
FORMAL VERIFICATION OF CRYPTOGRAPHIC
PROTOCOLS WITH AUTOMATED REASONING

by

BEN SMYTH

A thesis submitted to the
University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
University of Birmingham
March 2011

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Cryptographic protocols form the backbone of our digital society. Unfortunately, the

security of numerous critical components has been neglected. As a consequence, attacks

have resulted in financial loss, violations of personal privacy, and threats to democracy.

This thesis aids the secure design of cryptographic protocols and facilitates the evaluation

of existing schemes.

Developing a secure cryptographic protocol is game-like in nature, and a good designer

will consider attacks against key components. Unlike games, however, an adversary is not

governed by the rules and may deviate from expected behaviours. Secure cryptographic

protocols are therefore notoriously difficult to define. Accordingly, cryptographic protocols

must be scrutinised by experts using procedures that can evaluate security properties.

This thesis advances verification techniques for cryptographic protocols using formal

methods with an emphasis on automation. The key contributions are threefold. Firstly,

a definition of election verifiability for electronic voting protocols is presented; secondly,

a definition of user-controlled anonymity for Direct Anonymous Attestation is delivered;

and, finally, a procedure to automatically evaluate observational equivalence is introduced.

This work enables security properties of cryptographic protocols to be studied. In par-

ticular, we evaluate security in electronic voting protocols and Direct Anonymous Attesta-

tion schemes; discovering, and fixing, a vulnerability in the RSA-based Direct Anonymous

Attestation protocol. Ultimately, this thesis will help avoid the current situation whereby

numerous cryptographic protocols are deployed and found to be insecure.

In loving memory of Andrew Cavan Ellis, who sadly died on

11 November 2009, aged 43.

For David Hercules Cash Carroll, Megan Naomi Eleanor Lee,

and Alyssia Anne Smyth. May the future be good to you.

Acknowledgements

First, and foremost, I would like to thank my supervisor Mark Ryan. Mark has dedicated

a considerable amount of time and energy to the supervision of my research. He has

helped me explore ideas, to critically evaluate my work, and to express my results clearly.

He has imparted the fundamental skills of our discipline and, more importantly, he has

taught me how to further my skills independently. His efforts will be cherished, and

memories of my Ph.D. will be held in the highest regard. I look forward to our future

collaboration and continued friendship.

I have had the opportunity to work with a number of collaborators and I have learnt

a great deal from them all. Liqun Chen taught me the intricacies of cryptography; in

particular, Direct Anonymous Attestation. Stéphanie Delaune guided my study of the

applied pi calculus. Mounira Kourjieh’s boundless energy drove our research. Steve

Kremer explained the subtleties of the applied pi calculus and insisted upon mathematical

rigour. Bruno Blanchet helped me understand the theoretical underpinnings of ProVerif,

and introduced numerous new ideas. Myrto Arapinis insisted that proofs could not begin

with QED and patiently taught their proper construction; in addition, her Sushi is divine.

Petr Klus helped implement theoretical results as software. The efforts of my collaborators

have developed my research skills, for which I am truly grateful.

Birmingham’s Formal Verification and Security Group has been an excellent source of

feedback and I am particularly grateful to: Myrto Arapinis, Sergiu Bursuc, Tom Chothia,

Dan Ghica, Eike Ritter, Mark Ryan and Guilin Wang. I have also benefited from the

wisdom of Mart́ın Escardó and Eike Ritter who provided academic support as members

of my research monitoring group. Mark Lee has provided an endless source of advice on

topics as diverse as academic life and culinary masterpieces; and the occasional unsolicited

bout on badgers, morris dancing and other such fields. Academic life at Birmingham has

been wonderful and many individuals have influenced my stay: thank you Birmingham.

My experience gained through research visits has been hugely beneficial and the hos-

pitality offered by each institution was superb. I am particularly grateful to my hosts:

Liqun Chen at HP Labs; Steve Kremer at LSV, CNRS & ENS de Cachan; and Bruno

Blanchet at ENS, CNRS & INRIA.

I will receive all the credit for this thesis – I also accept liability for any criticism –

but, in addition to those already mentioned, some credit should be attributed to those

whom studied early drafts. I am truly grateful to: Myrto Arapinis, Bruno Blanchet,

Gavin Brown, Liqun Chen, Michael Clarkson, Véronique Cortier, Cas Cremers, Morten

Dahl, Catherine Harris, Lucie J́ıchová, Hugo Jonker, Vivek Nallur, James Nestoruk, Olu-

funmilola Onolaja, Mark Ryan, Winona Ryder, Matt Smart, Martin Smyth, Sue Smyth

and Guilin Wang. In particular, Lucie J́ıchová is my favourite stickler, Mark Ryan is a

thorough technical critic, and my mum, Sue Smyth, read every last word.

Finally, I would like to thank my parents – Martin and Sue – for supporting me in

everything I have chosen to do; my siblings – Matthew, Joe and Megan – for providing

constant entertainment; and Beth Wells for a great friendship and numerous hours spent

in The Barrels.

This research was primarily funded by the Engineering and Physical Sciences Research

Council (EPSRC), under the WINES initiative, as part of the UbiVal: Fundamental Ap-

proaches to Validation of Ubiquitous Computing Applications and Infrastructures project

(EP/D076625/1 & EP/D076625/2). Additional funding was provided by the Direc-

tion Générale pour l’Armement (DGA) to support a five month internship at CNRS,

Département d’Informatique, École Normale Supérieure, Paris, France.

Contents

I Preliminaries 1

1 Introduction 3

1.1 Cryptographic protocols . 4

1.2 Security properties . 5

1.3 Protocol verification . 5

1.3.1 Formal methods . 6

1.4 Analysis using formal methods . 8

1.4.1 Reachability properties . 8

1.4.2 Indistinguishability properties . 10

1.4.3 Automated verification tools . 12

1.5 Contribution and literature review . 15

1.6 List of publications . 21

1.7 Overview and structure . 21

2 Background: Applied pi calculus 23

2.1 Syntax and informal semantics . 24

2.2 Operational semantics . 27

2.2.1 Structural equivalence . 28

2.2.2 Internal reduction . 29

2.2.3 Labelled reduction . 30

2.3 Observational equivalence . 31

2.4 Assumptions and notation . 32

II Formalisation of security properties 33

3 Election verifiability in electronic voting 35

3.1 Formalising electronic voting protocols . 38

3.2 Election verifiability . 41

3.2.1 Security definition: Individual and universal verifiability 42

3.2.2 Case study: FOO . 44

3.2.3 Case study: Helios 2.0 . 49

3.3 Security definition: Election verifiability 56

3.4 Case study: JCJ-Civitas . 57

3.4.1 Protocol description . 58

3.4.2 Equational theory . 59

3.4.3 Model in applied pi . 60

3.4.4 Analysis: Election verifiability . 63

3.5 Summary . 64

4 Anonymity in Direct Anonymous Attestation 65

4.1 Preliminaries: Calculus of ProVerif . 68

4.1.1 Syntax and semantics . 69

4.1.2 Biprocesses . 70

4.1.3 Observational equivalence . 70

4.2 Formalising DAA protocols . 73

4.2.1 DAA process specification . 76

4.3 Security definition: User-controlled anonymity 78

4.4 Case study: RSA-based DAA . 81

4.4.1 Primitives and building blocks . 81

4.4.2 Protocol description . 83

4.4.3 Equational theory . 85

4.4.4 Model in applied pi . 86

4.4.5 Analysis: Violating user-controlled anonymity 88

4.4.6 Solution: Restoring user-controlled anonymity 89

4.5 Summary . 90

III Automated reasoning 91

5 Observational equivalence and barriers 93

5.1 Processes with barriers . 96

5.1.1 Mechanical analysis . 97

5.2 Automated reasoning for equivalence . 102

5.3 Privacy in electronic voting . 107

5.3.1 Case study: FOO . 107

5.4 Summary . 110

IV Evaluation 111

6 Further work and conclusion 113

6.1 Further work . 113

6.1.1 Election verifiability in electronic voting 113

6.1.2 Anonymity in Direct Anonymous Attestation 114

6.1.3 Observational equivalence and barriers 116

6.1.4 Emerging directions . 116

6.2 Conclusion . 117

V Appendices 119

A Election verifiability results 121

A.1 Election verifiability in raising hands . 121

A.1.1 Proof of Proposition 3.1 . 121

A.2 Election verifiability in Civitas . 125

A.2.1 Proof of Theorem 3.3 . 125

B Violating anonymity in the RSA-based DAA specification 133

B.1 Primitives and building blocks . 133

B.1.1 Protocols to prove knowledge . 133

B.1.2 Camenisch-Lysyanskaya signature scheme 135

B.2 Protocol description . 136

B.2.1 Security parameters . 136

B.2.2 Setup algorithm . 137

B.2.3 Join algorithm . 140

B.2.4 Sign algorithm . 143

B.2.5 Verification algorithm . 146

B.3 Specification analysis: Violating anonymity 147

B.4 Specification solution: Restoring anonymity 147

C RSA-based DAA with user-controlled anonymity 149

C.1 Proof of Theorem 4.2 . 149

C.2 Analysis: Restoring user-controlled anonymity 150

D ProVerif scripts supporting Chapter 5 155

E Privacy results using ProSwapper 157

E.1 Privacy in electronic voting . 159

E.2 Privacy in vehicular ad-hoc networks . 159

Bibliography 167

List of Figures

2.1 Syntax for terms . 24

2.2 Syntax for processes . 25

2.3 Syntax for extended processes . 26

2.4 Semantics for processes . 29

2.5 Semantics for labelled transitions . 31

3.1 FOO electronic voting protocol . 45

4.1 ProVerif’s syntax for terms and processes 71

4.2 ProVerif’s semantics for terms and processes 71

4.3 ProVerif’s generalised semantics for biprocesses 72

4.4 Biprocess modelling user-controlled anonymity in DAA 80

4.5 RSA-based DAA join algorithm . 83

Part I
Preliminaries

1
Introduction

The security objectives of numerous deployed systems have not been satisfied. As a

consequence, high-profile security failures have been observed, for example: an exploit

in the London Underground’s Oyster card system allows free travel [GHG08, GGM+08,

GRVS09]; vulnerabilities in electronic voting systems have resulted in their decommis-

sion [UK07, Bow07, Min08, Bun09]; and issues with electronic passports permit modifi-

cation, cloning and invasions of privacy [JMW05, Jue06, KJBK09, CS10a]. These failures

can be attributed to the difficulties of designing secure cryptographic protocols.

Cryptographers aim to deliver protocols which preserve security requirements in the

presence of an arbitrary adversary. However, such an adversary should not be expected to

follow any prescribed rules, nor adhere to any particular behavioural patterns. Moreover,

the ingenuity of the adversary should be considered boundless. As an analogy, consider,

for example, the challenge faced by the architects of the ‘inescapable’ Alcatraz. The prison

is situated 1.5 miles from San Francisco, California, and isolated from the mainland by

the strong currents of San Francisco Bay. In addition to the treacherous waters and

the physical security features, inmates were counted twelve times a day and the ratio of

inmates to armed guards was three to one. Despite this, an elaborate escape plan was

hatched by Clarence Anglin, John Anglin, Frank Morris and Allen West which involved the

fabrication of: life-like dummies, fashioned from soap, toilet paper and hair (the dummies

were used to avoid detection during evening head counts); tunnelling equipment, built

from the motor of a stolen vacuum cleaner; and a raft, constructed from the rain coats

4 CHAPTER 1. INTRODUCTION

of fellow inmates. On June 11, 1962 the two Anglin brothers and Morris escaped the

prison. Their whereabouts are currently unknown. Given the water temperature and

tidal direction, the official FBI investigation presumes the three men drowned; however,

the only thing known for certain, is the security of Alcatraz was violated. Designing

a resilient prison to contain such devious inmates, whom are determined to escape, is

difficult. In some sense, cryptographers face a more challenging problem: a prison may

be considered inescapable if no inmate has successfully broken out; by comparison, we

will only consider a protocol to be secure, if security requirements cannot be violated by

any adversary.

This thesis will aid the secure design of cryptographic protocols and facilitate the

evaluation of existing schemes, with a particular focus on electronic voting and anonymous

attestation. These application domains are particularly salient, due to the discovery of

vulnerabilities in the RSA-based Direct Anonymous Attestation scheme (Chapter 4) and

the world-wide loss of public confidence in electronic voting systems following numerous

failures [Sal88, Rub02, Mer02, CEC+08].

The remainder of this chapter is structured as follows. Cryptographic protocols will

be introduced (Section 1.1) and their security properties will be discussed (Section 1.2).

Computational and symbolic approaches for protocol verification will be considered (Sec-

tion 1.3) and symbolic analysis techniques will be investigated in more depth (Section 1.4).

A detailed description of the contribution made by this thesis will be presented in the

context of existing work (Section 1.5), a summary of publications will be provided (Sec-

tion 1.6) and, finally, an overview of the thesis structure will be summarised (Section 1.7).

1.1 Cryptographic protocols

Cryptographic protocols are small distributed algorithms that aim to provide some

security-related objective over a public communication network, such as the Internet.

Since the communication medium is public, an adversary may interfere with messages;

1.2. SECURITY PROPERTIES 5

this introduces the possibility of interference by a powerful adversary and has made the

design of secure protocols notoriously difficult. The canonical example is the Needham-

Shroeder public key protocol [NS78], which is intended to provide mutual authentication

of two principals. The protocol was scrutinised by experts for nearly two decades before

Lowe [Low96] discovered a man-in-the-middle attack. This dictates the necessity for pro-

tocol verification and, moreover, highlights the need for automated support to overcome

the inherent human weaknesses present in the manual verification process.

1.2 Security properties

Cryptographic protocols are required to satisfy a plethora of security requirements. These

requirements include classical properties such as secrecy and authentication, and emerg-

ing properties including, but not limited to, anonymity, non-repudiation and verifiability.

These security requirements can generally be classified as indistinguishability or reacha-

bility properties. Reachability properties are more simplistic, and they are typically used

to express requirements of a protocol’s derivable states. For example, secrecy can be ex-

pressed as the inability of deriving a particular value from all possible protocol executions.

The notion of indistinguishability allows us to reason about more complex properties. In-

tuitively, two protocols are said to be indistinguishability if an observer has no way of

telling them apart. Anonymity can be naturally formulated as an indistinguishability

property, for example, actions within a group of agents are anonymous if an action per-

formed by an arbitrary agent is indistinguishable from an action performed by another

agent.

1.3 Protocol verification

The process of verifying cryptographic protocols has led to the development of two re-

search communities, namely: provable security and formal methods. The techniques of

6 CHAPTER 1. INTRODUCTION

each field are almost completely disjoint [AR00, PSW00, AR02, War03, War05]: formal

methods are reliant on simple abstract modelling techniques, whereas provable security

uses complicated computational proofs. With the exception of perfect security [Sha49],

which is generally unobtainable, neither community can make any absolute mathematical

statement about the security of a protocol, and the best we can do is prove the relative dif-

ficulty of violating security properties. In particular, we can consider a provable security

reduction, which shows that the difficulty of breaking the protocol is at least as difficult

as solving a well-known mathematical problem that is widely believed to be intractable.

However, as cryptography has evolved, more complex protocols have been developed and

provable security methodologies have, unfortunately, provided limited success in their

analysis [Moo88, Mea03, KM06, KM07]. Indeed, Chen, Morrissey & Smart [CMS08a,

pp157] attribute flaws in the security proof of RSA-based Direct Anonymous Attestation

protocol [BCC04] to the highly complex nature of Direct Anonymous Attestation schemes

and the inherent difficulties of composing correct provable security proofs. By compar-

ison, formal method approaches have shown to be particularly suited to the analysis of

complex cryptographic protocols, and will be adopted here.

1.3.1 Formal methods

Formal methods, as defined by Meadows [Mea03, §2], combine a language which can be

used to model a cryptographic protocol and its security properties, together with an effi-

cient procedure to determine whether a model does indeed satisfy those properties. Gritza-

lis, Spinellis & Georgiadis [GSG99] classify three types of protocol analysis: inference-

construction, attack-construction and proof-construction. Inference-construction tech-

niques are based upon modal logics; they reason about the evolution of knowledge and

beliefs within a system to show that certain conditions are satisfied. Attack-construction

methodologies attempt to discover vulnerabilities using algebraic properties of a proto-

col’s algorithms. The majority of these attack-construction techniques conduct some form

1.3. PROTOCOL VERIFICATION 7

of state space exploration; that is, a model of the system is defined and then analysed in

an attempt to discover a path to an insecure state. Proof-construction techniques model

the computations performed in a protocol and define security properties as theorem,

automated theorem checkers are then used to verify these theorems and thus prove prop-

erties of the model. Gritzalis, Spinellis & Georgiadis [GSG99] liken proof-construction

to attack-construction, suggesting that proof-construction techniques replace state space

exploration “with theorems about these searches.”

Meadows argues that inference-construction techniques are generally weaker than

attack-construction methods, because they operate at a higher level of abstraction [Mea00,

Mea01]; hence, interest in inference-construction has waned, as attack-construction meth-

odologies have improved. Paulson [Pau98] claims that attack-construction and proof-

construction techniques are complementary: attack-construction techniques are typically

easy to use and can provide an assurance that a model satisfies security criteria; by

comparison, proof-construction methodologies are more complicated, but allow a more

thorough analysis. A primary objective of this thesis is to introduce tools suited to the

verification of security properties during protocol development; accordingly, we focus on

attack-construction techniques to allow rapid prototyping of cryptographic schemes.

Dolev-Yao adversary. Attack-construction methods typically assume that crypto-

graphic protocols should achieve their objectives in the presence of an adversary that

has full control of the network (sometimes called the Dolev-Yao attacker [DY83]) and

cryptography is usually assumed to be perfect. Since the adversary has complete control

of the network, messages may be read, modified, deleted, or injected. The adversary is

also able to manipulate data contained within those messages, under the restriction of

perfect cryptography, that is, the attacker is only able to perform cryptographic opera-

tions when in possession of the required keys. It follows, for example, that an adversary

may compute the ith element of a tuple or, given the necessary keys, decrypt ciphertexts.

The relationships between cryptographic primitives are captured by a set of deduction

8 CHAPTER 1. INTRODUCTION

rules. For example, an equation modelling symmetric decryption can be expressed as

dec(k, enc(k,m)) = m. This equation captures the notion that symmetric encryption is

perfect: given a ciphertext enc(k,m), the plaintext m can only be recovered using the

secret key k. If the encryption scheme has some other characteristic (for example, if the

scheme is homomorphic), then it is important that these properties are also captured to

avoid missing attacks. For expressibility, we should consider frameworks which permit a

large class of cryptographic primitives to be modelled.

1.4 Analysis using formal methods

Verification of cryptographic protocols is difficult due to several sources of unboundedness,

including: messages of arbitrary length and the possibility of an unbounded number of

sessions (protocol executions). In this section, we will consider methodologies that allow

the formulation of precise security statements about cryptographic protocols and the

conditions under which these statements hold. (For further discussion see Blanchet [Bla08,

§1.4], Delaune [Del11, §1] and Meadows [Mea03, Mea04].)

1.4.1 Reachability properties

Reachability properties are expressed as assertions defined over protocol execution traces

and the possibility of arbitrarily many sessions makes analysis particular problematic. One

solution is to explore a finite part of the state space and prove partial results using model

checkers, for example, FDR [Ros95], Murϕ [MMS97], and Brutus [CJM00]. Alternatively,

Rusinowitch & Turuani [RT01, RT03] avoid this source of undecidability by restricting

honest participants to a bounded number of sessions (the number of messages sent by

the adversary, and the length of those messages, remains unbound) and present an NP

decision procedure for secrecy properties in the Dolev-Yao model with symmetric and

asymmetric cryptography. This result has been enriched to consider more complicated

properties of cryptographic primitives, for example, Chevalier et al. [CKRT03a, CKRT05]

1.4. ANALYSIS USING FORMAL METHODS 9

and Comon-Lundh & Shmatikov [CLS03] present a decision procedure for secrecy in the

presence of an adversary that can exploit properties of the XOR operator and Chevalier

et al. [CKRT03b] consider an adversary that can exploit Diffie-Hellman exponentiation,

the complexity of these procedures are shown to be in NP.

Techniques exploring finite state spaces or considering a bounded number of sessions

are useful for discovering attacks, but cannot be used to assert the security of a protocol;

in particular, there may exist an attack outside the considered search space (for exam-

ple, a revision of the Garay & Mackenzie contract signing protocol [GM99] was shown

to be secure for n ≤ 4 participants [CKS04, CKS06]; but, Mukhamedov & Ryan [MR08]

presented an attack for n ≥ 5 participants). Henceforth, this limitation will be avoided

by considering only techniques that consider all states and an unbounded number of

sessions; unfortunately, proving the security of a protocol in this context is undecid-

able [DLMS99, DLMS04]. Accordingly, we will consider sound but incomplete techniques

and as a consequence we will accept methodologies that may not terminate or may report

false attacks.

Lowe [Low96, Low99] demonstrated that limitations of finite state exploration can be

overcome by introducing manual proofs that show such results are sufficient; in particu-

lar, Lowe proved the security of the Needham-Shroeder-Lowe public key protocol in this

context by manually proving that if the revised scheme was vulnerable to an attack, then

the attack would be discovered in the finite model. Ideally, we would like to avoid such

manual proofs. Meadows [Mea94, Mea96b, EMM05, EMM06] considers an unbounded

number of sessions by applying sound user-guided pruning to derive a tractable model

from an infinite state space, these results have been implemented in the NRL Protocol

Analyzer. (See Meadows [Mea96a] for a comparison between the NRL Protocol Analyzer

and Lowe’s approach using FDR.) Thayer, Herzog & Guttman [THG98, THG99] intro-

duce strand spaces which allow more compact formalisations of state and Song, Berezin

& Perrig [Son99, SBP01] propose a verification procedure which has been implemented

as Athena, this tool also reduces the state space by pruning. Both the NRL Protocol

10 CHAPTER 1. INTRODUCTION

Analyzer and Athena may fail to terminate for an unbounded number of sessions and,

based upon Athena, Cremers [CM05, Cre06, Cre08b, Cre08a] proposes the Scyther tool

which guarantees termination, but may only analyse a bounded number of sessions when

a result cannot be obtained in the unbounded case. Meier, Cremers & Basin [MCB10]

extend Scyther to generate correctness proofs which can be automatically checked using

theorem provers, this exploits the strengths of proof-construction techniques to provide

stronger results.

Bolignano [Bol97] proposes an abstract model which over-approximates the adver-

sary’s power. This has proven to be useful for approaches using tree automata [Mon99,

Mon03, GK00] and, more generally, techniques based upon resolution of Horn clauses

[Wei99]. (Tree automata can be encoded as Horn clauses [FSVY91].) Boichut, Héam &

Kouchnarenko [BHKO04, BHK05, BHK06, BHK09] extend the tree automata reasoning

technique proposed by Genet & Klay [GK00] and implement their results in the TA4SP

verification tool. Blanchet [Bla01, Bla02, Bla09, Bla11] uses resolution of Horn clauses

to reason with reachability properties in processes of the applied pi calculus [AF01] and

these results have been implemented in ProVerif. These over-approximation techniques

have proven to be successful, despite the possibility of reporting false attacks and non-

termination.

1.4.2 Indistinguishability properties

Indistinguishability properties are captured using equivalence [MPW92a, MPW92b, AG97,

AF01]. Equivalence has been studied independently of cryptography in the pi calcu-

lus [San93, Vic94, Dam95, San96, Dam97] and automated tools have been proposed, for

example, Another Bisimulation Checker [Bri05] and the Mobility Workbench [VM94]. In

the context of cryptographic protocols, Abadi & Gordon [AG97] introduced the spi cal-

culus to study equivalence. The spi calculus is restricted to a basic set of cryptographic

primitives and this framework has been extended to the applied pi calculus by Abadi &

1.4. ANALYSIS USING FORMAL METHODS 11

Fournet [AF01] to overcome this limitation.

Definitions of equivalence usually quantify over all possible adversaries and this makes

proofs difficult. It is therefore useful to introduce alternative definitions that coincide

and prove results in the alternative setting; labelled bisimilarity [AG98a, AG98b, BN02,

BN05] has been particular useful for this purpose in the spi calculus. In the applied pi

calculus, Abadi & Fournet [AF01] claimed that their definitions of equivalence and labelled

bisimilarity coincide; however, a formal proof of this claim has not been published, and

additional assumptions are known to be necessary [AF06, BJPV09, ARR10]. Accordingly,

the use of labelled bisimilarity for proofs of equivalence in the applied pi calculus should

be avoided. We will now review decision procedures for equivalence.

Durante, Sisto & Valenzano [DSV00, DSV03] present an decision procedure for equiv-

alence which considers a bounded number of sessions in the spi calculus. In the applied

pi calculus, Abadi & Cortier [AC04a, AC05a, AC06] introduce a decision procedure for

static equivalence (that is, in the presence of a passive adversary with a bounded num-

ber of sessions) in the context of subterm convergent equational theories ; this result has

been exploited by Baudet, Cortier & Delaune [BCD09, BCD10] and Ciobâcă, Delaune &

Kremer [CDK09b] to provide automated tools (namely, YAPA and KISS) for the analysis

of static equivalence. Baudet [Bau05] extends the work of Abadi & Cortier to consider

an active adversary for a bounded number of sessions. As discussed in the context of

reachability properties, such techniques are useful for finding attacks but cannot guar-

antee the absence of attacks and, henceforth, we consider methodologies that analyse all

states. Unfortunately, proving equivalence for an unbounded number of sessions is an

undecidable problem [Han03, AC04a, AC06] and we will therefore consider sound but

incomplete decision procedures.

Blanchet, Abadi & Fournet [Bla04, BAF08] focus on equivalences between pairs of

processes which share the same structure and differ only in the choice of terms. They

introduce the notion of uniformity, a sufficient condition for observational equivalence,

and automated reasoning is supported by ProVerif. However, the notion of uniformity is

12 CHAPTER 1. INTRODUCTION

often too strict for the equivalences we wish to consider and the technique may report

false attacks.

The potentially infinite number of execution traces due to messages sent by the ad-

versary makes reasoning about equivalence difficult. In a variant of the spi calculus,

Borgström, Briais & Nestmann [BBN04] avoid this problem by treating each message

from the adversary as a variable (thereby ensuring that a message input is mapped to a

single transition) and similar results are obtained by Delaune, Kremer & Ryan [DKR07,

DKR10a] for the applied pi calculus. Both Borgström, Briais & Nestmann and Delaune,

Kremer & Ryan present decision procedures for fragments of the original calculi, for

example, Delaune, Kremer & Ryan do not consider disequalities (that is, they do not

consider else-branches in conditional statements). In a different direction, Cortier & De-

laune [CD09] have shown that equivalence coincides with trace equivalence for determinate

processes (based upon [Bau05], this yields a decision procedure for a bounded number of

sessions).

1.4.3 Automated verification tools

The inability of experts to identify the flaw in the Needham-Shroeder public key pro-

tocol highlights inherent weaknesses in the manual verification process and necessitates

automated analysis tools. We will now summarise the capabilities of the state-of-the-art

tools introduced in the previous section, with the notable omission of the NRL Protocol

Analyzer which is not publicly available.

AVISPA [ABB+05] AVISPA provides a common interface for a number of analysis

tools including TA4SL [BHKO04, BHK05, BHK06, BHK09]. AVISPA/TA4SL is

capable of evaluating reachability properties for an unbounded number of sessions.

(AVISPA also provides support for CL-Atse [Tur06], OFMC [BMV03, BMV05], and

SATMC [AC04b, Com05, AC05b]; but, these tools are limited to a finite number of

sessions.)

1.4. ANALYSIS USING FORMAL METHODS 13

ProVerif [BS11] ProVerif is capable of evaluating reachability properties [Bla01, AB02,

Bla02, AB05a, Bla09, Bla11] and observational equivalence [Bla04, BAF05, BAF08],

in the context of an unbounded number of sessions. The tool is capable of producing

attack traces [AB05c]: when a property cannot be proved, an execution trace which

falsifies the desired property is constructed. Support is provided for user-defined

equations and the resolution algorithm has been proven to terminate for tagged

protocols [BP03, BP05]

Scyther [Cre07] Scyther [CM05, Cre06, Cre08b, Cre08a] is capable of evaluating reach-

ability properties for an unbounded number of sessions; moreover, if a result cannot

be obtained (due to the undecidable nature of the problem), then security of a

bounded number of sessions is evaluated. It follows that termination is guaran-

teed. The tool is also capable of generating correctness proofs suitable for theorem

checkers [MCB10] and producing graphical attack traces.

The AVISPA tool is particularly well-suited to the analysis of security properties for a

bounded number of sessions (using OFMC, CL-Atse, and SATMC), but TA4SL provides

only limited support in the unbounded case. For example, over-approximation coupled

with the absence of attack traces is particularly problematic in AVISPA/T4SL, because

it is difficult to distinguish between false attacks caused by over-approximation and real

attacks [CLN09]. ProVerif provides support for equivalence, in addition to reachability, al-

though due to over-approximation it may report false attacks. ProVerif also supports user-

defined equations and the following (non-exhaustive list of) cryptographic primitives can

be modelled: symmetric and asymmetric cryptography; digital signatures; hash functions;

bit-commitment; and signature proofs of knowledge. Scyther does not over-approximate

and is therefore able to avoid reporting false attacks; moreover, unlike ProVerif, Scyther

is guaranteed to terminate and produce a result (albeit, possibly only for a bounded num-

ber of sessions). However, Scyther does not support user-defined equational theories nor

can control flow be modelled and these factors limit the class of protocols that can be

14 CHAPTER 1. INTRODUCTION

modelled. Table 1.1 summarises the capabilities of these tools. (For further comparison

between tools see [CLN09, PBP+10, LTV10, DSHJ10].)

AVISPA/TA4SL ProVerif Scyther
Reachability 3 3 3

Equivalence 7 3 7

User-defined theory 7 3 7

Attack traces 7 3 3

No false attacks 7 7 3

Termination 7 7 3

Table 1.1: A comparison of automated verification tools

Applied pi calculus and ProVerif. The applied pi calculus provides a framework

for analysing reachability and equivalence properties with automated support provided

by ProVerif. The support for user-defined equations allows a large class of cryptographic

protocols to be modelled and our discussion demonstrates ProVerif is a leading tool.

Moreover, the applied pi calculus and ProVerif have been successfully used to model

cryptographic protocols from a variety of application domains and some applications are

listed below. On this basis, the applied pi calculus and ProVerif will be adopted by this

thesis.

• Abadi & Blanchet [AB05b] use correspondence assertions to verify certified email

[AGHP02].

• Abadi, Blanchet & Fournet [ABF07] analyse the JFK (Just Fast Keying) [ABB+04]

protocol – which was one of the candidates to replace IKE as the key exchange

protocol in IPSec – using correspondence assertions and equivalence properties in a

combination of manual and automated proofs.

• Blanchet & Chaudhuri [BC08] study the integrity of the Plutus file system [KRS+03]

on untrusted storage using correspondence assertions, resulting in the discovery and

subsequent fixing of weaknesses in the initial system.

1.5. CONTRIBUTION AND LITERATURE REVIEW 15

• Bhargavan et al. [BFGT06, BFG06, BFGS08, BFGT08] use ProVerif to analyse

cryptographic protocol implementations written in F#; in particular, the Transport

Layer Security (TLS) protocol has been studied in this manner [BCFZ08].

• Chen & Ryan [CR09] have evaluated authentication protocols found in trusted com-

puting, and have discovered vulnerabilities.

• Delaune, Kremer & Ryan [KR05, DKR06, DKR09, DKR10b] and Backes, Hriţcu &

Maffei [BHM08] formalise and analyse privacy properties for electronic voting using

equivalence.

The application of formal method techniques are limited by: 1) the absence of rig-

orously defined security properties [Oka98, Bel99, Aba00, Mea04]; and 2) the lack of

efficient procedures to evaluate security properties [BM92, Rus93, GSG99]. This thesis

will advance the applied pi calculus and ProVerif in this context.

1.5 Contribution and literature review

The objective of this thesis is to aid the secure design of cryptographic protocols and facil-

itate the evaluation of existing schemes. This is achieved in the context of the applied pi

calculus by defining the security properties of protocols (Part II) and developing efficient

procedures for the automated analysis of observational equivalence (Part III). Accord-

ingly, this thesis will help avoid the current situation whereby numerous protocols are

deployed and subsequently found to be insecure; ultimately helping to prevent attacks

which cause financial loss, violations of personal privacy and threats towards democ-

racy. The applicability of the methodologies and techniques introduced by this thesis are

demonstrated throughout by analysing cryptographic protocols. A detailed description

of the key chapters will now be presented.

16 CHAPTER 1. INTRODUCTION

Chapter 3

Electronic voting systems lack the transparency offered by their paper-based counterparts.

For example, in paper-based systems, the whole process, from ballot casting to tallying,

can be observed; by contrast, it is not possible to observe electronic operations performed

on data. Some electronic voting systems attempt to avoid this limitation by assuming the

hardware and software running the election is trusted. In practice, this level of trust is very

difficult to achieve and thus, systems based upon such assumptions have failed [Bun09,

Min08, Bow07, UK07]. A better approach is to provide verifiable voting systems (for

example, [JCJ02, JCJ05, CRS05, Adi06, Dag07, Adi08]), that allow voters and election

observers to check that votes have been recorded, tallied and declared correctly. Moreover,

these checks can be performed in a manner independent of the election system’s hardware

and software. In this chapter, a definition of election verifiability is presented.

In related work, Juels, Catalano & Jakobsson [JCJ02, JCJ05, JCJ10] present a defi-

nition of universal verifiability in the provable security model. Their definition assumes

voting protocols produce non-interactive zero-knowledge proofs of knowledge (also called

signature proofs of knowledge) demonstrating the correctness of tallying. Here we consider

a definition in the formal model. Universal verifiability was also studied by Chevallier-

Mames et al. [CMFP+06, CMFP+10]. They show an incompatibility result: protocols

cannot satisfy verifiability and vote privacy in an unconditional way (that is, without

reliance on computational assumptions). But, as witnessed by [JCJ02, JCJ05], weaker

versions of these properties can hold simultaneously; furthermore, our case studies demon-

strate that privacy and verifiability can coexist. Baskar, Ramanujam & Suresh [BRS07]

formalise individual verifiability, and Talbi et al. [TMT+08] consider individual and uni-

versal verifiability. Both of these definitions are tightly coupled with the protocol by

Fujioka, Okamoto & Ohta [FOO92] and cannot easily be generalised. Moreover, Talbi

et al. characterise individual execution traces as verifiable or not, and it is unclear how

their definition can be used to assert that a protocol satisfies verifiability (that is, every

1.5. CONTRIBUTION AND LITERATURE REVIEW 17

execution of the protocol is verifiable); in particular, the authors only show that a single

execution of the protocol by Fujioka, Okamoto & Ohta satisfies verifiability, and do not

make any claims about the verifiability of the protocol.

In complimentary work, Backes, Hriţcu & Maffei [BHM08] formalise correctness prop-

erties (including inalterability and eligibility) for honest protocol executions; if an elec-

tronic voting scheme satisfies their definition and the participants execute the protocol

as intended, then no one can change a voter’s vote and only registered voters can vote

and at most once. However, their definition provides no assurances when participants

deviate from the protocol (that is, when participants do not perform honest executions).

It follows that a scheme can be correct, but not provide the intended security properties;

this may occur, for example, because a dishonest administrator chooses to run a malicious

variant of the protocol. In this respect, a verifiable electronic voting protocol is more de-

sirable because voters and observers can check that the correctness properties hold, even

in the presence of dishonest administrators. In addition to verifiability and correctness

properties, electronic voting protocols are expected to satisfy privacy properties (includ-

ing ballot secrecy, receipt freeness, and coercion resistance) and fairness (including ballot

independence and no early results). Table 1.2 summarises these properties and highlights

several definitions of security properties that have emerged in the literature.

We present a generic definition of election verifiability in terms of boolean tests. These

tests are required to satisfy several conditions for all possible execution traces. This fa-

cilitates the evaluation of verifiability in electronic voting protocols. The definition also

allows identification of the hardware and software components that must be trusted for

the purpose of election verifiability, thereby facilitating the comparison of electronic vot-

ing protocols on the basis of trust assumptions. The framework is compatible with a large

class of electronic voting schemes, including those based upon blind signatures, homomor-

phic encryption and mixnets. Moreover, the definition is used to analyse verifiability in

three electronic voting protocols, two of which have been implemented and deployed. In

particular, the Helios 2.0 protocol is evaluated; this scheme is particularly significant due

18 CHAPTER 1. INTRODUCTION

Verifiability
In

dividu
al

verifi
ability:

a
voter

can
ch

eck
th

at
h
er

ow
n

b
allot

is
p
u
b
lish

ed
on

th
e

election
’s

b
u
lletin

b
oard

.
[J

C
J
05,

B
R

S
07,

T
M

T
+

08]

U
n

iversal
verifi

ability:
an

yon
e

can
ch

eck
th

at
all

th
e

votes
in

th
e

election
ou

tcom
e

corresp
on

d
to

b
allots

p
u
b
lish

ed
on

th
e

election
’s

b
u
lletin

b
oard

.
[J

C
J
05,

C
M

F
P

+
06,

T
M

T
+

08]

E
ligibility

verifi
ability:

an
yon

e
can

ch
eck

th
at

each
b
allot

p
u
b
lish

ed
on

th
e

b
u
lletin

b
oard

w
as

cast
b
y

a
registered

voter
an

d
at

m
ost

on
e

b
allot

is
tallied

p
er

voter.
[J

C
J
05]

Correctness

D
eclared

resu
lt:

th
e

election
ou

tcom
e

is
th

e
correct

su
m

of
th

e
votes

cast.
[B

H
M

08]

E
ligibility:

on
ly

registered
voters

can
vote

an
d

at
m

ost
on

ce.
[J

C
J
05,

K
R

05,
T

M
T

+
08,

B
H

M
08]

In
alterability:

n
o

on
e

can
ch

an
ge

a
voter’s

vote.
[J

C
J
05,

B
H

M
08]

Privacy

B
allot

secrecy:
A

voter’s
vote

is
n
ot

revealed
to

an
yon

e.
[K

R
05,

D
K

R
06,

C
M

F
P

+
06,

B
R

S
07,

B
H

M
08,

D
K

R
09,

C
D

K
09a,

J
M

P
09]

R
eceipt

freen
ess:

A
voter

can
n
ot

gain
in

form
ation

w
h
ich

can
b

e
u
sed

to
p
rove,

to
a

co
ercer,

h
ow

sh
e

voted
.

[D
K

R
06,

M
N

06,
J
V

06,
C

M
F

P
+

06,
B

R
S
07,

B
H

M
08,

D
K

R
09,

K
T

09,
J
M

P
09]

C
oercion

resistan
ce:

A
voter

can
n
ot

collab
orate,

w
ith

a
co

ercer,
to

gain
in

form
a-

tion
w

h
ich

can
b

e
u
sed

to
p
rove

h
ow

sh
e

voted
.

[J
C

J
05,

D
K

R
06,

M
N

06,
B

H
M

08,
D

K
R

09,
K

T
09,

K
T

V
10,

U
M

Q
10]

Fairness

B
allot

in
depen

den
ce:

voters
can

n
ot

cast
related

votes.
[G

en
95,

G
en

00]

N
o

early
resu

lts:
p
artial

election
resu

lts,
w

h
ich

cou
ld

alter
voter

b
eh

av
iou

r
(e.g.,

b
y

in
fl
u
en

cin
g

a
voter’s

d
ecision

or
p
rom

p
tin

g
a

voter
to

p
u
ll-ou

t),
are

u
n
availab

le.
[K

R
05,

B
R

S
07,

T
M

T
+

08]

T
ab

le
1.2:

S
u
m

m
ary

of
electron

ic
votin

g
p
rop

erties
an

d
secu

rity
d
efi

n
ition

s

1.5. CONTRIBUTION AND LITERATURE REVIEW 19

to its real-world deployment: the International Association of Cryptologic Research used

Helios to elect its board members [BVQ10], following a successful trial in a non-binding

poll [HBH10]; the Catholic University of Louvain adopted the system to elect the uni-

versity president [AMPQ09]; and Princeton University used Helios to elect the student

vice president [Pri10]. This demonstrates the suitability of the framework for analysing

real-world election systems.

Chapter 4

Trusted computing has introduced a hardware device, called a Trusted Platform Module,

to allow systems to provide cryptographic guarantees about their state. The hardware

chip contains a unique key to root trust and, as a consequence, cryptographic operations

may reveal a platform’s identity. This raises privacy concerns. Brickell, Camenisch &

Chen [BCC04] overcome this privacy issue with the introduction of Direct Anonymous

Attestation (DAA): a remote authentication scheme for trusted platforms which provides

user-controlled anonymity and traceability. In this chapter, a definition of user-controlled

anonymity is presented and used to analyse the RSA-based DAA scheme [BCC04], dis-

covering a vulnerability.

In related work, Brickell, Camenisch & Chen [BCC04] and Brickell, Chen & Li [BCL08b,

BCL09] present definitions in the provable security model; the relationship between these

models is unknown [CMS08a, pp158]. Here we consider a definition in the formal model,

based upon informal descriptions of user-controlled anonymity [BCL08b, BCL09]. By

comparison, Backes, Maffei & Unruh [BMU08] formalised an earlier notion of user-

controlled anonymity (informally described in [BCC04]) for their model of the RSA-based

DAA protocol. This formalisation can probably be generalised, but it pre-dates the defini-

tion of user-controlled anonymity by Brickell, Chen & Li [BCL08b, BCL09] and considers

a conceptually weaker adversary. Rudolph [Rud07] also proposes an attack against RSA-

based DAA which violates privacy; however, this vulnerability has been discounted by

Leung, Chen & Mitchell [LCM08] as infeasible for large-scale violations of privacy and,

20 CHAPTER 1. INTRODUCTION

moreover, can be detected in the presence of a single honest verifier.

We present a generic definition of user-controlled anonymity as an equivalence property

suited to automated reasoning using ProVerif. The definition is used to analyse anonymity

in the RSA-based DAA protocol [BCC04]. This scheme is particularly significant, as the

TPM specification version 1.2 [TCG07] (which has been defined as an ISO/IEC interna-

tional standard [Int09]) mandates support for RSA-based DAA and, moreover, estimates

suggest the TPM has been embedded in over 300 million computers [Tru09] (although,

some experts claim only 5% of these TPMs have been turned on [Mar08, §6]). The analysis

discovers a vulnerability which can be exploited by a passive adversary and, under weaker

assumptions, by corrupt administrators. This demonstrates the suitability of the frame-

work for analysing DAA schemes which have been deployed. Finally, a fix is identified

and the revised scheme is shown to satisfy user-controlled anonymity.

Chapter 5

Formal method techniques require efficient procedures for evaluating security properties.

Moreover, automated reasoning is highly desirable to avoid errors associated with hand-

written proofs. In this chapter, a new procedure for automatically verifying observational

equivalence will be introduced, with particular emphasis on proving privacy properties.

As previously discussed, uniformity is too strong for the equivalences we wish to con-

sider and this chapter will introduce a weaker condition (see Section 1.4.2 for a summary

of related work). In addition, the applied pi calculus is extended to allow modelling of

barrier synchronisation. The study of equivalences in the context of synchronisation is

particularly interesting, because certain security properties can only be realised if par-

ticipants synchronise their actions in a specific manner. For example, privacy preserving

protocols (including electronic voting, vehicular ad-hoc networks, and anonymity net-

works) make such assumptions. These results are implemented in the tool ProSwapper,

an extension of ProVerif, and the applicability of the tool is demonstrated by analysing

vote privacy in electronic voting protocols and privacy in vehicular ad-hoc networks.

1.6. LIST OF PUBLICATIONS 21

1.6 List of publications

This thesis is partly based upon the following publications:

[RS11]: Mark D. Ryan and Ben Smyth. Applied pi calculus. In Véronique Cortier

and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security

Protocols, chapter 6. IOS Press, 2011.

[KRS10]: Steve Kremer, Mark D. Ryan, and Ben Smyth. Election verifiability in elec-

tronic voting protocols. In ESORICS’10: 15th European Symposium on Research in

Computer Security, volume 6345 of LNCS, pages 389–404. Springer, 2010.

[SRKK10]: Ben Smyth, Mark D. Ryan, Steve Kremer, and Mounira Kourjieh. Towards

automatic analysis of election verifiability properties. In ARSPA-WITS’10: Joint

Workshop on Automated Reasoning for Security Protocol Analysis and Issues in the

Theory of Security, volume 6186 of LNCS, pages 165–182. Springer, 2010.

[DRS08]: Stéphanie Delaune, Mark D. Ryan, and Ben Smyth. Automatic verification of

privacy properties in the applied pi-calculus. In IFIPTM’08: 2nd Joint iTrust and

PST Conferences on Privacy, Trust Management and Security, volume 263 of In-

ternational Federation for Information Processing (IFIP), pages 263–278. Springer,

2008.

[SRC07]: Ben Smyth, Mark D. Ryan, and Liqun Chen. Direct Anonymous Attestation

(DAA): Ensuring privacy with corrupt administrators. In ESAS’07: 4th European

Workshop on Security and Privacy in Ad hoc and Sensor Networks, volume 4572 of

LNCS, pages 218–231. Springer, 2007.

1.7 Overview and structure

An overview of this thesis is outlined below.

22 CHAPTER 1. INTRODUCTION

Part I. Presents introductory and background material.

Chapter 1. Introduces this thesis and describes the research problem.

Chapter 2. Recalls the applied pi calculus which forms the foundation of this

thesis.

Part II. Formalises symbolic security definitions for electronic voting and anonymous

attestation.

Chapter 3. Presents a definition of election verifiability for electronic voting proto-

cols. This definition is used to analyse election verifiability in the FOO, Helios

and JCJ-Civitas electronic voting schemes.

Chapter 4. Delivers a definition of user-controlled anonymity for Direct Anonymous

Attestation protocols. This definition is used to discover vulnerabilities in the

RSA-based Direct Anonymous Attestation scheme.

Part III. Develops procedures for evaluation of security properties, with an emphasis on

automation.

Chapter 5. Defines an automated reasoning procedure for observational equiva-

lences with a focus on protocols in which participants synchronise their ac-

tions. This technique is used to analyse vote privacy in the FOO electronic

voting scheme and privacy in the CMIX vehicular ad hoc networking protocol.

Part IV. Presents an evaluation.

Chapter 6. Considers further work and presents a conclusion.

2
Background: Applied pi calculus†

The applied pi calculus [AF01, RS11] is a language for describing and analysing crypto-

graphic protocols. It provides an intuitive process syntax to describe the actions of the

participants in a protocol, emphasising their communication. The syntax is coupled with

a formal semantics to allow reasoning about protocols. The language is based upon the pi

calculus with the addition of a rich term algebra to enable modelling of the cryptographic

operations used by protocols. In this respect, the applied pi calculus also has similarities

with the spi calculus [AG97]. The key difference concerns the way in which cryptographic

primitives are handled. The spi calculus has a fixed set of primitives built in (namely,

symmetric and public key encryption), while the applied pi calculus allows a wide variety

of more complex primitives (including, for example, non-deterministic encryption, digital

signatures, and proofs of knowledge) to be defined by means of an equational theory.

The applied pi calculus permits formal modelling of properties including: reachability,

correspondence and observational equivalence. In the context of cryptographic protocols,

these properties are particularly useful, since they allow the analysis of traditional security

goals such as secrecy and authentication. Moreover, emerging properties such as privacy,

traceability and verifiability can also be considered.

†This chapter is a compressed variant of [RS11].

24 CHAPTER 2. BACKGROUND: APPLIED PI CALCULUS

Figure 2.1 Syntax for terms

L,M,N, T, U, V ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s name
x, y, z variable
f(M1, . . . ,Ml) function application

2.1 Syntax and informal semantics

The calculus assumes an infinite set of names, an infinite set of variables, and a signature Σ

consisting of a finite set of function symbols, each with an associated arity. A function

symbol with arity 0 is a constant. Terms are built by applying function symbols to names,

variables and other terms; as shown in Figure 2.1, where f ranges over the functions of Σ

and l is the arity of f . We use metavariables u,w to range over both names and variables.

Tuples u1, . . . , ul and M1, . . . ,Ml are occasionally abbreviated ũ and M̃ . We write {M/x}

for the substitution that replaces the variable x with the term M . Similarly, we write

{m/n} for the substitution that replaces the name n with the name m. Arbitrarily large

substitutions can be written as {M1/x1, . . . ,Ml/xl} or {M̃/x̃}. The letters σ and τ range

over substitutions. We write Nσ for the result of applying σ to the variables (or names)

of term N . A term is ground when it does not contain variables.

We assume a type system for terms generated by a set of base types S, which includes

the universal type Data. In addition, if ω is a type, then Channel〈ω〉 is a type too.

Formally, the set of types generated by the base types S is the smallest set Ω satisfying:

1) S ⊆ Ω, and 2) if ω ∈ Ω then Channel〈ω〉 ∈ Ω. Names and variables can have any type.

By convention we use a, b, c for channel names, k, s as names of base type and m,n for

names of any type. A channel of type Channel〈ω〉 may communicate messages of type ω.

For simplicity, function symbols can only be applied to, and return, terms of base type.

We always assume that terms are well typed and that substitutions preserve types.

The syntax for processes is presented in Figure 2.2. The null process 0 does nothing;

P | Q is the parallel composition of processes P and Q; replication !P is the infinite

2.1. SYNTAX AND INFORMAL SEMANTICS 25

Figure 2.2 Syntax for processes

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
if M = N then P else Q conditional
u(x).P message input
u〈M〉.P message output

composition P | P | . . .; and name restriction ν n.P binds n inside P . The conditional

if M = N then P else Q is standard, but we stress M = N represents equality (modulo

an equational theory) rather than strict syntactic identity. For convenience, we abbreviate

conditionals as: if M = N then P , when Q is the null process. Finally, communication

is captured by message input and message output. The process u(x).P awaits a message

from channel u and then behaves as P , with the received message bound to the variable

x. The process u〈M〉.P is ready to send M on channel u and then run P . In both of these

cases, we may omit P when it is 0. We write P{M/x} for P with all free occurrences of

x replaced by M and, in such a substitution, we insist that no name n occurring in M

becomes bound by a restriction ν n occurring in P ; sometimes we write let x = M in P

in place of P{M/x}.

Bracketing must be used to avoid ambiguities in the way processes are written down.

For example, the process !P | Q might be interpreted as (!P) | Q or as ! (P | Q). To avoid

too much bracketing, we adopt conventions about the precedence of process operators.

Unary operators !, ν n, u(x), and u〈M〉 bind more closely than binary operators, and the

binary if-then-else operator binds more closely than the binary operator |.

The expression P | Q | R is also ambiguous, since it could mean either (P | Q) | R

or P | (Q | R). However, we will later see that these processes are semantically identical,

so we tolerate the ambiguity in the syntax. Another possible ambiguity arises because

of the convention of omitting “else 0” in the if-then-else construct; consequently, it is

26 CHAPTER 2. BACKGROUND: APPLIED PI CALCULUS

Figure 2.3 Syntax for extended processes

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

not clear which “if” the “else” applies to in the expression: if M = N then if K =

L then Q else R. In absence of brackets indicating the contrary, we adopt the convention

that the else branch belongs to the closest if and hence the statement should be interpreted

as if M = N then (if K = L then Q else R).

Processes are extended with active substitutions to capture the knowledge exposed

to the adversarial environment (Figure 2.3). The active substitution {M/x} represents a

process that has previously output M . The value M is now available to the environment

by reference to the ‘handle’ x. The active substitution {M/x} can replace the variable

x for the term M in every process it comes into contact with. This behaviour can be

controlled by restriction, and the process ν x.({M/x} | P) corresponds exactly to: let x =

M in P . This allows access to terms which the environment cannot construct. Arbitrarily

large active substitutions can be obtained by parallel composition, and we occasionally

abbreviate {M1/x1} | . . . | {Ml/xl} as {M1/x1, . . . ,Ml/xl} or {M̃/x̃}. We also use σ and

τ to range over active substitutions and we write Nσ for the result of applying σ to the

variables of N . Extended processes must have at most one active substitution for each

variable, and there is exactly one when the variable is under restriction. Finally, we write

ν ũ for the (possibly empty) series of pairwise-distinct binders ν u1.ν u2. · · · .ν ul.

The type system for terms is extended to processes. It enforces: M,N are of the same

type in the conditional expression if M = N then P else Q; message input u(x) is defined

only where u is of type Channel〈ω〉 and x is of type ω; similarly, message output u〈M〉

requires u of type Channel〈ω〉 and M of type ω. Substitutions are always assumed to be

cycle-free. In addition, active substitutions {M/x} are such that the term M and variable

2.2. OPERATIONAL SEMANTICS 27

x have the same base type; this assumption was not explicitly stated in [AF01] but its

necessity has been confirmed [AF06] and is essential for the validity of [AF01, Theorem 1]

as shown in [BJPV09]. Finally, we assume extended processes are well-typed.

The scope of names and variables are delimited by binders u(x) and ν u. The set

of bound names bn(A) contains every name n which is under restriction ν n inside A.

The set of bound variables bv(A) consists of all those variables x occurring in A that are

bound by a restriction ν x or input u(x). We also define the set of free names and the set

of free variables. The set of free names in A, denoted fn(A), consists of those names n

occurring in A not in the scope of the binder ν n. The set of free variables fv(A) contains

the variables x occurring in A which are not in the scope of a restriction ν x or input

u(x). We occasionally write fn(M), and fv(M), for the set of names, and respectively

variables, which appear in term M . An extended process is closed when every variable x

is either bound or defined by an active substitution. Bound names and bound variables

are subject to α-renaming.

A frame, denoted ϕ or ψ, is an extended process built from the null process 0 and

active substitutions {M/x}, which are composed by parallel composition and restriction.

The domain dom(ϕ) of a frame ϕ is the set of variables that ϕ exports; that is, the set

of variables x for which ϕ contains an active substitution {M/x}, where x is not under

restriction. Every extended process A can be mapped to a frame ϕ(A) by replacing every

plain process in A with 0. The frame ϕ(A) represents the static knowledge that is output

by a process to its environment. The domain dom(A) of A is the domain of ϕ(A).

2.2 Operational semantics

The signature Σ is equipped with an equational theory E, that is, a set of equations of

the form M = N , where the terms M,N are defined over the signature Σ (sometimes

written M,N ∈ TΣ). This allows us to capture relationships between primitives defined

in Σ. We define equality modulo the equational theory, written =E, as the smallest

28 CHAPTER 2. BACKGROUND: APPLIED PI CALCULUS

equivalence relation on terms that contains E and is closed under application of function

symbols, substitution of terms for variables and bijective renaming of names. We write

M =E N when the equation M = N is in the theory E, and keep the signature implicit.

When E is clear from the context, we may abbreviate M =E N as M = N . The

negation of M =E N is denoted M 6=E N (and similarly abbreviated M 6= N). For

further discussion on equational theories see Abadi & Fournet [AF01, §3] and Abadi &

Cortier [AC04a, AC05a, AC06].

Contexts may be used to represent the adversarial environment in which a process

is run; that environment provides the data that the process inputs, and consumes the

data that it outputs. We define context C[] to be an extended process with a hole. We

obtain C[A] as the result of filling C[]’s hole with the extended process A. An evaluation

context is a context whose hole is not in the scope of a replication, a conditional, an input,

or an output. A context C[] closes A when C[A] is closed.

2.2.1 Structural equivalence

Informally, two processes are structurally equivalent if they model the same thing, but

the grammar permits different encodings. For example, to describe a pair of processes

A,B running in parallel, the grammar forces us to put one on the left and one on the

right; that is, we have to write either A | B, or B | A. These two processes are said to be

structurally equivalent. Formally, structural equivalence (≡) is the smallest equivalence

relation on extended processes that is closed by α-conversion of both bound names and

bound variables, closed under application of evaluation contexts, and which satisfies the

rules in Figure 2.4. The rules for parallel composition, replication and restriction are

self-explanatory. Alias enables the introduction of an arbitrary active substitution with

restricted scope. Subst describes the application of an active substitution to a process

that it comes into contact with. The final rule, Rewrite, allows terms that are equal

modulo the equational theory to be swapped as desired.

2.2. OPERATIONAL SEMANTICS 29

Figure 2.4 Semantics for processes

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P

New-0 ν n.0 ≡ 0
New-C ν u.ν w.A ≡ ν w.ν u.A
New-Par A | ν u.B ≡ ν u.(A | B)

where u 6∈ fv(A) ∪ fn(A)

Alias ν x.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x}

where M =E N

Comm c〈x〉.P | c(x).Q −→ P | Q
Then if N = N then P else Q −→ P

Else if L = M then P else Q −→ Q
for ground terms L,M such that L 6=E M

Structural equivalence allows every closed extended process A to be rewritten as a

substitution and a closed plain process with some restricted names: A ≡ ν ñ.({M̃/x̃} | P),

where fv(M̃) = fv(P) = ∅ and ñ ⊆ fn(M̃). It follows immediately that every closed frame

ϕ can be rewritten as a substitution with some restricted names: ϕ ≡ ν ñ.{M̃/x̃}, where

fv(M̃) = ∅ and ñ ⊆ fn(M̃). We note that the domain of ϕ is x̃.

2.2.2 Internal reduction

A process can be executed without contact with its environment, either because if-

statements are evaluated and the then- or else-branch is taken, or because internal sub-

processes communicate with each other. The execution of a process with respect to

control flow and communication is captured by internal reduction. Formally, internal re-

duction (−→) is the smallest relation on extended processes closed under structural equiv-

alence and application of evaluation contexts, satisfying the rules of Figure 2.4. We write

30 CHAPTER 2. BACKGROUND: APPLIED PI CALCULUS

−→∗ for the reflexive and transitive closure of −→. Communication (Comm) is defined on

variables, making it look rather restricted. However, this entails no loss of generality

because Alias and Subst can be used to allow communication of an arbitrary term M

instead of a variable x. Conditionals (Then and Else) are dependent on the equational

theory. Applications of Then may require the use of the structural equivalence rule

Rewrite to derive “N = N” from “M = N” where M =E N . Else may require that

active substitutions in the context be applied using Alias and Subst to ensure L,M are

ground.

2.2.3 Labelled reduction

The semantics in Section 2.2.2 allow us to reason about protocols with an adversary

represented by a context. In order to prove that security properties hold for all adversaries,

quantification over all contexts is typically required, which can be difficult in practice. The

labelled operational semantics we now present aims to eliminate universal quantification

of the context.

The labelled semantics defines a ternary relation written A
α−→ B, where α is a label of

the form c(M), c〈u〉, or ν u.c〈u〉 such that u is either a channel name or a variable of base

type. The transition A
c(M)−−−→ B means that the process A performs an input of the term

M from the environment on the channel c, and the resulting process is B. The situation

for output is a bit more complicated, since there are several cases. If the value being

output is a free variable x or a free channel name d, then the label c〈x〉, respectively c〈d〉,

is used. If the value is a restricted channel name d, then the label ν d.c〈d〉 is used. Finally,

if the value being output is a term M , then the label ν x.c〈x〉 is used, after replacing the

occurrence of the term M by x and wrapping the process in νx.({M/x} |). The semantics

are extended to include the rules that appear in Figure 2.5.

2.3. OBSERVATIONAL EQUIVALENCE 31

Figure 2.5 Semantics for labelled transitions

In c(x).P
c(M)−−−→ P{M/x}

Out-Atom c〈u〉.P c〈u〉−−→ P

Open-Atom
A

c〈u〉−−→ A′ u 6= c

ν u.A
ν u.c〈u〉−−−−→ A′

Scope
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

Struct
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

2.3 Observational equivalence

The notion of indistinguishability is a powerful concept which allows us to reason about

complex properties that cannot be expressed as trace-based assertions. Intuitively, two

processes are said to be equivalent if an observer has no way to tell them apart. The

processes may be handling different data, and internally performing quite different com-

putations, but they look the same to an external observer. This notion allows us to define

strong notions of secrecy and privacy.

Roughly speaking, processes A and B are said to be observationally equivalent if: they

can output on the same channel for all contexts they are placed inside of, and for every

step made by A, there exists a step that B can make, such that the resulting pair of

processes are observationally equivalent (and vice-versa). We write A ⇓ c when A can

evolve to a process that can send a message on channel c; that is, when A→∗ C[c〈M〉.P]

for some term M , process P and evaluation context C[] that does not bind c.

Definition 2.1 (Observational equivalence). Observational equivalence ≈ is the largest

symmetric relation R between closed extended processes with the same domain such that

A R B implies:

1. if A ⇓ c, then B ⇓ c;

32 CHAPTER 2. BACKGROUND: APPLIED PI CALCULUS

2. if A −→∗ A′, then B −→∗ B′ and A′ R B′ for some B′;

3. C[A] R C[B] for all closing evaluation contexts C[].

2.4 Assumptions and notation

In this thesis, all signatures are tacitly assumed to include the constant ∅, unary functions

fst, snd, and the binary function pair. In addition, equational theories are assumed to

include:

fst(pair(x, y)) = x snd(pair(x, y)) = y

For convenience, pair(M1, pair(. . . , pair(Mn,∅))) is occasionally abbreviated as (M1, . . . ,

Mn) and fst(sndi−1(M)) is denoted πi(M). We also introduce some convenient notation

for sequence of names or variables. Given an infinite sequence of names or variables

u = u1, u2, u3, u4, . . . , the following self-explanatory abbreviations are used:

head(u) = u1

tail(u) = u2, u3, u4, . . .

odd(u) = u1, u3, . . .

even(u) = u2, u4, . . .

Part II
Formalisation of security properties

The failure of cryptographic protocols has been directly at-

tributed to the absence of rigorously defined security proper-

ties. This part introduces symbolic definitions for security in

electronic voting and anonymous attestation.

3
Election verifiability in electronic voting†

Overview. A definition of election verifiability is presented in terms of

boolean tests which can be performed on the data produced by an election. The

definition allows the evaluation of election verifiability in electronic voting

protocols. It also allows the identification of hardware and software compo-

nents that must be trusted for the purpose of verifiability, thereby facilitating

the comparison of electronic voting protocols on the basis of trust assump-

tions. Our definition of election verifiability is compatible with a large class

of electronic voting schemes – including those based upon blind signatures,

homomorphic encryption and mixnets – as will be demonstrated by analysing

the FOO, Helios 2.0 and JCJ-Civitas electronic voting protocols.

Electronic voting systems lack the transparency provided by their paper counterparts. For

example, paper-based elections often allow observation of the whole process (that is, from

ballot casting to tallying) and rely upon robustness characteristics of the physical world

(such as the impossibility of altering the markings on a paper ballot sealed inside a locked

ballot box). By comparison, it is not possible to observe the electronic operations per-

formed on bitstrings. As a consequence, computer systems may alter votes in a way that

cannot be detected. Some electronic voting systems attempt to eliminate the necessity

for transparency under the hypothesis that the hardware and software running the elec-

tion can be trusted. Unsurprisingly, this level of trust is very difficult to achieve and thus

†This chapter is an extension of [KRS10, SRKK10].

36 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

deployed systems based upon such assumptions have failed [Bun09, Min08, Bow07, UK07].

The concept of election verifiability (also known as end-to-end verifiability) has emerged

in the academic literature to address this problem (for example, [JCJ02, CRS05, Adi06,

Dag07, Adi08]). The notion should allow voters and election observers to verify – indepen-

dently of the hardware and software running the election – that votes have been recorded,

tallied and declared correctly. Two aspects of verifiability are generally distinguished.

• Individual verifiability: a voter can check that her own ballot is published on the

election’s bulletin board.

• Universal verifiability: anyone can check that all the votes in the election outcome

correspond to ballots published on the election’s bulletin board.

In this thesis, another aspect is also identified.

• Eligibility verifiability: anyone can check that each ballot published on the bulletin

board was cast by a registered voter and at most one ballot is tallied per voter.

Eligibility verifiability is explicitly distinguished as a distinct property (although it occa-

sionally appears as part of universal verifiability in the literature).

Chapter contribution

A definition of election verifiability which captures individual, universal and eligibility

verifiability is presented. Formally, the definition captures verifiability as a triple of

boolean tests ΦIV ,ΦUV , and ΦEV which are required to satisfy several conditions when

parametrised with the data produced by an election protocol, for all possible protocol

executions. The test ΦIV is intended to be checked by individual voters who instantiate

the test with their private information (for example, their vote, and data derived during

the execution of the protocol) and public information relating to the election (for example,

the contents of the bulletin board). The tests ΦUV and ΦEV can be checked by any external

observer and hence only rely on public information.

37

The consideration of eligibility verifiability is particularly interesting, as it provides an

assurance that the election outcome corresponds to votes legitimately cast. This property

has been largely neglected by existing electronic voting protocols, despite its suitability

as a mechanism to detect ballot stuffing.

Our definition of election verifiability dictates that only those parts of the voting

system that need to be trusted to achieve verifiability should be modelled; all the re-

maining parts of the system are controlled by the adversarial environment. This is a

further interesting aspect because it allows the clear identification of trust assumptions

needed for verifiability, and, therefore, permits comparison of electronic voting protocols.

In complementary work, Pieters [Pie10] compares voting systems on the basis of the proof

techniques used to achieve verifiability.

Tests ΦIV ,ΦUV , and ΦEV are assumed to be verified in a trusted environment (if a

test is checked by malicious software that always evaluates the test to hold, it is useless).

However, the verification of these tests can be repeated on different machines, using

software provided by various stakeholders, thereby increasing confidence. Alternatively,

this assumption can be eliminated by adopting human-verifiable tests as described by

Adida [Adi06, Chapter 5].

The application of our election verifiability definition is demonstrated by analysing

verifiability in three case studies: the protocol by Fujioka, Okamoto & Ohta [FOO92]

(commonly referred to as the FOO protocol); the Helios 2.0 protocol [AMPQ09] which

was effectively used in the election of board memebers for the International Association of

Cryptologic Research, the presidential election at the Catholic University of Louvain, and

the student vice president at Princeton University; and the protocol by Juels, Catalano

& Jakobsson [JCJ02, JCJ05, JCJ10] which has been implemented by Clarkson, Chong

& Myers [CCM08, CCM07] as Civitas (we occassionally refer to this protocol as JCJ-

Civitas). This demonstrates the suitability of the definition for a large class of protocols,

including schemes based upon mixnets, homomorphic encryption and blind signatures.

The protocols by Fujioka, Okamoto & Ohta and Helios 2.0 will be shown not to satisfy

38 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

eligibility verifiability and are vulnerable to ballot stuffing by dishonest administrators.

As these protocols do not proclaim to satisfy eligibility verifiability, this is not claimed

to be an attack, but simply a clarification of precisely which aspects of verifiability are

satisfied.

Structure of this chapter. Section 3.1 formalises electronic voting protocols in the

applied pi calculus. Section 3.2 specifies some notational conventions and defines the

individual and universal verifiability aspects of our definition (Section 3.2.1). The analysis

of FOO is presented in Section 3.2.2, and Helios is studied in Section 3.2.3. Our definition

is extended to eligibility in Section 3.3, and JCJ-Civitas is analysed in Section 3.4. Finally,

a summary is presented in Section 3.5.

3.1 Formalising electronic voting protocols

The framework should permit explicit specification of the trusted parts of an election

protocol. Ideally, only the communication channel between voters and voting terminals

should be trusted. In particular, the voter should not need to trust the election hardware

or software. However, achieving absolute verifiability in this context is difficult and the

trustworthiness of some parts of the protocol are often assumed. Such trust assumptions

are motivated by the fact that certain components of a protocol can be audited, or can be

executed in a distributed manner amongst several different election officials. For instance,

in Helios 2.0 [AMPQ09] the ballot construction can be audited using a cast-or-audit

mechanism (see Benaloh [Ben06, Ben07] for further details on ballot auditing).

Formally, the trusted parts of the voting protocol can be captured using a voting

process specification (Definition 3.1). This specification makes trust assumptions explicit;

however, whether such assumptions are reasonable depends on the context of an election.

Definition 3.1 (Voting process specification). A voting process specification is a tuple

〈V,A〉, where V is a plain process without replication and A is a closed evaluation context

3.1. FORMALISING ELECTRONIC VOTING PROTOCOLS 39

such that fv(V) = {v} and rv(V) = ∅.

Given a voting process specification 〈V,A〉, integer n ∈ N, and names s1, . . . , sn, we can

build the voting process

VPn(s1, . . . , sn) = A[V1 | · · · | Vn]

where Vi = V {si/v}. Intuitively, VPn(s1, . . . , sn) models the protocol with n voters casting

votes for candidates s1, . . . , sn. Note that the votes s1, . . . , sn are not required to be

distinct (several voters may cast votes for the same candidate).

Example 3.1 (Raising hands protocol). Consider the raising hands protocol in which

every voter outputs her signed vote. Cryptographic primitives are captured by the signature

Σ = {true, getmsg, pk, checksign, sign}, where true is a constant, getmsg and pk are unary

functions, and functions checksign and sign are binary. The signature is associated with

the equations:

checksign(pk(xsk), sign(xsk, xmsg)) = true

getmsg(sign(xsk, xmsg)) = xmsg

A trusted administrator, modelled by the context Aex, is assumed to distribute keying

material to voters and publish each voter’s public key.

Aex[] =̂ νd.νskA.(!νskV .d〈skV 〉.c〈sign(skA, pk(skV))〉 | {pk(skA)/xpk} |)

The channel d is under name restriction to ensure voters’ keys are distributed privately,

and the active substitution {pk(skA)/xpk} models the fact that the administrator’s public key

is known (for example, published on the election bulletin board). The voter, who receives

her private key and then outputs her signed vote paired with her public key, is modelled

by the process:

Vex =̂ d(xskV).c〈(pk(xskV), sign(xskV , v))〉

This protocol satisfies election verifiability, as will be shown later in this chapter.

40 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

For the purposes of individual verifiability, the voter may rely upon some data derived

during the protocol execution. To take such data into consideration, we distinguish a

subset of variables which we call record variables r and extend plain processes with the

record message rec(r,M).P construct. The record message construct permits a voter to

privately record some information which she may later use to verify the election. This

behaviour is captured by extending internal reduction to include rec(r,M).P → P |

{M/r}. Record variables are assumed to be unique in each process; that is, a record

variable may appear at most once. The type system ensures that the term M and record

variable r have the same type in rec(r,M); it also enforces that record variables may only

be used in the first argument of the rec construct or in the domain of an extended process.

Definition 3.2 allows processes to record restricted names and message inputs.

Definition 3.2. Let rv be an infinite sequence of distinct record variables. Given a process

P which does not contain replication, we define R(P) = R′(rv, P), where:

R′(r, 0) =̂ 0

R′(r, P | Q) =̂ R′(odd(r), P) | R′(even(r), Q)

R′(r, ν n.P) =̂ ν n.rec(head(r), n).R′(tail(r), P)

R′(r, u(x).P) =̂ u(x).rec(head(r), x).R′(tail(r), P)

R′(r, u〈M〉.P) =̂ u〈M〉.R′(r, P)

R′(r, if M = N then P else Q) =̂ if M = N then R′(odd(r), P) else R′(even(r), Q)

Given a tuple of record variables r̃, the tuple of record variables obtained by indexing

each record variable in r̃ with i is denoted r̃i. The set of record variables in a process and

term are denoted rv(A) and rv(M). A voting process can now be constructed such that

the voter V records the values constructed and input during execution.

3.2. ELECTION VERIFIABILITY 41

Definition 3.3 (Augmented voting process). Given a voting process specification 〈V,A〉,

integer n ∈ N and names s1, . . . , sn, the augmented voting process

VP+
n (s1, . . . , sn) = A[V +

1 | · · · | V +
n]

where V +
i = R(V){si/v}{ri/r | r ∈ rv(R(V))}.

The augmented voting process VP+
n (s1, . . . , sn) models the voting protocol for n voters

casting votes s1, . . . , sn, who privately record the data that may be needed for verification

using record variables r̃i.

Example 3.2. Given integer n ∈ N and names s1, . . . , sn, the augmented voting process

associated with our raising hands process specification 〈Vex, Aex〉 is defined as follows

Aex[d(xskV).rec(r1, xskV).c〈(pk(xskV), sign(xskV , s1))〉 | . . .

| d(xskV).rec(rn, xskV).c〈(pk(xskV), sign(xskV , sn))〉]

3.2 Election verifiability

Election verifiability is captured using three tests ΦIV , ΦUV , and ΦEV . Formally, a test

is built from conjunctions and disjunctions of atomic tests of the form (M = N), where

M,N are terms. Tests may contain variables, and will need to hold on frames arising

from arbitrary protocol executions. We now recall the purpose of each test and assume

some naming conventions about variables.

Individual verifiability: The test ΦIV allows a voter to identify her ballot on the bulletin

board. The test has:

• a variable v referring to a voter’s vote.

• a variable w referring to a voter’s public credential.

42 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

• some variables x, x′, x̄, . . . expected to refer to global public values pertaining to the

election (for example, public keys belonging to election administrators).

• a variable y expected to refer to the voter’s ballot on the bulletin board.

• some record variables r1, . . . , rk referring to the voter’s private data.

Universal verifiability: The test ΦUV allows an observer to check that votes in the election

outcome correspond to ballots on the bulletin board.

• a variable v̂ referring to a tuple representing the election outcome.

• some variables x, x′, x̄, . . . as above.

• a variable ŷ expected to refer to a tuple containing all of the voters’ ballots on the

bulletin board.

• some variables z, z′, z̄, . . . expected to refer to outputs generated by the protocol for

the purposes of universal and eligibility verification.

Eligibility verifiability: The test ΦEV allows an observer to check that each ballot on the

bulletin board was cast by a registered voter and at most one ballot is tallied per voter.

The test has:

• a variable ŵ referring to a tuple containing public credentials of eligible votes.

• a variable ŷ, variables x, x′, x̄, . . . and variables z, z′, z̄, . . . as above.

The remainder of this section will focus on the individual and universal aspects of our

definition; eligibility verifiability will be discussed in Section 3.3.

3.2.1 Security definition: Individual and universal verifiability

The test ΦIV is parametrised with a single bulletin board entry (which an individual voter

needs to identify in some way, possibly by testing all of them); by comparison, the tests

3.2. ELECTION VERIFIABILITY 43

ΦUV and ΦEV can be applied to several bulletin board entries. The tests ΦUV and ΦEV

are therefore parametrised with an integer m ∈ N denoting the m bulletin board entries

considered; accordingly, we write ΦUV
m and ΦEV

m to denote such tests.

The tests suitable for the purposes of election verifiability have to satisfy certain con-

ditions: if the tests succeed, then the data output by the election is indeed valid (sound-

ness), and there is a behaviour of the election administrators which produces election

data satisfying the tests (effectiveness). Formally, these requirements are captured by

Definition 3.4. We write T̂ ' T̂ ′ to denote that the terms T̂ and T̂ ′ are a permutation

of each other modulo the equational theory; that is, T̂ = (T1, . . . Tn), T̂ ′ = (T ′1, . . . T
′
n)

such that there exists a permutation χ on {1, . . . , n} and for all 1 ≤ i ≤ n we have

πi(T) =E πχ(i)(T
′) for some terms T1, T

′
1, . . . , Tn, T

′
n and integer n ∈ N.

Definition 3.4 (Individual and universal verifiability). A voting specification 〈V,A〉 sat-

isfies individual and universal verifiability if there exists a test ΦIV , where for all m ∈ N

there exists a test ΦUV
m , such that fn(ΦIV) = fn(ΦUV

m) = rv(ΦUV
m) = ∅ and rv(ΦIV) ⊆

rv(R(V)), and for all names s1, . . . , sn the conditions below hold. Let r̃ = rv(ΦIV) and

ΦIV
i = ΦIV {si/v, r̃i/r̃}.

Soundness. For all contexts C, such that C[VP+
n (s1, . . . , sn)] (−→∗ α−→−→∗)∗ B and ϕ(B) ≡

νñ.σ for some process B, substitution σ and names ñ, we have:

∀i, j. ΦIV
i σ ∧ ΦIV

j σ ⇒ i = j (3.1)

ΦUV
m σ ∧ ΦUV

m {v̂
′
/v̂}σ ⇒ v̂σ ' v̂′σ (3.2)

∧
1≤i≤n

ΦIV
i {πi(ŷ)/y}σ ∧ ΦUV

m σ ∧ n = m⇒ (s1, . . . , sn) ' v̂σ (3.3)

44 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

Effectiveness. There exists a context C, process B, substitution σ and names ñ, such

that C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B, ϕ(B) ≡ νñ.σ and

∧
1≤i≤n

ΦIV
i {πi(ŷ)/y}σ ∧ ΦUV

n σ (3.4)

An individual voter should verify that the test ΦIV holds when instantiated with

her vote si, the information r̃iσ recorded during the execution of the protocol and some

bulletin board entry yσ. Condition (3.1) ensures that the test ΦIV will hold for at most

one bulletin board entry. (Note that ΦIV
i and ΦIV

j are evaluated with the same ballot

yσ provided by C[].) The fact that her ballot is counted will be ensured by ΦUV
m , which

should also be tested by the voter. The voter or an observer will instantiate the test

ΦUV
m with the bulletin board entries ŷσ and the election outcome v̂σ. Condition (3.2)

ensures that ΦUV
m holds only for a single outcome. Condition (3.3) ensures that if the

bulletin board contains the ballots of voters who voted s1, . . . , sn, then ΦUV
m holds only

if the declared outcome is a permutation of these votes, where ΦUV
m is instantiated with

precisely the n ballots cast by those voters (that is, there are no additional ballots in

ŷσ). The necessity for the precondition n = m should make it clear that individual and

universal verifiability cannot detect ballot stuffing. Finally, Condition (3.4) ensures that

there exists an execution where the tests hold. In particular, this allows us to verify

whether the protocol can satisfy the tests when executed as expected. This also forbids

tests which always evaluate to false and would make Conditions (3.1)-(3.3) vacuously

hold.

3.2.2 Case study: FOO

The FOO protocol, by Fujioka, Okamoto & Ohta [FOO92], is a seminal work based upon

blind signatures.

3.2. ELECTION VERIFIABILITY 45

Figure 3.1 FOO electronic voting protocol

Registrar Voter Tallier

Registrar publishes pk(skR)

Generate k, k′

M = commit(k, v)

M̂ = blind(k′,M)

/ pk(skV), sign(skV , M̂)

sign(skR, M̂) .

M ′ = unblind(k′, sign(skR, M̂))

M,M ′ .

Commitment phase

/ `,M,M ′

Tallying phase

`, k .

Protocol description

An election is created by naming a registrar and a tallier. The protocol is divided into

four phases: setup, preparation, commitment and tallying. The steps of the protocol

(Figure 3.1) will now be detailed, starting with the setup phase.

1. The registrar creates a signing key pair skR, pk(skR) and publishes the public part

pk(skR). Similarly, each voter is assumed to have a key pair skV , pk(skV).

The preparation phase then proceeds as follows.

2. The voter computes the commitment to her vote M = commit(k, v) and sends the

signed blind commitment sign(skV , blind(k′,M)), paired with her public key, to the

registrar.

46 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

3. The registrar checks that the signature belongs to an eligible voter and returns the

blind commitment signed by the registrar sign(skR, blind(k′,M)).

4. The voter verifies the registrar’s signature and unblinds the message to recover

M ′ = sign(skR,M), that is, her commitment signed by the registrar.

After some fixed deadline, the protocol enters the commitment phase.

5. The voter posts her ballot M,M ′ to the bulletin board.

Similarly, the last phase begins after some fixed deadline.

6. The tallier verifies all the bulletin board entries and appends an identifier ` to each

valid entry.

7. The voter checks the bulletin board for her entry, the triple `,M,M ′, and appends

the commitment factor k.

8. Finally, using k, the tallier opens all of the ballots and announces the election

outcome.

The distinction between phases is essential to uphold the protocol’s security properties.

In particular, voters must synchronise before the commitment phase to ensure privacy

(observe that without synchronisation, traffic analysis may allow the voter’s signature to

be linked with the commitment to her vote, which can then be linked to her vote) and

before the tallying phase to avoid publishing partial results, that is, to ensure the fairness

property of electronic voting.

3.2. ELECTION VERIFIABILITY 47

Equational theory

Based upon [KR05, DKR06, DKR09, DKR10b], blind signatures and bit commitment are

modelled by the following equations

unblind(xrand, sign(xsk, blind(xrand, xmsg))) = sign(xsk, xmsg)

unblind(xrand, blind(xrand, xplain)) = xplain

open(xrand, commit(xrand, xplain)) = xplain

checksign(pk(xsk), sign(xsk, xmsg)) = true

getmsg(sign(xsk, xmsg)) = xmsg

where true is a constant.

Model in applied pi

For verifiability, the voter must be able to generate a fresh nonce k (which should sub-

sequently be used by the untrusted voting terminal to compute the commitment to her

vote); all other operations – such as computing the commitment, blinding and signing –

can be performed by an untrusted voting terminal. Accordingly, the trusted components

are modelled as follows.

Definition 3.5. The voting process specification 〈Vfoo, Afoo〉 is defined as Vfoo =̂ νk .c〈v〉.c〈k〉

and Afoo[] =̂ .

We do not assert that the voting terminal uses blind signatures (although this is

crucial for privacy properties, it does not contribute to verifiability); accordingly, blinding

operations do not appear in our specification and, moreover, no trust assumptions are

made about whether blinding is used. Similarly, the voter’s signature on the blinded

committed vote and the confidentiality of signing keys are not required for individual and

universal verifiability; they are, however, essential for eligibility.

48 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

Analysis: Individual and universal verifiability

Given integer m ∈ N let tests ΦIV and ΦUV
m be defined as follows:

ΦIV =̂ y =E (r, commit(r, v))

ΦUV
m =̂ v̂ =E (open(π1(π1(ŷ)), π2(π1(ŷ))), . . . , open(π1(πm(ŷ)), π2(πm(ŷ))))

Intuitively, a bulletin board entry should be a pair formed from the voter’s nonce and the

associated commitment to her vote. The identifier ` and the registrar’s signature are not

required for the purpose of verifiability, so these details are omitted.

Theorem 3.1. 〈Vfoo, Afoo〉 satisfies individual and universal verifiability.

Proof. Suppose m ∈ N and tests ΦIV ,ΦUV
m are given above. We will now show that the

conditions of Definition 3.4 are satisfied.

(3.1) For all names s1, . . . , sn suppose C is a context, B is a process, σ is a substitution, ñ

is a tuple of names and i, j are integers such that C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B,

ϕ(B) ≡ νñ.σ, ΦIV {si/v, ri/r}σ and ΦIV {sj/v, rj/r}σ, where r = rv(ΦIV). It follows that

π1(y)σ =E riσ =E rjσ. Since the record variables ri and rj are handles for fresh nonces

generated by name restriction in processes Vfoo,i and Vfoo,j, it follows that i = j.

(3.2) We prove a stronger result: namely, the condition holds for all substitutions σ. Suppose

σ is an arbitrary substitution such that ΦUV
m σ and ΦUV

m {v̂
′
/v̂}σ hold. We have

v̂σ =E (open(π1(π1(ŷ)), π2(π1(ŷ))), . . . , open(π1(πm(ŷ)), π2(πm(ŷ))))σ =E v̂
′σ

and immediately derive v̂σ ' v̂′σ.

(3.3) Again, we will show that the condition holds for all substitutions σ. Suppose σ is an

arbitrary substitution such that
∧

1≤i≤n ΦIV
i {πi(ŷ)/y}σ and ΦUV

m σ hold, where n = m. By∧
1≤i≤n ΦIV

i {πi(ŷ)/y}σ it must be the case for all 1 ≤ i ≤ n that

πi(ŷ)σ =E (ri, commit(ri, si))σ

3.2. ELECTION VERIFIABILITY 49

and hence open(π1(πi(ŷ)), π2(πi(ŷ)))σ =E si. Moreover, since n = m and ΦUV
m σ we have

v̂σ =E (open(π1(π1(ŷ)), π2(π1(ŷ))), . . . , open(π1(πm(ŷ)), π2(πm(ŷ))))σ

=E (s1, . . . , sn)

The result (s1, . . . , sn) ' v̂σ follows.

(3.4) Suppose s1, . . . , sn are names and consider the following context:

Cfoo = c(xvote,1).c(xrand,1).let y1 = (xrand,1, commit(xrand,1, xvote,1)) in

...

c(xvote,n).c(xrand,n).let yn = (xrand,n, commit(xrand,n, xvote,n)) in

c〈(y1, . . . , yn)〉.

c〈(open(π1(y1), π2(y1)), . . . , open(π1(yn), π2(yn)))〉 |

We have C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B such that

B = ν k1, . . . , kn.(c〈((k1, commit(k1, s1)), . . . , (kn, commit(kn, sn)))〉.

c〈(s1, . . . , sn)〉 | {k1/r1, . . . , kn/rn})

Moreover, B
ν ŷ.c〈ŷ〉−−−−→ ν v̂.c〈v̂〉−−−−→ ν k1, . . . , kn.σ such that

σ = {((k1, commit(k1, s1)), . . . , (kn, commit(kn, sn)))/ŷ, (s1, . . . , sn)/v̂, k1/r1, . . . , kn/rn}

It can trivially be seen that
∧

1≤i≤n ΦIV
i {πi(ŷ)/y}σ ∧ ΦUV

n σ.

3.2.3 Case study: Helios 2.0

Helios 2.0 [AMPQ09] is an open-source web-based election system, based upon homo-

morphic tallying of encrypted votes [ElG85, CP93, CDS94, CGS97, Sch09]. It allows the

secret election key to be distributed amongst several trustees, and supports distributed

50 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

decryption of the election result. It also allows independent verification by voters and

observers. Helios 2.0 has been successfully used by the International Association of Cryp-

tologic Research to elect its board members [BVQ10], following a successful trial in a

non-binding poll [HBH10]. Helios has also been used by the Catholic University of Lou-

vain, in an election that had 25,000 eligible voters, to elect the University president, and

by Princeton University to elect the student vice president [Pri10].

Protocol description

An election is created by naming an election officer, selecting a set of trustees and running

a protocol that provides each trustee with a share of the secret part of a public key pair.

The election officer publishes the public part of the trustees’ key and the candidate list

t̃ = (t1, . . . , tl) on the bulletin board. The steps that participants take during a run of

Helios are as follows. (See [CS10b, CS11] for a formal cryptographic description.)

1. To cast a vote, the voter runs a browser script that inputs her vote s ∈ t̃ and creates

a ballot consisting of her vote encrypted by the trustees’ public key and a proof that

the ballot represents an allowed vote (this is needed because the ballots are never

decrypted individually; in particular, it prevents multiple votes being encoded as a

single ballot).

2. The voter can audit the ballot to check if it really represents a vote for her chosen

candidate; if she decides to do this, then the script provides her with the random

data used in the ballot creation. She can then independently reconstruct her ballot

and verify that it was indeed well-formed, but the ballot is now invalid. (Invalidating

audited ballots provides some protection against vote selling.)

3. When the voter has decided to cast her ballot, she submits it to the election officer.

The election officer authenticates the voter and checks that she is eligible to vote.

The election officer also verifies the proof, and publishes the ballot on the bulletin

board.

3.2. ELECTION VERIFIABILITY 51

4. Individual voters can check that their ballots appear on the bulletin board and, by

verifying the proof, observers are assured that ballots represent permitted votes.

5. After some predefined deadline, the election officer homomorphically combines the

ballots and publishes the encrypted tally on the bulletin board. Anyone can check

that tallying is performed correctly.

6. Each of the trustees publishes a partial decryption of the encrypted tally, together

with a proof of correct construction. Anyone can verify these proofs.

7. The election officer decrypts the tally and publishes the result. Anyone can check

this decryption.

Equational theory

We use a signature in which penc(xpk, xrand, xplain) denotes the encryption of plaintext xplain

using random xrand and key xpk, and xciph ∗ yciph denotes the homomorphic combination of

ciphertexts xciph and yciph (the corresponding operation on plaintexts is written + and on

randoms ◦). The term ballotPf(xpk, xrand, s, xballot) represents a proof that the ballot xballot

is a ciphertext on some plaintext name s, random xrand and key xpk; partial(xsk, xciph) is a

partial decryption of xciph when xciph is a ciphertext encrypted using the public key pk(xsk);

and partialPf(xsk, xciph, xpartial) is a proof that xpartial is a partial decryption of xciph when

xciph is a ciphertext encrypted using public key pk(xsk). We use the equational theory

that asserts that +, ∗, ◦ are commutative and associative, and includes the equations:

dec(xsk, penc(pk(xsk), xrand, xplain)) = xplain

dec(partial(xsk, ciph), ciph) = xplain

where ciph = penc(pk(xsk), xrand, xplain)

penc(xpk, yrand, yplain) ∗ penc(xpk, zrand, zplain) = penc(xpk, yrand ◦ zrand, yplain + zplain)

checkBallotPf(xpk, ballot, ballotPf(xpk, xrand, s, ballot)) = true

52 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

where ballot = penc(xpk, xrand, s)

checkPartialPf(pk(xsk), ciph, partial, partialPf(xsk, ciph, partial)) = true

where ciph = penc(pk(xsk), xrand, xplain) and partial = partial(xsk, ciph)

Note that in the equation for checkBallotPf, s is a name and not a variable. As the

equational theory is closed under bijective renaming of names, this equation holds for any

name, but fails if one replaces the name by a term, for example, s + s. We assume that

all names are possible votes but give the possibility to check that a voter does not include

a term s+ s which would add a vote to the outcome.

Model in applied pi

The browser script is not verifiable; accordingly, the voter most trust:

• Ballot construction; that is, the script generates a pair consisting of the voter’s

encrypted vote and a proof that the ballot represents an allowed vote.

Although the voter cannot be assured that the script behaves correctly, trust is motivated

because the voter can audit ballot construction. Accordingly, the browser script is mod-

elled as part of the trusted context Ahelios in the voting process specification 〈Vhelios, Ahelios〉.

The voter Vhelios receives a channel name y on a private channel; this is a technical aspect

of our formalisation which allows the voter to privately communicate with her browser

script. She sends her vote on this channel to Ahelios, which creates the ballot for her.

The voter is sent the constructed ballot xballot and forwards it to the bulletin board. We

assume that the voter’s inputs y and xballot are stored in record variables ry and rballot.

Ahelios represents the parts of the system that are required to be trusted; it publishes

the election key, and includes the ballot creation script B which receives a voter’s vote,

generates a random m and returns the ballot (that is, the encrypted vote and a proof) to

the voter.

3.2. ELECTION VERIFIABILITY 53

Definition 3.6. The voting process specification 〈Vhelios, Ahelios〉 is defined where

Vhelios =̂ d(y).y〈v〉.y(xballot).c〈xballot〉

Ahelios[] =̂ νd.
(

(!νd′.d〈d′〉.B) | {pk(sk)/xpk} |
)

B =̂ d′(xvote).νm.d′〈(penc(xpk,m, xvote), ballotPf(xpk,m, xvote, penc(xpk,m, xvote)))〉

At the end of the election the bulletin board is represented by a frame. The frame is

expected to define the trustees’ public key as xpk and the ballots as ŷ. It also contains

the homomorphic tally ztally of the encrypted ballots, and the partial decryption zpartial,

together a proof of correctness zpartialPf , obtained from the trustees. When the protocol is

honestly executed by n voters, the resulting frame should have a substitution σ such that

for all 1 ≤ i ≤ n we have

xpkσ = pk(sk)

πi(ŷ)σ = (penc(pk(sk),mi, si), ballotPf(pk(sk),mi, si, penc(pk(sk),mi, si)))

zpartialσ = partial(sk, ztally)σ

zpartialPfσ = partialPf(sk, ztally, zpartial)σ

ztallyσ = π1(π1(ŷσ)) ∗ · · · ∗ π1(πn(ŷσ))

Analysis: Individual and universal verifiability

Given m ∈ N, the tests ΦIV and ΦUV
m , defined below, are introduced for verifiability

purposes.

ΦIV =̂ y =E rballot

ΦUV
m =̂ ztally =E π1(π1(ŷ)) ∗ · · · ∗ π1(πm(ŷ))

∧
∧m
i=1(checkBallotPf(xpk, π1(πi(ŷ)), π2(πi(ŷ))) =E true)

∧ checkPartialPf(xpk, ztally, zpartial, zpartialPf) =E true

∧ π1(v̂) + · · ·+ πm(v̂) =E dec(zpartial, ztally)

∧ sndm(v̂) =E ∅

54 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

The test ΦIV checks that the voter’s ballot is recorded on the bulletin board and ΦUV
m

checks that the tally is correctly computed.

Theorem 3.2. 〈Vhelios, Ahelios〉 satisfies individual and universal verifiability.

Proof. Suppose m ∈ N and tests ΦIV ,ΦUV
m are given above. We show for all names

s1, . . . , sn that Conditions (3.1)–(3.4) of Definition 3.4 hold.

(3.1) Suppose C, B, σ, ñ, i and j are such that C[VP+
n (s1, . . . , sn)](→∗ α−→→∗)∗B, ϕ(B) ≡ νñ.σ,

ΦIV
i σ and ΦIV

j σ. It follows that πi(ŷ)σ =E rballot,iσ and similarly πj(ŷ)σ =E rballot,jσ.

But since record variables rballot,iσ and rballot,jσ contain distinct fresh nonces mi and mj

created by name restriction in the ballot creation script B, it follows that i = j.

(3.2) We prove a stronger result: namely, the condition holds for all substitutions σ. Sup-

pose σ is an arbitrary substitution such that ΦUV
m σ and ΦUV

m {v̂
′
/v̂}σ hold. Since

∧m
i=1

checkBallotPf(xpk, π1(πi(ŷ)), π2(πi(ŷ))σ =E true, by inspection of the equational theory it

must be the case that

π1(πi(ŷ))σ =E penc(Mpk,i,Mrand,i, si)

for some ground terms Mpk,i, Mrand,i and name si, where 1 ≤ i ≤ m. It follows that

ztallyσ =E penc(Mpk,1,Mrand,1, s1) ∗ · · · ∗ penc(Mpk,m,Mrand,m, sm). Moreover, we have

checkPartialPf(xpk, ztally, zpartial, zpartialPf)σ =E true, hence

ztallyσ =E penc(pk(Msk),Mrand,1 ◦ · · · ◦Mrand,m, s1 + · · ·+ sm)

where pk(Msk) =E Mpk,1 =E · · · =E Mpk,m for some term Msk. It also follows that

zpartialσ =E partial(Msk, ztally)σ

We have dec(zpartial, ztally)σ =E π1(v̂)+· · ·+πm(v̂)σ =E π1(v̂′)+· · ·+πm(v̂′)σ =E s1+· · ·+sm

3.2. ELECTION VERIFIABILITY 55

and since sndm(v̂)σ =E sndm(v̂′)σ =E ∅, it must be the case that

v̂σ =E (π1(v̂), . . . , πm(v̂))σ ' (s1, . . . , sm) ' (π1(v̂′), . . . , πm(v̂′))σ =E v̂
′σ

It follows immediately that v̂σ ' v̂′σ.

(3.3) Again, we will show that the condition holds for all substitutions. Suppose σ is an

arbitrary substitution such that
∧

1≤i≤n ΦIV
i {yi/y}σ and ΦUV

m σ hold, where n = m. By∧
1≤i≤n ΦIV

i {πi(ŷ)/y}σ it must be the case for all 1 ≤ i ≤ n that

πi(ŷ) =E (penc(pk(sk),mi, si), ballotPf(pk(sk),mi, si, penc(pk(sk),mi, si)))

Since n = m and ΦUV
m σ holds, we have

ztallyσ =E π1(π1(ŷ)) ∗ · · · ∗ π1(πm(ŷ)) =E penc(pk(sk),m1 ◦ · · · ◦mn, s1 + · · ·+ sn)

Moreover, checkPartialPf(xpk, ztally, zpartial, zpartialPf)σ =E true and hence

zpartialσ =E partial(pk(sk), ztally)σ

It follows that dec(zpartial, ztally)σ =E s1+· · ·+sm. By ΦUV
m σ we also have dec(zpartial, ztally)σ

=E π1(v̂) + · · ·+ πm(v̂)σ and sndm(v̂)σ =E ∅. As before, we conclude v̂σ =E (π1(v̂), . . . ,

πm(v̂))σ ' (s1, . . . , sm), hence (s1, . . . , sm) ' v̂σ

(3.4) The context C must marshal the election data onto the frame such that for all 1 ≤ i ≤ n

we have xpkσ, πi(ŷ)σ, zpartialσ, zpartialPfσ and ztallyσ as defined above. Moreover, it defines

v̂σ = (s1, . . . , sn). For brevity, we omit formally defining C.

Observe that Condition 3.2 cannot be proved where ΦUV
m =̂ π1(v̂) + · · · + πm(v̂) =E

dec(zpartial, ztally) because, in general, given terms M1, . . . ,Mk, N1, . . . , Nk, U, V such that

M1 + · · · + Mk =E dec(U, V) =E M1 + · · · + Nk it is not the case that (M1, . . . ,Mk) '

56 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

(N1, . . . , Nk).

3.3 Security definition: Election verifiability

To fully capture election verifiability, the tests ΦIV and ΦUV must be supplemented with

a test ΦEV . We suppose that the public credentials of registered voters appear on the

bulletin board and ΦEV allows an observer to check that only these individuals (that is,

those in possession of credentials) cast ballots, and at most one ballot is tallied per voter.

Definition 3.7 (Election verifiability). A voting specification 〈V,A〉 satisfies election ver-

ifiability if there exists a test ΦIV , where for all m ∈ N there exists tests ΦUV
m ,ΦEV

m ,

such that fn(ΦIV) = fn(ΦUV
m) = fn(ΦEV

m) = rv(ΦUV
m) = rv(ΦEV

m) = ∅ and rv(ΦIV) ⊆

rv(R(V)), and for all names s1, . . . , sn the conditions below hold. Let r̃ = rv(ΦIV),

ΦIV
i = ΦIV {si/v, r̃i/r̃, πi(ŵ)/w} and X = fv(ΦEV

m)\dom(VP+
n (s1, . . . , sn)).

Soundness. For all contexts C, such that C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B and ϕ(B) ≡

νñ.σ for some process B, substitution σ and names ñ, we have Conditions (3.1)–(3.3)

and Conditions (3.5) – (3.7) hold.

ΦEV
m σ ∧ ΦEV

m {x
′
/x | x ∈ X\ŷ}σ ⇒ ŵσ ' ŵ′σ (3.5)

ΦEV
m σ ∧ ΦEV

m {x
′
/x | x ∈ X\ŵ}σ ⇒ ŷσ ' ŷ′σ (3.6)

∧
1≤i≤n

ΦIV
i {πi(ŷ)/y}σ ∧ ΦEV

n {ŵ
′
/ŵ}σ ∧ sndn(ŵ)σ =E ∅⇒ ŵσ ' ŵ′σ (3.7)

Effectiveness. There exists a context C, process B, substitution σ and names ñ such

that C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B, ϕ(B) ≡ νñ.σ and Condition (3.8) holds.

∧
1≤i≤n

ΦIV
i {πi(ŷ)/y}σ ∧ ΦUV

m σ ∧ ΦEV
m σ (3.8)

3.4. CASE STUDY: JCJ-CIVITAS 57

An observer should verify that the test ΦEV
m holds when instantiated with the public

bulletin board, to ensure that ballots were cast by eligible voters. Given ballots ŷσ

provided by the environment, Condition (3.5) ensures that ΦEV
m succeeds for only one

tuple of public voter credentials. Similarly, given credentials ŵσ, Condition (3.6) ensures

that only one tuple of ballots ŷσ are accepted by ΦEV
m (observe that for such a strong

requirement to hold, we expect the voting specification’s frame to contain a public key

to root trust). Condition (3.7) ensures that if the bulletin board contains ballots cast

by voters with public credentials ŵσ, then ΦEV
m holds only on a permutation of these

credentials. Finally, the effectiveness condition is similar to Condition (3.4) of the previous

section.

Case studies: Raising hands, FOO and Helios 2.0. Neither FOO nor Helios use

public voting credentials in a manner suitable for eligibility verifiability. In FOO, the

administrator is responsible for ensuring eligibility, that is, checking the validity of the

voter’s ballots; whereas in Helios, there are no public voting credentials. It follows im-

mediately that Condition (3.6), in particular, cannot be satisfied. By comparison, the

raising hands protocol (Example 3.1) does define suitable public voting credentials and

satisfies our definition.

Proposition 3.1. The raising hands protocol 〈Aex, Vex〉 satisfies election verifiability.

The proof of this result appears in Appendix A.1.

3.4 Case study: JCJ-Civitas

The protocol by Juels, Catalano & Jakobsson [JCJ02, JCJ05, JCJ10] is based upon

mixnets and was implemented by Clarkson, Chong & Myers [CCM08, CCM07] as an

open-source voting system called Civitas.

58 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

3.4.1 Protocol description

An election is created by naming a set of registrars and talliers. The protocol is divided

into four phases: setup, registration, voting and tallying. We now detail the steps of the

protocol, starting with the setup phase.

1. The registrars, respectively talliers, run a protocol which constructs a public key

pair and distributes a share of the secret part amongst the registrars, respectively

talliers. The public part pk(skR), respectively pk(skT), of the key is published. The

registrars also construct a distributed signing key pair sskR, pk(sskR).

The registration phase then proceeds as follows.

2. The registrars generate and distribute voter credentials. These consist of a private

part d and a public part penc(pk(skR),m′′, d), that is, the probabilistic encryption

of d under the registrars’ public key pk(skR). This is done in a distributed manner,

so that no individual registrar learns the value of any private credential d.

3. The registrars publish the signed public voter credentials.

4. The registrars announce the candidate list t̃ = (t1, . . . , tl).

The protocol then enters the voting phase.

5. Each voter selects her vote s ∈ t̃ and computes two ciphertexts M = penc(pk(skT),

m, s) and M ′ = penc(pk(skR),m′, d), where m,m′ are nonces. M contains her vote

and M ′ her credential. In addition, the voter constructs a non-interactive zero-

knowledge proof of knowledge (or signature proof of knowledge) demonstrating the

correct construction of her ciphertexts and the validity of her chosen candidate.

(The proof provides protection against coercion resistance, by preventing forced

abstention attacks via a write in, and binds the two ciphertexts for eligibility verifi-

ability.) The voter derives her ballot as the triple, consisting of her ciphertexts and

signature proof of knowledge, and posts it to the bulletin board.

3.4. CASE STUDY: JCJ-CIVITAS 59

After some predefined deadline the tallying phase commences.

6. The talliers read the n′ ballots posted to the bulletin board by voters (that is, the

triples consisting of the two ciphertexts and the signature proof of knowledge) and

discards any entries for which the signature proof of knowledge does not hold.

7. Elimination of re-votes is performed on the ballots using pairwise plaintext equality

tests (PET) on the ciphertexts containing private voter credentials. (A PET [JJ00]

is a cryptographic predicate which allows a key holder to provide a proof that

two ciphertexts contain the same plaintext.) Re-vote elimination is performed in a

verifiable manner with respect to some publicly defined policy, for example, by the

order of ballots on the bulletin board.

8. The talliers perform a verifiable re-encryption mix on the ciphertexts in the ballots

(recall that the ballots include a vote ciphertext and a public credential ciphertext;

the link between these ciphertexts is preserved by the mix.) The mix ensures that

a voter cannot trace her vote, allowing the protocol to achieve coercion resistance.

9. The talliers perform a verifiable re-encryption mix on the list of public credentials

published by the registrars. This mix anonymises public voter credentials, breaking

any link with the voter for privacy purposes.

10. Ballots based upon invalid credentials are weeded using PETs between the mixed

ciphertexts provided by voters and the mixed public credentials. (Using PETs the

correctness of weeding is verifiable.)

11. Finally, the talliers perform a verifiable decryption and publish the result.

3.4.2 Equational theory

The protocol uses the homomorphic ElGamal encryption scheme. Accordingly, we adopt

the signature and associated equational theory from the Helios case study. We model the

60 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

signature proof of knowledge demonstrating correct construction of the voter’s ciphertexts,

re-encryption and PETs by the equations

checkBallot(ballotPf(xpk, xrand, xplain, x
′
pk, x

′
rand, x

′
plain),

penc(xpk, xrand, xplain), penc(x
′
pk, x

′
rand, x

′
plain)) = true

renc(yrand, penc(pk(xsk), xrand, xplain)) = penc(pk(xsk), xrand ◦ yrand, xplain)

pet(petPf(xsk, ciph, ciph
′), ciph, ciph′) = true

where ciph =̂ penc(pk(xsk), xrand, xplain) and ciph′ =̂ penc(pk(xsk), x
′
rand, xplain). In addition,

we consider verifiable re-encryption mixnets, and introduce for each permutation χ on

{1, . . . , n}, where n ∈ N, the equation:

checkMix(mixPf(xciph,1, . . . , xciph,n, ciph1, . . . , ciphn, zrand,1, . . . , zrand,n),

xciph,1, . . . , xciph,n, ciph1, . . . , ciphn) = true

where ciphi =̂ renc(zrand,i, xciph,χ(i)). We also define re-encryption of pairs of ciphertexts,

and introduce for each permutation χ on {1, . . . , n},= where n ∈ N, the equation:

checkMixPair(mixPairPf((x1, x
′
1), . . . , (xn, x

′
n), (c1, c

′
1), . . . , (cn, c

′
n),

(z1, z
′
1), . . . , (zn, z

′
n)), (x1, x

′
1), . . . , (xn, x

′
n), (c1, c

′
1), . . . , (cn, c

′
n)) = true

where ci =̂ renc(zi, xχ(i)) and c′i =̂ renc(z′i, x
′
χ(i)).

3.4.3 Model in applied pi

We make the following trust assumptions for verifiability:

• The voter is able to construct her ballot; that is, she is able to generate nonces

m,m′, construct her ciphertexts and generate a signature proof of knowledge.

• The registrars construct distinct credentials d for each voter and construct the

3.4. CASE STUDY: JCJ-CIVITAS 61

voter’s public credential correctly. (The latter assumption can be dropped if the

registrars provides a designated verified proof that the public credential is correctly

formed [JCJ02, JCJ05, JCJ10].) The registrars keep the private part of the signing

key secret.

Although neither voters nor observers can verify that the registrars adhere to such ex-

pectations, they trust them because trust is distributed. The trusted components are

modelled by the voting process specification 〈Ajcj, Vjcj〉 (Definition 3.8). The context Ajcj

distributes private keys on a private channel, launches an unbounded number of registrar

processes, and publishes the public keys of both the registrars and talliers. The regis-

trar R constructs a fresh private credential d and sends the private credential along with

the signed public part (that is, sign(sskR, penc(xpkR ,m
′′, d))) to the voter; the registrar

also publishes the signed public credential on the bulletin board. The voter Vjcj receives

the private and public credentials from the registrar and constructs her ballot; that is,

the pair of ciphertexts and a signature proof of knowledge demonstrating their correct

construction.

Definition 3.8. The voting process specification Ajcj, Vjcj is defined where:

Ajcj =̂ ν a, sskR.(!R | {pk(skR)/xpkR ,
pk(sskR)/xspkR

, pk(skT)/xpkT} |)

Vjcj =̂ ν m,m′.a(xcred).let ciph = penc(xpkT ,m, v) in

let ciph′ = penc(xpkR ,m
′, π1(xcred)) in

let spk = ballotPf(xpkT ,m, v, xpkR ,m
′, π1(xcred)) in

c〈(ciph, ciph′, spk)〉

R =̂ ν d,m′′. let sig = sign(sskR, penc(xpkR ,m
′′, d)) in a〈(d, sig)〉.c〈sig〉

At the end of the election, the bulletin board is represented by a frame. In our

formalism, we expect the frame to contain the substitution σ which defines the voters’

public credentials as ŵ, the registrars’ public keys as xpkR and xspkR , and talliers’ public key

as xpkT . A tuple ŷ containing triples representing each voter’s ciphertexts and signature

62 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

proofs of knowledge. The mixed re-encryptions of the voter’s ciphertexts zbal,1, . . . , zbal,n,

along with a proof zmixPairPf that the mix was performed correct. For verifiable decryption,

we assume zpartial,i is defined as a partial decryption associated with the proof zpartialPf,i.

For the purposes of eligibility verifiability, we also expect the mixed re-encryptions of

the voter’s public credentials zcred,1, . . . , zcred,1, along with a proof of correctness zmixPf .

For convenience, a reordering z̄cred,1, . . . , z̄cred,n of these re-encryptions is also computed.

Finally, we expect PET proofs zpetPf,1, . . . , zpetPf,n for the re-encryptions of the ciphertext

constructed by the voter on her private credential (that is, the output of the verifiable

mix in Step 8 of the protocol) and the re-encryptions of the voter’s public credential

constructed by the registrars (that is, the output of the mix in Step 9), such that the PET

holds, that is, the pair of ciphertexts contain the same private credential. Accordingly,

given n voters we expect σ to be such that for all 1 ≤ i ≤ n we have:

πi(ŵ)σ = sign(sskR, c
′′
i)

xpkRσ = pk(skR)

xspkRσ = pk(sskR)

xpkTσ = pk(skT)

πi(ŷ)σ = (ci, c
′
i, ballotPf(pk(skT),mi, si, pk(skR),m′i, di))

zbal,iσ = (renc(m̄i, cχ(i)), renc(m̄
′
i, c
′
χ(i)))

zmixPairPfσ = pfMixPair((c1, c
′
1), . . . , (cn, c

′
n), (renc(m̄1, cχ(1)), renc(m̄

′
1, c
′
χ(1))),

. . . , (renc(m̄n, cχ(n)), renc(m̄
′
n, c
′
χ(n))), (m̄1, m̄

′
1), . . . , (m̄n, m̄

′
n))

zpartial,iσ = partial(skT , renc(m̄i, cχ(i)))

zpartialPf,iσ = partialPf(skT , renc(m̄i, cχ(i)), partial(skT , renc(m̄i, cχ(i))))

zcred,iσ = renc(m̄′′i , c
′′
χ′(i))

z̄cred,iσ = renc(m̄′′χ(χ′−1(i)), c
′′
χ(i))

zmixPfσ = pfMix(c′′1, . . . , c
′′
n, renc(m̄

′′
1, c
′′
χ′(1)), . . . , renc(m̄

′′
n, c
′′
χ′(n)), m̄

′′
1, . . . , m̄

′′
n)

zpetPf,iσ = petPf(skR, renc(m̄
′
i, c
′
χ(i)), renc(m̄

′′
χ(χ′−1(i)), c

′′
χ(i)))

3.4. CASE STUDY: JCJ-CIVITAS 63

where ci =̂ penc(pk(skT),m, si), c
′
i =̂ penc(pk(skR),m′, di), c

′′
i =̂ penc(pk(skR),m′′, di) and

χ, χ′ are permutations on {1, . . . , n}.

3.4.4 Analysis: Election verifiability

We assume record variables r̃ = (rcred, rm, rm′) = rv(R(V)) (corresponding to the variable

xcred and names m, m′ in the process V). Accordingly, given m ∈ N we define:

ΦIV =̂ y =E (penc(xpkT , rm, v), penc(xpkR , rm′ , π1(rcred)),

ballotPf(xpkT , rm, v, xpkR , rm′ , π1(rcred))) ∧ w = π2(rcred)

ΦUV
m =̂ checkMixPair(zmixPairPf , (π1(π1(ŷ)), π2(π1(ŷ))), . . . , (π1(πm(ŷ)), π2(πm(ŷ))),

zbal,1, . . . , zbal,m) =E true

∧ (dec(zpartial,1, π1(zbal,1)), . . . , dec(zpartial,m, π1(zbal,m))) =E v̂

∧
∧m
i=1 checkPartialPf(xpkT , π1(zbal,i), zpartial,i, zpartialPf,i) =E true

ΦEV
m =̂

∧m
i=1 checkBallot(π3(πi(ŷ)), π1(πi(ŷ)), π2(πi(ŷ))) =E true

∧ checkMixPair(zmixPairPf , (π1(π1(ŷ)), π2(π1(ŷ))), . . . , (π1(πm(ŷ)), π2(πm(ŷ))),

zbal,1, . . . , zbal,m) =E true

∧
∧m
i=1 pet(zpetPf,i, π2(zbal,i), z̄cred,i) =E true

∧ (zcred,1, . . . , zcred,m) ' (z̄cred,1, . . . , z̄cred,m)

∧ checkMix(zmixPf , getmsg(π1(ŵ)), . . . , getmsg(πm(ŵ)), zcred,1, . . . , zcred,m) =E true

∧
∧m
i=1 checksign(xspkR , πi(ŵ)) =E true∧m

i=1 π4(ŷ) =E ∅ ∧ sndm(ŵ) =E ∅ ∧ sndm(ŷ) =E ∅

The test ΦIV checks that the voter’s ballot and public credential are recorded on the

bulletin board. The test ΦUV
m checks that the tally is correctly computed; that is, the

mix is checked, the validity of partial decryptions have been verified and the decrypted

tally corresponds to the election outcome. Finally, the test ΦEV
m checks that only eligible

ballots are considered; that is, ballots are correctly formed, mixes have been handled in a

suitable manner, PETs have been verified and only authentic public voter credentials are

considered.

64 CHAPTER 3. ELECTION VERIFIABILITY IN ELECTRONIC VOTING

Theorem 3.3. 〈Ajcj, Vjcj〉 satisfies election verifiability.

The proof of Theorem 3.3 is presented in Appendix A.2.

3.5 Summary

This chapter presents a symbolic definition of election verifiability which allows the precise

identification of voting system components that need to be trusted for the purposes of

verifiability. The suitability of systems can then be evaluated and compared on the

basis of trust assumptions. The consideration of eligibility verifiability is of particular

interest, since it provides an essential mechanism for detecting ballot stuffing, although

it is often neglected within the literature and only satisfied by a few protocols. Our

definition of election verifiability has been successfully used to evaluate three electronic

voting protocols, namely: FOO, which uses blind signatures; Helios 2.0, which is based

upon homomorphic encryption; and JCJ-Civitas, which uses mixnets. For each of these

protocols the trust assumptions required for election verifiability are discussed. Helios 2.0

and JCJ-Civitas protocols have been implemented and deployed, therefore demonstrating

the suitability of the framework for analysing real-world election systems.

4
Anonymity in Direct Anonymous Attestation†

Overview. A definition of user-controlled anonymity is introduced in the con-

text of Direct Anonymous Attestation schemes. The definition is expressed as

an equivalence property suited to automated reasoning using ProVerif. The

practicality of the definition is demonstrated by analysing the RSA-based Di-

rect Anonymous Attestation protocol by Brickell, Camenisch & Chen. The

analysis discovers a vulnerability which can be exploited by a passive adver-

sary and, under weaker assumptions, corrupt administrators. A security

fix is identified and the revised scheme is shown to satisfy our definition of

user-controlled anonymity.

Trusted computing allows commodity computers to provide cryptographic assurances

about their behaviour. At the core of the architecture is a hardware device called the

Trusted Platform Module (TPM). The TPM uses shielded memory to store cryptographic

keys, and other sensitive data, which can be used to achieve security objectives. In par-

ticular, the chip can measure and report its state, and authenticate. Cryptographic oper-

ations, by their nature, may reveal a platform’s identity and as a consequence the TPM

threatens privacy. Brickell, Camenisch & Chen [BCC04] have introduced the notion of Di-

rect Anonymous Attestation (DAA) to overcome these privacy concerns. More precisely,

DAA is a remote authentication mechanism for trusted platforms which provides user-

†This chapter is partly based upon [SRC07, DRS08]. A preliminary analysis of the RSA-based DAA
protocol (Section 4.4) – which discovered an attack and presented a fix – originally appeared in [SRC07],
and an initial analysis (Section 4.4.5) of the fixed scheme was considered in [DRS08].

66 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

controlled anonymity and user-controlled traceability. The concept is based upon group

signatures with stronger anonymity guarantees; in particular, the identity of a signer can

never be revealed, but signatures may be linked with the signer’s consent, and signatures

produced by compromised platforms can be identified. A DAA scheme considers a set of

hosts, issuers, TPMs, and verifiers ; the host and TPM together form a trusted platform

or signer. DAA protocols proceed as follows. A host requests membership to a group

provided by an issuer. The issuer authenticates the host as a trusted platform and grants

an attestation identity credential (occasionally abbreviated credential). The host can now

produce signatures using the credential, thereby permitting a verifier to authenticate the

host as a group member and therefore a trusted platform.

Brickell, Chen & Li [BCL08b, BCL09] characterise the following properties for Direct

Anonymous Attestation schemes:

• User-controlled anonymity.

– Privacy. The identity of a signer cannot be revealed from a signature.

– Unlinkability. Signatures cannot be linked without the signer’s consent.

• User-controlled traceability.

– Unforgeability. Signatures cannot be produced without a TPM.

– Basename linkability. Signatures are linkable with the signer’s consent.

• Correctness. Valid signatures can be verified and, where applicable, linked.

The contrasting nature of anonymity and traceability properties aims to provide a balance

between the privacy demands of users and the accountability needs of administrators.

The first concrete Direct Anonymous Attestation scheme was introduced by Brickell,

Camenisch & Chen [BCC04] and is based upon RSA. The RSA-based DAA protocol is

reliant on the strong RSA and decisional Diffie-Hellman assumptions. However, some

67

users are uncomfortable with these assumptions. This motivated the work of Brickell,

Chen & Li [BCL08a, BCL09] who provide the first ECC-based DAA protocol using sym-

metric pairing. This scheme is reliant on the LRSW [LRSW00] and decisional Bilinear

Diffie-Hellman assumptions. Moreover, ECC-based schemes are more efficient and there-

fore better suited to devices with limited resources, such as the TPM. Chen, Morrissey

& Smart [CMS08a, CMS08b] extend the scheme based upon symmetric pairing to an

asymmetric setting to improve efficiency; however, Li discovered a vulnerability which

violates user-controlled traceability and Chen & Li propose a fix [CL10]. Chen, Morrissey

& Smart [CMS09] identified further traceability attacks against the asymmetric scheme

and proposed a fix. In addition, Chen, Morrissey & Smart [CMS10] have found trace-

ability attacks against the symmetric pairing based scheme [BCL08a, BCL09] and the

original RSA-based scheme [BCC04]. These attacks allow a malicious host to extract

the TPM’s secret tsk, if the protocol is implemented in hardware without stage control

mechanisms ; the host can then violate user-controlled traceability by forging signatures.

However, since the TPM provides stage control protection, there is no practical threat in

the current setting; but, we should still consider these attacks interesting because it iden-

tifies settings in which DAA protocols cannot be deployed (for example, in other trusted

computing settings which do not use the TPM). We remark that the analysis of user-

controlled traceability of the RSA-based scheme by Backes, Maffei & Unruh [BMU08]

could not identify this attack because they consider a setting where the host and TPM

are both honest. An optimisation of the fixed asymmetric scheme has been proposed by

Chen, Page & Smart [CPS10] and three further ECC-based DAA protocols have been

defined: Chen & Feng [CF08], Brickell & Li [BL09a, BL09b] and Chen [Che10, Che11].

Chapter contribution

A definition of user-controlled anonymity is presented as an equivalence property which

is suited to automated reasoning using ProVerif. Informally, the definition asserts that an

adversary cannot distinguish between signatures produced by two distinct signers, even

68 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

when the adversary controls the issuer and has observed previous signatures produced by

each signer.

The application of the definition is demonstrated by analysing user-controlled anonym-

ity in the RSA-based DAA protocol [BCC04]. Support for the RSA-based scheme is

mandated by the TPM specification version 1.2 [TCG07] which has been defined as an

ISO/IEC international standard [Int09]. Moreover, estimates suggest that the TPM has

been embedded in over 300 million computers [Tru09] (although, some experts claim

only 15 million of these TPMs have been turned on [Mar08, §6]). This demonstrates

the suitability of this framework for analysing schemes which have been deployed in the

real-world.

The analysis of RSA-based DAA discovers a vulnerability in the protocol which allows

an adversary to violate user-controlled anonymity. As a consequence, applications which

use RSA-based DAA as a building block – for example, the peer-to-peer networking scheme

by Balfe, Lakhani & Paterson [BLP05a, BLP05b] and the authentication scheme by Leung

& Mitchell [LM07] – are also flawed. A fix is identified, and the revised RSA-based DAA

protocol is shown to be secure.

Structure of this chapter. Section 4.1 recalls the variant of the applied pi calculus in-

troduced by [Bla04, BAF08]. Section 4.2 defines Direct Anonymous Attestation protocols,

and presents a formalisation in the applied pi calculus. Section 4.3 defines user-controlled

anonymity as an observational equivalence property, and the definition is used in Sec-

tion 4.4 to analyse the RSA-based DAA protocol. Finally, a summary is presented in

Section 4.5.

4.1 Preliminaries: Calculus of ProVerif

The calculus presented here is a combination of the applied pi calculus (Chapter 2) with

one of its dialects [Bla04, BAF08]. This variant is particularly useful due to the automated

4.1. PRELIMINARIES: CALCULUS OF PROVERIF 69

support provided by ProVerif.

4.1.1 Syntax and semantics

The calculus assumes an infinite set of names, an infinite set of variables and a signature Σ

consisting of a finite set of function symbols each with an associated arity. An explicit

distinction is made between constructors (termed functions in Chapter 2) and destructors

within the signature. We write f for a constructor, g for a destructor, and h for either a

constructor or destructor. Terms are built by applying constructors to names, variables

and other terms (Figure 4.1). As usual, the signature Σ is equipped with an equation

theory E.

The semantics of a destructor g of arity l is given by a finite set defΣ(g) of rewrite

rules g(M ′
1, . . . ,M

′
l)→M ′, whereM ′

1, . . . ,M
′
l ,M

′ are terms that contain only constructors

and variables; moreover, the variables of M ′ are bound in M ′
1, . . . ,M

′
l , and variables are

subject to renaming. The term g(M1, . . . ,Ml) is defined if and only if there exists a

substitution σ and a rewrite rule g(M ′
1, . . . ,M

′
l) → M ′ in defΣ(g) such that Mi = M ′

iσ

for all i ∈ {1, . . . , l}, and in this case g(M1, . . . ,Ml) is defined as M ′σ.

The grammar for processes is presented in Figure 4.1. The process let x = D in P else

Q tries to evaluate D; if this succeeds, then x is bound to the result and P is executed,

otherwise Q is executed. For convenience, the statement let x = D in P else Q may be

abbreviated as let x = D in P when Q is the null process.

The syntax does not include the conditional if M = N then P else Q, but this can be

defined as let x = eq(M,N) in P else Q, where x is a fresh variable and eq is a binary

destructor with the rewrite rule eq(x, x)→ x. We always include this destructor in Σ. In

addition, evaluation contexts forbid holes under the scope of a term evaluation. The rest

of the syntax is standard (see Chapter 2 and [Bla04, BAF08]). The bracketing conventions

defined in Section 2.1 will be adopted with an additional assumption that the expression

P | Q | R is bracketed as P | (Q | R). Although (P | Q) | R ≡ P | (Q | R), this

70 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

convention simplifies our compiler design in Chapter 5.

The rules of Figure 4.2 axiomatise the reduction relation for processes (→Σ), thus

defining the operational semantics of our calculus. Auxiliary rules define term evaluation

(⇓Σ) and the structural congruence relation (≡). Both ≡ and →Σ are defined only on

closed processes. We write →∗Σ for the reflexive and transitive closure of →Σ, and →∗Σ≡

for its union with ≡. When Σ is clear from the context, we abbreviate →Σ and ⇓Σ to →

and ⇓, respectively.

4.1.2 Biprocesses

The calculus provides a notation for modelling pairs of processes that have the same

structure and differ only by the terms and term evaluations that they contain. We call such

a pair of processes a biprocess. The grammar for the calculus is a simple extension of the

grammar of Figure 4.1, with additional cases so that diff[M,M ′] is a term and diff[D,D′]

is a term evaluation. The semantics for biprocesses include the rules in Figure 4.2, except

for (Red I/O), (Red Fun 1), and (Red Fun 2) which are revised in Figure 4.3. We

also extend the definition of contexts to permit the use of diff, and sometimes refer to

contexts without diff as plain contexts.

Given a biprocess P , we define two processes fst(P) and snd(P), as follows: fst(P) is

obtained by replacing all occurrences of diff[M,M ′] with M and diff[D,D′] with D in P ;

and similarly, snd(P) is obtained by replacing diff[M,M ′] with M ′ and diff[D,D′] with

D′ in P . We define fst(D), fst(M), snd(D), and snd(M) similarly.

4.1.3 Observational equivalence

Intuitively, processes P and Q are said to be observationally equivalent if they can output

on the same channels, no matter what context they are placed inside. Formally, we write

P ↓M when P can send a message on M , that is, when P ≡ C[M ′〈N〉.R] for some

evaluation context C[] such that fn(C)∩ fn(M) = ∅ and Σ `M = M ′. The definition of

4.1. PRELIMINARIES: CALCULUS OF PROVERIF 71

Figure 4.1 Syntax for terms and processes

M,N ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s name
x, y, z variable
f(M1, . . . ,Ml) constructor application

D ::= term evaluations
M term
eval h(D1, . . . , Dl) function evaluation

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
ν a.P name restriction
M(x).P message input
M〈N〉.P message output
let x = D in P else Q term evaluation

Figure 4.2 Semantics for terms and processes

M ⇓M
eval h(D1, . . . , Dn)⇓Nσ

if h(N1, . . . , Nn)→ N ∈ defΣ(h),
and σ is such that for all i, Di ⇓Mi and Σ `Mi = Niσ

P | 0 ≡ P
P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
ν a.ν b.P ≡ ν b.ν a.P
ν a.(P | Q) ≡ P | ν a.Q

if a /∈ fn(P)

P ≡ P
Q ≡ P ⇒ P ≡ Q
P ≡ Q, Q ≡ R ⇒ P ≡ R
P ≡ Q ⇒ P | R ≡ Q | R
P ≡ Q ⇒ ν a.P ≡ ν a.Q

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` N = N ′

let x = D in P else Q→ P{M/x} (Red Fun 1)
if D ⇓M

let x = D in P else Q→ Q (Red Fun 2)
if there is no M such that D ⇓M

!P → P | !P (Red Repl)
P → Q ⇒ P | R → Q | R (Red Par)
P → Q ⇒ ν a.P → ν a.Q (Red Res)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

72 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

Figure 4.3 Generalised semantics for biprocesses

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` fst(N) = fst(N ′) and Σ ` snd(N) = snd(N ′)

let x = D in P else Q→ P{diff[M1,M2]/x} (Red Fun 1)
if fst(D)⇓M1 and snd(D)⇓M2

let x = D in P else Q→ Q (Red Fun 2)
if there is no M1 such that fst(D)⇓M1 and
there is no M2 such that snd(D)⇓M2

observational equivalence [Bla04, BAF08] can now be recalled as follows.

Definition 4.1 (Observational equivalence). Observational equivalence ∼ is the largest

symmetric relation R between closed processes such that P R Q implies:

1. if P ↓M , then Q ↓M ;

2. if P → P ′, then Q→ Q′ and P ′ R Q′ for some Q′;

3. C[P] R C[Q] for all evaluation contexts C[].

We define observational equivalence as a property of biprocesses.

Definition 4.2. The closed biprocess P satisfies observational equivalence if fst(P) ∼

snd(P).

It follows from the semantics of biprocess that if P −→ Q for some biprocesses P,Q,

then fst(P) −→ fst(Q) and snd(P) −→ snd(Q). However, reductions in fst(P) or snd(P) do

not necessarily imply biprocess reductions in P ; that is, there exist biprocesses P such

that fst(P) −→ fst(Q), but there is no such reduction P −→ Q, and symmetrically for

snd(P). For example, consider the biprocess P = diff[a, c]〈n〉 | a(x), we have fst(P) −→ 0,

but there is no reduction P −→ 0. Blanchet, Abadi & Fournet [Bla04, BAF08] have shown

that a biprocess P satisfies observational equivalence when reductions in fst(P) or snd(P)

imply reductions in P . This proof technique is formalised using the notion of uniformity.

Definition 4.3 (Uniform). A biprocess P is uniform if for all processes Q1 such that

fst(P) −→ Q1, then P −→ Q for some biprocess Q, where fst(Q) ≡ Q1, and symmetrically

for snd(P) −→ Q2.

4.2. FORMALISING DAA PROTOCOLS 73

Definition 4.4 (Strong uniformity). A closed biprocess P satisfies strong uniformity if

for all plain evaluation contexts C and biprocesses Q such that C[P] −→∗≡ Q, then Q is

uniform.

Theorem 4.1 (Strong uniformity implies equivalence [BAF08]). Given a closed biprocess

P , if P satisfies strong uniformity, then P satisfies observational equivalence.

4.2 Formalising DAA protocols

The concept of Direct Anonymous Attestation was defined by Brickell, Camenisch &

Chen [BCC04], and a historical account of its development is presented in [BCC05]. A

Direct Anonymous Attestation scheme allows remote authentication of trusted platforms,

and comprises of five algorithms, each of which will now be discussed.

Setup. The setup algorithm is primarily used by the issuer to construct a public key pair

skI , pk(skI), and the public part pk(skI) is published. In addition, the setup algorithm

may define implementation specific parameters.

Join. The join algorithm is run between a trusted platform and an issuer for the purpose

of obtaining group membership. The algorithm assumes that the trusted platform and

issuer have established a one-way authenticated channel, that is, the issuer is assured to

be communicating with a host and TPM. The definition of DAA does not mandate a par-

ticular authentication mechanism, although the Trusted Computing Group recommend

encrypting every message sent by the issuer under the TPM’s endorsement key [TCG07].

(Although, as demonstrated by the RSA-based DAA scheme, lighter solutions are possi-

ble.) On successful completion of the join algorithm, the issuer grants the trusted platform

with an attestation identity credential cre based upon a secret tsk known only by the

TPM.

74 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

Sign. The sign algorithm is executed by a trusted platform to produce a signature σ,

based upon an attestation identity credential cre and secret tsk, which asserts group

membership and therefore trusted platform status. The algorithm takes as input a mes-

sage m and a basename bsn (which is used to control linkability between signatures). If

bsn = ⊥, then signatures should be unlinkable; otherwise, signatures produced by the

same signer and based upon the same basename can be linked.

Verify. The verification algorithm is used by a verifier to check the validity of a sig-

nature. The algorithm takes as input a set of secret keys ROGUEtsk, which are known

to have been successfully extracted from compromised TPMs (see Tarnovsky [Tar10] for

further details on key extraction), allowing the identification of rogue platforms. The

methodology used to build ROGUEtsk is not defined by DAA.

Link. The link algorithm is used by a verifier to check if two valid signatures σ, σ′ are

linked, that is, signed using the same basename bsn and secret tsk.

The inputs and outputs of these algorithms are explicitly summarised in Table 4.1.

Linkability in DAA protocols. The ability to link signatures, without revealing the

identity of the signer, is a particularly interesting aspect of DAA schemes and the degrees

of linkability are identified below, with reference to an application domain in which several

verifiers offer multiple services and signers must consent to linkability.

1. Single-service linkability. A verifier offering a single service is able to link multiple

transactions with the same signer.

2. Cross-service linkability. A verifier offering multiple services which share the same

basename is able to link transactions with the same signer over multiple services.

3. Cross-verifier linkability. Multiple verifiers offering services which share the same

basename are able to link transactions with the same signer across all services.

4.2. FORMALISING DAA PROTOCOLS 75

A
lg

or
it

h
m

In
p
u
t

O
u
tp

u
t

S
et

u
p

S
ec

u
ri

ty
p
ar

am
et

er
s.

A
p
u
b
li
c

ke
y

p
ai

r
sk

I
,p
k(
sk

I
)

an
d

im
p
le

m
en

-
ta

ti
on

sp
ec

ifi
c

p
ar

am
et

er
s.

J
oi

n
T

ru
st

ed
p
la

tf
or

m
in

p
u
ts

:
th

e
sy

st
em

p
ar

am
e-

te
rs

(i
n
cl

u
d
in

g
th

e
is

su
er

’s
p
u
b
li
c

ke
y

an
d

an
y

im
p
le

m
en

ta
ti

on
sp

ec
ifi

c
p
ar

am
et

er
s

d
efi

n
ed

b
y

th
e

se
tu

p
al

go
ri

th
m

),
th

e
T

P
M

’s
in

te
rn

al
se

-
cr

et
D
A
A
S
e
e
d

(t
h
is

va
lu

e
is

d
efi

n
ed

d
u
ri

n
g

m
an

-
u
fa

ct
u
re

[T
C

G
07

])
,

a
co

u
n
te

r
va

lu
e
c
n
t

se
-

le
ct

ed
b
y

th
e

h
os

t,
an

d
th

e
T

P
M

’s
en

d
or

se
-

m
en

t
ke

y.
Is

su
er

’s
in

p
u
ts

:
th

e
sy

st
em

p
ar

am
et

er
s.

T
ru

st
ed

p
la

tf
or

m
ou

tp
u
ts

:
a

p
ai

r
co

n
si

st
in

g
of

th
e

at
te

st
at

io
n

id
en

ti
ty

cr
ed

en
ti

al
c
r
e

an
d

se
-

cr
et

t
s
k
.

Is
su

er
’s

ou
tp

u
ts

:
th

e
p
u
b
li
c

p
ar

t
of

th
e

T
P

M
’s

en
d
or

se
m

en
t

ke
y.

S
ig

n
T

h
e

sy
st

em
p
ar

am
et

er
s,

a
ve

ri
fi
er

’s
b
as

en
am

e
b
s
n
,

a
m

es
sa

ge
m

,
an

at
te

st
at

io
n

id
en

ti
ty

cr
e-

d
en

ti
al

c
r
e
,

an
d

a
se

cr
et

t
s
k
.

A
si

gn
at

u
re
σ

.

V
er

if
y

T
h
e

sy
st

em
p
ar

am
et

er
s,

a
ve

ri
fi
er

’s
b
as

en
am

e
b
s
n
,

a
m

es
sa

ge
m

,
a

ca
n
d
id

at
e

si
gn

at
u
re
σ

fo
r

m
,

an
d

a
se

t
of

se
cr

et
ke

y
s
R
O
G
U
E
t
s
k
.

1
(a

cc
ep

t)
or

0
(r

ej
ec

t)
.

L
in

k
T

h
e

sy
st

em
p
ar

am
et

er
s,

an
d

tw
o

ca
n
d
id

at
e

si
g-

n
at

u
re

s
σ

an
d
σ
′

fo
r

m
es

sa
ge

s
m

an
d
m
′ .

⊥
(i

n
va

li
d

si
gn

at
u
re

)
if

th
e

ve
ri

fy
al

go
ri

th
m

ou
tp

u
ts

0
fo

r
si

gn
at

u
re
σ

(r
es

p
ec

ti
ve

ly
σ
′)

u
s-

in
g

th
e

sy
st

em
p
ar

am
et

er
s,

b
as

en
am

e
⊥

,
th

e
m

es
sa

ge
m

(r
es

p
ec

ti
ve

ly
m
′)

,
an

d
th

e
em

p
ty

se
t

of
se

cr
et

ke
y
s.

O
th

er
w

is
e,

th
e

al
go

ri
th

m
re

tu
rn

s
1

if
th

e
si

gn
at

u
re

s
ca

n
b

e
li
n
ke

d
an

d
0

if
th

e
si

gn
at

u
re

s
ca

n
n
ot

b
e

li
n
ke

d
.

T
ab

le
4.

1:
S
u
m

m
ar

y
of

in
p
u
ts

an
d

ou
tp

u
ts

fo
r

D
ir

ec
t

A
n
on

y
m

ou
s

A
tt

es
ta

ti
on

al
go

ri
th

m
s

76 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

The classifications of linkability all assume the existence of a single issuer. Cross issuer

linkability, that is, linkability between signatures produced in different groups (under

different issuers), is not expressly forbidden by Direct Anonymous Attestation; however,

the schemes considered in this thesis do not provide this property because the secret

tsk is partly derived from the issuer’s public key. Moreover, the game-based security

definition [BCL08b, BCL09] does not consider this case.

4.2.1 DAA process specification

This chapter considers user-controlled anonymity, which is dependent on a trusted plat-

form’s behaviour, that is, the join and sign algorithms. Formally, these algorithms are

captured by a Direct Anonymous Attestation process specification (Definition 4.5). Since

our focus is on automated reasoning, we will adopt the calculus of ProVerif (Section 4.1).

Definition 4.5 (Direct Anonymous Attestation process specification). A Direct Anony-

mous Attestation process specification is a tuple of processes 〈Join, Sign〉.

The signer (or trusted platform) is able to execute arbitrarily many instances of the

join, and sign, algorithms, to become a member of a group and subsequently produce

signatures as a group member. This behaviour is captured by the Signer process modelled

below. The join and sign algorithms are modelled by the processes Join and Sign, which are

expected to behave like services; that is, they can be called by, and return results to, the

Signer process. The communication between the Signer and Join/Sign processes is achieved

using private communication over channels aj, a
′
j, as, a

′
s. In essence, the private channel

communication models the internal bus used by computer systems for communication

between the host and TPM.

This chapter focuses on user-controlled anonymity and hence it is sufficient to assume

the processes Join and Sign are initiated by input on channels aj and as; and similarly,

output results on channels a′j and a′s. Intuitively, it follows that some processes not sat-

isfying these conditions will satisfy our definition of user-controlled anonymity. In fact,

4.2. FORMALISING DAA PROTOCOLS 77

the Direct Anonymous Attestation process specification 〈0, 0〉 will satisfy our definition.

We tolerate this limitations here, and in future work we will consider a complete defini-

tion of the DAA properties, including correctness and user-controlled traceability. The

correctness property will exclude degenerate process specifications such as 〈0, 0〉. Simi-

lar considerations are made in the literature, for example, in definitions of vote privacy

for electronic voting [KR05, DKR06, DKR09, DKR10b] and privacy for vehicular ad-hoc

networks [DDS10].

Signer = ν aj.ν a
′
j.ν as.ν a

′
s . ((!Join) | (!Sign) | (ν cnt.ν DAASeed.ν skM .c〈pk(skM)〉.

!c(wparams).aj〈(wparams, DAASeed, cnt, skM)〉.a′j(x).

let xcre = π1(x) in let xtsk = π2(x) in (

!c(y).let ybsn = π1(y) in let ymsg = π2(y) in

as〈(wparams, ybsn, ymsg, xcre, xtsk)〉.a′s(z).c〈z〉

)

))

The process Signer instantiates arbitrarily many instances of the Join and Sign processes.

The restricted channel names aj, a
′
j are introduced to ensure communication between the

Signer and Join processes is private; similarly, names as, a
′
s ensure private communication

between the Signer and Sign processes. The bound name cnt is a counter value selected by

the host. The bound name DAASeed represents the TPM’s internal secret and skM repre-

sents the TPM’s endorsement key (these values are defined during manufacture [TCG07]).

The public part of the endorsement key is published by the Signer process. The remainder

of the Signer process models a signer’s ability to execute arbitrarily many instances of the

join and sign algorithms. The Signer process must first input system parameters wparams,

provided by the issuer. The Join process is assumed to act like a service and listens for

input on channel aj. It follows, that the Signer process can invoke the service by message

output aj〈(wparams, DAASeed, cnt, wek)〉, where (wparams, DAASeed, cnt, wek) models the join

78 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

algorithm’s parameters. The Join process is assumed to output results on channel a′j, and

this response can be received by the Signer process using message input a′j(x); the result

is bound to the variable x, and is expected to consist of a pair (xcre, xtsk) represent-

ing the attestation identity credential and TPM’s secret. The interaction between the

Sign and Signer processes is similar. The Signer process first inputs a variable y which

is expected to be a pair representing the verifier’s basename ybsn and a message ymsg.

The invocation of the sign algorithm by the signer is modelled by the message output

as〈(wparams, ybsn, ymsg, xcre, xtsk)〉, where (wparams, ybsn, ymsg, xcre, xtsk) represents the algo-

rithm’s parameters. The sign algorithm is expected to output a signature which can be

sent to a verifier, in the Signer process this signature is received from the Sign process by

message input a′s(z) and the variable z representing the signature is immediately output.

4.3 Security definition: User-controlled anonymity

Informally, the notion of user-controlled anonymity asserts that given two honest signers

A and B, an adversary cannot distinguish between a situation in which A signs a message,

from another one in which B signs a message. Based upon Brickell, Chen & Li [BCL08b,

BCL09] we present the following security definition.

Initial: The adversary constructs the public key pair skI , pk(skI) and publishes the pub-

lic part pk(skI) for the signers. The adversary also publishes any additional parameters.

Phase 1: The adversary makes the following requests to signers A and B:

• Join. The signer executes the join algorithm to create cre and tsk. The adversary,

as the issuer, learns cre but typically not tsk.

• Sign. The adversary submits a basename bsn and a message m. The signer runs

the sign algorithm and returns the signature to the adversary.

4.3. SECURITY DEFINITION: USER-CONTROLLED ANONYMITY 79

At the end of phase 1, both signers are required to have run the join algorithm at least

once.

Phase 2 (Challenge): The adversary submits a message m and a basename bsn to the

signers, with the restriction that the basename has not been previously used if bsn 6= ⊥.

Each signer produces a signature on the message and returns it to the adversary.

Phase 3: The adversary continues to probe the signers with join and sign requests, but

is explicitly forbidden to use the basename used in phase 2 if bsn 6= ⊥.

Result: The protocol satisfies user-controlled anonymity if the adversary cannot distin-

guish between the two signatures output during the challenge.

Formally, this definition can be modelled as an observational equivalence (Definition 4.6),

which is suitable for automated reasoning, based upon the augmented Direct Anonymous

Attestation biprocess DAA expressed in Figure 4.4. As observed by Rudolph [Rud07],

and as specified by Brickell, Chen & Li [BCL08b, BCL09], user-controlled anonymity can

only be expected if both signers use pk(skI) for the issuer (that is, the signers do not

accept two distinct keys from the issuer). This is captured by the biprocess DAA by

providing the same parameters wparams to both signers. The Challenge process is designed

to capture the behaviour of the signers in phase 2. This is achieved by outputting an

attestation identity credential xcre and a secret xtsk, produced by the signers in phase

1, on the private channels bA, bB in Signer+, and inputting these values in the Challenge

process. The Challenge process then continues by producing a signature in the standard

manner, but uses diff[xcre, ycre] and diff[xtsk, ytsk] to ensure that the signature is produced

by A on the left hand side and B on the right hand side. Finally, the necessity for a

distinct basename in phase 2 (when bsn 6= ⊥) is enforced by prefixing the basename used

by Challenge with chl− and, similarly, prefixing the basenames used by Signer+ with chl+.

The definition of user-controlled anonymity follows naturally.

80 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

Figure 4.4 Biprocess modelling user-controlled anonymity in DAA

Given a Direct Anonymous Attestation process specification 〈Join, Sign〉, the augmented

Direct Anonymous Attestation biprocess DAA is defined as

ν bA.ν bB.c(wparams) . (Challenge | Signer+{bA/wb} | Signer+{bB/wb})

such that bA, bB 6∈ (fn(Sign) ∪ fv(Sign) ∪ fn(Join) ∪ fv(Join)) and where

Signer+ = ν aj.ν a
′
j.ν as.ν a

′
s.((!Join) | (!Sign) | (ν cnt.ν DAASeed.ν skM .c〈pk(skM)〉

!aj〈(wparams, DAASeed, cnt, skM)〉.a′j(x).

let xcre = π1(x) in let xtsk = π2(x) in (

!c(y).let ybsn = π1(y) in let ymsg = π2(y) in

if ybsn =⊥ then

as〈(wparams, ybsn, ymsg, xcre, xtsk)〉.a′s(z).c〈z〉

else

as〈(wparams, (chl
+, ybsn), ymsg, xcre, xtsk)〉.a′s(z).c〈z〉

) | (

wb〈(xcre, xtsk)〉

)

))

Challenge = ν as.ν a
′
s . ((Sign) | (

bA(x).let xcre = π1(x) in let xtsk = π2(x) in

bB(y).let ycre = π1(y) in let ytsk = π2(y) in

c(z).let zbsn = π1(z) in let zmsg = π2(z) in

if zbsn =⊥ then

as〈(wparams, zbsn, zmsg, diff[xcre, ycre], diff[xtsk, ytsk])〉.a′s(z).c〈z〉

else

as〈(wparams, (chl
−, zbsn), zmsg, diff[xcre, ycre], diff[xtsk, ytsk])〉.a′s(z).c〈z〉

))

for some constants chl+, chl−.

4.4. CASE STUDY: RSA-BASED DAA 81

Definition 4.6 (User-controlled anonymity). Given a Direct Anonymous Attestation pro-

cess specification 〈Join, Sign〉, user-controlled anonymity is satisfied if the augmented Di-

rect Anonymous Attestation biprocess DAA satisfies observational equivalence.

The definition has been used to analyse user-controlled anonymity in RSA-based DAA.

4.4 Case study: RSA-based DAA

The first concrete Direct Anonymous Attestation scheme was introduced by Brickell,

Camenisch & Chen [BCC04] and is based on RSA.

4.4.1 Primitives and building blocks

We first recall the details of Camenisch-Lysyanskaya (CL) signatures [CL03, Lys02], which

form the foundations of RSA-based DAA, and introduce some notational conventions.

Signature scheme. A CL signature is denoted clsign(xsk, xprime, xrand, xmsg), where xsk is

the secret key, xprime is a random prime, xrand is a nonce, and xmsg is a message. The prime

and nonce components can be derived from a signature. Verification is standard given a

signature, message, and public key, that is, checkclsign(pk(xsk), xmsg, clsign(xsk, xprime, xrand,

xmsg)) = accept.

Signature scheme for committed values. The scheme supports signatures on com-

mitted values. Given the public part of a signing key pk(xsk), a message xcsk, and com-

mitment factor xcf , the committed value is U = clcommit(pk(xsk), xcf , xcsk) and the asso-

ciated signature is clsign(xsk, yprime, yrand, U) for some prime yprime and random yrand. This

signature can be opened to recover σ = clopen(pk(xsk), xcf , clsign(xsk, yprime, yrand, U)) =

clsign(xsk, yprime, yrand ◦ xcf , xcsk), that is, the signature on xcsk. (A proof should also be

provided to demonstrate that σ does not contain a covert channel – such details will be

omitted from the model presented here – see Appendix B for further details.)

82 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

Notation for primitives that prove knowledge. Various primitives which prove

knowledge of, and relations among, discrete logarithms are used by CL signatures and

RSA-based DAA. These primitives will be described using the notation introduced by

Camenisch & Stadler [CS97a]. For instance,

PK{(α, β) : N = commit(α,Z) ∧ U = clcommit(pk(skI), α, β)}

denotes a “zero-knowledge Proof of Knowledge of α, β such that N = commit(α,Z) and

U = clcommit(pk(skI), α, β) holds.” In the example, the Greek letters in parentheses are

used for values about which knowledge is being proved and these values are kept secret

by the prover. All other values, that is, those from the Latin alphabet, are known to

the verifier. The Fiat-Shamir heuristic [FS87, PS96] allows an interactive zero-knowledge

scheme to be converted into a signature scheme. A signature acquired in this way is

termed a Signature Proof of Knowledge and is denoted, for example, as SPK{(α) : N =

commit(α,Z)}(m), where m is a message.

Proving knowledge of a signature. The signature scheme for committed values can

be used to build an anonymous credential system. Given a signature σ = clsign(xsk, xprime,

xrand, xcsk) and commitment factor xcf , an anonymous credential σ̂ = clcommit(pk(xsk), xcf ,

σ). The zero-knowledge proof of knowledge

PK{(xcsk, xcf) : checkclsign(pk(xsk), xcsk, clopen(pk(xsk), xcf , σ̂)) = accept}

can then be used to demonstrate that the anonymous credential σ̂ is indeed a commitment

to a signature on the message xcsk using commitment factor xcf .

The application of these primitives to construct the RSA-based DAA protocol will be

considered in the next section.

4.4. CASE STUDY: RSA-BASED DAA 83

4.4.2 Protocol description

For the purpose of studying user-controlled anonymity, it is sufficient to consider the join

and sign algorithms. Given system parameters pk(skI), bsnI (that is, the issuer’s public

key and basename), the TPM’s secret DAASeed, a counter value cnt, and the TPM’s

endorsement key; the join algorithm (Figure 4.5) proceeds as follows:

Figure 4.5 RSA-based DAA join algorithm

Trusted platform Issuer

Trusted platform publishes pk(skM)
Issuer publishes pk(skI) and bsnI

tsk = hash(hash(DAASeed, hash(pk(skI))), cnt, 0)

Generate v′

ζI = hash(0, bsnI)

NI = commit(tsk, ζI)

U = clcommit(pk(skI), v
′, tsk)

NI , U .

Generate n, ne

E = penc(pk(skM), n, ne)

/ E

aU = hash(U, dec(skM, E))

aU .

Generate ni

/ ni

Generate nt
nt, SPK{(tsk, v′) : NI = commit(tsk, ζI) ∧
U = clcommit(pk(skI), v

′, tsk)}(ni, nt)
.

Generate e, v′′

/ clsign(skI , e, v
′′, U)

1. The host computes ζI = hash(0, bsnI) and inputs the value to the TPM. The TPM

computes secret tsk = hash(hash(DAASeed, hash(pk(skI))), cnt, 0) and derives the

commitment NI = commit(tsk, ζI). The TPM also generates a blinding factor v′,

84 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

which is used to compute the commitment U = clcommit(pk(skI), v
′, tsk). The

trusted platform sends U,NI to the issuer.

2. The issuer generates a nonce ne and sends the encrypted nonce to the TPM. The

TPM decrypts the ciphertext to recover ne, computes aU = hash(U, ne) and sends

aU to the issuer, therefore authenticating as a trusted platform. (Note that the

protocol does not rely on the authentication technique recommended by the Trusted

Computing Group.)

3. The trusted platform generates a signature proof of knowledge that the messages

U,NI are correctly formed and sends it to the issuer.

4. The issuer verifies the proof and generates a signature clsign(skI , e, v
′′, U). The

signature is sent to the trusted platform.

5. The trusted platform verifies the signature and opens it to reveal the credential

cre = clsign(skI , e, v
′ ◦ v′′, tsk), that is, the TPM’s secret tsk signed by the issuer.

The join algorithm outputs cre, tsk; which can be provided as input, along with the

system parameters, a basename bsn, and message m, to the sign algorithm. The sign

algorithm proceeds as follows.

5. If bsn = ⊥, the host generates a nonce ζ; otherwise, the host computes ζ =

hash(0, bsn). The host provides the TPM with ζ. The TPM computes the com-

mitment NV = commit(tsk, ζ) and generates the anonymous credential ĉre =

clcommit(pk(skI), w, cre) using a nonce w. The trusted platform then produces

a signature proof of knowledge that ĉre is a commitment to a valid credential, and

that NV is correctly formed.

The sign algorithm outputs the signature proof of knowledge which is sent to the verifier.

Intuitively, if a verifier is presented with such a proof, then the verifier is convinced that

it is communicating with a trusted platform.

4.4. CASE STUDY: RSA-BASED DAA 85

4.4.3 Equational theory

The signature is defined below

Σ = {accept,⊥, 0, 1,Fjoin,Fsign, clgetnonce, clgetprime, hash, pk, commit, ◦,

dec, open, checkclsign, checkspk, clcommit, clopen, penc, spk, clsign}

Functions accept, ⊥, 0, 1, Fjoin, Fsign are constant symbols; clgetnonce, clgetprime, hash,

pk are unary functions; commit, ◦, dec, open are binary functions; checkclsign, checkspk,

clcommit, clopen, penc, spk are ternary functions; and clsign is a function of arity four.

Since hash is defined as a unary function, we occasionally write hash(xplain,1, . . . , xplain,n)

to denote hash((xplain,1, . . . , xplain,n)). The equations associated with these functions are

defined below.

dec(xsk, penc(pk(xsk), xrand, xplain)) = xplain

clgetprime(clsign(xsk, xprime, xrand, xmsg)) = xprime

clgetnonce(clsign(xsk, xprime, xrand, xmsg)) = xrand

checkclsign(pk(xsk), xmsg, clsign(xsk, xprime, xrand, xmsg)) = accept

open(xrand, commit(xrand, xplain)) = xplain

clopen(x, xrand, clcommit(x, xrand, xplain)) = xplain

clopen(pk(xsk), xrand, clsign(xsk, yprime, yrand, clcommit(pk(xsk), xrand, xmsg)))

= clsign(xsk, yprime, yrand ◦ xrand, xmsg)

A signature proof of knowledge is encoded in the form spk(F,U, V), where F is a constant

declaring the particular proof in use, U denotes the witness (or private component) of a

signature of knowledge, and V defines the public parameters and message being signed.

The function checkspk is used to verify a signature and we define the following equations.

86 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

checkspk(Fjoin, V, spk(Fjoin, (xtsk, xcf), V)) = accept

where V = (xζI , xpk, commit(xtsk, xζI), clcommit(xpk, xcf , xtsk), xmsg)

checkspk(Fsign, V, spk(Fsign, (xtsk, xcf), V)) = accept

where V = (xζ , pk(xsk), commit(xtsk, xζ),

clcommit(pk(xsk), xcf , clsign(xsk, xprime, xrand, xtsk)), xmsg)

The first equation is used to verify the signature proof of knowledge produced by the

trusted platform during the join algorithm and the second is used by a trusted platform

during the sign algorithm to assert group membership.

4.4.4 Model in applied pi

The RSA-based DAA process specification is presented in Definition 4.7. For convenience

we abbreviate c(x).let x1 = π1(x) in . . . let xn = πn(x) in P as c(x1, . . . , xn).P . The

join process JoinRSA is instantiated by inputting the join algorithm’s parameters: the

RSA-based DAA system parameters wparams; the TPM’s internal secret wDAASeed; the

counter value wcnt chosen by the host; and the TPM’s endorsement key wek. The system

parameters wparams are expected to be a pair containing the issuer’s public key wpk and

basename wbsnI . The process constructs the terms NI , U in accordance with the protocol’s

description (Section 4.4.2) and outputs the values to the issuer. The process then receives

a ciphertext x, which it decrypts, and outputs the hash of the plaintext paired with

U . A nonce y is then input and a signature proof of knowledge is produced. Finally,

the process inputs a signature z on the commitment U and concludes by outputting the

attestation identity credential cre and TPM’s secret tsk on the private channel a′j; that

is, the JoinRSA process returns the values cre, tsk to the Signer+ process. The sign

process SignRSA is instantiated by inputting the sign algorithm’s parameters: the RSA-

based DAA system parameters wparams; the verifier’s basename wbsn; the message wmsg

to be signed; the attestation identity credential wcre; and the TPM’s secret wtsk. The

process recovers the issuer’s public key wpk from the system parameters, and inputs a

4.4. CASE STUDY: RSA-BASED DAA 87

Definition 4.7. The DAA process specification 〈JoinRSA, SignRSA〉 is defined where

JoinRSA =̂ aj(wparams, wDAASeed, wcnt, wek) . ν v
′ .

let wpk = π1(wparams) in let wbsnI = π2(wparams) in

let ζI = hash(0, wbsnI) in

let tsk = hash(hash(wDAASeed, hash(wpk)), wcnt, 0) in

let NI = commit(tsk, ζI) in

let U = clcommit(wpk, v
′, tsk) in

c〈(NI , U)〉 . c(x) . c〈hash(U, dec(wek, x))〉 . c(y) . ν nt .

c〈(nt, spk(Fjoin, (tsk, v
′), (ζI , wpk, NI , U, (nt, y))))〉 . c(z)

let cre = clopen(wpk, v
′, z) in

if checkclsign(wpk, tsk, cre) = accept then

a′j〈(cre, tsk)〉

SignRSA =̂ as(wparams, wbsn, wmsg, wcre, wtsk) . let wpk = π1(wparams) in

c(x) . ν nt . ν w .

if wbsn =⊥ then

ν ζ .

let ĉre = clcommit(wpk, w, wcre) in

let NV = commit(wtsk, ζ) in

let spk = spk(Fsign, (wtsk, w), (ζ, wpk, NV , ĉre, (nt, x, wmsg))) in

a′s〈(ζ, wpk, NV , ĉre, nt, spk)〉

else

let ζ = hash(0, wbsn) in

let ĉre = clcommit(wpk, w, wcre) in

let NV = commit(wtsk, ζ) in

let spk = spk(Fsign, (wtsk, w), (ζ, wpk, NV , ĉre, (nt, x, wmsg))) in

a′s〈(ζ, wpk, NV , ĉre, nt, spk)〉

88 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

nonce x from the verifier. The if-then-else branch models the signer’s ability to produce

either linkable or unlinkable signatures, based upon the parameter wbsn; in particular, the

if-branch produces an unlinkable signature, whereas the else-branch produces a linkable

signature. The process concludes by outputting a signature on the private channel a′s;

that is, the SignRSA process returns the signature to the Signer+ process.

4.4.5 Analysis: Violating user-controlled anonymity

The Direct Anonymous Attestation process specification 〈JoinRSA, SignRSA〉 does not sat-

isfy user-controlled anonymity (Theorem 4.2). This is due to a vulnerability which can

be exploited by the following adversaries to violate privacy.

1. Passive adversary. A passive adversary can violate privacy under the assumptions:

a) the identity of a trusted platform can be observed during the join algorithm1; b)

there exists a basename which is shared between an issuer and a verifier; and c) a

signer is willing to accept the same basename from an issuer and verifier. The attack

proceeds as follows. We have bsnI = bsn, and since the signer is willing to accept

the same basename as input to both the sign and join algorithms we have ζI = ζ,

hence NI = NV . Since the NI , NV values are unique for a particular signer and the

adversary knows the identity of the trusted platform that produced NI during the

join algorithm; it follows that the signer’s identity can be revealed.

2. Corrupt administrators. Corrupt administrators can violate privacy under the as-

sumption that a signer is willing to accept the same basename from an issuer and

verifier. An issuer and verifier can conspire to use the same basename (that is,

bsnI = bsn) and since the issuer knows the identity of the trusted platform that

produced NI , the identity of the signer can be revealed.

1The RSA-based DAA protocol [BCC04] does not explicitly specify how the issuer learns a trusted
platform’s public endorsement key during an execution of the join algorithm. However, it seems reasonable
to assume that the public key would be sent as plaintext. By contrast, Cesena et al. [CLR+10, Ces10]
define an extension of RSA-based DAA which uses TLS to hide the affiliation between groups and trusted
platforms; this variant would thwart a passive adversary, but not corrupt administrators.

4.4. CASE STUDY: RSA-BASED DAA 89

The linchpin of these attacks is the willingness of a signer to accept the same basename

from an issuer and verifier. This can be justified as follows. Firstly, this mode of operation

is not explicitly forbidden by the protocol definition [BCC04]. Secondly, this behaviour is

expected when the issuer and verifier are the same entity, as demonstrated, for example,

by Camenisch et al. [CL01, CH02] in the idemix system. Finally, the signer has insufficient

resources to handle such a duty.

Theorem 4.2. The RSA-based Direct Anonymous Attestation process specification

〈JoinRSA, SignRSA〉 does not satisfy user-controlled anonymity.

Formally, Theorem 4.2 can be proved by presenting a context C[] such that

fst(C[DAARSA]) −→∗ Q and Q can output on some channel M , but there is no reduc-

tion snd(C[DAARSA]) −→∗ Q′ such that Q′ can output on M , where both reductions are of

the same length and DAARSA is the augmented Direct Anonymous Attestation biprocess

derived from 〈JoinRSA, SignRSA〉. Such a context is presented in Appendix C.1. In addi-

tion to the formal result (Theorem 4.2), a real-world attack is demonstrated against the

RSA-based Direct Anonymous Attestation protocol [BCC04] in Appendix B.3.

4.4.6 Solution: Restoring user-controlled anonymity

The protocol can be fixed by refining the definition of ζ; the revised RSA-based Di-

rect Anonymous Attestation process specification 〈JoinRSA′ , SignRSA′〉 is the same as the

original, with ζ redefined as ζ = hash(1, bsn). The attacks presented are no longer pos-

sible, regardless of whether bsnI = bsn. Furthermore, the revised RSA-based Direct

Anonymous Attestation process specification 〈JoinRSA′ , SignRSA′〉 satisfies user-controlled

anonymity; this can be automatically verified using ProVerif (see Appendix C.2). A fix

for the concrete scheme [BCC04] is presented in Appendix B.4.

90 CHAPTER 4. ANONYMITY IN DIRECT ANONYMOUS ATTESTATION

4.5 Summary

This chapter presents a definition of user-controlled anonymity for Direct Anonymous

Attestation protocols. The definition is expressed as an equivalence property suitable for

automated reasoning. The practicality of the approach is demonstrated by evaluating

the RSA-based Direct Anonymous Attestation protocol. This scheme is particularly sig-

nificant because support is mandated by the TPM specification version 1.2, which has

been implemented and deployed in over 300 million computers. The analysis discovers a

vulnerability which can be exploited by a passive adversary and, under weaker assump-

tions, by corrupt administrators. A security fix is identified and the revised protocol is

shown to satisfy user-controlled anonymity. The fix only affects the host’s part of the

protocol and therefore no hardware changes to the TPM are required. Furthermore, this

research appears to have influenced the design of subsequent Direct Anonymous Attesta-

tion schemes, for example, the conceptual design of the join algorithm has been revised

in [BCL08a, BCL09].

Part III
Automated reasoning

The lack of formal security analysis prior to system deployment

can be partially attributed to the absence of suitable tools.

This part develops new procedures for the automated analysis

of observational equivalence.

5
Observational equivalence and barriers†

Overview. A procedure for the automated analysis of observational equiv-

alence is delivered. In addition, the notion of barrier synchronisation is

characterised for processes. The study of barrier synchronisation in relation

to equivalence is particularly interesting because certain equivalence proper-

ties can only be realised under specific synchronisation assumptions. In par-

ticular, privacy preserving protocols – including electronic voting schemes,

vehicular ad-hoc networking protocols, and anonymity networks – make such

assumptions. The results have been implemented in the tool ProSwapper, an

extension to ProVerif, and the applicability of this research is demonstrated

by analysing vote privacy in electronic voting protocols and privacy in vehic-

ular ad-hoc networks.

Blanchet, Abadi & Fournet [Bla04, BAF08] focus on equivalences P ∼ Q in which pro-

cesses P and Q share the same structure and differ only in the choice of terms. Their

work introduces the notion of strong uniformity (see Section 4.1), a sufficient condition for

observational equivalence, that has been implemented in ProVerif, an automatic analysis

tool for protocols written in the applied pi calculus. Strong uniformity is a sufficient con-

dition for observational equivalence, but it is not necessary. This precludes the automated

analysis of certain equivalence properties, as a simple example will demonstrate.

†This chapter is partly based upon [DRS08] which introduces the fundamental notion of swapping at
synchronisation points and considered a preliminary analysis of privacy in FOO. The software associated
with this chapter is available online: http://www.bensmyth.com/proswapper.php.

94 CHAPTER 5. OBSERVATIONAL EQUIVALENCE AND BARRIERS

Example 5.1. The biprocess P = c〈diff[m,n]〉 | c〈diff[n,m]〉 is observationally equivalent

because fst(P) ≡ snd(P). However, the plain evaluation context

C[] = | c(x).let y = eq(x,m) in 0 else 0

is such that C[P] −→ Q, where Q = c〈diff[n,m]〉 | let y = eq(diff[m,n],m) in 0 else 0 and

fst(Q) −→ c〈n〉; but, there is no biprocess R such that Q −→ R and fst(R) ≡ c〈n〉, because

fst(eq(diff[m,n],m)) ⇓ m, but there is no term M2 such that snd(eq(diff[m,n],m)) ⇓

M2. It follows immediately that P does not satisfy Definition 4.4, that is, it cannot be

shown to satisfy observational equivalence using Theorem 4.1. Similarly, the biprocess

(if a = diff[a, c] then c〈c〉 else 0) | (if b = diff[c, b] then c〈c〉 else 0) satisfies observational

equivalence but does not satisfy strong uniformity.

Barrier synchronisation [Bro86, HFM88, AJ89, Lub90] is a concept to coordinate the

actions performed by concurrently executing processes. More precisely, the mechanism

ensures that a process will block, when a barrier is encountered, until all other processes

executing in parallel reach this barrier. Capturing such synchronisation is an important

building block for protocol analysis because certain security properties can only be re-

alised if processes synchronise their actions in a specific manner. For example, privacy

preserving protocols typically require the existence of at least two honest participants

that synchronise prior to performing critical actions. This particular prerequisite can

be observed in domains including: electronic voting [DKR09, BHM08], vehicular ad-hoc

networks [DDS10], and anonymity networks [RR98, PK01, Cho06].

Resolving the difficulties apparent in Example 5.1 is relatively straightforward: the

biprocess P ′ = c〈diff[m,m]〉 | c〈diff[n, n]〉 can trivially be shown to satisfy observational

equivalence using strong uniformity as a proof technique, and since fst(P) ≡ fst(P ′) and

snd(P) ≡ snd(P ′), it follows that P satisfies observational equivalence because observa-

tional equivalence is closed under structural equivalence. However, this technique cannot

be applied to more complicated examples in which barriers occur.

95

Example 5.2. Consider the biprocess

P = c〈m〉.1:: c〈diff[m,n]〉 | 1:: c〈diff[n,m]〉

in which 1:: represents a barrier synchronisation. Intuitively, there is no structurally

equivalent biprocess P ′ satisfying strong uniformity, but nevertheless, barrier synchro-

nisation ensures indistinguishability between fst(P) and snd(P). (This example will be

elaborated upon once we formalise barrier synchronisation.)

This chapter introduces a strictly weaker notion of uniformity which can be used to

automatically reason with observational equivalence between processes containing barri-

ers.

Chapter contribution

The contribution of this chapter is threefold. Firstly, the process syntax (Section 4.1)

is extended to capture barriers and it is shown how the semantic behaviour of barriers

can be encoded in the standard ProVerif model. Although the formalisation of barriers is

only an encoding, it considerably simplifies the modelling process and, moreover, forms

the foundation for our automated analysis technique.

Secondly, a methodology for automatic analysis of equivalence properties is developed,

based upon [Bla04, BAF08]. This approach avoids the limitations of [Bla04, BAF08]

by swapping data at synchronisation points. For example, in Example 5.2 swapping

data between the two sides of the parallel composition is permitted at synchronisa-

tion; in essence, it is therefore sufficient to prove the equivalence of the biprocess P ′ =

c〈m〉.1:: .c〈diff[m,m]〉 | 1:: c〈diff[n, n]〉, which is trivially true because fst(P ′) = snd(P ′).

Finally, automated support is provided by defining a static compiler which encodes

barrier synchronisation and swapping using private channel communication. The compiler

is designed to compute an approximation of a process’s observable behaviour, and hence,

if ProVerif can show observational equivalence between a pair of compiled processes, then

96 CHAPTER 5. OBSERVATIONAL EQUIVALENCE AND BARRIERS

the original pair of processes satisfies observational equivalence. The compiler has been

implemented as a tool called ProSwapper. Furthermore, the analysis of vote privacy in

electronic voting protocols and privacy in vehicular ad-hoc networks demonstrate the

applicability of this work.

Chapter limitations. Proving soundness of the proof technique is ongoing work. Al-

though some confidence may be provided by the tool’s adoption within the research com-

munity (for example, [BHM08, DDS10]), this is no substitute for a thorough proof.

Structure of this chapter. Section 5.1 extends the process syntax of Section 4.1 to

capture barrier synchronisation and provides mechanical reasoning techniques for such

processes. Section 5.2 defines a methodology for automatic analysis of equivalence prop-

erties. In Section 5.3 the applicability of this work is demonstrated by presenting an

automated analysis of privacy in the electronic voting protocol FOO and in Appendix E

privacy in vehicular ad-hoc networks is considered; the technique’s adoption by the re-

search community will also be discussed. Finally, a summary is presented in Section 5.4.

5.1 Processes with barriers

A notion of synchronisation, called stages, has previously been studied in the applied

pi calculus by Blanchet, Abadi & Fournet [BAF08, §8]; however, stages are insufficient

for our purposes. In the spirit of [BAF08, §8], we proceed by allowing processes to

be annotated with barriers. Barriers are written t:: and may appear before a process

P , where t ∈ N. Intuitively, t::P blocks P until all processes running in parallel are

ready to synchronise at barrier t. For example, the process 1:: c〈k〉.2:: c〈m〉 | 2:: c〈n〉 can

only output n after synchronisation at barrier t = 2. It follows that the process cannot

output n without having previously output k; this is in direct contrast with [BAF08,

§8], which permits the output of n without having previously observed an output of k.

Formally, the number of barriers which must be reached is computed statically, in advance

5.1. PROCESSES WITH BARRIERS 97

of execution, and thus branching behaviour may cause blocking. For example, the process

c(x).if x = k then 1:: c〈m〉 else c〈n〉 | 1:: c〈s〉 may evolve to c〈n〉 | 1:: c〈s〉 which can never

output s because synchronisation at barrier t = 1 requires two processes to synchronise.

Barriers are assumed to be ordered; that is, given t::P the process P also blocks if there

are any barriers t′ such that t′ < t. In addition, the occurrence of barriers under replication

is explicitly forbidden; this restriction is made for technical convenience, although the loss

of generality is minimal, since such a process would deadlock.

5.1.1 Mechanical analysis

Processes containing barriers are not supported by ProVerif. Accordingly, we define a

compiler which takes processes with barriers as input and returns processes defined over

the standard ProVerif syntax. Although our characterisation of barriers is just an en-

coding, we find it useful in practice and, moreover, the compiler forms the basis of the

methodology for automatic analysis which will be introduced in Section 5.2.

The barrier elimination function (Definition 5.1) takes processes containing barriers

and replaces each barrier with a message output followed by a message input1. By ensuring

that the communication channels are fresh private names and through the introduction

of a synchronisation process, the semantics of barriers can be captured in the standard

ProVerif model.

1The use of two distinct channel names for the input and output channels is not strictly necessary;
however, it aids automation. In particular, it helps avoid a ProVerif incompleteness issue that arises
because there is no distinction between messages input and messages output on a particular channel.

98 CHAPTER 5. OBSERVATIONAL EQUIVALENCE AND BARRIERS

Definition 5.1 (Barrier elimination function). The barrier elimination function δ maps

an infinite sequence of channel names a and a process P to another process, the function

is recursively defined as follows:

δ(c, 0) = 0

δ(c, !Q) = !Q

δ(c, ν n.Q) = ν n.δ(c, Q)

δ(c, M(x).Q) = M(x).δ(c, Q)

δ(c, M〈N〉.Q) = M〈N〉.δ(c, Q)

δ(c, t::Q) = a′〈a′〉.a′′(y).δ(tail(tail(c)), Q)

where a′ = head(c), a′′ = head(tail(c)) and y 6∈ fv(Q)

δ(c, let x = D in Q else R) = let x = D in δ(odd(c), Q) else δ(even(c), R)

δ(c, Q | R) = δ(odd(c), Q) | δ(even(c), R)

Intuitively, processes which synchronise at a particular barrier all output a message

on a private channel and these messages are received by the synchronisation process; once

all messages have been sent/received, the synchronisation process sends replies to each

of the processes and hence processes may proceed. For example, in the case where there

are n processes containing a barrier t, the synchronisation process will receive precisely

n inputs and will then send exactly n responses; prior to the responses being sent, the

processes are awaiting input on a private channel and hence block. The application of the

barrier elimination function will be demonstrated in Example 5.3; first, we study how to

control the synchronisation. To ensure that the correct pair of channel names are used

for synchronisation we first define the function ω which captures the set of channel names

introduced for synchronisation (Definition 5.2).

The functions ω, δ are logically similar and separation has only been introduced for

readability. The function ω builds a set of triples (t, a′, a′′), where t ∈ N represents

a barrier synchronisation and a′ (respectively a′′) are the output (respectively input)

channels used by δ for synchronisation at barrier t.

5.1. PROCESSES WITH BARRIERS 99

Definition 5.2 (Synchronisation channels). Given a process P and an infinite sequence

of channel names a, the set of synchronisation channels is ω(a, P), where:

ω(c, 0) = ∅

ω(c, !Q) = ∅

ω(c, ν n.Q) = ω(c, Q)

ω(c, M(x).Q) = ω(c, Q)

ω(c, M〈N〉.Q) = ω(c, Q)

ω(c, t::Q) = {(t, a′, a′′)} ∪ ω(tail(tail(c)), Q)

where a′ = head(c) and a′′ = head(tail(c))

ω(c, let x = D in Q else R) = ω(odd(c), Q) ∪ ω(even(c), R)

ω(c, Q | R) = ω(odd(c), Q) ∪ ω(even(c), R)

We introduce communication processes, defined by the grammar R ::= ε | u(x) |

u〈M〉 | R.R′, such that ε.R = R. We omit R in u(x).R and u〈M〉.R when it is ε. Given

communication processes, synchronisation is controlled by a synchronisation process.

Definition 5.3 (Synchronisation process). Given a process P and an infinite sequence of

channel names a, the synchronisation process is χ(a, P) = χ̂(0, ε, ω(a, P)), where for

all integers t, communication processes R and sets of triples S, we have:

χ̂(t, R, S) =

R.0 if S = ∅

a′(x).χ̂(t, R.a′′〈x〉, S\{(t, a′, a′′)}) if (t, a′, a′′) ∈ S

where x is a fresh variable

R.χ̂(t+ 1, ε, S) otherwise

Although communication processes are not standard processes (that is, defined by the

grammar in Figure 4.1), the function χ always returns a standard process; this process is

intended to control synchronisation of a process P in which barriers have been eliminated.

100 CHAPTER 5. OBSERVATIONAL EQUIVALENCE AND BARRIERS

Accordingly, χ̂ is parametrised with S = ω(a, P), that is, the set of triples (t, a′, a′′) defin-

ing the input and output channels used by δ to eliminate barriers. For each barrier t, an

input a′(x) is appended to the output, and the function is recursively called with R.a′′〈x〉

and S\{(t, a′, a′′)}. Once all barriers under a particular barrier t have been exhausted, the

process R is appended to the output and the barriers under the next barrier t+1 are pro-

cessed. It follows, for example, given n processes in parallel all containing a barrier t (and

no other barriers), that the synchronisation process is a1(x1).an(xn).b1〈x1〉.bn〈xn〉

for some channel names a1, . . . , an, b1, . . . , bn and variables x1, . . . , xn. A more complex

example will be considered in Example 5.3.

Finally, a process defined in the standard ProVerif language can be derived using our

compiler (Definition 5.4) and ProVerif can then be used to automatically reason with

processes containing barriers.

Definition 5.4 (Synchrony compiler). The synchrony compiler ∆ maps a process P to

another process, as follows: ∆(P) = ν ã.(δ(a, P) | χ(a, P)), where a is an infinite sequence

of distinct channel names such that a ∩ (fn(P) ∪ bn(P)) = ∅ and ã = fn(δ(a, P)) ∩ a.

The application of our compiler is demonstrated in Example 5.3.

Example 5.3. Consider the process 1:: c〈k〉.2:: c〈m〉 | 2:: c〈n〉 | 3:: c〈s〉 and let a =

(a1, a2, . . .). We have:

δ(a, P) = δ((a1, a3, . . .), 1:: c〈k〉.2:: c〈m〉) | δ((a2, a4, . . .), 2:: c〈n〉 | 3:: c〈s〉)

= a1〈a1〉.a3(x).δ((a5, a7, . . .), c〈k〉.2:: c〈m〉) |

δ((a2, a6, . . .), 2:: c〈n〉) | δ((a4, a8, . . .), 3:: c〈s〉)

= a1〈a1〉.a3(x).c〈k〉.δ((a5, a7, . . .), 2:: c〈m〉) |

a2〈a2〉.a6(y).δ((a10, a14, . . .), c〈n〉) | a4〈a4〉.a8(z).δ((a12, a16, . . .), c〈s〉)

= a1〈a1〉.a3(x).c〈k〉.a5〈a5〉.a7(x′).δ((a9, a11, . . .), c〈m〉) |

a2〈a2〉.a6(y).c〈n〉 | a4〈a4〉.a8(z).c〈s〉

= a1〈a1〉.a3(x).c〈k〉.a5〈a5〉.a7(x′).c〈m〉 | a2〈a2〉.a6(y).c〈n〉 | a4〈a4〉.a8(z).c〈s〉

5.1. PROCESSES WITH BARRIERS 101

ω(a, P) = ω((a1, a3, . . .), 1:: c〈k〉.2:: c〈m〉) ∪ ω((a2, a4, . . .), 2:: c〈n〉 | 3:: c〈s〉)

= {(1, a1, a3)} ∪ ω((a5, a7, . . .), c〈k〉.2:: c〈m〉) ∪

ω((a2, a6, . . .), 2:: c〈n〉) ∪ ω((a4, a8, . . .), 3:: c〈s〉)

= {(1, a1, a3), (2, a2, a6), (3, a4, a8)} ∪ ω((a5, a7, . . .), 2:: c〈m〉) ∪

ω((a10, a14, . . .), c〈n〉) ∪ ω((a12, a16, . . .), c〈s〉)

= {(1, a1, a3), (2, a5, a7), (2, a2, a6), (3, a4, a8)} ∪ ω((a9, a11, . . .), c〈m〉)

= {(1, a1, a3), (2, a5, a7), (2, a2, a6), (3, a4, a8)}

χ(a, P) = χ̂(1, ε, {(1, a1, a3), (2, a5, a7), (2, a2, a6), (3, a4, a8)})

= a1(x).χ̂(1, a3〈x〉, {(2, a5, a7), (2, a2, a6), (3, a4, a8)})

= a1(x).a3〈x〉.χ̂(2, ε, {(2, a5, a7), (2, a2, a6), (3, a4, a8)})

= a1(x).a3〈x〉.a5(x′).χ̂(2, a7〈x′〉, {(2, a2, a6), (3, a4, a8)})

= a1(x).a3〈x〉.a5(x′).a2(y).χ̂(2, a7〈x′〉.a6〈y〉, {(3, a4, a8)})

= a1(x).a3〈x〉.a5(x′).a2(y).a7〈x′〉.a6〈y〉.χ̂(3, ε, {(3, a4, a8)})

= a1(x).a3〈x〉.a5(x′).a2(y).a7〈x′〉.a6〈y〉.a4(z).χ̂(3, a8〈z〉, ∅)

= a1(x).a3〈x〉.a5(x′).a2(y).a7〈x′〉.a6〈y〉.a4(z).a8〈z〉

Observe a∩ (fn(P)∪ bn(P)) = ∅, ã = a1, . . . , a8 and hence it follows that ∆(P) is defined

as the process:

ν ã.(a1〈a1〉.a3(x).c〈k〉.a5〈a5〉.a7(x′).c〈m〉 | a2〈a2〉.a6(y).c〈n〉 | a4〈a4〉.a8(z).c〈s〉 |

a1(x).a3〈x〉.a5(x′).a2(y).a7〈x′〉.a6〈y〉.a4(z).a8〈z〉)

By inspection we can observe that the process enforces the expected behaviour; that is, the

name k must be output before m, n and s. This can be witnessed by annotating the process

with events and analysing using ProVerif (see Appendix D).

We will now revisit Example 5.2 to show why uniformity is an insufficient proof tech-

nique to prove observational equivalence of certain biprocesses containing barriers.

102 CHAPTER 5. OBSERVATIONAL EQUIVALENCE AND BARRIERS

Example 5.4. Recall the biprocess P = c〈m〉.1:: c〈diff[m,n]〉 | 1:: c〈diff[n,m]〉 from Ex-

ample 5.2. The process ∆(P) is uniform, but ∆(P) −→∗ Q where Q = c〈diff[m,n]〉 |

c〈diff[n,m]〉, and Q is not uniform.

The next section introduces a methodology to overcome this limitation of uniformity as

a proof technique for observational equivalence.

5.2 Automated reasoning for equivalence

In this section, the compiler (Section 5.1) is extended to overcome the limitations of strong

uniformity as a proof technique. This can be achieved in a static manner by swapping

data between processes which share the same structure, as will now be demonstrated.

Example 5.5. Recall the biprocess P = c〈diff[m,n]〉 | c〈diff[n,m]〉 from Example 5.1 and

observe that P = Rσ | Rτ , where R = c〈x〉, σ = {diff[m,n]/x} and τ = {diff[n,m]/x}.

By extending diff to substitutions, the process Q = R diff[σ, τ] | R diff[τ, σ] is such that

fst(P) ≡ fst(Q) and snd(P) ≡ snd(Q); that is, the biprocess Q preserves the underlying

structure of P . It follows immediately that fst(P) ∼ fst(Q) and snd(P) ∼ snd(Q). Fur-

thermore, Q satisfies strong uniformity and hence P satisfies observational equivalence by

transitivity.

This approach can be generalised to swapping data between sub-processes which share

the same structure under the same barrier, since the semantics of barriers provide certain

guarantees about dynamic process behaviour.

Example 5.6. Recall the biprocess P = c〈m〉.1:: c〈diff[m,n]〉 | 1:: c〈diff[n,m]〉 from Ex-

ample 5.2. Intuitively, P can only reduce to R = 1:: c〈diff[m,n]〉 | 1:: c〈diff[n,m]〉 in one

step. Now consider the biprocess Q = c〈m〉.1:: c〈diff[m,m]〉 | 1:: c〈diff[n, n]〉 which is ob-

tained from P by swapping the second components of the diff operator. It follows that

fst(∆(P)) ∼ fst(∆(Q)) and snd(∆(P)) ∼ snd(∆(Q)). Now since ∆(Q) trivially satisfies

strong uniformity, ∆(P) satisfies observational equivalence by transitivity.

5.2. AUTOMATED REASONING FOR EQUIVALENCE 103

These examples intuitively demonstrate the notion of swapping, and, moreover, its appli-

cation for automatically proving observational equivalence. The remainder of this section

will formalise swapping as an extension to our compiler.

The revised barrier elimination function permits the possibility of swapping during

synchronisation. In particular, at the start of each barrier synchronisation, all free names

and variables under that barrier (in our formalism this will include those names and vari-

ables bound previously) are output and a possibly distinct set of names and variables

are subsequently input. This behaviour is fully captured by renaming the names and

variables under that barrier in accordance with the binder used for the aforementioned

input (Definition 5.5). By ensuring that swapping occurs in a suitable manner, an ap-

proximation of a process’s observational behaviour can be derived; this will be achieved

by the introduction of a swapping process. Before presenting the formal definition of our

revised barrier elimination function δ′, we provide an intuitive example of how δ′ works

without swapping.

Example 5.7. Recall the process ∆(P) from Example 5.3, where P = 1:: c〈k〉.2:: c〈m〉 |

2:: c〈n〉 | 3:: c〈s〉. Let a = (a1, a2, . . .) and consider the process Q = ν a1, . . . , a8.(δ
′(a, P) |

χ(a, P)). We have δ′(a, P) defined as follows:

a1〈(c, k,m)〉.a3(x).π1(x)〈π2(x)〉.a5〈(π1(x), π3(x))〉.a7(x′).π1(x′)〈π2(x′)〉 |

a2〈(c, n)〉.a6(y).π1(y)〈π2(y)〉 | a4〈(c, s)〉.a8(z).π1(z)〈π2(z)〉

In this instance, observe ∆(P) ∼ Q, which can be witnessed using ProVerif (see Ap-

pendix D).

Definition 5.5 (Barrier elimination function with swapping). The barrier elimination

function with swapping δ′ maps an infinite sequence of channel names a and a process P

to another process, as follows, δ′(a, P) = δ̂′(a, τ, P) for the substitution τ = {} (that is,

104 CHAPTER 5. OBSERVATIONAL EQUIVALENCE AND BARRIERS

the empty substitution), where:

δ̂′(c, σ, 0) = 0

δ̂′(c, σ, !Q) = !Qσ

δ̂′(c, σ, ν n.Q) = ν n.δ̂′(c, {z/u | {z/u} ∈ σ and u 6= n}, Q)

δ̂′(c, σ, M(x).Q) = Mσ(x).δ̂′(c, {z/u | {z/u} ∈ σ and u 6= x}, Q)

δ̂′(c, σ, M〈N〉.Q) = M〈N〉σ.δ̂′(c, σ, Q)

δ̂′(c, σ, t::Q) = a′〈(u1, . . . , ul)σ〉.a′′(y).δ̂′(tail(tail(c)), τ, Q)

where a′ = head(c), a′′ = head(tail(c)) and

τ = {π1(y)/u1, . . . , πl(y)/ul} for some names

and variables u1, . . . , ul, y such that

fn(Q) ∪ fv(Q) = u1, . . . , ul and y 6∈ fv(Q)

δ̂′(c, σ, let x = D in Q else R) = let x = Dσ in δ̂′(odd(c), τ, Q)

else δ̂′(even(c), σ, R)

where τ = {z/u | {z/u} ∈ σ and u 6= x}

δ̂′(c, σ, Q | R) = δ̂′(odd(c), σ, Q) | δ̂′(even(c), σ, R)

By definition of the barrier elimination function, at the start of each barrier synchro-

nisation a process outputs all of the free names and variables under that barrier. The

synchronisation process (Definition 5.3) would simply return these values, as demonstrated

in Example 5.7. Intuitively, however, it is possible to swap values between sub-processes

which share the same structure under a particular barrier. Since this preserves the un-

derlying structure of the biprocesses, it is useful for proofs of observational equivalence.

In order to track which processes may swap data, the function ω is modified:

ω(c, t::Q) = {(t, a′, a′′, δ̂′(ĉ, σ, Q))} ∪ ω(ĉ, Q)

where a′ = head(c), a′′ = head(tail(c)), ĉ = tail(tail(c)) and σ = {π1(y)/u1, . . . , πl(y)/ul} for

some names and variables u1, . . . , ul, y such that fn(Q)∪ fv(Q) = u1, . . . , ul and y 6∈ fv(Q).

5.2. AUTOMATED REASONING FOR EQUIVALENCE 105

For simplicity, this definition, and Definition 5.5, assume there is exactly one tuple of

names and variables u1, . . . , ul, y such that fn(Q)∪ fv(Q) = u1, . . . , ul and y 6∈ fv(Q); that

is, the same names and variables are used by the functions ω and δ′.

The swapping process (Definition 5.6) is similar to the synchronisation process, but

considers all possible swapping strategies in addition to synchronisation. In particular, the

function χ̄ is introduced for this purpose. More precisely, sub-processes under a particular

barrier are permitted to swap if they are syntactically equal. The consideration of the

bijection f ∈ F ensures all swapping strategies are considered.

Definition 5.6 (Swapping process). Given a process P and an infinite sequence of channel

names a, the set of swapping processes is χ′(a, P) = χ̂′(1, ε, ε, ω(a, P)), where for all

integers t, communication processes R, R′ and sets S, we have:

χ̂′(t, R, R′, S) =

{R.R′.0} if S = ∅

χ̄(t, R, R′, S, Q) if (t, a, b, Q) ∈ S

χ̂′(t+ 1, R.R′, ε, S) otherwise

such that χ̄(t, R,R′, S,Q) is defined as

⋃
f∈F

χ̂′(t, R.a1(y1). · · · .an(yn), R′.b1〈diff[y1, yf(1)]〉. · · · .bn〈diff[yf(n), yn]〉,

S\{(t, a1, b1, Q), . . . , (t, an, bn, Q)})

where (t, a1, b1, Q), . . . , (t, an, bn, Q) ∈ S, F is the set of bijections on {1, . . . , n}, and

variables y1, . . . , yn are fresh.

Correctness of barrier ordering follows as before, and moreover, the notion of swapping is

intuitively sound because it occurs between syntactically equal processes.

Finally, a set of processes in the standard ProVerif language, which consider all possible

swapping strategies, can be derived.

106 CHAPTER 5. OBSERVATIONAL EQUIVALENCE AND BARRIERS

Definition 5.7 (Swapping compiler). The swapping compiler ∆′ maps a process P to

a set of process, as follows: ∆′(P) = {ν ã.(δ′(a, P) | R) | R ∈ χ′(a, P)}, where a is

an infinite sequence of distinct channel names such that a ∩ (fn(P) ∪ bn(P)) = ∅ and

ã = fn(δ′(a, P)) ∩ a.

Intuitively, if there exists a swapping strategy such that the compiled process satisfies ob-

servational equivalence, then the original process satisfies observational equivalence. The

application of Definition 5.7 is demonstrated by Example 5.8 and has been implemented

as a tool called ProSwapper [KSR10].

Example 5.8. Recall the process P = c〈m〉.1:: c〈diff[m,n]〉 | 1:: c〈diff[n,m]〉 from Exam-

ple 5.2 and assume a = (a1, a2, . . .). We have:

δ′(a, P) = c〈m〉.a1〈(c,m, n))〉.a3(x).π1(x)〈diff[π2(x), π3(x)]〉 |

a2〈(c, n,m)〉.a4(x).π1(x)〈diff[π2(x), π3(x)]〉

ω(a, P) = {(1, a1, a3, π1(x)〈diff[π2(x), π3(x)]〉), (1, a2, a4, π1(x)〈diff[π2(x), π3(x)]〉)}

χ′(a, P) = {a1(y).a2(z).a3〈diff[y, y]〉.a4〈diff[z, z]〉,

a1(y).a2(z).a3〈diff[y, z]〉.a4〈diff[z, y]〉}

By Definition 5.7 we derive the set of processes which represent all possible swapping

strategies:

{ν a1, a2, a3, a4.(δ
′(a, P) | a1(y).a2(z).a3〈diff[y, y]〉.a4〈diff[z, z]〉),

ν a1, a2, a3, a4.(δ
′(a, P) | a1(y).a2(z).a3〈diff[y, z]〉.a4〈diff[z, y]〉)}

and since the latter process satisfies strong uniformity (see Appendix E), we believe the

process ∆(P) satisfies observational equivalence. (Note that, in order to express results

about P , rather than ∆(P), a formal semantics for barriers must be considered; for further

discussion, see Section 6.1.)

5.3. PRIVACY IN ELECTRONIC VOTING 107

5.3 Privacy in electronic voting

This section will demonstrate the suitability of the methodology for analysing vote pri-

vacy in electronic voting protocols. In particular, an automated analysis of vote privacy

in the electronic voting protocol by Fujioka, Okamoto & Ohta [FOO92] is presented.

Moreover, the generality of our approach has been demonstrated by Backes, Hriţcu &

Maffei [BHM08] who prove a stronger property – namely, coercion resistance – of the

protocol by Juels, Catalano & Jakobsson [JCJ02, JCJ05, JCJ10] which has been imple-

mented by Clarkson, Chong & Myers [CCM08, CCM07] as Civitas. Our technique has

also been adopted by Dahl, Delaune & Steel [DDS10] to analyse privacy in vehicular

ad-hoc networks. (Note that Dahl, Delaune & Steel use an earlier version [DRS08] of

this work, and Backes, Hriţcu & Maffei make use of the fundamental principles, possibly

based upon preliminary results presented at Dagstul [Smy07].) In Appendix E, the model

of privacy in vehicular ad-hoc networks [DDS10] is revisited and automatically analysed

using ProSwapper.)

5.3.1 Case study: FOO

The FOO protocol, by Fujioka, Okamoto & Ohta [FOO92], is a seminal work based

upon blind signatures. Delaune, Kremer & Ryan [KR05, DKR06, DKR09, DKR10b]

have studied the protocol and present a hand-based proof of vote privacy, and Chothia

et al. [COPD07] provide an automated analysis using µCRL. We will use the results

of Section 5.2 to present an automated analysis; although this result is not new, it is

useful to demonstrate our technique. The protocol description and equational theory

were presented in Section 3.2.2 and we proceed immediately to an applied pi model of the

voter process.

108 CHAPTER 5. OBSERVATIONAL EQUIVALENCE AND BARRIERS

Model in applied pi

The formal specification of the voter process in FOO (Definition 5.8) follows immediately

from our protocol description (Section 3.2.2). Observe that phases of the protocol are

seperated within the voting process using barriers. We do not assert the secrecy of voters’

keys and, accordingly, they can be modelled as free names. Of course, these keys are

required to be secret for other properties. It follows that the process Pfoo{s1/xvote, sk1/xsk} |

· · · | Pfoo{sn/xvote, skn/xsk} models an election with n voters casting votes s1, . . . , sn.

Definition 5.8. The process Pfoo modelling a voter in FOO is defined as follows

Pfoo = ν k.ν k′.

let M = commit(k, xvote) in

let M̂ = blind(k′,M) in

c〈(pk(xsk), sign(xsk, M̂))〉.c(y).

if checksign(pk(skR), y) = true then

if getmsg(y) = M̂ then

let M ′ = unblind(k′, y) in

1:: c〈(M,M ′)〉.2:: c(z).

if (π2(z), π3(z)) = (M,M ′) then

c〈(π1(z), k)〉

where xsk is variable referring to the voter’s signing key and xvote is a variable referring

to voter’s vote.

Analysis: Vote privacy

Consider two voters A, B and two candidates s, s′. Based upon [KR05, DKR06, DKR09,

DKR10b], we formalise vote privacy for two voters with the assertion that an adversary

cannot distinguish between a situation in which voter A votes for candidate s and voter

B votes for candidate s′, from another one in which A votes s′ and B votes s. Formally,

5.3. PRIVACY IN ELECTRONIC VOTING 109

this is written as the equivalence:

Pfoo{skA/xsk, s/xvote} | Pfoo{skB/xsk, s
′
/xvote} ∼ Pfoo{skA/xsk, s

′
/xvote} | Pfoo{skB/xsk, s/xvote}

which can be checked using the methodology introduced. To provide further insight into

how the swapping compiler works, let us consider how to informally prove this equiva-

lence. Let us call the left hand side Lhs, and the right hand side Rhs. By definition of

equivalence we must show that the Lhs is indistinguishable from the Rhs. Indeed, as the

Lhs evolves, the corresponding evolution of the Rhs is the one that mimics A moves on

the Lhs with A moves on the Rhs, and B moves on the Lhs with B moves on the Rhs,

up to the first barrier. After the first synchronisation, A moves on the Lhs are mimicked

by B moves on the Rhs, and B moves on the Lhs are mimicked by A moves on the Rhs.

The reason for the ‘swap’ in mimicking is to ensure that no context can distinguish the

actions performed. Before the synchronisation, the output data produced by A on both

the Lhs and the Rhs are indistinguishable (and similarly for B); observe that on the Lhs

the output by A reveals

(pk(skA), sign(skA, blind(k′a, commit(ka, s))), blind(k′a, commit(ka, s)))

which can be matched on the Rhs by

(pk(skA), sign(skA, blind(k′a, commit(ka, s
′))), blind(k′a, commit(ka, s

′)))

where names ka, k
′
a are under restriction in both the Lhs and the Rhs. (Note that

indistinguishability between the Lhs and the Rhs is due to the properties of blinding.)

After the first and second synchronisation, A will reveal

(sign(skR, commit(ka, s)), commit(ka, s)) and (`, ka)

110 CHAPTER 5. OBSERVATIONAL EQUIVALENCE AND BARRIERS

on the Lhs and

(sign(skR, commit(ka, s
′)), commit(ka, s

′)) and (`, ka)

on the Rhs, where ` is chosen by the adversarial environment; that is, A reveals her vote

s on the Lhs and her vote s′ on the Rhs (similarly, B will reveal s′ on the Lhs and s

on the Rhs). Hence, after the first synchronisation the actions mimicked are swapped.

The compiler manages the swapping, and hence ProSwapper can be used to automatically

analyse privacy in FOO (see Appendix E).

5.4 Summary

This chapter extends the process syntax of ProVerif to include barriers, for the purpose

of synchronisation, and defines an automated methodology for proving equivalence. The

result has been implemented as ProSwapper and the suitability of the tool is demon-

strated by analysing vote privacy in the FOO electronic voting protocol. Furthermore,

the fundamental principles of our methodology have been adopted by the wider research

community: Dahl, Delaune & Steel [DDS10] use an preliminary version of this chap-

ter (formally presented in [DRS08]) to analyse privacy in vehicular ad-hoc networks, and

Backes, Hriţcu & Maffei [BHM08] use the basic concept (presumably based upon [Smy07])

to show coercion resistance in electronic voting.

Part IV
Evaluation

6
Further work and conclusion

In this thesis, we advance the capabilities of the formal verification community by defining

symbolic definitions of security properties (Part II) and developing procedures for evalua-

tion of security properties (Part III). The key contributions are:

• A definition of election verifiability for electronic voting protocols.

• A definition of user-controlled anonymity for Direct Anonymous Attestation schemes.

• An automated analysis technique for observational equivalence.

This final chapter presents future work and a further appraisal of results.

6.1 Further work

We begin by discussing possible future research directions arising from Chapters 3–5 and

identifying open questions that have emerged from this thesis.

6.1.1 Election verifiability in electronic voting

The definition of election verifiability includes three aspects: individual, universal and

eligibility verifiability. The conditions which these properties must satisfy are believed to

be necessary, but may not be sufficient. Ultimately, a verifiable election should convince

the most sceptic of voters and/or election observers that votes have been recorded, tallied

114 CHAPTER 6. FURTHER WORK AND CONCLUSION

and declared correctly. Establishing whether voting protocols which satisfy our definition,

are also considered to achieve this objective, remains an open research problem.

The definition of election verifiability is based upon earlier work [SRKK10] in which

automated reasoning was considered. Extending Chapter 3 to include an automated

procedure for evaluating election verifiability would appear to be a logical step; however,

this has been precluded by the lack of efficient tools for evaluating our definition in the

general case. In particular, the tests must be embedded within processes (cf. [SRKK10,

§4]) and parametrised by an arbitrary number of voters, but such parametrisation is not

currently supported by ProVerif. Providing automated tool support for processes which

require parametrisation is further work and, moreover, such a tool would be useful for

analysing security properties in a variety of cryptographic protocols.

The study of election verifiability identified eligibility verifiability – a property that

has been largely neglected by the literature and is only satisfied by a few protocols –

as a mechanism to detect ballot stuffing. As an alternative to eligibility verifiability,

some electronic voting protocols provide a weaker notion of eligibility – which cannot be

checked by voters or observers – under various trust assumptions. For example, such an

eligibility property may assert that if the election officials follow the protocol, then each

ballot published on the bulletin board was cast by a registered voter and at most one

ballot is tallied per voter. Indeed, this assumption was thought to be reasonable in the

presidential election at the Catholic University of Louvain which used Helios. However,

similar assumptions must not be made about national elections. Accordingly, the study

of electronic voting protocols which simultaneously satisfy election verifiability and other

desirable properties, such as privacy and usability, remains an open problem.

6.1.2 Anonymity in Direct Anonymous Attestation

Direct Anonymous Attestation is a relatively new concept and its properties merit further

study. In particular, user-controlled traceability and correctness have received limited at-

6.1. FURTHER WORK 115

tention. Furthermore, new properties (for example, non-frameability [Che10, Che11]) are

emerging. Extending this work to include a complete definition of DAA properties would

be an interesting direction for future research. Moreover, establishing a unified defini-

tion which includes all properties (that is, correctness, non-frameability, user-controlled

anonymity and user-controlled traceability) would be of interest to reduce the verification

workload. As a starting point, this could be achieved by suitably developing the notion of

a Direct Anonymous Attestation process specification to distinguish between operations

performed by the host and those performed by the TPM. This distinction is not necessary

for our definition of user-controlled anonymity because this property can only be achieved

if both the host and TPM are trusted. By contrast, a corrupt host – even in collabora-

tion with a corrupt TPM (where the TPM is known to be rogue) – should not be able

to violate traceability properties and therefore an alternative process specification, which

distinguishes between actions performed by the host and TPM, would be required.

For user-controlled anonymity it is necessary to ensure a distinct basename is used

during phase 2 (when bsn 6=⊥). Since the applied pi calculus does not record state, this

is achieved by an abstraction. Proving that this abstraction does not lose generality is an

open problem. In addition, a stateful variant of the applied pi calculus would be useful.

The study of user-controlled anonymity in Direct Anonymous Attestation schemes is

particular interesting due to the real-world deployment of the TPM. However, verification

of cryptographic protocols does not ensure their secure deployment because vulnerabil-

ities may be introduced during implementation [GLP05, BFGT06, BFGT08, APW09].

Automatically deriving models from implementations and verifying security properties

using ProVerif has been considered [BFGT06, BFGT08, BFGS08] and verified reference

implementations have been introduced to aid the development of secure systems [BFG06,

BCFZ08, MGR09]. In the context of DAA, automatically verifying implementations (for

example, [Smy06, SS08, SGPV09, CPS10]) and developing a secure reference implemen-

tation remains as future work.

116 CHAPTER 6. FURTHER WORK AND CONCLUSION

6.1.3 Observational equivalence and barriers

Evaluating whether the synchronous compiler (Definition 5.4) enforces the informally

discussed semantic behaviour of barrier synchronisation is difficult to establish due to

the complexity of definition. In this instance, it would be more suitable to formally

define the semantics in the calculus of ProVerif and prove that the synchronous compiler

encodes an approximation of the desired observational behaviour. Moreover, by extending

the definition of observational equivalence to consider barriers, stronger results could be

stated; that is, results could be stated about P rather than ∆(P) (see, for example,

Examples 5.6 & 5.8 and Section 5.3.1).

Proving soundness of the proof technique is ongoing work. At a high level it would

be sufficient to show that for all biprocesses P , if there exists Q ∈ ∆′(P) such that Q

satisfies strong uniformity, then ∆(P) satisfies observational equivalence. Accordingly,

it would be sufficient to prove that for all biprocesses P , we have for all Q ∈ ∆′(P),

that fst(∆(P)) ∼ fst(Q) and snd(∆(P)) ∼ snd(Q). (As previously stated, the formal

semantics of barriers are not defined and thus we cannot state observational equivalence

results involving processes with barriers; that is, we must rely upon the synchronous

compiler.)

The definition of labelled bisimilarity [AF01, §4.3], which complements observational

equivalence (Definition 2.1), has proven to be useful for handwritten proofs of equivalence.

A similar notion to complement Definition 4.1 may be useful to prove observational equiva-

lence in cases where automated reasoning is not possible. Furthermore, general procedures

which consider arbitrary processes (rather than biprocesses) could be sought.

6.1.4 Emerging directions

The formalisation of user-controlled anonymity in Direct Anonymous Attestation (Chap-

ter 4) is similar, but distinct, from the formalisation of privacy in electronic voting (Sec-

tion 5.3) and vehicular ad-hoc networks (Appendix E.2). In electronic voting, vote privacy

6.2. CONCLUSION 117

for two voters A, B is formalised as the indistinguishability between a situation in which

voter A votes for candidate s and voter B votes for candidate s′, from another in which

A votes s′ and B votes s. Using terminology from our formalisation of user-controlled

anonymity, this essentially corresponds to two voters participating in the challenge phase.

By comparison, in DAA we consider a single signer during the challenge phase. It is nec-

essary to consider two voters for vote privacy because the election outcome will be made

public and this would represent an observable distinction if only a single voter partici-

pated in the challenge, that is, we can distinguish between an election outcome of s and

s′. Establishing a generic class of definitions suitable for analysing privacy in a variety of

settings would be desirable to obviate the need for numerous protocol dependent privacy

definitions (for example, [KR05, Cho06, BHM08, DKR09, ACRR10, BCH10, DDS10]).

Moreover, such a framework would allow the relative degrees of privacy to be studied.

6.2 Conclusion

This thesis will aid the secure design of cryptographic protocols and facilitate the eval-

uation of existing schemes by advancing formal method verification techniques. Our

definition of election verifiability has been shown to be suitable for the analysis of a wide

range of electronic voting protocols and its future application will allow the thorough

analysis of schemes prior to deployment, thereby helping ensure integral elections. The

study of user-controlled anonymity in RSA-based Direct Anonymous Attestation discov-

ered a vulnerability and established a fix which potentially avoided violations of privacy

for TPM users. Our definition of user-controlled anonymity will also facilitate the anal-

ysis of future DAA schemes, helping prevent privacy invasions. Finally, the adoption of

our reasoning technique for observational equivalence, by the research community, gives

us confidence that the methodology is of value and, moreover, can be used to evaluate

numerous security properties including vote privacy and coercion resistance in electronic

voting, and privacy in vehicular ad-hoc networks.

118 CHAPTER 6. FURTHER WORK AND CONCLUSION

Part V
Appendices

A
Election verifiability results

This appendix contains proofs supporting Chapter 3.

A.1 Election verifiability in raising hands

This appendix presents a proof of election verifiability in raising hands (Example 3.1).

The proof illustrates an interesting aspect of our definition: we do not require a voter

to identify her credential, it is sufficient for a voter to identify a credential. If desired, a

stronger definition of election verifiability can be constructed with the additional sound-

ness condition ΦIV
i σ ∧ ΦIV

i {ŵ
′/ŵ}σ ⇒ πi(ŵ)σ ' πi(ŵ

′)σ.

A.1.1 Proof of Proposition 3.1

Proof. Suppose m ∈ N and tests ΦIV , ΦUV
m , ΦEV

m are given as follows:

ΦIV =̂ y =E (pk(r), sign(r, v)) ∧ checksign(xpk, w) =E true

ΦUV
m =̂ v̂ =E (getmsg(π2(π1(ŷ))), . . . , getmsg(π2(πm(ŷ))))

ΦEV
m =̂

∧
1≤i≤m

(
checksign(xpk, πi(ŵ)) =E true ∧ π1(πi(ŷ)) =E getmsg(πi(ŵ))

∧ checksign(π1(πi(ŷ)), π2(πi(ŷ))) =E true

∧ snd(snd(snd(πi(ŷ)))) =E ∅
)
∧ sndm(ŵ) =E ∅ ∧ sndm(ŷ) =E ∅

where r = rv(ΦIV). We will now show for all names s1, . . . , sn that the conditions of

Definition 3.7 hold.

122 APPENDIX A. ELECTION VERIFIABILITY RESULTS

(3.1) Suppose C is a context, B is a process, σ is a substitution, ñ is a tuple of names and i, j are

integers where C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B, ϕ(B) ≡ νñ.σ, ΦIV {si/v, ri/r, πi(ŵ)/w}σ

and ΦIV {sj/v, rj/r, πj(ŵ)/w}σ. It follows that π1(y)σ =E pk(ri)σ =E pk(rj)σ. Since the

record variables ri, rj are handles for fresh nonces generated by name restriction in the

process Aex and sent to Vex,i, Vex,j using a private channel, it follows that i = j.

(3.2) We prove a stronger result: namely, the condition holds for all substitutions σ. Suppose

σ is an arbitrary substitution such that ΦUV
m σ and ΦUV

m {v̂
′
/v̂}σ hold. We have

v̂σ =E (getmsg(π2(π1(ŷ))), . . . , getmsg(π2(πm(ŷ))))σ =E v̂
′σ

and immediately derive v̂σ ' v̂′σ.

(3.3) Again, we will show that the condition holds for all substitutions σ. Suppose σ is

an arbitrary substitution such that
∧

1≤i≤n ΦIV
i {πi(ŷ)/y}σ and ΦUV

m σ hold, where n =

m. By
∧

1≤i≤n ΦIV
i {πi(ŷ)/y}σ it must be the case for all 1 ≤ i ≤ n that πi(ŷ)σ =E

(pk(ri), sign(ri, si))σ and hence getmsg(π2(πi(ŷ)))σ =E si. Moreover, since n = m and

ΦUV
m σ, we have

v̂σ =E (getmsg(π2(π1(ŷ))), . . . , getmsg(π2(πm(ŷ))))σ =E (s1, . . . , sn)

The result (s1, . . . , sn) ' v̂σ follows.

(3.5) We prove a stronger result: namely, for any substitution σ the condition holds. Suppose

σ is an arbitrary substitution such that ΦEV
m σ and ΦEV

m {x
′
/x | x ∈ X\ŷ}σ hold. For all

1 ≤ i ≤ m, we have

getmsg(πi(ŵ))σ =E π1(πi(ŷ))σ ∧ π1(πi(ŷ))σ =E getmsg(πi(ŵ
′))σ

∧ checksign(πi(ŵ), xpk)σ =E true ∧ checksign(πi(ŵ
′), xpk)σ =E true

and, by inspection of the equational theory, it must be the case that πi(ŵ)σ = πi(ŵ
′)σ =

A.1. ELECTION VERIFIABILITY IN RAISING HANDS 123

sign(Ki, π1(πi(ŷ)))σ, where xpkσ = pk(Ki). By ΦEV
m σ and ΦEV

m {x
′
/x | x ∈ X\ŷ}σ

we also have sndm(ŵ) =E sndm(ŵ′) =E ∅. It must be the case that ŵσ = ŵ′σ =

(sign(K1, π1(π1(ŷ))), . . . , sign(Km, π1(πm(ŷ))))σ and hence ŵσ ' ŵ′σ.

(3.6) Suppose C is a context and B is a process such that C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B,

ϕ(B) ≡ νñ.σ, and ΦEV
m σ ∧ ΦEV

m {x
′
/x | x ∈ X\ŵ}σ. For all 1 ≤ i ≤ m, we have

checksign(xpk, πi(ŵ))σ =E true, where xpkσ = pk(skA) and skA ∈ ñ. By inspection of

the equational theory it is the case that πi(ŵ)σ =E sign(skA,Mi) for some term Mi.

Since the signing key is under restriction and, by inspection of the voting process, it

follows that for all 1 ≤ i ≤ m we have Mi =E pk(skVi), where skVi ∈ ñ. By ΦEV
m σ and

ΦEV
m {x

′
/x | x ∈ X\ŵ}σ we also have π1(πi(ŷ))σ =E getmsg(πi(ŵ))σ =E π1(πi(ŷ

′))σ, that

is,

π1(πi(ŷ))σ =E pk(skVi) =E π1(πi(ŷ
′))σ.

Moreover, checksign(π1(πi(ŷ)), π2(πi(ŷ)))σ =E true ∧ checksign(π1(πi(ŷ
′)), π2(πi(ŷ

′)))σ =E

true. Since the signing keys skV1 , . . . , skVm are under restriction it follows for all 1 ≤ i ≤ m

that

π2(πi(ŷ))σ =E sign(skVi , si) =E π2(πi(ŷ
′))σ

Furthermore, for all 1 ≤ i ≤ m, we have snd(snd(snd(πi(ŷ)))) =E snd(snd(snd(πi(ŷ
′)))) =E

∅ and hence

πi(ŷ)σ =E (pk(skVi), sign(skVi , si)) =E πi(ŷ
′)σ

Since sndm(ŷ)σ =E sndm(ŷ′)σ =E ∅, we have ŷσ =E ŷ
′σ and hence ŷσ ' ŷ′σ.

(3.7) Suppose C is a context and B is a process such that C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B,

ϕ(B) ≡ νñ.σ, and
∧

1≤i≤n ΦIV
i {πi(ŷ)/y}σ ∧ ΦEV

n {ŵ
′
/ŵ}σ ∧ sndn(ŵ)σ =E ∅ holds. For all

1 ≤ i ≤ n, we have checksign(xpk, πi(ŵ))σ =E true, where xpkσ = pk(skA) and skA ∈ ñ.

By inspection of the equational theory it is the case that πi(ŵ)σ =E sign(skA,Mi) for

some term Mi. Since the signing key is under restriction and, by inspection of the voting

process, it follows for all 1 ≤ i ≤ n that Mi =E pk(skVi), where skVi ∈ ñ. Moreover,

124 APPENDIX A. ELECTION VERIFIABILITY RESULTS

sndn(ŵ)σ =E ∅ and hence

ŵσ =E (sign(skA, pk(skV1)), . . . , sign(skA, pk(skVn)))

Similarly, we have 1 ≤ i ≤ n that checksign(xpk, πi(ŵ
′))σ =E true, where xpkσ = pk(skA)

and skA ∈ ñ. As before, πi(ŵ
′)σ =E sign(skA, Ni) by inspection of the equational theory.

Since the signing key is under restriction and, by inspection of the voting process (in

particular, observe that Aex outputs exactly n messages of the form sign(skA, Ni)), there

exists a permutation χ defined over {1, . . . , n} such that for all 1 ≤ i ≤ n we have

Ni =E pk(skVχ(i)
). Moreover, by ΦEV

n {ŵ
′
/ŵ}σ we have sndn(ŵ′) =E ∅ and hence

ŵ′σ =E (sign(skA, pk(skVχ(1)
)), . . . , sign(skA, pk(skVχ(n)

)))

The result ŵσ ' ŵ′σ follows.

(3.8) Suppose s1, . . . , sn are names and consider the context

C =̂ c(w1).c(wn).c〈(w1, . . . , wn)〉.

c(y1).c(yn).c〈(y1, . . . , yn)〉.

c〈(getmsg(π2(y1)), . . . , getmsg(π2(yn)))〉

We have C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B such that ϕ(B) ≡ νskA, skV1 , . . . , skVn .σ,

where

σ = {skV1/r1 , . . . ,
skVn /rn , (s1, . . . , sn)/v̂, (sign(skA, pk(skV1

)), . . . , sign(skA, pk(skVn
)))/ŵ,

pk(skA)/xpk , ((pk(skV1), sign(skV1 , s1)), . . . , (pk(skVn), sign(skVn , sn)))/ŷ}

It can trivially be seen that
∧

1≤i≤n ΦIV
i {πi(ŷ)/y}σ ∧ ΦUV

m σ ∧ ΦEV
m σ.

A.2. ELECTION VERIFIABILITY IN CIVITAS 125

A.2 Election verifiability in Civitas

This appendix presents a proof of election verifiability in Civitas. The following lemmata

are introduced to demonstrate useful properties of our equational theory (pp59). We make

use of the notation M̂
•' M̂ ′ to denote that the ciphertext tuples M̂ , M̂ ′ are defined over

the same plaintexts for some public key K, that is, M̂ =E (penc(K,R1, N1), . . . , penc(K,

Rn, Nn)), M̂ ′ =E (penc(K,R′1, N
′
1), . . . penc(K,R′n, N

′
n)) for some terms N1, N

′
1, R1, R1,

. . . , Nn, N
′
n, Rn, Rn and integer n ∈ N such that there exists a permutation χ defined over

{1, . . . , n}, where for all 1 ≤ i ≤ n we have Ni =E N
′
χ(i). The relation

•' is trivially seen

to be an equivalence relation. Moreover, if M̂
•' N̂ and M̂ ' M̂ ′, then M̂ ′ •' N̂ .

Lemma A.1. Given terms L,M,N , if pet(L,M,N) =E true, then M
•' N .

Lemma A.2. Given terms L, M̂, N̂ , if checkMix(L, M̂, N̂) =E true, then M̂
•' N̂ .

Lemma A.3. Given terms L, M̂, N̂ , if checkMixPair(L, M̂, N̂) =E true, then (πi(M1),

. . . , πi(M|M̃ |))
•' (πi(N1), . . . , πi(N|N̂ |)), where i ∈ {1, 2}.

A.2.1 Proof of Theorem 3.3

Proof. Suppose m ∈ N and the tests ΦIV ,ΦUV
m ,ΦEV

m are given above. We will now show

for all names s1, . . . , sn that the conditions of Definition 3.7 hold.

(3.1) Suppose C is a context, B is a process and i, j are integers such that C[VP+
n (s1, . . . , sn)]

(→∗ α−→→∗)∗ B, ϕ(B) ≡ νñ.σ and ΦIV {si/v, r̃i/r̃, πi(ŵ)/w}σ ∧ ΦIV {sj/v, r̃j/r̃, πj(ŵ)/w}σ. It

follows that π1(y)σ =E penc(xpkT , rm,i, si)σ =E penc(xpkT , rm,j, sj)σ and, by inspection of

the equational theory, it is the case that rm,iσ = rm,jσ. Since the record variables rm,i,

rm,j are handles for fresh nonces created by name restriction in the voter process, it follows

immediately from rm,iσ = rm,jσ that i = j.

(3.2) We prove a stronger result: namely, for any substitution σ the condition holds. Suppose

126 APPENDIX A. ELECTION VERIFIABILITY RESULTS

ΦUV
m σ ∧ ΦUV

m {v̂
′
/v̂}σ and hence

v̂σ =E (dec(zpartial,1, π1(zbal,1)), . . . , dec(zpartial,m, π1(zbal,m)))σ =E v̂
′σ

It follows immediately that v̂σ ' v̂′σ.

(3.3) Again, we will show that the condition holds for all substitutions σ. Suppose ΦIV {si/v,

r̃i/r̃, πi(ŵ)/w, πi(ŷ)/y}σ holds for 1 ≤ i ≤ n and hence

∧
1≤i≤n

π1(πi(ŷ))σ =E penc(xpkT , rm,i, si)σ.

Moreover, suppose ΦUV
m σ holds and n = m, therefore

checkMixPair(zmixPairPf , (π1(π1(ŷ)), π2(π1(ŷ))), . . . ,

(π1(πm(ŷ)), π2(πm(ŷ))), zbal,1, . . . , zbal,m)σ =E true

holds. By inspection of the equational theory we have

π1(zbal,i)σ =E penc(xpkT , rm,χ(i) ◦Ri, sχ(i))σ

where 1 ≤ i ≤ n for some permutation χ defined over {1, . . . , n} and terms R1, . . . , Rn

(note R1, . . . , Rn appear in zmixPairPfσ). By our hypothesis, for all 1 ≤ i ≤ n, we have

checkPartialPf(xpkT , π1(zbal,i), zpartial,i, zpartialPf,i)σ =E true

and hence zpartial,iσ is a partial decryption for π1(zbal,i)σ. It follows, for all 1 ≤ i ≤ n, that

dec(zpartial,i, π1(zbal,i))σ =E sχ(i)

A.2. ELECTION VERIFIABILITY IN CIVITAS 127

Finally, by hypothesis, we also have

(dec(zpartial,1, π1(zbal,1)), . . . , dec(zpartial,m, π1(zbal,m)))σ =E v̂σ

and hence it follows that (s1, . . . , sn) ' v̂σ.

(3.5) Suppose C is a context and B is a process such that C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗

B, ϕ(B) ≡ νñ.σ, and ΦEV
m σ ∧ ΦEV

m {x
′
/x | x ∈ X\ŷ}σ. For all 1 ≤ i ≤ m, we have

checkBallot(π3(πi(ŷ)), π1(πi(ŷ)), π2(πi(ŷ)))σ =E true and it follows by inspection of the

equational theory that

π2(πi(ŷ))σ =E penc(Ki, Si,Mi)

for some terms Ki, Si,Mi. Since checkMixPair(zmixPairPf , (π1(π1(ŷ)), π2(π1(ŷ))), . . . ,

(π1(πm(ŷ)), π2(πm(ŷ))), zbal,1, . . . , zbal,m)σ =E true and checkMixPair(zmixPairPf
′, (π1(π1(ŷ)),

π2(π1(ŷ))), . . . , (π1(πm(ŷ)), π2(πm(ŷ))), z′bal,1, . . . , z
′
bal,m)σ =E true; it follows by Lemma

A.3 and transitivity of
•' that

(π2(zbal,1), . . . , π2(zbal,m))σ
•' (π2(z′bal,1), . . . , π2(z′bal,m))σ.

Moreover, for all 1 ≤ i ≤ m, we have pet(zpetPf,i, π2(zbal,i), z̄cred,i)σ =E true and pet(z′petPf,i,

π2(z′bal,i), z̄
′
cred,i)σ =E true; by Lemma A.1 it follows that

(z̄cred,1, . . . , z̄cred,m)σ
•' (z̄′cred,1, . . . , z̄

′
cred,m)σ.

We have (zcred,1, . . . , zcred,m)σ ' (z̄cred,1, . . . , z̄cred,m)σ, (z′cred,1, . . . , z
′
cred,m)σ ' (z̄′cred,1, . . . ,

z̄′cred,m)σ and hence we trivially derive

(zcred,1, . . . , zcred,m)σ
•' (z′cred,1, . . . , z

′
cred,m)σ.

Since checkMix(zmixPf , getmsg(π1(ŵ)), . . . , getmsg(πm(ŵ)), zcred,1, . . . , zcred,m)σ =E true and

128 APPENDIX A. ELECTION VERIFIABILITY RESULTS

checkMix(zmixPf
′, getmsg(π1(ŵ′)), . . . , getmsg(πm(ŵ′)), z′cred,1, . . . , z

′
cred,m)σ =E true; it fol-

lows by Lemma A.2 that

(getmsg(π1(ŵ)), . . . , getmsg(πm(ŵ)))σ
•' (getmsg(π1(ŵ′)), . . . , getmsg(πm(ŵ′)))σ.

For all 1 ≤ i ≤ m, we have checksign(xspkR , πi(ŵ))σ =E true and checksign(xspkR , πi(ŵ
′))σ

=E true, where xspkRσ = pk(sskR) and sskR ∈ ñ. By inspection of the equational theory

it is the case that πi(ŵ)σ =E sign(sskR,Mi)σ and πi(ŵ
′)σ =E sign(sskR,M

′
i)σ for some

terms Mi,M
′
i . Furthermore, since, for all 1 ≤ i ≤ m, we have getmsg(πi(ŵ))σ =E Mi,

getmsg(πi(ŵ
′))σ =E M ′

i and because (getmsg(π1(ŵ)), . . . , getmsg(πm(ŵ)))σ
•'

(getmsg(π1(ŵ′)), . . . , getmsg(πm(ŵ′)))σ, it follows that M̃
•' M̃ ′. Now, since the sign-

ing key is under restriction and, by inspection of the voting process and its possible

outputs, it follows for all 1 ≤ i ≤ m that

getmsg(πi(ŵ))σ =E penc(pk(skR),m′′χ(i), dχ(i))

getmsg(πi(ŵ
′))σ =E penc(pk(skR),m′′χ′(i), dχ′(i))

where di,m
′′
i are names under restriction in the registrar process R, xpkRσ =E pk(skR) and

χ, χ′ are permutations defined over {1, . . . , n}. Finally, we have sndm(ŵ) =E sndm(ŵ′) =E

∅ and hence conclude ŵσ ' ŵ′σ.

(3.6) Suppose C is a context and B is a process such that C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B,

ϕ(B) ≡ νñ.σ, and ΦEV
m σ ∧ ΦEV

m {x
′
/x | x ∈ X\ŵ}σ. For all 1 ≤ i ≤ m, we have

checksign(xspkR , πi(ŵ))σ =E true, where xspkRσ = pk(sskR) and sskR ∈ ñ. By inspection

of the equational theory it is the case that

πi(ŵ)σ =E sign(sskR,Mi)σ

for some term Mi. Since the signing key is under restriction and, by inspection of the

A.2. ELECTION VERIFIABILITY IN CIVITAS 129

voting process, it follows that for all 1 ≤ i ≤ m we have

Mi =E penc(pk(skR),m′′i , di)

where di,m
′′
i are names under restriction in the registrar process R and xpkRσ =E pk(skR).

Since checkMix(zmixPf , getmsg(π1(ŵ)), . . . , getmsg(πm(ŵ)), zcred,1, . . . , zcred,m)σ =E true,

checkMix(zmixPf
′, getmsg(π1(ŵ)), . . . , getmsg(πm(ŵ)), z′cred,1, . . . , z

′
cred,m)σ =E true and for

all 1 ≤ i ≤ m we have getmsg(πi(ŵ))σ =E Mi; it follows that

(zcred,1, . . . , zcred,m)σ
•' (z′cred,1, . . . , z

′
cred,m)σ

by Lemma A.2. We have (zcred,1, . . . , zcred,m)σ ' (z̄cred,1, . . . , z̄cred,m)σ and (z′cred,1, . . . ,

z′cred,m)σ ' (z̄′cred,1, . . . , z̄
′
cred,m)σ; it trivially follows that

(z̄cred,1, . . . , z̄cred,m)σ
•' (z̄′cred,1, . . . , z̄

′
cred,m)σ.

Moreover, for all 1 ≤ i ≤ m, we have pet(zpetPf,i, π2(zbal,i), z̄cred,i)σ =E true and pet(z′petPf,i,

π2(z′bal,i), z̄
′
cred,i)σ =E true; hence by Lemma A.1 it follows that

(π2(zbal,1), . . . , π2(zbal,m))σ
•' (π2(z′bal,1), . . . , π2(z′bal,m))σ.

By checkMixPair(zmixPairPf , (π1(π1(ŷ)), π2(π1(ŷ))), . . . , (π1(πm(ŷ)), π2(πm(ŷ))), zbal,1, . . . ,

zbal,m)σ =E true, checkMixPair(zmixPairPf
′, (π1(π1(ŷ′)), π2(π1(ŷ′))), . . . , (π1(πm(ŷ′)),

π2(πm(ŷ′))), z′bal,1, . . . , z
′
bal,m)σ =E true and Lemma A.3 we have

(π2(π1(ŷ)), . . . , π2(πm(ŷ)))σ
•' (π2(π1(ŷ′)), . . . , π2(πm(ŷ′)))σ.

For all 1 ≤ i ≤ m, we have checkBallot(π3(πi(ŷ)), π1(πi(ŷ)), π2(πi(ŷ)))σ =E true and

checkBallot(π3(πi(ŷ
′)), π1(πi(ŷ

′)), π2(πi(ŷ
′)))σ =E true. By inspection of the equational

130 APPENDIX A. ELECTION VERIFIABILITY RESULTS

theory and because (π2(π1(ŷ)), . . . , π2(πm(ŷ)))σ
•' (π2(π1(ŷ′)), . . . , π2(πm(ŷ′)))σ

•'

(penc(pk(skR),m′′1, d1), . . . , penc(pk(skR),m′′n, dn)) it is the case that

π3(πi(ŷ))σ =E ballotPf(PKTi , Ri, Ni, pk(skR), Si, dχ(i))

π3(πi(ŷ
′))σ =E ballotPf(PK ′Ti , R

′
i, N

′
i , pk(skR), S ′i, dχ′(i))

for some terms PKTi , Ri, Ni, Si, PK
′
Ti
, R′i, N

′
i , S

′
i and permutations χ, χ′ defined over {1,

. . . , n}. Since for all 1 ≤ i ≤ m the name di is under restriction in the voting process

specification, it follows that

π3(πi(ŷ))σ =E ballotPf(pk(skT),mχ(i), sχ(i), pk(skR),m′χ(i), dχ(i))

π3(πi(ŷ
′))σ =E ballotPf(pk(skT),mχ′(i), sχ′(i), pk(skR),m′χ′(i), dχ′(i))

(that is, π3(πi(ŷ))σ and π3(πi(ŷ
′))σ are the signature proofs of knowledge output by the

voters) and, moreover, by the validity of the proof, we have

π1(πi(ŷ))σ =E penc(pk(skT),mχ(i), sχ(i))

π1(πi(ŷ
′))σ =E penc(pk(skT),mχ′(i), sχ′(i))

π2(πi(ŷ))σ =E penc(pk(skR),m′χ(i), dχ(i))

π2(πi(ŷ
′))σ =E penc(pk(skR),m′χ′(i), dχ′(i))

Since
∧m
i=1 π4(ŷ) =E ∅ and

∧m
i=1 π4(ŷ′) =E ∅, it follows for all 1 ≤ i ≤ m that πi(ŷ) =E

πi(ŷ). Finally, sndm(ŷ) =E sndm(ŷ′) =E ∅ and hence we conclude ŷσ ' ŷ′σ.

(3.7) Suppose C is a context and B is a process such that C[VP+
n (s1, . . . , sn)] (→∗ α−→→∗)∗ B,

ϕ(B) ≡ νñ.σ, and
∧

1≤i≤n ΦIV
i {πi(ŷ)y/}σ ∧ ΦEV

n {ŵ
′
/ŵ}σ ∧ sndn(ŵ)σ =E ∅ holds. For all

1 ≤ i ≤ n, we have πi(ŵ)σ = π2(rcredi)σ. Since sndn(ŵ)σ =E ∅ and, by inspection of the

voting process, we have

ŵσ =E (sign(sskR, penc(pk(skR),m′′1, d1)), . . . , sign(sskR, penc(pk(skR),m′′n, dn)))

A.2. ELECTION VERIFIABILITY IN CIVITAS 131

In addition, we have π2(πi(ŷ))σ =E penc(pk(skR),m′i, di) for all 1 ≤ i ≤ n and by similar

reasoning to the above (see Condition 3.5) we derive ŵσ ' ŵ′σ.

(3.8) This can be witnessed by modelling the complete JCJ-Civitas protocol as the context

C[].

132 APPENDIX A. ELECTION VERIFIABILITY RESULTS

B
Violating anonymity in the

RSA-based DAA specification

This appendix recalls the mathematical description of the RSA-based Direct Anonymous

Attestation protocol [BCC04] and demonstrates that the specification does not satisfy

privacy.

B.1 Primitives and building blocks

This section recalls the mathematical primitives which form the building blocks of RSA-

based DAA. First we introduce some notation.

Notation. The binary string of length l is denoted {0, 1}l. Concatenation of binary

strings α and β is written α‖β. The u least significant bits of the binary string α

are LSBu(α) = α − 2ub α
2u
c and the u most significant bits of the binary string α are

MSBu(α) = b α
2u
c. It should be noted that α = MSBu(α)‖LSBu(α) = 2uMSBu(α) +

LSBu(α).

B.1.1 Protocols to prove knowledge

This section summarises the proofs of knowledge used by RSA-based DAA; the concrete

algorithms can be found in the original papers. Since the RSA-based DAA protocol applies

proofs of knowledge to the group of quadratic residues modulo a safe prime product,

134 APPENDIX B. VIOLATING ANONYMITY IN RSA-BASED DAA

the prover must demonstrate that elements are indeed quadratic residues, because the

verifier is unable to do so. The prover is therefore required to show that the square

root of the element exists; this can be achieved by executing PK{(α) : y2 = (g2)α} or

PK{(α) : y = ±gα} instead of PK{(α) : y = gα}, such that α = logg2 y2, which is

equivalent to α = logg y in the case where y ∈ QRn [BCC04].

Demonstrating possession of a discrete logarithm. A proof of knowledge of an

element y ∈ G with respect to base g ∈ G is denoted PK{(α) : y = gα} [CEG88,

CEGP87]. Furthermore, it can be generalised to prove knowledge of y ∈ G with respect

to several bases g0, . . . , gv ∈ G, as denoted by PK{(α0, . . . , αv) : y = gα0
0 · · · gαvv }.

A proof of knowledge of a discreet logarithm y ∈ G with respect to bases g ∈ G such

that α ∈ ±{0, 1}l is denoted PK{(α) : y = gα∧ (−2l < α < 2l)} [CM98b, CM98a, CM99,

BCDG88]. To enable the prover to successfully complete the protocol, it is necessary to

use a tighter bound α ∈ ±{0, 1}(l−2)/lφ , where lφ controls the statistical zero-knowledge

property. Since the protocol uses bit challenges, it is not very efficient. Boudot presents

an enhanced solution [Bou00] and Camenisch & Michels [CM98b, CM98a] provide a mod-

ification which allows a proof that (b− 2l < α < b+ 2l) for a fixed offset b.

Proving equality of discrete logarithms. A proof of equality of discreet logarithms

of group elements y0, y1 ∈ G with respect to bases g ∈ G and h ∈ G (that is, the prover

knows α such that logg y0 ≡ logh y1) is denoted PK{(α) : y0 = gα∧y0 = hα} [CP94, CP93,

Cha90]. Generalisations to prove equalities among y0, . . . , yv ∈ G to bases g0, . . . , gv ∈ G

are trivial [CS97b].

Proving equality of discrete logarithms in different groups. A proof of equality

of discrete logarithms y0, y1 ∈ G0 to the bases g0 ∈ G0 and g1 ∈ G1, where G0 and

G1 are different groups can be constructed as follows. Let the orders of the groups be

q0, respectively q1, and let l be an integer such that 2l+1 < min(q0, q1). The prover

can convince the verifier that logg0
y0 ≡ logg1

y1 if α is an element in the tighter range

B.1. PRIMITIVES AND BUILDING BLOCKS 135

{0, 1}(l−2)/lφ by executing PK{(α) : y0
G0= gα0 ∧y1

G1= gα1 ∧ (−2l < α < 2l)}. The prover and

verifier engage in an initial setup during which the prover commits to ỹ = gβhα (mod n),

where G = 〈g〉 = 〈h〉 – the order of which is unknown (to the verifier) – and β ∈R G. The

prover then carries out PK{(α, β) : y0
G0= gα0 ∧ y1

G1= gα1 ∧ ỹ
G
= gαhβ ∧ (−2l < α < 2l)} in

collaboration with the verifier [CM99].

B.1.2 Camenisch-Lysyanskaya signature scheme

RSA-based DAA is based upon the Camenisch-Lysyanskaya (CL) signature scheme [CL03,

Lys02] which is secure under the strong RSA assumption. A summary of the scheme for

signing blocks of L messages m0, . . . ,mL−1, and a variant for signatures on committed

values, are presented below.

Key generation. On input length ln of the special RSA modulus, choose safe primes

p and q of length d ln
2
e. Let n = pq and select R0, . . . , RL−1, S, Z ∈R QRn.

Message space. The message space is the set {(m0, . . . ,mL−1) : mi ∈ ±{0, 1}lm},

where lm is a parameter and L is the number of blocks.

Signature scheme for blocks. On input message blocks m0, . . . ,mL−1, choose a ran-

dom prime e of length le ≥ lm+1 and select a random number v of length lv > ln+ lm+ lr,

where lr is a security parameter. Compute A such that Z ≡ Rm0
0 · · ·R

mL−1

L−1 SvAe (mod n).

The signature on blocks (m0, . . . ,mL−1) is defined as (A, e, v).

Signature scheme for committed values. On input message blocks m0, . . . ,mL−1,

select v′ ∈R {0, 1}ln+lφ and compute the commitment U = Rm0
0 · · ·R

mL−1

L−1 Sv
′

(mod n),

where lφ is a security parameter. Send the U to the signer. On receipt of U the signer

chooses a random prime e of length le ≥ lm+ 1, selects v′′ ∈R [2lv−1, 2lv −1] and computes

A such that Z ≡ USv
′′
Ae (mod n). The signature (A, e, v′′) on the commitment U is

136 APPENDIX B. VIOLATING ANONYMITY IN RSA-BASED DAA

returned. The signature on the block of messages m0, . . . ,mL−1 is (A, e, v = v′ + v′′). In

order to keep m0, . . . ,mL−1 secret, v must remain secret, while A and e can be public.

Verification algorithm. To verify that the tuple (A, e, v) is indeed a signature on the

block of messages m0, . . . ,mL−1, check that Z ≡ Rm0
0 · · ·R

mL−1

L−1 SvAe (mod n) and ensure

2le > e > 2le−1.

B.2 Protocol description

RSA-based DAA [BCC04] was the first concrete Direct Anonymous Attestation scheme,

and is of particular significance because support is mandated in the TPM specification

version 1.2 which has been implemented and deployed in over 300 million computers. This

section presents a detailed protocol description.

B.2.1 Security parameters

The security parameters ln, lf , lv, le, l
′
e, lφ, lr, lH , lΓ, lρ are defined. The purpose of each will

now be discussed. The number in parentheses represents the proposed values of these

parameters, which have been adopted from the original schema [BCC04]. The parameter

ln (2048) is the size of the RSA modulus and lf (104) is the size of the TPM’s secret

tsk = (f0, f1) values. The size of the random v part of the certificate is specified by lv

(2536); the size of prime e is le (368); and l′e (120) is the size of the interval from which

the e’s are selected. lφ (80) controls the statistical zero-knowledge property, lr (80) is

needed for the reduction in the proof of security and lH (160) is the length of the output

from the hash function used for the Fiat-Shamir heuristic. The parameter lΓ is the size

of the modulus Γ and finally, lρ is the size of the order ρ of the subgroup of Z∗Γ that is

used for rogue tagging. The scheme requires that: le > lφ + lH + max(lf + 4, l′e + 2),

lv > ln + lφ + lH + max(lf + lr + 3, lφ + 2) and lρ = 2lf . Finally, let H(·) and HΓ(·)

be two collision resistant hash functions such that H(·) : {0, 1}∗ → {0, 1}lH and HΓ(·) :

B.2. PROTOCOL DESCRIPTION 137

{0, 1}∗ → {0, 1}lΓ+lφ . It should be noted that collision resistant hash functions exist under

the strong RSA assumption.

B.2.2 Setup algorithm

The description of how an issuer creates a key pair, and a non-interactive proof that the

key values are correctly formed, are shown below (adapted from [BCC04]). The latter

provides an assurance to the host that privacy requirements will be preserved.

1. Choose a special RSA modulus n = pq with p = 2p′ + 1 and q = 2q′ + 1, where

p, p′, q, q′ are all primes and n has ln bits.

2. Select a random generator g′ of QRn.

3. Choose xg, xh, xs, xz, x0, x1 ∈R [1, φ(n)] and compute:

g = g′xg mod n h = g′xh mod n S = hxs mod n

Z = hxz mod n R0 = Sx0 mod n R1 = Sx1 mod n

4. Generate a group of prime order. Pick random primes ρ and Γ such that Γ = rρ+ 1

for some r with ρ - r, 2lΓ−1 < Γ < 2lΓ and 2lρ−1 < ρ < 2lρ . Select γ ∈R Z∗Γ, where

γ(Γ−1)/ρ 6≡ 1 (mod Γ).

5. Produce a non-interactive proof that g, h, S, Z,R0, R1 are computed correctly, that

is, g, h ∈ 〈g′〉, S,Z ∈ 〈h〉 and R0, R1 ∈ 〈S〉.

(a) Choose randoms

x̃(g,1), . . . , x̃(g,lH) ∈R [1, φ(n)] x̃(h,1), . . . , x̃(h,lH) ∈R [1, φ(n)]

x̃(s,1), . . . , x̃(s,lH) ∈R [1, φ(n)] x̃(z,1), . . . , x̃(z,lH) ∈R [1, φ(n)]

x̃(0,1), . . . , x̃(0,lH) ∈R [1, φ(n)] x̃(1,1), . . . , x̃(1,lH) ∈R [1, φ(n)]

138 APPENDIX B. VIOLATING ANONYMITY IN RSA-BASED DAA

(b) Compute for i = 1 to lH

g̃(g,i) = g′x̃(g,i) mod n h̃(h,i) = g′x̃(h,i) mod n

S̃(s,i) = hx̃(s,i) mod n Z̃(z,i) = hx̃(z,i) mod n

R̃(0,i) = Sx̃(0,i) mod n R̃(1,i) = Sx̃(1,i) mod n

(c) Compute

c = H(n‖g′‖g‖h‖S‖Z‖R0‖R1‖g̃(g,1)‖ . . . ‖g̃(g,lH)‖

h̃(h,1)‖ . . . ‖h̃(h,lH)‖S̃(s,1)‖ . . . ‖S̃(s,lH)‖Z̃(z,1)‖ . . . ‖Z̃(z,lH)‖

R̃(0,1)‖ . . . ‖R̃(0,lH)‖R̃(1,1)‖ . . . ‖R̃(1,lH))

(d) Compute for i = 1 to lH , where ci is the ith bit of c

x̂(g,i) = x̃(g,i) − cixg mod φ(n) x̂(h,i) = x̃(h,i) − cixh mod φ(n)

x̂(s,i) = x̃(s,i) − cixs mod φ(n) x̂(z,i) = x̃(z,i) − cixz mod φ(n)

x̂(0,i) = x̃(0,i) − cix0 mod φ(n) x̂(1,i) = x̃(1,i) − cix1 mod φ(n)

(e) Let

proof = (c, x̂(g,1), . . . , x̂(g,lH), x̂(h,1), . . . , x̂(h,lH), x̂(s,1), . . . , x̂(s,lH),

x̂(z,1), . . . , x̂(z,lH), x̂(0,1), . . . , x̂(0,lH), x̂(1,1), . . . , x̂(1,lH))

6. Finally, the public key (n, g′, g, h, S, Z,R0, R1, γ,Γ, ρ) and proof are published. The

private key values p′, q′ are stored by the issuer.

B.2. PROTOCOL DESCRIPTION 139

Verification of the Issuer’s public key

A valid public key is essential to ensure the privacy of the host. Incorrectly formed

g, h, S, Z,R0, R1 values could potentially break this property. Furthermore, if γ does

not generate the subgroup Z∗Γ the issuer can link transactions (signatures presented to

the verifier). The requirement that n is a special RSA modulus ensures that Step 6

of the join algorithm is zero-knowledge. This is of concern to the issuer and is not

important to the security of the host. Verification of an issuer’s public key is shown below

(adapted from [BCC04]). Note that this verification need only be performed once and not

necessarily by every user of a system (that is, in a multi-user environment, it is sufficient

for a single user to perform the verification).

1. Verify the proof, that is check g, h ∈ 〈g′〉, S,Z ∈ 〈h〉 and R0, R1 ∈ 〈S〉. On input:

proof = (c, x̂(g,1), . . . , x̂(g,lH), x̂(h,1), . . . , x̂(h,lH), x̂(s,1), . . . , x̂(s,lH),

x̂(z,1), . . . , x̂(z,lH), x̂(0,1), . . . , x̂(0,lH), x̂(1,1), . . . , x̂(1,lH))

(a) Compute for i = 1 to lH , where ci is the ith bit of c

ĝ(g,i) = gcig′x̂(g,i) mod n ĥ(h,i) = hcig′x̂(h,i) mod n

Ŝ(s,i) = Scihx̂(s,i) mod n Ẑ(z,i) = Zcihx̂(z,i) mod n

R̂(0,i) = Rci
0 S

x̂(0,i) mod n R̂(1,i) = Rci
1 S

x̂(1,i) mod n

(b) Verify

c
?
= H(n‖g′‖g‖h‖S‖Z‖R0‖R1‖ĝ(g,1)‖ . . . ‖ĝ(g,lH)‖

ĥ(h,1)‖ . . . ‖ĥ(h,lH)‖Ŝ(s,1)‖ . . . ‖Ŝ(s,lH)‖Ẑ(z,1)‖ . . . ‖Ẑ(z,lH)‖

R̂(0,1)‖ . . . ‖R̂(0,lH)‖R̂(1,1)‖ . . . ‖R̂(1,lH))

140 APPENDIX B. VIOLATING ANONYMITY IN RSA-BASED DAA

2. Check that Γ and ρ are primes. Ensure ρ | (Γ− 1), ρ - Γ−1
ρ

and γρ ≡ 1 (mod Γ).

3. Check that all public key values have the required length.

B.2.3 Join algorithm

The purpose of the join algorithm is to enable a host/TPM to acquire a CL-signature on a

secret tsk value which can later be used as an anonymous attestation identity credential.

Let PKI = (n, g′, g, h, S, Z,R0, R1, γ,Γ, ρ) be the public key of the issuer and PK ′I the

long term public key of the issuer used to authenticate PKI . The value bsnI is a unique

basename assigned to each issuer and cnt is an internal counter stored within the TPM.

The counter records the number of times the TPM has executed the join algorithm. Prior

to executing the join algorithm, the host is assumed to verify that PKI is authenticated

by PK ′I .

The TPM computes tsk using the issuer’s public key, its secret seed DAASeed and

counter value cnt. Computing tsk from the secret seed DAASeed – as opposed to a

random nonce – reduces the computational and storage requirements of the TPM. The

counter value allows the TPM to obtain different DAA keys using the same DAASeed;

alternatively, the TPM is allowed to re-run the join algorithm using the same cnt value.

The TPM splits the tsk value into two lf bit messages; the pair (f0, f1) allows computation

of smaller exponentials and permits the use of a smaller prime e. The TPM commits to

the message pair (f0, f1), that is, the TPM derives U = Rf0

0 R
f1

1 S
v′ (mod n), where v′ is a

random commitment factor. The TPM also computes NI = ζf0+f12
lf

I (mod Γ) for rogue

tagging purposes. The TPM forwards U,NI to the host who sends them to the issuer.

The TPM and issuer establish a one-way authenticated channel to assure the issuer of the

origin of U . The issuer checks whether tsk stems from a rogue TPM or if NI has been used

too many times previously, in which case it aborts. The platform convinces the issuer that

U,NI are correctly formed, and that the fi’s are of the appropriate lengths. To grant a

certificate, the issuer executes the CL-signature protocol and sends the platform (A, e, v′′).

B.2. PROTOCOL DESCRIPTION 141

The issuer also provides a signature proof of knowledge (Step 7) that A ∈ 〈h〉. The host

verifies the proof and is assured that A can be statistically hidden in 〈h〉, preventing an

adversarial issuer from violating privacy. Note that an adversarial issuer could compute

A = b
(

Z
USv′′

)1/e

(mod n), where be = 1 and b 6∈ 〈h〉. Since the sign algorithm contains

T = ASw for some random w, the adversarial would be able to link T to A (by testing

T ∈ 〈h〉) and thus violate privacy [BCC04]. The pair (A, e) is stored by the host and can

be publicly known. The host forwards v′′ to the TPM; the TPM recovers v = v′ + v′′,

that is, a signature on the TPM’s secret tsk = (f0, f1). The explicit details of the join

algorithm are provided below (adapted from [BCC04]).

1. The host computes ζI = (HΓ(0‖bsnI))(Γ−1)/ρ (mod Γ) and sends ζI to the TPM.

2. The TPM checks whether ζρI
?≡ 1 (mod Γ). Let i = b lρ+lφ

lH
c (i = 1 for the parameters

specified in Section B.2.1). The TPM computes:

tsk = H
(
H
(
DAASeed‖H(PK ′I)

)
‖cnt‖0

)
‖

. . . ‖H
(
H
(
DAASeed‖H(PK ′I)

)
‖cnt‖i

)
(mod ρ),

f0 = LSBlf (tsk), f1 = MSBlf (tsk), v′ ∈R {0, 1}ln+lφ ,

U = Rf0

0 R
f1

1 S
v′ (mod n), NI = ζf0+f12

lf

I (mod Γ)

The TPM forwards U and NI to the host who sends them to the issuer.

3. The issuer checks that the U value stems from the TPM that owns a given public

endorsement key (PKek):

(a) The issuer chooses ne ∈R {0, 1}lφ , encrypts ne with PKek and sends the en-

cryption to the TPM.

(b) The TPM decrypts the value, revealing ne, computes aU = H(U‖ne) and

returns aU to the issuer.

142 APPENDIX B. VIOLATING ANONYMITY IN RSA-BASED DAA

(c) The issuer checks aU
?
= H(U‖ne).

4. The issuer ensures for all (f̃0, f̃1) on the rogue list NI

?

6≡ ζ f̃0+f̃12
lf

I (mod Γ). The

issuer also checks that the NI has not been used too many times. If the issuer finds

the platform to be rogue, it aborts.

5. The platform proves knowledge of f0, f1 and v′. It executes:

SPK{(f0, f1, v
′) : U ≡ Rf0

0 R
f1

1 S
v′ (mod n) ∧ NI ≡ ζf0+f12

lf

I (mod Γ)

∧ f0, f1 ∈ {0, 1}lf+lφ+lH+2 ∧ v′ ∈ {0, 1}ln+lφ+lh+2}(nt‖ni)

(a) The TPM chooses rf0 , rf1 ∈R {0, 1}lf+lφ+lH and rv′ ∈R {0, 1}ln+lφ+lH+2. It

computes Ũ = R
rf0
0 R

rf1
1 Srv′ (mod n), ÑI = ζ

rf0+rf1+2
lf

I (mod Γ) and sends

Ũ , ÑI to the host.

(b) The issuer selects ni ∈R {0, 1}lH and sends it to the host.

(c) The host computes ch = H(n‖R0‖R1‖S‖U‖NI‖Ũ‖ÑI‖ni) and sends ch to the

TPM.

(d) The TPM picks nt ∈R {0, 1}lφ , computes c = H(ch‖nt), and calculates sf0 =

rf0+c·f0, sf1 = rf1+c·f1 and sv′ = rv′+c·v′. The TPM sends (c, nt, sf0 , sf1 , sv′)

to the host, who forwards to the issuer.

(e) The issuer computes:

Û = ±U−cRsf0
0 R

sf1
1 Ssv′ (mod n) and N̂I = N−cI ζ

sf0+sf12
lf

I (mod Γ)

and verifies the proof by checking:

c
?
= H

(
H(n‖R0‖R1‖S‖U‖NI‖Ũ‖ÑI‖ni)‖nt

)
,

sf0 , sf1

?
∈ {0, 1}lf+lφ+lH+1 and sv′

?
∈ {0, 1}ln+2lφ+lH+1

B.2. PROTOCOL DESCRIPTION 143

6. The issuer chooses v′′ ∈R [2lv , 2lv−1], a prime e ∈R [2le−1, 2le−1+2l
′
e−1] and computes

Z = USv
′′
Ae (mod n). That is, the issuer produces a CL-signature on U.

7. To convince the host that A was correctly formed, the issuer runs the protocol:

SPK{(d) : A ≡ ±
(

Z

USv′′

)d
(mod n)}(nh)

(a) The host selects nh ∈R {0, 1}lφ and sends nh to the issuer.

(b) The issuer chooses re ∈R [0, φ(n)] and computes:

Ã =

(
Z

USv′′

)re
(mod n),

c′ = H(n‖Z‖S‖U‖v′′‖A‖Ã‖nh), se = re − c′/e mod φ(n)

and sends c′, se and (A, e, v′′) to the host.

(c) The host verifies that e is prime and e ∈ [2le−1, 2le−1 + 2l
′
e−1], computes:

Â = Ac
′
(

Z

USv′′

)se
(mod n)

and checks that:

c′
?
= H(n‖Z‖S‖U‖v′′‖A‖Â‖nh)

(d) The host forwards v′′ to the TPM, which in turn stores v = v′′ + v′.

B.2.4 Sign algorithm

The sign algorithm enables the host to generate a signature proof of knowledge of at-

testation on a message m. Intuitively, if a verifier is presented with such a proof, it is

convinced that it is communicating with a trusted platform and the message is genuine.

In addition, the host must convince the verifier that it is not rogue. The message m may

144 APPENDIX B. VIOLATING ANONYMITY IN RSA-BASED DAA

be either a public part of an Attestation Identity Key (AIK) produced by the TPM or

an arbitrary message. If m is an AIK, the key can later be used to sign PCR data or

to certify a non-migratable key. Where m is an arbitrary message its purpose is appli-

cation dependent. It may, for example, be a session key. To distinguish between these

two modes of operation, a variable b is defined. When b = 0, the message was generated

by the TPM and when b = 1, the message was input to the TPM. Let nv ∈ {0, 1}lH

be a nonce generated by the verifier and bsn the verifier’s basename. The algorithm

is described below (adapted from [BCC04, BCC05]), as a result of which the signature

σ = (ζ, T,NV , c, nt, sv̄, sf0 , sf1 , se) will be produced. Many of the secrets involved in the

process are actually known to the host. In fact only f0, f1, v need to remain secret to the

TPM.

1. (a) Depending on whether linkability is desirable, the host computes ζ as follows:

ζ ∈R 〈γ〉 or ζ = (HΓ(0‖bsn))(Γ−1)/ρ (mod Γ)

and sends ζ to the TPM.

(b) The TPM checks ζ
?
∈ 〈γ〉; that is, it verifies ζρ

?≡ 1 (mod Γ).

2. (a) The host picks w ∈R {0, 1}ln+lφ and computes T = ASw (mod n).

(b) The TPM computes NV = ζf0+f12
lf

(mod Γ) and sends NV to the host.

3. The platform produces a signature of knowledge that T commits to an attestation

certificate and NV was computed using the same secret value f0, f1:

SPK{(f0, f1, v̄, e) : Z ≡ ±T eRf0

0 R
f1

1 S
v̄ (mod n) ∧ NV ≡ ±ζf0+f12

lf
(mod Γ)

∧ f0, f1 ∈ {0, 1}lf+lφ+lH+2 ∧ (e− 2le) ∈ {0, 1}l′e+lφ+lH+1}(nt‖nv‖b‖m)

(a) i. The TPM chooses random integers rv ∈R {0, 1}lv+lφ+lH and

B.2. PROTOCOL DESCRIPTION 145

rf0 , rf1 ∈R {0, 1}lf+lφ+lH and computes:

T̃1t = R
rf0
0 R

rf1
1 Srv (mod n)

r̃f = rf0 + rf12lf (mod ρ) ÑV = ζ r̃f (mod Γ)

The TPM sends T̃1t and ÑV to the host1.

ii. The host selects random integers:

re ∈R {0, 1}l
′
e+lφ+lH rv̄ ∈R {0, 1}le+ln+2lφ+lH+1

and computes T̃ = T̃tT
reSrv̄ (mod n).

(b) i. The host computes:

ch = H(n‖g‖g′‖h‖R0‖R1‖S‖Z‖γ‖Γ‖ρ‖ζ‖T‖NV ‖T̃‖ÑV ‖nv)

and sends ch to the TPM.

ii. The TPM picks nt ∈R {0, 1}lφ , computes c = H
(
H(ch‖nt)‖b‖m

)
and

sends c, nt to the host.

(c) i. The TPM computes

sv = rv + c · v sf0 = rf0 + c · f0 sf1 = rf1 + c · f1

and sends sv, sf0 , sf1 to the host.

ii. The host computes:

se = re + c · (e− 2le−1) sv̄ = sv + rv − c · w · e

1Note that ζ r̃f ≡ ζf0+f12
lf

(mod Γ) and the order of ρ < Γ the calculation ζ r̃f (mod Γ) will involve
a smaller exponential thus providing a performance gain.

146 APPENDIX B. VIOLATING ANONYMITY IN RSA-BASED DAA

4. The host outputs the signature σ = (ζ, T,NV , c, nt, sv̄, sf0 , sf1 , se).

The main difference between the DAA signing algorithm and the signature generation

of prior schemes [CL01, Lys02, CL03] is that DAA distributes the computation be-

tween the TPM and the host. The TPM only produces a signature proof of knowledge

SPK{(f0, f1, v) : (Z/Ae) ≡ Rf0

0 R
f1

1 S
v (mod n) ∧ NV ≡ ζf0+f12

lf
(mod Γ)}(nt‖nv‖b‖m),

which the host extends to a full DAA signature. Note that the signature produced by the

TPM is not anonymous, as the value (Z/Ae) would fully identify the host.

B.2.5 Verification algorithm

The verification algorithm defines the method by which a verifier checks a signature σ on

message m with respect to the issuer’s public key (n, g′, g, h, S, Z,R0,

R1, γ,Γ, ρ). The algorithm is described below (adapted from [BCC04, BCC05]).

1. The verifier computes:

T̂ = Z−cT se+c2
le−1

R
sf0
0 R

sf1
1 Ssv̄ (mod n) N̂V = N−cV ζsf0+sf1 (mod Γ)

2. The verifier checks:

c
?
= H

(
H
(
H(n‖g‖g′‖h‖R0‖R1‖S‖Z‖γ‖Γ‖ρ‖ζ‖T‖NV ‖T̂‖N̂V ‖nv)‖nt

)
‖b‖m

)
,

NV , ζ
?
∈ 〈γ〉, sf0 , sf1

?
∈ {0, 1}lf+lφ+lH+1 and se

?
∈ {0, 1}l′e+lφ+lH+1

Note that the check NV , ζ
?
∈ 〈γ〉 can be done by raising NV and ζ to the order of γ

(which is ρ) and verifying the result is one; that is, checking that

Nρ
V

?≡ 1 (mod Γ) and ζρ
?≡ 1 (mod Γ).

3. If ζ was derived from the verifier’s basename, check that ζ
?≡ (HΓ(0‖bsnI))(Γ−1)/ρ

(mod Γ).

4. The verifier checks for all (f̃0, f̃1) on the rogue list that NI

?

6≡ ζ f̃0+f̃12
lf

I (mod Γ).

B.3. SPECIFICATION ANALYSIS: VIOLATING ANONYMITY 147

B.3 Specification analysis: Violating anonymity

Suppose a trusted platform, with a public endorsement key PKek, executes the join and

sign algorithm using the same basename bsn (such that bsn 6=⊥). Further assume that

the issuer has a public key (n, g′, g, h, S, Z,R0, R1, γ,Γ, ρ), which the trusted platform

has verified, and the security parameter lf is used. During Step 2 of the join algorithm,

the platform computes NI = ζf0+f12
lf

I (mod Γ), where ζI = (HΓ(0‖bsn))(Γ−1)/ρ (mod Γ),

f0 = LSBlf (tsk) and f1 = MSBlf (tsk). The value NI is sent to the issuer. The

platform then authenticates using the identity PKek. During Step 2 of the sign algorithm,

the platform computes NV = ζf0+f12
lf

(mod Γ), where ζ = (HΓ(0‖bsn))(Γ−1)/ρ (mod Γ),

f0 = LSBlf (tsk) and f1 = MSBlf (tsk). The value NV is sent to the verifier. It follows

immediately that NI = NV and, moreover, NI can be linked to the identity PKek; that

is, the privacy of the trusted platform is violated.

B.4 Specification solution: Restoring anonymity

The protocol can be fixed by refining Step 1 of the sign algorithm to use

ζ = (HΓ(1‖bsn))(Γ−1)/ρ (mod Γ)

when linkability is required. To maintain correctness of the protocol, Step 3 of the ver-

ification algorithm must check ζ
?≡ (HΓ(1‖bsnI))(Γ−1)/ρ (mod Γ). Appendix C.2 shows

that the revised protocol satisfies user-controlled anonymity in the formal model.

148 APPENDIX B. VIOLATING ANONYMITY IN RSA-BASED DAA

C
RSA-based DAA with

user-controlled anonymity

Section 4.4.5 presents an analysis of user-controlled anonymity in the RSA-based DAA

protocol and discovers a vulnerability. The proof of this result appears in Section C.1.

A security fix was presented in Section 4.4.6, and we prove that the solution satisfies

user-controlled anonymity in Section C.2.

C.1 Proof of Theorem 4.2

Proof. Let DAARSA be the augmented Direct Anonymous Attestation biprocess derived

from the specification 〈JoinRSA, SignRSA〉. Let us consider the evaluation context

C[] = c〈(pk(skI), bsn)〉.

c(w).c(x).c〈penc(w, n, ne)〉.c(za).if za = hash(ne, π2(x)) then

c〈ni〉.c(zs).c〈clsign(skI , e, v
′′, π2(x))〉.

c(w′).c(x′).c〈penc(w′, n, ne)〉.c(z′a).if z′a = hash(ne, π2(x′)) then

c〈ni〉.c(z′s).c〈clsign(skI , e, v
′′, π2(x′))〉.

c〈(bsn,msg)〉.c〈nv〉.c(y).if π1(x) = π3(y) then b〈fail〉 else 0 |

We have

fst(C[DAARSA]) −→∗ C ′[if commit(tsk, ζI) = commit(tsk, ζ) then b〈fail〉 else 0]

150 APPENDIX C. DAA WITH USER-CONTROLLED ANONYMITY

and

snd(C[DAARSA]) −→∗ C ′[if commit(tsk, ζI) = commit(tsk′, ζ) then b〈fail〉 else 0]

where

tsk = hash(hash(DAASeed, hash(pk(skI))), cnt, 0)

tsk′ = hash(hash(DAASeed′, hash(pk(skI))), cnt
′, 0)

ζI = hash(0, bsn)

ζ = hash(0, bsn)

It follows that fst(C[DAARSA]) 6∼ snd(C[DAARSA]) because fst(C[DAARSA]) can output

on channel b, but snd(C[DAARSA]) cannot; and therefore DAARSA does not satisfy user-

controlled anonymity.

C.2 Analysis: Restoring user-controlled anonymity

This section provides the scripts used to automatically verify that the revised RSA-based

DAA protocol (Section 4.4.6) satisfies user-controlled anonymity. The free name decla-

rations, function definitions and equations for the RSA-based DAA process specification

appear in Listing C.1; the join algorithm JoinRSA′ is presented in Listing C.2, and the sign

algorithm SignRSA′ appears in Listing C.3. Finally, the augmented Direct Anonymous

Attestation biprocess DAARSA′ is presented in Listing C.4. (The nonce XXTERMINATION is

introduced to avoid an over-approximation issue.) ProVerif can be used to automatically

verify observational equivalence of Listing C.4 and hence the revised RSA-based DAA

protocol satisfies user-controlled anonymity.

Optimised analysis. The ProVerif script in Listing C.4 has an execution time of 6

minutes 43 seconds By removing the name restrictions on the secret part of the endorse-

ment key for each signer, the execution time is reduced to 92 seconds. This optimised

script is presented in Listing C.5.

C.2. ANALYSIS: RESTORING USER-CONTROLLED ANONYMITY 151

fun accept /0 .
fun zero /0 .
fun one /0 .
fun FJoin /0 .
fun FSign /0 .
fun c l ge tnonce /1 .
fun c l ge tpr ime /1 .
fun hash /1 .
fun pk /1 .
fun commit /2 .
fun c i r c /2 .
fun dec /2 .
fun open /2 .
fun c h e c k c l s i g n /3 .
fun checkspk /3 .
fun clcommit /3 .
fun c lopen /3 .
fun penc /3 .
fun spk /3 .
fun c l s i g n /4 .

equation dec (k , penc (pk (k) , r ,m)) = m.
equation c l ge tpr ime (c l s i g n (xsk , xprime , xrand , xmsg)) = xprime .
equation c l ge tnonce (c l s i g n (xsk , xprime , xrand , xmsg)) = xrand .
equation c h e c k c l s i g n (pk (xsk) , xmsg , c l s i g n (xsk , xprime , xrand , xmsg))

= accept .
equation open (xrand , commit (xrand , xp la in)) = xp la in .
equation c lopen (x , xrand , clcommit (x , xrand , xp la in)) = xp la in .
equation c lopen (pk (xsk) , xrand , c l s i g n (xsk , yprime , yrand ,

clcommit (pk (xsk) , xrand , xmsg))) = c l s i g n (xsk , yprime , xrand , xmsg) .
equation checkspk (FJoin , (xzeta , xpk , commit (xtsk , xzeta) ,

clcommit (xpk , xv , xtsk) , xmsg) ,
spk (FJoin , (xtsk , xv) , (xzeta , xpk , commit (xtsk , xzeta) ,

clcommit (xpk , xv , xtsk) , xmsg))) = accept .
equation checkspk (FSign , (xzeta , pk (xsk) , commit (xtsk , xzeta) ,

clcommit (pk (xsk) ,xw , c l s i g n (xsk , xe , xv , xtsk)) , xmsg) ,
spk (FSign , (xtsk , xw) , (xzeta , pk (xsk) , commit (xtsk , xzeta) ,

clcommit (pk (xsk) ,xw , c l s i g n (xsk , xe , xv , xtsk)) , xmsg))) = accept .

Listing C.1: Free name declarations, function definitions and equations for DAARSA′

152 APPENDIX C. DAA WITH USER-CONTROLLED ANONYMITY

l e t j o i n =
in (aj , ((pkI , bsnI) ,DAASeed , cnt , skM)) ;

new v ’ ;
l e t z e t a I = hash ((zero , bsnI)) in
l e t t sk = hash ((hash ((DAASeed , hash (pkI))) , cnt , ze ro)) in
l e t NI = commit (tsk , z e t a I) in
l e t U = clcommit (pkI , v ’ , t sk) in
out (c , (NI ,U)) ;

in (c , encNe) ;
l e t ne = dec (skM , encNe) in
out (c , hash ((U, ne))) ;

in (c , n i) ;
new nt ;
out (c , (nt , spk (FJoin , (tsk , v ’) , (ze ta I , pkI , NI ,U, (nt , n i))))) ;

in (c , s i g) ;
l e t c r e = clopen (pkI , v ’ , s i g) in
i f c h e c k c l s i g n (pkI , tsk , c r e) = accept then

out (aj ’ , (cre , t sk)) .

Listing C.2: ProVerif script modelling JoinRSA′

l e t s i gn =
in (as , ((pkI , bsnI) , bsnV ,m, cre , tsk ,xxTERMINATION)) ;
in (c , nv) ;
new nt ;new w;

i f bsnV = bottom then (
new ze ta ;
l e t creHat = clcommit (pkI ,w, c r e) in
l e t NV = commit (tsk , ze ta) in
out (as ’ , (zeta , pkI ,NV, creHat , nt ,

spk (FSign , (tsk ,w) , (zeta , pkI ,NV, creHat , (nt , nv ,m)))))
) else (

l e t ze ta = hash ((one , bsnV)) in
l e t creHat = clcommit (pkI ,w, c r e) in
l e t NV = commit (tsk , ze ta) in
out (as ’ , (zeta , pkI ,NV, creHat , nt ,

spk (FSign , (tsk ,w) , (zeta , pkI ,NV, creHat , (nt , nv ,m)))))
) .

Listing C.3: ProVerif script modelling SignRSA′

C.2. ANALYSIS: RESTORING USER-CONTROLLED ANONYMITY 153

free c .
free chlP .
free chlM .

fun bottom /0 .

l e t SignerP =
new a j ;new aj ’ ;new as ;new as ’ ; (! j o i n) | (! s i gn) | (

new cnt ;new DAASeed ;new skM ; out (c , pk (skM)) ;
! out (aj , (wparams , DAASeed , cnt , skM)) ;
in (aj ’ , (cre , t sk)) ;
(!

in (c , (xmsg,=bottom)) ;new XXTERMINATION;
out (as , (wparams , bottom , xmsg , cre , tsk ,XXTERMINATION)) ;
in (as ’ , z) ; out (c , z)

) | (!
in (c , (xmsg , xbsn)) ;new XXTERMINATION;
out (as , (wparams , (chlP , xbsn) , xmsg , cre , tsk ,XXTERMINATION)) ;
in (as ’ , z) ; out (c , z)

) | (
out (wb , (cre , t sk))

)
) .

l e t Chal lenge =
new as ;new as ’ ; (s i gn) | (

in (bA, (creA , tskA)) ;
in (bB , (creB , tskB)) ;
l e t c r e = choice [creA , creB] in
l e t t sk = choice [tskA , tskB] in
(

in (c , (xmsg,=bottom)) ;new XXTERMINATION;
out (as , (wparams , bottom , xmsg , cre , tsk ,XXTERMINATION)) ;
in (as ’ , x) ; out (c , x)

) | (
in (c , (xmsg , xbsn)) ;new XXTERMINATION;
out (as , (wparams , (chlM , xbsn) , xmsg , cre , tsk ,XXTERMINATION)) ;
in (as ’ , x) ; out (c , x)

)
) .

process
in (c , wparams) ;new bA;new bB ;
(l e t wb = bA in SignerP) |
(l e t wb = bB in SignerP) |
(Chal lenge)

Listing C.4: ProVerif script modelling user-controlled anonymity in DAARSA′

154 APPENDIX C. DAA WITH USER-CONTROLLED ANONYMITY

free c .
free chlP .
free chlM .
free skA , skB .

fun bottom /0 .

l e t SignerP =
new a j ;new aj ’ ;new as ;new as ’ ; (! j o i n) | (! s i gn) | (

new cnt ;new DAASeed ;
! out (aj , (wparams , DAASeed , cnt , skM)) ;
in (aj ’ , (cre , t sk)) ;
(!

in (c , (xmsg,=bottom)) ;new XXTERMINATION;
out (as , (wparams , bottom , xmsg , cre , tsk ,XXTERMINATION)) ;
in (as ’ , z) ; out (c , z)

) | (!
in (c , (xmsg , xbsn)) ;new XXTERMINATION;
out (as , (wparams , (chlP , xbsn) , xmsg , cre , tsk ,XXTERMINATION)) ;
in (as ’ , z) ; out (c , z)

) | (
out (wb , (cre , t sk))

)
) .

l e t Chal lenge =
new as ;new as ’ ; (s i gn) | (

in (bA, (creA , tskA)) ;
in (bB , (creB , tskB)) ;
l e t c r e = choice [creA , creB] in
l e t t sk = choice [tskA , tskB] in
(

in (c , (xmsg,=bottom)) ;new XXTERMINATION;
out (as , (wparams , bottom , xmsg , cre , tsk ,XXTERMINATION)) ;
in (as ’ , x) ; out (c , x)

) | (
in (c , (xmsg , xbsn)) ;new XXTERMINATION;
out (as , (wparams , (chlM , xbsn) , xmsg , cre , tsk ,XXTERMINATION)) ;
in (as ’ , x) ; out (c , x)

)
) .

process
in (c , wparams) ;new bA;new bB ;
(l e t (wb, skM) = (bA, skA) in SignerP) |
(l e t (wb, skM) = (bB, skB) in SignerP) |
(Chal lenge)

Listing C.5: Optimised ProVerif script modelling user-controlled anonymity in DAARSA′

D
ProVerif scripts supporting Chapter 5

The proof of claims made in Example 5.3 can be automatically verified using Listing D.1

as input to ProVerif, and Example 5.7 can be checked using Listing D.2.

free c , k ,m, n , s .

query ev : eventM () ==> ev : eventK () .
query ev : eventN () ==> ev : eventK () .
query ev : eventS () ==> ev : eventK () .

process
new a1 ;new a2 ;new a3 ;new a4 ;new a5 ;new a6 ;new a7 ;new a8 ;
(

out (a1 , a1) ; in (a3 , x) ; (* sync 1 *)

event eventK () ;
out (c , k) ;
out (a5 , a5) ; in (a7 , x ’) ; (* sync 2 *)

event eventM () ;
out (c ,m)

) | (
out (a2 , a2) ; in (a6 , y) ; (* sync 2 *)

event eventN () ;
out (c , n)

) | (
out (a4 , a2) ; in (a8 , y) ; (* sync 3 *)

event eventS () ;
out (c , s)

) | (
in (a1 , x) ; out (a3 , x) ; (* sync 1 *)

in (a5 , x ’) ; in (a2 , y) ; out (a7 , x ’) ; out (a6 , y) ; (* sync 2 *)

in (a4 , z) ; out (a8 , z) (* sync 3 *)

)

Listing D.1: Analysis of barrier synchronisation behaviour in support of Example 5.3

156 APPENDIX D. PROVERIF SCRIPTS SUPPORTING CHAPTER 5

free c , k ,m, n , s .

fun bot /0 .
fun pa i r /2 .

reduc f s t (pa i r (x , y)) = x .
reduc snd (pa i r (x , y)) = y .

process
new a1 ;new a2 ;new a3 ;new a4 ;new a5 ;new a6 ;new a7 ;new a8 ;
(

(* start sync 1 *)

out (a1 , choice [a1 , pa i r (c , pa i r (k , pa i r (m, bot)))]) ;
in (a3 , x) ;
(* end sync 1 *)

out (choice [c , f s t (x)] , choice [k , f s t (snd (x))]) ;

(* start sync 2 *)

out (a5 , choice [a5 , pa i r (f s t (x) , pa i r (f s t (snd (snd (x))) , bot))]) ;
in (a7 , x ’) ;
(* end sync 2 *)

out (choice [c , f s t (x ’)] , choice [m, f s t (snd (x ’))])
) | (

(* start sync 2 *)

out (a2 , choice [a2 , pa i r (c , pa i r (n , bot))]) ;
in (a6 , y) ;
(* end sync 2 *)

out (choice [c , f s t (y)] , choice [n , f s t (snd (y))])
) | (

(* start sync 3 *)

out (a4 , choice [a4 , pa i r (c , pa i r (s , bot))]) ;
in (a8 , z) ;
(* end sync 3 *)

out (choice [c , f s t (z)] , choice [s , f s t (snd (z))])
) | (

in (a1 , x) ; out (a3 , x) ; (* sync 1 *)

in (a5 , x ’) ; in (a2 , y) ; out (a7 , x ’) ; out (a6 , y) ; (* sync 2 *)

in (a4 , z) ; out (a8 , z) (* sync 3 *)

)

Listing D.2: Analysis of ∆(P) ∼ Q in support of Example 5.7

E
Privacy results using ProSwapper

Chapter 5 introduces a methodology to automatically analyse equivalence properties

between processes which use barrier synchronisation. This technique has been imple-

mented as a tool called ProSwapper which is available online: http://www.bensmyth.

com/proswapper.php. More precisely, ProSwapper implements the compiler specified by

Definition 5.7. It takes processes with barriers as input and outputs a process, defined

over the standard ProVerif syntax, with the possible swapping processes defined by pro-

cess macros. If ProVerif can prove equivalence for a particular swapping process, then the

input script should satisfy observational equivalence. The ProSwapper output included

in this appendix was produced by ProSwapper version 0.2 alpha.

Several of the examples in Chapter 5 have been automatically verified using ProSwap-

per. Listing E.1 models Example 5.8 (pp106) which can be compiled using ProSwapper

to produce Listing E.2, and automatically analysed using ProVerif. (For readability, the

swapping process used to prove observational equivalence is included and the alternative

swapping processes are omitted.) The remainder of this appendix considers vote pri-

vacy in the FOO electronic voting protocol (Section E.1) and privacy in vehicular ad-hoc

network (Section E.2)

158 APPENDIX E. PRIVACY RESULTS USING PROSWAPPER

free c ,m, n .

process
(

out (c ,m) ;
sync 1 ;
out (c , choice [m, n])

) | (
sync 1 ;
out (c , choice [n ,m])

)

Listing E.1: ProSwapper input script in support of Example 5.8

free c ,m, n .

process
new aaa ’ 1 ;new aaa ’ 2 ;new aaa ’ 3 ;new aaa ’ 4 ;
(

out (c ,m) ;
out (aaa ’ 1 , (n ,m, c)) ;
in (aaa ’ 2 , (xxx ’ 1 , xxx ’ 2 , xxx ’ 3)) ;
out (xxx ’ 3 , choice [xxx ’ 2 , xxx ’ 1])

) | (
out (aaa ’ 3 , (m, n , c)) ;
in (aaa ’ 4 , (xxx ’ 1 , xxx ’ 2 , xxx ’ 3)) ;
out (xxx ’ 3 , choice [xxx ’ 2 , xxx ’ 1])

) | (
in (aaa ’ 3 , y1) ; in (aaa ’ 1 , y2) ;
out (aaa ’ 4 , choice [y1 , y2]) ; out (aaa ’ 2 , choice [y2 , y1])

)

Listing E.2: ProSwapper output script in support of Example 5.8

E.1. PRIVACY IN ELECTRONIC VOTING 159

E.1 Privacy in electronic voting

Section 5.3.1 presents an analysis of privacy in the FOO electronic voting protocol. This

section provides the scripts used to automatically perform this analysis. The free name

declarations, function definitions and equations appear in Listing E.3. The encoding (List-

ing E.4) of vote privacy follows immediately from pp109 and this script can be provided as

input to ProSwapper to produce Listing E.5. This listing can be automatically analysed

with ProVerif.

E.2 Privacy in vehicular ad-hoc networks

Dahl, Delaune & Steel [DDS10] adopt the notion of swapping defined in [DRS08] to

analyse privacy in the CMIX vehicular ad-hoc networking protocol [FRF+07]. In this

section, [DDS10] will be revisited to show that ProSwapper can be used to automati-

cally prove privacy. First, we recall the model used by Dahl, Delaune & Steel. List-

ing E.6 contains the free name declarations, function definitions and equations as spec-

ified by [DDS10]; and Listings E.7 & E.8 present the ProVerif script manually derived

using [DRS08] (see [DDS10] for the original encoding without swapping). Listing E.9

presents a variant of Listings E.7 & E.8 written by Dahl, suitable for input to ProSwap-

per; the relative complexity of the encodings should illustrate the benefits of our abstrac-

tion. The ProSwapper input script can be compiled to produce Listing E.10, which can

be automatically analysed using ProVerif. The execution times are comparable: ProVerif

takes 44ms to analyse Listings E.7/E.8, and 30ms to analyse Listing E.10 (the associated

compile time is negligible).

160 APPENDIX E. PRIVACY RESULTS USING PROSWAPPER

free c .

free skR , skA , skB .

fun s /0 .
fun s ’ / 0 .
fun t rue /0 .
fun b l ind /2 .
fun unbl ind /2 .
fun open /2 .
fun commit /2 .
fun pk /1 .
fun getmsg /1 .
fun s i gn /2 .
fun checks ign /2 .

equation unbl ind (x , s i gn (y , b l ind (x , z))) = s i gn (y , z) .
equation unbl ind (x , b l ind (x , y)) = y .
equation open (x , commit (x , y)) = y .
equation checks ign (pk (x) , s i gn (x , y)) = true .
equation getmsg (s i gn (x , y)) = y .

Listing E.3: Free name declarations, function definitions and equations for FOO

l e t f oo =
new k ;new k ’ ;
l e t M = commit (k , Xvote) in
l e t MM = bl ind (k ’ ,M) in
out (c , (pk (Xsk) , s i gn (Xsk ,MM))) ;
in (c , y) ;
i f checks ign (pk (skR) , y) = true then
i f getmsg (y) = MM then
l e t M’ = unbl ind (k ’ , y) in
sync 1 ;
out (c , (M,M’)) ;
sync 2 ;
in (c , (z ,=M,=M’)) ;
out (c , (z , k)) .

process
(l e t (Xsk , Xvote) = (skA , choice [s , s ’]) in f oo)

| (l e t (Xsk , Xvote) = (skB , choice [s ’ , s]) in f oo)

Listing E.4: ProSwapper input script modelling vote privacy in FOO

E.2. PRIVACY IN VEHICULAR AD-HOC NETWORKS 161

process
new aaa ’ 1 ;new aaa ’ 2 ;new aaa ’ 3 ;new aaa ’ 4 ;
new aaa ’ 5 ;new aaa ’ 6 ;new aaa ’ 7 ;new aaa ’ 8 ;
(

l e t (Xsk , Xvote) = (skA , choice [s () , s ’ ()]) in
new k ;new k ’ ;
l e t M = commit (k , Xvote) in
l e t MM = bl ind (k ’ ,M) in
out (c , (pk (Xsk) , s i gn (Xsk ,MM))) ;
in (c , y) ;
i f checks ign (pk (skR) , y) = true () then
i f getmsg (y) = MM then
l e t M’ = unbl ind (k ’ , y) in
out (aaa ’ 1 , (k ,M’ ,M, c)) ;
in (aaa ’ 2 , (xxx ’ 1 , xxx ’ 2 , xxx ’ 3 , xxx ’ 4)) ;
out (xxx ’ 4 , (xxx ’ 3 , xxx ’ 2)) ;
out (aaa ’ 3 , (xxx ’ 1 , xxx ’ 4 , xxx ’ 2 , xxx ’ 3)) ;
in (aaa ’ 4 , (xxx ’ 1 , xxx ’ 2 , xxx ’ 3 , xxx ’ 4)) ;
in (xxx ’ 2 , (z ,=xxx ’4 ,=xxx ’ 3)) ;
out (xxx ’ 2 , (z , xxx ’ 1))

) | (
l e t (Xsk , Xvote) = (skB , choice [s ’ () , s ()]) in
new k ;new k ’ ;
l e t M = commit (k , Xvote) in
l e t MM = bl ind (k ’ ,M) in
out (c , (pk (Xsk) , s i gn (Xsk ,MM))) ;
in (c , y) ;
i f checks ign (pk (skR) , y) = true () then
i f getmsg (y) = MM then
l e t M’ = unbl ind (k ’ , y) in
out (aaa ’ 5 , (k ,M’ ,M, c)) ;
in (aaa ’ 6 , (xxx ’ 1 , xxx ’ 2 , xxx ’ 3 , xxx ’ 4)) ;
out (xxx ’ 4 , (xxx ’ 3 , xxx ’ 2)) ;
out (aaa ’ 7 , (xxx ’ 1 , xxx ’ 4 , xxx ’ 2 , xxx ’ 3)) ;
in (aaa ’ 8 , (xxx ’ 1 , xxx ’ 2 , xxx ’ 3 , xxx ’ 4)) ;
in (xxx ’ 2 , (z ,=xxx ’4 ,=xxx ’ 3)) ;
out (xxx ’ 2 , (z , xxx ’ 1))

) | (
in (aaa ’ 5 , y1) ; in (aaa ’ 1 , y2) ;
out (aaa ’ 6 , choice [y1 , y2]) ; out (aaa ’ 2 , choice [y2 , y1]) ;
in (aaa ’ 7 , y3) ; in (aaa ’ 3 , y4) ;
out (aaa ’ 8 , choice [y3 , y3]) ; out (aaa ’ 4 , choice [y4 , y4])

)

Listing E.5: ProSwapper output script modelling vote privacy in FOO

162 APPENDIX E. PRIVACY RESULTS USING PROSWAPPER

free c , ack , r eque s t .
free ente rLe f t , enterRight , zone , e x i t L e f t , ex i tR ight .

private free sk .
private free prsu , krsu , kc .
private free pva1 , kva1 , pva2 , kva2 , pvb1 , kvb1 , pvb2 , kvb2 .

fun pk /1 .
fun s i gn /2 .
fun enc /2 .
fun senc /3 .

reduc getmess (s i gn (x , y)) = x .
reduc checks ign (s i gn (x , y) , pk (y)) = x .
reduc decrypt (enc (x , pk (y)) , y) = x .
reduc sdecrypt (senc (x , y , r) , y) = x .

Listing E.6: Free name declarations, function definitions and equations for [DDS10]

E.2. PRIVACY IN VEHICULAR AD-HOC NETWORKS 163

l e t rsu =
in (c ,X) ;
l e t (SignaturePart , C e r t i f i c a t e P a r t) = X in
l e t (Pv , PkKv) = checks ign (C e r t i f i c a t e P a r t , pk (kc)) in
l e t (=request , Ts,=Pv) = checks ign (SignaturePart ,PkKv) in
out (c , (enc (s i gn ((Pv , sk , Ts) , krsu) ,PkKv) , s i gn ((prsu , pk (krsu)) , kc))) .

l e t carBe fo re =
out (enter , pv1) ;

new t s ;
out (enter , (s i gn ((request , ts , pv1) , kv1) , s i gn ((pv1 , pk (kv1)) , kc))) ;
in (enter ,X) ;
l e t (encedPart , C e r t i f i c a t e P a r t) = X in
l e t (Prsu , PkKrsu) = checks ign (C e r t i f i c a t e P a r t , pk (kc)) in
l e t SignaturePart = decrypt (encedPart , kv1) in
l e t (=pv1 , sk ,= t s) = checks ign (SignaturePart , PkKrsu) in

new r ; out (zone , senc (pv1 , sk , r)) ;

out (pcPv1 , pv1) ;
out (pcKv1 , kv1) ;
out (pcPv2 , pv2) ;
out (pcKv2 , kv2) ;
out (pcSk , sk) ;
out (pcExit , e x i t) .

l e t ca rAf t e r =
new r ;new r ’ ;

out (ex i t , senc (pv1 , sk , r)) ;
out (ex i t , senc (pv2 , sk , r ’)) ;

out (ex i t , pv2) .

Listing E.7: ProVerif script modelling privacy in [DDS10] with manual swapping, Part I

164 APPENDIX E. PRIVACY RESULTS USING PROSWAPPER

process
out (c , pk (kc)) ; out (c , pk (krsu)) ;
(

! r su
) | (
new pcaExit ;new pcaKv1 ;new pcaKv2 ;new pcaPv1 ;new pcaPv2 ;new pcaSk ;
new pcbExit ;new pcbKv1 ;new pcbKv2 ;new pcbPv1 ;new pcbPv2 ;new pcbSk ;
(

l e t (kv1 , kv2 , pv1 , pv2) = (kva1 , kva2 , pva1 , pva2) in
l e t (pcKv1 , pcKv2 , pcPv1 , pcPv2) = (pcaKv1 , pcaKv2 , pcaPv1 , pcaPv2) in
l e t ente r = e n t e r L e f t in
l e t e x i t = choice [e x i t L e f t , ex i tR ight] in
l e t pcExit = pcaExit in
l e t pcSk = pcaSk in
carBe fo re

) | (
l e t (kv1 , kv2 , pv1 , pv2) = (kvb1 , kvb2 , pvb1 , pvb2) in
l e t (pcKv1 , pcKv2 , pcPv1 , pcPv2) = (pcbKv1 , pcbKv2 , pcbPv1 , pcbPv2) in
l e t ente r = enterRight in
l e t e x i t = choice [ex i tRight , e x i t L e f t] in
l e t pcExit = pcbExit in
l e t pcSk = pcbSk in
carBe fo re

) | (
in (pcaPv1 , aPv1) ; in (pcaKv1 , aKv1) ; in (pcaPv2 , aPv2) ;
in (pcaKv2 , aKv2) ; in (pcaSk , aSk) ; in (pcaExit , aExit) ;
in (pcbPv1 , bPv1) ; in (pcbKv1 , bKv1) ; in (pcbPv2 , bPv2) ;
in (pcbKv2 , bKv2) ; in (pcbSk , bSk) ; in (pcbExit , bExit) ;
(

l e t pv1 = choice [aPv1 , bPv1] in
l e t kv1 = choice [aKv1 , bKv1] in
l e t pv2 = choice [aPv2 , bPv2] in
l e t kv2 = choice [aKv2 , bKv2] in
l e t sk = choice [aSk , bSk] in
l e t e x i t = choice [aExit , bExit] in
ca rAf t e r

) | (
l e t pv1 = choice [bPv1 , aPv1] in
l e t kv1 = choice [bKv1 , aKv1] in
l e t pv2 = choice [bPv2 , aPv2] in
l e t kv2 = choice [bKv2 , aKv2] in
l e t sk = choice [bSk , aSk] in
l e t e x i t = choice [bExit , aExit] in
ca rAf t e r

)
)

)

Listing E.8: ProVerif script modelling privacy in [DDS10] with manual swapping, Part II

E.2. PRIVACY IN VEHICULAR AD-HOC NETWORKS 165

l e t rsu =
in (c ,X) ;
l e t (SignaturePart , C e r t i f i c a t e P a r t) = X in
l e t (Pv , PkKv) = checks ign (C e r t i f i c a t e P a r t , pk (kc)) in
l e t (=request , Ts,=Pv) = checks ign (SignaturePart , PkKv) in
out (c , (enc (s i gn ((Pv , sk , Ts) , krsu) ,PkKv) , s i gn ((prsu , pk (krsu)) , kc))) .

l e t car =
out (enter , pv1) ;
new t s ;
out (enter , (s i gn ((request , ts , pv1) , kv1) , s i gn ((pv1 , pk (kv1)) , kc))) ;
in (enter ,X) ;
l e t (encedPart , C e r t i f i c a t e P a r t) = X in
l e t (Prsu , PkKrsu) = checks ign (C e r t i f i c a t e P a r t , pk (kc)) in
l e t SignaturePart = dec (encedPart , kv1) in
l e t (=pv1 , sk ,= t s) = checks ign (SignaturePart , PkKrsu) in
new r ;
out (zone , senc (pv1 , sk , r)) ;
sync 1 ;
new r ;
new r ’ ;
out (ex i t , senc (pv1 , sk , r)) ;
out (ex i t , senc (pv2 , sk , r ’)) ;
out (ex i t , pv2) .

process
out (c , pk (kc)) ;
out (c , pk (krsu)) ;
(

! r su
) | (

l e t (kv1 , kv2 , pv1 , pv2) = (kva1 , kva2 , pva1 , pva2) in
l e t ente r = e n t e r L e f t in
l e t e x i t = choice [e x i t L e f t , ex i tR ight] in
car

) | (
l e t (kv1 , kv2 , pv1 , pv2) = (kvb1 , kvb2 , pvb1 , pvb2) in
l e t ente r = enterRight in
l e t e x i t = choice [ex i tRight , e x i t L e f t] in
car

)

Listing E.9: ProSwapper input script modelling privacy in [DDS10]

166 APPENDIX E. PRIVACY RESULTS USING PROSWAPPER

process new aaa ’ 1 ;new aaa ’ 2 ;new aaa ’ 3 ;new aaa ’ 4 ;
out (c , pk (kc)) ; out (c , pk (krsu)) ;
(!

in (c ,X) ;
l e t (SignaturePart , C e r t i f i c a t e P a r t) = X in
l e t (Pv , PkKv) = checks ign (C e r t i f i c a t e P a r t , pk (kc)) in
l e t (=request , Ts,=Pv) = checks ign (SignaturePart , PkKv) in
out (c , (enc (s i gn ((Pv , sk , Ts) , krsu) ,PkKv) , s i gn ((prsu , pk (krsu)) , kc)))

) | (
l e t (kv1 , kv2 , pv1 , pv2) = (kva1 , kva2 , pva1 , pva2) in
l e t ente r = e n t e r L e f t in
l e t e x i t = choice [e x i t L e f t , ex i tR ight] in
out (enter , pv1) ;new t s ;
out (enter , (s i gn ((request , ts , pv1) , kv1) , s i gn ((pv1 , pk (kv1)) , kc))) ;
in (enter ,X) ;
l e t (encedPart , C e r t i f i c a t e P a r t) = X in
l e t (Prsu , PkKrsu) = checks ign (C e r t i f i c a t e P a r t , pk (kc)) in
l e t SignaturePart = dec (encedPart , kv1) in
l e t (=pv1 , sk ,= t s) = checks ign (SignaturePart , PkKrsu) in
new r ; out (zone , senc (pv1 , sk , r)) ;
out (aaa ’ 1 , (pv2 , sk , pv1 , e x i t)) ;
in (aaa ’ 2 , (xxx ’ 1 , xxx ’ 2 , xxx ’ 3 , xxx ’ 4)) ;
new r ;new r ’ ;
out (xxx ’ 4 , senc (xxx ’ 3 , xxx ’ 2 , r)) ; out (xxx ’ 4 , senc (xxx ’ 1 , xxx ’ 2 , r ’)) ;
out (xxx ’ 4 , xxx ’ 1)

) | (
l e t (kv1 , kv2 , pv1 , pv2) = (kvb1 , kvb2 , pvb1 , pvb2) in
l e t ente r = enterRight in
l e t e x i t = choice [ex i tRight , e x i t L e f t] in
out (enter , pv1) ;new t s ;
out (enter , (s i gn ((request , ts , pv1) , kv1) , s i gn ((pv1 , pk (kv1)) , kc))) ;
in (enter ,X) ;
l e t (encedPart , C e r t i f i c a t e P a r t) = X in
l e t (Prsu , PkKrsu) = checks ign (C e r t i f i c a t e P a r t , pk (kc)) in
l e t SignaturePart = dec (encedPart , kv1) in
l e t (=pv1 , sk ,= t s) = checks ign (SignaturePart , PkKrsu) in
new r ; out (zone , senc (pv1 , sk , r)) ;
out (aaa ’ 3 , (pv2 , sk , pv1 , e x i t)) ;
in (aaa ’ 4 , (xxx ’ 1 , xxx ’ 2 , xxx ’ 3 , xxx ’ 4)) ;
new r ;new r ’ ;
out (xxx ’ 4 , senc (xxx ’ 3 , xxx ’ 2 , r)) ; out (xxx ’ 4 , senc (xxx ’ 1 , xxx ’ 2 , r ’)) ;
out (xxx ’ 4 , xxx ’ 1)

) | (
in (aaa ’ 3 , y1) ; in (aaa ’ 1 , y2) ;
out (aaa ’ 4 , choice [y1 , y2]) ; out (aaa ’ 2 , choice [y2 , y1])

)

Listing E.10: ProSwapper output script modelling privacy in [DDS10]

Bibliography

[AB02] Mart́ın Abadi and Bruno Blanchet. Analyzing Security Protocols with Se-
crecy Types and Logic Programs. In POPL’02: 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 33–44.
ACM Press, 2002.

[AB05a] Mart́ın Abadi and Bruno Blanchet. Analyzing Security Protocols with Se-
crecy Types and Logic Programs. Journal of the ACM, 52(1):102–146, 2005.

[AB05b] Mart́ın Abadi and Bruno Blanchet. Computer-assisted verification of a pro-
tocol for certified email. Science of Computer Programming, 58(1–2):3–27,
2005.

[AB05c] Xavier Allamigeon and Bruno Blanchet. Reconstruction of Attacks against
Cryptographic Protocols. In CSFW’05: 18th Computer Security Foundations
Workshop, pages 140–154. IEEE Computer Society, 2005.

[Aba00] Mart́ın Abadi. Security Protocols and their Properties. In Friedrich L. Bauer
and Ralf Steinbrüggen, editors, Foundations of Secure Computation, NATO
Science Series, pages 39–60. IOS Press, 2000.

[ABB+04] William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioan-
nidis, Keromytis Keromytis, and Omer Reingold. Just Fast Keying: Key
Agreement in a Hostile Internet. ACM Transactions on Information and
System Security, 7(2):242–273, 2004.

[ABB+05] Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier,
Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille Héam,
Olga Kouchnarenko, Jacopo Mantovani, Sebastian Mödersheim, David von
Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Turuani, Luca Vi-
ganò, and Laurent Vigneron. The AVISPA Tool for the Automated Vali-
dation of Internet Security Protocols and Applications. In CAV’05: 17th
International Conference on Computer Aided Verification, volume 3576 of
LNCS, pages 281–285. Springer, 2005.

[ABF07] Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. Just Fast Keying in the
Pi Calculus. ACM Transactions on Information and System Security, 10(3),
2007.

168 BIBLIOGRAPHY

[AC04a] Mart́ın Abadi and Véronique Cortier. Deciding Knowledge in Security Pro-
tocols Under Equational Theories. In ICALP’04: 31st International Collo-
quium on Automata, Languages and Programming, volume 3142 of LNCS,
pages 46–58. Springer, 2004.

[AC04b] Alessandro Armando and Luca Compagna. SATMC: A SAT-Based Model
Checker for Security Protocols. In JELIA’04: 9th European Conference
on Logics in Artificial Intelligence, volume 3229 of LNCS, pages 730–733.
Springer, 2004.

[AC05a] Mart́ın Abadi and Véronique Cortier. Deciding knowledge in security proto-
cols under (many more) equational Theories. In CSFW’05: 18th Computer
Security Foundations Workshop, pages 62–76. IEEE Computer Society, 2005.

[AC05b] Alessandro Armando and Luca Compagna. An Optimized Intruder Model
for SAT-based Model-Checking of Security Protocols. Electronic Notes in
Theoretical Computer Science, 125(1):91–108, 2005.

[AC06] Mart́ın Abadi and Véronique Cortier. Deciding knowledge in security proto-
cols under equational theories. Theoretical Computer Science, 367(1–2):2–32,
2006.

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing Un-
linkability and Anonymity Using the Applied Pi Calculus. In CSF’10: 23rd
IEEE Computer Security Foundations Symposium, pages 107–121. IEEE
Computer Society, 2010.

[Adi06] Ben Adida. Advances in Cryptographic Voting Systems. PhD thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, 2006.

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX Security’08:
17th USENIX Security Symposium, pages 335–348. USENIX Association,
2008.

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In POPL’01: 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 104–115. ACM Press, 2001.

[AF06] Mart́ın Abadi and Cédric Fournet. Private email communication, 24th May
2006.

[AG97] Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Proto-
cols: The Spi Calculus. In CCS’97: 4th ACM Conference on Computer and
Communications Security, pages 36–47. ACM Press, 1997.

[AG98a] Mart́ın Abadi and Andrew D. Gordon. A Bisimulation Method for Crypto-
graphic Protocols. In ESOP’98: 7th European Symposium on Programming,
volume 1381 of LNCS, pages 12–26. Springer, 1998.

BIBLIOGRAPHY 169

[AG98b] Mart́ın Abadi and Andrew D. Gordon. A Bisimulation Method for Crypto-
graphic Protocols. Nordic Journal of Computing, 5(4):267–303, 1998.

[AGHP02] Mart́ın Abadi, Neal Glew, Bill Horne, and Benny Pinkas. Certified Email
with a Light On-line Trusted Third Party: Design and Implementation. In
WWW’02: 11th International World Wide Web Conference, pages 387–395.
ACM Press, 2002.

[AJ89] Norbert S. Arenstorf and Harry F. Jordan. Comparing barrier algorithms.
International Journal of Parallel Computing, 12(2):157–170, 1989.

[AMPQ09] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jacques
Quisquater. Electing a University President Using Open-Audit Voting: Anal-
ysis of Real-World Use of Helios. In EVT/WOTE’09: Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections. USENIX Asso-
ciation, 2009.

[APW09] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plain-
text Recovery Attacks against SSH. In S&P’09: 30th IEEE Symposium on
Security and Privacy, pages 16–26. IEEE Computer Society, 2009.

[AR00] Mart́ın Abadi and Phillip Rogaway. Reconciling Two Views of Cryptography
(The Computational Soundness of Formal Encryption). In IFIP TCS’00: 1st
International Conference on Theoretical Computer Science, volume 1872 of
LNCS, pages 3–22. Springer, 2000.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling Two Views of Cryptog-
raphy (The Computational Soundness of Formal Encryption). Journal of
Cryptology, 15(2):103–127, 2002.

[ARR10] Myrto Arapinis, Eike Ritter, and Mark D. Ryan. Private communication,
2010.

[BAF05] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated Verification
of Selected Equivalences for Security Protocols. In LICS’05: 20th Annual
IEEE Symposium on Logic In Computer Science, pages 331–340. IEEE Com-
puter Society, 2005.

[BAF08] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verification
of selected equivalences for security protocols. Journal of Logic and Algebraic
Programming, 75(1):3–51, February–March 2008.

[Bau05] Mathieu Baudet. Deciding security of protocols against off-line guessing at-
tacks. In CCS’05: 12th ACM Conference on Computer and Communications
Security, pages 16–25. ACM Press, 2005.

[BBN04] Johannes Borgström, Sébastien Briais, and Uwe Nestmann. Symbolic Bisim-
ulation in the Spi Calculus. In CONCUR’04: 15th International Conference
on Concurrency Theory, volume 3170 of LNCS, pages 161–176. Springer,
2004.

170 BIBLIOGRAPHY

[BC08] Bruno Blanchet and Avik Chaudhuri. Automated Formal Analysis of a Pro-
tocol for Secure File Sharing on Untrusted Storage. In S&P’08: 29th IEEE
Symposium on Security and Privacy, pages 417–431. IEEE Computer Soci-
ety, 2008.

[BCC04] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct Anonymous Attesta-
tion. In CCS’04: 11th ACM Conference on Computer and Communications
Security, pages 132–145. ACM Press, 2004.

[BCC05] Ernie Brickell, Jan Camenisch, and Liqun Chen. The DAA scheme in con-
text. In Chris Mitchell, editor, Trusted Computing, volume 6 of Professional
Applications of Computing Series, pages 143–174. The Institute of Engineer-
ing and Technology, 2005.

[BCD09] Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. YAPA: A
Generic Tool for Computing Intruder Knowledge. In RTA’09: 20th Interna-
tional Conference on Rewriting Techniques and Applications, volume 5595 of
LNCS, pages 148–163. Springer, 2009.

[BCD10] Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. YAPA: A
generic tool for computing intruder knowledge. arXiv ePrint Archive, Report
abs/1005.0737: http://arxiv.org/abs/1005.0737, 2010.

[BCDG88] Ernest F. Brickell, David Chaum, Ivan Damg̊ard, and Jeroen van de Graaf.
Gradual and Verifiable Release of a Secret. In CRYPTO’87: 7th Interna-
tional Cryptology Conference, volume 293 of LNCS, pages 156–166. Springer,
1988.

[BCFZ08] Karthikeyan Bhargavan, Ricardo Corin, Cédric Fournet, and Eugen
Zălinescu. Cryptographically Verified Implementations for TLS. In CCS’08:
ACM Conference on Computer and Communications Security, pages 459–
468. ACM Press, 2008.

[BCH10] Mayla Brusó, Konstantinos Chatzikokolakis, and Jerry den Hartog. For-
mal verification of privacy for RFID systems. In CSF’10: 23rd IEEE Com-
puter Security Foundations Symposium, pages 75–88. IEEE Computer Soci-
ety, 2010.

[BCL08a] Ernie Brickell, Liqun Chen, and Jiangtao Li. A New Direct Anonymous At-
testation Scheme from Bilinear Maps. In Trust’08: 1st International Confer-
ence on Trusted Computing and Trust in Information Technologies, volume
4968 of LNCS, pages 166–178, 2008.

[BCL08b] Ernie Brickell, Liqun Chen, and Jiangtao Li. Simplified Security Notions
of Direct Anonymous Attestation and a Concrete Scheme from Pairings.
Cryptology ePrint Archive, Report 2008/104, 2008.

[BCL09] Ernie Brickell, Liqun Chen, and Jiangtao Li. Simplified security notions of
Direct Anonymous Attestation and a concrete scheme from pairings. Inter-
national Journal of Information Security, 8(5):315–330, 2009.

BIBLIOGRAPHY 171

[Bel99] Mihir Bellare. Practice-Oriented Provable Security. In Lectures on Data
Security: Modern Cryptology in Theory and Practice, volume 1561 of LNCS,
pages 1–15. Springer, 1999.

[Ben06] Josh Benaloh. Simple Verifiable Elections. In EVT’06: Electronic Voting
Technology Workshop. USENIX Association, 2006.

[Ben07] Josh Benaloh. Ballot Casting Assurance via Voter-Initiated Poll Station
Auditing. In EVT’07: Electronic Voting Technology Workshop. USENIX
Association, 2007.

[BFG06] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Verified
Reference Implementations of WS-Security Protocols. In WS-FM’06: 3rd
International Workshop on Web Services and Formal Methods, volume 4184
of LNCS, pages 88–106. Springer, 2006.

[BFGS08] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Nikhil
Swamy. Verified Implementations of the Information Card Federated
Identity-Management Protocol. In ASIACCS’08: 3rd ACM Symposium on
Information, Computer and Communications Security, pages 123–135. ACM
Press, 2008.

[BFGT06] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Stephen
Tse. Verified Interoperable Implementations of Security Protocols. In
CSFW’06: 19th IEEE Computer Security Foundations Workshop, pages
139–152. IEEE Computer Society, 2006.

[BFGT08] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Stephen
Tse. Verified Interoperable Implementations of Security Protocols. ACM
Transactions on Programming Languages and Systems, 31(1):1–61, 2008.

[BHK05] Yohan Boichut, Pierre-Cyrille Héam, and Olga Kouchnarenko. Automatic
Verification of Security Protocols Using Approximations. Technical Report
RR-5727, INRIA, 2005.

[BHK06] Yohan Boichut, Pierre-Cyrille Héam, and Olga Kouchnarenko. Handling
Algebraic Properties in Automatic Analysis of Security Protocols. In IC-
TAC’06: 3rd International Colloquium on Theoretical Aspects of Computing,
volume 4281 of LNCS, pages 153–167. Springer, 2006.

[BHK09] Yohan Boichut, Pierre-Cyrille Héam, and Olga Kouchnarenko. Tree Au-
tomata for Detecting Attacks on Protocols with Algebraic Cryptographic
Primitives. Electronic Notes in Theoretical Computer Science, 239:57–72,
2009.

[BHKO04] Yohan Boichut, Pierre-Cyrille Héam, Olga Kouchnarenko, and F. Oehl. Im-
provements on the Genet and Klay Technique to Automatically Verify Secu-
rity Protocols, 2004.

172 BIBLIOGRAPHY

[BHM08] Michael Backes, Cătălin Hriţcu, and Matteo Maffei. Automated Verification
of Remote Electronic Voting Protocols in the Applied Pi-calculus. In CSF’08:
21st IEEE Computer Security Foundations Symposium, pages 195–209. IEEE
Computer Society, 2008.

[BJPV09] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn Victor.
Psi-calculi: Mobile processes, nominal data, and logic. In LICS’09: 24th
Annual IEEE Symposium on Logic In Computer Science, pages 39–48. IEEE
Computer Society, 2009.

[BL09a] Ernie Brickell and Jiangtao Li. Enhanced Privacy ID: A Remote Anonymous
Attestation Scheme for Hardware Devices. Intel Technology Journal Security,
13(2):96–111, June 2009.

[BL09b] Ernie Brickell and Jiangtao Li. Enhanced Privacy ID from Bilinear Pairing.
Cryptology ePrint Archive, Report 2009/095, 2009.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In CSFW’01: 14th IEEE Computer Security Foundations Workshop,
pages 82–96. IEEE Computer Society, 2001.

[Bla02] Bruno Blanchet. From Secrecy to Authenticity in Security Protocols. In
SAS’02: 9th International Static Analysis Symposium, volume 2477 of LNCS,
pages 342–359. Springer, 2002.

[Bla04] Bruno Blanchet. Automatic Proof of Strong Secrecy for Security Protocols.
In S&P’04: 25th IEEE Symposium on Security and Privacy, pages 86–100.
IEEE Computer Society, 2004.

[Bla08] Bruno Blanchet. Vérification automatique de protocoles cryptographiques:
modèle formel et modèle calculatoire. Mémoire d’habilitation à diriger des
recherches, Université Paris-Dauphine, 2008.

[Bla09] Bruno Blanchet. Automatic Verification of Correspondences for Security
Protocols. Journal of Computer Security, 17(4):363–434, 2009.

[Bla11] Bruno Blanchet. Using Horn clauses for analyzing security protocols. In
Véronique Cortier and Steve Kremer, editor, Formal Models and Techniques
for Analyzing Security Protocols, chapter 5. IOS Press, 2011.

[BLP05a] Shane Balfe, Amit D. Lakhani, and Kenneth G. Paterson. Securing peer-to-
peer networks using trusted computing. In Chris Mitchell, editor, Trusted
Computing, volume 6 of Professional Applications of Computing Series,
pages 271–298. The Institute of Engineering and Technology, 2005.

[BLP05b] Shane Balfe, Amit D. Lakhani, and Kenneth G. Paterson. Trusted Comput-
ing: Providing Security for Peer-to-Peer Networks. In P2P’05: 5th IEEE
International Conference on Peer-to-Peer Computing, pages 117–124. IEEE
Computer Society, 2005.

BIBLIOGRAPHY 173

[BM92] Leonor M. Barroca and John A. Mcdermid. Formal methods: Use and rele-
vance for the development of safety-critical systems. The Computer Journal,
35(6):579–599, 1992.

[BMU08] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-Knowledge in
the Applied Pi-calculus and Automated Verification of the Direct Anony-
mous Attestation Protocol. In S&P’08: 29th IEEE Symposium on Security
and Privacy, pages 202–215. IEEE Computer Society, 2008.

[BMV03] David A. Basin, Sebastian Mödersheim, and Luca Viganò. An On-the-Fly
Model-Checker for Security Protocol Analysis. In ESORICS’03: 8th Euro-
pean Symposium On Research In Computer Security, volume 2808 of LNCS,
pages 253–270. Springer, 2003.

[BMV05] David A. Basin, Sebastian Mödersheim, and Luca Viganò. OFMC: A sym-
bolic model checker for security protocols. Internation Journal of Informa-
tion Security, 4(3):181–208, 2005.

[BN02] Johannes Borgström and Uwe Nestmann. On bisimulations for the spi calcu-
lus. In AMAST’02: 9th International Conference on Algebraic Methodology
and Software Technology, volume 2422 of LNCS, pages 287–303. Springer,
2002.

[BN05] Johannes Borgström and Uwe Nestmann. On bisimulations for the spi cal-
culus. Mathematical Structures in Computer Science, 15(3):487–552, 2005.

[Bol97] Dominique Bolignano. Towards a Mechanization of Cryptographic Protocol
Verification. In CAV’97: 9th International Conference on Computer Aided
Verification, volume 1254 of LNCS, pages 131–142. Springer, 1997.

[Bou00] Fabrice Boudot. Efficient Proofs that a Committed Number Lies in an In-
terval. In EUROCRYPT’00: 19th International Conference on the Theory
and Applications of Cryptographic Techniques, volume 1807 of LNCS, pages
431–444. Springer, 2000.

[Bow07] Debra Bowen. Secretary of State Debra Bowen Moves to Strengthen
Voter Confidence in Election Security Following Top-to-Bottom Re-
view of Voting Systems. California Secretary of State, press
release DB07:042 http://www.sos.ca.gov/elections/voting_systems/

ttbr/db07_042_ttbr_system_decisions_release.pdf, August 2007.

[BP03] Bruno Blanchet and Andreas Podelski. Verification of Cryptographic Pro-
tocols: Tagging Enforces Termination. In FoSSaCS’03: 6th International
Conference on Foundations of Software Science and Computational Struc-
tures, volume 2620 of LNCS, pages 136–152. Springer, 2003.

[BP05] Bruno Blanchet and Andreas Podelski. Verification of cryptographic pro-
tocols: tagging enforces termination. Theoretical Computer Science, 333(1-
2):67–90, March 2005. Special issue FoSSaCS’03: 6th International Confer-
ence on Foundations of Software Science and Computational Structures.

174 BIBLIOGRAPHY

[Bri05] Sébastien Briais. The ABC User’s Guide. http://sbriais.free.fr/tools/
abc/, 2005.

[Bro86] Eugene D. Brooks, III. The Butterfly Barrier. International Journal of
Parallel Programming, 15(4):295–307, 1986.

[BRS07] Anguraj Baskar, Ramaswamy Ramanujam, and S. P. Suresh. Knowledge-
based modelling of voting protocols. In TARK: 11th Conference on Theoret-
ical Aspects of Rationality and Knowledge, pages 62–71. ACM Press, 2007.

[BS11] Bruno Blanchet and Ben Smyth. ProVerif: Automatic Cryptographic Proto-
col Verifier User Manual & Tutorial. http://www.proverif.ens.fr/, 2011.

[Bun09] Bundesverfassungsgericht (Germany’s Federal Constitutional Court). Use
of voting computers in 2005 Bundestag election unconstitutional. Press
release 19/2009 http://www.bundesverfassungsgericht.de/en/press/

bvg09-019en.html, March 2009.

[BVQ10] Josh Benaloh, Serge Vaudenay, and Jean-Jacques Quisquater. Final
Report of IACR Electronic Voting Committee. International Associa-
tion for Cryptologic Research. http://www.iacr.org/elections/eVoting/
finalReportHelios_2010-09-27.html, Sept 2010.

[CCM07] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: To-
ward a Secure Voting System. Technical Report 2007-2081, Cornell Univer-
sity, May 2007. Revised March 2008.

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: To-
ward a Secure Voting System. In S&P’08: 29th IEEE Symposium on Security
and Privacy, pages 354–368. IEEE Computer Society, 2008.

[CD09] Véronique Cortier and Stéphanie Delaune. A method for proving observa-
tional equivalence. In CSF’09: 22nd IEEE Computer Security Foundations
Symposium, pages 266–276. IEEE Computer Society, 2009.

[CDK09a] Rohit Chadha, Stéphanie Delaune, and Steve Kremer. Epistemic Logic for
the Applied Pi Calculus. In FMOODS/FORTE’09: Joint 11th International
Conference on Formal Methods for Open Object-Based Distributed Systems
and 29th International Conference on Formal Techniques for Networked and
Distributed Systems, volume 5522 of LNCS, pages 182–197. Springer, 2009.

[CDK09b] Stefan Ciobâca, Stéphanie Delaune, and Steve Kremer. Computing Knowl-
edge in Security Protocols under Convergent Equational Theories. In
CADE’09: 22nd International Conference on Automated Deduction, volume
5663 of LNCS, pages 355–370. Springer, 2009.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of Par-
tial Knowledge and Simplified Design of Witness Hiding Protocols. In
CRYPTO’94: 14th International Cryptology Conference, volume 839 of
LNCS, pages 174–187. Springer, 1994.

BIBLIOGRAPHY 175

[CEC+08] David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popove-
niuc, Alan Sherman, and Poorvi Vora. Scantegrity: End-to-End Voter-
Verifiable Optical-Scan Voting. IEEE Security and Privacy, 6(3):40–46, 2008.

[CEG88] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An Improved
Protocol for Demonstrating Possession of Discrete Logarithms and Some
Generalizations. In EUROCRYPT’87: 4th International Conference on the
Theory and Applications of Cryptographic Techniques, volume 304 of LNCS,
pages 127–141. Springer, 1988.

[CEGP87] David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and René Peralta.
Demonstrating Possession of a Discrete Logarithm Without Revealing It.
In CRYPTO’86: 6th International Cryptology Conference, volume 263 of
LNCS, pages 200–212. Springer, 1987.

[Ces10] Emanuele Cesena. Trace Zero Varieties in Pairing-based Cryptography. PhD
thesis, Department of Mathematics, Universitá degli Studi Roma Tre, 2010.

[CF08] Xiaofeng Chen and Dengguo Feng. Direct Anonymous Attestation for Next
Generation TPM. Journal of Computers, 3(12):43–50, December 2008.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and
Optimally Efficient Multi-Authority Election Scheme. In EUROCRYPT’97:
16th International Conference on the Theory and Applications of Crypto-
graphic Techniques, volume 1233 of LNCS, pages 103–118. Springer, 1997.

[CH02] Jan Camenisch and Els Van Herreweghen. Design and Implementation of
the idemix Anonymous Credential System. In CCS’02: 9th ACM Conference
on Computer and Communications Security, pages 21–30. ACM Press, 2002.

[Cha90] David Chaum. Zero-Knowledge Undeniable Signatures. In EURO-
CRYPT’90: 7th International Conference on the Theory and Applications
of Cryptographic Techniques, volume 473 of LNCS, pages 458–464. Springer,
1990.

[Che10] Liqun Chen. A DAA Scheme Requiring Less TPM Resources. Cryptology
ePrint Archive, Report 2010/008, 2010.

[Che11] Liqun Chen. A DAA Scheme Requiring Less TPM Resources. In IN-
SCRYPT’09: 5th International Conference on Information Security and
Cryptology, volume 6151 of LNCS, pages 350–365. Springer, 2011.

[Cho06] Tom Chothia. Analysing the MUTE Anonymous File-Sharing System Using
the Pi-Calculus. In FORTE’06: 26th International Conference on Formal
Techniques for Networked and Distributed Systems, volume 4229 of LNCS,
pages 115–130. Springer, 2006.

[CJM00] Edmund M. Clarke, Somesh Jha, and Wilfredo R. Marrero. Verifying Secu-
rity Protocols with Brutus. ACM Transactions on Software Engineering and
Methodology, 9(4):443–487, 2000.

176 BIBLIOGRAPHY

[CKRT03a] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Tu-
ruani. An NP Decision Procedure for Protocol Insecurity with XOR. In
LICS’03: 18th Annual IEEE Symposium on Logic In Computer Science,
pages 261–270. IEEE Computer Society, 2003.

[CKRT03b] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Turu-
ani. Deciding the Security of Protocols with Diffie-Hellman Exponentiation
and Products in Exponents. In FSTTCS’03: 23rd International Conference
on Foundations of Software Technology and Theoretical Computer Science,
volume 2914 of LNCS, pages 124–135. Springer, 2003.

[CKRT05] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Turu-
ani. An NP decision procedure for protocol insecurity with XOR. Theoretical
Computer Science, 338(1-3):247–274, 2005.

[CKS04] Rohit Chadha, Steve Kremer, and Andre Scedrov. Formal analysis of multi-
party contract signing. In CSFW’04: 17th Computer Security Foundations
Workshop, pages 266–279. IEEE Computer Society, 2004.

[CKS06] Rohit Chadha, Steve Kremer, and Andre Scedrov. Formal Analysis of Mul-
tiparty Contract Signing. Journal of Automated Reasoning, 36(1–2):39–83,
2006.

[CL01] Jan Camenisch and Anna Lysyanskaya. An Efficient System for Non-
transferable Anonymous Credentials with Optional Anonymity Revocation.
In EUROCRYPT’01: 20th International Conference on the Theory and Ap-
plications of Cryptographic Techniques, volume 2045 of LNCS, pages 93–118.
Springer, 2001.

[CL03] Jan Camenisch and Anna Lysyanskaya. A Signature Scheme with Efficient
Protocols. In SCN’02: 3rd Conference on Security in Communication Net-
works, volume 2576 of LNCS, pages 268–289. Springer, 2003.

[CL10] Liqun Chen and Jiangtao Li. A note on the Chen-Morrissey-Smart DAA
scheme. Information Processing Letters, 110(12-13):485–488, 2010.

[CLN09] Cas J. F. Cremers, Pascal Lafourcade, and Philippe Nadeau. Comparing
State Spaces in Automatic Security Protocol Analysis. In Formal to Practical
Security: Papers Issued from the 2005-2008 French-Japanese Collaboration,
volume 5458 of LNCS, pages 70–94. Springer, 2009.

[CLR+10] Emanuele Cesena, Hans Löhr, Gianluca Ramunno, Ahmad-Reza Sadeghi,
and Davide Vernizzi. Anonymous Authentication with TLS and DAA. In
TRUST’10: 3rd International Conference on Trust and Trustworthy Com-
puting, volume 6101 of LNCS, pages 47–62. Springer, 2010.

[CLS03] Hubert Comon-Lundh and Vitaly Shmatikov. Intruder Deductions, Con-
straint Solving and Insecurity Decision in Presence of Exclusive or. In
LICS’03: 18th Annual IEEE Symposium on Logic In Computer Science,
pages 271–281. IEEE Computer Society, 2003.

BIBLIOGRAPHY 177

[CM98a] Jan Camenisch and Markus Michels. A Group Signature Scheme with Im-
proved Efficiency. In ASIACRYPT’98: 4th International Conference on the
Theory and Application of Cryptology and Information Security, volume 1514
of LNCS, pages 160–174. Springer, 1998.

[CM98b] Jan Camenisch and Markus Michels. A group signature scheme based on
an RSA-variant. Technical Report RS-28-27, Basic Research in Computer
Science (BRICS), 1998.

[CM99] Jan Camenisch and Markus Michels. Separability and Efficiency for Generic
Group Signature Schemes. In CRYPTO’99: 19th International Cryptology
Conference, volume 1666 of LNCS, pages 413–430. Springer, 1999.

[CM05] Cas J.F. Cremers and S. Mauw. Operational Semantics of Security Proto-
cols. In International Workshop on Scenarios: Models, Transformations and
Tools, volume 3466 of lncs, pages 66–89. sp, 2005.

[CMFP+06] Benôıt Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien
Stern, and Jacques Traoré. On Some Incompatible Properties of Voting
Schemes. In WOTE’06: Workshop on Trustworthy Elections, 2006.

[CMFP+10] Benôıt Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien
Stern, and Jacques Traoré. On Some Incompatible Properties of Voting
Schemes. In David Chaum, Markus Jakobsson, Ronald L. Rivest, and Pe-
ter Y. A. Ryan, editors, Towards Trustworthy Elections: New Directions in
Electronic Voting, volume 6000 of LNCS, pages 191–199. Springer, 2010.

[CMS08a] Liqun Chen, Paul Morrissey, and Nigel P. Smart. On Proofs of Security for
DAA Schemes. In ProvSec’08: 2nd International Conference on Provable
Security, volume 5324 of LNCS, pages 156–175. Springer, 2008.

[CMS08b] Liqun Chen, Paul Morrissey, and Nigel P. Smart. Pairings in Trusted Com-
puting. In Pairing’08: 2nd International Conference on Pairing-Based Cryp-
tography, volume 5209 of LNCS, pages 1–17. Springer, 2008.

[CMS09] Liqun Chen, Paul Morrissey, and Nigel P. Smart. DAA: Fixing the pairing
based protocols. Cryptology ePrint Archive, Report 2009/198, 2009.

[CMS10] Liqun Chen, Paul Morrissey, and Nigel P. Smart. DAA: Fixing the pairing
based protocols. Unpublished draft, 2010.

[Com05] Luca Compagna. SAT-based Model-Checking of Security Protocols. PhD
thesis, Joint between Universitá degli Studi di Genova and the University of
Edinburgh, 2005.

[COPD07] Tom Chothia, Simona Orzan, Jun Pang, and Muhammad Torabi Dashti. A
Framework for Automatically Checking Anonymity with µCRL. In TGC’06:
2nd Symposium on Trustworthy Global Computing, volume 4661 of LNCS,
pages 301–318. Springer, 2007.

178 BIBLIOGRAPHY

[CP93] David Chaum and Torben P. Pedersen. Wallet Databases with Observers.
In CRYPTO’92: 12th International Cryptology Conference, volume 740 of
LNCS, pages 89–105. Springer, 1993.

[CP94] Ronald Cramer and Torben P. Pedersen. Improved Privacy in Wallets with
Observers. In EUROCRYPT’93: 10th International Conference on the The-
ory and Applications of Cryptographic Techniques, volume 765 of LNCS,
pages 329–343. Springer, 1994.

[CPS10] Liqun Chen, Dan Page, and Nigel P. Smart. On the Design and Implementa-
tion of an Efficient DAA Scheme. In CARDIS’10: 8th Internation Conference
on Smart Card Research and Advanced Application, volume 6035 of LNCS,
pages 223–237. Springer, 2010.

[CR09] Liqun Chen and Mark D. Ryan. Attack, Solution and Verification for Shared
Authorisation Data in TCG TPM. In FAST’09: 6th International Workshop
on Formal Aspects in Security and Trust, volume 5983 of LNCS, pages 201–
216. Springer, 2009.

[Cre06] Cas J.F. Cremers. Scyther - Semantics and Verification of Security Protocols.
PhD thesis, Eindhoven University of Technology, 2006.

[Cre07] Cas J.F. Cremers. Scyther 1.0: User Manual. http://people.inf.ethz.

ch/cremersc/scyther, 2007.

[Cre08a] Cas J. F. Cremers. Unbounded Verification, Falsification, and Characteriza-
tion of Security Protocols by Pattern Refinement. In CCS’08: ACM Con-
ference on Computer and Communications Security, pages 119–128. ACM
Press, 2008.

[Cre08b] Cas J.F. Cremers. The Scyther Tool: Verification, falsification, and analysis
of security protocols. In CAV’08: 20th International Conference on Com-
puter Aided Verification, volume 5123 of LNCS, pages 414–418. Springer,
2008.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A Practical Voter-
Verifiable Election Scheme. In ESORICS’05: 10th European Symposium
On Research In Computer Security, volume 3679 of LNCS, pages 118–139.
Springer, 2005.

[CS97a] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for
Large Groups. In CRYPTO’97: 17th International Cryptology Conference,
volume 1294 of LNCS, pages 410–424. Springer, 1997.

[CS97b] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for
Large Groups. In CRYPTO’97: 17th International Cryptology Conference,
volume 1294 of LNCS, pages 410–424. Springer, 1997.

[CS10a] Tom Chothia and Vitaliy Smirnov. A Traceability Attack Against e-
Passports. In FC’10: 14th International Conference on Financial Cryp-
tography and Data Security, volume 6052 of LNCS, pages 20–34, 2010.

BIBLIOGRAPHY 179

[CS10b] Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis
of ballot secrecy. Cryptology ePrint Archive, Report 2010/625, 2010.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An analysis
of ballot secrecy. In CSF’11: 24th Computer Security Foundations Sympo-
sium. IEEE Computer Society, 2011. To appear.

[Dag07] Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl
Accord, 2007. http://www.dagstuhlaccord.org/.

[Dam95] Mads Dam. On the Decidability of Process Equivalences for the π-calculus.
In AMAST’95: 4th International Conference on Algebraic Methodology and
Software Technology, volume 936 of LNCS, pages 169–183. Springer, 1995.

[Dam97] Mads Dam. On the decidability of process equivalences for the π-calculus.
Theoretical Computer Science, 183(2):215–228, 1997.

[DDS10] Morten Dahl, Stéphanie Delaune, and Graham Steel. Formal Analysis of
Privacy for Vehicular Mix-Zones. In ESORICS’10: 15th European Sympo-
sium on Research in Computer Security, volume 6345 of LNCS, pages 55–70.
Springer, 2010.

[Del11] Stéphanie Delaune. Verification of security protocols: from confidentiality to
privacy. Mémoire d’habilitation à diriger des recherches, LSV, ENS Cachan
& CNRS & INRIA, 2011.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-Resistance and
Receipt-Freeness in Electronic Voting. In CSFW’06: 19th Computer Security
Foundations Workshop, pages 28–42. IEEE Computer Society, 2006.

[DKR07] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic Bisimula-
tion for the Applied Pi Calculus. In FSTTCS’07: 27th International Con-
ference on Foundations of Software Technology and Theoretical Computer
Science, volume 4855 of LNCS, pages 133–145. Springer, 2007.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-
type properties of electronic voting protocols. Journal of Computer Security,
17(4):435–487, July 2009.

[DKR10a] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic Bisimula-
tion for the Applied Pi Calculus. Journal of Computer Security, 18(2):317–
377, 2010.

[DKR10b] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying Privacy-
Type Properties of Electronic Voting Protocols: A Taster. In David Chaum,
Markus Jakobsson, Ronald L. Rivest, and Peter Y. A. Ryan, editors, Towards
Trustworthy Elections: New Directions in Electronic Voting, volume 6000 of
LNCS, pages 289–309. Springer, 2010.

[DLMS99] Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and A. Scedrov. Unde-
cidability of bounded security protocols, 1999.

180 BIBLIOGRAPHY

[DLMS04] Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and A. Scedrov. Mul-
tiset rewriting and the complexity of bounded security protocols. Journal of
Computer Security, 12(2):247–311, 2004.

[DRS08] Stéphanie Delaune, Mark D. Ryan, and Ben Smyth. Automatic verification
of privacy properties in the applied pi-calculus. In IFIPTM’08: 2nd Joint
iTrust and PST Conferences on Privacy, Trust Management and Security,
volume 263 of International Federation for Information Processing (IFIP),
pages 263–278. Springer, 2008.

[DSHJ10] Nitish Dalal, Jenny Shah, Khushboo Hisaria, and Devesh Jinwala. A Com-
parative Analysis of Tools for Verification of Security Protocols. International
Journal of Communications, Network and System Sciences, 3(10):779–787,
2010.

[DSV00] Luca Durante, Riccardo Sisto, and Adriano Valenzano. A State-Exploration
Technique for Spi-Calculus Testing Equivalence Verification. In FORTE/P-
STV’00: Joint International Conference on Formal Techniques for Net-
worked and Distributed Systems and Protocol Specification, Testing and Ver-
ification, volume 183 of International Federation for Information Processing
(IFIP), pages 155–170. Kluwer, 2000.

[DSV03] Luca Durante, Riccardo Sisto, and Adriano Valenzano. Automatic Testing
Equivalence Verification of Spi Calculus Specifications. ACM Transactions
on Software Engineering and Methodology, 12(2):222–284, 2003.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the Security of Public Key
Protocols. IEEE Transactions on Information Theory, 29(2):198–207, 1983.

[ElG85] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. IEEE Transactions on Information Theory,
31(4):469–472, 1985.

[EMM05] Santiago Escobar, Catherine Meadows, and José Meseguer. A Rewriting-
Based Inference System for the NRL Protocol Analyzer: Grammar Gener-
ation. In FMSE’05: 3rd ACM Workshop on Formal methods in Security
Engineering, pages 1–12. ACM Press, 2005.

[EMM06] Santiago Escobar, Catherine Meadows, and José Meseguer. A rewriting-
based inference system for the NRL Protocol Analyzer and its meta-logical
properties. Theoretical Computer Science, 367(1-2):162–202, 2006.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A Practical Secret
Voting Scheme for Large Scale Elections. In AUSCRYPT’92: Workshop
on the Theory and Application of Cryptographic Techniques, volume 718 of
LNCS, pages 244–251. Springer, 1992.

[FRF+07] Julien Freudiger, Maxim Raya, Márk Félegyházi, Panos Papadimitratos, and
Jean-Pierre Hubaux. Mix-Zones for Location Privacy in Vehicular Networks.

BIBLIOGRAPHY 181

In WiN-ITS’07: ACM Workshop on Wireless Networking for Intelligent
Transportation Systems, 2007. Invited paper.

[FS87] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions to
Identification and Signature Problems. In CRYPTO’86: 6th International
Cryptology Conference, volume 263 of LNCS, pages 186–194. Springer, 1987.

[FSVY91] Thom W. Frühwirth, Ehud Y. Shapiro, Moshe Y. Vardi, and Eyal Yardeni.
Logic Programs as Types for Logic Programs. In LICS’91: 6th Annual IEEE
Symposium on Logic In Computer Science, pages 300–309. IEEE Computer
Society, 1991.

[Gen95] Rosario Gennaro. Achieving independence efficiently and securely. In
PODC’95: 14th Principles of Distributed Computing Symposium, pages 130–
136. ACM Press, 1995.

[Gen00] Rosario Gennaro. A Protocol to Achieve Independence in Constant Rounds.
IEEE Transactions on Parallel and Distributed Systems, 11(7):636–647,
2000.

[GGM+08] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter van
Rossum, Roel Verdult, Ronny Wichers Schreur, and Bart Jacobs. Disman-
tling MIFARE Classic. In ESORICS’08: 13th European Symposium on Re-
search in Computer Security, volume 5283 of LNCS, pages 97–114. Springer,
2008.

[GHG08] Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia. A
Practical Attack on the MIFARE Classic. In CARDIS’08: 8th Smart Card
Research and Advanced Application Conference, volume 5189 of LNCS, pages
267–282, 2008.

[GK00] Thomas Genet and Francis Klay. Rewriting for Cryptographic Protocol Ver-
ification. In CADE’00: 17th International Conference on Automated Deduc-
tion, volume 1831 of LNCS, pages 271–290. Springer, 2000.

[GLP05] Jean Goubault-Larrecq and Fabrice Parrennes. Cryptographic Protocol
Analysis on Real C Code. In VMCAI’05: 6th International Conference on
Verification, Model Checking, and Abstract Interpretation, volume 3385 of
LNCS, pages 363–379. Springer, 2005.

[GM99] Juan A. Garay and Philip D. MacKenzie. Abuse-Free Multi-party Contract
Signing. In DISC’99: 13th International Symposium on Distributed Com-
puting, volume 1693 of LNCS, pages 151–165. Springer, 1999.

[GRVS09] Flavio D. Garcia, Peter van Rossum, Roel Verdult, and Ronny Wichers
Schreur. Wirelessly Pickpocketing a Mifare Classic Card. In S&P’09: 30th
IEEE Symposium on Security and Privacy, pages 3–15. IEEE Computer So-
ciety, 2009.

182 BIBLIOGRAPHY

[GSG99] Stefanos Gritzalis, Diomidis Spinellis, and Panagiotis Georgiadis. Secu-
rity protocols over open networks and distributed systems: formal meth-
ods for their analysis, design, and verification. Computer Communications,
22(8):697–709, 1999.

[Han03] Hans Hüttel. Deciding Framed Bisimilarity. Electronic Notes in Theoretical
Computer Science, 68(6):1–20, 2003. Special issue Infinity’02: 4th Interna-
tional Workshop on Verification of Infinite-State Systems.

[HBH10] Stuart Haber, Josh Benaloh, and Shai Halevi. The Helios e-Voting Demo
for the IACR. International Association for Cryptologic Research. http:

//www.iacr.org/elections/eVoting/heliosDemo.pdf, May 2010.

[HFM88] Debra Hensgen, Raphael Finkel, and Udi Manber. Two Algorithms for
Barrier Synchronization. International Journal of Parallel Programming,
17(1):1–17, 1988.

[Int09] International Organization for Standardization. ISO/IEC 11889: Informa-
tion technology – Trusted Platform Module, 2009.

[JCJ02] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Elec-
tronic Elections. Cryptology ePrint Archive, Report 2002/165, 2002.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Elec-
tronic Elections. In WPES’05: 4th Workshop on Privacy in the Electronic
Society, pages 61–70. ACM Press, 2005. See also http://www.rsa.com/

rsalabs/node.asp?id=2860.

[JCJ10] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Elec-
tronic Elections. In David Chaum, Markus Jakobsson, Ronald L. Rivest, and
Peter Y. A. Ryan, editors, Towards Trustworthy Elections: New Directions
in Electronic Voting, volume 6000 of LNCS, pages 37–63. Springer, 2010.

[JJ00] Markus Jakobsson and Ari Juels. Mix and Match: Secure Function Evalua-
tion via Ciphertexts. In ASIACRYPT’00: 6th International Conference on
the Theory and Application of Cryptology and Information Security, volume
1976 of LNCS, pages 162–177. Springer, 2000.

[JMP09] Hugo L. Jonker, Sjouke Mauw, and Jun Pang. Measuring Voter-controlled
Privacy. In ARES’09: 4th International Conference on Availability, Relia-
bility and Security, pages 289–298. IEEE Computer Society, 2009.

[JMW05] Ari Juels, David Molnar, and David Wagner. Security and Privacy Issues in
E-passports. In SecureComm’05: 1st International Conference on Security
and Privacy for Emerging Areas in Communications Networks, pages 74–88.
IEEE Computer Society, 2005.

[Jue06] Ari Juels. RFID Security and Privacy: A Research Survey. Journal of
Selected Areas in Communication, 24(2):381–395, 2006.

BIBLIOGRAPHY 183

[JV06] Hugo L. Jonker and Erik P. de Vink. Formalising Receipt-Freeness. In
ISC’06: 9th Information Security Conference, volume 4176 of LNCS, pages
476–488. Springer, 2006.

[KJBK09] Karl Koscher, Ari Juels, Vjekoslav Brajkovic, and Tadayoshi Kohno. EPC
RFID Tag Security Weaknesses and Defenses: Passport Cards, Enhanced
Drivers Licenses, and Beyond. In CCS’09: 16th ACM Conference on Com-
puter and Communications Security, pages 33–42. ACM Press, 2009.

[KM06] Neal Koblitz and Alfred Menezes. Another Look at “Provable Security”. II.
In INDOCRYPT’06: 7th International Conference on Cryptology, volume
4329 of LNCS, pages 148–175. Springer, 2006.

[KM07] Neal Koblitz and Alfred Menezes. Another Look at “Provable Security”.
Journal of Cryptology, 20(1):3–37, 2007.

[KR05] Steve Kremer and Mark D. Ryan. Analysis of an Electronic Voting Protocol
in the Applied Pi Calculus. In ESOP’05: 14th European Symposium on
Programming, volume 3444 of LNCS, pages 186–200. Springer, 2005.

[KRS+03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin
Fu. Plutus: Scalable Secure File Sharing on Untrusted Storage. In FAST’03:
2nd USENIX Conference on File and Storage Technologies, pages 29–42.
USENIX Association, 2003.

[KRS10] Steve Kremer, Mark D. Ryan, and Ben Smyth. Election verifiability in
electronic voting protocols. In ESORICS’10: 15th European Symposium
on Research in Computer Security, volume 6345 of LNCS, pages 389–404.
Springer, 2010.

[KSR10] Petr Klus, Ben Smyth, and Mark D. Ryan. ProSwapper: Improved equiv-
alence verifier for ProVerif. http://www.bensmyth.com/proswapper.php,
2010.

[KT09] Ralf Küsters and Tomasz Truderung. An Epistemic Approach to Coercion-
Resistance for Electronic Voting Protocols. In S&P’09: 30th IEEE Sym-
posium on Security and Privacy, pages 251–266. IEEE Computer Society,
2009.

[KTV10] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A Game-Based Defi-
nition of Coercion-Resistance and its Applications. In CSF’10: 23rd IEEE
Computer Security Foundations Symposium, pages 122–136. IEEE Computer
Society, 2010.

[LCM08] Adrian Leung, Liqun Chen, and Chris J. Mitchell. On a Possible Privacy
Flaw in Direct Anonymous Attestation (DAA). In Trust’08: 1st Interna-
tional Conference on Trusted Computing and Trust in Information Tech-
nologies, number 4968 in LNCS, pages 179–190. Springer, 2008.

184 BIBLIOGRAPHY

[LM07] Adrian Leung and Chris J. Mitchell. Ninja: Non Identity Based, Privacy
Preserving Authentication for Ubiquitous Environments. In Ubicomp’07: 9th
International Conference on Ubiquitous Computing, volume 4717 of LNCS,
pages 73–90. Springer, 2007.

[Low96] Gavin Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Pro-
tocol using FDR. In TACAS’96: 2nd International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems, volume 1055 of
LNCS, pages 147–166. Springer, 1996.

[Low99] Gavin Lowe. Towards a completeness result for model checking of security
protocols. Journal of Computer Security, 7(1), 1999.

[LRSW00] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym Systems. In SAC’99: 6th International Workshop on Selected
Areas in Cryptography, volume 1758 of LNCS, pages 184–199. Springer, 2000.

[LTV10] Pascal Lafourcade, Vanessa Terrade, and Sylvain Vigier. Comparison of
Cryptographic Verification Tools Dealing with Algebraic Properties. In
FAST’09: 6th International Workshop on Formal Aspects in Security and
Trust, volume 5983 of LNCS, pages 173–185. Springer, 2010.

[Lub90] Boris D. Lubachevsky. Synchronization Barrier and Related Tools for Shared
Memory Parallel Programming. International Journal of Parallel Program-
ming, 19(3):225–250, 1990.

[Lys02] Anna Lysyanskaya. Signature Schemes and Applications to Cryptographic
Protocol Design. PhD thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, 2002.

[Mar08] Andrew Martin. The ten-page introduction to Trusted Computing. Technical
Report CS-RR-08-11, University of Oxford, 2008.

[MCB10] Simon Meier, Cas J. F. Cremers, and David A. Basin. Strong Invariants
for the Efficient Construction of Machine-Checked Protocol Security Proofs.
In CSF’10: 23rd IEEE Computer Security Foundations Symposium, pages
231–245. IEEE Computer Society, 2010.

[Mea94] Catherine Meadows. A Model of Computation for the NRL Protocol Ana-
lyzer. In CSFW’94: 7th IEEE Computer Security Foundations Workshop,
pages 84–89. IEEE Computer Society, 1994.

[Mea96a] Catherine Meadows. Analyzing the Needham-Schroeder Public Key Pro-
tocol: A Comparison of Two Approaches. In ESORICS’96: 4th European
Symposium on Research in Computer Security, volume 1146 of LNCS, pages
351–364. Springer, 1996.

[Mea96b] Catherine Meadows. The NRL Protocol Analyzer: An Overview. Journal of
Logic Programming, 26(2):113–131, 1996.

BIBLIOGRAPHY 185

[Mea00] Catherine Meadows. Open Issues in Formal Methods for Cryptographic Pro-
tocol Analysis. In DISCEX’00: DARPA Information Survivability Confer-
ence & Exposition, pages 237–250. IEEE Computer Society, 2000.

[Mea01] Catherine Meadows. Open Issues in Formal Methods for Cryptographic Pro-
tocol Analysis. In MMM-ACNS’01: International Workshop on Information
Assurance in Computer Networks, volume 2052 of LNCS, page 21. Springer,
2001.

[Mea03] Catherine Meadows. Formal Methods for Cryptographic Protocol Analysis:
Emerging Issues and Trends. Selected Areas in Communications, 21(1):44–
54, 2003.

[Mea04] Catherine Meadows. Ordering from Satan’s menu: a survey of requirements
specification for formal analysis of cryptographic protocols. Science of Com-
puter Programming, 50(1–3):3–22, 2004.

[Mer02] Rebecca Mercuri. A Better Ballot Box? IEEE Spectrum, 39(10):46–50, 2002.

[MGR09] Aybek Mukhamedov, Andrew D. Gordon, and Mark D. Ryan. Towards a
Verified Reference Implementation of a Trusted Platform Module. In 17th
International Workshop on Security Protocols, LNCS. Springer, 2009. To
appear.

[Min08] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (Netherland’s
Ministry of the Interior and Kingdom Relations). Stemmen met
potlood en papier (Voting with pencil and paper). Press re-
lease http://www.minbzk.nl/onderwerpen/grondwet-en/verkiezingen/

nieuws--en/112441/stemmen-met-potlood, May 2008.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated Analysis of
Cryptographic Protocols using Murϕ. In S&P’97: 18th IEEE Symposium on
Security and Privacy, pages 141–151. IEEE Computer Society, 1997.

[MN06] Tal Moran and Moni Naor. Receipt-Free Universally-Verifiable Voting with
Everlasting Privacy. In CRYPTO’06: 26th International Cryptology Confer-
ence, volume 4117 of LNCS, pages 373–392. Springer, 2006.

[Mon99] David Monniaux. Abstracting Cryptographic Protocols with Tree Automata.
In SAS’99: 6th International Static Analysis Symposium, volume 1694 of
LNCS, pages 149–163. Springer, 1999.

[Mon03] David Monniaux. Abstracting cryptographic protocols with tree automata.
Science of Computer Programming, 47(2–3):177–202, 2003.

[Moo88] Judy H. Moore. Protocol Failures in Cryptosystems. In Proceedings of the
IEEE, volume 76, pages 594–602. IEEE Computer Society, 1988.

[MPW92a] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, I. Information and Computation, 100:1–40, 1992.

186 BIBLIOGRAPHY

[MPW92b] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, II. Information and Computation, 100:41–77, 1992.

[MR08] Aybek Mukhamedov and Mark Dermot Ryan. Fair multi-party contract
signing using private contract signatures. Information and Computation,
206(2–4):272–290, 2008.

[NS78] Roger M. Needham and Michael D. Schroeder. Using Encryption for Au-
thentication in Large Networks of Computers. Communications of the ACM,
21(12):993–999, 1978.

[Oka98] Tatsuaki Okamoto. Receipt-Free Electronic Voting Schemes for Large Scale
Elections. In SP’97: 5th International Workshop on Security Protocols, vol-
ume 1361 of LNCS, pages 25–35. Springer, 1998.

[Pau98] Lawrence C. Paulson. The Inductive Approach to Verifying Cryptographic
Protocols. Journal of Computer Security, 6(1–2):85–128, 1998.

[PBP+10] Reema Patel, Bhavesh Borisaniya, Avi Patel, Dhiren Patel, Muttukrish-
nan Rajarajan, and Andrea Zisman. Comparative Analysis of Formal
Model Checking Tools for Security Protocol Verification. In Natarajan
Meghanathan, Selma Boumerdassi, Nabendu Chaki, and Dhinaharan Naga-
malai, editors, Recent Trends in Network Security and Applications, vol-
ume 89 of Communications in Computer and Information Science, pages
152–163. Springer, 2010.

[PH10] Andreas Pfitzmann and Marit Hansen. A terminology for talking about
privacy by data minimization: Anonymity, Unlinkability, Undetectability,
Unobservability, Pseudonymity, and Identity Management (Version 0.34).
Technical report, Department of Computer Science, Technische Universität
Dresden, 2010. See http://dud.inf.tu-dresden.de/Anon_Terminology.

shtml for succeeding versions of this report.

[Pie10] Wolter Pieters. Verifiability of Electronic Voting: Between Confidence and
Trust. In Serge Gutwirth, Yves Poullet, and Paul De Hert, editors, Data
Protection in a Profiled World, chapter 9. Springer, 2010.

[PK01] Andreas Pfitzmann and Marit Köhntopp. Anonymity, Unobservability, and
Pseudonymity A Proposal for Terminology. In International Workshop on
Design Issues in Anonymity and Unobservability, volume 2009 of LNCS,
pages 1–9. Springer, 2001. An extended version is also available [PH10].

[Pri10] Princeton University. Princeton Election Server, 2010. https://

princeton-helios.appspot.com/.

[PS96] David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes.
In EUROCRYPT’96: 13th International Conference on the Theory and Ap-
plications of Cryptographic Techniques, volume 1070 of LNCS, pages 387–
398. Springer, 1996.

BIBLIOGRAPHY 187

[PSW00] Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Cryptographic
Security of Reactive Systems. Electronic Notes in Theoretical Computer
Science, 32:59–77, 2000.

[Ros95] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP
and FDR. In CSFW’95: 8th IEEE Computer Security Foundations Work-
shop, pages 98–107. IEEE Computer Society, 1995.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transac-
tions. ACM Transactions on Information and System Security, 1(1):66–92,
November 1998.

[RS11] Mark D. Ryan and Ben Smyth. Applied pi calculus. In Véronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing
Security Protocols, chapter 6. IOS Press, 2011.

[RT01] Michaël Rusinowitch and Mathieu Turuani. Protocol Insecurity with Finite
Number of Sessions is NP-Complete. In CSFW’01: 14th IEEE Computer
Security Foundations Workshop, pages 174–188. IEEE Computer Society,
2001.

[RT03] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with a finite
number of sessions and composed keys is np-complete. Theoretical Computer
Science, 1-3(299):451–475, 2003.

[Rub02] Aviel D. Rubin. Security considerations for remote electronic voting. Com-
munications of the ACM, 45(12):39–44, 2002.

[Rud07] Carsten Rudolph. Covert Identity Information in Direct Anonymous Attes-
tation (DAA). In SEC’07: 22nd International Information Security Con-
ference, volume 232 of International Federation for Information Processing
(IFIP), pages 443–448. Springer, 2007.

[Rus93] John Rushby. Formal Methods and the Certification of Critical Systems.
Technical Report SRI-CSL-93-7, SRI International, 1993.

[Sal88] Roy G. Saltman. Accuracy, Integrity and Security in Computerized Vote-
Tallying. Communications of the ACM, 31(10):1184–1191, 1988.

[San93] Davide Sangiorgi. A Theory of Bisimulation for the π-Calculus. In CON-
CUR’93: 4th International Conference on Concurrency Theory, volume 715
of LNCS, pages 127–142. Springer, 1993.

[San96] Davide Sangiorgi. A Theory of Bisimulation for the π-Calculus. Acta Infor-
matica, 33(1):69–97, 1996.

[SBP01] Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena: a novel
approach to efficient automatic security protocol analysis. Journal of Com-
puter Security, 9(1–2):47–74, 2001.

188 BIBLIOGRAPHY

[Sch09] Berry Schoenmakers. Voting Schemes. In Mikhail J. Atallah and Marina
Blanton, editors, Algorithms and Theory of Computation Handbook, Second
Edition, Volume 2: Special Topics and Techniques, chapter 15. CRC Press,
2009.

[SGPV09] Michaël Sterckx, Benedikt Gierlichs, Bart Preneel, and Ingrid Verbauwhede.
Efficient implementation of anonymous credentials on Java Card smart cards.
In WIFS’09: IEEE International Workshop on Information Forensics and
Security, pages 106–110. IEEE Computer Society, 2009.

[Sha49] Claude E Shannon. Communication Theory of Secrecy Systems. Bell System
Technical Journal, 28:656–715, 1949.

[Smy06] Ben Smyth. Direct Anonymous Attestation (DAA): An implementation and
security analysis. Master’s thesis, School of Computer Science, University of
Birmingham, 2006.

[Smy07] Ben Smyth. Automatic verification of privacy properties in the applied
pi calculus. In Liqun Chen, Steve Kremer, and Mark D. Ryan, ed-
itors, Formal Protocol Verification Applied: Abstracts Collection, num-
ber 07421 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2007. http://drops.dagstuhl.de/opus/volltexte/2008/1419/

pdf/07421_abstracts_collection.1419.pdf.

[Son99] Dawn Xiaodong Song. Athena: a New Efficient Automatic Checker for Secu-
rity Protocol Analysis. In CSFW’99: 12th IEEE Computer Security Foun-
dations Workshop, pages 192–202. IEEE Computer Society, 1999.

[SRC07] Ben Smyth, Mark D. Ryan, and Liqun Chen. Direct Anonymous Attestation
(DAA): Ensuring privacy with corrupt administrators. In ESAS’07: 4th
European Workshop on Security and Privacy in Ad hoc and Sensor Networks,
volume 4572 of LNCS, pages 218–231. Springer, 2007.

[SRKK10] Ben Smyth, Mark D. Ryan, Steve Kremer, and Mounira Kourjieh. Towards
automatic analysis of election verifiability properties. In ARSPA-WITS’10:
Joint Workshop on Automated Reasoning for Security Protocol Analysis and
Issues in the Theory of Security, volume 6186 of LNCS, pages 165–182.
Springer, 2010.

[SS08] Mario Strasser and Heiko Stamer. A Software-Based Trusted Platform Mod-
ule Emulator. In Trust’08: 1st International Conference on Trusted Com-
puting and Trust in Information Technologies, volume 4968 of LNCS, pages
33–47. Springer, 2008.

[Tar10] Christopher Tarnovsky. Deconstructing a ‘Secure’ Pro-
cessor. In Black Hat DC 2010, 2010. https://

media.blackhat.com/bh-dc-10/video/Tarnovsky_Chris/

BlackHat-DC-2010-Tarnovsky-DeconstructProcessor-video.m4v.

BIBLIOGRAPHY 189

[TCG07] Trusted Computing Group. TPM Specification version 1.2, 2007. http:

//www.trustedcomputinggroup.org/specs/TPM/.

[THG98] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
Spaces: Why is a Security Protocol Correct? In S&P’98: 19th IEEE Sym-
posium on Security and Privacy, pages 160–171. IEEE Computer Society,
1998.

[THG99] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
Spaces: Proving Security Protocols Correct. Journal of Computer Security,
7(1), 1999.

[TMT+08] Mehdi Talbi, Benjamin Morin, Valérie Viet Triem Tong, Adel Bouhoula, and
Mohamed Mejri. Specification of Electronic Voting Protocol Properties Using
ADM Logic: FOO Case Study. In ICICS’08: 10th International Conference
on Information and Communications Security, volume 5308 of LNCS, pages
403–418. Springer, 2008.

[Tru09] Trusted Computing Group. Cloud Computing and Security - A Natu-
ral Match, 2009. http://www.trustedcomputinggroup.org/resources/

cloud_computing_and_security__a_natural_match.

[Tur06] Mathieu Turuani. The CL-Atse Protocol Analyser. In RTA’06: 17th Inter-
national Conference on Rewriting Techniques and Applications, volume 4098
of LNCS, pages 277–286. Springer, 2006.

[UK07] Key issues and conclusions: May 2007 electoral pilot schemes, May 2007.
http://www.electoralcommission.org.uk/elections/pilots/May2007.

[UMQ10] Dominique Unruh and Jörn Müller-Quade. Universally Composable Inco-
ercibility. In CRYPTO’10: 30th International Cryptology Conference, vol-
ume 6223 of LNCS, pages 411–428. Springer, 2010.

[Vic94] Björn Victor. A Verification Tool for the Polyadic π-Calculus. PhD thesis,
Department of Computer Systems, Uppsala University, Sweden, 1994.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench - A Tool for the
π-Calculus. In CAV’94: 6th International Conference on Computer Aided
Verification, volume 818 of LNCS, pages 428–440. Springer, 1994.

[War03] Bogdan Warinschi. A Computational Analysis of the Needham-Schröeder-
(Lowe) Protocol. In CSFW’03: 16th IEEE Computer Security Foundations
Workshop, pages 248–262. IEEE Computer Society, 2003.

[War05] Bogdan Warinschi. A computational analysis of the Needham-Schroeder-
(Lowe) protocol. Journal of Computer Security, 13(3):565–591, 2005.

[Wei99] Christoph Weidenbach. Towards an automatic analysis of security protocols
in first-order logic. In CADE’99: 16th International Conference on Auto-
mated Deduction, volume 1632 of LNCS, pages 314–328. Springer, 1999.

