

# SONOELECTROCHEMICAL (20 kHz) PRODUCTION OF HYDROGEN FROM AQUEOUS SOLUTIONS

BY

DANIEL SYMES

Thesis submitted in accordance with the requirements of The University of Birmingham for the degree of

MASTER OF RESEARCH

School of Chemical Engineering College of Engineering and Physical Sciences The University of Birmingham February 2011

## UNIVERSITY<sup>OF</sup> BIRMINGHAM

## **University of Birmingham Research Archive**

## e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.

## ACKNOWLEDGEMENTS

I am whole heartily thankful to my supervisor Dr Bruno G. Pollet, whose encouragement, supervision, and support from the preliminary to concluding level enabled me to develop and understanding of the subject.

I would also like to express my gratitude to the EPSRC for providing the funding for this research, and thank my family and girlfriend for their love and support throughout.

Finally I offer my regards to Matthew Lepesant whose assistance in the laboratory was of great aid to me, blessings to Professor Kevin Kendall, Dr Waldemar Bujalski, Dr Aman Dhir, Oliver Curnick, James Courtney, Tony Meadowcroft and fellow researchers at the PEM Fuel Cell Research Group and the Centre for Hydrogen and Fuel Cell Research at the University of Birmingham, who supported me in any respect during the completion of the project.

## ABSTRACT

There are various methods of producing Hydrogen. These include electrolysis, which this work is based upon, and steam reforming; currently the most commercially viable method.

The research herein investigates methods of producing 'green' Hydrogen more efficiently by using ultrasound (20 kHz) combined to electrolysis. Previous studies have shown that ultrasound enhances mass-transfer of electro-active species from the bulk solution to the electrode surface in any electrolytic system and mechanically removes gas bubbles on the electrode surface.

This work takes this previous research further by quantifying actual hydrogen gas output. The hydrogen evolution reaction was then directly compared with that calculated using the Ideal Gas Equation to quantify the efficiency of the electrolysis system.

It was observed that ultrasound lowers the anodic and cathodic overpotentials due to gas removal at the electrode surface induced by cavitation and increased mass-transfer. However, it was found that ultrasound did not increase the rate of Hydrogen production. During experimentation it was seen that the force exhibited on the electrodes by ultrasonic waves limited bubble evolution on the electrode surface.

Issues associated with the ultrasonic reactor geometry and the ultrasonic transducer size are also discussed as potential reasons for this result.

| 1. INTRODUCTION & LITERATURE SURVEY            | 1  |
|------------------------------------------------|----|
| 1.1 Global Warming and Carbon Dioxide          | 1  |
| 1.2 Hydrogen as an Energy Carrier              | 4  |
| 1.2.1 What is Hydrogen?                        | 4  |
| 1.2.2 Methods of Hydrogen Production           | 6  |
| 1.2.3 Fuel Cell Technology                     |    |
| 1.3 Principles of Electrochemistry             |    |
| Method 1: Decomposition Voltage                |    |
| Method 2: Discharge Potential                  |    |
| 1.4 Electrolysis                               | 22 |
| 1.5 Sonoelectrochemistry                       | 25 |
| 1.6 Sonoelectrochemical Production of Hydrogen |    |
| 2. EXPERIMENTAL METHOD                         |    |
| 2.1 Equipment & Parameters                     |    |
| 3. RESULTS AND DISCUSSION                      |    |
| 3.1 Preliminary Experiments                    |    |
| 3.1.1 Current Voltage Curves                   |    |
| 3.1.2 Overpotential Determination              |    |
| 3.2 Custom Glassware Experiments               | 46 |
| 3.2.1 Current-Voltage Curves                   |    |
| 3.2.2 Hydrogen Evolution Rate                  |    |
| 3.2.3 Hydrogen Efficiency Data                 | 53 |
| 3.2.4 Energy Efficiency Data                   |    |
| 3.2.5 Ultrasonic Power Determination           |    |
| 3.3 Erosion of the Electrodes                  | 57 |
| 3.4 Experiments with Industrial Electrolysers  | 58 |

## CONTENTS

| 5.4.1 mit oddetion                                                                                                                                                                                                                                                                                                                                                                        | 58       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 3.4.2 Data Analysis                                                                                                                                                                                                                                                                                                                                                                       | 60       |
| 4. CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                            | 63       |
| 4.1 Comparison for Industrial Electrolyser and Sonoelectrochemical Cell                                                                                                                                                                                                                                                                                                                   | 66       |
| 5. FUTURE WORK                                                                                                                                                                                                                                                                                                                                                                            | 69       |
| 5.1 Electrolytes                                                                                                                                                                                                                                                                                                                                                                          | 69       |
| 5.2 Electrode Parameters                                                                                                                                                                                                                                                                                                                                                                  | 70       |
| 5.3 Electrolyte Temperature                                                                                                                                                                                                                                                                                                                                                               | 70       |
| 5.4 Ultrasonic Parameters                                                                                                                                                                                                                                                                                                                                                                 | 71       |
| 6. REFERENCES                                                                                                                                                                                                                                                                                                                                                                             | 72       |
| 7. APPENDICES                                                                                                                                                                                                                                                                                                                                                                             | 77       |
| 7.1 Appendix I - Data Tables                                                                                                                                                                                                                                                                                                                                                              | 77       |
|                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 7.1.1 Preliminary Experiments                                                                                                                                                                                                                                                                                                                                                             | 77       |
| 7.1.1 Preliminary Experiments<br>7.1.2 Custom Glassware Experiments                                                                                                                                                                                                                                                                                                                       | 77<br>83 |
| <ul> <li>7.1.1 Preliminary Experiments</li> <li>7.1.2 Custom Glassware Experiments</li> <li>7.2 Appendix II - Graphs</li> </ul>                                                                                                                                                                                                                                                           |          |
| <ul> <li>7.1.1 Preliminary Experiments</li> <li>7.1.2 Custom Glassware Experiments</li> <li>7.2 Appendix II - Graphs</li> <li>7.2.1 Preliminary Experiments</li> </ul>                                                                                                                                                                                                                    |          |
| <ul> <li>7.1.1 Preliminary Experiments</li> <li>7.1.2 Custom Glassware Experiments</li> <li>7.2 Appendix II - Graphs</li> <li>7.2.1 Preliminary Experiments</li> <li>7.2.2 Custom Glassware Experiments</li> </ul>                                                                                                                                                                        |          |
| <ul> <li>7.1.1 Preliminary Experiments</li> <li>7.1.2 Custom Glassware Experiments</li> <li>7.2 Appendix II - Graphs</li> <li>7.2.1 Preliminary Experiments</li> <li>7.2.2 Custom Glassware Experiments</li> <li>7.3 Appendix III – Decomposition Potential Calculations</li> </ul>                                                                                                       |          |
| <ul> <li>7.1.1 Preliminary Experiments</li> <li>7.1.2 Custom Glassware Experiments</li> <li>7.2 Appendix II - Graphs</li> <li>7.2.1 Preliminary Experiments</li> <li>7.2.2 Custom Glassware Experiments</li> <li>7.3 Appendix III – Decomposition Potential Calculations</li> <li>7.4 Appendix IV - Ultrasound Power Data Tables</li> </ul>                                               |          |
| <ul> <li>7.1.1 Preliminary Experiments</li> <li>7.1.2 Custom Glassware Experiments</li> <li>7.2 Appendix II - Graphs</li> <li>7.2.1 Preliminary Experiments</li> <li>7.2.2 Custom Glassware Experiments</li> <li>7.3 Appendix III – Decomposition Potential Calculations</li> <li>7.4 Appendix IV - Ultrasound Power Data Tables</li> <li>7.5 Appendix V - Health &amp; Safety</li> </ul> | 77<br>   |

## **TABLE OF FIGURES**

| Figure 1: Greenhouse Effect Diagram. Source: United Nation Environment Programme                     | 1    |
|------------------------------------------------------------------------------------------------------|------|
| Figure 2: Flammability Range of H <sub>2</sub> when compared to other fuels. Source: Hydrogen-FC Ltd | 5    |
| Figure 3: A summary of the current technologies available to produce Hydrogen [40]                   | . 12 |
| Figure 4: Diagram of a PEMFC [43]                                                                    | . 14 |
| Figure 5: Decomposition Voltage Calculation Demonstration Graph                                      | . 20 |
| Figure 6: Schematic of Ultrasonic Phenomena [69]                                                     | . 27 |
| Figure 7: Custom Designed Glassware & Experimental Setup                                             | . 33 |
| Figure 8: Experimental Setup for Preliminary Experiments                                             | . 34 |
| Figure 9: Decomposition Curves for NaOH solution                                                     | . 38 |
| Figure 10: Decomposition Curves for NaCl solution                                                    | . 39 |
| Figure 11: Decomposition Curves for H <sub>2</sub> SO <sub>4</sub> solution                          | . 40 |
| Figure 12: Current Voltage Comparison Graph for all three electrolytes                               | . 41 |
| Figure 13: Current Enhancement for NaOH solution                                                     | . 46 |
| Figure 14: Current Enhancement for NaCl solution                                                     | . 47 |
| Figure 15: Current Enhancement for H <sub>2</sub> SO <sub>4</sub> solution                           | . 48 |
| Figure 16: Hydrogen Production Enhancement for NaOH solution                                         | . 49 |
| Figure 17: Hydrogen Production Enhancement for NaCl solution                                         | . 50 |
| Figure 18: Hydrogen Production Enhancement for H <sub>2</sub> SO <sub>4</sub> solution               | . 51 |
| Figure 19: Hydrogen Output Efficiency Enhancement for NaOH solution                                  | . 53 |
| Figure 20: Hydrogen Output Efficiency Enhancement for NaCl solution                                  | . 54 |
| Figure 21: Hydrogen Output Efficiency Enhancement for H₂SO₄ solution                                 | . 55 |
| Figure 22: Image of Experimental Setup                                                               | . 58 |
| Figure 23: Image showing small leak on side tank                                                     | . 59 |
| Figure 24: Decomposition Curves for KOH solution                                                     | . 60 |
| Figure 25: HHO Production for KOH solution                                                           | . 62 |
| Figure 26: Diagram defining the Sonication Distance                                                  | . 66 |
| Figure 27: Table of Voltage Current Data for NaOH                                                    | . 77 |
| Figure 28: Table of Voltage Current Data for NaCl                                                    | . 78 |
| Figure 29: Table of Voltage Current Data for $H_2SO_4$                                               | . 79 |
| Figure 30: Table of Voltage Current Data for NaOH Sonicated                                          | . 80 |
| Figure 31: Table of Voltage Current Data for NaCl Sonicated                                          | . 81 |
| Figure 32: Table of Voltage Current Data for H2SO4 Sonicated                                         | . 82 |
| Figure 33: Data for 0.1M NaOH Silent                                                                 | . 83 |
| Figure 34: Data for 0.2M NaOH Silent                                                                 | . 84 |
| Figure 35: Data for 0.3M NaOH Silent                                                                 | . 85 |
| Figure 36: Data for 0.4M NaOH Silent                                                                 | . 86 |
| Figure 37: Data for 0.5M NaOH Silent                                                                 | . 87 |
| Figure 38: Data for 1.0M NaOH Silent                                                                 | . 88 |
| Figure 39: Data of NaOH Efficiency of $H_2$ production                                               | . 89 |
| Figure 40: Data for 0.1M NaCl Silent                                                                 | . 90 |

| Figure 41: Data for 0.2M NaCl Silent                                                      |     |
|-------------------------------------------------------------------------------------------|-----|
| Figure 42: Data for 0.3M NaCl Silent                                                      |     |
| Figure 43: Data for 0.4M NaCl Silent                                                      |     |
| Figure 44: Data for 0.5M NaCl Silent                                                      |     |
| Figure 45: Data for 1.0M NaCl Silent                                                      |     |
| Figure 46: Data of NaCl Efficiency of H <sub>2</sub> production                           |     |
| Figure 47: Data for 0.1M H <sub>2</sub> SO <sub>4</sub> Silent                            |     |
| Figure 48: Data for 0.2M H <sub>2</sub> SO <sub>4</sub> Silent                            |     |
| Figure 49: Data for 0.3M H <sub>2</sub> SO <sub>4</sub> Silent                            |     |
| Figure 50: Data for 0.4M H <sub>2</sub> SO <sub>4</sub> Silent                            | 100 |
| Figure 51: Data for 0.5M H <sub>2</sub> SO <sub>4</sub> Silent                            | 101 |
| Figure 52: Data for 1.0M H <sub>2</sub> SO <sub>4</sub> Silent                            | 102 |
| Figure 53: Data of H <sub>2</sub> SO <sub>4</sub> Efficiency of H <sub>2</sub> production | 103 |
| Figure 54: Data for 0.1M NaOH Sonicated                                                   | 104 |
| Figure 55: Data for 0.2M NaOH Sonicated                                                   | 105 |
| Figure 56: Data for 0.3M NaOH Sonicated                                                   | 106 |
| Figure 57: Data for 0.4M NaOH Sonicated                                                   | 107 |
| Figure 58: Data for 0.5M NaOH Sonicated                                                   | 108 |
| Figure 59: Data for 1.0M NaOH Sonicated                                                   | 109 |
| Figure 60: Data of NaOH Efficiency of H <sub>2</sub> production                           | 110 |
| Figure 61: Data for 0.1M NaCl Sonicated                                                   | 111 |
| Figure 62: Data for 0.2M NaCl Sonicated                                                   | 112 |
| Figure 63: Data for 0.3M NaCl Sonicated                                                   | 113 |
| Figure 64: Data for 0.4M NaCl Sonicated                                                   | 114 |
| Figure 65: Data for 0.5M NaCl Sonicated                                                   | 115 |
| Figure 66: Data for 1.0M NaCl Sonicated                                                   | 116 |
| Figure 67: Data of NaCl Efficiency of H <sub>2</sub> production                           | 117 |
| Figure 68: Data for 0.1M H <sub>2</sub> SO <sub>4</sub> Sonicated                         | 118 |
| Figure 69: Data for 0.2M H <sub>2</sub> SO <sub>4</sub> Sonicated                         | 119 |
| Figure 70: Data for 0.3M H <sub>2</sub> SO <sub>4</sub> Sonicated                         | 120 |
| Figure 71: Data for 0.4M H <sub>2</sub> SO <sub>4</sub> Sonicated                         | 121 |
| Figure 72: Data for 0.5M H <sub>2</sub> SO <sub>4</sub> Sonicated                         | 122 |
| Figure 73: Data for 1.0M H <sub>2</sub> SO <sub>4</sub> Sonicated                         | 123 |
| Figure 74: Data of $H_2SO_4$ Efficiency of $H_2$ production                               | 124 |
| Figure 75: Data for 0.1M NaOH Ultrasound Enhancement                                      | 125 |
| Figure 76: Data for 0.2M NaOH Ultrasound Enhancement                                      | 126 |
| Figure 77: Data for 0.3M NaOH Ultrasound Enhancement                                      | 127 |
| Figure 78: Data for 0.4M NaOH Ultrasound Enhancement                                      | 128 |
| Figure 79: Data for 0.5M NaOH Ultrasound Enhancement                                      | 129 |
| Figure 80: Data for 1.0M NaOH Ultrasound Enhancement                                      | 130 |
| Figure 81: Data for 0.1M NaCl Ultrasound Enhancement                                      | 131 |
| Figure 82: Data for 0.2M NaCl Ultrasound Enhancement                                      | 132 |
| Figure 83: Data for 0.3M NaCl Ultrasound Enhancement                                      | 133 |

| Figure 84: Data for 0.4M NaCl Ultrasound Enhancement                                                   | . 134 |
|--------------------------------------------------------------------------------------------------------|-------|
| Figure 85: Data for 0.5M NaCl Ultrasound Enhancement                                                   | . 135 |
| Figure 86: Data for 1.0M NaCl Ultrasound Enhancement                                                   | . 136 |
| Figure 87: Data for 0.1M H <sub>2</sub> SO <sub>4</sub> Ultrasound Enhancement                         | . 137 |
| Figure 88: Data for 0.2M H <sub>2</sub> SO <sub>4</sub> Ultrasound Enhancement                         | . 138 |
| Figure 89: Data for 0.3M H <sub>2</sub> SO <sub>4</sub> Ultrasound Enhancement                         | . 139 |
| Figure 90: Data for 0.4M H <sub>2</sub> SO <sub>4</sub> Ultrasound Enhancement                         | . 140 |
| Figure 91: Data for 0.5M H <sub>2</sub> SO <sub>4</sub> Ultrasound Enhancement                         | . 141 |
| Figure 92: Data for 1.0M H <sub>2</sub> SO <sub>4</sub> Ultrasound Enhancement                         | . 142 |
| Figure 93: Current Voltage Graph for Silent NaOH solution                                              | . 143 |
| Figure 94: Current Voltage Graph for Silent NaCl solution                                              | . 143 |
| Figure 95: Current Voltage Graph for Silent H <sub>2</sub> SO <sub>4</sub> solution                    | . 144 |
| Figure 96: Current Voltage Graph for Sonicated NaOH solution                                           | . 144 |
| Figure 97: Current Voltage Graph for Sonicated NaCl solution                                           | . 145 |
| Figure 98: Current Voltage Graph for Sonicated $H_2SO_4$ solution                                      | . 145 |
| Figure 99: Current Voltage Graph for Silent NaOH solution                                              | . 146 |
| Figure 100: Current Voltage Graph for Silent NaCl solution                                             | . 146 |
| Figure 101: Current Voltage Graph for Silent H <sub>2</sub> SO <sub>4</sub> solution                   | . 147 |
| Figure 102: Current Voltage Graph for Sonicated NaOH solution                                          | . 147 |
| Figure 103: Current Voltage Graph for Sonicated NaCl solution                                          | . 148 |
| Figure 104: Current Voltage Graph for Sonicated H₂SO₄ solution                                         | . 148 |
| Figure 105: Hydrogen Production Graph for Silent NaOH solution                                         | . 149 |
| Figure 106: Hydrogen Production Graph for Silent NaCl solution                                         | . 149 |
| Figure 107: Hydrogen Production Graph for Silent H <sub>2</sub> SO <sub>4</sub> solution               | . 150 |
| Figure 108: Hydrogen Production Graph for Sonicated NaOH solution                                      | . 150 |
| Figure 109: Hydrogen Production Graph for Sonicated NaCl solution                                      | . 151 |
| Figure 110: Hydrogen Production Graph for Sonicated H <sub>2</sub> SO <sub>4</sub> solution            | . 151 |
| Figure 111: Hydrogen Production Efficiency Graph for Silent NaOH solution                              | . 152 |
| Figure 112: Hydrogen Production Efficiency Graph for Silent NaCl solution                              | . 152 |
| Figure 113: Hydrogen Production Efficiency Graph for Silent H <sub>2</sub> SO <sub>4</sub> solution    | . 153 |
| Figure 114: Hydrogen Production Efficiency Graph for Sonicated NaOH solution                           | . 153 |
| Figure 115: Hydrogen Production Efficiency Graph for Sonicated NaCl solution                           | . 154 |
| Figure 116: Hydrogen Production Efficiency Graph for Sonicated H <sub>2</sub> SO <sub>4</sub> solution | . 154 |
| Figure 117: Temperature variance table for each electrolyte at varying ultrasonic powers               | . 158 |
| Figure 118: dT/dt gradients calculated for each electrolyte                                            | . 158 |
| Figure 119: Ultrasound Power Table                                                                     | . 158 |

## **TABLE OF TABLES**

| Table 1: Comparison of Fuel Cell Technologies [48]              | 15 |
|-----------------------------------------------------------------|----|
| Table 2: Preliminary Experimental Electrolyte Masses            | 35 |
| Table 3: Custom Glassware Experimental Electrolyte Masses       | 35 |
| Table 4: Table of Decomposition Voltages                        | 43 |
| Table 5: Table of Overpotentials                                | 43 |
| Table 6: Table of Average Overpotentials                        | 44 |
| Table 7: Chemical Properties for each electrolyte solution [94] |    |
| Table 8: Ultrasonic Power Density Table                         |    |
| Table 9: Decomposition Voltages for Industrial Electrolyser     |    |
|                                                                 |    |

## **1. INTRODUCTION & LITERATURE SURVEY**

Global energy demand and security as well as increasing world population are leading to an inevitable shortage of fossil fuels which is the primary resource of our energy requirement. Fossil fuels are made up of hydrocarbons, and as their availability becomes increasingly limited, other energy sources will need to be found, in other words, research into new sources of energy is urgently required [1].

### 1.1 Global Warming and Carbon Dioxide

Carbon dioxide ( $CO_2$ ), one of the main contributors to global warming, was first discovered in 1753 by Joseph Black whilst he was at the University of Edinburgh completing his medical studies. It was not for another 50 years until Jean-Baptiste Fourier suggested that an atmospheric effect kept the planet

warmer than it should be. This occurred in 1827 whereby Fourier used the analogy of a 'greenhouse' to describe this atmospheric effect [2].

Then in 1896 a direct link between  $CO_2$  and global warming was found, where Arrhenius proposed that  $CO_2$  emissions from burning



Environment Programme

coal would enhance the planet's greenhouse effect and lead to global warming. Since the industrial revolution, which began in the early  $18^{th}$  century, the amount of  $CO_2$  in the atmosphere has increased by 35%. It is reported that the current level of  $CO_2$  in the atmosphere is higher than it was 650,000 years ago [3].

 $CO_2$  absorbs and emits waves in the infrared (IR) spectrum and it is known as a greenhouse gas (GHG). Other GHGs include NO<sub>x</sub>, CO, O<sub>3</sub>, SO<sub>x</sub> and H<sub>2</sub>O. As the Earth is heated by the Sun, the greenhouse gases in the troposphere absorb the reflected solar radiation and emit it back to Earth. The amount of solar radiation absorbed is directly proportional to the amount of greenhouse gases in the troposphere. As the level of CO<sub>2</sub> in the atmosphere increases, more solar radiation becomes trapped thus increasing the temperature of the planet leading to global warming [4] (Figure 1 [5]).

Fossil fuels when combusted to produce energy create CO<sub>2</sub> and other GHGs as by-products. The CO<sub>2</sub> concentration in the Earth's atmosphere has been steadily increasing for the last 100 years [6], due to the rise in quantities of fossil fuels being burnt together with rapid deforestation. Deforestation results in a reduction of photosynthesis i.e. decreasing the removal carbon dioxide from the atmosphere and its replacement with oxygen in turn causing CO<sub>2</sub> levels in the atmosphere to rise [7]. The rising population of our planet (currently ca. 6 billion and expected to rise over 9 billion by 2050) is also leading to higher emissions. Indeed, this increase in population will cause a growing demand for food, livestock and energy, all of which will result in higher CO<sub>2</sub> emissions [8].

Another cause of increasing  $CO_2$  concentration in the atmosphere is due to the depletion of the ozone ( $O_3$ ) layer in the upper atmosphere.  $O_3$  prevents harmful UV rays from the Sun reaching the surface of the planet and if there was no ozone, no life would exist!

Both of these phenomena have resulted in an increase in average global temperature of around 2- $4^{\circ}$ C over the last 100 years. In that period, it is reported that the burning of fossil fuels has produced about three quarters of the increase in CO<sub>2</sub> levels and the remaining is due to land use changes e.g. deforestation (e.g. Amazon forest) [7].

Throughout the history of our planet, the Earth has always been changing, sometimes through natural causes. More recently the term 'climate change' has been used to describe changes in our climate since the early 20th century. The changes in climate we have seen recently along with the changes predicted over the next 100 years are not solely due to natural causes, but are thought to be caused by human activities (anthropogenic activities) [2].

Governments started to realise the need for action by raising awareness of the alarming global issue. In 1979, the world held its first climate conference. The conference called upon governments *"to foresee and prevent potential man-made changes in climate"*. In 1988, the United Nations (UN) set up the Intergovernmental Panel on Climate Change (IPCC) to analyse and report on scientific findings [2].

The first Earth Summit was held in Rio de Janeiro in 1992, where the United Nations Framework Convention on Climate Change (UNFCCC) was signed by 154 nations. It was agreed to prevent "dangerous" warming from GHGs and set voluntary targets for reducing their emissions. The UNFCCC agreed voluntary targets in 1992 and the Kyoto Protocol was the first international treaty to set legally binding GHG emissions cuts for industrialised nations. The agreement was signed by 178 countries in 1997 and came into force in 2005 [2].

However, a potential solution to this problem presented above is the use of Hydrogen as an energy carrier/vector, and this is hereby discussed.

### **1.2 Hydrogen as an Energy Carrier**

#### 1.2.1 What is Hydrogen?

Hydrogen was first discovered in 1766 by Henry Cavendish through the reactions of zinc (Zn) and hydrochloric acid (HCl), which led to the discovery that water is made up of Hydrogen (H<sub>2</sub>) and Oxygen (O<sub>2</sub>) [9]. This was the only method of Hydrogen production (and in fact of 'green' Hydrogen) for over a hundred years until British scientists William Nicholson and Sir Anthony Carlisle discovered that applying an electrical current to water produces Hydrogen and Oxygen gases in 1880 [10]. This was later termed ' Water Electrolysis'.

In 1970, the Electrochemist John Bockris coined the term 'Hydrogen economy'[11, 12] and at the first World Hydrogen Conference in 1976 the idea of a Hydrogen economy was first discussed, identifying Hydrogen energy as a clean energy carrier for the future. It was concluded that a large proportion of energy supplied by Hydrogen, could be made from sources that have no net GHG emissions. The concept of a Hydrogen economy came about due to the limitations of fossil fuel supply and concerns about global warming [12].

Hydrogen is currently commercially produced by steam reforming (SR), which unfortunately releases GHGs, most notably carbon monoxide (CO) and CO<sub>2</sub> into the atmosphere. This results in the Hydrogen energy not being carbon neutral and therefore not meeting the objectives proposed in 1976 at the World Hydrogen Conference. Currently, it is more cost effective to produce Hydrogen from fossil fuels; therefore producers do not invest in the Hydrogen produced from renewable sources.

Many academics, some politicians and industrialists believe that the only realistic method to produce 'green' Hydrogen without creating any GHGs is through the use of renewable energy sources. These include solar (photovoltaic and photocatalysis), wind, tidal, geothermal and hydroelectric energy sources. Energy can be produced by these sources indefinitely as the primary sources of the energy

4

(the Sun for solar power, heat produced from the Earth for geothermal energy) will always exist whilst there is life on Earth. It is important to note that Hydrogen is an energy carrier, not a primary energy source [13]. Another source capable of producing Hydrogen is nuclear energy (via Electrolysis – see later). This method for producing Hydrogen has a lot of sceptics, but there is a great public concern over the disposal of the radioactive waste created from the process.

Hydrogen is predicted to be one of the future fuels for the automotive, buildings and portable

electronic sectors [14]. In each of these sectors, the Hydrogen energy is converted to electricity and heat by the fuel cell with water being the only by-product.

Hydrogen is an extremely flammable substance and must be handled with care, with a wide range of flammability limits and a low ignition energy [15] (Figure 2 [16]). This means that Hydrogen must be stored in a heat free environment with no source of ignition in the vicinity. These properties also create a



Figure 2: Flammability Range of H<sub>2</sub> when compared high risk of fire and/or explosion [15]. When Hydrogen to other fuels. Source: Hydrogen-FC Ltd

ignites, it burns with a colourless flame, which in itself is a hazard since it is difficult to detect. Another potential hazard of Hydrogen is if it leaks from a high pressure source (350 or 700 bar) Hydrogen self-heats itself, creating the risk of fires and/or explosions [17].

Currently vehicles running on petrol/diesel are known to have low energy efficiencies (<40%), but the lack of alternative fuels and an infrastructure means that there is no direct competition for petrol/diesel. Gasoline used in Internal Combustion Engines (ICEs) is found to have an energy efficiency of approximately 35%, whereas Hydrogen has an efficiency of approximately 41%. Therefore, Hydrogen supply chains would release significantly less CO<sub>2</sub> than the production of

gasoline for Hybrid Electric Vehicles. Emissions created during production could be reduced by Carbon Capture and Sequestration (CCS) at the site of production [18].

The use of Hydrogen in a Hydrogen Fuel Cell or a Hydrogen ICE, requires storage that has inherent and high volumetric efficiency. Metal Hydrides (M-H) offer alternatives to storing Hydrogen in gas and liquid form and are typically 0.5-3% weight H<sub>2</sub>. They store Hydrogen in what is essentially a solid form and offer the potential of high safety, volume efficiency, low pressure containment (<10 bar) and operating conditions at ambient temperatures [19].

The introduction of alternative fuels will require significant, long-term investments for setting up and expanding infrastructures[20]. This is especially true in the case of a Hydrogen economy based on renewable resources. Today's decisions therefore should be oriented towards robust options with stable prospects even under changing future framework conditions. Long-term scenarios are one tool for finding robust options because they allow outlining future developments of energy systems in relation to a variety of framework conditions and policy settings.

These scenarios refer to the total energy system so as to provide a complete balance of energy consumption and GHG emissions, and to take shifts between different sectors into account. A scenario analysis is required because depending on how fast the share of HFC vehicles expands, the impacts on final energy consumption, the energy demand for Hydrogen, and the resulting GHG emissions will differ [18].

#### **1.2.2 Methods of Hydrogen Production**

Currently 50 million tonnes of Hydrogen are produced globally every year. It is predicted that the production will rise by 10% year-on-year over the next decade. Steam reforming (SR) is the most widely used method to produce Hydrogen and currently accounts for 95-96% of global Hydrogen production where as electrolysis only contributes 4-5%.

6

#### 1.2.2.1 Hydrogen Production by Electrolysis

Water electrolysis involves passing an electrical current through water, to split the water molecules into Hydrogen and Oxygen [21], both can then be used directly in PEMFCs (see later). The Hydrogen produced is very pure (>99.999%) and therefore will not poison the catalyst (platinum) in the fuel cell (see later). Splitting water requires a very high current, since water has a high resistance (i.e. low conductivity), therefore the addition of an electrolyte (e.g. solid or liquid) increases the mobility of electrons (and ions) in the solution and allows a current to flow between the electrodes (anode and cathode). The electrolytes used in this study are: sulphuric acid (H<sub>2</sub>SO<sub>4</sub>), sodium hydroxide (NaOH) and sodium chloride (NaCl).

At current electricity prices, the energy used to create the electrical power is more valuable than the Hydrogen gas produced from electrolysis [22]. However, if the source of electricity originates from renewable sources, then no pollution is created by this method of Hydrogen production [23].

At this time, this process is not as widely used as Steam Reforming (SR) and Hydrogen can be obtained more affordably from fossil fuels. As non-renewable resources decline, production of  $H_2$  via electrolysis (using renewable technologies or/and nuclear) will become more commercially viable.

#### 1.2.2.2 Electrolysis based on Alkaline Fuel Cell (AFC) Technology

Alkaline Fuel Cell is the most developed fuel cell technology (invented by Francis Bacon at Cambridge University in the 1950's) which was used onboard NASA's Apollo space program. Its functioning is very similar to that of a PEMFC (see later) with the notable differences being the use of pure Oxygen instead of air and the electrolyte is usually an aqueous alkaline solution. By comparison with other fuel cells, the AFC is the most efficient fuel cell, with the ability to reach 70% efficiency (electrical).

An alkaline electrolysis cell (AEC) operates oppositely to an AFC, where electrical energy is applied to an alkaline solution to produce pure Hydrogen and Oxygen gases.

#### **1.2.2.3 Electrolysis based on PEMFC**

The electrolysis that uses a Solid Polymer Electrolyte (SPE) instead of a liquid alkaline electrolyte is termed PEM Electrolysis. No hazardous alkaline solutions are used and the only additive is water whereby a direct current (DC) electrical is applied. This produces Hydrogen and Oxygen, the same as an AEC.

#### 1.2.2.4 High Temperature Electrolysis

This form of electrolysis is usually carried out in a reverse solid oxide fuel cell (SOFC), called a solid oxide electrolysis cell (SOEC). This method is best used when the energy supply is in the form of heat e.g. solar, thermal or nuclear. With normal electrolysis, the energy is converted from electrical to heat to chemical energy, dissipating substantial energy in the process. Since the energy source here is heat, it is converted once to chemical energy. This potentially doubles the efficiency of the process by up to 50% [24]. Currently this process has only been demonstrated on the lab scale and has not been proven to work commercially [25].

#### 1.2.2.5 Steam Methane Reforming (SMR)

Fuel Cells are not yet regarded as carbon neutral. They do not produce any carbon emissions when in use, but as stated previously, the production of Hydrogen is currently derived from steam reforming. The mechanism is shown below [26].

$$CH_4 + H_2O \rightarrow CO + 3H_2 \tag{1}$$

The reaction is carried out at high temperatures (700-1,100°C) where the methane used to reform the steam is made from fossil fuels which in turn does not make this production method of Hydrogen emission free [27].

Furthermore, additional  $CO_2$  can be recovered by adding more water and lowering the temperature of the reaction to  $170^{\circ}C$  according to Equation (2):

$$CO+H_2O \rightarrow CO_2+H_2O \qquad (2)$$

The oxygen atom is removed from additional water to oxidise CO to  $CO_2$ , which provides energy to produce extra Hydrogen (see Equation 1) [27].

#### 1.2.2.6 Biological Hydrogen Production

In an algae bioreactor, algae usually produce O<sub>2</sub> under normal photosynthesis, but it has been shown that by depriving algae of sulphur, they produce H<sub>2</sub> instead. This process can be energy efficient by exceeding the energy used to convert sunlight to H<sub>2</sub> [28]. Feedstocks for this process can include waste streams, since bacteria feed on hydrocarbons and exhale Hydrogen and carbon dioxide. The carbon dioxide can also be sequestered, therefore reducing the potential of pollution [29].

#### 1.2.2.7 Hydrogen Production from Radiowaves

This process can be used in NaCl (sodium chloride) solutions of 1-30% concentrations. Radiofrequency radiation produces  $H_2$  from water/salt solutions and seawater by chemical decomposition. The radiation causes the ions in solution to vibrate and Van der Waals forces cause the Hydrogen and oxygen ions to separate [30].

#### 1.2.2.8 7 Hydrogen Production from the Kvaerner Process

The Kvaerner Process is the production of Hydrogen and carbon black from liquid hydrocarbons. This occurs at 1600°C in a plasma burner. In this process, 100% of the natural gas is transformed into carbon black whereby the Hydrogen gas is produced in an energy efficient way [31].

#### 1.2.2.9 7 Hydrogen Production from Pyrolysis

#### a) Coal Gasification

Another method of Hydrogen production is coal gasification. This process involves the reaction of coal with oxygen gas and water to produce 'syngas', which consists of Hydrogen and CO [32]. Hydrogen can then be separated from the CO and used as a fuel.

The process involves heating up the carbonaceous particles until they form char which is then combusted to form CO and  $CO_2$ . The gasification process happens as the char reacts with the carbon dioxide and steam to form H<sub>2</sub> and CO [32].

#### b) Biomass Conversion

Biomass can undergo a similar process called biomass gasification [33]. This involves the reaction of biomass with oxygen or steam at high temperatures to produce syngas.

#### 1.2.2.10 Hydrogen Production from Fermentation

Fermentative Hydrogen production consists of Biohydrogen being produced from organic substrates. This reaction involves the use of a diverse group of bacteria using various enzyme systems to produce Biohydrogen. The reaction is similar to that of anaerobic respiration, since Biohydrogen is produced in the absence of oxygen (air) [34]. There are two main types of fermentation, dark fermentation which does not require light to produce H<sub>2</sub>, and photofermentation which does require light [34].

#### 1.2.2.11 7 Hydrogen Production from Nuclear

New generation nuclear reactors are producing Hydrogen as well as electricity. The advantage that nuclear offers is that it can shift the reaction between the two e.g. producing electricity during the day or at high demand and then shifting the reaction to produce Hydrogen at night, when electricity is not widely used. If the H<sub>2</sub> is produced economically, it will compete with existing energy storage schemes [35].

#### 1.2.2.12 Hydrogen Production from Thermal Processes

At elevated temperatures (2000-3000°C), water splits into its main components Hydrogen and Oxygen. Lower temperatures can be used if a catalyst, such as zinc or zinc oxide is introduced to the system. The disadvantage in thermal energy is the energy required to create the high temperature and the stress requirement on the equipment used [36].

#### 1.2.2.13 Hydrogen Production from Chemical Processes

Hydrogen can be produced by chemical means involving the reaction of aluminium (AI) with water  $(H_2O)$  in the presence of a sodium hydroxide (NaOH) catalyst. The reaction mechanism is shown below:

$$AI+3H_2O \rightarrow AI(OH)_3 + 1.5H_2 \tag{3}$$

*Al* acts as a Hydrogen storage device in this case and since the oxidation reaction is exothermic, the operating conditions are only mild temperatures and pressures. This gives a stable and compact storage for Hydrogen [37].

#### 1.2.2.14 Hydrogen Production from Thermochemical Processes

This method of production uses heat instead of electricity to dissociate water into its constituents ( $H_2$  and  $O_2$ ). The heat can be provided from any energy source, primary or renewable, although using renewable energy sources creates less pollution [38].

#### 1.2.2.15 Photoelectrochemical Water Splitting

This production method for Hydrogen uses solar energy to electrolyse water and dissociate it into Hydrogen and Oxygen. This process involves two separate systems of turning light into electricity via photovoltaic cells and using this energy to electrolyse the water, which are connected together via an AC/DC converter to produce Hydrogen. This is currently the cleanest way to produce Hydrogen [39].

#### 1.2.2.16 Possible Future Hydrogen Productions

Competition to electrolysis for renewable 'green' Hydrogen production comes from biomass. The raw biomass undergoes anaerobic digestion, which creates methane (CH<sub>4</sub>) and a solid waste char. This methane can then be reformed with steam to produce Hydrogen. However, this process still does not remove carbon from the cycle, and therefore GHGs will be produced.

Although the purity of the Hydrogen produced by the anaerobic digestion and reformer pathway is not as great as that the Hydrogen produced by electrolysis, the use of gas separation membranes can greatly improve its purity. The use of amine scrubbers can reduce the level of  $CO_2$  and sulphides in the gas produced, which could further enhance the purity.



Figure 3: A summary of the current technologies available to produce Hydrogen [40]

#### **1.2.3 Fuel Cell Technology**

A fuel cell is an electrochemical device that converts a source fuel into an electrical current. There are various source fuels that can be utilised in fuel cells at specific temperatures using specific materials. Hydrogen is the most commonly used source fuel for fuel cells. This produces water as the only by-product of the electrical current.

There is some controversy as to who first discovered the fuel cell. According to the Department of Energy of the United States of America (US DoE), it was the German chemist Christian Friedrich Schönbein in 1839 who first carried out research on the phenomena that is a fuel cell [10]. There is also very strong evidence that Sir William Robert Grove discovered the concept of fuel cells by immersing two platinum (Pt) electrodes (as anode and cathode) on one end in sulphuric acid and the other ends in sealed containers of Hydrogen and Oxygen gas. A constant current flowed and the level of water in the tubing increased as a result of the Hydrogen and Oxygen being consumed. Grove then discovered by combining the electrodes in series produced a higher voltage drop, thus creating what he called a gas battery i.e. the first fuel cell [41].

Between 1836 and 1862, Schönbein sent letters to Michael Faraday containing information on how their own researches were progressing. Most importantly in these letters, Schönbein stated that he could not conceive how Grove had managed to produce power through the oxidation of a positive electrode [41].

In early 1933, Dr Thomas Francis Bacon developed the first fuel cell for practical and commercial use. It converted Hydrogen and air to electricity through electrochemical processes. Through his work in fuel cells, Bacon created the first fuel cells to be used on British submarines during World War II. In 1958, he developed the first Alkaline Fuel Cell (AFC) [42] and Bacon's fuel cells were so reliable that the company Pratt and Whitney purchased the patents from Bacon and used these fuel cells in NASA's Apollo spacecraft [10, 41].

13

Since then, the development of fuel cells has moved on at a great pace and they are still seen as efficient and clean power sources as their only waste product is water. For example, PEMFCs operate by passing Hydrogen gas through the anode side of the electrolyte, where Hydrogen ions are transferred through the electrolyte membrane to the cathode (Figure 4). Simultaneously air is passed through the cathode side of the electrolyte, and the negative ions cannot pass through the electrolyte to the anode, so they are dissipated as an electrical current. On the cathode side the Hydrogen and oxygen ions react to form water, which is removed from the fuel cell [10].



Figure 4: Diagram of a PEMFC [43]

### 1.2.3.1 Summary of Fuel Cells

There are different types of fuel cells. The table below illustrates the various types of fuel cells and their important properties (Table 1).

| Fuel Ce | ell Type                                    | Electrolyte                                        | Operating<br>Temperature        | Electrical<br>Efficiency | Fuel/Oxidant                                                                  |
|---------|---------------------------------------------|----------------------------------------------------|---------------------------------|--------------------------|-------------------------------------------------------------------------------|
| AFC     | Alkaline<br>Fuel Cell                       | Potassium<br>Hydroxide<br>Solution                 | Room<br>temperature<br>to 90°C  | 60-70%                   | H <sub>2</sub> / O <sub>2</sub>                                               |
| PEMFC   | Proton<br>Exchange<br>Membrane<br>Fuel Cell | Proton<br>Exchange<br>Membrane                     | Room<br>temperature<br>to 80°C  | 40-60%                   | $H_2 / O_2$ , Air                                                             |
| DMFC    | Direct<br>Methanol<br>Fuel Cell             | Proton<br>Exchange<br>Membrane                     | Room<br>temperature<br>to 130°C | 20-40%                   | CH₃OH / O₂,<br>Air                                                            |
| PAFC    | Phosphoric<br>Acid Fuel<br>Cell             | Phosphoric<br>Acid                                 | 160-220°C                       | 55%                      | Natural gas,<br>Biogas, H <sub>2</sub> /<br>O <sub>2</sub> , Air              |
| MCFC    | Molten<br>Carbonate<br>Fuel Cell            | Molten<br>mixture of<br>alkali metal<br>carbonated | 620-660°C                       | 65%                      | Natural gas,<br>Biogas, coal<br>gas, H <sub>2</sub> / O <sub>2</sub> ,<br>Air |
| SOFC    | Solid Oxide<br>Fuel Cell                    | Oxide ion<br>conducting<br>ceramic                 | 800-1000°C                      | 60-65%                   | Natural gas,<br>Biogas, coal<br>gas, H <sub>2</sub> / O <sub>2</sub> ,<br>Air |

Table 1: Comparison of Fuel Cell Technologies [48]

Direct Methanol Fuel Cell (DMFC) is very similar to PEMFC except it uses methanol as the source fuel instead of H<sub>2</sub>. DMFC has a lower electrical efficiency than PEMFC, but can operate at higher temperatures than its counterpart.

Phosphoric Acid Fuel Cell (PAFC) operates at higher temperatures when compared to PEMFC, and can be utilised using various fuels such as natural gas, biogas and Hydrogen. The PAFC can produce a

significantly higher energy output when compared to the PEMFC; due to the higher operating temperature.

Molten Carbonate Fuel Cell (MCFC) is a high temperature fuel cell that utilises a range of source fuels such as natural gas, biogas and Hydrogen gas (H<sub>2</sub>). The electrolyte is composed of a molten carbonate salt mixture suspended in a porous, chemically inert ceramic matrix alumina solid electrolyte.

## **1.3 Principles of Electrochemistry**

When a metal (M) is dipped into a solution of its ions (M<sup>n+</sup>) an equilibrium such as:

$$M^{n+} + n e^{-} <===> M$$
 (4)

or, generally

$$O + n e^{-} <=== \frac{k_f}{k_r} ===>R$$
 (5)

is established at its surface. Such an electrode will adopt a potential difference with respect to the solution whose value is a function of the position of the equilibrium.

Ideally, a redox process is governed by the Nernst equation (Eq.6), which describes the relationship between the electrode potential,  $E_{O/R}$ , and the surface concentration of the O/R redox couple (assuming that the activity coefficients of O and R are unity). The Nernst equation is then:

$$E_{O/R} = E_{O/R}^{o} + \frac{RT}{nF} ln \frac{C_{O}^{S}}{C_{R}^{S}}$$
 (6)

where *R* is the gas constant in J K-1mol-1 (R = 8.3184 J K-1mol-1 at 298 K), *T* is the temperature in K, *F* is the Faraday constant (96484.6 C mol-1), *E*<sub>0/R</sub> is the working electrode potential in V,  $E_{0/R}^{o}$  is the formal redox couple (or Standard Reduction Potential - SRP) in V, *n* is the number of electrons transferred per ion or molecule,  $C_0^{s}$  is the electrode surface concentration of in mol cm<sup>-3</sup>, and  $C_{R}^{s}$  is the electrode surface concentration of R in mol cm<sup>-3</sup>.

Experimentally, the electrode potential  $(E_{O/R})$  cannot be measured. One can only measure a cell potential  $(E_{cell})$ . This requires a reference electrode e.g. either a Saturated Calomel Electrode (SCE) or a Standard Hydrogen Electrode (SHE).

Thus, by convention, one may write that the cell potential is

$$E_{cell} = E_{O/R} - E_{Ref}$$
(7)

If  $E_{\text{Ref}} = 0$ 

Then,

$$E_{cell} = E_{O/R}$$
 (8)

Here  $E_{cell}$  is also equal to  $E_{Rev}$ 

All galvanic cells are said to operate reversibly when they draw zero current i.e. operate at the reversible potential,  $E_{rev}$ . However, if the electrode potential is deliberately altered to a value more anodic or cathodic to its equilibrium value, then current will immediately flow in such a direction so as restore the equilibrium i.e. normal battery discharge or recharge. This perturbation of the electrode potential ( $E_{app}$ ) is known as the overpotential,  $\eta$ , and is described by Equation 9. The overpotential is usually a deviation of the applied potential,  $E_{app}$ , from the reversible potential,  $E_{rev}$ .

$$\eta = E_{app} - E_{rev}$$
 (9)

The kinetic steps found in all electrode processes are:

- (i) Transport of ions from the bulk,
- (ii) Ionic discharge, and
- (iii) Conversion of discharged atom to a more stable form.

The first step gives rise to (a) concentration overpotential ( $\eta_c$ ) while the latter two give rise to (b) activation overpotential ( $\eta_A$ ) i.e. evolution of gases or deposition of metals. In any system there may be a third overpotential called (c) ohmic overpotential ( $\eta_R$ ), which arises due to the depletion of the ions during discharge.

Thus,

$$\eta = \eta_{\rm C} + \eta_{\rm A} + \eta_{\rm R} \tag{10}$$

In general, an overpotential leads to a fall in current and the galvanic cell ceasing to operate.

There are two methods of determining the overpotential of an electrolytic cell. Namely by: (i) the decomposition voltage ( $V_D$ ) and (ii) the discharge potential ( $E_D$ )methods.

#### Method 1: Decomposition Voltage

A graph of current versus cell voltage gives a decomposition curve and allows decomposition voltages to be determined (Figure 5). The decomposition voltage ( $V_D$ ) is defined as the minimum potential difference, which must be applied between a pair of electrodes before decomposition occurs and a current flows. An experimental value of the decomposition voltage can be obtained by extrapolating the second branch of the curve back to zero current.

The overpotential of the system may be obtained using Equation 11:

$$\eta = V_D - E_{rev}^{cell}$$
 (11)

where

$$E_{rev}^{cell} = \left| E_{rev,c} - E_{rev,a} \right|$$
(12)

with  $E_{rev,a}$  and  $E_{rev,c}$  being the reversible potentials of the anode and cathode respectively.



Figure 5: Decomposition Voltage Calculation Demonstration Graph

#### **Method 2: Discharge Potential**

This method requires the study of the electrodes reactions separately potentiostatically. Curves can be plotted for the anode and the cathode separately and, extrapolated to give the respective anodic discharge potential,  $E_{da}$ , and cathodic discharge potential,  $E_{dc}$ . The amount by which the applied electrode potential exceeds the reversible potential,  $E_{rev}$ , for the electrode concerned is the sum of the anode or cathode overpotential  $\eta_a$  and  $\eta_c$  respectively i.e.

$$\eta_a = E_{da} - E_{rev,a} \qquad (13)$$
$$\eta_c = E_{dc} - E_{rev,c} \qquad (14)$$

Thus, the overpotential of the system may be obtained using the following equation:

$$\eta = \eta_{anode} + \eta_{cathode}$$
 (15)

where

$$\eta_{anode} = \eta_{A,a} + \eta_{C,a} + \eta_{R,a}$$
 (16)

and

$$\eta_{cathode} = \eta_{A,c} + \eta_{C,c} + \eta_{R,c}$$
(17)

For the purpose of this work, the overall overpotentials will be calculated by determining the decomposition voltages from current *versus* cell voltage plots (i.e. Method 1) for the following anodic and cathodic reactions occurring at the electrodes:

Anode: 
$$H_2O \rightarrow 2H^+ + 2e^- + \frac{1}{2}O_2$$
  $E_{ox}^o = 1.23V$  (18)  
Cathode:  $2H^+ + 2e^- \rightarrow H_2$   $E_{red}^o = 0.00V$  (19)

### **1.4 Electrolysis**

The actual invention of electrolysis was discovered by van Troostwijk and Diemann using an electrostatic generator in 1789. It was not until 1800 though, that the first usable current source was invented by Volta. This was called the voltaic pile [44].In the same year two British scientists by the name of Nicholson and Carlisle discovered that water could be split into its constituents by electricity (H<sub>2</sub> and O<sub>2</sub>). This was performed using brazen electrodes, which resulted in oxide formation on the electrode surface instead of oxygen gas (anode) [44]. Ritter[45] also confirmed this discovery in 1800, but his use of gold electrodes resulted in the formation of oxygen gas on the anode; this was known as the first complete electrolysis experiment. In the 1820s Faraday clarified the principles of electrolysis, although it wasn't until 1834 that Faraday first used the word 'electrolysis' [44].

Gramme[46] invented the *Gramme machine* in 1869, which is an electrical generator that produces direct current. This allowed water electrolysis to be a cost effective method for Hydrogen production [44]. In 1888 a method of industrial synthesis of Hydrogen and oxygen through electrolysis was developed by Lachinov[47].

In 1900 Schmidt presented the first industrial bipolar electrolyser in Zurich. In the same year, Nernst developed the high temperature electrolyte  $ZrO_2$  with 15%  $Y_2O_3$ , which was the basis for solid oxide electrolysis cells and solid oxide fuel cells [48].

Then in 1924, Noeggenrath, developed and patented the first ever high pressure electrolysis, and the first 10,000 m<sup>3</sup>/hr electrolyser was developed in 1939 [10]. However, it was not until 1951 that Lurgi developed the first commercially available high pressure electrolyser operating at 30 bar [49].

After the Second World War in 1948, Eduard Justi and August Winsel developed the first Raney Nickel electrodes which reduced the overpotential suffered by the Hydrogen evolution half reaction in electrolysis [50].

In the 1960s, the National American Space Agency (NASA) commissioned the use of fuel cells for the Gemini-Apollo space program which involved the development of the first polymer cell. The cell was originally made of sulfonated polystyrol, but later modified to use Nafion<sup>©</sup> instead [12]. Shortly after this in 1966, General Electric (GE) developed the first solid polymer electrolyte and in 1967 [51]. Costa and Grimes developed the first ideas of a 'zero-gap assembly' for electrodes. This was a cornerstone for advanced electrolyser designs [51].

The development of solid oxide electrolyser cells first began in 1972, and then in 1987 the first 100kW electrolyser was built by a Swizz company called ABB [51]. This was the highest H<sub>2</sub>. producing electrolyser in its period. The electrolysis of water has been studied since the early 1800s [52]. Initial research was performed on various solvents when mixed with water allowing separation via an electrical current. The electrolytes usually used were dilute sulphuric acid and caustic soda. Special consideration is needed for the material selection depending on the concentration of the acid or base being used in the experiment to avoid erosion of the electrodes.

The rate of decomposition is dependent on the amount of current flowing through the solution. The current however is not directly proportional to the potential difference (cell voltage) of the electrodes. It was also discovered that the volume of gas collected is less than that theoretically calculated and considering this article was written over 100 years ago illustrates how basic the knowledge of electrolysis was then. There is no mention in this article of improving the volumes of Hydrogen and oxygen produced by the cell and the overall efficiency of energy input to energy output in the form of Hydrogen gas.

More recently academics have been investigating ways of cutting energy costs during electrolysis with increasing output of Hydrogen gas. Unlike in Richards [52], there is now a large emphasis on reducing global warming by using pollution free methods of producing energy. The cost of producing

Hydrogen by electrolysis at the moment is not currently economically viable, so improvements must be made to introduce it on a commercial scale.

Stojic *et al.* [53] states that 4.5-5 kWh/m<sup>3</sup> of Hydrogen gas produced is required and the electricity that provides this is the most expensive form of energy. It is also states that ionic activators can be used to decrease the energy input per cubic metre of Hydrogen gas collected. These activators provide the electrodes with more or less electrons to attract the Hydrogen or oxygen at a faster rate and therefore increasing the output of Hydrogen without increasing the energy input.

Barbir [21] demonstrated the ability of fuel cells to operate reversibly. When in reverse function, a fuel cell can act as an electrolyser to produce Hydrogen and oxygen. As described earlier, a fuel cell works by reacting Hydrogen and oxygen to produce water and electricity and Barbir [21] states that if the direction of flow of reactants and products were to change, and an current were applied through the cell instead of removing it, Hydrogen and oxygen gas would be produced.

This process produces very clean Hydrogen (99.999%), but due to the high cost of the electrolyser and its running costs, it is only feasible for demonstration plants or remote areas at the time this article was written.

Gregoriev *et al.* [54] reflects upon the findings by Barbir [21] and states that as the need for electrolysers increases, more PEMFCs will be used. The electrolysers produce the 'purest' Hydrogen gas, which is important in PEMFC's since they are highly sensitive to impurities. Gregoriev *et al.* [54] also predicts that the price of PEM electrolysers will decrease to the levels of alkaline electrolysers in the near future, which at the time of publish was currently the most cost effective method of forming Hydrogen gas by electrolysis.

### 1.5 Sonoelectrochemistry

In this study, it was proposed to use ultrasound combined with electrochemistry (Sonoelectrochemistry) for the production of Hydrogen. Sonoelectrochemistry is defined as a branch of electrochemistry which studies any electrochemical processes that are affected, assisted or promoted by power ultrasound [42]. Reports (in the form of papers, patents etc) on the subject have been examined from over the last 100 years to the present day to understand how this area of research has evolved.

During operation, the collection of bubbles on electrode increases electrical resistance of the cell. Ultrasonic irradiation causes "cavitation" of bubbles on electrode surfaces; these bubbles then coalesce to form larger gas bubbles that then implode and collapse, thus releasing dissolved gases (degassing effect). This results in an increase in active sites on the electrode and hence increases the electrical efficiency and yield of the cell [55].

Ultrasound is a sound wave with a high pitch that cannot be heard by the human ear (>16kHz) [56]. Above that frequency, the use of ultrasound in chemistry (Sonochemistry) is divided into two categories: high frequency or diagnostic ultrasound, and low frequency or power ultrasound. High frequency or diagnostic ultrasound operates at frequencies of 2 -10 MHz and is mainly used for medical applications. Low frequency or power ultrasound operates at frequencies at frequencies of 20 kHz – 2 MHz and this is where the cavitation phenomenon occurs [57, 58].

The term 'sonicated' is used to describe when a fluid is subjected to power ultrasound and cavitation bubbles are produced. The cavitation bubbles produced from the ultrasound undergo very violent collapse within the fluid generating 'hotspots' of high energy within the fluid [59]. The temperatures produced are up to 5000°C and pressures of up to 2000 atmospheres. This leads to jets of liquid of high velocity of up to 50 m.s<sup>-1</sup> and radical formation (mainly OH• and H•) within the fluid.

25

There are several areas where Sonoelectrochemistry is currently employed. This includes water and soil remediation, which involves the destruction of bacteria and organics and removal of heavy metals. There is also crystallisation and precipitation of organic and inorganic compounds, polymerisation, nanoparticle production, impregnation of various materials surface treatment and preparation for activation and modification prior to plating and electroplating/electro-deposition, metal finishing and precision engineering [60].

Although this field has received much attention over the past decade, the application of ultrasound in electrochemistry dates back to 1934, by the work of Moriguchi [61]. Nearly 30 years later, Nyborg *et al.* [62] used electrochemical techniques to study acoustic streaming processes using acoustically oscillated electrodes and arrays of electrodes [62]. Since this time several advances in technology have enabled sonoelectrochemistry to be exploited more extensively [63-66].

Up until this time, there was no standardised experimental arrangement for research in this field, until Zang and Coury first recorded a common experimental arrangement for the investigation of sonoelectrochemical effects in 1993 [63]. Hagan and Coury investigated mass transfer effects of an operating ultrasonic horn placed above an electrode [66]. This standard arrangement of experimental apparatus was adopted by fellow academics and developed important refinements to the operation and geometries employed [59, 64, 67, 68]. These studies have attempted to use ultrasound to investigate 'cavitation' processes and the physical and chemical phenomena associated with cavitation.

The term sonolysis describes the breaking of chemical bonds and formation of radicals by ultrasound and examples of the phenomena caused by ultrasound are shown in Figure 6 [69].

26


#### Figure 6: Schematic of Ultrasonic Phenomena [69]

The use of microelectrodes to investigate single cavitation events were carried out by Birkin *et al.* [70, 71] under a range of different experimental conditions. The size of the microelectrodes employed in this study allowed this technique to resolve individual cavitation events and investigate the associated mass transfer effects. Afterwards, Birkin *et al.* [77] developed an electrode with the ability to detect single erosion events associated with inertial (transient) cavitation. An accurate control of the position (to within 10 microns) of the microelectrode with respect to the ultrasonic horn was advocated from this and subsequent studies [72, 73]. Also, consideration of the shape of the pressure-distance profile expected for such an ultrasonic source was suggested [73].

Maisonhaute *et al.* [74] have also studied cavitation by using microelectrodes and reported multiple recurring events under specific conditions of ultrasonic source to electrode separation [74]. It is suggested that these events were associated with a hemispherical bubble on the surface of the electrode by Maisonhaute *et al.* [74].

The ultrasonic field developed by the ultrasound source is fundamental to the cavitation process [73, 75]. Gas bubbles within liquids subjected to sound waves behave in a complex and nonlinear manner. The most common way of dealing with the complexity of possible bubble behaviours is to describe the bubble behaviour as either inertial or non-inertial. Generally, bubbles will vibrate when subjected to an external acoustic field.

The 'inertial/non-inertial' terminology originates from the physics of the collapse phase of this pulsation i.e. if the inertial forces dominate during the collapse (the inertia of the converging liquid), then the collapse is 'inertial'. If instead the pressure forces dominate during the collapse (these act through the stiffness of the gas within the bubble), then the collapse is termed 'non-inertial'.

Even though this definition encapsulates the physics of the process, Sonoelectrochemical researchers are more familiar with differences in phenomena between multi-bubble systems and single bubble [76] experiments. It is inertial cavitation which is associated with most of the effects which researchers are interested in. The effects produced include the generation of radicals [75, 77-79], unusual chemistry (high temperatures and pressures produced by cavitation), the emission of light pulses (termed multi-bubble sonoluminescence) and the erosion of surfaces [73, 80].

The distinction between inertial and non-inertial cavitation is a threshold, primarily defined by the acoustic pressure amplitude, the acoustic frequency and the size of the bubble before the sound field was imposed. It also depends on other parameters, such as surface tension and viscosity, but these are rarely considered as control variables because the common scenario is to control the amplitude and frequency of the sound field rather than adjusting the liquid properties. Note that if there is no bubble already present, then the relevant threshold is one relating to the nucleation of that bubble.

Understanding the behaviour of gas bubbles within a liquid is vital to the interpretation of any sonoelectrochemical experimental data obtained. However, little attention has been focussed on the effect of the electrode itself on the pressure field developed by the operating ultrasonic horn. While

one assertion is that the electrode has a negligible effect on the ultrasound field [81], the theoretical evidence presented here suggests that the electrode is invasive to the sound field.

The presence of the electrode therefore alters the pressure field which can change the behaviour of the bubbles present in the liquid and hence the interpretation of the experimental results.

# 1.6 Sonoelectrochemical Production of Hydrogen

Cataldo [82] was the first researcher to measure the yields of gases released at the electrodes during electrolysis under the action of ultrasound (30kHz frequency and acoustical intensity of 1-2 W.cm-<sup>2</sup>). More specially, the yields of Hydrogen and chlorine during the electrolysis of sodium chloride (NaCl) and hydrochloric acid (HCl) were investigated and quantitative results on the use of ultrasound to the electrolysis process were studied.

These results show that ultrasound dramatically increases the yield of chlorine gas produced from the anode in the electrolysis of NaCl and HCl. Cataldo [82] states that the most important phenomena, produced during sonication, is a strong degassing effect resulting in improved bubble coalescence of gas bubbles. Cataldo [82] also adds the subsequent mechanical removal of bubbles from the electrode surface improved the yield of Hydrogen gas and chlorine gas produced.

Walton *et al.* [83] investigated the use of sonoelectrochemistry (28kHz frequency) for Hydrogen gas evolution using platinum electrodes and aqueous solutions, such as 1.0M sulphuric acid ( $H_2SO_4$ ), 1.0M sodium chloride (NaCl) and hydrochloric acid (HCl). The results produced by Walton *et al.* [83] demonstrated that ultrasound has a positive effect on the electrolysis system, by increasing rates of Hydrogen and chlorine gases evolution at the electrodes (cathode and anode respectively).

It was also discovered that whilst electrolysing 1.0M  $H_2SO_4$  solution, the oxygen evolution rate at the anode was not enhanced by sonication. Whereas, the electrolysis of NaCl and HCl solutions, the formation of chlorine gas at the electrode was enhanced by the application of ultrasound to the overall system. This is ideal for systems where chlorine gas (Cl<sub>2</sub>) is the preferred anodic product rather than the oxygen gas (O<sub>2</sub>) [83].

McMurray *et al.* [84] extended the research by using of a titanium sonotrode into the sonoelectrolytic system. The use of graphite electrodes and  $0.7 \text{mol.dm}^{-3} \text{Na}_2 \text{SO}_4$  was also employed. Their findings showed that power ultrasound (20kHz frequency and 26 W.cm<sup>-2</sup> ultrasonic power) significantly increases the rate of oxygen and Hydrogen evolution. Furthermore, the Oxygen Reduction Reaction (ORR) rate increased with enhanced mass transport under sonication.

A more significant rate increase was observed for the Hydrogen Evolution Reaction (HER) as a result of lowered activation overpotential ( $\eta_a$ ) for Hydrogen formation on graphite electrodes. McMurray *et al.* [84] concluded that the activation overpotential for Hydrogen evolution can be reduced by sonication via the use of a sonotrode. At the time, it was highlighted that this could be useful as means of increasing gas efficiency by electrolysis.

Budischak *et al.* [85] was one of the first researchers to measure the electroanalytical effects of the HER from potassium hydroxide (KOH) solution. This was achieved by using Linear Sweep Voltammetry (LSV) and Chronoamperometry (CA) to analyse the influence of ultrasound (42kHz) on the electrochemical reactions.

It was shown that ultrasound improves the electrolysis efficiency, especially at intermediate current densities. Even after factoring in, the power required from the sonicator, Budischak *et al.* [85] demonstrated that ultrasonic irradiation could improve the overall efficiency of the system (ratio of input electrical current to Hydrogen produced from the system – se later). Budischak *et al.* [85] also state that the use photoelectrochemical cells could benefit from this effect.

Sasikala *et al.* [86] studied the decomposition of water to Hydrogen and oxygen in the presence of ultrasound (40kHz frequency and 200W power) by suspending solid particulates in the solution. This resulted in an increase in the number of cavitation bubbles created by sonication. It was found that a suitable balance of suspended particles and methanol (CH<sub>3</sub>OH) additionally added to the solution

31

increased the yield of Hydrogen gas produced. It was found that even with decreasing size of the particles in suspension, the yield of Hydrogen gas produced also increased. It is understood that the particles had a larger surface area and therefore more active sites to create cavitation bubbles, which is why the yield of Hydrogen increased.

The most recent article observed in this review, Li *et al.* [87], discuss the advantages of applying an ultrasonic field (60kHz frequency and 50W ultrasonic power) to water electrolysis on the production of Hydrogen gas. In the article, they showed that by lowering the cell voltage ( $V_{cell}$ ), an increase in efficiency and a decrease in energy consumption of Hydrogen gas were observed. In this work, the cell voltage was reduced by increasing the current density and by lowering the electrolyte concentration. This resulted in an increase in Hydrogen production, and decreased the energy consumption of the system. Li *et al.* [87], also showed that varying the current density and concentration from the electrolyte had little effect on the rate of O<sub>2</sub> production from the electrolysis cell.

Whereas in previous research it was shown that ultrasound enhances mass-transfer of electro-active species from the bulk solution to the electrode surface in any electrolytic systems, this research aims to quantify the change in hydrogen gas evolution at the cathode. Research has shown that ultrasound mechanically removes gas bubbles on the electrode surface, thus lowering the so-called 'bubble' overpotential. Therefore the use of ultrasound in an electrolytic solution would be expected to increase the rate of Hydrogen production.

## **2. EXPERIMENTAL METHOD**

All Sonoelectrochemical experiments were carried out using either a glass beaker or a custom designed laboratory Sonoelectrochemical cell (Figure 7). The cell consisted of a reaction vessel (diameter 10cm, height 11cm, volume 864 cm<sup>3</sup>) surrounded by an outer vessel, providing a continuous flow of water at 298 K (Tecam Water Bath & Techne Tempette TE-8A Heating Bath Circulator) to regulate a constant temperature in the inner vessel . Two carbon electrodes (active area 7.61 cm<sup>2</sup>) were inserted into the inner vessel and an electrical current was passed through these electrodes to the aqueous solution. Gases produced were collected and measured by water displacement using a glass cylinder.



Three aqueous solutions, namely, sodium hydroxide (NaOH), sodium chloride (NaCl) and sulphuric acid ( $H_2SO_4$ ) were investigated as electrolyte solutions. Cell voltages were applied across the carbon

electrodes immersed in various electrolyte concentrations: 0.1 mol.dm<sup>-3</sup>, 0.2 mol.dm<sup>-3</sup>, 0.3 mol.dm<sup>-3</sup>, 0.4 mol.dm<sup>-3</sup>, 0.5 mol.dm<sup>-3</sup> and 1.0 mol.dm<sup>-3</sup>. The resultant currents produced by the electrochemical reactions were then measured and recorded. All of these experiments were carried out under silent and sonicated (20 or 40 kHz) conditions and then compared.

During the commissioning of the Sonoelectrochemical cell, preliminary experiments were performed using a laboratory glassware (500cm<sup>3</sup> glass beaker) and an ultrasonic bath (Langford Ultrasonics – 3.75I Ultrasonic Cleaning Tank, 40 kHz). In all the experiments, a power supply (Thurlby PL320 32V-2A) was used. This experimental setup is shown in Figure 8.



Figure 8: Experimental Setup for Preliminary Experiments

It is important to note that ultrasound creates a temperature rise with time in the electrolyte as a result of 'cavitation' and high agitation effects, and therefore the temperature of the electrolyte needs to be regulated and controlled. This was achieved by using a thermostatic bath operating at preset temperatures. Note that an increase in temperature enhances molecules mobility, in turn increasing reaction rates.

For the preliminary experiments, a volume of 200 cm<sup>3</sup> of distilled water was used to which various electrolyte masses were added (Table 2).

| Concentrations / M | Mass of Electrolyte / g |      |                                |
|--------------------|-------------------------|------|--------------------------------|
|                    | NaOH                    | NaCl | H <sub>2</sub> SO <sub>4</sub> |
| 0.1                | 0.8                     | 1.16 | 1.97                           |
| 0.2                | 1.6                     | 2.32 | 3.94                           |
| 0.3                | 2.4                     | 3.48 | 5.91                           |
| 0.4                | 3.2                     | 4.64 | 7.88                           |
| 0.5                | 4.0                     | 5.8  | 9.85                           |
| 1.0                | 8.0                     | 11.6 | 19.7                           |

Table 2: Preliminary Experimental Electrolyte Masses

When the customised glassware was commissioned, the total volume of the reaction vessel was 1,000cm<sup>3</sup>. The purpose of the preliminary experiments was to construct current *vs.* voltage plots, whilst the custom glassware (Figure 7) was commissioned to attain volumetric measurements of the Hydrogen gas produced.

This resulted in the reaction vessel being completely filled with the electrolyte solution and sealed gas tight to ensure that all gas produced at each electrode (cathode and anode) left the vessel through the gas outlet side arms to the measuring equipment. The mass of electrolyte used for these experiments is shown in Table 3.

| Concentration / M | Mass of Electrolyte / g |      |           |
|-------------------|-------------------------|------|-----------|
|                   | NaOH                    | NaCl | $H_2SO_4$ |
| 0.1               | 4.0                     | 5.8  | 9.85      |
| 0.2               | 8.0                     | 11.6 | 19.7      |
| 0.3               | 12.0                    | 17.4 | 29.55     |
| 0.4               | 16.0                    | 23.2 | 39.4      |
| 0.5               | 20.0                    | 29.0 | 49.25     |
| 1.0               | 40.0                    | 58.0 | 98.5      |

**Table 3: Custom Glassware Experimental Electrolyte Masses** 

Cell voltage *vs.* current plots enabled the determination of the decomposition voltages ( $V_d$ ) for each electrolyte at various concentrations. From the  $V_d$  values, overpotentials were calculated (see later).

As Hydrogen is mainly produced at the cathode, the electrolyte is displaced by the Hydrogen and this volume can be measured using a measuring cylinder (Figure 7). The Hydrogen rate was calculated using Equation 20.

Time was recorded from the first bubble produced at the cathode until the volume of gas reached a fixed volume, thus enabling the calculation of Hydrogen production rates.

The ability to measure the gas evolution volume enabled measurements of the Hydrogen gas production rate, the efficiency of the Hydrogen production based on the 'ideal gas law' and the energy efficiency (see later).

The Ideal Gas Law  $[(V_{ideal}) \text{ cm}^3]$  is to be used in this study to calculate the expected volume of Hydrogen gas produced depending on the specific reaction conditions [79]. Calculation of ideal Hydrogen gas volume was calculated using Equation 21.

$$V_{\text{ideal}}(\text{cm}^3) = \frac{\text{SIt}}{\text{nF}} \times \frac{\text{RT}}{\text{P}}$$
(21)

where *S* is the stoichiometric coefficient, *I* is the current density (mA.cm<sup>-2</sup>), *t* is the operating time (seconds), *n* is the number of electrons transferred, *F* is the Faraday constant (96484 C.mol<sup>-1</sup>), *R* is the ideal gas constant (8.314 J.K<sup>-1</sup>.mol<sup>-1</sup>), *T* is the operating temperature in Kelvin and *P* is the pressure in Pascal [79].

The volume of Hydrogen gas produced ideally is then compared with the volume of Hydrogen gas actually produced to calculate the efficiency of the electrolysis reaction. This was calculated using Equation 22 [79]:

Efficiency (%) = 
$$\frac{V_{real}}{V_{ideal}} \times 100$$
 (22)

The Hydrogen efficiency for each electrolyte concentrations was plotted for silent and sonicated conditions.

## 2.1 Equipment & Parameters

All experiments were performed in silent and sonicated conditions in views of investigating the effect of ultrasound on Hydrogen production. Ultrasonic irradiation was provided by either an ultrasonic horn (Sonics Ti Alloy, 47mm in diameter connected to a Sonics VCX750 VibraCell operating at 20 kHz and maximum power of 750 W) or an ultrasonic bath operating at 40 kHz. For our experiments at 20 kHz, the ultrasonic power was 20.7 W/cm<sup>2</sup> unless otherwise stated.

The carbon electrodes used were manufactured by Morganite which had a diameter of 5mm and a length of 300mm. The glassware used for the preliminary experiments was a standard 500cm<sup>3</sup> glass beaker and the custom glassware used was manufactured by Soham Scientific (reference 0210-109e). For all experiments the power was supplied by a Thurlby AC/DC PL320 32V-2A. The potential was varied and the current produced was recorded.

# **3. RESULTS AND DISCUSSION**

In this section, all results are presented and discussed.

# **3.1 Preliminary Experiments**

Data presented below were performed using the experimental equipment shown in Figure 8.

## 3.1.1 Current Voltage Curves

Figure 9 shows current *vs.* voltage plots of sodium hydroxide solutions for sonicated and silent conditions at various concentrations and at 298 K.



#### Figure 9: Decomposition Curves for NaOH solution

Figure 9 provides evidence that as the cell voltage is increased, the resulting current increases due to the higher voltage across the cell. This is a result of the increased voltage across the electrolytic solution. Higher electrolyte concentrations lead to large currents, which is to be expected and due to an increased number of charge carriers in the solution. As shown in Figure 9 the introduction of sonication increases the current further at a fixed voltage. This is a result of increased electron mobility and mass transfer on the surface of the electrode surface.

The sodium chloride current voltage plots for sonicated and silent conditions in various electrolyte concentrations at 298K are shown in Figure 10.



Figure 10: Decomposition Curves for NaCl solution

Figure 10 provides evidence that as the cell voltage is increased, the resulting current increases due to the higher voltage across the cell. This is a result of the increased voltage across the electrolytic solution. Higher electrolyte concentrations lead to large currents, which is to be expected and due to an increased number of charge carriers in the solution. As shown in Figure 10 the introduction of sonication increases the current further at a fixed voltage. This is a result of increased electron mobility and mass transfer on the surface of the electrode surface.

Figure 11 illustrates the electrochemical behaviour for sulphuric acid in silent and sonicated systems at 298K.



Figure 11: Decomposition Curves for H<sub>2</sub>SO<sub>4</sub> solution

Figure 11 provides evidence that as the cell voltage is increased, the resulting current increases due to the higher voltage across the cell. This is a result of the increased voltage across the electrolytic solution. Higher electrolyte concentrations lead to large currents, which is to be expected and due to an increased number of charge carriers in the solution. As shown in Figure 11 the introduction of sonication increases the current further at a fixed voltage. This is a result of increased electron mobility and mass transfer on the surface of the electrode surface.



Figure 12 shows a comparison for all three electrolytes at 1.0M concentration at 298K.



All three electrolytes have differing electrochemical characteristics as illustrated in Figure 12. It is shown that  $H_2SO_4$  solution is more electrically conductive than NaOH and NaCl respectively. NaCl displays the most resistance to flow of electrons in the electrolytic solution compared to the other electrolytes. It should be noted however that the use of electrolytes does result in electrode degradation that limits the durability and lifetime of the electrodes (see section 4.3).

Figure 12 also shows that sonication improves the electrical conductivity for all three electrolytes used, but with no overlap of electrolytes in terms electrical conductivity (e.g. no NaCl sonication > NaOH silent).

Conductivity is determined as the rate of current flowing through the solution. Data presented in Figure 93, Figure 94 & Figure 95 in Appendix II, show that as the cell voltage is increased across the cell, the current that flows through the solution increases as expected [79]. The increase is not linear at first, but when the cell voltage is greater than the decomposition voltage, the current increases linearly with the applied cell voltage.

Figure 99, Figure 100 & Figure 101 in Appendix II show that as the concentration of the electrolyte is increased, the corresponding current flowing increases at each cell voltage. This is expected due to the increase in charge carriers i.e. ions in the solution.

Comparing sonicated and silent conditions in Figure 13, Figure 14 & Figure 15, it is evident that the introduction of ultrasound to the system increases the flow of current through the cell. It has been shown ultrasound causes 'extreme' agitation in the solution and produces energetic charges, thus allowing electrons to move more freely i.e. reducing the ohmic resistance in the electrolyte solution.

## **3.1.2 Overpotential Determination**

All overpotential calculations and graphs are shown in Appendix III and Table 4 shows the calculated

decomposition voltages.

| Decomposition Voltages (V <sub>d</sub> ) |             |      |      |                                |
|------------------------------------------|-------------|------|------|--------------------------------|
| Concentration                            | Sonication? | NaOH | NaCl | H <sub>2</sub> SO <sub>4</sub> |
| 0.1M                                     | Silent      | 3.2  | 3.58 | 5.00                           |
|                                          | Sonicated   | 3.59 | 3.55 | 2.73                           |
| 0.2M                                     | Silent      | 3.05 | 3.64 | 3.12                           |
|                                          | Sonicated   | 3.5  | 3.76 | 3.05                           |
| 0.3M                                     | Silent      | 3.28 | 3.52 | 2.80                           |
|                                          | Sonicated   | 2.98 | 3.29 | 3.07                           |
| 0.4M                                     | Silent      | 3.53 | 3.58 | 3.25                           |
|                                          | Sonicated   | 2.81 | 3.28 | 2.96                           |
| 0.5M                                     | Silent      | 3.1  | 3.98 | 2.93                           |
|                                          | Sonicated   | 2.87 | 3.88 | 2.93                           |
| 1.0M                                     | Silent      | 2.92 | 3.33 | 3.03                           |
|                                          | Sonicated   | 2.77 | 3.09 | 2.97                           |

Table 4: Table of Decomposition Voltages

The overpotentials for each experiment is calculated using Equation 8 and are shown in the table below.

| Overpotential (Ση)               |             |      |      |                                |
|----------------------------------|-------------|------|------|--------------------------------|
| Concentration                    | Sonication? | NaOH | NaCl | H <sub>2</sub> SO <sub>4</sub> |
| 0.1M                             | Silent      | 1.97 | 2.35 | 3.77                           |
|                                  | Sonicated   | 2.36 | 2.32 | 1.50                           |
| 0.2M                             | Silent      | 1.82 | 2.41 | 1.89                           |
|                                  | Sonicated   | 2.27 | 2.53 | 1.82                           |
| 0.3M                             | Silent      | 2.05 | 2.29 | 1.57                           |
|                                  | Sonicated   | 1.75 | 2.06 | 1.84                           |
| 0.4M                             | Silent      | 2.30 | 2.35 | 2.02                           |
|                                  | Sonicated   | 1.58 | 2.05 | 1.73                           |
| 0.5M                             | Silent      | 1.87 | 2.75 | 1.70                           |
|                                  | Sonicated   | 1.64 | 2.65 | 1.70                           |
| 1.0M                             | Silent      | 1.69 | 2.10 | 1.80                           |
|                                  | Sonicated   | 1.54 | 1.86 | 1.74                           |
| Table 5. Table of Occurrent at a |             |      |      |                                |

Table 5: Table of Overpotentials

The overall overpotentials for the system for silent and sonicated systems are on average 2 Volts. For each electrolyte, the average overpotential for silent and sonicated systems was calculated and compared. These are illustrated in Table 6 below.

| Average Overpotential ( $\sum \eta$ )    |      |      |                                |
|------------------------------------------|------|------|--------------------------------|
| System                                   | NaOH | NaCl | H <sub>2</sub> SO <sub>4</sub> |
| Silent                                   | 1.95 | 2.38 | 2.13                           |
| Sonicated                                | 1.85 | 2.25 | 1.73                           |
| Table 6: Table of Average Overpotentials |      |      |                                |

Table 6: Table of Average Overpotentials

Table 6 shows that the application of ultrasound to the system reduces the average overpotential for each electrolyte as shown above. Figure 12 represents a graphic comparison of the electrochemical behaviour of the three electrolytes. Table 6 reaffirms the data represented in Figure 12 showing that sulphuric acid suffers the least overpotential when compared to sodium hydroxide and sodium chloride, except for one instance.

The average overpotential for sulphuric acid in silent systems would be expected to be less than that of sodium hydroxide, but is in fact 0.18V greater from the data recorded (Table 6).

For 0.1 mol.dm<sup>-3</sup> H<sub>2</sub>SO<sub>4</sub> solution in silent conditions, the overpotential was calculated to be 5.00V. This is 134% greater than the average value for the average sulphuric acid overpotential under silent conditions. This experiment requires several repeats to re-evaluate this observation. If this figure is ignored, the average overpotential for the other  $H_2SO_4$  concentrations in silent conditions is 1.79V, which is 0.34V less than the value presented in Table 6. This also confirms that sulphuric acid suffers the least overpotential on average when compared to NaCl and NaOH solutions under and sonicated conditions.

There are various types of overpotential that can give 'resistances' to the flow of current through the solution. One of the main contributors is the activation overpotential ( $\eta_a$ ), which is determined by the activation energy ( $E_a$ ) i.e. Gibbs energy. This energy barrier must be overcome before the electrochemical reaction can proceed. These values differ depending on the electrode materials and the particular gas forming on the electrodes. The activation overpotential for Hydrogen forming on carbon electrode is -0.62V, whilst the activation overpotential for oxygen forming on carbon electrode is +0.95V [88, 89].

Other contributors to overpotential include reaction overpotential, which is related to chemical reactions before electron transfer can occur. Concentration overpotential involves the depletion of charge carriers at the electrode surface. A specific example of this is bubble overpotential involving the formation of gaseous bubbles at the cathode and/or anode, resulting in a reduced contact area and therefore an increase in the current density of that electrode. This process can be shown when the electrolysis of sodium chloride forms chlorine on the anode instead of sodium chloride as expected in bubble overpotential. This occurs due to chlorine evolution reaction (Equation 13) on the anode which has a lower activation potential (Cl<sub>2</sub> formation on Graphite) than that of the oxygen evolution reaction (Equation 23) [90]:

$$2Cl^{-} \rightarrow Cl_{2} + 2e^{-} \qquad \eta_{a} = 0.12V \qquad (23)$$

# **3.2 Custom Glassware Experiments**

It should be noted that all experiments were carried out only once, so data is subject to unreliability. Repetition of experiments required to increase reliability of results.

Data presented below was carried out using the equipment illustrated in Figure 7. All sonicated experiments were carried out at 20kHz and 20.7 W/cm<sup>2</sup>.

## 3.2.1 Current-Voltage Curves

The enhancement in current density for varying voltage as a result of the introduction of ultrasound for sodium hydroxide at various concentrations and at 298 K is shown in Figure 13.





Figure 13 shows an enhancement in electrical conductivity from the introduction of ultrasound to the cell. There is an increase in electrical conductivity as a result of sonication for all but one of the concentrations, 0.5M NaOH. A linear increase for all concentrations would be expected from the extra mobility provided to the charge ions (electrons) by ultrasound caused by high-stirring.

The enhancement in current density at various cell voltages and concentrations for the sodium chloride system under silent and ultrasonic conditions at 298K is shown in Figure 14.



Figure 14: Current Enhancement for NaCl solution

The enhancement from sonication for NaCl is very similar to that of NaOH. All except one of the

concentrations show an increase in electron mobility as a result of induced ultrasound.

The enhancement in current density at various cell voltages as a result of sonication for sulphuric acid in several concentrations at 298K is shown in Figure 15.



Figure 15: Current Enhancement for H<sub>2</sub>SO<sub>4</sub> solution

Figure 15 shows that there is little correlation for  $H_2SO_4$  solution from the data presented above. Three concentrations show a positive impact of ultrasound on the system, and the other three concentrations show an opposite trend. Once again careful analysis of these results must be taken since they are subject to reliability issues, due to the fact that these experiments, as of yet have not been repeated.

## 3.2.2 Hydrogen Evolution Rate

Figure 16 shows the enhancement in Hydrogen production at several cell voltages and concentrations for the sodium hydroxide system under silent and ultrasonic at 298K.



Figure 16: Hydrogen Production Enhancement for NaOH solution

An important criterion of commercial Hydrogen production systems is the productivity of Hydrogen from the system itself. It is expected that an increase in Hydrogen production to occur as a result of the use of ultrasound. Figure 16 shows the effect on ultrasound on the production of Hydrogen to be very poor with little/no cohesion from the data collected. For each concentration electrolyte at some point suffers negative Hydrogen output as a result of sonication. Figure 17 shows an enhancement in Hydrogen production at several cell voltages as a result of the introduction of ultrasound for sodium chloride in various concentrations at 298K.



Figure 17: Hydrogen Production Enhancement for NaCl solution

Figure 17 exhibits slightly more cohesive data than those shown in Figure 16. Only 0.4M and 1.0M NaCl solutions show an enhancement in Hydrogen productivity, whilst for the other concentrations of NaCl solutions show a decrease in Hydrogen production as a result of ultrasound. Once again, data has only been recorded only once for these experiments, so is subject to unreliability.





Figure 18: Hydrogen Production Enhancement for H<sub>2</sub>SO<sub>4</sub> solution

Figure 18 shows similar trends to Figure 16 and Figure 17 in that there is no visible increase in Hydrogen production from the use of ultrasound. It would be expected to observe increases in Hydrogen production for all concentrations used at various rates. Most of the concentrations demonstrate detrimental effects in terms of Hydrogen production while only a few show a positive impact.

Hydrogen production, for this investigation, is defined as the rate of which Hydrogen gas in produced from the system. The production of Hydrogen increases with an increase in electrolyte concentration. This is to be expected since there is an increase in number of charge carriers in the solution, resulting in an enhanced mass transfer on the electrode surface induced by ultrasound leading to an increase in Hydrogen production rate [79].

As shown in Figure 16, Figure 17 & Figure 18, the application of ultrasound to the system shows little and even no improvement in the production of Hydrogen from the Sonoelectrochemical cell. From our observations here, whilst sonication is occurring, fewer bubbles are formed on the surface of the electrodes due to the ultrasonic horn producing sonic waves through the solution. These ultrasonic waves produce a 'force' on the electrodes surfaces, from which limited bubble formation on the electrode surface. This limits the reaction rate of the Hydrogen ions (H<sup>+</sup>) and electrons (e-) on the cathode surface and whilst the number of active sites is maintained, the ions and electrons have difficultly reacting in the triple phase boundary on the electrode.

The data shown in Figure 16, Figure 17 & Figure 18 are not sufficient to draw any conclusions on whether ultrasound enhances Hydrogen production. The repeatability of the experiments and use of precision equipment, for example a flow meter calibrated to measure Hydrogen gas or better a Gas Chromatographer (GC), instead of a measuring cylinder full of water being displaced by the Hydrogen gas produced, could aid achieving conclusive results.

## 3.2.3 Hydrogen Efficiency Data

Figure 19 shows plots of efficiency enhancements of Hydrogen production at various cell voltages, concentrations and 298 K for the sodium hydroxide system under silent and ultrasonic conditions.



Figure 19: Hydrogen Output Efficiency Enhancement for NaOH solution

Quantifying the efficiency of Hydrogen production is achieved by comparing the actual Hydrogen production with the theoretical Hydrogen production from the ideal gas law (see above). Figure 19 shows a decrease in efficiency for all concentrations of NaOH, as a result of sonication, with the highest loss being approximately 50% for the 0.3M NaOH solution.

Figure 20 shows plots of efficiency enhancements of Hydrogen production at various cell voltages, concentrations and 298 K for the sodium chloride system under silent and ultrasonic conditions.



Figure 20: Hydrogen Output Efficiency Enhancement for NaCl solution

Figure 20 follows a similar trend to that in Figure 19, with negative gradients, implying that ultrasound has a detrimental effect on Hydrogen production from electrolysis. 0.4M NaCl solution is the only concentration that exhibits a positive increase in efficiency at any point, from the use of ultrasound. Characterising the results from the data given in Figure 20 is not possible, so further work needs to be carried out on this experimental set up to increase consistency and reliability of data.



Figure 21 shows plots of efficiency enhancements of Hydrogen production at various cell voltages, concentrations and 298 K for the sulphuric acid system under silent and ultrasonic conditions.

Figure 21: Hydrogen Output Efficiency Enhancement for H<sub>2</sub>SO<sub>4</sub> solution

Figure 21 clearly shows a decreasing efficiency for most of the electrolyte concentration used. This observation is similar to the other electrolytes employed as shown in Figure 19 and Figure 20. 0.2M  $H_2SO_4$  exhibit an increase in efficiency under sonication to the electrolysis process. Further experimental work is required to generate to produce consistent results with a higher level of reliability.

The use of ultrasound to the electrochemical reactions results in a negative effect on the efficiency of the system when compared to silent conditions. This observation is clearly shown in Figure 19, Figure 20 & Figure 21. As the previous section showed for Hydrogen production rates, the efficiency of Hydrogen production shows similar trends in that, a decrease in Hydrogen production is observed under sonication. Thus sonication has a negative effect on the efficiency of the system.

#### 3.2.4 Energy Efficiency Data

Ideally an energy balance on the system should be carried out to calculate how much energy in the form of Hydrogen is produced from the electrical energy used in the system. This process would involve calculating the energy consumption i.e. kWh per m<sup>3</sup> H<sub>2</sub> produced at various cell voltages under silent and sonicated conditions. The silent and sonicated systems can then be directly compared to estimate a saving of energy consumption from sonicated systems compared with silent systems.

In order to demonstrate whether this negative effect of ultrasound was not solely due to enhanced mass-transfer, the investigation turns to the determination of the ultrasonic power used in our conditions. It has been previously shown that the ultrasonic power may affect electrochemical reactions.

#### 3.2.5 Ultrasonic Power Determination

Ultrasound produces temperature fluctuations in solutions. These temperature changes (dT/dt) can be used to calculate ultrasonic powers using Equation 24.

Power (W)= 
$$mC_p\Delta T$$
 (24)

where *m* is the mass of the electrolyte solution (grams),  $C_p$  is the specific heat capacity of electrolyte solution (J.g<sup>-1</sup>K<sup>-1</sup>), and  $\Delta T$  is the change in temperature in the electrolyte solution (K).

A concentration of 0.1M was used for each electrolyte and Table 7 shows their corresponding chemical and physical properties.

|           | Densities (g cm <sup>-3</sup> ) | Specific Heat (J g <sup>-1</sup> K <sup>-1</sup> ) | Mass (g) |
|-----------|---------------------------------|----------------------------------------------------|----------|
| Water     | 1                               | 4.18                                               | 1000     |
| NaOH      | 2.13                            | 3.331                                              | 1002.112 |
| NaCl      | 2.165                           | 3.98                                               | 1003.121 |
| $H_2SO_4$ | 1.84                            | 1.42                                               | 1004.5   |

Table 7: Chemical Properties for each electrolyte solution [94]

For each solution, the temperature rise was measured at 5 second intervals at various ultrasonic amplitudes. The data were then plotted - Temperature *vs*. Time. The gradient at t = 0 s (dT/dt=0) was then used to calculate the ultrasonic power (using Eq. 8).All ultrasonic powers used in this work are shown in Table 8.

|               | Ultrasound Power (W/cm <sup>2</sup> ) |      |       |      |       |
|---------------|---------------------------------------|------|-------|------|-------|
| Amplitude / % | 20                                    | 25   | 30    | 35   | 40    |
| Water         | 43.9                                  | 65.9 | 109.9 | 87.9 | 131.8 |
| NaOH          | 10.1                                  | 35.1 | 26.3  | 29.0 | 17.5  |
| NaCl          | 10.5                                  | 25.2 | 10.5  | 16.8 | 15.7  |
| $H_2SO_4$     | 12.4                                  | 15.0 | 11.2  | 18.7 | 26.2  |

Table 8: Ultrasonic Power Density Table

It is shown that increasing the amplitude of ultrasound largely increases the power of ultrasound in the solutions as shown by Table 8. A solution containing only water, shows an increase in power through the solution except in one case.

The electrolyte solutions, in most cases, show an increase in ultrasonic power as a result of increasing the ultrasonic amplitude. Please note that all experiments were carried out once and repeats are required to achieve reliability in the findings presented herein.

## 3.3 Erosion of the Electrodes

In all experiments, it was observed that, over prolonged periods of time the colour of the electrolytes solution turned black as a result of erosion on the carbon electrodes. Acids and alkalines are highly corrosive liquids, which is responsible for the degradation of the carbon electrodes as well the intense effect of ultrasound induced by the implosion of cavitation bubbles on their surfaces.

The use of ultrasound to the solution increases this rate of erosion of the electrodes. NaCl and  $H_2SO_4$  solutions, showed colour changes from colourless to black at a faster rate due to the mechanical motion caused by the ultrasound. This faster rate of erosion was achieved by the force of ultrasonic waves and cavitational events on the electrodes.

The erosion of the carbon electrodes is a serious issue with regards to the durability and life span of the sonoelectrolytic cell. The use of alternative electrodes or electrolyte solutions must be used if this process is ever to compete on a commercial scale.

# 3.4 Experiments with Industrial Electrolysers

#### **3.4.1 Introduction**

As part of my mini-project, an industrial electrolyser was tested on behalf of a company - Miromedia. The principal difference between this unit and the cell researched in previous sections, is that it produces HHO not H<sub>2</sub>. HHO is defined as a mixture of Hydrogen and oxygen gas, where no gas separation has occurred from the electrolysis reaction.

The equipment was set up as illustrated in the Figure 22, and several experiments were carried out to test the effect of varying the cell voltage across the electrolyser. Different concentrations of

potassium hydroxide solution were investigated to characterise the conductivity of the solution and the equivalent HHO production. A constant volume of 300 cm<sup>3</sup> of aqueous solution was used for each experiment.

Two plastic tubes were connected from the side arms of the electrolyser, to the underneath of the larger plastic container. The plastic container was placed at a greater height than the electrolyser during operation, so that the KOH dissolved in water solution entered the electrolyser through the force of gravity.



Figure 22: Image of Experimental Setup

During operation, HHO gas was produced and exited the electrolyser through one of the connecting tubes to the KOH solution reservoir. Simultaneously, the KOH solution flowed into the electrolyser through the other tube as a result of gravity. This occurred when the pressure of HHO gas in the electrolyser was great enough to create a force greater than that of gravity forcing the solution into the electrolyser.

The nozzle on the bottom of the side tank, allowing the connection from the main reservoir to the side tank, has been poorly manufactured so suffers from a small leak of distilled water from the side tank reservoir (shown in Figure 23). The joining of the side tank and the main reservoir was achieved using masking tape. The only other connection between the two reservoirs is a plastic tube which allows the flow of HHO gas produced. It is suggested that the two reservoirs should be secured together by stronger means than just using masking tape.



Figure 23: Image showing small leak on side tank

The purpose of the side tank is defined for HHO gas cooling. However, it can be more suitably described as a pressure relief vessel. Safety for the user is paramount and if there was a pressure surge in the system, it would be favourable that the smaller vessel, containing distilled water, ruptured than the larger vessel containing the alkali solution. This is achieved by the connection via tubing of the main reservoir to the side tank.

Various concentrations of KOH solution were used characterise the electrochemical behaviour in terms of the corresponding current flow. As well as measuring the flow of current through the electrolyser, the flow rate of HHO being produced was also measured. It is expected that as the current flowing through the solution increases, the rate of gas production will increase also.

#### 3.4.2 Data Analysis



Figure 24 shows the flow of current through the electrolyser at various cell voltages at 298K.

#### Figure 24: Decomposition Curves for KOH solution

The graph shows, as expected, that with increasing cell voltage, the corresponding flow of current also increases. When extra electrolyte (KOH) is added to the solution e.g. increasing the concentration causes an increase in current flow as a result of further charge carriers in the solution, the conductivity eventually reaches a maximum, where no further addition of electrolyte is necessary.

The results in Figure 24 show a linear increase in current in the range [0-10 V] and thereafter, the rate of current increase occurs at a faster rate. This could be due to possible reasons, but from our general observations, during operation when a cell voltage was applied, the current would steadily decrease over time, and then rapidly increase simultaneously with HHO bubbles discharged from the electrolyser.

During operation, current is flowing and bubbles are forming on the surface of the electrodes. This results in a decrease in surface area on the electrode surface, so the current steadily decreases (i.e.

increase in bubble resistance/overpotential). When the pressure is building up in the electrolyser, this results in a force greater than that from gravity forcing the solution into the electrolyser, the coalesced HHO bubbles release from the electrode surface and leave the electrolyser unit. This release results in a rapid increase in current flow hence the available surface area for current to flow dramatically increases (i.e. decrease in bubble resistance/overpotential).

The decomposition voltages are calculated from Figure 24 and shown in Table 8.

| Electrolyte | Concentration<br>(mol.dm <sup>-3</sup> ) | Decomposition<br>Voltage (V) |
|-------------|------------------------------------------|------------------------------|
|             | 0.1                                      | 2.81                         |
| КОН         | 0.3                                      | 1.50                         |
|             | 0.5                                      | 2.73                         |

Table 9: Decomposition Voltages for Industrial Electrolyser

Table 9 shows that the industrial electrolyser has similar overpotentials as the Sonoelectrochemical cell under investigation herein (Table 4). A concentration of 0.3M KOH solution leads to a decomposition voltage of 1.5V. This figure suggests that an overpotential of approximately 0.3V, and considering stainless steel, the material of the electrode in this electrolyser, has an activation overpotential greater than 0.3V, and taking into account the ohmic overpotential in the solution, further experiments are required to test the reliability of this data.



Figure 25 shows how the flow rate of produced HHO is affected at various cell voltages at 298K.

#### Figure 25: HHO Production for KOH solution

Figure 25 shows similar trends to the conductivity characteristics, in that, HHO production increases with cell voltage. As the concentration of KOH solution increases, the rate of HHO production increases. However, 0.3M and 0.5M solutions of KOH show very similar production rates of HHO. It would be expected that 0.5M KOH has a higher production rate of HHO than 0.3M, but the data obtained from experimentation shows otherwise.

It can be concluded that there is an optimum rate at where HHO can be produced. This is the result of limited space in the electrolyser where the evolution of gas bubbles, the coalescence of these bubbles and then the subsequent release of these bubbles when the upward force is greater than the force of liquid entering the electrolyser occurs. This is the optimum production rate, and any additional electrolyte will not result in any further increase in production rate.
## **4. CONCLUSIONS**

Initial experiments in this investigation involved characterising the electrochemical properties of the various electrolyte solutions. The purpose of these experiments was to measure the electrical conductivity of each electrolyte solution and therefore calculate the various decomposition cell voltages.

The results obtained from the electrochemical reactions show that increasing the voltage across the electrolyte solution increases the subsequent flow of current between the electrodes. It is also shown that increasing concentrations of each electrolyte results in an increase in flow of current through the solution. This is to be expected due to the increase in number of charge carriers, with increasing concentration. The data collected and analysed shows that the introduction of ultrasound to the solution increase the flow of current through the solution.

From comparing the different electrolytes at 1.0M concentration, the data shows, as expected considering the ionic make up, that sulphuric acid has a better electrolytic conductivity than sodium hydroxide and sodium chloride respectively. These conclusions were achieved from using basic laboratory equipment and an ultrasonic bath as stated in Chapter 3.

The customised glassware enabled the analysis of ultrasound on the production of hydrogen to occur. The electrochemical data from the customised glassware shows similar trends to that shown with the preliminary experiments.

The productivity data follows a similar trend to that of the electrochemical data with increasing concentration resulting in an increase yield of Hydrogen, but the comparison of silent and sonicated yields show that sonication has, in most cases, a negative effect on Hydrogen production.

Once again, when comparing the efficiency of a silent to a sonicated system, the expected enhancement from the use of ultrasound, only results in a decrease in efficiency for all electrolytes employed.

Previous findings from the literature have shown an increase in Hydrogen production rates from the sonicated solutions, but in this investigation our observations showed otherwise.

A possible explanation for our observations could be due to the large volume of solution used. Here, the electrolyte solution volume was kept constant at 1,000cm<sup>3</sup>, which is a large volume of liquid whereby 'cavitation' in the electrolyte solution may be hindering mass transfer on the electrode surface. Previous studies in this field were performed in smaller volumes of electrolyte solution (<100cm<sup>3</sup>) than used in this investigation, and a reduction in reaction volume and modification of reaction vessel geometry are important parameters.

In order to reduce resistances in the electrolytic system, solutions usually undergo a process called 'degassing'. This involves purging the electrolyte solution with non reactive gases, such as nitrogen or argon, to remove any air or gases dissolved in the solution. In this experiment degassing was not performed for all electrolyte solutions used. However, future investigations in this field should include degassing of the electrolyte solutions allowing subsequent comparison of electrochemical behaviour to quantify any improvement (reduction of resistance) in the system.

Commercial electrolysers usually operate at 1.8V-2.0V. Ideally, they would need to operate at 1.23V but due to overpotentials (due to the electrodes & electrolytes), the electrolysers would need to operate at higher cell voltages. Since the decomposition cell voltages shown herein are approximately 3V, a clear diminishment in overpotential in the system need to be achieved, in order to be commercially viable.

The carbon electrodes in this research have high activation potentials [0.62V for the Hydrogen evolution reaction (HER) and 0.95V for the oxygen evolution reaction (ORR)] when compared to materials like platinum (0.07V for the HER and 0.77V for the ORR) and palladium (0.07V for the HER and 0.93V for the ORR).

The purpose of this research was to use cost-effective materials, such as carbon, but on the other hand they produce higher overpotentials than precious metals (platinum). The exact opposite is true for platinum and palladium, higher costs and lower overpotentials. Finding a balance between electrode material cost and activation overpotential is an area of active research.

Maximising the productivity of Hydrogen from 'water' electrolysis is an important factor for commercial Hydrogen production systems. The contact area between the electrodes and the electrolyte solution is the critical parameter in determining the number of actives sites available for the evolution of Hydrogen gas to occur. It is recommended that research is undertaken in this area, linked in with various reaction vessel geometries to attempt in increasing the contact area between the electrodes and the liquid solution for facile electron transfer.

The 6-month research presented herein was carried out in a closed vessel (batch operation). This could be compared with continuous flow as used by Li *et al.* [87]. The flow through of solution from a supply tank to an electrolysis unit could increase mass transfer on the surface of the electrodes and if only a small volume at a time is subjected to ultrasound in the electrolysis unit, this could demonstrate whether ultrasound has a beneficial effect on the rate of Hydrogen production from electrolysis.

Future investigation in this field may benefit from measurement of flow rate using a flowmeter instead of a measuring cylinder and a stopwatch and a GC. The use a digital flowmeter would be greatly beneficial and would eliminate human error caused by reading values on the measuring cylinder at eye level.

65

The modification of the sonication distance as shown in Figure 26 is another field worth investigating to see whether this has any effect on the enhancement of electrolysis through the introduction of ultrasound.

The dilemma of carrying out Sonoelectrochemical research on small scale, and commercial Hydrogen production systems require large volume so high contact areas of electrode and





electrolyte can be achieved. One method of potentially overcoming this problem, and requiring research, is the use of localised sonication in the system.

The use of PEM electrolysis would be beneficial when compared to alkaline electrolysis, since there are no acidic/alkaline solutions used in PEM electrolysis. This would result in easier handling for the personnel operating the equipment, whether that is a scientist or a member of the public using the equipment commercially. The electrodes (carbon), which this research has shown, suffer from erosion when subjected to acid/alkaline conditions. Using water instead of these corrosive solutions will increase the lifespan of the electrodes and their durability.

### 4.1 Comparison for Industrial Electrolyser and Sonoelectrochemical Cell

From the data presented it is clear that using KOH solution into an electrolyser and applying an electrical current results in HHO production. Increasing the cell voltage and electrolyte concentration, result in an increase in HHO production up to an optimal point. Car batteries operate at 12V and if the electrolyser were connected to them for HHO injection into an internal combustion engine (ICE), an optimum HHO production would occur when using an approximate concentration of 0.3M KOH solution.

These observations suggest that using 5g of KOH for every 300cm<sup>3</sup> of distilled water added to the main reservoir is recommended. The total volume of the electrolyte solution (to add) is dependent on the rate of usage of the KOH solution and how often the reservoir requires refilling. Any excess KOH will not be dangerous or harmful to the electrolyser; it will not improve the performance further.

A direct comparison between the Miromedia electrolyser unit and the Sonoelectrochemical cell is difficult since the two systems have different gas composition outputs. The Miromedia electrolyser produces a mixture of Hydrogen and oxygen, whilst the Sonoelectrochemical cell produces H<sub>2</sub> only (and in some case Cl<sub>2</sub>).

These are not the only fundamental differences between the experiments observed here and the commercial unit. The Miromedia unit uses stainless steel (SS 316) electrodes and potassium hydroxide electrolyte, whilst the experiments previously performed in this report use carbon electrodes and sodium hydroxide solutions. Stainless steel is a better electrode material than carbon since it has a lower activation overpotential, thus creating less resistance in the flow of electrons through the electrolyte. Potassium hydroxide is a better electrolyte than sodium hydroxide for this purpose, as it is more electrically conductive due to the increased number of charge carriers in solution.

More importantly, the surface area of the electrodes in the Miromedia electrolyser is not known. This makes it impossible to draw any direct comparisons with the Sonoelectrochemical cell. Knowing the contact area allows the conversion of the current to current density, which makes the results independent of contact area. If the contact area, the electrolyte and the electrolyte concentration were kept the same, a conductivity performance comparison of the stainless steel and carbon electrodes could occur.

67

Hydrogen gas productivity cannot be compared since the two units produce different gases. The Sonoelectrochemical cell separates the Hydrogen and oxygen gas, whilst the Miromedia electrolyser does not. The only way that the gas productivity can be compared is to combine the Hydrogen and oxygen gas resultant flows from the Sonoelectrochemical cell.

## **5. FUTURE WORK**

Most importantly for future work, the need to repetition of experiments is a vital requirement. The work shown herein severely lacks reliability from which no defining conclusions can be drawn. A limited time-scale has made repetition not possible at this time, but if it was available multiple repetition of each experiment is a must. This would also enable statistical analysis of the data collected calculate averages and carry out an error analysis.

To improve the process presented above, the use of localised sonication in bulk solutions must be investigated. Using small solutions, which most previous sonoelectrochemical research has used, would not produce Hydrogen on a scale for commercial needs. Since the volume of the electrolyte solution used is very small, there will be a very small contact area between the electrode surface and the electrolyte solution itself. The small contact area results in fewer active sites for Hydrogen production to occur.

### 5.1 Electrolytes

The electrolytes used in this project are fairly weak in comparison to others such as potassium hydroxide because they are more electrically conductive than sodium hydroxide.

Purging of each solution with nitrogen or argon for a fixed period of time before and/or during the electrolysis process would improve the production rate of Hydrogen. This would reduce the volume of air in solution, and reduce ohmic resistance in the solution.

Another possible electrolyte that has been investigated is urea. Urea is the main component of urine and is produced from humans in large quantities every day. The utilisation of a waste product for Hydrogen production could be very economically and environmentally beneficial, rather than using harmful acids/bases, which require costly manufacturing and careful handling. Another alternative is the use of a solid polymer electrolyte in the form of a membrane. This removes the needs for a liquid electrolyte (acid/base) and can produce Hydrogen via electrolysis through only water. If electrolyser technology is used on a commercial scale in the future, it would be more convenient for the public to have to use only water, rather than handling acids and alkalines which are potential dangers to public health.

### **5.2 Electrode Parameters**

The electrodes have many parameters that can be varied. The use of different material electrodes can be investigated. Each material has different properties, such as conductivity and microstructure. The activation overpotential of each material will be of particular interest, since materials with the lowest activation overpotential will enable the electrolysis reaction to proceed at lower potentials.

The surface area of the electrode in contact with the electrolyte solution is another important factor in electrolysis. Maximising the surface area of electrodes results in more active sites for current flow in the solution and increases the rate of Hydrogen gas production.

The distance between the cathode and anode electrodes affects the productivity of Hydrogen production. When the electrons move through the solution, there is ohmic resistance in the solution and the closer the electrodes are together, the less resistance when transferring from anode to cathode.

### 5.3 Electrolyte Temperature

The temperature of the electrolyte solution will affect the production of Hydrogen, since increasing the temperature of a solution increases the energy of the ions in solution and they become more energetic, thus reducing the levels of resistance in the solution. An increase in pressure has a similar effect on the solution and applying a pressure to the solution removes the bubbles from the surface of the electrodes at a faster rate than waiting for bubbles to coalesce and then implode on the surface of the solution.

### **5.4 Ultrasonic Parameters**

The parameters of the ultrasound applied to the solution can affect the production rate of ultrasound also. Increasing the amplitude of ultrasound will directly increase the flow of current through the solution and this should result in an increase in production of Hydrogen gas.

The frequency of the ultrasound could be adjusted to see what effect this has on the production of Hydrogen; most particularly to the natural resonant frequency of water to see what effect sonication at this frequency has on the productivity. The distance from the electrodes to the source of sonication has been identified in this report as a serious area that requires further research and the closer they are together, the greater the impact that the ultrasound will have on the electrolysis reaction.

# 6. REFERENCES

- 1. Veziroglu, T.N. and S. Sahin, *21st Century's energy: Hydrogen energy system*. Energy Conversion and Management, 2008. **49**(7): p. 1820-1831.
- 2. <u>www.Direct.gov</u>. Brief History of Climate Change. 2009 [cited 2009 15-11-2009].
- 3. Lattin, W.C. and V.P. Utgikar, *Transition to hydrogen economy in the United States: A 2006 status report.* International Journal of Hydrogen Energy, 2007. **32**(15): p. 3230-3237.
- 4. Florides, G.A. and P. Christodoulides, *Global warming and carbon dioxide through sciences*. Environment International, 2009. **35**(2): p. 390-401.
- 5. <u>http://www.chemie-im-alltag.de/english/articles/0024/Greenhouse.jpg</u>. *Diagram of Greenhouse Effect*. 2009 [cited 2009 15-11-2009].
- 6. Garrett, C.W., *On global climate change, carbon dioxide, and fossil fuel combustion.* Progress in Energy and Combustion Science, 1992. **18**(5): p. 369-407.
- 7. Jain, P.C., *Greenhouse effect and climate change: scientific basis and overview.* Renewable Energy. **3**(4-5): p. 403-420.
- 8. Smith, I.M., *CO2 and climatic change: An overview of the science*. Energy Conversion and Management. **34**(9-11): p. 729-735.
- 9. Susskind, C., *Henry Cavendish, electrician.* Journal of the Franklin Institute, 1950. **249**(3): p. 181-187.
- 10. Sørensen, B., *Hydrogen and Fuel Cells Emerging technologies and applications*. Sustainable World. 2005: Elsevier Academic Press. 450.
- 11. Despic, A.R., *Electrochemistry of John O'Mara Bockris--retrospect and prospects*. Electrochimica Acta, 1994. **39**(11-12): p. 1467-1469.
- 12. Lau, C.E.G.P.F., Advances in Hydrogen Energy. 2000, New York: Springer. 192.
- 13. Balat, M., Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 2008. **33**(15): p. 4013-4029.
- 14. Barbir, F., *Transition to renewable energy systems with hydrogen as an energy carrier*. Energy, 2009. **34**(3): p. 308-312.
- 15. Crowl, D.A. and Y.-D. Jo, *The hazards and risks of hydrogen.* Journal of Loss Prevention in the Process Industries, 2007. **20**(2): p. 158-164.
- 16. Ltd, H.-F. *Diagram of Flammability Range of Hydrogen and other Fuels*. 2007; Available from: <u>http://www.hydrogen-fc.com/flammability-range-on-hydrogen-and-other-fuel/</u>.
- 17. Winter, C.-J., *Hydrogen energy -- Abundant, efficient, clean: A debate over the energysystem-of-change.* International Journal of Hydrogen Energy, 2009. **34**(14, Supplement 1): p. S1-S52.
- 18. Ramesohl, S. and F. Merten, *Energy system aspects of hydrogen as an alternative fuel in transport.* Energy Policy, 2006. **34**(11): p. 1251-1259.
- Elam, C.C., et al., *Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies.* International Journal of Hydrogen Energy, 2003.
  28(6): p. 601-607.
- 20. Moriarty, P. and D. Honnery, *Hydrogen's role in an uncertain energy future*. International Journal of Hydrogen Energy, 2009. **34**(1): p. 31-39.
- 21. Barbir, F., *PEM electrolysis for production of hydrogen from renewable energy sources.* Solar Energy, 2005. **78**(5): p. 661-669.
- 22. Jensen, S.H., P.H. Larsen, and M. Mogensen, *Hydrogen and synthetic fuel production from renewable energy sources.* International Journal of Hydrogen Energy, 2007. **32**(15): p. 3253-3257.

- Srinivasan, S. and F.J. Salzano, Prospects for hydrogen production by water electrolysis to be competitive with conventional methods. International Journal of Hydrogen Energy, 1977.
  2(1): p. 53-59.
- 24. Kothari, R., D. Buddhi, and R.L. Sawhney, *Studies on the effect of temperature of the electrolytes on the rate of production of hydrogen.* International Journal of Hydrogen Energy, 2005. **30**(3): p. 261-263.
- 25. Arashi, H., H. Naito, and H. Miura, *Hydrogen production from high-temperature steam electrolysis using solar energy.* International Journal of Hydrogen Energy, 1991. **16**(9): p. 603-608.
- 26. Zhang, B., et al., *Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts.* International Journal of Hydrogen Energy, 2007. **32**(13): p. 2367-2373.
- 27. Levent, M., D. J. Gunn, and M. Ali El-Bousiffi, *Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor*. International Journal of Hydrogen Energy, 2003. **28**(9): p. 945-959.
- 28. Melis, A. and M.R. Melnicki, *Integrated biological hydrogen production*. International Journal of Hydrogen Energy, 2006. **31**(11): p. 1563-1573.
- 29. Skjånes, K., et al., *H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design.* International Journal of Hydrogen Energy, 2008. **33**(2): p. 511-521.
- 30. Roy, R., Rao, M.L., Kanzius, J., *Observations of polarised RF radiation catalysis of dissociation of H2O-NaCl solutions.* Materials Research Innovations, 2008. **12**: p. 3-6.
- 31. Ahmed, S., et al., *Decomposition of hydrocarbons to hydrogen and carbon*. Applied Catalysis A: General, 2009. **359**(1-2): p. 1-24.
- 32. Cormos, C.-C., et al., *Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture.* International Journal of Hydrogen Energy, 2008. **33**(4): p. 1286-1294.
- 33. Mueller-Langer, F., et al., *Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term.* International Journal of Hydrogen Energy, 2007. **32**(16): p. 3797-3810.
- 34. Hallenbeck, P.C., *Fermentative hydrogen production: Principles, progress, and prognosis.* International Journal of Hydrogen Energy, 2009. **34**(17): p. 7379-7389.
- 35. Kruger, P., *Appropriate technologies for large-scale production of electricity and hydrogen fuel.* International Journal of Hydrogen Energy, 2008. **33**(21): p. 5881-5886.
- 36. Baykara, S.Z., Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency. International Journal of Hydrogen Energy, 2004. **29**(14): p. 1451-1458.
- 37. Soler, L., et al., *Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications.* Journal of Power Sources, 2007. **169**(1): p. 144-149.
- Holladay, J.D., et al., An overview of hydrogen production technologies. Catalysis Today, 2009.
  139(4): p. 244-260.
- 39. Getoff, N., *Photoelectrochemical and photocatalytic methods of hydrogen production: A short review*. International Journal of Hydrogen Energy, 1990. **15**(6): p. 407-417.
- 40. Center, F.S.E. *Diagram of Hydrogen Production Pathways*. Available from: <u>http://www.fsec.ucf.edu/en/consumer/hydrogen/basics/production.htm</u>.
- 41. Andújar, J.M. and F. Segura, *Fuel cells: History and updating. A walk along two centuries.* Renewable and Sustainable Energy Reviews, 2009. **13**(9): p. 2309-2322.
- 42. T.J. Mason, J.P.L.a.D.J.W., *Sonoelectrochemistry*. Ultrasonics, 1990. **28**: p. 333-337.
- 43. Courtney, J., *Diagram of MEA*. 2010. p. Poster Presentation, Japan.

- 44. Levie, R.d., *What's in a Name?* Journal of Chemical Education, 2000. **7**(5): p. 610-612.
- 45. Toftlund, H., *Very early observations on fuel cells*. Ionics, 2001. **7**(3): p. 161-164.
- 46. Laboratory, M.L.-N.H.M.F. *Magnet Lab National High Magnetic Field Laboratory 1850-1869.* 2010 [cited 2010 29/09/2010]; Available from: http://www.magnet.fsu.edu/education/tutorials/timeline/1850-1869.html.
- 47. History, S. *Dimitry Lachinov*. [cited 2010 29/09/2010]; Available from: <u>http://www.servinghistory.com/topics/Dmitry Lachinov</u>.
- 48. Laskin, J.B. and R.D. Feldwick, *Recent development of large electrolytic hydrogen generators.* International Journal of Hydrogen Energy, 1978. **3**(3): p. 311-320.
- 49. Kreuter, W. and H. Hofmann, *Electrolysis: The important energy transformer in a world of sustainable energy*. International Journal of Hydrogen Energy, 1998. **23**(8): p. 661-666.
- 50. Justi, E.W., *Seventy years of Fuel Cell Research.* British Journal of Applied Sciences, 1963. **14**(12): p. 840.
- 51. Zuttel, A., Borgschulte, A., Schlapbach, L., *Hydrogen as a Future Energy Carrier*. 2008, Weinheim: Wiley.
- 52. Richards, J.W., *Electrolysis of Water*. The Electrical Section, 1905: p. 377-394.
- 53. Stojic, D.L., et al., *Hydrogen generation from water electrolysis--possibilities of energy saving.* Journal of Power Sources, 2003. **118**(1-2): p. 315-319.
- 54. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, *Pure hydrogen production by PEM electrolysis for hydrogen energy.* International Journal of Hydrogen Energy, 2006. **31**(2): p. 171-175.
- 55. Madigan, N.A., et al., *Effects of sonication on electrode surfaces and metal particles*. Ultrasonics Sonochemistry, 1996. **3**(3): p. S239-S247.
- 56. Mason, T.J., *Sonochemistry and sonoprocessing: the link, the trends and (probably) the future.* Ultrasonics Sonochemistry, 2003. **10**(4-5): p. 175-179.
- 57. Mason, T.J., *Sonochemistry and the environment Providing a "green" link between chemistry, physics and engineering.* Ultrasonics Sonochemistry, 2007. **14**(4): p. 476-483.
- 58. Walton, D.J., L.D. Burke, and M.M. Murphy, *Sonoelectrochemistry: Chlorine, hydrogen and oxygen evolution at platinised platinum.* Electrochimica Acta, 1996. **41**(17): p. 2747-2751.
- 59. Walton, D.J., et al., *Ultrasonic enhancement of electrochemiluminescence*. Electrochimica Acta, 1993. **38**(2-3): p. 307-310.
- 60. González-García, J., et al., *Current topics on sonoelectrochemistry*. Ultrasonics, 2009. In Press, Corrected Proof.
- 61. Moriguchi, N.J., *The effect of supersonic waves on chemical phenomena.* Journal of the Chemical Society Japan, 1934(55): p. 749.
- 62. Nyborg, W.L.S., M. I. L. , *Effects of acoustic microstreaming at electrodes*. Proceedings of the 3rd International Congress on Acoustics, 1960, 1960: p. 346-348.
- 63. Zhang, H.H.C., L. A. , *Effects of High-Intensity Ultrasound on Glassy-Carbon. Electrodes.* Analytical Chemistry, 1993(65): p. 1552.
- 64. Compton, R.G., et al., *Dual activation: coupling ultrasound to electrochemistry--an overview.* Electrochimica Acta, 1997. **42**(19): p. 2919-2927.
- 65. Klíma, J., C. Bernard, and C. Degrand, *Sonoelectrochemistry: Effects of ultrasound on voltammetric measurements at a solid electrode.* Journal of Electroanalytical Chemistry, 1994. **367**(1-2): p. 297-300.
- 66. Hagan, C.R.S.C., L. A., *Comparison of Hydrodynamic Voltammetry Implemented by Sonication to a Rotating-Disk Electrode.* Analytical Chemistry, 1994. **66**: p. 399.
- 67. Marken, F., J.C. Eklund, and R.G. Compton, *Voltammetry in the presence of ultrasound: Can ultrasound modify heterogeneous electron transfer kinetics?* Journal of Electroanalytical Chemistry, 1995. **395**(1-2): p. 335-339.

- 68. Compton, R.G.E., J. C.; Page, S. D., *Sonovoltammetry Heterogeneous Electron -Transfer processes with coupled ultrasonically induced chemical-reaction.* Journal Of Physical Chemistry, 1995(99): p. 4211-4214.
- 69. Pollet, B. *Schematic of Ultrasonic Phenomena*. 2007 [cited 2010 04/10/2010]; Available from: <u>http://www.sonoelectrochemistry.com/</u>.
- 70. Birkin, P.R.S.-M., S. , *The effect of ultrasound on mass transport to a microelectrode.* Journal of Electroanalytical Chemistry, 1996(416): p. 1807.
- 71. Birkin, P.R. and S. Silva-Martinez, *A study on the effect of ultrasound on electrochemical phenomena*. Ultrasonics Sonochemistry, 1997. **4**(2): p. 121-122.
- 72. Birkin, P.R.O., D. G.; Leighton, T. G. , *A novel dual microelectrode for investigating mass transfer and surface erosion caused by cavitation*. Electrochemistry Communications, 2004(6): p. 1174.
- 73. Birkin, P.R.O., D. G.; Leighton, T. G., *Experimental and theoretical characterisation of sonochemical cells Part 2 Cell disruptors (Ultrasonic horns) and cavity cluster collapse.* Physical Chemistry Chemical Physics, 2005(7): p. 530.
- 74. Maisonhaute, E.W., P. C.; Compton, R. G. , *Surface acoustic cavitation understood via nanosecond electrochemistry.* Journal Of Physical Chemistry, 2001(105): p. 12087-12091.
- 75. Birkin, P.R.P., J. F.; Leighton, T. G.; Vincüotte, A. M. L., *Cathodic Electrochemical Detection of Sonochemical Radical Products.* Analytical Chemistry, 2002(74): p. 2584.
- Gaitan, D.F.C., L. A.; Church, C. C.; Roy, R. A., Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. Journal of the Acoustical Society of America, 1992. 91(6): p. 3166.
- Weissler, A.C., H. W.; Snyder, S., Chemical Effect of Ultrasonic Waves: Oxidation of Potassium Iodide Solution by Carbon Tetrachloride. Journal of the American Chemical Society, 1950.
  4(72): p. 1769-1775.
- 78. Weissler, A., *Formation of Hydrogen Peroxide by Ultrasonic Waves: Free Radicals.* Journal of the American Chemical Society, 1959. **5**(81): p. 1077-1081.
- 79. Birkin, P.R.P., J. F.; Leighton, T. G., *Electrochemical evidence of H radicals produced by ultrasound*. Journal of the Chemical Society Chemical Communications, 2001.
- 80. Birkin, P.R.O.C., R.; Rapple, C.; Silva-Martinez, S. , *Electrochemical measurement of erosion from individual cavitation generated from continuous ultrasound*. Journal of Chemical Society, 1998(94): p. 3365.
- 81. Galloway, W.J., *An Experimental Study of Acoustically Induced Cavitation in Liquids*. Journal of the Acoustical Society of America, 1954(26): p. 849.
- 82. Cataldo, F., *Effects of ultrasound on the yield of hydrogen and chlorine during electrolysis of aqueous solutions of NaCl or HCl.* Journal of Electroanalytical Chemistry, 1992. **332**: p. 325-331.
- 83. D. J. Walton, L.D.B., M. M. Murphy, *Sonoelectrochemistry: Chlorine, Hydrogen and Oxygen Evolution at Platinised Platinum*. Electrochimica Acta, 1996. **41**: p. 2747-2751.
- 84. H.N. McMurray, D.A.W., B.P. Wilson, *Hydrogen Evolution and Oxygen Reduction at Titanium Sonotrode.* Chemical Communications, 1998: p. 887-888.
- 85. C. Burdischak, C.H., R.L. Opila, *Electroanalytical Effects of ultrasound on hydrogen evolution reaction in KOH*. 2008, University of Delaware.
- Sasikala, R., O.D. Jayakumar, and S.K. Kulshreshtha, *Enhanced hydrogen generation by particles during sonochemical decomposition of water*. Ultrasonics Sonochemistry, 2007. 14(2): p. 153-156.
- 87. Li, S.-D., C.-C. Wang, and C.-Y. Chen, *Water electrolysis in the presence of an ultrasonic field*. Electrochimica Acta, 2009. **54**(15): p. 3877-3883.

- 88. Thomas, R., et al., *Trap-governed hydrogen diffusivity and uptake capacity in ultrahighstrength AERMET 100 steel.* Metallurgical and Materials Transactions A, 2002. **33**(7): p. 1991-2004.
- 89. Melsheimer, J. and D. Ziegler, *The oxygen electrode reaction in acid solutions on RuO2 electrodes prepared by the thermal decomposition method.* Thin Solid Films, 1988. **163**: p. 301-308.
- 90. Shi, K., et al., *Structural studies of electrochemically activated glassy carbon electrode: Effects of chloride anion on the redox responses of copper deposition*. Electrochimica Acta, 2007. **52**(19): p. 5907-5913.

# **7. APPENDICES**

# 7.1 Appendix I - Data Tables

# 7.1.1 Preliminary Experiments

Silent

NaOH

| 0.1 | м      | 0.2  | M    | 0.3  | М       | 0.4        | 4M     | 0.5      | 5M   | 1.0  | M    |
|-----|--------|------|------|------|---------|------------|--------|----------|------|------|------|
| v   | mA     | V    | mA   | V    | mA      | v          | mA     | v        | mA   | v    | mA   |
| 1   | 0.5    | 0.5  | 1    | 0.5  | 1       | 0.5        | 2      | 0.5      | 1    | 0.25 | 0    |
| 2   | 6      | 1    | 1    | 1    | 3       | 1          | 3      | 1        | 3    | 0.5  | 1    |
| 3   | 28     | 1.5  | 2    | 1.5  | 5       | 1.5        | 4      | 1.5      | 5    | 0.75 | 1    |
| 4   | 69     | 2    | 4    | 2    | 7       | 2          | 7      | 2        | 7    | 1    | 2    |
| 5   | 109.5  | 2.5  | 17   | 2.5  | 23      | 2.5        | 25     | 2.5      | 32   | 1.25 | 2    |
| 6   | 152.5  | 3    | 43   | 3    | 58      | 3          | 62     | 3        | 76   | 1.5  | 3    |
| 7   | 198    | 3.5  | 75   | 3.5  | 102     | 3.5        | 102    | 3.5      | 133  | 1.75 | 5    |
| 8   | 230    | 4    | 107  | 4    | 150     | 4          | 149    | 4        | 201  | 2    | 8    |
| 9   | 275.5  | 4.5  | 139  | 4.5  | 195     | 4.5        | 201    | 4.5      | 275  | 2.25 | 22   |
| 10  | 318    | 5    | 172  | 5    | 246     | 5          | 260    | 5        | 360  | 2.5  | 52   |
| 11  | 363.5  | 5.5  | 209  | 5.5  | 300     | 5.5        | 319    | 5.5      | 441  | 2.75 | 92   |
| 12  | 408.5  | 6    | 246  | 6    | 355     | 6          | 381    | 6        | 522  | 3    | 135  |
| 13  | 452    | 6.5  | 284  | 6.5  | 411     | 6.5        | 443    | 6.5      | 606  | 3.25 | 180  |
| 14  | 497    | 7    | 322  | 7    | 466     | 7          | 511    | 7        | 691  | 3.5  | 230  |
| 15  | 541    | 7.5  | 361  | 7.5  | 524     | 7.5        | 580    | 7.5      | 775  | 3.75 | 280  |
| 16  | 596    | 8    | 400  | 8    | 581     | 8          | 649    | 8        | 859  | 4    | 336  |
| 17  | 645    | 8.5  | 439  | 8.5  | 638     | 8.5        | 722    | 8.5      | 946  | 4.25 | 398  |
| 18  | 694.5  | 9    | 477  | 9    | 697     | 9          | 789    | 9        | 1035 | 4.5  | 459  |
| 19  | 744.5  | 9.5  | 516  | 9.5  | 755     | 9.5        | 864    | 9.5      | 1122 | 4.75 | 523  |
| 20  | 794    | 10   | 556  | 10   | 805     | 10         | 934    | 10       | 1210 | 5    | 590  |
| 21  | 847    | 10.5 | 596  | 10.5 | 865     | 10.5       | 1006   | 10.5     | 1298 | 5.25 | 655  |
| 22  | 897.5  | 11   | 634  | 11   | 923     | 11         | 1079   | 11       | 1390 | 5.5  | 721  |
| 23  | 951.5  | 11.5 | 672  | 11.5 | 987     | 11.5       | 1167   | 11.5     | 1487 | 5.75 | 789  |
| 24  | 1007.5 | 12   | 706  | 12   | 1045    | 12         | 1240   | 12       | 1578 | 6    | 856  |
| 25  | 1065.5 | 12.5 | 739  | 12.5 | 1107    | 12.5       | 1312   | 12.5     | 1670 | 6.25 | 923  |
|     |        | 13   | 778  | 13   | 1172    | 13         | 1387   | 13       | 1764 | 6.5  | 993  |
|     |        | 13.5 | 817  | 13.5 | 1235    | 13.5       | 1462   | 13.5     | 1858 | 6.75 | 1062 |
|     |        | 14   | 858  | 14   | 1302    | 14         | 1539   | 14       | 1955 | 7    | 1132 |
|     |        | 14.5 | 898  | 14.5 | 1361    | 14.5       | 1620   |          |      | 7.25 | 1201 |
|     |        | 15   | 937  | 15   | 1426    | 15         | 1700   |          |      | 7.5  | 1271 |
|     |        | 15.5 | 978  | 15.5 | 1490    | 15.5       | 1780   |          |      | 7.75 | 1341 |
|     |        | 16   | 1020 | 16   | 1556    | 16         | 1863   |          |      | 8    | 1411 |
|     |        | 16.5 | 1063 | 16.5 | 1629    | 16.5       | 1945   |          |      | 8.25 | 1483 |
|     |        | 17   | 1106 | 17   | 1700    |            |        |          |      | 8.5  | 1554 |
|     |        | 17.5 | 1151 | 17.5 | 1777    |            |        |          |      | 8.75 | 1624 |
|     |        | 18   | 1192 | 18   | 1846    |            |        |          |      | 9    | 1699 |
|     |        | 18.5 | 1235 | 18.5 | 1910    |            |        |          |      | 9.25 | 1765 |
|     |        | 19   | 1278 | 19   | 1984    |            |        |          |      | 9.5  | 1838 |
|     |        | 19.5 | 1315 |      |         |            |        |          |      | 9.75 | 1904 |
|     |        | 20   | 1367 |      |         |            |        |          |      | 10   | 1976 |
|     |        | 20.5 | 1401 |      |         |            |        |          |      |      |      |
|     |        | 21   | 1448 |      |         |            |        |          |      |      |      |
|     |        | 21.5 | 1483 |      |         |            |        |          |      |      |      |
|     |        | 22   | 1523 |      |         |            |        |          |      |      |      |
|     |        | 22.5 | 1568 |      | Electro | de Contact | Length | 3.5      | cm   |      |      |
|     |        | 23   | 1601 |      | Elec    | trode Diam | neter  | 0.15     | cm   |      |      |
|     |        | 23.5 | 1643 |      |         |            |        |          |      |      |      |
|     |        | 24   | 1684 |      | C       | ontact Are | а      | 1.667008 | cm2  |      |      |
|     |        | 24.5 | 1706 |      |         |            |        |          |      |      |      |
|     |        | 25   | 1745 |      |         |            |        |          |      |      |      |

Figure 27: Table of Voltage Current Data for NaOH

### NaCl

| 0.1 | M   | 0.2          | 2M         | 0.3    | M        | 0.4       | 4M   | 0.5        | 5M   | 1.0   | MC   |
|-----|-----|--------------|------------|--------|----------|-----------|------|------------|------|-------|------|
| V   | mA  | V            | mA         | V      | mA       | V         | mA   | V          | mA   | V     | mA   |
| 1   | 1   | 0.5          | 2          | 0.5    | 0        | 0.5       | 1    | 0.5        | 1    | 0.25  | 0    |
| 2   | 4   | 1            | 3          | 1      | 2        | 1         | 5    | 1          | 3    | 0.5   | 0    |
| 3   | 8   | 1.5          | 6          | 1.5    | 5        | 1.5       | 11   | 1.5        | 12   | 0.75  | 0    |
| 4   | 23  | 2            | 7          | 2      | 7        | 2         | 23   | 2          | 31   | 1     | 0    |
| 5   | 44  | 2.5          | 11         | 2.5    | 9        | 2.5       | 40   | 2.5        | 44   | 1.25  | 0    |
| 6   | 66  | 3            | 14         | 3      | 14       | 3         | 57   | 3          | 55   | 1.5   | 0    |
| 7   | 112 | 3.5          | 25         | 3.5    | 31       | 3.5       | 74   | 3.5        | 74   | 1.75  | 0    |
| 0   | 112 | 4            | 42         | 4      |          | 4         | 92   | 4          | 100  | 2.25  | 0    |
| 10  | 150 | 4.5          | 82         | 4.5    | 102      | 4.5       | 120  | 4.5        | 141  | 2.25  | 2    |
| 11  | 184 | 55           | 104        | 55     | 127      | 55        | 149  | 55         | 195  | 2.5   | 10   |
| 12  | 208 | 5.5          | 125        | 5.5    | 154      | 5.5       | 181  | 5.5        | 229  | 2.73  | 20   |
| 13  | 234 | 6.5          | 147        | 6.5    | 181      | 6.5       | 214  | 6.5        | 262  | 3.25  | 36   |
| 14  | 259 | 7            | 169        | 7      | 209      | 7         | 247  | 7          | 297  | 3.5   | 57   |
| 15  | 285 | 7.5          | 192        | 7.5    | 236      | 7.5       | 281  | 7.5        | 329  | 3.75  | 81   |
| 16  | 310 | 8            | 214        | 8      | 264      | 8         | 316  | 8          | 363  | 4     | 109  |
| 17  | 336 | 8.5          | 237        | 8.5    | 293      | 8.5       | 351  | 8.5        | 399  | 4.25  | 138  |
| 18  | 362 | 9            | 260        | 9      | 320      | 9         | 386  | 9          | 435  | 4.5   | 168  |
| 19  | 389 | 9.5          | 283        | 9.5    | 349      | 9.5       | 421  | 9.5        | 471  | 4.75  | 199  |
| 20  | 414 | 10           | 305        | 10     | 378      | 10        | 456  | 10         | 510  | 5     | 230  |
| 21  | 439 | 10.5         | 328        | 10.5   | 407      | 10.5      | 492  | 10.5       | 552  | 5.25  | 263  |
| 22  | 465 | 11           | 350        | 11     | 435      | 11        | 527  | 11         | 600  | 5.5   | 295  |
| 23  | 491 | 11.5         | 374        | 11.5   | 464      | 11.5      | 564  | 11.5       | 645  | 5.75  | 328  |
| 24  | 519 | 12           | 397        | 12     | 495      | 12        | 600  | 12         | 693  | 6     | 361  |
| 25  | 547 | 12.5         | 420        | 12.5   | 514      | 12.5      | 636  | 12.5       | 739  | 6.25  | 394  |
|     |     | 13           | 444        | 13     | 544      | 13        | 673  | 13         | 775  | 6.5   | 428  |
|     |     | 13.5         | 408        | 13.5   | 575      | 13.5      | 709  | 13.5       | 821  | 0.75  | 401  |
|     |     | 14 5         | 492<br>515 | 14 5   | 635      | 14 5      | 748  | 14 5       | 913  | 7 75  | 529  |
|     |     | 14.5         | 539        | 14.5   | 662      | 14.5      | 812  | 14.5       | 952  | 7.25  | 563  |
|     |     | 15.5         | 564        | 15.5   | 692      | 15.5      | 850  | 15.5       | 1000 | 7.75  | 594  |
|     |     | 16           | 589        | 16     | 723      | 16        | 888  | 16         | 1044 | 8     | 625  |
|     |     | 16.5         | 615        | 16.5   | 754      | 16.5      | 924  | 16.5       | 1092 | 8.25  | 661  |
|     |     | 17           | 638        | 17     | 787      | 17        | 961  | 17         | 1136 | 8.5   | 694  |
|     |     | 17.5         | 665        | 17.5   | 815      | 17.5      | 999  | 17.5       | 1180 | 8.75  | 728  |
|     |     | 18           | 690        | 18     | 847      | 18        | 1035 | 18         | 1223 | 9     | 761  |
|     |     | 18.5         | 714        | 18.5   | 878      | 18.5      | 1074 | 18.5       | 1276 | 9.25  | 794  |
|     |     | 19           | 740        | 19     | 908      | 19        | 1109 | 19         | 1328 | 9.5   | 827  |
|     |     | 19.5         | 767        | 19.5   | 935      | 19.5      | 1146 | 19.5       | 1375 | 9.75  | 859  |
|     |     | 20           | 789        | 20     | 966      | 20        | 1184 | 20         | 1423 | 10    | 894  |
|     |     | 20.5         | 814        | 20.5   | 995      | 20.5      | 1220 | 20.5       | 1469 | 10.25 | 928  |
|     |     | 21           | 843        | 21     | 1024     | 21        | 1259 | 21         | 1516 | 10.5  | 963  |
|     |     | 21.5         | 867        | 21.5   | 1056     | 21.5      | 1293 | 21.5       | 1559 | 10.75 | 997  |
|     |     | 22           | 892        | 22     | 1084     | 22        | 1324 | 22         | 1602 | 11    | 1030 |
|     |     | 22.5         | 915        | 22.5   | 1118     | 22.5      | 1361 | 22.5       | 1648 | 11.25 | 1064 |
|     |     | 23           | 941        | 23     | 1145     | 23        | 1398 | 23         | 1694 | 11.5  | 1097 |
|     |     | 23.5         | 968        | 23.5   | 1204     | 23.5      | 1434 | 23.5       | 1790 | 11.75 | 1125 |
|     |     | 24           | 1021       | 24     | 1204     | 24        | 1510 | 24<br>74 E | 1822 | 12 25 | 1104 |
|     |     | 24.3         | 1046       | 24.3   | 1268     | 24.5      | 1548 | 24.5       | 1891 | 12.23 | 1227 |
|     |     | 23           | +0         | 2.5    | 00       |           |      |            |      | 12.75 | 1262 |
|     |     |              |            |        |          |           |      |            |      | 13    | 1295 |
|     |     |              |            |        |          |           |      |            |      | 13.25 | 1329 |
|     |     |              |            |        |          |           |      |            |      | 13.5  | 1364 |
|     |     |              |            |        |          |           |      |            |      | 13.75 | 1396 |
|     |     |              |            |        |          |           |      |            |      | 14    | 1435 |
|     |     |              |            |        |          |           |      |            |      | 14.25 | 1465 |
|     |     |              |            |        |          |           |      |            |      | 14.5  | 1500 |
|     |     |              |            |        |          |           |      |            |      | 14.75 | 1534 |
|     |     |              |            |        |          |           |      |            |      | 15    | 1569 |
|     |     |              |            |        |          |           |      |            |      | 15.25 | 1606 |
|     |     |              |            |        |          |           |      |            |      | 15.5  | 1637 |
|     |     | El e et :: : | de Centrat | Longth |          |           |      |            |      | 15.75 | 1665 |
|     |     | Electro      | ue Contact | Length | 3.5      | cm<br>eme |      |            |      | 16 25 | 1724 |
|     |     | Elect        | rode Diam  | eter   | 0.15     | cm        |      |            |      | 16.25 | 1774 |
|     |     | ſ            | ontact Are | a      | 1.667008 | cm2       |      |            |      | 16.75 | 1803 |
|     |     | C            | Sinaci Ale |        | 1.007008 | U112      |      |            |      | 10.73 | 1844 |
|     |     |              |            |        |          |           |      |            |      | 17.25 | 1876 |
|     |     |              |            |        |          |           |      |            |      | 17.5  | 1908 |
|     |     |              |            |        |          |           |      |            |      | 17.75 | 1940 |
|     |     |              |            |        |          |           |      |            |      | 18    | 1978 |
|     |     |              |            |        |          |           |      |            |      |       |      |

Figure 28: Table of Voltage Current Data for NaCl

| H <sub>2</sub> SO | 1 |
|-------------------|---|
|-------------------|---|

| 0.1 | M    | 0.2  | М    | 0.3  | М       | 0.4         | 1M     | 0.5M     |      | 1.0M |      |
|-----|------|------|------|------|---------|-------------|--------|----------|------|------|------|
| V   | mA   | V    | mA   | V    | mA      | V           | mA     | V        | mA   | V    | mA   |
| 1   | 1    | 0.5  | 3    | 0.5  | 1       | 0.5         | 0      | 0.5      | 0    | 0.25 | 0    |
| 2   | 7    | 1    | 9    | 1    | 3       | 1           | 1      | 1        | 0    | 0.5  | 0    |
| 3   | 12   | 1.5  | 15   | 1.5  | 14      | 1.5         | 2      | 1.5      | 0    | 0.75 | 0    |
| 4   | 44   | 2    | 28   | 2    | 37      | 2           | 10     | 2        | 7    | 1    | 0    |
| 5   | 76   | 2.5  | 35   | 2.5  | 51      | 2.5         | 41     | 2.5      | 44   | 1.25 | 0    |
| 6   | 137  | 3    | 61   | 3    | 97      | 3           | 102    | 3        | 133  | 1.5  | 0    |
| 7   | 198  | 3.5  | 108  | 3.5  | 172     | 3.5         | 175    | 3.5      | 262  | 1.75 | 0    |
| 8   | 265  | 4    | 160  | 4    | 259     | 4           | 261    | 4        | 419  | 2    | 6    |
| 9   | 332  | 4.5  | 215  | 4.5  | 351     | 4.5         | 356    | 4.5      | 587  | 2.25 | 22   |
| 10  | 437  | 5    | 273  | 5    | 448     | 5           | 431    | 5        | 762  | 2.5  | 43   |
| 11  | 504  | 5.5  | 331  | 5.5  | 541     | 5.5         | 541    | 5.5      | 941  | 2.75 | 80   |
| 12  | 591  | 6    | 392  | 6    | 637     | 6           | 661    | 6        | 1125 | 3    | 134  |
| 13  | 686  | 6.5  | 452  | 6.5  | 734     | 6.5         | 776    | 6.5      | 1311 | 3.25 | 206  |
| 14  | 777  | 7    | 512  | 7    | 830     | 7           | 915    | 7        | 1504 | 3.5  | 287  |
| 15  | 860  | 7.5  | 573  | 7.5  | 932     | 7.5         | 1051   | 7.5      | 1690 | 3.75 | 381  |
| 16  | 955  | 8    | 636  | 8    | 1031    | 8           | 1169   | 8        | 1910 | 4    | 482  |
| 17  | 1049 | 8.5  | 699  | 8.5  | 1131    | 8.5         | 1299   |          |      | 4.25 | 585  |
| 18  | 1133 | 9    | 762  | 9    | 1229    | 9           | 1441   |          |      | 4.5  | 692  |
| 19  | 1228 | 9.5  | 827  | 9.5  | 1333    | 9.5         | 1579   |          |      | 4.75 | 807  |
| 20  | 1312 | 10   | 890  | 10   | 1438    | 10          | 1712   |          |      | 5    | 922  |
| 21  | 1401 | 10.5 | 956  | 10.5 | 1542    | 10.5        | 1846   |          |      | 5.25 | 1041 |
| 22  | 1496 | 11   | 1019 | 11   | 1647    | 11          | 1985   |          |      | 5.5  | 1157 |
| 23  | 1589 | 11.5 | 1088 | 11.5 | 1749    |             |        |          |      | 5.75 | 1278 |
| 24  | 1673 | 12   | 1154 | 12   | 1854    |             |        |          |      | 6    | 1395 |
| 25  | 1766 | 12.5 | 1228 | 12.5 | 1958    |             |        |          |      | 6.25 | 1515 |
|     |      | 13   | 1296 |      |         |             |        |          |      | 6.5  | 1647 |
|     |      | 13.5 | 1367 |      |         |             |        |          |      | 6.75 | 1764 |
|     |      | 14   | 1439 |      |         |             |        |          |      | 7    | 1891 |
|     |      | 14.5 | 1512 |      |         |             |        |          |      | 7.25 | 2000 |
|     |      | 15   | 1582 |      |         |             |        |          |      |      |      |
|     |      | 15.5 | 1653 |      | Electro | de Contact  | Length | 3.5      | cm   |      |      |
|     |      | 16   | 1725 |      | Elec    | trode Diam  | neter  | 0.15     | ст   |      |      |
|     |      | 16.5 | 1800 |      |         |             |        |          |      |      |      |
|     |      | 17   | 1876 |      | C       | Contact Are | а      | 1.667008 | cm2  |      |      |
|     |      | 17.5 | 1955 |      |         |             |        |          |      |      |      |

Figure 29: Table of Voltage Current Data for H<sub>2</sub>SO<sub>4</sub>

#### Sonicated

### NaOH

| 0.1M 0.2M |      | 0.3M |      | 0.4M |         | 0.5M       |        | 1.0M     |      |      |      |
|-----------|------|------|------|------|---------|------------|--------|----------|------|------|------|
| V         | mA   | V    | mA   | V    | mA      | V          | mA     | V        | mA   | V    | mA   |
| 1         | 10   | 0.5  | 7    | 0.5  | 0       | 0.5        | 10     | 0.5      | 7    | 0.25 | 0    |
| 2         | 46   | 1    | 13   | 1    | 0       | 1          | 21     | 1        | 18   | 0.5  | 3    |
| 3         | 80   | 1.5  | 23   | 1.5  | 16      | 1.5        | 29     | 1.5      | 27   | 0.75 | 8    |
| 4         | 115  | 2    | 35   | 2    | 35      | 2          | 40     | 2        | 35   | 1    | 15   |
| 5         | 140  | 2.5  | 51   | 2.5  | 61      | 2.5        | 77     | 2.5      | 87   | 1.25 | 19   |
| 6         | 203  | 3    | 65   | 3    | 87      | 3          | 116    | 3        | 147  | 1.5  | 17   |
| 7         | 258  | 3.5  | 99   | 3.5  | 129     | 3.5        | 186    | 3.5      | 231  | 1.75 | 20   |
| 8         | 323  | 4    | 134  | 4    | 192     | 4          | 272    | 4        | 322  | 2    | 22   |
| 9         | 403  | 4.5  | 183  | 4.5  | 257     | 4.5        | 359    | 4.5      | 419  | 2.25 | 56   |
| 10        | 464  | 5    | 224  | 5    | 318     | 5          | 445    | 5        | 515  | 2.5  | 119  |
| 11        | 531  | 5.5  | 256  | 5.5  | 382     | 5.5        | 536    | 5.5      | 608  | 2.75 | 172  |
| 12        | 632  | 6    | 290  | 6    | 453     | 6          | 628    | 6        | 702  | 3    | 222  |
| 13        | 707  | 6.5  | 304  | 6.5  | 527     | 6.5        | 727    | 6.5      | 805  | 3.25 | 299  |
| 14        | 774  | 7    | 341  | 7    | 593     | 7          | 820    | 7        | 902  | 3.5  | 379  |
| 15        | 843  | 7.5  | 383  | 7.5  | 661     | 7.5        | 917    | 7.5      | 1014 | 3.75 | 447  |
| 16        | 916  | 8    | 440  | 8    | 734     | 8          | 1012   | 8        | 1121 | 4    | 504  |
| 17        | 990  | 8.5  | 490  | 8.5  | 804     | 8.5        | 1109   | 8.5      | 1246 | 4.25 | 580  |
| 18        | 1059 | 9    | 528  | 9    | 878     | 9          | 1202   | 9        | 1365 | 4.5  | 657  |
| 19        | 1142 | 9.5  | 567  | 9.5  | 951     | 9.5        | 1301   | 9.5      | 1483 | 4.75 | 733  |
| 20        | 1221 | 10   | 620  | 10   | 1027    | 10         | 1403   | 10       | 1607 | 5    | 810  |
| 21        | 1297 | 10.5 | 682  | 10.5 | 1096    | 10.5       | 1504   | 10.5     | 1729 | 5.25 | 898  |
| 22        | 1381 | 11   | 740  | 11   | 1175    | 11         | 1602   | 11       | 1846 | 5.5  | 985  |
| 23        | 1463 | 11.5 | 782  | 11.5 | 1254    | 11.5       | 1707   |          |      | 5.75 | 1070 |
| 24        | 1546 | 12   | 821  | 12   | 1324    | 12         | 1812   |          |      | 6    | 1155 |
| 25        | 1625 | 12.5 | 865  | 12.5 | 1401    | 12.5       | 1922   |          |      | 6.25 | 1246 |
|           |      | 13   | 915  | 13   | 1476    |            |        |          |      | 6.5  | 1334 |
|           |      | 13.5 | 968  | 13.5 | 1569    |            |        |          |      | 6.75 | 1430 |
|           |      | 14   | 1015 | 14   | 1667    |            |        |          |      | 7    | 1520 |
|           |      | 14.5 | 1063 | 14.5 | 1710    |            |        |          |      | 7.25 | 1613 |
|           |      | 15   | 1114 | 15   | 1755    |            |        |          |      | 7.5  | 1701 |
|           |      | 15.5 | 1168 | 15.5 | 1843    |            |        |          |      | 7.75 | 1794 |
|           |      | 16   | 1228 | 16   | 1936    |            |        |          |      | 8    | 1882 |
|           |      | 16.5 | 1269 |      |         |            |        |          |      | 8.25 | 1975 |
|           |      | 17   | 1313 |      |         |            |        |          |      | 8.5  | 2061 |
|           |      | 17.5 | 1369 |      |         |            |        |          |      |      |      |
|           |      | 18   | 1426 |      |         |            |        |          |      |      |      |
|           |      | 18.5 | 1477 |      |         |            |        |          |      |      |      |
|           |      | 19   | 1522 |      |         |            |        |          |      |      |      |
|           |      | 19.5 | 1583 |      | Electro | de Contact | Length | 3.5      | cm   |      |      |
|           |      | 20   | 1642 |      | Elec    | trode Diam | neter  | 0.15     | cm   |      |      |
|           |      | 20.5 | 1701 |      |         |            |        |          |      |      |      |
|           |      | 21   | 1763 |      | C       | ontact Are | а      | 1.667008 | cm2  |      |      |
|           |      | 21.5 | 1810 |      |         |            |        |          |      |      |      |
|           |      | 22   | 1898 |      |         |            |        |          |      |      |      |

Figure 30: Table of Voltage Current Data for NaOH Sonicated

### NaCl

| 0.1 | 0.1M 0.2 |      | 2M 0.3M |      | 0.4M |      | 0.5M    |             | 1.0M     |          |      |
|-----|----------|------|---------|------|------|------|---------|-------------|----------|----------|------|
| V   | mA       | V    | mA      | V    | mA   | V    | mA      | V           | mA       | V        | mA   |
| 1   | 5        | 0.5  | 10      | 0.5  | 0    | 0.5  | 0       | 0.5         | 0        | 0.25     | 0    |
| 2   | 14       | 1    | 17      | 1    | 0    | 1    | 0       | 1           | 0        | 0.5      | 0    |
| 3   | 24       | 1.5  | 25      | 1.5  | 0    | 1.5  | 0       | 1.5         | 0        | 0.75     | 0    |
| 4   | 43       | 2    | 36      | 2    | 0    | 2    | 0       | 2           | 0        | 1        | 0    |
| 5   | 70       | 2.5  | 49      | 2.5  | 10   | 2.5  | 0       | 2.5         | 0        | 1.25     | 0    |
| 6   | 99       | 3    | 63      | 3    | 24   | 3    | 23      | 3           | 24       | 1.5      | 0    |
| 7   | 127      | 3.5  | 80      | 3.5  | 49   | 3.5  | 58      | 3.5         | 64       | 1.75     | 0    |
| 8   | 157      | 4    | 98      | 4    | 80   | 4    | 103     | 4           | 120      | 2        | 0    |
| 9   | 187      | 4.5  | 117     | 4.5  | 119  | 4.5  | 155     | 4.5         | 184      | 2.25     | 0    |
| 10  | 216      | 5    | 132     | 5    | 162  | 5    | 210     | 5           | 251      | 2.5      | 8    |
| 11  | 248      | 5.5  | 148     | 5.5  | 206  | 5.5  | 268     | 5.5         | 318      | 2.75     | 18   |
| 12  | 283      | 6    | 167     | 6    | 256  | 6    | 327     | 6           | 389      | 3        | 38   |
| 13  | 317      | 6.5  | 184     | 6.5  | 304  | 6.5  | 384     | 6.5         | 460      | 3.25     | 67   |
| 14  | 350      | 7    | 202     | 7    | 353  | 7    | 444     | 7           | 532      | 3.5      | 107  |
| 15  | 382      | 7.5  | 221     | 7.5  | 400  | 7.5  | 506     | 7.5         | 605      | 3.75     | 156  |
| 16  | 419      | 8    | 239     | 8    | 451  | 8    | 567     | 8           | 678      | 4        | 209  |
| 17  | 458      | 8.5  | 257     | 8.5  | 500  | 8.5  | 629     | 8.5         | 746      | 4.25     | 265  |
| 18  | 495      | 9    | 278     | 9    | 551  | 9    | 690     | 9           | 820      | 4.5      | 321  |
| 19  | 530      | 9.5  | 299     | 9.5  | 601  | 9.5  | 749     | 9.5         | 894      | 4.75     | 382  |
| 20  | 568      | 10   | 327     | 10   | 655  | 10   | 812     | 10          | 963      | 5        | 441  |
| 21  | 605      | 10.5 | 352     | 10.5 | 715  | 10.5 | 872     | 10.5        | 1036     | 5.25     | 502  |
| 22  | 644      | 11   | 377     | 11   | 766  | 11   | 936     | 11          | 1110     | 5.5      | 565  |
| 23  | 676      | 11.5 | 403     | 11.5 | 823  | 11.5 | 999     | 11.5        | 1178     | 5.75     | 626  |
| 24  | 719      | 12   | 427     | 12   | 878  | 12   | 1065    | 12          | 1250     | 6        | 676  |
| 25  | 752      | 12.5 | 452     | 12.5 | 926  | 12.5 | 1125    | 12.5        | 1318     | 6.25     | 739  |
|     |          | 13   | 478     | 13   | 980  | 13   | 1190    | 13          | 1385     | 6.5      | 798  |
|     |          | 13.5 | 501     | 13.5 | 1035 | 13.5 | 1251    | 13.5        | 1456     | 6.75     | 857  |
|     |          | 14   | 531     | 14   | 1086 | 14   | 1315    | 14          | 1525     | 7        | 921  |
|     |          | 14.5 | 559     | 14.5 | 1145 | 14.5 | 1376    | 14.5        | 1593     | 7.25     | 980  |
|     |          | 15   | 585     | 15   | 1196 | 15   | 1435    | 15          | 1654     | 7.5      | 1035 |
|     |          | 15.5 | 612     | 15.5 | 1246 | 15.5 | 1503    | 15.5        | 1720     | 7.75     | 1095 |
|     |          | 16   | 643     | 16   | 1301 | 16   | 1567    | 16          | 1780     | 8        | 1157 |
|     |          | 16.5 | 669     | 16.5 | 1351 | 16.5 | 1616    | 16.5        | 1842     | 8.25     | 1216 |
|     |          | 17   | 698     | 17   | 1401 | 17   | 1678    | 17          | 1900     | 8.5      | 1277 |
|     |          | 17.5 | 724     | 17.5 | 1457 | 17.5 | 1742    | 17.5        | 1949     | 8.75     | 1333 |
|     |          | 18   | 757     | 18   | 1514 | 18   | 1799    | 18          | 1967     | 9        | 1399 |
|     |          | 18.5 | 787     | 18.5 | 1569 | 18.5 | 1861    | 18.5        | 2016     | 9.25     | 1455 |
|     |          | 19   | 817     | 19   | 1609 | 19   | 1901    | 19          | 2060     | 9.5      | 1514 |
|     |          | 19.5 | 840     | 19.5 | 1665 | 19.5 | 1967    |             |          | 9.75     | 1572 |
|     |          | 20   | 872     | 20   | 1716 | 20   | 2018    |             |          | 10       | 1630 |
|     |          | 20.5 | 903     | 20.5 | 1760 | 20.5 | 2082    |             |          | 10.25    | 1688 |
|     |          | 21   | 947     | 21   | 1800 | 21   | 2134    |             |          | 10.5     | 1744 |
|     |          | 21.5 | 983     | 21.5 | 1856 | 21.5 | 2182    |             |          | 10.75    | 1792 |
|     |          | 22   | 1009    | 22   | 1895 |      |         |             |          | 11       | 1851 |
|     |          | 22.5 | 1040    | 22.5 | 1929 |      |         |             |          | 11.25    | 1902 |
|     |          | 23   | 1070    | 23   | 1959 |      |         |             |          | 11.5     | 1952 |
|     |          | 23.5 | 1111    | 23.5 | 1986 |      | Electro | de Contact  | t Length | 3.5      | cm   |
|     |          | 24   | 1146    | 24   | 2010 |      | Elec    | trode Dian  | neter    | 0.15     | cm   |
|     |          | 24.5 | 1176    | 24.5 | 2028 |      |         |             |          |          |      |
|     |          | 25   | 1206    | 25   | 2046 |      | 0       | Contact Are | a        | 1.667008 | cm2  |

Figure 31: Table of Voltage Current Data for NaCl Sonicated

#### H2SO4

| 0.1 | .M   | 0.2  | 2M   | 0.3 | M       | 0.4        | 1M     | 0.5M     |      | 1.0M |      |
|-----|------|------|------|-----|---------|------------|--------|----------|------|------|------|
| V   | mA   | V    | mA   | V   | mA      | V          | mA     | V        | mA   | V    | mA   |
| 1   | 5    | 0.5  | 9    | 0.5 | 5       | 0.5        | 0      | 0.5      | 0    | 0.25 | 0    |
| 2   | 15   | 1    | 14   | 1   | 14      | 1          | 1      | 1        | 0    | 0.5  | 0    |
| 3   | 42   | 1.5  | 19   | 1.5 | 23      | 1.5        | 6      | 1.5      | 0    | 0.75 | 0    |
| 4   | 105  | 2    | 34   | 2   | 58      | 2          | 13     | 2        | 25   | 1    | 0    |
| 5   | 175  | 2.5  | 47   | 2.5 | 81      | 2.5        | 47     | 2.5      | 47   | 1.25 | 0    |
| 6   | 248  | 3    | 68   | 3   | 101     | 3          | 116    | 3        | 140  | 1.5  | 0    |
| 7   | 358  | 3.5  | 124  | 3.5 | 202     | 3.5        | 242    | 3.5      | 287  | 1.75 | 0    |
| 8   | 484  | 4    | 186  | 4   | 321     | 4          | 398    | 4        | 468  | 2    | 9    |
| 9   | 584  | 4.5  | 251  | 4.5 | 457     | 4.5        | 573    | 4.5      | 668  | 2.25 | 23   |
| 10  | 664  | 5    | 325  | 5   | 599     | 5          | 747    | 5        | 875  | 2.5  | 50   |
| 11  | 745  | 5.5  | 400  | 5.5 | 742     | 5.5        | 927    | 5.5      | 1087 | 2.75 | 99   |
| 12  | 829  | 6    | 481  | 6   | 895     | 6          | 1112   | 6        | 1300 | 3    | 176  |
| 13  | 909  | 6.5  | 554  | 6.5 | 1047    | 6.5        | 1302   | 6.5      | 1517 | 3.25 | 272  |
| 14  | 996  | 7    | 634  | 7   | 1204    | 7          | 1486   | 7        | 1733 | 3.5  | 386  |
| 15  | 1078 | 7.5  | 713  | 7.5 | 1364    | 7.5        | 1678   | 7.5      | 1952 | 3.75 | 516  |
| 16  | 1167 | 8    | 795  | 8   | 1521    | 8          | 1868   |          |      | 4    | 652  |
| 17  | 1255 | 8.5  | 878  | 8.5 | 1686    | 8.5        | 2053   |          |      | 4.25 | 798  |
| 18  | 1347 | 9    | 961  | 9   | 1859    |            |        |          |      | 4.5  | 954  |
| 19  | 1430 | 9.5  | 1047 | 9.5 | 2022    |            |        |          |      | 4.75 | 1110 |
| 20  | 1525 | 10   | 1132 |     |         |            |        |          |      | 5    | 1269 |
| 21  | 1617 | 10.5 | 1216 |     |         |            |        |          |      | 5.25 | 1422 |
| 22  | 1707 | 11   | 1304 |     |         |            |        |          |      | 5.5  | 1574 |
| 23  | 1799 | 11.5 | 1386 |     |         |            |        |          |      | 5.75 | 1736 |
| 24  | 1878 | 12   | 1475 |     |         |            |        |          |      | 6    | 1893 |
| 25  | 1966 | 12.5 | 1553 |     |         |            |        |          |      | 6.25 | 2057 |
|     |      | 13   | 1638 |     |         |            |        |          |      |      |      |
|     |      | 13.5 | 1714 |     | Electro | de Contact | Length | 3.5      | cm   |      |      |
|     |      | 14   | 1795 |     | Elec    | trode Diam | leter  | 0.15     | cm   |      |      |
|     |      | 14.5 | 1871 |     |         |            |        |          |      |      |      |
|     |      | 15   | 1955 |     | C       | ontact Are | а      | 1.667008 | cm2  |      |      |

Figure 32: Table of Voltage Current Data for H2SO4 Sonicated

# 7.1.2 Custom Glassware Experiments

### Silent

### NaOH

| NaOH        |                      |                          |           |           |          |             |         |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-------------|---------|
| Unsonicated | Contact Area (cm2)   |                          | 6.668     |           |          | Production  | Rate    |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour    | g/hour  |
| 1           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0! |
| 2           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0! |
| 3           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0! |
| 4           | 23                   | 3.449310138              | 0         | 25        |          | #DIV/0!     | #DIV/0! |
| 5           | 48                   | 7.198560288              | 1         | 25        | 1041     | 3.458213256 | 0.00031 |
| 6           | 68                   | 10.19796041              | 1         | 25        | 377.928  | 9.525623928 | 0.00086 |
| 7           | 86                   | 12.89742052              | 1         | 25        | 187.818  | 19.16749193 | 0.00172 |
| 8           | 105                  | 15.74685063              | 1         | 25        | 141.108  | 25.5123735  | 0.00229 |
| 9           | 124                  | 18.59628074              | 1         | 25        | 121.92   | 29.52755906 | 0.00265 |
| 10          | 144                  | 21.59568086              | 1         | 25        | 79.704   | 45.16711834 | 0.00406 |
| 11          | 164                  | 24.59508098              | 1         | 25        | 62.742   | 57.37783303 | 0.00516 |
| 12          | 185                  | 27.74445111              | 1         | 25        | 59       | 61.01694915 | 0.00548 |
| 13          | 203                  | 30.44391122              | 1         | 25        | 46       | 78.26086957 | 0.00703 |
| 14          | 227                  | 34.04319136              | 1         | 25        | 43       | 83.72093023 | 0.00752 |
| 15          | 248                  | 37.19256149              | 1         | 25        | 42       | 85.71428571 | 0.0077  |
| 16          | 268                  | 40.19196161              | 1         | 25        | 40       | 90          | 0.00809 |
| 17          | 290                  | 43.49130174              | 1         | 25        | 38       | 94.73684211 | 0.00851 |
| 18          | 311                  | 46.64067187              | 1         | 25        | 30       | 120         | 0.01079 |
| 19          | 331                  | 49.64007199              | 1         | 25        | 29       | 124.137931  | 0.01116 |
| 20          | 352                  | 52.78944211              | 2         | 25        | 39       | 184.6153846 | 0.01659 |
| 21          | 373                  | 55.93881224              | 2         | 25        | 45       | 160         | 0.01438 |
| 22          | 392                  | 58.78824235              | 2         | 25        | 44       | 163.6363636 | 0.01471 |
| 23          | 412                  | 61.78764247              | 2         | 25        | 38       | 189.4736842 | 0.01703 |
| 24          | 432                  | 64.78704259              | 3         | 25        | 59       | 183.0508475 | 0.01645 |
| 25          | 455                  | 68.23635273              | 6         | 25        | 89.4     | 241.6107383 | 0.02172 |

Figure 33: Data for 0.1M NaOH Silent

| NaOH        |                      | 0.2M                     |           |           |          |             |             |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-------------|-------------|
| Unsonicated | Contact Area (cm2)   | 6.66                     | 8030407   |           |          | Product     | ion Rate    |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour    | g/hour      |
| 1           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 2           | 1                    | 0.149969322              | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 3           | 22                   | 3.299325086              | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 4           | 56                   | 8.398282038              | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 5           | 94                   | 14.09711628              | 1         | 25        | 189      | 19.04761905 | 0.001712    |
| 6           | 133                  | 19.94591984              | 1         | 25        | 135      | 26.66666667 | 0.0023968   |
| 7           | 171                  | 25.64475408              | 1         | 25        | 71       | 50.70422535 | 0.004557296 |
| 8           | 205                  | 30.74371103              | 1         | 25        | 44       | 81.81818182 | 0.007353818 |
| 9           | 246                  | 36.89245324              | 1         | 25        | 36       | 100         | 0.008988    |
| 10          | 277                  | 41.54150223              | 1         | 25        | 31       | 116.1290323 | 0.010437677 |
| 11          | 314                  | 47.09036714              | 1         | 25        | 30       | 120         | 0.0107856   |
| 12          | 354                  | 53.08914003              | 2         | 25        | 56       | 128.5714286 | 0.011556    |
| 13          | 392                  | 58.78797427              | 2         | 25        | 54       | 133.3333333 | 0.011984    |
| 14          | 433                  | 64.93671647              | 2         | 25        | 42       | 171.4285714 | 0.015408    |
| 15          | 473                  | 70.93548936              | 2         | 25        | 41       | 175.6097561 | 0.015783805 |
| 16          | 513                  | 76.93426224              | 2         | 25        | 38       | 189.4736842 | 0.017029895 |
| 17          | 552                  | 82.78306581              | 2         | 25        | 37       | 194.5945946 | 0.017490162 |
| 18          | 594                  | 89.08177733              | 2         | 25        | 35       | 205.7142857 | 0.0184896   |
| 19          | 637                  | 95.53045819              | 2         | 25        | 28       | 257.1428571 | 0.023112    |
| 20          | 678                  | 101.6792004              | 2         | 25        | 27       | 266.6666667 | 0.023968    |
| 21          | 716                  | 107.3780346              | 2         | 25        | 25       | 288         | 0.02588544  |
| 22          | 762                  | 114.2766234              | 2         | 25        | 23       | 313.0434783 | 0.028136348 |
| 23          | 802                  | 120.2753963              | 2         | 25        | 22       | 327.2727273 | 0.029415273 |
| 24          | 849                  | 127.3239545              | 4         | 25        | 41       | 351.2195122 | 0.03156761  |
| 25          | 880                  | 131.9730035              | 5         | 25        | 46       | 391.3043478 | 0.035170435 |

Figure 34: Data for 0.2M NaOH Silent

| NaOH        |                      | 0.3M                     |           |           |          |             |             |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-------------|-------------|
| Unsonicated | Contact Area (cm2)   | 7.61                     | 0508203   |           |          | Product     | ion Rate    |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour    | g/hour      |
| 1           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 2           | 2                    | 0.26279454               | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 3           | 32                   | 4.204712635              | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 4           | 84                   | 11.03737067              | 1         | 25        | 210      | 17.14285714 | 0.0015408   |
| 5           | 140                  | 18.39561778              | 1         | 25        | 140      | 25.71428571 | 0.0023112   |
| 6           | 198                  | 26.01665943              | 1         | 25        | 68       | 52.94117647 | 0.004758353 |
| 7           | 255                  | 33.50630381              | 1         | 25        | 48       | 75          | 0.006741    |
| 8           | 317                  | 41.65293454              | 2         | 25        | 54       | 133.3333333 | 0.011984    |
| 9           | 370                  | 48.61698984              | 2         | 25        | 49       | 146.9387755 | 0.013206857 |
| 10          | 423                  | 55.58104514              | 2         | 25        | 46       | 156.5217391 | 0.014068174 |
| 11          | 479                  | 62.93929225              | 2         | 25        | 36       | 200         | 0.017976    |
| 12          | 540                  | 70.95452571              | 2         | 25        | 34       | 211.7647059 | 0.019033412 |
| 13          | 585                  | 76.86740286              | 2         | 25        | 28       | 257.1428571 | 0.023112    |
| 14          | 655                  | 86.06521174              | 2         | 25        | 27       | 266.6666667 | 0.023968    |
| 15          | 718                  | 94.34323974              | 2         | 25        | 25       | 288         | 0.02588544  |
| 16          | 778                  | 102.2270759              | 2         | 25        | 24       | 300         | 0.026964    |
| 17          | 836                  | 109.8481176              | 2         | 25        | 21       | 342.8571429 | 0.030816    |
| 18          | 902                  | 118.5203374              | 2         | 25        | 19       | 378.9473684 | 0.034059789 |
| 19          | 956                  | 125.61579                | 2         | 25        | 18       | 400         | 0.035952    |
| 20          | 1027                 | 134.9449961              | 2         | 25        | 16       | 450         | 0.040446    |
| 21          | 1082                 | 142.171846               | 2         | 25        | 15       | 480         | 0.0431424   |
| 22          | 1144                 | 150.3184767              | 2         | 25        | 14       | 514.2857143 | 0.046224    |
| 23          | 1205                 | 158.3337102              | 3         | 25        | 20       | 540         | 0.0485352   |
| 24          | 1255                 | 164.9035736              | 3         | 25        | 19       | 568.4210526 | 0.051089684 |
| 25          | 1337                 | 175.6781498              | 5         | 25        | 30       | 600         | 0.053928    |

Figure 35: Data for 0.3M NaOH Silent

| NaOH        |                      | 0.4M                     |           |           |          |             |             |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-------------|-------------|
| Unsonicated | Contact Area (cm2)   | 6.66                     | 8030407   |           |          | Product     | ion Rate    |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour    | g/hour      |
| 1           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 2           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 3           | 38                   | 5.69883424               | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 4           | 97                   | 14.54702424              | 1         | 25        | 192      | 18.75       | 0.00168525  |
| 5           | 161                  | 24.14506086              | 1         | 25        | 80       | 45          | 0.0040446   |
| 6           | 226                  | 33.8930668               | 1         | 25        | 42       | 85.71428571 | 0.007704    |
| 7           | 294                  | 44.0909807               | 1         | 25        | 39       | 92.30769231 | 0.008296615 |
| 8           | 360                  | 53.98895596              | 1         | 25        | 36       | 100         | 0.008988    |
| 9           | 426                  | 63.88693122              | 1         | 25        | 20       | 180         | 0.0161784   |
| 10          | 489                  | 73.33499851              | 1         | 25        | 17       | 211.7647059 | 0.019033412 |
| 11          | 558                  | 83.68288174              | 2         | 25        | 33       | 218.1818182 | 0.019610182 |
| 12          | 622                  | 93.28091835              | 2         | 25        | 30       | 240         | 0.0215712   |
| 13          | 686                  | 102.878955               | 2         | 25        | 31       | 232.2580645 | 0.020875355 |
| 14          | 758                  | 113.6767462              | 2         | 25        | 24       | 300         | 0.026964    |
| 15          | 826                  | 123.8746601              | 2         | 25        | 21       | 342.8571429 | 0.030816    |
| 16          | 892                  | 133.7726353              | 2         | 25        | 20       | 360         | 0.0323568   |
| 17          | 963                  | 144.4204572              | 2         | 25        | 19       | 378.9473684 | 0.034059789 |
| 18          | 1028                 | 154.1684631              | 2         | 25        | 17       | 423.5294118 | 0.038066824 |
| 19          | 1096                 | 164.366377               | 2         | 25        | 17       | 423.5294118 | 0.038066824 |
| 20          | 1170                 | 175.4641069              | 2         | 25        | 16       | 450         | 0.040446    |
| 21          | 1238                 | 185.6620208              | 3         | 25        | 20       | 540         | 0.0485352   |
| 22          | 1320                 | 197.9595052              | 3         | 25        | 19       | 568.4210526 | 0.051089684 |
| 23          | 1390                 | 208.4573577              | 4         | 25        | 23       | 626.0869565 | 0.056272696 |
| 24          | 1456                 | 218.355333               | 5         | 25        | 27       | 666.6666667 | 0.05992     |
| 25          | 1550                 | 232.4524493              | 5         | 25        | 26       | 692.3076923 | 0.062224615 |

Figure 36: Data for 0.4M NaOH Silent

| NaOH        |                      |                          |           |           |          |             |             |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-------------|-------------|
| Unsonicated | Contact Area (cm2)   | 6.66                     | 8030407   |           |          | Product     | ion Rate    |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour    | g/hour      |
| 1           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 2           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 3           | 113                  | 16.9465334               | 1         | 25        | 75       | 48          | 0.00431424  |
| 4           | 196                  | 29.39398713              | 1         | 25        | 66       | 54.54545455 | 0.004902545 |
| 5           | 283                  | 42.44131816              | 1         | 25        | 45       | 80          | 0.0071904   |
| 6           | 375                  | 56.23849579              | 1         | 25        | 28       | 128.5714286 | 0.011556    |
| 7           | 465                  | 69.73573478              | 2         | 25        | 42       | 171.4285714 | 0.015408    |
| 8           | 561                  | 84.13278971              | 3         | 25        | 46       | 234.7826087 | 0.021102261 |
| 9           | 656                  | 98.37987531              | 3         | 25        | 43       | 251.1627907 | 0.022574512 |
| 10          | 746                  | 111.8771143              | 3         | 25        | 39       | 276.9230769 | 0.024889846 |
| 11          | 830                  | 124.4745374              | 5         | 25        | 52       | 346.1538462 | 0.031112308 |
| 12          | 923                  | 138.4216843              | 5         | 25        | 46       | 391.3043478 | 0.035170435 |
| 13          | 1021                 | 153.1186779              | 5         | 25        | 57       | 315.7894737 | 0.028383158 |
| 14          | 1106                 | 165.8660703              | 5         | 25        | 49       | 367.3469388 | 0.033017143 |
| 15          | 1205                 | 180.7130331              | 4         | 25        | 40       | 360         | 0.0323568   |
| 16          | 1258                 | 188.6614072              | 4         | 25        | 35       | 411.4285714 | 0.0369792   |
| 17          | 1410                 | 211.4567442              | 5         | 25        | 28       | 642.8571429 | 0.05778     |
| 18          | 1510                 | 226.4536764              | 5         | 25        | 30       | 600         | 0.053928    |
| 19          | 1592                 | 238.7511608              | 5         | 25        | 28       | 642.8571429 | 0.05778     |
| 20          | 1662                 | 249.2490134              | 10        | 25        | 56       | 642.8571429 | 0.05778     |
| 21          | 1758                 | 263.6460683              | 10        | 25        | 45       | 800         | 0.071904    |
| 22          | 1853                 | 277.8931539              | 10        | 25        | 43       | 837.2093023 | 0.075248372 |
| 23          | 1950                 | 292.4401781              | 10        | 25        | 42       | 857.1428571 | 0.07704     |
| 24          | 2028                 | 304.1377852              | 10        | 25        | 39       | 923.0769231 | 0.082966154 |
| 25          |                      | 0                        |           |           |          | #DIV/0!     | #DIV/0!     |

Figure 37: Data for 0.5M NaOH Silent

| NaOH        |                      | 1.0M                     |           |           |          |             |             |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-------------|-------------|
| Unsonicated | Contact Area (cm2)   | 6.66                     | 8030407   |           |          | Product     | ion Rate    |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour    | g/hour      |
| 1           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 2           | 0                    | 0                        | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 3           | 65                   | 9.748005937              | 0         | 25        |          | #DIV/0!     | #DIV/0!     |
| 4           | 173                  | 25.94469273              | 1         | 25        | 92       | 39.13043478 | 0.003517043 |
| 5           | 254                  | 38.09220782              | 1         | 25        | 53       | 67.9245283  | 0.006105057 |
| 6           | 371                  | 55.6386185               | 2         | 25        | 56       | 128.5714286 | 0.011556    |
| 7           | 500                  | 74.98466106              | 2         | 25        | 38       | 189.4736842 | 0.017029895 |
| 8           | 622                  | 93.28091835              | 3         | 25        | 44       | 245.4545455 | 0.022061455 |
| 9           | 748                  | 112.1770529              | 3         | 25        | 38       | 284.2105263 | 0.025544842 |
| 10          | 880                  | 131.9730035              | 3         | 25        | 29       | 372.4137931 | 0.033472552 |
| 11          | 1009                 | 151.319046               | 3         | 25        | 27       | 400         | 0.035952    |
| 12          | 1143                 | 171.4149352              | . 5       | 25        | 40       | 450         | 0.040446    |
| 13          | 1262                 | 189.2612845              | 5         | 25        | 33       | 545.4545455 | 0.049025455 |
| 14          | 1420                 | 212.9564374              | 5         | 25        | 25       | 720         | 0.0647136   |
| 15          | 1550                 | 232.4524493              | 5         | 25        | 26       | 692.3076923 | 0.062224615 |
| 16          | 1693                 | 253.8980623              | 10        | 25        | 48       | 750         | 0.06741     |
| 17          | 1845                 | 276.6933993              | 10        | 25        | 43       | 837.2093023 | 0.075248372 |
| 18          | 2000                 | 299.9386442              | . 10      | 25        | 41       | 878.0487805 | 0.078919024 |
| 19          |                      | 0                        | J         |           |          | #DIV/0!     | #DIV/0!     |
| 20          |                      | 0                        | J         |           |          | #DIV/0!     | #DIV/0!     |
| 21          |                      | 0                        | J         |           |          | #DIV/0!     | #DIV/0!     |
| 22          |                      | 0                        | J         |           |          | #DIV/0!     | #DIV/0!     |
| 23          |                      | 0                        | J         |           |          | #DIV/0!     | #DIV/0!     |
| 24          |                      | 0                        | J         |           |          | #DIV/0!     | #DIV/0!     |
| 25          |                      | 0                        | J         |           |          | #DIV/0!     | #DIV/0!     |

Figure 38: Data for 1.0M NaOH Silent

| NaOH        |             |                |          |                |          |                |          |                |          |                |          |            |
|-------------|-------------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|------------|
| Unsonicated | 0.          | 1M             |          | 0.2M           |          | 0.3M           |          | 0.4M           | 0.5M     |                | 1.(      | M          |
| Voltage (V) | V ideal     | Efficiency (%) | V ideal  | Efficiency (%) | V ideal  | Efficiency (%) | V ideal  | Efficiency (%) | V ideal  | Efficiency (%) | V ideal  | Efficiency |
| 1           | 0           | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!    |
| 2           | 0           | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!    |
| 3           | 0           | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 1.63266  | 61.24975627    | 0        | #DIV/0!    |
| 4           | 0           | #DIV/0!        | 0        | #DIV/0!        | 2.977408 | 33.58625475    | 3.587805 | 27.87219096    | 2.492045 | 40.12768123    | 3.066125 | 32.6145    |
| 5           | 9.626045167 | 10.38848232    | 3.422517 | 29.21826435    | 3.308232 | 30.22762927    | 2.481257 | 40.30214941    | 2.453324 | 40.76102744    | 2.593376 | 38.5598    |
| 6           | 4.950783218 | 20.19882422    | 3.458927 | 28.91070367    | 2.272553 | 44.00338189    | 1.828579 | 54.68728239    | 2.022764 | 49.43730328    | 4.002376 | 49.9703    |
| 7           | 3.111656088 | 32.13722763    | 2.338893 | 42.75526599    | 2.065957 | 48.40372008    | 2.208858 | 45.27225575    | 3.762341 | 53.15839062    | 3.66024  | 54.6412    |
| 8           | 2.854281901 | 35.03508184    | 1.737651 | 57.54896723    | 2.889302 | 69.22088256    | 2.496669 | 40.05337071    | 4.971376 | 60.34546436    | 5.272286 | 56.9013    |
| 9           | 2.912410361 | 34.33582071    | 1.706057 | 58.61468884    | 3.060114 | 65.35703627    | 1.641329 | 60.92625404    | 5.434107 | 55.2068581     | 5.475719 | 54.7873    |
| 10          | 2.211049867 | 45.22738337    | 1.654236 | 60.45087742    | 3.284264 | 60.8964471     | 1.601451 | 62.44336394    | 5.60479  | 53.52564285    | 4.91628  | 61.0217    |
| 11          | 1.982248668 | 50.44775744    | 1.814708 | 55.10527435    | 2.910569 | 68.71509323    | 3.54735  | 56.38011126    | 8.314523 | 60.1357373     | 5.248206 | 57.1624    |
| 12          | 2.102711395 | 47.55764401    | 3.818979 | 52.37002466    | 3.098935 | 64.53829344    | 3.594741 | 55.63683648    | 8.179287 | 61.13002077    | 8.807693 | 56.7686    |
| 13          | 1.798911499 | 55.5891716     | 4.077892 | 49.04494373    | 2.764736 | 72.33962562    | 4.096771 | 48.81893016    | 11.21131 | 44.59780439    | 8.02286  | 62.3219    |
| 14          | 1.880399994 | 53.18017461    | 3.503427 | 57.08695528    | 2.985004 | 67.00158708    | 3.504583 | 57.06812713    | 10.44016 | 47.89198845    | 6.838869 | 73.1115    |
| 15          | 2.006581942 | 49.83599121    | 3.735949 | 53.533923      | 3.029733 | 66.01242716    | 3.341606 | 59.85145675    | 9.28545  | 43.07814808    | 7.763561 | 64.4034    |
| 16          | 2.065145777 | 48.42273175    | 3.755406 | 53.25655939    | 3.151597 | 63.45989008    | 3.436772 | 58.19413502    | 8.482124 | 47.15799995    | 15.65504 | 63.8772    |
| 17          | 2.122939036 | 47.10450857    | 3.934565 | 50.8315398     | 2.96323  | 67.49390907    | 3.524811 | 56.74063337    | 7.605593 | 65.74109478    | 15.28343 | 65.4304    |
| 18          | 1.797370345 | 55.63683648    | 4.005073 | 49.93666998    | 2.892677 | 69.14010197    | 3.36665  | 59.40623534    | 8.726782 | 57.2948879     | 15.79682 | 63.3039    |
| 19          | 1.849191634 | 54.07768355    | 3.436002 | 58.20718596    | 2.904492 | 68.85884865    | 3.589347 | 55.72044702    | 8.587308 | 58.22546711    | 0        | #DIV/0!    |
| 20          | 2.644619518 | 75.6252454     | 3.526545 | 56.71273729    | 2.773513 | 72.11070275    | 3.606299 | 55.45851329    | 17.92978 | 55.77313095    | 0        | #DIV/0!    |
| 21          | 3.233532824 | 61.85185397    | 3.448331 | 57.99907088    | 2.739418 | 73.00819886    | 4.76987  | 62.89479213    | 15.24008 | 65.61644348    | 0        | #DIV/0!    |
| 22          | 3.322727086 | 60.19152185    | 3.376282 | 59.23675504    | 2.703298 | 73.98370802    | 4.831516 | 62.09230675    | 15.3497  | 65.14786636    | 0        | #DIV/0!    |
| 23          | 3.016037527 | 66.31217225    | 3.399014 | 58.84058993    | 4.067775 | 73.7503984     | 6.158835 | 64.94734869    | 15.77756 | 63.38115805    | 0        | #DIV/0!    |
| 24          | 4.910115258 | 61.0983621     | 6.705752 | 59.65028405    | 4.024734 | 74.53909001    | 7.573229 | 66.02203963    | 15.23661 | 65.63137668    | 0        | #DIV/0!    |
| 25          | 7.836187946 | 76.56784194    | 7.798237 | 64.11705588    | 6.77006  | 73.8545916     | 7.763561 | 64.40343479    | 0        | #DIV/0!        | 0        | #DIV/0!    |

Figure 39: Data of NaOH Efficiency of H<sub>2</sub> production

| NaCl        | 0.1M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 6.668030407              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 2           | 0                    | 0                        | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 3           | 1                    | 0.149969322              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 4           | 3                    | 0.449907966              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 5           | 9                    | 1.349723899              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 6           | 17                   | 2.549478476              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 7           | 26                   | 3.899202375              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 8           | 35                   | 5.248926274              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 9           | 45                   | 6.748619495              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 10          | 55                   | 8.248312716              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 11          | 65                   | 9.748005937              | 1         | 15        | 228      | 15.78947   | 0.001419 |
| 12          | 73                   | 10.94776051              | 1         | 15        | 199      | 18.09045   | 0.001626 |
| 13          | 88                   | 13.19730035              | 1         | 15        | 176      | 20.45455   | 0.001838 |
| 14          | 95                   | 14.2470856               | 1         | 15        | 134      | 26.86567   | 0.002415 |
| 15          | 104                  | 15.5968095               | 1         | 15        | 120      | 30         | 0.002696 |
| 16          | 114                  | 17.09650272              | 1         | 15        | 108      | 33.33333   | 0.002996 |
| 17          | 132                  | 19.79595052              | 1         | 15        | 92       | 39.13043   | 0.003517 |
| 18          | 140                  | 20.9957051               | 1         | 15        | 90       | 40         | 0.003595 |
| 19          | 144                  | 21.59558238              | 1         | 15        | 78       | 46.15385   | 0.004148 |
| 20          | 156                  | 23.39521425              | 1         | 15        | 69       | 52.17391   | 0.004689 |
| 21          | 175                  | 26.24463137              | 1         | 15        | 71       | 50.70423   | 0.004557 |
| 22          | 181                  | 27.1444473               | 1         | 15        | 60       | 60         | 0.005393 |
| 23          | 190                  | 28.4941712               | 1         | 15        | 55       | 65.45455   | 0.005883 |
| 24          | 200                  | 29.99386442              | 1         | 15        | 53       | 67.92453   | 0.006105 |
| 25          | 218                  | 32.69331222              | 1         | 15        | 50       | 72         | 0.006471 |

Figure 40: Data for 0.1M NaCl Silent

| NaCl        | 0.2M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 6.668030407              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 2           | 1                    | 0.149969322              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 3           | 4                    | 0.599877288              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 4           | 16                   | 2.399509154              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 5           | 30                   | 4.499079663              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 6           | 45                   | 6.748619495              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 7           | 62                   | 9.298097971              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 8           | 78                   | 11.69760712              | 0         | 15        |          | #DIV/0!    | #DIV/0!  |
| 9           | 94                   | 14.09711628              | 1         | 15        | 180      | 20         | 0.001798 |
| 10          | 109                  | 16.34665611              | 1         | 15        | 147      | 24.4898    | 0.002201 |
| 11          | 127                  | 19.04610391              | 1         | 15        | 92       | 39.13043   | 0.003517 |
| 12          | 150                  | 22.49539832              | 1         | 15        | 90       | 40         | 0.003595 |
| 13          | 170                  | 25.49478476              | 1         | 15        | 72       | 50         | 0.004494 |
| 14          | 189                  | 28.34420188              | 1         | 15        | 63       | 57.14286   | 0.005136 |
| 15          | 209                  | 31.34358832              | 1         | 15        | 54       | 66.66667   | 0.005992 |
| 16          | 238                  | 35.69269866              | 1         | 15        | 47       | 76.59574   | 0.006884 |
| 17          | 246                  | 36.89245324              | 1         | 15        | 44       | 81.81818   | 0.007354 |
| 18          | 278                  | 41.69147155              | 1         | 15        | 43       | 83.72093   | 0.007525 |
| 19          | 287                  | 43.04119545              | 1         | 15        | 33       | 109.0909   | 0.009805 |
| 20          | 315                  | 47.24033647              | 1         | 15        | 29       | 124.1379   | 0.011158 |
| 21          | 329                  | 49.33990698              | 2         | 15        | 62       | 116.129    | 0.010438 |
| 22          | 340                  | 50.98956952              | 2         | 15        | 52       | 138.4615   | 0.012445 |
| 23          | 380                  | 56.9883424               | 2         | 15        | 48       | 150        | 0.013482 |
| 24          | 386                  | 57.88815834              | 2         | 15        | 46       | 156.5217   | 0.014068 |
| 25          | 397                  | 59.53782088              | 2         | 15        | 44       | 163.6364   | 0.014708 |

Figure 41: Data for 0.2M NaCl Silent

| NaCl        | 0.3M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 6.668030407              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 2           | 1                    | 0.149969322              |           |           |          | #DIV/0!    | #DIV/0!  |
| 3           | 4                    | 0.599877288              |           |           |          | #DIV/0!    | #DIV/0!  |
| 4           | 22                   | 3.299325086              |           |           |          | #DIV/0!    | #DIV/0!  |
| 5           | 45                   | 6.748619495              |           |           |          | #DIV/0!    | #DIV/0!  |
| 6           | 68                   | 10.1979139               |           |           |          | #DIV/0!    | #DIV/0!  |
| 7           | 92                   | 13.79717763              |           |           |          | #DIV/0!    | #DIV/0!  |
| 8           | 120                  | 17.99631865              | 1         | 15        | 122      | 29.5082    | 0.002652 |
| 9           | 145                  | 21.74555171              | 1         | 15        | 75       | 48         | 0.004314 |
| 10          | 173                  | 25.94469273              | 1         | 15        | 62       | 58.06452   | 0.005219 |
| 11          | 206                  | 30.89368036              | 1         | 15        | 48       | 75         | 0.006741 |
| 12          | 228                  | 34.19300544              | 1         | 15        | 39       | 92.30769   | 0.008297 |
| 13          | 255                  | 38.24217714              | 1         | 15        | 38       | 94.73684   | 0.008515 |
| 14          | 280                  | 41.99141019              | 1         | 15        | 37       | 97.2973    | 0.008745 |
| 15          | 317                  | 47.54027511              | 1         | 15        | 38       | 94.73684   | 0.008515 |
| 16          | 339                  | 50.8396002               | 1         | 15        | 37       | 97.2973    | 0.008745 |
| 17          | 360                  | 53.98895596              | 2         | 15        | 50       | 144        | 0.012943 |
| 18          | 403                  | 60.43763681              | 2         | 15        | 46       | 156.5217   | 0.014068 |
| 19          | 432                  | 64.78674715              | 2         | 15        | 45       | 160        | 0.014381 |
| 20          | 454                  | 68.08607224              | 2         | 15        | 43       | 167.4419   | 0.01505  |
| 21          | 480                  | 71.98527461              | 2         | 15        | 39       | 184.6154   | 0.016593 |
| 22          | 504                  | 75.58453834              | 2         | 15        | 37       | 194.5946   | 0.01749  |
| 23          | 540                  | 80.98343394              | 2         | 15        | 34       | 211.7647   | 0.019033 |
| 24          | 572                  | 85.78245225              | 2         | 15        | 33       | 218.1818   | 0.01961  |
| 25          | 599                  | 89.83162395              | 2         | 15        | 32       | 225        | 0.020223 |

Figure 42: Data for 0.3M NaCl Silent

| NaCl        | 0.4M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 5.725552611              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 2                    | 0.349311261              |           |           |          | #DIV/0!    | #DIV/0!  |
| 2           | 5                    | 0.873278151              |           |           |          | #DIV/0!    | #DIV/0!  |
| 3           | 17                   | 2.969145715              |           |           |          | #DIV/0!    | #DIV/0!  |
| 4           | 37                   | 6.46225832               |           |           |          | #DIV/0!    | #DIV/0!  |
| 5           | 64                   | 11.17796034              |           |           |          | #DIV/0!    | #DIV/0!  |
| 6           | 93                   | 16.24297362              |           |           |          | #DIV/0!    | #DIV/0!  |
| 7           | 125                  | 21.83195378              | 1         | 15        | 135      | 26.66667   | 0.002397 |
| 8           | 153                  | 26.72231143              | 1         | 15        | 98       | 36.73469   | 0.003302 |
| 9           | 192                  | 33.53388101              | 1         | 15        | 79       | 45.56962   | 0.004096 |
| 10          | 221                  | 38.59889429              | 1         | 15        | 56       | 64.28571   | 0.005778 |
| 11          | 259                  | 45.23580824              | 1         | 15        | 44       | 81.81818   | 0.007354 |
| 12          | 292                  | 50.99944404              | 1         | 15        | 43       | 83.72093   | 0.007525 |
| 13          | 329                  | 57.46170236              | 1         | 15        | 39       | 92.30769   | 0.008297 |
| 14          | 347                  | 60.60550371              | 2         | 15        | 55       | 130.9091   | 0.011766 |
| 15          | 383                  | 66.8931064               | 2         | 15        | 52       | 138.4615   | 0.012445 |
| 16          | 433                  | 75.62588791              | 2         | 15        | 50       | 144        | 0.012943 |
| 17          | 462                  | 80.69090119              | 2         | 15        | 47       | 153.1915   | 0.013769 |
| 18          | 488                  | 85.23194758              | 2         | 15        | 41       | 175.6098   | 0.015784 |
| 19          | 534                  | 93.26610657              | 2         | 15        | 39       | 184.6154   | 0.016593 |
| 20          | 569                  | 99.37905363              | 2         | 15        | 34       | 211.7647   | 0.019033 |
| 21          | 609                  | 106.3652788              | 2         | 15        | 31       | 232.2581   | 0.020875 |
| 22          | 634                  | 110.7316696              | 2         | 15        | 30       | 240        | 0.021571 |
| 23          | 648                  | 113.1768484              | 2         | 15        | 30       | 240        | 0.021571 |
| 24          | 676                  | 118.0672061              | 2         | 15        | 25       | 288        | 0.025885 |
| 25          | 717                  | 125.2280869              | 2         | 15        | 24       | 300        | 0.026964 |

Figure 43: Data for 0.4M NaCl Silent

| NaCl        | 0.5M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 6.668030407              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 2           | 1                    | 0.149969322              |           |           |          | #DIV/0!    | #DIV/0!  |
| 3           | 9                    | 1.349723899              |           |           |          | #DIV/0!    | #DIV/0!  |
| 4           | 40                   | 5.998772885              |           |           |          | #DIV/0!    | #DIV/0!  |
| 5           | 76                   | 11.39766848              |           |           |          | #DIV/0!    | #DIV/0!  |
| 6           | 111                  | 16.64659475              |           |           |          | #DIV/0!    | #DIV/0!  |
| 7           | 146                  | 21.89552103              |           |           |          | #DIV/0!    | #DIV/0!  |
| 8           | 196                  | 29.39398713              | 1         | 15        | 55       | 65.45455   | 0.005883 |
| 9           | 238                  | 35.69269866              | 1         | 15        | 46       | 78.26087   | 0.007034 |
| 10          | 286                  | 42.89122612              | 1         | 15        | 39       | 92.30769   | 0.008297 |
| 11          | 319                  | 47.84021375              | 2         | 15        | 71       | 101.4085   | 0.009115 |
| 12          | 357                  | 53.53904799              | 2         | 15        | 50       | 144        | 0.012943 |
| 13          | 424                  | 63.58699258              | 2         | 15        | 48       | 150        | 0.013482 |
| 14          | 458                  | 68.68594953              | 2         | 15        | 43       | 167.4419   | 0.01505  |
| 15          | 504                  | 75.58453834              | 2         | 15        | 37       | 194.5946   | 0.01749  |
| 16          | 558                  | 83.68288174              | 2         | 15        | 37       | 194.5946   | 0.01749  |
| 17          | 597                  | 89.5316853               | 2         | 15        | 33       | 218.1818   | 0.01961  |
| 18          | 650                  | 97.48005937              | 3         | 15        | 42       | 257.1429   | 0.023112 |
| 19          | 692                  | 103.7787709              | 3         | 15        | 38       | 284.2105   | 0.025545 |
| 20          | 740                  | 110.9772984              | 3         | 15        | 38       | 284.2105   | 0.025545 |
| 21          | 777                  | 116.5261633              | 3         | 15        | 35       | 308.5714   | 0.027734 |
| 22          | 826                  | 123.8746601              | 3         | 15        | 33       | 327.2727   | 0.029415 |
| 23          | 864                  | 129.5734943              | 3         | 15        | 32       | 337.5      | 0.030335 |
| 24          | 913                  | 136.9219911              | 3         | 15        | 26       | 415.3846   | 0.037335 |
| 25          | 945                  | 141.7210094              | 4         | 15        | 40       | 360        | 0.032357 |

Figure 44: Data for 0.5M NaCl Silent

| NaCl        | 1.0M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 7.610508203              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        |           | 15        |          | #DIV/0!    | #DIV/0!  |
| 2           | 1                    | 0.13139727               |           | 15        |          | #DIV/0!    | #DIV/0!  |
| 3           | 10                   | 1.313972698              |           | 15        |          | #DIV/0!    | #DIV/0!  |
| 4           | 60                   | 7.88383619               |           | 15        |          | #DIV/0!    | #DIV/0!  |
| 5           | 122                  | 16.03046692              | 1         | 15        | 124      | 29.03226   | 0.002609 |
| 6           | 204                  | 26.80504305              | 1         | 15        | 63       | 57.14286   | 0.005136 |
| 7           | 283                  | 37.18542736              | 1         | 15        | 48       | 75         | 0.006741 |
| 8           | 336                  | 44.14948267              | 2         | 15        | 59       | 122.0339   | 0.010968 |
| 9           | 438                  | 57.55200419              | 2         | 15        | 44       | 163.6364   | 0.014708 |
| 10          | 494                  | 64.9102513               | 2         | 15        | 39       | 184.6154   | 0.016593 |
| 11          | 576                  | 75.68482743              | 3         | 15        | 50       | 216        | 0.019414 |
| 12          | 645                  | 84.75123905              | 3         | 15        | 40       | 270        | 0.024268 |
| 13          | 710                  | 93.29206159              | 3         | 15        | 37       | 291.8919   | 0.026235 |
| 14          | 780                  | 102.4898705              | 3         | 15        | 34       | 317.6471   | 0.02855  |
| 15          | 860                  | 113.0016521              | 3         | 15        | 28       | 385.7143   | 0.034668 |
| 16          | 928                  | 121.9366664              | 3         | 15        | 27       | 400        | 0.035952 |
| 17          | 1003                 | 131.7914616              | 3         | 15        | 26       | 415.3846   | 0.037335 |
| 18          | 1077                 | 141.5148596              | 3         | 15        | 23       | 469.5652   | 0.042205 |
| 19          | 1154                 | 151.6324494              | 3         | 15        | 21       | 514.2857   | 0.046224 |
| 20          | 1228                 | 161.3558474              | 4         | 15        | 31       | 464.5161   | 0.041751 |
| 21          | 1305                 | 171.4734371              | 4         | 15        | 29       | 496.5517   | 0.04463  |
| 22          | 1353                 | 177.7805061              | 4         | 15        | 27       | 533.3333   | 0.047936 |
| 23          | 1414                 | 185.7957396              | 4         | 15        | 28       | 514.2857   | 0.046224 |
| 24          | 1498                 | 196.8331102              | 4         | 15        | 27       | 533.3333   | 0.047936 |
| 25          | 1558                 | 204.7169464              | 5         | 15        | 30       | 600        | 0.053928 |

Figure 45: Data for 1.0M NaCl Silent

| NaCl        |          |                |          |                |          |                |          |                |          |                |          |                |
|-------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|
| Unsonicated | 0.1M     |                | 0.2M     |                | 0.3M     |                | 0.4M     |                | 0.5M     |                | 1.0M     |                |
| Voltage (V) | V ideal  | Efficiency (%) |
| 1           | 0        | #DIV/0!        |
| 2           | 0        | #DIV/0!        |
| 3           | 0        | #DIV/0!        |
| 4           | 0        | #DIV/0!        |
| 5           | 0        | #DIV/0!        | 2.467773 | 40.52236952    |
| 6           | 0        | #DIV/0!        | 2.096498 | 47.69859991    |
| 7           | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 3.659011 | 27.32979148    | 0        | #DIV/0!        | 2.215906 | 45.128269      |
| 8           | 0        | #DIV/0!        | 0        | #DIV/0!        | 2.725717 | 36.68759007    | 3.251153 | 30.75831874    | 2.007051 | 49.82433382    | 3.233813 | 61.84648971    |
| 9           | 0        | #DIV/0!        | 3.150214 | 31.74387226    | 2.024739 | 49.38908677    | 3.288881 | 30.4054741     | 2.03833  | 49.05976604    | 3.143768 | 63.61793338    |
| 10          | 0        | #DIV/0!        | 2.983208 | 33.52095853    | 1.996998 | 50.07517421    | 2.683491 | 37.26488616    | 2.076684 | 48.15369541    | 3.142789 | 63.63774588    |
| 11          | 2.75923  | 36.24199181    | 2.175361 | 45.96938708    | 1.840976 | 54.31900471    | 2.470998 | 40.46948325    | 4.216856 | 47.42870048    | 4.698034 | 63.85650063    |
| 12          | 2.704679 | 36.97296886    | 2.513469 | 39.78565323    | 1.655538 | 60.40331968    | 2.722521 | 36.73066511    | 3.323364 | 60.17997968    | 4.208655 | 71.28167512    |
| 13          | 2.8836   | 34.67886871    | 2.278878 | 43.88123518    | 1.804112 | 55.42892865    | 2.782149 | 35.9434363     | 3.789194 | 52.78167439    | 4.285325 | 70.00636536    |
| 14          | 2.370108 | 42.19216957    | 2.21688  | 45.10845037    | 1.928855 | 51.84423925    | 4.138206 | 48.3301264     | 3.666686 | 54.54517301    | 4.326106 | 69.34642602    |
| 15          | 2.323562 | 43.03736527    | 2.10126  | 47.59049429    | 2.242759 | 44.58793945    | 4.318392 | 46.31353998    | 3.471938 | 57.60471027    | 3.928078 | 76.37322334    |
| 16          | 2.292284 | 43.62461977    | 2.082642 | 48.01594123    | 2.335292 | 42.82120056    | 4.694375 | 42.6041784     | 3.843932 | 52.03006089    | 4.087289 | 73.39827658    |
| 17          | 2.261005 | 44.22812241    | 2.015243 | 49.62179588    | 3.351292 | 59.67847984    | 4.708252 | 42.47860654    | 3.667989 | 54.52579246    | 4.254004 | 70.52178918    |
| 18          | 2.345904 | 42.6274856     | 2.22563  | 44.93109575    | 3.451458 | 57.94652267    | 4.33834  | 46.10058288    | 5.082793 | 59.02267237    | 4.040798 | 74.24275234    |
| 19          | 2.091206 | 47.81929475    | 1.763338 | 56.71062386    | 3.619395 | 55.25785171    | 4.515707 | 44.28985222    | 4.895865 | 61.27620002    | 3.9532   | 75.88789379    |
| 20          | 2.004072 | 49.89839452    | 1.700781 | 58.79653187    | 3.634662 | 55.02574722    | 4.194798 | 47.67809688    | 5.235463 | 57.30152759    | 6.209887 | 64.41340822    |
| 21          | 2.313322 | 43.22787272    | 3.797758 | 52.66264522    | 3.485343 | 57.3831537     | 4.093539 | 48.85748516    | 5.063243 | 59.25055914    | 6.17351  | 64.7929614     |
| 22          | 2.021946 | 49.45730374    | 3.291713 | 60.75863333    | 3.471938 | 57.60471027    | 4.124112 | 48.49529245    | 5.074973 | 59.1136164     | 5.959162 | 67.12352862    |
| 23          | 1.945611 | 51.39773384    | 3.395976 | 58.89323669    | 3.418318 | 58.50831357    | 4.21518  | 47.44755465    | 5.147584 | 58.27976547    | 6.458492 | 61.93396707    |
| 24          | 1.973539 | 50.67040742    | 3.305863 | 60.49857159    | 3.514388 | 56.90891276    | 3.664431 | 54.57872558    | 4.419609 | 67.87930558    | 6.597801 | 60.62625783    |
| 25          | 2.029393 | 49.27580905    | 3.252243 | 61.49602915    | 3.568753 | 56.04197815    | 3.731215 | 53.60183998    | 7.037713 | 56.83664747    | 7.624517 | 65.57792106    |

Figure 46: Data of NaCl Efficiency of H<sub>2</sub> production

| H2SO4       | 0.1M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 6.668030407              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 2           | 1                    | 0.149969322              | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 3           | 16                   | 2.399509154              | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 4           | 45                   | 6.748619495              | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 5           | 78                   | 11.69760712              | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 6           | 109                  | 16.34665611              | 1         | 28        | 189      | 19.04762   | 0.001712 |
| 7           | 146                  | 21.89552103              | 1         | 28        | 117      | 30.76923   | 0.002766 |
| 8           | 178                  | 26.69453934              | 1         | 28        | 86       | 41.86047   | 0.003762 |
| 9           | 213                  | 31.94346561              | 1         | 28        | 56       | 64.28571   | 0.005778 |
| 10          | 247                  | 37.04242256              | 1         | 28        | 47       | 76.59574   | 0.006884 |
| 11          | 283                  | 42.44131816              | 1         | 28        | 42       | 85.71429   | 0.007704 |
| 12          | 318                  | 47.69024443              | 1         | 28        | 37       | 97.2973    | 0.008745 |
| 13          | 352                  | 52.78920138              | 1         | 28        | 31       | 116.129    | 0.010438 |
| 14          | 390                  | 58.48803562              | 2         | 28        | 48       | 150        | 0.013482 |
| 15          | 425                  | 63.7369619               | 2         | 28        | 46       | 156.5217   | 0.014068 |
| 16          | 459                  | 68.83591885              | 2         | 28        | 44       | 163.6364   | 0.014708 |
| 17          | 508                  | 76.18441563              | 2         | 28        | 38       | 189.4737   | 0.01703  |
| 18          | 536                  | 80.38355665              | 2         | 28        | 35       | 205.7143   | 0.01849  |
| 19          | 569                  | 85.33254428              | 2         | 28        | 32       | 225        | 0.020223 |
| 20          | 610                  | 91.48128649              | 2         | 28        | 29       | 248.2759   | 0.022315 |
| 21          | 649                  | 97.33009005              | 2         | 28        | 26       | 276.9231   | 0.02489  |
| 22          | 677                  | 101.5292311              | 3         | 28        | 40       | 270        | 0.024268 |
| 23          | 720                  | 107.9779119              | 3         | 28        | 35       | 308.5714   | 0.027734 |
| 24          | 760                  | 113.9766848              | 3         | 28        | 33       | 327.2727   | 0.029415 |
| 25          | 795                  | 119.2256111              | 4         | 28        | 52       | 276.9231   | 0.02489  |

Figure 47: Data for 0.1M H<sub>2</sub>SO<sub>4</sub> Silent

| H2SO4       | 0.2M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 5.725552611              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 2           | 1                    | 0.17465563               | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 3           | 25                   | 4.366390757              | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 4           | 77                   | 13.44848353              | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 5           | 141                  | 24.62644387              | 1         | 28        | 105      | 34.28571   | 0.003082 |
| 6           | 206                  | 35.97905984              | 1         | 28        | 51       | 70.58824   | 0.006344 |
| 7           | 275                  | 48.03029833              | 1         | 28        | 48       | 75         | 0.006741 |
| 8           | 342                  | 59.73222556              | 2         | 28        | 69       | 104.3478   | 0.009379 |
| 9           | 410                  | 71.60880841              | 2         | 28        | 51       | 141.1765   | 0.012689 |
| 10          | 479                  | 83.6600469               | 2         | 28        | 40       | 180        | 0.016178 |
| 11          | 544                  | 95.01266287              | 3         | 28        | 48       | 225        | 0.020223 |
| 12          | 618                  | 107.9371795              | 3         | 28        | 45       | 240        | 0.021571 |
| 13          | 686                  | 119.8137624              | 3         | 28        | 41       | 263.4146   | 0.023676 |
| 14          | 756                  | 132.0396565              | 3         | 28        | 36       | 300        | 0.026964 |
| 15          | 822                  | 143.5669281              | 3         | 28        | 35       | 308.5714   | 0.027734 |
| 16          | 896                  | 156.4914447              | 3         | 28        | 33       | 327.2727   | 0.029415 |
| 17          | 971                  | 169.590617               | 3         | 28        | 28       | 385.7143   | 0.034668 |
| 18          | 1049                 | 183.2137562              | 4         | 28        | 35       | 411.4286   | 0.036979 |
| 19          | 1106                 | 193.1691271              | 4         | 28        | 34       | 423.5294   | 0.038067 |
| 20          | 1189                 | 207.6655444              | 4         | 28        | 32       | 450        | 0.040446 |
| 21          | 1249                 | 218.1448822              | 4         | 28        | 31       | 464.5161   | 0.041751 |
| 22          | 1329                 | 232.1173326              | 4         | 28        | 25       | 576        | 0.051771 |
| 23          | 1401                 | 244.692538               | 4         | 28        | 24       | 600        | 0.053928 |
| 24          | 1465                 | 255.8704984              | 4         | 28        | 23       | 626.087    | 0.056273 |
| 25          | 1529                 | 267.0484587              | 5         | 28        | 26       | 692.3077   | 0.062225 |

Figure 48: Data for 0.2M H<sub>2</sub>SO<sub>4</sub> Silent
| H2SO4       | 0.3M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 6.668030407              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 2           | 2                    | 0.299938644              | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 3           | 45                   | 6.748619495              | 0         | 28        |          | #DIV/0!    | #DIV/0!  |
| 4           | 126                  | 18.89613459              | 1         | 28        | 80       | 45         | 0.004045 |
| 5           | 227                  | 34.04303612              | 1         | 28        | 57       | 63.15789   | 0.005677 |
| 6           | 337                  | 50.53966155              | 1         | 28        | 30       | 120        | 0.010786 |
| 7           | 440                  | 65.98650173              | 2         | 28        | 43       | 167.4419   | 0.01505  |
| 8           | 560                  | 83.98282038              | 3         | 28        | 48       | 225        | 0.020223 |
| 9           | 672                  | 100.7793845              | 3         | 28        | 40       | 270        | 0.024268 |
| 10          | 774                  | 116.0762553              | 4         | 28        | 43       | 334.8837   | 0.030099 |
| 11          | 893                  | 133.9226046              | 4         | 28        | 40       | 360        | 0.032357 |
| 12          | 1006                 | 150.869138               | 4         | 28        | 34       | 423.5294   | 0.038067 |
| 13          | 1118                 | 167.6657021              | 5         | 28        | 36       | 500        | 0.04494  |
| 14          | 1232                 | 184.7622048              | 5         | 28        | 34       | 529.4118   | 0.047584 |
| 15          | 1358                 | 203.6583394              | 5         | 28        | 30       | 600        | 0.053928 |
| 16          | 1496                 | 224.3541059              | 6         | 28        | 34       | 635.2941   | 0.0571   |
| 17          | 1595                 | 239.2010688              | 5         | 28        | 26       | 692.3077   | 0.062225 |
| 18          | 1736                 | 260.3467432              | 5         | 28        | 24       | 750        | 0.06741  |
| 19          | 1835                 | 275.1937061              | 5         | 28        | 22       | 818.1818   | 0.073538 |
| 20          | 1940                 | 290.9404849              | 5         | 28        | 21       | 857.1429   | 0.07704  |
| 21          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 22          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 23          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 24          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 25          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |

Figure 49: Data for 0.3M H<sub>2</sub>SO<sub>4</sub> Silent

| H2SO4       | 0.4M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 6.668030407              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 2           | 2                    | 0.299938644              |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 3           | 52                   | 7.79840475               | 1         | 28        |          | #DIV/0!    | #DIV/0!  |
| 4           | 163                  | 24.4449995               | 1         | 28        | 83       | 43.37349   | 0.003898 |
| 5           | 290                  | 43.49110341              | 2         | 28        | 79       | 91.13924   | 0.008192 |
| 6           | 425                  | 63.7369619               | 2         | 28        | 46       | 156.5217   | 0.014068 |
| 7           | 563                  | 84.43272835              | 3         | 28        | 47       | 229.7872   | 0.020653 |
| 8           | 704                  | 105.5784028              | 3         | 28        | 37       | 291.8919   | 0.026235 |
| 9           | 848                  | 127.1739852              | 4         | 28        | 39       | 369.2308   | 0.033186 |
| 10          | 994                  | 149.0695062              | 5         | 28        | 45       | 400        | 0.035952 |
| 11          | 1148                 | 172.1647818              | 5         | 28        | 33       | 545.4545   | 0.049025 |
| 12          | 1300                 | 194.9601187              | 5         | 28        | 30       | 600        | 0.053928 |
| 13          | 1442                 | 216.2557625              | 5         | 28        | 27       | 666.6667   | 0.05992  |
| 14          | 1604                 | 240.5507927              | 5         | 28        | 25       | 720        | 0.064714 |
| 15          | 1739                 | 260.7966512              | 5         | 28        | 23       | 782.6087   | 0.070341 |
| 16          | 1959                 | 293.789902               | 5         | 28        | 22       | 818.1818   | 0.073538 |
| 17          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 18          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 19          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 20          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 21          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 22          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 23          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 24          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 25          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |

Figure 50: Data for 0.4M  $H_2SO_4$  Silent

| H2SO4       | 0.5M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 5.725552611              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 2           | 2                    | 0.349311261              |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 3           | 52                   | 9.082092775              |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 4           | 170                  | 29.69145715              | 1         | 28        | 88       | 40.90909   | 0.003677 |
| 5           | 309                  | 53.96858976              | 2         | 28        | 58       | 124.1379   | 0.011158 |
| 6           | 462                  | 80.69090119              | 3         | 28        | 64       | 168.75     | 0.015167 |
| 7           | 629                  | 109.8583914              | 3         | 28        | 47       | 229.7872   | 0.020653 |
| 8           | 793                  | 138.5019148              | 4         | 28        | 45       | 320        | 0.028762 |
| 9           | 958                  | 167.3200938              | 5         | 28        | 44       | 409.0909   | 0.036769 |
| 10          | 1148                 | 200.5046636              | 5         | 28        | 37       | 486.4865   | 0.043725 |
| 11          | 1392                 | 243.1206373              | 5         | 28        | 33       | 545.4545   | 0.049025 |
| 12          | 1456                 | 254.2985977              | 5         | 28        | 30       | 600        | 0.053928 |
| 13          | 1630                 | 284.6886774              | 5         | 28        | 26       | 692.3077   | 0.062225 |
| 14          | 1796                 | 313.681512               | 5         | 28        | 24       | 750        | 0.06741  |
| 15          | 1970                 | 344.0715916              | 5         | 28        | 23       | 782.6087   | 0.070341 |
| 16          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 17          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 18          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 19          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 20          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 21          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 22          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 23          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 24          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |
| 25          |                      | 0                        |           | 28        |          | #DIV/0!    | #DIV/0!  |

Figure 51: Data for 0.5M H<sub>2</sub>SO<sub>4</sub> Silent

| H2SO4       | 1.0M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Unsonicated | Contact Area (cm2)   | 5.725552611              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 2           | 7                    | 1.222589412              |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 3           | 86                   | 15.0203842               |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 4           | 284                  | 49.602199                | 2         | 30        | 68       | 105.8824   | 0.009517 |
| 5           | 551                  | 96.23525228              | 3         | 30        | 49       | 220.4082   | 0.01981  |
| 6           | 862                  | 150.5531533              | 3         | 30        | 29       | 372.4138   | 0.033473 |
| 7           | 1159                 | 202.4258755              | 5         | 30        | 34       | 529.4118   | 0.047584 |
| 8           | 1477                 | 257.9663659              | 5         | 30        | 28       | 642.8571   | 0.05778  |
| 9           | 1789                 | 312.4589226              | 5         | 30        | 23       | 782.6087   | 0.070341 |
| 10          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 11          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 12          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 13          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 14          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 15          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 16          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 17          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 18          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 19          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 20          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 21          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 22          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 23          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 24          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |
| 25          |                      | 0                        |           | 30        |          | #DIV/0!    | #DIV/0!  |

Figure 52: Data for 1.0M H<sub>2</sub>SO<sub>4</sub> Silent

| H2SO4       |          |                |          |                |          |                |          |                |          |                |          |                |
|-------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|
| Unsonicated | 0.1M     |                | 0.2M     |                | 0.3M     |                | 0.4M     |                | 0.5M     |                | 1.0M     |                |
| Voltage (V) | V ideal  | Efficiency (%) |
| 1           | 0        | #DIV/0!        |
| 2           | 0        | #DIV/0!        |
| 3           | 0        | #DIV/0!        |
| 4           | 0        | #DIV/0!        | 0        | #DIV/0!        | 1.961393 | 50.98418552    | 2.632508 | 37.98659103    | 3.390125 | 29.49743566    | 4.405408 | 45.39874985    |
| 5           | 0        | #DIV/0!        | 3.355    | 29.80625717    | 2.517704 | 39.71872557    | 4.457887 | 44.86430293    | 4.061352 | 49.24468669    | 6.158948 | 48.70961835    |
| 6           | 4.008596 | 24.94639047    | 2.380792 | 42.002821      | 1.96723  | 50.83289714    | 3.80409  | 52.57499643    | 6.700483 | 44.77289341    | 5.702484 | 52.60864812    |
| 7           | 3.32386  | 30.08550463    | 2.991287 | 33.43042708    | 3.681503 | 54.32564377    | 5.14885  | 58.26543858    | 6.69935  | 44.78046586    | 8.989203 | 55.62228196    |
| 8           | 2.97867  | 33.57202705    | 5.347605 | 37.39991842    | 5.23038  | 57.35720872    | 5.068487 | 59.18925715    | 8.086672 | 49.46410396    | 9.434033 | 52.99960448    |
| 9           | 2.320981 | 43.0852272     | 4.73847  | 42.20771281    | 5.23038  | 57.35720872    | 6.435235 | 62.15778787    | 9.552176 | 52.3440925     | 9.386356 | 53.268808      |
| 10          | 2.258909 | 44.26915239    | 4.341898 | 46.0628014     | 6.476098 | 61.76558982    | 8.703679 | 57.44696961    | 9.625599 | 51.9448203     | 0        | #DIV/0!        |
| 11          | 2.312809 | 43.23747182    | 5.917309 | 50.69871754    | 6.95049  | 57.54989811    | 7.371567 | 67.82818473    | 10.40968 | 48.03222281    | 0        | #DIV/0!        |
| 12          | 2.289459 | 43.67844553    | 6.302098 | 47.60319713    | 6.655503 | 60.10064204    | 7.588721 | 65.88725514    | 9.89844  | 50.51300795    | 0        | #DIV/0!        |
| 13          | 2.123285 | 47.09682827    | 6.373707 | 47.06836778    | 7.83156  | 63.84423948    | 7.575879 | 65.99894566    | 9.603844 | 52.06248672    | 0        | #DIV/0!        |
| 14          | 3.642586 | 54.90604595    | 6.16749  | 48.6421558     | 8.150676 | 61.34460825    | 7.802762 | 64.07987408    | 9.767912 | 51.18801473    | 0        | #DIV/0!        |
| 15          | 3.80409  | 52.57499643    | 6.519646 | 46.01476928    | 7.927295 | 63.07321921    | 7.78272  | 64.24489213    | 10.26782 | 48.69583287    | 0        | #DIV/0!        |
| 16          | 3.92979  | 50.89330462    | 6.700483 | 44.77289341    | 9.897249 | 60.62290698    | 8.386121 | 59.62232471    | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 17          | 3.756222 | 53.24498447    | 6.161145 | 48.69225071    | 8.06934  | 61.96293587    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 18          | 3.650369 | 54.78897549    | 8.320083 | 48.0764415     | 8.107089 | 61.67441797    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 19          | 3.54296  | 56.44997694    | 8.521542 | 46.93986144    | 7.855299 | 63.65129924    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 20          | 3.442166 | 58.1029497     | 8.622158 | 46.39209813    | 7.927295 | 63.07321921    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 21          | 3.283387 | 60.91271662    | 8.774215 | 45.58812339    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 22          | 5.269297 | 56.93359565    | 7.529205 | 53.12645748    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 23          | 4.903481 | 61.18102263    | 7.619624 | 52.4960311     | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 24          | 4.880131 | 61.4737548     | 7.635713 | 52.38541474    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 25          | 8.044044 | 49.72623029    | 9.008759 | 55.50153914    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |

Figure 53: Data of  $H_2SO_4$  Efficiency of  $H_2$  production

## Sonicated

| NaOH        | 0.1M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Sonicated   | Contact Area (cm2)   | 6.668030407              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        | 0         |           |          | #DIV/0!    | #DIV/0!  |
| 2           | 3                    | 0.449907966              | 0         |           |          | #DIV/0!    | #DIV/0!  |
| 3           | 17                   | 2.549478476              | 0         |           |          | #DIV/0!    | #DIV/0!  |
| 4           | 35                   | 5.248926274              | 0         |           |          | #DIV/0!    | #DIV/0!  |
| 5           | 54                   | 8.098343394              | 0         |           |          | #DIV/0!    | #DIV/0!  |
| 6           | 74                   | 11.09772984              | 0         | 24.8      |          | #DIV/0!    | #DIV/0!  |
| 7           | 98                   | 14.69699357              | 1         | 24.5      | 188      | 19.14894   | 0.001721 |
| 8           | 115                  | 17.24647204              | 1         | 24.6      | 146      | 24.65753   | 0.002216 |
| 9           | 134                  | 20.09588916              | 1         | 24.7      | 112      | 32.14286   | 0.002889 |
| 10          | 154                  | 23.09527561              | 1         | 24.6      | 91       | 39.56044   | 0.003556 |
| 11          | 171                  | 25.64475408              | 1         | 24.6      | 85       | 42.35294   | 0.003807 |
| 12          | 189                  | 28.34420188              | 1         | 24.6      | 65       | 55.38462   | 0.004978 |
| 13          | 208                  | 31.193619                | 1         | 24.5      | 59       | 61.01695   | 0.005484 |
| 14          | 226                  | 33.8930668               | 1         | 24.6      | 53       | 67.92453   | 0.006105 |
| 15          | 247                  | 37.04242256              | 1         | 24.7      | 42       | 85.71429   | 0.007704 |
| 16          | 266                  | 39.89183968              | 1         | 25.6      | 39       | 92.30769   | 0.008297 |
| 17          | 294                  | 44.0909807               | 2         | 24.5      | 68       | 105.8824   | 0.009517 |
| 18          | 314                  | 47.09036714              | 2         | 24.5      | 60       | 120        | 0.010786 |
| 19          | 337                  | 50.53966155              | 2         | 24.2      | 58       | 124.1379   | 0.011158 |
| 20          | 357                  | 53.53904799              | 2         | 24.2      | 54       | 133.3333   | 0.011984 |
| 21          | 372                  | 55.78858783              | 2         | 24.2      | 53       | 135.8491   | 0.01221  |
| 22          | 392                  | 58.78797427              | 2         | 24        | 50       | 144        | 0.012943 |
| 23          | 410                  | 61.48742207              | 2         | 24.6      | 47       | 153.1915   | 0.013769 |
| 24          | 430                  | 64.48680851              | 2         | 24.5      | 42       | 171.4286   | 0.015408 |
| 25          | 444                  | 66.58637902              | 3         | 24.3      | 57       | 189.4737   | 0.01703  |

Figure 54: Data for 0.1M NaOH Sonicated

| NaOH        | 0.2M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 4.783074815              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        | 0         |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 5                    | 1.045352664              | 0         |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 31                   | 6.481186517              | 0         |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 69                   | 14.42586676              | 0         |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 107                  | 22.37054701              | 1         | 26.8      | 112      | 32.14286  | 0.002889 |
| 6           | 147                  | 30.73336832              | 1         | 26.8      | 96       | 37.5      | 0.003371 |
| 7           | 187                  | 39.09618963              | 1         | 26.8      | 80       | 45        | 0.004045 |
| 8           | 227                  | 47.45901094              | 1         | 26.9      | 54       | 66.66667  | 0.005992 |
| 9           | 266                  | 55.61276172              | 1         | 27        | 42       | 85.71429  | 0.007704 |
| 10          | 309                  | 64.60279463              | 1         | 27.4      | 34       | 105.8824  | 0.009517 |
| 11          | 354                  | 74.01096861              | 2         | 27.3      | 57       | 126.3158  | 0.011353 |
| 12          | 400                  | 83.62821312              | 2         | 27.4      | 49       | 146.9388  | 0.013207 |
| 13          | 438                  | 91.57289337              | 2         | 27.4      | 42       | 171.4286  | 0.015408 |
| 14          | 494                  | 103.2808432              | 2         | 27.5      | 36       | 200       | 0.017976 |
| 15          | 521                  | 108.9257476              | 3         | 27.5      | 54       | 200       | 0.017976 |
| 16          | 564                  | 117.9157805              | 3         | 27.5      | 48       | 225       | 0.020223 |
| 17          | 606                  | 126.6967429              | 3         | 27.5      | 45       | 240       | 0.021571 |
| 18          | 650                  | 135.8958463              | 4         | 27.5      | 65       | 221.5385  | 0.019912 |
| 19          | 686                  | 143.4223855              | 4         | 28        | 50       | 288       | 0.025885 |
| 20          | 745                  | 155.7575469              | 4         | 27.3      | 46       | 313.0435  | 0.028136 |
| 21          | 777                  | 162.447804               | 4         | 27.3      | 42       | 342.8571  | 0.030816 |
| 22          | 831                  | 173.7376128              | 4         | 27.5      | 42       | 342.8571  | 0.030816 |
| 23          | 856                  | 178.9643761              | 4         | 27.1      | 37       | 389.1892  | 0.03498  |
| 24          | 896                  | 187.3271974              | 4         | 27.1      | 49       | 293.8776  | 0.026414 |
| 25          | 930                  | 194.4355955              | 5         | 27        | 48       | 375       | 0.033705 |

Figure 55: Data for 0.2M NaOH Sonicated

| NaOH        | 0.3M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 4.783074815              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 5                    | 1.045352664              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 33                   | 6.899327582              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 75                   | 15.68028996              |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 118                  | 24.67032287              |           |           |          | #DIV/0!   | #DIV/0!  |
| 6           | 162                  | 33.86942631              | 1         | 27.3      | 110      | 32.72727  | 0.002942 |
| 7           | 206                  | 43.06852976              | 1         | 27.2      | 78       | 46.15385  | 0.004148 |
| 8           | 250                  | 52.2676332               | 1         | 27.2      | 57       | 63.15789  | 0.005677 |
| 9           | 297                  | 62.09394824              | 1         | 27.1      | 51       | 70.58824  | 0.006344 |
| 10          | 343                  | 71.71119275              | 1         | 27.4      | 48       | 75        | 0.006741 |
| 11          | 388                  | 81.11936673              | 1         | 27.3      | 46       | 78.26087  | 0.007034 |
| 12          | 440                  | 91.99103443              | 2         | 27.9      | 50       | 144       | 0.012943 |
| 13          | 485                  | 101.3992084              | 2         | 27.9      | 38       | 189.4737  | 0.01703  |
| 14          | 533                  | 111.434594               | 2         | 27.9      | 36       | 200       | 0.017976 |
| 15          | 578                  | 120.842768               | 3         | 28        | 51       | 211.7647  | 0.019033 |
| 16          | 628                  | 131.2962946              | 3         | 28        | 46       | 234.7826  | 0.021102 |
| 17          | 676                  | 141.3316802              | 3         | 28        | 42       | 257.1429  | 0.023112 |
| 18          | 719                  | 150.3217131              | 3         | 27.9      | 39       | 276.9231  | 0.02489  |
| 19          | 769                  | 160.7752397              | 3         | 28.1      | 38       | 284.2105  | 0.025545 |
| 20          | 820                  | 171.4378369              | 4         | 27.8      | 47       | 306.383   | 0.027538 |
| 21          | 862                  | 180.2187993              | 4         | 27.8      | 45       | 320       | 0.028762 |
| 22          | 908                  | 189.8360438              | 4         | 27.9      | 40       | 360       | 0.032357 |
| 23          | 956                  | 199.8714294              | 4         | 27.8      | 36       | 400       | 0.035952 |
| 24          | 1005                 | 210.1158855              | 4         | 28        | 34       | 423.5294  | 0.038067 |
| 25          | 1059                 | 221.4056942              | 5         | 27.6      | 43       | 418.6047  | 0.037624 |

Figure 56: Data for 0.3M NaOH Sonicated

| NaOH        | 0.4M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 5.725552611              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 4                    | 0.698622521              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 44                   | 7.684847732              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 98                   | 17.11625177              |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 155                  | 27.07162269              | 1         | 25.8      | 88       | 40.90909  | 0.003677 |
| 6           | 213                  | 37.20164925              | 1         | 25.8      | 68       | 52.94118  | 0.004758 |
| 7           | 272                  | 47.50633144              | 1         | 25.8      | 51       | 70.58824  | 0.006344 |
| 8           | 330                  | 57.63635799              | 1         | 25.8      | 34       | 105.8824  | 0.009517 |
| 9           | 387                  | 67.59172892              | 2         | 25.9      | 57       | 126.3158  | 0.011353 |
| 10          | 448                  | 78.24572237              | 2         | 25.8      | 48       | 150       | 0.013482 |
| 11          | 508                  | 88.72506018              | 2         | 25.8      | 38       | 189.4737  | 0.01703  |
| 12          | 568                  | 99.204398                | 2         | 26        | 34       | 211.7647  | 0.019033 |
| 13          | 628                  | 109.6837358              | 3         | 26.4      | 47       | 229.7872  | 0.020653 |
| 14          | 687                  | 119.988418               | 3         | 26.2      | 41       | 263.4146  | 0.023676 |
| 15          | 748                  | 130.6424114              | 3         | 25.9      | 34       | 317.6471  | 0.02855  |
| 16          | 805                  | 140.5977824              | 4         | 25.8      | 47       | 306.383   | 0.027538 |
| 17          | 859                  | 150.0291864              | 4         | 25.9      | 43       | 334.8837  | 0.030099 |
| 18          | 925                  | 161.556458               | 4         | 25.8      | 38       | 378.9474  | 0.03406  |
| 19          | 984                  | 171.8611402              | 4         | 26.6      | 37       | 389.1892  | 0.03498  |
| 20          | 1053                 | 183.9123787              | 5         | 26.6      | 42       | 428.5714  | 0.03852  |
| 21          | 1099                 | 191.9465377              | 5         | 25.6      | 40       | 450       | 0.040446 |
| 22          | 1163                 | 203.124498               | 5         | 25.8      | 38       | 473.6842  | 0.042575 |
| 23          | 1233                 | 215.3503921              | 5         | 25.3      | 36       | 500       | 0.04494  |
| 24          | 1269                 | 221.6379948              | 5         | 25.1      | 35       | 514.2857  | 0.046224 |
| 25          | 1328                 | 231.942677               | 5         | 25.3      | 34       | 529.4118  | 0.047584 |

Figure 57: Data for 0.4M NaOH Sonicated

| NaOH        | 0.5M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 5.725552611              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 6                    | 1.047933782              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 53                   | 9.256748405              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 184                  | 32.13663597              | 1         | 27        | 89       | 40.44944  | 0.003636 |
| 5           | 199                  | 34.75647043              | 1         | 27        | 65       | 55.38462  | 0.004978 |
| 6           | 271                  | 47.33167581              | 1         | 27        | 43       | 83.72093  | 0.007525 |
| 7           | 354                  | 61.82809312              | 1         | 27        | 30       | 120       | 0.010786 |
| 8           | 428                  | 74.75260976              | 2         | 27.1      | 48       | 150       | 0.013482 |
| 9           | 505                  | 88.20109329              | 2         | 27.2      | 38       | 189.4737  | 0.01703  |
| 10          | 582                  | 101.6495768              | 3         | 27.1      | 49       | 220.4082  | 0.01981  |
| 11          | 658                  | 114.9234047              | 3         | 27.1      | 47       | 229.7872  | 0.020653 |
| 12          | 750                  | 130.9917227              | 4         | 27.2      | 47       | 306.383   | 0.027538 |
| 13          | 828                  | 144.6148619              | 5         | 27.4      | 54       | 333.3333  | 0.02996  |
| 14          | 915                  | 159.8099017              | 5         | 27.5      | 48       | 375       | 0.033705 |
| 15          | 990                  | 172.909074               | 5         | 27.4      | 43       | 418.6047  | 0.037624 |
| 16          | 1073                 | 187.4054913              | 5         | 27.1      | 42       | 428.5714  | 0.03852  |
| 17          | 1161                 | 202.7751868              | 5         | 27.5      | 37       | 486.4865  | 0.043725 |
| 18          | 1241                 | 216.7476372              | 5         | 27.8      | 34       | 529.4118  | 0.047584 |
| 19          | 1309                 | 228.62422                | 5         | 26.5      | 33       | 545.4545  | 0.049025 |
| 20          | 1350                 | 235.7851009              | 5         | 26.3      | 27       | 666.6667  | 0.05992  |
| 21          | 1467                 | 256.2198096              | 5         | 25.8      | 25       | 720       | 0.064714 |
| 22          | 1554                 | 271.4148495              | 5         | 25.8      | 23       | 782.6087  | 0.070341 |
| 23          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 24          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 25          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |

Figure 58: Data for 0.5M NaOH Sonicated

| NaOH        | 1.0M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 5.725552611              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 6                    | 1.047933782              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 95                   | 16.59228488              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 216                  | 37.72561614              | 1         | 27.4      | 55       | 65.45455  | 0.005883 |
| 5           | 346                  | 60.43084808              | 1         | 27.5      | 31       | 116.129   | 0.010438 |
| 6           | 477                  | 83.31073564              | 3         | 27.5      | 57       | 189.4737  | 0.01703  |
| 7           | 611                  | 106.7145901              | 3         | 27.5      | 53       | 203.7736  | 0.018315 |
| 8           | 751                  | 131.1663783              | 4         | 27.7      | 47       | 306.383   | 0.027538 |
| 9           | 872                  | 152.2997096              | 4         | 28        | 42       | 342.8571  | 0.030816 |
| 10          | 1023                 | 178.6727098              | 5         | 28        | 40       | 450       | 0.040446 |
| 11          | 1157                 | 202.0765642              | 5         | 28.2      | 36       | 500       | 0.04494  |
| 12          | 1261                 | 220.2407498              | 5         | 27.9      | 32       | 562.5     | 0.050558 |
| 13          | 1395                 | 243.6446042              | 5         | 28.3      | 30       | 600       | 0.053928 |
| 14          | 1490                 | 260.2368891              | 5         | 28.2      | 29       | 620.6897  | 0.055788 |
| 15          | 1622                 | 283.2914323              | 5         | 28.3      | 24       | 750       | 0.06741  |
| 16          | 1796                 | 313.681512               | 5         | 28.3      | 22       | 818.1818  | 0.073538 |
| 17          | 1840                 | 321.3663597              | 5         | 28.1      | 21       | 857.1429  | 0.07704  |
| 18          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 19          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 20          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 21          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 22          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 23          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 24          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 25          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |

Figure 59: Data for 1.0M NaOH Sonicated

| NaOH        |          |                |          |                |          |                |          |                |          |                |          |            |
|-------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|------------|
| Sonicated   | 0.1M     |                | 0.2M     |                | 0.3M     |                | 0.4M     |                | 0.5M     |                | 1.0M     |            |
| Voltage (V) | V ideal  | Efficiency (%) | V ideal  | Efficiency |
| 1           | 0        | #DIV/0!        | 0        | #DIV/0!    |
| 2           | 0        | #DIV/0!        | 0        | #DIV/0!    |
| 3           | 0        | #DIV/0!        | 0        | #DIV/0!    |
| 4           | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 3.698686 | 27.03662928    | 2.686794 | 37.21907   |
| 5           | 0        | #DIV/0!        | 3.237891 | 30.88430418    | 0        | #DIV/0!        | 3.068416 | 32.59010768    | 2.921501 | 34.22897883    | 2.426612 | 41.20973   |
| 6           | 0        | #DIV/0!        | 3.812843 | 26.2271472     | 4.822713 | 20.73521676    | 3.25828  | 30.69104314    | 2.631948 | 37.99466585    | 6.151142 | 48.77144   |
| 7           | 3.543324 | 28.22208357    | 4.04196  | 24.74047469    | 4.347113 | 23.00377062    | 3.120606 | 32.04505974    | 2.398635 | 41.69038052    | 7.326213 | 40.94885   |
| 8           | 3.230157 | 30.95825115    | 3.313025 | 30.1838921     | 3.855263 | 25.93856746    | 2.524019 | 39.61934659    | 4.641617 | 43.08843264    | 7.990778 | 50.0577    |
| 9           | 2.888295 | 34.62250287    | 3.020514 | 33.10695306    | 4.096577 | 24.41062204    | 4.96399  | 40.29016925    | 4.337144 | 46.11328996    | 8.299462 | 48.1959    |
| 10          | 2.696094 | 37.09069764    | 2.844236 | 35.15882552    | 4.457215 | 22.43553334    | 4.837479 | 41.3438494     | 6.443226 | 46.56052809    | 9.27299  | 53.92004   |
| 11          | 2.796327 | 35.76119964    | 5.46087  | 36.62420088    | 4.830291 | 20.70268729    | 4.342573 | 46.05564326    | 6.987278 | 42.93517235    | 9.445139 | 52.93729   |
| 12          | 2.363459 | 42.31086991    | 5.306209 | 37.69169601    | 5.965857 | 33.52410337    | 4.347279 | 46.00578646    | 7.966876 | 50.20788847    | 9.141237 | 54.69719   |
| 13          | 2.360165 | 42.36992077    | 4.980256 | 40.15858023    | 4.997761 | 40.01792046    | 6.653162 | 45.09134114    | 10.11212 | 49.4456282     | 9.493187 | 52.66935   |
| 14          | 2.304396 | 43.39531114    | 4.816174 | 41.52673874    | 5.203312 | 38.43705827    | 6.344847 | 47.28246633    | 9.936303 | 50.32052786    | 9.798436 | 51.02855   |
| 15          | 1.99648  | 50.0881553     | 7.619109 | 39.37468127    | 7.996361 | 37.51706541    | 5.723024 | 52.41983584    | 9.62768  | 51.93359004    | 8.830365 | 56.6228    |
| 16          | 2.002513 | 49.93726211    | 7.331504 | 40.91929975    | 7.836314 | 38.2833029     | 8.511254 | 46.99659773    | 10.182   | 49.10624196    | 8.962839 | 55.7859    |
| 17          | 3.844884 | 52.01717364    | 7.385125 | 40.62219592    | 7.701767 | 38.95210109    | 8.312022 | 48.12306595    | 9.718437 | 51.44860171    | 8.75922  | 57.08271   |
| 18          | 3.62333  | 55.19784159    | 11.44193 | 34.95912529    | 7.604027 | 39.45278026    | 7.907244 | 50.58652276    | 9.555344 | 52.32674036    | 0        | #DIV/0!    |
| 19          | 3.75532  | 53.2577781     | 9.304403 | 42.99040056    | 7.929549 | 37.83317163    | 8.212158 | 48.70826953    | 9.740228 | 51.33349802    | 0        | #DIV/0!    |
| 20          | 3.70383  | 53.99816012    | 9.274656 | 43.12828278    | 10.44762 | 38.28621388    | 9.975579 | 50.1224019     | 8.213403 | 60.87610785    | 0        | #DIV/0!    |
| 21          | 3.787982 | 52.79856618    | 8.831898 | 45.29037969    | 10.5154  | 38.03946076    | 9.882501 | 50.59447924    | 8.250304 | 60.60382669    | 0        | #DIV/0!    |
| 22          | 3.763162 | 53.14679445    | 9.451985 | 42.31915201    | 9.849087 | 40.61290056    | 9.941757 | 50.29292085    | 8.040419 | 62.18581344    | 0        | #DIV/0!    |
| 23          | 3.707273 | 53.94800589    | 8.565841 | 46.69710684    | 9.329669 | 42.87397382    | 9.968698 | 50.1570017     | 0        | #DIV/0!        | 0        | #DIV/0!    |
| 24          | 3.47332  | 57.58180152    | 11.87404 | 33.68692529    | 9.269138 | 43.15395783    | 9.968077 | 50.16012488    | 0        | #DIV/0!        | 0        | #DIV/0!    |
| 25          | 4.863993 | 61.67772427    | 12.06908 | 41.42818992    | 12.3362  | 40.53110466    | 10.14028 | 49.30831395    | 0        | #DIV/0!        | 0        | #DIV/0!    |

Figure 60: Data of NaOH Efficiency of H<sub>2</sub> production

| NaCl        | 0.1M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 6.668030407              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 6           | 2                    | 0.299938644              |           |           |          | #DIV/0!   | #DIV/0!  |
| 7           | 5                    | 0.749846611              |           |           |          | #DIV/0!   | #DIV/0!  |
| 8           | 17                   | 2.549478476              |           |           |          | #DIV/0!   | #DIV/0!  |
| 9           | 35                   | 5.248926274              |           |           |          | #DIV/0!   | #DIV/0!  |
| 10          | 44                   | 6.598650173              |           |           |          | #DIV/0!   | #DIV/0!  |
| 11          | 55                   | 8.248312716              |           |           |          | #DIV/0!   | #DIV/0!  |
| 12          | 68                   | 10.1979139               |           |           |          | #DIV/0!   | #DIV/0!  |
| 13          | 81                   | 12.14751509              |           |           |          | #DIV/0!   | #DIV/0!  |
| 14          | 93                   | 13.94714696              |           |           |          | #DIV/0!   | #DIV/0!  |
| 15          | 104                  | 15.5968095               |           |           |          | #DIV/0!   | #DIV/0!  |
| 16          | 116                  | 17.39644137              | 1         | 26.2      | 123      | 29.26829  | 0.002631 |
| 17          | 128                  | 19.19607323              | 1         | 26        | 113      | 31.85841  | 0.002863 |
| 18          | 138                  | 20.69576645              | 1         | 25.5      | 106      | 33.96226  | 0.003053 |
| 19          | 149                  | 22.34542899              | 1         | 25.6      | 103      | 34.95146  | 0.003141 |
| 20          | 157                  | 23.54518357              | 1         | 25.5      | 95       | 37.89474  | 0.003406 |
| 21          | 167                  | 25.04487679              | 1         | 25.1      | 89       | 40.44944  | 0.003636 |
| 22          | 176                  | 26.39460069              | 1         | 25.1      | 74       | 48.64865  | 0.004373 |
| 23          | 186                  | 27.89429391              | 1         | 25        | 72       | 50        | 0.004494 |
| 24          | 193                  | 28.94407917              | 1         | 24.9      | 67       | 53.73134  | 0.004829 |
| 25          | 202                  | 30.29380307              | 1         | 24.8      | 61       | 59.01639  | 0.005304 |

Figure 61: Data for 0.1M NaCl Sonicated

| NaCl        | 0.2M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 6.668030407              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 2                    | 0.299938644              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 6                    | 0.899815933              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 20                   | 2.999386442              |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 37                   | 5.548864918              |           |           |          | #DIV/0!   | #DIV/0!  |
| 6           | 55                   | 8.248312716              |           |           |          | #DIV/0!   | #DIV/0!  |
| 7           | 74                   | 11.09772984              |           |           |          | #DIV/0!   | #DIV/0!  |
| 8           | 93                   | 13.94714696              |           |           |          | #DIV/0!   | #DIV/0!  |
| 9           | 112                  | 16.79656408              |           |           |          | #DIV/0!   | #DIV/0!  |
| 10          | 131                  | 19.6459812               | 1         | 26.2      | 137      | 26.27737  | 0.002362 |
| 11          | 150                  | 22.49539832              | 1         | 26.2      | 112      | 32.14286  | 0.002889 |
| 12          | 173                  | 25.94469273              | 1         | 26.2      | 96       | 37.5      | 0.003371 |
| 13          | 189                  | 28.34420188              | 1         | 26.3      | 81       | 44.44444  | 0.003995 |
| 14          | 205                  | 30.74371103              | 1         | 26.6      | 72       | 50        | 0.004494 |
| 15          | 233                  | 34.94285205              | 1         | 26.1      | 58       | 62.06897  | 0.005579 |
| 16          | 252                  | 37.79226917              | 1         | 26.3      | 49       | 73.46939  | 0.006603 |
| 17          | 268                  | 40.19177833              | 1         | 25.8      | 43       | 83.72093  | 0.007525 |
| 18          | 286                  | 42.89122612              | 1         | 26        | 42       | 85.71429  | 0.007704 |
| 19          | 308                  | 46.19055121              | 1         | 25.7      | 41       | 87.80488  | 0.007892 |
| 20          | 325                  | 48.74002969              | 1         | 25.5      | 40       | 90        | 0.008089 |
| 21          | 346                  | 51.88938545              | 2         | 26.3      | 62       | 116.129   | 0.010438 |
| 22          | 362                  | 54.2888946               | 2         | 26        | 55       | 130.9091  | 0.011766 |
| 23          | 382                  | 57.28828105              | 2         | 25.8      | 53       | 135.8491  | 0.01221  |
| 24          | 405                  | 60.73757546              | 2         | 25.5      | 49       | 146.9388  | 0.013207 |
| 25          | 424                  | 63.58699258              | 2         | 27.6      | 48       | 150       | 0.013482 |

Figure 62: Data for 0.2M NaCl Sonicated

| NaCl        | 0.3M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 4.783074815              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 1                    | 0.209070533              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 8                    | 1.672564262              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 28                   | 5.853974918              |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 53                   | 11.08073824              |           |           |          | #DIV/0!   | #DIV/0!  |
| 6           | 79                   | 16.51657209              |           |           |          | #DIV/0!   | #DIV/0!  |
| 7           | 105                  | 21.95240594              |           |           |          | #DIV/0!   | #DIV/0!  |
| 8           | 134                  | 28.01545139              | 1         | 27.3      | 120      | 30        | 0.002696 |
| 9           | 160                  | 33.45128525              | 1         | 27.5      | 95       | 37.89474  | 0.003406 |
| 10          | 190                  | 39.72340123              | 1         | 27.5      | 70       | 51.42857  | 0.004622 |
| 11          | 221                  | 46.20458775              | 1         | 27.5      | 57       | 63.15789  | 0.005677 |
| 12          | 249                  | 52.05856267              | 1         | 27.6      | 56       | 64.28571  | 0.005778 |
| 13          | 280                  | 58.53974918              | 1         | 27.5      | 46       | 78.26087  | 0.007034 |
| 14          | 308                  | 64.3937241               | 1         | 27.7      | 45       | 80        | 0.00719  |
| 15          | 340                  | 71.08398115              | 1         | 27.8      | 43       | 83.72093  | 0.007525 |
| 16          | 372                  | 77.7742382               | 1         | 27.8      | 32       | 112.5     | 0.010112 |
| 17          | 400                  | 83.62821312              | 1         | 27.9      | 31       | 116.129   | 0.010438 |
| 18          | 435                  | 90.94568177              | 1         | 27.9      | 26       | 138.4615  | 0.012445 |
| 19          | 476                  | 99.51757361              | 2         | 28.1      | 48       | 150       | 0.013482 |
| 20          | 488                  | 102.02642                | 2         | 27.7      | 42       | 171.4286  | 0.015408 |
| 21          | 519                  | 108.5076065              | 2         | 27.5      | 39       | 184.6154  | 0.016593 |
| 22          | 549                  | 114.7797225              | 2         | 27.7      | 37       | 194.5946  | 0.01749  |
| 23          | 579                  | 121.0518385              | 2         | 27.5      | 35       | 205.7143  | 0.01849  |
| 24          | 609                  | 127.3239545              | 2         | 27.4      | 32       | 225       | 0.020223 |
| 25          | 646                  | 135.0595642              | 2         | 27.3      | 30       | 240       | 0.021571 |

Figure 63: Data for 0.3M NaCl Sonicated

| NaCl        | 0.4M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 5.725552611              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 1                    | 0.17465563               |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 9                    | 1.571900673              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 37                   | 6.46225832               |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 70                   | 12.22589412              |           |           |          | #DIV/0!   | #DIV/0!  |
| 6           | 103                  | 17.98952992              |           |           |          | #DIV/0!   | #DIV/0!  |
| 7           | 139                  | 24.27713261              | 1         | 26.8      | 139      | 25.89928  | 0.002328 |
| 8           | 178                  | 31.08870219              | 1         | 26.8      | 92       | 39.13043  | 0.003517 |
| 9           | 215                  | 37.55096051              | 1         | 26.9      | 66       | 54.54545  | 0.004903 |
| 10          | 257                  | 44.88649698              | 1         | 27        | 51       | 70.58824  | 0.006344 |
| 11          | 296                  | 51.69806656              | 1         | 27.5      | 48       | 75        | 0.006741 |
| 12          | 330                  | 57.63635799              | 1         | 27.6      | 39       | 92.30769  | 0.008297 |
| 13          | 369                  | 64.44792757              | 1         | 27.8      | 28       | 128.5714  | 0.011556 |
| 14          | 409                  | 71.43415278              | 2         | 27.8      | 52       | 138.4615  | 0.012445 |
| 15          | 450                  | 78.59503363              | 2         | 28        | 45       | 160       | 0.014381 |
| 16          | 485                  | 84.70798069              | 2         | 28.1      | 39       | 184.6154  | 0.016593 |
| 17          | 531                  | 92.74213968              | 2         | 28        | 38       | 189.4737  | 0.01703  |
| 18          | 569                  | 99.37905363              | 2         | 28.2      | 37       | 194.5946  | 0.01749  |
| 19          | 614                  | 107.238557               | 2         | 28.3      | 35       | 205.7143  | 0.01849  |
| 20          | 659                  | 115.0980604              | 2         | 28.4      | 29       | 248.2759  | 0.022315 |
| 21          | 690                  | 120.5123849              | 3         | 27.9      | 43       | 251.1628  | 0.022575 |
| 22          | 725                  | 126.625332               | 3         | 27.9      | 41       | 263.4146  | 0.023676 |
| 23          | 762                  | 133.0875903              | 3         | 28.3      | 34       | 317.6471  | 0.02855  |
| 24          | 808                  | 141.1217493              | 4         | 28.2      | 45       | 320       | 0.028762 |
| 25          | 844                  | 147.409352               | 4         | 28.2      | 42       | 342.8571  | 0.030816 |

Figure 64: Data for 0.4M NaCl Sonicated

| NaCl        | 0.5M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 5.254313713              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 2                    | 0.380639625              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 13                   | 2.474157561              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 43                   | 8.183751932              |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 78                   | 14.84494536              |           |           |          | #DIV/0!   | #DIV/0!  |
| 6           | 115                  | 21.88677842              |           |           |          | #DIV/0!   | #DIV/0!  |
| 7           | 154                  | 29.3092511               | 1         | 27.6      | 203      | 17.73399  | 0.001594 |
| 8           | 190                  | 36.16076435              | 1         | 27.5      | 105      | 34.28571  | 0.003082 |
| 9           | 232                  | 44.15419647              | 1         | 27.6      | 84       | 42.85714  | 0.003852 |
| 10          | 271                  | 51.57666915              | 1         | 27.8      | 67       | 53.73134  | 0.004829 |
| 11          | 316                  | 60.14106071              | 1         | 27.8      | 45       | 80        | 0.00719  |
| 12          | 353                  | 67.18289377              | 1         | 27.9      | 39       | 92.30769  | 0.008297 |
| 13          | 398                  | 75.74728532              | 1         | 28.3      | 32       | 112.5     | 0.010112 |
| 14          | 443                  | 84.31167688              | 2         | 28.3      | 52       | 138.4615  | 0.012445 |
| 15          | 486                  | 92.49542881              | 2         | 28.4      | 43       | 167.4419  | 0.01505  |
| 16          | 526                  | 100.1082213              | 2         | 28.6      | 39       | 184.6154  | 0.016593 |
| 17          | 571                  | 108.6726129              | 2         | 28.8      | 37       | 194.5946  | 0.01749  |
| 18          | 625                  | 118.9498827              | 3         | 29        | 48       | 225       | 0.020223 |
| 19          | 658                  | 125.2304365              | 3         | 28.8      | 42       | 257.1429  | 0.023112 |
| 20          | 702                  | 133.6045083              | 3         | 28.8      | 39       | 276.9231  | 0.02489  |
| 21          | 748                  | 142.3592197              | 3         | 28.8      | 36       | 300       | 0.026964 |
| 22          | 792                  | 150.7332914              | 3         | 29.9      | 35       | 308.5714  | 0.027734 |
| 23          | 833                  | 158.5364037              | 4         | 28.9      | 45       | 320       | 0.028762 |
| 24          | 884                  | 168.2427141              | 4         | 28.7      | 44       | 327.2727  | 0.029415 |
| 25          | 948                  | 180.4231821              | 4         | 29.3      | 41       | 351.2195  | 0.031568 |

Figure 65: Data for 0.5M NaCl Sonicated

| NaCl        | 1.0M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 6.668030407              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 1                    | 0.149969322              |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 5                    | 0.749846611              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 21                   | 3.149355764              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 73                   | 10.94776051              |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 143                  | 21.44561306              | 1         | 27.7      | 134      | 26.86567  | 0.002415 |
| 6           | 218                  | 32.69331222              | 1         | 27.7      | 76       | 47.36842  | 0.004257 |
| 7           | 294                  | 44.0909807               | 1         | 28        | 46       | 78.26087  | 0.007034 |
| 8           | 372                  | 55.78858783              | 1         | 28.1      | 40       | 90        | 0.008089 |
| 9           | 444                  | 66.58637902              | 1         | 28.2      | 44       | 81.81818  | 0.007354 |
| 10          | 520                  | 77.9840475               | 2         | 28.3      | 40       | 180       | 0.016178 |
| 11          | 609                  | 91.33131717              | 2         | 28.4      | 32       | 225       | 0.020223 |
| 12          | 696                  | 104.3786482              | 3         | 28.5      | 40       | 270       | 0.024268 |
| 13          | 772                  | 115.7763167              | 4         | 28.7      | 51       | 282.3529  | 0.025378 |
| 14          | 845                  | 126.7240772              | 5         | 28.9      | 52       | 346.1538  | 0.031112 |
| 15          | 942                  | 141.2711014              | 5         | 28.9      | 45       | 400       | 0.035952 |
| 16          | 1025                 | 153.7185552              | 5         | 29        | 42       | 428.5714  | 0.03852  |
| 17          | 1108                 | 166.1660089              | 5         | 29.1      | 37       | 486.4865  | 0.043725 |
| 18          | 1180                 | 176.9638001              | 5         | 28.8      | 35       | 514.2857  | 0.046224 |
| 19          | 1260                 | 188.9613459              | 5         | 28.9      | 33       | 545.4545  | 0.049025 |
| 20          | 1343                 | 201.4087996              | 5         | 29        | 32       | 562.5     | 0.050558 |
| 21          | 1447                 | 217.0056091              | 5         | 28.9      | 29       | 620.6897  | 0.055788 |
| 22          | 1510                 | 226.4536764              | 5         | 28.5      | 28       | 642.8571  | 0.05778  |
| 23          | 1582                 | 237.2514676              | 5         | 28.8      | 28       | 642.8571  | 0.05778  |
| 24          | 1673                 | 250.8986759              | 5         | 28.5      | 27       | 666.6667  | 0.05992  |
| 25          | 1714                 | 257.0474181              | 5         | 28        | 26       | 692.3077  | 0.062225 |

Figure 66: Data for 1.0M NaCl Sonicated

| NaCl        |          |                |          |                |          |                |          |                |          |                |          |                |
|-------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|
| Sonicated   | 0.1M     |                | 0.2M     |                | 0.3M     |                | 0.4M     |                | 0.5M     |                | 1.0M     |                |
| Voltage (V) | V ideal  | Efficiency (%) |
| 1           | 0        | #DIV/0!        |
| 2           | 0        | #DIV/0!        |
| 3           | 0        | #DIV/0!        |
| 4           | 0        | #DIV/0!        |
| 5           | 0        | #DIV/0!        | 3.724877 | 26.84652221    |
| 6           | 0        | #DIV/0!        | 3.220633 | 31.04979833    |
| 7           | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 4.360936 | 22.93085545    | 7.70948  | 12.97104357    | 2.631535 | 38.00063517    |
| 8           | 0        | #DIV/0!        | 0        | #DIV/0!        | 4.351808 | 22.9789529     | 3.696221 | 27.05465671    | 4.918207 | 20.33261348    | 2.89635  | 34.52620928    |
| 9           | 0        | #DIV/0!        | 0        | #DIV/0!        | 4.116388 | 24.29314216    | 3.203888 | 31.21207896    | 4.80591  | 20.80771573    | 3.80389  | 26.28887752    |
| 10          | 0        | #DIV/0!        | 3.471301 | 28.80764524    | 3.60184  | 27.76359105    | 2.960349 | 33.77980019    | 4.480651 | 22.31818492    | 4.05135  | 49.36626361    |
| 11          | 0        | #DIV/0!        | 3.249449 | 30.77445292    | 3.411457 | 29.31299205    | 3.214367 | 31.11032635    | 3.509107 | 28.49727733    | 3.797062 | 52.67229934    |
| 12          | 0        | #DIV/0!        | 3.212312 | 31.13022695    | 3.7775   | 26.47253174    | 2.912631 | 34.33322033    | 3.398448 | 29.42519632    | 5.426173 | 55.28757984    |
| 13          | 0        | #DIV/0!        | 2.962049 | 33.76041254    | 3.488097 | 28.66892554    | 2.339807 | 42.73856916    | 3.148118 | 31.76500839    | 7.678913 | 52.09070319    |
| 14          | 0        | #DIV/0!        | 2.858687 | 34.98108987    | 3.755993 | 26.62411875    | 4.816397 | 41.5248163     | 5.694099 | 35.12407943    | 8.575511 | 58.30556352    |
| 15          | 0        | #DIV/0!        | 2.612999 | 38.27020704    | 3.963266 | 25.23171483    | 4.588906 | 43.5833716     | 5.167337 | 38.70465948    | 8.273007 | 60.43751972    |
| 16          | 2.75971  | 36.23568889    | 2.389142 | 41.85602167    | 3.226999 | 30.98854761    | 4.287802 | 46.64394966    | 5.075751 | 39.40303538    | 8.404597 | 59.49125564    |
| 17          | 2.795751 | 35.76856072    | 2.225989 | 44.92386134    | 3.362574 | 29.73912396    | 4.57259  | 43.73888764    | 5.23089  | 38.23441435    | 8.006246 | 62.45124429    |
| 18          | 2.822725 | 35.42675833    | 2.321803 | 43.06996856    | 3.066993 | 32.60522874    | 4.774044 | 41.89319979    | 7.432699 | 40.36218925    | 8.057609 | 62.05314596    |
| 19          | 2.96246  | 33.75572797    | 2.438422 | 41.01012113    | 6.19993  | 32.25843083    | 4.874757 | 41.02768529    | 6.84247  | 43.84381633    | 8.114924 | 61.614874      |
| 20          | 2.878107 | 34.74506341    | 2.508574 | 39.86327852    | 5.554317 | 36.00802946    | 4.336547 | 46.11964693    | 6.778591 | 44.256984      | 8.39015  | 59.59369312    |
| 21          | 2.864231 | 34.91338482    | 4.150622 | 48.185545      | 5.481566 | 36.48592075    | 6.721365 | 44.63379356    | 6.667174 | 44.99657264    | 8.189672 | 61.05250961    |
| 22          | 2.50984  | 39.84318478    | 3.84841  | 51.96950902    | 5.504725 | 36.33242612    | 6.733824 | 44.5512079     | 6.888271 | 43.55229582    | 8.240611 | 60.67511127    |
| 23          | 2.579891 | 38.76132649    | 3.91074  | 51.14122079    | 5.488066 | 36.44271018    | 5.876929 | 51.0470679     | 9.284084 | 43.08448926    | 8.642127 | 57.85612534    |
| 24          | 2.490247 | 40.15666592    | 3.829435 | 52.2270215     | 5.275887 | 37.90831495    | 8.245108 | 48.5136158     | 9.627174 | 41.54905807    | 8.804083 | 56.79182893    |
| 25          | 2.372169 | 42.15550451    | 3.954885 | 50.57037232    | 5.244903 | 38.13225621    | 8.0383   | 49.76176569    | 9.639366 | 41.49650511    | 8.671379 | 57.66095841    |

Figure 67: Data of NaCl Efficiency of H<sub>2</sub> production

| H2SO4       | 0.1M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 4.783074815              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 2                    | 0.418141066              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 23                   | 4.808622254              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 59                   | 12.33516144              |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 97                   | 20.27984168              |           |           |          | #DIV/0!   | #DIV/0!  |
| 6           | 135                  | 28.22452193              | 1         | 27.9      | 104      | 34.61538  | 0.003111 |
| 7           | 175                  | 36.58734324              | 1         | 28.2      | 71       | 50.70423  | 0.004557 |
| 8           | 215                  | 44.95016455              | 1         | 28        | 56       | 64.28571  | 0.005778 |
| 9           | 256                  | 53.5220564               | 1         | 28        | 50       | 72        | 0.006471 |
| 10          | 302                  | 63.1393009               | 1         | 28.2      | 38       | 94.73684  | 0.008515 |
| 11          | 337                  | 70.45676955              | 1         | 28.5      | 33       | 109.0909  | 0.009805 |
| 12          | 378                  | 79.0286614               | 2         | 28.3      | 51       | 141.1765  | 0.012689 |
| 13          | 420                  | 87.80962377              | 2         | 28.3      | 44       | 163.6364  | 0.014708 |
| 14          | 458                  | 95.75430402              | 2         | 29.1      | 39       | 184.6154  | 0.016593 |
| 15          | 502                  | 104.9534075              | 2         | 29.3      | 38       | 189.4737  | 0.01703  |
| 16          | 542                  | 113.3162288              | 2         | 29.2      | 35       | 205.7143  | 0.01849  |
| 17          | 585                  | 122.3062617              | 3         | 29.3      | 48       | 225       | 0.020223 |
| 18          | 622                  | 130.0418714              | 3         | 29.5      | 44       | 245.4545  | 0.022061 |
| 19          | 661                  | 138.1956222              | 3         | 29.5      | 40       | 270       | 0.024268 |
| 20          | 709                  | 148.2310078              | 4         | 29.7      | 48       | 300       | 0.026964 |
| 21          | 764                  | 159.7298871              | 4         | 29.2      | 45       | 320       | 0.028762 |
| 22          | 793                  | 165.7929325              | 4         | 30        | 44       | 327.2727  | 0.029415 |
| 23          | 835                  | 174.5738949              | 4         | 29.5      | 43       | 334.8837  | 0.030099 |
| 24          | 885                  | 185.0274215              | 4         | 28.8      | 39       | 369.2308  | 0.033186 |
| 25          | 919                  | 192.1358196              | 4         | 30.2      | 35       | 411.4286  | 0.036979 |

Figure 68: Data for  $0.1M H_2SO_4$  Sonicated

| H2SO4       | 0.2M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 6.668030407              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 1                    | 0.149969322              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 35                   | 5.248926274              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 94                   | 14.09711628              |           |           |          | #DIV/0!   | #DIV/0!  |
| 5           | 160                  | 23.99509154              | 1         | 29.6      | 85       | 42.35294  | 0.003807 |
| 6           | 227                  | 34.04303612              | 1         | 29.6      | 50       | 72        | 0.006471 |
| 7           | 295                  | 44.24095002              | 1         | 29.7      | 46       | 78.26087  | 0.007034 |
| 8           | 365                  | 54.73880257              | 1         | 29.7      | 37       | 97.2973   | 0.008745 |
| 9           | 438                  | 65.68656309              | 2         | 30        | 47       | 153.1915  | 0.013769 |
| 10          | 503                  | 75.43456902              | 2         | 30.1      | 33       | 218.1818  | 0.01961  |
| 11          | 580                  | 86.98220683              | 2         | 30.4      | 30       | 240       | 0.021571 |
| 12          | 620                  | 92.98097971              | 3         | 30.5      | 41       | 263.4146  | 0.023676 |
| 13          | 727                  | 109.0276972              | 3         | 30.5      | 40       | 270       | 0.024268 |
| 14          | 803                  | 120.4253657              | 3         | 31.1      | 38       | 284.2105  | 0.025545 |
| 15          | 876                  | 131.3731262              | 4         | 31        | 52       | 276.9231  | 0.02489  |
| 16          | 943                  | 141.4210708              | 4         | 30.5      | 41       | 351.2195  | 0.031568 |
| 17          | 1025                 | 153.7185552              | 5         | 31.3      | 46       | 391.3043  | 0.03517  |
| 18          | 1082                 | 162.2668065              | 5         | 32.1      | 42       | 428.5714  | 0.03852  |
| 19          | 1158                 | 173.664475               | 5         | 31.7      | 37       | 486.4865  | 0.043725 |
| 20          | 1240                 | 185.9619594              | 5         | 31.5      | 35       | 514.2857  | 0.046224 |
| 21          | 1300                 | 194.9601187              | 5         | 31.3      | 32       | 562.5     | 0.050558 |
| 22          | 1392                 | 208.7572964              | 5         | 32.1      | 33       | 545.4545  | 0.049025 |
| 23          | 1484                 | 222.554474               | 5         | 32        | 32       | 562.5     | 0.050558 |
| 24          | 1548                 | 232.1525106              | 5         | 33        | 31       | 580.6452  | 0.052188 |
| 25          | 1629                 | 244.3000257              | 5         | 34        | 29       | 620.6897  | 0.055788 |

Figure 69: Data for 0.2M H<sub>2</sub>SO<sub>4</sub> Sonicated

| H2SO4       | 0.3M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 5.725552611              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 2                    | 0.349311261              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 47                   | 8.208814623              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 147                  | 25.67437765              | 1         | 26.2      | 140      | 25.71429  | 0.002311 |
| 5           | 217                  | 37.90027177              | 1         | 26.4      | 78       | 46.15385  | 0.004148 |
| 6           | 312                  | 54.49255665              | 1         | 26.6      | 37       | 97.2973   | 0.008745 |
| 7           | 408                  | 71.25949715              | 1         | 26.9      | 30       | 120       | 0.010786 |
| 8           | 506                  | 88.37574892              | 2         | 26.9      | 40       | 180       | 0.016178 |
| 9           | 604                  | 105.4920007              | 3         | 27.4      | 48       | 225       | 0.020223 |
| 10          | 698                  | 121.9096299              | 3         | 27.5      | 37       | 291.8919  | 0.026235 |
| 11          | 808                  | 141.1217493              | 4         | 28.5      | 48       | 300       | 0.026964 |
| 12          | 935                  | 163.3030143              | 4         | 28.9      | 38       | 378.9474  | 0.03406  |
| 13          | 1034                 | 180.5939217              | 5         | 28.9      | 46       | 391.3043  | 0.03517  |
| 14          | 1147                 | 200.3300079              | 5         | 29        | 44       | 409.0909  | 0.036769 |
| 15          | 1228                 | 214.477114               | 5         | 29.1      | 39       | 461.5385  | 0.041483 |
| 16          | 1325                 | 231.4187101              | 5         | 29.3      | 38       | 473.6842  | 0.042575 |
| 17          | 1445                 | 252.3773858              | 5         | 29.7      | 37       | 486.4865  | 0.043725 |
| 18          | 1531                 | 267.39777                | 5         | 29.3      | 36       | 500       | 0.04494  |
| 19          | 1630                 | 284.6886774              | 5         | 29.5      | 34       | 529.4118  | 0.047584 |
| 20          | 1782                 | 311.2363332              | 5         | 30.2      | 30       | 600       | 0.053928 |
| 21          | 1865                 | 325.7327505              | 5         | 29.8      | 23       | 782.6087  | 0.070341 |
| 22          | 1923                 | 335.862777               | 5         | 29.7      | 22       | 818.1818  | 0.073538 |
| 23          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 24          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 25          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |

Figure 70: Data for 0.3M H<sub>2</sub>SO<sub>4</sub> Sonicated

| H2SO4       | 0.4M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 5.725552611              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 3                    | 0.523966891              |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 50                   | 8.732781514              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 144                  | 25.15041076              | 1         | 27.4      | 78       | 46.15385  | 0.004148 |
| 5           | 252                  | 44.01321883              | 1         | 27.6      | 43       | 83.72093  | 0.007525 |
| 6           | 349                  | 60.95481497              | 1         | 27.8      | 39       | 92.30769  | 0.008297 |
| 7           | 473                  | 82.61211312              | 2         | 28.2      | 41       | 175.6098  | 0.015784 |
| 8           | 586                  | 102.3481993              | 2         | 28.5      | 30       | 240       | 0.021571 |
| 9           | 699                  | 122.0842856              | 3         | 28.7      | 41       | 263.4146  | 0.023676 |
| 10          | 810                  | 141.4710605              | 3         | 28.9      | 33       | 327.2727  | 0.029415 |
| 11          | 928                  | 162.0804249              | 4         | 29.2      | 38       | 378.9474  | 0.03406  |
| 12          | 1030                 | 179.8952992              | 5         | 23        | 50       | 360       | 0.032357 |
| 13          | 1164                 | 203.2991536              | 5         | 29.9      | 37       | 486.4865  | 0.043725 |
| 14          | 1276                 | 222.8605842              | 5         | 30        | 33       | 545.4545  | 0.049025 |
| 15          | 1402                 | 244.8671937              | 5         | 30.9      | 31       | 580.6452  | 0.052188 |
| 16          | 1508                 | 263.3806905              | 5         | 31        | 30       | 600       | 0.053928 |
| 17          | 1648                 | 287.8324787              | 5         | 31        | 27       | 666.6667  | 0.05992  |
| 18          | 1796                 | 313.681512               | 5         | 31        | 26       | 692.3077  | 0.062225 |
| 19          | 1898                 | 331.4963863              | 5         | 30.8      | 25       | 720       | 0.064714 |
| 20          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 21          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 22          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 23          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 24          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 25          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |

Figure 71: Data for 0.4M H<sub>2</sub>SO<sub>4</sub> Sonicated

| H2SO4       | 0.5M                 |                          |           |           |          |           |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|-----------|----------|
| Sonicated   | Contact Area (cm2)   | 5.725552611              |           |           |          | Productio | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour  | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 2           | 1                    | 0.17465563               |           |           |          | #DIV/0!   | #DIV/0!  |
| 3           | 59                   | 10.30468219              |           |           |          | #DIV/0!   | #DIV/0!  |
| 4           | 182                  | 31.78732471              | 1         | 28.2      | 92       | 39.13043  | 0.003517 |
| 5           | 320                  | 55.88980169              | 1         | 28.3      | 35       | 102.8571  | 0.009245 |
| 6           | 464                  | 81.04021245              | 2         | 28.7      | 42       | 171.4286  | 0.015408 |
| 7           | 611                  | 106.7145901              | 3         | 29.1      | 43       | 251.1628  | 0.022575 |
| 8           | 756                  | 132.0396565              | 4         | 29.4      | 47       | 306.383   | 0.027538 |
| 9           | 912                  | 159.2859348              | 5         | 29.7      | 48       | 375       | 0.033705 |
| 10          | 1063                 | 185.658935               | 5         | 30.1      | 40       | 450       | 0.040446 |
| 11          | 1212                 | 211.6826239              | 5         | 29.9      | 35       | 514.2857  | 0.046224 |
| 12          | 1356                 | 236.8330347              | 5         | 30.6      | 32       | 562.5     | 0.050558 |
| 13          | 1453                 | 253.7746308              | 5         | 31        | 28       | 642.8571  | 0.05778  |
| 14          | 1682                 | 293.7707701              | 5         | 31.8      | 26       | 692.3077  | 0.062225 |
| 15          | 1736                 | 303.2021742              | 5         | 32.1      | 23       | 782.6087  | 0.070341 |
| 16          | 1950                 | 340.578479               | 5         | 32        | 21       | 857.1429  | 0.07704  |
| 17          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 18          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 19          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 20          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 21          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 22          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 23          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 24          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |
| 25          |                      | 0                        |           |           |          | #DIV/0!   | #DIV/0!  |

Figure 72: Data for 0.5M H<sub>2</sub>SO<sub>4</sub> Sonicated

| H2SO4       | 1.0M                 |                          |           |           |          |            |          |
|-------------|----------------------|--------------------------|-----------|-----------|----------|------------|----------|
| Sonicated   | Contact Area (cm2)   | 4.783074815              |           |           |          | Production | n Rate   |
| Voltage (V) | Applied Current (mA) | Current Density (mA/cm2) | Vol (cm3) | Temp (oC) | Time (s) | cm3/hour   | g/hour   |
| 1           | 0                    | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 2           | 2                    | 0.418141066              |           |           |          | #DIV/0!    | #DIV/0!  |
| 3           | 74                   | 15.47121943              |           |           |          | #DIV/0!    | #DIV/0!  |
| 4           | 279                  | 58.33067865              | 1         | 29.2      | 33       | 109.0909   | 0.009805 |
| 5           | 515                  | 107.6713244              | 2         | 29.3      | 38       | 189.4737   | 0.01703  |
| 6           | 768                  | 160.5661692              | 3         | 29.8      | 43       | 251.1628   | 0.022575 |
| 7           | 1023                 | 213.8791551              | 5         | 30.4      | 43       | 418.6047   | 0.037624 |
| 8           | 1305                 | 272.8370453              | 5         | 30.9      | 30       | 600        | 0.053928 |
| 9           | 1570                 | 328.2407365              | 5         | 31.2      | 26       | 692.3077   | 0.062225 |
| 10          | 1817                 | 379.8811581              | 5         | 31.3      | 21       | 857.1429   | 0.07704  |
| 11          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 12          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 13          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 14          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 15          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 16          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 17          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 18          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 19          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 20          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 21          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 22          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 23          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 24          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |
| 25          |                      | 0                        |           |           |          | #DIV/0!    | #DIV/0!  |

Figure 73: Data for 1.0M H<sub>2</sub>SO<sub>4</sub> Sonicated

| H2SO4       |          |                |          |                |          |                |          |                |          |                |          |                |
|-------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|
| Sonicated   | 0.1M     |                | 0.2M     |                | 0.3M     |                | 0.4M     |                | 0.5M     |                | 1.0M     |                |
| Voltage (V) | V ideal  | Efficiency (%) |
| 1           | 0        | #DIV/0!        |
| 2           | 0        | #DIV/0!        |
| 3           | 0        | #DIV/0!        |
| 4           | 0        | #DIV/0!        | 0        | #DIV/0!        | 4.635813 | 21.57118933    | 2.540242 | 39.36632707    | 3.796922 | 26.33712181    | 2.507492 | 39.88047953    |
| 5           | 0        | #DIV/0!        | 2.660383 | 37.58857184    | 3.815267 | 26.21048535    | 2.452313 | 40.77782814    | 2.54059  | 39.36093557    | 5.33158  | 37.51233248    |
| 6           | 3.807301 | 26.26532315    | 2.220246 | 45.04005084    | 2.603855 | 38.40459713    | 3.082376 | 32.44250213    | 4.426492 | 45.18250112    | 9.011812 | 33.28964088    |
| 7           | 3.372711 | 29.64974036    | 2.655391 | 37.65923206    | 2.763607 | 36.18459154    | 4.397618 | 45.47916955    | 5.975541 | 50.20465683    | 12.02779 | 41.57039639    |
| 8           | 3.266035 | 30.61816319    | 2.642672 | 37.84048716    | 4.569887 | 43.76476289    | 3.990465 | 50.11947565    | 8.089433 | 49.44722276    | 10.72231 | 46.63175043    |
| 9           | 3.472197 | 28.80020975    | 4.03228  | 49.59973316    | 6.556864 | 45.75357881    | 6.509588 | 46.08586736    | 9.976195 | 50.11930893    | 11.19071 | 44.67989931    |
| 10          | 3.115109 | 32.10160543    | 3.252399 | 61.49306592    | 5.842781 | 51.34540967    | 6.075459 | 49.37898736    | 9.702761 | 51.53172286    | 10.4641  | 47.78243654    |
| 11          | 3.021751 | 33.09339457    | 3.41272  | 58.60428822    | 8.803537 | 45.43628207    | 8.023111 | 49.85596985    | 9.673558 | 51.68729154    | 0        | #DIV/0!        |
| 12          | 5.234664 | 38.20684877    | 4.987351 | 60.15217128    | 8.07561  | 49.53186348    | 11.47678 | 43.56620812    | 9.918071 | 50.41302681    | 0        | #DIV/0!        |
| 13          | 5.017978 | 39.85668997    | 5.705436 | 52.58143721    | 10.81082 | 46.2499766     | 9.821329 | 50.9096059     | 9.311352 | 53.69789501    | 0        | #DIV/0!        |
| 14          | 4.863041 | 41.12653198    | 5.998613 | 50.01156112    | 11.47466 | 43.57426145    | 9.605577 | 52.05309307    | 10.03527 | 49.82424778    | 0        | #DIV/0!        |
| 15          | 5.196996 | 38.48376738    | 8.951924 | 44.68313194    | 10.89258 | 45.9028282     | 9.943883 | 50.28217007    | 9.171376 | 54.51744553    | 0        | #DIV/0!        |
| 16          | 5.166409 | 38.71160517    | 7.5856   | 52.73148985    | 11.4592  | 43.63305928    | 10.35408 | 48.29012291    | 9.403046 | 53.17425911    | 0        | #DIV/0!        |
| 17          | 7.650014 | 39.21561681    | 9.275104 | 53.90775108    | 12.18424 | 41.03661962    | 10.1838  | 49.09756294    | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 18          | 7.460969 | 40.20925283    | 8.962999 | 55.78490091    | 12.5439  | 39.86001406    | 10.68732 | 46.78441752    | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 19          | 7.207981 | 41.62053069    | 8.439517 | 59.24509592    | 12.62143 | 39.61517038    | 10.85275 | 46.07128901    | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 20          | 9.283817 | 43.08572732    | 8.543032 | 58.52723103    | 12.20321 | 40.9728123     | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 21          | 9.363266 | 42.72013671    | 8.183337 | 61.09977075    | 9.77865  | 51.13180204    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 22          | 9.527851 | 41.98218545    | 9.060037 | 55.18741373    | 9.641194 | 51.86079676    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 23          | 9.788297 | 40.86512859    | 9.363072 | 53.40127622    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 24          | 9.387597 | 42.60941459    | 9.492662 | 52.67226277    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |
| 25          | 8.788992 | 45.51147638    | 9.37542  | 53.33094606    | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        | 0        | #DIV/0!        |

Figure 74: Data of  $H_2SO_4$  Efficiency of  $H_2$  production

## Comparison

## NaOH

|         | 0.1M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.449907966            | #DIV/0!               | #DIV/0!                   |
| 3       | 2.549478476            | #DIV/0!               | #DIV/0!                   |
| 4       | 1.799631865            | #DIV/0!               | #DIV/0!                   |
| 5       | 0.899815933            | #DIV/0!               | #DIV/0!                   |
| 6       | 0.899815933            | #DIV/0!               | #DIV/0!                   |
| 7       | 1.799631865            | -0.018555763          | -3.915144055              |
| 8       | 1.499693221            | -0.854839255          | -4.076830687              |
| 9       | 1.499693221            | 2.615298088           | 0.286682159               |
| 10      | 1.499693221            | -5.606678777          | -8.136685723              |
| 11      | 1.049785255            | -15.02489185          | -14.6865578               |
| 12      | 0.599877288            | -5.632333768          | -5.246774107              |
| 13      | 0.749846611            | -17.24392041          | -13.21925083              |
| 14      | -0.149969322           | -15.79640193          | -9.784863477              |
| 15      | -0.149969322           | 0                     | 0.252164095               |
| 16      | -0.299938644           | 2.307692308           | 1.51453036                |
| 17      | 0.599877288            | 11.14551084           | 4.912665078               |
| 18      | 0.449907966            | 0                     | -0.438994898              |
| 19      | 0.899815933            | 0                     | -0.819905452              |
| 20      | 0.749846611            | -51.28205128          | -21.62708528              |
| 21      | -0.149969322           | -24.1509434           | -9.05328779               |
| 22      | 0                      | -19.63636364          | -7.0447274                |
| 23      | -0.299938644           | -36.28219485          | -12.36416636              |
| 24      | -0.299938644           | -11.62227603          | -3.516560578              |
| 25      | -1.649662543           | -52.13705404          | -14.89011767              |

Figure 75: Data for 0.1M NaOH Ultrasound Enhancement

|         | 0.2M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.895383342            | #DIV/0!               | #DIV/0!                   |
| 3       | 3.18186143             | #DIV/0!               | #DIV/0!                   |
| 4       | 6.027584725            | #DIV/0!               | #DIV/0!                   |
| 5       | 8.273430731            | 13.0952381            | 1.666039833               |
| 6       | 10.78744848            | 10.83333333           | -2.683556469              |
| 7       | 13.45143555            | -5.704225352          | -18.01479131              |
| 8       | 16.71529991            | -15.15151515          | -27.36507513              |
| 9       | 18.72030848            | -14.28571429          | -25.50773578              |
| 10      | 23.06129241            | -10.24667932          | -25.2920519               |
| 11      | 26.92060147            | 6.315789474           | -18.48107347              |
| 12      | 30.53907309            | 18.36734694           | -14.67832865              |
| 13      | 32.7849191             | 38.0952381            | -8.886363501              |
| 14      | 38.34412673            | 28.57142857           | -15.56021654              |
| 15      | 37.99025823            | 24.3902439            | -14.15924174              |
| 16      | 40.98151825            | 35.52631579           | -12.33725965              |
| 17      | 43.91367707            | 45.40540541           | -10.20934388              |
| 18      | 46.81406898            | 15.82417582           | -14.97754468              |
| 19      | 47.89192731            | 30.85714286           | -15.21678541              |
| 20      | 54.07834654            | 46.37681159           | -13.58445451              |
| 21      | 55.06976935            | 54.85714286           | -12.70869119              |
| 22      | 59.4609893             | 29.8136646            | -16.91760302              |
| 23      | 58.68897974            | 61.91646192           | -12.14348309              |
| 24      | 60.00324291            | -57.34196117          | -25.96335876              |
| 25      | 62.46259204            | -16.30434783          | -22.68886596              |

|         | 0.3M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.782558124            | #DIV/0!               | #DIV/0!                   |
| 3       | 2.694614947            | #DIV/0!               | #DIV/0!                   |
| 4       | 4.642919293            | #DIV/0!               | #DIV/0!                   |
| 5       | 6.274705093            | #DIV/0!               | #DIV/0!                   |
| 6       | 7.852766885            | -20.21390374          | -23.26816513              |
| 7       | 9.562225947            | -28.84615385          | -25.39994946              |
| 8       | 10.61469866            | -70.1754386           | -43.28231509              |
| 9       | 13.4769584             | -76.35054022          | -40.94641423              |
| 10      | 16.13014761            | -81.52173913          | -38.46091375              |
| 11      | 18.18007447            | -121.7391304          | -48.01240594              |
| 12      | 21.03650872            | -67.76470588          | -31.01419007              |
| 13      | 24.53180555            | -67.66917293          | -32.32170515              |
| 14      | 25.36938224            | -66.66666667          | -28.56452881              |
| 15      | 26.49952821            | -76.23529412          | -28.49536175              |
| 16      | 29.06921866            | -65.2173913           | -25.17658718              |
| 17      | 31.48356259            | -85.71428571          | -28.54180797              |
| 18      | 31.80137569            | -102.0242915          | -29.68732171              |
| 19      | 35.15944976            | -115.7894737          | -31.02567703              |
| 20      | 36.49284077            | -143.6170213          | -33.82448887              |
| 21      | 38.04695331            | -160                  | -34.9687381               |
| 22      | 39.51756708            | -154.2857143          | -33.37080746              |
| 23      | 41.5377192             | -140                  | -30.87642458              |
| 24      | 45.21231181            | -144.8916409          | -31.38513218              |
| 25      | 45.72754446            | -181.3953488          | -33.32348693              |

Figure 77: Data for 0.3M NaOH Ultrasound Enhancement

|         | 0.4M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.698622521            | #DIV/0!               | #DIV/0!                   |
| 3       | 1.986013492            | #DIV/0!               | #DIV/0!                   |
| 4       | 2.569227522            | #DIV/0!               | #DIV/0!                   |
| 5       | 2.926561833            | -4.090909091          | -7.712041729              |
| 6       | 3.308582452            | -32.77310924          | -23.99623925              |
| 7       | 3.415350735            | -21.71945701          | -13.227196                |
| 8       | 3.647402032            | 5.882352941           | -0.434024117              |
| 9       | 3.704797698            | -53.68421053          | -20.63608479              |
| 10      | 4.910723852            | -61.76470588          | -21.09951453              |
| 11      | 5.042178443            | -28.70813397          | -10.324468                |
| 12      | 5.923479645            | -28.23529412          | -9.63105003               |
| 13      | 6.804780846            | -2.470830474          | -3.727589019              |
| 14      | 6.311671841            | -36.58536585          | -9.785660804              |
| 15      | 6.767751384            | -25.21008403          | -7.43162091               |
| 16      | 6.82514705             | -53.61702128          | -11.19753729              |
| 17      | 5.608729215            | -44.06364749          | -8.617567427              |
| 18      | 7.387994877            | -44.58204334          | -8.819712578              |
| 19      | 7.494763159            | -34.34022258          | -7.012177487              |
| 20      | 8.448271812            | -21.42857143          | -5.336111394              |
| 21      | 6.284516902            | -90                   | -12.3003129               |
| 22      | 5.164992826            | -94.73684211          | -11.7993859               |
| 23      | 6.893034398            | -126.0869565          | -14.79034699              |
| 24      | 3.282661828            | -152.3809524          | -15.86191475              |
| 25      | -0.509772264           | -162.8959276          | -15.09512084              |

Figure 78: Data for 0.4M NaOH Ultrasound Enhancement

|         | 0.5M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 1.047933782            | #DIV/0!               | #DIV/0!                   |
| 3       | -7.689784994           | #DIV/0!               | #DIV/0!                   |
| 4       | 2.742648837            | -14.09601634          | -13.09105195              |
| 5       | -7.684847732           | -24.61538462          | -6.53204861               |
| 6       | -8.906819987           | -44.85049834          | -11.44263743              |
| 7       | -7.907641663           | -51.42857143          | -11.4680101               |
| 8       | -9.380179946           | -84.7826087           | -17.25703172              |
| 9       | -10.17878201           | -61.68910649          | -9.093568136              |
| 10      | -10.22753747           | -56.51491366          | -6.965114762              |
| 11      | -9.55113263            | -116.3666121          | -17.20056495              |
| 12      | -7.4299616             | -84.9213691           | -10.9221323               |
| 13      | -8.503816006           | 17.54385965           | 4.847823813               |
| 14      | -6.056168551           | 7.653061224           | 2.428539414               |
| 15      | -7.803959169           | 58.60465116           | 8.85544196                |
| 16      | -1.255915928           | 17.14285714           | 1.948242016               |
| 17      | -8.681557425           | -156.3706564          | -14.29249307              |
| 18      | -9.706039213           | -70.58823529          | -4.968147546              |
| 19      | -10.12694077           | -97.4025974           | -6.891969096              |
| 20      | -13.46391247           | 23.80952381           | 5.102976896               |
| 21      | -7.426258654           | -80                   | -5.012616794              |
| 22      | -6.478304421           | -54.60060667          | -2.962052927              |
| 23      | -292.4401781           | #DIV/0!               | #DIV/0!                   |
| 24      | -304.1377852           | #DIV/0!               | #DIV/0!                   |
| 25      | 0                      | #DIV/0!               | #DIV/0!                   |

Figure 79: Data for 0.5M NaOH Ultrasound Enhancement

|         | 1.0M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 1.047933782            | #DIV/0!               | #DIV/0!                   |
| 3       | 6.844278939            | #DIV/0!               | #DIV/0!                   |
| 4       | 11.78092341            | 26.32411067           | 4.604616694               |
| 5       | 22.33864026            | 48.20450396           | 2.64995109                |
| 6       | 27.67211714            | 60.90225564           | -1.198884875              |
| 7       | 31.72992904            | 14.2999007            | -13.69238177              |
| 8       | 37.88545999            | 60.92843327           | -6.84360856               |
| 9       | 40.12265666            | 58.64661654           | -6.591431992              |
| 10      | 46.69970632            | 77.5862069            | -7.10170606               |
| 11      | 50.75751822            | 100                   | -4.225106258              |
| 12      | 48.82581461            | 112.5                 | -2.071364918              |
| 13      | 54.38331973            | 54.54545455           | -9.652561541              |
| 14      | 47.28045172            | -99.31034483          | -22.08295039              |
| 15      | 50.83898304            | 57.69230769           | -7.780633928              |
| 16      | 59.78344964            | 68.18181818           | -8.091303027              |
| 17      | 44.67296042            | 19.93355482           | -8.347644088              |
| 18      | -299.9386442           | #DIV/0!               | #DIV/0!                   |
| 19      | 0                      | #DIV/0!               | #DIV/0!                   |
| 20      | 0                      | #DIV/0!               | #DIV/0!                   |
| 21      | 0                      | #DIV/0!               | #DIV/0!                   |
| 22      | 0                      | #DIV/0!               | #DIV/0!                   |
| 23      | 0                      | #DIV/0!               | #DIV/0!                   |
| 24      | 0                      | #DIV/0!               | #DIV/0!                   |
| 25      | 0                      | #DIV/0!               | #DIV/0!                   |

Figure 80: Data for 1.0M NaOH Ultrasound Enhancement

NaCl

|         | 0.1M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0                      | #DIV/0!               | #DIV/0!                   |
| 3       | -0.149969322           | #DIV/0!               | #DIV/0!                   |
| 4       | -0.449907966           | #DIV/0!               | #DIV/0!                   |
| 5       | -1.349723899           | #DIV/0!               | #DIV/0!                   |
| 6       | -2.249539832           | #DIV/0!               | #DIV/0!                   |
| 7       | -3.149355764           | #DIV/0!               | #DIV/0!                   |
| 8       | -2.699447798           | #DIV/0!               | #DIV/0!                   |
| 9       | -1.499693221           | #DIV/0!               | #DIV/0!                   |
| 10      | -1.649662543           | #DIV/0!               | #DIV/0!                   |
| 11      | -1.499693221           | #DIV/0!               | #DIV/0!                   |
| 12      | -0.749846611           | #DIV/0!               | #DIV/0!                   |
| 13      | -1.049785255           | #DIV/0!               | #DIV/0!                   |
| 14      | -0.299938644           | #DIV/0!               | #DIV/0!                   |
| 15      | 0                      | #DIV/0!               | #DIV/0!                   |
| 16      | 0.299938644            | -4.06504065           | -7.388930878              |
| 17      | -0.599877288           | -7.272027703          | -8.459561689              |
| 18      | -0.299938644           | -6.037735849          | -7.200727276              |
| 19      | 0.749846611            | -11.20238984          | -14.06356678              |
| 20      | 0.149969322            | -14.2791762           | -15.15333111              |
| 21      | -1.199754577           | -10.25478715          | -8.314487905              |
| 22      | -0.749846611           | -11.35135135          | -9.614118959              |
| 23      | -0.599877288           | -15.45454545          | -12.63640734              |
| 24      | -1.049785255           | -14.19318502          | -10.51374149              |
| 25      | -2.399509154           | -12.98360656          | -7.120304538              |

Figure 81: Data for 0.1M NaCl Ultrasound Enhancement

|         | 0.2M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.149969322            | #DIV/0!               | #DIV/0!                   |
| 3       | 0.299938644            | #DIV/0!               | #DIV/0!                   |
| 4       | 0.599877288            | #DIV/0!               | #DIV/0!                   |
| 5       | 1.049785255            | #DIV/0!               | #DIV/0!                   |
| 6       | 1.499693221            | #DIV/0!               | #DIV/0!                   |
| 7       | 1.799631865            | #DIV/0!               | #DIV/0!                   |
| 8       | 2.249539832            | #DIV/0!               | #DIV/0!                   |
| 9       | 2.699447798            | #DIV/0!               | #DIV/0!                   |
| 10      | 3.299325086            | 1.787576344           | -4.713313296              |
| 11      | 3.449294409            | -6.98757764           | -15.19493415              |
| 12      | 3.449294409            | -2.5                  | -8.655426285              |
| 13      | 2.84941712             | -5.555555556          | -10.12082264              |
| 14      | 2.399509154            | -7.142857143          | -10.12736051              |
| 15      | 3.599263731            | -4.597701149          | -9.320287252              |
| 16      | 2.09957051             | -3.126356926          | -6.159919556              |
| 17      | 3.299325086            | 1.902748414           | -4.697934543              |
| 18      | 1.199754577            | 1.993355482           | -1.861127192              |
| 19      | 3.149355764            | -21.28603104          | -15.70050273              |
| 20      | 1.499693221            | -34.13793103          | -18.93325334              |
| 21      | 2.549478476            | 0                     | -4.477100223              |
| 22      | 3.299325086            | -7.552447552          | -8.789124303              |
| 23      | 0.299938644            | -14.1509434           | -7.7520159                |
| 24      | 2.84941712             | -9.58296362           | -8.271550095              |
| 25      | 4.049171697            | -13.63636364          | -10.92565683              |

Figure 82: Data for 0.2M NaCl Ultrasound Enhancement

|         | 0.3M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.059101211            | #DIV/0!               | #DIV/0!                   |
| 3       | 1.072686974            | #DIV/0!               | #DIV/0!                   |
| 4       | 2.554649832            | #DIV/0!               | #DIV/0!                   |
| 5       | 4.332118743            | #DIV/0!               | #DIV/0!                   |
| 6       | 6.318658187            | #DIV/0!               | #DIV/0!                   |
| 7       | 8.155228309            | #DIV/0!               | #DIV/0!                   |
| 8       | 10.01913274            | 0.491803279           | -13.70863716              |
| 9       | 11.70573354            | -10.10526316          | -25.0959446               |
| 10      | 13.77870851            | -6.6359447            | -22.31158317              |
| 11      | 15.31090739            | -11.84210526          | -25.00601266              |
| 12      | 17.86555722            | -28.02197802          | -33.93078794              |
| 13      | 20.29757204            | -16.47597254          | -26.76000311              |
| 14      | 22.40231391            | -17.2972973           | -25.22012049              |
| 15      | 23.54370604            | -11.01591187          | -19.35622462              |
| 16      | 26.934638              | 15.2027027            | -11.83265295              |
| 17      | 29.63925716            | -27.87096774          | -29.93935589              |
| 18      | 30.50804496            | -18.06020067          | -25.34129392              |
| 19      | 34.73082646            | -10                   | -22.99942088              |
| 20      | 33.94034777            | 3.986710963           | -19.01771776              |
| 21      | 36.52233191            | 0                     | -20.89723295              |
| 22      | 39.19518416            | 0                     | -21.27228415              |
| 23      | 40.06840455            | -6.050420168          | -22.06560339              |
| 24      | 41.54150223            | 6.818181818           | -19.0005978               |
| 25      | 45.22794024            | 15                    | -17.90972194              |

Figure 83: Data for 0.3M NaCl Ultrasound Enhancement

|         | 0.4M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | -0.349311261           | #DIV/0!               | #DIV/0!                   |
| 2       | -0.698622521           | #DIV/0!               | #DIV/0!                   |
| 3       | -1.397245042           | #DIV/0!               | #DIV/0!                   |
| 4       | 0                      | #DIV/0!               | #DIV/0!                   |
| 5       | 1.047933782            | #DIV/0!               | #DIV/0!                   |
| 6       | 1.746556303            | #DIV/0!               | #DIV/0!                   |
| 7       | 2.445178824            | -0.767386091          | -4.398936023              |
| 8       | 4.366390757            | 2.395740905           | -3.703662033              |
| 9       | 4.017079496            | 8.975834292           | 0.806604861               |
| 10      | 6.28760269             | 6.302521008           | -3.485085972              |
| 11      | 6.46225832             | -6.818181818          | -9.359156907              |
| 12      | 6.636913951            | 8.586762075           | -2.397444782              |
| 13      | 6.986225211            | 36.26373626           | 6.795132857               |
| 14      | 10.82864908            | 7.552447552           | -6.8053101                |
| 15      | 11.70192723            | 21.53846154           | -2.730168387              |
| 16      | 9.082092775            | 40.61538462           | 4.03977126                |
| 17      | 12.05123849            | 36.28219485           | 1.260281106               |
| 18      | 14.14710605            | 18.9848385            | -4.207383094              |
| 19      | 13.97245042            | 21.0989011            | -3.262166935              |
| 20      | 15.71900673            | 36.51115619           | -1.558449956              |
| 21      | 14.14710605            | 18.90472618           | -4.223691604              |
| 22      | 15.89366236            | 23.41463415           | -3.944084547              |
| 23      | 19.91074185            | 77.64705882           | 3.599513254               |
| 24      | 23.0545432             | 32                    | -6.065109786              |
| 25      | 22.18126505            | 42.85714286           | -3.840074283              |

Figure 84: Data for 0.4M NaCl Ultrasound Enhancement
|         | 0.5M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.230670303            | #DIV/0!               | #DIV/0!                   |
| 3       | 1.124433662            | #DIV/0!               | #DIV/0!                   |
| 4       | 2.184979047            | #DIV/0!               | #DIV/0!                   |
| 5       | 3.447276884            | #DIV/0!               | #DIV/0!                   |
| 6       | 5.240183668            | #DIV/0!               | #DIV/0!                   |
| 7       | 7.413730076            | #DIV/0!               | #DIV/0!                   |
| 8       | 6.766777216            | -31.16883117          | -29.49172035              |
| 9       | 8.461497806            | -35.40372671          | -28.25205031              |
| 10      | 8.685443027            | -38.57634902          | -25.83551049              |
| 11      | 12.30084695            | -21.4084507           | -18.93142315              |
| 12      | 13.64384577            | -51.69230769          | -30.75478336              |
| 13      | 12.16029275            | -37.5                 | -21.016666                |
| 14      | 15.62572735            | -28.980322            | -19.42109358              |
| 15      | 16.91089047            | -27.15273413          | -18.90005079              |
| 16      | 16.42533957            | -9.979209979          | -12.62702551              |
| 17      | 19.14092756            | -23.58722359          | -16.29137811              |
| 18      | 21.46982336            | -32.14285714          | -18.66048313              |
| 19      | 21.45166564            | -27.06766917          | -17.4323837               |
| 20      | 22.62720992            | -7.287449393          | -13.04454359              |
| 21      | 25.83305637            | -8.571428571          | -14.2539865               |
| 22      | 26.85863133            | -18.7012987           | -15.56132058              |
| 23      | 28.9629094             | -17.5                 | -15.19527621              |
| 24      | 31.32072304            | -88.11188811          | -26.33024751              |
| 25      | 38.70217273            | -8.780487805          | -15.34014236              |

Figure 85: Data for 0.5M NaCl Ultrasound Enhancement

|         | 1.0M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0.149969322            | #DIV/0!               | #DIV/0!                   |
| 2       | 0.618449341            | #DIV/0!               | #DIV/0!                   |
| 3       | 1.835383066            | #DIV/0!               | #DIV/0!                   |
| 4       | 3.063924324            | #DIV/0!               | #DIV/0!                   |
| 5       | 5.415146142            | -2.166586423          | -13.6758473               |
| 6       | 5.888269173            | -9.77443609           | -16.64880158              |
| 7       | 6.905553337            | 3.260869565           | -7.127633822              |
| 8       | 11.63910516            | -32.03389831          | -27.32028044              |
| 9       | 9.034374829            | -81.81818182          | -37.32905586              |
| 10      | 13.0737962             | -4.615384615          | -14.27148227              |
| 11      | 15.64648974            | 9                     | -11.18420129              |
| 12      | 19.62740914            | 0                     | -15.99409528              |
| 13      | 22.48425509            | -9.538950715          | -17.91566218              |
| 14      | 24.23420671            | 28.50678733           | -11.04086251              |
| 15      | 28.26944937            | 14.28571429           | -15.93570362              |
| 16      | 31.78188876            | 28.57142857           | -13.90702094              |
| 17      | 34.37454725            | 71.1018711            | -8.070544883              |
| 18      | 35.44894048            | 44.72049689           | -12.18960638              |
| 19      | 37.32889647            | 31.16883117           | -14.27301979              |
| 20      | 40.05295224            | 97.98387097           | -4.819715103              |
| 21      | 45.53217196            | 124.137931            | -3.740451785              |
| 22      | 48.6731703             | 109.5238095           | -6.448417348              |
| 23      | 51.45572803            | 128.5714286           | -4.077841728              |
| 24      | 54.06556568            | 133.3333333           | -3.834428896              |
| 25      | 52.33047169            | 92.30769231           | -7.91696265               |

Figure 86: Data for 1.0M NaCl Ultrasound Enhancement

H2SO4

|         | 0.1M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.268171743            | #DIV/0!               | #DIV/0!                   |
| 3       | 2.409113101            | #DIV/0!               | #DIV/0!                   |
| 4       | 5.58654194             | #DIV/0!               | #DIV/0!                   |
| 5       | 8.582234557            | #DIV/0!               | #DIV/0!                   |
| 6       | 11.87786582            | 15.56776557           | 1.318932683               |
| 7       | 14.69182221            | 19.93499458           | -0.435764272              |
| 8       | 18.25562522            | 22.42524917           | -2.953863864              |
| 9       | 21.57859079            | 7.714285714           | -14.28501746              |
| 10      | 26.09687834            | 18.14109742           | -12.16754696              |
| 11      | 28.01545139            | 23.37662338           | -10.14407725              |
| 12      | 31.33841697            | 43.87917329           | -5.47159676               |
| 13      | 35.02042239            | 47.50733138           | -7.240138305              |
| 14      | 37.2662684             | 34.61538462           | -13.77951397              |
| 15      | 41.21644557            | 32.95194508           | -14.09122904              |
| 16      | 44.48030993            | 42.07792208           | -12.18169945              |
| 17      | 46.12184605            | 35.52631579           | -14.02936766              |
| 18      | 49.65831475            | 39.74025974           | -14.57972266              |
| 19      | 52.8630779             | 45                    | -14.82944625              |
| 20      | 56.74972126            | 51.72413793           | -15.01722238              |
| 21      | 62.39979701            | 43.07692308           | -18.1925799               |
| 22      | 64.26370144            | 57.27272727           | -14.9514102               |
| 23      | 66.59598296            | 26.31229236           | -20.31589404              |
| 24      | 71.05073672            | 41.95804196           | -18.86434021              |
| 25      | 72.91020856            | 134.5054945           | -4.214753914              |

Figure 87: Data for 0.1M H<sub>2</sub>SO<sub>4</sub> Ultrasound Enhancement

|         | 0.2M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | -0.024686308           | #DIV/0!               | #DIV/0!                   |
| 3       | 0.882535517            | #DIV/0!               | #DIV/0!                   |
| 4       | 0.648632747            | #DIV/0!               | #DIV/0!                   |
| 5       | -0.631352331           | 8.067226891           | 7.782314671               |
| 6       | -1.936023718           | 1.411764706           | 3.037229842               |
| 7       | -3.789348304           | 3.260869565           | 4.228804987               |
| 8       | -4.993422984           | -7.05052879           | 0.440568742               |
| 9       | -5.922245329           | 12.01501877           | 7.392020354               |
| 10      | -8.225477881           | 38.18181818           | 15.43026452               |
| 11      | -8.030456047           | 15                    | 7.905570688               |
| 12      | -14.9561998            | 23.41463415           | 12.54897415               |
| 13      | -10.7860652            | 6.585365854           | 5.513069425               |
| 14      | -11.61429083           | -15.78947368          | 1.36940532                |
| 15      | -12.19380192           | -31.64835165          | -1.331637345              |
| 16      | -15.07037398           | 23.94678492           | 7.958596441               |
| 17      | -15.87206184           | 5.590062112           | 5.215500367               |
| 18      | -20.94694964           | 17.14285714           | 7.708459409               |
| 19      | -19.50465208           | 62.95707472           | 12.30523448               |
| 20      | -21.70358498           | 64.28571429           | 12.1351329                |
| 21      | -23.18476347           | 97.98387097           | 15.51164736               |
| 22      | -23.36003626           | -30.54545455          | 2.060956249               |
| 23      | -22.13806401           | -37.5                 | 0.905245119               |
| 24      | -23.71798773           | -45.44179523          | 0.286848031               |
| 25      | -22.74843298           | -71.61803714          | -2.170593081              |

|         | 0.3M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.049372616            | #DIV/0!               | #DIV/0!                   |
| 3       | 1.460195128            | #DIV/0!               | #DIV/0!                   |
| 4       | 6.778243065            | -19.28571429          | -29.4129962               |
| 5       | 3.857235651            | -17.00404858          | -13.50824021              |
| 6       | 3.952895095            | -22.7027027           | -12.42830001              |
| 7       | 5.272995424            | -47.44186047          | -18.14105223              |
| 8       | 4.392928538            | -45                   | -13.59244582              |
| 9       | 4.712616229            | -45                   | -11.6036299               |
| 10      | 5.83337462             | -42.99182904          | -10.42018014              |
| 11      | 7.199144619            | -60                   | -12.11361603              |
| 12      | 12.43387627            | -44.58204334          | -10.56877856              |
| 13      | 12.92821959            | -108.6956522          | -17.59426288              |
| 14      | 15.56780309            | -120.3208556          | -17.7703468               |
| 15      | 10.81877455            | -138.4615385          | -17.170391                |
| 16      | 7.06460424             | -161.6099071          | -16.9898477               |
| 17      | 13.17631698            | -205.8212058          | -20.92631625              |
| 18      | 7.05102677             | -250                  | -21.81440392              |
| 19      | 9.494971279            | -288.7700535          | -24.03612886              |
| 20      | 20.29584826            | -257.1428571          | -22.10040691              |
| 21      | 325.7327505            | #DIV/0!               | #DIV/0!                   |
| 22      | 335.862777             | #DIV/0!               | #DIV/0!                   |
| 23      | 0                      | #DIV/0!               | #DIV/0!                   |
| 24      | 0                      | #DIV/0!               | #DIV/0!                   |
| 25      | 0                      | #DIV/0!               | #DIV/0!                   |

Figure 89: Data for 0.3M H<sub>2</sub>SO<sub>4</sub> Ultrasound Enhancement

|         | 0.4M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | 0.224028247            | #DIV/0!               | #DIV/0!                   |
| 3       | 0.934376764            | #DIV/0!               | #DIV/0!                   |
| 4       | 0.705411256            | 2.780352178           | 1.379736035               |
| 5       | 0.522115418            | -7.418310274          | -4.086474797              |
| 6       | -2.78214693            | -64.21404682          | -20.1324943               |
| 7       | -1.820615227           | -54.17747794          | -12.78626903              |
| 8       | -3.230203424           | -51.89189189          | -9.069781498              |
| 9       | -5.089699586           | -105.8161351          | -16.07192051              |
| 10      | -7.598445654           | -72.72727273          | -8.067982244              |
| 11      | -10.08435689           | -166.507177           | -17.97221488              |
| 12      | -15.06481956           | -240                  | -22.32104702              |
| 13      | -12.95660884           | -180.1801802          | -15.08933976              |
| 14      | -17.69020843           | -174.5454545          | -12.02678101              |
| 15      | -15.9294575            | -201.9635344          | -13.96272206              |
| 16      | -30.40921156           | -218.1818182          | -11.3322018               |
| 17      | 287.8324787            | #DIV/0!               | #DIV/0!                   |
| 18      | 313.681512             | #DIV/0!               | #DIV/0!                   |
| 19      | 331.4963863            | #DIV/0!               | #DIV/0!                   |
| 20      | 0                      | #DIV/0!               | #DIV/0!                   |
| 21      | 0                      | #DIV/0!               | #DIV/0!                   |
| 22      | 0                      | #DIV/0!               | #DIV/0!                   |
| 23      | 0                      | #DIV/0!               | #DIV/0!                   |
| 24      | 0                      | #DIV/0!               | #DIV/0!                   |
| 25      | 0                      | #DIV/0!               | #DIV/0!                   |

Figure 90: Data for 0.4M H<sub>2</sub>SO<sub>4</sub> Ultrasound Enhancement

|         | 0.5M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | -0.17465563            | #DIV/0!               | #DIV/0!                   |
| 3       | 1.222589412            | #DIV/0!               | #DIV/0!                   |
| 4       | 2.095867563            | -1.778656126          | -3.160313847              |
| 5       | 1.921211933            | -21.28078818          | -9.883751119              |
| 6       | 0.349311261            | 2.678571429           | 0.409607712               |
| 7       | -3.143801345           | 21.37555666           | 5.424190972               |
| 8       | -6.46225832            | -13.61702128          | -0.016881199              |
| 9       | -8.034158993           | -34.09090909          | -2.224783567              |
| 10      | -14.84572857           | -36.48648649          | -0.413097444              |
| 11      | -31.43801345           | -31.16883117          | 3.655068723               |
| 12      | -17.46556303           | -37.5                 | -0.099981135              |
| 13      | -30.91404656           | -49.45054945          | 1.635408288               |
| 14      | -19.91074185           | -57.69230769          | -1.36376695               |
| 15      | -40.86941749           | 0                     | 5.821612669               |
| 16      | 340.578479             | #DIV/0!               | #DIV/0!                   |
| 17      | 0                      | #DIV/0!               | #DIV/0!                   |
| 18      | 0                      | #DIV/0!               | #DIV/0!                   |
| 19      | 0                      | #DIV/0!               | #DIV/0!                   |
| 20      | 0                      | #DIV/0!               | #DIV/0!                   |
| 21      | 0                      | #DIV/0!               | #DIV/0!                   |
| 22      | 0                      | #DIV/0!               | #DIV/0!                   |
| 23      | 0                      | #DIV/0!               | #DIV/0!                   |
| 24      | 0                      | #DIV/0!               | #DIV/0!                   |
| 25      | 0                      | #DIV/0!               | #DIV/0!                   |

Figure 91: Data for 0.5M H<sub>2</sub>SO<sub>4</sub> Ultrasound Enhancement

|         | 1.0M                   |                       |                           |
|---------|------------------------|-----------------------|---------------------------|
| Voltage | Enhancement in Current | Enhancement in Output | Enhancement in Efficiency |
| 1       | 0                      | #DIV/0!               | #DIV/0!                   |
| 2       | -0.804448346           | #DIV/0!               | #DIV/0!                   |
| 3       | 0.450835223            | #DIV/0!               | #DIV/0!                   |
| 4       | 8.728479651            | 3.20855615            | -5.518270322              |
| 5       | 11.43607211            | -30.93447905          | -11.19728587              |
| 6       | 10.01301589            | -121.2510024          | -19.31900724              |
| 7       | 11.45327956            | -110.8071135          | -14.05188557              |
| 8       | 14.87067938            | -42.85714286          | -6.36785405               |
| 9       | 15.78181392            | -90.30100334          | -8.588908698              |
| 10      | 379.8811581            | #DIV/0!               | #DIV/0!                   |
| 11      | 0                      | #DIV/0!               | #DIV/0!                   |
| 12      | 0                      | #DIV/0!               | #DIV/0!                   |
| 13      | 0                      | #DIV/0!               | #DIV/0!                   |
| 14      | 0                      | #DIV/0!               | #DIV/0!                   |
| 15      | 0                      | #DIV/0!               | #DIV/0!                   |
| 16      | 0                      | #DIV/0!               | #DIV/0!                   |
| 17      | 0                      | #DIV/0!               | #DIV/0!                   |
| 18      | 0                      | #DIV/0!               | #DIV/0!                   |
| 19      | 0                      | #DIV/0!               | #DIV/0!                   |
| 20      | 0                      | #DIV/0!               | #DIV/0!                   |
| 21      | 0                      | #DIV/0!               | #DIV/0!                   |
| 22      | 0                      | #DIV/0!               | #DIV/0!                   |
| 23      | 0                      | #DIV/0!               | #DIV/0!                   |
| 24      | 0                      | #DIV/0!               | #DIV/0!                   |
| 25      | 0                      | #DIV/0!               | #DIV/0!                   |

## 7.2 Appendix II - Graphs

#### 7.2.1 Preliminary Experiments



Silent

Figure 93: Current Voltage Graph for Silent NaOH solution



Figure 94: Current Voltage Graph for Silent NaCl solution



Figure 95: Current Voltage Graph for Silent H<sub>2</sub>SO<sub>4</sub> solution



Figure 96: Current Voltage Graph for Sonicated NaOH solution



Figure 97: Current Voltage Graph for Sonicated NaCl solution



Figure 98: Current Voltage Graph for Sonicated H<sub>2</sub>SO<sub>4</sub> solution

#### 7.2.2 Custom Glassware Experiments



Figure 99: Current Voltage Graph for Silent NaOH solution



Figure 100: Current Voltage Graph for Silent NaCl solution



Figure 101: Current Voltage Graph for Silent H<sub>2</sub>SO<sub>4</sub> solution



Figure 102: Current Voltage Graph for Sonicated NaOH solution



Figure 103: Current Voltage Graph for Sonicated NaCl solution



Figure 104: Current Voltage Graph for Sonicated H<sub>2</sub>SO<sub>4</sub> solution



Figure 105: Hydrogen Production Graph for Silent NaOH solution



Figure 106: Hydrogen Production Graph for Silent NaCl solution



Figure 107: Hydrogen Production Graph for Silent H<sub>2</sub>SO<sub>4</sub> solution



Figure 108: Hydrogen Production Graph for Sonicated NaOH solution



Figure 109: Hydrogen Production Graph for Sonicated NaCl solution



Figure 110: Hydrogen Production Graph for Sonicated  $H_2SO_4$  solution



Figure 111: Hydrogen Production Efficiency Graph for Silent NaOH solution



Figure 112: Hydrogen Production Efficiency Graph for Silent NaCl solution



Figure 113: Hydrogen Production Efficiency Graph for Silent H<sub>2</sub>SO<sub>4</sub> solution



Figure 114: Hydrogen Production Efficiency Graph for Sonicated NaOH solution



Figure 115: Hydrogen Production Efficiency Graph for Sonicated NaCl solution



Figure 116: Hydrogen Production Efficiency Graph for Sonicated H<sub>2</sub>SO<sub>4</sub> solution



7.3 Appendix III - Decomposition Potential Calculations



#### Equations

| Straight Line equations to calculated Decomposition Voltages i.e. when y=0 |              |                      |                      |
|----------------------------------------------------------------------------|--------------|----------------------|----------------------|
| Electrolyte & Co                                                           | oncentration | Silent               | Sonicated            |
| NaOH                                                                       | 0.1M         | y = 47.573x - 152.24 | y = 74.76x - 268.16  |
|                                                                            | 0.2M         | y = 79.876x - 243.9  | y = 98.762x - 345.37 |
|                                                                            | 0.3M         | y = 122.74x - 402.65 | y = 147.72x - 440.88 |
|                                                                            | 0.4M         | y = 147.37x - 519.53 | y = 196.07x - 550.21 |
|                                                                            | 0.5M         | y = 177.28x - 549.03 | y = 224.21x - 644.21 |
|                                                                            | 1.0M         | y = 278.63x - 814.13 | y = 359.4x - 994.35  |
| NaCl                                                                       | 0.1M         | y = 25.219x - 90.245 | y =34.525x - 122.54  |
|                                                                            | 0.2M         | y = 48.345x - 175.93 | y = 54.532x - 205.08 |
|                                                                            | 0.3M         | y = 58.558x - 206.37 | y = 100.15x - 329.43 |
|                                                                            | 0.4M         | y = 71.916x - 257.67 | y = 121.54x - 398.71 |
|                                                                            | 0.5M         | y = 87.998x - 344.38 | y = 133.85x - 385.7  |
|                                                                            | 1.0M         | y = 134.34x - 447.12 | y = 234.73x - 724.74 |
| H2SO4                                                                      | 0.1M         | y = 87.593x - 438.25 | y = 88.4x - 240.9    |
|                                                                            | 0.2M         | y = 132.88x - 415.22 | y = 163.57x - 498.93 |
|                                                                            | 0.3M         | y = 200.38x - 561.83 | y = 310.47x - 952.58 |
|                                                                            | 0.4M         | y = 251.46x - 817.78 | y = 369.48x - 1094.8 |
|                                                                            | 0.5M         | y = 370.9x - 1086.6  | y = 425.05x - 1244   |
|                                                                            | 1.0M         | y = 472.76x - 1432.4 | y = 624.61x - 1854.6 |

Industrial Electrolyser Decomposition Voltages



| Straight Line equations to calculated Decomposition Voltages i.e. when y=0 |      |                    |  |
|----------------------------------------------------------------------------|------|--------------------|--|
| Electrolyte & Concentration                                                |      | Equation           |  |
| КОН                                                                        | 0.1M | y = 43.5x – 122.5  |  |
|                                                                            | 0.3M | y = 86.7x - 130.3  |  |
|                                                                            | 0.5M | y = 169.8x - 465.2 |  |

| Temperature (K)                |    | Amplitude |       |       |       |       |  |
|--------------------------------|----|-----------|-------|-------|-------|-------|--|
| Time (seconds)                 |    | 20        | 25    | 30    | 35    | 40    |  |
| Water                          | 0  | 297.8     | 297.9 | 297.8 | 297.9 | 298   |  |
|                                | 5  | 298.1     | 298.2 | 298.5 | 298.5 | 298.8 |  |
|                                | 10 | 298.1     | 298.3 | 298.3 | 298.3 | 298.5 |  |
|                                | 15 | 298       | 298.4 | 298.3 | 298.3 | 298.4 |  |
|                                | 20 | 298.2     | 298.6 | 298.4 | 298.4 | 298.4 |  |
|                                | 25 | 298.3     | 298.5 | 298.6 | 298.6 | 298.5 |  |
|                                | 30 | 298.2     | 298.6 | 298.5 | 298.5 | 298.6 |  |
| NaOH                           | 0  | 294.1     | 294.4 | 294.4 | 294.5 | 294.6 |  |
|                                | 5  | 294.2     | 294.5 | 294.6 | 294.7 | 294.8 |  |
|                                | 10 | 294.3     | 294.5 | 294.7 | 294.7 | 294.9 |  |
|                                | 15 | 294.3     | 294.5 | 294.7 | 294.7 | 294.9 |  |
|                                | 20 | 294.3     | 294.6 | 294.8 | 294.7 | 294.9 |  |
|                                | 25 | 294.3     | 294.4 | 294.8 | 294.8 | 294.9 |  |
|                                | 30 | 294.4     | 294.5 | 294.8 | 294.8 | 295.2 |  |
|                                | 0  | 294.2     | 294.5 | 294.9 | 295.2 | 295.3 |  |
|                                | 5  | 294.3     | 294.6 | 295   | 295.3 | 295.4 |  |
| NaCl                           | 10 | 294.4     | 294.8 | 295.1 | 295.4 | 295.4 |  |
|                                | 15 | 294.4     | 294.6 | 295.1 | 295.4 | 295.5 |  |
|                                | 20 | 294.4     | 294.7 | 295.1 | 295.5 | 295.4 |  |
|                                | 25 | 294.4     | 294.7 | 295.1 | 295.5 | 295.5 |  |
|                                | 30 | 294.4     | 294.7 | 295.1 | 295.5 | 295.5 |  |
| H <sub>2</sub> SO <sub>4</sub> | 0  | 291.5     | 291.6 | 291.8 | 292   | 292.1 |  |
|                                | 5  | 291.8     | 291.8 | 292   | 292.3 | 292.5 |  |
|                                | 10 | 292       | 291.9 | 292.2 | 292.4 | 292.6 |  |
|                                | 15 | 291.9     | 291.9 | 292.3 | 292.5 | 292.7 |  |
|                                | 20 | 291.8     | 292   | 292.3 | 292.5 | 292.6 |  |
|                                | 25 | 291.9     | 292.1 | 292.3 | 292.6 | 292.7 |  |
|                                | 30 | 291.8     | 292.1 | 292.4 | 292.5 | 292.7 |  |

### 7.4 Appendix IV - Ultrasound Power Data Tables

Figure 117: Temperature variance table for each electrolyte at varying ultrasonic powers

|           | Temperature Gradient (dT/dt) |       |      |       |      |  |  |
|-----------|------------------------------|-------|------|-------|------|--|--|
|           | 20                           | 25    | 30   | 35    | 40   |  |  |
| Water     | 0.08                         | 0.12  | 0.2  | 0.16  | 0.24 |  |  |
| NaOH      | 0.023                        | 0.08  | 0.06 | 0.066 | 0.04 |  |  |
| NaCl      | 0.02                         | 0.048 | 0.02 | 0.032 | 0.03 |  |  |
| $H_2SO_4$ | 0.066                        | 0.08  | 0.06 | 0.1   | 0.14 |  |  |

Figure 118: dT/dt gradients calculated for each electrolyte

|           | Ultrasound Power (W) |       |       |       |        |  |
|-----------|----------------------|-------|-------|-------|--------|--|
| Amplitude | 20                   | 25    | 30    | 35    | 40     |  |
| Water     | 334.4                | 501.6 | 836.0 | 668.8 | 1003.2 |  |
| NaOH      | 76.8                 | 267.0 | 200.3 | 220.3 | 133.5  |  |
| NaCl      | 79.9                 | 191.6 | 79.9  | 127.8 | 119.8  |  |
| $H_2SO_4$ | 94.1                 | 114.1 | 85.6  | 142.6 | 199.7  |  |

Figure 119: Ultrasound Power Table

# 7.5 Appendix V - Health & Safety

Appendix Vi - COSHH Forms

Appendix Vii - Risk Assessment Form

## 7.6 Appendix VI – Conferences Attended & Posters Presented

Poster Presented on next page was presented at the following Conferences.

- 6<sup>th</sup> International Conference in HFC, NEC, Birmingham, 25<sup>th</sup> March 25<sup>th</sup> March 2010
- MEG Annual Meeting, Leicester University, April 2010
- Sustainability Conference, NEC, Birmingham, May 2010