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Abstract

The thesis presents a mathematical model and accompanying analysis to gain in-

sights into the chemical clock reaction associated with vitamin C, hydrogen perox-

ide and iodine. Chemical clock reactions are identified by a reproducible induction

period that is followed by in a rapid change in a solution triggered by a rise in

a specific chemical concentration. In the vitamin C clock reaction, vitamin C

converts iodine to iodide (the fast reaction) and simultaneously hydrogen peroxide

converts iodide to iodine (the slow reaction). The fast reaction dominates until the

vitamin C is depleted, at which point the iodine concentration rises, resulting in a

rapid colour change in the system. Three new models are presented. Firstly, both

the fast and slow reactions are considered under the assumption that hydrogen

peroxide levels are moderate. Secondly, the slow reaction is considered in isolation

and in more detail, revealing the effect of hydrogen peroxide concentration on the

reaction kinetics and resolving differences in the existing literature. Thirdly, the

fast reaction is reincorporated with the more detailed slow reaction to create a

unified model that can capture the clock reaction dynamics under both moderate

and high hydrogen peroxide regimes. All models are studied through numerical

and asymptotic analysis. Using asymptotic analysis, formulae are derived that can

predict the length of the induction period. Finally, experiments are carried out to

xx



generate data to parameterise the models and test the associated formulae, which

are shown to be accurate for both hydrogen peroxide regimes.
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Chapter 1

Introduction to Clock Reactions

This chapter introduces the motivation and outline of the thesis, as well as a

review of basic clock chemical reactions and methodologies relevant to the thesis,

including a review of related mathematical models.

1.1 Motivation

Mathematical models in chemistry play an important role in science. It is of in-

terest to study chemical reactions and understand how the natural world works

using mathematical models. In particular, models can take phenomena in science

from a specific application area, and convert them into mathematical formula-

tions that provide insightful analysis and valuable direction for that application.

Analysis of the model allows us to understand its behavior, estimate the model

parameters, and make reliable predictions for future behavior. Chemical reactions

drive many important processes. For instance, some examples from daily life that

are the result of chemical reactions include: turning food into fuel for the body,
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the changes in food when it is cooked, washing detergent removing stains, and

making fireworks explode. In the laboratory, for example, chemical reactions are

used to detect proteins, bacteria, viruses, and identify DNA and RNA sequences

[17, 47]. One timely instance of this relates to the COVID-19 pandemic which has

threatened the lives of families and their children around the world. We highlight

a study issued by [2] where certain chemical reactions were used on samples col-

lected from patients in order to develop diagnostic COVID-19 tests. It is clear

chemical reactions are ubiquitous.

Overall, a chemical reaction can be formulated using a mathematical model,

where variables represent the reactants. An aim may be to predict the evolution

of the concentration of certain chemical species in a time interval of interest or to

identify which of the chemical species dominate in the reaction [3]. In [51], the

authors use the analogy between chemical reactions and the spread of COVID-19

to motivate a framework for modelling both types of events in an education setting.

The main aim of this thesis is to use mathematical modeling to understand a

specific chemical reaction: the vitamin C clock reaction. The remainder of this

chapter will review some of the basic chemical reaction preliminaries needed in the

thesis. Previous mathematical models of the clock reaction and its applications

are also discussed.

1.2 Chemical Kinetics

The process of the transformation of reactants into products that occurs over

time based on specific mechanisms is referred as chemical kinetics. The study of

chemical kinetics has been carried out for over 100 years. The first chemical kinetics
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study was by the German physicist L. F. Wilhemy in 1850 [18, 42, 53]. Chemical

kinetics do not only concern the reaction rate and concentration of reactants, but

also the mechanisms governing these reactions. Chemical kinetics have a significant

impact in some areas, such as biochemistry, radiation chemistry, electrochemistry,

photochemistry [14, 18]. There have been numerous studies to investigate chemical

kinetics reactions with applications, for example [1, 8, 13, 25]; some of these will

be discussed below.

1.2.1 Law of Mass Action

One of the fundamental chemical kinetics laws is the law of mass action, formulated

by two Swedish scientists: the mathematician C. M. Guldberg and the chemist P.

Waage, in 1864 [14, 18, 42, 53]. The law of mass action states that the rate

of a chemical reaction is proportional to the product of the concentrations of

the reactants (the active masses of the reactants as the molar per unit volume).

Consider that substance A reacts with substance B to produce the substance C.

This can be represented by the chemical reaction equation

aA+ bB → C, (1.1)

where a, b are the stoichimetric coefficients of the reactants, which indicate how

many molecules of the reactants are involved in the reaction. According to the law

of mass action, the rate of the reaction (R) is indicated as:

R ∝ [A]a[B]b, (1.2)
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the concentrations of the reactants are expressed with square brackets; [A] and

[B]. Thus, the law of mass action tells us that the rate of the reaction is given by

R = k[A]a[B]b, (1.3)

where k is the reaction rate constant; we will continue to use this notation going

forward.

In the next section, we will define the clock reaction and explore its applications.

1.3 The Clock Reaction and Applications

The “clock reaction” has been studied for more than a century. It was noted for

the first time by Landolt in the 1880s with the sulfite/iodate reaction [23, 25, 27,

28, 38]. A clock reaction is defined as a chemical reaction where, after mixing the

reactants, a sudden increase in the concentration of one product occurs, followed

by a visible change, with a well-defined and reproducible time lag. The time lag

is sometimes named a Landolt time, a clock time, or an induction period (we will

typically refer to this as the induction period in this thesis). The visible change

is marked at the end of the induction period and could be by a color change or

a flash of light, for example, depending on the specific reaction. The species that

appears after the induction period is called the clock species, and the chemical

species involved in the chemical clock reaction are termed the clock chemicals. A

more comprehensive description of the clock reaction can be found in [29].

There are considerable applications of chemical clock reactions across a variety

of fields. The clock reactions have long been used in chemistry education [15],
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have industrial applications [6, 7] and alongside experiments have been studied

through mathematical and computation models [1, 8, 9, 13, 16, 27]. For further

details, see the reviews [25, 32]. Clock reactions are of current interest through

recent applications as diverse as a chemical clock car activity used in an educational

setting [40], the evaluation of 3D printed mixing devices [22] and the determination

of microconcentrations of the potentially toxic dye indigo carmine [39].

1.4 Categories of Clock Reactions

There are two core clock reaction mechanisms that have been studied: induction

and inhibition [8, 9, 27]. Based on these mechanistic differences, clock reactions

have been classified into two types by [25]: auto-catalysis driven clock reactions

(induction) and substrate-depletive clock reactions (inhibition). More details are

given in the following sections; along with a description of some pseudo clock

behavior.

1.4.1 Auto-catalysis Driven Clock Reaction

Although there is some discussion over whether auto-catalysis should be considered

as a clock reaction because of the lack of stoichiometric constraints (the stoichio-

metric constraints are related to the mass balance of reactants in the chemical

equation) [29], we include auto-catalysis as a clock reaction due to the abrupt

concentration change of a substance in a well-defined time [25, 38].

The mechanistic background of this phenomenon is induction (auto-catalysis).
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The simplest scheme of this mechanism is the following:

P + 2B → 3B at rate k[P ][B]2, (1.4)

where P is a precursor chemical and B is the clock chemical (auto-catalyst). Since

one of the reaction products is also a catalyst for the chemical reaction, this is called

an auto-catalytic reaction. Examples belonging to this auto-catalysis mechanism

are the iodate-arsenous acid reaction and the iodine-bisulphate clock reaction [8,

9, 24].

While a catalyst is an element that increases the rate of a chemical reaction,

in contrast, an inhibitor is an element that decreases the rate or stops a chemical

reaction; this will be addressed in the next section.

1.4.2 Substrate-Depletive Clock Reaction

The mechanistic background of this phenomenon is inhibition, and the simplest

scheme of this mechanism is the following:

P → B at rate k0[P ], (1.5a)

B + C → D at rate k1[B][C], (1.5b)

where B is the clock chemical and C is the inhibitor. The clock chemical re-

acts with an inhibitor to form the product D, limiting the concentration of the

clock chemical. The concentration of the clock chemical rises once the inhibitor is

completely consumed. Examples belonging to this inhibition mechanism are the

photopolymerization of vinyl acetate inhibited by benzoquinone, and the photo-
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synthesis of hydrogen chloride inhibited by ammonia [8, 9, 12]. The reaction (1.5)

has the following properties:

i) If P (0) > C(0), the clock species B appears when the reactant C is totally

used up.

ii) If P (0) < C(0), the clock species never appears, and the clock reaction is not

observed,

where P (0) and C(0) are the initial concentrations of the reactants [P ] and [C],

respectively. In this thesis, we will study in detail the vitamin C clock reaction,

which is substrate-depletive. Full details will be given in Chapter 2.

In short, the substrate-depletive clock reactions are described by the appearance

of the clock species B only after the depletion of the substrate C after a well-defined

delay time (induction period).

1.4.3 Reactions that Exhibit Two Mechanisms

Some chemical reactions could employ both induction and inhibition mechanisms

depending on the initial concentrations of the reactants [8, 9]. For example, it

has been found that the iodate-arsenous acid model demonstrates a clock reaction

with a combination of inhibition and indirect autocatalysis. The reactants in the

model are iodine (B ≡ I2), arsenite ion (C ≡ AsO3−
3 ), iodate (P ≡ IO−

3 ), and

iodide (A ≡ I−), and the reaction scheme is given by,

P + 5A → 3B, (1.6a)

B + C → 2A. (1.6b)
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The model (1.6) has indirect autocatalysis in one of the reactants, A, while C

acts as the inhibitor, the clock chemical is B, and P is the precursor. Hence, the

model (1.6) is autocatalytic overall because the reactant A is a catalyst in the first

reaction (1.6a), and also a product in the second reaction (1.6b).

1.4.4 Pseudo Clock Behavior

A chemical reaction which has poor reproducibility of the induction period or

irregular appearance of a clock species is categorized as pseudo clock behavior.

Thus, these reactions cannot be classified as clock reactions [25, 26, 49]. Examples

include the chlorite/thiosulfate [25, 35] and iodide/chlorite [25, 36] reactions in

unbuffered media, in which the pH changes significantly. These reactions indicate

fluctuations in concentrations for individual experiments.

The following section is a literature review of clock reaction models and their

contributions to our thesis.

1.5 Previous Mathematical Models of Clock Re-

actions

In science, mathematical modeling is being increasingly realized as a powerful

tool for the understanding of kinetic systems. The framework uses variables, pa-

rameters, and their interrelationships through mathematical language to describe

phenomena or predict future events [21, 43]. Several mathematical modeling stud-

ies have tried to capture clock reactions. Chien [13] modelled two-step reactions

via nonlinear differential equations. Integration of the kinetic equations for cer-

8



tain types, such as uni-unimolecular, uni-bimolecular and bi-bimolecular reactions,

was considered. The obtained solutions were expressed in terms of dimensionless

variables and parameters. The work used experimental data to evaluate the rate

constants of each step in order to assess the possible reaction mechanism. A crucial

analytical technique was presented, solving a Riccati type equation (a useful step

that we also employ in our asymptotic analysis sections) resulting from quadratic

reaction kinetics. Moreover, Anderson [1] exhibited the iodine clock reaction with

modelling and simulation using numerical simulations of the system dynamics.

Further development of mathematical modelling using sample laboratory processes

for the kinetics of the iodine-clock reaction can be found in [16, 31, 44]. In ad-

dition, the chemical and equipment required for these experiments were feasible

for institutions and students, i.e. the work should be relatively straightforward to

reproduce.

An early study of mathematical modelling of clock reactions by Billingham and

Needham [8] examined the two mechanisms: induction and inhibition, that can

lead to clock reactions via three model schemes. The first model scheme was the

cubic auto-catalysis model which exhibits a clock reaction with an induction mech-

anism and the solution can be collapsed onto two asymptotic regions. The simple

model with an inhibitor was addressed in the second model scheme. In addition,

the iodate-arsenous acid system was considered as the third model scheme which

exhibits a clock reaction with a combination of inhibition and indirect autocatalysis

mechanisms (as discussed in Section 1.4). The solutions can be reduced into four

asymptotic regions for the second and third model schemes. The analysis indi-

cated that induction dominates during the induction and inhibition period when

the two mechanisms co-exist in the model. Simple expressions were obtained for
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the induction and inhibition periods in terms of parameters of the model. Asymp-

totic analysis (which will be introduced in Section 2.4.3) was the main approach

used for examining these models of clock reactions. Burgess & Davidson [11] have

also examined the kinetics of the iodine reaction with ascorbic acid (vitamin C)

and associated persulfate (peroxydisulfate ion; S2O
2−
8 ).

Copper and Koubek [16] presented an experiment on the modified iodine chem-

ical clock reaction that was suitable for students to reproduce. The experimental

data included observations of the reaction rate, which indicated that the rate of

iodine production should be linear in iodide (I−). The hydrogen peroxide con-

centrations used were similar to the other substrates. More recently, the study

by Kerr et al., [27] showed a detailed mathematical model of the related vitamin

C substrate-depletive multi-step clock reaction via a system of nonlinear ordinary

differential equations – here iodine is again the clock species. Iodine, hydrogen

peroxide, and vitamin C are mixed. Vitamin C is the inhibitor, converting iodine

to iodide. When vitamin C is depleted, the hydrogen peroxide converts iodide to

iodine. The model was analysed through matched asymptotic expansions, and it

was found that asymptotic analysis and numerical analysis closely agree in distinct

time regions. The authors also conducted experiments to parameterise the model,

and in contrast to [16], found that assuming that the rate of iodine production

was quadratic in iodide enabled the model to match the data. Here, much higher

concentrations of hydrogen peroxide were used than the other chemicals (and hy-

drogen peroxide was not considered explicitly in the model). Finally, the authors

obtained a formula at leading order for the switchover time that was dependent

on initial concentrations of vitamin C and iodine, and one of the reaction rates.

The indicated formula compared well against data where two series in the initial
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concentrations of both iodine and vitamin C were generated.

A further study of the vitamin C clock reaction is by Parra Cordova and Peña

[40] which aims to integrate learning by combining chemistry kinetics and elec-

tronics via a hands-on activity for students. A chemical-driven car is designed

whereby how long it takes for the color to change to dark blue (i.e. the induction

period) determines the distance traveled by the car. A simple clock reaction model

was studied alongside experiments and an approximate formula for the length of

the induction period was obtained through a quasi-steady argument.

Some key goals of this thesis are to extend the work of [16] and [27] to under-

stand the difference in their model structures (linear vs. quadratic), to examine

the role that hydrogen peroxide plays in these differences, and to compare these

findings with the more recent study by Parra Cordova and Peña [40].

1.6 Thesis Outline

The thesis is organized as follows:

• Chapter 2: A new model of the simple clock reaction (which will be named

HPL – hydrogen peroxide linear) is designed to extend the work of Kerr et al.

[27] to include hydrogen peroxide explicitly in the model. The assumptions

are also modified to consider the case where hydrogen peroxide is present

in moderate concentrations, akin to Copper and Koubek [16]. Therefore,

the rate of the slow reaction is linear in both iodine and hydrogen peroxide

concentrations. Our asymptomatic analysis shows agreement between ap-

proximate solutions and numerical solutions in the appropriate time regions.

This enables us to obtain a formula for the switchover time to identify the
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significant occurrence of when the clock reaction occurs and the solution

appears dark blue. We find that our formula for switchover time is closely

correlated with the results by Parra Cordova and Peña [40].

• Chapter 3: A new model of the slow reaction (iodine production) in iso-

lation (which will be named ISR – isolated slow reaction) is formulated to

understand how hydrogen peroxide concentration affects the kinetics of the

chemical clock reaction. We include the hypoiodous acid reactant and reverse

reaction. The analysis demonstrates that the clock reaction can exhibit ei-

ther linear or quadratic kinetics depending on the ratio of hydrogen peroxide

to iodide.

• Chapter 4: A full model of the clock reaction (which will be named Model

FCR – full clock reaction) is performed by combining Model ISR (from Chap-

ter 3) and the fast reaction (vitamin C consumption). We show that one

unified model can capture both moderate and high hydrogen peroxide con-

centration regimes, identifying and validating the appropriate mathematical

model for the vitamin C clock reaction. Asymptotic analysis enables us to

obtain an approximate formula for the dependence of the switchover time

dependent on the initial concentration of the reactants in each hydrogen

peroxide regime. This empowers the comparison of the full clock reaction

model, Model FCR, to results for the Model HPL (the simple model with

moderate hydrogen peroxide in Chapter 2), and to the model with high hy-

drogen peroxide by Kerr et al., [27].

• Chapter 5: Experiments with varying amounts of hydrogen peroxide, io-

dine, and vitamin C demonstrate the high accuracy of the switchover time
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formulations for both the moderate and high hydrogen peroxide regimes

(from Chapter 4). Parameter estimates are obtained through least-squares

relative error fitting with uncertainties estimated through log-likelihood ra-

tio and bootstrapping. Through several permutations of fitting and testing

data we observe excellent data fits and consistent parameter estimates for ϕ

and k3.

• Chapter 6: The main mathematical contributions of the thesis, including

some areas for future work, are summarized.

We summarise the models and the chemical reactions that they describe in

Table 1.1.
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Model Hydrogen Peroxide Regimes Reactions

Kerr et al. [27] high 2D → I,

I + C → 2D.

Copper and Koubek [16] moderate 2D + P → I,

I + C → 2D.

HPL moderate 2D + P → I,

I + C → 2D.

ISR moderate and high D + P → Q,

D +Q → I,

Q+ P → D.

FCR moderate and high D + P → Q,

D +Q → I,

Q+ P → D,

I + C → 2D.

Table 1.1: The models developed in this thesis (HPL: hydrogen peroxide linear;
ISR: isolated slow reaction; FCR: full clock reaction) alongside their associated
chemical reactions. The reactants are iodide (D), hydrogen peroxide (P ), iodine
(I), vitamin C (C) and hypoiodous acid (Q). For ease of comparison, the models
developed in Kerr et al. [27] and Copper and Koubek [16] (where thiosulfate is
used in place of vitamin C) are also included.
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Chapter 2

Model HPL: A Simple Model Of

Chemical Clock Reaction With

Moderate Hydrogen Peroxide

2.1 Motivation

As reported in Chapter 1, Kerr et al. [27] carried out clock reaction experiments us-

ing concentrations of hydrogen peroxide (H2O2) that were markedly higher than

those of the other reactants. In these experiments, iodine (I2) is generated as

the clock chemical from the reaction between iodide (I−) and hydrogen peroxide

(H2O2). Through mathematical analysis, the researchers in [27] found that as-

suming the kinetics were quadratic in hydrogen peroxide was consistent with the

experimental data. However, Copper and Koubek [16] observed a linear rate of

reaction when operating with moderate hydrogen peroxide concentrations.

This chapter builds upon Kerr et al.’s findings [27] by focusing on modeling the
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moderate-peroxide regime and including hydrogen peroxide explicitly in the model

which we will develop and analyze accordingly. We will provide an introduction

to the study of the vitamin C clock reaction by first discussing the background

and context, followed by the model formulation, and numerical and asymptotic

analyses of the model.

2.2 Introduction

In this study, we consider the chemical reaction described by Wright [27, 55, 56]

as follows:

2H+(aq) + 2I−(aq) +H2O2(aq) → I2(aq) + 2H2O(l), (2.1)

and

I2(aq) + C6H8O6(aq) → 2H+(aq) + 2I−(aq) + C6H6O6(aq), (2.2)

where the (aq) and (l) signs indicate the substance is dissolved in water and the

substance is a liquid, respectively. Isolated hydrogen ions are symbolized by H+,

and H2O is commonly known as water. The dehydroascorbic acid (C6H6O6) is

made from the oxidation of ascorbic acid (C6H8O6; vitamin C). Briefly, there are

two reactions (2.1) and (2.2). The first reaction (2.1) is a slow reaction: iodide

(I−) is converted to iodine (I2) in the presence of hydrogen peroxide (H2O2). It

is worth mentioning that H2O2 is used up too, and the fact the supply is limited

will be a focus of this chapter. The second reaction (2.2) is a fast reaction: iodine

(I2) is converted to iodide (I−) in the presence of vitamin C (C6H8O6, ascorbic

acid), and uses up vitamin C in the process. The solution changes colour when
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vitamin C is depleted, yielding more iodine from (2.1). We will focus on specific

reactants that are crucial in the clock chemical reactions, rather than all involved

substances. The model does not explicitly account for production or consumption

of dehydroascorbic acid (C6H6O6), isolated hydrogen ions (H+) or water (H2O)

for the following reasons. Dehydroascorbic acid (C6H6O6) is only a product and

therefore does not affect the concentrations of other species in the system, and

therefore we omit it from the modelling. We assume that the produced isolated

hydrogen ions (H+) and water (H2O) do not significantly change the pH. More

details will be discussed in the next section.

An illustration diagram of the vitamin C clock reaction is depicted in Figure

2.1, adapted from [10]. A complete discussion of the chemistry process for the

vitamin C clock reaction is described by [55].

We note that the vitamin C clock reaction has lately been discussed by two

authors in the literature. Burgess & Davidson [11] have investigated a similar re-

action with associated persulfate (peroxydisulfate ion; S2O
2−
8 ) in place of hydrogen

peroxide (H2O2). As mentioned in Chapter 1, Kerr et al., [27] have modelled and

analysed the vitamin C reaction without involving hydrogen peroxide (H2O2) in

the model. In this chapter, we build on [27] by incorporating hydrogen peroxide

explicitly and considering the moderate-peroxide regime where the reaction is as-

sumed to be linear. The modified model will be developed and analysed in the

following sections.
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(a) (b) (c)

(d)

Figure 2.1: An illustration diagram of the vitamin C clock reaction, adapted from
[10]. (a) Solution A: In the presence of vitamin C, a mixture of water and iodine,
the solution appears clear. (b) Solution B: In the presence of hydrogen peroxide,
a mixture of water and starch (which acts as an indicator, but is not directly
involved in the chemical clock reaction), the solution appears clear. (c) A mixture
of iodine and iodide to starch and hydrogen peroxide by pouring Solution A into
Solution B. (d) The iodide gets converted to iodine, and the solution appears dark
blue after the induction period.
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2.3 Model Formulation

The model to be constructed is based on the multi-step reactions, via a system

of nonlinear differential equations under the law of mass action. To build our

model, we will focus on particular reactants that are essential to the clock chemical

reactions ((2.1) and (2.2)), such as iodide, iodine, hydrogen peroxide and vitamin

C. Reactants like the dehydroascobic acid, water and the isolated hydrogen ions

will not be considered in our model. The amount of isolated hydrogen ions (H+)

produced does not significantly affect pH. Starch is used as an indicator to help

with the appearance of the sudden change of color from clear to dark blue (as

shown in Figure 2.1), and will not be explicitly incorporated into our model. In

the first (slow) reaction: The total concentration of iodide at time t, denoted by

D(t), is converted to iodine (denoted by I(t)) in the presence of hydrogen peroxide

(denoted by P (t)) at a rate given by k1[D][P ]. As has been previously reported

in the literature [16, 31, 44], the rate of this reaction is linear in both I− and

H2O2 concentrations, based on experimental data. These studies have worked

with hydrogen peroxide concentrations which are similar to the other substrates

(while the study in [27] worked with hydrogen peroxide in great excess, so the first

reaction rate is quadratic in I− concentrations).

In this study, we assume that concentrations of hydrogen peroxide are similar

to the other reactants, rather than in great excess. From this point forward, we

express the reaction rate without square brackets for ease of notation. Therefore,

the chemical reaction in the simplified form, is

2D + P
k1DP−−−→ I. (2.3)
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In the second (fast) reaction: The total concentration of iodine at time t, denoted

by I(t), is converted to iodide (denoted by D(t)) in the presence of vitamin C

(denoted by C(t)) at a rate of reaction given by k2IC. Thus, the chemical reaction

in the simplified form, is

I + C
k2IC−−−→ 2D. (2.4)

The vitamin C clock reaction has been characterized as a substrate-depletive clock

reaction [25, 27]. The substrate vitamin C (C) is consumed, causing the clock

species iodine (I) to appear after a well-defined delay (induction period). The

reaction mechanism is the inhibition: when the inhibitor vitamin C (C) is present,

the fast reaction (2.4) dominates, and keeps the concentration of iodine (I) low

in comparison to iodide (D). Eventually, vitamin C (C) is exhausted and the

slower reaction (2.3) dominates, resulting in a rising concentration of iodine (I),

and hence turning the solution to blue.

Applying the law of mass action to (2.3) and (2.4), the model is given by the

following system of nonlinear differential equations (named, Model HPL referring

to hydrogen peroxide linear):

dD

dt
= 2k2IC − 2k1DP, (2.5a)

dI

dt
= −k2IC + k1DP, (2.5b)

dC

dt
= −k2IC, (2.5c)

dP

dt
= −k1DP, (2.5d)
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with initial conditions

D(0) = d0, I(0) = ι0, C(0) = c0, P (0) = p0. (2.6)

The model (2.5) extends the work of Kerr et al., [27] by including hydrogen perox-

ide (P ) in the model, and making the assumption that concentrations of hydrogen

peroxide are similar to the other reactants, rather than in great excess. We observe

that

dD

dt
+ 2

dI

dt
= 0, (2.7)

which means that D(t)+2I(t) is conserved (i.e., D+2I = constant). We represent

the initial concentration of (atomic) iodine by m0 = d0 + 2ι0. Hence,

D(t) = m0 − 2I(t). (2.8)

Therefore, we can eliminate the variable D from the model (2.5) by substituting

(2.8) in (2.5), the system becomes

dI

dt
= −k2IC − 2k1P (m0 − 2I), (2.9a)

dC

dt
= −k2IC, (2.9b)

dP

dt
= −k1P (m0 − 2I). (2.9c)

It should be emphasized that the units of the reactants’ concentrations (D, I, C, P )

are moles per litres (mol/l), the units of time (t) are seconds (s), and the units

of the reaction rates (k1, k2) are liters per moles per seconds (l/mol·s). The state

variables and parameters of the model are tabulated in Table 2.1.
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Table 2.1: Description of variables and parameters of the model (2.11)

Variables Description Units

D Total concentration of iodide mol/l
I Total concentration of iodine mol/l
C Total concentration of Vitamin C mol/l
P Total concentration of Hydrogen peroxide mol/l
t Time s

Parameter Description Units

k1 The rate of the first (slow) reaction l/mol·s
k2 The rate of the second (fast) reaction l/mol·s
m0 The initial total concentration of iodine and iodide mol/l
c0 The initial concentration of vitamin C mol/l
p0 The initial concentration of hydrogen peroxide mol/l

ϵ = k1/k2 The reaction rate ratio
ρ = p0/c0 The ratio of initial hydrogen peroxide to initial vitamin C
σ = m0/c0 The ratio of initial atomic iodine to vitamin C

2.4 Analysis of Vitamin C Clock Reaction Model

HPL

Before analyzing the model (2.9), it is instructive to non-dimensionalize the sys-

tem for simplicity by choosing the following scaling (in particular, we choose the

timescale based on the fast reaction step of producing iodide),

I = m0I
∗, C = c0C

∗, P = p0P
∗, t =

t∗

k2c0
, (2.10)

where ∗ denotes a dimensionless quantity. There is no unique way for choosing the

scaling factors when non-dimensionalizing a model. Multiple approaches can be

valid depending on the objectives of the analysis. Substituting (2.10) into (2.9),
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gives the following

dI∗

dt∗
= −I∗C∗ + ϵρP ∗ (1− 2I∗) , (2.11a)

dC∗

dt∗
= −σI∗C∗, (2.11b)

dP ∗

dt∗
= −ϵσP ∗ (1− 2I∗) , (2.11c)

where,

ϵ =
k1
k2

, ρ =
p0
c0
, σ =

m0

c0
, (2.12)

and the initial conditions become

I∗(0) =
ι0
m0

=: ϕ, C∗(0) = 1, P ∗(0) = 1. (2.13)

From this point forward, we drop stars for ease of notation. We note that (2.8)

can also be nondimensionalised to give

D(t) = 1− 2I(t), (2.14)

where we see that the maximum value of I(t) is 1/2 (occurring when D = 0); this

will be used in later analysis.

Figure 2.2 shows a typical simulation of the clock reaction model (2.11)-(2.13)

where the clock species I appears only after depletion of the substrate C (making

the reaction substrate-depletive), i.e. after the induction period.
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2.4.1 Quasi-Steady State

Before proceeding with a time-dependent asymptotic analysis to derive a formula

for the switchover (colour change) time, we show that a quasi-steady analysis can

provide some insight into the induction period of the model (2.11) by using the

fact that the clock chemical iodine (I) is only slowly fluctuating throughout the

induction period. Using the quasi-steady-state hypothesis we set dI/dt ≈ 0 in

(2.11a), it follows that

IC ≈ ϵρP (1− 2I), (2.15)

and hence,

IC

ϵP (1− 2I)
≈ ρ. (2.16)

Dividing dC/dt by dP/dt in (2.11), to get

dC

dP
=

−σIC

−ϵσP (1− 2I)
, (2.17)

substituting (2.16) into (2.17) leads to

dC

dP
= ρ. (2.18)

Using integration, therefore,

C = ρP + b1, (2.19)

where b1 is a constant. We leave determination of b1 to Section 2.4.3 where we con-

sider time periods before the quasi-steady. Since the clock chemical concentration

(iodine; I) is small during the induction period, we take I ≈ 0. In a later section,

we will conduct a detailed analysis of a completed clock reaction, including the
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induction period and the switchover time, as illustrated in Figure 2.3c. Hence,

dP/dt in (2.11) can be simplified as

dP

dt
= −ϵσP, (2.20)

which can be solved by separation of variables, leading to the solution

P = b2e
−ϵσt, (2.21)

where b2 is a constant which again will be determined in Section 2.4.3, and we get

C(t) = ρe−ϵσt + b1, (2.22)

as an approximation of Vitamin C during the induction period. In clock reactions,

the quasi-steady state during the induction period means some chemicals stay

constant while the reaction is actively progressing (i.e. the iodine is approximately

constant while vitamin C and hydrogen peroxide are being consumed slowly). On

the other hand, equilibrium refers to the balance between reactants and products,

where no significant change is observed.

2.4.2 Lines of Equilibria

It is instructive to determine the number of possible equilibrium solutions that the

model (2.11) can have. In chemical reaction models, an equilibrium refers to the

state of a system in which the concentrations of the reactants and products do

not change over time. The model (2.11) has three lines of equilibria, obtained by
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setting the right-hand side of the equations in the model (2.11) to zero, given by

(
Ī , 0, 0

)
,
(
0, C̄, 0

)
,
(
1/2, 0, P̄

)
, (2.23)

where Ī , C̄ and P̄ could be any positive values depending on the initial conditions

used.
(
Ī , 0, 0

)
represents the situation in which only iodine (I) is present, and

there is no vitamin C and no hydrogen peroxide (P ); this means that the two

chemical reactions (2.3) and (2.4) cannot happen. Moreover, the line of equilibria(
0, C̄, 0

)
represents the situation in which there is no iodine (I) for vitamin C

to activate, so it occurs when hydrogen peroxide (P ) runs out before vitamin C

does. In this situation, it means there is no substrate for the clock reaction so

it stays trivial. Therefore, in both lines of equilibria
(
Ī , 0, 0

)
and

(
0, C̄, 0

)
, the

clock reaction has failed. From a mathematical view, the two lines of equilbria

(
(
Ī , 0, 0

)
and

(
0, C̄, 0

)
) are not interesting cases compared to the last case (the

line of equilibria
(
1/2, 0, P̄

)
).

The line of equilibria
(
1/2, 0, P̄

)
can be interpreted as the chemical reactions

((2.3) and (2.4)) no longer being able to take place because if I = 1/2, then there

is no iodide to convert to iodine (D = 0 from (2.14)). In addition, if C = 0 then

the iodine-to-iodide reaction (2.4) cannot occur. It is the ultimate state of the

system: all iodide is converted to iodine and the solution appears blue.
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Stability:

To study the linear stability of the lines of equilibria (non-trivial), we must find

the eigenvalues of the linearized system using the Jacobian of the model (2.11),

J (I, C, P ) =


∂I
∂I

∂I
∂C

∂I
∂P

∂C
∂I

∂C
∂C

∂C
∂P

∂P
∂I

∂P
∂C

∂P
∂P

 . (2.24)

Or,

J (I, C, P ) =


− (C + 2ϵρP ) −I ϵρ (1− 2I)

−σC −σI 0

2ϵσP 0 −ϵσ (1− 2I)

 . (2.25)

We need to evaluate the Jacobian at each separate steady state. Consider the line

of equilibria
(
Ī , 0, 0

)
, then

J
(
Ī , 0, 0

)
=


0 −Ī ϵρ

(
1− 2Ī

)
0 −σĪ 0

0 0 −ϵσ
(
1− 2Ī

)
 (2.26)

Therefore, the characteristic polynomial is as follows

λ
(
λ+ σĪ

) (
−ϵσ

(
1− 2Ī

)
− λ
)
= 0. (2.27)

Hence, the eigenvalues are

λ1 = 0, λ2 = −σĪ, and λ3 = −ϵσ
(
1− 2Ī

)
. (2.28)
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Thus, the line of equilibria
(
Ī , 0, 0

)
has a zero eigenvalue, indicating a slow manifold

[41], and negative eigenvalues since all the parameters and variables are positive

and 0 < Ī < 1/2 (as stated after the non-dimensionalised model using (2.14)),

which indicates a stable manifold [41].

Similarly, for the line of equilibria
(
0, C̄, 0

)
we have

J
(
0, C̄, 0

)
=


−C̄ 0 ϵρ

−σC̄ 0 0

0 0 −ϵσ

 (2.29)

The characteristic polynomial is given by

λ
(
λ+ C̄

)
(−ϵσ − λ) = 0. (2.30)

Here, the eigenvalues are λ1 = 0, where the zero eigenvalue indicates the slow

manifold, and λ2 = −C̄, λ3 = −ϵσ are negative eigenvalues since all parameters

and variables are positive which indicate the stable manifold.

Consider the Jacobian for the third line of equilibria, which is the most inter-

esting case to study,
(
1/2, 0, P̄

)
which has the form

J
(
1/2, 0, P̄

)
=


−2ϵρP̄ −1/2 0

0 −σ/2 0

2ϵσP̄ 0 0

 (2.31)

with the following characteristic polynomial

λ
(
λ+ 2ϵρP̄

)
(−σ/2− λ) = 0, (2.32)
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and eigenvalues, λ1 = 0, λ2 = −2ϵρP̄ and λ3 = −σ/2. The eigenvalues λ2 and

λ3 are negative since all parameters and variables are positive, therefore, the line

of equilibria
(
1/2, 0, P̄

)
has a slow and stable manifold because of the zero and

negative eigenvalues respectively. Note that all the three lines of equilibria have a

zero eigenvalue; λ = 0 corresponds to the fact that the variables Ī , C̄ and P̄ can

take any value but also that the linear stability analysis has failed so further work

needs to be done to verify the equilibria.

Numerical simulations of the model (2.11) in Figure 2.3, showing the concentra-

tions of iodine, vitamin C and hydrogen peroxide as a function of time on logarith-

mic scale using various initial conditions, illustrate these three lines of equilibria

(are the balance between the reactants and products with no visible change, while

the quasi-steady state during the induction period keeps some reactants constant

as the reaction continues). In Figure 2.3a, there is not enough vitamin C, so there

is no induction period since the vitamin C is consumed already. In Figure 2.3b,

there is not enough hydrogen peroxide, so the induction period starts but never

ends because the hydrogen peroxide is used up before the vitamin C. In Figure

2.3c, the clock reaction is completed and both induction period and switchover

time occur. Numerical analysis has been performed to solve the model (2.11) ap-

proximately using computational techniques in the MATLAB program with the

ode45 solver. We will now show that asymptotic analysis studies can generate

further insight into the model behaviour in the following section.
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2.4.3 Asymptotic Analysis

Asymptotic analysis (more specifically here, matched asymptotic analysis) is the

study of the limiting behaviour of models, leading to reduced (and therefore sim-

pler) models that capture the behaviour of the full system in these limits, as terms

have different magnitudes in different regimes. A similar approach was used by

Billingham & Needham [8, 9], and Kerr et al., [27], We will see that the expression

σϕ < 1 is required (where σϕ = ι0/c0 < 1, so the initial concentration of vitamin

C should be greater than the initial concentration of iodine) in order for vitamin

C to survive the initial adjustment and therefore for the clock reaction to occur.

There are four regions to be studied as detailed in the following sections.

Region I: Initial Adjustment

Reactants are mixed during Region I before the induction phase begins. Basi-

cally, it is described as where the dependent variables I, C, P are order 1 and

the independent variable t = O(1). Seeking a solution of the form (asymptotic

expansions):

I = I0+ϵI1+ϵ2I2+ ..., C = C0+ϵC1+ϵ2C2+ ..., and P = P0+ϵP1+ϵ2P2+ ...

(2.33)

we find that at leading order (O(1)),

dI0
dt

= −I0C0, (2.34a)

dC0

dt
= −σI0C0, (2.34b)

dP0

dt
= 0, (2.34c)
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with the initial conditions:

I0(0) = ϕ C0(0) = 1 and P0(0) = 1. (2.35)

Note that

σ
dI0
dt

− dC0

dt
= 0, (2.36)

which means that the quantity (σI0 − C0) is a constant. Thus, C0 = σ (I0 − ϕ)+1.

By substituting this result in (2.34b), this leads to

dI0
dt

= −I0 (σ (I0 − ϕ) + 1) , (2.37)

dP0

dt
= 0. (2.38)

Using the separation of variables method:

∫
dI0

−I0 (σ (I0 − ϕ) + 1)
=

∫
dt, (2.39)∫

dP0 = 0. (2.40)

Thus,

P0(t) = 1, (2.41)

and solving for the variable I0, we can use partial fraction decomposition for the

left-hand side (LHS):

∫ I0

ϕ

dĨ0

−Ĩ0

(
σ
(
Ĩ0 − ϕ

)
+ 1
) = −

∫ I0

ϕ

A

Ĩ0
+

B(
σ
(
Ĩ0 − ϕ

)
+ 1
)
 dĨ0, (2.42)
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where A = 1/(1 − σϕ) and B = −σ/(1 − σϕ). This allows us to integrate both

sides in (2.39)

1

(σϕ− 1)

ln Ĩ0

σ
(
Ĩ0 − ϕ

)
+ 1

I0

ϕ

= t, (2.43)

where the sign of the argument of the natural logarithm is positive (i.e., Ĩ0/σ
(
Ĩ0 − ϕ

)
+

1 > 0). Using the natural logarithm properties and the fact that the natural log-

arithm is the inverse of the exponential function, solving for I0 leads to

I0 =
ϕ (1− σϕ) e(σϕ−1)t

1− σϕe(σϕ−1)t
, (2.44)

where the condition 1 − σϕ > 0 is needed. Substituting the expression of (2.44)

into C0 = σ (I0 − ϕ) + 1, gives us that

C0 =
σϕ (1− σϕ) e(σϕ−1)t

1− σϕe(σϕ−1)t
+ 1− σϕ. (2.45)

Hence, as t → ∞, I0 → 0 and C0 → 1 − σϕ. It turns out that the condition

1 − σϕ > 0 is needed in order to have enough vitamin C. During the initial

adjustment, we are therefore able to see that approximately σϕ = ι0/c0 (the initial

concentration of iodine per the initial concentration of vitamin C) of the initial

quantity of the inhibitor C is used up.
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Therefore, the asymptotic solutions in Region I are as follows:

I(t) =
ϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
+O(ϵ), (2.46a)

C(t) =
σϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
+ 1− σϕ+O(ϵ), (2.46b)

P (t) = 1 +O(ϵ). (2.46c)

Region II: Induction

As the induction period begins, the two chemical reactions (2.3) and (2.4) keep

the concentration of iodine (I) low. As iodide (D) is produced rapidly in the fast

(second) chemical reaction (2.4), it removes iodine (I) from the system faster than

it can be produced. Due to these two reactions, the concentrations of vitamin C

(C) and hydrogen peroxide (P ) are slowly being consumed. Thus, I(t) = O(ϵ)

and T = ϵt whereas C and P are still of order 1. We re-scale Î(T ) = I(T/ϵ)/ϵ,

with Ĉ(T ) = C(T/ϵ), P̂ (T ) = P (T/ϵ), the system becomes

ϵ
dÎ

dT
= −ÎĈ + ρP̂

(
1− 2ϵÎ

)
, (2.47)

dĈ

dT
= −σÎĈ, (2.48)

dP̂

dT
= −σP̂

(
1− 2ϵÎ

)
. (2.49)

Similar to Region I, looking for asymptotic expansions:

Î = Î0 + ϵÎ1 + ..., Ĉ = Ĉ0 + ϵĈ1 + ..., and P̂ = P̂0 + ϵP̂1 + ..., (2.50)
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the leading order problem is at quasi-steady state:

ϵ
dÎ0
dT

= 0, (2.51a)

−Î0Ĉ0 + ρP̂0

(
1− 2ϵÎ0

)
= 0, (2.51b)

Î0Ĉ0 = ρP̂0

(
1− 2ϵÎ0

)
, (2.51c)

and,

dĈ0

dT
= −σÎ0Ĉ0. (2.52)

Substituting the expression (2.51c) in (2.52) gives

dĈ0

dT
= −σ

[
ρP̂0

(
1− 2ϵÎ0

)]
. (2.53)

The clock chemical reaction is small during the induction period (Î0 ≈ 0) giving

dĈ0

dT
= −σρP̂0, (2.54)

dP̂0

dT
= −σP̂0. (2.55)

Hence,

dĈ0

dP̂0

= ρ, (2.56)

using separation of variables

∫
dĈ0 = ρ

∫
dP̂0. (2.57)
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Thus,

Ĉ0 = ρP̂0 + b1, (2.58)

and,

P̂0 = b2e
−σT , (2.59)

where b1 and b2 are constants that can be found by taking T → 0 (using the initial

condition), and matching to the Region I solution as t → ∞:

b1 = 1− σϕ− ρ, (2.60)

b2 = 1. (2.61)

The variable Î0 could be found from (2.51c), it follows

Î0 =
ρP̂0

Ĉ0

. (2.62)

Therefore, in the original dimensionless variables, the leading order solutions in

Region II are as follows:

I(t) =
ϵρe−ϵσt

ρe−ϵσt + (1− σϕ− ρ)
+O(ϵ2), (2.63a)

C(t) = ρe−ϵσt + (1− σϕ− ρ) +O(ϵ), (2.63b)

P (t) = e−ϵσt +O(ϵ). (2.63c)

The Region II solution provides a prediction for the time point at which the balance

between fast and slow reactions changes, referred to as the switchover time.
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Switchover Time:

When vitamin C becomes small, the fast reaction no longer dominates and tsw can

be defined as the solution of C0(t) = 0 in (2.63b)). This leads to

tsw =
1

ϵσ
ln

(
ρ

ρ+ σϕ− 1

)
. (2.64)

We need the condition that ρ > 1 − σϕ (where ρ = p0/c0 and σϕ = ι0/c0), then

the expression ρ − (1 − σϕ) = O(1) is assumed to be order 1. The amount of

vitamin C left after region I (initial adjustment) is 1− σϕ. Physically, ρ > 1− σϕ

means that there should be enough hydrogen peroxide (P ) in the system to drive

the vitamin C to zero.

In dimensional variables, recall,

t =
t∗

k2c0
, ρ =

p0
c0
, σ =

m0

c0
, ϕ =

ι0
m0

, and ϵ =
k1
k2

. (2.65)

The switchover time is consequently illustrated by,

tsw =
t∗

k2c0
, when t∗ → 1

ϵσ
ln

(
ρ

ρ+ σϕ− 1

)
, (2.66)

hence (in dimensional variables),

tsw =
1

k1m0

ln

(
p0

p0 + ϕm0 − c0

)
. (2.67)

Equation (2.67) states that enough hydrogen peroxide (p0) and molecular iodine

(m0) must be provided initially to drive the vitamin C concentration (c0) to zero

before hydrogen peroxide runs out, i.e. p0 + ϕm0 > c0. As the vitamin C concen-
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tration (c0) increases, the expression in the denominator p0 + ϕm0 − c0 decreases,

and therefore the switchover time (tsw) increases logarithmically as the vitamin C

concentration (c0) grows. When vitamin C concentration (c0) is small, the expres-

sion p0+ϕm0− c0 is close to p0+ϕm0, and the switchover time (tsw) remains low.

A large molecular iodine concentration (m0) effectively slows the increase in the

switchover time (tsw). Thus, we are able to express the switchover time simply in

terms of initial concentrations and the slow reaction rate. Significantly, a similar

equation to the switchover time formula (2.67) was given in a recent study by

Parra Cordova and Peña [40] through a quasi-steady argument with appropriate

assumptions, without including the ϕm0 term in the denominator.

Region III: Corner

Region III corresponds to the transition from the rapid color change during the in-

duction period to the stable long-term state, where all reactants have settled. This

phase occurs when the two reactions, both slow and fast, occur in similar magni-

tudes. The most appropriate structured balance is achieved when I = C = O(ϵ1/2)

and P = O(1) with the shifted time coordinate here being t̄ = ϵ−1/2 (ϵt− Tsw). We

re-scale Ī = ϵ−1/2I, C̄ = ϵ−1/2C, and P̄ = P . Therefore, the Model HPL (2.11)

takes the following form at the leading order terms of the asymptotic expansions,

dĪ

dt̄
= −ĪC̄ + ρP̄

(
1− 2ϵ1/2Ī

)
, (2.68)

dC̄

dt̄
= −σĪC̄, (2.69)

dP̄

dt̄
= −ϵ1/2σP̄

(
1− 2ϵ1/2Ī

)
. (2.70)
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As above, we look for asymptotic expansions:

Ī = Ī0 + ϵ1/2Ī1 + ..., C̄ = C̄0 + ϵ1/2C̄1 + ..., and P̄ = P̄0 + ϵ1/2P̄1 + ..., (2.71)

and, the leading order problem is

dĪ0
dt̄

= −Ī0C̄0 + ρP̄0, (2.72a)

dC̄0

dt̄
= −σĪ0C̄0, (2.72b)

dP̄0

dt̄
= 0, (2.72c)

hence, P̄0 = b5 is a constant, which can be found by the matching condition of

P (Tsw) to Region II yielding

b5 =
ρ+ σϕ− 1

ρ
. (2.73)

We also seek the lower order correction term for the variable P̄ :

ϵ1/2
dP̄1

dt
= −ϵ1/2σP̄0, (2.74)∫

dP̄1 = −σP̄0

∫
dt, (2.75)

thus,

P̄1 = −σb5t̄+ b8, (2.76)
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the constant b8 = 0 by matching condition to Region II solutions, giving

P̄ = P̄0 + ϵ1/2P̄1, (2.77)

= b5 − ϵ1/2σb5t̄. (2.78)

Now, multiplying (2.72a) by σ, and then subtracting (2.72b), it follows that

σ
dĪ0
dt̄

− dC̄0

dt̄
= −σĪ0C̄0 + ρb5 + σĪ0C̄0 = ρb5. (2.79)

Integrating both sides,

σĪ0 = C̄0 + ρb5t̄+ b6, where b6 is a constant. (2.80)

Substituting the expression (2.80) in the equation (2.72b) gives

dC̄0

dt̄
= −

(
C̄0 + ρb5t̄+ b6

)
C̄0. (2.81)

Note that (2.81) is the Riccati equation [8, 13], which can be solved by seeking a

solution of the form C̄0 = u′/u, which means satisfying

C̄ ′
0 = −C̄2

0 − (ρb5t̄+ b6) C̄0. (2.82)

Thus,
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d

dt̄

(
u′

u

)
= −

(
ρb5t̄+ b6 +

u′

u

)
u′

u
, (2.83)

uu′′ − u′2

u2
= −

(
u′

u

)2

− (ρb5t̄+ b6)

(
u′

u

)
, (2.84)

u′′

u
−
(
u′

u

)2

= −
(
u′

u

)2

− (ρb5t̄+ b6)

(
u′

u

)
, (2.85)

leads to

u′′ = − (ρb5t̄+ b6)u
′. (2.86)

Equation (2.86) is a second-order differential equation with the following solution

u′ = exp

[
−
∫

(ρb5t̄+ b6) dt̄

]
, (2.87)

= exp

[
−t̄

(
ρb5

t̄

2
+ b6

)]
, (2.88)

and,

u =

∫
u′, (2.89)

=

∫ t̄

0

exp
[
−s
(
ρb5

s

2
+ b6

)]
ds+ b7. (2.90)

Recall C̄0 = u′/u, and hence

C̄0 =
exp

[
−t̄
(
ρb5

t̄
2
+ b6

)]∫ t̄

0
exp

[
−s
(
ρb5

s
2
+ b6

)]
ds+ b7

, (2.91)
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which can be expressed in terms of the error function (by completing the square)

as

C̄0 =
σ exp

[
−t̄
(
ρb5

t̄
2
+ b6

)]
√
π
2

exp (b26/(2ρb5))
[
erf
(

ρb5 t̄+b6√
2ρb5

)
+ b7

] . (2.92)

For the simplicity of notation, we denote f(t̄) = (ρb5t̄+ b6) /(
√
2ρb5). Using the

asymptotic expansion form of the error function as follows

erf(f(t̄)) ∼ 1− exp (−f(t̄)2)√
π f(t̄)

(
1 +O(f(t̄))−2

)
, as t̄ → ∞, (2.93)

and the fact that it is an odd function: erf(f(t̄)) = −erf(−f(t̄)) as − t̄ → ∞,

it follows

erf(f(t̄)) = −1− exp (−f(t̄)2)√
π f(t̄)

(
1 +O(f(t̄))−2

)
, as t̄ → −∞. (2.94)

Hence,

exp
(
−f(t̄)2

)
=

exp
[
−t̄
(
ρb5

t̄
2
+ b6

)]
exp (b26/(2ρb5))

, (2.95)

therefore,

C̄0(t̄) =
σ exp (−f(t̄)2)

√
π
2

[
−1− exp(−f(t̄)2)√

π f(t̄)
(1 +O(f(t̄))−2) + b7

] , (2.96)

and we assume that C̄0(t̄) tends to a non-zero limit since f(t̄) → −∞ as t̄ → −∞,

which means that b7 = 1. Thus, the asymptotic behaviour is

C̄0(t̄) = −2σf(t̄)
(
1 +O(f(t̄))−2

)
, (2.97)

= −σ

√
2

ρb5
(ρb5t̄+ b6)

(
1 +O(f(t̄))−2

)
. (2.98)
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In the Region II variables, we have

C(T ) = −σ
√

2ρb5 T +
√

2ρb5 ln

(
ρ+ σϕ− 1

ρ

)
− σ

√
2

ρb5
ϵ1/2 b6 +O(ϵ), (2.99)

hence, the constant b6 = 0 by matching to the region II solution. Therefore, the

approximate solution (with t̄ = ϵ−1/2 (ϵt− Tsw)) in Region III can be written as

I(t) = ϵ1/2
exp

(−ρb5
2

ϵ−1 (ϵt− Tsw)
2)

√
π
2

[
erf

(√
ρb5
2

ϵ−1/2 (ϵt− Tsw)

)
+ 1

] +
ρb5
σ

(ϵt− Tsw) +O(ϵ)

(2.100a)

C(t) = ϵ1/2
σ exp

(−ρb5
2

ϵ−1 (ϵt− Tsw)
2)

√
π
2

[
erf

(√
ρb5
2

ϵ−1/2 (ϵt− Tsw)

)
+ 1

] +O(ϵ) (2.100b)

P (t) = b5 − σb5 (ϵt− Tsw) +O(ϵ). (2.100c)

Region IV: Long-term State

Region IV illustrates the system’s long-term behavior, indicating that solutions

will gradually approach equilibrium over time, and some reactants are expected to

remain even after the reaction reaches its end point. We will address the long-term

analysis, in which I(t) = O(1) and t = O(ϵ−1). Denoting, Ĭ(T ) = I(T/ϵ), with

44



C̆(T ) = C(T/ϵ), and P̆ (T ) = P (T/ϵ), thus, the system becomes

ϵ
dĬ

dT
= −ĬC̆ + ϵρP̆

(
1− 2Ĭ

)
, (2.101)

ϵ
dC̆

dT
= −σĬC̆, (2.102)

ϵ
dP̆

dT
= −ϵσP̆

(
1− 2Ĭ

)
. (2.103)

Seeking asymptotic expansions, again

Ĭ = Ĭ0+ϵĬ1+ϵ2Ĭ2+..., C̆ = C̆0+ϵC̆1+ϵ2C̆2+...., and P̆ = P̆0+ϵP̆1+ϵ2P̆2+....

(2.104)

We must have that Ĭ0C̆0 = 0, and hence C̆0 = 0, and moreover at O(ϵn)

dC̆n−1

dT
= −σ

(
Ĭ0C̆n + ...+ ĬnC̆0

)
. (2.105)

By induction it follows that C̆0 for all n (we will provide this proof in more detail

in Chapter 4). Hence,

dĬ

dT
= ρP̆

(
1− 2Ĭ

)
, (2.106a)

dP̆

dT
= −σP̆

(
1− 2Ĭ

)
, (2.106b)

and,

dĬ

dP̆
=

ρ

−σ
, (2.107)

which has the solution,

Ĭ =
−ρ

σ
P̆ + b3, (2.108)
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b3 being a constant. The matching condition Ĭ(T ) → 0 as T → Tsw (where

Tsw = −(ln (ρ+ σϕ− 1)− ln ρ)/σ) yields

b3 =
ρ

σ
e−σTsw . (2.109)

By substituting (2.108) into (2.106b), therefore

dP̆

dT
= −σP̆

[
1− 2ρ

σ

(
e−σTsw − P̆

)]
, (2.110)

= P̆
[
−2ρP̆ + σ (2b3 − 1)

]
, (2.111)

by using the separation of variables gives

∫
dP̆

P̆
(
−2ρP̆ + σ (2b3 − 1)

) =

∫
dT, (2.112)

the left-hand side (LHS) can be solved using the partial fraction decomposition,

which leads to

−1

σ (2b3 − 1)
ln

∣∣∣∣σ (2b3 − 1)

P̆
− 2ρ

∣∣∣∣ = T + b4, (2.113)

where b4 is a constant. Hence, the definition for the absolute value of the function∣∣∣σ(2b3−1)

P̆
− 2ρ

∣∣∣ is given by

∣∣∣∣σ (2b3 − 1)

P̆
− 2ρ

∣∣∣∣ =


(
σ(2b3−1)

P̆
− 2ρ

)
, if

(
σ(2b3−1)

P̆
− 2ρ

)
≥ 0

−
(

σ(2b3−1)

P̆
− 2ρ

)
, if

(
σ(2b3−1)

P̆
− 2ρ

)
< 0

(2.114)

Note that
(

σ(2b3−1)

P̆
− 2ρ

)
< 0 since σ(2b3−1)

P̆
< −2ρ < 0, it follows that
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|σ(2b3−1)

P̆
− 2ρ| = −

(
σ(2b3−1)

P̆
− 2ρ

)
. Using the natural logarithm properties and

the fact that the natural logarithm is the inverse of the exponential function, gives

−σ (2b3 − 1) + 2ρP̆

P̆
= e−σ(2b3−1)(T+b4), (2.115)

and then solving for P̆ gives

P̆ =
−σ (2b3 − 1)

e−σ(2b3−1)(T+b4) − 2ρ
. (2.116)

The constant b4 can be found by the matching condition P̆ (T ) → e−σTsw as T →

Tsw yielding

b4 =
−1

σ (2b3 − 1)
ln

(
−σ (2b3 − 1)

e−σTsw
+ 2ρ

)
− Tsw. (2.117)

In the original variables, the leading order solutions in Region IV are as follows:

I(t) =
−ρ

σ

[
−σ (2b3 − 1)

e−σ(2b3−1)(ϵt+b4) − 2ρ

]
+ b3 +O(ϵ), (2.118a)

C(t) = 0 +O(ϵn) for all n > 0, (2.118b)

P (t) =
−σ (2b3 − 1)

e−σ(2b3−1)(ϵt+b4) − 2ρ
+O(ϵ). (2.118c)

Comparison Of Asymptotic And Numerical Approximations

To validate the asymptotic solutions in each region, Matlab (ode45 solver) was

used to calculate a numerical solution with initial conditions I(0) = ϕ, C(0) = 1,

and P (0) = 1, and the dimensionless parameter values set to ρ = 2, σ = 0.8,

ϕ = 0.2 (iodide: iodine ratio) and ϵ = 0.001 (the reaction rate ratio), these values
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Figure 2.6: Relative error between the asymptotic approximation for switchover
time formula (2.64) of the model (2.11) and the point at which the numerical
solution falls below a threshold value of ϵ, as a function of the parameter ϵ. The
dimensionless parameter values are ρ = 2, σ = 0.8 and ϕ = 0.2.

Figure 2.5 shows that the approximate switchover time (tsw) matches the in-

tersecting point of the numerical solution of the model (2.11) for I and C well.

Figure 2.6 plots the relative error between the asymptotic approximation of the

switchover time formula (2.64) and the switchover time point computed from the

numerical solution of the model (2.11), as a function of ϵ. A log-log plot provides

an estimate for the order of the error in ϵ. Specifically, the relative errors have

been calculated by

|tnum − tasymp|
tasymp

,

where tnum is the switchover time point computed from the numerical solution

of the model (2.11) and tasymp is the switchover time formula derived through

asymptotic analysis, given in (2.64). The convergence of the error as ϵ → 0 is

approximately sublinear, and the gradient on a log-log scale approaches approxi-
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mately 0.5 (can be calculated based on the last two points of smaller ϵ values from

the log-log plot using MATLAB).

2.5 Conclusion

This chapter discussed and analysed the simple clock reaction (fast and slow)

model by extending the work of Kerr et al. [27], to include hydrogen peroxide in

the model explicitly and assuming that the rate of the slow reaction is linear in

both iodine and hydrogen peroxide concentrations based on experimental findings

in this regime [16]. The asymptotic solutions and numerical simulations showed

good agreement within the specified time regions. Furthermore, we developed a

switchover time formula to identify the key event when the clock reaction occurs

and the dark blue appears. The formula can be viewed as a refinement of a result

contained in the recent paper of Parra Cordova and Peña [40], additionally taking

account of the effect of the initial molecular iodine level.

The next chapter will explore how the hydrogen peroxide levels influence whether

the slow reaction kinetics are effectively quadratic or linear. To gain insight into

this process, we analyse the slow reaction in isolation.
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Chapter 3

Model ISR: Slow Reaction Model

In Isolation With Moderate and

High Hydrogen Peroxide

3.1 Motivation

As previously described, recent work by Kerr et al. [27] conducted the clock

reaction experiments using concentrations of hydrogen peroxide (P ) in great excess

compared to the other reactants. The authors showed that a mathematical model

where the slow reaction rate was proportional to D2 matched the data (using the

law of mass action, rate ∝ D2). However, Copper and Koubek [16] found linear

kinetics in experiments with moderate hydrogen peroxide (P ) concentration (due

to the rate-limiting step in the slow reaction, the rate ∝ DP ). This chapter will

address the question of when the chemical slow reaction converting iodide to iodine

should be quadratic in iodide or linear and the potential role of hydrogen peroxide
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concentration. By focusing on the slow reaction in more detail, we demonstrate

how the order of the ratio of hydrogen peroxide to iodide determines when linear

kinetics apply and when quadratic kinetics apply. As a result, when the ratio

of hydrogen peroxide to iodide is order 1, then the rate of change of iodine (I)

is linear in terms of the concentration of hydrogen peroxide (P ) and iodide (D).

When the ratio of hydrogen peroxide to iodide is order ϵ−1 then the overall iodide

to iodine reaction will emerge as being quadratic.

3.2 Extended Model Formulation For The Slow

Reaction

As stated in Chapter 2, there are two chemical reactions that occur in the vitamin C

clock reaction: the slow reaction when iodide ions are converted to iodine molecules

in the presence of hydrogen peroxide, and the fast reaction when vitamin C (the

inhibitor) converts iodine to iodide. The main objective of this chapter is to

investigate the slow reaction in isolation and break this down in more detail to

understand the effect of hydrogen peroxide concentration on kinetics. We consider

the modified iodine clock reaction described by [16] for the slow (first) reaction

(2.1),

2H+ + 2I− +H2O2 → I2 + 2H2O, (3.1)

which is a result of the following pair of chemical reactions:

I− +H2O2
k3−→ HOI +OH−, (3.2a)

I− +HOI
k4−→ I2 +OH−. (3.2b)
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We will focus on particular reactants that are essential to the slow chemical re-

action, (3.2), in order to construct our model. In the chemical reaction (3.2a),

the total concentration of iodide (I−) at time t, denoted by D(t) in the model, is

converted to hypoiodous acid (HOI), denoted by Q(t), in the presence of hydro-

gen peroxide (H2O2), denoted by P (t), at a rate given by k3DP . The parameter

k3 is named as the nucleophilic attack rate [16]. In the second chemical reac-

tion (3.2b), the iodide (I−), denoted by D(t), is converted to iodine (I2), denoted

by I(t), in the presence of hypoiodous acid (HOI), denoted by Q(t), at a rate

given by k4DQ. Based on [16] we infer that k3 ≪ k4 and so step (3.2a) is rate

limiting in the overall reaction unless the concentration of hydrogen peroxide is

increased to compensate. Our hypothesis, which we will assess through mathe-

matical modelling, is that the rate limiting nature of (3.2a) in the situation of

moderate hydrogen peroxide results in overall linear rate kinetics, whereas when

the hydrogen peroxide concentration is much greater than other reactants, both

steps (i.e., (3.2a) and (3.2b)) are important in governing the overall rate, resulting

in the quadratic kinetics that would follow from applying the law of mass action

to the overall reaction 2I−+H2O2 → I2+2OH−. We, therefore, have in simplified

form,

D + P
k3DP−−−→ Q, (3.3a)

D +Q
k4DQ−−−→ I. (3.3b)

Several studies have investigated the chemical reactions (3.2) [4, 5, 30, 34, 45, 46,

57]. It has been found that hypoiodous acid (HOI) can be transformed by three

pathways:
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Figure 3.1: Schematic diagram of the transformation pathways of hypoiodous acid
(HOI): (a) oxidation to iodate (IO−

3 ), (b) disproportionation to iodide (I−) and
(IO−

3 ) and (c) reduction to (I−) by hydrogen peroxide (H2O2), adapted from [45].

(a) oxidation to iodate (IO−
3 ) which is the iodine oxoanion,

(b) disproportionation to iodide (I−) and iodate (IO−
3 ),

(c) reduction to iodide (I−) by hydrogen peroxide (H2O2).

Figure 3.1 represents a diagram of the transformation pathways of iodide and

hypoiodous acid. In this study, we are not interested in iodate (IO−
3 ), so we

consider only the third transformation pathway, where hypoiodous acid (HOI)

reduces to iodide (I−) by hydrogen peroxide (H2O2), which is the reverse reaction

as described in [45]:

HOI +H2O2 → I−. (3.4)

In the reverse chemical reaction (3.4), the total concentration of hypoiodous acid

(HOI) at time t, denoted by Q(t), is converted to the iodide (I−), denoted by

D(t), in the presence of hydrogen peroxide (H2O2), denoted by P (t), at a rate

given by k5QP . The simplified form is

Q+ P
k5QP−−−→ D. (3.5)
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Thus, the slow (first) chemical reaction (2.1) is a combination of (3.2) and (3.4),

given by

D + P
k3DP−−−→ Q, (3.6a)

D +Q
k4DQ−−−→ I, (3.6b)

Q+ P
k5QP−−−→ D. (3.6c)

Based on the above formulations and applying the law of mass action to (3.6),

the model is given by the following system of nonlinear differential equations

(named Model ISR referring to isolated slow reaction):

dD

dt
= −k3DP − k4DQ+ k5QP, (3.7a)

dP

dt
= −k3DP − k5QP, (3.7b)

dQ

dt
= k3DP − k4DQ− k5QP, (3.7c)

dI

dt
= k4DQ, (3.7d)

with initial conditions

D(0) = d0, P (0) = p0, Q(0) = q0, I(0) = ι0. (3.8)

We observe that the three equations ((3.7a), (3.7c), (3.7d)) for iodide, hypoiodous

acid and iodine yield the following conservation law,

d

dt
(D +Q+ 2I) = 0. (3.9)
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We deduce that D(t)+Q(t)+2I(t) is conserved. We represent the total concentra-

tion of iodine atoms in the reaction by n0 = d0+ q0+2ι0. Hence, the variable I(t)

will be eliminated from the model (3.7) by substituting I(t) = 1/2
[
n0−D(t)−Q(t)

]
into (3.7), thus the Model ISR can be reduced to

dD

dt
= −k3DP − k4DQ+ k5QP, (3.10a)

dP

dt
= −k3DP − k5QP, (3.10b)

dQ

dt
= k3DP − k4DQ− k5QP. (3.10c)

It is instructive to non-dimensionalize the system by choosing the following scalings

(in particular, we choose the timescale based on the final step producing iodine),

D = n0D
∗, P = p0P

∗, Q = n0Q
∗, t =

t∗

k4n0

, (3.11)

where ∗ denotes a dimensionless quantity. Substituting (3.11) into (3.10) leads to

the dimensionless system,

dD∗

dt∗
= −ϵαD∗P ∗ −D∗Q∗ + ϵβαQ∗P ∗, (3.12a)

dP ∗

dt∗
= −ϵD∗P ∗ − ϵβQ∗P ∗, (3.12b)

dQ∗

dt∗
= ϵαD∗P ∗ −D∗Q∗ − ϵβαQ∗P ∗, (3.12c)

where the dimensionless parameters are

ϵ =
k3
k4

, ϵβ =
k5
k4

and α =
p0
n0

. (3.13)
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As mentioned earlier that k3 ≪ k4, the reaction converting iodide (D) to hy-

poiodous acid (Q) is much slower than the reaction converting iodide (D) to io-

dine (I), therefore, ϵ ≪ 1. The parameter β is order 1, and the magnitude of

the parameter α determines whether the situation is moderate or high hydrogen

peroxide. The initial conditions become

D∗(0) = d∗0, P ∗(0) = 1, Q∗(0) = q∗0, (3.14)

with

d∗0 =
d0
n0

, q∗0 =
q0
n0

. (3.15)

We consider the specific situation in which all the initial substrate is in the iodide

(D) form and the product (I) and intermediate (Q) are absent. Thus, N0 ≈ D0,

and it follows that D∗(0) = 1 and Q∗(0) = 0, and hence α = p0/d0. Figure 3.2

shows the numerical simulation of the model (3.12) with different values of ϵ.

From this point forward, we drop stars for ease of notation. The primary dis-

tinction between the HPL Model (2.11) (stated in Chapter 2) and the ISR Model

(3.12) is that the HPL Model explicitly incorporates hydrogen peroxide at moder-

ate concentrations of the simple clock reaction (slow and fast reactions), while the

ISR Model is structured to examine the affects of hydrogen peroxide on kinetics by

analyzing the slow reaction in isolation. One of the main objectives of this study

is to demonstrate how numerical simulations and asymptotic analysis can reveal

the key features of a chemical reaction model and lead to a simplified model that

captures the observed dynamics of the full chemical reaction model. In Section

3.3, we will study the situation of moderate hydrogen peroxide concentration and,

in Section 3.4, the high hydrogen peroxide concentration to determine the overall
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so if Q starts at 0 then it would be expected to be no larger than O(ϵ). In addition,

Figure 3.2 illustrates that hydrogen peroxide (P ) concentration is decreasing to

stay low whereas iodide (D) concentration is decreasing, eventually, going to zero.

3.3.1 Asymptotic Analysis

As in Chapter 2, we will apply the technique of matched asymptotic expansion to

construct approximate solutions of the model (3.12).

Region I: Initial Adjustment

The first region can be described as where the independent variable t is order 1

(t = O(1)), the dependent variablesD,P are order 1, andQ is order ϵ (D,P = O(1)

and Q = O(ϵ), so Q = ϵQ̃). It follows that the model (3.12) with variables rescaled,

the system in Region I, takes the form

dD

dt
= −ϵαDP − ϵDQ̃+ ϵ2βαQ̃P, (3.16a)

dP

dt
= −ϵDP − ϵ2βQ̃P, (3.16b)

ϵ
dQ̃

dt
= ϵαDP − ϵDQ̃− ϵ2βαQ̃P. (3.16c)

Seeking a solution of the form (asymptotic expansions):

D = D0+ϵD1+ϵ2D2+..., P = P0+ϵP1+ϵ2P2+..., and Q̃ = Q̃0+ϵQ̃1+ϵ2Q̃2+...,

(3.17)
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we find that at the leading order,

dD0

dt
= 0, (3.18a)

dP0

dt
= 0, (3.18b)

dQ̃0

dt
= αD0P0 −D0Q̃0, (3.18c)

with the initial conditions:

D0(0) = 1 P0(0) = 1 and Q̃0(0) = 0. (3.19)

Equations (3.18a) and (3.18b) combined with the initial conditions (3.19) imme-

diately yield

D0 = 1 and P0 = 1 for all t. (3.20)

By substituting (3.20) into (3.18c), we obtain

dQ̃0

dt
= α− Q̃0. (3.21)

Using the separation of variables method with the initial conditions in (3.19) gives

Q̃0 = α
(
1− e−t

)
. (3.22)
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Therefore, the asymptotic solutions in Region I are as follows:

D(t) = 1 +O(ε), (3.23a)

P (t) = 1 +O(ε), (3.23b)

Q̃(t) = α
(
1− e−t

)
+O(ε). (3.23c)

It is clear from equation (3.22) that Q̃0 rapidly approaches α, corresponding to

balance (quasi-equilibrium) in the production and removal of Q̃ at leading order.

Hence, as t → ∞, D0 → 1, P0 → 1 and Q̃0 → α. In terms of the chemical

species in Region I, we are seeing the establishment of a quasi-equilibrium before

the slower process of conversion of D to I can take place in multi-step reactions

(3.6).

Region II: Long-term Behaviour

The conversion of D to I takes place on a longer timescale O(1/ϵ); we refer to this

process as Region II. We will address the long-term analysis for the model (3.12),

in which t = O(ϵ−1). Denoting, τ = ϵt with D̆(τ) = D(τ/ϵ), P̆ (τ) = P (τ/ϵ), and

Q̆(τ) = Q̃(τ/ϵ) where Q̃ = ϵ−1Q, the system becomes

ϵ
dD̆

dτ
= −ϵαD̆P̆ − ϵD̆Q̆+ ϵ2βαQ̆P̆ , (3.24a)

ϵ
dP̆

dτ
= −ϵD̆P̆ − ϵ2βQ̆P̆ , (3.24b)

ϵ2
dQ̆

dτ
= ϵαD̆P̆ − ϵD̆Q̆− ϵ2βαQ̆P̆ . (3.24c)
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Again, seeking a solution in the form of the asymptotic expansions:

D̆ = D̆0 + ϵD̆1 + ..., P̆ = P̆0 + ϵP̆1 + ..., and Q̆ = Q̆0 + ϵQ̆1 + ..., (3.25)

we find that at leading order,

dD̆0

dτ
= −αD̆0P̆0 − D̆0Q̆0, (3.26a)

dP̆0

dτ
= −D̆0P̆0, (3.26b)

0 = αD̆0P̆0 − D̆0Q̆0. (3.26c)

Solving (3.26c) for Q̆0 gives

Q̆0 = αP̆0, (3.27)

and substituting (3.27) into (3.26a) yields

dD̆0

dτ
= −2αD̆0P̆0, (3.28)

and, hence, dividing (3.28) by (3.26b) yields

dD̆0

dP̆0

= 2α. (3.29)

By matching to Region I solutions in (3.23) to find the constant of integration, we

have,

D̆0 = 2αP̆0 + (1− 2α) . (3.30)
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Substituting (3.30) into (3.26b) yields

dP̆0

dτ
= −P̆0

[
2αP̆0 + (1− 2α)

]
. (3.31)

The equation (3.31) has two equilibria

P̆0 = 0 and P̆0 = 1− 1

2α
. (3.32)

We are interested in the equilibrium P̆0 = 1− 1/2α which is asymptotically stable

when the slope of the equation (3.31) at the equilibrium P̆0 = 1− 1/2α is negative

(i.e., (1− 2α) < 0 if α > 1/2). Equation (3.31) has the following solution

1

(1− 2α)
ln

∣∣∣∣2αP̆0 + (1− 2α)

P̆0

∣∣∣∣ = τ + c5, (3.33)

and the constant of integration can be determined from the matching condition

(c5 = 0). We constrain α > 1/2, then we note that the term in the modulus

sign starts out positive when P̆0 = 1 and remains positive until the asymptotically

stable equilibrium P̆0 = 1 − 1/2α is reached. We can therefore restrict to the

positive case only. It yields

∣∣∣∣2αP̆0 + (1− 2α)

P̆0

∣∣∣∣ = 2αP̆0 + (1− 2α)

P̆0

if α > 1/2, (3.34)

and, hence,

ln

(
2αP̆0 + (1− 2α)

P̆0

)
= (1− 2α) τ, (3.35)
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or equivalently

2αP̆0 + (1− 2α)

P̆0

= e(1−2α)τ . (3.36)

Solving for P̆0 (where α > 1/2) yields

P̆0 =
(2α− 1)

2α− e−(2α−1)τ
. (3.37)

Now, substituting (3.37) back into (3.30) and (3.27) to find D̆0 and Q̆0:

D̆0 =
2α (2α− 1)

2α− e−(2α−1)τ
− (2α− 1) , (3.38a)

Q̆0 =
α (2α− 1)

2α− e−(2α−1)τ
. (3.38b)

Therefore, the asymptotic solutions in Region II are as follows:

D̆(τ) =
2α (2α− 1)

2α− e−(2α−1)τ
− (2α− 1) +O(ε), (3.39a)

P̆ (τ) =
(2α− 1)

2α− e−(2α−1)τ
+O(ε), (3.39b)

Q̆(τ) =
α (2α− 1)

2α− e−(2α−1)τ
+O(ε). (3.39c)

Hence, if α > 1/2, then as τ → ∞: D̆0 → 0, P̆0 → (2α− 1) /2α, and Q̆0 →

(2α− 1) /2, which means once the iodide (D) is exhausted, then the slow chemical

reaction (3.6) can no longer occur as there is no remaining reactant.

Significantly, substituting the expression (3.27) into (3.7d), we find that at

leading order the asymptotic analysis in Region II leads to

dI

dt
∝ DP. (3.40)
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Hence, the main conclusion that can be drawn is that when α = p0/d0 is order 1,

the rate of change of iodine (I) is linear in terms of the concentration of hydro-

gen peroxide (P ) and iodide (D). Importantly, this result is consistent with the

experimental data in [16], and validates the model used in Chapter 2 of this thesis.

Comparison Of Asymptotic And Numerical Approximations

The Matlab ode45 solver is utilized for computing a numerical solution given initial

conditions D(0) = 1, P (0) = 1 and Q̃(0) = 0, along with dimensionless parameters

α = 0.7 and β = 0.9 incorporating the reaction rate ratio ϵ, these values are

chosen arbitrarily. Figure 3.3 depicts how the matching between the asymptotic

approximation solution in (3.23) and numerical simulation for the model (3.16)

gets better for smaller values of ϵ. For more quantitative analysis, Figure 3.4

illustrates the errors (difference between the numerical solution and asymptotic

approximation for each variable) as a function of ϵ on a log-log scale. The log-

log plot is a useful tool for visualizing how the errors decrease as the parameter

ϵ gets smaller and analyzing the slope of the errors curves to understand the

convergence behaviour. In this case, the absolute errors have been calculated by

the infinity norm (defined as the maximum absolute value), ∥ynum − yasymp∥∞ =

max |ynum − yasymp|, from the time points outputted by ode45. It yields

log ∥ynum − yasymp∥∞ = c+ b log ϵ. (3.41)

Hence,

∥ynum − yasymp∥∞ = aϵb. (3.42)
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Figure 3.6: The difference between numerical solution of the model (3.24) and
asymptotic approximation in (3.39) for each variable as a function of ϵ values on
a log-log scale, over period of time [0, 1000]. The initial conditions D̆(0) = 1,
P̆ (0) = 1 and Q̆(0) = α, and dimensionless parameter values β = 0.9 and α = 0.7.

(D) and hydrogen peroxide (P ) concentrations. In this section, we will be looking

at the qualitative analysis of the model (3.12) when there is an excess of hydrogen

peroxide (P ) concentration in the model (3.12), so α = O(ϵ−1).

3.4.1 Asymptotic Analysis

Denoting, α̂ = ϵα (i.e., α̂ = O(1)), the system becomes

dD

dt
= −α̂DP −DQ+ α̂βQP, (3.46a)

dP

dt
= −ϵDP − ϵβQP, (3.46b)

dQ

dt
= α̂DP −DQ− α̂βQP. (3.46c)
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yields the following leading order behaviour

dD0

dt
= −α̂D0P0 −D0Q0 + α̂βQ0P0, (3.48a)

dP0

dt
= 0, (3.48b)

dQ0

dt
= α̂D0P0 −D0Q0 − α̂βQ0P0. (3.48c)

We can solve equation (3.48b) directly, obtaining the solution P0 = 1. Hence,

dD0

dt
= −α̂D0 −D0Q0 + α̂βQ0, (3.49a)

dQ0

dt
= α̂D0 −D0Q0 − α̂βQ0. (3.49b)

As we have been unable to solve (3.49) analytically, we instead explore its nu-

merical solution to determine the behaviour of these variables that will enable

us to determine the appropriate scalings for the next regime. Solving the above

equations in (3.49) numerically is illustrated in Figure 3.8. It demonstrates the

proportional relationship between the two variables: (Q0 ∝ D0). As Q0 increases,

D0 increases at the same rate, and the constant of proportionality is the value

that relates the two amounts. The ratio of Q0 to D0 is equivalent to 1/β when

D0 ≤ 0.025. In addition, Table 3.1 indicates the proportional relationship be-

tween the two variables Q0 and D0. Since the relationship is proportional, we can

write an equation in the form Q0 ∼ D0/β to represent it when D0 ≤ 0.025. That

motivates the study of the quasi-steady-state.
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long-term behaviour on Region I:

Since we have been unable to obtain an analytical solution to (3.49), we instead

consider its long-term behaviour to aid with scaling to the next timescale. We use

the scaling D0 = Q0 = O(δ) and t = O(1/δ), where δ = O(ϵ). Denoting D0 = δD̃0,

Q0 = δQ̃0 and t̃ = δt.

dD̃0

dt̃
= −α̂δD̃0 − δ2D̃0Q̃0 + α̂βδQ̃0, (3.50a)

dQ̃0

dt̃
= α̂δD̃0 − δ2D̃0Q̃0 − α̂βδQ̃0. (3.50b)

This implies that dD̃0/dt̃ ≈ 0 ≈ dQ̃0/dt̃, and considering only the leading order

contributions to the variables, it follows that

0 = −α̂δD̃0 − δ2D̃0Q̃0 + α̂βδQ̃0, (3.51a)

0 = α̂δD̃0 − δ2D̃0Q̃0 − α̂βδQ̃0. (3.51b)

Neglecting the δ2 term in (3.51a), we deduce that

D̃0 ≈ βQ̃0, (3.52)

as we anticipated from our earlier numerical investigations. Adding the two equa-

tions (3.50a) and (3.50b) gives

d

dt̃

(
D̃0 + Q̃0

)
= −2δ2D̃0Q̃0, (3.53)
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hence,

d

dt̃

(
D̃0 + Q̃0

)
∝ −D̃0Q̃0. (3.54)

Substituting (3.52) into (3.54) leads to

d

dt̃

(
βQ̃0 + Q̃0

)
∝ −βQ̃2

0, (3.55a)

(β + 1)
dQ̃0

dt̃
∝ −βQ̃2

0. (3.55b)

Using the separation of variables method for integration,

∫
dQ̃0

Q̃2
0

∝
∫

−β

(β + 1)
dt̃, (3.56)

yields,

−1

Q̃0

∝ −β

(β + 1)
t̃. (3.57)

Solving for Q̃0 in (3.57), we have

Q̃0 ∝
1

t̃
, (3.58)

and from (3.52), D̃0 ∝ 1/t̃ also.

Region II: Long-term State

In this section, we will take a look at the long-term analysis for the model (3.46),

in which t = O(ϵ−1). Denoting, τ = ϵt with D̆ = O(ϵ), P̆ = O(1), and Q̆ = O(ϵ),
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thus, the system becomes

ϵ2
dD̆

dτ
= −ϵα̂D̆P̆ − ϵ2D̆Q̆+ ϵα̂βQ̆P̆ , (3.59a)

ϵ
dP̆

dτ
= −ϵ2D̆P̆ − ϵ2βQ̆P̆ , (3.59b)

ϵ2
dQ̆

dτ
= ϵα̂D̆P̆ − ϵ2D̆Q̆− ϵα̂βQ̆P̆ . (3.59c)

We are going to be looking at the leading order of asymptotic analysis as follows

0 = −α̂D̆0P̆0 + α̂βQ̆0P̆0, (3.60a)

dP̆0

dτ
= 0, (3.60b)

0 = α̂D̆0P̆0 − α̂βQ̆0P̆0. (3.60c)

Hence,

P̆0 = 1, (3.61)

and substituting (3.61) into (3.60a) leads to

α̂D̆0 = α̂βQ̆0, (3.62)

yielding,

Q̆0 =
1

β
D̆0. (3.63)

We now consider how this affects the rate of change of iodine in this high peroxide

regime. Substituting the expression (3.63) into (3.7d), we find that at the leading
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3.5 Conclusion

This chapter studied the slow reaction in isolation to understand the effect of the

concentration of hydrogen peroxide on the kinetics by including the hypoiodous

acid reactant and reverse reaction. We exhibited how the order of the ratio of

hydrogen peroxide to iodide determines whether the reaction kinetics are effectively

linear or quadratic, and explains the discrepancies between the two previous studies

by Copper and Koubek [16] and Kerr et al [27]. The main contributions of this

chapter are summarised in Table 3.2.

For the next chapter, we will be incorporating the multi-step model of the

slow reaction with the fast reaction associated with vitamin C to formulate a

unified model of the chemical clock reaction valid for both moderate and hydrogen

peroxide cases. We will again develop an asymptotic analysis, elucidating how the

moderate and hydrogen peroxide regimes differ, leading to approximate switchover

time formulae in each case.
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Chapter 4

Model FCR: Full Model Of

Chemical Clock Reaction With

Moderate and High Hydrogen

Peroxide

4.1 Motivation

The kinetics of the chemical clock reaction (including the slow and fast reactions)

must be fully understood. In Chapter 3, we analysed the slow reaction in isolation

to understand the effect of hydrogen peroxide concentration on the kinetics (i.e.,

Model ISR), by including the hypoiodous acid reactant and reverse reaction. We

now perform asymptotic analysis on the full model of the chemical clock reaction

(slow and fast) with this reverse reaction and associated vitamin C (will be named,

Model FCR), by combining Model ISR and the fast reaction. The analysis will

81



enable us to obtain an approximate formula for the dependence of the switchover

time on the initial concentration of the reactants for both the moderate and high

hydrogen peroxide regimes (from one unified model). This will empower the com-

parison of the full clock reaction model results (Model FCR) to Model HPL (the

simple model with moderate hydrogen peroxide in Chapter 2) which has linear ki-

netics based on experimental data by Copper and Koubek [16], and to the model

with high hydrogen peroxide by Kerr et al., [27] which has quadratic kinetics.

4.2 Model Formulation

The aim of this chapter is to investigate the full model of the chemical clock

reaction with reverse reaction and associated vitamin C and hydrogen peroxide as

follows: The slow (first) reaction is a result of the three reactions (as stated earlier

in Chapter 3, Model ISR) taking the following form

2D + P
k1−→ I


D + P

k3−→ Q,

D +Q
k4−→ I,

Q+ P
k5−→ D,

(4.1)

and the form of the fast (second) reaction (as stated earlier in Chapter 2) is given

by

I + C
k2−→ 2D. (4.2)

Based on the above formulations and applying the law of mass action, the model

is given by the following system of nonlinear differential equations (named Model
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FCR referring to full clock reaction):

dD

dt
= −k3DP − k4DQ+ k5QP + 2k2IC, (4.3a)

dP

dt
= −k3DP − k5QP, (4.3b)

dQ

dt
= k3DP − k4DQ− k5QP, (4.3c)

dC

dt
= −k2IC, (4.3d)

dI

dt
= k4DQ− k2IC, (4.3e)

with initial conditions

P (0) = p0, Q(0) = q0, C(0) = c0, I(0) = ι0. (4.4)

We note that the equations for iodide (D), hypoiodous acid (Q) and iodine (I)

obey the following conservation law,

d

dt
(D +Q+ 2I) = 0. (4.5)

We deduce that D(t) + Q(t) + 2I(t) = d0 + q0 + 2ι0 = n0, where n0 is the total

concentration of iodine atoms. Eliminating the variable D (i.e., D = n0 −Q− 2I)
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in (4.3) we have the reduced system

dP

dt
= −k3 (n0 −Q− 2I)P − k5QP, (4.6a)

dQ

dt
= k3 (n0 −Q− 2I)P − k4 (N0 −Q− 2I)Q− k5QP, (4.6b)

dC

dt
= −k2IC, (4.6c)

dI

dt
= k4 (n0 −Q− 2I)Q− k2IC. (4.6d)

It should be emphasized that the units of the reactants’ concentrations (P,Q,C, I)

are moles per litres (mol/l), the units of time (t) are seconds (s), and the units

of the reaction rates (k2, k3, k4, k5) are liters per moles per seconds (l/mol·s). It

is instructive to non-dimensionalize the system by choosing the following scalings

(in particular, we choose the timescale based on the final step producing iodine),

P = p0P
∗, Q = n0Q

∗, C = c0C
∗, I = n0I

∗, t =
t∗

k2c0
, (4.7)

where ∗ denotes a dimensionless quantity. Substituting (4.7) into (4.6) leads to

the dimensionless system,

dP ∗

dt∗
= −ϵ2σ (1−Q∗ − 2I∗)P ∗ − ϵ2βσQ∗P ∗, (4.8a)

dQ∗

dt∗
= ϵ2ρ (1−Q∗ − 2I∗)P ∗ − ϵγσ (1−Q∗ − 2I∗)Q∗ − ϵ2βρQ∗P ∗, (4.8b)

dC∗

dt∗
= −σI∗C∗, (4.8c)

dI∗

dt∗
= ϵγσ (1−Q∗ − 2I∗)Q∗ − I∗C∗, (4.8d)
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where the dimensionless parameters are

σ =
n0

c0
, ρ =

p0
c0
, ϵ2 =

k3
k2

, ϵ2β =
k5
k2

, ϵγ =
k4
k2

, ϕ =
ι0
n0

. (4.9)

It should be mentioned that the reaction converting iodide (D) to hypoiodous acid

(Q) and the reverse reaction converting hypoiodous acid (Q) to iodide (D) are

much slower than the reaction converting iodide (D) to iodine (I), so k3, k5 ≪ k4.

Furthermore, k4 ≪ k2, because the reaction converting iodide (D) to iodine (I) is

much slower than the fast reaction converting iodine (I) to iodide (D), therefore,

the reaction rate ratio ϵ2 ≪ 1. The parameters β and γ are order 1, and the

magnitude of the parameter ρ determines whether we are considering moderate or

high hydrogen peroxide. The initial conditions become

P ∗(0) = 1, Q∗(0) = q∗0, C∗(0) = 1, I∗(0) = ι∗0, (4.10)

with

q∗0 =
q0
n0

, ι∗0 =
ι0
n0

. (4.11)

We consider the specific situation in which Q is absent initially. It follows that

Q∗(0) = 0 and I∗(0) = ι0/n0 = ϕ. We drop the stars for easier notation. The

main difference between the ISR Model and FCR Model lies on their focus: The

ISR Model (3.7), as stated in Chapter 3, focus on the slow reaction in isolation

to understand the effect of the concentration of hydrogen peroxide on the kinetics

by including the hypoiodous acid reactant and reverse reaction. The FCR Model

(4.8) focus on the full clock reaction incorporating the multi-step model of the slow

reaction with the fast reaction associated with vitamin C to formulate a unified
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model valid for both moderate and hydrogen peroxide cases.

4.3 Asymptotic Analysis

Due to the small reaction rate ratio ϵ2 (i.e., ϵ2 ≪ 1), we can generate an ap-

proximate solution to Model FCR (4.8) via matched asymptotic expansions. The

asymptotic analysis will be divided into four regions and we must also consider

hydrogen peroxide (P ) concentration. In this chapter, we look at the Model FCR

(4.8) in two cases: (1) with moderate hydrogen peroxide, named Model FCR-M-

HP. Note that we use ‘moderate’ here to signify hydrogen peroxide is present in a

similar concentration to other reactants; (2) with high hydrogen peroxide, named

Model FCR-H-HP, through asymptotic analysis. Figure 4.1 illustrates the con-

centrations of the reactants as a function of time for both cases of the model (4.8).

The clock reaction (in which iodine (I) appears after the induction period) occurs

when vitamin C is totally consumed. A logarithmic scale for time in Figure 4.2

exhibits the timescales spanning several orders of magnitude.

4.3.1 Model FCR-M-HP: The Full Model With Moderate

Hydrogen Peroxide

We first consider that there are similar levels of hydrogen peroxide (P ) concentra-

tion in the system to the other reactants. Thus, we assume that ρ is order 1 in

the Model FCR (4.8), where ρ = p0/c0. Since Q remains low as shown in Figure

4.2a, we initially scale Q = ϵQ̃ where Q̃ = O(1).
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of the Model FCR-M-HP (4.12) are:

dP0

dt
= 0, (4.14a)

dQ̃0

dt
= 0, (4.14b)

dC0

dt
= −σI0C0, (4.14c)

dI0
dt

= −I0C0, (4.14d)

with the initial conditions:

P0(0) = 1, Q̃0(0) = 0, C0(0) = 1, I0(0) = ϕ. (4.15)

Equations (4.14a) and (4.14b), alongside their initial conditions yield

P0 = 1, (4.16)

Q̃0 = 0. (4.17)

Dividing (4.14c) by (4.14d) gives the following

dC0

dI0
= σ. (4.18)

Using the separation of variables method, and the initial conditions, yields

C0 = σ (I0 − ϕ) + 1, (4.19)
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and hence,

dI0
dt

= −I0 [σ (I0 − ϕ) + 1] . (4.20)

Using the separation of variables and the partial fraction decomposition for inte-

gration (with ϕ as the lower limit of the integral) leads to

ln

∣∣∣∣ I0
σ (I0 − ϕ) + 1

∣∣∣∣− ln(ϕ) = − (1− σϕ) t. (4.21)

The sign of the argument of natural log is positive because I0 − ϕ > 0. Hence,

I0
σI0 + (1− σϕ)

= ϕe−(1−σϕ)t, (4.22)

yielding,

I0 =
ϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
, (4.23)

and substituting (4.23) into (4.19) leads to

C0 =
σϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
+ (1− σϕ) . (4.24)

It follows that the approximate solutions on Region I are:

P (t) = 1 +O(ϵ), (4.25a)

Q(t) = 0 +O(ϵ), (4.25b)

C(t) =
σϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
+ (1− σϕ) +O(ϵ), (4.25c)

I(t) =
ϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
+O(ϵ). (4.25d)
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As t → ∞ we observe that (P0(t), Q0(t), C0(t), I0(t)) → (1, 0, 1− σϕ, 0). During

the initial adjustment behaviour, approximately σϕ (which in dimensional terms

is ι0/c0, i.e., the initial concentration of iodine per the initial concentration of

vitamin C) of the initial quantity of the inhibitor C is used up. The condition

1 − σϕ > 0 (i.e, ι0/c0 < 1) is essential in order to have enough vitamin C. The

initial adjustment therefore corresponds to consumption of a proportion σϕ of the

initial vitamin C concentration via the fast reaction, which results in converting

the majority of the initial iodine concentration to iodide in order 1 time; the slow

reaction is subleading in this region. In particular, note that I0(t) is exponentially

decaying.

Region Ia: Quasi Equilibrium Established for Q

Following the exponential decay of iodine and vitamin C, the fast reaction no longer

dominates and the slow reaction becomes of comparable importance. A distinctive

feature of the Model FCR-M-HP case as opposed to the Model FCR-H-HP case

is the existence of a region intermediate between the initial adjustment and the

induction period, during which the hypoiodous acid concentration reaches quasi-

equilibrium. This process corresponds to the two forward steps in the slow reaction

balancing in their production and removal of hypoiodous acid (i.e., D + P → Q

and D + Q → I). Therefore, we consider the following scaling: P = C = O(1),

I = O(ϵ2) and t = O(ϵ−1). Denoting τ = ϵt and I = ϵ2Ĩ, then the system takes the

form at leading order (substituting the asymptotic expansions into Model FCR-
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M-HP (4.12)):

dP0

dτ
= 0, (4.26a)

dQ̃0

dτ
= ρP0 − γσQ̃0, (4.26b)

dC0

dτ
= 0, (4.26c)

0 = γσQ̃0 − Ĩ0C0, (4.26d)

with the matching conditions to the Region I solution:

P0(0) = 1, Q̃0(0) = 0, C0(0) = 1− σϕ, Ĩ0(0) = 0. (4.27)

Hence,

P0 = 1, (4.28)

C0 = 1− σϕ. (4.29)

Substituting (4.28) into (4.26b) leads to

dQ̃0

dτ
= ρ− γσQ̃0. (4.30)

Using the separation of variables for integration to solve (4.30):

∫
dQ̃0

ρ− γσQ̃0

=

∫
dτ, (4.31)
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yields,

−1

γσ
ln

∣∣∣∣γσ( ρ

γσ
− Q̃0

) ∣∣∣∣ = τ + c1, (4.32)

where c1 is a constant that can be found by matching to Region I,

c1 =
− ln (ρ)

γσ
. (4.33)

Taking into account the quasi-steady state of (4.30), we see that Q̃0 ≈ ρ/γσ, and

hence ρ/γσ − Q̃0 > 0. Therefore, (4.32) and (4.33) give

Q̃0 =
ρ

γσ

(
1− e−γστ

)
. (4.34)

Substituting (4.29) and (4.34) into (4.26d) yields

Ĩ0 =
ρ

1− σϕ

(
1− e−γστ

)
. (4.35)

It should be noted that as τ → ∞:

(
P0(τ), Q̃0(τ), C0(τ), Ĩ0(τ)

)
→
(
1,

ρ

γσ
, 1− σϕ,

ρ

1− σϕ

)
.

It follows that the approximate solutions for Region Ia are:

P (t) = 1 +O(ϵ), (4.36a)

Q(t) =
ϵρ

γσ

(
1− e−ϵγσt

)
+O(ϵ2), (4.36b)

C(t) = 1− σϕ+O(ϵ), (4.36c)

I(t) =
ϵ2ρ

1− σϕ

(
1− e−ϵγσt

)
+O(ϵ3). (4.36d)

93



Region II: Induction Period

Following the establishment of quasi-equilibrium within the slow reaction, the

system enters the induction period, which is the distinguishing feature of a clock

reaction. During the induction period, the two chemical reactions (4.1) and (4.2)

keep the concentration of iodine (I) low. As iodide (D) is produced rapidly in the

fast (second) chemical reaction (4.2), it removes iodine (I) from the system faster

than it can be produced. As a result of these two reactions, the concentrations of

vitamin C (C) and hydrogen peroxide (P ) are slowly being consumed. Thus, I is

order ϵ2 and t is order ϵ−2 whereas P and C are still of order 1. We rescale T = ϵ2t

and I = ϵ2Ĩ (i.e., t = O(ϵ−2) and I = O(ϵ2)). Therefore, the Model FCR-M-HP

(4.12) takes the following form at the leading order of the asymptotic expansions,

dP0

dT
= −σP0, (4.37a)

0 = ρP0 − γσQ̃0, (4.37b)

dC0

dT
= −σĨ0C0, (4.37c)

0 = γσQ̃0 − Ĩ0C0, (4.37d)

with the matching conditions to Region Ia:

P0(0) = 1, Q̃0(0) =
ρ

γσ
, C0(0) = 1− σϕ, Ĩ0(0) =

ρ

1− σϕ
. (4.38)

We can solve equation (4.37a) directly, obtaining the solution

P0 = e−σT . (4.39)
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Substituting (4.39) into (4.37b) and (4.37d) yields

Q̃0 =
ρ

γσ
e−σT , (4.40)

and, hence,

Ĩ0C0 = ρe−σT . (4.41)

Combining (4.41) and (4.37c) leads to

dC0

dT
= −σρe−σT . (4.42)

Equations (4.41) and (4.42) can be solved to give

C0 = ρe−σT + (1− σϕ− ρ), (4.43)

and,

Ĩ0 =
ρe−σT

ρe−σT + (1− σϕ− ρ)
. (4.44)

The approximate solutions in Region II are, therefore,

P (t) = e−ϵ2σt +O(ϵ), (4.45a)

Q(t) =
ϵρ

γσ
e−ϵ2σt +O(ϵ2), (4.45b)

C(t) = ρe−ϵ2σt + (1− σϕ− ρ) +O(ϵ), (4.45c)

I(t) =
ϵ2ρe−ϵ2σt

ρe−σT + (1− σϕ− ρ)
+O(ϵ3). (4.45d)

One intriguing aspect of the clock reaction model is the exploration of the
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switchover time formula, which reveals the precise moment when the system tran-

sitions from one chemical state to another.

Switchover Time:

We can approximate the switchover time Tsw as being when vitamin C is all con-

sumed at leading order, i.e. C0(Tsw) = 0 in (4.45)) This leads to

ρe−σTsw + (1− σϕ− ρ) ≈ 0, (4.46)

which can be rearranged to give

Tsw =
1

σ
ln

(
ρ

ρ+ σϕ− 1

)
. (4.47)

In dimensional variables (recall (4.7) and (4.9)), we have that the switchover time

is

tsw =
1

k2c0

1

ϵ2 n0

c0

ln

(
p0
c0

p0
c0

+ n0

c0

ι0
n0

− 1

)
, (4.48)

or equivalently (using ϵ2 = k3/k2),

tsw =
1

k3n0

ln

(
p0

p0 + ϕn0 − c0

)
. (4.49)

We consider the sign of (ρ+ σϕ− 1) from (4.47) (where ρ = p0/c0 and σϕ = ι0/c0).

For this to be positive, it follows that ρ > 1−σϕ which satisfies p0+ ι0 > c0. Thus,

there is enough hydrogen peroxide (P ) to drive the vitamin C to zero.

A key result here is that the switchover time formula given in (4.47) is the same

as the simplified linear kinetics model HPL shown earlier in Chapter 2, namely
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equation (2.67).

Region III: Corner

Region III matches the behaviour at the end of the induction period, after the

rapid colour change, with the beginning of the long-term state where all reactants

settle. Region III connects regions II and IV together. Region III occurs when

the two reactions (fast and slow) are in balance (same order of magnitude). The

most suitable structured balance is found when P = O(1) and Q = C = I = O(ϵ),

with the shifted time coordinate t̄ = ϵ−1 (ϵ2t− Tsw). The re-scaled variables are

C̄ = ϵ−1C and Ī = ϵ−1I. Thus, the Model FCR-M-HP (4.12) at leading order

becomes

dP0

dt̄
= 0, (4.50a)

dQ̃0

dt̄
= ρP0 − γσQ̃0, (4.50b)

dC̄0

dt̄
= −σĪ0C̄0, (4.50c)

dĪ0
dt̄

= γσQ̃0 − Ī0C̄0. (4.50d)

Equation (4.50a) indicates that the concentration of hydrogen peroxide (P ) stays

constant between the induction period (Region II) and the long-term state (Region

IV) of the Model FCR-M-HP (4.12) at leading order. We find the following solution

for P0 through the matching condition with Region II (i.e., P (tsw)),

P0 =
ρ+ σϕ− 1

ρ
. (4.51)
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We can also derive the correction term for the variable P :

ϵ2
P̄1

dt̄
= −ϵ2σP̄0, (4.52)

giving

P̄1 = −σP0t̄+ a1, (4.53)

the constant a1 = 0 by matching condition to Region II solutions. This leads to

P = P̄0 + ϵP̄1, (4.54)

=
ρ+ σϕ− 1

ρ
− ϵσ (ρ+ σϕ− 1)

ρ
t̄. (4.55)

Substituting (4.51) into equation (4.50b) gives

dQ̃0

dt̄
= (ρ+ σϕ− 1)− γσQ̃0, (4.56)

yielding,

−1

γσ
ln

∣∣∣∣γσ((ρ+ σϕ− 1)

γσ
− Q̃0

) ∣∣∣∣ = t̄+ c1, (4.57)

where c1 is a constant of integration. Considering the quasi-steady-state of (4.56)

gives

Q̃0 ≈
(ρ+ σϕ− 1)

γσ
, (4.58)

and substituting (4.58) into (4.50d) yields

dĪ0
dt̄

= (ρ+ σϕ− 1)− Ī0C̄0. (4.59)
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Hence, we obtain the following system

dC̄0

dt̄
= −σĪ0C̄0, (4.60a)

dĪ0
dt̄

= (ρ+ σϕ− 1)− Ī0C̄0. (4.60b)

The quantity (ρ+ σϕ− 1) is a positive constant, leading to the expression

d

dt̄

(
σĪ0 − C̄0

)
= σ (ρ+ σϕ− 1) , (4.61)

and, hence,

σĪ0 − C̄0 = σ (ρ+ σϕ− 1) t̄+ c2, (4.62)

where c2 is a constant of integration. Equation (4.60a) becomes the Riccati Equa-

tion [8, 27]:

dC̄0

dt̄
= −

(
σ (ρ+ σϕ− 1) t̄+ c2 + C̄0

)
C̄0. (4.63)

We seek a solution of the form C̄0 = u′/u. By applying the quotient rule and

integration, we come up with the separable differential equation

u′′ = − (σ (ρ+ σϕ− 1) t̄+ c2)u
′. (4.64)

Solving the differential equation, we find the solution

u′ = exp

[
− t̄

(
σ (ρ+ σϕ− 1) t̄

2
+ c2

)]
. (4.65)
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In order to find a solution of C̄0, we substitute (4.65) into C̄0 = u′/u and find

C̄0 =

exp

[
− t̄ (σ (ρ+ σϕ− 1) t̄/2 + c2)

]
∫ t̄

0
exp

[
− s (σ (ρ+ σϕ− 1) s/2 + c2)

]
ds+ c3

. (4.66)

We can express the solution using the error function, where the error function,

denoted by erf, is defined as,

erf(z) =
2√
π

∫ z

0

e−t2dt, (4.67)

and, hence,

C̄0 =

exp

[
− t̄ (σ (ρ+ σϕ− 1) t̄/2 + c2)

]
√
π/2σ (ρ+ σϕ− 1) exp

[
c22/2σ (ρ+ σϕ− 1)

][
erf(f(t̄) + c4

] , (4.68)

where,

f(t̄) =

√
σ (ρ+ σϕ− 1)

2

[
t̄+

c2
σ (ρ+ σϕ− 1)

]
. (4.69)

The constant c4 can be found by analysing the asymptotic form of the error func-

tion [27, 48], which is

erf(x) ∼ 1− e−x2

x−1π−1/2
(
1 +O(x−2)

)
, as x → ∞,

since the error function is odd,

erf(−x) = −erf(x) ∼ −
(
1− e−x2

x−1π−1/2
(
1 +O(x−2)

))
.
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Hence,

erf(f(t̄)) ∼ −1− exp (−f(t̄)2)

f(t̄)
√
π

(
1 +O(f(t̄)−2)

)
as t̄ → −∞. (4.70)

Consequently, substituting (4.70) into (4.68)

C̄0 =

√
2σ (ρ+ σϕ− 1) exp (−f(t̄)2)

√
π
[
− 1− exp (−f(t̄)2)/f(t̄)

√
π (1 +O(f(t̄)−2)) + c4

] ,
where,

exp
(
−f(t̄)2

)
=

exp

[
− t̄ (σ (ρ+ σϕ− 1) t̄/2 + c2)

]
exp

[
c22/2σ (ρ+ σϕ− 1)

] .

Note that as t̄ → −∞, f(t̄) → −∞ and for C̄0 to have a non-zero limit, we must

have c4 = 1. Therefore, the solution can be rearranged as

C̄0 = −
√

2σ (ρ+ σϕ− 1)f(t̄)
(
1 +O(f(t̄)−2)

)
, (4.71)

and by substituting (4.69) into (4.71) gives

C̄0 = −
√

2σ (ρ+ σϕ− 1)

(√
σ (ρ+ σϕ− 1)

2

[
t̄+

c2
σ (ρ+ σϕ− 1)

])

·
(
1 +O(f(t̄)2)

)
. (4.72)

The constant c2 can be found through matching to Region II. In the Region II

variables, we then have

C(T ) = −
√

2σ (ρ+ σϕ− 1)

(√
σ (ρ+ σϕ− 1)

2

[
(T − Tsw) +

ϵc2
σ (ρ+ σϕ− 1)

])
,
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hence, c2 = 0. The solution for C̄0 is

C̄0 =

exp

[
− σ (ρ+ σϕ− 1) t̄2/2

]
√

π/2σ (ρ+ σϕ− 1)

[
erf
(√

σ (ρ+ σϕ− 1) /2 t̄
)
+ 1

] . (4.73)

Substituting (4.73) into (4.62), the solution for Ī0 is

Ī0 =

exp

[
− σ (ρ+ σϕ− 1) t̄2/2

]
σ
√

π/2σ (ρ+ σϕ− 1)

[
erf
(√

σ (ρ+ σϕ− 1) /2 t̄
)
+ 1

]
+ (ρ+ σϕ− 1) t̄. (4.74)

The approximate solutions in Region III in the original variables are, therefore,

P (t) =
ρ+ σϕ− 1

ρ
− σ (ρ+ σϕ− 1)

ρ

(
ϵ2t− Tsw

)
, (4.75a)

Q(t) =
ϵ (ρ+ σϕ− 1)

γσ
, (4.75b)

C(t) =

ϵ
√

2σ (ρ+ σϕ− 1) exp

[
− σ (ρ+ σϕ− 1) ϵ−2 (ϵ2t− Tsw)

2
/2

]
√
π

[
erf
(√

σ (ρ+ σϕ− 1) /2 ϵ−1 (ϵ2t− Tsw)
)
+ 1

] , (4.75c)

I(t) =

ϵ
√

2σ (ρ+ σϕ− 1) exp

[
− σ (ρ+ σϕ− 1) ϵ−2 (ϵ2t− Tsw)

2
/2

]
σ
√
π

[
erf
(√

σ (ρ+ σϕ− 1) /2 ϵ−1 (ϵ2t− Tsw)
)
+ 1

]
+ (ρ+ σϕ− 1)

(
ϵ2t− Tsw

)
. (4.75d)
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Region IV: Long-term State

Region IV characterises the long-term state of the system. Our predictions are that

the solutions will tend towards the equilibrium point as t → ∞ and there will be

some of the reactants left over from the reactions after the colour change. All the

reactants return to being of O(1), however, t = O(ϵ−2), indicating T = ϵ2t. Then

the system is composed as follows at the leading order of asymptotic analysis:

dP0

dT
= −σ (1− 2I0)P0, (4.76a)

0 = ρ (1− 2I0)P0 − γσ (1− 2I0) Q̃0, (4.76b)

0 = −σI0C0, (4.76c)

dI0
dT

= γσ (1− 2I0) Q̃0. (4.76d)

We will prove that Cn = 0 for all n = 0, 1, 2, ... by induction. We substitute the

asymptotic expansions into (4.76c) before the leading-order terms are taken:

ϵ2
(
dC0

dT
+ ϵ

dC1

dT
+ ϵ2

dC2

dT
+ ...

)
= −σ

(
I0 + ϵI1 + ϵ2I2 + ...

)
·
(
C0 + ϵC1 + ϵ2C2 + ...

)
, (4.77)

We assume that I0 ̸= 0 (which is clear from the numerical solutions). For the case

n = 0,

0 = −σI0C0, (4.78)

we must have that C0 = 0 as I0 ̸= 0. For the case n = 1,

0 = −σ (ϵI0C1 + ϵI1C0) , (4.79)
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we must have that C1 = 0 since C0 = 0 and I0 ̸= 0. In general at O(ϵn),

dCn−2

dT
= −σ (I0Cn + ...+ InC0) . (4.80)

Hence C0 = ... = Cn−2 = 0 implies Cn = 0. By induction, we have found Cn = 0

for all n. As a result, C ≈ 0 at all orders of ϵ when I = O(1) and t = O(ϵ−2).

This result implies that the vitamin C reactant in Region IV has the asymptotic

approximation solution as

C(T ) = 0. (4.81)

Rewriting (4.76b) obtains

ρ (1− 2I0)P0 = γσ (1− 2I0) Q̃0, (4.82)

yielding,

ρ

γσ
P0 = Q̃0. (4.83)

Substituting (4.82) into (4.76d) gives,

dI0
dT

= ρ (1− 2I0)P0, (4.84)

and dividing (4.76a) by (4.84) gives

dP0

dI0
=

−σ

ρ
,
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which has the following solution

P0 =
−σ

ρ
I0 + b1, (4.85)

where b1 is a constant that can be found by matching the condition to Region II

(P0(Tsw) = e−σTsw):

b1 = e−σTsw .

(where Tsw is given in (4.47)). Hence,

b1 =
(ρ+ σϕ− 1)

ρ
. (4.86)

We will retain the notation b1 for the rest of the calculation for shortness. Substi-

tuting (4.85) into (4.76a),

dP0

dT
= −σP0

[
1− 2ρ

σ
(−P0 + b1)

]
, (4.87)

which when rearranged leads to

dP0

dT
= P0

[
− 2ρP0 + (2ρb1 − σ)

]
. (4.88)

Using the separation of variables and the partial fraction decomposition, the equa-

tion (4.88) can be solved to give:

−1

(2ρb1 − σ)
ln

∣∣∣∣2ρP0 − (2ρb1 − σ)

P0

∣∣∣∣ = T + b2, (4.89)
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where b2 is a constant that could be found by matching the condition to Region

II (where P0(Tsw) = b1). Noting that P0 ≫ 0 and P0 = b1 > 0, it follows that the

term inside the modulus sign is initially positive, so we deduce that

ln

[
2ρP0 − (2ρb1 − σ)

P0

]
= − (2ρb1 − σ) (T + b2) . (4.90)

The constant b2 is then calculated to be,

b2 =
1

(2ρb1 − σ)
ln

(
b1
σ

)
− Tsw. (4.91)

Using the natural logarithm properties and the fact that the natural logarithm is

the inverse of the exponential function, and then solving for P0 in equation (4.90)

gives

P0 =
(2ρb1 − σ)

2ρ− e−(2ρb1−σ)(T+b2)
, (4.92)

substituting (4.92) into (4.83) and (4.85) yields

Q̃0 =
ρ

γσ

[
(2ρb1 − σ)

2ρ− e−(2ρb1−σ)(T+b2)

]
, (4.93)

I0 =
ρ

σ

[
− (2ρb1 − σ)

2ρ− e−(2ρb1−σ)(T+b2)
+ b1

]
. (4.94)

Moreover, substituting (4.91) into (4.92), then the long-timescale solution for hy-

drogen peroxide can be expressed as follows:

P0(T ) =
2ρb1 − σ

2ρ− (σ/b1) exp

[
− (2ρb1 − σ) (T − Tsw)

] , (4.95)
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and, hence,

I0(T ) = ρb1


1− exp

[
− (2ρb1 − σ) (T − Tsw)

]

2ρb1 − σ exp

[
− (2ρb1 − σ) (T − Tsw)

]
 . (4.96)

Two cases can be distinguished in equations (4.95) and (4.96). The first case is if

(2ρb1 − σ) > 0, i.e. there is sufficient hydrogen peroxide remaining following the

switchover time, then in the limit as T → ∞,

P0(T ) ∼
2ρb1 − σ

2ρ
=

2 (ρ− 1) + σ (2ϕ− 1)

2ρ
, (4.97a)

I0(T ) ∼
1

2
, (4.97b)

as a result, it means that all of the iodide and hypoiodous acid is converted to

molecular iodine.

The second case is if however (2ρb1 − σ) < 0, i.e. there is insufficient hydrogen

peroxide remaining following the switchover time, then in the limit as T → ∞,

P0(T ) ∼ 0, (4.98a)

I0(T ) ∼
ρb1
σ

=
ρ+ σϕ− 1

σ
. (4.98b)

We consider the first case, where there must be sufficient hydrogen peroxide to

convert all iodide to iodine by the end of the whole process of the clock reaction.

The condition (2ρb1 − σ) > 0 is required and equivalent to p0 > (n0/2) + c0 − ι0

in dimensional variables. In summary, the leading order of Region IV solutions
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which represent the long-term evolution of the system are,

P0(T ) =
2 (ρ− 1) + σ (2ϕ− 1)

2ρ−
(

σρ
ρ+σϕ−1

)
exp

[
− (2 (ρ− 1) + σ (2ϕ− 1)) (T − Tsw)

] , (4.99a)

Q̃0(T ) =
ρ

γσ

 2 (ρ− 1) + σ (2ϕ− 1)

2ρ−
(

σρ
ρ+σϕ−1

)
exp

[
− (2 (ρ− 1) + σ (2ϕ− 1)) (T − Tsw)

]
 ,

(4.99b)

C0(T ) = 0, (4.99c)

I0(T ) = (ρ+ σϕ− 1) (1− exp [− (2 (ρ− 1) + σ (2ϕ− 1)) (T − Tsw)])

· ((ρ+ σϕ− 1)− σ exp [− (2 (ρ− 1) + σ (2ϕ− 1)) (T − Tsw)])
−1 ,

(4.99d)

where Tsw is given in equation (4.47). Alternatively, in the original variables, the

approximate solutions in Region IV are, therefore,

P (t) =
(2ρb1 − σ)

2ρ− e−(2ρb1−σ)(ϵ2t+b2)
+O(ϵ), (4.100a)

Q(t) =
ϵρ

γσ

[
(2ρb1 − σ)

2ρ− e−(2ρb1−σ)(ϵ2t+b2)

]
+O(ϵ2), (4.100b)

C(t) = 0 +O(ϵn), for all n > 0, (4.100c)

I(t) =
ρ

σ

[
− (2ρb1 − σ)

2ρ− e−(2ρb1−σ)(ϵ2t+b2)
+ b1

]
+O(ϵ), (4.100d)

108



where the constants b1 and b2 are given in equations (4.86) and (4.91).

Comparison Of Asymptotic And Numerical Approximations Of Model

FCR-M-HP

Matlab (ode45 solver) is used to calculate a numerical solution with initial con-

ditions P (0) = 1, Q(0) = 0, C(0) = 1 and I(0) = ϕ, and the dimensionless

parameter values are γ = 0.7, β = 0.6, ρ = 2, σ = 0.8, ϕ = 0.2 (iodide:iodine

ratio) and ϵ = 0.01 (the reaction rate ratio), these values are chosen arbitrarily.

The numerical solutions are compared with the asymptotic solutions found for

each region.

A comparison of the asymptotic and numerical solution of the model (4.12) is

shown in Figure 4.3. The Region I and Region I-a solutions follow the numerical

approximation very closely up to around t = 400. The Region II solution then

follows the numerical solution up to around t = 5, 000. At the end of Region II

(induction period), the switchover time point occurs when the concentration of

the clock chemical reaction iodine (I) increases after the concentration of vitamin

C (C) has been used. It illustrates that t = 7, 000. The Region III solution then

closely follows the numerical solution around the switchover time t = 7, 000, up to

around t = 8, 000. After that, the agreement between the numerical and asymp-

totic solutions is excellent, using the shifted time coordinate t = ϵ−2 (ϵt̄+ Tsw),

in Region IV. Importantly, the matching between the numerical and asymptotic

solutions is becoming more adequate for smaller values of ϵ (examples not shown

for brevity).

Figure 4.4 depicts the intersecting point of C and I from the numerical solu-

tion of the model (4.12) and the evaluated switchover time (tsw); there is excellent
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agreement. Figure 4.5 plots the relative error between the asymptotic approxima-

tion of the switchover time formula (4.47) and the switchover time point computed

from the numerical solution of the model (4.12), as a function of ϵ. The conver-

gence of the error as ϵ → 0 is approximately linear, and the gradient on a log-log

scale is approximately 1.

A log-log plot can be used to visualize how errors decrease as ϵ decreases. In

this case, the relative errors have been calculated by

|Tnum − Tasymp|
Tasymp

,

where Tnum represents the switchover time point computed from the numerical

solution of the model (4.12) and Tasymp represents the switchover time formula

derived through asymptotic analysis, given in (4.47). It yields

|Tnum − Tasymp|
Tasymp

≈ ϵ1,

because the slope (gradient) on a log-log scale is ≈ 1 (is calculated based on the

last two points of smaller ϵ values from the log-log plot using MATLAB). This

result is consistent with taking only the leading-order terms of the asymptotic

expansion approach, as we expected the convergence to be O(ϵ).

4.3.2 Model FCR-H-HP: The Full Model With High Hy-

drogen Peroxide

We consider, now, that there is a high hydrogen peroxide (P ) concentration in

the system. Thus, we assume that ρ is order ϵ−1 in the Model FCR (4.8), where
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ρ = p0/c0, denoting ρ̂ = ϵρ. We obtain the following model, named Model FCR-

H-HP:

dP

dt
= −ϵ2σ (1−Q− 2I)P − ϵ2βσQP, (4.101a)

dQ

dt
= ϵρ̂ (1−Q− 2I)P − ϵγσ (1−Q− 2I)Q− ϵβρ̂QP, (4.101b)

dC

dt
= −σIC, (4.101c)

dI

dt
= ϵγσ (1−Q− 2I)Q− IC. (4.101d)

The initial conditions are as follows:

P (0) = 1, Q(0) = 0, C(0) = 1, I(0) = ϕ. (4.102)

Figure 4.1b illustrates the concentrations of the reactants as a function of time, for

the high hydrogen peroxide model (4.101). The clock reaction (in which iodine (I)

appears after the induction period) occurs when vitamin C is totally consumed.

It reveals when ρ = O(ϵ−1), the hydrogen peroxide (P ) concentration stays high

whereas hypoiodous acid (Q) concentration is not low at the beginning of the

reaction, however, it decreases slowly, and eventually goes to zero. Similar to

the previous section, Model FCR-H-HP (4.101) will be analysed through four

asymptotic regions in detail in the following sections.

Region I: Initial Adjustment

The first region can be defined as where the dependent variables I, C, P are order

1, Q is order ϵ and the independent variable t = O(1). Re-scaling Q = ϵQ̃. The

leading order terms for the asymptotic expansion of the Model FCR-H-HP (4.101)

113



are:

dP0

dt
= 0, (4.103a)

dQ̃0

dt
= ρ̂ (1− 2I0)P0, (4.103b)

dC0

dt
= −σI0C0, (4.103c)

dI0
dt

= −I0C0. (4.103d)

As stated in the analysis of the Model FCR-M-HP section, this yields

P0 = 1, (4.104)

I0 =
ϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
, (4.105)

and,

C0 =
σϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
+ (1− σϕ) . (4.106)

Substituting (4.104) and (4.105) into (4.103b) leads to the separable ordinary

differential equation,

dQ̃0

dt
= ρ̂

[
1− 2ϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t

]
, (4.107)

with solution,

Q̃0 = ρ̂t− 2ρ̂

σ
ln
(
1− σϕe−(1−σϕ)t

)
+

2ρ̂

σ
ln (1− σϕ). (4.108)
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We observe that as t → ∞,

(
P0(t), Q̃0(t), C0(t), I0(t)

)
→ (1, ρ̂t, (1− σϕ) , 0) .

It follows that the approximation solutions at Region I are:

P (t) = 1 +O(ϵ), (4.109a)

Q(t) = ϵ

[
ρ̂t− 2ρ̂

σ
ln
(
1− σϕe−(1−σϕ)t

)
+

2ρ̂

σ
ln (1− σϕ)

]
+O(ϵ2), (4.109b)

C(t) =
σϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
+ (1− σϕ) +O(ϵ), (4.109c)

I(t) =
ϕ (1− σϕ) e−(1−σϕ)t

1− σϕe−(1−σϕ)t
+O(ϵ). (4.109d)

Region II: Induction Period

The second region can be represented as where the dependent variables Q,C, P

are order 1, I is order ϵ and the independent variable t = O(ϵ−1), i.e., we re-scale

I = ϵĨ and t = ϵ−1τ . The leading order for the asymptotic expansion of the Model

FCR-H-HP (4.101) takes the form,

dP0

dτ
= 0, (4.110a)

dQ0

dτ
= ρ̂ (1−Q0)P0 − γσ (1−Q0)Q0 − βρ̂Q0P0, (4.110b)

dC0

dτ
= −σĨ0C0, (4.110c)

0 = γσ (1−Q0)Q0 − Ĩ0C0. (4.110d)
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Note that the C0 equation (i.e., (4.110c)) is balanced. We can solve the equation

(4.110a) directly by matching to Region I, obtaining the solution

P0 = 1, (4.111)

and substituting (4.111) into (4.110b) yields

dQ0

dτ
= ρ̂ (1−Q0)− γσ (1−Q0)Q0 − βρ̂Q0, (4.112)

which can be written as

dQ0

dτ
= Q0 (γσQ0 − a) + ρ̂, (4.113)

where,

a = ρ̂ (1 + β) + γσ. (4.114)

Solving (4.113) through integration, we find the following,

2√
4γσρ̂− a2

arctan

[
2γσQ0 − a√
4γσρ̂− a2

]
= τ + c1, (4.115)
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where c1 is the constant of integration, and the expression under the square root

is negative since a2 − 4γσρ̂ is positive because

a2 − 4γσρ̂ = ρ̂2 (1 + β)2 + σ2γ2 + 2γσρ̂ (β − 1)

= ρ̂2 (1 + β)2 + σ2γ2 + 2γσρ̂ (β − 1) + ρ̂2 (β − 1)2 − ρ̂2 (β − 1)2

= (ρ̂ (β − 1) + γσ)2 + 4βρ̂2

> 0. (4.116)

Equation (4.115) can be expressed as

1

ib
arctan

[
1

ib

(
γσQ0 −

a

2

)]
= τ + c1. (4.117)

The constant b is real-valued given by

b =

√
a2 − 4γσρ̂

2
. (4.118)

Therefore, the solution for Q0 is

Q0 =
ib

γσ
tan

[
ib (τ + c1)

]
+

a

2γσ
. (4.119)

Using the relations between trigonometric and hyperbolic functions, tan (iz) =

i tanh (z), yields

Q0 =
−b

γσ
tanh

[
b (τ + c1)

]
+

a

2γσ
. (4.120)
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The constant c1 of the integration can be determined by matching the conditions

to Region I (as t → ∞, Q0(t) → 0); therefore,

c1 =
1

b
arctanh

( a

2b

)
. (4.121)

We express the solution (4.120) using the sum of angles properties, which is defined

as,

tanh (θ1 + θ2) =
tanh (θ1) + tanh (θ2)

1 + tanh (θ1) tanh (θ2)
, (4.122)

by applying (4.122) into (4.120) leads to

Q0 =
−b

γσ

[
tanh (bτ) + tanh (bc1)

1 + tanh (bτ) tanh (bc1)

]
+

a

2γσ
. (4.123)

Note that c1 is given by (4.121), and, hence,

tanh (bc1) = tanh

(
b arctanh

(−a
2b

)
b

)
, (4.124)

or equivalently,

tanh (bc1) =
a

2b
. (4.125)

Hence,

Q0 =
−b

γσ

[
tanh (bτ) + a

2b

1 + a
2b
tanh (bτ)

]
+

a

2γσ
. (4.126)

From equation (4.110d), we have

Ĩ0C0 = γσ (1−Q0)Q0, (4.127)
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where Q0 has the solution (4.126). Substituting (4.127) into (4.110c) leads to

dC0

dτ
=

{
σb

[
2b tanh (bτ) + a

2b+ a tanh (bτ)

]
−σa

2

}{
1+

b

γσ

[
2b tanh (bτ) + a

2b+ a tanh (bτ)

]
− a

2γσ

}
. (4.128)

Solving the equation above through integration, we find

C0 = w1 ln

∣∣∣∣ cosh (bτ) + a

2b
sinh (bτ)

∣∣∣∣+w2

[
2b

2b+ a tanh (bτ)

]
+w3τ +w4, (4.129)

where w4 is the constant of integration and can be found by matching to Region

I (as t → ∞, C0(t) → (1− σϕ)), and

w1 =
−ρ̂ (1 + β)

γ
, (4.130)

w2 =
−2σρ̂

a
, (4.131)

w3 =

ρ̂

[
a (1 + β)− 2γσ

]
2γ

, (4.132)

w4 = (1− σϕ)− w2, (4.133)

(we remark that w1, w2 < 0 and w3, w4 > 0). Substituting (4.126) and (4.129) into

(4.127) and rearranging for Ī0 completes the leading order solutions in Region II.

As this expression is quite long, the solution is given below in terms of Q0 and C0.
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The leading order solutions in Region II are therefore,

P0(τ) = 1, (4.134a)

Q0(τ) =
−b

γσ

[
2b tanh (bτ) + a

2b+ a tanh (bτ)

]
+

a

2γσ
, (4.134b)

C0(τ) = w1 ln

∣∣∣∣ cosh (bτ) + a

2b
sinh (bτ)

∣∣∣∣− w2

[
a tanh (bτ)

2b+ a tanh (bτ)

]
+ w3τ + (1− σϕ) , (4.134c)

Ĩ0(τ) =
γσ (1−Q0(τ))Q0(τ)

C0(τ)
. (4.134d)

Studying the clock reaction model’s details means carefully looking at what fac-

tors affect the switchover time formula, helping us understand when the reaction

changes state.

Switchover Time:

The switchover time occurs when the concentration of iodine (I) increases, indi-

cating that the vitamin C concentration is low (that is, C ≈ 0), and the solu-

tion changes color to dark blue, indicating the end of the induction period. The

switchover time can again be approximated by solving C0(τsw) ≈ 0, yielding

0 ≈ w1 ln

∣∣∣∣ cosh (bτsw) + a

2b
sinh (bτsw)

∣∣∣∣− w2

[
a tanh (bτsw)

2b+ a tanh (bτsw)

]
+ w3τsw + (1− σϕ) , (4.135)
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which can be simplified using the following hyperbolic function properties:

sinh (bτsw) =
1

2

(
ebτsw − e−bτsw

)
, (4.136)

cosh (bτsw) =
1

2

(
ebτsw + e−bτsw

)
, (4.137)

tanh (bτsw) =
ebτsw − e−bτsw

ebτsw + e−bτsw
, (4.138)

leading to

0 ≈ w1 ln

[
ebτsw

(
1

2
+

a

4b

)
+ e−bτsw

(
1

2
− a

4b

)]
− w2

[
a
(
ebτsw − e−bτsw

)
2b (ebτsw + e−bτsw) + a (ebτsw − e−bτsw)

]
+ w3τ + 1− σϕ. (4.139)

For even moderately sized values of bτsw, the value of e−bτsw is negligible due to

exponential decay (i.e., e−bτsw → 0 as τsw → ∞). Therefore, the solution for

C0(τsw) can be written as

0 ≈ C0(τsw) = w1 ln

[
ebτsw

(
1

2
+

a

4b

)]
−w2

(
a

2b+ a

)
+w3τsw + 1− σϕ. (4.140)

Applying the logarithm properties for ln (xy) = ln (x) + ln (y) and rearranging

(4.140) leads to

0 ≈ (bw1 + w3) τsw + w1 ln

(
1

2
+

a

4b

)
− aw2

(2b+ a)
+ 1− σϕ. (4.141)
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Accordingly, this yields

τsw ≈
−w1 ln

(
1
2
+ a

4b

)
+ aw2

(2b+a)
− 1 + σϕ

(bw1 + w3)
. (4.142)

We simplify the expression in (4.142) in terms of the dimensionless parameters.

Focusing on the numerator of (4.142), this can be written as,

[
ρ̂ (1 + β)

γ
ln

(
1

2
+

a

2
√

a2 − 4γσρ̂

)
− 2σρ̂√

a2 − 4γσρ̂+ a

]
− 1 + σϕ. (4.143)

Using the logarithmic and binomial expansion formula of rational exponents where

4σγρ̂/a2 < 1 since a2 > 4σγρ̂ (as mentioned above), the equation (4.143) leads to

ρ̂ (1 + β)

γ

(
γσρ̂

a2
+ ...

)
− σρ̂

a
(1 + ...)− 1 + σϕ, (4.144)

and the leading order terms of the expansion is

ρ̂σ

a2

[
ρ̂ (1 + β)− a

]
− 1 + σϕ. (4.145)

Substituting (4.114) into (4.145) renders this to

−ρ̂γ(
ρ̂(1+β)

σ
+ γ
)2 − 1 + σϕ. (4.146)

Note that its maximum value occurs when γ = ρ̂ (1 + β) /σ, in which case the

term takes the value

−σ

4 (1 + β)
− 1 + σϕ. (4.147)
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We can neglect the first term in (4.147) since σ is small in comparison with

4 (1 + β), which means

−σ

4 (1 + β)
≈ 0, (4.148)

and hence, the numerator of (4.142) can be approximated by:

−1 + σϕ. (4.149)

In dimensional variables, this assumption used above corresponds to n0/c0 ≪

4 (1 + k4/k2), which holds if the initial vitamin C concentration is high enough.

Moving onto the denominator of (4.142) we have

−ρ̂

2γ

[
(1 + β)

(
a+

√
a2 − 4γσρ̂

)
− 2γσ

]
. (4.150)

The dimensionless expression of the switchover time formula can therefore be sim-

plified to,

τsw ≈ 2γ (−1 + σϕ)

−ρ̂

[
(1 + β)

(√
a2 − 4γσρ̂− a

)
+ 2γσ

] , (4.151)

or in dimensional variables (i.e., recall (4.7) and (4.9)),

tsw ≈ 1

ϵk2c0

(
1− n0

c0
ϕ
)

(
ϵp0
c0

)(
n0

c0

)[
(1+β)(A−B)+2γ

2γ

] , (4.152)
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where,

A =

√
ϵ2p20
n2
0

(1 + β)2 − 2γ
ϵp0
n0

+ 2γβ
ϵp0
n0

+ γ2, (4.153)

(4.154)

B =

(
ϵp0
n0

+ γ + β
ϵp0
n0

)
. (4.155)

Therefore, the switchover time formula can be written as

tsw ≈ c0 − ϕn0

n2
0

{
ϵk2

(
ϵp0
n0

)[
(1+β)(A−B)+2γ

2γ

]} . (4.156)

We now compare this result with that derived by Kerr et al [27] with high hydrogen

peroxide in the clock reaction, but with less detail used to capture the slow reaction.

There, the switchover time formula was characterized by,

tKerr
sw ≈ c0 − ϕn0

k0n2
0

, (4.157)

(with dependence on initial concentrations c0 and n0, and the rate k0 of the slow

reaction). Hence, there is an agreement between our switchover time formula in

(4.156) and the formula by Kerr et al [27] in (4.157). Both numerators of (4.156)

and (4.157) are identical, and k0 in the denominator of (4.157) can be described

by the expression within the braces in (4.156). The switchover time in a clock

reaction is the moment when a visible change (dark-blue color) occurs. Increasing

the molecular iodine concentration (n0) speeds up the switchover time in equa-

tions (4.156) and (4.157), which will shorten the duration of the induction period
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because more molecular iodine (n0) will be available to react with vitamin C (c0),

allowing the reaction to reach the visible color more quickly (i.e., as n0 increases,

tsw decreases because the denominator grows quadratically). Decreasing the vita-

min C concentration (c0) reduces the amount of molecular iodine (n0) needed to be

consumed, thereby shortening the induction period. We can control the switchover

time and the length of the induction period by adjusting the concentrations of io-

dine and vitamin C. This result highlights that an expression of the slow reaction

rate (k0, as stated in the article [27]) can be composed to

k0 =

ϵ2k2

(
p0
n0

)[
(1 + β)(A−B) + 2γ

]
2γ

. (4.158)

The parameter k0 depends on the initial concentrations p0 and n0 only through

their ratio, expressed as

k0 =
ϵ2k2
2γ

(
p0
n0

){
(1 + β)

[√
ϵ2p20
n2
0

(1 + β)2 − 2γ
ϵp0
n0

+ 2γβ
ϵp0
n0

+ γ2

−
(
ϵp0
n0

+ γ + β
ϵp0
n0

)]
+ 2γ

}
. (4.159)

To keep our approximation as simple as possible and to minimise the number of

parameters, we will assume that k0 can be expressed as

k0 ≈ ϵ2k2

(
p0
n0

)
, (4.160)

(we will see in Chapter 5 that this simplification works well). Therefore, the
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switchover time formula in (4.156) can be simplified as :

tsw =
c0 − ϕn0

k3n0p0
, (4.161)

(depending on initial concentrations c0, p0 and n0, and the rate limiting k3 of the

slow reaction where ϵ2k2 = k3). This result, the simplified switchover time formula

in (4.161), is consistent with the switchover time formula obtained by Kerr et al

[27] in (4.157) for the clock reaction model with high hydrogen peroxide.

Approximation solution at Steady-state in R-II:

To consider the approximate scaling to move to R-III, we consider the behaviour

as τ → ∞:

P0 = 1, (4.162a)

Q0 = Qss
0 , (4.162b)

C0 = −γσ2 (1−Qss
0 )Q

ss
0 τ, (4.162c)

Ĩ0 =
−1

στ
, (4.162d)

with,

Qss
0 =

a±
√

a2 − 4γσρ̂

2γσ
where a = (ρ̂+ γσ + βρ̂) . (4.163)

Hence, for a more realistic (small) value for the reactant Q, the quasi-steady- state

for Qss
0 will be chosen as

Qss
0 =

(ρ̂+ γσ + βρ̂)−
√

(ρ̂+ γσ + βρ̂)2 − 4γσρ̂

2γσ
. (4.164)

That enables us to find the most structured balance for the corner region.
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Region III: Corner

Scaling the variables C = I = O(ϵ1/2) and introducing the shifted time coordinate

τ̄ = ϵ−1/2 (ϵt− τsw). The leading order for the asymptotic expansion of the Model

FCR-H-HP (4.101), of the re-scaled system, is then,

dP0

dτ̄
= 0, (4.165a)

dQ0

dτ̄
= 0, (4.165b)

dC̄0

dτ̄
= −σĪ0C̄0, (4.165c)

dĪ0
dτ̄

= γσ (1−Q0)Q0 − Ī0C̄0. (4.165d)

We can gain the solutions for the variables P0 and Q0, directly by matching to the

steady-state solution in R-II (4.162), leading to

P0 = 1, (4.166)

and,

Q0 = Qss
0 , (4.167)

which is given in (4.164). Hence, the system (4.165) can be reduced to

dC̄0

dτ̄
= −σĪ0C̄0, (4.168a)

dC̄0

dτ̄
= µ− Ī0C̄0, (4.168b)

where,

µ = γσ (1−Qss
0 )Q

ss
0 ; (4.169)
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note that µ is a constant. The system (4.168) can be rearranged to yield the

Riccati equation:

dC̄0

dτ̄
= −

(
σµτ̄ + c̄3 + C̄0

)
C̄0. (4.170)

A similar analysis to Region III with a low hydrogen peroxide model can be done,

therefore, the approximate solutions in Region III are

P (t) = 1, (4.171a)

Q(t) =
(ρ̂+ γσ + βρ̂)−

√
(ρ̂+ γσ + βρ̂)2 − 4γσρ̂

2γσ
, (4.171b)

C(t) =

ϵ1/2
√
σµ exp

{
− σµ/2

[ (
ϵ−1/2 (ϵt− τswt)

) ]2}
√

π/2

{
ref

[√
σµ/2 (ϵ−1/2 (ϵt− τswt))

]
+ 1

} , (4.171c)

I(t) =

ϵ1/2
√
σµ exp

{
− σµ/2

[ (
ϵ−1/2 (ϵt− τswt)

) ]2}
σ
√

π/2

{
ref

[√
σµ/2 (ϵ−1/2 (ϵt− τswt))

]
+ 1

} + µ (ϵt− τswt) . (4.171d)

Region IV: Long-term state

The variables are now P = Q = I = O(1), C = O(ϵ) and t = O(ϵ−1). Denoting

C = ϵC̃ and the shifted time coordinate t = ϵ−1 (τ̃ − τsw), the system (4.101) at
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leading order of asymptotic expansion takes the form,

dP0

dτ̃
= 0, (4.172a)

dQ0

dτ̃
= ρ̂ (1−Q0 − 2I0)P0 − γσ (1−Q0 − 2I0)Q0 − βρ̂Q0P0, (4.172b)

0 = −σI0C̃0, (4.172c)

dI0
dτ̃

= γσ (1−Q0 − 2I0)Q0 − I0C̃0. (4.172d)

Hence,

P0 = 1, (4.173)

and,

C̃0 = 0, at all O(ϵn). (4.174)

To obtain a more accurate matching for the variable P , we find the second-order

term of the asymptotic expansion. Thus,

dP1

dτ̃
= −σ (1−Q0 − 2I0)P0 − βσQ0P0, (4.175)

where P0 = 1, and P1 can be solved numerically to have the solution of the form

P (τ̄) = P0(τ̄) + ϵP1(τ̄). (4.176)

We then obtain

dQ0

dτ̃
= ρ̂ (1−Q0 − 2I0)− γσ (1−Q0 − 2I0)Q0 − βρ̂Q0, (4.177a)

dI0
dτ̃

= γσ (1−Q0 − 2I0)Q0. (4.177b)
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The pair of equations above (4.177) has two approaches for solving. One approach

can be solving the pair of equations (4.177) numerically. The second approach can

be solving the pair of equations (4.177) close to the equilibrium point. To find

the equilibrium point, we set the pair of equations to zero and solve for Q0 and I0

which leads to

0 = ρ̂ (1−Q0 − 2I0)− γσ (1−Q0 − 2I0)Q0 − βρ̂Q0, (4.178a)

0 = γσ (1−Q0 − 2I0)Q0. (4.178b)

It is clear that the system (4.178) has a single equilibrium point (0, 1/2), i.e. all

iodide and hypoiodous acid has been converted to iodine. The Jacobian matrix of

the system evaluated at the equilibrium point is given by

−ρ̂ (1 + β) −2ρ̂

0 0

 , (4.179)

and the eigenvalues are 0 and −ρ̂ (1 + β). Note that the zero eigenvalue corre-

sponds to the slow manifold, and the negative real eigenvalue indicates a stable

manifold. The dynamics close to the equilibrium point can be deduced approxi-

mately by considering a quasi-state balance of substituting (4.178b) into (4.178a),

yielding

0 ≈ ρ̂ (1−Q0 − 2I0)− βρ̂Q0. (4.180)

Rearranging provides the following approximate relationship between I0 and Q0,

I0 ≈
1

2
− (1 + β)Q0

2
, (4.181)
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from which we infer that,

dI0
dτ̄

≈ − (1 + β)

2

dQ0

dτ̄
. (4.182)

Substituting equations (4.180) and (4.182) into equation (4.177b) gives

− (1 + β)

2

dQ0

dτ̄
≈ γσβQ2

0, (4.183)

leading to an approximation of the long-term dynamics of Q0:

dQ0

dτ̄
≈ −2βγσ

(1 + β)
Q2

0. (4.184)

The equation (4.184) has the following solution,

Q0 ≈
(1 + β)

2βγστ̄ + c8
, (4.185)

where c8 is a constant of integration. Substituting equation (4.184) into (4.181)

provides an approximation of the long-term dynamics of I0:

I0 ≈
1

2

[
1− (1 + β)2

2βγστ̄ + c8

]
. (4.186)

The constant c8 can be determined by matching the solution for I0 to the Region

II solution (i.e., I0(τsw) ≈ 0), giving the value c8 = (1 + β)2−2βγστsw. Therefore,

the approximate solutions in Region IV, expected to be increasingly accurate close
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to the equilibrium point are:

P0(τ̄) = 1, (4.187a)

Q0(τ̄) =
(1 + β)

2βγσ (τ̄ − τsw) + (1 + β)2
, (4.187b)

C0(τ̄) = 0, (4.187c)

I0(τ̄) =
1

2

[
2βγσ (τ̄ − τsw)

2βγσ (τ̄ − τsw) + (1 + β)2

]
. (4.187d)

Both approaches provide similar solutions in terms of validity in this region.

Comparison Of Asymptotic And Numerical Approximations Of Model

FCR-H-HP

Figure 4.6 illustrates a comparison of the asymptotic and numerical solution of the

model (4.101) with initial conditions P (0) = 1, Q(0) = 0, C(0) = 1 and I(0) = ϕ,

and the dimensionless parameter values are γ = 0.7, β = 0.6, ρ̂ = 0.9, σ = 0.7,

ϕ = 0.2 and ϵ = 0.001, these values are chosen arbitrarily. The approximate solu-

tion of Region I closely follows the numerical solution up to t = 100. The approxi-

mate solution of Region II follows the numerical solution up to around t ≈ 10, 000,

and the switchover time point ends the induction period. The approximate solu-

tion of Region III closely follows the numerical solution around the dimensionless

changeover time t = 10, 354, up to around t = 11, 500 (Figure 4.6c is zoomed in

to capture the transition between the induction period and the long-term steady

state). The approximate solution of Region IV has an excellent match to the

numerical solution, with the shifted time coordinate t = ϵ−1
(
ϵ1/2τ̄ + τsw

)
. The

agreement between the asymptotic and numerical solutions improves for smaller
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I from the model (4.101) and the evaluated switchover time (tsw); again there

is good agreement. Figure 4.6b and Figure 4.8 show that tsw ≈ 10, 000, when

ϵ = 0.001, is the point at which the concentration of the iodine (I) chemical

reaction of the clock increases after the concentration of vitamin (C) has been

used. Figure 4.9 plots the relative error between the asymptotic approximation of

the switchover time formula (4.142) and the switchover time point computed from

the numerical solution of the model (4.101), as a function of ϵ. As ϵ decreases,

errors decrease. The convergence of the error as ϵ → 0 is approximately sublinear

and the gradient on a log-log scale approaches approximately 0.45 (determined

using MATLAB based on the last two points of smaller ϵ values from the log-log

plot). These results provide evidence that the asymptotic expansion has sublinear

accuracy in this region, and therefore a correction with a fractional power of ϵ

may be needed. We will not pursue this analysis as it appears likely to involve

significant additional complications for limited additional insight.

It is worth noting that the outcomes of the asymptotic analysis for all regions

align precisely with the numerical solution of both models (Model FCR-M-HP and

Model FCR-H-HP). A combined plot of all regions of the asymptotic solutions is

given in Figure 4.10, showing the concentrations of the reactants against a loga-

rithmic time axis. This result matches the previous one of the numerical solutions

in Figure 4.2. Moreover, Figure 4.11 illustrates the merged results of Figure 4.2

and Figure 4.10, demonstrating a close correlation between the asymptotic and nu-

merical solutions within the relevant time range, and the dash-dotted lines indicate

the boundaries of each region.
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4.4 Conclusion

This chapter incorporates the detailed slow reaction with the fast reaction asso-

ciated with vitamin C. Asymptotic analysis on the full model of chemical clock

reaction (slow and fast) was explored in each case, of moderate and high hydrogen

peroxide concentration regimes. Through the development of a new non-linear

differential equation model, this study explores the kinetics of the reaction, par-

ticularly focusing on the role of hydrogen peroxide concentration.

By employing an asymptotic analysis, the study provides a better understand-

ing of the clock reaction, supported by approximation solutions for each model.

Asymptotic approximations are found to agree closely with numerical solutions in

the appropriate time regions. This enables us to obtain an approximate formula

for the switchover time of each model, depending on initial concentrations and the

rate of the slow reaction. The quantitative analysis illustrates the relative errors

between the asymptotic approximation switchover time formula and the switchover

time point calculated from the numerical solution of both models, based on ϵ. A

log-log plot shows decreasing errors as ϵ decreases.

An interesting result is that the switchover time formula of the model with

moderate hydrogen peroxide provided here is identical to the simplified linear

kinetic model illustrated earlier in Chapter 2. In addition, the switchover time

formula of the high hydrogen peroxide model presented here is in line with the

switchover formula derived by Kerr et al. [27] in their paper, which pertains to

the clock reaction model with high concentrations of hydrogen peroxide.

In the next chapter, both switchover time formulas of moderate and high hy-

drogen peroxide models will be tested through running experiments, fitting the
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parameters in these formulas to the data.
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Chapter 5

Experiments And Validation Of

Asymptotic Analysis Of Model

FCR

5.1 Motivation

It is of interest to test the switchover time formula of Model FCR-M-HP and Model

FCR-H-HP by running experimental data for parameter fitting. This chapter will

present the results of several experimental series in the moderate and high-peroxide

regimes, with starting quantities of each of iodine, vitamin C and hydrogen per-

oxide varied individually, and the switchover time measured through imaging the

colour of the solution. Analysis of the data is conducted using least-squares fit-

ting, with uncertainty quantified through log-likelihood ratios and bootstrapping.

The models are tested by fitting to several of the experimental series simultane-

ously, then testing the fit against the remaining data; this process is carried out for
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three different partitions of fitting and test data. It will be found that parameter

estimates and confidence intervals agree closely for each choice of fitting data.

5.2 Experimental Testing

The switchover time formulas of Model III-M-HP and Model III-H-HP, namely

(4.49) and (4.161) will be tested through tabletop experiments, using a combina-

tion of vitamin C powder, Lugol’s iodine, hydrogen peroxide solution, and pow-

dered laundry starch.

The procedure of the tabletop experiment is similar to that described in [27, 56],

with the refinement of using a webcam sensor running under Matlab (R2020b) to

detect the point at which the colour change occurred, different choices of vitamin

C and iodine increments, and a greater range of hydrogen peroxide concentrations.

The experiments employed by [56] used the tincture of iodine 2%, whereas we fol-

lowed Kerr et al. in using 3% Lugol’s iodine. The switchover time experimental

results by [27] were performed with two repeats for varying vitamin C concentra-

tion and varying iodine concentration of the high hydrogen peroxide model. In

our experiments, we looked at both moderate and high hydrogen peroxide concen-

trations and varied hydrogen peroxide across this range in 6 separate series. The

setup for clock reaction experiments follows the structure outlined in the provided

Figure 2.1, in Chapter 2. There are two solutions to this clock reaction. Solution

A when iodine is converted to iodide in the presence of vitamin C, and uses up

vitamin C in the process. The brownish yellow color of iodine disappears (fast re-

action). Solution B when iodide is converted to iodine in the presence of hydrogen

peroxide. Pouring Solution A to Solution B, the dark blue color appears (slow
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reaction). First, preparing Vitamin C stock solution (diluted) is by dissolving a

1000 mg vitamin C tablet with 30–120 ml water. The beaker of Solution A is

prepared from 60 ml of warm water at 40◦C, 5 ml of vitamin C stock solution, and

3-10 ml of 3% Lugol’s iodine. The beaker of Solution B is prepared from 60 ml of

warm water at 40◦C, 1-20 ml of 3% hydrogen peroxide and 1 teaspoon of powdered

laundry starch. Starch is not directly involved in the chemical reaction but used

as an indicator that signals when all the vitamin C has been consumed and results

in an abrupt change of color from clear to dark blue in the presence of iodine.

Also, more precisely, starch directly reveals the presence of iodine, not whether or

not the vitamin C has been used up. The beaker of Solution A is poured into the

beaker of Solution B, at which point a webcam starts filming via Matlab code,

then the mixture is stirred well for 5 seconds. The filming is completed after the

colour change from clear to blue occurs.

The practical experiment for the clock reaction was primarily based on the

work by Kerr et al. [27], we used different quantities of the chemical reactants

which included various levels derived from multiple experiments conducted over 6

months of work. The presented results in this thesis represent the best outcomes

obtained during this period, enabling us to run the clock reaction over a timescale

that was practical for the subsequent image analysis. We conducted our experi-

ments using natural light from the office window without specific lighting controls.

To minimize the influence of variations in ambient light, we designed a ’corner de-

tection’ strategy rather than relying on absolute intensity values, ensuring that the

result is not sensitive to changes in natural light. More details on corner detection

are provided in the next section.
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Figure 5.1: Identifying the switchover time point (sharp corner) where the intensity
signal undergoes notable change. The total red channel intensity as a function of
time, the sharp corner at tsw = 396.76 (red circle) is located by MATLAB code at
the highest difference between forward and backward averages.

5.2.1 Imaging

The switchover time point (tsw) was measured by imaging the solution from above

the beaker under natural lighting conditions using a RGB USB camera running

in Matlab with Image Processing Toolbox (Mathworks, Natick) 2020b, recording

images at 15 frames per second. The region of interest was set at 80 x 100 pixels

in the center of the beaker.

The digital images are formed of pixels containing three colour channels (RGB)

which are red, green, and blue. The intensity of each channel expresses the amount

of colour in the pixel. The red channel was sufficient for a clear measurement be-

cause it displays the brightness of each pixel, ranging from 0 (black) to 255 (white).

Briefly, the signal values were processed by adding the intensity across all pixels

in the red channel of an image. To account for fluctuations in the data we utilized
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forward and backward moving averages with 10 frame windows. The point of the

largest difference of the forward and backward moving averages then revealed the

point of the sharpest change in the signal, as shown in Figure 5.1 (as one example of

the data set has been collected). It demonstrates a sample of the imaging process

using MATLAB code to locate the ’sharp corner’ (indicating the greatest decrease

in intensity between the forward and backward averages) as the switchover time

point (tsw = 396.76 s) in which a significant change has occurred, for one of the

experimental trials has done with high hydrogen peroxide concentration (5 ml as

0.032666595 mol/l), 5 ml iodine concentration (as 0.007380894 mol/l) and 5 ml of

30 ml of vitamin C diluted as 0.007009652 mol/l. The key concept behind using

the corner feature is that the outcome becomes less affected to changes in lighting

levels. More details of the experimental trials will be discussed in the next sections.

5.2.2 Fitting Series

Four experimental series will be carried out for fitting of the parameters ϕ and k3,

referred to as NM and CM (moderate hydrogen peroxide regime), and NH and CH

(high hydrogen peroxide regime).

Moderate Hydrogen Peroxide Trials (NM&CM):

The amount of hydrogen peroxide is fixed as 1 ml of 3% hydrogen peroxide in these

trials. Results for both trials, (NM) varying iodine with fixed vitamin C, and (CM)

varying vitamin C with fixed iodine, are shown in Table 5.1. The molar mass of

hydrogen peroxide, H2O2, is 34.01368 grams per mole. The concentrations of 1 ml

of 3% hydrogen peroxide are 0.00656–0.00678 mol/l (varied due to total volume
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Table 5.1: Switchover time experimental results for Moderate Hydrogen Peroxide
Trials.

Trial (NM) Variable iodine concentration.

VitC
Di-
luted
(ml)

Lugol’s
(ml)

Hydrogen
Peroxide
(ml)

c0 (mol/l) n0 (mol/l) p0 (mol/l) tsw (s) p0/n0

90 4 1 0.002426418 0.00613182 0.006784601 714.92 1.11
90 4.5 1 0.002417121 0.006871867 0.006758606 503.75 0.98
90 5 1 0.002407896 0.007606265 0.00673281 432.67 0.89
90 5.5 1 0.00239874 0.008335078 0.00670721 332.83 0.80
90 6 1 0.002389654 0.00905837 0.006681804 237.2 0.74
90 6.5 1 0.002380636 0.009776203 0.006656589 204.26 0.68
90 7 1 0.002371687 0.010488639 0.006631564 185.21 0.63
90 7.5 1 0.002362804 0.011195738 0.006606727 122.68 0.59
90 8 1 0.002353988 0.01189756 0.006582075 101.26 0.55
90 8.5 1 0.002345237 0.012594165 0.006557606 60.22 0.52

Trial (CM) Variable vitamin C concentration.

VitC
Di-
luted
(ml)

Lugol’s
(ml)

Hydrogen
Peroxide
(ml)

c0 (mol/l) n0 (mol/l) p0 (mol/l) tsw (s) p0/n0

70 5 1 0.003095866 0.007606265 0.00673281 707.98 0.89
75 5 1 0.002889475 0.007606265 0.00673281 604.37 0.89
80 5 1 0.002708883 0.007606265 0.00673281 538.51 0.89
85 5 1 0.002549537 0.007606265 0.00673281 426.54 0.89
90 5 1 0.002407896 0.007606265 0.00673281 372.71 0.89
100 5 1 0.002167106 0.007606265 0.00673281 315.48 0.89
110 5 1 0.001970096 0.007606265 0.00673281 225.23 0.89
120 5 1 0.001805922 0.007606265 0.00673281 185.21 0.89
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Table 5.2: Switchover time experimental results for High Hydrogen Peroxide Trials.

Trial (NH) Variable iodine concentration.

Vitamin
C Di-
luted
(ml)

Lugol’s
(ml)

Hydrogen
Peroxide
(ml)

c0 (mol/l) n0 (mol/l) p0 (mol/l) tsw (s) p0/n0

30 3 20 0.006393939 0.004039543 0.119188928 191.42 29.51
30 3.5 20 0.006372411 0.004696932 0.118787618 138.49 25.29
30 4 20 0.006351027 0.00534991 0.118389002 135.28 22.13
30 4.5 20 0.006329786 0.005998519 0.117993052 121.86 19.67
30 5 20 0.006308687 0.006642804 0.117599742 107.89 17.70
30 5.5 20 0.006287727 0.007282809 0.117209045 87.74 16.08
30 6 20 0.006266907 0.007918575 0.116820936 79.43 14.75
30 6.5 20 0.006246224 0.008550144 0.116435388 72.8 13.62
30 7.5 20 0.006205265 0.009800859 0.115671878 53.45 11.80
30 10 20 0.006105181 0.012857041 0.113806202 37.63 8.85

Trial (CH) Variable vitamin C concentration.

Vitamin
C Di-
luted
(ml)

Lugol’s
(ml)

Hydrogen
Peroxide
(ml)

c0 (mol/l) n0 (mol/l) p0 (mol/l) tsw (s) p0/n0

30 5 20 0.006308687 0.006642804 0.117599742 91.34 17.70
40 5 20 0.004731515 0.006642804 0.117599742 64.62 17.70
50 5 20 0.003785212 0.006642804 0.117599742 49.22 17.70
60 5 20 0.003154343 0.006642804 0.117599742 42.08 17.70
70 5 20 0.002703723 0.006642804 0.117599742 36.87 17.70
80 5 20 0.002365757 0.006642804 0.117599742 26.05 17.70
90 5 20 0.002102896 0.006642804 0.117599742 23.46 17.70

147



effect). The molar mass of vitamin C, or ascorbic acid, C6H8O6, is 176.124 grams

per mole. The concentrations of 5 ml of vitamin c stock solution (1000 mg tablet

diluted in 70–120 ml water) are 0.00181–0.00310 mol/l.

The formula of Lugol’s iodine is a 1 : 2 mixture of iodine (I2) and potassium

iodide (KI). The molar mass of iodine is 126.9 grams per mole and the molar

mass of potassium iodide is 166 g/mol, and hence, the molar mass of 3% Lugol’s

iodine is 25.28916 g/mol. The concentrations of 4-8.5 ml of 3% Lugol’s iodine are

0.00613–0.01259 mol/l.

High Hydrogen Peroxide Trials (NH&CH):

The amount of hydrogen peroxide is fixed as 20 ml of 3% hydrogen peroxide in these

trials. Results for both trials, (NH) varying iodine with fixed vitamin C, and (CH)

varying vitamin C with fixed iodine, are shown in Table 5.2. The concentrations

of 20 ml of 3% hydrogen peroxide are 0.11381–0.11919 mol/l (varied due to total

volume effect). The concentrations of 5 ml of vitamin C stock solution (1000 mg

tablet diluted in 30-90 ml water) are 0.00210–0.00639 mol/l. The concentrations

of 3-10 ml of 3% Lugol’s iodine are 0.00404–0.01286 mol/l.

Figure 5.2 illustrates the experimental data results of Moderate and High Hy-

drogen Peroxide Trials from Table 5.1 and Table 5.2.

5.2.3 Testing Series

The switchover time models and the fitted parameters, ϕ̂ and k̂3, will be then

tested by comparing against two independent data series, referred to as PH and

PM .
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Table 5.3: Switchover time experimental results for Varying Hydrogen Peroxide
Trials.

Trial (PH) Variable high hydrogen peroxide concentration.

Vitamin
C Di-
luted
(ml)

Lugol’s
(ml)

Hydrogen
Peroxide
(ml)

c0 (mol/l) n0 (mol/l) p0 (mol/l) tsw (s)

30 5 5 0.007009652 0.007380894 0.032666595 396.76
30 5 7.5 0.006882204 0.007246696 0.048108985 263.09
30 5 10 0.006759307 0.007117291 0.062999862 180.06
30 5 12.5 0.006640723 0.006992426 0.077368251 155.12
30 5 15 0.006526227 0.006871867 0.091241179 122.42
30 5 17.5 0.006415613 0.006755394 0.104643838 109.27
30 5 20 0.006308687 0.006642804 0.117599742 100.69
30 5 22.5 0.006205265 0.006533906 0.130558924 93.07
30 5 25 0.006105181 0.00642852 0.142257753 78.85
30 5 30 0.005914394 0.006227629 0.165374637 70.11

Trial (PM) Variable moderate hydrogen peroxide concentration.

Vitamin
C Di-
luted
(ml)

Lugol’s
(ml)

Hydrogen
Peroxide
(ml)

c0 (mol/l) n0 (mol/l) p0 (mol/l) tsw (s)

90 5 5.5 0.002327929 0.007353658 0.03580066 67.35
90 5 5 0.002336551 0.007380894 0.032666595 59.91
90 5 4.5 0.002345237 0.007408332 0.029509229 84.14
90 5 4 0.002353988 0.007435975 0.0263283 91.91
90 5 3.5 0.002362804 0.007463825 0.023123545 107.06
90 5 3 0.002371687 0.007491885 0.019894693 136.06
90 5 2.5 0.002380636 0.007520156 0.016641473 155.99
90 5 2 0.002389654 0.007548641 0.013363607 202.02
90 5 1.5 0.00239874 0.007577344 0.010060814 312.84
90 5 1 0.002407896 0.007606265 0.00673281 446.06
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Figure 5.3: Experimental data results of Varying Hydrogen Peroxide Trials from
Table 5.3. (a) Varying High hydrogen peroxide. (b) Varying Moderate hydrogen
peroxide.

Varying Hydrogen Peroxide Trials (PH&PM):

The amount of iodine is fixed as 5 ml of 3% Lugol’s iodine in these trials. Results

for both trials, (PH) varying high hydrogen peroxide concentration (5 − 30 ml)

with fixed vitamin C (5 ml of 30 ml of vitc solution), and (PM) varying moderate

hydrogen peroxide concentration (1 − 5.5 ml) with fixed vitamin C (5 ml of 90

ml of vitc solution), are shown in Table 5.3. The concentrations of 5 ml of 3%

Lugol’s iodine are 0.00623–0.00764 mol/l (varied due to total volume effect). The

concentrations of 5 ml of vitamin C stock solution (1000 mg tablet diluted in 30

and 90 ml water) are 0.00233–0.00701 mol/l. The concentrations of 1–30 ml of 3%

hydrogen peroxide are 0.00673–0.16537 mol/l.

Figure 5.3 displays the experimental data results of Varying Hydrogen Peroxide

Trials from Table 5.3.
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5.3 Parameter Estimation Methods

Parameter estimation involves determining the values of the two parameters ϕ and

k3 in the switchover time formula of Model FCR-M-HP and Model FCR-H-HP,

namely (4.49) and (4.161), that best fit to experimental data in Table 5.1 and

Table 5.2. Henceforth, for simplicity, we shall denote the switchover time formula

(4.49) of the Model FCR-M-HP as follows:

tMsw =
1

k3n0

ln

(
p0

p0 + ϕn0 − c0

)
, (5.1)

and denote the switchover time formula (4.161) of the Model FCR-H-HP as follows:

tHsw =
c0 − ϕn0

k3n0p0
. (5.2)

Both formulas above, (5.1) and (5.2), can be combined in one formula and written

as follows:

tsw =


1

k3n0
ln
(

p0
p0+ϕn0−c0

)
for (p0 < 1.5n0) ,(

c0−ϕn0

k3n0p0

)
for (p0 ≥ 1.5n0) ,

(5.3)

where the threshold value of 1.5 being chosen arbitrarily. Our data, presented in

Table 5.1 and Table 5.2, revealed a significant distinguishing feature: The condition

(p0/n0 < 1.5) is satisfied when ρ = O(1); hydrogen peroxide is moderate while the

condition (p0/n0 ≥ 1.5) is satisfied when ρ = O(ϵ−1); hydrogen peroxide is high.

To ensure clarity and consistency, the three switchover time formulas above are in

dimensional quantities and the units stated earlier in Chapter 4.

This chapter examines the three switchover time formulas mentioned earlier,

namely (5.1), (5.2) and (5.3), in relation to our data in Tables (Table 5.1, Table
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5.2 and Table 5.3), employing parameter techniques such as least-squares, likeli-

hood ratio, and bootstrapping. The approach will entail introducing each method

individually initially, followed by a subsequent discussion of the results.

5.3.1 Least-squares Fitting

The method of least-squares is applied to approximate the parameters ϕ and k3 by

minimising the total sum of the squares of the differences between the experimental

data (experimental data; tsw,data) and the switchover time formula of the model

(the model values; tsw,model) [33]. It aims to find the parameter values of ϕ and

k3 that optimize the model’s fit to the data. Hence, the least-squares standard

objective function to minimise is

S(ϕ, k3) =
N∑

(tsw,model − tsw,data)
2 , (5.4)

where N is the number of experimental data.

In Matlab, fminsearch is an optimisation function [37], used for nonlinear op-

timization to find the minimum values of a sum squared errors with initial guesses

ϕ = 0.2 and k3 = 0.6 chosen arbitrarily.

5.3.2 The 95% Confidence Intervals For Parameters

The 95% confidence interval is a statistical range that provides an estimated range

of values which is likely to include the true value of unknown parameters ϕ and

k3 in the switchover time formula of Model FCR-M-HP and Model FCR-H-HP,

namely (5.1) and (5.2). The log-likelihood ratio test and bootstrap sampling are

two different methods used to obtain the 95% confidence intervals for parameters.
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Each method has its strengths and methodologies. Throughout this section, we

will describe each method and its implementation individually, and then discuss

the results of applying them to our models.

The Log-Likelihood Ratio (Wilk’s Theorem)

Wilk’s Theorem provides an asymptotic distribution of the log-likelihood ratio,

which can be used to produce the 95% confidence intervals [50, 54]. The log-

likelihood ratio is a statistical measure used in hypothesis testing, particularly in

the context of maximum likelihood estimation. The test involves the log-likelihood

ratio, which is the logarithm of the ratio of the maximum likelihoods for two

competing models.

2 log

(
L(ϕ̂, k̂3)

L(ϕ, k3)

)
< χ2

2,0.95, (5.5)

where (ϕ̂, k̂3) is the estimated values and χ2
2,0.95 is the critical value corresponding to

Chi-squared distribution with 2 degree of freedom [50, 54] (the number of unknown

parameters), at confidence level of 0.95. Hypothesis testing requires both null (H0)

and alternative (H1) hypotheses to be defined:

H0 :(ϕ, k3) = (ϕ̂, k̂3), (5.6)

H1 :(ϕ, k3) ̸= (ϕ̂, k̂3); (5.7)

we reject the null hypothesis (H0) if the likelihood ratio > critical value and we

fail to reject if it is < critical value.

When the errors are assumed to be normally distributed, the likelihood function
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is given as follows

L(ϕ, k3) =
N∏ 1

σe

√
2π

exp

{
−1

σe

(tsw,model − tsw,data)
2

}
, (5.8)

where σe is the standard deviation of errors, which can be found by taking the

partial derivative of the log-likelihood, and hence,

σe =
1

N

N∑(
tsw,model(ϕ̂, k̂3)− tsw,data

)2
. (5.9)

The log-likelihood function, l(ϕ, k3) = log(L(ϕ, k3)) yields

l(ϕ, k3) ∝
−1

σe

N∑
(tsw,model − tsw,data)

2 . (5.10)

Obviously, maximizing l in (5.10) is equivalent to minimizing S in (5.4) (i.e., the

negative log-likelihood is equivalent to the sum squared errors). Therefore,

2 log

(
L(ϕ̂, k̂3)

L(ϕ, k3)

)
= −2

[
l(ϕ̂, k̂3)− l(ϕ, k3)

]
,

= −2

[ N∑(
tsw,model(ϕ̂, k̂3)− tsw,data

)2
σe

−
N∑ (tsw,model(ϕ, k3)− tsw,data)

2

σe

]
,

= −2N

[
1−

∑N (tsw,model(ϕ, k3)− tsw,data)
2∑N

(
tsw,model(ϕ̂, k̂3)− tsw,data

)2]. (5.11)
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Hence, the log-likelihood ratio test in (5.5) can be written as

−2N

[
1−

∑N (tsw,model(ϕ, k3)− tsw,data)
2∑N

(
tsw,model(ϕ̂, k̂3)− tsw,data

)2] < χ2
2,0.95. (5.12)

In Matlab, we start by generating a parameter grid usingmeshgrid of 100 values

of the parameters (ϕ, k3) and calculate the objective function in (5.4) (such as the

sum of the squared errors between a model and data) for each combination of

(ϕ, k3). Finally, we need to determine the 95% confidence intervals by calculating

the log-likelihood ratio test in (5.12) and the critical value, χ2
2,0.95, can be found

using Chi2inv(0.95,2) = 5.9914.

Bootstrap Sampling

Bootstrap sampling is a resampling method used to quantify the accuracy of pa-

rameter estimates. The technique introduced by Efron in 1979, is a statistical

resampling technique that involves repeatedly sampling from data with replace-

ment [19]. Bootstrapping will be used below to estimate 95% confidence intervals

for the two parameters ϕ and k3 of the switchover time formulae, namely (5.1),

(5.2) and (5.3).

Bootstrap sampling was implemented using built-in functions in Matlab. The

function bootstrp was used to create 10, 000 resampled results through randomly

sampling with replacement from the experimental data in Table 5.1 and Table 5.2.

The seed for reproducibility was set to be rng(42) (random number generator,

ensuring that each time we run the code, we get the same sequence of bootstrap

samples). The parameter estimation was then carried out on each bootstrap sam-

ple. The 95% confidence interval was then constructed from the percentiles of the
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bootstrap resampling of the data. As an alternative method, the bootci function

in Matlab was also used, which implements the bias corrected and accelerated

percentile method [20].

5.4 Parameter Estimation Results

In this section, we demonstrate the results of parameter estimation techniques in-

cluding least-squares, likelihood ratio test, and bootstrapping of the three switchover

time formulas, namely (5.1), (5.2) and (5.3), with our experimental data (Table

5.1, Table 5.2 and Table 5.3). The results will be presented as follows:

• the outcome of fitting to the series experiments NM and CM using the least-

squares equation (5.1) of the Model FCR-M-HP for the two parameters ϕ and

k3, and the testing against series PM and PH using these estimated values;

• the outcome of fitting to the series experiments NH and CH using the least-

squares equation (5.2) of the Model FCR-H-HP for the two parameters ϕ and

k3, and the testing against series PM and PH using these estimated values;

• the outcome of fitting to all series experiments NM , CM , NH and CH using

the least-squares equation (5.3) for both models FCR-M-HP and FCR-H-HP

for the two parameters ϕ and k3, and the testing against series PM and PH

using these estimated values;

• (observing the other way around) the outcome of fitting the series exper-

iments PM and PH using the least-squares equation (5.3) for both models

FCR-M-HP and FCR-H-HP for the two parameters ϕ and k3, and the testing

against series NM , CM , NH and CH using these estimated values.
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The discussion of the experimental validation will be analysed further in the fol-

lowing sections.

5.4.1 Model FCR-M-HP

The results for different increments of Moderate Hydrogen Peroxide Trials, (NM)

varying iodine with vitamin C and moderate hydrogen peroxide fixed, and (CM)

varying vitamin C with iodine and moderate hydrogen peroxide fixed, are shown in

Table 5.1. The outcome of least-squares fitting equation (5.1) for the two parame-

ters ϕ and k3 to both experimental data simultaneously, involves fitting a moderate

HP model to multiple sets of data points at once (Trails NM and CM), and aiming

to find the best-fitting parameters that minimize the overall sum of squared differ-

ences across all dataset (
∑NM (tsw,model − tsw,data)

2 +
∑CM (tsw,model − tsw,data)

2).

These are shown in Figure 5.4 (note that the curve is plotted for the full range of

the independent variable). Therefore, the estimated values of the switchover time

(5.1) of Model FCR-M-HP is
(
ϕ̂M , k̂M

3

)
= (0.1676, 0.0586).

Figure 5.5 illustrates an independent test (i.e. against data not used during the

fitting process) across a full range of varying hydrogen peroxide data from Table

5.3 and least-squares fitting of the switchover time formula of Model FCR-M-HP

(5.1). This result ties well with moderate hydrogen peroxide trials more than the

high hydrogen peroxide trials as we predicted.

In Figure 5.6, the contour plot provides a visual representation of the logarithm

of the objective function (5.4), evaluated at each combination of the two param-

eters, in two dimensions. Each contour line corresponds to a specific level of the

objective function. It identifies the estimated values
(
ϕ̂M , k̂M

3

)
= (0.1676, 0.0586)
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Figure 5.11: The lower and upper quantiles of the bootstrapping method (black
dash-dotted lines) for the experimental data results of Moderate Hydrogen Perox-
ide Trials (blue circles) from Table 5.1 and least-squares fitting equation (5.1) to

both experimental data, namely NM and CM , simultaneously with
(
ϕ̂M , k̂M

3

)
=

(0.1676, 0.0586) (red lines). (a) Varying iodine concentration. (b) Varying vitamin
C concentration.
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to estimate the parameters (ϕ and k3) for each bootstrap sample, and then find

the 2.5th and 97.5th precentiles of the bootstrap distribution to construct 95%

confidence intervals.

Our findings on the 95% confidence interval using bootstrapping resampling

for the two parameter ϕ and k3 of the switchover time formula (5.1) of Model

FCR-M-HP, of all moderate hydrogen peroxide trials (NM , CM) is as follows:

CIMϕ,95% = [0.1597, 0.1770], (5.15a)

CIMk3,95% = [0.0540, 0.0640]. (5.15b)

The 95% confidence intervals for the two parameter ϕ and k3 of the switchover time

formula (5.1) of Model FCR-M-HP obtained through both the likelihood ratio test

(Wilk’s Theorem) and bootstrapping methods, namely in (5.13) and (5.15), show

agreement. We have verified that using the function ci = bootci produces similar

results which computes a 95% bootstrap confidence interval precisely given by

CIMϕ,95%,ci = [0.1598, 0.1773], (5.16a)

CIMk3,95%,ci = [0.0538, 0.0639]. (5.16b)

5.4.2 Model FCR-H-HP

Similarly, results for different increments of High Hydrogen Peroxide Trials, (NH)

varying iodine with vitamin C and low hydrogen peroxide fixed, and (CH) varying

vitamin C with iodine and low hydrogen peroxide fixed, are shown in Table 5.2.

The outcome of least-squares fitting equation (5.2) for the parameters ϕ and k3

to both experimental data simultaneously is shown in Figure 5.12 (note that the
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Figure 5.19: The lower and upper quantiles of the bootstrapping method (black
dash-dotted lines) for the experimental data results of High Hydrogen Peroxide
Trials (blue circles) from Table 5.2 and least-squares fitting equation (5.2) to

both experimental data, namely NH and CH , simultaneously with
(
ϕ̂H , k̂H

3

)
=

(0.1734, 0.0653) (red lines). (a) Varying iodine concentration. (b) Varying vita-
min C concentration.
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We have ascertained that using the function ci = bootci produces similar results

which computes a 95% bootstrap confidence interval precisely given by

CIHϕ,95%,ci = [0.1196, 0.2196], (5.19a)

CIHk3,95%,ci = [0.0607, 0.0733]. (5.19b)

It should be pointed out that the confidence intervals of the two parameters ϕ

and k3 are consistent between the two models above, Model FCR-M-HP and Model

FCR-H-HP, and their experimental data because they represent the same reactants

regardless of the level of hydrogen peroxide (moderate or high). We anticipate

similarities in parameter estimates from the two models and driven data, although

we acknowledge that data noise prevents them from being identical. The 95%

confidence intervals of the Model FCR-M-HP, in (5.13) and (5.15) are overlapping

with the confidence intervals of the Model FCR-H-HP, in (5.17) and (5.18).

5.4.3 Both Models FCR-M-HP and FCR-H-HP

We now determine the values of the two parameters ϕ and k3 in the switchover

time formula for both models, Model FCR-M-HP and Model FCR-H-HP, when

given in one formula (5.3). In this study, we apply the least squares method to

find the estimated values of the two parameters ϕ and k3 in the switchover time

formula (5.3) that best fit all the experimental data in Table 5.1 and Table 5.2.

Hence, the least-squares fitting with relative errors is useful to account for the wide

range of measured switchover times, especially when dealing with data of different
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scales. We now seek to minimise

S(ϕ, k3) =
N∑ (tsw,model − tsw,data)

2

t2sw,data

, (5.20)

where N is the number of experimental data. This approach ensures that the

resulting model provides the closest approximation to the observed data.

Figure 5.20 shows the outcome of fitting to the series experiments NM , CM , NH

and CH , and least-squares fitting of the switchover time formula of both models

(5.3) with ϕ̂ = 0.15835 and k̂3 = 0.066302. The results provide an excellent fit

to the experimental data for moderate and high hydrogen peroxide, as shown in

Figure 5.21.

In Figure 5.22, the contour plot provides a visual representation of the loga-

rithm of the objective function (5.20).

Figure 5.23 shows the pcolor plot of the satisfying condition with the log-

likelihood ratio. The 95% confidence interval using the log-likelihood ratio test

(Wilk’s Theorem) for the two parameters ϕ and k3 of the switchover time formula

(5.3) of all moderate and high hydrogen peroxide trials (NM , CM ,NH , CH) is as

follows:

CIϕ,95% = [0.1553, 0.1610], (5.21a)

CIk3,95% = [0.0644, 0.0683]. (5.21b)

Figure 5.24 shows the 95% confidence regions for the two parameters ϕ and k3,

using the log-likelihood ratio test given in (5.21), of the objective function with

relative errors of the switchover time formula (5.3).
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Figure 5.25: Histogram of the bootstrapping re-sampling for estimating the two
parameters ϕ and k3 of the switchover time formula (5.3) of both models, Model
FCR-M-HP and Model FCR-H-HP, with the lower and upper bounds of the pa-
rameters confidence interval as dashed vertical lines (red). (a) For the parameter
ϕ. (b) For the parameter k3.

Figure 5.25 displays the histogram plots and frequency of the two parameters

(ϕ and k3) using the bootstrap sampling of the switchover time formula for both

models (5.3). Figure 5.26 demonstrates a scatter plot of the two parameters ϕ and

k3 with the 95% confidence intervals.

A bootstrapping method is used to calculate the lower and upper quantiles of

the 95% confidence interval across full range of hydrogen peroxide concentrations,

shown in Figure 5.27. Our findings on the 95% confidence interval using the

bootstrapping of the switchover time formula (5.3) of the two models, Model FCR-

M-HP and Model FCR-H-HP, of all moderate and high trials (NM , CM , NH , CH)
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is as follows:

CIϕ,95% = [0.15197, 0.16080], (5.22a)

CIk3,95% = [0.06389, 0.06940]. (5.22b)

The bootstrap confidence interval is computed using the function ci = bootci which

produces equivalent results:

CIϕ,95%,ci = [0.1519, 0.1608], (5.23a)

CIk3,95%,ci = [0.0640, 0.0693]. (5.23b)

The confidence intervals of the combined formula (5.3) of both moderate and

high model, in (5.21) and (5.22) are consistent with the confidence intervals we

have found earlier of the moderate model (Model FCR-M-HP), in (5.13) and (5.15),

and the confidence intervals of the high model (Model FCR-H-HP), in (5.17) and

(5.18). We would expect that parameters estimated from different models and

datasets will be similar, but not exactly the same due to data noise. There is

agreement between all the confidence intervals of the two parameters ϕ and k3

between the results of the three models. Table 5.4 summarizes our results for each

parameter estimation technique and model.

By switching this final approach around (fitting to the series PM and PH , and

then testing against series CM , NM , CH , and NH) was also performed and is

presented in Appendix A.
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5.5 Conclusion

This chapter presented the results of six experimental series designed to test the

model of chapter 4 through both moderate and high hydrogen peroxide regimes.

Model parameters were fitted through relative error least squares fitting to account

for the large range of switchover times measured, with uncertainties quantified

through the likelihood ratio test and bootstrapping. The switchover time formu-

las have been proven highly accurate when tested with different concentrations

of hydrogen peroxide, iodine, and vitamin C, with excellent consistency across

different combinations of fitting and testing datasets. In certain conditions (not

presented here) the clock reaction failed to occur; this can be the subject of future

work.
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Chapter 6

Conclusions And Future Work

The study of chemical kinetics, particularly the interesting phenomenon of clock

reactions, has a rich history spanning over a century. This research contributes

to this field by employing mathematical modeling and analysis to gain deeper

insights into clock reactions involving vitamin C and hydrogen peroxide. Through

the development of new nonlinear differential equation models, this study explores

the kinetics of the reaction, particularly focusing on the role of hydrogen peroxide

concentration. Through our analysis, we have resolved the discrepancy between the

choice of kinetics in the slow reaction, demonstrating mathematically that linear

kinetics are appropriate when hydrogen peroxide is present in moderate levels, and

quadratic kinetics are appropriate when hydrogen peroxide concentration exceeds

that of the other chemicals. Using asymptotic analysis, the study provides a better

understanding of the clock reaction, supported by both approximation solutions

and experimental validation. Furthermore, this research explores the applicability

of parameter estimation, such as least-squares and bootstrapping in analyzing

experimental data.
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6.1 Contributions of the Thesis

We can conclude the thesis by providing a summary of each chapter separately.

Chapter 1 revealed the main aim of this thesis which is to use mathematical mod-

elling to understand a specific chemical reaction. We reviewed some of the basic

chemical reaction preliminaries needed for the thesis. An outline of the thesis is

also included. In Chapter 2, we discussed and analysed the simple clock reaction

model (fast and slow) by extending the work of Kerr et al. [27] to include hydrogen

peroxide and assuming that the rate of the slow reaction is linear in both iodine

and hydrogen peroxide concentrations as predicted by the experimental data of

Copper and Koubek [16]. Here, we assumed hydrogen peroxide was present in

comparable concentrations to the other reactants – i.e. the moderate case – (un-

like in the experiments performed in Kerr et al. [27]). Our asymptotic solutions

closely matched the numerical results over appropriate time intervals. Addition-

ally, we formulated a useful switchover time formula to identify the significant

occurrence of when the clock reaction occurs and the solution appears dark blue.

Crucially, our derived switchover time formula closely correlates with the outcome

presented by Parra Cordova and Peña [40], lending weight to its validity.

Chapter 3 investigated whether the chemical slow reaction converting iodide to

iodine should be quadratic or linear and the role of hydrogen peroxide concentra-

tion. To understand how hydrogen peroxide concentration affects the kinetics of

the chemical clock reaction, the slow reaction was analyzed in isolation by includ-

ing the hypoiodous acid reactant and reverse reaction. The analysis demonstrates

that the kinetics of the clock reaction can exhibit either linear or quadratic be-

haviour depending on the ratio of hydrogen peroxide to iodide. Thus we were able
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to demonstrate why the linear assumption worked in the study of Copper and

Koubek [16] (where moderate levels of hydrogen peroxide were used), while the

quadratic assumption was valid in Kerr et al. [27] (where high hydrogen peroxide

levels were used).

In Chapter 4, we explored the incorporation of the more detailed slow reaction

with the fast reaction associated with vitamin C. Asymptotic analysis on this

unified full model of the chemical clock reaction (slow and fast) was explored

in each case of moderate and high hydrogen peroxide concentration regimes. In

this chapter a nonlinear differential equation model was developed to examine the

kinetics of the reaction, with a focus on hydrogen peroxide concentration again. In

appropriate time regions, asymptotic approximations agree closely with numerical

solutions. Using this approach, we could estimate the switchover time for either

hydrogen peroxide regime as a function of initial concentrations and the slow

reaction rates. Essentially, we found that the switchover time formula of the

model with moderate hydrogen peroxide provided is identical to the simplified

linear kinetic model illustrated earlier in Chapter 2. In addition, the simplified

switchover time formula of the high hydrogen peroxide model presented is in line

with the switchover formula derived by Kerr et al. [27].

It has been shown in Chapter 5 that the switchover time formulae for both

cases, moderate and high hydrogen peroxide, are highly accurate when tested

through experiments with various concentrations of hydrogen peroxide, iodine,

and vitamin C. The effectiveness of the parameter estimation methods least-

squares, log-likelihood ratio, and bootstrapping were considered in analyzing the

data. There was good agreement between the parameter estimates using each ap-

proach presented, with significant overlap on the confidence intervals for the two
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parameters ϕ and k3.

Overall, this research advances our understanding of the clock reaction and its

kinetics. The insights gained from this research advance our deep mathematical

analysis and offer practical implications for experimental design. The approach

we have taken enables an experimentalist to be able to conduct the clock reaction

and determine the induction duration of the experiment needed to capture the

switchover point depending on how much of each chemical ingredient they are

using initially. We have further developed the theory and experimental framework

for clock chemical reactions based on kinetics principles, performing numerical and

asymptotic analyses, conducting experiments to test the model, using statistical

techniques to optimize the parameters, and documenting the results. This research

paves the way for future research endeavours in the study of the clock reaction.

6.2 Future Work

The work in this thesis can be extended in several directions, such as exploring the

effect of temperature on the reaction kinetics, both through how this might affect

the ODE structure, but also by running the experiments at different temperatures

to see how this might change our parameter estimates. We could also investigate

the iodate variation via three-step reaction, involving the iodate ion (IO−
3 ), iodide

(I−), and iodine (I2) (see Figure 3.1) to bring additional detail and complexity

into the model. We could also explore further optimization against additional

experimental data to enhance the sensitivity of the model outcomes to initial

conditions of the reactants. Finally, there are many other chemical clock reactions

that could similarly be investigated through asymptotic analysis.
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In respect of experimental technique, another area for development would be

the use of ultraviolet light spectrophotometry [52] to measure the time evolution

of iodine levels (via blue iodine-starch complex) rather than simply the switchover

time, so that model curves could be fitted directly, providing a more complete test

of the accuracy of the solutions in each asymptotic region. Explicit mathematical

modelling of the formation of starch-iodine complex may in turn be required to

interpret spectrophotometry data.

These potential avenues for further examining the chemical clock reactions,

however, should not detract from the valuable findings of this work: we have used

asymptotic analyses to resolve the discrepancy in the literature regarding the form

of the reaction kinetics involved, developed a unified model capable of capturing

the effect of either moderate or high hydrogen peroxide levels, derived analytical

formulae for the switchover time, and demonstrated the validity of these formulae

against novel experimental data.
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Appendix A

A.1 Results of Setting The Fitting to Series PM

and PH, and Then Testing against Series CM ,

NM , CH and NH

A.1.1 Fitting series

Two experimental series were carried out for fitting of the constants ϕ and k3,

referred to as PM (moderate hydrogen peroxide regime), and PH (high hydrogen

peroxide regime. The results of different increments of varying Hydrogen Peroxide

Trials, (PM and PH), with vitamin C and iodine fixed, are shown in Table 5.3.

Again, the values of ϕ and k3 were estimated through relative error least squares

fitting in order to account for the wide range of measured switchover time, carried

out in Matlab with the optimisation function fminsearch. The 95% confidence

limits were estimated through bootstrapping with the function bootci.
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A.1.2 Testing Series

The switchover time equation (5.3), of both models III-M-HP and III-H-HP, and

fitted parameters were then tested by comparing against the independent data

series, referred to as CM , NM , CH and NH .

A.1.3 Results

Figure A.1 shows the outcome of fitting to the series experiments PM and PH ,

where the estimated parameter values are ϕ̂ = 0.1467 and k̂3 = 0.0683. Figure

A.2 illustrates the testing of the series against CM , NM , CH and NH , using the

estimated parameters; we see a match between the experiment and the fitted model

that is roughly the same as the fitted data. Figure A.3 demonstrates a scatter plot

of the two parameters ϕ and k3 of each bootstrap sample with the lower and upper

bounds. Our results on the 95% confidence interval using the bootstrapping of the

switchover time formula (5.3) of fitting series (PM , PH) are as follows:

CIϕ,95% = [0.1296, 0.1640], (A.1a)

CIk3,95% = [0.0654 0.0712]. (A.1b)

Our results match well with all of the confidence intervals of the two parameters

ϕ and k3 reported in Chapter 5.
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