensures that when the triangle is mapped into 3D it 

does not deviate from the surface by more than some user specified tolerance.  Once the 

surface and trimming curves have been subdivided, the points located within the trimming 

region are identified and triangulated using a Delaunay triangulation.   

 

Piegl and Richards (1995) generalised this method for trimmed NURBS surfaces.  In addition, 

the points located within the trimming region are established by using a simple scan-line-type 

algorithm, as used in raster graphics to fill polygons (Foley et al., 1995).   

 

As the Delaunay triangulation of surfaces is complex and not the main focus of this thesis, 

full details of existing algorithms have been omitted.  However, a comprehensive survey of 

existing methods for triangulating a trimmed surface using a Delaunay triangulation can be 

found in Frey and George (2000). 

 

2.3 Advancing Front Method 

The advancing front method (AFM) is used to generate an unstructured triangulation from 

surfaces which may or may not be trimmed.   

2.3.1 Boundary Edge Subdivision 

The method begins by defining the 2D exterior boundary edges of the trimming region, within 

the parameter domain of the surface, and subdividing them geometrically into piecewise 

linear segments.  This ensures that the linear segments will have the same length, within a 
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user defined tolerance, when mapped into 3D.  These 2D piecewise linear boundary edges are 

called the front (Figure 2.5). 

2.3.2 Point Generation from the Current Front 

The next stage is to generate new points, within the parameter domain of the surface, towards 

the interior of the trimming region from the current front (Figure 2.5).  Once generated, these 

new interior points will be connected with the points of the front to form a list of triangles 

(Figure 2.5(b)).  In addition, the piece-wise linear curve produced by inscribing the interior 

points generated will form the new current front.   

 

The point generation process is accomplished by taking a linear segment from the front, with 

end points p0 and p1, and then determining an optimum position for p2 such that the edge 

lengths and interior angles of the triangle (p0, p1, p2) are the same, within a user specified 

tolerance, when mapped back into 3D (Frey and George, 2000).  On determining the position 

of p2, edge (p0, p1) is removed from the current front and edges (p0, p1) and (p1, p2) are added 

(b) 

Trimming Region 

(a) 

Current front Previous front 

Figure 2.5 Trimming region of a surface parameter domain. (a) Initial front. (b) New 

front and triangles generated after one iteration. 
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(Figure 2.6), thus updating the current front.  This process of generating triangles and 

updating the front is repeated until the interior region has been completely covered by 

triangles. 

2.3.3 Algorithms 

As with Delaunay triangulation, many algorithms exist for the construction of an AFM 

triangulation from a surface.  The main difference between the algorithms is the point 

generation process, which is largely dependant on the geometric criteria provided for the 

triangle shapes.  A comprehensive account of many AFM methods can be found in Frey and 

George (2000) for trimmed surfaces and Wu and Wang (2005) for triangulating a regular 

parametric surface. 

 

2.4 Trimmed Surface Structured Triangulation Methodology 

The general methodology adopted by many existing algorithms for generating a structured 

triangulation from a trimmed surface is very similar.  Therefore, to aid in understanding the 

triangulation algorithms presented in this chapter, a generic process is presented.   

p0 

p1 

p2 

(a) 

p0 

p1 

p2 

(b) 

Figure 2.6 (a) New point generated from current front. (b) Updated front. 
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Parameter domain triangulation 

Trimmed surface triangulation algorithms generally operate within the 2D parameter domain 

of the NURBS surface.  This considerably reduces the complexity of the problem, and is 

convenient as the trimming loops are defined in the 2D parameter plane of the surface. 

Subdivision of the parameter domain 

The surface parameter domain is subdivided, either uniformly or geometrically, into a grid of 

points.  In some instances, the points are strategically generated to construct a grid of 

rectangular cells.  The NURBS surface definition is used to determine the number of intervals 

that the parameter domain should be subdivided into and is governed by its characteristics 

such as tangent, curvature or flatness. 

Approximating the curves 

The trimming curves are subdivided into linear segments either uniformly or geometrically. 

The number of subdivisions for the NURBS curve is governed by its characteristics such as 

tangent and curvature. 

Identifying points/cells with trimming region 

The linear approximations of the trimmed curves are superimposed onto the points/cells to 

establish whether they are inside or outside of the trimming region, within a user specified 

tolerance.  Essentially, if a point (cell) is fully located within an outside loop and is not 

contained within any inside loop, then that point (cell) is within the trimming region.  Points 

(cells) within the trimming region are stored for triangulation, while the others are discarded.   

Cells partially within trimming region 

When using cells, many will be located partially within the trimming region.  This is because 

a trimming curve will intersect and pass through it (Figure 2.7).  Therefore, the cells located 
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along the boundary edges of the trimming regions require a little more attention before they 

can be triangulated.  Cell based algorithms record the intersections between cells/trimming 

loops and then convert these boundary edge cells into polygons (Figure 2.7).  These polygons 

are then stored for triangulation, along with the cells completely within the trimming region.  

 

Triangulation 

If working with points, the 2D parameter domain points are triangulated using the Delaunay 

triangulation technique.   

 

When working with cells, the stored polygons are triangulated to form an overall 2D 

triangular representation of the initial model.  The triangulation of a polygon with four points 

(e.g. all cells completely contained within the trimming region) is a special case that is 

simplified by adding a diagonal (Figure 2.7(b)).  It is worth noting that it is around the 

Diagonal 
Convert cell into 

polygon Triangulate polygon 

(b) (c) (d) 

(a) 

Partially inside the trimming region 

Inside the trimming region 

Outside the trimming region 

Figure 2.7 (a) Cell classification within the parameter domain of a surface. Methods used 

for triangulation (b) inside and (c)-(d) partially inside cells. 
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boundary edges of a trimmed surface that the triangle shapes can become non-uniform 

(unstuructured) (Figure 2.7(d)). 

 

Mapping back to 3D 

The final stage of a triangulation algorithm is to map the 2D triangulation into 3D.  This is 

done by taking the 2D coordinates of triangle vertices, in terms of u and v, and substituting 

them into the original 3D surface definition to get the corresponding 3D coordinates. 

 

Sections 2.5 to 2.9 will each present a different structured triangulation algorithm that utilises 

this general methodology to triangulate a trimmed NURBS surface.  The triangulation 

methods will be presented in chronological order. 

 

2.5 Rockwood et al. triangulation 

Rockwood et al. triangulation (Rockwood et al., 1989) was developed to render trimmed 

surfaces in real-time, making it ideal for graphical visualisation.  The method produces a 

view-driven triangulation of a trimmed surface, altering the density of the triangulation 

depending on its distance from the current view point. 

 

Converting to NURBS to Bézier 

The first stage of the algorithm is to convert the initial NURBS surface and curves into 

rational Bézier form using knot insertion (Section 1.2.3).  The trimming loops must also be 

subdivided along the new patch boundaries to maintain a valid trimmed surface representation 
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(Section 1.5).  Therefore, additional curves are added along the patch boundaries, to restrict 

the trimming region to individual patches (Figure 2.8). 

 

Once the trimmed surface is fully converted, each patch is triangulated independently.  The 

lists of triangles are then merged into a single list to produce an overall triangulation of the 

initial surface.   

 

 

Subdividing Surface and Trimming Loops 

Each patch is subdivided into a rectangular grid, and each trimming curve is decomposed into 

piecewise linear segments so that the edge lengths of the triangles do not exceed a user 

specified tolerance in 3D space. 

 

Let 3  be the projection from image space to screen space for a (n, m)
th

 degree rational Bézier 

patch with 3D control points Pi,j and weights wi,j, then the number of steps in the u and v 

directions (between 0 and 1), nu and nv,  which will guarantee triangle edge lengths in screen 

space are less than a specified tolerance, tol, (Rockwood et al. 1989) are given by  

Figure 2.8 (a) Original parameter domain and trimming cuvres. (b) New parameter 

domains post Bézier subdivision. 
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The parameter increment, which will guarantee a screen space steps less than tol, is given by  
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The number of steps nt that a p
th

 degree trimming curve, with control points Pi and weights wi, 

has to be partitioned into to ensure that each linear segment in screen space is less than stepu 

or stepv, respectively, is given by 
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Rockwood et al. (1989) state that if the curve is horizontal and only increments in u, then 

(2.4) is to be used.  If the curve is vertical and only increments in v, then (2.5) is to be used.  

For all other curves, the maximum of (2.4) and (2.5) is to be used.  Therefore, the parameter 

step size for the curve, stept, is given by 

1
t

t

step
n

                       (2.6) 

UV Monotone trimming regions 

The next stage is to calculate the maxima and minima (extrema points) of the trimming 

curves, which are then used to split the piecewise curves into uv monotone segments 

(Rockwood et al., 1988).  Vertical and horizontal lines can then be extended and intersected 
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from these points to form uv monotone regions within the surface (Figure 2.9).  This pre-

processing step helps to speed the actual triangulation process. 

Tiling and Coving 

The final stage of the algorithm is to superimpose a lattice of points a distance of stepu and 

stepv apart over the uv monotone region, and segmenting the trimming curves into points 

which are stept apart.  A fast and simple triangulation method called tiling and coving is used 

(Rockwood et al., 1988) and is made possible as the trimming regions are uv monotonic.  The 

triangulation is performed in strips of cells, where a v-strip and a u-strip are represented as 

shown in Figure 2.10.  

 

 

v 

u 

v-strip 

u-strip 

Figure 2.10 Triangulation is performed in strips. 

 

Figure 2.9 Converting the trimming region into uv monotone sections. 

 

v 

u 

extrema points 
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2.6  Kumar and Manocha triangulation 

Kumar and Manocha (1995) present a triangulation scheme which is optimised for the 

rendering of trimmed surfaces.  This algorithm introduced a technique which traces the 

trimming loops onto the surface, thus reducing the amount of pre-processing.   

Converting NURBS to Bézier 

First the original NURBS surface and trimming loops are converted into rational Bézier form 

using knot insertion. 

Subdividing Surface and Trimming Loops 

Each rational Bézier patch is uniformly subdivided into a grid of rectangular cells, with the 

step sizes in the u and v directions, nu and nv, given by 

2 max( ( , ))u

u

u v
n

tol

S
,         (2.7) 

2 max( ( , ))v

v

u v
n

tol

S
,         (2.8) 

where tol is a user specified tolerance for the maximum triangle size and max( ( , ))u u vS

corresponds to the maximum partial derivative with respects to u in the domain [0,1] × [0,1].  

nv is calculated analogously (Kumar and Manocha, 1996). 

 

The trimming curves are polygonised into linear segments similarly, with the parameter step 

size, nt, given by 

2 max( ( ))t

t

t
n

tol

C
,          (2.9) 

where ( )t tC  is the derivative of the curve with respects to t. 
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Tracing the Trimming Loops 

Each trimming curve is then traced onto the rectangle uv-cells.  This is achieved by 

systematically working through the trimming loop linear segments and recording any 

intersections that occur between them and the cell edges.  Each cell is then labelled as being 

inside (active), outside (inactive) or partially inside (partially active) within the trimming 

region (Figure 2.11).  There are two categories of partially active cells, known as prime-active 

and pseudo-active.  A cell is prime-active when there are points of the trimming loops 

contained within it and pseudo-active when the cell contains no points.  Each strip of cells is 

then evaluated to establish whether they are active or inactive, where an inactive strip is one 

where all the cells within it are classified as outside.   

 

In addition, each end point of a curve line segment that causes an edge crossing is labelled to 

indicate whether it is an exit or entry point (Figure 2.11).   

 

 

 

Figure 2.11 Cell labelling scheme adopted by Kumar and Manocha. 
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Converting Boundary Edge Cells to Polygons 

Once the tracing process has been completed, the next stage is to merge any intersected cells 

with the trimming curves and create polygons around the boundary edges of the trimming 

region (Figure 2.12).  

 

Triangulation of cells 

Triangulation of the cells is performed in strips.  Each new strip is searched to check whether 

it is active or inactive.  For active strips, any cells that have been converted into polygons are 

triangulated using polygon triangulation.  Inactive strips are skipped as no cells within them 

require triangulation, thus helping to increase the efficiency of this triangulation step. 

 

2.7 Luken Triangulation   

Luken (1996) presents an algorithm which triangulates a trimmed NURBS surface directly 

rather than decomposing it into Bézier and triangulating each patch independently.   

 

 

Figure 2.12 Converting cell A into a polygon. 
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Working with NURBS Directly 

The algorithm begins by subdividing the base NURBS surface into a global grid of cells.  

Although no mathematical details are provided, Lukens suggests that three separate step size 

calculations be performed on the surface which will generate multiple step sizes, nu and nv, for 

the u and v directions respectively.  Once the step sizes have been determined, the largest nu 

and nv will be used to subdivide the entire NURBS surface.  The cells generated will 

guarantee to produce triangle sizes that meet a user specified criteria, throughout the whole 

NURBS surface, when mapped to 3D space. 

 

The suggested calculations for the step sizes are: 

1. The number of steps for each patch using a calculation similar to that of Rockwood 

(1989) or Kumar and Manocha (1995).  

2. The number of steps based on the chord length criterion (Piegl and Tiller, 1997). 

3. The number of steps based on the chordal deviation criterion (Piegl and Tiller, 1997). 

 

The subdivision of the trimming curves is performed in the same manner as for the surface. 

Clipping Strips of Cells 

The next stage of the algorithm is to place the linearly approximated trimming loops onto the 

cell grid and calculate intersections between them.  This process is performed in strips of 

cells.  A v-strip is defined as a horizontal strip of cells with the same minimum and maximum 

v coordinates.  A u-strip is defined analogously.  The method involves clipping the whole grid 

to one v-strip, and then clipping the v-strip to a u-strip so that essentially only one cell is being 

operated on (Figure 2.13).   
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The intersections between this cell and any trimming loops are recorded.  If no intersections 

occur, the process is repeated on the next u-strip.  If any intersections do occur, the cell is 

converted into a polygon and immediately triangulated using any polygon triangulation 

algorithm (e.g. ear clipping presented in Section 2.1 would be acceptable) and stored.  When 

all the u-strips have been operated on, the grid is then clipped to the next v-strip and the whole 

process repeats until no v-strips remain. 

 

2.8 Piegl and Tiller Triangulation 

The algorithm presented by Piegl and Tiller (1998) performs a trimmed surface triangulation 

based on the geometry of the initial shape. 

Adaptive Subdivision of Curves and Surfaces 

This method, like Lukens (1996), operates on the NURBS directly and uses an adaptive 

subdivision of the curves and surfaces based on their geometries.   The trimming loops are 

subdivided using a 4-point cubic Bézier curve fitting technique and the surfaces are 

subdivided using a flatness algorithm, presented by Peterson (1994).   

v 

u 

v-strip 

u-strip 

Figure 2.13 Clipping the uv-strips. 
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Modified Tracing Approach 

The method uses a modified tracing scheme of Kumar and Manocha (1995, 1996).  It requires 

that cells of the grid are labelled as one of five different categories (Figure 2.14): 

1. IN:  Cell completely within trimming region. 

2. OUT:  Cell completely outside trimming region. 

3. OVER:  Cell partially inside trimming region. 

4. ON:  Cell completely contains a trimming loop.   

5. ONANDOVER:  Cell partially within trimming region and fully contains a trimming 

loop. 

 

Converting Boundary Edge Cells into Polygons 

Once the intersections between the polygonised curve and the surface cells have been 

calculated, the next stage is to merge any ON, OVER and ONANDOVER cells, along with the 

trimming curves that intersect them, into polygons.   

 

Figure 2.14 Piegl and Tiller tracing labelling convention. 
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2D Delaunay Triangulation of Points 

The final stage is to take the vertices defining the cells or polygons within the trimming 

region and triangulating them using 2D Delaunay triangulation (Section 2.2).   

 

2.9 Sadoyan et al. triangulation 

Sadoyan et al. (2006) presented a tracing scheme based triangulation algorithm. 

Subdividing the NURBS based on the knot vectors 

The first stage is to subdivide the base surface into a grid of cells.  There are two methods 

presented for the determination of the u and v partition lines.  The first operates as a function 

of the surface curvature, where the density of the grid increases in more curved areas and 

reduces in flatter areas.  However, calculating the first and second derivatives can be 

computationally expensive, therefore the authors present a more efficient method, which is 

specific to NURBS.   

 

Sadoyan et al. state that typically for NURBS surfaces and curves, the number of knot vectors 

to define the surface tends to grow with the curvature of the surface.  Therefore the number of 

steps, nu and nv, that the parameter domain should subdivided into can be defined as 

 un K "Number of  u knot vectors"         (2.10) 

 vn K "Number of  v knot vectors"         (2.11) 

where K is an application dependent constant.  For example, for visualisation applications it 

may vary between 1 and 10 (Sadoyan et al., 2005).  The larger the value of K, the more dense 

the lattice will become, therefore, for applications where the level of detail is more important 
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a higher value of K should be used.  For applications where speed and efficiency are the 

priority, a smaller value of K can be used.  The author did not provide any bounds for the 

value of K. 

 

The NURBS trimming curves are subdivided using the same principle as for the surface.  

Tracing and Triangulation 

The next stage is to trace the approximated curves onto the cells, which is achieved in two 

steps.  The first step evaluates each cell against all trimming loops to establish whether it is 

inside, outside or partially inside the trimming region.  Cells outside the trimming region are 

discarded, whilst cells inside and partially inside the trimming region are stored.   

 

The second step is to generate polygons from the stored cells.  Inside cells are converted into 

polygons using their corners, whilst partially inside cells are converted into polygons by 

merging them with any trimming curves that intersect it.  Once the polygons have been 

generated, they are triangulated using ear clipping (Section 2.1.2). 

 

2.10 Discussion 

Rockwood et al. (1989) present a method that converts the initial NURBS surfaces and 

trimming curves into Bézier form, before decomposing them into uv monotone regions.  This 

requires a large amount of pre-processing and introduces extra data in the form of new 

boundary curves.  In addition, there is no guarantee that the adjacent uv monotone regions will 

be subdivided at the same points along their boundaries edges.  This can cause misalignment 

between triangles on adjacent patches resulting in cracks within the triangulation of a single 

NURBS trimmed surface (Sheng and Hirsch, 1992). 
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Kumar and Manocha (1995) also produce a triangulation scheme, tailored towards real-time 

rendering of trimmed surfaces, and use a similar approach to Rockwood et al., in terms of 

converting the surfaces to Bézier and performing a uniform subdivision.  However, they 

develop better bounds for uniformly triangulating the surface domain into fewer cells, and 

compute trimming regions without partitioning them into monotonic regions.  A tracing 

scheme is introduced, which has found universal acceptance.  A complex labelling system is 

used to avoid introducing extra points into the linear segments at segment/cell edge 

intersections.  The situation where a trimming loop is completely contained within a single 

cell is not considered.  This can occur when a design contains small holes, which are used in 

engineering designs as assembly features, manufacturing aides, or as means of stiffening or 

weight reduction.   

 

Lukens (1996) presents an algorithm for triangulating a trimmed surface directly in its initial 

NURBS definition. However, the surface and curve subdivision method adopted has a 

tendency to over sample, producing many more triangles than is necessary. Furthermore, the 

method presented is purely theoretical and no implementation details or results are presented, 

making it difficult to assess. 

 

Peterson (1994) creates a triangulation directly from a NURBS definition. Surfaces are 

adaptively subdivided, using knot refinement, based on the flatness of the control polygon 

(Peterson, 1994; Piegl and Tiller, 1997).  The subdivided surface is then triangulated by 

inserting a diagonal within every cell created throughout the subdividing process.  However, 

Peterson does not consider trimmed surfaces. 
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Piegl and Tiller (1998) extend Peterson‟s triangulation method to trimmed surfaces and 

adopted a simplified tracing method, similar to that of Kumar and Manocha (1995), to 

determine which parts of the cells are located within the trimming region.  This method makes 

no assumptions regarding the parametric continuity of the surface. The tracing, as with Kumar 

and Manocha‟s approach, has to consider every cell, which causes many redundant checks. 

 

Shu and Boulanger (2000) describe a tracing triangulation method which is performed within 

the parameter domain.  The parameter domains of the surfaces and curves are adaptively 

subdivided using Peterson‟s (1994) control polygon flatness method, after which the trimming 

curves are then traced onto these cells to establish whether they are located outside, inside or 

partially inside the trimming region.  However, very little detail is provided on the actual 

methodology used to trace the trimming curves, and degenerate cases, such as trimming 

curves completely contained within a cell and touch points are not considered.  A touch point 

is defined as an end point of a trimming curve linear segment that is located on cell edge.  

There also seems to be no allowances for inside trimming curves which are used to describe 

holes within a surface. 

 

Sadoyan et al. (2006) present a tracing method, similar to that of Piegl and Tiller (1998), and 

produce a robust uniform triangulation algorithm.  Their method is generalised to operate on 

any trimmed surface which is parametrically defined and utilises a tracing process which can 

handle most degenerate cases.  The polygons are then generated from these cells and 

triangulated using ear clipping (Section 2.1.2).  No provisions are made for the situation 

where a trimming loop is contained within a single cell.   
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As with all existing structured triangulation methods, the tracing process requires that every 

cell, generated within the parameter domain, has to be processed with respects to every 

trimming loop to establish its trimming status.  This can be an inefficient process for the 

situation especially where the trimming region forms a small proportion of the original 

surface.  In addition, all the trimmed surface triangulation algorithms referenced above 

require trimming curves to have a pre-defined orientation, i.e. clockwise or anti-clockwise 

order. 

 

In addition to structured triangulation schemes, unstructured triangulation generation 

approaches have been proposed, particularly within the field of FEA (Frey and George, 2000).  

In general, these algorithms require that the triangles within the final triangulation conform to 

some geometric criterion (i.e. edge/triangle sizes and shapes) and are as close to equilateral as 

possible.  This is because elements that have high aspect ratios (one angle significantly 

smaller or larger than the other) can reduce both the solution precision and speed of its 

convergence (Shimada and Gossard, 1998; Shu and Boulanger, 2000).  The methods operate 

by producing an initial triangulation of the surface using techniques such as the AFM  

(Lohner and Parikh, 1988; Frey and George, 2000) or Delaunay triangulation (Watson, 1981; 

Field, 1991).  In general, the methods utilised to generate surface points, for the triangulation, 

are computationally intensive processes because of the geometric constraints that are imposed 

(Shimaga and Gossard, 1998).  In addition, as the triangulation techniques adopted are 

incremental techniques, the integrity of each new triangle created must be checked against 

previous triangles, requiring a large number of calculations.  Furthermore, triangulating 

trimmed parametric surfaces require that a triangulation of the entire surface be created first 

before establishing which triangles are located IN, OUT or on the BOUNDARY of the 
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trimming region (Shimada and Gossard, 1998; Frey and George, 2000; Wu and Wang, 2005).  

For the situation where the trimmed surface forms a small portion of the underlying surface, 

this can produce a very large number of redundant calculations. 

 

The Delaunay triangulation has a useful property of maximising the minimum angle of each 

triangle by using the circumcircle property.  It is also claimed that it works towards generating 

a unique solution for the triangulation from a given set of points.  However, this removes any 

flexibility for a user to manipulate the triangulation, as any changes made to the topology may 

cause the triangulation to no longer conform to a Delaunay triangulation, making it illegal.  

Furthermore, there is ambiguity in this method for the situation where more than three points 

lie on the circumcircle.  Sugihara and Inagaki (1995) make the observation that in this 

situation, the polygon generated by the points on the circle will always be convex (i.e. simple 

polygon); therefore, a polygon triangulation method can be performed.  However, this implies 

a unique solution will not be able to be achieved as a polygon triangulation algorithm is 

affected by its start point.  Furthermore, the property of maximising the minimum angle will 

be compromised.  

 

The AFM has the useful property of generating triangles of high quality that comply closely 

with desired geometric criteria.  However, the resulting triangulation is largely controlled by 

the boundary edges of the trimming region.  Therefore, any irregular triangle shapes that are 

formed tend to be within the centre of the trimming region, at the point where the fronts have 

been merged together.  In addition, like the Delaunay triangulation, the triangulation 

algorithm does not provide much freedom in terms of topological manipulation, due to the 

initial geometric constraints imposed.  Although a single solution may be considered as a 
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positive attribute, the constraints imposed mean that changing the topology elements to check 

whether a different triangulation would yield a better approximation of the surface is not 

possible.  This limitation prevents exploration of interesting triangulation variables, which 

could provide more insight into their downstream effects. 

 

Structured triangulations provide flexibility, in terms of manipulating the topology, which 

could offer valuable insight into understanding the downstream effects of triangulation on 

flattening.  Recent structured triangulation algorithms begin by subdividing the parameter 

domain uniformly into a grid of cells.  Any cells located fully within the trimming region are 

triangulated into right angle triangles by adding a diagonal.  The placement of the diagonal 

within these cells introduces an interesting degree of freedom that has not been studied before, 

and will be explored in detail in Chapter 5.   

 

Another advantage of structured triangulations is that any irregular shaped triangles are 

restricted to the boundary edges, which results in a more uniform triangulation within the 

interior of the trimming region.  As the boundary edges have no effect on the interior region, 

the entire underlying surface can be triangulated as a whole using a structured triangulation 

scheme.  This triangulation can then be flattened into 2D and then the trimming boundaries 

can be mapped onto this 2D definition to recover the trimming region, if required. 

 

Structured triangulations are also commonly used in the area of surface flattening.  

McCartney et al. (1999) and Wang et al. (2002) triangulate trimmed and non-trimmed 

surfaces using Piegl and Tiller‟s (Section 2.8) approach.  Cadar et al. (2005) worked solely 

with non-trimmed surfaces, which were triangulated using a uniform subdivision and right 
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angle triangles.  Part of motivation behind this thesis was prompted by Cadar et al.‟s 

suggestion that triangulation could have a downstream effect on flattening.  Therefore, to 

investigate this claim, a structured triangulation approach will be used as in previous studies 

(McCartney et al., 1999; Wang et al., 2002) and industry (Cader et al., 2005).  

 

Little research has been reported on the downstream effects of triangulation on engineering 

applications.  The topic of triangles with high aspect ratios has been touched upon in a variety 

of different areas.  Shimada and Gossard (1998) noted that in FEA long thin triangles are not 

desired as they can cause a simulation to be less stable.  Small changes in displacement of 

triangle vertices, during a simulation, can considerably change the shapes of triangles that 

have high aspect ratios, with the danger that the vertices could all become collinear.  This will 

create degenerate triangles which can induce errors into an FEA simulation and cause the 

method to converge slower towards the solution.  Wang et al. (2002) found that long thin 

triangles in surface flattening simulations can cause errors in the final results.  This flattening 

error will be discussed in more detail in Section 4.4.  Piegl and Tiller (1997) and Kumar et al. 

(2001) state that long thin triangles are unwanted in triangulations generated for visualisations 

as they can induce unnaturally looking lighting effects and creasing in a surface rendering. 

 

It is clear that triangulation attributes can have an effect on downstream applications.  

However, no further triangulation attributes or their downstream effects have been reported 

on. 
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Chapter 3 

NEW EFFICIENT AND ROBUST TRIANGULATION SCHEME 

 

This chapter presents a new efficient and robust tracing scheme for triangulating trimmed 

parametric surfaces (Cripps and Parwana, 2011).  Efficiency is gained over existing 

triangulation methods (Rockwood et al., 1989; Kumar and Manocha, 1995, 1996; Luken, 

1996; Piegl and Tiller, 1998; Shu and Boulanger, 2000; Sadoyan et al., 2006) by exploiting 

the fact that all trimming regions are conventionally defined by closed loops of trimming 

curves, and adopting a uniform cell shape and enhanced data structure (Section 3.1) to 

minimise the number of cells processed.  Key features are the efficient tracing algorithm and 

knowledge of orientation of the trimming curves is not required.  Cells are generated by 

subdividing the surface parameter domain; however each cell must be represented in a 

specific way to achieve the tracing efficiency.  Therefore this topic is introduced first 

followed by full details of this new triangulation algorithm.  The chapter will conclude by 

presenting a case study that compares this new approach against the Rockwood et al. (1989) 

approach (Section 2.5), an existing trimmed surface structured triangulation scheme that is 

still widely used in industry. 
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3.1 Cell Generation and Representation 

A trimmed surface is defined by a 3D parametric surface and a set of 2D trimming curves 

lying on the surface as shown in Section 1.5.  It is essential that the curves are fully contained 

within the uv parameter domain of the surface (Section 1.5). 

 

Generally the trimming curves have pre-defined orientations before any processing 

commences (Rockwood et al., 1989; Kumar and Manocha, 1995, 1996; Luken, 1996; Piegl 

and Tiller, 1998; Shu and Boulanger, 2000; Sadoyan et al., 2006), however, providing that 

each curve forms a closed loop, no further ordering information is required for the proposed 

algorithm.   

 

Kumar and Manocha (1995) present a useful method for identifying trimming curves that 

intersect each other and propose an algorithm to split them up so that they no longer intersect.  

However, in general, trimming loops should not intersect, as it provides no valid geometric 

interpretation of a trimming region.  Therefore, many schemes (Rockwood et al., 1989; 

Luken, 1996; Piegl and Tiller, 1998; Shu and Boulanger, 2000; Sadoyan et al., 2006), 

including the one presented in this chapter, assumed that no trimming curve intersects any 

other. 

 

Cells, Ci,j, are generated from the parameter domain by using uniform subdivision (Rockwood 

et al., 1989; Kumar and Manocha, 1995, 1996; Sadoyan et al., 2006).  The advantage of 

uniform subdivision (Figure 3.1 (a)) is that it ensures rectangular cells, which are required to 

perform efficient tracing of the trimming loops.  However, it is noted that a non-uniform 

subdivision of the parameter domain could be achieved by adopting a quad-tree subdivision 
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approach (Frey and George, 2000) as shown in Figure 3.1(b).  This will produce varying 

densities of cells whilst maintaining a regular rectangular shape, thus having a negligible 

impact on the tracing process and triangulation efficiency. 

 

Once the subdivision has been completed, the surface parameter domain is represented as a 

collection of rectangular cells, with nodes and edges indexed as shown in Figure 3.2.  As the 

cell corners are right angles, only the minimum and maximum points of each cell are needed 

to define it; cell edges and end point coordinates can be recovered (Figure 3.2).  To simplify 

the tracing process (Section 3.3.3) each edge is considered to have a start and end point (half 

edge concept (de Berg et al., 1998)), and the edges are configured in anticlockwise order.  

Thus, when traversing the cell edges, if the current edge location is BOTTOM, eB, the next 

edge would be RIGHT, eR and the previous edge would be LEFT, eL. 

 
Figure 3.2 Cell, Ci,j,  nomenclature. 

i 

j 

RIGHT: eR 

min (a, b) 

max (f, g) 

BOTTOM: eB  

TOP: eT 

LEFT: eL 

Ci,j 

Ci,j+1 

Ci+1,j 

Ci+1,j+1 

Figure 3.1 Subdivided surface parameter domains. (a) Uniform. (b) Quad-tree. 

 

(a) (b) 
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By representing the edges as half edges, each edge has a direction of motion and as the cells 

are rectangular, many operations can be reduced to a 1D problem.  For example, to check 

whether a point pi was to the right or collinear with the TOP edge, eT , only the y coordinate 

of pi would need to be checked against the ray line y = g (Figure 3.3).   

 

In addition, any points located on a particular edge can be sorted in order from front to back 

using only one coordinate. 

 

3.2 Triangulation Overview 

This section provides an overview of the methodology of the proposed trimmed surface 

triangulation algorithm.  Details of the tracing process and polygon generation are given in 

Sections 3.3 and 3.4.  Initially, the surface is subdivided into a grid of rectangular cells. The 

trimming loops are polygonised into piecewise linear segments and traced onto the cell 

structure to determine the cells that are needed for trimming loop triangulation.  The tracing 

process conceptually involves walking around each trimming loop, moving from cell to cell, 

and recording all the cell/loop intersections.  Only the cells which intersect the trimming 

curves are operated on during the tracing.  The tracing process identifies all the cells along the 

boundary edges of the trimmed surface, which will be used, along with the cell/loop 

intersection data, to determine which cells are located inside the trimming region.  Cells 

within the trimming regions can then be converted into polygons and triangulated. Once a list 

TOP: eT 

y = g 

p1 

p2 

p0 

Figure 3.3 Checking points against eT. 

 

1) p0 to left of eT 

2) p1 to collinear eT 

3) p0 to right of eT 
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of polygons has been generated, the final triangulation is completed using ear clipping 

(Section 2.1.2).  The major features of the proposed method are the tracing of the trimming 

loops, which is achieved efficiently because of the adopted labelling scheme, and the polygon 

generation.  These will be described in detail in the following sections. 

 

3.3 Tracing & Polygon Generation Details 

The first stage is to trace the trimming loops onto the cell structure, whilst labelling the cells 

that have been intersected.  The labelling and tracing processes are carried out in parallel, 

however, it is instructive to introduce the cell labelling first.  This is followed by the 

description of how the intersection data is stored, which enables the polygonisation of the 

cells to be carried out efficiently.  Tracing is described next, followed by the polygon 

generation algorithm. 

3.3.1 Cell Labelling 

All cells are initially labelled as being OUTSIDE, 
O

ji,C , the trimming region.  Each 

polygonised trimming loop is selected in turn, and a search is performed to locate a cell which 

contains the first point of the polyline loop, within a tolerance.  A point is said to be contained 

if it lies within the cell or on a cell edge.  This trimming loop is then traversed by moving 

through the polyline linear segments and checking for any intersections with the cell edges.  

Any cell that is intersected by a trimming loop is labelled INTERSECT, 
†

i,jC , and the 

intersection data is stored (Section 3.3.2).  If a trimming loop is completely contained within a 

cell (no intersections), it is labelled CONTAINED, 
C

ji,C .  Where a cell is intersected and has a 
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trimming loop fully contained within it, it is labeled as INTERSECT and CONTAINED, 
†C

i,jC .  

Figure 3.4 illustrates the tracing process.   

 

Only the cells that intersect the trimming loops will have been processed during the tracing 

step.  Consequently, many cells located completely within the trimming region will still be 

classed as 
O

ji,C , when they are in fact located INSIDE, 
I

ji,C .  However, these cells do not need 

to be processed as their trimming status (i.e. whether they are 
I

ji,C  or 
O

ji,C ) can be determined 

during the polygon generation process (Section 3.4) using the data retained from the tracing.  

This reduces the number cells which need to be operated on compared to existing methods 

(Rockwood et al., 1989; Kumar and Manocha, 1995, 1996; Luken, 1996; Piegl and Tiller, 

1998; Shu and Boulanger, 2000; Sadoyan et al., 2006) which check the status of every cell 

against each trimming loop.  For large complex surfaces with few trimmed regions, this 

reduction can be significant (Section 3.6.1). 

  
†C

i,jC  

(a) (b) 

O

ji,C
C

ji,C
†

i,jC

Figure 3.4 Cell labelling. (a) Pre-tracing. (b) Post-tracing. 
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3.3.2 Cell Edge Crossing Lists 

During the trimming loop tracing the intersection data is stored in edge crossing lists (Ek), 

which are an extension of the data structure presented by Sadoyan et al. (2006).  When a 

trimming loop enters a cell through an intersection of the cell edge, it is stored in a new Ej as 

an ENTER point, εj (Figure 3.5).  After εj, the points, pi, of the piecewise trimming loop are 

then appended to Ej until it leaves the cell through another intersection point.  This is stored as 

a LEAVE point, ℓj (Figure 3.5).  A typical Ej is given by: {εj, p0, p1, … , pn−1, pn, ℓj}.  

 

It is worth noting that a single cell can have many Ej‟s (Figure 3.5(b)).  The cell edge crossing 

list is extended to include a flag for each εj and ℓj, indicating at which edge the intersection 

occurred.  These edge flags are used in the polygon generation process (Section 3.4). 

3.3.3 Tracing Process 

The tracing begins by performing a search on the cell structure to find a cell that completely 

contains the start point of a trimming loop.  Once located, a new E0 is created and the first 

point added.  The first linear segment, L0, of the loop is selected and checked against the cell 

to identify if an intersection occurs.  Each linear segment Lj will have an associated direction: 

i.e. it has a start point and an end point.  Determining if each polyline segment intersects a cell 

(a) ℓj 

p1 

j 

 

c1 

c4 c2 

c3 

(b) 

ℓj 

ℓj+2 

j 

j+2 

p1 

p2 

ℓj+1 

j+1 

c1 

c2 c3 

c4 

Figure 3.5 Edge crossing lists for cell †

i, jC . (a) Single. (b) Multiple loops. 
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edge is inefficient since many will not.  Therefore, an intersection identification check is 

introduced to avoid unnecessary calculations.  If the end point of the current Lj is located to 

the right of a cell edge; an intersection has taken place.  As the cell edges are represented as 

half edges and each cell is rectangular, this is a 1D problem.  To check if the end point of Lj is 

to the right of eT or eB, only the y values need to be compared and for eR or eL only the x 

values.  To make the polygon generation process more efficient in handling degenerate cases, 

the intersection identification process must be performed on the cell edges in anti-clockwise 

order starting from eT (i.e. eT → eL → eB → eR ). 

 

If no intersection is identified, then the end point of Lj is inserted into the current Ej for this 

cell and the next Lj+1 of the trimming loop is checked.  If an intersection is identified, the 

intersection point is calculated using standard linear intersection techniques (Schneider and 

Eberly, 2003) and is added to the cell Ej as ℓj, which terminates Ej.  The cell label is changed 

from 
O

i,jC  to 
†

i,jC .  The next cell coincident to the intersected edge is then processed.  For 

example, if the current cell is Ci,j and the intersection occurred at eR, then the next cell to be 

traced is indexed Ci+1,j; if the intersection occurred at eT , then the next cell is Ci,j+1, etc.  A 

new Ej+1 is created and the leave point ℓj from Ej is the enter point εj+1 for Ej+1.  The enter 

edge flag assigned for εj+1 is the opposite edge at which ℓj occurred.  For example, if the leave 

edge for Ci,j was eR, then the enter edge for Ci+1,j is eL. 

 

After tracing a trimming loop, E0 for each new trimming loop tracing will be incomplete, i.e. 

it will not have an enter point, ε0, because the tracing started within the first cell.  Likewise, 

there will be an incomplete En at the end of the tracing as it will have returned to the original 

cell and not have a leave point, ℓn.  Therefore, E0 and En are merged at the end of the tracing 
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to create a complete Ek for the first cell.  If no intersections occur between a loop and the cell 

edges, Ci,j is labelled as 
C

i,jC . 

3.3.4 Tracing Degenerate Cases 

The intersection identification check is sufficient to handle the degenerate cases as shown in 

Figures 3.6 and 3.7.   

 

Touch points: In Figure 3.6(a), the end point of L1, p2, is a touch point with respect to eR.  As 

p2 is not to the right of any edge, the intersection is ignored and p1 is added to Ek.  L2 is 

collinear with eR and since p3 is not located to the right of eR, the intersection will again be 

ignored with respects to this edge.  However the intersection will be flagged when compared 

against eT, as the end point is located to the right of that cell edge. 

 

Next cell identification 1: When traversing the cells, the edge checking eliminates the need to 

determine which cell contains the end point of the current linear segment.  This also removes 

the degenerate case where the end point is not located in an adjacent cell.  Figure 3.6(b) 

illustrates an example of where the linear segment intersects the current cell through eR.  

While searching for the cell which contains p2, the adjacent cell (shaded in Figure 3.6(b)), 

p1 

p2 

Current cell 

being 

traced 

L 1 

L2 

p1 
p2 

p3 

(a) (b) 

Figure 3.6 Tracing: degenerate cases. 
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would be missed from the tracing since it does not contain the end point.  The proposed 

method is able to identify this case. 

 

Next cell identification 2: The final degenerate case is when an intersection occurs at the start 

or end point of a cell edge, i.e. a cell corner (Figure 3.7).  A further check has to be made to 

establish which cell is next to be traced: 

•  If the intersection is at the start (end) point, then if the points of the piecewise linear 

segment are collinear, within a tolerance, with the previous (next) cell edge (Figure 

3.7(b)), the next cell to be processed is the cell adjacent to the intersected cell edge.  

Otherwise, it is the cell diagonally incident to the start (end) point (Figure 3.7(a)). 

 

For example, Figure 3.7(a) shows a case where Lj intersects eT at its start point.  It also 

intersects eR at its end point, but as eT is always checked first, the intersection would be 

calculated with respects to this edge (Section 3.3.3).  The points of Lj are then checked to 

determine whether they are collinear with the previous edge.  As the cell edges are orientated 

in anti-clockwise order, this will mean that the points will be checked against eR.  In this case 

the points are not collinear, and the next cell to be traced is the cell located at the diagonal. 

 

(a) 

p1 

p2 Diagonally 

incident cell 

p1 

p2 

Adjacent cell 

Current cell 

being traced 

(b) 

Figure 3.7 Tracing: degenerate cases. 
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Figure 3.7(b) illustrates the case when points are collinear with the previous edge.  Therefore, 

the next cell to be traced is the cell incident to the edge at which the intersection occurred. 

 

3.4 Polygon Generation 

Once the tracing is complete, the next stage is to generate polygons from the appropriate cells 

which will then be triangulated.  The method used to generate the cells is similar to that of 

Weiler and Atherton (1977) and Sadoyan et al. (2006), but has been extended to check if eR of 

the cell is completely contained within the polygon generated from the cell. 

3.4.1 Process Edge Crossing Lists 

The cells are processed in rows from left to right.  For every row, any cells labelled 
O

i,jC  are 

ignored until a 
†

i,jC  or a 
†C

i,jC  is reached.  The polygon generation begins by taking 
†

i,jC  and 

creating a new polygon using the points from its Ek. The polygon is completed by traversing 

the cell edges in anti-clockwise order; adding the end point of each cell edge until the enter 

edge of the Ek is reached.  In the situation where the Ek enters and leaves though the same cell 

edge, if ℓj is behind εj on that cell edge, the polygon is complete.  Otherwise, traverse the cell 

edges and add the cell edge end points to complete the polygon (Figure 3.8(a)). 

 

If more than one Ek exists for a single cell, once the points of the first Ej have been appended 

to the polygon, an additional check must be carried out during the cell edge traversal.  If any 

remaining Ek‟s enter in front of the current position on the current cell edge (i.e. εj+1 for the 

polygon in Figure 3.8(b)), the points from the new Ej+1 are added to the polygon.  The 

traversal process is then continued until all the Ek‟s have been used or the original enter edge 
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from Ej is reached, completing this polygon.  In the situation where a polygon has been 

completed and some Ek‟s remain for that cell, a new polygon is created and the polygon 

generation process is repeated for the remaining Ek‟s. 

 

Once 
†

i,jC  is converted into a polygon, using the Ej‟s collected from tracing, they are stored 

for later triangulation.  If a 
†C

i,jC  is reached, an additional measure must be taken to establish 

whether the contained trimming loop(s) are holes or part of the trimming region.  In general, 

no trimming loops should intersect.  Therefore, if a point from the trimming loop is contained 

within any polygon generated from the cell, the loop defines a hole.  Otherwise a new 

polygon is created using the loop points, and stored for triangulation. 

3.4.2 Right Edge Checking 

Since the tracing process only checks cells that intersect the trimming loops, many cells are 

classed as 
O

i,jC  when they are in fact within the trimming region.  Therefore, in parallel with 

the polygon generation a check determines whether the right edge (eR) of the cell is 

completely contained within any polygon(s) generated.  If eR is not completely contained 

(a) ℓj 

p1 

j 

 

c1 

c4 c2 

c3 

Polygon points 

j, p1, ℓj, c1, c2, c3, c4 

 

 

 

Polygon 1 points 

j+2, p2, ℓj+2, c2 

(b) 

ℓj 

ℓj+2 

j 

j+2 

p1 

p2 

ℓj+1 

j+1 

c1 

c2 c3 

c4 

Polygon 1 points 

j, p1, ℓj, j+1, ℓj+1, c4 

Figure 3.8 Polygons & edge crossing lists for cell †

i, jC . (a) Single. (b) Multiple loops. 
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within the polygon (Figure 3.9(a)-(b)) any 
O

,ji 1C  cells are ignored until another intersected 

cell is reached.  However, if eR is completely within the polygon (Figure 3.9(c)) and the next 

cell in the row is not an intersected cell, then all 
O

,ji 1C  between the current cell and the next 

intersected cell in the row are definitely inside the trimming region.  This is because trimming 

boundaries are conventionally represented as closed loops and must intersect a row of cells at 

least twice.  Therefore, any ,

I

i jC  will always be contained between two 
†

i,jC  within any given 

row.  The status of these 
O

,ji 1C  cells is changed to 
I

,ji 1C  and they are converted into 

polygons, using their corners.  Once an intersected cell is reached, the polygon generation and 

checking is repeated to establish the status of the next cells in the current row.  It is observed 

that 
O

i,jC  and 
I

i,jC  cannot be located incident to each other in the same row.   

 

The status of this right edge criterion is established by simply checking the enter and leave 

edge flags for each Ek.  For example, if the trimming loop enters the cell through eT and 

leaves through eB, then the resulting polygon will fully contain eR of the cell.  However, if the 

trimming loop enters the cell through eL and leaves through eT, then the resulting polygon will 

not contain eR.  By performing similar tests for all Ek‟s, it can be established whether eR is 

j+1 

ℓj 

(b) 

eR not fully in polygons 

ℓj+1 

j 

p 

(c) 

eR fully in polygon 

ℓj 

j 

p 

(a) 

eR not in polygon 

j 

ℓj 

p 

Figure 3.9 Polygons generated from 
†

i,jC  and edge crossing data. 
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fully contained within the polygon.  If multiple Ek‟s make up a single polygon and any 

individual Ek establishes that eR is not fully within the polygon, then eR is not in the polygon. 

3.4.3 Right Edge Checking Degenerate Case 

In general, edge flag checking provides enough information to determine the status of eR, and 

in turn to determine the trimming status of 
O

i,jC .  The edge criterion deals with the case where 

eR (cell labelled A in Figure 3.10) is fully within the polygon, and the next cell in the row is 

not within the trimming region.  No extra checks are needed because the tracing method 

ensures that the enter edge for this Ek is eB and the leave edge is eT.  Checking only the edge 

flags means that eR is not considered inside the polygon, resulting in the degenerate case being 

handled correctly. 

 

3.4.4 Contained Cells Polygon Generation 

During the polygon generation process, any 
C

i,jC  cells are handled immediately by checking 

their status.  Since the trimming loop is fully contained within 
C

i,jC , it will have no outside 

influence on the status of any adjacent cells.  Therefore, if the contained cell is 
I

i,jC  the 

A 

Leave edge = eT  

Enter edge = eB  

A 

Figure 3.10 Right edge checking: degenerate case 

. 
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trimming loop defines a hole and is stored with the polygon generated from the cell corners.  

Otherwise, if the cell is 
O

i,jC , the trimming loop is converted into a polygon and stored.  

 

As the orientations of the trimming loops are not known, polygon generation and right edge 

checks must be carried out in a specific manner detailed in above. 

 

3.5 Polygon Triangulation 

The final task is to triangulate the list of polygons.  For ease of implementation, the ear 

clipping algorithm (Section 2.1.2) was utilised to triangulate the polygons, which has O(n
3
) 

running time. A more efficient method, such as Seidel‟s (1991) randomised polygon 

triangulation algorithm which has a running time of O(nlog*n), would improve the efficiency 

of the proposed algorithm. 

 

3.6 Case Studies 

This section presents three case studies illustrating the different performance aspects of the 

proposed triangulation scheme (Cripps and Parwana, 2011).  The trimmed surfaces used in 

each case study are in NUBS form, and the resulting triangulation for each test will be 

compared against the equivalent trimmed surface triangulation generated using the Rockwood 

et al. algorithm.  

3.6.1 Efficiency 

Existing methods of tracing generally process every parametric cell for each trimming loop to 

determine whether it is within the trimming region or not.  This can result in many redundant 
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calculations on cells to generate the final triangulation. Since the proposed method only 

operates on cells that intersect with trimming loops, no other cells need to be processed, 

improving the efficiency of the triangulation generation.  The triangulation algorithm has been 

implemented in C++ using OpenGL and run on a standard Pentium 2 22.GHz processor.  

Throughout the case studies the tolerances used for point coincidence and point/edge 

intersections was 1.0×10
−6

. 

 

Trimmed surface triangulations for a range of NUBS surfaces are shown in Figure 3.11.  The 

cells generated by subdividing the parameter domain of the original untrimmed surface have 

been mapped into the original untrimmed 3D surface and shown in grey. 

 

The ‟G‟ letter shape consists of an untrimmed spherical NUBS surface with a single trimming 

loop and was constructed as a simple test piece.  The lamp backing, the car rear panel and the 

car chassis are test models provided by Delcam Plc (2010).  The lamp backing consists of a 

non-closed curved hemispherical NUBS surface and 3 trimming loops.  The outside edge and 

centre hole within the lamp backing are each formed by a single loop.  The car rear side panel 

(Figure 3.11(c)) consists of a non-closed spherical NUBS and 2 trimming loops; a single 

exterior boundary and a hole. Finally the model toy car chassis (Figure 3.11(d)) consists of a 

simple plane and 12 trimming loops; an exterior boundary, a central cut-away and 10 holes. 

 

The triangulation results for each model in terms of the number of cells that had to be 

processed in the triangulation construction are given in Table 3.1. 
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Surface Loops Cells 
Cells 

Traced 
% Traced 

Tracing Time 

(ms) 
Triangles 

2D Triangulation 

Time (ms) 

G 1 1792 48 2.68 2.87 294 3.073 

Lamp 3 5500 416 7.56 49.54 5638 37.34 

Car body 2 760 128 16.82 44.60 1449 32.29 

Chassis 12 25 30 120.00 4.33 344 25.46 

 

Table 3.1 Trimmed NUBS surface tracing and 2D triangulation times. 

 

(a) 

(c) (d) 

(b) 

Figure 3.11 Triangulation and underlying NUBS surfaces. (a) G letter shape. (b) lamp 

backing. (c) car rear panel. (d) car chassis. 

. 
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Figures 3.11(a)-(c) show that the majority of the original untrimmed surfaces are not part of 

the final trimmed surfaces.  In addition, many cells generated from the untrimmed surface do 

not intersect the trimming loops.  Therefore, checking a large proportion of these cells to 

determine their trimming status would be very inefficient.  With the proposed tracing 

approach, the percentage of cells that were processed and traced to generate the final 

triangulations was 2.68% for the ‟G‟ shape, 7.56% for the lamp backing and 16.82% for the 

car rear panel.  The resulting triangulations consist of 294 and 5638 and 1449 triangles for the 

‟G‟ shape, lamp backing and car panel respectively.  Even with the relatively small number of 

traced cells, the proposed tracing still provides sufficient information to determine the 

trimming status of the remaining untraced cells.  This makes the operation of the modified 

tracing method very efficient. The car chassis (Figures 3.11(d)) is an example where the 

trimmed surface forms the majority of the original untrimmed surface.  Larger cell sizes, i.e. 

less dense grids, commonly result in cells with multiple trimming loops and loops contained 

within a single cell.  This model has 8 such trimming loops (Figures 3.11(d)).  A total of 30 

cells required tracing against the 12 trimming curves to construct the final triangulation 

comprised of 344 triangles.  Table 1 also gives the time to perform the tracing and construct 

the 2D triangulation; showing that the processing time is dependent on the number of cells 

traced not the number of cells in the parametric grid.  To demonstrate how this relationship 

can improve the efficiency of generating a triangulation, for surfaces with large cell densities, 

Table 3.2 shows the time taken to produce the triangulation in milliseconds for the test models 

which have been over sampled. 
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Surface Loops Cells 
Cells 

Traced 

% 

Traced 

Tracing Time 

(ms) 
Triangles 

2D Triangulation 

Time (ms) 

G 1 179200 446 0.25 10.33 3633 41.87 

Lamp 3 137500 2066 1.50 78.57 100819 371.33 

Car body 2 76000 1314 1.73 64.49 73215 238.30 

Chassis 12 78400 1994 2.54 56.42 72124 268.74 

 

Table 3.2  Over sampled trimmed NUBS surface tracing and 2D triangulation times. 

 

Corresponding to the models in Table 3.1, the number of cells has been increased by factors 

of 100, 25, 100 and 3136 for the ‟G‟ shape, lamp backing, car panel and chassis surfaces 

respectively.  Despite these very large cell densities, a higher proportion of cells do not 

contain intersections compared to that of the original test and the percentage of cells traced by 

the trimming boundaries is therefore reduced.  This illustrates that the relative efficiency of 

the proposed method is dependent on the number of cells that have to be traced, not on the 

density of the final triangulation.  In addition, the time taken to trace only increased by factors 

of 4, 2, 2 and 13 for the ‟G‟ shape, lamp backing, car panel and chassis surfaces respectively, 

further highlighting the efficiency of the proposed method. 

3.6.2 Crack Reduction 

To illustrate the fact that the proposed method will not introduce unwanted cracks into a 

single NUBS surface triangulation, a trimmed NUBS surface of a car part was triangulated 

using the Rockwood et al. and the proposed tracing method.  The resulting triangulations are 

given in Figures 3.12 and 3.13 respectively. 
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Figure 3.12(a) clearly shows that the Rockwood et al. approach converts the initial NUBS 

surface into Bézier patches, and then further partitions these patches and trimming curves into 

uv monotone regions.  These regions are then triangulated individually, creating a piecewise 

triangulation of the entire NUBS surface.  It can be seen that the density of triangles varies 

between the different regions, as each is subdivided uniformly depending on the surface 

curvature of the region.  In order to create these regions, additional trimming curves are 

(a) 

(b) 

Figure 3.12 Trimmed surface triangulation using Rockwood. (b) Rendered surface. 

 

. 
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introduced along the new patch boundaries. However, since adjacent patches can have 

different densities of triangles, this can result in non-coincident triangle vertices along the 

boundary edges on adjacent patches.  Due to this, cracks can appear in the rendering of a 

single trimmed surface as shown in Figure 3.12(b).  Whilst these cracks maybe small, 

Rockwood et al.‟s method requires that highly curved surfaces be oversampled to reduce the 

crack sizes from appearing visually in a final rendering. 

 

Figure 3.13(a) shows the resulting triangulation of the same NUBS surface using the proposed 

method.  

 

As can be seen, there is also a change in the density of the triangles in different regions.  This 

is because a single NUBS may be composed of many different Bézier surface patches.  Since 

the parameter domain was subdivided uniformly across the whole NUBS surface, this has 

caused a change in density of uv spacings in the different Bézier patches.  However, despite 

this density change, no discontinuities occur in the triangulation; the cells are always 

connected along the different patch boundaries hence there are no cracks in the rendering of a 

single trimmed surface.  This has the advantage that fewer triangles can be used to triangulate 

highly curved surfaces, without inducing cracks into a single NUBS surface compared to a 

method based on converting the NUBS into a collection of Bézier patches, e.g. Rockwood et 

al.‟s (Figure 3.13(b)). 
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3.6.3 Skinny Triangles 

The triangulation of a trimmed surface is needed for a downstream engineering application.  

Results from any application are dependent on the quality of the triangulation in order to 

produce the best possible result (Shimada and Gossard, 1998; Parwana and Cripps, 2009).  

The occurrence of triangles with large aspect ratios, i.e. long thin triangles, is a triangulation 

feature that can produce unexpected behaviour from the downstream applications.  Therefore, 

(a) 

(b) 

Figure 3.13 Trimmed surface triangulation using proposed method. (b) Rendered surface. 

 

 

. 
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this type of triangle should be avoided as much as possible.  Nonetheless, some existing 

methods, e.g. Rockwood et al.‟s, produce more triangles with large aspect ratios than is 

absolutely necessary.  These triangulations can be refined by using a post processing 

remeshing technique (Shimada and Gossard, 1998; Shu and Boulanger, 2000; Wang et al., 

2006) to make the triangles more uniform.  However, the computational time taken for this 

step increases proportionally with the number of triangles that have to be modified.  The 

proposed triangulation method has been optimised to efficiently generate a mesh for CAD, 

but generates a triangulation that is more uniform than Rockwood et al.‟s.  The percentage of 

triangles with high aspect ratios is also reduced because of the subdivision method and 

triangulation methodology utilised.  Since the proposed new tracing approach generates a 

more uniform initial triangulation efficiently, this should aid in the computation and time 

taken for the remeshing process. 

 

This is best illustrated for a simple planar trimmed surface with many trimming loops as for 

the toy car chassis shown in Figure 3.14. 

 

This trimmed surface is the planar base of a toy car chassis, and consists of a single NUBS 

plane surface with 12 trimming loops.  Rockwood et al.‟s, method produces many triangle 

shapes with very high aspect ratios (Figure 3.14(a)).  Since the trimming regions must be 

decomposed into uv monotone sections, these skinny triangles cannot be avoided. 
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The triangulation of the same surface using the proposed method is shown in Figure 3.14(b) 

and the triangles are much more uniform.  Any triangles of undesirable aspect ratios are 

confined to the trimming curve boundaries.  Tables 3.3 and 3.4 show different ranges of 

triangle aspect ratio values and the amount of triangles, as a percentage of the total 

triangulation, in each aspect ratio range for the Rockwood et al. and new triangulation 

approach respectively.  Graph 3.1 shows a scatter diagram of the results in these tables. 

 

 

 

(a) 

(b) 

Figure 3.14 Triangulation of a trimmed surface. (a) Rockwood. (b) Proposed. 

 

 

. 
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Tables 3.3 and 3.4 Aspects ratios of triangles within the triangulation. 

Rockwood et al. triangulation 

 Aspect ratios 
Percentage of 

triangles (%) 

1 - 1.5 0.1 

1.5 - 2 1.6 

2 - 2.5 1.7 

2.5 - 3 1.1 

3 - 4 2.4 

4 - 6 3.7 

6 - 10 4.6 

10 - 15 6.9 

15 - 25 7.9 

25 - 50 12.4 

50 - 100 21.4 

100 - 300 21.7 

300 - 1000 8.9 

1000 - 10000 4.1 

10000 - 100000 0.2 

> 100000 1.3 

New triangulation approach 

Aspect ratios 
Percentage of 

triangles (%) 

1 - 1.5 1.5 

1.5 - 2 2.9 

2 - 2.5 6.1 

2.5 - 3 4.7 

3 - 4 7.6 

4 - 6 7.8 

6 - 10 10.2 

10 - 15 7.8 

15 - 25 14.2 

25 - 50 19.5 

50 - 100 7.8 

100 - 300 7.0 

300 - 1000 2.9 

1000 - 10000 0 

10000 - 100000 0 

> 100000 0 
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Graph 3.1 Aspects ratios of triangles within the triangulation. 

 

From the tables and graph it can be seen that the majority of triangles in the new approach 

come under a smaller aspect ratio range than the Rockwood et al. approach.  This results in 

triangles that are more uniform and reduces the number of long thin triangles.  Furthermore, 

the minimum and maximum aspect ratios for the proposed triangulation approach were 1.19 

and 870.93 respectively.  However, the Rockwood et al. approach had a minimum aspect ratio 

of 1.50 and a maximum ratio of ∞ (i.e. triangle vertices were all collinear) creating a 

degenerate triangle.  These long thin triangles (Figure 4.13(a)) are created because the surface 
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has many small curves and loops which have forced the Rockwood et al. method to generate 

unnecessary uv-monotone regions.  Furthermore, the subdivision methods adopted by 

Rockwood et al. tend to over sample the number of points generated in an attempt to reduce 

the occurrence of cracks along the boundary edges when the regions are stitched back 

together.  This, compounded with the tiling and coving method, used to triangulate the 

boundary edges, produces many degenerate triangles as has been noted by Rockwood et al. 

(1989). 
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Chapter 4 

SURFACE FLATTENING 

 

The method of surface flattening, sometimes referred to as unwrapping, is used to map a 3D 

surface onto a 2D plane (Figure 4.1), and is applicable to industries that manufacture shoes, 

clothing and decorations for textiles and ceramics.  These fields of work all involve making 

an item from a 2D material, which will ultimately be placed onto a 3D model, such as a tea 

pot or human body part.  In conventional practice, a 2D pattern is designed manually by a 

field expert, which is then used to create the item from the 2D material.  Once completed, it is 

placed onto the 3D model, after which alterations can be made to produce a better fit. 

Designing an initial 2D pattern is a specialised craft and can be a complicated task.  However, 

use of flattening simulation allows a designer to create the final 3D model, which can then be 

flattened to produce a 2D pattern.  It has been shown that this approach can produce 2D 

patterns that have a better initial fit as well as decreased production lead-times (Wang et al., 

2002; Cader et al., 2005).   

 

A widely used method for flattening 3D surfaces is to first approximate the geometry as a set 

of 3D triangles, then map the 3D triangular facets into 2D as presented by McCartney et al. 
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(1999) and later modified by Cader et al. (2005).  The triangles are sequentially flattened into 

2D by starting from a seed triangle and then operating on the triangles that share an edge with 

any flattened triangle.   

 

As the original 3D triangulation will be mapped into the 2D plane of the seed triangle, some 

distortion may occur within the flattened triangulation (McCartney et al., 1999; Parwana and 

Cripps, 2009), which is dependent on the surface curvature.  If a surface is developable 

(Section 1.4.4), then there will be no distortion when it is flattened, otherwise, there will be 

some distortion depending on the magnitude of the curvature (McCartney et al., 1999). 

 

This chapter will present the details of both the McCartney et al. (1999) and Cader et al. 

(2005) flattening processes.  It will also present known surface and algorithmic characteristics 

that can have an effect on the final flattening result.   

 

4.1 McCartney et al. Algorithm 

One of the most widely used algorithms for flattening is McCartney et al.‟s method 

(McCartney et al., 1999).  This method begins by triangulating the surface using Piegl and 

(a) (b) 

Figure 4.1  Cone section. (a) 3D triangulation. (b) unwrapped triangulation. 
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Tiller‟s (1998) triangulation approach, which generates a set of triangles, T, consisting of 

mainly right angle triangles.  An initial flattening is then produced by constraining the edge 

lengths of each triangle in 2D to be the same as the corresponding 3D triangle.   

4.1.1 Circle Intersection Algorithm 

The first triangle to be flattened is chosen from the triangulation and is known as the seed 

triangle, ts, that has the 3D vertices, (p0, p1, p2), (Figure 4.2(a)) and edge lengths 

 

010 ppl ,    121 ppl ,   202 ppl           (4.1) 

 

The first two vertices are placed into 2D using the coordinates )0,0(0p and )0,( 01 lp .  The 

next stage is to create two 2D circles C0 and C1, which have the centre points 0p , and 
1p , as 

well as radii l0, and l1 respectively.  The position of the third vertex 
2p  in 2D is determined by 

the intersection point between C1 and C2 (Schneider and Eberly, 2003) (Figure 4.2(b)).   

 

 

p0 p1 

p2 

l0 

l1 l2 

C1 C0 

l0 

l1 l2 

0p
1p

2p

Figure 4.2  (a) 3D triangle. (b) 2D flattening of 3D triangle. 

 

(a) (b) 

θ 
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Once the seed is flattened, any triangle in T that shares an edge with ts may be flattened next.  

As the next triangle will share an edge with ts, two of its points will already have been 

flattened.  Therefore, only the third vertex needs to be calculated and this is done by using the 

circle intersection method.   

 

Instances where all three vertices of a triangle have already been flattened will occur during 

the process, which will mean that one vertex in 3D may have more than one position in 2D.  

 

This can be illustrated in Figure 4.3(a) where the 3D triangle, t, is next to be flattened, 

however, all of its vertices have already been mapped into 2D.  Therefore, when mapping t 

into 2D by determining a new position for p2, if the surface is non-developable, the circles, C0 

and C1, may intersect at a different point than that of 
2p  (Figure 4.3(b)).  When 

2p  is 

connected to 0p and 
1p  this will cause tearing or overlapping (Figure 4.4).  If the surface is 

developable, the multiple 2D positions will all be the same, within tolerance, and therefore no 

distortion should occur. 

p0 

p1 

p2 

l1 

l2 

Figure 4.3  (a) 3D triangulation. (b) Constrained flattening. 

 

t Figure 4.3  (a) 3D triangle. (b) 2D flattening of 3D triangle. 

  

0p

1p
2p 2p

l1 

l2 
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4.1.2 Energy Release Method 

To remove any distortion which can arise from flattening surfaces with non-zero Gaussian 

curvature, McCartney et al. use an energy release method to reduce strain energy from the 

flattened triangulation, thus attempting to reconnect the topology.  The strain energy 

associated with an edge, e = (p0, p1), is given by 

   
2

0 1 0 1
0 1 0 1

0 1

( )
( , , , ) 0.5energyf

p p p p
p p p p

p p
        (4.2) 

where p0 and p1 are the 3D vertices of the edge and 0p  and 1p  are the flattened 2D vertices of 

the edge.  The energy release method takes each vertex, ip , in the flattened triangulation and 

attempts to move it an incremental distance of d  in four orthogonal directions iap , ibp , icp , 

idp  as shown in Figure 4.5.  McCartney do not state how to determine d . 

 

(a) (b) 

Figure 4.4  Examples of (a) overlapping and (b) tearing in a 2D flattening. 
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Suppose that the 3D equivalent vertex of ip , in the original 3D triangulation was connected 

to the vertices pp , qp , rp , sp , then each vertex would have an associated energy value of  Ei, 

which is the sum of the strain energy for all connected edges, i.e. 

( , , , ) ( , , , )

( , , , ) ( , , , )

i energy i p i p energy i q i q

energy i r i r energy i s i s

E f f

f f

p p p p p p p p

p p p p p p p p
        (4.3) 

Each orthogonal test move is then tried on vertex ip  and the total new strain energy value 

calculated and stored.  For example, moving ip  to iap  (Figure 4.5) would yield the strain 

energy value Eia given by: 

( , , , ) ( , , , )

( , , , ) ( , , , )

ia energy i p ia p energy i q ia q

energy i r ia r energy i s ia s

E f f

f f

p p p p p p p p

p p p p p p p p
       (4.4) 

The energy values Eib, Eic, Eid for the test moves ibp , icp , idp  respectively, are calculated in a 

similar way.  The maximum energy reduction, iE , caused by an orthogonal movement is 

then calculated by max{( ),( ),( ),( )}i i ia i ib i ic i idE E E E E E E E E .  If  iE  is greater 

than a user defined energy threshold, Et, then the orthogonal movement associated with iE  

Figure 4.5 Orthogonal trial movements for energy release. 

 

iap

ibp

icp

idp

pp qp

rp
sp
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will be applied to vertex ip .  A value less than or equal to Et, within tolerance, will mean that 

ip  is not considered for movement. 

 

The energy release process is then applied to all vertices connected to ip , eventually 

removing strain energy for every vertex within the flattened topology.  The process is 

terminated when no further reductions of strain energy are greater than Et.  This can mean that 

a single vertex can be tested many times making this a very computational intensive process.  

This can be illustrated by a result presented by McCartney et al. (1999), in which they 

flattened a section of a torus with the dimensions shown in Figure 4.6.   

 

The proportion of the torus used and the number of triangles was not provided in the results.  

However, for an energy threshold of Et = 1e
-4

, the energy release process took over 6 minutes 

to complete.  It is stated that a value of Et = 3e
-4

, is a good compromise between accuracy and 

processing time, however, a simulation with this value still took over 3 minutes (McCartney 

et al., 1999).  

 

Figure 4.6 Part of a torus. 

 

R100 

R150 

R400 
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A way to resolve these long processing times would be to iteratively change the topology as 

distortion occurs in the system.  However, due to the circle intersection method employed, 

runtime modifications of the flattened topology are not possible and have to be postponed 

until the end.  This is because flattened vertices act as centre points for circles and moving a 

vertex will essentially move a possible centre of a circle.  Over time, this movement can 

accumulate so that the distance between the centre points is large enough to force the circles 

to no longer intersect one another. 

 

4.2 Cader et al.’s Flattening Method 

Cadar et al. (2005) proposed an improvement to McCartney et al.‟s algorithm, which is 

essentially a modification of the McCartney et al. flattening scheme.  The modified algorithm 

utilises a cosine method to determine the position of the triangle vertices in 2D, which is 

equivalent to McCartney et al.‟s intersection of circles approach. 

4.2.1 Cosine Algorithm 

In the case of the seed triangle, ts = (p0, p1, p2), the first two vertices would be flattened using 

the same method as McCartney et al.  The edge lengths, given by (4.1), are then used to 

calculate the subtended angle θ at p0 (Figure 4.3(a)) using the cosine rule 

20

2

1

2

2

2

01

2
cos

ll

lll
 

Therefore, the coordinates of the three flattened vertices ),,( 210 ppp  which preserve the 3D 

edge lengths of the original triangle, are given as 

)0,0(0p ,   )0,( 0l1p ,   )sin,cos( 22 ll2p  
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As in McCartney‟s algorithm, once a seed has been selected, this method continues to flatten 

triangles incident to previously unwrapped triangles.  However, flattening these remaining 

triangles is a little more complicated compared to flattening the seed.  The process is 

illustrated with an example.   

 

Figure 4.7(a) shows triangles t0 and t1.  t0 has already been mapped into 2D, 0t , (Figure 

4.7(b)), so t1 is the next triangle to be processed and shares an edge with t0 and vertex p3 of t1 

is the only vertex position to be determined in 2D.  The edge lengths and angle θ are 

calculated ensuring that the angle is the one which is incident to the start point of the half 

edge (ps) which is incident to t1 (Figure 4.7(c)). 

 

t0 

t1 

θ 

t0 

t1 

θ 

ps 
p3 

(a) 

(c) 

Figure 4.7 Cosine flattening process. Blue triangles are 3D and green 2D. (a) 3D 

triangulation. (b) Seed flattened. (c) Identifying ps and which vertex to flatten. 

 

θ 

θ 

β 

(d) 

(b) 

1t

0t

0t

(e) 

1t

0t

sp

3p
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Once θ has been calculated, the new positions of the two vertices are calculated relative to the 

ps of the shared half edge as shown in Figure 4.7(d).  

 

As can be seen in Figure 4.7(d), the final stage is to rotate the triangle into the correct 

position.  This is done by calculating angle β, again using the cosine rule, and then rotating p2 

though β about the start point of the incident half edge (Figure 4.7(e)).  This method is 

continued until all triangles have been flattened. 

 

This process produces a result which is equivalent to the circle intersection method 

(McCartney et al., 1999), but has the advantage that it allows for runtime modifications of the 

flattened triangulation, which eliminates any tearing or overlapping as they occur.  Therefore, 

in the situation where a duplicate 2D position for an existing flattened vertex has to be 

calculated, an unbiased average of the two different positions is taken to create a single 

position.  It is again worth noting that if the surface is developable, the position of the two 

vertices will be the same, within tolerance. 

4.2.2 Mapping Order 

Cader et al. (2005) also present a method for pre-determining the order in which a 3D 

triangulation will be flattened into 2D.  This is opposed to McCartney et al.‟s method which 

determines the next triangle to be flattened on the fly and in no logical order.  The seed 

triangle is denoted as level 0 and will be the first triangle to be flattened.  Any triangle which 

shares an edge with the seed triangle will be denoted level 1, and any triangle which shares an 

edge will a triangle from level 1 will be denoted as level 2, etc.   
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The order in which triangles are flattened can change the final flattening result and is an 

ambiguity currently present in some methods.  Therefore, given a 3D triangulation and a seed 

triangle, two implementations of the McCartney et al. method could easily yield completely 

different flattening results, due to the ambiguity in the mapping order.  Using a consistent 

mapping order can reduce this ambiguity, resulting in more consistent results when flattening 

a surface.  In addition, due to the circular nature of the mapping order, it flattens the 

triangulation evenly around the seed, which ensures that any distortion is distributed evenly 

throughout the entire surface. 

 

4.3 Accuracy Measurements 

The accuracy of a flattening simulation can be assessed using differences in area and shape as 

proposed by Wang et al. (2002).  The area difference measures the change in surface area pre- 

and post-flattening.  The relative area difference is given by 

o f

o

A A
A

A
         (4.5) 

where oA  is the original area of the 3D surface and fA  is the area of the 2D flattened surface.  

Since analytical forms of the flattened surface cannot be determined, the areas are 

approximated by summing the triangles areas within each triangulation, i.e. 

1

0

n
o o

i

i

A  and 

1

0

n
f f

i

i

A         (4.6) 

where 
o

i  is the area of the i
th

 triangle from the 3D triangulation consisting of n triangles and 

f

i  is the are of the i
th

 flattened triangle. 
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The shape difference measures the change in the surface curve lengths pre- and post-

flattening, where the curve length is defined as the length of an arbitrary iso-parameter line on 

the surface.  The final relative edge length difference is given by 

o f

o

L L
S

L
          (4.7) 

Where L
o
 is the actual curve length of the curve segment on the original surface and L

f
 is the 

corresponding curve length in the flattened model.  Again, analytical forms of the curve 

length cannot be determined for the flattened model, so L
o
 and L

f
 are approximated by 

summing the length of each edge in the corresponding triangulation, i.e. 

1

0

m
o o

j

j

L E  and 
1

0

m
f f

j

j

L E         (4.8) 

where 
o

jE  is the edge length of the j
th

 edge in the 3D triangulation consisting of m edges and 

f

jE  is the edge length of the j
th

 edge in the flattened triangulation.
 
  

4.3.1 Improved Accuracy Flattening Measures 

Although the measures presented in (4.5) and (4.7) are used widely, it is noted that they can 

give misleading results, which can portray an incorrect result.  This is because it is very 

possible to induce large amounts of area distortion within a flattening of a triangulation, yet 

achieve δA = 0.  For example, during the flattening of 10 triangles, 5 triangles could increase 

in area by a half and 5 triangles could reduce in area by a half after flattening.  Summing these 

area changes, the total area after flattening would be the same as the original 3D area.  This 

would imply that no area distortion took place, yet clearly every triangle induced distortion.  

Therefore, this measure would give a poor reflection of the actual distortion induced.  This 

argument is analogues for the shape change. 
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Therefore, two new additional measures are defined to reflect the measure of distortion after 

flattening more accurately.  The first is defined as the absolute area change given by 

1

0

n
o f

i i

i

A           (4.9) 

The second is defined as the absolute shape change given by 

1

0

m
o f

j j

j

S E E           (4.10) 

In each of these measures, the absolute difference in area (shape) per triangle (edge) is 

measured and summed together, meaning that all distortions will be accounted for in this 

measurement. 

 

4.4 Discussion 

McCartney et al. (1999) present a triangular based approach for flattening a 3D triangulation 

into the 2D plane of the seed triangle, by constraining the edge lengths of the 3D triangles.  

Due to the circle intersection procedure adopted, if the surface is non-developable, the initial 

flattening of the surface may induce tearing or overlapping of triangular facets.  It is also 

stated that if the surface is developable, then the triangulation of that surface will also flatten 

without distortion.  To remove any tearing or overlapping, an iterative energy release method 

is used to reconnect the triangulation.  No definitive mapping order for the triangulation 

flattening is provided; meaning that different implementations of this technique can 

essentially flatten the triangles in a different order.  This can be a problem, as noted by Cader 

et al. (2005), since the order in which the triangles are flattened into 2D can effect the 

resulting flattening.   
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The energy release method adopted by McCartney et al. is a very computationally intensive 

task which has to test many different solutions for a new point position before settling on the 

final answer.  The large computational time is due to the fact that the energy release method 

must be used as a post-processing step on the entire flattened structure.  This is imposed on 

the algorithm because runtime modification of vertex positions can cause the flattening to fail 

in situations where the cumulative movement of the points becomes so much that the circles 

no longer intersect.   

 

In practice, surface flattening is used on developable or non-developable surfaces with very 

small curvature (almost developable); therefore, Cader et al. (2005) presented a flattening 

method that constrains the edges lengths of triangles and produces a result equivalent to 

McCartney et al.  By utilising a cosine method rather than an intersection of circles, Cader et 

al. were able to incorporate runtime modifications into their algorithm.  Therefore, multiple 

2D positions for a single 3D vertex can be removed immediately by taking the unbiased 

average of the points.   

4.4.1 Highly Curved Surfaces Problem 

As the method of Cadar et al. proposed an improvement to McCartney et al.‟s algorithm, it is 

adopted as a suitable scheme with which to demonstrate the effects of triangulation.  

However, as the method has been optimised for almost developable surfaces, problems can 

arise when working with highly curved surfaces.  For these types of surfaces, the averaging 

process can induce large changes to the shape of flattened triangles and cause them to flip 

from anti-clockwise to clockwise as illustrated in Figure 4.8.  Figure 4.8(a) shows two 
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incident triangles 0 ( , , )0 1 2t p p p  and 1 2 3 4( , , )t p p p  which have been flattened into 2D.  

Vertices 0p  and 
4p  represent the same vertex in 3D and need to averaged to establish a single 

position in 2D to reconnect the triangles.  Therefore, the updated triangle vertices become 

0 ( , , )a 1 2t p p p  and 1 2 3( , , )at p p p , however, this has caused 0t  to change from anti-

clockwise to clockwise (Figure 4.8(b)).  

This inconsistency in the vertex orientations means that even after the attempt has been made 

to reconnect the triangles, it will still produce an invalid topology.  Furthermore, overlapping 

of triangles will remain within the triangulation because of this orientation inconsistency, as 

shown in Figure 4.8(b), which is highly undesirable.  This invalid topology will mean that the 

algorithm will no longer operate correctly and cause a spiralling effect as shown in Figure 4.9.  

The result will be an unacceptable flattening.   

(a) (b) 

Before averaging Post averaging 

Figure 4.8 Highly curved surfaces problem. (a) Triangles before and (b) after averaging. 

 

0p

1p

2p

3p

4p

1t
0t

ap

0p

1p

2p

3p

4p



102 

 

 

4.4.2 Long Thin Triangles Problem 

As Cader et al.‟s approach has been optimised for almost developable surfaces, it may suggest 

that the spiralling effect caused by highly curves surfaces would not occur; however, this is 

not the case as it can also be induced by triangles with high aspect ratios.  Numerical 

calculations based on the vertices of triangles with high aspect ratios can be unstable.  Thus, 

during the averaging process such triangles can become highly susceptible to change of 

orientation as shown in Figures 4.10.  Figure 4.10 is similar to the case shown in Figure 4.8, 

however, it is noted that triangles with high aspect ratios are more unstable and can cause 

vertex orientations to flip with small changes in vertex positions. 

Figure 4.9  (a) Initial 3D triangulation. (b) Failed flattening (solid white triangle is seed). 

. 

 

(b) (a) 
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Therefore, a flattening success criterion is established so that, if during a flattening 

simulation, a triangle flips from anti-clockwise to clockwise, the simulation is immediately 

terminated and deemed a failure.  Furthermore, a definition for „almost developable‟ is 

proposed based on this triangle orientation flipping.  Given a non-developable surface, 

multiple flattening simulations of this surface can be performed by using each triangle within 

the 3D triangulation as a seed triangle.  If, for any seed triangle, the flattening simulation is 

completed successfully with no triangle orientation flipping, then the surface is deemed as 

„almost developable‟.  Otherwise, if every flattening simulation failed, due to a triangle 

orientation flip, then the surface is not considered as „almost developable‟.  

4.4.3 Flattening Algorithm Stability Solution 

The problem of vertex orientation flipping caused by triangles with high aspect ratios 

suggests that when flattening a trimmed surface, it is best to flatten the entire underlying 

surface as a rectangular patch with nicely shaped triangles.  The trimming curves can then be 

mapped onto the 2D flattening.  This will ensure that triangles with high aspect ratios, which 

generally occur along the boundary edge of a trimmed surface triangulation, are not dealt with 

0p

1p

2p

3p

4p
ap
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4p
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1p
3p

(a) (b) 

Before averaging Post averaging 

Figure 4.10 High aspect ratio problem. (a) Triangles before and (b) after averaging. 
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during the flattening process.  This can greatly enhance the stability of the flattening 

algorithm. 

4.4.4 Seed Triangle and Mapping Order 

McCartney et al. and Cader et al. noted that the choice of seed triangle can affect the final 

flattening.  As the flattened seed triangle geometry is constrained, any distortion spreads 

outwards from this seed triangle.  This can be seen illustrated in Figure 4.11, where the 3D 

surface (Figure 4.11(a)) has been flattened twice using two different seed triangles (indicated 

by the solid white triangles in (Figures 4.11(b)-(c)), resulting in completely different 

flattening results.   

 

It can be useful, during a flattening simulation, to find the optimum seed triangle that causes 

the least change in area between the original 3D triangulation and the flattened counterpart.  

This essentially approximates the change in surface area, which can be a useful indicator for 

checking the quality of flattening result (Wang et al., 2002).  Therefore, an optimum seed 

triangle can be found by performing multiple flattening simulations on a single 3D 

triangulation, each time using a different triangle as the seed.  The areas change induced can 

Figure 4.11 (a) 3D triangulation. (b) Result 1. (c) Result 2. 

 

(a) (b) (c) 
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be recorded and then compared to find which seed triangle caused the least difference, i.e. 

making it the optimum seed. 

 

Cader et al. also noted that an aspect that can affect the final output is the mapping order and 

therefore established a consistent method for pre-determining the order in which the triangles 

will be flattened.  This ensures a consistent implementation of this technique by ensuring that 

given a seed triangle, the flattening result will always be the same.  
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Chapter 5 

RIGHT ANGLE TRIANGLE CONFIGURATIONS 

 

Structured triangulation schemes for approximating trimmed surfaces are widely used 

throughout CAE as an input for downstream applications, including surface flattening 

(McCartney et al., 1999; Cader et al., 2005).  The advantage of structured triangulation 

schemes is that any irregular shaped triangles, particularly those with high aspect ratios, are 

confined to the boundary edges of the surfaces, whilst maintaining a uniform triangulation 

within the interior of the surface.  This can be beneficial to applications, such as surface 

flattening, where triangles with high aspect ratios can cause problems during the course of a 

simulation (Section 4.4).   

 

Apart from along the boundary edges, in general, structured triangulation schemes tend to use 

right angled triangles (RATs) (Rockwood et al., 1988; Peterson, 1994; Kumar and Manocha, 

1996; Piegl and Tiller, 1998; Sadoyan et al., 2006), as they are easily generated from the cell 

data structures that are used to partition a surface‟s parameter domain and establishing which 

portions of the surface are within the trimming region (Section 2.4).  However, RATs offer an 

interesting variable in terms of their connectivity which can change the final result of a 
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surface flattening simulation.  This novel connectivity issue will be the main focus of this 

chapter. 

 

5.1 Right Angle Triangle Configuration Definition 

Given a surface parameter domain which has been sampled to generate a triangulation 

consisting of equilateral triangles, using all the vertices, there is only one set of equilateral 

triangles that will fit this point sampling (Figure 5.1(a)). 

 

The Delaunay triangulation method (Section 2.2) triangulates a set of points by maximising 

the minimum angle of all the triangles.  This method is said to create a unique solution 

(O‟Rourke, 2001) as it is attempting to make the triangles as close to equilateral as possible, 

which is known to have a unique solution (de Berg et al., 2000).  However, there is ambiguity 

in this method for the situation where more than three points lie on the circumcircle of a 

triangle (Sugihara and Inagaki, 1995) (Section 2.10).  Therefore, a uniformly distributed grid 

Circumcircle 

t0 

t1 

p0 

p1 p2 

p3 

(a) (b) 

Figure 5.1 (a) Triangulation consisting of equilateral triangles. (b) Circumcircle of each 

right angle triangle, t0 and t1, has four points on it. 
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of 2D points would not yield a single solution using Delaunay triangulation as each triangle 

would have a minimum of four vertices on its circumcircle (Figure 5.1(b)).   

 

Uniformly sampled grids of points are commonly used in many structured triangulation 

algorithms (Sections 2.4-2.9, Section 3.1).  These sampled points are connected to form 

rectangular cells, which are then triangulated into RATs by adding diagonals.  The placement 

of the diagonal is not unique as there are two choices (Figure 5.2).  In both cases the triangles 

generated by inserting a diagonal will be RATs.   

 

As there are only two solutions for the placement of the diagonal from a single cell, the 

number of permutations for the diagonal placement in n cells can be modelled as a binary 

permutation.  Therefore, the number of right angle triangle configurations (RATCs) that can 

be generated from a grid consisting of n cells is: 

Number of RATCs = 2n         (5.1) 

As n increases, the number of RATCs increases exponentially, which can result in an 

unmanageable number of different triangulations being generated from a uniformly sampled 

grid, all consisting of RATs.  As an example, 100 cells would generate 1.26765e
30

 different 

RATCs.  Typical structured triangulations consist of many hundreds, even thousands of cells 

which must be triangulated in RATs.  Suggesting a method that would generate every 

Figure 5.2 Diagonal placement. 
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possible RATC for a uniformly sampled grid of points and then checking the flattening results 

for each RATC would not be sensible.  For example, given a triangulation consisting of 200 

triangles (generated from 100 cells), if it takes 1 second to find the optimum seed for each 

RATC, then the time taken to find the optimum seed for all the RATC permutations of this 

point sampling (neglecting the time taken to generate the RATC) would be 4e
22

 years.  In 

reality, finding the optimum seed triangle and form each RATC could take several minutes, 

taking into account the density of the triangulation, making this an even more unrealistic task.  

This motivates the investigation into whether different RATCs affect surface flattening and 

attempting to establish which RATC would be best suited to this downstream application. 

 

5.2 Global Right Angle Triangle Configurations 

In practice, a small number of RATCs are actually used to triangulate a grid of points, and 

these tend to be the same, within four incident cells, over the whole triangulation, i.e. 

globally.  Two global RATCs were noted from previous work on surface flattening, and a 

novel third configuration is proposed.  These three global RATCs will be used throughout the 

analysis and testing process in this thesis and are defined as: 

1. Regular configuration, used by McCartney et al. (1999) and Wang et al. (2002) 

(Figure 5.3(a)). 

2. Diamond configuration, used by Cader et al. (2005) (Figure 5.3(b)). 

3. Chevron configuration (Figure 5.3(c)). 

All three configurations are legal RAT triangulations generated from the same point sampling, 

and each produces a different flattening result as demonstrated in Section 5.2.1. 
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5.2.1 Global RATC Test  

To consider the effects of RATC on the flattening process, a non-developable NUBS test 

surface (Figure 5.4) was sampled uniformly in the parameter domain using a 60 60  grid of 

points and triangulated in each of the three different global configurations.  This point 

sampling ensured that the area of the model approximated by the triangulation was within 1% 

of the original surface area value. 

 
Figure 5.4 Test surface. 

 

Figure 5.3 Global right angle triangle configurations. 

 

Regular Diamond Chevron 



111 

 

Each triangulation consisted of 6962 triangles, which was flattened using Cader et al.‟s 

(2005) flattening method and the same seed triangle.  The choice of seed triangle can change 

the result of a flattening simulation (Section 4.4.4); therefore the seed used in the tests was 

specifically chosen because it was defined by the same vertices and edges in each of the three 

configurations, thus giving an unbiased starting point to each flattening simulation.  The 

flattening results for the three triangulations are given in Table 5.1 and Figures 5.5-5.7.  The 

seed triangle is shaded in solid black to show its location. 

 

 

 

Number of triangles in each triangulation 6962 

Global RATC 
No. of triangles 

flattened 

Area Change 

(δA) 

Shape Change 

(δS) 
Successful 

Diamond 5903 -15.23% -15.74% No 

Chevron 6962 -0.27% -0.05% Yes 

Regular 6962 -0.18% -0.08% Yes 

Figure 5.5 (a) Diamond RATC 3D triangulation. (b) Flattening result. 

 

Seed 

 

Table 5.1 Global RATC test flattening results. 
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As can be seen from Table 5.1, the flattening process is dependent on the global configuration 

of the triangulation.  In the diamond configuration, only 82% of the triangles were processed 

before the flattening failed.  This was caused by a triangle orientation flipping to clockwise 

during the averaging process (Section 4.4.1).  In contrast, the chevron configuration resulted 

in the triangulation flattening successfully with an area change of -0.27%, where the negative 

value indicates a reduction in area.  An unmodified version of this flattening would cause the 

triangulation to have overlapping triangles or gaps between triangles. However, the averaging 

process removes overlaps and tears, thus triangle areas can increase or decrease in these 

Figure 5.7 (a) Regular RATC 3D triangulation. (b) Flattening result. 

 

Seed 

Figure 5.6 (a) Chevron RATC 3D triangulation. (b) Flattening result. 

 

Seed 
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regions.  The flattening was further improved by using the regular configuration, which 

reduced the area change by 33% compared to the chevron configuration. 

 

It can be seen from Figure 5.7, that whilst the regular configuration induced less change in 

area, it produced some noticeable creasing in the top right corner of the final flattening.  In 

contrast, the chevron triangulation resulted in visually less creasing (Figure 5.6).  This is 

reflected in the resulting shape change coefficients, which were -0.08 and -0.05 for the regular 

and chevron coefficients respectively, where the negative value indicates a compression of the 

original edges.  This implies that for this particular surface and seed triangle, the chevron 

configuration preserves the original shape better than the regular configuration.   

  

5.3 Motivation for a Consistent RATC  

Currently, the failure of a surface flattening of this nature would be solely attributed either to 

the type of triangulation, i.e. triangle shape, triangle size, or flattening algorithm.  However, it 

has been shown that the performance of the flattening algorithm is also dependent on the 

configuration of RATs. 

 

When using a triangulation for a downstream engineering application, much effort is put into 

the creation of the application algorithm to ensure that any configuration ambiguities are 

removed.  For example, Cader et al. (2005) noted that a flattening simulation could be 

affected by the mapping order of the 3D triangles, therefore an edge based mapping order was 

introduced (Section 4.2.2) to remove this variable.  However, despite the measures put into 

place to make flattening algorithms more robust, they are still triangulation dependent 
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algorithms.  Therefore, to achieve a more robust flattening simulation, efforts must be made to 

remove any ambiguities from the initial 3D triangulation, i.e. RATC.   

 

Section 5.2.1 showed that different RATCs can have an impact on the resulting surface 

flattening.  However, the question of which RATC is best suited for surfaces that require 

flattening still remains.  It would appear that the chevron and regular configurations provide a 

better mapping than that of the diamond configuration, however, which of these two 

configurations is better suited for flattening is unclear.  Furthermore, it will be worth 

investigating whether a RATC that varies locally, depending on the local characteristics of the 

surface, would be better suited than a global configuration. 

 

In the field of discrete data triangulation and remeshing (Frey and George, 2000; Meek and 

Walton, 2000; Dyn et al., 2001), triangulation choices, made from a given set of points, are 

determined by locally evaluating the curvature (generally Gaussian or mean) from the mesh to 

ensure that the distribution of curvature is smooth over the entire mesh.  Although making the 

Gaussian curvature smooth over the triangulation does not necessarily guarantee a good 

approximation, the idea of matching a triangulation to better approximate a surface 

characteristic is a topic which is worth exploring.   

 

Therefore, the remainder of this chapter will firstly present a method for generating a locally 

varying RATC, within a triangulation, to best match the Gaussian curvature of the original 

surface.  This local RATC and the three global RATCs (Section 5.2) will be applied to the 

triangulations of two almost developable surfaces.  The results will then be analysed and 

compared to establish which type of RATC is best suited for surface flattening.  
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5.3.1 Surface Approximation 

In Section 5.2.1, each RATC was generated from the same set of points, yet still produced 

varying flattening results.  One of the contributing factors that could have affected the results 

could be the quality of the original surface approximation by the triangulation.   

 

Each RATC inherits positional accuracy from the surface because the triangle vertices are 

guaranteed to lie on the surface; however, the connectivity of these points (i.e. placement of 

triangle edges between points) could affect the approximation of other geometric 

characteristics.  For example, let p be a vertex in a 3D triangulation, which is incident to the 

triangles ti, where i = 0, 1, …, n.  To estimate the unit normal at p, the unit normal of each ti 

(Section 1.6.7) would need to be generated first (Figure 5.8) and then averaged to estimate the 

unit normal vector at p.  As triangles are planar polygons, different configurations of triangles 

incident to p, could yield different values for the unit normal vectors for each triangle.  This is 

illustrated in Figure 5.8 where changing the configuration from regular to the chevron altered 

the triangle unit normal vectors shown in blue.  Once averaged, these unit normal vectors may 

give different values at p.  

 
Figure 5.8 Triangles incident to p and normal estimations. 

 

p 
p 

Regular configuration Chevron configuration 
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When generating points, directly from a surface, little effort is put into ensuring that the 

triangulation configuration approximates the original surface characteristics as well as 

possible.  This motivates the investigation into finding a RATC that will best approximate the 

geometrical characteristics of the original surface.   

 

Therefore a greedy algorithm (Cormen et al., 2001) is proposed to establish the optimum 

RATC that will best approximate a specific surface characteristic, known as the RATC 

controller.  The algorithm will find the optimum RATC, for a triangulation generated from a 

uniformly sampled grid of points, which best approximates the RATC controller of the 

original surface.  By doing this for each RATC controller, a well defined RATC solution will 

be generated from any triangulation generated from this data set, which will vary locally, and 

remove any ambiguities which could be induced into any flattening simulations.  These 

triangulations will also provide a premise to evaluate whether a global configuration or locally 

distributed RATC configuration provides a better flattening result. 

 

The surface characteristic that will be used to the control the RATC configuration of a 

triangulation will be the Gaussian curvature, as this measure is commonly used to evaluate the 

shape of 3D surfaces (i.e. developable surfaces) in surface flattening (McCartney et al., 1999; 

Cader et al., 2005).  Details for approximating this characteristic from a triangulation will be 

provided in Sections 5.5. 

 



117 

 

5.4 Optimised RATC Algorithm 

The optimised RATC is defined as the configuration that best approximates the Gaussian 

curvature of the original surface at the sampled points.  The greedy algorithm created for 

determining the optimum RATC is detailed below. 

 

Stage 1: Subdividing the Surface 

Given a NUBS surface, S(u, v), defined over the normalised parameter domain u,v [0,1] 

(Section 1.2.1), the first stage is to represent the parameter plane as a uniformly subdivided  

m n  grid of points in the u and v directions respectively.  The uv grid points and their 

indices are organised as shown in Figure 5.9.   

 

Stage 2: Calculate Surface Gaussian Curvature Values  

The S(u, v) is then evaluated at each uv grid point to find the Gaussian curvature, KG, at that 

parameter value.  Each KG is stored for the appropriate uv grid point as shown in Figure 5.9.  

During this stage, an additional check will be performed to establish the uv grid point that has 

the largest magnitude of Gaussian curvature.  This uv grid point will be stored as pg(imax, jmax), 

Figure 5.9 Nomenclature and data stored for each uv point in a grid. 
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and will form the initial starting point for the greedy algorithm. This is done to ensure that the 

RATs are configured to estimate highly curved regions of the surface more accurately, as 

these have more impact on the flattening simulation. 

 

Stage 3: Generating Optimum RATC 

The method starts from uv grid point pg(imax, jmax).  The 8 adjacent vertices are extracted from 

the subdivided grid (Figure 5.10).   

 

These vertices are mapping into 3D and stored as four cells, which are then triangulated 16 

times, each time using different combinations of diagonal placements between the cells 

(Section 5.1).  For each triangulation, the KG approximation will be calculated at the 3D 

mapped point of pg(imax, jmax) (Section 5.5).  The triangulation configuration that produces the 

least absolute difference between the actual and approximated KG will be chosen as the local 

configuration for these points.   

 

The remainder of the points are then processed in rows, which is outlined in Stage 4, and then 

this process is repeated for the next point.  However, it is worth noting that as this is a greedy 

algorithm, only the first uv grid point will have to test 16 different configurations.  For 

Figure 5.10 Grid points adjacent to pg(i, j). 

 

uv points adjacent to pg(imax, jmax) 
pg(imax, jmax) 
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example, when the second point is being processed, two of the four cells will have already 

been triangulated (Figure 5.11).  Therefore, only two cells will have the freedom to be tested 

for different configurations, meaning that there will only be 4 (i.e. 2
2
) new configurations that 

will need to be checked. 

  

Stage 4: Points Processing Order 

Once the optimum local configuration has been found for pg(imax, jmax), the remaining uv 

points are processed, using the method shown in Stage 3, incrementing i by 1, while i < m.  

Once a row has been processed the next row to be processed will be j+1, while j < n.  

However, as this method starts from index (imax, jmax), increments of i+1 and j+1 will only 

process grid points with larger index positions than (imax, jmax).  Therefore, a second pass, 

which travels in the opposite direction, must be carried out to process uv grid points with 

lower indices (Figure 5.12).  The increments will be i-1, while i > 0 and then j-1, while j > 0.  

Stages 3 and 4 are repeated until the entire grid of points has been processed. 

Figure 5.11 Grid points adjacent to pg(i, j). 
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5.5 Gaussian Curvature Approximation 

The Gaussian curvature is a measure commonly used in surface flattening (McCartney et al., 

1999; Cader et al., 2005) and remeshing (Meek and Walton, 2000; Dyn et al., 2001).  This 

section will present a method which is commonly used to calculate an approximation of 

Gaussian curvature from a surface triangulation. 

 

5.5.1 Current Gaussian Curvature Approximation 

Given a triangulation, T, the Gaussian curvature at the point, p, can be estimated by using the 

triangles incident to p (Dyn et al., 2001).  

Figure 5.12 Grid point processing directions. 
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Let ti, i = 0, 1, …, n, be the triangles incident to p, in anti-clockwise order, and let αi be the 

interior angle of triangle ti, incident to p (Figure 5.13).  Also, let γi be the outer angle made 

between successive triangles (ti, ti+1(mod n)) edges that are opposite to p.  This gives  

     
0 0

n n

i i

i i

         (5.2) 

The Gauss-Bonnet, in the topological case, reduces to  

0 0

2 2
n n

G i i

i iA

K dA         (5.3) 

where the total area of the triangles is  

      
0

n

i

i

AT          (5.4) 

and i  is the area of triangle ti.  Therefore, assuming the curvature is constant in the local 

neighbourhood, the Gaussian curvature, KG, is given by 

0

2

/ 3

n

i

i
GK

AT

         (5.5) 

Figure 5.13 Nomenclature for Gauss-Bonnet estimation. 
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where AT/3 is equivalent to the barycentric area of the triangles (Section 1.6.6).   

5.5.2 Approximation Method Limitation 

This Gaussian curvature approximation algorithm is commonly used in remeshing and 

discrete data triangulation (Frey and George, 2000; Meek and Walton, 2000; Dyn et al., 

2001).  In general, these methods are operating on smooth data and triangulations that define 

equilateral triangles, which ensure that every vertex within the triangulation has a valency of 

six.  However, a consistent vertex valency, throughout an entire triangulation, is not 

necessarily guaranteed when using RATs.  Therefore, (5.5) will not necessarily work very 

well for triangulations consisting of RATC with varying valencies, due to the area portion of 

the algorithm.   

 

To calculate the Gaussian curvature local to a point p, using (5.5), the barycentric area 

(Section 1.6.6) is required.  This area ensures that only the local area to the vertex p is taken, 

thus minimising the amount of bias from other neighbouring vertices.  However, this local 

area value can change when using RATs, which can change the Gaussian curvature estimation 

at p.  Consider 9 planar vertices, where each cell has unit area as shown in Figure 5.14. 

 

1 1 

1 

1 

Figure 5.14 Nine vertices where the area for each cell is 1. 
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For these points, there is a possibility of 16 different RATC that could be generated, however, 

only the 3 shown in Figure 5.15 will be considered, as these show the minimum (4), median 

(6) and maximum (8) valencies which can be generated from the point sampling at p. 

 

In each of these 3 configurations, the sum of the internal angles would be the same; however, 

they would generate different values for the local triangulation and barycentric areas as shown 

in Table 5.2. 

 Triangulations from Figure 5.15 

 (a) (b) (c) 

Valency of p 4 6 8 

Total Local Area 2 3 4 

Barycentric Area 0.67 1 1.33 

 

 

For almost planar vertices, the sum of the internal angles for each configuration would be 

similar; however, the changes in the barycentric area would cause differences in the Gaussian 

curvature approximation using (5.5) at the vertex p.  The discussion of which RATC valency 

would produces the best approximation using (5.5) is given below.   

 

Figure 5.15 RAT triangulation with valency (a) 4, (b) 6 and (c) 8. 

 

(b) (a) (c) 

p p 
 

p 

Table 5.2 Triangulation Areas. 
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5.5.3 Area Errors 

Given a set of points, sampled for RATs, the optimum local area which should be 

approximated to ensure that the area is distributed evenly across all points, would be the 

square areas shown in Figure 5.16, where the square around p would be generated by using 

the centre points of the four adjacent cells to p. 

 

Assuming that all the points have the dimensions shown in Figure 5.14, the local area around 

each point p, which would give an unbiased area distribution, would be 1.  It can be seen from 

Table 5.2, that the only configuration which would meet this unit area requirement for the 

barycentric area, is where the valency of the points was 6.  A valency of 4 gives less area (i.e. 

larger Gaussian approximation) and a valency of 8 gives a greater area (i.e. smaller Gaussian 

approximation) (Figure 5.17). 

 

 

Figure 5.16 Unbiased local area partitioning of a uniformly sampled grid. 
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5.5.4 Experimental Validation 

To validate this theory, the Gaussian curvature was calculated using (5.5) on the triangulation 

of an almost developable surface.  The RATCs were locally varied at random to produce 

differing valencies.  The surface was taken from a trimmed surface definition of an industrial 

model defining a section of a car backlight, provided by Pilkington Group Limited 

(Pilkington, 2010).   

 

Figure 5.18(a) shows the Gaussian curvature approximated from the triangulation and Figure 

5.18(b) shows the absolute difference between Gaussian curvature of the actual surface and 

the equivalent approximation from the triangulation, at the same 3D vertex positions.   

 

Figure 5.17 Uneven area distributions from a uniformly sampled grid. 

 

p 

Valency 4 

Valency 8 

Barycentric area at 

vertices 



126 

 

 

The minimum and maximum Gaussian curvatures from the actual surface, at the sampled 

points, were 0.000024 and 0.000097 respectively.  However, due to (5.5), the minimum 

Gaussian curvature approximation was underestimated by 13% and the maximum was 

overestimated by 19%.  Given the relatively low curvature values of the surface, these 

approximation errors are relatively significant.  Also, rapid fluctuations in the Gaussian 

curvature approximation (Figure 5.18(b)) were seen to occur around points where the valency 

(a) 

(b) 

Figure 5.18 (a) Gaussian curvature approximated by the triangulation. (b) Difference 

between surface Gaussian curvature and approximation from the triangulation. 
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was not six.  This observation was validated by mirroring the RATC of Figure 5.18 with 

respects to the v axis in the parameter domain, then mapping these points into 3D (Figure 

5.19), thus changing the location of the valencies. 

 

The results of this test illustrated the same results as the first test, in that the Gaussian 

curvature is approximated best at the triangle vertices that have a valency of six (Figure 5.20). 

 

Figure 5.19 Mirroring the RATC in the parameter domain of the surface. 
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5.5.5 Improved Gaussian Curvature Approximation 

To remove any biases caused by varying valencies within a triangulation, an area 

compensation factor (ACF) is applied to the area portion of (5.5), which is defined as: 

6
CFA

valency of p
         (5.6) 

(a) 

(b) 

Figure 5.20 (a) Gaussian curvature approximated by the triangulation. (b) Difference 

between surface Gaussian curvature and approximation from the triangulation. 
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Therefore, the improved algorithm to calculate the Gaussian curvature, KG, approximated 

from a triangulation at vertex p is given by 

0

2

/ 3

n

i

i
G

CF

K
A AT

         (5.7) 

where αi and AT are defined as in Section 5.5.1. 

 

Applying this area compensation factor has shown to improve the Gaussian curvature 

approximation generated from a triangulation, when compared against (5.5).  To illustrate this 

improvement, the 3D triangulation shown previously in Figure 5.20 of Section 5.5.4, was re-

used to calculate the Gaussian curvature approximation using (5.7).  Figure 5.21(a) shows the 

Gaussian curvature approximated from the triangulation and Figure 5.21(b) shows the 

absolute difference between Gaussian curvature of the actual surface and the equivalent 

approximation from the triangulation, at the same 3D vertex positions.  The error scale in 

Figure 5.21(b) is the same as in Figure 5.20(b) to illustrate the relative improvement. 
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It can be seen that the occurrence of fluctuations in the Gaussian curvature, caused by the 

varying valencies, has been reduced.  In addition, the accuracy of the minimum and maximum 

Gaussian curvature approximations has been improved.  The minimum curvature was 

underestimated by 8% and the maximum was calculated exactly, within a tolerance of 1e-6, 

meaning they corresponded closer to the curvatures of the original surface when using (5.7).  

In the previous test (Section 5.5.4), the maximum absolute difference between the curvature 

(a) 

(b) 

Figure 5.21 (a) Gaussian curvature approximated by the triangulation. (b) Difference 

between surface Gaussian curvature and approximation from the triangulation. 
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approximation and the actual curvature value was 0.000023, however, this has been reduced 

by 79% to 0.000005.  This improvement can be seen graphically in Figure 5.21, which has 

less curvature fluctuations than Figures 5.18(b) and 5.20(b). 

 

5.6 Gaussian Curvature Optimised RATC Testing 

This section will test the quality of the Gaussian curvature approximated from a triangulation 

generated by using the optimised RATC algorithm shown in Section 5.4.  Two almost 

developable surfaces were used during the testing process.  Both surface were taken from 

trimmed surfaces, where one defined a rear light (the same as in Section 5.5), and the other 

defined a car windscreen.  Both surfaces were provided by Pilkington Group Limited. Using 

the optimised RATC algorithm (Section 5.4), each surface was triangulated to get a RATC 

that best approximated the Gaussian curvature of the original surface.  Using the same point 

sampling, the surfaces were also triangulated using the 3 global configurations introduced in 

Section 5.2.  The improved Gaussian curvature approximations (5.7) of all triangulation will 

be compared. 

 

Each triangulation was also put through a flattening simulation to find the optimum seed 

triangle (Section 4.4.4) that induced the least distortion in terms of the change of absolute 

area, A  (4.9).  The optimum seed flattening results will be presented and analysed to 

establish more insight into the effects of triangulation on flattening.  

5.6.1 Results 

The actual 3D surface areas for the backlight and windscreen surfaces are 362035mm
2
 and 

475724mm
2
 respectively.  To ensure that the surface area approximated by the 3D 
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triangulation was within a 2mm
2
 tolerance of the original area, the backlight and windscreen 

surfaces were subdivided into 60 60  and 70 70  points respectively.  

 

The topological data generated for each RATC was the same for each surface as they used the 

same initial point sampling and triangle type (i.e. RATs).  The triangulation data for each 

surface definition can be seen in Table 5.3. 

 

Surface No. Vertices No.Edges No. Triangles 

Backlight 3600 10561 6962 

Windscreen 4960 14421 9522 

 

 

The actual surface minimum, KGmin, and maximum, KGmax, Gaussian curvatures evaluated at 

the sampled points are shown in Table 5.4. 

 

Surface KGmin KGmax 

Backlight 0.000019 0.000096 

Windscreen 0.000002 0.000089 

 

 

Tables 5.5 and 5.6 show the Gaussian curvature approximations generated from each RATC 

triangulation for the backlight and widescreen surface respectively.  Each table shows: 

1. The minimum and maximum KG approximations. 

2. The minimum and maximum absolute difference between KG of the actual surface and 

the equivalent approximation from the triangulation, at the same 3D vertex positions. 

Table 5.3 Topological data. 

Table 5.4 Surface Gaussian Curvature. 
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3. KG difference per vertex, which is the average of the total sum of the absolute 

difference over all the vertices of the triangulation. 

 

Configuration KGmin KGmax 
Min KG 

diff 

Max KG 

diff 

KG diff per 

vertex 

Chevron 0.000013 0.000099 0 0.000006 0.0000008 

Diamond 0.000005 0.000102 0 0.000034 0.00000121 

Regular 0.000018 0.000098 0 0.000004 0.00000077 

RATC Optimised 0.000019 0.000098 0 0.000004 0.00000077 

 

 

Configuration KGmin KGmax 
Min KG 

diff 

Max KG 

diff 

KG diff per 

vertex 

Chevron 0.000002 0.000094 0 0.000008 0.00000035 

Diamond 0.000002 0.000096 0 0.000009 0.00000061 

Regular 0.000002 0.000094 0 0.000008 0.00000034 

RATC Optimised 0.000002 0.000092 0 0.000007 0.00000031 

 

 

The optimum seed triangle flattening results for each RATC can be seen in Tables 5.7 and 5.8 

for the backlight and windscreen triangulations respectively.  For these specific industrial 

models, an area difference tolerance of 0.1mm
2
 was used, as area changes above this 

tolerance, after flattening, will be considered as significant.  Each table shows: 

1. Absolute percentage area change between the original 3D and flattened triangulations. 

2. The average area change per triangle.  This is calculated by summing all area changes 

greater than a tolerance of 0.1mm
2
 and dividing by the number of such triangles.   

3. Absolute percentage shape change between the original 3D and flattened 

triangulations. 

Table 5.5 Backlight triangulation Gaussian curvature approximations. 

Table 5.6 Windscreen triangulation Gaussian curvature approximations. 
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4. The average shape change per edge.  This is calculated by summing all shape changes 

greater than a tolerance of 0.1mm and dividing by the number of such edges.   

5. The percentage of triangles used as the seed within each triangulation that generated a 

successful flattening result. 

 

Configuration ΔA (%) 
Average ΔA 

(mm
2
) 

ΔS (%) 
Average ΔS 

(mm) 

Seed Success 

(%) 

Chevron 0.49 0.405 0.134 0.515 54 

Diamond 0.492 0.457 0.135 0.601 34 

Regular 0.475 0.4 0.137 0.591 92 

RATC Optimised 0.478 0.428 0.128 0.589 30 

 

 

Configuration ΔA (%) 
Average ΔA 

(mm
2
) 

ΔS (%) 
Average ΔS 

(mm) 

Seed Success 

(%) 

Chevron 0.192 0.220 0.052 0.314 69 

Diamond 0.205 0.294 0.057 0.38 26 

Regular 0.178 0.209 0.058 0.322 90 

RATC Optimised 0.181 0.317 0.055 0.461 20 

 

 

The flattened triangulations for the backlight and windscreen surfaces, for each RATC, can be 

seen in Figures 5.22 and 5.23 respectively.  Each triangulation also has a colour shading, 

showing the triangles that had a change in absolute area.  The optimum seed triangle positions 

are shown as solid black and white in the wireframe and colour shadings respectively. 

Table 5.7 Backlight surface triangulation flattening results. 

Table 5.8 Windscreen surface triangulation flattening results. 
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Area difference (mm
2
) 

Figure 5.22 Backlight surface flattening results for (a) chevron, (b) diamond, (c) regular 

and (d) Gaussian curvature optimised RATCs. 

 

(a) 

(b) 

(c) 

(d) 
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Area difference (mm
2
) 

Figure 5.23 Windscreen surface flattening results for (a) chevron, (b) diamond, (c) regular 

and (d) Gaussian curvature optimised RATCs. 

 

(a) 

(b) 

(c) 

(d) 



137 

 

5.6.2 Gaussian Curvature Approximation Analysis 

It can be seen from Tables 5.5 and 5.6 that the triangulation which was optimised for the 

Gaussian curvature generated the closest curvature approximation to the original surface.  In 

general, the curvature approximations generated from all the RATCs were reasonable; 

however, the diamond RATC generated the most noticeable difference between the 

configurations.  The diamond RATC produced the worst estimates for KGmin and KGmax.  For 

the backlight surface, it underestimated KGmin by 73% and overestimated KGmax by 6%, and for 

the windscreen surface, it overestimated KGmax by 8%.  The Gaussian curvature RATC 

optimised triangulation yielded better results, approximating KGmin exactly, and overestimated 

KGmax by only 2% and 3 % for the backlight and windscreen surfaces respectively.  

 

In addition, the diamond configuration also had the highest average KG difference per vertex 

over the entire surface.  Figure 5.24 illustrates the absolute difference between Gaussian 

curvature of the backlight surface and the equivalent approximation from the triangulation, at 

the same 3D vertex positions for the Gaussian curvature optimised RATC and diamond 

configuration triangulations.  It can be seen that the diamond configuration had accumulated 

more points with higher Gaussian curvature differences than the optimised triangulation.  By 

using the optimised triangulation, the average KG difference per vertex was improved by 37% 

and 49% for the backlight and windscreen surfaces respectively.   
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The relatively poor approximation of Gaussian curvature is attributed to the constant flipping 

of barycentric area magnitudes between vertices with valency 4 and 8, which are the extreme 

valencies.  Although the improved Gaussian curvature approximation method has greatly 

enhanced the estimation values, this global configuration still does not compare well against 

the others.  However, a useful feature about the triangulation generated by the Gaussian 

curvature RATC optimised was that, given a starting point, a well defined triangulation for 

both point sets was achieved.  Therefore, using this method can help remove ambiguity by 

providing a consistent configuration, which can be useful when comparing different flattening 

methods. 

5.6.3 Flattening Analysis 

Tables 5.7 and 5.8 shows that the regular and RATC optimised triangulations generated the 

best flattening results for the optimum seed triangle.  The diamond configurations 

accumulated the most amount of distortion for the area, followed by the chevron, optimised 

RATC and regular configurations.  This is interesting as it may be interpreted that the 

Figure 5.24 Absolute difference per vertex between the surface Gaussian curvature and the 

(a) Gaussian curvature optimised and (b) diamond RATC. 
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triangulation that approximated the Gaussian curvature closest, also generated the best 

flattening results.  Although a better approximation of the surface is no doubt a contributor to 

the success of the flattening, as illustrated by the results above, it is noted that the seed 

success rate for the optimised RATC was the lowest in every test.  The reason for this low 

success rate is due to the order in which the triangles were flattened.  To illustrate this, the 3 

global configurations will be analysed first.   

 

For each global RATC a different mapping order for each triangulation was generated (Figure 

5.25), despite using the same edge based mapping order method presented by Cader et al. 

(2005). 

 

This is because for each RATC the triangles can be made up of different vertices, which 

means that their edges will be incident to different triangles.  These topological differences 

mean that the mapping order will not be the same for each RATC, hence the flattening result 

Figure 5.25 Different mapping orders. 

 

Chevron Diamond Regular 

Seed End of 

simulation 

Mapping Order 
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may not be the same.  Further experimental evidence has shown that out of the 3 global 

configurations, the regular and chevron configurations give better flattening results and seed 

success rates, compared to the diamond configuration (Parwana and Cripps, 2009).  This is 

because both of these configurations ensure that every vertex within the triangulation, 

excluding the boundary edges, is incident to 6 triangles (i.e. valency 6).  For these two 

configurations, the number of triangles and averaged points (AP) processed per level, for the 

given mapping order are the same (Table 5.9-5.10).  It can be seen that both the number of 

triangles processed and the number of averaged points per level increase linearly, producing a 

consistent mapping order.   

 

Regular Configuration Mapping Order Data 

Level Seed 1 2 3 4 5 6 7 8 9 10 11 

No. Triangles/Level 1 3 6 9 12 15 18 21 24 27 30 33 

Total No. Triangles 1 4 10 19 31 46 64 85 109 136 166 199 

No. AP/Level 0 0 0 3 3 6 6 9 9 12 12 15 

Total No. AP 0 0 0 3 6 12 18 27 36 48 60 75 

 

 

Chevron Configuration Mapping Order Data 

Level Seed 1 2 3 4 5 6 7 8 9 10 11 

No. Triangles/Level 1 3 6 9 12 15 18 21 24 27 30 33 

Total No. Triangles 1 4 10 19 31 46 64 85 109 136 166 199 

No. AP/Level 0 0 0 3 3 6 6 9 9 12 12 15 

Total No. AP 0 0 0 3 6 12 18 27 36 48 60 75 

 

 

Furthermore, for the regular and chevron configurations, the number of triangles, nt, within 

the n
th

 level of a mapping order can be defined as: 

Table 5.9 Regular RATC mapping order. 

Table 5.10 Chevron RATC mapping order. 
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In contrast, the number of triangles and averaged points processed per level in the diamond 

mapping order is completely different and does not increment linearly (Table 5.11).   

 

Diamond Configuration Mapping Order Data 

Level Seed 1 2 3 4 5 6 7 8 9 10 11 

No. Triangles/Level 1 3 5 8 11 13 16 19 21 24 27 29 

Total No. Triangles 1 4 9 17 28 41 57 76 97 121 148 177 

No. AP/Level 0 0 1 1 4 5 5 8 9 9 12 13 

Total No. AP 0 0 1 2 6 11 16 24 33 42 54 67 

No. Duplicate AP/Level 0 0 0 0 0 0 0 3 0 0 3 0 

 

 

Apart from the seed, the number of triangles processed in each level increases in the 

following pattern: 2, 3, 3, 2 , 3, 3, 2,….  Neglecting the first two levels of the diamond 

configuration mapping order, the number of averaged points processed per level also changes 

in a non-linear fashion.  These irregular increments are because the valency of the vertices, 

within this triangulation, varies between 4 and 8 amongst adjacent vertices.  These varying 

valencies also cause an additional problem in that a single vertex can be averaged twice 

during a flattening simulation (Table 5.11).  From level 6, the number of points averaged 

more than once per level follows the pattern of: 3, 0, 0, 3, 0, 0, 6, 0, 0, 6,….  This duplicate 

averaging of a single vertex does not occur in the chevron or regular configurations, which 

will have contributed to the higher seed triangle success rates.   

 

Table 5.11 Diamond RATC mapping order. 
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The optimised RATC triangulation ensures that the Gaussian curvature approximation is the 

best, but at the compromise of the vertex valencies being more irregular across the entire 

surface.  For each of the surfaces, the valencies generated by the optimised RATC 

triangulation can be seen in Table 5.12.   

 

 Num of vertices with… 

Surface Valency 4 Valency 5 Valency 6 Valency 7 Valency 8 

Backlight 58 103 3007 173 23 

Windscreen 41 90 4357 100 36 

 

 

These varying valencies produce far more irregular mapping orders (Figure 5.26), thus 

contributing to the lower seed success rates.  Nevertheless, despite the low success rate, the 

fact that the triangulation approximates the Gaussian curvature more accurately may have 

contributed to the minimum distortion of the optimum flattening.  It was also noted that the 

majority of vertices within the optimised RATCs had a valency of 6; minimising the 

irregularity of the mapping order, which may have helped achieve a good optimum flattening.  

However, further work would need to be carried out to understand this more rigorously. 

Table 5.12 Gaussian curvature optimised RATC vertex valencies. 
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The importance of the mapping order is further highlighted by the placement of the optimum 

seed triangle.  This test, and other experimental evidence, has shown that for almost 

developable surfaces, the optimum seed location is generally towards the centre of the 

triangulation.  By placing a seed closer to the central region of the triangulation, it essentially 

reduces the number of levels which are created in the mapping order, which in turn, reduces 

the number of points that are averaged.  It also ensures that the distribution of area and shape 

distortion is spread more evenly through the entire triangulation. 

 

Interestingly, the regular configuration generated the least change in absolute area for both 

surfaces, but also had the largest absolute shape change.  It is possible for two triangles to 

have different edge lengths but the same area.  Therefore, during flattening a triangle‟s edges 

may have distorted in a manner such that the 2D triangle generated preserved the original 

area.  The shape of a triangulation is defined by its edges, which are defined by its vertices.  

Figure 5.26 Flattening mapping orders for (a) backlight and (b) windscreen triangulations. 

 

(a) (b) 

Seed End of 

simulation 

Mapping Order 
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Therefore, sampling points from a surface so that the triangulation inherits the shape of the 

original surface better could aid in the preservation of shape during flattening.  This work is 

carried out in Chapter 6. 

 

The Gaussian curvature RATC optimised triangulation generated good quality Gaussian 

curvature approximations and relatively good flattening results.  However, the regular 

configuration appeared to be the best choice of RATC because of its overall success in terms 

of approximating the Gaussian curvature well, producing the least area change and the highest 

seed triangle success rate, i.e. algorithm stability.  The diamond configuration was the least 

successful and therefore would not be a good choice for any triangulation being used for 

flattening.   
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Chapter 6 

TRIANGULATION DEVELOPABILITY 

 

Chapter 5 concentrated on establishing the best connectivity between a given set of points, to 

achieve the best possible surface flattening.  However, in the same way that a triangulation 

dependent algorithm can only perform as well as its triangulation, a triangulation can only be 

as good as the underlying points that define it.   

 

When sampling points from the surfaces in Chapter 5, a uniform subdivision method was 

used, which took no surface characteristics into consideration to decide the point‟s positional 

placements.  In a topological sense, the points, which are the lowest level of detail, are joined 

by edges to create an approximation of the original surface structure (i.e. shape).  Although an 

acceptable configuration has been established, the quality of the triangulation may be 

enhanced further by sampling the points in such a way that the edges which will be created 

from the points will better reflect the shape of the original surface.   
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This chapter will investigate changing the triangulation‟s vertices and the downstream effects 

on flattening.  It will also present a new triangulation method to approximate the original 

surface‟s shape better, which will help aid in developing a better flattening result.   

  

There are many different surface characteristics which can be used for determining the 

positions for points to be sampled.  However, the characteristic used in this chapter is the axis 

of minimum principal curvature (AMPC).  To motivate the reason for its usage and how it 

could preserve the shape of a 3D triangulation during flattening, a novel test performed on a 

developable surface and its triangulation will be presented first. 

 

6.1 Developable Surface Triangulation Problem 

Developable surfaces are ideally suited to surface flattening as they are the only surface 

definition that will map from 3D to 2D without causing any distortion to the original shape 

(McCartney et al., 1999; Wang et al., 2002).  Although this statement is undoubtedly true, it 

is not necessarily true for a CAE flattening simulation because at no point is the surface 

definition directly flattened.  The surface is first approximated as a set of triangles, which are 

then sequentially mapped into 2D.  During the triangulation process, the transfer of geometric 

information from the original surface to the triangulation can get lost, meaning that the 

triangulation no longer approximates a developable surface.  Therefore, the resulting surface 

flattening will induce distortion, giving an erroneous result.  

 

Consider a developable surface defining part of a cylinder which has zero curvature along 

constant v values as shown in Figure 6.1.  
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Test 1: Uniformly Subdivided Parameter Domain 

This surface was first uniformly subdivided into a grid of 20 20  points, evaluated at equally 

spaced parametric points (ui, vi), which was then triangulated into a regular RATC.  This grid 

density has been chosen for illustration and demonstration purposes, whilst producing a 

reasonable area approximation (within 5% of the original surface area).  In addition, the 

regular RATC was used within the triangulation because it is widely adopted by many 

structured triangulation schemes (Rockwood et al., 1989; Piegl and Tiller, 1998; Sadoyan et 

al., 2006) and was found to provide the best flattening results in Chapter 5.  The triangulation 

consisted of 772 triangles and was flattened using the Cader et al. (2005) algorithm.   

 

To give an unbiased comparison from the results, the optimum seed triangle was determined 

that resulted in the least change in area after flattening (i.e. distortion). Figure 6.2 shows the 

original 3D triangulation of the surface and the flattened 2D triangulation.  Figure 6.2 also 

shows the percentage absolute change in area, ∆A (4.9), and shape, ∆S (4.10), between the 3D 

triangulation and the 2D flattening (Figure 6.2(a)) and both the minimum (KGTmin) and 

Figure 6.1 Cylinder part surface. 

 

radius = 1m 
length = 1m 



148 

 

maximum (KGTmax) Gaussian curvature approximations derived from the 3D triangulation 

using (5.7) (Figure 6.2(b)).  The line of zero principal curvature (LZPC), which is parallel to 

the AMPC is also shown on the 3D triangulation.  It is noted that all the strings of sampled 

points, in the u and v directions, lie parallel to the axis of principal curvatures. 

 

 

 

As would be expected, no deformation was induced when this triangulation was mapped into 

2D, within tolerances of 1mm and 1mm
2
 for ∆A and ∆S respectively.  In addition, the 

Gaussian curvature approximated by the triangulation was zero over of entire surface. 

 

Test 2: Points Skewed in the u Parameter Direction 

The surface was re-sampled using the same grid size.  This time, points in the u direction were 

skewed by distorting the parameter spacing along one boundary and linearly blending to the 

opposite fixed boundary (Figure 6.3(a)).  The amount of skew, which is applied to a single 

Figure 6.2 (a) 3D triangulation of part cylinder. (b) Flattened triangulation. 
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boundary point, is defined as shown in Figure 6.3(b), where 0% is no skew and 100% is 

moving the current point fully to the position of next boundary point along that boundary 

edge.  Experimental evidence has shown that increasing the percentage of skew has the effect 

of increasing the amount of distortion induced within a triangulation.  

 

Therefore, a skew of 90% was applied to the point sampling to help illustrate the effect of 

skewing the parameterisation in the u parameter.  The points in the v direction remained fixed, 

following constant values of v (Figure 6.4(a)).   

Figure 6.3 (a) Skewed points in the u parameter direction. (b) Definition of skew amount. 
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Despite the skew imposed in the u parameter direction on the triangulation, the strings of 

points in the v direction continued to follow along the LZPC.  Therefore, at least two points 

(i.e. one edge) of every triangle followed the LZPC, meaning that the triangulation topology 

inherited enough information from the original surface to approximate a developable surface 

(Parwana and Cripps, 2009) and flatten without distortion, to within tolerance (Figure 6.4(b)). 

 

Test 3: Points Skewed in the v Parameter Direction 

A third grid of points was sampled where the u values were kept constant and the v values 

were skewed by 90%, using the same approach as before.  In this case, the v parameter values 

were no longer parallel to the LZPC (i.e. AMPC) (Figure 6.5(a)).  Further, no string of points 

followed the LZPC meaning that the topological information of the triangulation no longer 

represents a developable surface.  This resulted in a distorted flattening of the triangulation, 

i.e. greater than tolerance (Figure 6.5(b)). 

Figure 6.4 (a) 3D triangulation of part cylinder. (b) Flattened triangulation. 
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Figure 6.6 shows the 2D flattening and the magnitudes of positional movement for each 

flattened vertex, i.e. the difference between its original flattened position and its final position 

after any runtime modifications (vertex averaging as described in Section 4.2.1).  

 

Figure 6.6 Flattened triangulation showing vertex positional movement. 
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Figure 6.5 (a) 3D triangulation of part cylinder. (b) Flattened triangulation. 
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Figure 6.7 shows the 2D flattening and the area difference between the 3D triangles and their 

corresponding flattened triangles.  It can be seen that the regions of the flattened model that 

have vertex positional movement are the same regions that have an area change.   

 

The distortion caused by this 3D triangulation is an unexpected result for a developable 

surface, since such a surface should flatten without any vertex positional movement or 

triangle area change (McCartney et al., 1999; Wang et al., 2002).  It is noted that whilst ∆A 

and ∆S are small, i.e. 0.00136% and 0.006% respectively (Figures 6.6 and 6.7), the flattening 

results shown above were generated by the optimum seed triangle (Section 4.4.4).  Therefore, 

when flattening this 3D triangulation with other seed triangles, larger magnitudes for area and 

shape changes were generated with the maximum ∆A and ∆S being 0.02% and 0.025% 

respectively.  Furthermore, the method used to skew the parameterisation kept all points along 

3 boundary edges fixed and used a linear blending method, thus maintaining a well defined 

triangulation.  Increasing the severity of the skewing, in the v parameter direction (i.e. 

direction of zero curvature), can cause the results from a flattening simulation to get worse 

and even fail (Parwana and Cripps, 2009).  This is illustrated in the following example. 

Figure 6.7 Flattened triangulation showing triangle area difference. 
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The cylinder part was subdivided again into a grid of 20×20 points and triangulated into 722 

triangles.  Before triangulating points, a linear skew of 90% was applied in both the u and v 

directions.  To make the points placement more erratic, the skewing was only applying to 

points pi,j, for i,j=1, 3, …, 19, where i and j are the vertex indices in the u and v directions 

respectively.  This would cause the grid of points to oscillate and be more irregular as shown 

in Figure 6.8. 

 

In this case, the maximum ∆A and ∆S generated from the flattening was 9.26% and 2.83% 

respectively.  Furthermore, out of the 722 simulations performed on this triangulation, only 

375 (i.e. 52%) flattened without failure.  As in Figure 6.5, the strings of vertices for the 

triangulation in Figure 6.8 do not follow along the LZPC.  In addition, as the severity of the 

skewing in the latter‟s triangulation has been increased, it has inherited less developability 

from the surface.  This is evident from KGTmax, which has increased by a factor of 6 from the 

triangulation shown in Figure 6.5.  

 

The increased skewing has also produced many long thin triangles in the triangulation.  An 

explanation for the 48% seed triangle failure rate could be due to these long thin triangles, as 

v 

u KGTmin = 0.000 

KGTmax = 0.037 

∆A = 0.512 %  

∆S = 0.083 %  

Figure 6.8 Skew severity increased. 
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they are numerically unstable and can cause triangle orientation flipping during averaging 

(Section 4.4.2).  However, this may not be the case as experimental evidence has suggested 

that triangles with high aspect ratios do not induce deformation or algorithm failure for 

developable surfaces. This is because, multiple 2D flattened positions for a single 3D point 

will be coincident, within a numerical tolerance, for developable surfaces.  Therefore, the 

averaging process will not cause any distortion to be induced.  Therefore, as the triangulation 

shown in Figure 6.8 is approximating a surface with non zero Gaussian curvatures (i.e. non-

developable), it is possible for distortion and triangle orientation flipping to occur during 

vertex averaging.  

 

6.2 Minimum Principal Curvature Line Hypothesis 

It was shown in Section 6.1 that the triangulation of a developable surface may not 

necessarily be developable.  To ensure developabilty was inherited from a surface, it is 

suggested that should be sampled along the LZPC.  This would ensure that every triangle 

would have one edge that followed the AMPC, meaning that the triangulation‟s shape (i.e. 

edges) would more accurately approximate the original developable surface‟s structure.   

 

For non-developable surfaces, experimental evidence has shown that surfaces with larger 

Gaussian curvatures induce larger amounts of area and shape distortion into the final 

flattening result.  However, as the surfaces being used throughout this thesis are almost 

developable, it is suggested that aligning the sampled points along the AMPC would generate 

a triangulation that would inherit the characteristic of developability better.  Inheriting more 
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developability in the triangulation‟s shape would have the effect of minimising the amount of 

shape distortion, which in turn should induce less area distortion into a flattening simulation.   

 

Currently, no methods exist for generating a triangulation from a surface definition by 

sampling points along the axis of minimum (or maximum) principal curvature.  Therefore, a 

new algorithm is proposed which will subdivide the parameter domain of a developable or 

almost developable surface, where the direction of the point sampling will be influenced by 

the AMPC.  The points being sampled must be generated in such a way that they create cells, 

which can then be triangulated by adding a diagonal, i.e. simulating a structured triangulation.   

   

6.3 Algorithm Overview 

This section will provide an overview of the algorithm to subdivide and triangulate the 

parameter domain a surface, which is influenced by the AMPC.  Full details of each stage will 

be provided in Section 6.4. 

6.3.1 Minimum Principal Curvature Direction Strips 

The method begins by uniformly subdividing the parameter domain into m n  points, where 

m and n are determined so that the area approximation of the triangulation is the same as the 

original area within a numerical tolerance.  These points will then be used to establish the 

modal minimum principal curvature direction (MPCD) (i.e. u direction or v direction) 

(Section 6.4, Stage 2).  As almost developable surfaces are being used, the MCPD will 

generally follow one direction consistently.  Therefore, the most occurring (i.e. modal) MCPD 

is used. 
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Once calculated, the parameter domain will be subdivided into r strips of cells, which follow 

the modal MPCD (Figure 6.10).  Details of determining r will be provided in Section 6.4, 

Stage 3.  The remainder of this overview will assume the strips follow the v direction. The 

approach for the u direction is analogous. 

 

6.3.2 Curvature Polylines and Triangulation 

Each strip is then individually operated on to find a curvature polyline, which follows the 

AMPC in the modal MPCD (Section 6.4, Stage 4).  The curvature polyline must be fully 

contained within each strip, which will ensure that no two curvature polylines intersect 

(Figure 6.11).  It is noted that, in some situations, a strip may not have a curvature polyline 

that is fully contained within it.   In this case, these strips will remain empty after this step 

(Figure 6.11). 

u direction 

Figure 6.10 Subdividing parameter domain r strips for (a) u and (b) v modal minimum 

principal curvature directions.  
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The next stage is to generate intermediate curvature polylines to ensure that the distance 

between adjacent points along v = 0 (u = 0 for u modal MPCD) is no more than the step size 

1/m (1/n for u direction).  Therefore, the number of intermediate curvature polylines, np, 

needed to meet this step size requirement is calculated (Section 6.4, Stage 6) and then the new 

polylines are inserted by linearly blending between the two polylines being operated on 

(Figure 6.12). 

Figure 6.11 Generating curvature polylines for each parameter domain strips. 
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The curvature polylines can then be converted into a grid of cells, which are then triangulated 

by adding a diagonal to each cell (Figure 6.13).   

6.3.3 Boundary Edge Curvature Polylines and Triangulation 

After this initial triangulation, parts of the parameter domain located outside of the first and 

last curvature polylines may still remain un-triangulated (Figure 6.13).  Therefore, new points 

will need to be generated to fill these un-triangulated regions by offsetting the outer curvature 

polylines outwards, by a step size of 1/m (1/n for u direction).  This process will be performed 

on each of the un-triangulated regions (Figure 6.13) until a curvature polyline is generated 

where all of the points are located outside of the parameter domain (Figure 6.14).  The points 

of these offset curvature polylines are then revisited and modified by clamping any polyline 

points outside the parameter domain to the nearest vertical (horizontal for u direction) 

parameter domain edge (i.e. u = 0, u = 1) (Figure 6.15).  These offset points are then 

converted into cells and triangulated in the same manner as the interior points, with an 

Figure 6.12 Generated new curvature lines to meet the step size requirement. 
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additional check to see whether the cell points are all collinear, i.e. the u coordinates of all 

points are the same, within tolerance (v coordinate for u direction).  If this occurs, the cell is 

collinear (i.e. degenerate) and is not triangulated (Section 6.4, Stage 8). 

 

 
Figure 6.14 Offset curvature polylines generated. 
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Figure 6.13 Triangulated and un-triangulated regions of parameter domain. 
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6.4 Algorithm Details 

This section will provide full details of the different algorithm stages outlined in Section 6.3. 

 

Stage 1: Subdividing the Surface 

Given a NUBS surface, S(u, v), defined over the normalised parameter domain u,v [0,1] 

(Section 1.1.3), the first stage is to represent the parameter plane as a uniformly subdivided  

m n  grid of points.  m and n are user defined quantities, which define the mesh density.  In 

this thesis, m and n were chosen so that the approximation of the triangulation area was within 

a tolerance of 2mm
2
 of the original surface area. 

 

 

Figure 6.15 Clamping points outside of the parameter domain to the nearest edge. 
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Stage 2: Establish Minimum Principal Curvature Direction 

The next stage is to evaluate the surface‟s principal curvatures and directions at each grid 

point using the method shown in Section 1.4.2.  At each of these points, the minimum 

curvature κmin and its direction (dumin, dvmin) is checked to establish which parameter direction 

the minimum curvature line is following.  If min mindu dv , then the AMPC tends towards 

the u (horizontal) direction, otherwise if min mindu dv , then it is tending towards the v 

(vertical) direction.  If the two directions are equal, within a zero tolerance, then no direction 

is recorded.  After evaluating the surface at all the grid points, the modal direction will be 

taken to be the MPCD.  If there were no directions recorded, during this testing phase, or the 

modal values for each direction are the same, then both directions have the same influence in 

which case either the u or v direction can be used. 

 

The remainder of this algorithm will assume that the MPCD tends towards the vertical 

direction (v).  The method used for the horizontal direction (u) is analogous. 

 

Stage 3: Splitting the Surface into Regions 

The next stage is to subdivide the parameter domain into strips of rectangular regions along 

the minimum principal curvature direction.  For the vertical direction, the parameter domain 

will be split into r = m/2 strips (n/2 strips for horizontal direction) as shown in Figure 6.16(a).    
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The next stage is to take each strip and subdivide the v direction into n-1 cells (m-1 for 

horizontal direction) and then partition the bottom edge of the cell (i.e. along v=0 edge) into a 

set of s points P = {p0, p1, …, ps-1} (Figure 6.16(b)).  The number for subdivisions, s, is user 

specified where a larger number will generate a greater number of curvature polylines for a 

single strip.  This will have the effect of performing more comparisons between curvature 

polylines to find one which has the least horizontal range (Stage 4).  Larger values of s will 

make a curvature influence more accurate, but at the cost of longer processing times.  

Experimental evidence has shown that a value between 5 and 10 is more than sufficient for 

almost developable surfaces.   

 

 

 

Figure 6.16 (a) Subdividing parameter domain vertically into m/2 strips. (b) Generating 

cells from a strips and subdividing v=0 into nums points. 
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Stage 4: Generating Polylines of Minimum Curvature 

The generation of the minimum curvature polyline begins by taking the first point, p0(u0, v0), 

and calculating the MPCD, from the actual surface.  This direction, (du0, dv0) (Figure 

6.17(a)), is used to generate a straight line, l0, which is bounded between v = v0 and v = v0 + 

1/(n -1), has the gradient dv0/du0 and passes through p0.  A second line, l1 = v0 + 1/(n - 1), is 

generated which is parallel to the u axis.  The intersection point, pint, between l0 and l1 is 

calculated and then joined with p0 to form the first polyline segment of the principal curvature 

line (Figure 6.17(b)).   

  

To complete the minimum principal curvature polyline, this process is repeated by evaluating 

each pint for its MPCD.  This iterative process is continued until the cell edge v=1 is reached, 

which will terminate the current polyline (Figure 6.18). The minimum polyline plmin, for this 

strip is stored.  The next minimum curvature polyline will be then be generated by starting the 

process from then next point in the set P. 

 

Figure 6.17 (a) Vertical principal curvature direction at p0 and (b) intersection between l0 

and l1. 
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Each time a new curvature polyline is created, its horizontal range will be checked against the 

current plmin (Figure 6.19).  If the current curvature polyline has a smaller horizontal range 

than plmin, then this current polyline will be stored as plmin, otherwise it will be rejected.  This 

will ensure that the straightest minimum curvature polyline is retained for each strip. 

 

By fully containing each minimum curvature polyline within a strip, no adjacent polylines 

will intersect.  However, when generating the polylines, in some cases, lines l0 and l1 may not 

Smaller horizontal 

range 

Larger horizontal 

range 

Figure 6.19 Comparing two horizontal ranges of curvature polylines. 

 

Figure 6.18 Vertical curvature polyline generated from p0. 
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intersect.  This will mean that l0 will have an end point outside of the strip boundaries.  As the 

polyline is no longer fully contained within a strip, this could cause intersection with adjacent 

polylines.  Therefore, if l0 and l1 do not intersect, the current polyline is deemed invalid and 

any previous segments contributing to it are rejected.  The process is then restarted using the 

next point in the set P.  As a consequence of this check, it may be possible for a strip not to 

have a plmin.  This is not a problem, as these empty strips are filled by strategically creating 

new curvature polylines as shown in Stage 6.  

 

Stage 5: Checking Minimum Curvature Polylines 

Once all the strips have been processed, if no plmin polylines were generated for any strips, 

this implies that the strips were too narrow and therefore must be altered to generate some 

minimum curvature polylines for this surface.  Therefore, the method returns to Stage 3 and 

subdivides the parameter domain into r - 1 strips, before Stages 4 and 5 are repeated.  This 

process is continued until at least one minimum curvature polyline is generated.   

 

Stage 6: Linearly Blending Between Minimum Curvature Polylines 

The plmin polylines generated may have gaps between them which exceed the required u 

direction step size along v = 0.  Therefore, new curvature polylines may need to be generated 

between existing pairs to ensure this step size criterion is met.  The number of polylines, np, 

needed in between consecutive pairs of polylines, pli and plj, is determined by taking the first 

point of each polyline, pi(ui, vi) and pj(uj, vj) (i.e. points along the v=0 boundary) and using: 

( ) 2p j in u u m          (6.1) 

For minimum curvature polylines defined in the u direction, the number of intermediate 

polylines needed is: 
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( ) 2p j in v v n          (6.2) 

The new polylines, plk, k=0, 1, …, np-1, are generated by linearly blending between pli and 

plj, to generate the required polylines. 

 

Stage 7: Triangulation Minimum Curvature Polylines 

Once a full set of minimum curvature polylines has been generated, they will represent a 

structured grid of non-intersecting point-strings which can be converted into cells.  These 

cells will then be triangulated by adding a diagonal, i.e. regular configuration.  This regular 

configuration has been chosen as it was found to give the best flattening results in Chapter 5 

(Section 5.6.3).  It will also allow for a direct comparison between a regular RATC generated 

from a uniformly sampled grid, and one which has been generated by following the „ideal‟ 

AMPC.  The flattening results for each method will be presented and compared in Sections 

6.5 and 6.6. 

 

Stage 8: Triangulating Boundary Edges 

After triangulating between the minimum curvature polylines, it possible that parts of the 

surface, located on either side of the current triangulation, may still need to be triangulated 

(Figure 6.13).   

  

To triangulate these parts of the surfaces, new points will be generated by offsetting the outer 

minimum curvature polylines by a set size of 1/m (1/n for u direction).  The offsetting of the 

polylines is continued until a polyline is generated, where all the points are located outside the 

parameter domain.  The offset polylines are then revisited, and any points that are contained 
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outside of the parameter domain are clamped to the nearest vertical parameter domain edge 

(horizontal edge for u direction).   

 

The final stage is to generate cells between pairs of offset polylines, and triangulate them by 

adding a diagonal.  Two checks must be carried out when creating the cell to ensure that they 

will form non-degenerate triangles.  First, if all the points of a cell are collinear, with 

tolerance, (i.e. all have the same u coordinate), then the cell is degenerate and not 

triangulated.  Secondly, if any two points of the cell are coincident, within a zero tolerance, 

then the duplicate point is removed and the 3 remaining points are used to generate a triangle 

(Figure 6.20(b)). 

 

6.5 Principal Axis Triangulation Testing 

This section will analyse the quality of the flattening results generated by a triangulation that 

attempts to align the points along the AMPC.  The backlight and windscreen surfaces will be 

used again as the test pieces.  A comparison will also be conducted between the flattening 

u = 1  

p2 = p3 

p1  p0  

u = 0  

p2 = p3 

p1 = p1 

Figure 6.20 (a) Cell points all collinear. (b) 2 cell points are coincident. 
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results generated from this triangulation and the uniformly sampled regular RATC 

triangulations from Section 5.6.1.     

 

Each triangulation will be put through multiple flattening simulations to find the optimum 

seed triangle that induces the least absolute area ( A ) distortion.  In addition, the Gaussian 

curvature of the triangulation will also be analysed to check the quality of its approximation. 

6.5.1 Results 

To ensure the surface area approximated by the 3D triangulation was within a 2mm
2
 tolerance 

of the original area, the backlight and windscreen surfaces were subdivided into 62 62  and 

70 70  points respectively (Figure 6.21).   

 

For almost developable surfaces, in general, the minimum principal curvature lines generated 

by this triangulation algorithm will not necessarily follow along the iso-parameter lines of the 

surface.   Therefore, many long thin triangles will be formed along the boundary edges of the 

surface.  Figure 6.22 shows the long thin triangles generated along the boundary edges for the 

Figure 6.21 (a) Backlight and (b) windscreen surface 3D triangulations. 

. 

 

(a) (b) 
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windscreen surface.  These long thin triangles could cause algorithm instability during 

flattening (Section 4.4).  

 

Therefore, to make the flattening algorithm more stable, these long thin triangles were 

removed (Figure 6.23).  This was done during the boundary edge triangulation process 

(Section 6.4, Stage 8) by only triangulating cells where the distance between every pair of 

points was more than 1mm.  Removing these long thin boundary edge triangles is completely 

feasible for trimmed surfaces, where the un-triangulated cells are outside of the trimming 

region (Section 4.4.3). 

 

 

 

Figure 6.22 Long thin triangles along the boundaries of the windscreen surface 

triangulation. 

. 
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The triangulation data for each surface definition can be seen in Table 6.1. 

 

Surface No. Vertices No. Edges No. Triangles 

Backlight 3542 10381 6840 

Windscreen 4901 14392 9492 

 

 

The minimum, KGmin, and maximum, KGmax, Gaussian curvatures evaluated from the surface 

sampled points are shown in Table 6.2. 

 

Surface KGmin KGmax 

Backlight 0.000022 0.000098 

Windscreen 0.000002 0.000088 

 

 

Table 6.3 shows the Gaussian curvature approximations generated from each triangulation for 

the backlight and windscreen surface. 

Figure 6.23 (a) Backlight and (b) windscreen surface 3D triangulations. 

. 

 

(b) 

Table 6.1 Topological data. 

Table 6.2 Surface Gaussian Curvature. 

(a) 
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Configuration KGmin KGmax 
Min KG 

diff 

Max KG 

diff 

KG diff per 

vertex 

Backlight 0.000021 0.000098 0 0.000004 0.00000074 

Windscreen 0.000002 0.000091 0 0.000009 0.00000031 

 

 

The optimum seed triangle flattening results for each surface triangulation can be seen in 

Table 6.4.  For comparison, Table 6.5 shows the flattening data for the regular RATC tests 

that were performed in Section 5.6.   

 

Surface ΔA (%) 
Average ΔA 

(mm
2
) 

ΔS (%) 
Average ΔS 

(mm) 

Seed Success 

(%) 

Backlight 0.452 0.378 0.131 0.548 88 

Windscreen 0.16 0.196 0.052 0.299 90 

 

 

Surface ΔA (%) 
Average ΔA 

(mm
2
) 

ΔS (%) 
Average ΔS 

(mm) 

Seed Success 

(%) 

Backlight 0.475 0.4 0.137 0.591 92 

Windscreen 0.178 0.209 0.058 0.322 90 

 

 

The flattened triangulations for the backlight and windscreen surfaces, for each AMPC 

influenced triangulation, can be seen in Figures 6.24.  Each triangulation also has a colour 

shading, showing the triangles that had a change in absolute area.  The optimum seed triangle 

positions are shown as solid black and white in the wireframe and colour shadings 

respectively.  Figure 6.25 shows the flattening results generated from the regular RATC 

triangulations, using a uniformly sampled grid, from Section 5.6.   

Table 6.3 Backlight triangulation Gaussian curvature approximations. 

Table 6.4 Principal curvature influenced triangulation flattening results. 

Table 6.5 Regular RATC triangulation (regular grid) flattening results. 
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6.5.2 Gaussian Curvature Approximation Analysis 

It can be seen from Table 6.3 that the AMPC influenced triangulations generated good 

approximations for the Gaussian curvature.  For the backlight surface, KGmin was relatively 

underestimated by 5% and for the windscreen surface KGmax was relatively overestimated by 

4%.  These Gaussian curvatures cannot be directly compared to the regular RATC 

triangulation results from Chapter 5, as the curvatures are evaluated at different points 

Figure 6.24 (a) Backlight and (b) Windscreen flattening results from AMPC influenced 

triangulations. 
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along the surface, thus giving different Gaussian curvature values.  However, it is noted that 

the average KG difference per vertex, for the entire principal curvature triangulation, was less 

than the regular RATC triangulation, generated from a uniformly sampled grid, by 4% and 

9% for backlight and windscreen respectively (Section 5.6.1, Tables 5.5 and 5.6).  This is 

essentially indicating that the Gaussian curvature approximation across all points was closer 

to the actual values than the regular triangulation in Section 5.6.   

 

Figure 6.25 (a) Backlight and (b) Windscreen flattening results from regular RATC 

triangulations using a uniformly sampled grid of points. 
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The Gaussian curvature is the product of the minimum and maximum principal curvatures 

(Section 1.4.3).  Therefore, by taking the influence of the MPCD when sampling points, the 

triangulation topological data inherited this characteristic more accurately, which resulted in a 

better approximation of the Gaussian curvature.  This suggests that having the triangulation 

vertices influenced by both the directions of principal curvature could enhance the quality of 

the Gaussian curvature approximation.  However, further research would need to be 

conducted for this to be established. 

6.5.3 Flattening Analysis 

In terms of the flattening results, the magnitude of area and shape distortion caused by the 

AMPC influenced triangulations was reduced, when compared with the regular RATC 

triangulations from Section 5.6.  The amount of absolute area distortion has been reduced by 

5% and 10% for the backlight and windscreen triangulations respectively.  Furthermore, the 

magnitudes of the absolute shape distortion were also improved by 4% and 10% for the 

backlight and windscreen triangulations respectively. 

 

These improvements are attributed to the fact that the AMPC influenced triangulations 

inherited more developability information by ensuring that one edge of every triangle 

followed along the modal AMPC.  Therefore, when flattening these edges, they will undergo 

less geometrical change, as they follow along lines of minimum principal curvature.  As the 

edges define the shape of the triangulation (Section 4.3), this will result in less shape 

distortion, which will cause less area distortion.   This reduction in distortion can be seen in 

Table 6.4.  Furthermore, the average area change per triangle and average shape change per 

edge was also improved from the regular RATC triangulation from Section 5.6.  
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Chapter 7 

CONCLUSIONS AND FUTURE WORK 

 

This thesis investigated triangulation and the downstream effects on surface flattening.  Two 

novel topics were explored, notably RATCs and AMPC influenced triangulations, each of 

which was found to have an impact on the triangulation dependant method of surface 

flattening. 

 

RATs are commonly used throughout research and literature (Section 2.10, Section 4.1).  

However, given a set of n cells, generated from uniformly sampled points, there are 2
n
 

different ways in which the diagonals could be placed to form a final triangulation consisting 

of RATs.  These different combinations of edges were introduced as RATCs.  The choice of 

RATC is an ambiguity currently existing in literature.  For example, McCartney et al. (1999) 

and Cadar et al. (2005) both present flattening algorithms using different RATCs.  This can 

make it difficult to compare data as the RATCs are not consistent and the impact of each on 

flattening is not understood (Parwana and Cripps, 2009). 
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To investigate the effects of RATCs three global configurations were proposed, notably 

regular, diamond and chevron (Section 5.2).  In addition, local variations of RATCs were also 

explored.  Rather than randomly changing the local RATC of a triangulation, a new method 

was presented to locally fit RATCs that best approximated the local Gaussian curvature of the 

original surface (Section 5.4).  The advantage of locally varying RATCs based on a surface 

characteristic was that a well defined solution would be generated, removing any ambiguities 

when choosing a RATC.   

 

During the development of this optimised RATC algorithm, it was found that the current 

method used to approximate the Gaussian curvature from a triangulation (Section 5.5.2) did 

not work well for triangulations consisting of RATs with varying valencies (i.e. locally 

changing RATCs).  Therefore, the Gaussian curvature approximation algorithm was improved 

by applying an area compensation factor (Section 5.5.5) to account for these valency changes. 

 

The Gaussian curvature optimised RATC and three global RATCs were applied to two almost 

developable surfaces, which were then flattened and compared (Section 5.6).  The flattening 

results presented, for each configuration, were those produced by the optimum seed triangle 

(i.e. seed triangle that induced the least absolute area change).  For both surfaces, the 

optimised RATC triangulations generated the closet Gaussian curvature approximation to the 

original surface.  The diamond configuration was found to generate the worst approximation 

because the vertex valencies of the points, within the triangulation, varied between 4 and 8, 

which are the extreme valencies (Section 5.6.2).  From the three global RATCs, the regular 

configuration was found to produce the best Gaussian approximation, which was very close to 

the optimised RATC (Section 5.6.1). 
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In terms of flattening, the regular configuration was found to produce the least change in 

absolute area, followed by the optimised RATC.  The diamond configuration was found to 

induce the largest absolute area distortion.  The improved flattening results of the regular 

configuration were attributed to the fact that the valency of every triangle within the 

triangulation was the same.  Unlike the diamond configuration, this consistent vertex valency 

ensured that a regular mapping order was generated when the triangulation was being 

flattened (Section 5.6.3).  The power of the regularity of the vertex valencies was further 

highlighted by the fact that the regular configuration had the highest seed triangle success 

rate, making this RATC the most stable.  The optimised RATC also had many varying 

valencies, which caused it, like the diamond configuration, to have a very low seed success 

rate.  However, despite the low success rate, the flattening result generated by the optimised 

RATC was still good as it approximated the original surface characteristics well.  Although 

this result was distinguished from the case studies in Section 5.6, further work would be 

suggested to perform an in-depth investigation into the influence of Gaussian curvature driven 

triangulations and the downstream effects on flattening.  This study could provide valuable 

feedback, which could be used to create an improved method and error analysis for 

approximating Gaussian curvature from a triangulation.  

 

In addition to seed success rates, the optimum seed triangle was commonly used throughout 

this thesis when comparing the performance of different triangulations on flattening.  The 

seed triangle placement is an interesting factor and it was found that optimum seed triangle 

was generally located towards the centre of a surface.  This is because it reduces the number 

of levels which are generated by the mapping order, reducing the number of triangles that 
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need average, which reduces the amount of distortion.  The method that was used to 

determine the optimum seed triangle was to trial every triangle within the triangulation as the 

seed, flattening the triangulation and then retrospectively choosing the triangle that induced 

the least absolute change in area.  However, this method was very inefficient and time 

consuming for triangulations with large densities.  Therefore, a suggestion for future work is 

to further investigate the optimum seed position and establish a method that identifies its 

position by analysing the shape of the triangulation. 

 

The regular configuration was found to produce the best overall flattening result in terms of 

absolute area change and seed success rate. However, it was observed that the Gaussian 

curvature optimised RATC performed better in terms of absolute shape change.  This was 

attributed to the fact that the Gaussian curvature optimised triangulation inherited the shape of 

the original surface better than the regular configuration.  To explore this idea of surface 

shape preservation within a triangulation, another interesting study was performed on the 

influence of triangulation developability and the effects on flattening.  Developable surfaces 

should flatten without inducing any area or shape distortion.  However, it was shown that the 

transfer of this developabilty information from the surface to the triangulation can be lost 

(Section 6.1).  It was established, through experimental evidence, that skewing the vertices of 

a triangulation in a particular manner, so that no triangle edges followed along the AMPC, 

would cause the flattening to induce distortion.  As the shape of a triangulation is defined by 

its edges, by having no edges follow along the AMPC meant that the triangulation did not 

inherit this shape characteristic.   
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Therefore, a new method was proposed to triangulate a surface, whilst ensuring that one edge 

of every triangle followed the general direction of the AMPC (Section 6.3).  This 

triangulation scheme was found to improve the surface flattening of an almost developable 

surface.  By inheriting the developability of the original surface better, the absolute shape 

change of the triangulation after flattening was reduced when compared against the regular 

configuration triangulations of Section 5.6.  It was also found that this triangulation 

approximated the Gaussian curvature of the original surface more accurately than this regular 

configuration (Section 6.2).  It is suggested that ensuring that the edges follow both the axis of 

minimum and maximum principal curvature, may help improve the Gaussian curvature 

further.  In addition, as the principal directions are always perpendicular at any given 3D 

point, this method may also be useful in generating triangulations that truly consist of RATs 

in real space.  Therefore another suggestion for future work is to further investigate and 

understand the effects of preserving and maintaining the developability of a triangulation.  

The current method could be improved by using C
2
 continuous polylines rather than just C

1
 to 

improve the approximation for the AMPC.  This work could also be extended by formulating 

a method that generates these polylines and classifies the developability before any flattening 

is performed.  This investigation could be the key to establishing a definite measure to define 

an almost developable surface, which is still an ambiguity which remains within this area of 

work.  For example, the curvature of the polylines generated from the AMPC could be a 

measure of the developability. 

 

This thesis also introduced a new efficient and robust parametric trimmed surface 

triangulation method (Chapter 3).  Efficiency was gained during trimmed curve tracing by 

minimising the number of cells processed.  Key features were the efficient tracing algorithm 



180 

 

and knowledge of orientation of the trimming curves is not required (Cripps and Parwana, 

2011).  The method is applicable to NUBS surfaces and operates on the untrimmed surface, 

constructing a rectangular parametric grid onto which the trimming curves are traced.  This 

approach also minimises the occurrence of degenerate triangles and copes with holes 

independently of the grid size. 
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