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ABSTRACT

This thesis presents two families of novel algorithms for automated planning under uncertainty.
It focuses on the domain of searching the ocean floor for hydrothermal vents, using autonomous
underwater vehicles (AUVs). This is a hard problem because the AUV’s sensors cannot directly
measure the range or bearing to vents, but instead detecting the plume from a vent indicates the
source vent lies somewhere up-current, within a relatively large swathe of the search area. An
unknown number of vents may be located anywhere in the search area, giving rise to a problem
that is naturally formulated as a partially-observable Markov decision process (POMDP), but
with a very large state space (of the order of 10123 states). This size of problem is intractable
for current POMDP solvers, so instead heuristic solutions were sought.

The problem is one of chemical plume tracing, which can be solved using simple reactive
algorithms for a single chemical source, but the potential for multiple sources makes a more
principled approach desirable for this domain. This thesis presents several novel planning me-
thods, which all rely on an existing occupancy grid mapping algorithm to infer vent location
probabilities from observations. The novel algorithms are information lookahead and expected-
entropy-change planners, together with an orienteering problem (OP) correction that can be
used with either planner. Information lookahead applies online POMDP methods to the pro-
blem, and was found to be effective in locating vents even with small lookahead values. The
best of the entropy-based algorithms was one that attempts to maximise the expected change in
entropy for all cells along a path, where the path is found using an OP solver. This expected-
entropy-change algorithm was at least as effective as the information-lookahead approach, and
with slightly better computational efficiency.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

One of the fundamental challenges in mobile robotics is how to make good decisions given in-
complete and uncertain information. In the real world sensors never return perfect information,
and it is rarely possible for a robot to observe all aspects of the environment that are of interest
to it. If a robot does not know the true state of the world, it will usually not know what effect its
actions will have, which makes it very hard to form a plan to achieve its goals. For example, a
robot exploring the surface of Mars may be unable to judge the exact distance to a nearby rock,
so may not know if it has to move closer before it can pick up the rock.

This thesis considers the problem of an autonomous robot ‘scientist’ that should act to gather
as much useful scientific data as possible given constraints on its mission duration and range.
Specifically it considers how an autonomous underwater vehicle (AUV) should act to efficiently
locate and visit hydrothermal vents, given the noisy environmental picture provided by its sen-
sors. Hydrothermal vents are found on the ocean floor, several kilometres below the surface,
and they discharge superheated water into the ocean. For marine scientists, hydrothermal vents
are among the most exciting finds the oceans have to offer; for geologists they provide evidence
of the geochemical processes occurring below the Earth’s crust, and for biologists they mark
the location of many strange life forms that, uniquely amongst life on Earth, derive their energy
from the Earth’s core (via the vent) rather than from the Sun.

Hydrothermal vents are formed where tectonic plates diverge and magma is pushed up to
form new ocean floor. Cracks in the seabed allow water to seep down and come into contact
with the magma, heating it up and dissolving minerals into it. The heated water then rises
and erupts back into the ocean at temperatures of 300-400°C, forming a hydrothermal vent.
This water quickly cools to very close to ambient temperature, but still contains chemicals that
give it a detectable signature as it is spread out over an area dozens of kilometres wide as a
hydrothermal plume.
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Sensors on board an AUV can detect this plume signature, but this gives only limited infor-
mation about the location of the source vent, for several reasons:

• Turbulent currents together with the large dilution of the hydrothermal chemicals mean
there is no steady gradient of increasing chemical concentration that can be followed to
the source. Instead, hydrothermal tracers are found in disjoint patches.

• The output from different vents differs in both volumetric flow rate and in the relative
concentrations of different chemicals, which means chemical intensity is not a reliable
indicator of distance to the source.

• The only information available about the direction to the source comes from measuring
the current, as plumes are largely dispersed by ocean currents. However, the current varies
in both magnitude and direction over the lifetime of an AUV mission, and additionally
there is a diffusion component to the spread of plumes.

• Vents are often found in clusters known as vent fields, and the plumes from several vents
can combine together, further complicating any analysis.

Contemporary methods for vent prospecting rely on firstly using a research ship to take mea-
surements of the water column over a large area, perhaps several hundred kilometres wide,
to detect evidence of a hydrothermal plume. Once a plume has been detected, a submersible
vehicle is used to search a smaller area in more detail. The submersible may be a remotely
operated vehicle (ROV), an AUV, or even a crewed vehicle. With an AUV an exhaustive search
pattern is generally used, and several successive deployments are needed; between each deploy-
ment the vehicle must return to the surface for scientists to identify promising areas to explore
in more detail.

The aim of this work is to present novel algorithms that allow an AUV to plan its own
path based on the sensor data it records, and to find vents more efficiently than an exhaustive
search pattern would. These algorithms enable vents to be located precisely during a single
AUV deployment, freeing the AUV to either find further vents in a different area or to carry
out other tasks on subsequent missions. Additionally, although the AUV will still have to be
recovered to the ship in order to recharge, scientists will not have to analyse data and plan
follow-up missions, allowing them to focus on other tasks. As well as these novel algorithms,
this thesis describes experiments (conducted in simulation) that demonstrate the effectiveness
of the algorithms in finding vents when compared to conventional means. While the focus is on
the vent prospecting domain, aspects of this work may have broader implications, specifically
the comparison of two different planning regimes: reward-driven and entropy-driven planning.
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1.2 Problem Overview

From an AI planning point of view, the state space for the vent prospecting problem consists
of the 3D location of the vehicle, the ocean current vector and its history, the time and battery
power remaining to the AUV, and the location(s) of vents in the search area. The agent does not
know the vent locations, but instead has to act on the basis of noisy sensor readings that provide
clues to the vent locations. The vehicle’s sensors provide continuous measurements of various
physical and chemical quantities that are useful in determining the presence of a hydrothermal
plume from a vent. The only actions available to the vehicle are moving in the world, and the
objective of the agent is to locate as many vents as possible within a fixed search area during a
fixed-duration mission. While existing reactive algorithms are capable of efficiently locating a
single chemical source (see Section 2.3), the ability for an AUV to locate multiple vents during
a single mission would be especially valuable to the oceanographic community.

The natures of the partial observability, reward function, and observations make this pro-
blem particularly hard. First, not only are vent locations unknown (initially) to the agent, the
number of vents is also unknown, which is roughly equivalent to having a partially-observable
state space of unknown dimensionality. Second, the agent is rewarded for finding specific tar-
gets, rather than simply for mapping an area. It must therefore balance exploration (improving
its map) with exploitation (visiting areas where the current map indicates there are likely to be
vents). This is similar to the exploration/exploitation trade-off encountered in the reinforcement
learning problem [Sutton and Barto, 1998], and means that to act optimally the agent will have
to reason about the informational effects of actions. Finally, observations the agent receives
are not simply noisy estimates of the location of objects, as is often the case with mobile ro-
bots using sonar or laser sensors. Instead, observations are noisy indicators of the strength of
a hydrothermal plume, and plume strength indicates a large range of possible vent locations
up-current.

This vent prospecting problem is naturally formulated as a partially-observable Markov
decision process (POMDP), but the continuous state space and the type of uncertainty in the
problem make the domain intractable for current POMDP solvers (see Section 3.2 for an over-
view of POMDPs, Section 4.3 for the full POMDP model of this problem and Section 6.1 for
a discussion of relevant POMDP work in the literature). Classical planning techniques can not
be used either, as these cannot handle the type of observational uncertainty present in this pro-
blem [Ghallab et al., 2004; Kushmerick et al., 1995]. Given this, the aim of this work was to
develop satisficing solutions, in other words solutions that achieve the desired goal but are not
necessarily optimal.
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1.2.1 Evaluation

My algorithms are evaluated using two key performance metrics: their effectiveness in finding
vents, and their computational efficiency. Algorithm run-time is an important consideration
because the ultimate goal is to implement the algorithms on an AUV, where processor speed
is limited, and furthermore any savings in computation will lead to savings in battery power. I
will examine both the computational complexity of the algorithms, and run-time for a simulated
mission. However given that the current work is all conducted in simulation, computational
complexity is less important than vent-hunting performance. Note that in the remainder of this
thesis, “algorithm performance” is used to refer to effectiveness in finding vents rather than
computational efficiency.

The measure used for evaluating performance is the average proportion of vents found,
where the average is taken over several missions with different vent locations and plume dis-
persion. The proportion of vents found is used rather than the absolute number found to allow
comparison between trials with different numbers of vents in the environment.

To provide a benchmark for the performance of my novel algorithms, two methods com-
monly used in chemical plume hunting are used: mowing-the-lawn (MTL) and chemotaxis.
MTL prescribes an exhaustive search pattern, and chemotaxis is a reactive search inspired by
the behaviour of moths, using up-current surges followed by a spiral search pattern. An interac-
tive simulation allowing human performance on the problem to be measured was also created,
and this simulation as well as both comparison algorithms are described in Section 2.4.

Finally, the obvious evaluation method for vent prospecting algorithms is to apply them to
finding vents using a real AUV. This was outside the scope of this work. However, there are also
two drawbacks to this approach for evaluating novel algorithms: firstly such scientific research
cruises are very costly, so only a small sample size can be obtained for evaluation (how would
we know the algorithm did not perform well purely by chance?), and secondly it is difficult and
costly to establish the ground truth of how many vents there actually were in the AUV’s search
area.

1.3 Solution Overview

The problem was divided into two components: creating a map of the vent locations, and plan-
ning a path given this map. Given that the AUV only receives imperfect and partial information
from its sensors, the map will have to accommodate uncertainty in vent locations. A directly
applicable mapping algorithm was developed by [Jakuba, 2007]; this algorithm takes sensor
data from an AUV and builds an occupancy grid (OG) map showing the likelihood of finding
a vent in each location. The algorithm uses plume measurements together with the sea-floor
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current to assign probability to vent locations, and is described in more detail in Section 3.1.2.
This thesis builds on Jakuba’s mapping algorithm, which allows it to focus on the planning
aspects of the vent prospecting problem; however, using an OG mapping method dictated the
state space of the problem, and this state space placed restrictions on the planning approaches
that were possible (as discussed further in Section 8.2).

The planning algorithms are sub-optimal strategies based on the OG map (which is a Baye-
sian estimate of the state), as the optimal POMDP solution is intractable. The planning strategies
fall into two distinct camps: entropy-based and information-lookahead–based. Entropy-based
strategies try to locate vents by minimising the entropy (or uncertainty) of the map, whereas
information-lookahead–based strategies search ahead several steps in the state-action space,
and then use these potential future states to help estimate the optimal action. Finally, I develo-
ped a correction term that can be applied to both the entropy and information-lookahead cases,
which addresses a problem with the agent gaining reward by ‘re-discovering’ vents. The formal
problem model and these three technical approaches are discussed in the following subsections.

1.3.1 Problem Model

I have abstracted the vent prospecting domain into a POMDP model that is computationally
tractable for the heuristic and approximate algorithms presented in this thesis. The model still
keeps enough fidelity to make it plausible that such implementations could be transferred to the
real domain, and it is outlined below, and described in full in Chapter 4.

The search area is divided into a regular 2D grid of cells, each of which may either contain
a vent or not, which allows the use of an occupancy grid to model the agent’s knowledge of vent
locations. The agent is restricted to moving between adjacent grid cells in the north/east/south/west
directions, one cell per timestep, and always knows exactly which grid cell it is in. The aim of
the agent is to find as many vents as possible during a fixed-duration mission.

The model of hydrothermal plumes is based closely on that used by Jakuba, and this is
described in Section 4.2. It results in a binary observation model for the agent, to either detect
a hydrothermal plume, or detect nothing, on each timestep. In addition to this I allow the
agent to know when it has visited a vent, and I also derived an observation function giving the
probability of each observation for a known AUV location and OG. This function is based on
the same simple plume propagation model that underpins Jakuba’s OG update algorithm, and
the derivation is given in Section 4.6.
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1.3.2 Entropy-inspired Planning Methods

I have created a family of novel algorithms inspired by the idea of acting to reduce map entropy
in order to localise vents. Firstly, the infotaxis algorithm described in [Vergassola et al., 2007]

was adapted to work with the model described in Section 1.3.1, which differs in the observation
model and map representation. Infotaxis performs a one-step lookahead search over actions,
and selects the action that results in the greatest reduction in expected map entropy, where the
expectation is taken over possible observations.

I build on this with the Σ∆H-algorithm, which copes better with a peculiarity of this domain:
due to the low prior probability of grid cells containing a vent, the entropy of cells will often rise
rather than fall when a useful observation is made (which means the entropy of the whole map
will also often rise). Σ∆H addresses this by maximising the change in entropy, even if this is an
increase in entropy, because such changes correspond to the agent making useful observations.
Finally, Σ∆H-MDP is introduced, which is a non-myopic version of the algorithm that allows
future actions to be taken into account by essentially ignoring their informational value. Σ∆H-
MDP first calculates the expected entropy change for making an observation from every cell,
as if the agent could ‘teleport’ instantly to that cell. It then solves a Markov decision process
(MDP) where these entropy changes represent the reward the agent gets for visiting cells (see
Section 3.2 for an introduction to MDPs). The policy defined by the MDP solution is optimal
for this reward model, in that it maximises the agent’s expected long-term reward.

1.3.3 Information-lookahead Planning Methods

A completely separate approach using information lookahead in the belief-space of the POMDP
was also developed. The information-lookahead (IL) algorithm uses forward search in the ac-
tion/observation space of the POMDP for a small number of steps to assign a value to each
possible action. In basic IL, the value used for the leaf nodes of the forward search is simply
the OG occupancy probability for the terminal cell. In the IL-CE (certainty equivalent) variant,
leaf node values are found by solving an MDP using OG probabilities as the rewards. This is
similar to the Σ∆H-MDP algorithm, as the MDP correction ignores the informational effects of
future actions.

1.3.4 Orienteering Problem Correction

The final contribution I developed was a fix to the MDP-based algorithms that uses the orientee-

ring problem (OP) [Tsiligirides, 1984; Golden et al., 1987], a variant of the travelling salesman
problem. When the informational effects of future actions are disregarded, treating the planning
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problem as an OP instead of an MDP means that a reward can only be claimed the first time a
cell is visited, rather than every time. This is a more accurate model of the underlying problem,
and also prevents the MDP policy from becoming stuck in solutions where high-value cells are
repeatedly re-visited. The OP solver is applied to the problem in three ways:

• As a standalone planner where informational effects of actions are completely ignored.

• Using the Σ∆H algorithm to encode informational effects, and the OP solver to project
these effects to future actions.

• As a correction to the information lookahead calculation, where the OP is used to calcu-
late the value of leaf nodes, as a replacement for the MDP in IL-CE.

1.4 Contributions and Results

The key contribution of this thesis is a solution to the vent-prospecting problem, which will
be of interest to the AUV community, and illustrates a novel application and extension of AI
planning techniques, which is effective given the particular characteristics of this domain.

In particular, I show that:

• Planning using an occupancy grid representation enables an agent to find more vents
than either chemotaxis or exhaustive search (neither of which uses a representation of the
environment).

• Entropy-based planning is able to find vents as efficiently as forward search in the ac-
tion/observation space, but with better computational scalability.

The contributions are:

• A formal model of the planning problem as a POMDP, as outlined in Section 1.3.1 (details
in Chapter 4). This model will enable other researchers to tackle the problem more easily
in the future. It is an interesting problem for POMDP research because it is a real-world
application where classical planning techniques will not work, and where the size of the
state space makes it a challenge for existing POMDP methods.

• A set of entropy-based planning algorithms, as outlined in Section 1.3.2 (details in Chap-
ter 5). I show that Σ∆H-MDP performs better than Σ∆H and infotaxis, and all of these
algorithms are significant improvements on MTL and chemotaxis.
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• A set of information-lookahead planning algorithms, as outlined in Section 1.3.3 (details
in Chapter 6). The key contribution here is to apply online POMDP methods [Ross et

al., 2008] to the model described in Chapter 4, and show that these methods perform at
least as well as the entropy-based methods of Chapter 5. I also show that, in this case, the
IL-CE approximation where informational effects of future actions are ignored results in
significantly worse performance.

• A correction using an orienteering problem solver, as outlined in Section 1.3.4 (details in
Chapter 7). When applied to the Σ∆H algorithm, the OP correction produces significantly
better performance than the Σ∆H-MDP approach, and at least equivalent performance to
the IL algorithm. Further, Σ∆H-OP runs significantly faster than IL. When applied to the
IL algorithm, the OP correction does not significantly improve algorithm performance,
which is surprising as it creates plans based on simulating actions further into the future.
However this is explained by the high quality of the map contained in the OG, which
arises largely from the plume model.

While all work for this thesis was conducted in simulation, care was taken to avoid algorithms
that would not be practical on a real vehicle. The issues that would need to be addressed to
implement my solutions on a real AUV are discussed in Section 8.3.5.

In addition to the problem of finding hydrothermal vents, the algorithms I have developed
could be applied to several other domains which share the key goal of tracing chemical plumes
in a turbulent water flow. Examples of such domains are searching for unexploded naval mines
or sunken nuclear submarines, tracing leaks in underwater pipelines, tracking and measuring
plumes carrying polluted water into the seas from inland waterways, and potentially even plume
tracing in air as opposed to water.

This thesis has resulted in three publications:

• Richard W. Dearden, Zeyn A. Saigol, Jeremy L. Wyatt, and Bramley J. Murton. Planning
for AUVs: Dealing with a continuous partially-observable environment. In ICAPS-07

Workshop on Planning and Plan Execution for Real-World Systems. [Dearden et al.,
2007].

• Zeyn A. Saigol, Richard W. Dearden, Jeremy L. Wyatt, and Bramley J. Murton. Information-
lookahead planning for AUV mapping. In Proceedings of the Twenty-first International

Joint Conference on Artificial Intelligence (IJCAI-09). [Saigol et al., 2009a]. In addition
an extended technical report based on this paper was authored [Saigol et al., 2009b].

• Zeyn A. Saigol, Richard W. Dearden, Jeremy L. Wyatt, and Bramley J. Murton. Belief
change maximisation for hydrothermal vent hunting using occupancy grids. In Procee-

dings of the Eleventh Conference Towards Autonomous Robotic Systems (TAROS-10).
[Saigol et al., 2010a].
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1.4.1 Note on Code Re-use

My implementation makes extensive use of code that Michael Jakuba generously supplied me
with for my personal use on this project. This code implements the Independence of Poste-
riors (IP) semi-recursive occupancy grid algorithm from [Jakuba, 2007] §3.2.1, and a basic 2D
version of the plume model described in [Jakuba, 2007] §4.5 and §5.2.1 (and in Section 4.2 of
this work), both of which I used without modification (apart from adding the deterministic vent
detector). The IP OG implementation contained code to group detections into approximately
independent groups, but this facility was not used. The source also contained some framework
code and tools for plotting the OG and vehicle path, which I used with major modifications and
extensions.

The code supplied to me did not include any mechanism for dynamically changing the
agent’s path, any of the comparison algorithms described in Section 2.4, or any of my novel
algorithms described in Chapters 5, 6 and 7.

1.5 Background

This work was motivated by earlier work on autonomous ‘robot scientists’, particularly in the
context of planetary rovers. The challenge of the rover domain for automated planning is sum-
marised in [Bresina et al., 2002]: the problem has a continuous state and action space, partially
observable state, and uncertain action effects. Actions can be executed concurrently, take a fi-
nite amount of time, and often have to be executed within a specific time window. Finally, the
plan must be constructed taking into account limited resources, most notably limited battery
power.

Progress on this problem has addressed the uncertain action outcomes [Dearden et al., 2003]

and continuous state variables [Feng et al., 2004; Mausam et al., 2005; Kveton et al., 2006],
but not the partial observability. For the vent prospecting domain, the partial observability
(unknown vent locations) turns out to be what makes the problem hard to solve, so most of
the relevant previous work comes from other areas within robotics. In this thesis, prior work is
covered at the most appropriate place: conventional methods for vent prospecting and methods
for robotic chemical plume tracing in Chapter 2; mapping methods and POMDP theory in
Chapter 3; POMDP domains similar to the vent prospecting domain in Chapter 4; general
adaptive robotic exploration methods in Chapter 5; current methods for solving POMDPs in
Chapter 6; and orienteering problem solvers in Chapter 7.
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1.6 Document Structure

The remainder of this thesis is structured as follows: in Chapter 2, the oceanography back-
ground and current methods for finding hydrothermal vents are described in more detail, and
methods used for benchmarking the performance of the novel approaches developed in this
thesis are presented. Chapter 3 contains some necessary background material, in particular
occupancy grid methods, Jakuba’s occupancy grid algorithm, and an overview of POMDPs.
Then Chapter 4 lays out the exact model of the problem, including the details of the simulation
environment used and the POMDP formulation of the problem.

Chapters 5, 6 and 7 describe the contributions outlined in Section 1.4 above. Each chap-
ter is self-contained, and includes a summary of relevant previous work, the novel algorithms
themselves, results for that family of algorithms, and a discussion. Chapter 5 discusses entropy-
based algorithms and results, Chapter 6 covers information-lookahead (online POMDP) work,
and Chapter 7 describes how an orienteering problem approximation can be used to improve
the previous solution methods.

Finally Chapter 8 presents a summary and overall evaluation of this work, and describes
areas for future research.
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CHAPTER 2

OCEANOGRAPHY BACKGROUND

2.1 Hydrothermal Vents

This section provides an overview of the geophysical processes behind hydrothermal vents,
and the characteristics of vents. For a longer introduction, see for example [WHOI, 2005]

or [Garrison, 2002], and for a more detailed treatment see for example [Parson et al., 1995;
German and von Damm, 2003; Pirajno, 2009].

Hydrothermal vents form because the tectonic plates that make up the crust of the Earth
are being pulled in different directions by convection currents in the liquid mantle beneath
the crust. The movement of plates leads to three different types of plate boundary: spreading
centres where plates are moving apart, subduction zones where they are moving together such
that one plate slides under another, and transform boundaries where plates are sliding past one
another. Vents form on spreading centres, where magma flows up from the mantle to form new
ocean floor. Spreading centres create oceanic ridges (such as the Mid-Atlantic Ridge), which
are submerged mountain ranges commonly found running along the centre of an ocean, and
often rising 2 km above the normal level of the ocean floor.

A hydrothermal vent forms when cold seawater seeps down through cracks in the rocks
on an oceanic ridge and comes into contact with the hot magma below. This heats the water
up, and convection causes it to rise back up to the sea, dissolving minerals and metals from
the surrounding rocks on the way. Water then emerges through a vent with a very different
chemical composition to the surrounding seawater – it is more acidic, and contains dissolved
metals and minerals including iron, copper, manganese, zinc, methane, sulphides and sulphates.
Water from the hottest vents reaches temperatures of 350–400°C, and the chemicals it contains
react with oxygen-rich seawater to form clouds of black particles. These most spectacular vents
are nicknamed ‘black smokers’ (an example is shown in Figure 2.1), and often exit from tall
chimneys that have been gradually built up by particles they deposit.

The size, temperature, and output volumetric flow rate vary between individual vents depen-
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Figure 2.1: Examples of black smokers, a particularly dramatic type of hydrothermal vent.
Photo credits: (left photo) NOAA photo library, (right photo) Meg Tivey, WHOI

ding on a variety of factors, such as the thickness of the oceanic crust on the ridge, the amount of
magma activity below the crust, the size and depth of the rock fissures the water flows through,
and how much the hot hydrothermal fluid mixes with cold seawater before exiting the crust.
Hydrothermal activity also varies considerably along a ridge axis, with magma “hot spots” and
other considerations causing vents to be found in “vent fields” clustered together at intervals
along the ridge.

Hydrothermal vents are thought to exist along all mid-ocean ridge segments, but only about
20% of the ~67000 km of the global ridge system has been surveyed at all for vent activity
[Baker and German, 2004]. Vents are very useful for understanding the heat flow between the
Earth’s mantle and the oceans, which is key to much of the planet’s climate. They also support
communities of unique life forms, including tube worms several feet long, and giant white
crabs, which all obtain their energy directly or indirectly from the hot, chemically enriched
hydrothermal fluids [Gold, 1992]. However, locating vents is a complex and costly process,
partly because of the scale of the oceanic ridge system that must be surveyed. Further, vents are
usually found at depths of 2 km or greater, where the ocean is completely black, and the water
pressure means it is very expensive to use a human-occupied vehicle (HOV).
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Figure 2.2: Diagram showing the typical dispersion of a hydrothermal plume (not to scale).

2.2 Vent Prospecting

2.2.1 Research Cruise Overview

This section describes the process by which hydrothermal vents are found, and describes some
of the key sensor systems used in locating them [German et al., 2008; Baker et al., 2007;
1995].

The hydrothermal fluid emanating from vents contains chemical and physical “tracers”
which identify it as coming from a vent, for example the presence of dissolved methane. Fluid
rising from a vent will mix with cold sea water, and continue rising and cooling until it reaches
a height where it has the same buoyancy as the surrounding water (generally at around 150–
400 m). The fluid, still containing tracers from the vent, then disperses in a plume driven by
the current as shown in Figure 2.2. Several issues make it hard to detect this plume: firstly, the
vent water is mixed with sea water and is not significantly different in temperature from the sur-
rounding water (however, the interaction between salinity, temperature and density in seawater
does mean hydrothermal fluid contains a “temperature anomaly”). Secondly, the current flow
is not constant, but will change direction every few hours. Thirdly, sea water often separates
into vertical layers with different densities, and hydrothermal fluid will not easily cross these
layer boundaries, which means it can sometimes become trapped at a higher or lower altitude
than normal. Finally, the water column movement is somewhat turbulent, and tracers will only
appear in the plume water intermittently at best. In fact, it is possible for vent tracers to become
trapped in a vortex, and there to be no trail leading back to the vent.

A typical research cruise with the aim of finding vents will first try to make contact with a
non-buoyant hydrothermal plume, and then home in on the source of the plume, making use of
a variety of methods:

1. Gathering low-resolution bathymetry data (XYZ data describing the relief of the ocean
bottom) over several hundred kilometres of the ridge axis, using the ship’s multibeam
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sonar sensors.

2. CTD casts. CTDs are Conductivity/Temperature/Depth sensors, which are attached to a
cage containing sampling bottles which is slowly lowered to the ocean floor while keeping
the ship on station in a fixed location.

3. Sensor platforms towed behind the ship, at a depth of a few hundred metres above the
sea floor, comprising CTD, bathymetry, and often other sensors. To obtain a picture
of vertical variation in the water column, either a CTD tow-yo is used where a CTD
instrument is raised and lowered while being towed, or additional sensors are attached at
intervals along the tow cable. These methods are shown pictorially in Figure 2.3.

4. A submersible, whether ROV, AUV or HOV, is needed for the exact localisation and
surveying of vents.

Bathymetry data is captured by the research ship’s on-board swathe bathymetry sensors, which
can map a region several kilometres wide in a single pass. Bathymetry can be used by experts on
vent geology to identify likely locations for vents based on the relief of the area, and can guide
deployments of the CTD and deep-tow platforms. CTD casts and deep-tow data will hopefully
identify vent plume(s), which may be detected tens of kilometres from the source vents. Despite
this, variations in plume intensity together with bathymetric data often enable marine scientists
to determine the location of a vent field to within a few kilometres. CTD tow-yos can narrow
this down to a few hundred metres, and then low-altitude surveys in a submersible can find and
photograph the vents.

2.2.2 Chemical and Physical Tracers

CTDs, deep-towed platforms and ROVs/AUVs can all make use of similar biogeochemical
sensors to track down vents, which I describe in this section. Some of these track conservative

chemicals, which do not react or degrade (but may be diluted), and some track non-conservative

quantities. The important sensors are [Baker et al., 1995]:

Optical backscattering When the hydrothermal fluid meets cold sea water, many of the mi-
nerals precipitate out into particle form, making the vent water very cloudy. The particle
concentration in the water can be estimated by measuring the amount of light reflected
back using a light scattering sensor (LSS, or nephelometer). This is a non-conservative
quantity, as the particles gradually settle out of the water. The background level is nearly
constant below 1000 m, which makes the readings easy to interpret.

Methane Dissolved methane is commonly used, as it is an unambiguous indicator of vent
activity and is easily measured. It is non-conservative.
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Figure 2.3: Diagrammatic representation of basic methods for hydrothermal plume detection.
(Figure taken from [Baker et al., 1995].)
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Reduction potential (often referred to as Eh). Redox potential measures the chemical reacti-
vity of the water; hydrothermal water has low redox potential, as it is low in oxygen. Eh
is useful as strong changes in it are only observed close to a vent, within a few hundred
metres.

Manganese, Iron, and other metals Manganese in particular is often used as it is enriched by
several orders of magnitude in hydrothermal fluid compared to normal seawater. It is
nearly conservative.

Potential temperature versus salinity anomalies While the temperature of hydrothermal fluid
far from the vent is indistinguishable from that of the surrounding water, it will be identi-
fiable by a change in the normally linear relationship between potential temperature and
salinity in a given region of ocean. Such anomalies can be found by examining a se-
ries of CTD data, as salinity and potential temperature are just functions of conductivity,
temperature and density.

Note that in Chapter 3 I describe the mapping method used in this thesis, the occupancy grid
algorithm of [Jakuba, 2007]. This algorithm compresses measurements from these tracers into
a single binary detection, and therefore abstracts away the specific qualities of tracers detailed
above. Jakuba’s algorithm is described in Section 3.1.2, and the reasons for adopting it are
covered in Section 3.1.3. Drawbacks to compressing tracer measurements into a single binary
observation are discussed in Section 8.1.4.

2.2.3 Submersible Platforms

Early vent prospecting was performed using HOVs with a human crew to confirm the presence
and location of vents, for example the initial discovery of hydrothermal vents in 1977 used
the Alvin submersible [Corliss et al., 1979]. However vents are generally found at depths
of two kilometres or more, where the water pressure is over 200 times atmospheric pressure.
HOVs have to be engineered to keep humans safe at these pressures, and to provide them with
breathable oxygen, which makes them expensive to build and expensive and risky to operate.

ROVs were the first alternative developed, robotic platforms that are tethered to a mother-
ship by a cable providing a data and power connection. ROVs are piloted by human operators
from a control room on the ship, who have access to a camera feed from the ROV, and can
operate any robotic arms, sampling bottles, and other equipment fitted to the vehicle. The te-
ther means that the ROV must stay relatively close to the mothership, so ROVs have limited
speed and range, plus they require the research ship to remain in a fixed location instead of
conducting further exploration itself. However ROVs are very useful for collecting biological
and geological samples, and for visual exploration of an area.
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Figure 2.4: The Autosub6000 AUV operated by NOC Southampton. Photo credit: Richard
Dearden.

AUVs have traditionally been used for pre-planned automated surveys of large areas, for
example gathering bathymetry data from a low altitude above the sea floor. AUVs generally
require some on-board processing to enable them to descend to and maintain a constant depth,
follow a specific path (including calculating their own position by some means), and in some
cases to follow the terrain of the sea floor without crashing. Path planning in a continuous 3D
space with variable ocean currents is a challenging problem, and several interesting algorithms
have been developed [Pêtrès et al., 2007; Hert et al., 1996; Kruger et al., 2007], but this problem
is outside the scope of this work. Recent work has focused on giving more autonomy to AUVs
to optimise scientific returns (for example [McGann et al., 2008b; 2008a; Jakuba and Yoerger,
2008; German et al., 2008]), but progress has been relatively slow, due to factors including
the high cost of both vehicles and deployments and consequent requirement for highly reliable
control systems [Saigol et al., 2010b; McGann et al., 2008c]. Figure 2.4 shows a photograph of
the Autosub6000 AUV, which is operated by the National Oceanographic Centre, Southampton.

2.2.4 Work with the AUV ABE

ABE, an oceanographic research AUV operated by Woods Hole Oceanographic Institution, is
frequently used to search for hydrothermal vents. Dana Yoerger, Michael Jakuba and other
members of the ABE team, working in partnership with oceanographers including Christopher
German, have recently done much work to improve the methods used for hydrothermal vent
prospecting [Yoerger et al., 2007b; 2007a; German et al., 2008]. Before about 2000, finding a
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vent would require at least two research cruises: an initial cruise to identify regions with hy-
drothermal activity by detecting plumes (for example [German et al., 1998]), and a subsequent
cruise using a submersible to track the source of the plumes. Yoerger’s team developed a me-
thod to allow vents to be found in previously unexplored sections of oceanic ridge on a single
cruise. This method uses conventional ship-based means (as described in Section 2.2.1) to find
the strongest plume signal (to within about 5 km), and then a programme of three ABE dives to
locate a vent within 5 m and obtain photographs of the surrounding sea floor.

On each ABE dive the vehicle follows a mowing-the-lawn path, where the search area boun-
daries and trackline spacing are set manually based on an examination of the data obtained so
far. The three phases are:

1. A survey of about 3 km x 3 km at the altitude of the non-buoyant plume (100-400 m),
using OBS and Eh sensors.

2. A survey of about 1 km x 1 km at an altitude of 50 m, using multi-beam sonar as well as
OBS and Eh sensors.

3. A survey at ~5 m altitude, covering 200 m x 200 m of seafloor, taking photographs as
well as using the OBS, Eh and sonar sensors.

This three-phase methodology still requires the vehicle to be recovered back to the ship between
dives, and scientists to examine the data recorded and plan the location and parameters of the
next dive. The recovery, planning, and re-launching occupies approximately twice as much time
as the vehicle spends gathering data ([Jakuba, 2007], §4.2). While surveys are designed to make
use of the maximum range of the AUV for each phase, the ABE team recognised that further
efficiencies could be made by performing on-board analysis of sensor data and subsequent path
planning. [Yoerger et al., 2007b] describe how phase 3 ABE dives were enhanced by such
on-board processing to determine the area surveyed during the last 5% of the mission. Their
algorithm creates clusters of plume detections, and then chooses the highest-intensity cluster
as the centre point of the survey filling the remainder of the mission time. As part of his
PhD work, Michael Jakuba developed an occupancy-grid–based mapping algorithm that could
identify likely vent locations [Jakuba, 2007; Jakuba and Yoerger, 2008], and this algorithm is
described in Section 3.1.2. However it has yet to be run on-board the AUV, and Jakuba does not
suggest a planning framework to use with his mapping algorithm.

2.3 Reactive Chemical Plume Tracing

In this section I will examine work on the basic problem of locating a chemical source with a
mobile agent, which is superficially very similar to the problem addressed in this thesis. Howe-
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ver, the vent prospecting problem has multiple sensors, multiple potential targets, and a finite
mission time, all of which mean the work discussed below can not be applied directly.

Chemical plume localisation algorithms are needed because in the turbulent fluid flow envi-
ronments found in the real world, there is seldom a strong or consistent enough signal for simple
gradient following to be used to trace the source of an emission. Four common algorithms for
locating a chemical plume using a mobile agent (known as chemotaxis) are reviewed in [Russell
et al., 2003]. Three of these algorithms are biologically inspired, copying the behaviour of the
E. coli bacterium, the silkworm moth, and the dung beetle, and the fourth algorithm is simple
gradient following.

Russell et al. identify two stages in chemotaxis: firstly making contact with the plume, and
secondly tracking the chemical to the source. For making contact with the plume, the biological
strategies were:

E. coli Random walk

Moth Passive monitoring from a fixed location

Dung beetle Linear upwind path at some angle to the wind

The best strategy was found to be a straight path at 90° to the wind.
Once a chemical signal was detected, the strategies for following the plume to its source

were:

E. coli If signal increasing, rotate a small random angle and
move a fixed distance; Else, choose new random
direction and move a fixed distance.

Moth First, a rapid upwind surge for about 0.4 s, then
‘cast’ side-to-side with increasing amplitude for 4 s,
next turn in circles for approximately 10 s, and
finally turn with random changes in direction for
20 s. If another chemical signal is detected at any
point, the procedure is restarted.

Dung beetle Zig-zag diagonally upwind, changing direction each
time leave the edge of the plume. When contact with
the plume is lost, the agent assumes it has just
passed the source.

Gradient-
based

Stereo sensors orient robot by turning toward the
sensor with the stronger signal. Preference is given
to moving upwind.

Lobsters-like behaviour was not considered by Russell et al., but [Vickers, 2000] notes that
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plume tracing paths produced by lobsters are very similar to those of moths. Lobsters do differ
in that they can use ‘stereo’ odor detectors to turn toward the strongest odor concentration
[Weissburg, 2000], which means their behaviour is likely to be a combination of the moth and
gradient-based behaviours.

Results were obtained for two paradigms, where the air flow was viscosity dominated (pro-
ducing a smooth chemical gradient), and where it was turbulence dominated. For robots of
more than a few centimetres in size, the authors suggest that fluid flow will almost invariably
appear turbulent.

Russell et al. find that the E. coli algorithm took significantly longer than the others to
find the source in the smooth gradient environment, but in the turbulent environment it failed
completely. With the macroscopic airflow conditions, the gradient based algorithm tended to
find the shortest path when it worked, but failed completely more often than the moth or beetle
approaches, as it just carries on in a straight line if it loses the signal. The moth algorithm
performed slightly better than the beetle, but the beetle approach may be superior for stronger,
more consistent plumes.

Also, the authors suggest pointers for how to work out if the source has actually been found:

• Analysis of eddys in the plume, given a sensor with a fast enough response.

• Comparison to known chemical intensity, if the characteristics of the source are very well
known.

• If using the dung beetle algorithm, which keeps track of the plume width as the source is
approached, the point at which the width will be zero can be extrapolated.

In [Farrell et al., 2003], an AUV is used to find the source of an artificially introduced chemical
plume. They use a near-shore environment where the dispersion of the plume is dominated by
turbulent effects, and therefore gradient-based searching cannot be used. They also implement a
behaviour-based planning system to control the actions of the AUV, using six distinct behaviours
inspired by the odour-localisation behaviour of moths. Switching between the behaviours is
triggered by either detecting an odour signal, or failing to detect a signal for a specified period
of time. To predict the exact location of the source, they use a simple test based on encountering
three separate detection events within a specified distance of each other. Following seven runs
used to fine-tune the parameters of the algorithm, the AUV was able to find the chemical source
in seven out of eight runs.

Finally, [Ferri et al., 2008] describe a vent prospecting mission where a spiral search pat-
tern was used when a vent plume was detected, and [Jakuba and Yoerger, 2008] describe the
application of Jakuba’s OG algorithm to the data collected by an AUV mission.
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Figure 2.5: Example of the agent’s path using the mowing-the-lawn (MTL) algorithm. This is
an exhaustive search. The agent starts in the north-east (top-right) corner of the search area.

2.4 Comparison Algorithms

Given the complexity and size of the vent prospecting domain (as described fully in Chapter 4),
it is not possible to compute the optimal behaviour for a given set of observations. However,
it is important to have a benchmark against which novel algorithms for this domain can be
evaluated, and for this purpose I have developed three alternative behaviours. These behaviours
are described more fully below, and consist of:

• An exhaustive search method.

• A reactive algorithm inspired by chemical plume tracing in nature.

• An interactive tool where a human operator guides the agent in the same simulation envi-
ronment used for evaluating the novel algorithms.

All the algorithms discussed work in 2D, with the altitude of the AUV fixed. Results for the
comparison algorithms are presented alongside results for the novel algorithms in Chapters 5, 6,
and 7, and in particular some of the human-driven results are given in Sections 5.7.1 and 6.5.3.

2.4.1 MTL and Chemotaxis

The first comparison algorithm is mowing-the-lawn (also known as ploughing-the-field), which
performs an exhaustive search of a rectangular area. The vehicle moves along parallel tracklines
linked by short perpendicular segments at either end of the tracklines, as shown in Figure 2.5.
This approach is commonly used in marine exploration to survey an area, and the trackline
spacing can be varied to obtain different survey resolutions.
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(a) The increasing-radius spiral search path initiated when
the agent has not contacted a plume for six timesteps.
Note that the path appears to move down one cell at the
start of the spiral, but this movement is part of the linear
up-current surge, and is due to the rasterising of the up-
current line.
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(b) The redirection towards the centre of the grid initiated
when the agent attempts to leave the search area. At co-
ordinates (7,0) the agent is directed back on a random li-
near path approximately towards the centre of the grid, and
continues on this path until it gets another plume detection
at about the middle of the search area.

Figure 2.6: Examples of the agent’s path using the chemotaxis algorithm, with Subfigure a
showing the spiral behaviour, and Subfigure b showing the redirect if the agent attempts to go
out-of-bounds. The agent starts in the north-east (top-right) corner of the search area. Note that
the vent locations (marked by pink circles) are not known to the agent.

The second comparison planner was a chemotaxis method loosely based on the behaviour
of the male silkworm moth, as described in [Russell et al., 2003]: on detecting a plume it firstly
surges directly up-current for six timesteps, and then searches in an increasing-radius spiral. If
it detects a plume again at any point, the behaviour is re-started from the beginning. Prior to
the first detection, the chemotaxis algorithm follows an MTL pattern, and if it tries to exit the
search area at any point, it is redirected on a linear path approximately toward the centre of the
area at a randomly-chosen angle. These behaviours are illustrated in Figure 2.6, and differ from
the moth described in [Russell et al., 2003] in that, first, the agent does not remain still while
it waits for a plume detection, and second it goes straight into a spiral after completing a surge,
instead of first performing a zig-zag search.

The chemotaxis algorithm is described in more detail in Appendix A.2.

2.4.2 Human-Controlled Vent Prospecting

As it is not computationally feasible to find optimal solutions to the planning problem I am
addressing, a useful alternative form of evaluation is to compare the performance of my algo-
rithms with that of humans on the same problem. For small-to-medium problem sizes, there
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Figure 2.7: Screenshot of the human-controlled vent prospecting simulation.

is evidence that humans have near-optimal performance on certain types of optimisation pro-
blem. An example is the travelling salesman problem (TSP) which is closely related to the vent
prospecting problem, as described in Section 4.8 and Chapter 7. The TSP is a path-length mini-
misation problem, and research has shown that humans can generate paths within a few percent
of the optimal length [MacGregor and Ormerod, 1996; Vickers et al., 2001]. For example,
for different variations of a 20-city problem, MacGregor and Ormerod found the average path
length for human subjects was between 3-10% greater than optimal, despite there being ap-
proximately 6× 1016 different paths available1. In the POMDP world, [Littman et al., 1995]

created an interactive simulator of their problem, and found that for a 57-state version, humans
were able to achieve the goal 100% of the time, which was matched by only one automated
algorithm. However, for an 89-state problem, only humans managed a 100% success rate, with
the best algorithm attaining just 59%.

To enable human performance on the vent prospecting problem to be evaluated, I develo-
ped an interactive version of the environment simulation, where the OG updates are done as
before, but the AUV motion is controlled by a human (using the arrow keys on a computer key-
board). This simulation hides the vents (until they are found) and plumes, but shows the OG,
the direction of the current and the number of timesteps remaining. A screenshot is shown in
Figure 2.7.

Two different sets of experiments were performed: one set using a 40× 40 grid with 10
human subjects (members of the Intelligent Robotics Lab at the University of Birmingham),
and another set with a 20× 20 grid and just myself as a subject. The 40× 40 setup was used
despite the automated algorithms being tested on a 20× 20 grid because the larger grid gave
the humans more scope to plan a strategy, whereas the smaller grid required an almost reactive

1An online interactive simulator of the TSP is available at http://www.tsp.gatech.edu/games/tspOnePlayer.html,
and it is relatively easy to find the optimal tour from the 43 billion possible tours in a 15-city problem.
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approach. For the 40×40 configuration, 560 timesteps were allowed, and vent locations were
set randomly by first sampling the number of vents from a Normal distribution ∼N (5,2.25),
and then distributing the vents randomly and uniformly around the grid. However, it was found
that the 40× 40 results were not ideal for comparing to my novel algorithms, because of the
different grid size and the limited number of trials available. Therefore I decided to perform a
large number of trials myself using identical conditions to those used for the automated experi-
ments. These experimental conditions are described in Section 5.2, and include a 20×20 grid,
a horizon of 133 timesteps, and trials with each of 3, 4, 5 and 6 vents.

A summary of results for the 40×40 setup is presented in Section 5.7.1, and results for the
20× 20 setup are presented alongside the novel algorithm results in each of Chapters 5, 6 and
7. While it was not practical to evaluate all the novel algorithms on a 40× 40 grid, given that
the run-times are approximately 16 times longer1, 40×40 experiments were performed for the
IL4 algorithm introduced in Chapter 6. Section 6.5.3 presents the results comparing IL4 with
human-driven results using both the 20×20 and 40×40 setups.

1Because most algorithms are linear in the number of grid cells, and the 40× 40 grid has four times as many
cells, plus the number of timesteps has to be adjusted proportionately to also be four times more.
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CHAPTER 3

MATHEMATICAL BACKGROUND

This chapter covers some basic theory and algorithms that are used extensively in the rest of the
thesis. Section 3.1 describes occupancy grids and in particular Michael Jakuba’s OG algorithm
which is used to convert sensor measurements into a map of likely vent locations. Section 3.2
presents Markov decision processes (MDPs) and partially-observable Markov decision pro-
cesses (POMDPs), the formal modelling systems that are used to define the problem addressed
in this thesis1. Section 3.2 also introduces the early, canonical algorithms for solving MDPs
and POMDPs.

3.1 Mapping

The mapping component of a vent-hunting agent should create a map of vent locations, given
the following problem characteristics:

• A single, mobile sensor platform.

• Several biogeochemical variables of interest, where the relevance of each variable de-
pends on some subset of the other variables.

• Tracer dispersion that depends on water currents.

• The potential for multiple sources.

Given the uncertainties inherent in the mapping problem, probabilistic techniques are appro-
priate, and I chose to adopt the occupancy grid method. Section 3.1.1 covers occupancy grids in
general, Section 3.1.2 describes the specific algorithm I used, and Section 3.1.3 briefly mentions
other options and the reason for choosing the mapping approach I did.

1The formal definition of the problem is given in Chapter 4
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Figure 3.1: Example of an OG, where the colour of each cell indicates its probability of occu-
pancy, P(mc).

3.1.1 Occupancy Grids

Occupancy grids (OGs) were developed by Hans Moravec’s lab at Carnegie Mellon University
in the 1980s to improve the robustness of mobile robot navigation [Martin and Moravec, 1996;
Elfes, 1989]. The lab’s adoption of cheap sonar range-finding sensors, which are noisy and
detect objects over a broad cone, meant that their previous mapping method no longer worked.
This previous method relied on finding and tracking features of the environment, but these fea-
tures could not be distinguished by the sonar sensors. Instead they developed a grid mapping
technique where the area to be mapped is divided into rectangular cells, each of which is desi-
gnated as either empty or occupied by some obstacle, for example a wall or a filing cabinet in
an indoor office environment. The occupancy grid stores the probability of each cell being oc-
cupied, and each new sensor reading is incorporated into the OG using a Bayesian update rule,
giving a very robust map and allowing much more effective robot navigation than the previous
approaches [Martin and Moravec, 1996]. An example of an OG map is shown in Figure 3.1.

Formally, the true map m consists of C boolean values indicating whether each of C cells is
occupied, m = (m1,m2, . . . ,mC), and the occupancy grid O consists of C real values P(mc), the
probability that cell c is occupied, where 0≤ P(mc)≤ 1. OG algorithms require a known prior
probability of occupancy for cells, Pp

c , and then evidence from sensor readings is incorporated
incrementally by leveraging a sensor model. Classic OG methods need an inverse sensor model
of the form P(mc|z), the probability of a cell being occupied given a sensor reading z (and an
implicitly known sensor/robot pose). Often the specification for a range-finding sensor will be
of the form P(z|x), where x is the true distance from the sensor to the nearest obstacle in the
sensor cone, and this will have to be converted to the correct form. Bayes’ rule can be used
to get P(x|z) from P(z|x), and then a model for P(mc|z) is obtained using P(xc|z) (where xc
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Figure 3.2: Derivation of the inverse sensor model used by the standard occupancy grid algo-
rithm. (Figure taken from [Elfes, 1989].)

is the distance from sensor to cell c). The probabilities for cells located at z+ δ and further
away are set to 0.5, as the model cannot predict their occupancy status (where δ is set to some
small value, for example one standard deviation of the distribution P(x|z)). This procedure for
deriving the inverse sensor model is shown graphically in Figure 3.2.

A key assumption underlying OG methods is that the probability of each cell being occupied

can be calculated independently of the probabilities for all the other cells. If sensor measure-
ments from time 1 to time t are denoted by z1:t , we are interested in P(mc|z1:t). Separating the
measurements into zt and z1:(t−1) and applying Bayes’ rule gives

P(mc|z1:t) =
P(zt |mc,z1:(t−1))P(mc|z1:(t−1))

P(zt |z1:(t−1))

for the occupancy probability of cell c. We then make another important assumption: if we
know the true occupancy status of cell c, then the probability of observing zt is independent of
all previous observations, so P(zt |mc,z1:(t−1)) = P(zt |mc). We call this the conditional indepen-

dence of measurements (CIM) assumption, after [Jakuba, 2007], and it gives

P(mc|z1:t) =
P(zt |mc)P(mc|z1:(t−1))

P(zt |z1:(t−1))

=
P(mc|zt)P(zt)P(mc|z1:(t−1))

P(mc)P(zt |z1:(t−1))

= K
P(mc|zt)P(mc|z1:(t−1))

P(mc)

where the second step follows from a second application of Bayes’ rule, and the third step
has introduced K = P(zt)/P(zt |z1:(t−1)). We now have the new occupancy probability in terms of
the sensor model P(mc|zt), the occupancy estimate from the previous timestep P(mc|z1:(t−1)),
and the prior probability P(mc) , Pp

c . The probability of a cell being empty, P(¬mc|z1:t) ≡
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1−P(mc|z1:t), can be found by an identical derivation to be

P(¬mc|z1:t) = K
P(¬mc|zt)P(¬mc|z1:(t−1))

P(¬mc)

Using the ratio of the occupied to empty probabilities means that the K terms cancel out, leading
to a simple update rule:

rc,t ,
P(mc|z1:t)

P(¬mc|z1:t)
=

P(mc|zt)

1−P(mc|zt)

1−Pp
c

Pp
c

rc,t−1

Finally, most implementations calculate and store logrc,t so that the update on each timestep
is an efficient addition rather than a multiplication. The occupancy probability can easily be
recovered using

P(mc|z1:t) = 1− 1
1+ exp(logrc,t)

3.1.2 Occupancy Grid Algorithm for Vent Finding

3.1.2.1 Introduction

The OG algorithm used in this thesis is one that was developed specifically for mapping hydro-
thermal vents, and is due to Michael Jakuba. This section provides an overview of the work
contained in Jakuba’s PhD thesis [Jakuba, 2007], which was completed under a joint program
between the Woods Hole Oceanographic Institution (WHOI) and the Massachusetts Institute Of
Technology (MIT).

Jakuba’s thesis describes an OG algorithm for vents, where cell occupancy is defined by
whether or not a cell contains a vent. Classic OG algorithms do not work well for vent mapping
because they use the CIM assumption, that a sensor reading is determined by a single test cell
and is independent of previous sensor readings. However, in vent mapping, the sensor can
register a plume emitted from any of a large number of clustered cells, and previous sensor
readings are vital to help narrow down which cells are likely to have been responsible. As
Jakuba points out, the errors induced by the CIM assumption are exacerbated when the prior
probability of occupancy is very low (as it will be for vents, because only a handful of vents
will be found over a search area of several square kilometres).

3.1.2.2 Binary Forward Sensor Model

To develop a more accurate OG algorithm, Jakuba firstly assumes a sensor system which outputs
a binary detection (denoted by d) or non-detection of a hydrothermal plume. Given this, he
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builds a specific kind of forward model for the probability of a detection given a map showing
which cells are occupied, which incorporates the possibility of a false positive detection (dF )
with probability P(dF) , PF . The basic building block for this model is a distribution for
P(dc|mc) , Pd

c , where dc indicates a plume detection due to a vent in cell c. The specific
distribution Pd

c used in this thesis is described in Section 4.6.

Sensor models must then have the form

P(d|m) = 1−

[
(1−PF) ∏

c∈M
(1−Pd

c )

]
(3.1)

to be used with Jakuba’s algorithm, where M is the set of all cells containing a vent. Equa-
tion 3.1 basically states that the probability of detecting a plume is one minus the probability of
not getting a false positive and not getting a detection from any of the vents in the map. Note
that this is a forward model giving the probability of an observation given a map, which is a
more natural way of modelling a system than the inverse model required by the standard OG
algorithm. Also the form of Equation 3.1 does not restrict the algorithm to hydrothermal vent
mapping; it is easy to define the model for other sensors, such as sonar range-finders, in that
form.

3.1.2.3 Inverse Sensor Model

As was seen in Section 3.1.1, the core map update in OG algorithms requires an inverse sensor
model of the form P(mc|z), the probability of a cell being occupied given an observation. Star-
ting from a forward model of the form P(z|m) (the probability of an observation given a map),
the inverse model P(mc|z) can be found by applying Bayes’ rule and then marginalising over
all possible maps:

P(mc|z) =
∑m:mc P(z|m)P(m)

∑m P(z|m)P(m)
(3.2)

where the summation in the numerator is over all maps with cell c occupied. This summation
is generally intractable, given that there are 2C possible maps for an OG with C cells.

However, the form of Equation 3.1 allows these sums over maps to be converted to pro-
ducts over cells, which makes them tractable. Specifically, substituting Equation 3.1 into Equa-
tion 3.2, with z ∈ {d,¬d} where d represents a plume detection and ¬d a non-detection, leads
to the following formulae for cell occupancy:
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P(mc|d) =
1−
(
1−PF)(1−Pd

c
)

∏i6=c
(
1−Pd

i P(mi)
)

1− (1−PF)∏
C
i=1
(
1−Pd

i P(mi)
) P(mc) (3.3)

P(mc|¬d) =

(
1−Pd

c
)

1−Pd
c P(mc)

P(mc) (3.4)

where P(mc) represents the prior Pp
c . This result can be obtained using the assumption that the

prior occupancy probability of all cells is independent, an iterative method for replacing the
sums over maps by products over cells, and basic simplification (see [Jakuba, 2007] App. B for
full details).

3.1.2.4 Exact Algorithm

Using the forward model of Equation 3.1, Jakuba was able to develop an exact algorithm to
calculate P(mc|z1:t), the cell occupancy probabilities given a sequence of observations. This
algorithm avoids the CIM assumption, and has a simple recursive form for non-detections,
but requires batch processing of all previous detections to incorporate a new detection. This
batch processing is exponential in the total number of detections, which makes the algorithm
impractical for real map building. The exact algorithm is useful in that first it proves that the
posterior probabilities given a sequence of non-detections remain independent (as suggested by
the fact that cells other than c do not appear in Equation 3.4), and second in that it formed a
starting point for Jakuba to develop tractable approximate OG algorithms.

3.1.2.5 Independence of Posteriors Algorithm

Jakuba developed two families of approximate algorithms that require weaker independence as-
sumptions than the CIM assumption, but are tractable and produce significantly better results in
low-prior environments than the standard OG algorithm. These are termed the conditional inde-

pendence of detections (CID) and revised prior (or independence of posteriors, IP) algorithms.
The CID algorithm is based on a relaxed version of the CIM assumption, where independence
holds only between detections, so that given only non-detections, the algorithm computes the
exact posterior probabilities. However, the revised prior (IP) algorithm was found to perform
better overall, and was the algorithm used in this thesis, so I will describe only the IP algorithm
in detail here.

The revised prior (IP) algorithm is derived by assuming that the posterior occupancy proba-
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bilities for all cells are independent, so that

P(m|z1:t) = ∏
c∈M

P(mc|z1:t) ∏
c/∈M

P(¬mc|z1:t) (3.5)

This independence-of-posteriors assumption is preferable to the CIM assumption because first
it is a necessary assumption in the OG framework if we wish to recover the posterior of the full
map m. Second, the IP assumption is true for non-detections (unlike the CIM assumption), and
finally it is an intuitively better assumption that a sequence of sensor readings can determine
the occupancy of each cell independently than the assumption that a single sensor reading can
be determined by a single cell.

The IP assumption (Equation 3.5) leads to a recursive update algorithm, which essentially
uses the posterior probabilities from the previous timestep as “revised prior” inputs to the next
timestep. This means that, while the algorithm produces more accurate results than the standard
algorithm, the results depend on the order updates are applied in.

Non-detections and detections are processed differently; for non-detections, the updated
odds-ratio r′c is computed using

r′c =
(

1−Pd
c

)
rc (3.6)

and for detections r′c is computed by

r′c =
1−
(
1−PF)(1−Pd

c
)

∏i 6=c
(
1−Pd

i P(mi)
)

1− (1−PF)∏i6=c
(
1−Pd

i P(mi)
) rc (3.7)

Note that in Equation 3.7 and in the remainder of this thesis, I will use the notation P(mc) as
shorthand for the current estimate of the occupancy probability P(mc|z1:t), unlike Jakuba who
uses P(mc) for the prior at t = 0 (which I refer to using Pp

c exclusively). The full IP algorithm
(Alg. 6 in [Jakuba, 2007]) is given as Algorithm 3.1.

Equations 3.6 and 3.7 are simply rearrangements of Equations 3.4 and 3.3 in terms of
rc ,

P(mc)
P(¬mc)

, but where P(mc) represents the “revised prior” rather than the prior Pp
c at t = 0.

However, Jakuba’s thesis provides a proof that, given the IP assumption, these updates calculate
the exact posterior probabilities.

Finally, Jakuba also developed an extended version of the IP algorithm, where the assump-
tion of Equation 3.5 is relaxed slightly by grouping the observations that were plume detections
into sets. Then the posterior occupancy probabilities conditioned on detections within a set are
allowed to depend on each other, and independence is required only between sets of detections.
This relaxation comes at the cost of needing a modified CIM assumption, where observations
must be independent between sets, plus additional computational requirements. All work in this
thesis used the standard IP algorithm, and not this extended IP algorithm.
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Algorithm 3.1 The semi-recursive occupancy grid (srog) IP algorithm from [Jakuba, 2007].
Here r is the odds-ratio for each cell, rc ,

P(mc)
P(¬mc)

, Pd is the vector of detection probabilities

given an occupied cell, Pd
c , P(dc|mc), z is the observation at the current timestep, and finally

C is the total number of cells in the OG.

Procedure srog(r, Pd, z) : r′
If z = d // plume was detected

For c = 1 : C
P(mc) =

rc
1+rc

Endfor

For c = 1 : C
r′c =

1−(1−PF)(1−Pd
c )∏i6=c(1−Pd

i P(mi))
1−(1−PF )∏i6=c(1−Pd

i P(mi))
rc

Endfor

Else // non-detection

For c = 1 : C
r′c =

(
1−Pd

c
)

rc
Endfor

Endif

Endproc

3.1.2.6 Jakuba’s Other Contributions

Jakuba’s thesis also makes two contributions directly concerned with applying his OG algo-
rithms to the problem of mapping vents using an AUV: firstly a method for extracting binary
detections from a set of scalar measurements of various plume tracers, and secondly a physi-
cal model for hydrothermal plume evolution. This physical model allows for multiple source
vents, outputs the probability of a detection, and is of the correct form to use with Jakuba’s OG
algorithms. Chapter 4 describes this model in more detail.

3.1.3 Choice of Mapping Algorithm

A wide variety of algorithms are used in robotics for generating maps based on noisy obser-
vations, of which OG methods are only one algorithmic family. This section briefly mentions
some of the alternative approaches and justifies the choice of Jakuba’s algorithm for mapping.

The Kalman filter [Arulampalam et al., 2002; Thrun, 2002b] is a mainstay of state estima-
tion given noisy data, and is based on observation and state transition functions that are both
linear functions of the state, with additive Gaussian noise. As these functions are usually not
linear in robotics domains, the extended Kalman filter (EKF) is often used instead, where a Tay-
lor expansion is used to create locally-linear approximations of the observation and transition
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functions. In the simultaneous localisation and mapping (SLAM) problem [Dissanayake et al.,
2001; Thrun, 2002b], the state consists of both the agent’s location, and the map as defined by
the coordinates of a set of ‘landmarks’. The EKF is often used to solve SLAM problems by
estimating a Gaussian joint posterior over the agent location and all landmarks. However the
observation model for a plume given a vent location is highly non-linear, so the EKF is not
likely to be an effective mapping method for this domain.

Particle filters [Arulampalam et al., 2002; Thrun, 2002a] are an alternative to the EKF that
work well for highly non-linear observation and transition functions. The idea is to represent
the probability distribution over states by a sample of particles, each representing a particular
state, and apply the non-linear transition function directly to each particle. The particles are then
weighted according to their likelihood given the most recent observation, and the set of particles
is re-sampled using this weighting. While particle filters scale badly to high dimensions and
therefore do not work well for mapping, Rao-Blackwellised particle filters [Doucet et al., 2000;
Murphy and Russell, 2001] have largely overcome this limitation. Rao-Blackwellisation works
by separating the state space into two sets of variables, for example the map and the pose of
the robot, and tracking one set (the robot’s pose) using a particle filter, and the other set (the
map) using an EKF associated with each particle, and conditioned on the value of the pose
represented by that particle.

Jakuba’s occupancy grid algorithm was adopted for several reasons, starting with the fact
that it allows any number of potential vents to be represented in the same map. Most alternative
approaches would require a separate map for each vent-count, which would make it harder to
develop and evaluate planning algorithms. A related point is that using an OG approach avoids
the need to specify a maximum number of vents the agent can find. The next reason is that any
other choice would have necessitated the development of a novel mapping algorithm to work for
hydrothermal vents, as no existing algorithm would cope acceptably with the unique features of
the domain. Avoiding the creation of a mapping algorithm allowed me to focus on solving the
planning problem, and therefore to produce a complete solution to automated vent prospecting
with AUVs. Further, if I had decided to produce an alternative solution to a problem that had
already been solved by Jakuba, the only sensible way of evaluating it would be to compare it
to Jakuba’s algorithm, which would mean I needed an implementation of Jakuba’s algorithm
anyway. Having opted to use Jakuba’s OG method, Mike Jakuba was generous enough to
provide me with his implementation of the algorithms to use in this work1.

1The code supplied implemented the extended IP algorithm, which clusters plume detections into groups and
enforces independence only between groups. However, parameters in the code were set to switch this grouping
off, in which case the algorithm reverted to the standard IP algorithm described in Section 3.1.2. The codebase
was also subject to minor modifications: a bug-fix in the OG update for boundary cases which produced infinite
values, changes to the environment model and simulation to account for a slightly different observation model
(see Section 4.3.4), and performance improvements by vectorising the MATLAB code for the environment model,
which resulted in the algorithm running approximately 10 times faster.
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The occupancy grid algorithm is a key building block of the work presented in this thesis,
as it is used to create the occupancy grid that forms the input to the planner. The OG algorithm
acts as a pre-processing stage for raw observations, as it converts oceanographic readings into a
probabilistic map and isolates the planning algorithm from any issues with interpreting sensor
data.

3.2 MDP and POMDP Background

Having described the algorithm used to produce an estimate of the state of the world in Sec-
tion 3.1 (Jakuba’s OG algorithm), I now present the framework used to model the problem of
what action to take, given this state. This is a planning problem, which essentially means de-
termining a sequence of actions to be applied to a system to transform it from an initial state
to some target state. Therefore, to specify a planning problem, a description of the possible
system states, the actions available, and a start state and goal state are needed. In classical
planning domains, states are represented by logical variables, and actions are specified by their
preconditions and postconditions [Ghallab et al., 2004].

The vent prospecting problem has several properties that make it hard to formalise it in the
same way as classical planning problems. The major obstacle is partial observability: the goal
would naturally be defined in terms of the location of the vent(s), but these are not known in
advance. Further, there may be several vents to be found, meaning there may be multiple “goal
states” which is problematic even before time constraints are considered. Time constraints often
mean not all goals can be achieved, so they have to be prioritised. These properties mean that
the vent prospecting problem cannot be expressed in the format required for classical planning
methods, and techniques for planning under uncertainty have to be used.

3.2.1 MDPs

MDPs are a mathematical framework for posing planning and learning problems where the
system can be in one of a set of states, and the agent takes actions that cause the system to sto-
chastically transition between states. They are a discrete time model where actions are assumed
to be instantaneous and an action must be chosen on each timestep. The agent receives a reward
for each action/state pair it passes through (where the action is chosen by the agent but the state
is ‘chosen’ by the environment), and the goal of the agent is to maximise its total reward over
some horizon. MDPs are used widely in robotics and are well suited to problems where there
is uncertainty in action outcomes and/or there are multiple goal states that the agent should be
rewarded for visiting.

34



ENVIRONMENT

AGENT

RT

π
a s’ r

s
Figure 3.3: Information flow between the planning agent and the environment in an MDP.

Formally, the system is in a state s taken from a set S of possible states at every timestep,
and the agent selects an action a from a set A of possible actions. The successor state s′ on the
following timestep is stochastically selected by the environment according to a state transition
function T = P(s′|s,a). This form of the state transition function implies that MDPs must have
the Markov property: future states are independent of all previous states, given knowledge of
the current state. Finally, the agent receives a reward r on each timestep, determined by the
reward function w = R(s,a). As well as a positive ‘desirability’ term for states, the reward
function R can include a negative term modelling the cost of actions. An MDP can be specified
by the tuple 〈S ,A ,T,R〉.

The agent selects actions according to some policy π(s); an optimal policy is one that maxi-
mises the total expected future reward, either over a finite horizon (i.e. a fixed number of
timesteps), or over an infinite horizon. For the infinite horizon case either future rewards must
be discounted by some factor γ , 0≤ γ < 1, to ensure the expected reward is finite, or a measure
of average reward must be used. The discounted future reward following time t is given by

Rt =
∞

∑
k=0

γ
kwt+k+1

Figure 3.3 shows the flow of decisions between the agent and environment in the MDP frame-
work.

A classic problem MDPs are applied to is a robot navigating in a maze, and an example of
this type of problem is shown in Figure 3.4. In such a problem, the goal will be to get to one of
a set of terminal cells, but the agent may also gain a positive or negative reward from visiting
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Figure 3.4: Example MDP: the robot’s aim is to reach the target cell at the top-right, but it
cannot cross black cells, and will collect additional reward for visiting cells with batteries. The
MDP formulation will also cope with stochastic movement, for example, the robot has a 10%
chance of going up and 10% chance of going down if the command is to go right.

intermediate cells (such as the ones marked with battery symbols in the figure). The transition
function may be probabilistic, for example the robot may have an 80% chance of reaching the
desired cell, and a 10% chance of accidentally moving to the cell on either side.

The optimal policy for an MDP can be found by associating a value, V (s), with every state,
representing the expected future discounted reward if the agent were to be in that state and
follow the optimal policy thereafter. States with higher values are therefore more desirable to
the agent. V (s) is given by the Bellman optimality equation

V (s) = max
a

[
R(s,a)+ γ ∑

s′
P(s′|s,a)V (s′)

]
(3.8)

which defines a set of simultaneous equations, one for each state in the system. This formulation
is known as dynamic programming, and the equations can be solved using the value iteration

algorithm. Value iteration starts by setting V to an arbitrary constant for all states, then iterates
repeatedly over all states, using Equation 3.8 to update the value of each state. The iteration
continues until the largest change in V for any state falls below a threshold value δ . Value
iteration is guaranteed to converge on the optimal values, given finite rewards and a discount
factor 0≤ γ < 1 [Puterman, 1994].

Note that action-values Q(s,a) are often used instead of, or in conjunction with, state values
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V (s). Action values are given by

Q(s,a) = R(s,a)+ γ ∑
s′

P(s′|s,a)max
a′

Q(s′,a′) (3.9)

and Q is related to V by
V (s) = max

a
Q(s,a) (3.10)

Given a table of Q-values, the optimal action from any state s can simply be read off as
the action with the highest Q(s,a) value. Given a table of V (s) instead, a one-step search over
possible actions must be performed to find the one with the highest value, where action values
are given by R(s,a)+ γ ∑s′ P(s′|s,a)V (s′) (from substituting Equation 3.10 into Equation 3.9).

As well as being used by the planning community, MDPs are central to formulating rein-
forcement learning (RL) problems. In RL, the agent has to learn how to act without prior
knowledge of the environment model, i.e. the transition function P(s′|s,a) is unknown. There
are many RL algorithms that allow the optimal value function to be learnt from experience of
acting (either in the world or in simulation), based either on Monte-Carlo statistical methods,
or on propagating rewards backward in time. For more details on RL, see [Sutton and Barto,
1998]; for more on MDPs in general, see [Puterman, 1994].

3.2.2 POMDPs

POMDPs [Astrom, 1965; Kaelbling et al., 1998; Smallwood and Sondik, 1973; Sondik, 1978]

are used for domains where, in addition to the state transitions being stochastic, the agent cannot
directly observe the state that it is in. For example, an indoor mobile robot travelling along a
corridor may not be able to determine its location from instantaneous observations, as one
corridor often looks like another. However, the agent can still make observations, and these are
generated from the underlying state by a stochastic, many-to-one function that is known to the
agent.

3.2.2.1 POMDP Structure

A POMDP is defined by the tuple 〈S ,A ,T,R,Z ,Z〉, where (as in an MDP) S is a set of
possible states, A is a set of actions available to the agent, T = P(s′|s,a) is a state transition
function, R(s,a) is a reward function, but we also introduce a set of possible observations Z ,
and an observation function Z = P(z|s,a). The observation function Z gives the probability of
making an observation z, given that the agent took action a and ended up in state s. Again the
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Figure 3.5: Information flow between the planning agent and the environment in a POMDP.
Here b is a belief state maintained by the agent, giving a probability distribution over the agent’s
true state, and ‘SE’ is a state estimator that uses observations to update the belief state.

aim for the agent is to maximise its expected future discounted reward, given by

Rt =
∞

∑
k=0

γ
kwt+k+1 (3.11)

where Rt represents the total reward after time t, wt = R(st ,at) is the reward on timestep t, and
a discount factor γ has been used, 0≤ γ<1. For a standard POMDP, it is assumed that the state,
action, and observation spaces are discrete and finite. Figure 3.5 shows the flow of decisions
between the agent and environment in the POMDP framework.

In the real world, observations made by robots are always noisy to some extent, so it is
natural to model many robotics problems as POMDPs. The major drawback of POMDPs is
computational tractability: solving them optimally is PSPACE-complete (a class of problem
that is harder than NP-complete) [Littman, 1996], and therefore intractable for most real-world
problems. Despite this, for domains where the uncertainty is discrete (such as uncertainty
over which floor of an office building a robot is on), or where there are actions that have only
information-gathering effects, defining the problem as a POMDP can be beneficial. An example
POMDP problem is the tiger-food problem from [Kaelbling et al., 1998], which incorporates
an informational action. The problem facing the agent is to choose between two closed doors,
left and right, one of which results in a moderate positive reward (food) and the other a large
negative reward (a tiger). Instead of opening a door, the agent can also choose to listen, but this
action has some cost (a small negative reward) and only reports the correct location of the tiger
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Figure 3.6: Example POMDP: the problem is similar to Figure 3.4, where the robot’s aim is to
reach the target cell at the top-right, but it cannot cross black cells, and will collect additional
reward for visiting cells with batteries in. However, in this case the robot can only reliably
observe the nearest eight cells (to determine if they are blocked, or if they contain a battery).
The agent can also see the contents of the next-nearest 16 cells, shown shaded in light green,
but with only 50% reliability for each observation. No information about further-away cells (in
dark green) is available. In this example, the robot’s location in the grid and the location of
the goal are fully observable, but POMDPs allow for uncertainty about any aspect of the state
space.

85% of the time. After the agent chooses a door, the problem is re-started by closing the door
and randomly assigning the tiger to one of the doors. If this problem was treated as an MDP, the
optimal solution would never choose the listen action, as this action does not have any effect on
the state of the system. However the optimal POMDP policy chooses the listen action over left

or right unless the agent is very sure of the location of the tiger.

Another example POMDP problem is shown in Figure 3.6. This domain represents a
partially-observable version of the one shown in Figure 3.4; the idea is to model limited-range
sensors, so the robot can observe the cells adjacent to it perfectly, but can only see the contents
of cells two steps away with 50% reliability. It cannot see the contents of cells further than two
steps away at all, but does know its own location in the grid.

For these kinds of problems, it can easily be seen that the best action depends on the true
state the agent is in; in the domain in Figure 3.6 for example, the best action may be to visit
a battery, but not if that will lead to a part of the maze from which the direct path to the goal
is blocked. Therefore estimating the true state is important; one option would be for the agent
to store only the state it is most likely to be in, but this can lead to bad decision-making. For
example, when the goal-seeking robot of Figure 3.6 decides to enter a narrow corridor, the most
probable belief could be that it will have a clear path to the goal, but the high cost of entering a
dead-end corridor makes the expected reward for such an action low.
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In a POMDP, for the agent to have the best estimate possible of the states it is likely to be
in, it has to make use of the information from all its past actions and observations. It turns out
that the best way to do this is to maintain a belief state b as a probability distribution over true
states, such that b(s) represents the probability of being in state s. When calculated correctly,
the belief state is a sufficient statistic for the complete action/observation history [Kaelbling
et al., 1998; Smallwood and Sondik, 1973]; in other words, the belief state encapsulates all
relevant information from previous actions and observations.

It can also be seen from the tiger-food example in particular that to act efficiently, an agent
may have to take actions purely for the purpose of gathering information. The POMDP frame-
work provides a way to optimally trade-off the informational benefits of actions against their
cost, in such a way as to ensure expected long-term reward is maximised, without having to
explicitly consider these issues.

3.2.2.2 Belief MDP

To maintain a belief state b, an agent only needs to know the belief state on the previous times-
tep, and the current action and observation. The belief state is updated using a state estimator

function ‘SE’:
b′ = SE(b,a,z) (3.12)

Using Bayes’ rule, the Markov property of state transitions (P(s′|s,a,x) = P(s′|s,a) where x is
any variable), and similarly the fact that observation probabilities depend only on s and a, we
can derive the state estimator of Equation 3.12 as follows:

b′(s′) = P(s′|b,a,z)

=
P(z|s′,b,a)P(s′|b,a)

P(z|b,a)

=
P(z|s′,a)∑s∈S P(s′|s,b,a)P(s|b,a)

P(z|b,a)

=
P(z|s′,a)∑s∈S P(s′|s,a)b(s)

P(z|b,a)
(3.13)

where P(z|s′,a) is the observation function Z, P(s′|s,a) is the transition function T , and P(z|b,a)
can be treated as a normalising constant. Equation 3.12 implies that to keep track of its belief
state bt at time t, the agent must know its initial belief distribution b0, as well as its action and
observation history.

In a POMDP, the optimal action depends only on the belief state b [Astrom, 1965] (which
is a direct consequence of the fact the belief state is a sufficient statistic for the agent’s his-
tory). As the agent knows its belief state, we can transform any POMDP into a belief-MDP or
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b-MDP, which is an MDP where the states are the belief states from the POMDP. This converts
a partially-observable problem with discrete states into a fully-observable problem with conti-
nuous states (as the states are probability distributions).

In the belief-MDP, the action space is the same as in the POMDP, A . The state space is
the continuous set of belief states, with dimensionality |S |, and the transition function τ =

P(b′|b,a) can be calculated using

τ(b,a,b′) = ∑
z∈Z

P(b′|b,a,z)P(z|b,a) (3.14)

where P(b′|b,a,z) =

1 if SE(b,a,z) = b′

0 otherwise
. The reward function ρ can be found similarly by

taking an expectation over states:

ρ(b,a) = ∑
s∈S

b(s)R(s,a) (3.15)

The POMDP can then be solved by finding the value function V (b) for the b-MDP. However,
the state space is continuous, so simple dynamic programming will not suffice.

3.2.2.3 Basic POMDP Solution Method

In this section I describe the basic method for solving a POMDP first described by [Smallwood
and Sondik, 1973], and summarised in [Kaelbling et al., 1998].

We consider discounted finite-horizon POMDPs, where the agent has a limited number of
timesteps available to it. Therefore, the optimal policy will be non-stationary – the best action
will probably be different if there is just one step left to when there are many steps left and
exploration may be worthwhile. For this case, we can use a policy tree to represent a complete
t-step policy for a POMDP, as shown in Figure 3.7. The tree contains an action to take as the root
node for when there are t timesteps remaining, and then the action to take for each of the possible
subsequent observations, and so on until the final timestep. This is a complete specification of
a policy as each action and observation will deterministically specify the resulting belief state
(but when acting according to a policy tree, the belief state need not be explicitly calculated).
Note that for different starting belief states, a different policy tree will be optimal.

For a fixed policy tree p and a given state s, the POMDP value function is defined by
the immediate reward from the first action plus the discounted expected future reward. The
immediate reward from executing the action a(p) at the root node of p is R(s,a(p)). The
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Figure 3.7: A POMDP policy tree. (Figure duplicated from [Kaelbling et al., 1998].)

expected value of the future can be obtained by summing over states, so that

value of future = ∑
s′∈S

P(s′|s,a(p)) · (value of subtree with a(p) removed, given state s′)

If we denote the (t−1)-step subtree after observing zi at the root of p as zi(p), the overall value
of tree p given state s is:

Vp(s) = R(s,a(p))+ γ ∑
s′∈S

T (s,a(p),s′) ∑
zi∈Z

Z(s′,a(p),zi)Vzi(p)(s
′) (3.16)

To express the value of a tree in terms of belief states, we can define an α-vector, αp =〈
Vp(s1), . . . ,Vp(sn)

〉
, so that the value of a belief state is given by

Vp(b) = b ·αp (3.17)

which is a linear function of the belief state. The optimal value function for a t-step POMDP,
Vt(b), is given by

Vt(b) = max
p∈P

b ·αp (3.18)

where P is the set of all t-step policy trees. Figure 3.8 shows the optimal value function for a
two-state domain (where b(s1) defines the belief state as ∑s∈S b(s) = 1 ). This optimal value
function is the upper surface of the value functions associated with individual policy trees, and
it is therefore piecewise-linear and convex. By projecting the value function onto the belief
space, we can find which policy tree should be followed for each region of the belief space.

In practise, we find that most policy trees are dominated by others, as shown in Figure 3.9.
This means we can represent the optimal value function Vt by a parsimonious set of policy trees
Vt . To work out if a given policy tree p is dominated, we can solve a linear program to find a
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Figure 3.8: POMDP value functions for a domain with just two states. Note the optimal va-
lue function (indicted by the bold line) is the maximum of the value functions defined by all
the possible policy trees, and it is therefore piecewise-linear and convex. (Figure taken from
[Kaelbling et al., 1998].)
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V pd

Figure 3.9: Value function example showing how some policy trees can be completely domina-
ted by others. Here, the value function for tree pd is completely dominated by the one for pc.
(Figure taken from [Kaelbling et al., 1998].)

belief point where the vector α corresponding to p dominates all other vectors, or prove there
are no such points (in which case p can be discarded).

This leads to an exhaustive enumeration algorithm for finding the optimal t-step policy for
a POMDP:

1. Start with Vt−1, the parsimonious set of (t−1)-step policy trees.

2. Build V +
t with all possible combinations of root action, observation, and subtree from

Vt−1.

3. Prune policy trees that are not dominant from V +
t to get Vt .

This algorithm can be extended to the discounted infinite-horizon case by finding policies for
increasingly large t until the top few levels of the optimal policy tree stop changing significantly
as further timesteps are added. At that point the policy approximates the optimal infinite-horizon
policy.
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This algorithm is exponential in the number of observations, as the size of V +
t is |A| |Vt−1||Z |.

It is also potentially exponential in the horizon t, as there is the potential for Vt to grow expo-
nentially on each timestep. This makes it very computationally costly, and in practise it is only
tractable for problems with the order of 102 states. An extension proposed in [Cassandra et

al., 1994; Kaelbling et al., 1998] is the witness algorithm, which takes advantage of the impor-
tant result that the value function for POMDPs is always piecewise-linear and convex [Small-
wood and Sondik, 1973], meaning higher-value states are located near the ‘edges’ of belief-state
space. The algorithm attempts to generate the set Vt directly from Vt−1, avoiding the complex
step of generating V +

t . It does this by finding ‘witness’ points in the belief space that indicate an
additional policy tree needs to be added to the Vt set. Incremental pruning [Zhang and Liu, 1996;
Cassandra et al., 1997] improves further on witness in terms of computational efficiency; it
achieves this by interleaving the generation of elements of Vt with pruning of dominated policy
trees. This is made possible by splitting the value function computation (Equation 3.16) into
three independent components, the overall value, the value of a given action, and the value of a
given action and observation. Each of these value function components can be represented by a
set of vectors in the same way as α-vectors are used in witness, and most of these vectors are not
needed as they are dominated by other vectors. This splitting of the value function allows the
set of vectors for the action-specific value function to be built up incrementally, by adding one
observation at a time and then purging dominated vectors, leading to a significant performance
improvement over witness.

As well as the exact solution methods outlined above, there are many approximate methods
for solving POMDPs, some of which are described briefly in Section 6.1. These methods allow
solutions to be found for problems with thousands of states or more, although the state space size
of the vent prospecting problem is still outside their range of operation. Despite the practical
problems with solving POMDPs, it is very useful to have defined the problem as a POMDP for
several reasons:

• A POMDP is the most natural and mathematically accurate way of formalising the vent
prospecting problem.

• The POMDP formulation and a knowledge of basic POMDP solution methods helps in
understanding how hard the problem really is.

• The approximations I introduce later on in this thesis in order to make the problem trac-
table are more transparent when the problem is specified as a POMDP.

• Some POMDP methods actually can be applied to the problem; Chapter 6 shows how a
form of online POMDP solver can be used to produce effective plans in this domain. An
understanding of early POMDP methods such as witness is very useful background to the
more advanced methods discussed in Chapter 6.
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CHAPTER 4

PROBLEM MODEL

This chapter presents my formal model of the problem of searching for hydrothermal vents
using an AUV. The model is the foundation of work described later in this thesis, and represents
a significant contribution itself. The chapter starts with an overview of the model in Section 4.1,
followed by a description of the plume dispersion model (Section 4.2). Next the components
of the POMDP model are described in Section 4.3: the state space, actions, transition function,
observations, observation function and rewards. Section 4.5 shows how this POMDP can be
converted into a belief-state MDP (also known as an information-state MDP). The derivation of
the observation functions is given separately in Section 4.6 as it is fairly lengthy, and Section 4.7
discusses some of the decisions made in creating the model presented in this chapter. Section 4.8
notes that even if the observation function were to be removed from the model it would still have
a large state space, and finally in Section 4.9, the model is compared to other similar POMDP
models in the literature.

4.1 Overview of Model

From an AI planning point of view, the vent prospecting problem described in Section 1.2 has
the following characteristics:

• Noisy sensors

• Partial observability

• Continuous state and observation spaces

• Continuous action space and uncertain action outcomes

• Resource limits
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As my work is based on Jakuba’s OG framework, it is natural to define a discrete finite
search area (mirroring the OG) and discrete observation space (as the only observations of in-
terest are detecting a plume or finding a vent). To allow the agent location as well as vent
locations to be represented in grid form, I assume that the agent can only make discrete move-
ments between adjacent grid cells, and these actions are deterministic. This perfect localisation
and navigation is a reasonable approximation for high-end AUVs such as Autosub (operated by
the National Oceanography Centre, Southampton), which was the nominal target platform for
this work, but may not be a good assumption for mass produced AUVs. Finally, a fixed mission
duration is used as a proxy for resource limits.

I assume that at the start of the mission, the agent has no information about where vents are
most likely to be found within the search area, so the OG map is initialised with the same prior
probability of occupancy for all cells. Given this, the optimum pre-mission plan would be some
form of exhaustive search, whereas the objective of this work is for the AUV to use on-board
processing to analyse the data it collects and plan a more efficient path. This means the problem
is defined as an online planning problem, where the agent re-plans periodically during a mission
to take advantage of new observations. In fact, the agent re-plans at every timestep, as some
observations will cause the OG to change significantly and the agent should respond to this as
quickly as possible. If the sensors make no useful detections, the OG will not change much, but
the agent still re-plans as it has the same amount of planning time available (the drawback to
this potential waste of CPU cycles is that it will drain the vehicle’s battery faster). The quality
of some of the assumptions and approximations made above is discussed in Section 4.7, as well
as in Chapter 8.

Given these assumptions, the planning problem takes an OG map showing the current pro-
bability of each cell containing a vent as input, and has to calculate the path for the agent that
maximises the expected number of vents found over the remainder of the mission. The problem
is still hard due to the probabilistic nature of the map (resulting from the partial observability and
indirect sensors), large state space, and need to optimise for visiting initially unknown targets
instead of simply optimising for map quality. Indeed, [Littman, 1996] notes that given partial
observability, problems with a deterministic transition function are in the same complexity class
as problems with a stochastic transition function.

In summary, the model presented below has:

• Partial observability

• A very large state space (rather than continuous state, observation and action spaces and
uncertain action outcomes)

• A fixed, finite horizon (in lieu of resource limits)
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4.2 Environment Model

This section describes the simulation of the environment used for all development and experi-
mental work in this thesis, which is based heavily on [Jakuba, 2007], §4.5 and §5.2.1, and on
MATLAB code developed by Michael Jakuba.

The environment is two-dimensional with all movement in the vertical plane ignored. The
simulation does not map directly to a real-world scale, but instead simply works in abstract
distance/time units. It encompasses a finite area of side length ν2

ν−1 units, which is divided up
into a ν ×ν grid of C cells (where C = ν2), corresponding to the C cells of the OG. The cells
are numbered sequentially to simplify referring to them. Each cell occupies a set of physical
coordinates, but vents are only ever placed in the centre of a cell, with a maximum of one vent
per cell.

The simulation runs in discrete time, and each simulated vent emits one plume particle on
every timestep. All pre-existing plume particles are displaced by the vector for the ocean current
plus independent individually generated Gaussian noise on each timestep, and are not restricted
to cell-centre coordinates. The current varies on each timestep according to a sine function, and
is given by

U(t) =

(
0.7

0.3sin0.02t

)
This defines a periodic current with a magnitude of between 0.7 and 0.76 units/timestep, which
varies from heading east at t = 0 to east-north-east (at t = 79), back through east to east-south-
east, and finally back to east at t = 314. Figure 4.1 shows how the magnitude and direction of
the current varies over time. This current is adopted directly from Jakuba’s MATLAB imple-
mentation, and should represent a possible real-world current.

The vehicle is assumed to detect a plume if it is within half a unit of a plume particle.

Note that Jakuba created this simulation to model the buoyant hydrothermal plume, which
means the plume as it is still rising and relatively close to the vent, before it attains neutral
buoyancy. The model also predicts the location of vent fields rather than individual vents, under
the assumption that vents within a vent field will be closely packed together and will fit within
a single grid cell.

4.3 POMDP Formulation

This section presents the formal model, which is a POMDP with components 〈S ,A ,T,R,Z ,Z〉.
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Figure 4.1: Plots of the periodic current used in the environment simulation. The current is
shown between time t = 1 and t = 133 because most experiments were performed for 133
timesteps.

4.3.1 State Space

The state s ∈S is composed of

• m, the actual vent locations (a length-C vector of booleans indicating whether each cell
contains a vent).

• v, a similar vector marking all vents that have already been found.

• cAUV , the cell the AUV is in.

• cprev, the cell the AUV was in at the previous timestep.

• U, the complete history of the ocean current vector over the agent’s lifetime.

Note that all of these with the exception of U are actually discrete variables. The size of the
state space is discussed in Section 4.4, where it is noted that in some ways v is a convenience
variable.

4.3.2 Actions and Transition Function

The actions a ∈ A are to move north/east/south/west by one grid cell (meaning the vehicle
moves at a speed of 1 unit/timestep), and actions that would leave the search area are disallo-
wed. Actions that would return the vehicle to the cell it was in on the previous timestep are also
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disallowed, both because we can intuitively see that such actions will not be optimal, and be-
cause this provides greater freedom when setting the grid size for a real-world implementation,
as it places less strict requirements on the turning circle of the vehicle.

The transition function T = P(s′|s,a) is deterministic in my model. The vent locations m do
not change, and v, cAUV , and cprev can be calculated trivially assuming actions always succeed.
The current will generally change on each timestep, but this change will be tiny and is ignored
in the model (mid-ocean ridge currents consist of components that cycle with half-day, one-day
and multi-day periods [Berdeal et al., 2006]). Therefore the current at time t +1 is assumed to
be the same as the current at time t (denoted by Ut), and this is appended to the current-history
at time t (U1:t) to give the new the current-history:

U1:t+1 = [U1:t Ut ]

Note that given cAUV (which is part of the state s), an action a uniquely identifies the cell
that the agent will move into, so in the remainder of this thesis a will be used to indicate both
an action and the resulting cell.

4.3.3 Reward Function

The agent gains a fixed reward for visiting a previously unvisited vent. The reward function for
taking an action moving into cell a is given by:

R(s,a) =

Rvent if m(a) = true and v(a) = f alse

0 otherwise
(4.1)

where Rvent is a positive constant, and the v(a) = f alse guard specifies that the vent has not
been found previously.

This reward function is a precise reflection of the goal of the vent prospecting problem: to
find as many distinct vents as possible. The function does not include any reward for exploring
the grid because that is not defined as the goal of the problem; the agent will be able to find vents
more effectively if it performs some exploration, but it is the task of the solution algorithm to
reason about how best to explore in order to achieve the true goal of finding vents.

4.3.4 Observations and Observation Function

Although the input to the OG algorithm is a single observation, whether or not a hydrothermal
plume is detected, our agent also needs to know when it has found a vent. The agent has to
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know this in order to accommodate the reward model, so it knows when it gets a reward. We
therefore introduce a deterministic vent detector, so the possible observations Z that the agent
can receive when moving into cell c are:

z =


l if a vent is located in cell c

p if a plume is detected in cell c

n if nothing is detected

The agent is also able to observe its location cAUV , and the current ocean current U.

The observation function P(z|s,a) is derived using the forward model of a plume in [Jakuba,
2007], and this function together with a short explanation of each equation is presented in this
section. As the full derivation is quite lengthy, it is deferred to Section 4.6.

The plume model enables us to find P(dc|mc), which is the probability of detecting a plume
particle from a vent in cell c, given that c contains a vent, and P(dc|mc) is also specified in full
in Section 4.6. If we denote the probability of a false positive plume detection by PF , and the
number of vents in the search area, |{c : m(c) = true}|, by M then the observation function is
given by

P(z = l|s,a) =

1 if m(a) = true

0 otherwise

i.e. if the agent enters an occupied cell, a vent will always be located;

P(z = p|s,a) =


0 if m(a) = true

PF if M = 0

1−
[(

1−PF)
∏c:m(c)=true (1−P(dc|mc))

]
otherwise

i.e. if the agent enters an unoccupied cell and there is at least one vent in the search area, then
the probability of detecting a plume is one minus the probability of not detecting a plume (see
below);

P(z = n|s,a) =


0 if m(a) = true

1−PF if M = 0(
1−PF)

∏c:m(c)=true (1−P(dc|mc)) otherwise
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i.e. if the agent enters an unoccupied cell and there is at least one vent in the search area, then
the probability of not detecting a plume is the probability of not getting a false positive detection
and not getting a detection from any of the vents in the map.

4.3.5 Mission Length

The duration of missions is fixed, i.e. each mission will have the same fixed number of ti-
mesteps, L. For planning purposes, rewards are discounted by a factor γ , 0 ≤ γ < 1, on each
successive timestep. This models the small probability that the mission may have to be aborted
at any time due to a system failure, and encourages planners to collect reward early, providing
some robustness to uncertainty over exactly how long the vehicle’s batteries will last.

4.4 POMDP State Space Size

Section 4.3 presented the state space, comprising the variables m, v, cAUV , cprev, and U. Howe-
ver, for implementational purposes, the reward function in the model makes the vector v (storing
the location of vents that have been visited) unnecessary. Instead the binary vector m can be
used, by removing vents from m once the agent has visited them. Removing a visited vent
from the map will have no effect on the planning algorithms, because in terms of the expected
future reward, a cell with a visited vent has exactly the value as a cell that does not contain a
vent. Formally, this means changing the transition function so that if an action moves the agent
into a cell c containing a vent, the agent gains a reward of Rvent , and m is then updated so that
m(c) = f alse. Of course a real AUV would have to store the locations where it finds vents, but
this does not impact on the model from a planning point of view.

The variables m and v are nevertheless both included in the state space definition because it
is useful to be able to refer to m as the unchanging true vent map, and having both m and v does
not affect any of the novel planning algorithms discussed in this thesis. Further, the observation
function depends on the true vent map m, so m must be considered as part of the environment
model even if it is not part of the state space implementation.

The size of the state space can then be calculated by firstly noting that given cAUV , the cell
the agent is in now, there are only four possible previous cells. Next we assume that the current
U, which must be stored for every timestep, is discretised into u×u bins. Finally we discount
the variable v and assume the lifetime of the agent is L timesteps, which gives 2C ·C · 4 ·L · u2

possible states.
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4.4.1 Size of State Space in Experiments

With the parameters used for experimental work in this thesis, the problem has approximately
10123 possible states, with Table 4.1 showing the breakdown by state variable. This is using a
20× 20 grid with C = 400 cells, and a fixed current history (as all experiments used the same
current history this can be excluded from discussions of the state space size, as states with a
different current history will never be visited).

Note that most work on POMDPs has used problems with a far smaller state space, with 107

being an unusually large problem for even approximate POMDP solvers to be able to handle
[Poupart and Boutilier, 2004; Pineau et al., 2006].

Table 4.1: The number of states for each of the variables comprising the state space of the agent
(as described in Section 4.3). These figures are for the experimental setup used in this thesis,
based on a 20×20 grid, and a fixed current history (meaning that L and u are not relevant).

Variable Possible states
Unvisited vents, length-C boolean (m/v) 2400 ∼ 2.6×10120

cAUV 400
cprev 4
U, current history 1
TOTAL 4×10123

4.4.2 Considerations for Real-world State Space

In this section I discuss ideal settings for algorithm parameters for use in a real-world AUV mis-
sion, and the size of the resulting state space. The most important parameters are the grid cell
size and number of cells. Following [German et al., 2008; Jakuba, 2007; Jakuba and Yoerger,
2008], and discussions with Bramley Murton of the National Oceanography Centre, Southamp-
ton (personal communication, 5 July 2007), a resolution of 5 m by 5 m cells and a search area of
1 km by 1 km seem reasonable for an AUV mission where contact with the plume has already
been made using ship-based observations. This gives a 200×200 grid with 40000 cells. Note
that Jakuba’s forward model is based on vent fields, but in this thesis a vent field is considered
to be a point source, and is referred to as a ‘vent’.

A typical speed for an AUV is 1 m/s, so if each unit distance in the grid represents 5 m,
each timestep should represents 5 s. The mission duration is assumed to be 24 hours (although
recent AUVs such as Autosub6000 can undertake missions of 2-3 days even with a full payload
of scientific sensors [McPhail and Stevenson, 2009]), equating to 17280 timesteps. However the
history of the ocean current will not need to be stored over the full lifespan of the mission, or at
the temporal resolution of one timestep. Typical ocean currents are about 0.05 m/s over a mid-
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ocean ridge [Berdeal et al., 2006], and as we only care about particles originating from 1 km
or less distant, we only need keep the history for 5.5 hours (3960 timesteps). As the current is
composed of several elements, each of which is periodic with a frequency of at least 12 hours,
the variation in current is expected to be slow, such that sampling every minute instead of every
5 s will be adequate. If the northerly and easterly components of the current are discretised into
100 bins each, 5.5 hours equate to 330 samples each with 10000 possible values.

Table 4.2 shows the breakdown of state-space-size by variable, and the total number of
possible states is 1012053. This strongly suggests that a coarser tiling of the state space than the
ideal one described here will be necessary for real missions, which will have some impact on
the effectiveness of the algorithms discussed in the remainder of this thesis.

Table 4.2: The number of states for each of the variables comprising the state space of the agent
(as described in Section 4.3). These figures are for a potential real-world mission, based on a
200×200 grid.

Variable Possible states
Unvisited vents, length-C boolean (m/v) 240000 ∼ 1012041

cAUV 40000
cprev 4
U, current history 330×1002 = 3.3×106

TOTAL 1012053

4.5 Belief-MDP Formulation

To find a policy in the POMDP defined above we use a standard approach for POMDP solving
and translate it to a belief-state MDP (b-MDP), where the state space is the probability distri-
bution over the possible states of the POMDP, known as the belief state. While the belief state
is fully observable by the agent, it is continuous and therefore standard MDP techniques cannot
be applied. The components 〈B,A ,T,R〉 of the b-MDP are described below.

4.5.1 Belief State Space

In our b-MDP, the belief state b ∈B is comprised of:

• cAUV , the cell the AUV is in; cprev, the AUV’s cell at the previous timestep; U, the current
history; and v, the list of previously-found vents (all of which are assumed to be fully
observable).
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• The occupancy grid O. O is a length-C vector of values P(mc), the probability of cell c

containing a vent (which will be either zero or one for visited cells). The OG defines a
distribution over true vent locations m.

Note that using an OG approach has considerably reduced our belief state space (the map
contributes only C variables to the belief state instead of 2C), because the occupancy grid is an
approximation where we assume the probability of each cell being occupied is independent.

4.5.2 Actions

The actions in the b-MDP are identical to those in the POMDP, deterministically moving
N/E/S/W.

4.5.3 Transition Function

Given an initial belief state b, action a and observation z, the resulting belief state can be calcu-
lated using Jakuba’s OG algorithm in combination with some simple updates. We write

b′ = SE(b,a,z)

where “SE” stands for state estimator, a function that includes the application of Jakuba’s OG
algorithm to find the new occupancy grid O. As in the POMDP case, the other variables,
cAUV , cprev, U, and v are trivial to update; note that the observation z is assumed to include the
instantaneous current and whether or not there is a vent at the agent’s new location, so U and v
can be updated exactly.

The transition function T is given by

P(b′|b,a) = ∑
z∈Z

P(b′|b,a,z)P(z|b,a)

where P(b′|b,a,z) is zero for all belief states except the one where b′ ≡ SE(b,a,z), for which
P(b′|b,a,z) is equal to one. The observation model P(z|b,a) is the probability of observing
z ∈ {l, p,n} in cell a (note that the action specifies the cell that is moved into). This observation
model is given in Section 4.5.4 below.

Figure 4.2 shows the action/observation transitions for the b-MDP.
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Information state: 
new OG at cell a

Action: go
to cell a

Action: go to
cell

Find vent

Detect plume

No detections

Go to cell

Go to cell

Go to cell

P(z=l|b,a)

P(z=p|b,a)

P(z=n|b,a)

Figure 4.2: Belief-State MDP, where black circles represent actions and white circles are belief
states. P(z|b,a) is the probability of observing z ∈ {l, p,n} when moving into cell a, where l
represents locating a vent, p detecting a plume, and n observing nothing.

4.5.4 Observation Function

The observation model P(z|b,a) is again derived from the plume model in [Jakuba, 2007]. Note
that an MDP does not have an ‘observation function’, and this function is actually part of the
transition model given in Section 4.5.3. However it makes sense to consider it separately, as the
derivation is closely related to that of the POMDP observation model. This derivation is given
in Section 4.6 with the model simply presented here.

Given we assume the vent detector is deterministic, then

P(z = l|b,a) = P(ma)

The probability of seeing a plume but not a vent is given by:

P(z = p|b,a) = (1−P(ma))

(
1−
(
1−PF)

∏
c6=a

(1−P(dc|mc)P(mc))

)

where PF is the probability of a false positive plume detection, the product is over all cells c

apart from the cell the agent is moving into, and P(dc|mc) is the probability of detecting a plume
from a source at c, given that c contains a vent. Finally, the probability of seeing nothing is:

P(z = n|b,a) = (1−P(ma))
(
1−PF)

∏
c6=a

(1−P(dc|mc)P(mc))

4.5.5 Reward Function

The b-MDP reward function is fully specified by the POMDP reward function (Equation 4.1).
For an action a that moves the agent into cell a, the b-MDP reward is given by Equation 3.15
which sums over all possible POMDP states. However, for the vent-prospecting model, Equa-
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tion 4.1 produces a reward R(s,a) = 0 for all states except ones where the destination cell
a contains an unvisited vent, in which case the reward is Rvent . The summation from Equa-
tion 3.15 can therefore be replaced a summation over states where a is both occupied (denoted
by ma) and has not been found previously (denoted by ¬va):

ρ(b,a) = ∑
s:(ma∧¬va)

b(s)Rvent

=

0 if v(a) = true

∑s:ma b(s)Rvent otherwise
(4.2)

where the second step follows because if v(a) = f alse, the probability b(s) for states with
v(a) = true will be zero in the summation for the ‘otherwise’ condition (and v is known exactly
in the belief state).

Next we use the result P(X) = ∑Y P(X ,Y ) = ∑Y P(Y )P(X |Y ) from basic probability theory
to find an expression for the probability that cell a contains a vent:

P(ma) = ∑
s∈S

P(s)P(ma|s)

= ∑
s:ma

P(s)

= ∑
s:ma

b(s) (4.3)

where the second line uses the fact that P(ma|s) = 0 for all states except ones where cell a is
occupied (for which P(ma|s) = 1), and the third line replaces P(s) with b(s) which is simply
the posterior probability of state s.

Substituting Equation 4.3 into Equation 4.2 gives the full b-MDP reward function:

ρ(b,a) =

0 if v(a) = true

P(ma)Rvent otherwise
(4.4)

4.6 Derivation of Observation Function

The observation function is derived in three steps:

• The plume model is used to find the probability distribution for particle locations (Sec-
tion 4.6.1).

• This distribution is used to calculate the probability of detecting a particle from a single
vent in a known location (Section 4.6.2).
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• The probability for each of the observations (locate a vent, detect a plume, or detect
nothing) is calculated, making use of the map and the single-vent detection probability
from Section 4.6.2.

The last step is carried out for the POMDP observation model in Section 4.6.3, and for the
belief-MDP observation model in Section 4.6.4.

4.6.1 Plume Model

To find the probability of detecting a plume due to a vent in a known location, we need to use
the forward model for a plume (as described in Section 4.2) and the history of the current, U.
The plume model assumes particles emitted from source location xs at time t− τ are dispersed
by the current plus isotropic Gaussian noise, so their 2D location xω at time t is distributed
according to

xω ∼ N(xs +
t−1

∑
r=t−τ

Ur,τσ
2) (4.5)

where σ2 is the variance of the plume dispersion per timestep. If the current was fixed rather
than variable, ∑

t−1
r=t−τ Ur could be replaced by τU.

4.6.2 Plume Detection Due to a Single Vent

Given a vehicle location xAUV and source vent location xs, we want to find the probability of
observing a given particle ωτ which was emitted at t− τ . Following Jakuba §5.2.1, we assume
a particle has a radius b, and will always be detected if |xωτ −xAUV | < b. Then we use the
approximation ([Jakuba, 2007])

P(detect(ωτ)) = P(|xωτ −xAUV |< b)

≈ b2 1√
2πτσ2

exp

(
−
∣∣xs +

(
∑

t−1
r=t−τ Ur

)
−xAUV

∣∣2
2τσ2

)
(4.6)

Next we need to consider all the particles emitted from a given source, i.e. we want

P(dc|mc) = Pd
c = P

(
detect(ω1

c )∨detect(ω2
c )∨ . . .∨detect(ωn

c )
)

where dc represents a plume detection due to a source at c, the source xs is assumed to lie in the
cell mc, and ωτ

c represents the particle emitted from the source at c at time t−τ . Assuming that
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the detection of each particle is independent, and using P(dc|mc) = 1−P(¬dc|mc), we get

P(dc|mc) = 1−∏
n
(1−P(detect(ωn

c ))

i.e. the probability of a detection due to a source at c is one minus the probability of not detecting
any of the particles emitted from the source. Note that P(dc|mc) is identical to the quantity Pt

c

in [Jakuba, 2007], and the equation above is essentially the same as equation (5.9) in Jakuba
§5.2.1, although he derives this equation differently.

In the simple environmental simulation we use (which is based on Jakuba’s implementa-
tion), each source emits one particle at each timestep, and we further assume that only the par-
ticle with the nearest expected location contributes to the probability of a detection, i.e. σ�|U|
(the variance in particle location is smaller than the magnitude of the current). In this case

P(dc|mc) = P(detect(ω j
c )) (4.7)

where

j = argmin
τ

∣∣∣∣∣xs +

(
t−1

∑
r=t−τ

Ur

)
−xv

∣∣∣∣∣ (4.8)

and P(detect(ωn
c )) is given by Equation 4.6.

4.6.3 POMDP Observation Model

For the POMDP model, we need to find the observation probabilities in terms of the true state
space s.

4.6.3.1 Locating a Vent (z=l)

If the AUV is in the same cell as a vent then it is overwhelmingly likely to detect a plume from
that vent, so we ignore plume detections when we find a vent. In the POMDP case, the location
of vents is given by the vector m, which is part of the state space, so

P(z = l|s,a) =

1 if m(a) = true

0 otherwise
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Figure 4.3: Venn diagram showing that a plume detection may be due to a false positive detec-
tion (dF ), due to a vent at cell 1 (d1), due to a vent at cell 2 (d2), or any combination of these.
Note this diagram is only an example as it represents maps that have exactly two vents.

4.6.3.2 No Detection (z=n)

First we introduce the possibility of a false positive plume detection, dF , into our model. This
has probability P(dF) = PF . Figure 4.3 shows that a plume detection d can be due to a false
alarm, or due to detecting a particle from any of the vents, or due to a combination of these.
This gives

P(d) = P
(
dF ∨d1∨d2∨ . . .∨dM

)
where M is the number of vents in the map, M = |{c : m(c) = true}|. The probability of no
plume detection is therefore

P(¬d) = P
(
¬dF ∧¬d1∧¬d2∧ . . .∧¬dV

)
(4.9)

so long as there is not a vent in the cell the agent is moving into (because if there was, the
observation would be z = l).

Next we note that if we detect a particle emitted from a specific cell, it implies that cell must
be occupied by a vent, so P(mc|dc) = 1. Using Bayes’ law gives

P(mc|dc) =
P(dc|mc)P(mc)

P(dc)
= 1 (4.10)

If we only consider cells we know contain vents, then P(mc) = 1 so

P(dc) = P(dc|mc) (4.11)

and P(dc|mc) can be calculated using Equations 4.7 and 4.8. Finally, we assume plume de-
tections from different vents are independent of each other, and use Equations 4.9 and 4.11 to
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get

P(z = n|s,a) =


0 if m(a) = true

1−PF if M = 0(
1−PF)

∏c∈M (1−P(dc|mc)) otherwise

(4.12)

4.6.3.3 Detecting a Plume (z=p)

The probability of detecting a plume is obtained as the probability of not not detecting a plume,
where the probability of not detecting a plume is given in Equation 4.12. This gives us

P(z = p|s,a) =


0 if m(a) = true

PF if M = 0

1−
[(

1−PF)
∏c∈M (1−P(dc|mc))

]
otherwise

(4.13)

Note that Equation 4.13 is in the exact form required for a forward sensor model in Jakuba’s
OG algorithm (Equation 3.1 in Section 3.1.2).

4.6.4 Belief-MDP Observation Model

In the belief-MDP, rather than using the state s, we need to find the observation probabilities in
terms of the belief state b.

4.6.4.1 Locating a Vent (z=l)

If we move into a cell containing a vent, the observation will always be z = l, so by definition
we expect the target cell a to contain a vent with probability

P(z = l|b,a) = P(ma)

4.6.4.2 No Detection (z=n)

This derivation proceeds along similar lines to the one in Section 4.6.3.2, but in this case we do
not know which cells contain vents. This means we must consider potential detections from all
cells, but weight the contribution from each cell by the probability of that cell containing a vent
(as given by the OG, which is part of the belief state b).
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The probability of a detection is given by

P(d) = P
(
dF ∨d1∨d2∨ . . .∨dC

)
where we allow a possible detection from each of the C cells in the OG. The probability of no
plume detection is therefore

P(¬d) = P
(
¬dF ∧¬d1∧¬d2∧ . . .∧¬dC

)
(4.14)

However, we have to take into account the fact that if the cell we move into does contain a
vent, the observation will be to locate a vent rather than nothing. So we want

P(z = n|b,a) = P(¬d∧¬ma)

= P
(
¬dF ∧¬d1∧¬d2∧ . . .∧¬dC∧¬ma

)
We note that P(¬da ∧¬ma) = P(¬da|¬ma)P(¬ma) = P(¬ma), as we know if a cell does not
contain a vent then we cannot detect a particle from it, i.e. P(¬da|¬ma) = 1. Using

P(dc) = P(dc|mc)P(mc) (4.15)

from Equation 4.10, and the fact that P(¬ma) = 1−P(ma), we get

P(z = n|b,a) = (1−P(ma))
(
1−PF)

∏
c6=a

(1−P(dc|mc)P(mc)) (4.16)

if we again assume detections from different cells are independent. Note that here the product
is over all cells except the target cell, whereas in Equation 4.12 it is only over cells containing
vents.

4.6.4.3 Detecting a Plume (z=p)

As in Section 4.6.3.3, the probability of detecting a plume is obtained as the probability of not

not detecting a plume. Based on Equation 4.16 we find

P(z = p|b,a) = (1−P(ma))

(
1−
(
1−PF)

∏
c6=a

(1−P(dc|mc)P(mc))

)
(4.17)
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4.7 Discussion of Modelling Issues

This section highlights some alternatives and justifications for aspects of the model presented
in Section 4.3.

4.7.1 State Versus Model Uncertainty

In Section 4.3, the location of the vents m has been presented as part of the state of the agent,
s. This needs some justifying as m is fixed and will never change (except over timescales of
dozens of years), so should be thought of as part of the environment model rather than the
state of the agent. However m is still initially unknown, so we cannot simply include it in the
environment model, and observations provide information about m so including it in the state of
a POMDP provides a good model of the underlying situation. As far as the POMDP formulation
is concerned, the main impact this has is that the state transition function is deterministic, rather
than stochastic as for most MDPs and POMDPs. This obviously makes it a special case of a
POMDP rather than requiring any special treatment, but may allow for some optimisations in
solution methods.

4.7.2 Mapping Considerations

The separation of the problem into mapping and planning means that, as far as the planning
agent is concerned, physical characteristics of vents such as their peak temperature or output
flow rate are irrelevant and so can be excluded from the state.

Using Jakuba’s OG methods as a foundation means we have to define a finite, rectangular
search area. Care must therefore be taken in specifying the physical size of this search area, as
if the area is too small the agent may explore all of it adequately before the end of the mission
and have to waste time going over already-mapped areas, and if the area is too large then the
agent will spend more computation time than necessary updating it. The ideal would be to have
a map that grew automatically as the agent moved, but this is not straightforward to achieve
with Jakuba’s OG algorithm.

A major advantage of using an occupancy grid is that it intrinsically allows for any number
of vents in the search area (given the limit of no more than one vent per grid cell). This is not
the case for most mapping techniques, where each vent will be assigned a coordinate so the
unknown number of vents means the dimensionality of state space is not known. This could be
addressed by factoring the state space into a variable for the number of vents, and then a separate
map for each vent-count. An appropriate algorithm would then build the most likely map for
each vent-count, for example build maps with 1,2,3,4 vents in them, and then use Bayesian
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(a) Full occupancy-grid
state space model

Vent 2Vent 1

Vent 1 Vent 2

(b) Factored state space model, with 2
vents

Figure 4.4: Options for representing the vent map. The upper part of the figure shows a vent
map as it would be represented by both the full and factored models. The lower part of the
figure shows a different map in the full and factored models.

model comparison techniques to choose between the maps. The OG and factored approaches
are compared in Figure 4.4, where 4.4 (a) shows the full occupancy grid approach, and 4.4 (b)
shows the factored approach for a two-vent map.

For a ν×ν grid, the OG state space size is 2ν2
states, rather than ν2n for the factored method

for n vents. For example, in Figure 4.4, the full model has about 1030 distinct states, compared to
104 states for the factored model. Even with several different maps for different vent-counts, the
factored approach allows a smaller state space, at the cost of a less clean mapping methodology
and the need to handle multiple possible worlds (each of which is still uncertain) when planning.

4.7.3 Map Dimensionality and Vent Detector

The occupancy grid is 2D, and extending it to 3D has no value because the OG stores probabi-
lities of cells containing a vent, and vents can only be found on the ocean floor. However the
vehicle moves in a 3D environment, and Jakuba’s forward model for plume propagation is also
3D, so it would be desirable to model the problem in 3D instead of the 2D abstraction presented
in this chapter. The issue with moving to 3D is that it would significantly increase an already
large state space size.

Planning in 2D can be justified by the fact that AUV vent-prospecting surveys are generally
conducted at a fixed altitude, as the non-buoyant plume will be found at a fixed altitude. The
problem is that this altitude will vary between different oceans and vent sites, so restricting the
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AUV to moving in one plane means the likely altitude of the non-buoyant plume will have to
be estimated pre-mission. An alternative could be to use macro-actions to overcome the 2D
restriction. In particular, a pre-programmed action could be for the AUV to dive to near the sea
floor, and then determine the altitude at which plume tracer concentration peaks, which would
be considered the altitude of the non-buoyant plume.

A similar macro-action could be used to implement the deterministic vent detector (as spe-
cified in Section 4.3.4), if plume tracers proved unable to provide sufficient certainty. This
vent-detecting action would simply be for the AUV to descend from its survey height to near
the ocean floor; if the tracer concentration increased all the way to the bottom, then the AUV
is most likely to be in the buoyant plume and therefore directly above the vent (as shown in
Figure 2.2), instead of being in the non-buoyant plume.

4.7.4 Actions and Observations

In my model, the only actions available are movement actions. On many AUVs other actions
such as taking a photograph or collecting a water sample are available, but these have been
excluded in the interest of maintaining a clear reward model.

The dynamics of the vehicle are not considered in the model as it is assumed the agent
moves one grid cell per timestep. The only concession is that backtracking to the previous
cell is not allowed, which means that the vehicle orientation is implicitly part of the state via
cprev, the agent’s previous location. Similarly remaining in the same location is disallowed,
as few AUVs are capable of hovering. Ignoring dynamics may be a significant approximation
as regards vehicle speed, as the agent will cover ground much faster going with the current
compared to against the current.

All observations are processed by Jakuba’s algorithm with the output being an updated
OG. This means that my novel algorithms need not consider any of the complexities of vent
dynamics or how to relate sensor readings to possible source vent locations. However I have
included an additional observation that Jakuba does not allow: detecting a vent at the agent’s
current position. This presented a choice for the possible observations to model:

1. {(vent, plume), (vent), (plume), (nothing)}

2. {(vent), (plume), (nothing)}

The second option was chosen, because the simulation setup means the agent will always detect
a plume when it locates a vent, as there will always be a new plume particle co-located with the
vent. This means that if the agent locates a vent, the fact it also detected a plume provides no
further information, and having fewer observations allows more efficient implementations.
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4.7.5 Localisation and Navigation

My model makes two related assumptions on localisation and navigation: that the agent always
knows exactly which cell it is in, and that navigation actions are guaranteed to move the agent
into the desired cell. These assumptions are related because if an AUV can track its own path
precisely, then low-level vehicle controllers can provide waypoint-based navigation APIs, so the
commanded destination will always be achieved (even if the vehicle has to alter course several
times to get there). If grid cell coordinates were converted into waypoints, this would provide
a natural and reliable method for migrating from my environment to a real AUV. This accurate
navigation is certainly possible with some AUVs, because while GPS does not work underwa-
ter, AUVs can use Doppler sonar sensors in combination with inertial navigation systems to
track their own movements very accurately (the Autosub team estimate an error of just 0.1% of
distance travelled [McPhail and Stevenson, 2009]).

However, if the AUV does not know its location accurately this will invalidate much of the
mapping process – finding a hydrothermal vent is of limited value if the vehicle cannot report
the location of this newly discovered vent. A particular problem is that, after the vehicle obtains
a GPS fix on the surface, it has to rely on dead reckoning to estimate its position while it is
descending (until it is within a few hundred metres of the sea floor and can use Doppler sonar).
This means its location fix can be subject to considerable drift due to the current [McPhail et al.,
2009]. AUV operators make great efforts to ensure the navigation is accurate, including using,
for example, seafloor transponders to communicate acoustically with the AUV [Yoerger et al.,
2007b]. Section 8.3.5 discusses further ways localisation could be improved, even when using
relatively low-cost AUVs.

4.7.6 Rewards

The reward function simply optimises for finding as many vents as possible during a mission.
An alternative goal would be to minimise the “false negative” rate, i.e. minimise the number
of vents in the search area that are missed. This was not done because discussions with ocea-
nographers, in particular Bramley Murton of the National Oceanography Centre, Southampton,
indicated that finding as many vents as possible would provide the most benefit, rather than
ensuring all vents in a particular region are found.

As mentioned in Section 4.3, the reward function does not include any component for ex-
ploration, such as visiting previously unvisited areas of the grid. Adding such a component
would constitute reward shaping, which means modifying the true reward function in order to
guide algorithms toward good solutions. If it is not done carefully, reward shaping can lead to
worse rather than better solutions [Ng et al., 1999], but in any case such artificial alterations to
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the reward should be part of the solution method rather than the problem definition (and in fact,
the algorithms presented in Chapter 5 make no explicit use of the reward function defined in
Section 4.3).

Two other potential contributions to the reward function were not considered: a negative
reward for the vehicle hitting the bottom of the ocean, and a negative reward for the vehicle
coming too close to a hydrothermal vent. Hitting the bottom risks damaging the AUV or even
it getting stuck, but existing low-level vehicle control software is already capable of preventing
such collisions. Situations relating to vents are potentially more risky, as plumes very near the
vent are hot enough to melt parts of the AUV. However the proximity required to find such high
temperatures is much smaller than the likely dimensions of a grid cell, making it hard to model
in my framework. Additionally at medium-level altitudes (50 m and above), which are likely
altitudes for missions of the type considered in this thesis, plumes are unlikely to be hot enough
to damage the vehicle.

4.7.7 Resource Limits

Resource limits require special attention in a planning context, especially when resource usage
differs between actions and follows a stochastic distribution even once an action is chosen [Bre-
sina et al., 2002; Dearden et al., 2003; Mausam et al., 2005]. The limited resource in vent
prospecting is the charge in the AUV’s battery, which cannot be recharged during a mission.
How quickly the battery is drained depends on a variety of factors, such as the speed of the
vehicle, the relative direction of the current, and the depth and temperature.

In a POMDP framework, limited resources could be addressed by simply including the
resource as a state variable. The reward function would then include a large negative reward
for the AUV running out of power before it has returned safely to the surface, as collecting data
from vents has no value if the robot is unable to safely return the data to the surface.

However the formulation in Section 4.3 addresses resource limits by fixing the mission
duration, which is common for AUV deployments (for example [McGann et al., 2008c]) and
is simple and clear from both a theoretical and implementational point of view. The use of a
finite duration mission removes the need to address issues of how different actions will drain the
battery faster, and also to make decisions about whether to save the data or do more exploring.
In my model it also means the total mission distance is fixed, which is less likely to be the case
for real-world AUV deployments.
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4.8 Fully-Observable Variant

This section describes the characteristics of the fully-observable version of the problem, which
is still a hard problem to solve. We consider two situations: first solving a given instance of
the fully-observable problem, assuming an omniscient agent that can see the full state and is
capable of on-board planning, and second calculating a policy that will provide the optimal
action for all possible states. The latter problem helps us understand the challenges of the full
POMDP problem, and is relevant in heuristic methods that are often used to solve POMDPs
(see Section 6.1).

A given instance of the fully-observable problem is equivalent to a form of the travelling

salesman problem (TSP), for which milestone algorithms were presented by [Dantzig et al.,
1954; Lin, 1965] (although the problem was known for some time before these works). The
standard TSP is to find the shortest possible circuit that visits all of the cities in a set, where
the pair-wise distances between all cities are supplied, and the tour must start and finish at a
specified city. The fully-observable vent prospecting problem is to find the shortest path that
visits all vents (cities), given a non-vent starting location, and no restrictions on the vent the
path should end at. This is equivalent to the path-TSP [Papadimitriou, 1977], as the starting
location can just be treated as an additional city, and the aim is to find the shortest path linking
all cities. It is shown in [Papadimitriou, 1977] that the path-TSP is equivalent to the tour-TSP in
terms of complexity class, and both problems are NP-complete. Papadimitriou also notes that
his results apply to ‘manhatten’ problems such as our OG domain where cities are laid out in a
grid pattern.

While the path-TSP is NP-complete, we expect the number of vents in the search area to be
small, of the order of 10 or fewer. Given this, the problem can actually be solved by exhaustive
enumeration of possible paths in a very short time (less than a second on a modern computer).
Therefore specific instances of the fully-observable problem can easily be solved.

Finding the policy for the fully-observable case is much harder, simply due to the size of
the state space. The cprev and U state variables can be discarded given a fully-observable state,
but the m and cAUV variables are required, and result in C ·2C possible states (as in Section 4.4).
For any reasonable grid size, this makes it impossible to even store a complete policy, as the
policy consists of a mapping from each state to the action to take in that state. Further, there
are C + 1 state variables, C of which are binary variables, which makes it unlikely that the
policy is a smooth surface that could be well represented by a function approximator trained
on a relatively small dataset. So while specific instances of the fully-observable problem can
generally be solved, finding a full policy for such problems is not possible, and approximating
the policy is likely to be an extremely hard problem.
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4.9 Relation to RockSample and FieldVisionRockSample

This section compares the model developed in this chapter with two benchmark domains that
are well-known in the POMDP community and have many similarities to my model. The first
is RockSample [Smith and Simmons, 2004], which is an abstracted version of the problem of an
autonomous planetary rover choosing which rocks to sample. RockSample is based on a grid-
world, and an instance with an ν × ν grid containing k rocks is known as RockSample[ν ,k].
Each rock can be either good or bad, but the agent does not know in advance which are good and
which are bad. The agent starts in the middle-left cell in the grid, and has to reach an absorbing
state which is accessible from any of the cells along the right-hand edge of the grid. There are
k+5 actions available to the agent, {north,east,south,west,sample,check1, ...,checkk}, where
the movement actions are deterministic, sample samples the rock at the current location, and
checki runs a sensor action on rock i. The checki actions are probabilistic, returning the correct
classification (good or bad) with probability X where X decreases exponentially with Euclidean
distance between the agent and rock i, from 1.0 for adjacent rocks to 0.5 at the maximum
possible distance. The sample action has reward +10 for sampling a good rock, in which case
the rock is then marked as bad, and -10 for sampling a bad rock, and moving into the terminating
state has a reward of +10.

If k = ν2 = C, i.e. every cell contains a rock, RockSample is very similar to the POMDP
formulation of the vent prospecting problem where a good rock is equivalent to a vent, and a
bad rock is equivalent to an empty cell. The state space is almost identical, with C · 2C states
(see Section 4.4), ignoring the current and previous cell in my model and the terminating state
in RockSample. The movement actions are identical and deterministic in both cases, but the
sample and checki action in RockSample are not present in my model as sensors are assumed
to operate continuously. The reward model is very similar; RockSample has a rewarding final
state as opposed to a fixed number of timesteps, and also has a negative reward for sampling a
bad rock. However the sample action would be a good representation of the macro-action of
diving to check for a vent (described in Section 4.7.3), which would be an expensive action to
take if there turned out to not be a vent there (i.e. a bad rock).

The significant difference between RockSample and the vent prospecting model is the ob-
servation model. In RockSample, the model only observes one cell at once, and is fast to
compute, whereas the plume detection model observes a large proportion of the search area at
once, and is computationally expensive. Another difference is in typical problem size; while
RockSample[ν ,ν2] is equivalent to the vent domain, most problems considered in the litera-
ture have k ≈ ν and both less than 20. For example, [Smith and Simmons, 2005] solve Rock-
Sample[10,10] with 105 states but consider it too large to be solved by most POMDP algorithms,
compared with experimental settings used in this thesis equivalent to RockSample[20,400] with
10123 states.
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An extension of RockSample, FieldVisionRockSample, is introduced by [Ross et al., 2008].
FieldVisionRockSample is in some ways even more similar to the vent prospecting domain,
as the checki actions are removed and instead the agent observes every rock on every timestep
(with the same probability model as before). This makes the action space almost identical to my
model, and the observation function is more similar in that it runs continuously and observes
the whole grid, but less similar in that FieldVisionRockSample observes the state of each rock
independently so there are 2k observations as opposed to just three in my model. Also, the ob-
servation model of the vent prospecting model is complex and computationally intensive, which
is a key characteristic of the problem and significantly different from FieldVisionRockSample.
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CHAPTER 5

PLANNING USING ENTROPY

This chapter presents a set of novel algorithms using entropy to drive vent prospecting. First
a review of relevant prior work is presented, then in Section 5.2 the experimental method and
settings used to evaluate algorithms in this thesis are described. Sections 5.3, 5.4, 5.5, and 5.6
describe the algorithms, with Sections 5.5 and 5.6 also presenting experimental results. Finally,
Section 5.7 presents a summary of all the algorithms and discusses their relative performance.

5.1 Previous Work On Adaptive Exploration

This section examines previous work on the problem of how a robot should efficiently explore
an unknown environment. This is a slightly different problem to the one addressed by this thesis,
where the aim is to visit sites of interest (vents). Developing a good map is of obvious benefit
when planning to visit locations in the map, and optimising for map quality can sometimes
directly induce the agent to visit the locations of interest (for example [Vergassola et al., 2007]).
Further, some of the methods discussed below are fairly general, in that they include an objective
function that could easily be modified to reward visiting certain locations. Having said this, the
difference of objectives is the main obstacle to adopting the work described in this section for
hydrothermal vent prospecting.

At a high level, the problem can be seen as one of choosing a subset of locations to take
samples at, so as to minimise the uncertainty in the posterior map. For the case of robot path
planning, these locations are subject to the constraint that they must be contiguous. As the agent
will gather more data from its sensors as it moves, it is clear that a better map will result if the
agent periodically re-plans its path, taking into account the latest data. Re-planning on every
timestep is known as adaptive planning, and it allows the agent to concentrate its exploration on
the areas it is most uncertain about. Most of the methods discussed in this section are adaptive.

The degree of uncertainty of a map can be characterised by the entropy of the map, so the
underlying idea of all entropy-based planning algorithms is to take the action that reduces the
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map entropy the most, and therefore produces the ‘best’ map. They build on the theory of maxi-

mum entropy sampling [Lindley, 1956], a methodology for deciding what the most informative
experiment to perform is. The methodology prescribes performing the experiment with the hi-
ghest entropy in the distribution of predicted observations, and this has recently been applied to
adaptive observation planning by [Loredo, 2004].

Much work has also been done in the context of the SLAM problem – simultaneous loca-
lisation and mapping [Dissanayake et al., 2001; Thrun, 2002b; Montemerlo et al., 2003]. In
SLAM, as well as having imperfect mapping sensors, the robot is unable to measure its own
position accurately. The objective is to find a good estimate of both the robot’s position and
the map of the area the robot has explored. SLAM often makes use of an extended Kalman
filter (EKF) to collate non-linear observations into a state estimate, and most implementations
rely on identifiable landmarks to form the map rather than using an occupancy grid. Early work
on SLAM concentrated on the algorithms used to estimate the map and position, given a fixed
path, but recently there has been more interest in path planning to guide data collection. This
is known as active SLAM (discussed further in Section 5.1.4), and usually involves a trade-off
between exploring new areas to enhance the map, and re-visiting places the robot has already
been in order to reduce positional uncertainty.

This section is organised as follows: in Section 5.1.1, work on maximising submodular func-
tions is discussed, with applications to optimal sensing problems. Next Section 5.1.2 discusses
using entropy as a heuristic to solve POMDPs, then Section 5.1.3 covers some introductory
ideas for using entropy to plan in OGs. In Section 5.1.4 I describe some innovative solutions
to the active SLAM problem, and finally the infotaxis algorithm of [Vergassola et al., 2007] is
discussed separately (Section 5.1.5), as it was the inspiration for much of the work presented in
this chapter, and deals with searching for a specific target.

5.1.1 Submodularity

Krause and Guestrin address the problem of choosing where to take measurements to gain
the most information by leveraging submodularity [Krause and Guestrin, 2007]. The possible
sensing locations are discretised into a set of points V , and the aim is to select a subset A of at
most k locations so as to maximise a value function F(A) (where A ⊆ V ). A set function F is
submodular if adding a new sampling location helps more when fewer locations have already
been sampled: formally, for any two sets A and B, A⊆B, and any node c /∈B, if F is submodular
then

F(A∪{c})−F(A)≥ F(B∪{c})−F(B)

An adaptive greedy approach is often used for such problems, where on each timestep the
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next sensing location c is chosen to maximise F(A∪{c}), given that locations A have already
been sampled. [Nemhauser et al., 1978] show that for submodular functions, the greedy al-
gorithm is guaranteed to produce a solution with a value of at least (1− 1/e)Fopt where Fopt

is the value of the optimal solution, Fopt = maxA:|A|<k F(A). In other words, the greedy algo-
rithm performs surprisingly well, attaining approximately 63% of the value of the best possible
solution.

In [Krause and Guestrin, 2005], the specific problem of where to position temperature sen-
sors to gain the best possible map of temperatures throughout an office is considered. They
show that the information gain for adding a new sensing location, given by the reduction in
entropy, is submodular. This means the greedy algorithm is an effective approach for domains
where information gain is to be maximised, and they also provide an extension of the greedy
algorithm to allow for different measurements having different costs.

If the observations are to be made by a mobile robot, the additional constraint of linking the
sensing locations together in a path must be included. Further, the constant acquisition of new
measurements implies that an adaptive algorithm will perform best, and both of these issues are
handled by an algorithm presented in [Singh et al., 2009]. The authors take advantage of two
properties of the problem: submodularity and locality, where locality means that observations
from locations that are physically far apart are approximately independent. Given these two
properties, they define a nonadaptive algorithm pSPIELOR that intelligently divides the possible
sensing locations into clusters, and then applies a standard modular orienteering algorithm on
each cluster. For the adaptive case, they re-run pSPIELOR on every timestep, and provide a
bound relating the performance of this algorithm to the optimal policy.

The key difference between the domain considered by [Singh et al., 2009], that of sampling
water in a lake, and the vent prospecting problem is that vent prospecting is not local (because
plume detections can originate from vents at the opposite end of the search area).

5.1.2 POMDP Approximation

The exploration tasks being considered in this section are actually instances of POMDPs, and
one way of addressing them would be to define the problem as a POMDP, and then leverage
entropy reduction as a heuristic to choose actions. In [Cassandra et al., 1996], the goal is
for a robot navigating around a known map to reach a specific location, despite uncertainty in
action outcomes and its initial location. The authors calculate the correct Bayesian belief state,
and investigate various sub-optimal control strategies given this belief state. In the entropy-

weighting (EW) algorithm, the basic principle is to choose actions that maximise the reduction
in the uncertainty of the belief state. However, sometimes uncertainty in the belief state will
not affect which action is optimal, and when this is the case entropy reduction is unnecessary.
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The first step in the EW algorithm is to calculate the solution to the fully-observable (MDP)
problem (as in Section 4.8), which is a state-to-action mapping, and use this together with the
belief state to calculate the probability that each action is optimal. Then if the entropy of this
action-optimality distribution is less than a threshold value, it is used to find the best action.
Otherwise, the action that reduces the entropy of the belief state the most is chosen. This
approach is compared to the most likely state (MLS) algorithm, which chooses the action that
would be optimal if the agent were in the true state that is most probable in the belief state. The
EW algorithm performed worse overall than MLS, especially when there was more uncertainty
in the initial state. However the authors concluded that EW may be more effective in domains
that include perceptual actions, whose only effects are informational.

5.1.3 Early Exploration Work with Occupancy Grids

Occupancy grids [Elfes, 1989] are a common approach in mobile robotic planning applications
and entropy measures are frequently used to decide how to explore in these representations.
[Thrun et al., 2005] (§17.4) provide an overview of standard methods for planning for explo-
ration using OGs. The underlying assumption of these methods is that the information gain
expected in each cell can be calculated independently, similarly to the assumption that the oc-
cupancy probability of each cell can be found independently. The algorithm proceeds in two
steps: first a grid of information gain values, mirroring the OG, is calculated, and second value
iteration is used to find a policy based on the information gain values.

The problem is discussed in the context of a mobile indoor robot equipped with range finding
sensors such as sonar, which will return an occupied/empty estimate for all cells sensed. Three
possible approaches to finding information gain values are discussed:

1. Using the entropy of each cell as a proxy for information gain, where cell entropy is given
by Hc =−P(mc) log2 P(mc)− (1−P(mc)) log2 (1−P(mc)).

2. Using the full information gain expected when sensing a cell, which is given by difference
between the current cell entropy and expected new entropy. To calculate this, a sensor
model that outputs the occupancy of a cell with some error probability is assumed. Then
if we denote the probability of measuring “occupied” by p+, and “empty” by p−, the
expected new entropy is E [H ′c] = p+H+

c + p−H−c , where H+
c and H−c are calculated by

using the standard occupancy grid updates to find the new occupancy probability for the
cell given an occupied/empty measurement respectively. In practise the true information
gain values are very similar (apart from a constant factor) to simply using cell entropy Hc,
which is faster to calculate.
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3. Giving each cell a binary explored/unexplored classification. This is a very simple ap-
proximation where a cell that has been updated in the OG is marked as explored, and
other cells are marked as unexplored. It is found to work well in indoor environments,
where the search area is split into small sub-areas (rooms and corridors) which can be
fully explored fairly quickly given sonar-type sensors, but little information is gained
about adjacent sub-areas.

The value iteration algorithm outlined in [Thrun et al., 2005] works from an information gain
grid calculated using the third option. Unexplored cells at the edges of the current map are
assigned a fixed value, and the value of other cells is found by maximising the cost of moving
to an adjacent cell plus the value of that cell. The value iteration update is given by

Vt+1(s) =

maxa {r(s,a)+Vt(a)} if s is explored

Iu if s is unexplored

where r(s,a) gives the cost of moving from cell s to cell a, a indexes over all cells adjacent to
s, and Iu is a constant value assigned to unexplored cells.

This leads to an algorithm named frontier-based exploration, where following the value
function produces greedy exploration – it takes the agent to the nearest unexplored area, taking
into account obstacles in the OG (via the movement cost function).

5.1.4 Active SLAM

This section deals with three general approaches that are used for the active SLAM problem:
greedy entropy minimisation, value function approximation, and entropy minimisation by local
path adjustment.

Greedy entropy minimisation [Bourgault et al., 2002; Stachniss et al., 2005] builds on the
work discussed in Section 5.1.3 by computing the entropy of the whole occupancy grid, rather
than of individual cells. The entropy of the OG is taken to be the sum of the entropies for each
individual cell, which is valid given the assumption that the occupancy probabilities of each cell
are independent. Actions are again chosen on the basis of maximising the expected reduction
in entropy of the belief state.

Both [Bourgault et al., 2002] and [Stachniss et al., 2005] address the SLAM problem where
the aim is to minimise uncertainty in the pose of the robot and the map, and both use an OG
for the map plus an additional distribution over the robot pose. Bourgault et al. maintain a
landmark-based EKF to track the pose, and combine the entropy of the OG and the EKF when
evaluating actions, but Stachniss et al. use a Rao-Blackwellised particle filter where the particle
filter tracks the robot’s trajectory, and each particle has an associated OG tracking the map. In
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both cases, the occupancy grid is updated using data from a laser rangefinder. These approaches
differ from my domain in that the priors for the grid cells in their mapping problem are 0.5. This
means that any observation about a cell reduces the entropy about that cell, whereas in my case
an observation of a plume will actually increase the entropy of some grid cells (see Section 5.5
for a fuller explanation).

The approach of learning a function approximator for the optimal value function is taken
by [Martinez-Cantin et al., 2007; Bush et al., 2008]. Given a value function it is easy to find
the optimal action; the problem is that, given a continuous belief state, it is not possible to use
dynamic programming to find the value function. Instead, a parametric function Vβ (b) can be
used to approximate the value function, and the parameters of this can be learnt by simulation
combined with targeted Bellman updates.

[Martinez-Cantin et al., 2007] use Monte-Carlo simulation of the mission in a domain where
the agent has to plan a path between a start and end point, optimising for SLAM. The objective
is to minimise the value function, defined as the average mean square error between the true
state (robot pose plus map) and estimated state at the end of the mission.

They parameterise their policy as a path defined by a set of waypoints, and each Monte-
Carlo simulation is performed using fixed waypoints. The output from a trial is an estimate of
the state, obtained by applying an extended Kalman filter (EKF) algorithm to the observations,
and therefore of the cost for that parameter set. Multiple trials are used to learn a Gaussian
Process (GP) model of cost for different parameters, and this model is used to select the best
parameters to use for the next trial. Good parameters are ones where either the cost indicated
by the GP is low, or the variance of the GP is high, corresponding to optimising for exploitation
or exploration.

The key drawback to this method is that it evaluates the cost of a path without dynamically
modifying that path. This means it is not correctly evaluating the benefits of information gained
during execution of the plan (as this would allow the path to be changed), so it generates an
overestimate of the cost of actions.

[Bush et al., 2008] consider an exploration problem where the aim is to maximise coverage
of a grid given a noisy remote sensor and a limit on the number of observations. They pose
the problem as a POMDP where the reward for each action is the reduction in entropy of an
occupancy grid map, and note that given the continuous belief state it is not possible to solve
this POMDP using dynamic programming. Instead they use a parametric function Vβ (b) to
approximate the value function, where Vβ (b) is a linear combination of basis functions. Their
algorithm iterates over randomly-sampled states, calculates the expected reduction in entropy
for each action, and uses these rewards plus the existing Vβ (b) in a Bellman update to find an
improved estimate of the value of the state. This estimate is in turn used to refine the parameters
β of the value function approximator Vβ . The calculations are made tractable by using a root-
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mean-square error function as both the reward (as a close approximation to entropy) and as the
basis functions, which allows closed-form solutions.

This problem differs from vent prospecting in that observations do not have to form a path,
and again in that the aim is mapping rather than visiting specific targets.

[Low et al., 2009] address the problem of sampling a hotspot field using mobile robots,
which is more similar to the vent prospecting domain, from an information-theoretic perspec-
tive. They model the map as a log-Gaussian process, and use a variant of real-time dynamic
programming to evaluate future action-observation paths according to an entropy minimisation
criterion. The approach is interesting as it is independent of the map resolution, and they use an
ocean sampling domain for evaluations, but it would not be easy to apply it to an OG map.

Entropy minimisation by local path adjustment is performed by [Kollar and Roy, 2008;
Thompson and Wettergreen, 2008]. The underlying idea is to generate an initial path, perform
several small perturbations at a point near the start of the path, and evaluate which of the re-
sulting new paths maximises the expected entropy of observations. This is then repeated at
locations further along the path.

[Kollar and Roy, 2008] use a feature-based EKF map, which they ‘skeletonise’ into a dis-
crete set of possible sampling locations, identified by crossings or junctions in the map. A
graph search algorithm is then used to find the connected subset of points that maximises the
number of features observed, for a fixed length path. The second step is to optimise the order
these points are visited in, so as to minimise the expected map entropy after performing the
tour. This expected entropy is evaluated by simulating the path and observations, and updating
the EKF accordingly. The path is altered by the travelling-salesman-problem inspired heuris-
tic of swapping two edges until no further improvement results. [Thompson and Wettergreen,
2008] describe a similar method using a Gaussian process to predict observations on the basis
of location plus ground images captured via remote sensing. They adopt a maximum entropy
sampling approach to path planning, by incrementally making small adjustments to a path, and
adopting the adjustment if it increases the expected entropy of observations made along that
path according to the GP model.

5.1.5 Infotaxis

Entropy reduction has also been applied to chemical plume tracing, where the aim is to locate a
chemical source rather than produce a map, by Vergassola, Villermaux, and Shraiman [Vergas-
sola et al., 2007]. Their approach is useful in macroscopic environments where areas of strong
chemical signal are separated by regions of limited or no signal, so it is not possible to track the
gradient to the source. Their infotaxis algorithm treats observations as a sequence of discrete
detection events (ignoring the magnitude of signals); the probability of a detection is higher
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nearer to the source, so the agent can use detections to build a probability distribution over the
source location, P(r0). This continuous distribution is built using a model of the source, which
specifies the rate of emission of tracers, the lifetime of tracers, a diffusion coefficient and a
mean current.

Vergassola et al. choose the action of the robot as the one which reduces the entropy (or
uncertainty) of the source location by the most, where the entropy of a distribution P(r0) is
given by S≡−

´
P(r0) lnP(r0)dr0. First a set of points near the agent is selected, then for each

point r in this set the change in entropy expected from moving to that point is evaluated:

∆H(r) = P(r) [−H]+ (1−P(r)) [ρ0(r)∆H0 +ρ1(r)∆H1 + . . .] (5.1)

where P(r) is the probability of finding the source at r, and ρk is the probability of k chemical si-
gnal detections at r during a small time interval, with ∆Hk the corresponding change in entropy.
The probability ρk terms are found by assuming a Poisson hit distribution, and integrating the
mean rate of hits at a given location, R(r|r0), weighted by the probability of the source location
r0, over all possible source locations.

In Equation 5.1 the first term on the RHS handles the case where the source is located at r,
and the entropy drops to zero as the source has been found. The authors note that this term is
exploitative, encouraging the agent to go to the most likely source location, but the second term
is exploration-biased, as it allows information gain even if the agent does not move. Therefore
infotaxis provides a natural balance between exploration and exploitation in search problems.

Experimental results show that, in the absence of hits, the algorithm produces interesting
search patterns: without wind, the agent moves in increasing radius spirals, and with wind, it
moves in a mixture of cross-wind zigzagging and up-wind casting very similar to the behaviour
of moths. Results also confirmed that entropy was an effective measure for searching, showing
that residual search time dropped rapidly with decreasing map entropy.

While infotaxis originally worked for a single source only, it has been extended to multiple
sources in [Masson et al., 2009]. However this method cannot be applied to the vent prospecting
problem considered here, as it requires multiple cooperating robots to produce the map. Each
robot maintains only a single-source map, the map updates are conditioned on the (known)
number of sources, and the aim of each robot is to visit only one source, all of which make it
hard to translate multiple-source infotaxis to my environment.

5.2 Experimental Methods

This section describes the experimental methods and parameters used in this thesis to evaluate
the effectiveness of vent-prospecting algorithms.
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All experiments used a 20× 20 grid with 400 cells, and a fixed mission length of 133 ti-
mesteps (corresponding to covering just under 1/3 of the grid). The agent always started in
the north-east of the grid (the top-right cell), and no restriction was placed on where the agent
should be at the end of the mission. Vents were distributed randomly and uniformly over the
search area. For all algorithms using an MDP a discount factor of γ = 0.9 was used in solving
the MDP. The current simulation defined in Section 4.2 was used for every trial. This current
was the same at all points of the grid, and as it flows on average toward the east-north-east, the
agent’s start location was the most down-current point in the search area.

For each algorithm, 600 trials were performed, 150 trials with each of 3, 4, 5 and 6 vents.
Each trial used a different random seed, where the random seed determined both the placement
of vents and the dispersion of plume particles from the vents. Random seeds were generated by
http://www.random.org/, which uses atmospheric noise to produce random numbers, and
the same set of 600 random seeds was used for experiments with each algorithm.

The occupancy grid prior was set to Pp
c = 0.01, independent of the number of vents. If the

prior were to have been changed to reflect the actual number of vents for each trial, this would
have provided the algorithm with information about how many vents it should expect, which
it would not get in the real world. The value of 0.01 was chosen for the prior as it equates to
having four vents in the search area, which is a reasonable expectation. As noted in [Jakuba,
2007], it is important to initialise the OG with a low prior when we expect to find only a few
vents, as otherwise it is hard to apportion detection probability correctly to OG cells. Section 5.5
notes further that using Pp

c = 0.5 leads to very bad experimental performance.

The evaluation criterion for algorithms was how many vents were found during a 133-step
mission. To allow results from trials with different numbers of vents to be combined, the percen-
tage of vents found, fv, was used. When calculating the mean percent f̄v, trials were weighted
equally regardless of the number of vents in that trial, i.e. f̄v was calculated using

f̄v =
1

600

600

∑
i=1

f i
v

where f i
v is the percent of vents found on trial i.

Mowing-the-lawn (MTL) is treated as a special case, because although the trackline spacing
is an algorithm parameter, a fixed subset of cells will always be visited for a given trackline
spacing. As the vents are distributed randomly and uniformly around the grid, the expected
sample average for fv using MTL is simply the percent of grid cells visited. Therefore the
expected percent of vents found given infinite trials, f̄v = 100 · 133

400 (for 133 timesteps and 400
grid cells), is shown in results and no experiments using MTL were actually performed.
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Graphs presented also show 95% confidence intervals, which are calculated using

Icon f 95 = 1.96

√
σ2

600

where 600 is the number of trials, and σ2 is the sample variance, σ2 = 1
600−1 ∑

600
i=1( fi− f̄ )2.

To determine if one algorithm is better than another to a statistically-significant extent, a
one-tailed test was used. Each f̄ result was taken to be the mean of a large population, and
the difference-of-means formula was used to calculate the standardised variable, Z = f̄b− f̄w

σ f̄b− f̄w
,

where the b subscript denotes the result for the better algorithm, and w for the worse algorithm.

The standard deviation of the difference-of-means is given by σ f̄b− f̄w =

√
σ2

b
600 +

σ2
w

600 assuming
a sample size of 600 for each algorithm. For one algorithm to be better than another at a
confidence level of 0.05, we require Z ≥ 1.645.

An overview of the hardware and software used is given in Appendix A.

5.3 Basic H-MDP Algorithm

The first novel algorithm developed was inspired by the methods outlined in [Thrun et al., 2005]

(as summarised in Section 5.1.3). In the vent prospecting domain, frontier-based exploration
is unlikely to be effective, because a single plume detection will update the occupancy pro-
babilities for many cells, usually including cells at the limit of the search area. Therefore the
unexplored frontier quickly becomes small and often far away from vents. This is shown in
Figure 5.1; concentrating the search on cells that have not been updated would lead the agent
away from likely vent locations.

Instead, either entropy or information gain must be used to assign value to cells, and in the
interests of simplicity entropy was chosen. The value iteration algorithm described in [Thrun
et al., 2005] works by fixing the value of unexplored cells, and propagating value from those
cells in toward the centre of the explored regions. As all (non-visited) cells will have a non-
zero entropy value, this kind of value iteration cannot be used for entropy, and there are two
obvious alternatives: use entropy directly as cell value, or use entropy as the reward gained
when visiting a cell. The first option is myopic and greedy, as it will simply choose the adjacent
cell with the highest entropy, so the second option was selected. Then, as there are no obstacles
to avoid in the underwater environment, the cost of moving to any adjacent cell will be the same.
Therefore instead of having a movement cost function, I use a discount factor so that further
away cells are valued less. This means the problem is posed as a standard MDP where value
iteration is guaranteed to converge. These decisions define an algorithm I termed Entropy-MDP
(or H-MDP).
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OG and AUV path at t=35
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Figure 5.1: Example of the effect of a single plume detection (two timesteps previous to this
image) on OG probabilities. The colour of grid cells represents the probability that they contain
a vent, with the scale shown on the right of the map. The true locations of vents (unknown to
the agent) are shown by grey stars in white circles. The path the agent followed to obtain this
OG map is shown in white, starting at the white circle in the top-right corner, and terminating at
the white diamond. The single plume detection is marked by a green dot just before the end of
the path. The white arrow towards the bottom of the map represents the direction of the current
on this timestep.

The algorithm proceeds in three stages: first the entropy of each cell in the OG is calculated,
using

Hc(b) =−Pb(mc) log2 Pb(mc)− (1−Pb(mc)) log2 (1−Pb(mc)) (5.2)

where the notation Pb(mc) makes explicit that the occupancy probabilities come from the OG
which is part of the belief state b. Second, value iteration over all cells is performed until cell
values have converged, using the update equation:

V ′(c) = max
a
{Ha + γV (a)} (5.3)

where a indexes over all cells adjacent to c. Note that for a “normal” MDP, the update would
be given by V ′(s) = maxa {Ha + γ ∑s′ P(s′|s,a)V (s′)}, but we have deterministic actions. This
means we do not need to consider the probability P(s′|s,a), but can instead treat actions as
equivalent to the cell the agent ends up in. Third and last, the cell to move to, a, is chosen
greedily with respect to the value function:

a = argmax
c
{Hc + γV (c)} (5.4)

where c indexes over all cells adjacent to cAUV , the agent’s location. The full algorithm is shown
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Algorithm 5.1 The H-MDP algorithm in pseudo-code. The procedure
choose-action-h-mdp is applied at each timestep to select the action to take.

Procedure choose-action-h-mdp(b,ccurr,γ,θ): cell

For each cell s
Set rewards(s) = −P(ms) logP(ms)− (1−P(ms)) log(1−P(ms))

Endfor

Set values = 0..0

Set oldValues = 0..0

Set δ = 100

While δ > θ

Set δ = 0

For each cell c
values(c) = maxa∈adjacent_cell(c){rewards(a) + γvalues(a)}

δ = max(δ, |values(c)-oldValues(c)|)
Endfor

Set oldValues = values

Endwhile

Return argmaxc∈adjacent_cell(ccurr) values(c)

Endproc

in Algorithm 5.1, and an example of the agent’s behaviour using this algorithm is presented in
Figure 5.2.

5.4 ΣH (Infotaxis) Algorithm

The key deficiency of the H-MDP algorithm is that it fails to take into account the different
amount of information that will be gained from taking different actions. As map uncertainty
is what makes this problem hard, a planner that uses the observation function to reason about
the effect of actions on the belief state is likely to do better than one that ignores observations.
Therefore I decided to adapt the infotaxis algorithm of [Vergassola et al., 2007] to the vent
prospecting domain.

With an occupancy grid, the entropy of each cell is given by Equation 5.2. An OG does not
represent a probability distribution, as the occupancy of each cell is calculated independently
and (in general) ∑c P(mc) 6= 1. However, this independence of cell probabilities means we can
sum cell entropies to find the total entropy of the OG,

H(b) = ∑
c

Hc(b) (5.5)

This result is derived by [Rocha et al., 2005] as follows: first the joint entropy chain rule [Cover
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Figure 5.2: Example of a typical path generated by the H-MDP algorithm, illustrated by four
snapshots of the same trial at different times. The agent starts at the white circle in the top-
right, and its path is shown by the white line terminating in a diamond. The vent locations,
which are initially unknown to the agent, are shown by grey stars in white circles, and the green
dots represent points when the agent detected a plume. Finally, the map colouring indicates cell
occupancy probabilities P(mc).
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and Thomas, 2006]

H(X1,X2) = H(X1)+H(X2|X1) (5.6)

can be extended to a set of more than two random variables, X = {X1, . . . ,Xn}, to give

H(X ) = H (X1, . . . ,Xn) =
n

∑
i=1

H (Xi|X1, . . . ,Xi−1) (5.7)

If all the random variables in X are independent, then H (Xi|X1, . . . ,Xi−1) = H (Xi) for all i, so
Equation 5.7 becomes

H(X ) =
n

∑
i=1

H (Xi) (5.8)

which can be applied to the occupancy grid to give Equation 5.5.

Thus the expected entropy after action a is given by

E [H(b,a)] = ∑
z

P(z|b,a)∑
c

Hc(b′) (5.9)

where b′ = SE(b,a,z) is the belief state that results from applying Jakuba’s algorithm to the
OG component of belief state b, given an action a and observation z. Note that instead of
allowing multiple detections per timestep as in [Vergassola et al., 2007], we have summed over
our observation set z = {l, p,n} (where l represents locating a vent, p detecting a plume, and
n detecting nothing). Vergassola et al. point out that the first term in Equation 5.1 makes the
agent exploit its current map, as the entropy drops to zero if the source is found. While we have
an equivalent term in Equation 5.9 (the summation element where z = l), allowing multiple
sources means the entropy does not drop to zero when we find a vent, so our implementation
of infotaxis has slightly less motivation to actually visit sources. Finally, as in [Vergassola et

al., 2007], we select the action that minimises Equation 5.9 (i.e., maximises the reduction in
entropy). The full algorithm is known as ΣH (or infotaxis for vent prospecting), and is shown
in Algorithm 5.2, with results using this algorithm presented in Section 5.5.

5.5 Σ∆H Algorithm

As the vent prospecting domain uses an occupancy grid, it is significantly different from the
domain that Vergassola et al. applied infotaxis to, and infotaxis can be improved upon for this
domain. The OG allows for multiple sources, but we do not expect to find many sources in a
given search area, so the prior probability of occupancy of cells in the OG is very low (we use
0.01). This leads to a peculiarity of the domain: when the agent receives useful information, the
OG update causes the entropy of affected cells to increase rather than decrease. In particular,
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Algorithm 5.2 The ΣH (infotaxis for vent prospecting) algorithm in pseudo-code. The proce-
dure choose-action-sh is applied at each timestep to select the action to take.

Procedure choose-action-sh(b,ccurr): cell

For each cell a ∈ adjacent_cell(ccurr)
For each observation z
calculate P(z|b,a)
Set b′ = srog(b,a,z)
Set EΣH(a) = ∑z P(z|b,a)∑c Hc(b′)

Endfor

Endfor

Return argmina EΣH(a)
Endproc
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Figure 5.3: Plot of entropy of a cell against occupancy probability, where the entropy of a cell
is calculated using Hc =−P(mc) log2 P(mc)−(1−P(mc)) log2 (1−P(mc)). A prior occupancy
probability of 0.01 also plotted (the dashed green line running alongside the y-axis), illustrating
the fact that whenever P(mc) values increase from their prior, cell entropy is almost guaranteed
to increase.

when the agent gets a plume detection, which is much more useful to it than no detection, the
occupancy probability of all cells that could potentially contain the source vent rises. As the
prior occupancy probability of these cells is very low, increasing P(mc) also increases their
entropy, as illustrated by Figure 5.3 which shows a plot of cell entropy together with the low
prior. Note that because the OG does not represent a distribution, increasing the probability of
some cells does not mean the probability of other cells must decrease to compensate, and plume
detections cause the entropy of the OG as a whole to increase.

A possible solution to this problem is to initialise the OG with a uniform prior, setting the
prior occupancy probability to the maximum entropy value of 0.5. Unfortunately this throws
away a lot of information, and the maps produced by the OG algorithm using a uniform prior are
inferior to the extent that infotaxis based on these maps is barely better than exhaustive search
(infotaxis with a 0.5 map prior finds 38% of vents, compared to 66% with a prior of 0.01, and
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Algorithm 5.3 The Σ∆H algorithm in pseudo-code. The procedure choose-action-sdh is
applied at each timestep to select the action to take.

Procedure choose-action-sdh(b,ccurr): cell

For each cell a ∈ adjacent_cell(ccurr)
For each observation z
calculate P(z|b,a)
Set b′ = srog(b,a,z)

Endfor

Set EΣ∆H(a) = ∑z P(z|b,a)∑c |Hc(b′)−Hc(b)|
Endfor

Return argmaxaEΣ∆H(a)
Endproc

Table 5.1: Overview of entropy algorithms, showing how the algorithms differ in terms of
whether or not they are myopic, and the core calculation used to find the value of cells.

Core calculation Entropy (H) ∆H |∆H|
Myopic?
Yes (one-step lookahead) [not tested] ΣH (infotaxis) Σ∆H
No (MDP) H-MDP ΣH-MDP Σ∆H-MDP

33% for MTL). Instead the Σ∆H algorithm fixes this issue by preferring actions that change

the entropy of cells in the OG the most, regardless of whether the entropy of each cell actually
increases or decreases. More precisely, we select the action a that maximises Ez [Σ∆H], where

Σ∆H(b,a,z) = ∑
c

∣∣Hc(b′)−Hc(b)
∣∣ (5.10)

Equation 5.10 calculates, for every cell in the OG, the absolute value of the change in entropy
between belief state b and belief state b′ (where b′ results from observing z in cell a), and then
sums up the entropy change from all cells. This makes sense because the desirable observations
(finding a vent or detecting a plume) result in large changes in P(mc) values, whereas detecting
nothing results in only a small shift in P(mc) values. The full Σ∆H algorithm is given in Algo-
rithm 5.3. Some of the algorithms presented in this chapter have slightly non-intuitive names;
Table 5.1 shows the relationship between all of the entropy-based algorithms (including Σ∆H-
MDP which is introduced in Section 5.6), classifying them in terms of whether or not they are
myopic, and what the key entropy calculation is.

Results for the H-MDP, ΣH (infotaxis), and Σ∆H algorithms are shown in Figure 5.4. This
figure shows the mean percentage of vents found over 600 experimental trials, performed using
the setup described in Section 5.2. Also shown are the comparison algorithms MTL and che-

86



30

35

40

45

50

55

60

65

70

M
ea

n 
pe

rc
en

t v
en

ts
 fo

un
d 

(o
ve

r 
al

l #
 v

en
ts

)

M
TL 

(a
n)

Che
m

ot
xs

ΣH
 (I

nf
ot

ax
is) Σ∆H

H−M
DP

Figure 5.4: Results of H-MDP, ΣH (infotaxis), and Σ∆H. Also shown for comparison are MTL
and chemotaxis. All results are means of 600 trials – 150 each with 3,4,5, and 6 vents. 95%
confidence interval bars are also plotted. Note the lines connecting data points are purely to aid
visualisation.

motaxis (described in Section 2.4). The figure shows that the novel entropy-based algorithms
perform significantly better than both MTL and chemotaxis, with H-MDP, ΣH and Σ∆H all
finding more than double the number of vents found by MTL. Σ∆H is, as expected, an impro-
vement on ΣH but the non-myopic H-MDP algorithm is slightly better than both. However,
the differences between the entropy-based algorithms are not statistically significant for a confi-
dence level of 0.05.

5.6 Σ∆H-MDP Algorithm

Σ∆H was effective at locating vents, but not quite as good as the simpler H-MDP approach.
Examination of its behaviour showed it often took myopic decisions, for example it would fail
to explore high-probability areas of the grid if it would have to cross its path (consisting of
zero-probability cells) to get there (see Figure 5.5).

Infotaxis and Σ∆H only consider the effects of one action, and better plans can generally be
formed by anticipating outcomes further into the future. Therefore I developed the Σ∆H-MDP
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(a) In the left-hand plot the agent is very close to an area of high probability where there is a
vent, but by the right-hand plot it has turned away from that area because it is ‘blocked’ by the
zero-probability cells it has already explored.
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(b) Here in the left-hand plot the agent is very close to an area of raised probability where
there is a vent, but it initially chooses to search east (where there is also raised probability).
In the right-hand plot we can see that the agent searched two or three cells to the east, but had
then exhausted the raised probability cells to the east of its previous location. However it still
continued exploring east, as it was too far from the western area to take it into account.
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(c) In the left-hand plot the agent is very close to an area of high probability where there is a
vent, but by the right-hand plot it has turned away from that area because it is ‘blocked’ by the
zero-probability cells it has already explored.

Figure 5.5: The agent’s path (in white) plotted on top of OG values, showing three examples
of the myopic behaviour of Σ∆H. The agent’s location is shown by a white diamond, and the
(unknown to the agent) vent locations are shown by white circles containing grey crosses.
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algorithm, which attempts to maximise Σ∆H values over a discounted infinite horizon. The
Bellman optimality equation for action-values Q to maximise Σ∆H on each step is given by

Q(b,a) =

(
∑
z

P(z|b,a)Σ∆H(b,a,z)

)
+ γ ∑

z
P(z|b,a)max

a′
Q(b′,a′) (5.11)

where γ is a discount factor, 0 ≤ γ < 1, that weights rewards lower the further into the future
they are. Note that the Σ∆H algorithm is a special case of this where γ = 0. Equation 5.11
cannot be solved iteratively as a set of |B| equations because the belief state b is continuous
and cannot be enumerated. It can be solved by forward search through the belief space, but this
is exponential in the number of steps of lookahead and therefore practical only for very small
lookaheads. Instead we opt to separate the belief space into two components, b = (O,c), the
OG plus the agent’s location, and assume that the OG component is fixed. Given a fixed OG,
Equation 5.11 can be collapsed to

Q(c,a) =

(
∑
z

P(z|b,a)Σ∆H(b,a,z)

)
+ γ max

a′
Q(a,a′) (5.12)

where a′ represents a cell index adjacent to a (i.e. a possible action), and we have used the
starting belief state b to calculate Ez [Σ∆H]. Equation 5.12 can be solved efficiently as a normal,
discrete-state MDP, with the ‘rewards’ Ez [Σ∆H] being calculated for all grid cells a before
running value iteration. The complete algorithm is shown in Algorithm 5.4; note that it is very
similar to the H-MDP algorithm, but uses Ez [Σ∆H] instead of cell entropy as the rewards.

The intuition behind the Σ∆H-MDP algorithm is that we have ignored the effect of obser-
vations on the map when the robot moves to a new location, and instead we use the observation
function when calculating the ‘rewards’ Σ∆H we expect at each location. This allows us to make
decisions based on expected observations far away, under the assumption that the mean OG will
not change much as we travel to that location, without having to search over an information-state
tree with a large branching factor.

Results are shown in Figure 5.6, where experiments were conducted according to the pro-
cedure described in Section 5.2. Figure 5.4 shows that both infotaxis and Σ∆H are far better at
finding vents than chemotaxis or MTL. Σ∆H-MDP improves on Σ∆H, validating our intuition
that Σ∆H would benefit from a longer planning horizon. Further, Σ∆H improves on ΣH, and
Σ∆H-MDP improves on the MDP version of infotaxis (ΣH-MDP) to a statistically significant
extent.
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Algorithm 5.4 The Σ∆H-MDP algorithm in pseudo-code. The procedure
choose-action-sdh-mdp is applied at each timestep to select the action to take.

Procedure choose-action-sdh-mdp(b,ccurr,γ,θ): cell

Set rewards = calculate-sdh(b)

Set values = 0..0

Set oldValues = 0..0

Set δ = 100

While δ > θ

Set δ = 0

For each cell c
values(c) = maxa{rewards(a) + γvalues(a)}

δ = max(δ, |values(c)-oldValues(c)|)
Endfor

Set oldValues = values

Endwhile

Return argmaxc∈adjacent_cell(ccurr) values(c)

Endproc

Procedure calculate-sdh(b): values

For each cell c
For each observation z

calculate P(z|b,c)
Set b′ = SE(b,c,z)
Set EΣ∆H(c) = ∑z P(z|b,c)∑i |Hi(b′)−Hi(b)|

Endfor

Endfor

Return EΣ∆H
Endproc
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Figure 5.6: Results of H-MDP, infotaxis, infotaxis-MDP, Σ∆H, and Σ∆H-MDP. All results are
means of 600 trials – 150 each with 3, 4, 5, and 6 vents. 95% confidence interval bars are also
plotted.

5.7 Results and Discussion

5.7.1 Human Prospecting Results

This section presents results of the 40×40 grid version of the human-controlled vent prospec-
ting experiments described in Section 2.4.2. The 40× 40 experiments had 10 subjects who
performed 38 trials in total, and the distribution of how many subjects completed how many
trials is given in Figure 5.7a. The number of trials performed for each vent-count is given in
Figure 5.7b, and is in line with the Normal distribution the vent-count was sampled from, where
the lack of any trials with seven vents is just a random outcome. Finally, Figure 5.7c shows the
performance of the human subjects in the experiments, where the percent of vents found was
averaged over all of each subject’s trials, and the subjects have been ranked in performance
order. Figure 5.7c also shows the number of trials completed by each subject, and there is a
slight trend for subjects who performed more trials to have higher average scores, but this is at
best a small effect.

While the 40×40 results were useful, the subjects varied considerably in their performance,
and did not carry out enough trials to attach much statistical significance to. Further, using a
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(b) Number of trials performed for each vent-count.
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(c) Performance of the human subjects in terms of the percent of vents found, ordered
from worst-to-best performing subject. Also shown as a dashed line (and corresponding
to the right-hand y-axis) is the number of trials each subject completed, which is only
loosely correlated with their performance.

Figure 5.7: Statistical analysis and performance results from the human-driven vent prospecting
experiments with a 40×40 grid.
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Figure 5.8: Results of MTL, chemotaxis, Σ∆H and Σ∆H-MDP. All results are means of 600
trials – 150 each with 3, 4, 5, and 6 vents. The solid line shows the mean percent of vents found
with 95% confidence interval bars, and the dashed line shows the run-time per timestep.

different experimental environment to the one used to evaluate the novel algorithms developed
in this thesis was in hindsight not a good decision. Therefore I decided to execute 100 trials
myself, after some practise time, using the experimental conditions described in Section 5.2.
The same random seeds used for other experiments were used, which necessitated selecting the
number of vents randomly but keeping track of the next seed to be used for each vent-count.
The alternative, executing all the 3 vent trials followed by all the 4 vent trials and so on, would
have meant the experimenter always knew how many vents to expect, useful information that is
not available to the automated algorithms.

The results from the 20× 20 setup experiments are discussed in Section 5.7.2, and Fi-
gure 5.11 shows the human performance relative to the novel entropy-based algorithms.

5.7.2 Novel Algorithm Results

This chapter has introduced a variety of similar algorithms, and Table 5.1 helps to distinguish
them by whether they are myopic or not, and by how cell values are calculated. Also, Table 5.2
shows the core mathematics underlying each of the algorithms. Results for MTL, Chemotaxis,
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Table 5.2: Summary and core mathematics for all entropy-based algorithms. Here a indexes
over possible actions the agent can take (or equivalently possible cells it can move to), u in-
dexes over cells adjacent to s, and the notation .

= is used to represent equality after iteration to
convergence.
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Figure 5.9: Results of Σ∆H, ΣH and Σ∆H-MDP with only one vent in the search area. Results
are means of 150 trials with the vent located in a random position on each trial.

Σ∆H and Σ∆H-MDP, including the run-time of the algorithms in my test environment, are
shown in Figure 5.8. The figure clearly shows the improvement over conventional techniques
provided by the entropy-based algorithms, and in the case of Σ∆H this benefit comes at very
little computational cost. Σ∆H-MDP is better than Σ∆H by more than five f̄v-points, but it is
also much slower. The big cost in run-time is not solving the MDP, which is fast and only needs
be done once per timestep, but in calculating the Ez [Σ∆H] values. Finding a Ez [Σ∆H] value
requires that the occupancy grid algorithm be run three times, once for each observation, and
this must be done for every cell in the grid. This occupies the vast majority of the processing
time needed to run Σ∆H-MDP, and is a problem also encountered by the ΣH-MDP algorithm
(but not H-MDP).

A further comparison between ΣH, Σ∆H, and Σ∆H-MDP was performed by repeating the
experiments with a single vent in the search area. This is a much less interesting test from the
point of view of the objectives of this thesis, which are to enable multiple vents to be found
efficiently, but it makes the vent-prospecting domain more similar to the domain infotaxis was
developed in. The results are shown in Figure 5.9, and while Σ∆H-MDP is again the most
efficient algorithm, the order of ΣH and Σ∆H is reversed. I hypothesise that this is because
the OG behaves much more like a true probability distribution when there is only one source,
as once a plume has been detected, no plumes from other vents can be found subsequently.
This will prevent the total entropy of the OG from oscillating as much, as ∑c P(mc) will be less
variable than for multiple sources.

Returning to the multiple-vent case, of the three MDP algorithms, Σ∆H-MDP was the best
(at a statistical confidence level of 0.05), and Σ∆H was also the best of the non-MDP entropy-
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inspired algorithms (although not to a statistically significant extent). The reason that Ez [Σ∆H]

is actually a good measure to optimise can be understood better with reference to Figure 5.10,
which compares change in entropy (as used by Σ∆H algorithms) with change in occupancy
probability, for a single cell. Figure 5.10 shows that changes in cell probabilities that frequently
occur with useful observations – detecting a plume or locating a vent – result in higher rewards
using entropy change than using probability change. In general, if a plume is detected, affected
cells will change from low probability (for example the prior of P(mc) = 0.01) to medium
probability of around 0.2-0.5. For these cells, |∆Hc| will give near to the maximum reward,
whereas |∆P(mc)| gives less than half the reward. For changes of P(mc) from around 0.01 to
≤ 0.2, the difference in reward is more pronounced, and more cells will end up in the range of
P(mc)≤ 0.2 than in the higher range following a plume detection. The difference when locating
a vent is also important: if a vent is found in an unexpected location, and P(mc) changes from
nearly zero to one, then |∆P(mc)| gives a maximal reward. So the probability-change reward
is higher for finding a vent where one is not expected than for finding a vent where one is
expected, and while this may encourage exploration, it is unlikely to lead to optimal behaviour
as it fails to take advantage of the OG map. The entropy-change reward by contrast will produce
a maximal reward if a cell with start probability P(mc) = 0.5 is subsequently found to contain a
vent (note that in practise, the OG algorithm almost never assigns cells P(mc)> 0.5 unless they
are known to contain a vent). So in summary, the reward function used by Σ∆H encourages both
exploration (by rewarding plume detections, making it worthwhile to visit unexplored areas) and
exploitation (by rewarding highly when cells that the map indicates are likely to contain vents
are found to actually contain a vent).

Given the preceding discussion, the question can be asked: why not directly reward the
agent for both finding vents and detecting plumes, instead of using an esoteric entropy-inspired
reward function? The idea of direct rewards for finding vents is an obvious one (and is part
of the problem formulation presented in Section 4.3), but this means treating the problem as a
POMDP with the associated tractability problems. However I take this approach in Chapter 6,
and achieve results that are comparable to those presented in this chapter. In fact, the good
performance of the entropy-based algorithms is a validation of the idea of using entropy for
map-based problems with an exploration element, even when the ultimate goal is visiting or
finding items of interest.

To illustrate the value of Σ∆H, additional experiments were performed with an algorithm
that does reward directly for locating a vent or detecting a plume, the obs-reward-MDP algo-
rithm. Like Σ∆H-MDP, obs-reward-MDP assumes the agent could ‘teleport’ to any cell in the
grid, and calculates the expected reward at that cell. It then solves an MDP in these expected
reward values to find the best action. The difference is that instead of using Ez [Σ∆H] as the
cell reward, obs-reward-MDP uses the sum of Rvent×P(z = locatevent) plus η×Rvent×P(z =
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Figure 5.10: Illustration of the per-cell reward using the Σ∆H and Σ∆H-MDP algorithms (Sub-
figure a), as compared to using the change in occupancy probability (Subfigure b). The graphs
show the start probability Ps(mc) and end probability Pe(mc) for a single cell, representing be-
fore and after an action. Subfigure a shows the absolute value of the difference in cell entropy,
and Subfigure b shows the absolute value of the difference in occupancy probability. Note that
both graphs are symmetric about the y = 1− x as well as y = x planes, and differences in the
colours of the peaks of the top graph are just shading effects.
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Figure 5.11: Results of obs-reward-MDP, H-MDP, ΣH-MDP, Σ∆H-MDP and human-driven
vent prospecting. All results are means of 600 trials – 150 each with 3, 4, 5, and 6 vents – with
the exception of human-driven which is the mean of 100 trials, 25 with each vent-count. The
solid line shows the mean percent of vents found with 95% confidence interval bars, and the
dashed line shows the run-time per timestep.

detect plume), where 0 < η < 1 and was set to η = 0.05 in experiments. Figure 5.11 shows
the results for obs-reward-MDP, and it can be seen that all the entropy-based MDP algorithms
outperform it. There are two reasons that rewarding for detecting a plume turns out to be a bad
idea: first it causes the agent to try to follow plume particles down-current, instead of searching
up-current where the vent is likely to be, as the environment model can accurately predict a high
probability of encountering the plume again. The second reason is that it discourages explora-
tion; even with no reward for visiting a cell the agent has already been to, the algorithm tends
to stay around raised probability cells instead of exploring new areas of the map.

Figure 5.11 also shows the results of human-driven vent prospecting using experimental
conditions identical to those described in Section 5.2. While the human managed to find 74%
of the vents compared to 71.9% for Σ∆H-MDP, this is not a statistically significant improvement
for a confidence level of 0.05, due to the relatively small number of trials in the human-driven
results. As mentioned in Section 2.4.2, human performance may be close to optimal, so for the
automated algorithms to be near human performance is actually encouraging.

A key issue with analysing the performance of the algorithms developed in this thesis is that
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it is hard to see where an algorithm has made better or worse action choices simply from ob-
serving the OG and resulting action at each timestep. For example, from examining Figure 5.2,
it is not easy to say where the agent could have improved the path it took. Even for humans
familiar with the interactive simulation described in Section 2.4.2, the ‘strategy’ being pursued
by an algorithm is usually not obvious, and even if it is, it is not clear if a given strategy is
in fact better than some other strategy or not. This problem is known as the credit assign-

ment problem, and it is one of the central challenges of reinforcement learning [Sutton, 1984;
Sutton and Barto, 1998]. This makes it tricky to develop any intuition about why some algo-
rithms do better than others.
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CHAPTER 6

PLANNING USING INFORMATION
LOOKAHEAD

6.1 Previous Work Using MDPs and POMDPs

For problems that can be posed as a POMDP, the POMDP policy provides the optimal way for
an agent to act given the incomplete information it receives, and means the agent will choose
between greedy actions and information-gathering actions so as to maximise its total expected
reward. However, solving POMDPs exactly is intractable for realistic problem sizes, because for
a POMDP with |S | states, the belief-state MDP has |S | continuous variables (see Section 3.2).
This section reviews methods from the literature that avoid having to solve the POMDP exactly.

First, methods for finding an approximate solution to POMDPs are discussed (Section 6.1.1).
These point-based methods use a sample of belief points to build up an approximate solution,
which is guaranteed to have bounded error with respect to the optimal solution. However, point-
based methods are still computationally intensive, and have only been applied to problems with
∼ 105 states. For problems that are larger than that, a second possibility is to try to create a
simplified version of the problem, and solve that (Section 6.1.2). These methods require the
problem to have some structure that can be exploited in order to create a relaxed version of the
problem which has solutions that are also good solutions to the full problem. However, the state
space of the vent prospecting domain has very little structure that can be exploited in this way.
A final option is the online POMDP approach, where instead of trying to calculate a policy that
will be optimal for any belief state, the algorithm tries to find the optimal action for the current
belief state only (Section 6.1.3). With online POMDP solvers, the planning has to be interleaved
with execution, as the agent’s actual belief state will only be known at run-time. This means that
the agent has to have the processing power and time available for on-board planning, whereas
with a pre-calculated policy, the agent can be relatively dumb and still act optimally in response
to new observations.
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6.1.1 Approximate Methods for Solving POMDPs

Methods using point-based updates are currently the most effective way of generating near-
optimal POMDP solutions; that is, the most effective of the methods that produce a value
function with bounded error with respect to the true POMDP value function. Point-based al-
gorithms are much more efficient than exact solution methods such as witness (described in
Section 3.2.2.3), because they only update the value function at a finite set of belief points. The
underlying assumption is that the value function will be fairly smooth in belief space, so belief
points that are near to each other will have similar values.

Given a set of belief points, point-based techniques maintain a solution as a set Vt consisting
of one α-vector (and corresponding optimal action) per belief point. The solution for a one-
timestep-longer horizon, Vt+1, is generated by applying a belief-based update to each belief
point b. This update proceeds in three steps:

1. The best α-vector for every action and observation is found, by applying the transition
function to find the new belief state b′ = SE(b,a,z), and choosing the α-vector that maxi-
mises V (b′) = b′ ·α .

2. The normal Bellman update is run for every action, summing over observations and using
the action-observation α-vectors calculated in step (1). This creates one α-vector per
action.

3. Finally the output vector (and associated action) is the one with the highest value at belief
point b.

This is much more efficient than the update required in exhaustive algorithms such as witness,
and can be computed in polynomial time. Finally, as for exact algorithms, incrementally in-
creasing the horizon t allows the discounted infinite-horizon value function to be approximated
arbitrarily closely.

Specific examples of point-based algorithms include point-based value iteration (PBVI)
[Pineau et al., 2003; 2006], heuristic search value iteration (HSVI) [Smith and Simmons, 2004;
2005], and Perseus [Spaan and Vlassis, 2005]. These algorithms all make use of the belief-
point update outlined above; the key difference between them is in how they select the set of
belief points used. While an exact POMDP value function will define the optimal action for
all possible belief states, the point-based algorithms focus updates on the most important belief
states. All the algorithms use only belief states that are reachable from the initial belief state.
Perseus finds belief points by generating random action/observation trajectories, but instead of
backing up all belief points on each iteration, only backs up randomly chosen belief points until
the value function has improved for all belief points (including the ones that were not explicitly
backed up). PBVI uses a more complex procedure for selecting the belief points to include in the
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solution set, aiming to add new points that will reduce the expected error in the value function
the most. It also alternates between performing value function updates, and expanding the set of
belief points, in order to provide anytime performance. HSVI differs in that it maintains both a
lower and upper bound on the value function, where the lower bound is defined by the set of α-
vectors, and the upper bound is defined by a set of belief points. It expands belief states using a
depth-first search through the action/observation space, continuing until the expected error falls
below a threshold value. The nodes to expand are chosen so as to maximise the upper-bound
value function for actions, and maximise the uncertainty defined by the gap between the upper
and lower bounds for observations.

An interesting recent extension to point-based methods is given by [Ong et al., 2010], who
define the mixed observability Markov decision process (MOMDP), where some of the state
variables are fully observable and some are partially observable. Ong et al. factor out the
observable variables from the unobservable ones, and store MOMDP solutions as one set of
α-vectors for every possible value of the observable variables. The α-vector sets are calculated
in the same way as for most point-based algorithms, but the reduced set size gives a significant
speed improvement for many tasks generally treated as POMDPs. This work is potentially
relevant to the vent prospecting problem, as only the vent map m is partially observable and the
other state variables are observable, but the contribution of m to the total state space size (2C

states) dominates that of the other variables.

While point-based methods have enabled problems with tens of thousands of states to be
solved, the problem of large, continuous state spaces has not been successfully addressed.

6.1.2 Methods for Approximating POMDPs

Early methods for solving POMDPs concentrated on relaxing certain aspects of the POMDP
to create a simpler problem that can be solved exactly. The first step is often to solve the
‘underlying MDP’, which is a problem with the same states, actions, transition function and
rewards as the POMDP, but where the state is assumed to be fully observable. The underlying
MDP can be solved very quickly, for example [Wingate and Seppi, 2005] are able to solve
problems with millions of states in less than a dozen seconds. The MDP solution gives Q(s,a)

values indicating which action is optimal for every state.

An obvious simplification is to maintain a full belief state, but choose the action that is
optimal for the most likely state (the MLS policy in [Cassandra et al., 1996]), in other words
choose

argmax
a

Q(argmax
s

b(s),a)

A slightly more sophisticated variant is the QMDP algorithm [Littman et al., 1995], where the
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Q-values are weighted by the probability of being in each state, so the action chosen is

argmax
a

(
∑
s

b(s)Q(s,a)
)

Note that here the Q(s,a) values can be thought of as |A | α-vectors, one for each action.

Both the MLS and QMDP policies perform very well in environments with limited uncer-
tainty and few states [Cassandra et al., 1996], with MLS often performing better, but neither
approach chooses actions to gain information, so they do not cope well with environments
where the informational effects of actions are important.

Several attempts have been made to alleviate the deficiencies of QMDP by trying to take
account of uncertainty in the belief state. [Apostolikas and Tzafestas, 2004] build on QMDP by
encouraging exploratory actions, and also include a term to keep track of visited states in the
MDP formulation. [Hauskrecht, 2000] presents the fast informed bound (FIB) algorithm, which
represents the value function by a set of |A | α-vectors. These α-vectors are initialised with the
QMDP values, and updated using:

α
a
t+1(s) = R(s,a)+ γ ∑

z
max
αt∈Vt

∑
s′

P(z|s′,a)P(s′|s,a)αt(s′)

This is significantly more computationally demanding than calculating QMDP values, but pro-
duces a closer bound on the exact value function, as it takes some account of the agent’s uncer-
tainty.

Other work attempts to simplify the POMDP by exploiting structure in the problem. [Pou-
part and Boutilier, 2004] manage to solve a problem with 33 million states by mapping the belief
state to a lower-dimensional space, and then using a belief-point update algorithm to produce
a value function. [Sridharan et al., 2008] separate the state space into a two-level hierarchy,
and are able to solve the resulting hierarchical POMDP much more efficiently than the original
POMDP.

6.1.3 Online POMDP Solvers

The methods discussed in Sections 6.1.1 and 6.1.2 are offline: they consist of an offline planning
phase, where a policy specifying an action for every belief state is calculated, and an acting
phase where the agent takes actions, updates its belief state, and uses the policy to select the
next action. An alternative approach is to solve the POMDP online, as described in a survey
paper by [Ross et al., 2008], where planning and acting are interleaved. This work allows much
larger POMDP problems to be addressed.

The fundamental idea behind online POMDP algorithms is to solve the POMDP for only
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the belief state that the agent is currently in. After taking the best action for this belief state,
the agent receives an observation, updates its belief state, and then executes the online POMDP
solver again to find the best action for the new belief state. The methods are closely related
to point-based approaches: the algorithm simulates actions and observations to generate belief
points, starting from the current belief state, and then uses a Bellman update to find the value of
predecessor belief states:

V (b) = max
a

[
ρ(b,a)+ γ ∑

z
P(z|b,a)V (SE(b,a,z))

]
(6.1)

Actions and observations are generated to a fixed depth D, and the long-term values of belief
points at the leaves of the tree are estimated using a heuristic.

Most approaches, for example the real-time belief space search (RTBSS) algorithm of [Pa-
quet et al., 2005; Ross et al., 2008], maintain both a lower and upper bound heuristic. These
bounds are kept for the leaf nodes, and propagated up the tree using Bellman backups. They
enable efficient choices to be made about the best nodes to expand in order to minimise the error
of the estimated value function.

Lower bounds can be found by calculating the value function for a blind policy, where
the agent chooses the same action regardless of what belief state it is in. The upper bound
can be found by solving the underlying MDP to produce QMDP values, or FIB values (see
Section 6.1.2). However, these methods require a state space where the underlying MDP can
be solved efficiently, which is not the case in my vent prospecting domain. In [Paquet et al.,
2005], the authors use RTBSS in a domain with a state space of comparable size to the vent
prospecting problem; however they do not specify the heuristic used for leaf nodes.

6.2 Information Lookahead

The information lookahead (IL) algorithm applies online POMDP techniques (as discussed in
Section 6.1.3) to the vent prospecting domain. Online POMDPs are appropriate for this domain
because the state space is far too large for the full problem to be solved even approximately
(using the methods described in Section 6.1.1), and there is very little structure in the domain
that can be easily exploited in order to reduce the size of the problem. Indeed, using an occu-
pancy grid has already compressed the belief space considerably, from 2C map variables to just
C variables, and any further compression is likely to lose valuable information.

The IL algorithm solves a belief MDP approximately by evaluating the value of actions N

steps into the future, and relying on a heuristic function to estimate the value of actions beyond
that. Once the best action has been found, the agent performs this action, updates its belief state
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Observations, z

Actions, a

Figure 6.1: Calculation of the information-lookahead value of actions. The subscript on belief
state b and actions a indicates the number of steps of lookahead remaining; when there is no
lookahead remaining, the heuristic function Qh(b,a) is used to supply action values. These
values are then propagated backwards by taking the maximum of action values at belief state
nodes, and the weighted sum of observation values at action nodes.

using the observation received, and then calculates N steps of lookahead from this new belief
state. Action values are calculated in a recursive way: for each action, we find the new belief
states we may end up in, and then for each new belief state, find the value of each possible
action. The steps of lookahead remaining, k, is initially set to N and is reduced by one on each
recursive evaluation. When the recursion ends, at k = 0, we use a heuristic function Qh(b,a) to
provide an estimate of the expected long-term value of being in state b and taking action a. IL
calculates Q-values using a slightly modified form of the Bellman equation:

Q(b,a,k) =

ρ(b,a)+ γ ∑z P(z|b,a)maxa′Q(b′,a′,k−1) if k > 0

Qh(b,a) if k = 0
(6.2)

where γ is a discount factor, 0 ≤ γ < 1, ρ(b,a) and P(z|b,a) are the reward and observation
functions defined in Section 4.5, and b′ = SE(b,a,z) is calculated using Jakuba’s OG update
algorithm. Figure 6.1 shows graphically how Q-values are calculated by IL: the calculation
starts with the leaf nodes on the far right of the diagram, using Qh(b,a) estimates. Values
are then propagated to the left by taking the maximum of action values, and the expectation
of observation values, using Equation 6.2. Note that there are only three possible actions and
three possible observations on each step, both relatively few, so sampling trajectories through
the action-observation tree instead of exhaustively enumerating them was not expected to offer
enough performance benefit to outweigh the potential loss of accuracy. The algorithm is given
in full in Algorithm 6.1.

The heuristic function Qh(b,a) should approximate the expected future reward following
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Algorithm 6.1 The IL algorithm in pseudo-code. The procedure
choose-action-info-lookahead is applied at each timestep. The argmax operation
over a is performed over cells { f orward, le f t,right} from cAUV given cprev as the previous cell.
P(z|b,a) is calculated using the formulae given in Section 4.5.4. Also note that for efficiency
reasons the procedure value-approx returns an approximation to the belief state value, rather
than the Q(b,a) action value, so the code differs slightly from the format implied by Equation
6.2.

Procedure choose-action-info-lookahead(b,cprev,cAUV,γ,N): cell

Return argmaxa {q-value(b,cAUV ,γ,N,a)}
Endproc

Procedure q-value(b,ccurr,γ,k,a): qValue

For each observation z
<calculate P(z|b,a)>
Set b′ = SE(b,a,z)
If k = 1

Set futureVal(z) = value-approx(b′,ccurr,γ,a)
Else

Set futureVal(z) = maxa′ {q-value(b′,a,γ,k−1,a′)}
Endif

Endfor

Return ρ(b,a)+ γ ∑z P(z|b,a)·futureVal(z)
Endproc
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on from action nodes at the leaves of the belief state/action tree. If the heuristic provided a
perfect estimate of this future reward, there would be no need to perform N steps of lookahead
– the heuristic itself could just be used. Simulating and evaluating future states is guaranteed
to reduce the error in the estimate of Q-values compared to the true value function [Ross et

al., 2008], but IL is exponential in the number of steps of lookahead. The limited lookahead
makes Q, the value of an action a given a belief state b, also a function of k, the number of
steps left to take – the same belief state may be worth more if the agent can take more steps
following it. As can be seen from Figure 6.1, the algorithm has a branching factor of nine:
for each extra step taken, nine times as many Q-values must be evaluated. For example, with
N = 4 the Qh(b,a) function must be called approximately 6500 times. This places two key
requirements on the heuristic function: it should execute quickly, as it must be called many
times, and it should approximate the true value function closely, so that good values can be
found using small values of N.

A major issue with using online POMDP methods in the vent prospecting domain is that the
underlying MDP is too large to be solved (as outlined in Section 4.8). This meant I had to adopt
alternative approaches for Qh(b,a) heuristics. A simple heuristic is described in Section 6.3
below, and a more advanced heuristic is presented in Section 6.4.

6.3 Basic Heuristic

A basic heuristic is to simply use the reward gained at the agent’s final location as the estimate
of the long-term reward, so Qh is given by

Qh(b,a) = ρ(b,a)

=

P(ma)Rvent if a has not been visited

0 otherwise
(6.3)

This is certain to be an underestimate of the true expected reward, but has some intuitive justi-
fication in that cells with high probability are likely to be surrounded by other cells with high
probability. In the remainder of this thesis, information lookahead with the basic heuristic will
simply be referred to as IL, or ILN where N indicates the number of steps of lookahead. The
heuristic function is shown in Algorithm 6.2, and results for ILN are presented in Section 6.5.

The exponential complexity in N limits the lookahead that can be practically used; most
experiments have been performed with N ≤ 4, and Figure 6.2 shows the run-time for a complete
trial on a 20×20 grid for different values of N. Note that the algorithm is myopic – it takes no
account of OG values more than N +1 steps away from the agent’s starting cell. If the number
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Algorithm 6.2 The approximation function for the basic heuristic, defining the value-approx
function called in Algorithm 6.1. Note a′ is maximised over cells { f orward, le f t,right} from
a given ccurr as the previous cell.

Procedure value-approx(b,ccurr,γ,a): value

Return maxa′ ρ(b,a′)
Endproc
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Figure 6.2: Run-time of the IL algorithm for increasing values of N, the number of steps of
lookahead performed.

of timesteps in a mission (L) was equal to N, then the ILN algorithm would be optimal. As
L� N, the underlying problem can be thought of as infinite horizon, so we are conceptually
approximating an infinite horizon problem with a discounted finite horizon problem.

6.4 CE Heuristic

A more sophisticated heuristic I developed is the certainty equivalent (CE) heuristic, which
finds a value for each cell in the grid by assuming that the agent’s current belief state is the
true state of the world. In other words, it assumes that future observations will not improve
the agent’s estimate of vent locations. This differs from the underlying MDP (commonly used
as a heuristic for online POMDP solvers) because instead of dropping the observation function
from the POMDP, we have dropped the observation function from the belief-MDP. Thus the
reward obtained by visiting each cell will be P(mc)Rvent , instead of 0 or Rvent , as it will be in
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Algorithm 6.3 The approximation function for the CE heuristic, defining the value-approx

function called in Algorithm 6.1. The main body performs value iteration based on standard
dynamic programming, and ε specifies the convergence tolerance.

Procedure value-approx(b,ccurr,γ,cnext): value

Set ε = 0.0001
Set P(mc) = 0 for all c ∈ v
Loop

For c = 1 : C
For a ∈A

Q(c,a) = P(ma)Rvent + γV (a)
Endfor

V (c) = maxa Q(c,a)
Endfor

Until ∆V < ε

Return V (cnext)
Endproc

the underlying MDP. To make the problem tractable, we further drop the list of already-found
vents (v) from the state space. This collapses the problem to an MDP where the state s is just
the cell the agent is in (as the OG is fixed), and this MDP can be solved by value iteration much
faster than the IL version of the problem. For a belief state b0, the value update is given by

V (c) = max
a
{R(b0,a)+ γV (a)} (6.4)

where a maximised over the set of cells adjacent to c. R(b0,a) is given by

R(b0,a) =

Pb0(ma)Rvent if a /∈ v0

0 otherwise
(6.5)

where Pb0(ma) is the occupancy probability of cell a in belief state b0, and v0 is the list of found
vents in b0.

Equation 6.4 is slightly simpler than the standard dynamic programming algorithms, where
the value update is given by V (c) = maxa {R(b0,a)+ γ ∑c′∈1:C P(c′|c,a)V (c′)}, because we
have a deterministic transition function so do not have to sum over future states c′. Also, note
that we are solving the infinite-horizon version of the MDP, so we are assuming that the agent
can take an infinite number of steps and relying on the discount factor γ < 1 to produce finite
Q-values. The CE heuristic is shown in Algorithm 6.3.

CE is not optimal mainly because it takes no account of potential information gain, but also
because it allows the agent to be rewarded multiple times from visiting the same cell. With the
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IL algorithm, visited cells are known to either be empty or contain a vent, so either P(mc) = 0,
or c is added to the list of known vents v for which the re-visitation reward is zero. With the
CE heuristic, the reward function is approximated by P(mc)Rvent for all cells c. Before running
the Qh(b0,a0) function, we set P(mc) = 0 for all vents that have been found either during the
mission to date, or during the current branch of the IL action-observation tree, so the reward will
be correct for all these cells. However, the dynamic programming in Algorithm 6.3 implicitly
assumes that the reward for all cells that are unvisited in b0 can be claimed multiple times. The
underlying issue here is that the true reward function from Section 4.5 is non-Markovian with
respect to the reduced state space consisting of just cAUV .

Fixing this problem is not straightforward; keeping track of the path of the agent does not
result in any extra computational complexity in IL, because paths are explicitly evaluated and
the belief state is updated after each step. However, with the CE heuristic, adding a list of
previously visited cells to the state would increase the state space size by a factor of 2C (as we
would have to be able to represent any of the C cells as having been visited), which would make
the problem intractable. An alternative would be to make the OG itself part of the MDP’s state
space, and set P(mc) to zero for cells when they are visited (in a similar way that v is dropped
from the POMDP state in Section 4.4), but this has an even worse impact on the state space size
as it adds C continuous variables. The consequences of allowing rewards for re-visiting cells
are discussed further in Section 6.5.

A final point about the CE heuristic not keeping track of the agent’s path is that it allows
immediate backtracking, as there is no way of ruling out actions that return to the previous cell.
This is not thought to cause any problems however, because the immediate backtracking action
is only excluded from the action set because it will never be optimal.

The IL algorithm with the CE heuristic is referred to in the remainder of this thesis as IL-CE
or ILN-CE, and results using IL-CE are presented in Section 6.5. IL-CE can be thought of as
the IL analogue of the Σ∆H-MDP algorithm, as both rely on a heuristic value and an MDP
solver; however in Σ∆H-MDP the MDP is solved only once, after the Σ∆H values have been
calculated, whereas in IL-CE the MDP is solved many times (for every leaf node), and the final
action values are calculated afterwards based on the MDP solution.

Given we have a procedure to find CE values for every cell in the grid (Algorithm 6.3), a CE

algorithm that uses these values directly to find the best action can be defined. The CE dynamic
programming provides V (c), so to find the best action we must perform one step of lookahead,
to find

argmax
a
{ρ(b,a)+ γV (a)} (6.6)

where a is maximised over the set of cells adjacent to cAUV . This algorithm is equivalent to IL0-
CE, but is classed as a separate algorithm because, unlike IL, it does not perform any simulation
of future belief states. The algorithm is shown as Algorithm 6.4, and again results are given in
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Algorithm 6.4 The CE value iteration algorithm in pseudo-code. The procedure
choose-action-CE is applied at each timestep, and the value-approx function called is the
one given in Algorithm 6.3. Note a is maximised over cells { f orward, le f t,right} from cAUV
given cprev as the previous cell.

Procedure choose-action-CE(b,cprev,cAUV,γ): cell

Return argmaxa {ρ(b,a)+ γ·value-approx(b,ccurr,γ,a)}
Endproc

Section 6.5.

6.5 Results and Discussion

6.5.1 General

Experiments with IL4-CE, IL1 and IL4 were conducted using the experimental setup described
in Section 5.2, with a discount factor of γ = 0.9 used for both the lookahead and the CE dynamic
programming, and Rvent = 1. Results for these algorithms together with MTL, chemotaxis,
Σ∆H, and Σ∆H-MDP for comparison are shown in Figure 6.3. The most surprising result was
that IL4-CE performs extremely badly, worse than even an exhaustive search (MTL), and takes
over four times as long to run as IL4. IL4 was the best algorithm, outperforming Σ∆H-MDP
(although not at a statistical confidence level of 0.05). While IL4 was over three times slower
than Σ∆H-MDP, even for smaller lookahead values IL was remarkably effective, with IL3 being
statistically equivalent to Σ∆H-MDP but running more than twice as fast, and IL1 finding 97%
as many vents as Σ∆H-MDP but running two orders of magnitude faster.

The effect of increasing lookahead (N) in the IL algorithm is shown in Figure 6.4. Apart
from a dip with IL2, which is well within the margins of experimental error, this shows a
consistent improvement in algorithm performance as N is increased (but at the cost of exponen-
tial increase in run-time).

6.5.2 IL-CE Issue

The CE heuristic actually hurts information lookahead to such an extent that not only is IL-
CE much worse than IL, it is much worse than CE without any lookahead. This surprising
result is due to the fact that the IL-CE algorithm actively avoids visiting very high probability
cells, as shown in Figure 6.5. This behaviour arises because when CE values are computed, a
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Figure 6.3: Results of IL1, IL4, and IL4-CE, with MTL, Chemotaxis, Σ∆H, and Σ∆H-MDP
shown for comparison. The average time in seconds taken to compute each timestep is shown
as a dashed line (against the right-hand y-axis). All results are means of 600 trials – 150 each
with 3,4,5, and 6 vents. 95% confidence interval bars are also plotted. Note that the MTL result
was calculated analytically, so has zero-height confidence bars, and that the lines connecting
data points are purely to aid visualisation.
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Figure 6.4: Results of IL0 to IL4, showing the effect of the number of steps of lookahead. The
average time in seconds taken to compute each timestep is shown as a dashed line (against the
right-hand y-axis). All results are means of 600 trials – 150 each with 3,4,5, and 6 vents. 95%
confidence interval bars are also plotted.

reward is given when a state is revisited multiple times, as described in Section 6.4. Therefore
high-probability cells can acquire values significantly higher than Rvent , which is set to one,
because the CE value function defines a policy where the agent simply moves back-and-forth
between the high-probability cell and one of its neighbours (see Figure 6.5 for example CE
values). If the agent plans to visit such a high-probability cell during its N steps of lookahead,
the maximum reward it can receive for that cell is Rvent = 1, and re-visiting the cell will have no
reward. So instead it avoids high probability states, thinking it can get more value for visiting
them later, during the CE phase of planning. It is similar to a person always saving a tasty treat
for tomorrow, and therefore never actually eating it. Chapter 7 shows how the problem with
revisiting states can be prevented by using an orienteering problem formulation.

6.5.3 Human-directed CPT Results

Figure 6.6 compares results for IL4 with results from the human-controlled simulation expe-
riments described in Section 2.4.2, for both the standard experimental conditions described in
Section 5.2, and the 40×40 grid setup described in Section 2.4.2.

The average results over all numbers of vents were that with the 40× 40 setup IL4 found
81% of the vents and the humans found 76%, whereas with the 20× 20 setup humans did
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gure b.

Figure 6.5: Illustration of the reward problem with the IL-CE algorithm, showing a trial where
the vent-avoiding behaviour is particularly obvious. In Subfigures a and b, the colour of each
cell indicates its occupancy probability P(mc), the white arrow near the bottom of the grid
represents the direction of the current, and the other symbols are as shown in the legend to the
left of Subfigure a. For Subfigure c, cell colours indicate their MDP values. In Subfigure a,
the agent has already avoided a vent near the top-right corner of the grid, and is very close to
a second vent. But by the end of the mission, shown in Subfigure b, it has failed to visit the
second vent, despite repeated visits to many of the surrounding cells. Subfigure c shows the CE
cell values corresponding to the OG in Subfigure b, demonstrating that the agent will get more
reward for the vent cell if it delays visiting it until the CE phase, after the N steps of lookahead.
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(b) Results of the 40× 40 grid experiments, showing percent of vents
found against number of vents for both IL4 and human-driven vent-
prospecting. Note for 7 vents there were no human trials, and only
one IL4 trial, which is why the confidence bar has zero height for that
datapoint.

Figure 6.6: Results from the human-controlled vent prospecting experiments, compared with
results for the IL4 algorithm (using an identical setup). Subfigure a shows results using a 20×20
grid, with 150 trials for each vent-count for the IL4 algorithm and 25 trials for each vent-count
for the (single) human subject. Subfigure b shows results with a 40× 40 grid, where the data
were calculated from 38 human trials and 29 IL4 trials. In all cases the agent’s starting position
was fixed and the vent locations selected randomly, and in all cases except IL4 on the 20×20
grid the number of vents was chosen randomly. 95% confidence interval bars are also plotted.
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better, finding 74% of the vents compared to 73% for IL4. This reversal hopefully indicates
a lack of bias in the 20× 20 experiments, as they were executed solely by the author, whose
novel algorithms would have looked better had he performed badly in the human-controlled
simulation. The 40× 40 experiments were conducted by members of the Intelligent Robotics
Lab, and the trials executed by the author were deliberately excluded from the 40×40 results.
Note that far more 20× 20 trials were completed than 40× 40 (100 human trials and 600 IL4
trials, compared to 38 human trials and 29 IL4 trials for the 40× 40 setup), which means we
cannot have the same confidence in the 40×40 results.

The results show that the 40× 40 problem was actually easier than the 20× 20 problem,
as both IL4 and humans found a higher percentage of vents using the 40× 40 setup. This is
thought to be mostly because the mean vent density was much lower in the 40×40 setup, being
5 vents over 1600 cells (0.3125%) compared to 4.5 vents over 400 cells (1.125%). A further
reason was that the 560 timesteps allowed a slightly higher proportion of the grid to be covered
in the 40× 40 setup, 35% as opposed to 33.25%. This may also explain why performance
decreases sharply as the number of vents increases using the 20× 20 conditions (as shown in
Figure 6.6a), but for the 40×40 setup the percent of vents found is almost constant as number
of vents increases (Figure 6.6b). Both setups suggest humans do better when there are fewer
vents, especially when there are just 3 vents, and the advantages of IL4 show up more when the
vent density is higher.
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CHAPTER 7

USING ORIENTEERING METHODS AS A
CORRECTION

This chapter explains how an orienteering problem (a form of the travelling salesman problem)
solver is used to address the multiple rewards issue with the IL-CE algorithm. The correction is
also applied to the Σ∆H algorithm, with better results than obtained for the IL algorithm.

7.1 IL-CE Issue and OP Solution

In Chapter 6, we saw that the IL algorithm performs worse with the certainty equivalent heuristic
than with a basic myopic heuristic. The problem is that the MDP formulation allows the agent
to gain reward from re-visiting cells, which leads to MDP values for some cells becoming much
larger than the maximum one-step reward. When this happens, the optimal plan for the IL
lookahead (which was performed for four steps) is to avoid these high-reward cells, so that they
can be visited repeatedly once the agent enters the MDP phase. The resultant behaviour is that
the agent never visits high-value cells because it re-plans on every step, always planning to visit
these high value cells in four steps time.

The obvious way to avoid this problem would be to encode a list of visited cells in the state
space of the MDP presented in Section 6.4, so the revised state would consist of the agent’s
current cell (C possible values) plus a boolean vector indicating, for every cell, whether it has
been previously visited or not (2C possible values). Then the MDP transition function would not
only change the agent’s current cell, but also mark the previous cell as visited. The true reward
function would be Markovian with respect to this expanded state, re-visiting a cell would have
zero reward, and the problem would be avoided. However, adding the list of visited cells would
increase the state space size from C to C ·2C possible states, meaning ∼ 10123 states given our
experimental settings. While algorithms such as LAO* [Hansen and Zilberstein, 2001] and
RTDP [Barto et al., 1995] are able to solve very large MDPs, 10123 states is some way from
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being possible. Further, such algorithms rely on a heuristic to estimate the distance to the goal.
As we define a reward for every cell in the grid, there are no obvious heuristics to estimate how
close a given path through the grid is to the globally optimal path.

An alternative way of solving the re-rewarding problem is to use forward search over the
action space of the problem, i.e. Equation 6.4 can be solved recursively, provided we keep track
of visited cells during the recursion. Computationally this is a much less demanding problem
than forward search in the action-belief space (the IL algorithm), because the occupancy grid
does not have to be updated on each step (plus the branching factor is lower as only actions,
which are deterministic, need be considered).

This revised problem is in fact identical to the orienteering problem (OP) [Tsiligirides, 1984;
Golden et al., 1987], a variant of the travelling salesman problem where cities are assigned a
score. The agent’s aim is to choose a subset of cities to visit together with a path between these
cities so as to maximise the total score, while respecting an upper limit on the distance it can
travel. In our OG setting, each cell represents a city, and the distance between all connected
cities is the same (as cities are only connected to adjacent cities one grid cell north, east, south
and west). The mission duration sets a limit on the number of steps that we wish to maximise
our score over.

7.2 Previous Work on the Orienteering Problem and Self-
Avoiding Walks

This section describes previous work on firstly the OP, and secondly the self-avoiding walk

(SAW). SAWs are interesting because when solving an OP in a grid setting such as found in
my domain, it is useful to generate a path that does not cross itself. The development of my OP
algorithm is explained more fully in Section 7.3 below.

The OP is derived from the travelling salesman problem (TSP) first discussed in Section 4.8,
which is a classic example of an NP-complete problem [Garey and Johnson, 1979]. In the
standard TSP, the aim is to find the shortest possible circuit that visits all of the cities in a set,
where the pair-wise distances between all cities are supplied. The prize-collecting travelling

salesman problem (PCTSP, [Balas, 1989]) is a variant where each city has a reward associated
with it, but not all cities need to be visited. Skipping a city incurs a penalty however, and the
objective is to minimise the sum of distance travelled plus penalties, while collecting at least
a minimum amount of reward. Finally, the OP has rewards for cities visited, but no penalties
for missing cities, and the path does not have to end at the start point. The objective is to gain
the maximum amount of reward possible, given an upper limit on the total distance that can be
travelled. [Feillet et al., 2005] present a review of prize-collecting variations of the TSP and the

120



algorithms that have been applied to these problems.

Solving the OP exactly is still NP-hard [Golden et al., 1987], so previous work has focused
on approximate methods. [Tsiligirides, 1984] presents several early algorithms for the OP, as
well as a canonical set of problems that have been used for evaluating other OP algorithms.
The input for the OP is a list of rewards or scores S( j) for each city j, and a list of pairwise
distances between cities, C(i, j) being the distance between i and j. The cities are assumed to be
fully connected to each other, and the distances in C are just straight-line distances, so C can be
specified by giving the Cartesian coordinates of all cities. The first of Tsiligirides’ algorithms is
the deterministic algorithm, where paths are generated within the arc of a circle that is gradually
expanded, and the second is a Monte-Carlo algorithm, which proves to be the better of the two.
The Monte-Carlo approach samples a set of 3000 randomly-generated paths, and was found to
produce near-optimal results. The path is built up incrementally by assigning a ‘desirability’
A( j) to potential nodes j to visit following node LAST :

A( j) =
{

S( j)
C(LAST, j)

}4

(7.1)

A shortlist of four potential next nodes j is created, and j is selected with probability

P( j) =
A( j)

∑
4
q=1 A(q)

(7.2)

Better solutions can be found by taking the output from either the Monte-Carlo or determi-
nistic algorithms and using them to seed a route improvement stage. To improve a route, firstly
swaps are attempted between a pair of nodes on the route. Then if one of these swaps results in
decreased total distance travelled, attempts are made to add a new node into the route.

Many of the TSP algorithms found in the literature also rely on route improvement by swap-
ping two cities, the so-called 2-opt heuristic [Lin, 1965]. As the OP does not have to include
every city in the path, OP solutions also often include heuristics that swap cities on the path
with ‘unused’ cities [Golden et al., 1987; Chao et al., 1996]. Golden et al. present a typical al-
gorithm, where an initial path is generated by adding nodes greedily, then a route improvement
step is performed, which first applies 2-opt heuristics, and next attempts to add new nodes to
the route. The final stage of the algorithm is a step where the centre-of-gravity g of the nodes is
found by weighting their coordinates according to their score, and then a new path is created by
adding nodes greedily in order of their weighted distance from g, S( j)/C(g, j). This is repeated un-
til the route ceases to change between iterations. Chao et al. also present a multi-step approach
that starts with a greedy initial path, but improve on the results of Golden et al. by maintaining a
set of paths that cover all the nodes, and using a carefully-selected series of improvement steps
that swap nodes between or within paths.
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An approximation algorithm for the OP with a guarantee of obtaining reward within a
constant factor of the optimal reward is presented by [Blum et al., 2007]. If the optimal re-
ward is Π∗, they guarantee a reward of Π∗/α, where their implementation has α = 4. The Blum
et al. approach relies on an algorithm by [Chaudhuri et al., 2003] for finding a minimum cost
tree containing nodes s and t, which is used to find a constant factor approximation to the
MIN-EXCESS-PATH problem. The MIN-EXCESS-PATH is the path from s to t that gains at
least reward k and has the minimum ‘excess’ distance over the shortest path from s to t. The
MIN-EXCESS-PATH is found by splitting a path into segments of two types: those that can be
solved optimally by incrementally adding further away nodes, and those that can be approxima-
ted using the Chaudhuri et al. algorithm. Given this MIN-EXCESS-PATH procedure, the OP is
solved by first guessing the optimal reward k. Then the MIN-EXCESS-PATH collecting k from
the start node to every other node is found, and at least one of these paths will satisfy the maxi-
mum distance requirement of the OP. This process is then repeated with a new guess of k, using
a binary search, until the best solution is found. This is a very interesting approach, but relies
on a reward function that can be discretised to return integers, and also involves considerable
computational overhead for a fairly loose approximation guarantee.

My approach to solving the OP is based on Tsiligirides’ Monte-Carlo algorithm, which re-
quires the generation of a self-avoiding walk [Madras and Slade, 1996; Hayes, 1998] through
the grid cells (see Section 7.4 for details of the implementation). A SAW is a path connecting
vertices on a regular (hyper-)cubic lattice in D-dimensions, such that vertices are only connected
to their nearest neighbours, and the same vertex is never visited twice. SAWs have been exten-
sively studied by the chemical physics and mathematics communities because they provide an
extremely good model of linear polymer molecules, and are used to investigate statistical pro-
perties of such molecules, which can have chain lengths of up to 105. However, generating a
SAW is itself a complex problem, with many algorithms being exponential in the length of the
walk [Sokal, 1995].

Monte-Carlo methods are commonly used for generating SAWs, and some of the key Monte-
Carlo algorithms (as described in [Sokal, 1995]) are outlined next. Monte-Carlo SAW algo-
rithms can be either static, which produce statistically independent sample paths, or dynamic,
which create a series of correlated paths using a Markov process. The most basic static method
is simple sampling, where samples are created one node at a time with uniform probability of
choosing any of the neighbouring nodes at each step, and then all samples that cross themselves
are discarded. The problem with this is that the number of crossing samples grows exponen-
tially with path length, approximately according to e0.42NOP in two dimensions, where NOP is the
path length. An improvement is r-step stride sampling, where all possible SAWs of length r are
used as building blocks for longer paths. Generally r is ≤ 10, and this algorithm is much more
efficient but still exponential in NOP. Dimerisation is a divide-and-conquer approach where
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an NOP-step SAW is generated by creating two (NOP/2)-step SAWs and concatenating them. If
the result is a SAW, it is accepted, and otherwise the process is begun again. The (NOP/2)-step
SAWs are similarly split into two, until a small NOP value is reached and a more basic method
is used. This algorithm is almost polynomial in NOP. Finally, dynamic methods can be polyno-
mial in NOP; for example the pivot algorithm generates a sequence of SAWs by either reflecting
or rotating the section of a path following a randomly-chosen pivot point. If the new path is
self-avoiding it is accepted, and otherwise a different pivot point is chosen.

7.3 IL-OP Algorithm

This section describes the IL-OP algorithm, which replaces the CE heuristic in IL-CE with an
OP solver. As with IL-CE, the OP heuristic assumes that the OG given by the belief state b0

at the leaf node is fixed and will not change in the future. The instance of the OP is defined as
follows:

• The maximum length of the path is NOP.

• Each cell in the OG defines a city, with reward P(mc)Rvent where P(mc) is given by the
OG in b0, or reward zero if v(c) = true in b0. As in Section 6.4, this reward model
assumes that the agent will receive no further observations after the current timestep, so it
must act on the basis that the occupancy probabilities in b0 represent the true probabilities
of finding vents in the corresponding cells.

• Each city is connected only to the four cities to the north, east, south and west of it. The
distance between all pairs of connected cities is one unit.

• The start cell is fixed, and the first cell in the path cannot be the cell the agent occupied in
the previous timestep.

• The path may terminate at any cell.

Thus the IL-OP algorithm is to perform information lookahead in the action-observation space
for N steps, and then solve an NOP-step OP for every leaf node, using the belief state from that
node as input. The framework for the IL-OP algorithm is still Algorithm 6.1, but the procedure
value-approx implements an OP solver, as discussed later in this section. Applying the OP
heuristic in place of the CE MDP should solve the IL-CE problem whereby it avoids high-
value cells, as now re-visiting cells has no value in either the lookahead phase or the leaf-node
heuristic phase of planning. The OP solution is basically solving an NOP-horizon MDP instead
of the infinite-horizon MDP solved for the CE solution.

123



Ideally, if there are Lrem steps remaining in the mission, the OP should be solved for NOP =

Lrem−N steps; for example, at the start of a 133-step mission with IL performed for N = 4 steps,
we should solve a 129-step OP. However, our OP implementation is exponential in the number
of steps, which limits the OP path length we can use despite the fact that OP is much faster than
IL. Given that there is a branching factor of nine for the action-observation lookahead (three
non-backtracking actions and three observations), for four steps of IL lookahead the OP must
be solved about 6500 times on every timestep of the simulation. Section 7.6 discusses results
of the ILN-OPNOP algorithm for N ∈ {2,4} and NOP ∈ {2,4,6,8,10,12,14}.

7.4 OP Implementation

We now consider the implementation of the OP solver. The key feature of our OP problem as
compared to those in the literature is that we do not have full connectivity of the graph, that
is we do not have all nodes connected to all other nodes. This means many of the heuristic
methods used for solving OPs (as summarised in Section 7.2) cannot be applied, as they rely
on the ability to replace an arbitrary city in the candidate path with some other arbitrary city.
Instead we use a Monte-Carlo (MC) approach similar to [Tsiligirides, 1984], in which a set of
sample paths is generated, and the best path is chosen from these samples. However even with
this approach the limited connectivity of the graph causes problems, as we must prevent the path
from crossing itself, so that we avoid counting the same cell twice in the path value. Note that
the optimal path will always be a self-avoiding walk, because for any path that does cross itself,
there is a non-crossing path visiting the same cells plus one extra cell that must be higher-value
than the crossing path. We generate SAWs by incrementally adding randomly-chosen actions to
the path, provided at least one of the possible actions is not already part of the path, or starting
again if the path has reached a ‘dead end’.

Overall this Monte-Carlo algorithm is very similar to Tsiligirides’ algorithm, but differs in
several ways: firstly we can consider all possible next nodes, as there will be at most three
candidates. Secondly, if there are no candidate nodes (the path end-point is surrounded by cells
it has already visited), we abandon that path and start with a new one. In fact this inversely

restricted sampling method introduces a bias compared to simple sampling [Sokal, 1995], but
this does not matter for our purposes as we do not rely on any statistical properties of the sample
of paths generated. Inversely restricted sampling is much more efficient than simple sampling
methods, but is still exponential in the walk length NOP. The next difference to Tsiligirides’
method is that we weight each node evenly, rather than according to a desirability criterion as
in Equation 7.2. This is because for large NOP (greater than about 45), most of the computation
time for the OP solver is spent generating paths that have to be discarded. Figure 7.1 shows the
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Figure 7.1: Run-time and number of discarded paths versus path length NOP for the Monte-
Carlo OP algorithm. The dashed line (corresponding to the right-hand y-axis) is the number
of paths that cross themselves and therefore had to be skipped when generating exactly 3000
valid paths. Note that the run-time is nearly linear in NOP for small NOP values, but the number
of discarded paths increases exponentially with NOP, and starts becoming significant around
NOP = 30. This means the Monte-Carlo algorithm as a whole is exponential in NOP, although
the gradient is still relatively shallow at NOP = 50. Each data-point making up the lines is the
mean of 24 trials, each with a different rewards grid.

run-time of the MC algorithm for increasing path length, together with the number of paths that
have to be discarded to generate 3000 valid paths. For small NOP, the run-time looks almost
linear, but as NOP increases far more crossing paths are generated, and the exponential nature
of the algorithm begins to show. Therefore we expect that weighting some actions more than
others will result in significantly increased run-time, as paths will vary less and be more likely
to become ‘trapped’, so any benefit in choosing better paths will be outweighed by the longer
running times. Finally we note that, in line with the IL and CE algorithms, we apply a discount
factor γ so that the nth step in the SAW is discounted by γ(n−1).

To confirm that the Monte-Carlo algorithm produces acceptable approximations to the true
optimal path value, I implemented an exhaustive enumeration procedure that finds the optimal
path. Figure 7.2a shows the rewards for the two OP solvers plotted against path length up to
values of NOP = 18, and for path lengths up to NOP ≈ 9 the MC procedure produces results
that are indistinguishable from optimal. Figure 7.2b plots the reward found by the Monte-Carlo
algorithm as a percentage of the optimal reward, for MC algorithm variants where 1500, 3000
and 6000 sample paths are generated. The graph indicates that, after a threshold NOP value,
the Monte-Carlo reward starts to tail off fairly linearly as NOP increases, and sampling more
paths alters the threshold but does not significantly change the gradient of decline. Finally,
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Algorithm 7.1 The IL-OP10 heuristic in pseudo-code. The OP solver tries to maximise the
total discounted P(mc)Rvent value of a path of length 10 steps (for clarity, the discounting by a
factor of γ on each step is not shown in the pseudo-code). Here L is the total mission length
(133 timesteps in experiments), and t is the current timestep.

Procedure value-approx(b,ccurr,γ,cnext): value

For each cell c

If (c has been visited)

Set rewards(c) = 0

Else

Set rewards(c) = P(mc)Rvent
Endif

Endfor

Set NOP = max(1,min(10,L− t))
If NOP > 8

Set path = solve-op-monte-carlo(ccurr,cnext,rewards,NOP)

Else

Set path = solve-op-optimal(ccurr,cnext,rewards,NOP)

Endif

Return ∑c∈pathrewards(c)
Endproc

Figure 7.2c shows the run-times of the two algorithms against NOP, and demonstrates clearly
why an approximate solver is needed. However, for very short walks (NOP 6 8), the exhaustive
enumeration method is actually faster than the Monte-Carlo method, so the optimal procedure
was used for walks of these lengths. For 9≤NOP 6 14, the MC method with 1500 path samples
was used, and for NOP ≥ 15 MC with 3000 path samples was used.

The leaf-node heuristic for the IL-OP algorithm is shown in Algorithm 7.1 (where the parent
function is given by Algorithm 6.1), and the two OP solvers (Monte-Carlo and optimal) are
shown in Algorithm 7.2.

As was the case for the CE heuristic, we can also use the OP heuristic by itself to create the
OP algorithm, where no information lookahead is performed. This pure-OP algorithm simply
selects the path that maximises ∑c∈path P(mc)Rvent , where P(mc) is defined to be zero for all
previously-visited cells, and is presented as Algorithm 7.3. Results for this OPNOP algorithm,
as well as for ILN-OPNOP, are presented in Section 7.6.
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Figure 7.2: Performance of the Monte-Carlo and optimal (exhaustive search) OP algorithms.
All figures are the mean of 24 trials, each with a different reward grid, where each reward grid
consists of Ez [Σ∆H] values calculated from a different OG. Note the run-times are only plotted
up to NOP = 13 because the times for larger NOP values with the optimal algorithm would make
the y-scale too big to see the Monte-Carlo run-times (for example, the mean run-time with
NOP = 15 is 83s, and with NOP = 18 it is 24 minutes).
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Algorithm 7.2 The Monte-Carlo and optimal OP solvers in pseudo-code. The OP solver
tries to maximise the total discounted V values on a path of num-steps steps (for cla-
rity, the discounting by a factor of γ on each step is not shown in the pseudo-code). Note
that solve-op-optimal is implemented here using a recursive subprocedure, but the ac-
tual code uses a loop, which makes it harder to understand but considerably faster. Also in
solve-op-optimal, a iterates over cells { f orward, le f t,right} from curr given prev as the
previous cell.

Procedure solve-op-monte-carlo(prev,curr,V,num-steps): array

Set bestValue = -1

Set bestPath = []

Loop 3000 times

Set trial = {randomly-generated SAW of length num-steps

starting at a cell adjacent to curr but 6= prev }

If ∑c∈trial V (c) > bestValue

Set bestValue = ∑c∈trial V (c)
Set bestPath = trial

Endif

Endloop

Return bestPath

Endproc

Procedure solve-op-optimal(prev,curr,V,num-steps): array

Set bestValue = -1

Set bestPath = []

Set path = []

For a ∈A
eval-action(curr,a,V,num-steps)

Endfor

Return bestPath

Procedure eval-action(prev,curr,V,num-steps)

If num-steps = 0

If ∑t∈pathV (t) > bestValue

Set bestValue = ∑t∈pathV (t)
Set bestPath = path

Endif

Else

Set path(num-steps) = curr

For a ∈A
eval-action(curr,a,V,(num-steps - 1))

Endfor

Endif

Endproc

Endproc

128



Algorithm 7.3 The pure-OP algorithm in pseudo-code. The procedure choose-action-OP is
applied at each timestep, and the value-approx function called is the one given in Algorithm
7.1. Note a is maximised over cells { f orward, le f t,right} from cAUV given cprev as the previous
cell.

Procedure choose-action-OP(b,cprev,cAUV,γ): cell

Return argmaxa {ρ(b,a)+ γ·value-approx(b,ccurr,γ,a)}
Endproc

7.5 Σ∆H-OP Algorithm

The Σ∆H-MDP described in Section 5.6 does not suffer from the same performance problems
that IL-CE does, but instead outperforms the myopic Σ∆H algorithm it is based on. However,
the MDP formulation does make the same implicit assumption: that repeated observations from
the same cell have the same value as the first observation. In reality this is not the case, as
the same plumes will be detectable from any given location. We find that (for areas of the
OG unaffected by plume detections) previously-visited cells have Ez [Σ∆H] values about half
of those of unvisited cells, a discrepancy which is exaggerated in MDP value functions, as re-
visiting a cell with slightly higher reward than surrounding cells will lead to it having a much
higher value. This led me to postulate that a better assumption is that repeated observations
have zero value.

To achieve this, the OP solver described in Section 7.4 is used to create a variant of the
Σ∆H-MDP algorithm: instead of solving an MDP in Ez [Σ∆H] values, we solve an NOP-step OP
where the reward for each step is the Ez [Σ∆H] value of that cell (where Σ∆H(b,a,z) is given
by Equation 5.10). As the OP solver is exponential in the path length NOP, experiments have
only been performed with NOP = 30 at most, whereas the agent has 133 steps available at the
start of the mission. However the effect of truncating the OP path length is small given that, as
in Equation 5.12, we use a discount factor of γ = 0.9. Pseudo-code for the Σ∆H-OP algorithm
is given in Algorithm 7.4.

Note that the limited path length the OP is solved for also means that for Σ∆H-OPNOP, the
algorithm is independent of grid size for all grids larger than 2NOP×2NOP cells (as Σ∆H values
further than NOP steps from the agent do not have to be calculated).

7.6 Results and Discussion

Figure 7.3 shows comparative results for Σ∆H-OP10 and OP35 using the same experimental
conditions described in Section 5.2. It is clear that Σ∆H-OP10 is an improvement on Σ∆H-
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Algorithm 7.4 The Σ∆H-OP algorithm in pseudo-code. The procedure
choose-action-sdh-op is applied at each timestep to select the action to take. The
OP part of the algorithm tries to maximise the total discounted Σ∆H value of a path of length N
steps (for clarity, the discounting by a factor of γ on each step is not shown in the pseudo-code).

Procedure choose-action-sdh-op(b,cprev,cAUV,γ,N): cell

For each cell s

If (s has been visited)

Set EΣ∆H(s) = 0

Else

For each observation z

calculate P(z|b,s)
Set b′ = srog(b,s,z)

Endfor

Set EΣ∆H(s) = ∑z P(z|b,s)∑c |Hc(b′)−Hc(b)|
Endif

Endfor

Set NOP = max(1,min(N,L− t))
If NOP > 8

Set path = solve-op-monte-carlo(cprev,cAUV,EΣ∆H,NOP)

Else

Set path = solve-op-optimal(cprev,cAUV,EΣ∆H,NOP)

Endif

Return path(1)

Endproc
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Figure 7.3: Results for the Σ∆H-OP10 algorithm compared to human-driven search, OP35,
IL4, Infotaxis and the other belief-change-maximisation algorithms. The solid line is the mean
percentage of vents found, and the dashed line is the run-time per timestep. All results are
means of 600 trials – 150 each with 3,4,5, and 6 vents – except the human result, which is the
mean of 100 trials. 95% confidence bars are also plotted.

MDP for only a small increase in run-time, with the results being better at a significance level
of 0.05 in a one-tailed test. Σ∆H-OP10 is also better than the previous best algorithm, IL4
(although not by a statistically significant margin), and runs much faster.

The variation in performance of Σ∆H-OP with path length NOP is shown in Figure 7.4.
Figure 7.4a shows NOP values from 4 to 30, where the exact OP solver was used for NOP ≤ 8
and the Monte-Carlo solver used for NOP of 10 and above. This graph clearly shows that for
NOP > 10 the performance of the algorithm actually gets worse, and the switch to the Monte-
Carlo algorithm is an obvious explanation for this, as Figure 7.2b shows that the quality of
solutions produced by the MC solver will decline steadily with increasing NOP (for NOP > 8).
However, if that is the explanation then the NOP = 10 result (which is better than NOP = 8 despite
using the MC algorithm) would have to be considered a statistical fluctuation. Figure 7.4b shows
Σ∆H-OP performance using only the optimal OP solver, for NOP values between 4 and 12 (the
run-time of the optimal algorithm meant experiments with NOP > 12 were not practical). While
all the f̄v values shown in Figure 7.4b (including for Σ∆H-MDP) are statistically equivalent,
the graph does suggest that there is a peak in algorithm performance, after which vent-finding
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performance decreases with increasing path length. One hypothesis for this phenomenon is that
large NOP values bias the algorithm towards exploitation of high-probability cells near the agent,
rather than encouraging exploration of further away locations that may lead to discovering new
vents.

Results for applying the OP correction to IL are promising, but less clear-cut than for the
Σ∆H case, as Figure 7.5 shows. For IL2 (two steps of information lookahead), adding an OP
correction invariably improved the performance, with a steady increase from NOP = 2 to NOP =

8. The sharp drop from IL2-OP8 to IL2-OP10 again suggests that the suboptimal OP solutions
provided by the MC solver, which is used for NOP≥ 10, are damaging vent finding performance.
The lack of any trend in performance between IL2-OP10 and IL2-OP14 could also be explained
by the deterioration of MC results with increasing NOP, as shown in Figure 7.2b, or simply by
statistical fluctuations.

With four steps of IL, adding an OP6 correction actually results in worse performance, but
early results indicate this is reversed for IL4-OP10, as shown in Figure 7.5b (where some of
the IL2 results are also included for comparison). Given that each trial for IL4-OP10 required
approximately 41 hours of CPU time, only 340 instead of 600 trials were performed, so less
confidence can be attached to the IL4-OP10 results.

I hypothesise that the OP correction interacts in a complex manner with the exploration /
exploitation trade-off inherent in the IL algorithm. Note that IL would be optimal if it could
be run with a large enough lookahead, whereas the OP correction is greedy – it will try to
visit all cells in the vicinity of a vent with P(mc) even slightly higher than the prior, instead of
choosing to abandon that area and search for more vents. My intuition is that having a larger OP
correction partly cancels out the drive to perform exploratory actions in IL, causing the agent to
spend too much time near vents it has already visited.

Figure 7.6 shows the effect of increasing the OP path for the pure-OP algorithm. This shows
that a simple gradient-ascent algorithm (OP1) is far from optimal in this environment, but also
that lengthening the OP path does not consistently improve performance.
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(a) Effects of the OP correction on IL2, with increasing NOP shown along the
x-axis.
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(b) Effects of the OP correction on IL4, with the best and worst IL2-OP results
shown for comparison. Note the 95% confidence intervals are larger for IL4-
OP10 because they are over 340 trials rather than 600 for all other algorithms,
due to computational constraints (the run-time scale is in minutes).

Figure 7.5: Effects of the OP correction for IL2 and IL4, with algorithm run-time per timestep
shown as a dashed red line (against the right-hand y-axis).
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Figure 7.6: Performance of the pure-OP algorithm against NOP (note the x-axis is not to scale
in terms of path length NOP). Algorithm run-time per timestep is shown as a dashed red line
(against the right-hand y-axis).
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CHAPTER 8

DISCUSSION AND CONCLUSION

In this chapter, first I review the performance of all algorithms and cover some general issues
with them (Section 8.1). Next Section 8.2 seeks to evaluate the contributions of this thesis. I
cover the improvement on conventional vent prospecting methods promised by my novel al-
gorithms, and the ways in which the model is simplified from the true domain. Section 8.3
describes possible future work on this topic, and finally, Section 8.4 summarises this thesis and
its contributions.

8.1 Discussion

8.1.1 Algorithm Comparisons

The performance of all algorithms is shown in Figure 8.1, where only the best-performing
variant of parameterised algorithms is plotted, for example only IL2-OP8 from the IL-OP class
of algorithms. Table 8.1 lists the performance of a slightly larger set of algorithms, and also
gives the complexity class for each algorithm, whether or not the algorithm is myopic, and the
standard deviation in the f̄v result. Algorithms are classed as myopic in Table 8.1 if they only
examine the grid four cells or fewer away from the agent’s location, ‘partly myopic’ if they
look more than nine steps away but not as far as the edges of the search area, and non-myopic
if they examine all cells in the search area. An evaluation of the novel algorithms against
the comparison algorithms is given in Section 8.2; here I discuss some aspects of the novel
algorithms.

First, Σ∆H-OP, IL2-OP8, and IL4 were the best performing algorithms overall, and with
performance that was statistically equivalent. This was unexpected because Σ∆H rewards for
the ‘wrong’ thing (information gain), as opposed to IL, which rewards for the same measure
algorithms are evaluated on (visiting vents). Further, the OP correction assumes zero reward for
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Figure 8.1: Results of the best algorithm of each class, in terms of the percent of vents found
(blue line and left-hand axis) and the run-time (dashed red line and right-hand axis). 95% confi-
dence intervals for the percent found are also shown. Note that the human-driven confidence
intervals are larger than the other algorithms because only 100 as opposed to 600 trials were
completed, and the confidence interval for the MTL result has zero height because this result
was found analytically rather than experimentally.
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Table 8.1: Results of all novel algorithms presented in this thesis. The first column gives the
algorithm name, and the reference of the Algorithm listing defining it, or failing that the section
that it is described in. The second column indicates if the algorithm is myopic, where myopic
means it only looks at the map within a few steps of the agent when planning. The third column
gives the computational complexity order of the algorithm (ignoring constants), where C is the
number of cells in the OG, and the λ parameter for OP (which must be less than one) was found
experimentally to be λ = 0.034 for the Monte-Carlo algorithm. The final two columns give the
mean percent of vents found (over 600 trials) and the standard deviation (σ ) in this value.

Algorithm (and reference) Myopic? Complexity f̄v, % vents found Std. Dev
MTL (Sec 2.4) N/A 1 33.25 N/A

Chemotaxis (Sec 2.4) yes 1 50.15 20.82
Human driven (Sec 2.4) N/A N/A 74.02 21.59

H-MDP (5.1) no C 67.19 19.38
ΣH (Infotaxis) (5.2) yes C 66.22 21.54

Σ∆H (5.3) yes C 66.72 19.58
ΣH-MDP no C2 68.43 19.98

Σ∆H-MDP (5.4) no C2 71.88 19.34
IL0 (greedy) (6.2) yes 1 61.50 22.03

IL1 (6.2) yes 9C 69.51 19.81
IL4 (6.2) yes 94C 72.45 18.68

IL4-CE (6.3) no 94 ·2C 30.47 20.19
CE (6.4) no C 66.37 19.13

Obs-Reward-MDP (Sec 5.7) no C2 64.80 19.89
IL2-OP8 (7.1) partly 92(C+ e8λ ) 72.61 19.25

IL2-OP14 (7.1) partly 92(C+ e14λ ) 70.92 19.07
IL4-OP6 (7.1) partly 94(C+ e6λ ) 71.42 18.63

OP10 (7.3) partly e10λ 70.20 19.23
OP35 (7.3) no e35λ 70.30 20.18

Σ∆H-OP10 (7.4) partly C2 + e10λ † 73.70 19.35

† Note that for C > (2NOP)
2, the Σ∆H-OP algorithm is actually linear in C, and scales with

(2NOP)
2C+ eNOPλ .
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re-visiting cells, which is accurate when used as a correction for IL, but not for Σ∆H as useful
observations can still be made by re-visiting a cell.

While Σ∆H-OP, IL2-OP8, and IL4 were the best algorithms in terms of finding vents, the
run-time and scalability of the algorithms is also important. The main contributor to the run-
time of my novel algorithms is running the OG update, which is approximately linear in C, the
number of cells in the grid. The time taken to solve an MDP is linear in C, but is negligible for
algorithms where only one MDP is solved per timestep. However, the time for the OP solver to
run is relevant, and this scales with eλNOP where λ was experimentally determined to be 0.034.
The IL algorithms are exponential in the number of steps of lookahead, N, and as the branching
factor in the state-observation space is nine, they scale approximately with 9NC (because a new
occupancy grid must be calculated at every leaf node). Calculating a Σ∆H value for a specific
cell is linear in C, as it requires three OG updates (one for each observation), but as the Σ∆H-
MDP and Σ∆H-OP algorithms require Σ∆H values to be found for all C cells, they scale with
C2 (plus the OP contribution in the case of Σ∆H-OP).

As shown in Figure 8.1, IL-CE was not only the worst performing algorithm, it was also by
far the slowest, taking over three times as long as IL4. While Table 8.1 shows that IL-CE has the
same complexity class as IL, O(9NC), the constant factor is much greater in the case of IL-CE
as it must solve 9N MDPs instead of simply looking up 9N values in an array. IL-OP scales
slightly worse than IL, but for the relatively small grid size experiments were performed on, it
was generally faster than IL with a slight performance improvement (although this was only the
case for IL2-OP, and not IL4-OP). Similarly, Σ∆H-MDP performed worse than Σ∆H-OP8 and
had almost identical run-time, so given that Σ∆H-OP will scale better, it is considered to be the
superior algorithm. In the middle of the performance range was a group of algorithms which
all have O(C) complexity, including Σ∆H, ΣH, CE, H-MDP and IL1, and these offer a good
compromise between run-time and vent-finding effectiveness.

Of the O(C) algorithms, IL1 was the best, and this demonstrates that IL can be effective
even for small lookahead values. I believe this to be because when the agent gets a plume
detection, the OG algorithm increases the occupancy probability of cells in a cone starting from
the agent’s location and extending up-current (as shown in Figure 5.1). Therefore this cone
provides a ‘probability gradient’ that leads to the vent. This does not mean that a simple gradient
ascent algorithm would do well in this domain – in fact IL0 is a gradient ascent algorithm and
it performs significantly worse than any other novel approach (with the exception of IL-CE).
Further, IL4 improves on IL1 by three f̄v points, and Figure 8.1 clearly shows that the myopic
algorithms are all found on the left-hand-side of the graph with low f̄v numbers.

IL compares well with the more heuristic approaches such as Σ∆H-OP in this domain
partly because the action/observation tree (as shown in Figure 4.2) has a branching factor of
only nine for each timestep, three possible actions and three possible observations. Most pro-
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blems have many more actions and observations, which makes information-lookahead methods
less attractive, for example [Ross et al., 2008] find in a domain with 128 actions that exhaus-
tive information-lookahead performs worse than several different methods using heuristic sub-
sampling. In fact, having a small branching factor makes IL more similar to the point-based
methods discussed in Section 6.1.1, as sampling belief states has less advantage over exhaus-
tive enumeration. IL is still conceptually quite different from point-based methods, because it
finds exact small-horizon values rather than an approximate general value function. For the vent
prospecting problem, while Σ∆H-OP outperforms IL4 (although not to a statistically significant
extent) and runs considerably faster, it is worth noting that IL has a slight advantage in terms
of computational complexity so could scale better, because while IL is linear in OG size, Σ∆H-
OP is only linear for small values of NOP and is polynomial in C otherwise. The final point in
favour of IL is that its performance degrades slowly as N is decreased, but its run-time drops
exponentially.

8.1.2 Practitioners’ Guide

This section aims to provide some guidance on which of the novel algorithms presented in this
thesis would be the best to use for a given practical application. I assume that the objective
will be to maximise the number of vents found; given this, the characteristics of the application
that determine what algorithm will be most suitable are the size of the grid, and the compute
time and computational resources available for running the planner. It is possible that the beha-
viour produced by certain algorithms will be better suited to some types of domain, but without
concrete details of the domain and further experimental study, it is impossible to draw any
conclusions about differences in algorithm behaviours.

The choice of grid cell size (together with the speed of the AUV, which is not considered
to be a free parameter) will determine how long the AUV takes to traverse a grid cell, which
equates to one timestep in the model. Section 4.4.2 suggests real-world values for the search
area size and cell size, producing a grid with C = 40000 and a simulation timestep of 5 s.
Figure 8.1 shows that most algorithms complete a timestep within 5 s, but that is for a grid
with C = 400 and using a relatively fast processor. Even then, algorithms such as OP4 have
relatively high performance but are (almost) completely independent of the grid size, so would
be practical for grids with 40000 cells. If the search area size is assumed to be fixed, to enable
any of the algorithms that perform better than OP4 to be used, the number of grid cells would
have to be reduced. This is doubly beneficial, because as well as the reducing C, the bigger cells
will mean the timestep will be longer.

Figure 8.2 shows a selection of potentially appropriate algorithms, when run-time as well
as vent-finding performance is taken into account. Some of the novel algorithms are in fact
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Figure 8.2: Results for algorithms suggested for practical use, in terms of the percent of vents
found (blue line and left-hand axis) and the run-time (dashed red line and right-hand axis). 95%
confidence intervals for the percent found are also shown.

completely dominated by others, because they not only perform worse, but have worse compu-
tational complexity too. In Figure 8.2, the Σ∆H and IL1 (and therefore the CE algorithm too)
are dominated by OP4, which not only runs very quickly in the test environment, but also has
O(1) complexity in grid size. The ΣH (infotaxis) and IL0 (greedy) algorithms perform even
worse than CE, and have no computational advantage over OP4. Finally, Σ∆H-MDP is comple-
tely dominated by the Σ∆H-OP algorithm (for NOP ∈ {4,6,8,10}), as Σ∆H-OP performs better,
runs faster in the experimental environment used, and has the same complexity in C.

The remaining algorithms that are worth considering are:

• OP, especially with relatively small values of NOP, for cases where computation time is
very limited. Figure 7.6 shows that the performance of OP is relatively constant for NOP

values between 4 and 19.

• IL is never the best choice for any value of N in Figure 8.2 – there is always another
algorithm that is better and faster – but it does have two advantages. First, it scales better
with grid size than Σ∆H-OP, and IL4 at least has comparable performance to Σ∆H-OP.
Second, it performs well with small values for the lookahead, N, which means it is a more
dependable choice of algorithm. As shown in Section 7.6, the performance of IL-OP (and
Σ∆H-OP) can actually get worse as the lookahead is increased, so the choice of NOP for
these algorithms is critical.
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• IL2-OP is likely to be the best algorithm for grids significantly larger than the C = 400
grid used in experiments in this thesis. This is because it performs consistently well for
2≤ NOP ≤ 8 (even though IL2-OP8 is the best variant, statistically IL2-OP6 is equivalent
to Σ∆H-OP10), and it has better computational complexity than Σ∆H-OP. Compared to
IL, it scales essentially the same with grid size, but performs better for shorter run-times.

• Σ∆H-OP is the best algorithm to use with grid sizes of around 400 cells, provided the
run-time of approximately 3 s per timestep is acceptable. Figure 8.2 shows that Σ∆H-
OP10 and Σ∆H-OP6 both have superior performance to any other algorithm, and have
run-times much better than the two next best algorithms.

Other aspects of deploying the methods presented in this thesis on a real vehicle are considered
in Section 8.3.5.

8.1.3 Model Issues

This section covers two aspects of the model presented in Chapter 4: first that the current plays
a critical role in the performance of algorithms, and second that the need for a deterministic
vent detector is not completely clear.

The current is the only clue used by the occupancy grid algorithm to assign probability to
vent locations (given a plume detection), so the movement of the agent with respect to the cur-
rent direction is very important for how easily it can find vents. For example, if the agent moves
down-current, it will be sampling some of the same volume of water it has already sampled
(depending on the relative velocities of the agent and current), so will not be gaining much
information. Also, choosing to start the agent at the most down-current part of the grid may
well favour certain algorithms over others, as the agent is starting in the best possible location
to gather information about the search area given the (generally north-east) current direction.
Early experiments comparing up-current starting location with down-current starting locations
indicated that the myopic algorithms (for example chemotaxis and IL1) performed considera-
bly worse when the agent started up-current compared to starting down-current. Experiments
varying the agent’s starting location were not pursued however, for the following reasons:

• Finding the explanation for algorithms performing differently given different current-
relative starting locations is extremely hard (as discussed in Section 5.7).

• It was thought that a more fair comparison between algorithms could be made by fixing
the start position and randomising the vent locations, as opposed to defining a small set
of configurations of vents and start position. This should avoid cases where a particular
algorithm happens to choose a path that encounters a vent from biasing the performance
results.
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• In the real world, the search area can simply be defined to be up-current from wherever
the AUV is when it reaches its target depth, as the aim would be to assist the agent in
finding vents as much as possible.

The deterministic vent detector was introduced in Section 4.3.4 in order that the agent knows
if it has found a vent and therefore whether it will receive a reward. However, for most of the
planning algorithms, it does not make any difference whether or not the agent knows when it
finds a vent, and the vent detector is an extension of Jakuba’s observation model that would be
tricky to implement on a real vehicle (although an idea is given in Section 4.7.3). Further, the
extra observation z = l invalidates some of the assumptions underlying Jakuba’s OG algorithm,
which depends on a binary observation model.

The vent detector was introduced to help prevent the agent from gaining reward by re-
visiting high probability cells; but in fact this functionality was implemented by simply making
the reward for re-visiting any cell zero. If the vent detector was removed from the model, the
only impact it would have on planning is that the calculation of P(z|b,a) would be less accurate,
because visited vents would have P(mc) values less than one (often only in the region of 0.5).
For the IL algorithms, planning would be otherwise unchanged, as all visited cells have zero
reward; similarly for the entropy-based algorithms, we could implicitly assume there was still
a vent detector, and set the entropy of all visited cells to zero (as the entropy of cells with
P(mc) = 1 or P(mc) = 0 is zero). One potential benefit of assuming a vent detector is that it
would be possible to extend the model to include actions that the agent should take when it
discovers a vent, such as photographing the area or collecting water samples.

8.1.4 Mapping Issues

This section covers some drawbacks and problems with the OG mapping algorithm used in this
thesis. The first issue is one of numeric precision when updating occupancy grid probabilities,
as is pointed out in [Jakuba, 2007] §2.4.1. The problem is that evaluating Equation 3.7 requires
calculating a product over cells of the form ∏c

(
1−Pd

c P(mc)
)
, and as for most cells Pd

c � 1
and P(mc)� 1, a loss of significant digits is unavoidable.

The problem was first noticed due to a discrepancy between the probability of a cell being
occupied before running the OG algorithm and the sum of the weighted probabilities under each
observation after running the OG algorithm. The following equality was found not to hold:

P(mc|O) = ∑
z

P(z)P(mc|z,O) (8.1)

where mc represents cell c being occupied, O is the occupancy grid, and z is a possible ob-
servation. Equation 8.1 should hold by the basic laws of probability, and applying the OG
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update equations by hand for a very small (2×2) grid indicated that it will hold under the OG
update mathematics, meaning the problem was a floating-point precision one. I attempted to
find a workaround for this problem without success1, but as the errors were of the order of
double-precision floating point accuracy for O(1) calculations, approximately 10−14, the effect
on action choice should be very small and only manifest due to cumulative errors (if at all).

One property of the occupancy grid approach that makes it a less than ideal partner to some
of the entropy-based techniques developed in Chapters 5 and 7 is that an occupancy grid O is
not a probability distribution; that is, ∑c P(mc) 6= 1. This means that increasing the probability
of some cells containing a vent does not automatically reduce the probability for other cells.
While we can sum the entropy of grid cells to get the joint entropy of the cell variables (see
Section 5.4), this is only a proxy for the entropy of the map, and so plume detections can result
in an increase in summed entropy. This is the reason Σ∆H had to be introduced using the
modulus of the entropy change, instead of the much more theoretically desirable reduction in
entropy.

Another key drawback of OGs is that they cannot express a multi-modal distribution over
vent locations, which would allow more informed planning decisions to be made. For example,
the data may indicate either one vent relatively close, or else two vents further away, but this
exclusive-or choice cannot be represented by an OG map.

Finally, there are some characteristics of Jakuba’s OG algorithm that mean it does not pro-
duce the best possible maps for vent prospecting. As the updates are calculated recursively,
it cannot revise the probability of cells when a new observation accounts for previous obser-
vations. The exact OG algorithm developed in [Jakuba, 2007] is capable of this ‘explaining
away’: when a vent is found, it revises the probability of nearby cells downwards on the basis
that the vent was likely responsible for any prior plume detections that caused those cells to
have higher probability. Unfortunately, the optimal algorithm is exponential in the number of
plume detections, which makes it impractical for use in realistic conditions. A related aspect is
that sometimes the algorithm gets a plume detection, but then the agent travels away from the
vent and no further detections are received. In these circumstances the OG values for the area
surrounding the vent drop back to nearly the prior, whereas to a human it is obvious that there
must be a vent somewhere, as otherwise the agent could not have detected a plume. The last
characteristic of the algorithm is that it throws away all information on the magnitude of hydro-
thermal tracers when it encounters a plume, as it requires the observations to be converted into
a binary detection or non-detection of a plume. While tracer concentration is not proportional
to vent distance, it still incorporates useful information about the possible source locations, and
it should be possible to develop better maps by taking this information into account.

1Workarounds tried included taking logs and using MATLAB’s log1p function, and using the vpa arbitrary-
precision toolbox from The Mathworks. The vpa package did reduce the error slightly, but at the cost of two orders
of magnitude greater computation time.
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8.2 Evaluation

8.2.1 Evaluation Using Metrics

The primary aim in developing the novel algorithms presented in Chapters 5, 6, and 7 was to
outperform conventional vent prospecting approaches (as outlined in Section 2.4) in terms of
number of vents found during a finite-duration AUV mission. In this aim and judged against
the criterion of percent of vents found ( f̄v), the novel algorithms have been very successful,
as shown by Figure 8.1. The jointly-best-performing algorithms, Σ∆H-OP and IL4, were able
to find more than twice as many vents as an exhaustive search (MTL), and almost 50% more
than the reactive comparison algorithm chemotaxis. Even a greedy method that made use of the
OG (IL0) generated f̄v results more than 10 points better than chemotaxis, and the other novel
algorithms were at least an improvement of 15 f̄v points on chemotaxis (apart from IL-CE, for
the reasons discussed in Section 6.5). Having the agent controlled by a human produced better
f̄v results than Σ∆H-OP, but not at a statistically significant level; in any case, as discussed
in Section 2.4.2, human performance on problems similar to this is often close to optimal, so
achieving 98% of the human f̄v value is a positive result. Further, AUVs are useful especially
because they do not have a human operator, which enables them to go to less accessible places,
further from the mother ship, and without direct supervision, so it is not necessary to match
human performance on the problem for autonomous control algorithms to be very valuable to
the AUV community.

However there are some drawbacks to using f̄v as the criterion for algorithm comparison,
starting with the fact that the percent of vents found is not equivalent to the total discounted
reward Rt received by the agent. This is because f̄v does not take discounting into account,
whereas Rt (given by Equation 3.11) weights vents found early in the mission higher than vents
found later on. Rt was considered as an evaluation measure, but experimental results showed
that with the rapid discounting used (γ = 0.9), total return was completely dominated by how
quickly the first vent was found. This differed significantly from the overall aim of finding as
many vents as possible, making Rt inappropriate for an evaluation measure. However using f̄v

may penalise reward-based algorithms such as IL because they are optimising for a different
quantity to the one they are being judged on.

Another aspect of the evaluation measure is that a reward is only given for visiting the same
cell that a vent occupies. Jakuba’s algorithm can often locate vents accurately without actually
visiting the cells they occupy [Jakuba, 2007; Jakuba and Yoerger, 2008], given a sensible survey
path, where ‘locate’ implies that very high probability cells correspond to vent locations, and
all vent locations are covered by high probability cells. In fact, for some grid cell sizes, visiting
a cell containing a vent may be dangerous for the vehicle given the very high-temperature fluid

146



emanating from vents.

Instead of evaluation by deploying the algorithm on a vehicle (which was outside the scope
of this work, but the tasks involved are considered in Section 8.3.5), an alternative would be
to use oceanographic data from research cruises and AUV deployments as input to the AUV
algorithms. I was given access to an extensive repository of such data (courtesy of Dr Bramley
Murton of the National Oceanography Centre, Southampton), and investigated this approach. It
was found to be not feasible because every decision the algorithm makes will change the path of
the AUV, and AUV data will only be available for the exact path taken by the AUV. Data from
towed platforms and CTD casts allows a picture of a wider area to be built up, but the resolution
of this data means that some model must be created to allow interpolation between data points.
At this stage a better approach would be to adopt a more accurate theoretical model of currents
and hydrothermal tracer propagation, as discussed in Section 8.3.1.

One of the challenges with this work is that there is no obvious way to compute the optimal
behaviour, even for relatively small occupancy grids. Given this, the f̄v metric and the compa-
rison algorithms chosen provide a reasonable picture of the utility of my novel algorithms.

8.2.2 Wider Impact

For scientists interested in hydrothermal vents, and AUV operators in general, it is hoped that
the advances presented in this thesis will be of practical use. As well as developing several
computationally-intensive algorithms that are very effective in finding vents in a search area, I
have presented myopic variants that attain most of the performance of the slower algorithms in
a fraction of the time. For example, the IL1 algorithm finds approximately 95% as many vents
as Σ∆H-OP in slightly less than 1% of the planning time, meaning that for most likely compu-
tational limitations imposed by the AUV hardware, an appropriate and effective algorithm can
be used.

The algorithms developed are likely to be effective in other similar fields, and in particular
where the goal is to find multiple chemical sources in a turbulent flow environment. Such
domains are common in the military (mine detection), oil industry (oil prospecting and finding
leaks in pipelines), and search-and-rescue fields (finding people trapped in collapsed buildings
or mine shafts). Existing algorithms for these domains generally only reason about a single
chemical source, whereas in the real world it is usually possible for there to be multiple sources
in close proximity.

While the focus of this work has been on the chemical plume tracing problem, the com-
parison of entropy-based (heuristic) algorithms against information-lookahead approaches may
be interesting in other domains. I have shown that while entropy may be optimising for the
wrong thing (assuming a domain where locating and visiting targets is the goal), it is at least as
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effective and as fast as truncated search in the belief space. However it cannot be predicted if
my conclusions will apply to other domains without significant experimental work, which was
beyond the scope of this thesis with its focus on the oceanographic domain.

In fact the novel algorithms presented in Chapters 5, 6, and 7 do not have any explicit
dependence on the vent-prospecting domain. The Σ∆H-based algorithms are implicitly tailored
to the domain, because they use a change-in-entropy heuristic that makes sense in domains with
low priors, but the IL algorithm has no implicit or explicit dependencies. This can be seen as a
limitation of the work presented here, in that an obvious approach faced with a computationally
intractable POMDP is to leverage properties of the domain to gain tractability; but given that
the aim of this research was always to maximise vent-hunting performance, it is likely that the
algorithms and parameters that have proved effective are only effective due to the nature of the
map generated by the occupancy grid updates.

Finally, as noted in Section 1.4, the work in this thesis has resulted in three conference
publications and a technical report.

8.2.3 Limitations of the Model

This section describes some limitations of the model of the problem that was used in this thesis
(where many aspects of this model were dictated by the decision to use Jakuba’s OG algorithm).
These limitations do not invalidate any of the results presented, but may mean they do not
transfer directly to the real AUV domain.

First, several continuous and partially-observable variables in the state space have been ap-
proximated as being discrete and completely known to the agent. Specifically, a small set of
discrete, deterministic actions is assumed; the AUV location is assumed to be known exactly;
the underwater environment is considered as 2D; and the vehicle and vents are assumed to only
occupy spatial coordinates defined by a relatively coarse grid. For implementation on a real
vehicle, most of these could be overcome by relying on macro-actions and waypoint-based na-
vigation (as noted in Section 4.7), but it is vital that the AUV knows its own location accurately
in order to build correct maps. Addressing this localisation issue would be a key aspect of
deploying the system on a real vehicle, and Section 8.3.5 notes some of the ways localisation
accuracy can be maintained on AUVs. However, localisation could still be a problem when
using low-cost AUVs. A final variable that has been only superficially modelled is the energy
constraints of the vehicle, and this is important for real missions as a low battery would make it
imperative to end the mission and return to the surface rather than risk losing the AUV.

Second, the value of all algorithms developed depends on the environment model used being
a reasonable model of hydrothermal plumes – otherwise the algorithms may be completely
ineffective when faced with the dynamics of a real plume. This is both because algorithms have
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only been validated using a simulation based on this model, and because the mapping algorithm
relies on this model to infer vent locations from plume detections, so errors in the model will
cause it to place high likelihood of vents being found in places other than their true locations.

Third, the OG algorithm will produce the most accurate vent maps if the current is relatively
constant on the timescale of the AUV mission. If the current reverses during a mission, plumes
may be detected due to a vent actually located down-current from the vehicle. Although the
agent stores the history of the current to allow this to be accounted for, a rapidly fluctuating
current direction will mean the potential source locations given a plume detection will cover
a much larger area. Ocean currents are known to change due to periodic processes as well as
less well understood random processes [German et al., 2008; Berdeal et al., 2006], and an even
worse outcome from the point of view of the OG algorithm is for there to be no current, as then
it has no way of remotely predicting the location of a vent.

Finally, the OG is not an exact representation of vent locations given the observation history,
because the cell independence assumption central to Jakuba’s algorithm is only approximately
valid. This means the reward function used in the IL algorithms is biased, as it is not based on
a completely accurate Bayesian estimate of the belief state. The effect of this is hard to predict,
but it could introduce a systematic error in the reward-based planning algorithms. This issue
also affects the entropy-based algorithms, because summing cell entropies to find the entropy of
the full map is only valid if the cell occupancy probabilities are truly independent, which they
are not.

8.2.4 Choice of Mapping Algorithm

Jakuba’s OG algorithm is well suited to mapping an area containing an initially unknown num-
ber of hydrothermal vents, and provided a good foundation for the work in this thesis, which
was one of the first applications of AI planning methods to vent prospecting. However, given
the requirements of planning the path of an agent as well as creating a map, it has transpired
that the OG approach has several shortcomings. Section 8.1.4 describes several key issues: OG
maps cannot represent a multi-modal distribution over locations, their recursive nature means
they cannot use the current observation to explain previous observations, and they do not behave
as a probability distribution. The last point makes them inherently ill-matched with the use of
entropy to drive exploration: much less meaning can be attributed to changes in entropy when
the total probability mass of the map is not fixed.

An issue not covered in Section 8.1.4 is the state space defined by an OG map, which causes
problems for decision-theoretic planning algorithms. This is chiefly because the state space
of an OG map is larger than for many other possible mapping methods, but also because the
OG has a large number of variables (C real-valued variables), which makes it hard to compress
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or summarise the state in any way. Section 8.3.2 discusses potential future directions for the
mapping algorithm.

8.3 Future Work

8.3.1 Environment/Simulation

Improvements in the fidelity of the environment model are desirable for two reasons: to have a
better idea of how algorithms will perform in the real world, and to improve the performance of
the planning algorithms by making their predictions of future states closer to the true states.

The environment model implemented for this work could be enhanced by firstly extending
it to three dimensions. While the model described in Jakuba’s thesis is three-dimensional, the
implementation requires significant modifications to work in three-dimensions.

The model also assumes a simple Gaussian dispersion of plume particles. Higher fidelity
models are available, for example [Speer and Rona, 1989; McDougall, 1990], that would pro-
bably improve the real-world performance of the planning systems documented in this thesis.
As well as improving the plume propagation model, the simulation environment could be made
more similar to expected real-world conditions by including a current composed of different
components that vary with different periodicities. A further enhancement could be to include
random elements in the current to represent flows dictated by the specific topology of mid-
ocean ridges. The characteristics of deep ocean currents are discussed in [Berdeal et al., 2006;
German et al., 2008].

Lastly, Jakuba’s model is a general one that does not consider the different characteristics
of the various biogeochemical tracers that can be detected. Some tracers are conservative and
have long residency times in the water column, whereas others can only be detected very close
to the source vent.

The other aspect of the simulation environment is that it does not model stochastic action
outcomes or resource (specifically battery power) depletion, and these could be included. Simi-
larly, the environment used in experiments divides the search area into a 20×20 grid, which is
smaller than ideal for real-world deployment. Using a larger grid would promote the develop-
ment of fast, effective algorithms that are more likely to perform well on a real AUV. Of course,
changes to the action and resource model and (possibly) environment size would necessitate
alterations to the planning algorithms to cope with these.
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8.3.2 Mapping

The current mapping algorithm assumes all grid cells are independent, and enforces a binary
detection model, neither of which is ideal as noted previously in this chapter. While my planning
algorithms should be agnostic about improvements to the mapping algorithm, a better map may
make a more significant performance improvement than better planning.

Most non–occupancy-grid mapping methods would require the belief state to be factored by
the number of vents in the search area: there would be a distribution over how many vents there
are, and then for each vent-count there would be a separate distribution over the location(s) of
the vents. This would complicate planning, in that there would be N separate maps if we allow
between one and N vents, but this could be addressed in a variety of ways. For example, the
planner could simply plan on the basis of the map corresponding to the most likely number of
vents, or the best action for each vent-count could be found and these actions weighted by the
likelihood of the corresponding vent-count.

Specific mapping techniques that are worthy of investigation are factored particle filters
[Doucet et al., 2000; Montemerlo et al., 2003], where each particle would encode the locations
of all vents in the area, and Gaussian process [Rasmussen and Williams, 2006] maps.

Finally, it may be possible to create better maps (in combination with OGs or some other
mapping method) by making use of bathymetry data, which are relief maps of the ocean floor
generated using sonar, either ship-based or on-board the AUV. Hydrothermal vents often form
large chimneys, which can show up on bathymetry data, and even in the absence of chimneys
experts can predict areas that are likely to contain vents from the topography. If bathymetry
data could be interpreted and merged into maps created from plume detections, the quality of
map is likely to be superior, but this is a hard problem. An easier way to approach it could be to
use data from previous surveys – either ship-based or using a submersible platform – to set the
prior occupancy probabilities for the AUV’s the OG map.

8.3.3 Extensions to the Current Planning Approach

There are several immediate avenues to explore for improving performance within the current
framework of planners that I have developed, and this section describes some of these. Consi-
dering the IL algorithm first, the key to near-optimal performance is having a good leaf-node
heuristic function. In Section 6.5, we saw that the CE heuristic had characteristics that made it
perform worse than the myopic ‘basic’ heuristic, which was the occupancy probability of the
leaf cell in the lookahead tree. So an obvious approach to improving performance is to develop
a better non-myopic heuristic to approximate the expected long-term value of leaf nodes. One
idea for such a heuristic would be to define a small region in the OG surrounding the leaf-node
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cell, and either sum the probabilities of all these cells, or of the top X highest-probability cells.
This sum would indicate the overall value of the area around the cell at the end of the lookahead
path, but as the lookahead is only for N ≤ 4 steps, the leaf cells from different paths will be close
to each other and the sum will include many of the same cells. As the optimal policy will avoid
less high-value cells anyway, the summed-region heuristic may not differentiate well between
different paths. It is also still a local heuristic, and until the last 20 timesteps in a mission of
133 timesteps, the agent is still capable of reaching any point in the grid, so the difference in
true expected reward between heading in one direction or another may not show up. Further
evidence that finding a good leaf-node heuristic is not a trivial problem comes from the IL-OP
results presented in Section 7.6: OP is likely to be one of the better (and more computationally
expensive) heuristics for this domain, as it solves the relaxed problem exactly, and yet IL4-OP
does not provide a clear performance advantage over IL4. Finally, developing a new heuristic
without a bound in performance with respect to the optimal value is unlikely to be of general
scientific interest beyond the specific domain under consideration.

A minor enhancement that could be made to the IL implementation is to re-use the calcu-
lations of new belief states between timesteps. When performing information lookahead, the
action-observation tree (as shown in Figure 4.2) is expanded down to N levels. When the agent
then selects an action and receives an observation, it is following a specific path one level down
that tree, and so child belief states down to N−1 levels could be re-used. However, this means
only one-ninth of the action-observation tree can be re-used, so the speed improvement is likely
to be less than 10% which is not very significant for an exponential algorithm.

An interesting algorithm to try out would be the CE-only algorithm, but with a small pro-
bability of taking a random, exploratory action instead of the optimal action from the MDP
solution. This approach is unlikely to outperform IL4 or Σ∆H-OP, but may shed some light on
the importance of exploratory actions in this domain.

Moving on to the OP correction, it is worth noting that the OP solver implemented is expo-
nential in the path length NOP, and more efficient algorithms exist. While an OP algorithm that
scales much better with NOP is very desirable, a significant constraint is that we need the algo-
rithm to run very quickly. For example, the current code takes a lengthy 2.5 hours to execute an
IL4-OP6 trial, but to achieve even this performance the OP solver has to run in less than 0.01
seconds (due to the large number of belief states generated by looking ahead four steps). More
sophisticated OP algorithms are given in [Blum et al., 2007], but given these performance re-
quirements, a better approach may be an improved algorithm for self-avoiding walks that could
be used with the existing Monte-Carlo OP implementation, such as the dimerisation algorithm.
Alternatively, it may be possible to leverage the limited-connectivity manhatten nature of our
OP graph to create novel heuristics that can be used to incrementally improve an initial OP
solution.
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While it would be useful to have a faster OP implementation, its main purpose would be
to enable larger NOP values to be used, and the results given in Chapter 7 do not conclusively
support the idea that increasing NOP invariably leads to better-quality plans.

An idea for a new algorithm is to combine the IL and Σ∆H algorithms by using Σ∆H values
as the leaf-node heuristic, creating an IL-Σ∆H algorithm. It would be very interesting to find
the effectiveness of this algorithm, and the only drawback with it would be that calculating Σ∆H

values is relatively costly, so the number of steps of IL that are practical may be small.

An interesting extension to the work presented in this thesis would be to investigate why the
Σ∆H calculation is so effective for this domain, given that Σ∆H is really a heuristic (because

∑c |∆Hc| is not the true joint entropy of the OG cells). On the mapping side, Jakuba’s OG
algorithm performs very poorly when the OG priors are set to Pp

c = 0.5. It would be useful to
find out if there is any reason for this (other than 0.5 being a poor estimate of the true priors),
and if so, whether there is a workaround. If priors of 0.5 could be used, the need for the Σ∆H

heuristic would be removed.

Lastly, in the case when the agent receives no plume detections, the problem reduces to
simply one of exploration. It may be possible to calculate the optimal behaviour exactly for this
case, and if that can be done, the behaviour of the planning algorithms from Chapters 5, 6, and
7 could be compared to this optimal behaviour.

8.3.4 New Planning Approaches

This section describes requirements and ideas for new planning methods that could be develo-
ped to address the vent prospecting problem, including a hierarchical POMDP idea.

First I cover some problem characteristics that may assist in creating good plans, if a plan-
ning algorithm were to take account of them. A basic property of the domain is that if the agent
detects a plume, there must be a vent located somewhere up-current from the agent (ignoring
the possibility of a false positive detection, as this was set to zero in all experiments). However,
if the agent explores further and does not receive another plume detection within the order of a
dozen timesteps, the OG probabilities for cells up-current from the agent fall back to nearly the
prior level. In this case the algorithms discussed in this thesis often fail to find the vent respon-
sible for the detection, and a better planner might keep track of plume detections and continue
exploring the area up-current from the original detection. Of course this is fundamentally a
weakness in the mapping algorithm, and additionally, in the real world a plume detection may
be due to a vent outside the search area, in which case it would not be worthwhile attempting to
locate that vent.

As mentioned previously, the ocean current is central to this problem. While the vehicle’s
speed will generally be significantly greater than the current, the current will have an effect on
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how efficiently the vehicle can reach different locations. Some work on planning for AUVs has
leveraged predictions of the future current to plan the vehicle’s path so that it is assisted rather
than impeded by the current [Kruger et al., 2007].

Developing an algorithm that plans in continuous space would be a useful direction for
research, as noted in Section 8.2.3, and this is not necessarily mutually exclusive with an OG
map.

Finally, the only concrete approach for a new planning algorithm that I will discuss is that of
a hierarchical online POMDP. The idea is to use two levels of OG map: a high-level map with
large cells, and a set of finer-grained low-level maps, one for each large cell. Unlike [Sridharan
et al., 2008], for the vent prospecting domain it makes sense to solve a POMDP over the high-
level map first, and then solve two or three of the low-level maps, corresponding to the large
cell containing the agent and the one or two highest-value adjacent large cells. The high-level
OG will allow an online POMDP algorithm to be used to find the optimal path non-myopically,
as only a few steps of lookahead will be needed to reach the edge of the grid, and the low-level
OG will allow actual actions for the agent to be planned.

The key implementational issue to solve is how the observation model, environment model,
reward model and OG updates will work for the high-level map. The most practical idea ap-
pears to be to maintain the high-level map independently of the low-level maps, rather than by
aggregating cells from the low-level maps, and to re-scale the observation and reward functions
to the larger cell size. These functions could be calculated by estimating a parameter φ , the
probability that the agent will visit a vent in a large cell that it passes through, given that there
is one there.

8.3.5 Deployment on a Real Vehicle

All work for this thesis was conducted in simulation, but care was taken to avoid algorithms
that would not be practical on a real vehicle. To implement the code on an AUV, the key issues
that would need addressing are to:

• Ensure that the environment simulation is accurate enough (as discussed in Section 8.3.1).
This may require the planner to plan in 3D and continuous space, but it is hoped that the
use of wrapper actions would allow the existing 2D OG model to be used.

• Interface the planner to the vehicle’s navigation system. This could be straightforward
if the vehicle was capable of running MATLAB on-board, as for example Autosub6000
should be (Stephen McPhail, personal communication, 21 May 2009), and if the AUV’s
navigation system accepts waypoints as input, which could easily be output from MAT-
LAB (as done by [Harris, 2010]). If the planning system needed to be re-written in
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another language, for compatibility or execution speed reasons, much more work would
be involved.

• A deterministic vent detector would have to be implemented (see Section 4.7.3).

• The localisation accuracy would have to be acceptable.

• The grid size and scale would have to be chosen appropriately, as discussed in Sec-
tion 4.4.2.

• The most appropriate algorithm from the ones presented in this thesis would have to be
selected (as discussed in Section 8.1.2).

As regards localisation accuracy, for vehicles such as Autosub, once it is within a few hundred
metres of the bottom localisation by Doppler sonar is accurate enough, but during the descent
the localisation essentially drifts with the current [McPhail et al., 2009; Morice and Veres,
2010]. There are several methods that can be used to ensure the AUV knows where it is, such
as deploying seafloor transponders to communicate acoustically with the AUV [Yoerger et al.,
2007b], which is known as a long baseline (LBL) system. Such systems are expensive however,
and an alternative is the short baseline (SBL) method where dead-reckoning position fixes are
improved by measuring the distance to a single acoustic transponder located on the mothership.
New software methods can significantly improve the accuracy of SBL [McPhail et al., 2009;
Morice and Veres, 2010], avoiding the need to resort to LBL beacons. A final idea that requires
only a sidescan sonar (which is carried by almost all research AUVs) is to use AI techniques to
match topography recorded from ship-based sonar with topography recorded from the AUV, in
order to infer the exact location of the AUV [Di Massa and Stewart, 1997].

Many of the issues involved in using the planning software described in this thesis to search
for vents are considered by [Harris, 2010], who targets Autosub6000 as the deployment plat-
form. She reconciles the occupancy grid representation with Autosub6000’s dynamics and
command format, and implements a vent detector by making the vehicle descend and search a
cell. She also assumes the vehicle is equipped with a camera, and develops a PRM [Kavraki et

al., 1996; Kavraki and Latombe, 1998] algorithm to take the vehicle on a path allowing a vent
to be photographed from all angles. However, the limited turning circle of the vehicle proves to
be a problem for this approach.

Deploying the software in the real world would provide the best way of evaluating the
algorithms developed in this thesis against their primary goals, subject to the issues of only
being able to gather data for a small number of missions, and the difficulty of finding ground-
truth vent locations, as mentioned in Section 1.2.1.
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8.4 Conclusions

This thesis has addressed the problem of searching the ocean floor for hydrothermal vents using
an autonomous underwater vehicle. This is an example of a real-world problem where AI
techniques would be very beneficial, allowing AUVs to search a larger area with less human
supervision than would otherwise be possible. However the problem is a challenging one, be-
cause observations from the vehicle’s sensors provide only limited information on the location
of vents, rather than constraining them to lie in a small region of the search area. In addition to
this partial observability, the spatial nature of the problem means it has a continuous state space,
and an important consideration is the limited duration possible for AUV missions. Given these
problem characteristics, the goal was to develop (in simulation) an algorithm that maximises
the number of distinct vents the agent finds during a mission.

The problem was divided into mapping and planning, and for the mapping component I
adopted the occupancy grid algorithm of [Jakuba, 2007]. The planning problem therefore takes
the OG map as an input, and is isolated from the details of the vent mapping method (although
clearly properties of the map are critical to the effectiveness of the planning algorithms). This
planning problem is very hard due to the large, partially-observable state space; for example,
[Smith and Simmons, 2005] use state-of-the-art POMDP methods to solve a problem with∼ 105

states, and note that this is larger than most POMDP solvers can manage but their algorithm
would run out of memory given a problem 10 times larger. For comparison, the experimental
setup used in this thesis has ∼ 10123 states.

The contributions of this thesis are:

• A POMDP model of the vent prospecting problem (Chapter 4). This model uses an OG
to represent beliefs about vent locations, has a deterministic transition function allowing
the agent to move one cell forwards, left or right, and incorporates an observation model
based on the advection of hydrothermal plume particles by the current. It also includes a
reward function where a constant reward is provided for each distinct vent visited by the
agent, and defines a finite mission length.

• Experimental results suggesting that, for the vent prospecting domain and possibly for
other similar domains, using a heuristically-based entropy approach is as effective as
and more computationally efficient than using a more theoretically grounded POMDP
approach.

• A novel family of entropy-inspired algorithms for finding landmarks of interest in a low-
prior occupancy grid environment (Chapter 5). The best performing of these algorithms
was Σ∆H-MDP, which chooses actions that result in the largest mean change in entropy
of OG cells. It is able to plan ahead over a discounted infinite horizon by ignoring belief-
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state changes for movement actions but utilising expected belief-state changes for making
observations at distant locations.

• The application of online POMDP methods to the vent prospecting problem (Chapter 6).
The ILN algorithm was presented, which performs a forward search for N steps through
the belief space of the problem, and then propagates heuristic values backwards from
the leaf nodes to calculate optimal action-values (given the approximate values for leaf
nodes). Two heuristics were introduced, a basic heuristic that simply uses the occupancy
probability of the final cell as a proxy for future reward, and a CE heuristic that generates
leaf-node values by solving a deterministic MDP in occupancy probabilities from the
OG. Experiments showed that the CE heuristic resulted in very bad vent prospecting
performance, but the basic IL algorithm worked well for this domain.

• A correction procedure for the entropy and IL algorithms based on using an orienteering
problem solver (Chapter 7). The OP solver replaced the MDP in Σ∆H-MDP, to improve
the valuation of repeated visits to grid cells, and the resulting Σ∆H-OP algorithm was
found to perform at least as well as IL but with considerably reduced computation time.
I also applied the OP solver as a correction to information lookahead, where it shows
promise in improving the algorithm’s performance. However there appear to be complex
interactions here, possibly due to the exploration/exploitation trade-off that must be made
in this domain, and these are worthy of further research.

In conclusion, the vent hunting performance of the IL, IL-OP, and entropy-based approaches
was statistically very similar. This is an interesting result, because the IL algorithm calculates an
optimal N-step strategy, whereas using Σ∆H values as rewards is a heuristic method, given that
map quality is not the goal in this problem. It indicates that for partially-observable domains
where the state space is too large for even approximate solution methods such as PBVI or
Perseus to be applied, using a well-chosen heuristic together with a mechanism for including
distal action effects can lead to effective planning. Of course, this thesis focused on only one
domain, and my results will depend to a greater or lesser extent on the peculiarities of this
domain.

The IL algorithm performed very well in the vent prospecting domain for several reasons:
first because the OG algorithm creates a path of approximately increasing probability from the
agent to the vent, which can be followed fairly effectively, especially if the agent plans more than
one step ahead. Second, the relatively small branching factor of the action-observation space
makes exhaustive search in that space more efficient than for many similar POMDP domains.
However, overall the entropy-based algorithms and in particular Σ∆H combined with the OP
solver were the best algorithms for this domain, matching IL4 in performance but running three
times faster.
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APPENDIX A

IMPLEMENTATION NOTES

All algorithms were implemented using MATLAB® version 7.4 (R2007a). Development work
was done on Microsoft Windows, but experiments were performed under Linux (CentOS 5.5)
on a multi-core Intel® Xeon® cluster running at 2.33GHz with 8GB RAM per eight cores.

A.1 Parameters

Algorithm parameters were as shown in Table A.1. The discount factor of γ = 0.9 was used for
all algorithms. While this is a large discount to use, trials using a higher value for γ produced
very similar results at the cost of significantly longer computation times.

The false positive plume detection rate was set to zero for all experiments.

Random numbers were generated using MATLAB’s ‘state’ algorithm, which corresponds to
the ziggurat algorithm of [Marsaglia and Tsang, 2000]. The random number generator was see-
ded with a different seed for each trial, and the seeds were generated by http://www.random.org/.
The same set of 600 seeds (150 for each vent-count) was used to evaluate all algorithms.

A.2 Chemotaxis

This section describes the details of the chemotaxis algorithm implementation, which has to
ensure the agent only moves between grid-cell-centre coordinates. The algorithm is reactive, in
that the only input is whether or not there was a plume detection on each timestep. It proceeds
as follows:

1. Prior to any detection the agent follows an MTL pattern with a trackline separation of
three grid cells.
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Table A.1: Algorithm parameters used for experiments in this thesis.

Parameter Value Notes
Grid Size 20x20

Mission Length in Timesteps 133
Agent Start Location (20,20) Top-right cell

EDDY_DIFFUSIVITY 0.04 Noise σ in the current
Plume Particle Diameter 1 Determines when agent detects a particle

Prior Occupancy Probability 0.01

Current
(

0.7
0.3sin0.02t

)
Function of the timestep t

γ , Discount Factor 0.9 Used by all algorithms: MDP, IL, and OP
PF 0 False plume detection probability

IP_GROUPING_THRESHOLD 0 Values >0 invoke the extended IP algorithm
PUBAR 0 Values >0 group detections together

2. After any plume detection, the agent starts a ‘surge’ up-current for a duration of six ti-
mesteps.

3. After completing the surge, the agent moves in a spiral, with the radius increasing on each
timestep.

4. If the agent’s next move would take it outside the grid, it is instead sent on a triple-length
surge at a randomly-chosen angle φ , φ ∼ N(Φ,20 π

180) where Φ is the exact angle from
the agent’s location to the centre of the grid.

5. On every timestep when the agent detects a plume, the surge is re-started as in step (2).

For the surges, both up-current and when the agent is redirected toward the centre of the grid,
a path along a given angle must be calculated. Unlike most line rasterising algorithms, we
require the line to be composed of cells with their sides touching, in other words the line cannot
go directly diagonally. This is achieved by projecting the line onto the grid, and then choosing
a path consisting of all the cells the line passes through. In the case that the line passes exactly
through a grid ‘cross-hair’, an extra cell is added to ensure the path consists of valid moves.

When a surge is completed, the agent must start moving in an anticlockwise spiral. At the
start of the spiral phase, the centre of the spiral is calculated as a point MOTH_START_RADIUS

units (see Table A.2) up-current from the agent’s location. Then on each timestep, the radius
is incremented by MOTH_RADIUS_INCREMENT, and a desired new location is found using
the agent’s speed, s, the coordinates of the centre of the circle (which is fixed), and the angle
to the old location. The actual location is then the cell-centre coordinates nearest to the desired
location. The required calculations are shown graphically in Figure A.1.

Table A.2 shows the parameters used by the chemotaxis algorithm.
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Figure A.1: Calculation of the trajectory for the spiral phase of the chemotaxis behaviour. On
each timestep the spiral radius is increased by rinc, and the new position of the agent (xt+1,yt+1)
is calculated using the coordinates of the centre of the circle (a,b), the arc θ to the current
position (xt ,yt), and the agent’s speed s. The area bounded by rinc, s and d is approximated as
a right-angled triangle in order to find an approximate value for d.

Table A.2: Parameters used for trials with the chemotaxis algorithm.

Parameter Value Notes
MOTH_SURGE_TIME 6 Number of timesteps to surge up-current for

MOTH_START_RADIUS 2 Start radius for the spiral behaviour
MOTH_RADIUS_INCREMENT 0.1 Radius increment for the spiral behaviour
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A.3 Modified Observation Model

As mentioned in Section 4.3.4, my model introduced a deterministic vent detector and an addi-
tional observation, that of locating a vent (z = l), that was not present in Jakuba’s model. This
was implemented as an ‘overlay’ consisting of a list of cells that were known to contain vents,
and a list of cells that were known to be empty. The actual OG data structure storing logrc,t

values (which map to P(mc) values) was therefore not altered at all; instead, before the reward
function was applied or the calculation of P(z|b,a) values was performed, the overlay was mer-
ged with the logrc,t values to produce a P(mc) vector with zeros for empty cells and ones for
vents (or, for the reward function, zero in both cases).

Therefore Jakuba’s IP algorithm itself (Algorithm 3.1) was run with the unmodified logrc,t

values, i.e. as if the deterministic vent detector had not existed. In the case that a cell containing
a vent was visited, and the observation in my model was z = l, the IP algorithm was always run
with z = p, as we would always expect to detect a plume from the vent when we visit a cell
containing a vent anyway.
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APPENDIX B

GLOSSARY OF OCEANOGRAPHIC TERMS

ABE Autonomous Benthic Explorer, an AUV operated by WHOI.

Advection The motion of particles being carried along by a fluid flow.

Asthenosphere A deformable layer of the Earth just below the lithosphere. The asthenosphere
is contained within the upper mantle.

Autosub The AUV operated by NOCS.

Autosub6000 The newest incarnation of Autosub, developed and operated by NOCS and ca-
pable of diving to 6000 m.

AUV Autonomous Underwater Vehicle, a submersible robot.

Bathymetry Study of the relief of the ocean floor.

Buoyant plume The plume of seawater enriched by chemicals and mineral particles as it rises
from a hydrothermal vent, and before it has attained neutral buoyancy.

Black Smoker A particular kind of hydrothermal vent, where particles precipitate out as the
hot hydrothermal fluid mixes with cold seawater, and cause the appearance of black
smoke coming from the vent.

CTD Conductivity, Temperature and Depth data and/or sensors.

GMT Generic Mapping Toolkit, an open-source command-line driven toolkit for producing
graphics by processing geographic data.

Hydrothermal Vent A point in the ocean bed, often on a spreading centre, where hot water
escapes out into the sea.
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LBL A Long Base-Line acoustic navigation system, where beacons are positioned at known
locations on the sea floor, near the AUV’s search area, and acoustic transmissions from
these beacons are used by the AUV to fix its position.

Lithosphere The rigid upper layer of the Earth, which is split into continental plates. This
layer includes the crust and part of the upper mantle.

LSS Light scattering sensor or optical backscatter sensor. LSS readings indicate the density of
particles in the water. Also called a nephelometer, sometimes measured in nephels.

MAPR Miniature Autonomous Plume Recorder, a small CTD sensor. 6 of them are attached
to the same cable as TOBI.

NOCS National Oceanography Centre, Southampton, a division of the University of Sou-
thampton.

Non-buoyant plume The plume of seawater enriched by chemicals and mineral particles pro-
duced by a hydrothermal vent, when it has attained neutral buoyancy and has been dis-
persed over a wide area.

OBS Optical Back-Scattering. See LSS.

Potential Temperature A standardised measure of the temperature of a fluid: the temperature
the fluid would attain if it was adiabatically brought to a pressure of 1000 millibars.

Side-scan sonar Acoustic imaging system where a wide-angled sound pulse is bounced off the
ocean floor, and a detailed picture of the sea bed to either side of the vessel is built up.

SROG Semi-recursive occupancy grid algorithm, a generic term for a family of OG algorithms
developed in [Jakuba, 2007].

TOBI Towed Ocean Bottom Instrument, a side-scan sonar and CTD platform towed several
miles behind a mother ship, and kept at a constant altitude of a few hundred metres above
the ocean floor.

The Vent Prospecting Problem Shorthand term for the complete problem of creating a proba-
bilistic map of hydrothermal vents based on noisy sensor observations, and concurrently
planning a path for the AUV to locate and visit as many vents as possible given the re-
source constraints of a mission.

WHOI Woods Hole Oceanographic Institution, an ocean research and education organisation
located in Massachusetts, USA.
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APPENDIX C

LIST OF SYMBOLS

a An action a ∈A , the set of all actions. Equivalently the index of a cell that an action moves
the agent into.

A The set of possible actions, specifically {N,E,S,W}.

α Used to represent α-vectors, which are components of POMDP solutions, where α(s) =

V (s).

b A belief state, b ∈B.

B The (infinite) set of all possible belief states b.

cAUV The index of the cell containing the agent, and a component of the state space s.

cprev The index of the cell that the agent was in on the previous timestep.

C The number of cells in the grid; for a 20×20 grid, C = 400.

d The event of detecting a plume, regardless of the source.

dc The event of detecting a plume due to a vent at cell c. Note that P(mc|dc) = 1.

dF The event of a false positive plume detection.

f̄v The mean percent of vents found.

γ The discount factor, 0≤ γ < 1, which causes rewards to be count for less the further into the
future they are.

Hc The entropy of cell c in the OG.

H(b) The joint entropy of all C cells in the OG defined by b.

k Remaining number of steps to perform forward-search in the belief space for.
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l The observation of locating a hydrothermal vent at the present position.

L The mission length in timesteps.

m The vent map, consisting of true/false values for all cells indicating whether or not they
contain a vent.

mc A boolean value: true if cell c contains a vent, false otherwise.

M The true number of vents in the search area.

M The set of all cells containing a vent.

n The null observation - no detections.

N Number of steps (in total) that forward-search in the belief space is performed for, with a
given algorithm.

NOP Number of steps available in the orienteering problem.

ν Side-length of grid, ν2 =C.

O The occupancy grid map, consisting of P(mc) values for all cells.

p The observation of detecting a plume.

Pd
c The probability that a particle from cell c is detected, given that c contains a vent, i.e.

Pd
c = P(dc|mc)

PF The probability of a false alarm detection, PF = P(dF) .

Pp
c The prior probability that cell c is occupied by a vent.

P(mc) Probability that cell c is occupied by a vent. This symbol is used as shorthand for the
posterior probability of occupancy given the observations to date, P(mc|z1:t).

P(¬mc) Probability that cell c does not contain a vent. This symbol is used as shorthand for
the posterior probability of occupancy given the observations to date, P(¬mc|z1:t).

Q The action-value function in an MDP/POMDP, Q(s,a) or Q(b,a).

rc,t Odds-ratio of occupancy probability for cell c at time t, rc,t =
P(mc|z1:t)

P(¬mc|z1:t)

τ Timesteps elapsed since the emission of a particle from the source.

R Reward function in an MDP/POMDP, w = R(s,a).
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Rvent Fixed reward value the agent receives for visiting a previously unknown vent.

ρ Reward function in a belief-MDP, w = ρ(b,a).

s The state of the system/agent.

S The set of all possible states.

SE The state estimator component of a POMDP, b′ = SE(b,a,z).

T Transition function in an MDP/POMDP, T = P(s′|s,a).

U The ocean current vector at a particular time.

U The complete history of the ocean current vector.

v The agent’s list of confirmed vent locations, consisting of true/false values for all cells indi-
cating whether or not they are known to contain a vent.

V The value function of an MDP/POMDP, V (s) or V (b).

V A set of α-vectors used as a (partial) POMDP solution.

w The reward gained on a timestep, w = R(s,a).

ω Identifier for a plume particle (Section 4.6).

x The true distance to an obstacle measured by a range-finding sensor (Section 3.1).

xAUV The Cartesian coordinates of the vehicle, i.e. the coordinates of cell cAUV (Section 4.6).

xs The Cartesian coordinates of a source vent (Section 4.6).

z Used to indicate a specific observation.

z1:t The vector of all observations from time 1 to time t.

Z Observation function in a POMDP, Z = P(z|s,a).

Z The set of possible observations, specifically {l, p,n}.
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