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Abstract

Speech recognition is a computationally demanding task, especially the decoding part,

which converts pre-processed speech data into words or sub-word units, and which incor-

porates Viterbi decoding and Gaussian distribution calculations.

In this thesis, this part of the recognition process is implemented in programmable

logic, specifically, on a field-programmable gate array (FPGA).

Relevant background material about speech recognition is presented, along with a

critical review of previous hardware implementations. Designs for a decoder suitable for

implementation in hardware are then described. These include details of how multiple

speech files can be processed in parallel, and an original implementation of an algorithm

for summing Gaussian mixture components in the log domain. These designs are then

implemented on an FPGA.

An assessment is made as to how appropriate it is to use hardware for speech recog-

nition. It is concluded that while certain parts of the recognition algorithm are not well

suited to this medium, much of it is, and so an efficient implementation is possible.

Also presented is an original analysis of the requirements of speech recognition for

hardware and software, which relates the parameters that dictate the complexity of the

system to processing speed and bandwidth.

The FPGA implementations are compared to equivalent software, written for that pur-

pose. For a contemporary FPGA and processor, the FPGA outperforms the software by

an order of magnitude.
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PhD. . . Doctor of Philosophy, earned by several years’ postgrad-

uate study regardless of subject title, perhaps because at the end

of ten years in higher education, you have to be philosophical

about the value of it all.

– Robert Ainsley,Bluff Your Way at University
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Speak properly, and in as few words as you can, but always plainly; for

the end of speech is not ostentation, but to be understood.

William Penn (1644–1718)

1
Introduction

“C omputer! Write me a PhD thesis!” The idea of being able to talk to a computer,

and have it understand you, has been a recurring theme in science fiction for

decades. While we are not yet at the stage where computers can comprehend our every

word, and act on them, these machines are becoming ever more complex and ubiquitous.

But before a computer (or, for that matter, a human being) can attempt to understand

speech, it must first convert the audio stream it receives into what that stream actually

represents: initially, the basic sounds that make up a language, and ultimately, words. To

do that with greater reliability and fidelity, and to be able to cope with different speakers

and noisy environments, are the goals of current research in speech recognition.

While others concentrate on developing the algorithms and models, there still remains

the question of how to implement them. Commercial software packages already exist

which can run on a PC — but they are limited by having to operate on a general-purpose

processor. In the end, to achieve the maximum processing power, application-specific

hardware is the answer. Accordingly, in this thesis, a hardware implementation of a speech

recognition system is presented.

– 1 –



PHD THESIS STEPHENMELNIKOFF

1.1 Aims and objectives

The aim of this research is to design and implement a speech recognition system, with the

decoding stage implemented in hardware, in order to:

• assess the suitability of so doing for the various parts of the recognition algorithm;

• compare the processing speed of hardware and software implementations, in order

to ascertain the possible speedup;

• determine the requirements inherent in applying hardware to speech recognition.

The hardware in question is a field-programmable gate array (FPGA).

1.2 Speech recognition

1.2.1 Overview

A typical speech recognition system consists of three stages. The first is the pre-process-

ing stage, described in more detail below, which takes a speech waveform as its input, and

extracts from it feature vectors or observations which represent the information required

to perform recognition.

The second stage is recognition, or decoding, which is performed using a set of sta-

tistical models called hidden Markov models (HMMs). At their simplest, the HMMs

represent monophones, i.e. the basic distinct sounds of a particular language, of which

English has around 50. However, when people speak, these sounds are affected by those

uttered immediately before and after them. In order to model this effect, a larger number

of models, now representing pairs and triplets of monophones (biphones and triphones),

can be used, leading to improved recognition ability. In addition, a language model can

– 2 –
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be used, which contains further information as to the probability of one recognition unit

(monophone or biphone/triphone, as appropriate) following another.

For small- to medium-sized vocabularies, the word and language models are compiled

into a single, integrated model. Recognition is performed using the Viterbi algorithm to

find the route through this model which best explains the data. For large vocabulary

systems, this approach is not viable due to the large size of the search space, and so

methods of restricting its size are required. Besides the standard practice of pruning the

least likely paths, this can be achieved by incorporating other information, such as data

based on language usage [57] or the formation of speech, by using multiple passes, or by

heuristic methods such as stack decoding [18][42].

In the third stage, word-level acoustic models are formed by concatenating the recog-

nition units according to a pronunciation dictionary. The word models are then combined

with a language model, which constrains the recogniser to recognise only valid word se-

quences.

The first and third stages can be performed efficiently in software (though some of the

pre-processing may be better suited to a DSP). The decoding and associated observation

probability calculations, however, place a particularly high load on the processor, and so

it is these parts of the system that have been the subject of a number of implementations

in hardware, often using custom-built chips. However, with ever more powerful pro-

grammable logic devices (PLDs) being available, such chips appear to offer an attractive

alternative.

1.2.2 Speech pre-processing

Automatic speech recognition systems make use of the modulation applied by the vocal

tract (throat, tongue, teeth, lips and nasal cavity); the excitation produced by the larynx is

not used, even though humans infer much information from it. (Note that in a number of

– 3 –
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Far-Eastern languages, the inflection of a syllable can profoundly affect its meaning, so

requiring this information to be retained [23]).

Converting a speech waveform into a form suitable for processing by the decoder

requires several stages. A typical such process [60][65] is as follows:

1. The waveform is sent through a low pass filter, typically 4 to 8 kHz. As is evidenced

by the bandwidth of the telephone system being around 4 kHz, this is sufficient for

comprehension.

2. The resulting waveform is sampled. Sampling theory requires a sampling rate of

double the maximum frequency (so 8 to 16 kHz as appropriate).

3. The data undergoes frequency analysis using a discrete Fourier transform. This

produces information about the frequency within each analysis window, which is

typically 20 ms wide, with each one overlapping its neighbour by 10 ms.

4. Human hearing is not particularly sensitive to phase, so this information is removed

by taking the modulus of the complex frequency data.

5. Loudness is perceived by humans on a log scale, rather than a linear one, so the log

of the power is computed for the frequency data.

6. Frequency is also perceived on a non-linear scale. In particular we discriminate

better between low frequency sounds than high frequency ones, and so the mel

scale is used to compensate for this. A filterbank analysis is performed, whereby

the frequency magnitudes are grouped into a number of bins, with the bins spaced

out according to the mel scale so as to take account of our non-linear perception.

Twelve such bins are typical.

7. In order to make recognition calculations less complex (specifically, to ensure that

the covariance matrix is diagonal), it is required that the mel-scale filterbank com-
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ponents be uncorrelated, which is not normally the case. In order to achieve this, a

discrete cosine transform is effected, as a more computationally efficient approxi-

mation to principal component analysis, in order to a produce a set of mel-frequency

cepstral coefficients (MFCC).

8. An additional parameter can be added in the form of an energy term, computed as

the log of the signal energy.

9. Finally, further information about the “shape” of the speech data can be obtained by

taking the first and second derivatives of the cepstral coefficients. Hence, starting

with twelve bins, adding an energy value, and then taking the derivatives, we end

up with a 39-dimensional vector.

An alternative to mel filterbank analysis is linear prediction, where the vocal tract is

modelled by a transfer function, and the filter coefficients are calculated from the data in

order to minimise the prediction error.

Whichever method is used, the extracted data values represent the movements of the

vocal tract, and not the excitation provided by the larynx. Because the elements of the

vocal tract move so slowly in comparison, the effective sampling rate is typically of the

order of 100 Hz, and so one observation is produced every 10 ms.

1.2.3 HTK

HTK, the Hidden Markov Model Toolkit [60], developed by Cambridge University Engi-

neering Department, is referred to throughout this thesis.

It consists of a suite of software tools running under UNIX, designed to facilitate the

development of speech recognition applications. It can generate and train models of var-

ious different types, pre-process speech data, perform recognition, and produce accuracy

figures from recogniser data. It was used for all of these functions during this research.
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It was particularly useful as a benchmark against which to compare the results of the

hardware and software recognisers described in this thesis, in order to verify that they

were producing sensible results.

1.3 Field-programmable gate arrays

A field-programmable gate array (FPGA) is a form of programmable logic device (PLD).

It typically consists of a rectangular array of configurable logic blocks (CLBs). Each

CLB can contain assorted logic resources, such as look-up tables (LUTs), capable of

implementing any desired boolean function; dedicated arithmetic logic, such as carry

chain logic; registers, latches, shift registers, distributed memories, and so on.

The resources within a CLB can be configured as required. Similarly, the data lines

that link the resources within the CLB can be configured in order to connect them together

in particular ways. And the CLB array itself is immersed in a web of configurable routing,

allowing the CLBs to be connected in myriad ways.

There is currently a trend towards combining fixed-function logic with reconfigurable

logic, producing a so-called “system on a chip” (SoC). This started with the inclusion

of blocks of dedicated RAM — themselves configurable with regard to the widths of

their address and data buses — and now includes dedicated multipliers, DSP blocks, and

processor cores.

In order to give the reader an idea of the numbers involved here, the FPGA used in

the larger designs (XCV2000E) contains 38,400 LUTs (which can be used as any 4-input

logic gate, or a 16-stage shift register, or a 16-bit RAM), the same number of flip flops

(configurable as registers or level-sensitive latches), and 160 Block RAMs, each providing

storage of 4,096 bits.

The field-programmable part of an FPGA comes from the fact that FPGAs can be

– 6 –



PHD THESIS STEPHENMELNIKOFF

programmed and reprogrammedin situ, without having to be removed from their target

PCB and placed in a chip programmer every time a new design needs to loaded, as is the

case with some other types of PLD. Most FPGAs are now SRAM based, and so require

a separate ROM to store their configuration data, as they are unable to retain this data

themselves when switched off.

With so many resources at the designer’s disposal, an FPGA provides a very powerful

platform for hardware development. Its flexibility allows for all manner of complex de-

signs; its numerous resources allow for a great deal of parallelism if the application allows

it; and its ability to be reprogrammed without limitation makes it an invaluable tool for

hardware development.

This is not, however, the only thing that FPGAs are good for. Making ASICs is a very

expensive process, and as feature size shrinks, the cost of producing the die is increas-

ing. The economics are such that a manufacturer needs to be expecting to ship a very

large number of chips — currently of the order of hundreds of thousands for the smaller

feature sizes, and continuing to rise [28][29] — before producing an ASIC becomes cost-

effective. For smaller quantities, an FPGA or other PLD is cheaper.

Additionally, an FPGA’s in-system programmability can be put to other uses. Unlike

an ASIC, the FPGA’s design can be updated after the PCB has been made and populated,

and after the product has been deployed, akin to software patches being downloaded after

a product has been shipped.

Taking this a stage further, one chip can be supplied with a library of designs, enabling

it to perform different functions depending on the situation. For example, an FPGA could

be used as part of a communications subsystem, with different configurations for different

protocols, allowing hardware acceleration for all of them, but with just one chip.

Some FPGAs allow parts of the device to be reconfigured, while leaving the rest of

the chip untouched. The suggestion has therefore been made for run-time reconfigura-
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tion (RTR) (e.g. [22][47]), where some or all of the chip is reprogrammed at run time,

providing more processing power than might otherwise be available.

Unfortunately, RTR has not been as successful as hoped, for a number of reasons.

Firstly, the reconfiguration times for FPGAs, particularly the larger ones, is of the order

of milliseconds, which for devices that can operate at hundreds of megahertz, is a lifetime.

To illustrate this, [17] uses RTR to update the contents of LUTs configured as ROMs,

and compares this with the alternative of configuring them as RAMs instead. The authors

report that while the RAM-based design has a slower clock speed and uses more resources,

the LUTs can be updated much faster, by a factor of over 100.

Secondly, for partial reconfiguration, reprogramming one chunk of an FPGA affects

the routing in neighbouring areas, and there is currently no obvious solution as to how to

deal with that. The problem can be sidestepped by limiting the reconfiguration to replac-

ing the contents of LUTs or RAM, or by constraining the placement of logic resources so

that no routing crosses areas that will be reconfigured.

Thirdly, any complex chip relies heavily on the software that supports it, and current

tools have limited support for RTR-based designs. FPGA design software continues to

improve, but does still require a lot of skill of the designer — indeed, the question of

whether adapting software languages in order to make it easier for software engineers to

produce FPGA designs (“C-to-gates”) is an ongoing debate.

Additionally, a commercial slant is mentioned in [15]: “There’s no market for recon-

figurability [right now]. There’s a degree of reconfigurability in cellular systems, as in for

changing the protocols as you move between countries, but that’s a specialist area and it’s

done by software. The case of design reconfigurability in hardware is yet to be proved, as

software is a pretty good way of achieving reconfigurability.”

At present, FPGAs’ power-hungry nature makes them unsuitable for mobile devices.

However, once that changes, their versatility and ability to be repeatedly updated — even
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if only once in a while — could see them become much more widespread than they are

now.

1.4 Motivation

Speech recognition systems work best if they are allowed to adapt to a new speaker, the

environment is quiet, and the user speaks relatively carefully; any deviation from this

“ideal” will result in significantly increased errors. At present it is not clear whether these

problems can be overcome by incremental development of the current HMM-based ap-

proach, or whether more fundamental developments are needed. In either case, it is likely

that the result will place increased computing demands on the host computer. Hence, as is

the case for graphics, it may be advantageous to transfer speech processing to some form

of co-processor or other hardware implementation.

For most speech recognition applications, it is sufficient to produce results in real time,

and software solutions that do this already exist. However, there are several scenarios that

require faster recognition speeds, and so could benefit from hardware acceleration.

For example, in telephony-based call-centre applications, the speech recogniser is re-

quired to process a large number of spoken queries in parallel. If one chip could do the

job of several PCs, even an expensive device could result in significant savings (not to

mention taking up less space). This is typified by the AT&T system described by Gorin

et al (1997) [12], which classifies responses to the question, “How may I help you?”, in

order to route calls according to their subject matter.

The possibility of saving time and money is also true of analogous non-real time appli-

cations, such as off-line transcription for dictation, where a single system would be able

to process multiple speech streams at high speed.

Alternatively, the additional processing power offered by an FPGA or ASIC might be
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used for real-time implementation of the “next generation” of speech recognition algo-

rithms, which are currently in development. For example, improved recognition of fluent,

conversational speech may require multiple-level acoustic models which incorporate a

representation of the speech production process, for example by modelling the movement

of the vocal tract. Such models are much more complex than conventional HMMs and, if

successful, would inevitably lead to a substantial increase in demand for computing power

for speech recognition applications.

Greater computational power can also be used to make the change from speaker de-

pendence to speaker independence, or to make the system more robust and less sensitive

to background noise.

Finally, why use an FPGA? It was originally suggested that this project make use of an

FPGA with the specific intention of utilising RTR. While there has been much excitement

(in academic circles, at least) that the FPGA’s unique ability to be reconfigured on the fly

could be put to great use, the complexity of doing so, and the limited support of the tools,

combined with the ever-increasing quantity of resources available on the device, has seen

the idea pushed to one side. Instead, the FPGA’s great value has been shown in its use as

a prototyping platform, either as a stepping-stone on the path to an ASIC, or as an end in

itself, where an ASIC is either undesirable or uneconomical.

While this does not rule out the use of RTR at some point in the future, perhaps in

order to allow the user to switch between languages or vocabularies, it remains likely that

the same could be achieved by storing the corresponding data off-chip, and loading them

on as necessary.

To conclude, even though processor power is always increasing, ASICs and pro-

grammable logic devices are subject to the same improvements in technology. Hence

whatever we can do in software, we should be able to improve upon by using hardware.
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1.5 Contribution

A PhD thesis must “represent an original contribution to knowledge, demonstrate that the

student can exercise independent judgment and be worthy of publication in whole or in

part in a learned journal or the equivalent.”1

In terms of an “original contribution,” it will be shown in this thesis that hardware

is indeed an appropriate platform for speech recognition, with an FPGA being suitable

for much of the system, the other parts being best left to alternative architectures, or to

software. While it is perhaps no surprise that an FPGA is found to outperform software, it

will also be shown that bandwidth and hardware resources are the principal factors affect-

ing the speedup of hardware over software, rather than the size of the speech recognition

model.

As part of the process of reaching these conclusions, what is presented here is, as

far as the author is aware, the first implementation in hardware of the decoder stage of a

speech recognition system, incorporating a core which overcomes bandwidth restrictions

to process Gaussian mixtures for multiple speech files in parallel, as well as a Viterbi

decoder core. The most closely related work [52] is described in section3.4.

This thesis also contains the first requirements analysis for a hardware-based speech

recogniser, and an original hardware implementation of the log-add algorithm for sum-

ming Gaussian mixture components in the log domain.

The log-add implementation is covered in a letter [35], with the various recogniser

implementations detailed in four international conference papers [30][31][33][34], and a

conference poster [32]. These all appear in the Appendix. Additionally, the requirements

analysis has been submitted as a journal paper [36].

In addition to the final “products,” the tools and methods used to produce them are

themselves an essential part of this research. As chips grow more and more complex,

1University of Birmingham, Regulation 4.4.3.(3)
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it becomes increasingly difficult for the design tools, and hence the designers, to utilise

efficiently the wealth of resources at their disposal, and to implement, test and verify their

designs within a realistic time frame.

So as a means to an end, also described here is the software toolkit that forms an

integral part of this system, which — among other things — is used for benchmarking,

verifying the results of the hardware, producing timing and debug information, and gen-

erating code for the FPGA designs themselves, as well as for the testbenches used in

simulations.

Also worthy of mention is the hardware interface written for the FPGA development

board on which the designs were implemented, which was posted on the board manu-

facturer’s website, and has gone on to be included in the designs of other users of the

hardware.

1.6 Structure of the thesis

The thesis is composed of eight chapters. Following this introduction,Chapter 2 provides

a comprehensive review of speech recognition theory, as it relates to the work described

herein.

Chapter 3 is a critical review of previous speech recognition systems implemented in

hardware, including the use of FPGAs, parallel processors, and serial processors, as well

as current commercial speech cores and ASICs.

Chapter 4 details the designs of the various parts of the recognition system, including

the parts that have been implemented in hardware, and proposed designs for those that

have not.

In Chapter 5, the implementations themselves are discussed, focussing on issues that

arose such as resource usage and speed. The system software is also described.
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Departing from the main stream of the thesis,Chapter 6 takes a look at the require-

ments of implementing speech recognition in hardware and software, in terms of process-

ing time and bandwidth, and draws some general conclusions.

In Chapter 7 are presented the results of the implementations, in the form of timing

information, resource usage, and accuracy figures, along with analyses of the data.

Chapter 8 then rounds things off with a summary of findings, and conclusions.

Following this are the list of references, and also the credits page, a list of specific

individuals, organisations, pieces of software, and items of hardware, which (and whom)

have all played a role in this project.

Finally, theAppendix contains the publications produced as a result of this research.
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Speech is after all only a system of gestures, having the peculiarity that

each gesture produces a characteristic sound, so that it can be perceived

through the ear as well as through the eye.

Robin George Collingwood (1889–1943)

2
Speech recognition theory

This chapter provides a comprehensive guide to speech recognition theory, as it re-

lates to the implementations described later in this thesis.

Hidden Markov models (HMMs), the most commonly used basis for recognition im-

plementations, create scope for incremental increases in the complexity of the algorithm,

and hence better modelling of real speech. Presented here is the basic underlying theory,

followed by a number of such extensions.

Speech recognition theory has been around for some time, and so a number of more

detailed texts on the subject exist [8][44][59]. A more gentle introduction can be found in

[65].

2.1 The speech recognition problem

The underlying problem of speech recognition is as follows. Given an observation se-

quence1 O = O0,O1 . . .OT−1, where eachOt is a data value representing speech which

1It is common in speech recognition literature to enumerate vector indices, state numbers, and time, from
1 to their respective upper limits. However, when implementing such things in hardware — and, for that
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has been sampled at a fixed interval, the current time beingt; and a set of potential mod-

els λ∗, each of which is a representation of a particular spoken utterance (e.g. word or

sub-word unit); we would like to find the sequence of models which best describes the

observation sequence, in the sense that the probabilityP (λ|O) is maximised (i.e. the

probability thatλ, being a subset ofλ∗, is the best sequence of models givenO).

This value cannot be found directly, but can be computed via Bayes’ Theorem [59]:

P (λ|O) =
P (O|λ) ·P (λ)

P (O)
, (2.1)

whereP (O|λ) is the acoustic model probability, being the probability of the model se-

quenceλ producing the observation sequenceO; andP (λ) is the language model proba-

bility, namely thea priori probability of the model sequenceλ being produced (and hence

the corresponding sequence of words or sub-word units being uttered).

WhereO is a set of continuous, rather than discrete, values,P represents probability

density, since the actual probability of a continuous value tends to zero. For generality,P

is used here for both continuous probability densities and discrete probabilities.

Hence by finding the model sequenceλ which maximisesP (O|λ), we can maximise

P (λ|O). SinceP (O) is independent ofλ, this reduces to:

argmax
λ

P (λ|O) = argmax
λ

P (O|λ) ·P (λ). (2.2)

The algorithm used here subsumes the language model part, and henceP (λ), into the

computations for the acoustic model probability.

The resulting recognised utterance is the one represented by the model sequence that

is most likely to have producedO. The models themselves are based on HMMs.

matter, in software — it is more efficient to number items from 0 to limit−1, and the equations presented
here take this into account. The only exception to this is the current durationτ, which represents an actual
quantity (the length of time spent in the current state), as opposed to an arbitrary index.
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2.2 Hidden Markov models

The most widespread and successful approach to speech recognition is based on the hid-

den Markov model (HMM) [8][44][59], whereby a probabilistic process models spoken

utterances as the outputs of finite state machines. The notation here is based on [44].

An N-state Markov model is completely defined by a set ofN states forming a finite

state machine, and anN×N stochastic matrix defining transitions between states, whose

elementsai j = P (statej at timet|statei at timet−1); these are thetransition probabili-

ties.

In a hidden Markov model (Fig.2.1), each state additionally has associated with it

a probability density functionb j(Ot) which determines the probability that statej emits

a particular observationOt at time t (the model is “hidden” because knowledge of the

observation is not sufficient to unambiguously identify the state). The p.d.f. can be a

probability density function for continuous data, or a probability distribution function

for discrete data; accordingly the pre-processed speech data can be a multi-dimensional

vector or one or more quantised values.b j(Ot)is known as theobservation probability,

and is described in more detail below.

Such a model can only generate an observation sequenceO = O0,O1 . . .OT−1 via a

state sequence of lengthT, as a state only emits one observation at each timet. The

set of all such state sequences can be represented as routes through the state-time trellis

shown in Fig.2.2. The( j, t)th node within the trellis corresponds to the hypothesis that

observationOt was generated by statej. Two nodes(i, t−1) and( j, t) are connected if

and only ifai j > 0.

As described above, we maximiseP (λ|O) by maximisingP (O|λ). Given a state

sequenceQ = q0,q1 . . .qT−1 (whereqt is the state at timet), observation sequenceO, and

a modelλ, the joint probability of the state sequence and observation sequence, given the
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Figure 2.1: HMM finite state machine, showing the paths between states within the HMM
(filled arrows), and paths between HMMs (unfilled arrows). The probability of a transition
from statei to statej (transition probabilityai j ) is shown, as is the probability of each state
emitting the observation corresponding to timet (observation probabilityb j(Ot) for each
statej) (double-headed arrows)

Figure 2.2: HMM trellis, showing the finite state machine for the HMM (left), the obser-
vation sequence (top), the trellis representing all possible paths between states within the
HMM (filled arrows), and paths between HMMs (unfilled arrows)
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model, is:

P (O,Q|λ) = b0(O0)
T−1

∏
t=1

aqt−1qt bqt (Ot), (2.3)

assuming that the HMM is in state 0 at timet = 0. P (O|λ) is then the sum over all possible

routes through the trellis, i.e.:

P (O|λ) = ∑
all Q

P (O,Q|λ). (2.4)

The aim is to find the state sequence such that the joint probability of the system

following that sequence, and the observation sequence being produced, given the model,

is maximised. This can be computed efficiently using Viterbi decoding (below).

2.3 Viterbi decoding

Viterbi decoding [55] was first proposed in 1967 as an efficient method for the decod-

ing of convolutional codes, an encoding system designed to prevent and correct errors

when transmitting data over a noisy channel. Its use has since been extended to other

applications, including gene sequencing and speech recognition.

2.3.1 Decoding

Rather than compute all possible paths though the trellis, as suggested by equation (2.4),

we instead approximateP (O|λ) by finding the probability associated with the state se-

quence whichmaximisesP (O,Q|λ).

Firstly, we define the valueδt( j) as the maximum probability, over all partial state

sequencesq0,q1 . . .qt ending in statej (enumerated from 0 toN−1, whereN is the total

number of states in all HMMs) at timet (where 0≤ t ≤ T−1), that the HMM emits the
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sequenceO0,O1 . . .Ot :

δt( j) = max
q0,q1...qt

P (q0,q1 . . .qt ; qt = j; O0,O1 . . .Ot |λ). (2.5)

It follows from equations (2.3) and (2.5) that the value ofδt( j) can be computed

iteratively as follows:

δt( j) = max
0≤i≤N−1

[δt−1(i) ·ai j ] ·b j(Ot), (2.6)

wherei is a possible previous state (i.e. at timet−1).

This value determines the most likely predecessor stateψt( j), for the current statej

at timet, given by:

ψt( j) = argmax
0≤i≤N−1

[δt−1(i) ·ai j ]. (2.7)

Because we are looking at the maximum of a set ofδt( j) values at each time frame, it

is only their values relative to each other that are important, not their absolute values. As

a result, we can perform operations on the data that affect the absolute values, in order to

reduce the computational complexity or otherwise, as long as they maintain their position

relative to each other.

2.3.2 Termination & backtracking

Each state’s most likely predecessor is stored at each time frame. At the end of the obser-

vation sequence, the most likely final stateq∗T−1 is found by simply looking for the final

state whose value ofδT−1( j) is highest. This value is denoted asP∗:

P∗ = max
0≤ j≤N−1

[δT−1( j)]

q∗T−1 = argmax
0≤ j≤N−1

[δT−1( j)]. (2.8)
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Finally, in order to ascertain the most likely state sequenceQ∗ = q∗0,q
∗
1 . . .q∗T−1, we

trace backwards fromq∗T−1, looking at each state’s most likely predecessor, until we reach

the start of the sequence:

q∗t = ψt+1(q∗t+1). (2.9)

So far, Viterbi decoding has been applied to finding the best path through an HMM

representing a particular utterance. However, if we combine all of these HMMs, linking

each HMM’s exit state(s) to every HMM’s entry state(s), one big HMM is created.

By applying Viterbi decoding to the trellis that results from this, the resulting sequence

not only describes the most likely route through a particular HMM, but now, by this

concatenation of HMMs, provides the most likely sequence of HMMs themselves, and

hence the most likely sequence of words or sub-word units uttered.

This is known as the “one-pass” algorithm [5][6], and it allows connected speech

recognition. This is distinct from continuous speech recognition, in that it assumes a

finite sequence of observations, whereas the latter does not rely on the speech “ending” at

a known time.

2.3.3 Assumptions

It is assumed throughout that all state sequences begin in an HMM’s entry state.

The initial value ofδt( j) often appears as:

δ0( j) = π j ·b j(O0), (2.10)

whereπ j is the probability of starting in statej at timet = 0, ∑ j π j = 1, and 0≤ j ≤N−1.

If no language model is used, thenπ j = 1/H, wherej is an entry state, andH is the number

of HMMs; for non-entry states,π j = 0. Since we are only ever interested in the relative

values ofδt( j), there is no need to multiply them all by the same constant, so this value
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can be ignored. If a language model is used, this may have an effect on the allowed initial

HMMs, as well as the entry states.

Is it also assumed that all state sequences end in an HMM’s exit state, so when com-

putingP∗ andq∗T−1, non-exit states are ignored.

2.3.4 Log-domain representation

For both software and hardware, multiplication is usually a more costly operation than

addition. In particular, when designing for hardware, resource usage is a key factor, and

multipliers use significantly more resources than adders. Even though some newer FPGAs

have dedicated multipliers, the logic available for addition is faster and more plentiful.

Hence by performing Viterbi decoding in the log domain, all of the multiplications are

converted to additions, and so can be implemented more efficiently.

Once again, the fact that it is only the relative values ofδt( j) that are of concern, not

their absolute values, means that the logarithm function, being monotonic, does not affect

the validity of the result.

In addition, the log of a probability is always a negative number (assuming that we

use a base greater than 1), so we negate the result. This has the effect of turning the max

operation into a min; accordingly, certainty is represented as zero, while impossibility is

now+∞.

Henceδt( j) andψt( j) are redefined as follows:

δt( j) = min
0≤i≤N−1

[δt−1(i)+ai j ]+b j(Ot) (2.11)

ψt( j) = argmin
0≤i≤N−1

[δt−1(i)+ai j ], (2.12)

where 1≤ t ≤ T −1, 0≤ j ≤ N−1. The transition probability is similarly updated so

as to be the negated log of its old value, a calculation that can be done in advance. Other
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definitions are modified in the same way, and we continue in the negative log domain from

this point onwards.

2.4 Language model

While the above equations can be applied to transitions both within and between HMMs,

the latter are typically treated differently, in the form of a statistical language model.

UsingI to represent the exit state of a previous HMM (there may be more than one exit

state), andJ the entry state of the current HMM, we introduceaIJ as the language model

probability, i.e. the probability of a transition from one HMM’s exit state to another’s

entry state. In addition, each exit state has a probability of a transitionaI from that state

to any other HMM.

Associated with the language model are two constants:s, the grammar scale factor, by

which aIJ, in the negative log domain, is multiplied, andp, the word insertion penalty, to

which it is added. These correspond in the linear domain toaIJ being raised to the power

of s, and divided byp. Hence both of these values reduce the probability of a transition

between utterances, thereby removing many spurious results (and the occasional correct

one), and are found experimentally.2

Continuing in the log domain, these values are related by modifying equation (2.11)

as follows:

δt(J) = min
0≤I≤N−1

[δt−1(I)+aI +s·aIJ]+ p, (2.13)

whereδt−1(I) = δt−1(i) for any i which is an exit state. This can be slightly optimised by

grouping together the constants into one combined value dependent onI andJ:

δt(J) = min
0≤I≤N−1

[δt−1(I)+(aI +s·aIJ + p)]. (2.14)

2The notation used here is not based on any particular paper, since little or no mention is made in the
literature of the equations associated with language models. The use ofs andp is from HTK.
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The most likely predecessor HMM,ψt(J), is found in the same way as before, namely

by replacing the ‘min’ by an ‘argmin’.

If no language model is used,aIJ is same for all HMMs, and so is equal to 1/H in

the linear domain, or− ln(H) in the log domain, whereH is the total number of HMMs

(assuming each HMM has exactly one entry state). Accordingly,δt(J) becomes simply

δt , being the same forall HMMs, so need only be computed once in each time frame:

δt = min
0≤I≤N−1

[δt−1(I)+(aI −s· ln(H)+ p)]. (2.15)

Conveniently, no special calculation (or in hardware, no additional computation block)

is required to find the minimum (most likely) final value ofδT−1( j) and its corresponding

most likely final state (P∗ andq∗T−1 respectively, as defined in equation (2.8)). Because of

the requirement that the state sequence end in an HMM’s final state, the most likely final

state is simply equal toδT . In other words, the most likely final state is the exit state of

the most likely predecessor HMM at timeT (if the sequence were to continue to timeT).

2.5 Discrete HMMs

The simplest way of determining the value of the observation probabilityb j(Ot) is to look

it up in a table (also referred to as a codebook), and that is what discrete HMMs do.

The observation feature vectors are compared to a number of candidate points in state

space, and the “nearest”, according to some kind of distance metric, is used to represent

that observation. This is vector quantisation.

At each time framet, the observation is quantised in this way, and for each state,

the probability corresponding to the current state having produced that quantised value is

looked up in a table.

This approach is computationally simpler than calculating the observation probability,

– 23 –



PHD THESIS STEPHENMELNIKOFF

such as in the way described below, and can model any shape of probability distribution.

However, vector quantisation introduces errors at an early stage in the recognition pro-

cess which cannot be corrected later on, hence the tendency to use continuous HMMs

nowadays.

2.6 Continuous HMMs

The use of a continuous p.d.f. seeks to overcome the problems inherent in discrete HMMs.

We use a multivariate Gaussian (normal) distribution, with each state having a vector of

meansµµµj , and covariance matrixC j .

It is common to assume (or arrange) that the components of the feature vectors are

mostly uncorrelated, which reducesC j to being predominantly zero except along its main

diagonal. This removes some of the computational complexity, leading to the following

form of the Gaussian equation:

N (Ot ; µµµj ,σσσ j) =
L−1

∏
l=0

1

σ jl
√

2π
exp

(
−1

2

(
Otl −µjl

σ jl

)2
)

, (2.16)

whereOt is the vector of observation values at timet; µµµj andσσσ j are mean and variance

vectors respectively for statej; Otl , µjl andσ jl are the elements of the aforementioned

vectors, enumerated from 0 toL−1.

This model is still limited by the fact that observed distributions are not Gaussian-

shaped, so a further extension is to use multiple-component Gaussian mixtures. For this,

the final probability is the sum of a number of individually weighted Gaussian distribu-

tions:

b j(Ot) =
M−1

∑
m=0

c jm ·N (Ot ; µµµjm,σσσ jm), (2.17)

wherec jm is the mixture weight for statej and mixture componentm, the mixture com-
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ponents are enumerated from 0 toM−1, and:

c jm≥ 0,
M−1

∑
m=0

c jm = 1. (2.18)

As with Viterbi decoding, we can reduce the computational complexity by performing

the necessary calculations in the negative log domain, resulting in the following equation

for each mixture component:

− ln(c jm ·N (Ot ; µµµjm,σσσ jm)) =

[
− ln(c jm)+

L
2

ln(2π)+
L−1

∑
l=0

ln(σ jml)

]
+

L−1

∑
l=0

(Otl −µjml)2 ·

[
1

2σ2
jml

]
. (2.19)

For the implementation that uses a simple Gaussian,c jm is set to 1, hence ln(c jm)

disappears from the equation.

Note that the values in square brackets are dependent only on the current state, not the

current observation, so can be computed in advance. This reduces the equation to its final

form:

− ln(c jm ·N (Ot ; µµµjm,σσσ jm)) = Sjm +
L−1

∑
l=0

(Otl −µjml)2 ·Vjml, (2.20)

whereSjm andVjml replace the bracketed terms from above.

For computation in hardware,Sjm can be subsumed into the summation by adding an

extra element to all of the vectors, assigning this value toVjml, and settingOtl to 1 and

µjml to 0. In software, we can keep a running total which is intialised toSjm.

The result of this is that for each vector element of each state, we now require a

subtraction, a square and a multiplication.
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2.7 Gaussian mixture summation (log-add algorithm)

When it comes to summing the mixture components (equation (2.17)), we are faced with

the problem of performing addition in the linear domain of values computed in the log

domain.

While we could use look-up tables or CORDIC to convert between domains (as cov-

ered in section3.7), a convenient algorithm exists for this specific problem [14]. It re-

moves the need to convert between domains at all, instead relying on a look-up table

significantly smaller than for the logarithm or exponential operations, along with some

simple arithmetic computations — and hence well suited for implementation on an FPGA.

Given two values ln(A) and ln(B) for which we would like to compute ln(A+B):

A+B = A(1+B/A)

⇒ ln(A+B) = ln(A(1+B/A))

⇒ ln(A+B) = ln(A)+ ln(1+B/A). (2.21)

To compute the result, we work out ln(B/A), which is equal to ln(B)− ln(A), and then

use a look-up table to map that value to ln(1+ B/A). Since the values in this table are

dependent on therelative values ofA andB, it can be smaller than one which relies on

their actual values (see also section4.5).

In order to minimise the size of the look-up table without compromising accuracy, we

require thatA≥ B, hence limiting 1+B/A to the range[1,2], and switch the values if this

condition is not met.
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2.8 Duration modelling [ 25][37][44]

In the form described above, the probability of the system staying in statej for a duration

τ forms a geometric sequence, equal (in the linear domain) toaτ−1
j j (1−a j j ). However,

this has not been found to model observed speech accurately. This can be improved on by

replacing this implicit duration model with an explicit oned j(τ).

Accordingly,δt( j) is redefined (still in the negative log domain), with the constraint

that the state at timet +1 does not equal the state at timet, as follows:

δt( j) = min
0≤i≤N−1

i 6= j

min
1≤τ≤D

[νt(i, j,τ)], (2.22)

whereτ is the number of times that we remain in statej, i is the state at timet− τ, D is

the maximum duration, and:

νt(i, j,τ) = δt−τ(i)+ai j +d j(τ)+
τ−1

∑
s=0

b j(Ot−s). (2.23)

νt(i, j,τ) is the probability at timet, of the system having moved to statej at timet−τ+1

from statei at timet−τ, and then having stayed in statej for durationτ. Note that, because

self-transitions are now handled explicitly, cases wherei = j (i.e. where the current and

previous states are the same) are discounted. This can equally be effected by settinga j j

to zero (+∞ in the negative log domain).

As will become apparent in section4.6, for more efficient implementation in hardware

and software, it is convenient to extend these definitions. Firstly, if we take the minimum

of νt(i, j,τ) over all previous states, we can group the terms into those that are dependent

on the previous state, and those that are not:

min
0≤i≤N−1

i 6= j

[νt(i, j,τ)] =

[
d j(τ)+

τ−1

∑
s=0

b j(Ot−s)

]
+ min

0≤i≤N−1
i 6= j

[
δt−τ(i)+ai j

]
. (2.24)
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Secondly, by removingd j(τ), we can defineξt( j,τ) as the probability at timet, of the

system having moved from its most likely predecessor state at timet− τ to statej at time

t− τ+1, and emitting the observation sequence from timet− τ+1 to t:

ξt( j,τ) =
τ−1

∑
s=0

b j(Ot−s)+ min
0≤i≤N−1

i 6= j

[
δt−τ(i)+ai j

]
. (2.25)

This value is useful, as it can also be defined iteratively, avoiding the need for any recom-

putation:

ξt( j,τ) = ξt−1( j,τ−1)+b j(Ot). (2.26)

Finally, we can redefineδt( j) in terms ofξt( j,τ):

δt( j) = min
1≤τ≤D

[d j(τ)+ξt( j,τ)]. (2.27)

The way in which these values fit together is illustrated in Fig.4.10on page62.

2.9 Summary

In this chapter, the aspects of speech recognition theory of relevance to this research have

been presented. The underlying problem has been posed, and hidden Markov models

introduced to provide a solution, with Viterbi decoding enabling them to do so. Discrete

and continuous HMMs have been described, along with a number of extensions to the

basic algorithm, namely the language model, Gaussian mixtures, and duration modelling.

Before looking at how this assortment of algorithms might be implemented in hard-

ware, it is first necessary to cast a critical eye over previous such implementations, and so

that is the area visited next.
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The newest computer can merely compound, at speed, the oldest prob-

lem in the relations between human beings, and in the end the commu-

nicator will be confronted with the old problem, of what to say and how

to say it.

Edward R. Murrow (1909–1965)

3
Speech recognition in hardware

I t is only in the last few years that desktop PCs have been powerful enough to allow

large-vocabulary continuous speech recognition to be performed, in real time, in soft-

ware. At present though, for best results, they still rely on being trained to recognise one

speaker, with minimal background noise. Even then, steps have to be taken in order to

reduce the computational complexity so that real time recognition is feasible.

Before this was possible, or when it was necessary to try out more complex algorithms,

only hardware had the computational resources to achieve this.

Initially, hardware implementations tended to be based on parallel arrays of one kind

or another, often using custom chips. As the technology has improved, the focus has

shifted towards serial implementations, making use once again of custom chips, or mi-

crocontrollers or DSPs. Since the appearance of the FPGA, that too has been used as an

experimental platform.

Of the three principal stages of the speech recognition process, it is the decoding part

that takes centre stage in hardware implementations. Pre-processing tends to be performed

in software, or left to a DSP (though Gómez-Ciprianoet al (2001) [11] use an FPGA for
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feature extraction). Backtracking, as described below, is much better suited for processing

in software, rather than hardware.

So it is Viterbi decoding, and latterly, observation probability computation, that are by

far the most popular choice for implementations in hardware, and it is an assortment of

such implementations that is reviewed in this chapter.

3.1 Accuracy measures

The accuracy figures which appear here are intended to give an indication of how good

the cited recognition systems are. However, comparing values for different recognisers

can be misleading, as there are a number of factors which can affect this value.

First is the type of recogniser. A small-vocabulary system, such as one used for digit

recognition, has a smaller number of HMMs, with fewer parameters for the training pro-

cess to set, and a correspondingly constrained search space. Sofor its specified vocabu-

lary, it is likely to achieve a high score; for anything outside this, it will not. This contrasts

with a large-vocabulary recogniser, which may give a lower recognition rate, but is capa-

ble of recognising many more words.

In a similar vein, a speaker-dependent system is likely to perform well for the speaker

it has been trained for, and not so well otherwise, whereas a speaker-independent system

is not tied to any one speaker.

The type of recogniser also places limits on recognition rate. Generally speaking, the

better the model is at representing speech, the more processing that is required, and the

higher the recognition rate is likely to be. So continuous HMMs tend to do better then

discrete ones, and biphone & triphone models tend to outperform monophone models.

Finally, the accuracy rate can be manipulated by what is and is not included in that

figure. The value used by HTK in section7.3 takes both correctly identified recognition
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units and incorrect insertions into account, resulting in a lower score than one which

relies on correct utterances alone. This value can be further increased by treating similar-

sounding units as being the same unit.

3.2 Parallel systems

Parallel implementations of speech recognition systems have been produced before, most

using HMMs. In contrast to the approach described here, previous implementations have

generally used multiple processing elements (PEs) of varying sophistication, either at the

board or ASIC level, rather than a programmable logic device.

3.2.1 Custom ICs

Murveit et al (1989) [39] use 5 custom integrated circuits (ICs) to implement a system

whose Viterbi decoder has much in common with the designs presented in this thesis.

Their decoder chip has 3 parallel adders to addδt( j) andai j , a comparator to find the

minimum, and another adder to addb j(Ot). It also incorporates a scaler. Another IC

handles the language model, with the model probabilities, andδt( j) andδt−1(i) stored in

off-chip RAM.

The system is designed for continuous real-time speech, with a vocabulary of 3,000

words (9,000 states), based on bigrams and discrete HMMs. As is described in chapter

5 with reference to the implementations presented there, memory bandwidth is the major

performance-limiting factor.

This work is continued by Stölzle et al (1991) [50], using 50,000 states and discrete

HMMs. Again, a dedicated Viterbi decoder chip is used, accompanied now by a back-

track processor, which computesψt( j) values for each state while the correspondingδt( j)

values are being computed.
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It is pointed out in [37] that custom Viterbi decoders like these have two disadvantages.

Firstly, pruning is made harder, as having multiple computations done in parallel means

that for any time to be saved,all of the processing blocks’ data must be pruned equally.

If this does not happen, the other blocks must wait for the unpruned data to finish being

processed.

Secondly, such decoders have less flexibility when it comes to interconnects. Both

of these implementations assume that most states have up to three predecessors, and that

only left-right transitions (i.e. transitions, within an HMM, that go from a state to itself,

or to a state with a higher index) are allowed, thereby limiting themselves to one class of

model.

In contrast, the implementations described in chapter5 allow transitions in both di-

rections, which is useful for silence models in particular. Also, although the underlying

design assumes that states have three predecessors (four in the case of entry states), this

could be changed at compile time if necessary.

3.2.2 SIMD arrays

Many of the first attempts at using hardware for speech recognition focussed on the single

instruction, multiple data (SIMD) array, whereby all the processing elements (PEs) in the

array carry out the same instructions on different data.

SIMD arrays are not directly comparable to FPGAs, since FPGAs do not contain

processing elements as such. However, the way in which the algorithm is implemented

on a SIMD array, in particular, the extent to which certain tasks can be pipelined and/or

run concurrently, can be applied when implementing them on an FPGA.

Bisianiet al (1989) [3] use 3 general-purpose processors, with local and shared mem-

ory, to perform Viterbi decoding, splitting the 1,000 words in the model between them,

and averaging a speed of 1.3 times real time.
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They point out that while each PE is free to process states at its own pace, they must

all finish processing the data for the current time frame before the next set of data can be

loaded. Hence balancing the load between PEs is important in order to avoid them sitting

idle, and this is an issue that comes up in a number of SIMD implementations. In this

case, this is achieved by giving each processor its own data queue, but with a mechanism

to allow data to be redistributed if an imbalance occurs.

The INMOS T800 transputer has proven to be a popular choice for SIMD implemen-

tations, with load balancing again a highly relevant issue. Alexandreset al (1990) [1]

compare different topologies (linear, ring and tree) of PEs in a processor farm, whereby

data values are sent by the host through the PEs in sequence, until a free one is found; the

results of the processing are sent back through the network to the host. The load balancing

mechanism is therefore distributed and automatic.

Pruning is also addressed: the host PE compares all the data to a threshold, and only

sends values above the threshold to the processor farm. The authors report that this does

not affect accuracy, while improving the processing speed by a factor of 3 to 4, or allowing

fewer processors to be used.

The implementation uses discrete HMMs, and a vocabulary of 1,000 words.

Sutherlandet al (1990) [53] eschew this fine-grained approach in favour of a more

coarse-grained, distributed model, where each PE is given its own set of data to work on

at the start of every time frame, with the load balanced prior to run time. The host PE’s task

is reduced to broadcasting the quantised observation value to the other PEs, gathering the

backtracking information, and collecting the computed probabilities in order to perform

pruning. This design operates on 4 transputers in real time.

As an aside, it is interesting to note that L.S. Leeet al (1991) [23] have implemented a

recognition system, also using the INMOS T800, for the recognition of Mandarin Chinese.

Unlike European languages, in Mandarin the inflection (tone) of each syllable has as much
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effect on its meaning as the vowels and consonants. As a result, the tonal information,

normally discarded when the feature vectors are extracted from the speech waveform,

must instead be separated, processed in order to ascertain which of Mandarin’s four tones

has been used at any particular time frame, and then combined with the output of the

Viterbi decoder.

Contrasting with these transputer implementations, S.W. Leeet al (1992) [24] use an

“orthogonal multiprocessor,” wherebyn processors have access to row or column buses

connected to ann×n array of memory blocks. This array then mirrors the HMM trellis,

with each row assigned to a state, and each column a time, the values wrapping around

when the edge of the array is reached. As manyδt( j) values are updated in parallel as

there are PEs.

Finally, a particularly relevant work concerning recognition on a SIMD array is that

of Mitchell et al (1995) [37]. They employ the MasPar MP-1, a 128× 128 array of

PEs, each one consisting of a 4-bit ALU with 16 Kb of local memory. This is used

to perform recognition using continuous HMMs, and incorporating duration modelling,

taking maximum advantage of its inherent parallelism.

The PEs are arranged in an array, with each row assigned to a state. The observation

probabilities are calculated first, by assigning each PE in a row to one element of a mul-

tivariate Gaussian distribution. The calculations are done in the linear domain, with the

values for all the states being summed and exponentiated in parallel.

For the Viterbi decoding, each PE in a row corresponds to a durationτ, up to the

maximumD, with the values scanned across each row in order to find theδt( j) values,

computed in the log domain.

This implementation, using 64 monophones of 3 states each, shows a speedup over

software of more than an order of magnitude. IncreasingD slows the system down, though

not by much (the time taken for the test increases from 0.262 s to 0.569 s asD increases
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from 4 to 32, compared to 5.35 s and 28.18 s respectively for the software version). A

similar effect is shown whenD is maintained at 32, but the number of monophones is

varied.

This form of distributed processing, which is used for training as well as recognition,

clearly demonstrates that parts of the speech recognition algorithm have the potential to

be parallelised effectively, leading to significant speedup over software.

3.2.3 MIMD arrays

Kimball et al (1987) [20] implement their speech recogniser on a multiple instruction,

multiple data (MIMD) array. The Butterfly Parallel Processor’s PEs each contain a mi-

crocontroller, local RAM which is also accessible to all other PEs, a communications

co-processor, and other computing and management hardware.

Whereas a SIMD implementation farms out data to PEs as they become free, with

each PE performing the same operations, a MIMD array farms out tasks as well as data.

With 97 PEs, processor utilisation was initially 35%. This was increased to 79% by

reordering, in advance, certain tasks that were independent of each other, to avoid delays

due to data dependence.

In their initial implementation, all of the calculations for timet, including scaling,

were calculated before any processing for timet +1 was started. This had the result that

many PEs stood idle while others finished their tasks. Two optimisations were made in

order to overcome this. Firstly, scaling was delayed by one or more time frames, allowing

the maximum at timet to be computed even after some PEs had started dealing with data

for time t +1.

Secondly, the “word starting score,” i.e. the between-HMM probability used in the ab-

sence of a language model, presumably calculated as in equation (2.15), is also dependent

on all data from the previous time frame. Idling time was minimised by processing entry
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statesafter all the non-entry states, allowing any processing from the previous time frame

to be completed.

The problem of finding the global maximum was also mentioned. Rather than having

each PE compare its value to a single globally-accessible maximum, leading to bus con-

tention, a binary tree structure was used, with local maxima propagating up through the

tree’s nodes.

The system was tested with a 335-word speaker-dependent model, based on discrete

HMMs, with no language model, and achieved a recognition rate of 90%.

3.2.4 Associative string processors

Krikelis (1989) [21] makes use of an associative string processor for Viterbi decoding

for speech recognition. The system consists of a number of parallel “substrings,” each

containing a number of associative processing elements, and connected to each other via

a communications network and related logic.

What makes this platform associative, and hence distinct from other parallel architec-

tures, is that the simple PEs are addressed by their activity and data content, rather than

by address or identifier, not unlike the way in which a location in a content-addressable

memory is referenced by the data it contains.

The HMM states are distributed amongst the PEs, two per state, and processed in

parallel. As a result of using very simple PEs, and reduced inter-processor communication

arising from their associative nature, devices with up 8,000 processors are reported to be

feasible.
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3.3 Serial systems

In contrast to the parallel designs described above, the increased processing power now

offered by processors and ASICs — not to mention the lower cost — has led to a shift

towards such devices.

Shozakai (1999) [49] uses an ASIC containing a DSP core for feature extraction and

Gaussian computations, and a RISC microprocessor core for the Viterbi decoding. Tied-

mixture Gaussian mixtures are used, with 54 Japanese monophone HMMs.

Based on this monophone model, the system was tested using speech in five languages,

with a vocabulary of 128 words, and speaker dependence. The accuracy under these

conditions is generally upwards of 90%. With Japanese speech, accuracy averages 97%,

decreasing to 92% when background noise is added (the system is designed for use in

cars).

Nakamuraet al (2001) [40] describe an embedded system incorporating an ASIC

which also performs observation feature extraction and Viterbi decoding. Discrete HMMs

of 5 states each, representing 64 monophones, are used. An FPGA is used for training.

The authors report that the hardware, running at 17 MHz, can perform recognition in

real time. They add that if their ASIC were operating at the same speed as the processor

used for testing equivalent software (Pentium III 750), the ASIC would be 5.3 times faster.

In contrast to this, Shiet al (2001) [48] employ an ASIC containing an 8051 core for

almost all the processing, including feature extracting, with only the minimum of support

logic (mainly for analogue-digital conversion). The rationale of not using a DSP core is

that they are expensive in comparison — but the trade-off is the reduced processing power

available.

Dynamic time warping is used (see also below), and the system performs both training

and recognition. The authors state that the chip is capable of accuracy above 90% for a

constrained vocabulary.
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What is clear from these implementations is that, although a system-on-chip design

can do speech recognition, current ones have only enough processing power to cope with

small vocabularies and the simpler types of model (e.g. discrete, tied mixture, etc).

3.4 FPGAs

Providing a compromise between the processing power of hardware and the flexibility of

software, the emergence of FPGAs in the 1990s provided a new platform for the develop-

ment of speech recognition systems.

Schmit & Thomas (1995) [46] present an early FPGA implementation of an HMM-

based application, on a Xilinx 4000-series device. In this case, they use Viterbi decoding

to correct errors made by a person typing, resulting in a system 25 times faster than equiv-

alent software.

Although this design is not entirely comparable to those described in chapter4, the

authors observe that beam searching can double the speed of the software without sig-

nificantly reducing its accuracy. They feel, however, that comparing all the values to a

threshold in hardware would take as long as doing the computation for that state — an

observation borne out in the designs described later, though in that case it affects the la-

tency (number of clock cycles between data entering a pipeline and leaving it, with data

nonetheless produced at the rate of one item per clock cycle), not the delay (number of

clock cycles between data items being produced), of the system.

In addition, the authors state that maintaining the data structure used in software for

recording pruned states “destroys the regularity and simplicity of the algorithm which

made it especially amenable to hardware implementation.” Again, in the designs pre-

sented later, despite using a scaler (section4.3.2) which effectively prunes the least likely

states, it was found to be simpler to mark pruned states by giving them impossible proba-
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bilities, than to remove them from the data stream.

Vargaset al (2001) [54] use two Altera FPGAs to implement a simple isolated word

recognition system. The model uses up to 10 words, with 6 states per discrete HMM,

and 128 codebook entries per state. They take advantage of parallelism within the Viterbi

algorithm to achieve a speedup over software of the order of 500 times, with accuracies

for this task approaching 100%.

A novel implementation is demonstrated by Jouet al (2001) [19], who propose an

“efficient VLSI architecture,” prototyped on an FPGA. It takes advantage of the left-right

nature of HMM state machines used in speech recognition by merging every four columns

of the Viterbi trellis into one.

The authors state that this approach saves on time and resources. While this could

be useful for faster-than-real-time transcription, there is likely to be little gain when pro-

cessing real-time speech, as the system would have to wait for the same amount of time

between new observations whether it was processing one or four at a time.

The implementation uses Gaussian mixtures, and computes each component’s value

in a similar manner to that described in section4.4. However, rather than using log-add,

they pick the most likely component.

The work most closely related to the research described in this thesis is that done by

Stogiannoset al (2000) [52], based on Stogiannos (1999) [51]. They use discrete-mixture

HMMs, in which the elements of the observation vector are quantised in advance, allow-

ing the probability associated with each element to be looked up in an off-chip codebook,

rather than calculated. These values (in the log domain) are then summed, converted to the

linear domain using another look-up, and further summation takes place (as for Gaussian

mixtures). The conversion back to the log domain and the Viterbi decoding are performed

in software.

This approach uses a lot of external RAM: 64 Mb of SDRAM for the codebook val-

– 39 –



PHD THESIS STEPHENMELNIKOFF

ues, and 512 Kb of SRAM for the domain conversion (organised as four 128 Kb look-up

tables). In contrast, all but one of the designs described later use continuous probability

distributions, and so compute the mixture components on the FPGA. Use of an alter-

native algorithm removes the need for a domain conversion for the mixture component

summation, greatly reducing the large storage and bandwidth requirements inherent in a

RAM-based implementation. In addition, the Viterbi decoding is performed in hardware.

In all cases, the designs take advantage of more recent devices which are faster and have

more resources available.

Their speech model uses 10,900 states grouped into 1,100 “genones” (groups of states

with similar properties), with each genone being represented by 32 Gaussian mixture

components, and each vector containing 15 elements. The model is described as being

capable of recognition accuracy above 85% for a vocabulary of 1,500 words. The system

is designed for an Altera FLEX 10KE running at 66 MHz.

3.5 Commercial products

A small number of commercial speech recognition ASICs exist, such as Sensory’s RSC-

300/RSC-364 and RSC4x family [67], which use a RISC microprocessor with a neural

network; their Voice Direct 364, which is also based on a neural network; and Philips’

SBF1005 HelloIC [66], which is based on a DSP. All three are designed for applications

requiring a small vocabulary (typically 60 words or less), and boast a speaker-independent

recognition accuracy of 97% or more. (Further performance comparisons are not possible

due to a lack of suitable information).

Although, for the time being, recognition chips and IP cores only handle small vo-

cabularies, their prevalence in toys, automotive applications, and mobile phones suggests

that the market for such devices in embedded and mobile systems will continue to increase
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[10][38].

As regards FPGAs, there are no cores designed specifically for speech recognition.

However, cores do exist for performing Viterbi decoding for signal processing, such as

those produced by TILAB [69] and Xilinx [71]. In addition, some DSPs have dedicated

logic for Viterbi decoding, for example, the Texas Instruments [68] TMS320C6416, and

the TMS320C54x family.

In both cases, however, these decoders are designed for signal processing applications,

which, as outlined below, have different requirements from speech recognition, including

narrower data widths, different data formats, and fewer states.

3.6 Alternative recognition methods

The hidden Markov model is by far the dominant underlying algorithm used in speech

recognition systems, both commercially and in research. However, there are alternatives

which provide a useful comparison.

Dynamic time warping1 (DTW) [8] predates HMMs, and is in fact a special case of

HMMs. It works by comparing two utterances, stretching or compressing one (hence

“warping”) in order to try and match it to the other. The degree to which the utterance is

warped determines a value, not unlike theδt( j) used by HMMs, though computed without

transition probabilities, and with observation probabilities replaced by a distance metric

(typically Euclidean or “Manhattan”). This value must be minimised in order to find the

most likely match.

DTW was superseded by HMMs because the former provides less flexibility, as it

cannot be made more robust by training on large amounts of data. Conversely, it has a use

where data is limited, as a single utterance can be used as a template in lieu of training

data.
1The author is not aware of any connection between this and the Rocky Horror Show.
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Its relative simplicity was of use when implemented by Shiet al (2001) [48], as de-

scribed above.

Also mentioned earlier were neural networks. Rather than use any particular algo-

rithm, a neural network is trained on a set of template patterns (e.g. a set of words used for

command and control application). It is then sent data extracted from incoming speech,

and the data is compared to the templates. The neural net picks the most likely template,

or selects a number of most likely candidates, with a final one being chosen after further

processing.

Neural nets are simple to train, but their pattern-matching abilities are limited. They

are suitable for recognising a small number of isolated words, but they cannot cope with

large-vocabulary continuous speech. Their inherent parallelism, however, does make

them suitable for implementations in hardware, such as the FPGA version described by

Eldredge & Hutchings (1994) [9]. A more general approach is presented by Chen &

Jamieson (1996) [7].

Finally, a more unusual approach is introduced by Bohez & Senevirathne (2001) [4].

They use fractals for clustering phonemes, and report that this method is good for endpoint

detection and segmentation, but not dealing with whole words. It is suggested that this

method on its own is not suitable for recognition, but could be used in conjunction with

other techniques.

3.7 Gaussian mixture summation

There do not appear to be any published hardware implementations of the log-add algo-

rithm described in section2.7. The alternative method is to convert the data from the log

domain to the linear domain (i.e. take the exponential), perform the summation, and then

take the log of the result.
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Two different approaches have been previously implemented on an FPGA. In [52], a

RAM-based look-up table is used to perform the conversion on 16-bit log-domain values,

producing 16-bit results; 128 Kb of storage is required for this. The reverse operation is

performed in software; were it to be implemented in hardware, it seems likely that another

similarly sized table would be required. This compares to one 11 Kb look-up table in the

design described in section4.5.

Alternatively, CORDIC [2][56] provides a very resource-efficient method of perform-

ing non-linear operations like these. An iterative implementation requires a very small

look-up table (just one entry per bit of accuracy), and incurs a delay of one clock cycle

per bit. A fully pipelined version does not use a look-up table at all, and incurs a latency of

one clock cycle per bit. Two CORDIC blocks would be required for the two conversions,

with a couple of additional cycles for the summation itself. The log-add design presented

later, using 24-bit numbers, has a total latency of 4 cycles.

3.8 Other hardware implementations

Although the choice was made to focus on particular algorithms for realisation in pro-

grammable logic, there are a number of other methods, and other parts of the recognition

process, which have also been implemented in hardware. A selection are presented below.

3.8.1 Convolutional decoding

Viterbi decoding [55] was originally developed as a more efficient method for the decod-

ing of convolutional codes. When sending data over a noisy channel, the data is encoded

using a finite state machine (FSM) in such a way that the extra bits added to the bitstream

can be used by the receiver to extract the original information, even if the bitstream has

errors in it.
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The size of the FSM used for the encoding is dictated by the constraint lengthK,

whereK is either the number of previous inputs stored, or that value plus one in order to

include the current input. Hence the number of states in the FCM is either 2K or 2K−1,

respectively, depending on which definition is used.

This FSM is also used for the decoding, with a Viterbi trellis used to find the most

likely path. Each transition corresponds to a possible bit sequence of lengthR (typically

2, 3 or 4). Instead of transition or observation probabilities, an error metric is computed

which measures the “distance” between the transition’s associatedR-bit sequence, and the

next R bits actually received; this is typically the Hamming distance, i.e. the number of

bits which differ between the two values, or the Euclidean distance. The most likely path

is the one with with the smallest total error metric.

Besides the lack of probabilities, this also differs from Viterbi decoding for speech

in the nature of its state machine. In some of the implementations described later, 634

biphones and triphones of 3 states each are used, which together form a machine of 1,902

states, though with the number of allowed transitions constrained.

For convolutional encoding, the number of states is dependent onK. As an example,

the Texas Instruments TMS320C6416 allows a value ofK between 5 and 9, hence 16 to

256 states, with the distance metric based on Euclidean distances.

Aside from the aforementioned commercial FPGA cores, Yehet al (1996) [58] im-

plement a Viterbi decoder withK = 14. This mammoth decoder is implemented using 36

Xilinx XCV4010 FPGAs, spread across 7 boards with a custom backplane, and utilising

a multi-ring topology. The reconfigurable nature of the FPGAs is used to allow smaller

decoders to be implemented using the same hardware.

Then, as now, one of the key points is the use of FPGAs as a more cost-effective

solution for low-volume applications, though at the expense of lower processing speeds

than ASICs.
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3.8.2 Traceback

Traceback/backtracking for convolutional decoding has also been implemented in hard-

ware (e.g. Lin (2000) [26]). The traceback depth is fixed by the amount of logic imple-

mented, and it has been shown [27] that it is sufficient to set this equal to 5K, whereK is

the constraint length mentioned above.

For convolutional decoding,K, and hence the number of states, is sufficiently small

to make a hardware backtracker feasible. For speech recognition, however, 1,900 states

corresponds to a nominalK value of 12, requiring predecessor information for all of those

states to be stored for up to 60 (= 5×12) time frames. This would require more memory

than is likely to be available on an FPGA or ASIC, and of course, a more complex speech

model would need even more space.

3.8.3 Training

Training the speech models for subsequent use in recognition is more computationally

demanding than the recognition itself, not least because it cannot be performed in the log

domain, hence requiring rather more than additions and comparisons. This, however, is

balanced by the fact that it does not need to be performed in real time.

A number of hardware implementations exist. Yunet al (1997) [61] present a recon-

figurable parallel processor, with a small number of PEs each containing a RISC processor

and an FPGA.

Pepperet al (1990) [43] utilise a ring of parallel processors arranged as a skewed

SIMD array, with data passing in both directions around the ring. The authors report that

this approach is “optimally efficient” and minimises interprocessor communications.

In addition, [24][37][48], whose architectures are described above, also contain details

of training algorithms applied to hardware.
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3.8.4 Trees

Roeet al (1989) [45] use ASPEN, a tree-structured parallel computer, for two purposes.

The first is level-based pruning, where all but theK best nodes are pruned, as opposed

to the normal method, whereby those nodes whose associated probability falls below a

threshold are pruned. The second is to implement pattern recognition, using finite state

machines to model grammars.

The PEs, each consisting of a DSP plus local memory, are arranged in a binary tree

formation. Using 127 PEs, the authors predict that a 1000-word vocabulary, with contin-

uous HMMs, could be processed in real time — which, at the time of writing, would have

been a significant speedup over software.

The key advantage of the tree-based architecture is the simplified, hierarchical, inter-

processor communication, which they make use of in their algorithms.

3.9 Summary

This chapter has taken a look at previous hardware implementations of speech recognition

systems. After commenting on ways in which accuracy is measured, a number of types

of parallel system have been considered, along with serial systems, and naturally FPGAs

as well. Some commercial recognition products have also been mentioned.

Hardware implementations of recognition methods besides HMMs have been de-

scribed, as have alternatives to the log-add algorithm. Finally, an overview has been given

of a few implementations in areas indirectly related to recognition.

Having looked at how parts of the recognition process have been implemented before,

it is now time to propose new designs, inspired by these, and based on the theory described

in the previous chapter.
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Good design keeps the user happy, the manufacturer in the black and

the aesthete unoffended.

Raymond Loewy (1893–1986)

4
System design

I n this chapter, the designs for the various parts of the speech recognition system are

presented. Because the world of electronics moves at a pace which ensures that any

device-specific designs will soon be obsolete, those described here are independent of

any particular chip. Instead, they assume a hardware platform with, as a minimum, the

resources of today’s FPGAs.

The debate over how to partition a system between hardware and software is an ongo-

ing one. In this case, we have the speech pre-processing, recognition, and backtracking

stages to implement. As mentioned previously, the pre-processing can be done using

dedicated DSPs, or in software; the backtracking process requires large amounts of data

storage, and indexing operations, for which software is better suited. It is the recognition

part, including Viterbi decoding, and in particular the computation of observation prob-

abilities, which requires significant number crunching, and for which no suitable device

currently exists — and so it is this part that has been the subject of this research, and for

which the hardware designs are presented here.
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Figure 4.1: System structure

Figure 4.2: Recogniser structure

4.1 Structure

The design assumes that the hardware recogniser will act like a co-processor within a

computer, with the host passing the pre-processed speech and model data to the recogniser,

and the recogniser sending the set of most likely predecessorsψt( j) back to the host

(Fig. 4.1).

The recogniser itself consists of two parts: the observation probability computation

block, and the Viterbi decoder block (Fig.4.2).
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4.2 Data representation

4.2.1 General

Performing the calculations for speech recognition in the log domain makes them more

amenable to implementing in hardware.

In addition, since taking the log of a probability always yields a negative number for

any base greater than 1, the log probability is multiplied by a negative constantK, so that

all the values encountered are positive. This results in a probability of 1 being represented

as 0, and 0 as+∞.

For Viterbi decoding, the dynamic range of the data is sufficiently small (specifically,

the values are all probabilities, so correspond to the range[0,1] in the linear domain) to

allow them to be represented as fixed-point values. Pruning of unlikely paths through the

trellis, which may be performed explicitly in software, happens implicitly in hardware by

“removing” values which have exceeded their specified bit width.

In practice, a value which has overflowed in this way can be set to 2n−1, wheren is

the bit width, which is the equivalent of setting all of its bits to 1.

The same is not true for the observation probability computation. Its inputs are not

probabilities, while its outputs are — but often very small ones. Even in the log domain,

the dynamic range required means that fixed-point cannot feasibly be used, and floating-

point must be implemented instead.

4.2.2 HTK

HTK processes discrete HMMs using 16-bit data. If a probabilityA is converted to the

negative log domain by computing− ln(A), a 16-bit log-domain integer value would rep-

resent the probabilities from 3× 10−28462 to 1, a range which is far too broad for the

purposes used here. A more reasonable range is 10−12 to 1, which can be achieved by
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Figure 4.3: Viterbi decoder core

computingK ln(A), whereK equals−2371.8. This is the approach used by HTK.

It was found that for the more complex speech models, 16-bit values are not sufficient

to maintain accuracy, and so 24-bit values are used instead, resulting in the range of

probabilities being 10−3072 to 1. The value ofK is kept constant in order to maintain

compatibility between implementations.

4.3 Viterbi decoder

The Viterbi decoder consists of six parts, as shown in Fig.4.3. It takes as its input the

observation probabilitiesb j(Ot), be they loaded from a table for discrete HMMs, or cal-

culated for continuous HMMs, and produces each state’s most likely predecessorψt( j),

which is sent to the PC and processed in software, in order to find the most likely state

sequence.

4.3.1 Initialisation and switching

When a new speech file is processed, it is necessary to initialiseδ0( j) in accordance with

equation (2.10). Because of the assumption that, in this case, each HMM will start in its
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entry state,δ0( j) for each entry state is set tob j(O0), and to infinity for the rest. The

initialisation and switching block performs this operation at the start of a speech file.

4.3.2 Scaler

The scaler scales the probabilities, to avoid values exceeding the number of bits used to

represent them, as would happen after successive additions.

Firstly, the smallest value is found (corresponding to themostlikely path), and sub-

tracted from all the values. This does not affect the result of the recognition system, as we

are only interested in the paths’relativevalues, not their absolute values.

Then, those scaled values which have exceeded the specified bit width are pruned.

This can be effected without using a comparator, by extending the bit width in the HMM

block by two in order to compensate for the two additions within that block. Any value

whose two most significant bits (after scaling) are not both zero is then considered to have

overflowed, and can be pruned. As mentioned in section4.2, this is done by setting all

their bits to 1.

4.3.3 Language model

None of the implementations makes use of a language model. Nonetheless, a language

model block is still required, though its purpose is reduced to finding the single most

likely predecessor HMM forall HMMs. This implements equation (2.15), and scales the

result using the smallest value produced by the scaler. The index and probability of the

most likely previous HMM is then sent to the HMM block.

In early designs, the language model block came after the scaler in the pipeline, based

on the premise that its output must be scaled, and so must first wait for the scaler to finish

its operation.

However, it was noticed that the two blocks are independent of each other until they
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have finished their respective processing, at which point the smallestδt−1(i) value from

the scaler is used to scale the output from the language model block.

Given that neither block produces any output until data from all the HMMs have been

processed, putting the two blocks in parallel shortens the pipeline, hence reducing the

processing time for the Viterbi decoder.

At the end of the observation sequence, we need to know the most likely final state.

We assume that the sequence ends with an HMM’s exit state, and so this state is simply

the most likely predecessor HMM at timeT.

A design for a full language model block is proposed in section4.7below. If it were

implemented, it would occupy the same place in the system as the current block.

4.3.4 HMM block

The HMM processor contains nodes (Fig.4.4) for implementing equations (2.11) and

(2.12). Each one performs these calculations for a single state, taking inδt−1(i) from the

scaler, the transition probabilitiesai j from their store, the observation probabilitiesb j(Ot)

— either loaded from a table for discrete HMMs, or calculated in the case of continuous

HMMs — and for entry states, the most likely previous HMM and its probability. Accord-

ingly, each node outputsδt( j), sent to the padding buffer, and the most likely predecessor

stateψt( j), sent to the PC.

As every node depends only on data produced by nodes in the previous time frame

(i.e. at timet−1), and not the current one, we can — in theory — implement as many

nodes as we like in parallel. That, as well as the fact that each node can be pipelined and

perform a number of additions in parallel, are what originally made speech recognition a

prime target for implementation in hardware. As we shall see in chapter5, however, other

factors place a severe limit on the degree of parallelism we can employ.

That notwithstanding, it is convenient to implement in parallel as many nodes as there
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Figure 4.4: Node structure

are states in an HMM, as each one uses and produces the same set ofδt( j) values, corre-

sponding to the transitions within one HMM. As a result, the whole data pipeline in the

Viterbi core consists of three parallel streams, corresponding to the three states in each

HMM.

Since all HMMs use the same nodes, the number of parallel nodes must be greater

than or equal to the number of states in each HMM. Three states are used here, since the

models used for the implementations all contain that number; but the design could easily

be modified if larger HMMs were required.

It is normal practice in speech models to only permit transitions from one state to

itself or a later state (left-right or non-ergodic model); but this restriction may not apply

to the HMM representing silence, and so for maximum flexibility, the hardware is not

constrained in this way.
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4.3.5 Padding buffer

Where the total pipeline depth of this circular pipeline is greater than the number of data

items stored in it at any one time, then no additional storage is required; indeed, it is likely

that processing cycles will be wasted, as is the case for the simpler implementations.

However, if we are attempting to process serially more data items than the pipeline

can hold, we must insert a buffer to deal with the extra data.

This is particularly important at startup, whenb j(O0) enters the pipeline and becomes

δ0( j), and must then be stored while we awaitb j(O1) so that processing can continue.

4.4 Observation probability computation

The observation probability computation block evaluates observation probabilities based

on Gaussian mixtures. It processes multiple speech files in parallel, with a Gaussian

mixture component (GMC) block dedicated to each one, and the mixture summation block

and Viterbi decoder block shared between them.

4.4.1 Parallelism

Whether we are processing one speech file or many, the same model data are used through-

out; what differs are the observation data. If, as is the case for these implementations, we

only have sufficient bandwidth to read in one file’s observation data at a time, we can han-

dle multiple files by reading in the observations successively, interleaving the files, whilst

delaying the model data before it enters the corresponding GMC block. This is illustrated

in Fig. 4.5. Clearly, each GMC block only accepts its corresponding observation values,

ignoring other files’ data.
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Figure 4.5: Observation probability computation block. The Gaussian mixture summation
block is replaced by a multiplexor when the model employs just one mixture component

4.4.2 Gaussian mixture components

The GMC blocks implement equation (2.20). Each block contains a pipeline (Fig.4.6),

with the observationsOtl , meansµjml and variance constantsVjml as its inputs. It performs

a floating-point subtraction, square and multiplication for each element, before summing

them, and converting them to fixed-point. Because each state reuses the same observation

data at any particular time frame, it is only necessary to read in this data once. The values

are stored in the observation buffer, and thereafter output repeatedly until all the states

have been processed. It is this saving on bandwidth that enables multiple observation files

to be interleaved, since each observation vector is read from RAM just once and used

multiple times.

If we had sufficient resources and I/O pins, all of the elements of the observation,

mean and variance vectors could be read in at the same time, processed in parallel, and

the results summed using perhaps a binary tree adder, so that one observation probability

could be produced per clock cycle.

Regrettably, for the most complex design implemented (Cont34; see section5.6), this
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Figure 4.6: Gaussian mixture component (GMC) block. The observation probability
buffer is moved to the Gaussian mixture summation block in implementations which fea-
ture Gaussian mixtures

would require 10,368 data lines between the processing core and memory! (3 observation

vectors× 4 mixture components× 27 elements× 32 bits). For on-chip block or dis-

tributed RAM, this could eventually be feasible; for a separate RAM chip, an FPGA or

ASIC with 10,000 pins seems a long way off.

In addition, it would require 108 GMC blocks, when just three already fill the FPGA

(XCV2000E) used for that implementation. Because of this restriction on resources, three

GMC blocks are used for all of the implementations which process multiple speech files

in parallel.

The data values for just one element of each mixture component are loaded, and then

computed, per clock cycle. The adder block is therefore required to act like an accumu-

lator, though because the latency of a floating-point adder is greater than the one cycle

required by an accumulator, it actually consists of a chain of adders (5 where 27 elements

are used, 6 for 39 elements).

The constantSjm that appears in equation (2.20) is treated as an additional element,

and is included in the summation by assigning it to the variance constant, with the obser-

vation value set to 1, and the mean to 0.

Fully parallel and fully serial are opposite extremes for element processing, but of
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course, they are not the only options. Resources and bandwidth permitting, the elements

could be dealt with as a serial stream, but with a few at a time processed in parallel,

in the same way that the HMMs are processed serially, but actually contain three states

processed in parallel.

As described in section4.2, all the log probabilities are multiplied by a negative con-

stantK prior to being used by the Viterbi decoder. This constant is incorporated into the

system by pre-multiplying the constantsVjml andSjm by K, so that no additional compu-

tation is required at run-time.

The floating- to fixed-point converter therefore just shifts the mantissa of the compo-

nent value as necessary. Very small probabilities, i.e. those that cannot be represented

using the bit width chosen for the fixed-point representation, are reduced to zero (+∞ in

the negative log domain).

4.4.3 Data storage

Because a result is only produced once everyL +1 clock cycles (whereL is the number

of elements in the various vectors), and in order to make it easier to share the decoder and

Gaussian mixture blocks between multiple speech files, the mixture component values

are stored in a buffer until all of them have been computed, so that they can be sent to the

decoder on successive clock cycles.

For the earlier implementations which do not use Gaussian mixtures, a multiplexor is

used instead of the summation block, and the buffers sit inbetween the GMC blocks and

the multiplexor.
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Figure 4.7: Gaussian mixture summation block

4.5 Gaussian mixture summation [ 35]

The Gaussian mixture summation block implements equation (2.17), using the log-add

algorithm described in section2.7. This novel implementation is more efficient in terms

of both resources and clock cycles when compared to the alternatives described in section

3.7, and is well-suited to an FPGA.

4.5.1 Top-level structure

Even with three GMC blocks processing mixture components in parallel, the number of

clock cycles between successive values is high enough to allow just one Gaussian mixture

summation block to be implemented, and shared between and within mixtures. For the

latter, having four mixture components requires three log-add operations (first pair of

components, second pair, and the result of those two operations), and these are computed

serially. Fig.4.7shows the buffers and multiplexors required to achieve this.

For each GMC block, corresponding to one speech file, the mixture components are

stored in buffers until all four have arrived. The first two pass through the log-add block,

and the result is stored in one of the two registers in the bottom left of the diagram. This
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is repeated for the second pair of mixture components. The pair of results from these two

operations are themselves then passed through the log-add block, and the result stored in

the observation probability buffer corresponding to the GMC block from which the data

came. The next GMC block then has its mixture components undergo the same process,

and so on, until all of the observation probabilities for all three speech files have been

computed.

4.5.2 Data analysis & design

As a hardware implementation, this algorithm seems ideal, since it relies on functions eas-

ily realisable on a chip. But in order to give it a significant advantage over the alternative

methods described in section3.7, the look-up table needs to be kept as small as possible

without adversely affecting accuracy.

Hence the first step of the implementation is to analyse the data to be used in the table.

Software was written to perform the calculations directly, and produce a full set of values.

These were then inspected in order to identify patterns which could be used to produce a

more efficient design. This involved keeping to a minimum both the number of entries in

the look-up table, and the amount of additional logic required.

Inspection of this data reveals that whenK ln(B/A) is 0, K ln(1+ B/A) is −1644.

Since all of the outputs are negative, we ignore the sign at this stage. So taking the

outputs as positive numbers, as the input value increases, the output decreases, initially at

the rate of 1 for every 2 increments of the input, and then more and more slowly. The first

consequence of this was that we could ignore the least significant bit of the input, as it did

not affect the output by more than±1. The other was that for all values of the input above

16,384, the output changed only twice, decreasing from 2 to 1 at 17,471, and then to 0 at

20,077.

The result of this was that a table 8,192 entries deep and 11 bits wide (a total of 11 Kb)
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Figure 4.8: Log-add table structure. The ‘and’ gate with negated inputs is equivalent to
a comparator checking if the input is less than 16,384, but requires fewer resources. The
multiplexor outputs zero (option ‘d’) if the input is greater than or equal to 20,077

Figure 4.9: Log-add structure

was sufficient to represent all values of the input from 0 to 16,384 (discarding the least

significant bit), with the two values above this handled using a couple of comparators, as

shown in Fig.4.8. The only other processing required was a comparator for the two inputs

K ln(A) andK ln(B), a subtractor to compute their difference, and another subtractor to

subtract the smaller (i.e. more negative) input from the output of the look-up table (which

is equivalent to adding the smaller input to the negative of the value from the look-up

table, required because the numbers stored in the look-up table are positive, the minus

sign having been discarded). The architecture of the log-add block is shown in Fig.4.9.
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As a comparison, if we were to convert between domains instead of using this algo-

rithm, there would be the issue of data representation to consider. Using the scaling factor

K, a 16-bit value in the log domain translates to a number between 10−12 and 1, which

would need to be represented as a 40-bit fixed-point value if complete accuracy were re-

quired, or floating-point otherwise. With 24 bits, the range is 10−3072 to 1, which cannot

be sensibly represented in fixed-point. By avoiding a domain conversion, these issues can

be circumvented without loss of accuracy.

4.6 Duration modelling

4.6.1 Parallel architecture

Duration modelling provides an opportunity for hardware to significantly outperform soft-

ware, by taking advantage of the parallelism inherent in this extension to the Viterbi de-

coding algorithm.

For each durationτ, corresponding to the number of times in which we stay in the

same state up to a maximum durationD, we can instantiate a processing element (PE)

to compute mini [νt(i, j,τ)], as described in equation (2.24). A proposed architecture is

shown in Fig.4.10.

Each PE takes as its inputs the current observation probabilityb j(Ot), the smallest

probability from the scaler mini δt−1(i), the duration probabilityd j(τ) for current statej

and durationτ, and crucially, thepreviousoutput from the previous stageξt−1( j,τ−1)

(defined in equations (2.25) and (2.26)).

This last value must be stored for each stage, before being passed on to the next one.

The value sent to the stage corresponding toτ = 1 is computed by the adders and com-

parator, as shown in the diagram.

The other value produced by each stage, mini [νt(i, j,τ)], is sent to a comparator, ide-
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Figure 4.10: Proposed architecture for explicit duration modelling
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ally a binary tree comparator, which finds the minimum across all stages, producingδt( j)

andψt( j).

The need for simple PEs with local storage makes this part of the system ideal for a

SIMD array, and such a platform was indeed used for training and recognition in [37].

4.6.2 Serial architecture

If a single chip is to be targeted, the bandwidth and data storage required for a parallel

design could exceed that available. The alternative is a serial design, where a single PE is

implemented, the current and previous data are read for one value ofτ at a time, and the

parallel comparator is replaced by a serial one.

With just one PE, a singleδt( j) value will be produced everyD cycles, slowing down

the rest of the Viterbi decoder in the process. Although eachδt( j) is dependent on several

other values from previous time frames, the complete set ofδt( j) values for the current

time t would be stored between observations, meaning that all required data would be

immediately available when computing a newδt( j), without any further delays being

incurred.

The time taken to produce the observation probabilitiesmaybe sufficient to offset the

delay produced by a serial architecture, though this would depend on the parameters in-

volved, chiefly the number of elements in the observation feature vectors, and the number

of mixture components.

4.7 Full language model

If we were to use a full language model, a probabilityaIJ would be associated with every

transition from one HMM’s exit stateI to another’s entry stateJ. In every time frame, we

would then need to find every HMM’s most likely predecessor HMMψt(J) by calculating
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Figure 4.11: Proposed architecture for language model block

its corresponding probabilityδt(J), as described by equation (2.14).

A fully parallel architecture is shown in Fig.4.11. In this, the probabilityδt−1(I)

associated with an HMM’s exit state is added to every between-HMM transition proba-

bility (equal toaI + s·aIJ + p) in parallel. A min/argmin block (i.e. a block which finds

the minimum of the set of values which pass through it on successive clock cycles, and

that minimum’s index) finds the most likely predecessor HMM in each case, once all the

δt−1(I) values have passed through, and a multiplexor then sends each one in turn to the

HMM block.

At first glance, it may appear that, as each HMM’s data values are computed at the

same time, but used on different clock cycles, the input data could be staggered and some

hardware reused. However, this is not the case, since the min blocks only produce a value

everyH cycles (whereH is the total number of HMMs), once allδt−1(I) values have been

input.

The language model block and scaler both take as many cycles to perform their pro-

cessing as there are HMMs, plus a few additional cycles for arithmetic, etc. Hence, ir-

respective of the number of HMMs, they can be implemented in parallel, as shown in
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Fig. 4.3.

This design requires either storage space for all of the between-HMM transition prob-

abilities, or sufficient bandwidth to be able to load all required values onto the chip at

once. It also needs one adder and one min block for every HMM. Again, the requirement

for local data storage and high total bandwidth suggests that a SIMD architecture may be

more appropriate than a single monolithic chip.

Furthermore, the language model block is not a good candidate for a serial implemen-

tation, as rather than requiring aroundH cycles to do its work, it would takeH2. This

is because the min block takesH cycles, and would have to do so for each HMM in

succession.

4.8 Further design issues

4.8.1 Control

Control of the system is distributed, and takes the form of HMM identification num-

bers (and, within the observation probability computation block, element numbers) which

travel through the pipeline alongside the probabilities associated with that HMM, with

additional identifiers used to signal the beginning and end of a data sequence.

This data stationary control [50] has a number of advantages. During development,

it obviates the need for a central control module, making it easier to add blocks into the

pipeline without affecting the rest of the system. During simulation and testing, it is clear

to see which data is associated with each HMM, and whether additional registers are

required to synchronise the different parts of the system.

During the operation of the recogniser, this approach becomes even more useful.

There are two independent data streams — the observation probabilities streamb j(Ot)

and theδt( j) stream — and these streams converge in the HMM block, where they must
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be synchronised so that they represent the same HMM (i.e. the value ofj is the same for

both streams). This synchronisation is achieved by a local control block which, in the

event that one stream is ahead of the other, suspends the subsystem generating that stream

until they are synchronised once again.

In addition to the various control signals, numerous shift registers are employed to

synchronise the data and control streams. For clarity, these, and the control signals, are

not included in the diagrams in this chapter.

4.8.2 Pruning

As mentioned in sections4.2.1 and 4.3.2, the least likely paths through the trellis are

implicitly pruned when theirδt( j) values exceed the allowed bit width.

While there can be performance advantages in removing pruned HMMs from the data

stream, there are consequences to having the pipeline contain a data stream whose length

can change on each trip around the system.

The design assumes a continuous stream of HMM data, bookended with start and end

control signals. If an HMM were to be removed from the stream, the next block in the

pipeline (presumably the HMM computation block, if the scaler were doing the pruning)

would need to be suspended for a clock cycle to compensate.

If the HMM block were then to re-insert a pruned HMMin situ, the previous block

would have to be suspended for a cycle while this took place. HMMs could instead be re-

inserted at the end of the stream without penalty, provided that when processing multiple

speech files, there is a sufficient gap between the end of one and the start of the next.

If necessary, these problems could be rectified by moving the padding buffer to be-

tween the Scaler and HMM block. It should be borne in mind, however, that for the later

implementations, the time taken for the Viterbi decoder to do its processing was much

smaller than that of the observation probability block, and even without any pruning, the
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Viterbi core stood idle most of the time.

The end result is that it is far simpler to have a data stream whose size does not change,

and hence have a pipeline which does not have to be continually suspended in places, than

to add and remove data items. Pruned items can instead be marked with a probability

representing impossibility.

4.8.3 Non-emitting states

HMMs are sometimes represented as having non-emitting or null states, typically with

one as an HMM’s sole entry state, and another as its exit state.

In the case of the HTK models used here, each HMM has a single non-emitting entry

state, with a single transition of probability 1 to the first emitting state. Similarly, the last

emitting state has a transition to a non-emitting exit state, with the associated probability

aI being the probability of a transition from that HMM to any other, as introduced in

section2.4.

Non-emitting states, while perhaps adding convenient “packaging” to an HMM, do

not aid its processing. In these designs, the entry states do not provide any additional

information, and so are removed, with the first emitting state of each HMM now becoming

the entry state.

For the exit states,aI is subsumed into the language model, making the state redun-

dant, and so the last emitting state becomes the exit state. If an HMM were to have more

than one exit state, this too could be incorporated into the language model.

4.9 Summary

This chapter has set out the designs for implementing various parts of the speech recog-

nition algorithm in hardware. Starting with comments as to how data may be represented
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in such a system, the Viterbi decoder and its component parts have been described. This

has been followed by the observation probability computation blocks, and the Gaussian

mixture summation block.

Designs have been proposed for duration modelling and the language model block,

and other general issues related to the design have been covered.

Of particular noteworthiness in these designs are the ability of the observation proba-

bility computation block to process multiple speakers in parallel, despite bandwidth limi-

tations, and the small and efficient hardware design for the log-add algorithm.

Having proposed these designs on paper, they must then be realised in silicon; the

FPGA implementations are described next.
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The presence of humans, in a system containing high-speed electronic

computers and high-speed, accurate communications, is quite inhibit-

ing.

Stuart Luman Seaton (1906–)

5
Implementation

This chapter deals with the application of the designs to hardware, and the software

that accompanies it. Whereas, up to this point in the thesis, it has been important to

separate the theory and designs from any particular implementation, it is now necessary

to describe how these designs were turned into a real, operational, speech recognition

system.

Described below are details of the hardware and software used, followed by each of

the implementations. Detailed timing, resource usage and accuracy results are given in

chapter7.

5.1 System environment

5.1.1 Hardware

The FPGAs used are two Xilinx [71] Virtex-series devices. The earlier designs are imple-

mented on the Virtex XCV1000 BG560-6, with the later, more complex designs using the

larger Virtex-E XCV2000E BG560-6. In all cases, the code for the designs is written in
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VHDL.

In each case, the FPGA is situated on a Celoxica [63] RC1000-PP development board.

The RC1000 is a PCI card, housed inside a PC, which features a number of resources and

data paths accessible by both the FPGA and the host PC. Chief among them is 8 Mb of

RAM, organised as 4 banks of 2 Mb, each with a 32-bit data bus to the FPGA and PC;

arbitration logic is provided to allow ownership of each bank to be transferred between

the FPGA and PC. In addition, there are two 1-bit general-purpose data lines, one in each

direction, and two 8-bit data registers, also unidirectional and with handshaking built in.

An interface/wrapper was written for the RC1000, with the idea that any user core

could be inserted into it, without the user having to know the details of how the FPGA

communicates with the outside world — essentially the hardware equivalent of an API1.

The host PC is a Pentium-III 450, which houses the two RC1000 cards.

5.1.2 Software

The software component, called simply “Speech”, is written in C++ under Microsoft Vi-

sual Studio. It performs numerous functions related to the speech recognition system,

including:

• Performing the same recognition tasks as the hardware, using equivalent algorithms

(unless it would be particularly inefficient to do so);

• Outputting the best sequence of recognition units, with time indices, in the same

format as used by HTK, and irrespective of which platform is used for the recogni-

tion;

• Interfacing with the RC1000 board when recognition is being performed in hard-

ware;
1As a result of the interface being posted on Celoxica’s website, more correspondence has been received

about this than about the application for which it was originally written!
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Figure 5.1: Software input and outputs

• Generating timing data, printed to the screen during operation;

• Generating debug data, output as an HTML file, with the data laid out in such a way

as to make comparison with the VHDL simulator as simple as possible;

• Generating VHDL code and data files for implementing look-up tables, etc.;

• Generating VHDL testbench code for simulation.

Because of the complexity of the hardware design, having a toolkit capable of all of

these functions is essential.

The data flow into and out of the software is shown in Fig.5.1.

The software consists of a number of principal classes, each instantiated once, and

connected as shown in Fig.5.2. The classes are arranged in three informal layers: the

top-level layer, containing the executive class (Speech ); the interface layer, which con-

tains the classes whose function is to communicate with the outside world, specifically to

and from data files and the user (IOHandler ), the RC1000 (RC1000Handler ), VHDL files

(VhdlWriter ), and the Windows registry (RegHandler ); and the kernel layer, where the

actual data processing takes place, including the model data processing prior to recogni-

tion in hardware or software (HmmDefs ), and the class which performs the recognition
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in software (Column ), including Gaussian mixture summation (LogAdd ). These are de-

scribed in more detail below.

The software does not require any advance knowledge of the type or size of the model

being processed. Rather, it extracts all relevant information from the HMM definition

file and recorded speech files, and allocates memory dynamically at run-time. The same

software is used for all implementations.

Speech

This is the top-level class, containing the “executive” function which processes the com-

mand-line parameters and calls functions in the other principal classes. It also performs

backtracking once the decoding has been performed in hardware or software.

Although backtracking could be considered as data processing, and so might be better

placed in the kernel layer,Speech is the only part of the software that bridges both the

hardware and software implementations of the recogniser. The backtracking process is

the same irrespective of the platform on which the recognition is done, hence its inclusion

here.

IOHandler

This block deals with most of the file I/O, as well as printing information to the screen.

Its inputs are hmmdefs, the HMM definition file created by HTK, which is passed to

HmmDefs , along with the speech observation files (*.mfc), and the script files (*.scr)

containing the list of speech files to be processed.

Once processing is complete, it outputs various data files, including the recognition

transcription files (*.mlf), and debugging information in HTML and CSV (spreadsheet)

format.

IOHandler also stores data relating to the observations, but not the model, namely
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the observations themselves (Obs or ObsCont for discrete or continuous, respectively),

the most likely predecessors (Psi), and the resulting most likely sequence of utterances

(BestSequence).

RC1000Handler

This provides the interface between the software and the RC1000. It reads in the bitstream

file and uses it to configure the FPGA. It is also responsible for all the data transfer be-

tween the host PC and the RC1000’s RAM, which encompasses writing the model and

speech data, and reading back the most likely predecessor information.

VhdlWriter

In order to facilitate testing, VHDL testbench files are generated by this class, based on

the same speech and model data used in the rest of the system.

In addition, this block generates look-up table data for VHDL and Core Generator

blocks, as well as code for the binary-tree comparators used in the Viterbi decoder core,

which would be particularly difficult to parameterise just usinggenerate statements.

RegHandler

Configuration details are stored in the Windows registry, including file and directory

names, and model parameters (such as grammar scale factors, word insertion penalty

p and maximum durationD). This class provides functions for accessing and modifying

this information.

HmmDefs

This block processes, at the initialisation stage, the HMM model data as provided by

HTK. For all models, it extracts the transition probabilitiesai j (TransProb), and the list
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of monophones or biphones/triphones (Phone), as well as computing the between-HMM

probabilities based on equation (2.15).

For the discrete HMM model, it extracts the codebook entries for the observation

probabilityb j(Ot) (ObsProb). For the continuous HMM models, it extracts and computes

the values used in equation (2.20), namelySjm (StandDevSum),Vjml (VarConst) andµjml

(Mean).

Once processed, these values are then made available to other classes as necessary.

Note that none of these computations form part of the critical path, as they are performed

once at startup, with the data stored thereafter.

Column

Column 2 performs Viterbi decoding in software. The current values ofδt( j) are stored in

CurrProb.

LogAdd

This class generates the look-up table data, used by both hardware and software, for Gaus-

sian mixture summation, as well as performing the summation when recognition is done

in software. In addition, it contains code that was used to analyse the table data in order

to work out how best to implement it in hardware.

5.1.3 Speech data & models

The speech files used for the testing and training of all implementations are taken from the

TIMIT database [70], a collection of speech data designed for the development of speech

recognition systems. The groups consist of samples of continuous speech from each of

2The name comes from the earliest FPGA implementations, where the hardware HMM block was en-
visaged as representing a column of the state-time trellis, at the current timet.
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Table 5.1: Speech models, showing the number of HMMs, elements, Gaussian mixture
components and parallel speech files, and the maximum durationD. Model data format
refers to the codebook index for the discrete model, and the observation, mean and vari-
ance values for the continuous models

Name HMMs El Mix Files D Model data Obs. prob.
format width (bits)

Disc1 49 (1) 1 1 8-bit fixed-point 15
Cont1 49 39 1 1 32-bit floating-point 24

Cont1P 49 39 1 3 32-bit floating-point 24
Cont3P 634 39 1 3 32-bit floating-point 24
Cont34 634 27 4 3 32-bit floating-point 24

Cont34D1 634 27 4 3 32-bit floating-point 24
Cont34D 634 27 4 3 15 32-bit floating-point 24

8 American English dialect regions, from both male and female speakers. For training,

several hundred annotated recordings from the TIMIT training set were used; for testing,

160 recordings from the test set were employed.

The files were pre-processed with HTK. For the discrete implementation, each file

consists of a sequence of codebook entries, whereas the continuous implementations use

mel-frequency cepstral coefficients (MFCC).

Details of the implementations are summarised in Table5.1. There are four distinct

models used: discrete monophone (Disc1), continuous monophone (Cont1, Cont1P), con-

tinuous biphone/triphone (Cont3P), and continuous biphone/triphone with four Gaussian

mixtures (Cont34, Cont34D1, Cont34D).

The duration model data values used in Cont34D were generated purely from the tran-

sition probabilities, such thatd j(τ) = aτ−1
j j , as no suitable values were otherwise available.

While this had the effect of reducing the recognition accuracy, rather than increasing it, as

a representative model and proof of concept, it was sufficient.
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5.1.4 Virtex/Virtex-E FPGAs

The Xilinx [71] Virtex and Virtex-E FPGAs have the same underlying architecture, but

differ primarily in terms of quantity of resources, feature size (0.22µm and 0.18µm

respectively), and maximum clock rate.

The basic building block is the configurable logic block (CLB), which contains two

slices. Each slice contains two look-up tables (LUTs), each of which can be configured as

any logic function with one output and up to four inputs, a 16-bit ROM, a 16-bit RAM, or

a shift register (SRL) of up to 16 stages. Also in the slice is dedicated carry logic which

allows CLBs to be connected together to form carry chains for addition, subtraction and

comparison operations, as well as being used in multiplier cores. The outputs from the

slices can be registered using the two flip-flops (FFs), each of which can act as a register

or level-sensitive latch, with clock enable and synchronous or asynchronous set and reset,

and be clocked on a rising or falling clock edge (but not both).

Also available are Block RAMs, which are 4,096-bit dual-port memories, whose ad-

dress and data buses have configurable widths. The Block RAMs are commonly combined

in cores to form larger memories of specified dimensions.

The Virtex XCV1000, used for Disc1 and Cont1, contains 12,288 slices (a total of

24,576 LUTs and FFs) and 32 Block RAMs (131,072 bits, or 16 Kb). The Virtex-E

XCV2000E, used for the other implementations, contains 19,200 slices (38,400 LUTs

and FFs) and 160 Block RAMs (655,360 bits, or 80 Kb).

5.2 Disc1 [ 31][33]

Discrete, 49 monophones, 256-entry codebook

Implementing speech recognition on a programmable logic device began with the simplest

possible system - a monophone model making use of discrete HMMs.

For this implementation, the pre-processed speech observations consisted of quantised
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8-bit values, treated as addresses into 256-entry, 15-bit-wide look-up tables as generated

by HTK. Each state had such a codebook, which was stored in off-chip RAM. The transi-

tion probabilities were stored on-chip in Block RAM, and the small number of between-

HMM probabilities were stored in distributed RAM. Internally, scaled probabilities were

stored as 16-bit log-domain values, with overflows detected as necessary. The software

used the same bit widths.

The design was implemented in three versions, each able to process a different number

of HMMs in parallel.

5.2.1 49-HMM implementation

The first version attempted to process all 49 HMMs in parallel, but did not fit into the

XCV1000, requiring 100% of the FPGA’s slices, which along with aδt( j) data bus over

2,000 bits wide, resulted in a design which could not be routed.

In addition to the resources used by the HMM processing block, the 49-stream binary-

tree comparators, as used by the scaler and between-HMM probability block, tied up a

significant amount of the chip’s arithmetic logic.

Even if it had been possible to route the design, or if a larger chip had been used, any

benefit produced by the parallel processing of the HMMs would have been lost due a lack

of bandwidth between the FPGA and the outside world.

5.2.2 7-HMM implementation

In order to reduce the required resources, a second version was implemented which cut

the number of parallel HMMs to 7, with the other modules in the system reduced in size

accordingly. The final design required 70% of the slices, and routed successfully. It ran

at a maximum clock frequency of 31 MHz.

The design required 26 cycles to process a single observation, but because the internal
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data bus was larger than the off-chip RAM data bus, further delays were incurred: 36

cycles to read in the observation probabilitiesb j(Ot) from RAM and 20 to write the

predecessor informationψt( j) back to RAM. As some of the RAM accesses could take

place while data was being processed, the total was slightly less than the sum of these

three values, being 77 cycles.

Experiments showed the average time for a complete observation cycle (taken to be

the mean time to read the observation values from RAM, process them, and write the

predecessor information back to RAM) to be 2.1µs.

However, this implementation was still not satisfactory, as there was a significant bot-

tleneck when it came to reading from and writing to off-chip RAM. In addition, any imple-

mentations based on a more complex algorithm (e.g. continuous HMMs) would have had

no more space on the FPGA with which to perform additional calculations as required.

5.2.3 1-HMM implementation

In order to overcome these problems, a third version was designed which dealt with just

one HMM at a time, reducing the resource usage, and matching the internal bandwidth

with that available for accessing the RAM, thereby reducing the delay incurred by the

second implementation.

This design was successfully implemented, requiring 1,600 slices, equal to 12% of

the XCV1000’s resources. It operated at 55 MHz, with a 62-stage pipeline. Most of this

latency was due to the Scaler and between-HMM probability block requiring the data for

all 49 HMMs to pass through them before they could produce a result.

One consequence of processing just one HMM at a time was that the effective delay

due to RAM accesses was reduced, as data from RAM could enter the pipeline as soon as

it was read, rather than being buffered first as was done in the previous implementation.

Hence a complete observation cycle took 1.13µs.
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As the pipeline was circular, all of the HMM data had to pass through it before new

data could be processed, but since the pipeline depth was longer than the data length, 11

cycles out of every 62 were wasted.

While this implementation had less of a problem with RAM-FPGA bandwidth than

the more parallel versions, the system had to pause from time to time while predecessor

state data was written to RAM. This was aided by queuing the data in the FPGA while

it was waiting to be written. A consequence of this was that data was written to RAM

continually, including during cycles when no new data was being produced.

Taking this into account, the average observation time went up to around 2.0µs per 10

ms observation — more than 4,900 times real time.

5.3 Cont1 [ 32][33]

Continuous, 49 monophones, 1 mixture component, 39 elements

A block was added to the discrete HMM system for computing the observation probabili-

ties as defined in equation (2.20), and structured as shown in Fig.4.6. As before, software

was written which was as as functionally similar as possible to the hardware implementa-

tion.

Although it would have been simpler to use fixed-point arithmetic for the GMC (Gaus-

sian mixture component) calculations, the dynamic range of the data was such that this

was not feasible. Hence the adder, multiplier and squarer were designed for floating-point,

based on IEEE 754 [16], though limited to the functionality required for this specific de-

sign. For example, the exception handling described in the standard was not implemented,

and the squarer ignored the sign bit of its input.

The continuous observation vectors extracted from the speech waveforms, and the

mean and variance vectors for each state, consisted of 39 single-precision floating-point

values. The termSjm appearing in equation (2.20) was treated as an additional element.
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As just one mixture component was used,c jm was set to 1, hence ln(c jm) became 0.

The observation probabilities calculated from this data tended to be one or two or-

ders of magnitude smaller than their discrete HMM counterparts, so it was necessary to

increase the width of their fixed-point, log-domain, equivalents from 16 bits to 24. This

value was settled on after comparing the results of the software with HTK for different

maximum bit widths.

The design occupied 5,590 of the XCV1000’s slices, equal to 45%, and was capable of

running at 47 MHz, though the speed of the off-chip RAM allowed a maximum clock rate

of 44 MHz. (1-cycle reads were used for this implementation, whereas for the discrete one

2-cycles reads were used, allowing a higher clock speed; in both cases, writes to RAM

required 2 cycles).

The slowest part of the system was the observation probability computation block

(consisting of a GMC block without the additional multiplexors and other logic used in

later implementations), which required 6 adders in the adder chain, and which wrote a

single value to its buffer every 40 cycles. The contents of the buffer were sent to the

decoder only whenall of the HMMs’ probabilities had been computed. This was orig-

inally done because the decoder was designed to process its data on consecutive clock

cycles, but also had the advantage of laying some of the groundwork for the later parallel

implementations.

Consequently, the Viterbi decoder core sat idle for most of the 134µs which the sys-

tem took to compute all of the observation probabilities for each observation, and then

produce the predecessor information. This did at least remove the bottleneck in writing

this information to RAM.

Whereas the mean and variance values for the observation probabilities were stored

off-chip, the transition probabilities were stored in Block RAM, and the between-HMM

probabilities were stored in distributed RAM.
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5.4 Cont1P [ 34]

Continuous, 49 monophones, 1 mixture component, 39 elements, 3
files in parallel

As described in section4.4.2, a convenient way of taking advantage of the spare process-

ing time, and the bandwidth freed up by only reading in the observation once, rather than

for each state, is to implement more observation probability computation blocks, operat-

ing in parallel on different observation data and the same model data.

Now using a Virtex XCV2000E, it was found that there was sufficient space to use

three GMC blocks. While this design could be used to process one speech file three times

as fast as before, it was felt that in a real-world application, the speech data is more likely

to be presented in real time, so three different files are processed at once instead.

As described earlier, the files are read in and stored one after the other, and the model

data delayed accordingly for the second and third GMC blocks. The three sets of obser-

vation probabilities are stored until all of them have been computed, and are then sent in

sequence to the Viterbi core. The three sets of data are interleaved within the Viterbi core,

and stored in the padding buffer and within the pipeline while the next set of observation

probabilities are being calculated.

The full design occupies 72% of the XCV2000E’s slices, requiring 19,000 LUTs,

15,000 FFs, and 30 Block RAMs, with each of the three GMC block using around 4,400

LUTs and 3,700 FFs. The Viterbi decoder is somewhat smaller, using 1,600 LUTs and

2,800 FFs. The whole thing runs at 50 MHz.

The average time taken to process one observation is 39.3µs. As expected, this is

three times faster than the previous implementation which only processed one speech file

at a time.
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5.5 Cont3P [ 34]

Continuous, 634 biphones/triphones, 1 mixture component, 39 ele-
ments, 3 files in parallel

Moving from 49 monophones to 634 biphones and triphones requires a significant in-

crease in storage space, both on and off chip.

With only the minimum of changes made to the original implementation, the initial

version of this larger model required 143% of the FPGA’s slices. This was dealt with by

using spare Block RAMs as delay elements, in place of shift registers. While Block RAMs

cannot act as delay elements on their own, with a little external logic in the form of read

and write address pointers (making use of the RAMs’ dual ports), the same functionality

can be realised.

Additional logic is also required to flush the RAMs when reset. As all of these blocks

are within the Viterbi decoder core (specifically, theδt( j) padding buffer, and two more

in the scaler), there is sufficient time at reset to flush the blocks while the first set of

observation probabilities are being processed.

Hence the slice usage was reduced to 77%, including 22,000 LUTs, 18,000 FFs, and

138 Block RAMs (out of 160). For this implementation, each GMC uses 4,500 LUTs and

5,000 FFs. The Viterbi decoder uses 2,500 LUTs and 2,200 FFs.

This implementation runs at 33 MHz. The average time per observation for the hard-

ware is 769µs, which is 13.0 times real time.

5.6 Cont3 4

Continuous, 634 biphones/triphones, 4 mixture components, 27 ele-
ments, 3 files in parallel

Continuing with the incremental development of the algorithm, a system was imple-

mented based on a biphone/triphone model with the same number of HMMs as for Cont3P,
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but with 27 elements per vector (reducing the number of adders in each GMC block’s

adder chain from 6 to 5), and crucially, 4 Gaussian mixture components. This design

incorporates the Gaussian mixture summation block described in section4.5.

As described previously, the time taken for the GMC blocks to process their data

means that just one Gaussian mixture summation block is required, with a single decoder

block as before.

After further redesign, which saw the Block RAM used as a RAM (observation buffer),

ROM (log-add table, transition probabilities), FIFO (observation probabilities), and delay

element (δt( j) padding buffer, scaler control data and probability data buffers), this im-

plementation ended up being slightly smaller than its predecessor. It required 70% of the

slices, including 19,000 LUTs, 17,000 FFs, and all 160 Block RAMs.

The design runs at 43 MHz, giving a time per observation of 1,652µs, which is just

over 6 times real time.

5.7 Cont3 4D1

Continuous, 634 biphones/triphones, 4 mixture components, 27 ele-
ments, hardware/software hybrid

Given the size of Cont34, it was clear that a design that added duration modelling to the

previous one would not fit on the FPGA that was available. Fortunately, the PC housing

this FPGA also contained a second RC1000 development board, with another XCV2000E

on it. It therefore made sense to partition the design between the two boards.

With bandwidth continuing to be a crucial issue, data transfer between the FPGAs

can be minimised by placing the observation probability block in the first FPGA, with its

results being sent to the second FPGA, where the Viterbi decoding, now incorporating

duration modelling, would be performed.

Once the previous design had been reduced to an observation probability processor,
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it was tested within what had become a hybrid system, with the observation probabilities

computed in hardware, and the Viterbi decoding performed in software.

The implementation occupied 52% of the FPGA, using 14,000 LUTs and a similar

number of FFs, with 25 Block RAMs. It operated at 62 MHz. With the software running

in debug mode on the host PC, the time per observation is 17,529µs, more than 10 times

slower than Cont34.

5.8 Cont3 4D

Continuous, 634 biphones/triphones, 4 mixture components, 27 ele-
ments, duration modelling, 2 FPGAs

Work was started on a serial duration modelling implementation, based on that described

in section4.6.2.

It soon became apparent, however, that this was not an effective use of such a large

FPGA. A lack of bandwidth limited the implementation to a single PE, which would have

taken up only a small part of the chip. As suggested earlier, this application is better suited

to a SIMD architecture with each PE having its own local memory, and not an FPGA.

Cont34’s observation probability blocks produce 3 values every 112 clock cycles (27

elements per vector plus the additional constant element× 4 mixture components), or 1

every 37 cycles. A serial duration modelling block would produce 1 value everyD cycles,

so as long asD is less than 37 (in this case), the Viterbi decoder should be able to keep

up.

5.9 Summary

This chapter has described the various implementations which are key to this research.

Building on the theory and designs covered in earlier chapters, the system has been im-
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plemented in software and in hardware.

Having described the PC and FPGAs on which the system was implemented, along

with the speech models themselves, and the structure of the software, the implementations

have been presented. These are summarised in Table5.2, which besides providing a brief

description of each model, lists the number of HMMs, codebook entries (Disc1 only),

vector elements, mixture components, files processed in parallel, and maximum duration

(Cont34D only).

An analysis of the requirements of implementing speech recognition in hardware and

software is presented next. The results produced by the implementations follow that, and

draw on the analysis to verify the predictions made.
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We are just statistics, born to consume resources.

Horace (65–8 BC)

6
Requirements analysis

I n the course of implementing speech recognition in programmable logic, it became ap-

parent that while hardware can typically outperform software, the degree of speedup

is dependent on a number of factors, including the size and complexity of the model, the

hardware resources available, and the bandwidth (i.e. quantity of data transferred between

the chip being used and RAM per unit time).

Analysing this relationship is useful, both to see if the implemented designs behave

as the analysis might predict, and for the purpose of looking to the future, in order to

describe the resources that may be needed to implement more complex speech systems.

It also helps to divorce the design from any particular hardware platform, such an asso-

ciation being an inevitable consequence of implementing a design — however device-

independent it may attempt to be — on a real chip.

So presented here is a requirements analysis, independent of any particular hardware.

The text of this chapter appears in a modified form in [36].
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6.1 Number of HMMs

All of the hardware implementations process just one HMM at a time for a given speech

file, so the time taken to output the data for one observation, for both hardware and soft-

ware, is directly proportional to the number of HMMs. This value has little impact on the

hardware resources required, due to the relatively small size of the HMM computation

block.

The same is true of the number of elements in the observation feature vectors for

continuous HMMs, which are also processed serially.

6.2 Number of HMMs implemented

The decision to process just one HMM at a time is due to limitations on bandwidth, since

the FPGA being used does not have enough pins to allow the required data to be loaded

onto the chip fast enough to take advantage of the extra parallelism available on-chip.

Greater parallelism requires more model data to be read onto the chip, and predeces-

sor data to be written to RAM. Specifically, bandwidth is proportional to the number of

HMMs implemented, and is independent of the number of HMMs in the model.

Hence, bandwidth permitting, the time per observation for hardware is inversely pro-

portional to the number of HMMs implemented in parallel (i.e. the number of nodes im-

plemented). Clearly more resources are required if implementing more HMMs; more

adders are used, and the comparators in the blocks dealing with scaling and the language

model will have more inputs. The internal data bus width also increases.
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6.3 Number of mixture components & number implemen-
ted

Whereas the small size of the HMM processing core means that bandwidth rather than

resources is the limiting factor, for Gaussian mixtures, both affect how many mixture

components we can implement in parallel. Three observation probability processing cores

can be fitted onto an XCV2000E, and so it can process three speech files simultaneously

— but for each file, just one mixture component is computed at a time. Bandwidth is

saved because they all use the same model data, requiring the data to be loaded onto the

chip just once. For a multiple mixture implementation, each mixture component has its

own mean and variance data, so the bandwidth requirement is scaled by the number of

components chosen to be implemented in parallel.

Accordingly, the time taken per observation is proportional to the number of mixture

components for both hardware and software, and inversely proportional to the number of

components implemented in parallel in hardware.

6.4 Language model

In the implementations presented herein, a language model is not used, so the correspond-

ing block in Fig.4.3is simpler than it would be if one were. Based on the proposed design

for the language model block illustrated in Fig.4.11, an FPGA with sufficient on-chip

RAM could store locally all the data associated with a language model. This would re-

move any bandwidth overhead, and all the HMMs’ most likely predecessor HMMs could

be processed in parallel while the scaler is doing its computation. Hence such an imple-

mentation would take no longer than the current one.

This implementation requires one adder for each HMM, and storage forH2 prob-

abilities, H being the total number of HMMs. Alternatively, a serial implementation,
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performing just one addition per clock cycle, would load the between-HMM probabilities

onto the FPGA one at a time, and would take of the order ofH2 cycles. In software, the

delay incurred would also be proportional to the square of the number of HMMs. For both

software and serial hardware, the delay for a small model would be small compared to the

overall processing time. However, as the number of HMMs increases, this delay would

dominate the timing.

6.5 Duration modelling

Explicit duration modelling is one area where hardware has the potential for major speed-

up over software, subject to any limitations on bandwidth and resources.

As described in sections2.8and4.6, each stage, representing the number of occasions

the system has stayed in the current state, requires two additions. One of the results from

each stage is sent to a comparator which computes the most likely duration across all

stages. The other result is scaled (requiring a subtraction) and stored, before being passed

to the next stage.

In software, we repeat these calculationsD times (whereD is the maximum duration,

typically of the order of 15 to 30). In hardware, we would like to implement all the stages

in parallel, with buffers separating the data between stages, as illustrated in Fig.4.10.

However, the storage space required for the buffers and for the duration probabilities

easily exceeds that available on current FPGAs. If we store either set of values off-chip,

bandwidth restricts how many stages’ data can be read or written at one time.

The result is that the delay for the duration modelling part of the system, if partly or

wholly serial, is proportional to the number of stages for both hardware and software, and

inversely proportional to the number of stages implemented in parallel.

If, however, this were to be implemented on a SIMD array, with one processing ele-
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ment per stage, and each processing element having local memory, this could overcome

the bandwidth issue. The delay would then be independent of the number of stages, while

the bandwidth increase, and the speedup over software, would be proportional to it.

6.6 Parallel files

Processing multiple speech files or speakers in parallel can further increase the speedup

of hardware and software, and is possible because of spare bandwidth while reading data

on to the chip, and the under-utilisation of the decoder core, resulting in no significant

time penalty. Each file implemented in this way requires its own observation probability

block; the large size of these blocks, each containing two floating-point multipliers, plus

a number of floating-point adders, is the limiting factor on how many can be used.

As might be expected, the time per observation is inversely proportional to the number

of files processed in parallel, and accordingly, the speedup over software is proportional

to that value.

6.7 Results

The findings detailed above can be expressed as follows. Putting aside the use of a lan-

guage model or a duration model, the times for hardware and software, and the bandwidth,

can be expressed as:

Ts = Ks · (H ·M)

Th = Kh · (H ·M)/(H∗ ·M∗ ·F∗)

Bh = (Wm+Wv) · (H∗ ·M∗) (6.1)
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whereTs andTh are the times for software and hardware respectively, andBh is the hard-

ware bandwidth;Ks andKh are constants dependent on the speed and processing power

of the processor and hardware device, respectively;Wm andWv represent the width of the

mean and the variance constant;H andM are the numbers of HMMs and mixture compo-

nents, withH∗ andM∗ being the number of each implemented in parallel; andF∗ is the

number of files processed in parallel in hardware.

The speedup of hardware over software is therefore:

Ts/Th = (Ks/Kh) ·H∗ ·M∗ ·F∗ (6.2)

which suggests that speedup is independent of the number of HMMs and mixture compo-

nents.

For the language model, which involves computing the most likely predecessor for

each HMM, the results for software (Tsls), hardware processing all HMMs in parallel

(Thlp andBhlp), and hardware processing one HMM at a time in serial (Thls andBhls) are:

Tsls = Ksls·H2

Thlp = Khlp

Bhlp = Kblp ·H

Thls = Khls ·H2

Bhls = Kbls (6.3)

Note that the time for the parallel hardware implementation,Thlp, is actuallyKhlpp·H,

but as it operates in parallel with the scaler, and takes a similar number of clock cycles,

its latency is hidden, resulting in the constantKhlp being small.
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Accordingly, the parallel and serial speedups are:

Tsls/Thlp = (Ksls/Khlp) ·H2

Tsls/Thls = (Ksls/Khls) (6.4)

showing that the speedup for a parallel implementation is proportional toH2, while for a

serial implementation, the speedup is unconnected to the number of HMMs.

For the duration model, in software (Tsd) and hardware (Thd andBhd):

Tsd = Ksd ·D

Thd = Khd · (D/D∗)

Bhd = Kbd ·D∗ (6.5)

whereD is maximum duration, andD∗ is the number of duration stages implemented in

parallel. Hence the speedup is independent of the maximum duration:

Tsd/Thd = (Ksd/Khd) ·D∗ (6.6)

6.8 Summary

In this chapter, the effect that the model parameters can have on processing time and

bandwidth have been examined, and these relationships are summarised in Table6.1.

Table6.2summarises the corresponding effects on the speedup of hardware over software.

Following on from this, the next chapter presents the results of the various implemen-

tations, and explores whether the predictions made in this chapter are seen in practice.
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Table 6.1: Summary of effects on time per observation and bandwidth

Num. HMMs Num. HMMs Num. HMMs
(SW) (HW) impl. (HW)

Time/obs proportional proportional inv. prop.
Bandwidth independent proportional

Num. mixtures Num. mixtures Num. mixtures
(SW) (HW) impl. (HW)

Time/obs proportional proportional inv. prop.
Bandwidth independent proportional

Language model Language model Language model
(HW – parallel) (HW – serial) (SW)

Time/obs no increase increase increase
∝ (num. of HMMS)2 ∝ (num. of HMMs)2

Bandwidth ∝ num. of HMMS, independent
if not stored on-chip of num. of HMMs

Max duration Max duration Num stages Num. parallel
(SW) (HW – serial) impl. (HW) files (HW)

Time/obs proportional proportional inv. prop. inv.prop.
increase increase increase

Bandwidth independent proportional independent

Table 6.2: Summary of effects on speedup

Speedup (hardware vs. software)

Num. HMMs Independent
Num. mixture components Independent

Num. HMMs impl. Proportional
Num. mixture components impl. Proportional
Num. of duration stages impl. Proportional
Num. parallel files Proportional

Max duration – serial increase independent of max duration
Language model – parallel increase∝ (num. of HMMs)2

Language model – serial increase independent of num. of HMMs
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Nourishing a youth sublime

With the fairy tales of science, and the long result of Time.

Alfred, Lord Tennyson (1809–92)

7
Results

Having designed and implemented the FPGA designs and the system software, and

having verified that the recognition results resemble those of HTK, it is now nec-

essary to evaluate the hardware’s applicability to this problem.

Two criteria govern this applicability: speed (i.e. can it outperform software running

on a powerful computer) and cost (initially in terms of resources, but ultimately econom-

ically).

7.1 Hardware vs software

These tests compare the rates at which the FPGA and software can perform Viterbi de-

coding, incorporating observation probability computation for all but the discrete HMM

implementation. HTK was not timed, as it was run on a UNIX workstation, so any timing

comparison with a PC would not have been particularly enlightening.

In Tables7.1, 7.2, 7.4 and7.5, the first set of columns shows, for each implementa-

tion, the number of HMMs in the model, the number of elements in each feature vector

– 96 –



PHD THESIS STEPHENMELNIKOFF

(for continuous HMM models), the number of mixture components, the number of speech

files processed simultaneously in hardware, and the maximum duration for those imple-

mentations which use duration modelling (for the rest,D is effectively 1).

The next two columns indicate the average time taken in microseconds to process one

observation. This is computed across the whole corpus of 160 test files, totalling around

50,000 observations. For the software tests, the timer is started once a speech file has been

loaded, and stopped when all of its observations have undergone observation probability

computation and Viterbi decoding; backtracking and file operations are not included in

the total, as they are the same for both hardware and software.

For the hardware, the timer is started after the observation files have been written to

the RC1000’s RAM, and immediately prior to the host releasing control of the RAM. The

FPGA monitors this and begins processing as soon as the RAM is released. Once the

FPGA has finished with its files, it releases the RAM, which the PC then notices, and the

timer is stopped.

For those implementations which process three speech files in parallel, the total num-

ber of observations processed is more than the actual total number of observations in the

files. This is because the FPGA cannot release the RAM until it has finished working on

the longest of the three files currently loaded. While this is going on, the shorter files are

effectively “padded” with dummy data values in order to make them the same length as

the longest file. The result is that the average time per observation is slightly lower than

it would otherwise be, because the dummy data values are taken into account, but does

represent the timing when the system is running at maximum capacity.

Following the values for time per observation are the speedups over real time. Because

of the slow movement of the vocal tract, it is sufficient to produce observation feature

vectors only once every 10 ms.

Next is the FPGA clock frequency in megahertz. This is the value reported by the
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implementation tools as being the maximum speed at which the FPGA can be reliably

operated when configured with the current design.

The final set of columns compares hardware with software. The first value is the actual

speedup, with the FPGA running at the clock speed shown. The second is the speedup

that would be obtained if a rate of 50 MHz were used; this value was chosen to make it

easier to compare the three central implementations (Cont1P, Cont3P and Cont34), 50

MHz being the speed at which the fastest of them operates (80 MHz is used for the same

reason for the projected Virtex-II values). Finally, these values are shown normalised to

Cont1P, again to allow them to be more easily compared.

7.1.1 Virtex/Virtex-E vs Pentium-III 450 (debug mode)

The first set of tests compares the hardware implementations (Disc1 and Cont1 on the

XCV1000, the others on the XCV2000E) with the software running on the PC which

houses the RC1000 boards, a Pentium-III 450.

For each implementation, these are the first tests performed on the system, and so the

software is compiled in debug mode. Debug mode is essential during development, as

it makes it much easier to locate bugs and track execution. The only downside is that

the executable is significantly slower than its release-mode counterpart, but the data is

included here nonetheless because it represents the first successful set of tests for each

implementation, and also verifies some of the predictions made in chapter6, which is not

the case with some of the later tests (specifically, Cont1/Cont1P in software).

The results of these tests are shown in Table7.1. Cont34D was not implemented in

hardware because of its unsuitability for this medium, as mentioned in section5.8, so the

times shown are for software only, with three different values of the maximum durationD,

rather than the single value proposed for hardware. Although a software implementation

of this model was not a major aim of the research, it did provide a testbed for the method
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of computation that would be used in hardware, and also allowed the prediction about the

relationship betweenD and processing time, mentioned in section6.5, to be verified.

Disc1 and Cont1 illustrate the additional computational burden imposed by having to

handle Gaussian distributions. The difference in times for the hardware is more marked

than for software, not least because the larger design results in a slower clock speed.

Comparing Cont1 and Cont1P, we can see that the normalised speedup demonstrates,

as might be expected, that processing three files in parallel results in a system that is three

times faster.

The increase in times for Cont1P, Cont3P and Cont34 is roughly in line with that

predicted in chapter6. Taking Cont1P as a baseline, Cont3P would be expected to give

software and hardware times of 70,000 and 509µs respectively, these values computed by

scaling the number of HMMs from 49 to 634; this compares to the actual values of 73,500

and 769. Cont34 would produce 193,000 and 1,410µs, found by scaling the number of

HMMs in the same way, the number of elements from 39 to 27, and the number of mixture

components from 1 to 4; the actual values are 190,000 and 1,650µs.

Furthermore, the normalised speedup values are roughly the same, as expected, sug-

gesting that speedup is indeed independent of the number of HMMs, elements or mixture

components.

Cont34D, tested in software, was run with three different values for the maximum

durationD, in order to test the prediction that the timeaddedby the duration modelling

(but not the total time per observation) is proportional toD. The prediction appears to

hold: the numbers suggest that an increase inD of 15 leads to an increased time of around

50,000µs, equivalent to an increase of 3,300µs for each increment ofD.

The key results from this test, though, are the actual times for hardware, and their

speedups over real time and software. We see that all of the FPGA implementations are

faster than real time, with Cont34D, the most complex one, having the lowest value of
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just over 6 times real time. In software, only the monophone implementations can process

data faster than real time.

The speedups over software are rather greater, with Cont1P, Cont3P and Cont34D all

being around 100 times faster. Cont1, processing just one file at a time, achieves a speedup

less than a third of its parallel equivalent. The results for Cont34D1 show simply that

offloading the observation probability calculations onto hardware allow a modest speedup

over software of just under 11, equivalent to half real time. The smaller design permits a

higher clock speed than for the other implementations.

7.1.2 Virtex/Virtex-E vs Pentium-III 450 (release mode)

While debug mode is essential during testing, the software must be compiled in release

mode in order to properly evaluate its performance. The results are shown in Table7.2.

The tests are the same as for debug mode, with the exception that Cont34D1 was

found not to work in release mode; timing issues between the PC and the RC1000, which

caused numerous problems during system development, are believed to be the cause.

The release-mode software is an order of magnitude faster than its debug-mode coun-

terpart, the relative speedup ranging from 12.5 to 15. The exception to this is Cont1/-

Cont1P, which is 22 times faster, possibly to due to the processor’s cache coming into

play; Cont3P and Cont34D require more data to be stored and processed, which may not

make caching possible to the same extent.

As a result, while Cont3P and Cont34 have similar speedups (though not as close

together as for debug mode), they are larger to an unexpected extent than that of Cont1P.

Cont1P does however remain almost exactly three times faster than Cont1.

When comparing actual versus expected times for the software, Cont1P’s deviation ad-

versely affects any predictions when using it as the baseline: Cont3P would give predicted

times of 3,160µs (compared to 5,890), and Cont34, 8,750µs (compared to 13,300). Us-
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Table 7.3: Release dates for FPGAs and processors under test [62][64][71]

Year FPGA Processor

1998 Virtex
1999 Virtex-E Pentium-III 450
2000
2001 Virtex-II
2002 Virtex-II Pro XP 2000+

ing Cont3P instead gives a time for Cont34 of 16,300µs; Cont1P would be expected to

take 455µs, rather than 244.

Duration modelling again shows a linear increase, with a delay of 4,200µs for a

change inD of 15, or 280µs per increment ofD.

While the hardware processing rates do not change for these tests, the software is

operating faster. Hence the hardware/software speedup is reduced to the range 6 to 8 for

Cont1P, Cont3P and Cont34. Cont3P is now faster than real time in software.

7.1.3 Virtex/Virtex-E vs Athlon XP 2000+ (release mode)

As a result of the fast pace of the electronics world, illustrated in Table7.3, neither the PC

nor the FPGAs can be considered as top-of-the-range any more. In order to better assess

what a modern PC could do, the software was re-run, in release mode, on a different

PC, containing an AMD Athlon XP 2000+ processor (nominally equivalent to an Intel

Pentium 4 running at 2 GHz, though its clock speed is actually 1.67 GHz). These results

are shown in Table7.4. Note that Cont34D1 (observation probabilities in hardware,

decoding in software) could not be tested in this way, as it requires the RC1000 to be

present in the PC under test.

Again we see Cont1P behaving in an unusual manner. Comparing the speedup of the

Pentium and Athlon, the latter is 2.5 to 3.5 times faster (not unusual for a processor that
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is rated at 4 times the speed of the Pentium 450) — but for Cont1/Cont1P, it is nearly 5

times faster.

Looking at the normalised hardware/software speedups, Cont3P and Cont34 have

similar values. However, the gap between these and Cont1P is even wider than before.

Given that the code in all cases does not change, it again appears that use of the cache is

the most likely cause. Irrespective, Cont1P is once more three times faster than Cont1,

that latter being unique, in that on this occasion, the software outperforms the hardware!

Performing the same comparisons as before, with Cont1P as the baseline, the predic-

tions are again skewed: Cont3P would take 650µs rather than the actual 1,726, and Cont4

would take 1,800µs rather than 5,125. With Cont3P as baseline, Cont4’s predicted value

is a more sensible 4,779µs; Cont1P would be expected to take 143µs, not 50.3.

The values for duration modelling diverge slightly from the linear, but approximate

figures are 1,150µs for a change inD of 15, or 76µs for a single increment.

On this processor, the software is approaching the processing power of the hardware;

the speedups are now in the range 1.3 to 3. In addition, all of the models are at least as

fast as real time when run in software.

7.1.4 Virtex-II (projected) vs Athlon XP 2000+ (release mode)

Comparing a Virtex-E to an Athlon XP is not a particularly fair test, as the FPGA is

three years older than the processor. At the time of writing, the fastest Virtex-class FPGA

family is the Virtex-II Pro. The software tools for this being unavailable, Cont1P, Cont3P

and Cont34 were re-targeted to the slightly slower Virtex-II, with only the minimum of

changes to the design. Based on the maximum clock speed for an XC2V4000-5 reported

by the implementation tools, and in the absence of an actual chip on which to test the

designs, timing values have been estimated for these designs. These are compared to the

high-end PC values in Table7.5.
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The results suggest that the FPGA can outperform the Athlon by a factor of 5.8 for the

most complex speech model. The actual speedup is lower for the other two models under

test. When normalised relative to each other, the values are the same as for the Virtex-E

tests, since in the course of the calculations, the clock rates are cancelled out.

The reported maximum clock speeds are lower than expected. 80 MHz for Cont34 is

respectable, but the Virtex-II can go faster. 56 MHz for Cont3P is approaching double the

speed of the Virtex-E implementation, but is low for the newer chip. The fact that Cont1P

produces a rate which is slower than that of the Virtex-E is especially unusual.

Although these three designs were originally aimed at the Virtex-E, the only parts that

are device-specific are the cores, generated by Xilinx’s Core Generator, which include

multipliers and memory blocks. As such, these had to be regenerated specifically for

the Virtex-II implementations. Shift registers were correctly inferred by the synthesis

software for both the Virtex and Virtex-II.

While it is possible that modifications to the VHDL code (and, if necessary, floor-

planning), in order to take advantage of the Virtex-II’s features, may yield faster designs,

it was felt that to do so was not a productive use of the time available, given the unavail-

ability of a real device on which to test the design.

7.2 Resource usage

The resource usages for the various implementations are shown in Table7.6. The Virtex

and Virtex-E families share the same architecture, but just have different array dimensions

and quantities of Block RAM, so direct resource comparisons are valid. This is, however,

balanced by the changes to the design that took place after each implementation, which

tended to result in space being saved in one block, only for it to be filled when another

block was added to the design.
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The amount of on-chip memory used is indicative of the quantity of data it is necessary

to have available when doing speech recognition. This is exemplified by Cont34, which

uses all of the Virtex-E’s Block RAM, in addition to distributed RAM — and that does not

even include the mean and variance values for the observation probability computations,

nor the predecessor information produced by the decoding process, all of which have to

be stored off-chip for lack of space!

Besides the bandwidth issues detailed earlier, this illustrates another difficulty when

it comes to implementing algorithms like this in hardware: whatever resources you have

can easily be used up just by employing a more complex model.

7.3 Recognition rates

As this research is about implementing recognition algorithms and assessing their appli-

cability to hardware, accuracy is not a priority in these implementations. It is sufficient

for the models employed to be merelyrepresentativeof real models — namely, for them

to be of similar size and complexity, though not necessarily containing the same numbers.

As previously mentioned, this is of particular relevance for duration modelling. No

data values are available for the p.d.fd j(τ), so instead they are generated, based on the

otherwise implicit duration model, such thatd j(τ) = aτ−1
j j . The effect of this is to reduce

the accuracy of the more complex model; but because it is representative in its complexity,

that is enough.

For completeness, the accuracy figures for each model are given in Table7.7. The

results for the hardware and software are shown, along with those for HTK, which was

taken as the benchmark. All of the accuracy statistics were generated using HTK’s results

tool.

The columns in the table are as follows.sandp are the grammar scale factor and word
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insertion penalty respectively, as described in section2.4. These were varied in order to

find the values which produced the highest accuracy figures.

The results given are computed across all 160 test files. H is the number of labels

(monophones or biphones/triphones, as appropriate) correctly identified. D is the number

of deletions, i.e. the number of labels missed out. S is the number of substitutions, as when

the recogniser has correctly realised that something has been uttered, but has misidentified

it. I is the number of labels erroneously inserted. N is the total number of labels. This last

value is slightly less for the biphone/triphone models, as the length of one of the test files

was such that there was insufficient memory on the RC1000 to store all of its predecessor

information, so it was omitted.

Percentage correctness is computed asH
N ×100%, and so does not take into account

any insertions. Accuracy does, and is equal toH−I
N ×100%.

As expected, the discrete monophone model (Disc1) has a very low accuracy rate,

which is improved significantly by switching to continuous HMMs (Cont1/Cont1P). While

we would expect the use of biphones and triphones (Cont3P) to increase accuracy further,

there is only a slight increase. This is most likely due to a lack of training data, as the

more complex the model, the more values that are required to train it successfully.

The same goes for the model incorporating mixture components (Cont34/Cont3-

4D1), which has a marginal drop in accuracy. The artificially generated data values used

for duration modelling (Cont34D) lead to a further drop. The results of this model are

for three different values ofD, processed solely in software, as HTK cannot handle dura-

tion modelling, and there is no hardware implementation. IncreasingD leads to a slight

increase in accuracy, as longer instances of a particular utterance (commonly silence) can

be correctly handled.

In all cases, the results from the hardware and software match perfectly. This is be-

cause they are designed to perform the calculations in the same way, with the software
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limited to the same bit widths as the hardware.

There are a small number of discrepancies compared to HTK, most likely due to dif-

ferences in computation methods, bit widths, and possibly rounding methods as well.

It should be noted that although the accuracy scores are low compared to commercial

recognisers or those described in chapter3, this is not a product of the implementations.

Rather, each of the models used is limited by its ability to successfully model speech, and

additionally by any shortage of suitable training data. So the former establishes a range

of likely values for the accuracy rate, and the latter dictates where in that range the actual

number is. Whatever the result, it is due to these two facets of the models, and not the

implementations which use them.

7.4 Summary

In this chapter, the results produced by the implementations have been presented. Timing

information has been provided for the FPGAs used, along with projected values for an-

other one. The corresponding software times have also been given for two PCs. Some of

the predictions made in the requirements analysis have been confirmed. Resource usage

has been described, and recognition rates have been outlined, including those produced

by HTK in order to verify the data produced by the implementations.

The final chapter follows, drawing on the results given here and in previous chapters,

to form a set of key conclusions.
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To define it rudely but not inaptly, engineering. . . is the art of doing that

well with one dollar, which any bungler can do with two after a fashion.

Arthur Mellen Wellington (1847-1895)

8
Conclusions

I n this thesis, the implementation of speech recognition in programmable logic has been

investigated. Having described relevant parts of speech recognition theory, and given

examples of previous hardware recognisers, original designs for the decoder part of the

system have been presented. These have included the ability to process multiple speakers

or speech files in parallel despite bandwidth restrictions, and a novel implementation of

the log-add algorithm for Gaussian mixture summation.

In addition, the accompanying multi-purpose software toolkit has been described,

without which an operational hardware implementation would have been impossible, as

well as a VHDL interface for the FPGA development board, which has since been used

in other people’s designs.

Details have been given of how these designs were implemented on an FPGA, and the

results of these implementations analysed, which included comparing them with software

equivalents. An analysis of the requirements of such a system has also been presented,

whether that system be in hardware or software, in terms of the parameters that govern

the complexity of the model, and their effect on speed and bandwidth.
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The principal aims and objectives outlined in section1.1were to design and implement

a speech recognition system, with the decoder stage implemented in hardware, in order

to ascertain the suitability of doing so, the speedup of hardware over software, and the

requirements of a hardware speech recogniser.

With reference to these objectives, the key conclusions are summarised below.

8.1 Key conclusions

8.1.1 Suitability

Gaussian mixture computation (which is the most computationally expensive part of the

recogniser) and the Viterbi decoder both have the potential for significant parallelism, but

this is limited in practice by available bandwidth and logic resources.

However, processing multiple speakers or speech files in parallel provides an alterna-

tive method for exploiting the capabilities of hardware. The log-add algorithm can also

be implemented in a particularly efficient fashion in hardware.

Duration modelling is better suited to a SIMD array with local memory than an FPGA.

A full language model cannot feasibly be implemented on an FPGA at present, and may

also suit a SIMD array.

8.1.2 Hardware vs software

Simply put, hardware is faster than software. The speedups found when comparing de-

vices of similar age suggest modest speedups of less than 10. But if an expensive FPGA

can do the job of half a dozen PCs, then savings can be made.

The speed boost given to the continuous monophone implementations (Cont1/Cont-

1P), but not to the biphone/triphone ones, probably by the processor’s cache, was unex-

pected. If the cache is responsible, the benefits it provided were dependent on the amount
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of data being processed being below a certain size. While the processors used cannot take

advantage of the larger models in this way, it is possible that future ones could.

An FPGA (or ASIC) can benefit from advances in technology in ways that a processor

cannot. While processors can run faster, and nowadays may have a constrained degree

of parallelism, a dedicated device’s dependency on resources and bandwidth means that

if these two factors are increased, the number of HMMs, etc, implemented in parallel

can also be increased, leading to processing times much faster than can be achieved by a

higher clock speed alone.

Whatever the speedups of an FPGA over a PC, it should be remembered that if an

FPGA design were to be converted into an ASIC, we could expect the ASIC to be another

order of magnitude faster.

8.1.3 Requirements

The requirements analysis of chapter6 was able to successfully predict ball-park figures

for hardware and software observation times, factoring in the number of HMMs, elements,

mixture components, and files processed in parallel. Some predictions were, however,

skewed by the software processing its data faster than expected in certain circumstances,

possibly due to the aforementioned cache effects.

As predicted, the speedup of hardware over software was dependent on the number of

files processed in parallel, and was independent of the size of the model.

Duration modelling in software also behaved as expected, giving a linear increase in

processing time as the maximum duration was increased.
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8.2 Summary

What has been demonstrated is that hardware is a viable platform for a speech recognition

system. Some parts are well-suited for an FPGA, while others fare better with different

architecture types, or are best processed in software.

It has also been shown that an FPGA can outperform software, and that the speedup

is more dependent on bandwidth and resources than on the size of the recognition model.

8.3 Further work

This speech recognition system has plenty of scope for expansion. Just using the algo-

rithms outlined here, the number of HMMs could be increased, as could the number of

mixture components. If duration modelling were to be implemented in hardware, perhaps

using a SIMD array rather than an FPGA, that could then allow the maximum duration to

be raised, and the duration probability distribution made more complex.

HMMs can also incorporate additional types of data at the decoding stage, further

improving the model, while not compromising the HMM principle of delayed decision

making. The language model is one such extension. It carries with it a potentially large

increase in either processing time or resources, but also increased accuracy. Such a block

would simply take the place of the existing scaled-down language model block that al-

ready exists.

There is the possibility of this part of the system being run in software on a faster

processor or microcontroller instead. While this is technically feasible, there would be a

number of issues to resolve. Firstly, bandwidth: the hardware outputsδt−1(I) at the rate of

one per clock cycle, along with one value from each of theH model data stores. It subse-

quently requires two data values per clock cycle, ideally in the time taken for the scaler to

do its processing, the number of clock cycles equalling the number of HMMs. Secondly,
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the data transfers would need to be synchronised somehow, most simply done by using

a shared memory, as is the case for the FPGA–PC data transfers in the implementations

described here.

Segmental modelling [13][41] is another method of improving accuracy, whereby

states are associated with sequences of feature vectors, with the relationship between suc-

cessive feature vectors being modelled by a trajectory through the feature space (duration

modelling is a special case of this). Once again, increased accuracy is balanced by signif-

icant additional computation.

It has already been mentioned that an FPGA is being used here as a prototyping plat-

form, with the idea being that if a commercial version were to exist, it would use an ASIC

instead. Because reconfiguration is not used, the only significant change to the design

(besides converting any FPGA-specific primitives to their ASIC equivalent) would be to

replace the on-chip look-up tables containing the transition and between-HMM probabil-

ities with RAM, with the idea that these values would be loaded onto the chip at reset.

This would allow the system to handle different speech models and different languages.

Whereas software can simply allocate as much memory as needed when a new model

is used, hardware has to have its parameters fixed at compile time. Hence if support for

multiple models were required, the maximum allowable number of HMMs would have

to be decided in advance. Any model which had fewer may then have to have dummy

HMMs/utterances added, whose corresponding probabilities would be set so as to make

any occurrence of the utterance impossible.

One final consequence of using an ASIC is the growing speed gap between ASICs

and RAM. Though the implementations described here operated at a clock rate which

the RAM could handle, the Virtex-E is capable of outperforming the RC1000’s on-board

memory, and so the problem is likely to be compounded with faster FPGAs, and more so

with ASICs. The bandwidth could however be maximised by using a chip package with
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more pins, and arranging for a slower chip and faster memory, as long as this would meet

any processing rate criteria.

There is also the on-chip RAM to consider. On an FPGA, the interconnect delays

dominate the timing. These are considerably reduced on an ASIC, but on-chip RAM

(SRAM for an FPGA) is likely to behave much the same on both types of chip, leading to

another potential bottleneck unless the memory can keep up.

While software or DSPs have been sufficient to deal with the speech pre-processing,

and although software is well-suited to the post-decoding dictionary look-up, future re-

search may also want to look again at the pre- and post-processing stage, towards the goal

of a complete integrated speech recognition chip.

8.4 The future. . .

This thesis begins with the idea that, in time, we will be able to talk to a computer in the

same way we might talk to a human being, and expect it to respond similarly.

The artificial intelligence side of that vision still seems a long way off. As for the

speech recognition part: desktop PCs can already do dictation in real time, if only under

“ideal” conditions. As PCs become ever more powerful, recognition software can be

improved. Whether or not we will see a speech co-processor in a PC will depend on

whether or not a future PC will be powerful enough to handle the additional algorithmic

complexity, which is necessary to make recognition software as robust and flexible as

users may require.

However, for environments where we would like one chip to do the work of sev-

eral PCs, or for mobile applications, speech recognition in hardware could prove to be

very useful. While PCs will continue to provide greater and greater processing power,

devices such as FPGAs will benefit both from an increase in speed, and an increase in
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on-chip resources — the latter providing designers with the additional processing fabric

and bandwidth necessary for more complex algorithms and hence greater recognition ac-

curacy, as well as greater parallelism. Though FPGAs are currently too power-hungry for

use in mobile devices, that could yet change; until then, ASICs will retain their monopoly

in that domain.

Given the incredible rate of progress in the electronics sector, it is always dangerous to

make predictions about the future. Nonetheless, as far as FPGAs are concerned, the trend

seems to be towards integrating the reconfigurable fabric of FPGAs, and the dedicated

logic of ASICs, on to a single device — the system on a chip.

As to how this may affect speech recognition and related applications, and the nature

and direction of technology to come: we will just have to wait and see. . .
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If I have seen further. . . it is by standing upon the shoulders of giants.

Sir Isaac Newton (1643–1727)
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