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Abstract

The thesis presents a mathematical model and accompanying analysis to gain in-
sights into the chemical clock reaction associated with vitamin C, hydrogen perox-
ide and iodine. Chemical clock reactions are identified by a reproducible induction
period that is followed by in a rapid change in a solution triggered by a rise in
a specific chemical concentration. In the vitamin C clock reaction, vitamin C
converts iodine to iodide (the fast reaction) and simultaneously hydrogen peroxide
converts iodide to iodine (the slow reaction). The fast reaction dominates until the
vitamin C is depleted, at which point the iodine concentration rises, resulting in a
rapid colour change in the system. Three new models are presented. Firstly, both
the fast and slow reactions are considered under the assumption that hydrogen
peroxide levels are moderate. Secondly, the slow reaction is considered in isolation
and in more detail, revealing the effect of hydrogen peroxide concentration on the
reaction kinetics and resolving differences in the existing literature. Thirdly, the
fast reaction is reincorporated with the more detailed slow reaction to create a
unified model that can capture the clock reaction dynamics under both moderate
and high hydrogen peroxide regimes. All models are studied through numerical
and asymptotic analysis. Using asymptotic analysis, formulae are derived that can

predict the length of the induction period. Finally, experiments are carried out to
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generate data to parameterise the models and test the associated formulae, which

are shown to be accurate for both hydrogen peroxide regimes.
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Chapter 1

Introduction to Clock Reactions

This chapter introduces the motivation and outline of the thesis, as well as a
review of basic clock chemical reactions and methodologies relevant to the thesis,

including a review of related mathematical models.

1.1 Motivation

Mathematical models in chemistry play an important role in science. It is of in-
terest to study chemical reactions and understand how the natural world works
using mathematical models. In particular, models can take phenomena in science
from a specific application area, and convert them into mathematical formula-
tions that provide insightful analysis and valuable direction for that application.
Analysis of the model allows us to understand its behavior, estimate the model
parameters, and make reliable predictions for future behavior. Chemical reactions
drive many important processes. For instance, some examples from daily life that

are the result of chemical reactions include: turning food into fuel for the body,



the changes in food when it is cooked, washing detergent removing stains, and
making fireworks explode. In the laboratory, for example, chemical reactions are
used to detect proteins, bacteria, viruses, and identify DNA and RNA sequences
[17, 47]. One timely instance of this relates to the COVID-19 pandemic which has
threatened the lives of families and their children around the world. We highlight
a study issued by [2] where certain chemical reactions were used on samples col-
lected from patients in order to develop diagnostic COVID-19 tests. It is clear
chemical reactions are ubiquitous.

Overall, a chemical reaction can be formulated using a mathematical model,
where variables represent the reactants. An aim may be to predict the evolution
of the concentration of certain chemical species in a time interval of interest or to
identify which of the chemical species dominate in the reaction [3]. In [51], the
authors use the analogy between chemical reactions and the spread of COVID-19
to motivate a framework for modelling both types of events in an education setting.

The main aim of this thesis is to use mathematical modeling to understand a
specific chemical reaction: the vitamin C clock reaction. The remainder of this
chapter will review some of the basic chemical reaction preliminaries needed in the
thesis. Previous mathematical models of the clock reaction and its applications

are also discussed.

1.2 Chemical Kinetics

The process of the transformation of reactants into products that occurs over
time based on specific mechanisms is referred as chemical kinetics. The study of

chemical kinetics has been carried out for over 100 years. The first chemical kinetics



study was by the German physicist L. F. Wilhemy in 1850 [18, 42, 53|. Chemical
kinetics do not only concern the reaction rate and concentration of reactants, but
also the mechanisms governing these reactions. Chemical kinetics have a significant
impact in some areas, such as biochemistry, radiation chemistry, electrochemistry,
photochemistry [14, 18]. There have been numerous studies to investigate chemical
kinetics reactions with applications, for example [1, 8, 13, 25]; some of these will

be discussed below.

1.2.1 Law of Mass Action

One of the fundamental chemical kinetics laws is the law of mass action, formulated
by two Swedish scientists: the mathematician C. M. Guldberg and the chemist P.
Waage, in 1864 [14, 18, 42, 53]. The law of mass action states that the rate
of a chemical reaction is proportional to the product of the concentrations of
the reactants (the active masses of the reactants as the molar per unit volume).
Consider that substance A reacts with substance B to produce the substance C.

This can be represented by the chemical reaction equation

aA+bB — C, (1.1)

where a, b are the stoichimetric coefficients of the reactants, which indicate how
many molecules of the reactants are involved in the reaction. According to the law

of mass action, the rate of the reaction (R) is indicated as:

R o [A]"[B]", (1.2)



the concentrations of the reactants are expressed with square brackets; [A] and

[B]. Thus, the law of mass action tells us that the rate of the reaction is given by
R = k[A]"[B]" (1.3)

where k£ is the reaction rate constant; we will continue to use this notation going
forward.

In the next section, we will define the clock reaction and explore its applications.

1.3 The Clock Reaction and Applications

The “clock reaction” has been studied for more than a century. It was noted for
the first time by Landolt in the 1880s with the sulfite/iodate reaction [23, 25, 27,
28, 38]. A clock reaction is defined as a chemical reaction where, after mixing the
reactants, a sudden increase in the concentration of one product occurs, followed
by a visible change, with a well-defined and reproducible time lag. The time lag
is sometimes named a Landolt time, a clock time, or an induction period (we will
typically refer to this as the induction period in this thesis). The visible change
is marked at the end of the induction period and could be by a color change or
a flash of light, for example, depending on the specific reaction. The species that
appears after the induction period is called the clock species, and the chemical
species involved in the chemical clock reaction are termed the clock chemicals. A
more comprehensive description of the clock reaction can be found in [29].

There are considerable applications of chemical clock reactions across a variety

of fields. The clock reactions have long been used in chemistry education [15],



have industrial applications [6, 7] and alongside experiments have been studied
through mathematical and computation models [1, 8, 9, 13, 16, 27]. For further
details, see the reviews [25, 32]. Clock reactions are of current interest through
recent applications as diverse as a chemical clock car activity used in an educational
setting [40], the evaluation of 3D printed mixing devices [22] and the determination

of microconcentrations of the potentially toxic dye indigo carmine [39].

1.4 Categories of Clock Reactions

There are two core clock reaction mechanisms that have been studied: induction
and inhibition [8, 9, 27]. Based on these mechanistic differences, clock reactions
have been classified into two types by [25]: auto-catalysis driven clock reactions
(induction) and substrate-depletive clock reactions (inhibition). More details are
given in the following sections; along with a description of some pseudo clock

behavior.

1.4.1 Awto-catalysis Driven Clock Reaction

Although there is some discussion over whether auto-catalysis should be considered
as a clock reaction because of the lack of stoichiometric constraints (the stoichio-
metric constraints are related to the mass balance of reactants in the chemical
equation) [29], we include auto-catalysis as a clock reaction due to the abrupt
concentration change of a substance in a well-defined time [25, 38].

The mechanistic background of this phenomenon is induction (auto-catalysis).



The simplest scheme of this mechanism is the following:

P+2B — 3B atrate k[P][B)?, (1.4)

where P is a precursor chemical and B is the clock chemical (auto-catalyst). Since
one of the reaction products is also a catalyst for the chemical reaction, this is called
an auto-catalytic reaction. Examples belonging to this auto-catalysis mechanism
are the iodate-arsenous acid reaction and the iodine-bisulphate clock reaction |8,
9, 24].

While a catalyst is an element that increases the rate of a chemical reaction,
in contrast, an inhibitor is an element that decreases the rate or stops a chemical

reaction; this will be addressed in the next section.

1.4.2 Substrate-Depletive Clock Reaction

The mechanistic background of this phenomenon is inhibition, and the simplest

scheme of this mechanism is the following:

P — B atrate ko[P], (1.5a)

B+ C — D atrate ki[B][C], (1.5b)

where B is the clock chemical and C' is the inhibitor. The clock chemical re-
acts with an inhibitor to form the product D, limiting the concentration of the
clock chemical. The concentration of the clock chemical rises once the inhibitor is
completely consumed. Examples belonging to this inhibition mechanism are the

photopolymerization of vinyl acetate inhibited by benzoquinone, and the photo-



synthesis of hydrogen chloride inhibited by ammonia [8, 9, 12]. The reaction (1.5)

has the following properties:

i) If P(0) > C(0), the clock species B appears when the reactant C' is totally

used up.

ii) If P(0) < C(0), the clock species never appears, and the clock reaction is not

observed,

where P(0) and C(0) are the initial concentrations of the reactants [P] and [C],
respectively. In this thesis, we will study in detail the vitamin C clock reaction,
which is substrate-depletive. Full details will be given in Chapter 2.

In short, the substrate-depletive clock reactions are described by the appearance
of the clock species B only after the depletion of the substrate C' after a well-defined

delay time (induction period).

1.4.3 Reactions that Exhibit Two Mechanisms

Some chemical reactions could employ both induction and inhibition mechanisms
depending on the initial concentrations of the reactants [8, 9]. For example, it
has been found that the iodate-arsenous acid model demonstrates a clock reaction
with a combination of inhibition and indirect autocatalysis. The reactants in the
model are iodine (B = 1), arsenite ion (C' = AsO3 ), iodate (P = I05), and

iodide (A = I7), and the reaction scheme is given by,

P+5A = 3B, (1.6a)

B+C — 24. (1.6b)



The model (1.6) has indirect autocatalysis in one of the reactants, A, while C
acts as the inhibitor, the clock chemical is B, and P is the precursor. Hence, the
model (1.6) is autocatalytic overall because the reactant A is a catalyst in the first

reaction (1.6a), and also a product in the second reaction (1.6b).

1.4.4 Pseudo Clock Behavior

A chemical reaction which has poor reproducibility of the induction period or
irregular appearance of a clock species is categorized as pseudo clock behavior.
Thus, these reactions cannot be classified as clock reactions [25, 26, 49]. Examples
include the chlorite/thiosulfate [25, 35] and iodide/chlorite [25, 36] reactions in
unbuffered media, in which the pH changes significantly. These reactions indicate
fluctuations in concentrations for individual experiments.

The following section is a literature review of clock reaction models and their

contributions to our thesis.

1.5 Previous Mathematical Models of Clock Re-
actions

In science, mathematical modeling is being increasingly realized as a powerful
tool for the understanding of kinetic systems. The framework uses variables, pa-
rameters, and their interrelationships through mathematical language to describe
phenomena or predict future events [21, 43]. Several mathematical modeling stud-
ies have tried to capture clock reactions. Chien [13] modelled two-step reactions

via nonlinear differential equations. Integration of the kinetic equations for cer-



tain types, such as uni-unimolecular, uni-bimolecular and bi-bimolecular reactions,
was considered. The obtained solutions were expressed in terms of dimensionless
variables and parameters. The work used experimental data to evaluate the rate
constants of each step in order to assess the possible reaction mechanism. A crucial
analytical technique was presented, solving a Riccati type equation (a useful step
that we also employ in our asymptotic analysis sections) resulting from quadratic
reaction kinetics. Moreover, Anderson [1] exhibited the iodine clock reaction with
modelling and simulation using numerical simulations of the system dynamics.
Further development of mathematical modelling using sample laboratory processes
for the kinetics of the iodine-clock reaction can be found in [16, 31, 44]. In ad-
dition, the chemical and equipment required for these experiments were feasible
for institutions and students, i.e. the work should be relatively straightforward to
reproduce.

An early study of mathematical modelling of clock reactions by Billingham and
Needham [8] examined the two mechanisms: induction and inhibition, that can
lead to clock reactions via three model schemes. The first model scheme was the
cubic auto-catalysis model which exhibits a clock reaction with an induction mech-
anism and the solution can be collapsed onto two asymptotic regions. The simple
model with an inhibitor was addressed in the second model scheme. In addition,
the iodate-arsenous acid system was considered as the third model scheme which
exhibits a clock reaction with a combination of inhibition and indirect autocatalysis
mechanisms (as discussed in Section 1.4). The solutions can be reduced into four
asymptotic regions for the second and third model schemes. The analysis indi-
cated that induction dominates during the induction and inhibition period when

the two mechanisms co-exist in the model. Simple expressions were obtained for



the induction and inhibition periods in terms of parameters of the model. Asymp-
totic analysis (which will be introduced in Section 2.4.3) was the main approach
used for examining these models of clock reactions. Burgess & Davidson [11] have
also examined the kinetics of the iodine reaction with ascorbic acid (vitamin C)
and associated persulfate (peroxydisulfate ion; S,02").

Copper and Koubek [16] presented an experiment on the modified iodine chem-
ical clock reaction that was suitable for students to reproduce. The experimental
data included observations of the reaction rate, which indicated that the rate of
iodine production should be linear in iodide (I7). The hydrogen peroxide con-
centrations used were similar to the other substrates. More recently, the study
by Kerr et al., [27] showed a detailed mathematical model of the related vitamin
C substrate-depletive multi-step clock reaction via a system of nonlinear ordinary
differential equations — here iodine is again the clock species. lodine, hydrogen
peroxide, and vitamin C are mixed. Vitamin C is the inhibitor, converting iodine
to iodide. When vitamin C is depleted, the hydrogen peroxide converts iodide to
iodine. The model was analysed through matched asymptotic expansions, and it
was found that asymptotic analysis and numerical analysis closely agree in distinct
time regions. The authors also conducted experiments to parameterise the model,
and in contrast to [16], found that assuming that the rate of iodine production
was quadratic in iodide enabled the model to match the data. Here, much higher
concentrations of hydrogen peroxide were used than the other chemicals (and hy-
drogen peroxide was not considered explicitly in the model). Finally, the authors
obtained a formula at leading order for the switchover time that was dependent
on initial concentrations of vitamin C and iodine, and one of the reaction rates.

The indicated formula compared well against data where two series in the initial
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concentrations of both iodine and vitamin C were generated.

A further study of the vitamin C clock reaction is by Parra Cordova and Pena
[40] which aims to integrate learning by combining chemistry kinetics and elec-
tronics via a hands-on activity for students. A chemical-driven car is designed
whereby how long it takes for the color to change to dark blue (i.e. the induction
period) determines the distance traveled by the car. A simple clock reaction model
was studied alongside experiments and an approximate formula for the length of
the induction period was obtained through a quasi-steady argument.

Some key goals of this thesis are to extend the work of [16] and [27] to under-
stand the difference in their model structures (linear vs. quadratic), to examine
the role that hydrogen peroxide plays in these differences, and to compare these

findings with the more recent study by Parra Cordova and Pena [40].

1.6 Thesis Outline

The thesis is organized as follows:

e Chapter 2: A new model of the simple clock reaction (which will be named
HPL — hydrogen peroxide linear) is designed to extend the work of Kerr et al.
[27] to include hydrogen peroxide explicitly in the model. The assumptions
are also modified to consider the case where hydrogen peroxide is present
in moderate concentrations, akin to Copper and Koubek [16]. Therefore,
the rate of the slow reaction is linear in both iodine and hydrogen peroxide
concentrations. Our asymptomatic analysis shows agreement between ap-
proximate solutions and numerical solutions in the appropriate time regions.

This enables us to obtain a formula for the switchover time to identify the
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significant occurrence of when the clock reaction occurs and the solution
appears dark blue. We find that our formula for switchover time is closely

correlated with the results by Parra Cordova and Pefia [40].

Chapter 3: A new model of the slow reaction (iodine production) in iso-
lation (which will be named ISR - isolated slow reaction) is formulated to
understand how hydrogen peroxide concentration affects the kinetics of the
chemical clock reaction. We include the hypoiodous acid reactant and reverse
reaction. The analysis demonstrates that the clock reaction can exhibit ei-
ther linear or quadratic kinetics depending on the ratio of hydrogen peroxide

to iodide.

Chapter 4: A full model of the clock reaction (which will be named Model
FCR — full clock reaction) is performed by combining Model ISR (from Chap-
ter 3) and the fast reaction (vitamin C consumption). We show that one
unified model can capture both moderate and high hydrogen peroxide con-
centration regimes, identifying and validating the appropriate mathematical
model for the vitamin C clock reaction. Asymptotic analysis enables us to
obtain an approximate formula for the dependence of the switchover time
dependent on the initial concentration of the reactants in each hydrogen
peroxide regime. This empowers the comparison of the full clock reaction
model, Model FCR, to results for the Model HPL (the simple model with
moderate hydrogen peroxide in Chapter 2), and to the model with high hy-

drogen peroxide by Kerr et al., [27].

Chapter 5: Experiments with varying amounts of hydrogen peroxide, io-

dine, and vitamin C demonstrate the high accuracy of the switchover time

12



formulations for both the moderate and high hydrogen peroxide regimes
(from Chapter 4). Parameter estimates are obtained through least-squares
relative error fitting with uncertainties estimated through log-likelihood ra-
tio and bootstrapping. Through several permutations of fitting and testing

data we observe excellent data fits and consistent parameter estimates for ¢

and ks.

e Chapter 6: The main mathematical contributions of the thesis, including

some areas for future work, are summarized.

We summarise the models and the chemical reactions that they describe in

Table 1.1.
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Model

Hydrogen Peroxide Regimes

Reactions

Kerr et al. [27]

high

2D — 1,
I1+C —2D.

Copper and Koubek [16]

moderate

2D+ P — 1,
I1+C —2D.

HPL

moderate

2D+ P — 1,
I1+C—2D.

ISR

moderate and high

D+ P — Q,
D+Q — 1,
Q+P—D.

FCR

moderate and high

D+ P —Q,
D+Q—1,
Q+P— D,
I+C —2D.

Table 1.1: The models developed in this thesis (HPL: hydrogen peroxide linear;
ISR: isolated slow reaction; FCR: full clock reaction) alongside their associated
chemical reactions. The reactants are iodide (D), hydrogen peroxide (P), iodine
(I), vitamin C (C') and hypoiodous acid (Q). For ease of comparison, the models
developed in Kerr et al. [27] and Copper and Koubek [16] (where thiosulfate is

used in place of vitamin C) are also included.
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Chapter 2

Model HPL: A Simple Model Of
Chemical Clock Reaction With

Moderate Hydrogen Peroxide

2.1 Motivation

Asreported in Chapter 1, Kerr et al. [27] carried out clock reaction experiments us-
ing concentrations of hydrogen peroxide (H20s) that were markedly higher than
those of the other reactants. In these experiments, iodine (/3) is generated as
the clock chemical from the reaction between iodide (I~) and hydrogen peroxide
(H205). Through mathematical analysis, the researchers in [27] found that as-
suming the kinetics were quadratic in hydrogen peroxide was consistent with the
experimental data. However, Copper and Koubek [16] observed a linear rate of
reaction when operating with moderate hydrogen peroxide concentrations.

This chapter builds upon Kerr et al.’s findings [27] by focusing on modeling the

15



moderate-peroxide regime and including hydrogen peroxide explicitly in the model
which we will develop and analyze accordingly. We will provide an introduction
to the study of the vitamin C clock reaction by first discussing the background
and context, followed by the model formulation, and numerical and asymptotic

analyses of the model.

2.2 Introduction

In this study, we consider the chemical reaction described by Wright [27, 55, 56]

as follows:

2H " (aq) + 21 (aq) + H20s(aq) — I(aq) + 2H,0(1), (2.1)

and

I(aq) + CsHgOg(aq) — 2H " (aq) + 21 (aq) + CsHsOg(aq), (2.2)

where the (aq) and () signs indicate the substance is dissolved in water and the
substance is a liquid, respectively. Isolated hydrogen ions are symbolized by H,
and H,O is commonly known as water. The dehydroascorbic acid (CsHgOg) is
made from the oxidation of ascorbic acid (CgHgOg; vitamin C). Briefly, there are
two reactions (2.1) and (2.2). The first reaction (2.1) is a slow reaction: iodide
(I7) is converted to iodine (I3) in the presence of hydrogen peroxide (Hy0s). It
is worth mentioning that HyOs is used up too, and the fact the supply is limited
will be a focus of this chapter. The second reaction (2.2) is a fast reaction: iodine
(I5) is converted to iodide (/) in the presence of vitamin C (CsHgOg, ascorbic

acid), and uses up vitamin C in the process. The solution changes colour when
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vitamin C is depleted, yielding more iodine from (2.1). We will focus on specific
reactants that are crucial in the clock chemical reactions, rather than all involved
substances. The model does not explicitly account for production or consumption
of dehydroascorbic acid (CsHgOg), isolated hydrogen ions (H™) or water (Hy0)
for the following reasons. Dehydroascorbic acid (CsHgOg) is only a product and
therefore does not affect the concentrations of other species in the system, and
therefore we omit it from the modelling. We assume that the produced isolated
hydrogen ions (H') and water (H0) do not significantly change the pH. More
details will be discussed in the next section.

An illustration diagram of the vitamin C clock reaction is depicted in Figure
2.1, adapted from [10]. A complete discussion of the chemistry process for the
vitamin C clock reaction is described by [55].

We note that the vitamin C clock reaction has lately been discussed by two
authors in the literature. Burgess & Davidson [11] have investigated a similar re-
action with associated persulfate (peroxydisulfate ion; S,O3 ™) in place of hydrogen
peroxide (H202). As mentioned in Chapter 1, Kerr et al., [27] have modelled and
analysed the vitamin C reaction without involving hydrogen peroxide (H303) in
the model. In this chapter, we build on [27] by incorporating hydrogen peroxide
explicitly and considering the moderate-peroxide regime where the reaction is as-
sumed to be linear. The modified model will be developed and analysed in the

following sections.
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Figure 2.1: An illustration diagram of the vitamin C clock reaction, adapted from
[10]. (a) Solution A: In the presence of vitamin C, a mixture of water and iodine,
the solution appears clear. (b) Solution B: In the presence of hydrogen peroxide,
a mixture of water and starch (which acts as an indicator, but is not directly
involved in the chemical clock reaction), the solution appears clear. (¢) A mixture
of iodine and iodide to starch and hydrogen peroxide by pouring Solution A into
Solution B. (d) The iodide gets converted to iodine, and the solution appears dark
blue after the induction period.
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2.3 Model Formulation

The model to be constructed is based on the multi-step reactions, via a system
of nonlinear differential equations under the law of mass action. To build our
model, we will focus on particular reactants that are essential to the clock chemical
reactions ((2.1) and (2.2)), such as iodide, iodine, hydrogen peroxide and vitamin
C. Reactants like the dehydroascobic acid, water and the isolated hydrogen ions
will not be considered in our model. The amount of isolated hydrogen ions (H™)
produced does not significantly affect pH. Starch is used as an indicator to help
with the appearance of the sudden change of color from clear to dark blue (as
shown in Figure 2.1), and will not be explicitly incorporated into our model. In
the first (slow) reaction: The total concentration of iodide at time ¢, denoted by
D(t), is converted to iodine (denoted by I(t)) in the presence of hydrogen peroxide
(denoted by P(t)) at a rate given by k;[D][P]. As has been previously reported
in the literature [16, 31, 44], the rate of this reaction is linear in both I~ and
H>05 concentrations, based on experimental data. These studies have worked
with hydrogen peroxide concentrations which are similar to the other substrates
(while the study in [27] worked with hydrogen peroxide in great excess, so the first
reaction rate is quadratic in I~ concentrations).

In this study, we assume that concentrations of hydrogen peroxide are similar
to the other reactants, rather than in great excess. From this point forward, we
express the reaction rate without square brackets for ease of notation. Therefore,

the chemical reaction in the simplified form, is

2D + P BP25 1 (2.3)
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In the second (fast) reaction: The total concentration of iodine at time ¢, denoted
by I(t), is converted to iodide (denoted by D(t)) in the presence of vitamin C
(denoted by C'(t)) at a rate of reaction given by ko /C'. Thus, the chemical reaction
in the simplified form, is

ko IC
e

I+C 2D. (2.4)

The vitamin C clock reaction has been characterized as a substrate-depletive clock
reaction [25, 27]. The substrate vitamin C (C) is consumed, causing the clock
species iodine (I) to appear after a well-defined delay (induction period). The
reaction mechanism is the inhibition: when the inhibitor vitamin C (C) is present,
the fast reaction (2.4) dominates, and keeps the concentration of iodine (1) low
in comparison to iodide (D). Eventually, vitamin C (C) is exhausted and the
slower reaction (2.3) dominates, resulting in a rising concentration of iodine (1),
and hence turning the solution to blue.

Applying the law of mass action to (2.3) and (2.4), the model is given by the
following system of nonlinear differential equations (named, Model HPL referring

to hydrogen peroxide linear):

dD

dl

ac

— = —kol 2.

dt 2 07 ( 5C)
dpP

— = -k DP 2.5d
dt 1 ) ( )
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with initial conditions
D(0) =doy, 1(0) =1, C(0)=co, P(0)= po. (2.6)

The model (2.5) extends the work of Kerr et al., [27] by including hydrogen perox-
ide (P) in the model, and making the assumption that concentrations of hydrogen
peroxide are similar to the other reactants, rather than in great excess. We observe

that
dD dl

v Ll 9.7
a Ta =Y (2.7)

which means that D(t)+2I(t) is conserved (i.e., D+2I = constant). We represent

the initial concentration of (atomic) iodine by mg = dy + 2¢9. Hence,
D(t) = mg — 2I(t). (2.8)

Therefore, we can eliminate the variable D from the model (2.5) by substituting

(2.8) in (2.5), the system becomes

dl

% = —kg]C — 2k1P(m0 — 2]), (29&)

ac

— = —kIC, (2.9D)
P

It should be emphasized that the units of the reactants’ concentrations (D, I, C, P)
are moles per litres (mol/1), the units of time (¢) are seconds (s), and the units
of the reaction rates (ki, ko) are liters per moles per seconds (1/mol-s). The state

variables and parameters of the model are tabulated in Table 2.1.
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Table 2.1: Description of variables and parameters of the model (2.11)

Variables Description ‘ Units ‘
D Total concentration of iodide mol/1
1 Total concentration of iodine mol/1
C Total concentration of Vitamin C mol/1
P Total concentration of Hydrogen peroxide mol/1
t Time s
Parameter Description ‘ Units ‘
ky The rate of the first (slow) reaction 1/mol-s
ko The rate of the second (fast) reaction 1/mol-s
mo The initial total concentration of iodine and iodide mol/1
Co The initial concentration of vitamin C mol/1
Do The initial concentration of hydrogen peroxide mol/1
€ =ky/ky The reaction rate ratio
p =po/co | The ratio of initial hydrogen peroxide to initial vitamin C
o =mg/co The ratio of initial atomic iodine to vitamin C

2.4 Analysis of Vitamin C Clock Reaction Model

HPL

Before analyzing the model (2.9), it is instructive to non-dimensionalize the sys-
tem for simplicity by choosing the following scaling (in particular, we choose the
timescale based on the fast reaction step of producing iodide),

N kQCO ’

1= m()[*, C = Coc*, P :pop*, t (210)

where * denotes a dimensionless quantity. There is no unique way for choosing the
scaling factors when non-dimensionalizing a model. Multiple approaches can be

valid depending on the objectives of the analysis. Substituting (2.10) into (2.9),
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gives the following

dl*
= —I"C* + epP* (1 —2I7"), (2.11a)
dCc*
= —ocl*C* 2.11b
a0 (2.11b)
dP*
= —ecoP"(1-2I"), (2.11c)
dt*
where,
ky Po mo
- 2 = 2.12
and the initial conditions become
r0)=2 = ¢, C*0)=1, P 0)=1. (2.13)

mo

From this point forward, we drop stars for ease of notation. We note that (2.8)

can also be nondimensionalised to give

D(t) =1 - 21(¢), (2.14)

where we see that the maximum value of I(¢) is 1/2 (occurring when D = 0); this
will be used in later analysis.

Figure 2.2 shows a typical simulation of the clock reaction model (2.11)-(2.13)
where the clock species I appears only after depletion of the substrate C' (making

the reaction substrate-depletive), i.e. after the induction period.
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Figure 2.2: Numerical simulation of the model (2.11) illustrates the concentrations
of the reactants as a function of time with initial conditions 1(0) = ¢, C(0) =1
and P(0) =1, and the dimensionless parameter values are 0 = 0.8, ¢ = 0.2, p = 2
and € = 0.001. The clock reaction occurs after the induction period, with the
dot-dashed line indicating the switchover time (t,,,).
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2.4.1 Quasi-Steady State

Before proceeding with a time-dependent asymptotic analysis to derive a formula

for the switchover (colour change) time, we show that a quasi-steady analysis can

provide some insight into the induction period of the model (2.11) by using the

fact that the clock chemical iodine () is only slowly fluctuating throughout the

induction period. Using the quasi-steady-state hypothesis we set dI/dt ~ 0 in

(2.11a), it follows that
IC = epP(1 —2I),

and hence,
e N
eP(1—21) "

Dividing dC'/dt by dP/dt in (2.11), to get

ac —olC
dP  —eocP(1—2I)’

substituting (2.16) into (2.17) leads to

ac
T
Using integration, therefore,
C= pP + bl,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

where b; is a constant. We leave determination of b, to Section 2.4.3 where we con-

sider time periods before the quasi-steady. Since the clock chemical concentration

(iodine; I) is small during the induction period, we take I ~ 0. In a later section,

we will conduct a detailed analysis of a completed clock reaction, including the
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induction period and the switchover time, as illustrated in Figure 2.3c. Hence,

dP/dt in (2.11) can be simplified as

— = —¢eoP, (2.20)

which can be solved by separation of variables, leading to the solution

P = by, (2.21)

where bs is a constant which again will be determined in Section 2.4.3, and we get

C(t) = pe™ " + by, (2.22)

as an approximation of Vitamin C during the induction period. In clock reactions,
the quasi-steady state during the induction period means some chemicals stay
constant while the reaction is actively progressing (i.e. the iodine is approximately
constant while vitamin C and hydrogen peroxide are being consumed slowly). On
the other hand, equilibrium refers to the balance between reactants and products,

where no significant change is observed.

2.4.2 Lines of Equilibria

It is instructive to determine the number of possible equilibrium solutions that the
model (2.11) can have. In chemical reaction models, an equilibrium refers to the
state of a system in which the concentrations of the reactants and products do

not change over time. The model (2.11) has three lines of equilibria, obtained by
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setting the right-hand side of the equations in the model (2.11) to zero, given by

(1,0,0), (0,C,0), (1/2,0,P), (2.23)

where I, C and P could be any positive values depending on the initial conditions
used. (f ,0,0) represents the situation in which only iodine (I) is present, and
there is no vitamin C and no hydrogen peroxide (P); this means that the two
chemical reactions (2.3) and (2.4) cannot happen. Moreover, the line of equilibria
(0, C_’,O) represents the situation in which there is no iodine (I) for vitamin C
to activate, so it occurs when hydrogen peroxide (P) runs out before vitamin C
does. In this situation, it means there is no substrate for the clock reaction so
it stays trivial. Therefore, in both lines of equilibria (1: ,0, 0) and (O,C_',O), the
clock reaction has failed. From a mathematical view, the two lines of equilbria
((f ,0,0) and (O, C, 0)) are not interesting cases compared to the last case (the
line of equilibria (1/2,0, P)).

The line of equilibria (1 /2,0, P) can be interpreted as the chemical reactions
((2.3) and (2.4)) no longer being able to take place because if I = 1/2, then there
is no iodide to convert to iodine (D = 0 from (2.14)). In addition, if C' = 0 then
the iodine-to-iodide reaction (2.4) cannot occur. It is the ultimate state of the

system: all iodide is converted to iodine and the solution appears blue.
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Stability:

To study the linear stability of the lines of equilibria (non-trivial), we must find

the eigenvalues of the linearized system using the Jacobian of the model (2.11),

or o1 oI
ol  oC oP
J(I,0,P)=|2c oc oc|. (2.24)

ol oC 0P

oP 0P 0P
ol o0C 0P

Or,
(C+2pP) —I ep(1—2I)
J(I,C,P)= —oC ol 0 : (2.25)
2ec P 0 —eo(1—2I)

We need to evaluate the Jacobian at each separate steady state. Consider the line

of equilibria (f ,0, O), then

0 —I ep(1—2I)

0 0 —eo (1—21:)

Therefore, the characteristic polynomial is as follows
A(A+0l) (—eo (1—2I) = X) =0. (2.27)
Hence, the eigenvalues are

M =0, M=-0cl,and X\y=—eo(1—-2]). (2.28)
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Thus, the line of equilibria (f , 0, O) has a zero eigenvalue, indicating a slow manifold
[41], and negative eigenvalues since all the parameters and variables are positive
and 0 < I < 1/2 (as stated after the non-dimensionalised model using (2.14)),
which indicates a stable manifold [41].

Similarly, for the line of equilibria (O, C, 0) we have

-C 0 ep
0 0 —eo
The characteristic polynomial is given by
A(A+C) (—eo —A) =0. (2.30)

Here, the eigenvalues are \; = 0, where the zero eigenvalue indicates the slow
manifold, and Ay = —C, A\ = —eo are negative eigenvalues since all parameters
and variables are positive which indicate the stable manifold.

Consider the Jacobian for the third line of equilibria, which is the most inter-

esting case to study, (1/2, 0, P) which has the form

—2epP —1/2 0
J(1/2,0,P)=| 0 —¢/2 0 (2.31)

2¢c P 0 0

with the following characteristic polynomial

A (A +2epP) (—0/2—X) =0, (2.32)
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and eigenvalues, \; = 0, Ay = —2epP and \3 = —c /2. The eigenvalues )\, and
A3 are negative since all parameters and variables are positive, therefore, the line
of equilibria (1 /2,0, P) has a slow and stable manifold because of the zero and
negative eigenvalues respectively. Note that all the three lines of equilibria have a
zero eigenvalue; A = 0 corresponds to the fact that the variables I,C' and P can
take any value but also that the linear stability analysis has failed so further work
needs to be done to verify the equilibria.

Numerical simulations of the model (2.11) in Figure 2.3, showing the concentra-
tions of iodine, vitamin C and hydrogen peroxide as a function of time on logarith-
mic scale using various initial conditions, illustrate these three lines of equilibria
(are the balance between the reactants and products with no visible change, while
the quasi-steady state during the induction period keeps some reactants constant
as the reaction continues). In Figure 2.3a, there is not enough vitamin C, so there
is no induction period since the vitamin C is consumed already. In Figure 2.3b,
there is not enough hydrogen peroxide, so the induction period starts but never
ends because the hydrogen peroxide is used up before the vitamin C. In Figure
2.3c, the clock reaction is completed and both induction period and switchover
time occur. Numerical analysis has been performed to solve the model (2.11) ap-
proximately using computational techniques in the MATLAB program with the
odedb solver. We will now show that asymptotic analysis studies can generate

further insight into the model behaviour in the following section.
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Figure 2.3: Numerical simulations of the model (2.11) illustrate the concentra-
tions of iodine, vitamin C and hydrogen peroxide as a function of time on loga-
rithmic scale using the initial conditions (/(0) = 0.4, C(0) = 1, P(0) = 1) with
e = 0.001 and various values for the dimensionless parameters p and o. Even
with fixed initial conditions, changes to parameter values can enable the system
to achieve different equilibria. (a) The simulation shows the convergence to equi-
librium (7,0,0) = (0.1,0,0) with parameter values p = 0.2, ¢ = 3. (b) The
simulation shows the convergence to equilibrium (O, C, O) = (0,0.7,0) with pa-
rameter values p = 0.2, 0 = 0.3. (c) Simulation shows the convergence to the
equilibrium (1/2,0, P) = (0.5,0,0.4) with parameter values p =2, 0 = 2.
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2.4.3 Asymptotic Analysis

Asymptotic analysis (more specifically here, matched asymptotic analysis) is the
study of the limiting behaviour of models, leading to reduced (and therefore sim-
pler) models that capture the behaviour of the full system in these limits, as terms
have different magnitudes in different regimes. A similar approach was used by
Billingham & Needham [8, 9], and Kerr et al., [27], We will see that the expression
o¢ < 1is required (where 0¢ = 19/co < 1, so the initial concentration of vitamin
C should be greater than the initial concentration of iodine) in order for vitamin
C to survive the initial adjustment and therefore for the clock reaction to occur.

There are four regions to be studied as detailed in the following sections.

Region I: Initial Adjustment

Reactants are mixed during Region I before the induction phase begins. Basi-
cally, it is described as where the dependent variables I,C, P are order 1 and
the independent variable ¢ = O(1). Seeking a solution of the form (asymptotic

expansions):

szo+€fl+€2fg+..., C:CO+601+€2CQ—|—..., and P:P0+€P1+62P2+...

(2.33)
we find that at leading order (O(1)),
dIy
— = —1 2.34
dt OCOa ( 3 a)
dC
_dto = —O'[()Co, (234b)
dPy
= 2.34
o 0, (2.34¢)
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with the initial conditions:

L(0)=¢ Co(0)=1 and Py(0)=1. (2.35)
Note that
dl, dCy

which means that the quantity (c/y — Cp) is a constant. Thus, Cy = o (Iy — ¢)+1.

By substituting this result in (2.34b), this leads to

% C l(o(lo— )+ 1), (2.37)
Py
X0, (2.38)

Using the separation of variables method:

dly -
/ —Io(o(lo—¢)+1) /dt’ (2.39)
/dPO =0. (2.40)
Thus,
Bo(t) =1, (2.41)

and solving for the variable Iy, we can use partial fraction decomposition for the

left-hand side (LHS):

. i )
il = - / 4, = dly,  (2.42)
¢

/qbo_f0<a(fo_¢)+1) L (o (-0)+1)
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where A = 1/(1 —0¢) and B = —0/(1 — 0¢). This allows us to integrate both

sides in (2.39)
I

=, (2.43)

1 1
In 0

(09 —1) a(i0—<]§)+1

where the sign of the argument of the natural logarithm is positive (i.e., I /o (I~0 — q§) +
1 > 0). Using the natural logarithm properties and the fact that the natural log-

arithm is the inverse of the exponential function, solving for I, leads to

6 (1 o) clro-1
1 — ogeloe=1t 7

Ip= (2.44)

where the condition 1 — 0¢ > 0 is needed. Substituting the expression of (2.44)

into Cyp = o (Iy — ¢) + 1, gives us that

[ b (L= gg) s
0T T o opeled—1)t

+1-00. (2.45)

Hence, as t — oo, Iy — 0 and Cy — 1 — g¢. It turns out that the condition
1 —o¢ > 0 is needed in order to have enough vitamin C. During the initial
adjustment, we are therefore able to see that approximately o¢ = 19/cy (the initial
concentration of iodine per the initial concentration of vitamin C) of the initial

quantity of the inhibitor C' is used up.
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Therefore, the asymptotic solutions in Region I are as follows:

1 — —(1-oo)t
I(t) = ¢’<1 - 0‘752_6(1_0 ——+0(e), (2.46a)
06 (1 09) (-9

1 — ope—(1-00)t

C(t) = +1—0¢+0(e), (2.46b)

P(t) =1+ O(e). (2.46¢)

Region II: Induction

As the induction period begins, the two chemical reactions (2.3) and (2.4) keep
the concentration of iodine (I) low. As iodide (D) is produced rapidly in the fast
(second) chemical reaction (2.4), it removes iodine (I) from the system faster than
it can be produced. Due to these two reactions, the concentrations of vitamin C
(C') and hydrogen peroxide (P) are slowly being consumed. Thus, I(t) = O(e)
and T = et whereas C' and P are still of order 1. We re-scale I(T) = I(T/¢)/e,
with C(T) = C(T/e), P(T) = P(T/e), the system becomes

e =—1C+pP (1 - 261) , (2.47)
dc o

Y 2.4
P . .

=P (1 . 2d> . (2.49)

Similar to Region I, looking for asymptotic expansions:

~

[A:fo—i-Efl—i—..., é:ég—i-ﬁél—i—..., and P:po—i-Epl—i—..., (250)
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the leading order problem is at quasi-steady state:

dly

6_

ar

—foéo + ppo (1 — 2€f0) = O7

=0,

foé@ = ppo <1 — 26f0> s

and,
dC .
d—T? = —O']()C().

Substituting the expression (2.51c) in (2.52) gives

C;_C; — o [op (1= 2610)]

~

(2.51a)
(2.51Db)

(2.51c)

(2.52)

(2.53)

The clock chemical reaction is small during the induction period ([ ~ 0) giving

dC, .
dT
dp, .
dT

Hence,

using separation of variables
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Thus,

OO = ppo -+ bl, (258)
and,
Py = bye™ 7, (2.59)

where b; and by are constants that can be found by taking T — 0 (using the initial

condition), and matching to the Region I solution as t — oo:

bi=1—0¢—p, (2.60)

by = 1. (2.61)

The variable I, could be found from (2.51c¢), it follows

i, =% (2.62)
Co

Therefore, in the original dimensionless variables, the leading order solutions in

Region II are as follows:

—eot

= re e a
I(t) = PR Cpp— +0(é), (2.63a)
C(t)=pe " + (1 —0p—p)+ Ofe), (2.63b)
P(t)=e"4+O(e). (2.63c)

The Region II solution provides a prediction for the time point at which the balance

between fast and slow reactions changes, referred to as the switchover time.
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Switchover Time:

When vitamin C becomes small, the fast reaction no longer dominates and ¢, can

be defined as the solution of Cy(¢t) = 0 in (2.63b)). This leads to

fow = —In (L> (2.64)

€o ptop—1

We need the condition that p > 1 — 0¢ (where p = py/co and 0¢ = 19/cp), then
the expression p — (1 — 0¢) = O(1) is assumed to be order 1. The amount of
vitamin C left after region I (initial adjustment) is 1 — o¢. Physically, p > 1 —o¢
means that there should be enough hydrogen peroxide (P) in the system to drive
the vitamin C to zero.

In dimensional variables, recall,

t*
t= p:@, a:@, ¢p=—, and e=—. (2.65)

kaco ’ Co Co my ko

The switchover time is consequently illustrated by,

t* 1 p
fop=—— when £ — —In(—" ), 2.
Ty When - — n(p—l—agzﬁ—l) (2.66)

hence (in dimensional variables),

b = ——1In ( Po ) . (2.67)

~ kimg Po + ¢mgy — ¢y

Equation (2.67) states that enough hydrogen peroxide (py) and molecular iodine
(mo) must be provided initially to drive the vitamin C concentration (cy) to zero

before hydrogen peroxide runs out, i.e. py + ¢mg > ¢g. As the vitamin C concen-
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tration (¢g) increases, the expression in the denominator py + ¢mgy — ¢y decreases,
and therefore the switchover time (g, ) increases logarithmically as the vitamin C
concentration (cy) grows. When vitamin C concentration (cg) is small, the expres-
sion pg + ¢mg — ¢q is close to pg + ¢mg, and the switchover time (tg,) remains low.
A large molecular iodine concentration (my) effectively slows the increase in the
switchover time (t4,). Thus, we are able to express the switchover time simply in
terms of initial concentrations and the slow reaction rate. Significantly, a similar
equation to the switchover time formula (2.67) was given in a recent study by
Parra Cordova and Pena [40] through a quasi-steady argument with appropriate

assumptions, without including the ¢mg term in the denominator.

Region III: Corner

Region III corresponds to the transition from the rapid color change during the in-
duction period to the stable long-term state, where all reactants have settled. This
phase occurs when the two reactions, both slow and fast, occur in similar magni-
tudes. The most appropriate structured balance is achieved when I = C' = O(el/ 2
and P = O(1) with the shifted time coordinate here being = /2 (et — T,,,). We
re-scale [ = ¢ V2], C = ¢ Y20, and P = P. Therefore, the Model HPL (2.11)

takes the following form at the leading order terms of the asymptotic expansions,

dl — _ -

—z=—IC+pP (1 —2€721), (2.68)
dC -

i olC, (2.69)
dP _

o= —e26P (1- 261/2D : (2.70)
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As above, we look for asymptotic expansions:

I_:I_0+€1/2I_1+..., Czéo+€1/261+...7 and P:P0+61/2P1+...7 (271)

and, the leading order problem is

dl, _ _

_dfo = —1,Cy + pPy, (2.72a)
dC, .

—dtf’ = —01yC, (2.72b)
dP,

20 2.72

hence, Py = bs is a constant, which can be found by the matching condition of

P(Ty,) to Region II yielding

_ptop—1

bs (2.73)
P
We also seek the lower order correction term for the variable P:
dP _
61/2d_t1 = 0P, (2.74)

/dP1 = —O'PO/dt, (275)

thus,

pl = —0b5{+ bg, (276)
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the constant by = 0 by matching condition to Region II solutions, giving

P = P() + 61/2P1, (277)

= b5 — e/ %obst. (2.78)

Now, multiplying (2.72a) by o, and then subtracting (2.72b), it follows that

dly  dCy

— — — = —0l,C, b I,Cy = pbs. 2.79
Udt 7 0lgCp + p0s + 019Co = pOs5 ( )
Integrating both sides,

oly = Cy+ pbst +bs, where bg is a constant. (2.80)

Substituting the expression (2.80) in the equation (2.72b) gives

iy

Note that (2.81) is the Riccati equation [8, 13], which can be solved by seeking a

solution of the form Cy = v/ /u, which means satisfying

Thus,
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leads to

d [ _ u'\ o

wu” — w2 o 2 ~ o
2 <_> — (pbst + bg) (E) ; (2.84)

I C NI

u" = — (pbst + bg) u'. (2.86)

Equation (2.86) is a second-order differential equation with the following solution

and,

W = exp [_ / (pbsF -+ be) dt] , (2.87)

e o)) s

u = /u’, (2.89)

= /Ot exp [—S (,0653 + b6>] ds + by. (2.90)

Recall Cy = u'/u, and hence

Co — exp [~ (pbst + bg)] (2.01)

fgexp [—s (pbss + b)) ds + b,

42



which can be expressed in terms of the error function (by completing the square)

as )
_ o exp [—f (pbg,% + bﬁ)]

T e 2/ oo et (B) 0]

For the simplicity of notation, we denote f(t) = (pbst + bg) /(v/2pbs). Using the

(2.92)

asymptotic expansion form of the error function as follows

exp( f(DQ)( 1+

erf(f(t)) ~ T D

O(f(1)?), as &— oo, (2.93)

and the fact that it is an odd function: erf(f(¢)) = —erf(—f(¢)) as —t — oo,

it follows
erf(f(t)) = eXI\)/(_ f((? ) (1+0(f(1)7%), as t— —oo. (2.94)
Hence,
oo (— (72 = P =L (pbs5 + b))
PUIO) = oy (/2o (29
therefore,
CO(E) _ 0 €Xp (_f(ﬂz) 7 (296)

L= = 00 0)2) + b
and we assume that Cy(#) tends to a non-zero limit since f() — —oo as £ — —o0,

which means that b; = 1. Thus, the asymptotic behaviour is

Co(f) = =20 f(F) (1+ O(f(5)7?), (2.97)
= —a\/% (pbst +bg) (L +O(f(1))7?) . (2.98)
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In the Region II variables, we have

—1 2
C(T) = —a+\/2pbs T + \/2pbs In (%) ~ N bs €2 b + O(e), (2.99)

P05

hence, the constant b = 0 by matching to the region II solution. Therefore, the

approximate solution (with t = e~%/2 (et — T,,,)) in Region III can be written as

exp (%% et (et — Tsw)Q) pbs

I(t) = €2 + — (et — Tyw) + O(e)
\/777 {erf( % e 1/2 (et — Tsw)> + 11 7
(2.100a)
o) =2 — 7P (5= ! (et = To)) + O(e) (2.100b)
‘/777 [erf( 205 ¢=1/2 (et — Tsw)> + 1]
P(t) = bs — obs (et — Tyy) + O(e). (2.100c)

Region IV: Long-term State

Region IV illustrates the system’s long-term behavior, indicating that solutions
will gradually approach equilibrium over time, and some reactants are expected to
remain even after the reaction reaches its end point. We will address the long-term

analysis, in which I(t) = O(1) and t = O(e™"). Denoting, I(T) = I(T'/¢), with
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%

C(T) = C(T/e), and P(T) = P(T/e), thus, the system becomes

a . .
eom = —IC +epP (1 - 2]) , (2.101)
e J
dp y y
e = —col (1 - 2[) . (2.103)

Seeking asymptotic expansions, again

[u:f0+€f1+62f2—|—..., é:éo—i-ﬁél—i—EQég—'—...., and p:p0+€ﬁ1+62p2+....
(2.104)

We must have that [,Cy = 0, and hence Cy = 0, and moreover at O(e)

dén_l o VooV v
= —o <IOCn bt Inco) . (2.105)

By induction it follows that é’o for all n (we will provide this proof in more detail

in Chapter 4). Hence,

dI Ny y
& P<1—2I>, 2.1
o7 =P (2.106a)
dp y .
o = oD (1 - 21) , (2.106b)
and,
dl
. (2.107)
ap -0
which has the solution,
I = _7”15 + by, (2.108)
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bs being a constant. The matching condition I(T) — 0 as T — Ty, (where

Tow =—(In(p+0¢p—1)—1Inp)/o) yields

by = Le=oTww, (2.109)
ag

By substituting (2.108) into (2.106b), therefore

dp o » 2p —0Tsw 5
o =—oP {1—; (e —P)}, (2.110)
—p [—2p15 4o (205 — 1)} , (2.111)

by using the separation of variables gives

P
/ P (—2p15 + 0 (2bs — 1)) - /dT, 2112)

the left-hand side (LHS) can be solved using the partial fraction decomposition,

which leads to

1 2 — 1
In| 24 b}; )—2,0‘ =T +by, (2.113)

o (2b3 - 1)

where by is a constant. Hence, the definition for the absolute value of the function

@ — 2p| is given by
o(2b3—-1) . og(2b3—1)
_ (—I‘j 2p> ,if (—Ig 2p> >0
all ;_ ) _ Zp‘ - (2.114)

_ (o2b3-1) : o(2b3—1)
(—}5 2p> , if <—p 2p> <0
Note that (@ —2p> < 0 since @ < —2p < 0, it follows that
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]% —2p| = — (@ — 2p>. Using the natural logarithm properties and

the fact that the natural logarithm is the inverse of the exponential function, gives

—0 (2b3 — 1) +2pP 025 1)(T+ba)

, 2.115
2 (2.115)

and then solving for P gives

—0 (2b3 — 1)
670(2b371)(T+b4) _ 2p

P = (2.116)

The constant by can be found by the matching condition P(T ) — e ol as T —

Ty yielding

~1 —0 (25 — 1)
b4 ) In (

= 2 ) — T 2.11
o (2bs — 1 +p) Sw (2.117)

e_UTsw

In the original variables, the leading order solutions in Region IV are as follows:

](t) - 7 {ea(Qbsl)(etJrlm) —2p + by + 0(6)’ (2'1183)
C(t) =0+ 0O(e") forall n>0, (2.118b)
Py = — 7@ -1 . (2.118¢)

e*d(2b3*l)(€t+b4) — 2p

Comparison Of Asymptotic And Numerical Approximations

To validate the asymptotic solutions in each region, Matlab (ode45 solver) was
used to calculate a numerical solution with initial conditions I(0) = ¢, C(0) = 1,
and P(0) = 1, and the dimensionless parameter values set to p = 2, 0 = 0.8,

¢ = 0.2 (iodide: iodine ratio) and € = 0.001 (the reaction rate ratio), these values
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Figure 2.4: Comparison between numerical and asymptotic solutions of the model
(2.11) with initial conditions I(0) = ¢, C'(0) = 1 and P(0) = 1, and the dimen-
sionless parameter values are p =2, 0 = 0.8, ¢ = 0.2 and € = 0.001. (a) Region I,
(b) Region II, (c¢) Region III, (d ) Region IV.
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Figure 2.5: Numerical solutions for C(t) and I(t) of the model (2.11) shown along-
side the value of the switchover time (intersecting point) calculated by the approx-
imate formula (2.64), with initial conditions P(0) = 1, C'(0) = 1 and I(0) = ¢,
and the dimensionless parameter values are p = 2, 0 = 0.8, ¢ = 0.2 and € = 0.001.
are chosen arbitrarily. A comparison of the asymptotic and numerical solution
of the model (2.11) is shown in Figure 2.4. The Region I solutions follow the
numerical approximation very closely up to around ¢ = 30. The Region II solution
then follows the numerical solution up to around ¢ = 600. At the end of Region
IT (induction period), the switchover time point occurs when the concentration of
the clock chemical reaction iodine (I) increases after the concentration of vitamin
C (C) has been used (around t = 680), the blow up of the iodine concentration (1)
appears as a nearly vertical dashed line in Figure 2.4b. The Region III solution then
closely follows the numerical solution around the switchover time ¢ = 680, up to
around ¢ = 800. After that, the asymptotic and numerical solutions are in excellent
agreement in Region IV. Furthermore, the matching between the numerical and
asymptotic solutions improves for smaller values of € (examples not shown for

brevity).
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Figure 2.6: Relative error between the asymptotic approximation for switchover
time formula (2.64) of the model (2.11) and the point at which the numerical
solution falls below a threshold value of €, as a function of the parameter e. The
dimensionless parameter values are p =2, 0 = 0.8 and ¢ = 0.2.

Figure 2.5 shows that the approximate switchover time (tg,) matches the in-
tersecting point of the numerical solution of the model (2.11) for I and C' well.
Figure 2.6 plots the relative error between the asymptotic approximation of the
switchover time formula (2.64) and the switchover time point computed from the
numerical solution of the model (2.11), as a function of €. A log-log plot provides
an estimate for the order of the error in e. Specifically, the relative errors have

been calculated by

|tnum - tasymp|

)
tasymp

where t,,,,, is the switchover time point computed from the numerical solution
of the model (2.11) and t4symp is the switchover time formula derived through
asymptotic analysis, given in (2.64). The convergence of the error as € — 0 is

approximately sublinear, and the gradient on a log-log scale approaches approxi-
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mately 0.5 (can be calculated based on the last two points of smaller € values from

the log-log plot using MATLAB).

2.5 Conclusion

This chapter discussed and analysed the simple clock reaction (fast and slow)
model by extending the work of Kerr et al. [27], to include hydrogen peroxide in
the model explicitly and assuming that the rate of the slow reaction is linear in
both iodine and hydrogen peroxide concentrations based on experimental findings
in this regime [16]. The asymptotic solutions and numerical simulations showed
good agreement within the specified time regions. Furthermore, we developed a
switchover time formula to identify the key event when the clock reaction occurs
and the dark blue appears. The formula can be viewed as a refinement of a result
contained in the recent paper of Parra Cordova and Pena [40], additionally taking
account of the effect of the initial molecular iodine level.

The next chapter will explore how the hydrogen peroxide levels influence whether
the slow reaction kinetics are effectively quadratic or linear. To gain insight into

this process, we analyse the slow reaction in isolation.
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Chapter 3

Model ISR: Slow Reaction Model
In Isolation With Moderate and

High Hydrogen Peroxide

3.1 Motivation

As previously described, recent work by Kerr et al. [27] conducted the clock
reaction experiments using concentrations of hydrogen peroxide (P) in great excess
compared to the other reactants. The authors showed that a mathematical model
where the slow reaction rate was proportional to D? matched the data (using the
law of mass action, rate oc D?). However, Copper and Koubek [16] found linear
kinetics in experiments with moderate hydrogen peroxide (P) concentration (due
to the rate-limiting step in the slow reaction, the rate oc DP ). This chapter will
address the question of when the chemical slow reaction converting iodide to iodine

should be quadratic in iodide or linear and the potential role of hydrogen peroxide
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concentration. By focusing on the slow reaction in more detail, we demonstrate
how the order of the ratio of hydrogen peroxide to iodide determines when linear
kinetics apply and when quadratic kinetics apply. As a result, when the ratio
of hydrogen peroxide to iodide is order 1, then the rate of change of iodine (I)
is linear in terms of the concentration of hydrogen peroxide (P) and iodide (D).
When the ratio of hydrogen peroxide to iodide is order ¢! then the overall iodide

to iodine reaction will emerge as being quadratic.

3.2 Extended Model Formulation For The Slow
Reaction

As stated in Chapter 2, there are two chemical reactions that occur in the vitamin C
clock reaction: the slow reaction when iodide ions are converted to iodine molecules
in the presence of hydrogen peroxide, and the fast reaction when vitamin C (the
inhibitor) converts iodine to iodide. The main objective of this chapter is to
investigate the slow reaction in isolation and break this down in more detail to
understand the effect of hydrogen peroxide concentration on kinetics. We consider
the modified iodine clock reaction described by [16] for the slow (first) reaction
(2.1),

2H' + 21~ + HyOy — I + 2H,0, (3.1)

which is a result of the following pair of chemical reactions:

[~ + Hy0, % HOI + OH™, (3.2a)
I+ HOI % I, + OH . (3.2b)
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We will focus on particular reactants that are essential to the slow chemical re-
action, (3.2), in order to construct our model. In the chemical reaction (3.2a),
the total concentration of iodide (/) at time ¢, denoted by D(t) in the model, is
converted to hypoiodous acid (HOI), denoted by Q(t), in the presence of hydro-
gen peroxide (H20s), denoted by P(t), at a rate given by k3DP. The parameter
ks is named as the nucleophilic attack rate [16]. In the second chemical reac-
tion (3.2b), the iodide (/7), denoted by D(t), is converted to iodine (I3), denoted
by I(t), in the presence of hypoiodous acid (HOI), denoted by Q(t), at a rate
given by k4DQ. Based on [16] we infer that k3 < k4 and so step (3.2a) is rate
limiting in the overall reaction unless the concentration of hydrogen peroxide is
increased to compensate. Our hypothesis, which we will assess through mathe-
matical modelling, is that the rate limiting nature of (3.2a) in the situation of
moderate hydrogen peroxide results in overall linear rate kinetics, whereas when
the hydrogen peroxide concentration is much greater than other reactants, both
steps (i.e., (3.2a) and (3.2b)) are important in governing the overall rate, resulting
in the quadratic kinetics that would follow from applying the law of mass action
to the overall reaction 21~ 4+ HyOy — I +20H~. We, therefore, have in simplified

form,

D+ P2 Q. (3.3a)
D+Q 2% 1 (3.3b)

Several studies have investigated the chemical reactions (3.2) [4, 5, 30, 34, 45, 46,
57]. It has been found that hypoiodous acid (HOI) can be transformed by three

pathways:

o4



v

I~ —— HOI/OI 103

(a)

(b) Disproportionation

Figure 3.1: Schematic diagram of the transformation pathways of hypoiodous acid
(HOI): (a) oxidation to iodate (IO3 ), (b) disproportionation to iodide (/7) and
(103) and (c) reduction to (I7) by hydrogen peroxide (H505), adapted from [45].

(a) oxidation to iodate (/O3 ) which is the iodine oxoanion,
(b) disproportionation to iodide (/~) and iodate (105 ),
(c) reduction to iodide (I~) by hydrogen peroxide (H20s).

Figure 3.1 represents a diagram of the transformation pathways of iodide and
hypoiodous acid. In this study, we are not interested in iodate (/05 ), so we
consider only the third transformation pathway, where hypoiodous acid (HOI)
reduces to iodide (/™) by hydrogen peroxide (H0O5), which is the reverse reaction
as described in [45]:

HOI + HyOy — 1. (3.4)

In the reverse chemical reaction (3.4), the total concentration of hypoiodous acid
(HOI) at time ¢, denoted by Q(t), is converted to the iodide (/~), denoted by
D(t), in the presence of hydrogen peroxide (H20:), denoted by P(t), at a rate

given by ks@Q P. The simplified form is

Q+pP =% p. (3.5)
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Thus, the slow (first) chemical reaction (2.1) is a combination of (3.2) and (3.4),

given by

ksDP

D+ P PP (3.62)
D+Q ™%, (3.6b)
Q+pP L p. (3.6¢)

Based on the above formulations and applying the law of mass action to (3.6),
the model is given by the following system of nonlinear differential equations

(named Model ISR referring to isolated slow reaction):

dD
% = —k‘g,DP — ]{J4DQ + ]{35QP, (37&)

dP

dQ
% = ngP — ]{?4DQ - ]’C5QP, (37C)

dl
— = k4D .7d
dt 4 Q? (3 7 )

with initial conditions

D(O) - dOJ P(O) = Do, Q(O) = qo, ‘[<0) = lo- (38)

We observe that the three equations ((3.7a), (3.7¢), (3.7d)) for iodide, hypoiodous

acid and iodine yield the following conservation law,

%(D+Q+2[) — 0. (3.9)
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We deduce that D(t)+Q(t)+2I(t) is conserved. We represent the total concentra-
tion of iodine atoms in the reaction by ng = do + qo + 2t9. Hence, the variable I(t)
will be eliminated from the model (3.7) by substituting I(t) = 1/2[no—D(t) —Q(t)]
into (3.7), thus the Model ISR can be reduced to

dD
ar
= —ksDP — ksQP, (3.10b)
dQ

It is instructive to non-dimensionalize the system by choosing the following scalings

(in particular, we choose the timescale based on the final step producing iodine),

t*

kang ’

D= noD*, P = pop*, Q = noQ*7 t (311)

where * denotes a dimensionless quantity. Substituting (3.11) into (3.10) leads to

the dimensionless system,

dD*

e —eaD*P* — D*Q* + efaQ* P, (3.12a)
dP*

el —eD*P* — eBQ* P, (3.12b)
dQ* * * * * * *

e eaD*P* — D*Q* — efaQ* P*, (3.12¢)

where the dimensionless parameters are

ef=— and a=—. (3.13)
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As mentioned earlier that k3 < ky, the reaction converting iodide (D) to hy-
poiodous acid (@) is much slower than the reaction converting iodide (D) to io-
dine (I), therefore, ¢ < 1. The parameter § is order 1, and the magnitude of
the parameter o determines whether the situation is moderate or high hydrogen

peroxide. The initial conditions become

D0)=d,, P0)=1, Q*(0)=q, (3.14)
with
dy qo
0 noa qO no ( )

We consider the specific situation in which all the initial substrate is in the iodide
(D) form and the product (/) and intermediate (@) are absent. Thus, Ny &~ Dy,
and it follows that D*(0) = 1 and @Q*(0) = 0, and hence a = py/dy. Figure 3.2
shows the numerical simulation of the model (3.12) with different values of e.
From this point forward, we drop stars for ease of notation. The primary dis-
tinction between the HPL Model (2.11) (stated in Chapter 2) and the ISR Model
(3.12) is that the HPL Model explicitly incorporates hydrogen peroxide at moder-
ate concentrations of the simple clock reaction (slow and fast reactions), while the
ISR Model is structured to examine the affects of hydrogen peroxide on kinetics by
analyzing the slow reaction in isolation. One of the main objectives of this study
is to demonstrate how numerical simulations and asymptotic analysis can reveal
the key features of a chemical reaction model and lead to a simplified model that
captures the observed dynamics of the full chemical reaction model. In Section
3.3, we will study the situation of moderate hydrogen peroxide concentration and,

in Section 3.4, the high hydrogen peroxide concentration to determine the overall
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Figure 3.2: Numerical simulation for the model (3.12) of the moderate hydrogen
peroxide case with initial conditions D*(0) = 1, P*(0) = 1 and Q*(0) = 0, and
dimensionless parameter values & = 0.7 and 8 = 0.9. (a) with ¢ = 0.1, and (b)
with € = 0.01.

effective kinetics. Briefly, the ratio of the initial concentration of hydrogen perox-
ide to the initial concentration of iodide (i.e., & = py/dp) for the model (3.12) will
be studied: (1) when hydrogen peroxide (pp) is similar in concentration to iodide
(dp), so & = O(1), and (2) when there is an excess of hydrogen peroxide (py), so

a = O(e71). More details are given in the following sections.

3.3 Case 1l (when a =0(1)):

In this section, we will study the qualitative analysis for the model (3.12) when
initial hydrogen peroxide (P) is similar in concentration to iodide (D), so a@ =
po/do = O(1). Since Q(0) = 0 and we can see in Figure 3.2 that Q(¢) remains
low, this motivates us to initially scale Q = €Q, where Q = O(1). Looking at the

equation (3.12c), the positive term is O(¢) and the negative terms are linear in Q,

59



so if @ starts at 0 then it would be expected to be no larger than O(e). In addition,
Figure 3.2 illustrates that hydrogen peroxide (P) concentration is decreasing to

stay low whereas iodide (D) concentration is decreasing, eventually, going to zero.

3.3.1 Asymptotic Analysis

As in Chapter 2, we will apply the technique of matched asymptotic expansion to

construct approximate solutions of the model (3.12).

Region I: Initial Adjustment

The first region can be described as where the independent variable ¢ is order 1
(t = O(1)), the dependent variables D, P are order 1, and @ is order € (D, P = O(1)
and Q = O(¢), so Q = €Q). It follows that the model (3.12) with variables rescaled,

the system in Region I, takes the form

dD

= = —eaDP — eDQ + €2BaQP, (3.16a)
dP ~
- = —eDP - 3QP, (3.16b)
aQ -,
e = eaDP — eD(Q — ¢ SaQP. (3.16¢)

Seeking a solution of the form (asymptotic expansions):

D= D0+€D1+62D2+..., P = P0+6P1+€2P2—|—..., and Q = Q0+€Q1+62@2—|—...,
(3.17)
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we find that at the leading order,

dDy

— =0 3.18
dP,
— =90 3.18b
d~t ) ( )
d ~
% = Oé.D()PO — DQQ(), (318(3)
with the initial conditions:
Do(0) =1 Py(0)=1 and Qu(0)=0. (3.19)

Equations (3.18a) and (3.18b) combined with the initial conditions (3.19) imme-
diately yield
Dy=1 and Fy=1 forall ¢ (3.20)

By substituting (3.20) into (3.18c), we obtain
dO -
% —a— Q. (3.21)

Using the separation of variables method with the initial conditions in (3.19) gives

Q=a(l—ec). (3.22)
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Therefore, the asymptotic solutions in Region I are as follows:

D(t) =1+ 0(e), (3.23a)
P(t) =1+ 0(e), (3.23b)
Qty=a(1—e") +0(e). (3.23¢)

It is clear from equation (3.22) that Qo rapidly approaches «, corresponding to
balance (quasi-equilibrium) in the production and removal of Q at leading order.
Hence, as t — oo, Dy — 1, Py — 1 and Qy — «. In terms of the chemical
species in Region I, we are seeing the establishment of a quasi-equilibrium before

the slower process of conversion of D to I can take place in multi-step reactions

(3.6).

Region II: Long-term Behaviour

The conversion of D to I takes place on a longer timescale O(1/¢); we refer to this
process as Region II. We will address the long-term analysis for the model (3.12),
in which ¢ = O(e™!). Denoting, 7 = et with D(r) = D(r/e), P(r) = P(7/¢), and
Q(7) = Q(7/¢) where Q = €'Q, the system becomes

dD Voo Voo vV
€= —eaDP — eDQ + € faQP, (3.24a)
T
dP . L.
e = —eDP — €BQP, (3.24b)
T
,dQ 7 A 2a AT
€= eaDP — eD(Q — e“Sa@P. (3.24¢)
T
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Again, seeking a solution in the form of the asymptotic expansions:

Dzbo—f—EDl—f—..., p:po—f—&ﬁ)l—f-..., and Q:Q0+EQ1+

we find that at leading order,

dD . ..

d—o — —aDyPy — DyQo,
.

Py o

dT - 040,

0= abopo — Do@o.

Solving (3.26¢) for Qo gives

QO :OZP(),

and substituting (3.27) into (3.26a) yields

v

dD o
—0 = —QOéDQPQ,
dr

and, hence, dividing (3.28) by (3.26b) yields

— = 2.
dP,

(3.25)

(3.26a)

(3.26b)

(3.26¢)

(3.27)

(3.28)

(3.29)

By matching to Region I solutions in (3.23) to find the constant of integration, we

have,

130:2(1]50—1—(1—204).
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Substituting (3.30) into (3.26b) yields

db,

- -h [Qaﬁo (1 2a)] . (3.31)

The equation (3.31) has two equilibria

o o 1

P()ZO and P():l—% (332)
We are interested in the equilibrium Py =1—1 /2a which is asymptotically stable
when the slope of the equation (3.31) at the equilibrium Py = 1 —1/2« is negative

(ie., (1 —2a) < 0if a > 1/2). Equation (3.31) has the following solution

1 1 208 + (1 — 20)

I _ 3.33
1—20) n 2 T+ cs, (3.33)

and the constant of integration can be determined from the matching condition
(¢c5 = 0). We constrain o > 1/2, then we note that the term in the modulus
sign starts out positive when Py = 1 and remains positive until the asymptotically
stable equilibrium Py = 1 — 1 /2a is reached. We can therefore restrict to the

positive case only. It yields

20P) + (1 —2 20P) + (1 —2
abt(1-20)) 20B+1=20) (3.34)
B B

and, hence,

In <2aﬁ° +{- 20‘)) = (1—2a)T, (3.35)
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or equivalently
20F + (1 —2a) S(1-20)7

= 3.36
= (330
Solving for Py (where o > 1/2) yields
v (2a — 1)
Py = 5 o= )" (3.37)
Now, substituting (3.37) back into (3.30) and (3.27) to find Dy and Qo:
v 2a (2a — 1)
DO = ey — e—(QOz—l)T — (20[ — 1) s (338&)
y a2a—1)
Qo = Y= (3.38Db)
Therefore, the asymptotic solutions in Region II are as follows:
v 20 (2a— 1)
D(71) = S @ (2a — 1) 4+ O(e), (3.39a)
v (20— 1)
P(r) = S0 o= D + O(e), (3.39Db)
9 200 — 1
ol PR C i BTN (3.39¢)

- 20 — e—(2a=1)r

Hence, if & > 1/2, then as 7 — oo: Dy — 0, Py = (2a —1) /2a, and Qo —

(2cc — 1) /2, which means once the iodide (D) is exhausted, then the slow chemical

reaction (3.6) can no longer occur as there is no remaining reactant.
Significantly, substituting the expression (3.27) into (3.7d), we find that at

leading order the asymptotic analysis in Region II leads to

= . 4
— o DP (3.40)
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Hence, the main conclusion that can be drawn is that when o« = py/dy is order 1,
the rate of change of iodine (I) is linear in terms of the concentration of hydro-
gen peroxide (P) and iodide (D). Importantly, this result is consistent with the

experimental data in [16], and validates the model used in Chapter 2 of this thesis.

Comparison Of Asymptotic And Numerical Approximations

The Matlab ode45 solver is utilized for computing a numerical solution given initial
conditions D(0) = 1, P(0) = 1 and Q(0) = 0, along with dimensionless parameters
a = 0.7 and g = 0.9 incorporating the reaction rate ratio ¢, these values are
chosen arbitrarily. Figure 3.3 depicts how the matching between the asymptotic
approximation solution in (3.23) and numerical simulation for the model (3.16)
gets better for smaller values of e. For more quantitative analysis, Figure 3.4
illustrates the errors (difference between the numerical solution and asymptotic
approximation for each variable) as a function of € on a log-log scale. The log-
log plot is a useful tool for visualizing how the errors decrease as the parameter
e gets smaller and analyzing the slope of the errors curves to understand the
convergence behaviour. In this case, the absolute errors have been calculated by
the infinity norm (defined as the maximum absolute value), ||Ynum — Yasympllo =

MAaX |Ynum — Yasymp|, from the time points outputted by ode4s. It yields

log Hynum - yasympHoo =c+ blog €. (3.41)

Hence,

||ynum - yasympHOO = aeb- (342)
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Figure 3.3: Comparison between asymptotic approximation in (3.23) and numer-
ical solutions of the model (3.12). The match gets better for smaller values of
¢, with initial conditions D(0) = 1, P(0) = 1 and Q(0) = 0. The dimensionless
parameter values are &« = 0.7 and 3 =0.9. (a, b) e =0.01 and (c, d) e = 0.001.
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Figure 3.4: The difference between numerical solution of the model (3.16) and
asymptotic approximation in (3.23) for each variable as a function of € values on
a log-log scale, over period of time [0,10]. The initial conditions are D(0) = 1,
P(0) =1 and Q(0) = 0, and dimensionless parameter values § = 0.9 and a = 0.7.
where a = e° is the y-axis intercept, and b is the slope (gradient), and hence b =~ 1

(can be calculated based on any two points from log-log plot using MATLAB
code). Therefore,

“ynum - yasymp”oo ~ 617 (343)

which means

”ynum - ya.symp"oo - O(E) (344)

This result is consistent with the asymptotic expansion approach ||y —yo|lo = O(€),
where y is the model and vy is the leading order asymptotic solution of the model.

Comparison between the analytical solution in (3.39) and the numerical simulation
of the model (3.24) is presented in Figure 3.5. Figure 3.6 illustrates the errors
(difference between numerical solution and asymptotic approximation for each

variable) as a function of € on a log-log scale. Similarly, the absolute errors have
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Figure 3.5: Comparison between asymptotic approximation (3.39) and numerical
solutions of the model (3.12) with initial conditions D(0) = 1, P(0) = 1 and
Q(O) = 0, and dimensionless parameter values g = 0.9 and a = 0.7. The results
representative of case (a) when € = 0.1, and case (b) when € = 0.01.

been calculated by the infinity norm (defined as the maximum absolute value),
| Ynum — Yasymplloo = MAX |Ypum — Yasymp| from the time points outputted by ode45.
The gradient is also approximately 1 (can be calculated based on any two points

from log-log plot using MATLAB code), which implies

”ynum - yasymp”oo = O(E) (3.45)

3.4 Case 2 (when a =0(e!)):

In §3.3 when a = O(1), hydrogen peroxide concentration was assumed to be similar

to the other substrates. We observed that the rate (3.40) is linear in both iodide
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Figure 3.6: The difference between numerical solution of the model (3.24) and
asymptotic approximation in (3.39) for each variable as a function of evvalues on
a log-log scale, over period of time [0,1000]. The initial conditions D(0) = 1,
P(0) =1 and Q(0) = «, and dimensionless parameter values f = 0.9 and o = 0.7.
(D) and hydrogen peroxide (P) concentrations. In this section, we will be looking

at the qualitative analysis of the model (3.12) when there is an excess of hydrogen

peroxide (P) concentration in the model (3.12), so a = O(e™!).

3.4.1 Asymptotic Analysis

Denoting, & = ea (i.e., & = O(1)), the system becomes

‘Z—? — —_4aDP — DQ + GBQP, (3.46a)
P

C;—t = —eDP — efQP, (3.46D)

aQ .

o = aDP — DQ — aBQP. (3.46¢)
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Figure 3.7: Numerical simulation for the model (3.46) (hydrogen peroxide in ex-
cess) with initial conditions D(0) = 1, P(0) = 1 and Q(0) = 0, and dimensionless
parameter values @ = 0.7 (i.e., « = 70), 8 = 0.9 and € = 0.01. (a) for ¢ = [0, 10].
(b) for ¢ = [0,100].

Figure 3.7 shows the numerical solutions of the model (3.46) for different time
periods. It reveals that hydrogen peroxide (P) concentration stays high whereas
iodide (D) concentration drops fast to zero and hypoiodous acid (@) concentration
remains low when a = O(e!). By comparing this result when a = O(¢7!) to the

first case (when a = O(1) in Figure 3.2 and model (3.12)), it must be pointed out

that the hydrogen peroxide (P) now stays high.

Region I: Initial Adjustment

In the first region, the independent variable ¢ is order 1, and the dependent vari-

ables D, P, () are of order 1. Using the asymptotic expansions:

D = Dy+€D1+€2Dy+..., P = Py+eP+€?Py+..., and Q = Qo+€eQ1+€*Qo+...,
(3.47)
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yields the following leading order behaviour

dD

~ = —aDoPy = DoQo + a5 Qu Py, (3.48a)
d Py

— =0 3.48b
dt Y ( )

d . .

% = O[D()PO — DOQO - OZﬂQ()P(). (3480)

We can solve equation (3.48b) directly, obtaining the solution Py, = 1. Hence,

dD . ~

d_to = —O./DO — DOQO + OZ/BQ(), (349&)
d . ~

% = OADO — DOQO - OZﬂQO. (349]3)

As we have been unable to solve (3.49) analytically, we instead explore its nu-
merical solution to determine the behaviour of these variables that will enable
us to determine the appropriate scalings for the next regime. Solving the above
equations in (3.49) numerically is illustrated in Figure 3.8. It demonstrates the
proportional relationship between the two variables: (Qg o< Dy). As (g increases,
Dy increases at the same rate, and the constant of proportionality is the value
that relates the two amounts. The ratio of Qy to Dy is equivalent to 1/ when
Dy < 0.025. In addition, Table 3.1 indicates the proportional relationship be-
tween the two variables )y and Dy. Since the relationship is proportional, we can
write an equation in the form Qg ~ Dy/( to represent it when Dy < 0.025. That

motivates the study of the quasi-steady-state.
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Figure 3.8: Numerical simulation of the proportional relationship behaviour Dy
and Qo functions of the equations (3.49) (Dy o Qo) with initial conditions D(0) =
1 and Q(0) = 0, and dimensionless parameter values @ = 0.7, f = 0.9 and
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€ = 0.001, and (b) scaled to show Dy < 0.025.

0.005 0.01 0.015

D,

a Do Qo | Qo/Do~1/B

0.0251 | 0.0280
0.0246 | 0.0274

0.7 0.9 0.0188 | 0.0210 L1
0.0127 | 0.0141
0.0252 | 0.0229

0.7 1.1 0.0225 | 0.0204 0.91
0.0157 | 0.0143 '
0.0252 | 0.0281

0.9 0.9 0.0221 | 0.0245 111

0.0148 | 0.0165

Table 3.1: Numerical findings on the relationship between the two variables Qg
and D,. For every data pair, the ratio of Qy to Dy is equivalent to 1/3, which
is the constant of proportionality (rounding off to the nearest hundredths) when

Dy < 0.025.
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long-term behaviour on Region I:

Since we have been unable to obtain an analytical solution to (3.49), we instead
consider its long-term behaviour to aid with scaling to the next timescale. We use
the scaling Dy = Qo = O(0) and t = O(1/6), where § = O(¢). Denoting Dy = § D,
Qo = 6Qp and f = dt.

dD,

= —&0Dy — 6°DoQo + 86Qo, (3.50a)

This implies that dD, Jdt = 0 =~ dQo /dt, and considering only the leading order

contributions to the variables, it follows that

0= —adDy — 62DyQo + &B5Qy, (3.51a)

0= &bdDy — 6*DyQo — 6,85Q. (3.51b)
Neglecting the 62 term in (3.51a), we deduce that
Dy ~ BQy, (3.52)

as we anticipated from our earlier numerical investigations. Adding the two equa-

tions (3.50a) and (3.50b) gives

(Do + @o) = ~26* Do, (3.53)

S =~
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hence,

d

a7 (Do + Qo) o —DoQo.

Substituting (3.52) into (3.54) leads to

(600 +Go) 603

dO N
(5+1) 2 o 502

Using the separation of variables method for integration,

dQy -8
Q2 O(/(Bﬂ)dt’

yields,
Lo P
Q (B+1)
Solving for Qg in (3.57), we have
-1
QO 08 ?7

and from (3.52), Dy o 1/ also.

Region II: Long-term State

(3.54)

(3.55a)

(3.55b)

(3.56)

(3.57)

(3.58)

In this section, we will take a look at the long-term analysis for the model (3.46),

in which ¢ = O(e™'). Denoting, 7 = et with D = O(e), P = O(1), and Q = O(e),
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thus, the system becomes

‘jl_ — —caDP — DO + eaBOP, (3.59)
T
dp . "o
e = —e2DP — €BQP, (3.59b)
T
Qdé AED 2P Vel s
€ = eaDP — e“DQ) — eaSQP. (3.59¢)
T

0=—aDyPy + aBQu kb, (3.60a)
dp,
— =0 3.60b
d’T ) ( )
0= dDO u0 — dﬂ@o vQ. (36OC)
Hence,
Py=1, (3.61)

aDy = aBQ,, (3.62)
yielding,
v 1.
Qo = EDO- (3.63)

We now consider how this affects the rate of change of iodine in this high peroxide

regime. Substituting the expression (3.63) into (3.7d), we find that at the leading
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Figure 3.9: Numerical simulation shows the match between numerical solutions
of the model (3.46) and the leading order asymptotic approximation (3.48), with
initial conditions D(0) = 1, P(0) = 1, and Q(0) = 0. The dimensionless parameter
values are @ = 0.7 (i.e., « = 70), § = 0.9 and € = 0.01.

order of asymptotic analysis in Region II

% o D2 (3.64)

Our results demonstrated that when o = py/dy is order e~ then the rate of change
of iodine (/) is quadratic rate in terms of the iodide (D) concentration. Overall

this validates the model used by Kerr et al. [27].

Comparison Of Asymptotic And Numerical Approximations

Figure 3.9 illustrates the matching between numerical solutions of the model (3.46)
and the leading order asymptotic approximation (3.48) on region I. Figure 3.10a
displays the matching between the numerical solution of the variable () function

(3.48¢) and the long-term behaviour of Qo function (3.58) on Region II. It shows
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Figure 3.10: Numerical simulation of the variable )y at the leading order equation
(3.49b) and the long-term behaviour of @ function (3.58) when ¢t = §~'# with
initial conditions Dy(0) = 1 and Qo(0) = 0, and parameter values are & = 0.7,
B = 0.9 and € = 0.001, where (a) Qo decays slowly and it matches to Qg ~ 1/t,
and (b) Qot ~ 1.

that Qp decays and it matches to Qg ~ 1 /t, with this relationship being confirmed

in Figure 3.10b.
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3.5 Conclusion

This chapter studied the slow reaction in isolation to understand the effect of the
concentration of hydrogen peroxide on the kinetics by including the hypoiodous
acid reactant and reverse reaction. We exhibited how the order of the ratio of
hydrogen peroxide to iodide determines whether the reaction kinetics are effectively
linear or quadratic, and explains the discrepancies between the two previous studies
by Copper and Koubek [16] and Kerr et al [27]. The main contributions of this
chapter are summarised in Table 3.2.

For the next chapter, we will be incorporating the multi-step model of the
slow reaction with the fast reaction associated with vitamin C to formulate a
unified model of the chemical clock reaction valid for both moderate and hydrogen
peroxide cases. We will again develop an asymptotic analysis, elucidating how the
moderate and hydrogen peroxide regimes differ, leading to approximate switchover

time formulae in each case.
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Chapter 4

Model FCR: Full Model Of
Chemical Clock Reaction With
Moderate and High Hydrogen

Peroxide

4.1 Motivation

The kinetics of the chemical clock reaction (including the slow and fast reactions)
must be fully understood. In Chapter 3, we analysed the slow reaction in isolation
to understand the effect of hydrogen peroxide concentration on the kinetics (i.e.,
Model ISR), by including the hypoiodous acid reactant and reverse reaction. We
now perform asymptotic analysis on the full model of the chemical clock reaction
(slow and fast) with this reverse reaction and associated vitamin C (will be named,

Model FCR), by combining Model ISR and the fast reaction. The analysis will
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enable us to obtain an approximate formula for the dependence of the switchover
time on the initial concentration of the reactants for both the moderate and high
hydrogen peroxide regimes (from one unified model). This will empower the com-
parison of the full clock reaction model results (Model FCR) to Model HPL (the
simple model with moderate hydrogen peroxide in Chapter 2) which has linear ki-
netics based on experimental data by Copper and Koubek [16], and to the model

with high hydrogen peroxide by Kerr et al., [27] which has quadratic kinetics.

4.2 Model Formulation

The aim of this chapter is to investigate the full model of the chemical clock
reaction with reverse reaction and associated vitamin C and hydrogen peroxide as
follows: The slow (first) reaction is a result of the three reactions (as stated earlier

in Chapter 3, Model ISR) taking the following form

(
D+PE Q,

2D+ P IS prohy 1 (4.1)
Q+PL D

and the form of the fast (second) reaction (as stated earlier in Chapter 2) is given
by
I+C 209D (4.2)

Based on the above formulations and applying the law of mass action, the model

is given by the following system of nonlinear differential equations (named Model
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FCR referring to full clock reaction):

dD
dP
dQ
E = k3DP - k4DQ - k5QP7 (43C)
dC
— = —kyIC 4.
dt 2 ) ( Bd)
dl
= ksDQ — kyIC, (4.3e)
with initial conditions
P(O) = Do, Q(O) = qo, C(O) = Cp, [(O) = Lo (44)

We note that the equations for iodide (D), hypoiodous acid (@) and iodine (1)

obey the following conservation law,

%(D+Q+2I) = 0. (4.5)

We deduce that D(t) + Q(t) + 2I(t) = do + qo + 2top = no, where nyg is the total

concentration of iodine atoms. Eliminating the variable D (i.e., D = ny— Q — 2I)
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in (4.3) we have the reduced system

% — ky(no— Q — 2I) P — ksQP, (4.62)
d

dC

E — _k2]c7 (460)
% — Ky (o — Q — 21) Q — kuIC. (4.6d)

It should be emphasized that the units of the reactants’ concentrations (P, @, C, I)
are moles per litres (mol/l), the units of time (¢) are seconds (s), and the units
of the reaction rates (ko, k3, k4, ks) are liters per moles per seconds (1/mol-s). It
is instructive to non-dimensionalize the system by choosing the following scalings
(in particular, we choose the timescale based on the final step producing iodine),

t*

P:pOP*7 QZTLOQ*7 CZCOC*a ]:TL()I*, = ’
k’QCQ

(4.7)

where * denotes a dimensionless quantity. Substituting (4.7) into (4.6) leads to

the dimensionless system,

dP*

= o (1= Q" —2I") P = @50Q P, (4.8a)
d *

dcf* =ep(1-Q" —2I") P —eyo (1 - Q" —2I") Q" — €BpQ*P*,  (4.8D)
d *

di e (4.8¢)
dl* * k k * *

=0 (1-Q =20 Q" - I°C", (4.8d)
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where the dimensionless parameters are

o b o ks
o=—, p=—, ¢

ks k4 Lo
Co Co kq ’

]{7_27 €Y = k_v ¢ - (49)

2 )

p =

It should be mentioned that the reaction converting iodide (D) to hypoiodous acid
(Q) and the reverse reaction converting hypoiodous acid (Q) to iodide (D) are
much slower than the reaction converting iodide (D) to iodine (1), so ks, ks < k.
Furthermore, k4 < ko, because the reaction converting iodide (D) to iodine (I) is
much slower than the fast reaction converting iodine (/) to iodide (D), therefore,
the reaction rate ratio €2 < 1. The parameters 3 and v are order 1, and the
magnitude of the parameter p determines whether we are considering moderate or

high hydrogen peroxide. The initial conditions become

P*0)=1, Q*(0)=¢q;, C*(0)=1, I7(0) =1, (4.10)
with
* 4o * Lo
= — = —. 4.11
4o o’ ) o ( )

We consider the specific situation in which @) is absent initially. It follows that
Q*(0) = 0 and I*(0) = vo/ng = ¢. We drop the stars for easier notation. The
main difference between the ISR Model and FCR Model lies on their focus: The
ISR Model (3.7), as stated in Chapter 3, focus on the slow reaction in isolation
to understand the effect of the concentration of hydrogen peroxide on the kinetics
by including the hypoiodous acid reactant and reverse reaction. The FCR Model
(4.8) focus on the full clock reaction incorporating the multi-step model of the slow

reaction with the fast reaction associated with vitamin C to formulate a unified
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model valid for both moderate and hydrogen peroxide cases.

4.3 Asymptotic Analysis

Due to the small reaction rate ratio € (i.e., €& < 1), we can generate an ap-
proximate solution to Model FCR (4.8) via matched asymptotic expansions. The
asymptotic analysis will be divided into four regions and we must also consider
hydrogen peroxide (P) concentration. In this chapter, we look at the Model FCR
(4.8) in two cases: (1) with moderate hydrogen peroxide, named Model FCR-M-
HP. Note that we use ‘moderate’ here to signify hydrogen peroxide is present in a
similar concentration to other reactants; (2) with high hydrogen peroxide, named
Model FCR-~-H-HP, through asymptotic analysis. Figure 4.1 illustrates the con-
centrations of the reactants as a function of time for both cases of the model (4.8).
The clock reaction (in which iodine (I) appears after the induction period) occurs
when vitamin C' is totally consumed. A logarithmic scale for time in Figure 4.2

exhibits the timescales spanning several orders of magnitude.

4.3.1 Model FCR-M-HP: The Full Model With Moderate

Hydrogen Peroxide

We first consider that there are similar levels of hydrogen peroxide (P) concentra-
tion in the system to the other reactants. Thus, we assume that p is order 1 in
the Model FCR (4.8), where p = py/co. Since () remains low as shown in Figure

4.2a, we initially scale Q = eQ where Q = O(1).
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Figure 4.1: Numerical simulation of the model (4.8) illustrates the concentrations
of the reactants as a function of time with initial conditions P(0) = 1, Q(0) = 0,
C(0) =1 and I(0) = ¢, and the dimensionless parameter values (chosen arbitrar-
ily) are § = 0.6, vy = 0.7, 0 = 0.8 and ¢ = 0.2. (4.1a) First case with moderate
hydrogen peroxide where p = 2 and € = 0.01. (4.1b) Second case with high hydro-
gen peroxide where p = 900 and € = 0.001. The clock reaction appears after the
induction period.

We obtain the following model, named Model FCR-M-HP:

‘2—1; S (1 — ) — 21) P —B00P, (4.12a)
% =ep(1—eQ—20) P—eyo (1—€Q —21) Q- BpQP, (4.12b)
% = —oIC, (4.12¢)
% — &yo (1 — ) — 21) O—IC. (4.12d)

The initial conditions are:

P(0)=1, Q0)=0, C(0)=1, I(0)=¢. (4.13)
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Figure 4.2: Numerical solutions of the concentrations of the reactants as a func-
tion of time on a log scale, of the model (4.8), with initial conditions P(0) = 1,
Q(0) =0, C(0) =1 and I(0) = ¢, and the dimensionless parameter values (chosen
arbitrarily) are g = 0.6, v = 0.7, 0 = 0.8, ¢ = 0.2. (4.2a) First case with mod-
erate hydrogen peroxide where p = 2 and € = 0.01. (4.2b) Second case with high
hydrogen peroxide where p = 900 and ¢ = 0.001.

The Model FCR-M-HP (4.12) will be studied through five asymptotic regions in
detail in the following sections.
Region I: Initial Adjustment

During Region I, the reactants are mixed before the induction phase begins. It can
be described as where the dependent variables I,C, P are order 1 and the inde-

pendent variable t = O(1). The leading order terms for the asymptotic expansion
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of the Model FCR-M-HP (4.12) are:

dry
di -
dQo
dt
aCy _
dt
dly
dt

with the initial conditions:

Py(0)=1, Qo(0)=0, Co(0)=1,

Equations (4.14a) and (4.14b), alongside their initial conditions yield

Dividing (4.14c) by (4.14d) gives the following

Gy _
al; = 0.

(4.14a)

(4.14D)
(4.14c)

(4.14d)

(4.15)

(4.16)

(4.17)

(4.18)

Using the separation of variables method, and the initial conditions, yields

Co=0(lo—¢)+1,
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and hence,

% = Do (To— @) +1]. (4.20)

Using the separation of variables and the partial fraction decomposition for inte-

gration (with ¢ as the lower limit of the integral) leads to

b
U(IO—Q§)+1

In

‘ —In(¢) = — (1 — o). (4.21)

The sign of the argument of natural log is positive because Iy — ¢ > 0. Hence,

oly+ (If —00) = ge 7, (422)
yielding,
(1-0

Iy = (b(ll__;;i) — W, (4.23)

and substituting (4.23) into (4.19) leads to
Co= 22 1(1__0‘;25) fi{)m)t +(1-00). (4.24)

It follows that the approximate solutions on Region I are:

P(t) =14 O(e), (4.25a)
Q) =0+ O(e), (4.25Db)
c(t) = Jqﬁl(l__agf) ~ (; (1= 0d) + 00, (4.25¢)
I(t) = ¢(11__0"$ i ;w +0(e). (4.254)
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As t — oo we observe that (Py(t), Qo(t), Co(t), In(t)) — (1,0,1 — 0¢,0). During
the initial adjustment behaviour, approximately o¢ (which in dimensional terms
is 19/co, i.e., the initial concentration of iodine per the initial concentration of
vitamin C) of the initial quantity of the inhibitor C' is used up. The condition
1 —0¢ >0 (ie, tg/cy < 1) is essential in order to have enough vitamin C. The
initial adjustment therefore corresponds to consumption of a proportion o¢ of the
initial vitamin C concentration via the fast reaction, which results in converting
the majority of the initial iodine concentration to iodide in order 1 time; the slow
reaction is subleading in this region. In particular, note that Iy(¢) is exponentially

decaying.

Region Ia: Quasi Equilibrium Established for Q

Following the exponential decay of iodine and vitamin C, the fast reaction no longer
dominates and the slow reaction becomes of comparable importance. A distinctive
feature of the Model FCR-M-HP case as opposed to the Model FCR-H-HP case
is the existence of a region intermediate between the initial adjustment and the
induction period, during which the hypoiodous acid concentration reaches quasi-
equilibrium. This process corresponds to the two forward steps in the slow reaction
balancing in their production and removal of hypoiodous acid (i.e., D + P — @
and D 4+ @) — I). Therefore, we consider the following scaling: P = C' = O(1),
I =0(e) and t = O(¢~'). Denoting 7 = et and I = ¢*], then the system takes the

form at leading order (substituting the asymptotic expansions into Model FCR-
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M-HP (4.12)):

dFPy

"

d -

% = pPy — 70 Qo,
2

dCly

@ Y

0 = y0Qo — IyCo,

with the matching conditions to the Region I solution:

Po(0) =1, Qo(0)=0, Co(0)=1—0ap, I(0)=0.

Hence,

Po == 1,
Co =1- O'¢.
Substituting (4.28) into (4.26b) leads to
dQ -
—=p =100,
-

Using the separation of variables for integration to solve (4.30):

/P—dcjgéo :/dT7
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(4.26a)

(4.26Db)
(4.26¢)

(4.26d)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)



yields,

-1
—1In
o

o (ﬁ - Qo) ’ =T +c, (4.32)
YO

where ¢ is a constant that can be found by matching to Region I,

—1In(p)
yo oo

(4.33)

C1 =

Taking into account the quasi-steady state of (4.30), we see that Qo ~ p/~vo, and
hence p/yo — Qo > 0. Therefore, (4.32) and (4.33) give

Qo= (1—e). (4.34)
Substituting (4.29) and (4.34) into (4.26d) yields

fo=< _pm (1—e07). (4.35)

It should be noted that as 7 — oo:

(R @ulo), ) o) = (1 L1 = a0, ).

It follows that the approximate solutions for Region Ia are:

P(t) =1+ O(e), (4.36a)
Qt) = ;—Z (1—e %) +O(e), (4.36b)
C(t)=1-0¢+O(e), (4.36¢)
1(t) = 5 E_QZ ; (1—e %) + O(e?). (4.36d)
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Region II: Induction Period

Following the establishment of quasi-equilibrium within the slow reaction, the
system enters the induction period, which is the distinguishing feature of a clock
reaction. During the induction period, the two chemical reactions (4.1) and (4.2)
keep the concentration of iodine (1) low. As iodide (D) is produced rapidly in the
fast (second) chemical reaction (4.2), it removes iodine (/) from the system faster
than it can be produced. As a result of these two reactions, the concentrations of
vitamin C (C') and hydrogen peroxide (P) are slowly being consumed. Thus, I is
order €2 and t is order €2 whereas P and C' are still of order 1. We rescale T = €t
and I = 2] (i.e., t = O(e72) and I = O(e?)). Therefore, the Model FCR-M-HP

(4.12) takes the following form at the leading order of the asymptotic expansions,

dPy

d_T = —OP(), (437&)
0= pPy— ~v0Qo, (4.37b)

dC; =

d—T? = —O'I()Cg, (437C)
0= ’}/UQO — f(]Co, (437d)

with the matching conditions to Region Ia:

RO)=1 Q)= GO)=1-00, bi0)=1"  (@43)

We can solve equation (4.37a) directly, obtaining the solution

Py=e¢", (4.39)
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Substituting (4.39) into (4.37b) and (4.37d) yields

Qp = LT, (4.40)
yo
and, hence,
1,Cy = pe T, (4.41)

Combining (4.41) and (4.37¢) leads to

dCy oT

T = —ope” (4.42)
Equations (4.41) and (4.42) can be solved to give
Co=pe™™ +(1—0¢ —p), (4.43)
and,
—oT
~ pe
Iy = . 4.44
N () (4.44)
The approximate solutions in Region II are, therefore,
P(t) = e <"+ O(e), (4.45a)
Q) = Lot L 0, (4.45h)
yo
C(t) = pe 7' + (1L — a0 — p) + Ole), (4.45¢)
2 —eot
I(t) cre +O(é). (4.45d)

T e T+ (1= 06— p)

One intriguing aspect of the clock reaction model is the exploration of the
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switchover time formula, which reveals the precise moment when the system tran-

sitions from one chemical state to another.

Switchover Time:

We can approximate the switchover time T, as being when vitamin C is all con-

sumed at leading order, i.e. Cy(Ty,) = 0 in (4.45)) This leads to
pe 7w 4 (1 —0¢—p) =0, (4.46)

which can be rearranged to give

To = L1n (L> (4.47)

o p+oop—1

In dimensional variables (recall (4.7) and (4.9)), we have that the switchover time

18

11 ro
tsw p— kzco 62@ hl m + mOL_0 — 1 ’ (448)
co

€o €o Mo

or equivalently (using € = k3/k»),

b = — 1n< Po ) (4.49)

 ksng Po + ¢ng — co

We consider the sign of (p + 0¢ — 1) from (4.47) (where p = po/co and 0o = 1o/ cp).
For this to be positive, it follows that p > 1 —o0¢ which satisfies py+ ¢ > ¢g. Thus,
there is enough hydrogen peroxide (P) to drive the vitamin C to zero.

A key result here is that the switchover time formula given in (4.47) is the same

as the simplified linear kinetics model HPL shown earlier in Chapter 2, namely
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equation (2.67).

Region III: Corner

Region III matches the behaviour at the end of the induction period, after the
rapid colour change, with the beginning of the long-term state where all reactants
settle. Region III connects regions II and IV together. Region III occurs when
the two reactions (fast and slow) are in balance (same order of magnitude). The
most suitable structured balance is found when P = O(1) and Q@ = C' = I = O(e),
with the shifted time coordinate ¢ = e~ ! (e*t — T,,). The re-scaled variables are
C = ¢ 1C and I = e 'I. Thus, the Model FCR-M-HP (4.12) at leading order

becomes

a5,

— = 4.
@ 0, (4.50a)
d ~
% = pPy —y0Qu, (4.50b)
dC, ..
dI <~ -
d_t_o = 'YO'QO - ]000. (450(1)

Equation (4.50a) indicates that the concentration of hydrogen peroxide (P) stays
constant between the induction period (Region II) and the long-term state (Region
IV) of the Model FCR-M-HP (4.12) at leading order. We find the following solution

for Py through the matching condition with Region II (i.e., P(tsw)),

_ptop—1
—,

Py (4.51)
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We can also derive the correction term for the variable P:

P, _
e2d—t£ = —co by, (4.52)

giving

Pl = —O'Pot_+ ai, (453)

the constant a; = 0 by matching condition to Region II solutions. This leads to

P:P0+€P1, (454)
—1 —1)_
p p

Substituting (4.51) into equation (4.50b) gives

dQ .
o (01061~ 1000 (4.56)
yielding,
1 —1 - _
—In |yo (M - Qo) ‘ =t+c, (4.57)
vo o

where ¢ is a constant of integration. Considering the quasi-steady-state of (4.56)
gives
= (ptop—1)

~ - 7 4.
QO No ) ( 58)

and substituting (4.58) into (4.50d) yields

dl, _
d_; =(p+op—1)—I,Co. (4.59)
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Hence, we obtain the following system

dC .

d_t_o = _O-_[OCO, (460&)
dl, = =

d_t? = (P + U¢ - 1) - IOCO- (460b)

The quantity (p 4+ oc¢ — 1) is a positive constant, leading to the expression

d .
p (cly—Co) =0 (p+op—1), (4.61)
and, hence,
oly—Co=0(p+0op—1)T+cy, (4.62)

where ¢5 is a constant of integration. Equation (4.60a) becomes the Riccati Equa-

tion [8, 27
e

7 :—(U(p+0¢—1)f+02+00) Co. (4.63)

We seek a solution of the form Cy = u'/u. By applying the quotient rule and

integration, we come up with the separable differential equation
uW=—=(c(p+op—1)t+c)u. (4.64)

Solving the differential equation, we find the solution

u':eXp[—t(a(p+2¢_1)f+62)]. (4.65)
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In order to find a solution of Cy, we substitute (4.65) into Cy = u'/u and find

exp [—ug (p+ 06— 1)t/2+c2)]
o I exp [— s(o(p+op—1)s/2+ 62)] ds + 03‘ .

We can express the solution using the error function, where the error function,

denoted by erf, is defined as,

erf(z) = —/ et dt, (4.67)
0

and, hence,

) exp{—t(a(p—i—a(b—l)t/Q—i-Cz)}
Co= . (4.68)

V)20 (p+ 09 —1)exp [cg/Qa (p+o¢— 1)} [erf(f(f) + 04}

where,

f(f)z\/U(p+g¢_1)[£+a(p+cj¢_l)} (4.69)

The constant ¢4 can be found by analysing the asymptotic form of the error func-

tion [27, 48], which is
erf(z) ~ 1 — e g1~ 1/2 (1+0(z7?), as z— o0,
since the error function is odd,

erf(—z) = —erf(x) ~ — (1 —e g p 2 (1+ O(x_Q))> :
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Hence,

erf(f(B) ~ —1 — %ﬁ?) (1+0(f(D)?) as [— —co.  (4.70)

Consequently, substituting (4.70) into (4.68)

o \/20'(p+0'¢—1)exp(_f(ﬂ2)
D VA= 1= e (- f@)/FOVE L+ O(f(H ) + ]

where,

exp [— fo(p+tod—1)F/2+ cz)}

o (107 = —— /20 (p 00 - 1]

Note that as £ — —oo, f(f) — —oo and for Cj to have a non-zero limit, we must

have ¢, = 1. Therefore, the solution can be rearranged as

Co=—\/20 (p+ 06— D (D) (1+O0(f(H)?). (4.71)

and by substituting (4.69) into (4.71) gives

Co— —/20(p + 06 —1) (\/0<p+§¢_1) {”o—(pf;(ﬁ_nD

(1+0(f(1)%) (4.72)

The constant ¢, can be found through matching to Region II. In the Region II

variables, we then have

C(T) = =20 (p+0¢p—1) W“(p+§¢_l) {<T_Tsw)+a(p+€?¢—1)]>7
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hence, ¢; = 0. The solution for Cj is

exp [—a(p+a¢—1)52/2}

Co = : (4.73)
V720 (p+o09p—1) {erf (\/0 (p+op—1)/2 f) - 1]
Substituting (4.73) into (4.62), the solution for I is
i exp{—a(p—l—aqﬁ—l)?/Z}
T =
o\/m/20 (p+op—1) {erf <\/0 (p+op—1)/2 f) + 1}
Y (ptoo— 1) (4.74)

The approximate solutions in Region III in the original variables are, therefore,

Py = LF ”j —1 ol +Z¢ V-1, (4.752)
Q1) = <2 :‘7;’5 - (4.75b)
e\/20 (p+0p—1)exp [ —o(p+op—1)e2(t — Ty /2]
C(t) = ., (4.75¢)
ﬁ[erf (\/0 (p+op—1)/2 e (2t— Tsw)> + 11
e\/20 (p+0¢—1)exp [ —o(p+op—1)e2(2t —T,,) /2]
I(t) =
Uﬁ{erf <\/(T (ptop—1)/2 €t (th—Tsw)> +1
+(p+op—1) (¢t —Tp) - (4.75d)
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Region I'V: Long-term State

Region IV characterises the long-term state of the system. Our predictions are that
the solutions will tend towards the equilibrium point as ¢ — oo and there will be
some of the reactants left over from the reactions after the colour change. All the
reactants return to being of O(1), however, t = O(e?), indicating T" = €*t. Then

the system is composed as follows at the leading order of asymptotic analysis:

dP,

d_j? =—o(1—20) P, (4.762)
0=p(1—2Ip) Py — o (1 —2Ip) Qo (4.76b)
0= —O'I()Co, (476C)

dl, ~

d—; = o (1 —2I)) Qo. (4.76d)

We will prove that C,, = 0 for all n = 0,1, 2, ... by induction. We substitute the

asymptotic expansions into (4.76¢) before the leading-order terms are taken:

+e€

dCy  dC,  ,dC
2 0 1 2 2
‘ < ar Tar T ar

+ ) =—0(lp+eh+eL+...)

(Co+eCr+ 0y + ...), (4.77)

We assume that Iy # 0 (which is clear from the numerical solutions). For the case
n =0,

0= —O'[()Co, (478)

we must have that Cy = 0 as Iy # 0. For the case n =1,

0=—-0o (6[001 + 6]100) s (479)
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we must have that C; = 0 since Cy = 0 and [y # 0. In general at O(€"),

dC,_
e 2 = 0 (1oCp + ... + 1,Cy) . (4.80)
Hence Cy = ... = C,,_5 = 0 implies (), = 0. By induction, we have found C, = 0

for all n. As a result, C' ~ 0 at all orders of ¢ when I = O(1) and t = O(e7?).
This result implies that the vitamin C reactant in Region IV has the asymptotic

approximation solution as

O(T) = 0. (4.81)
Rewriting (4.76b) obtains
p (1= 21Iy) Py = vo (1 —215) Qo (4.82)
yielding,
L py = Q. (4.83)
yo

Substituting (4.82) into (4.76d) gives,

dly

ﬁ =p (1 - 210) F, (4‘84)
and dividing (4.76a) by (4.84) gives
ar _ —o
dly — p’
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which has the following solution
—0
Py = —1y+ by, (4.85)
p

where b; is a constant that can be found by matching the condition to Region 11

(Po(Tw) = e~ Tow):

bl = G_UTSUJ

(where Ty, is given in (4.47)). Hence,

b = ptod—1) (4.86)

p

We will retain the notation b; for the rest of the calculation for shortness. Substi-

tuting (4.85) into (4.76a),

dP, 2
which when rearranged leads to
dP,

Using the separation of variables and the partial fraction decomposition, the equa-

tion (4.88) can be solved to give:

—1
(2051 - U)

2pPy — (2pby — o)
R

In ‘ =T + by, (4.89)
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where by is a constant that could be found by matching the condition to Region
IT (where Py(Ts,) = b1). Noting that Py > 0 and Py = b; > 0, it follows that the
term inside the modulus sign is initially positive, so we deduce that

2pPy — (2pby — o)
Fy

In

] = —(2pby — o) (T + bg) . (4.90)
The constant b, is then calculated to be,

by — ;)m (ﬁ) T (4.91)

(2pby — o o

Using the natural logarithm properties and the fact that the natural logarithm is

the inverse of the exponential function, and then solving for P, in equation (4.90)

gives
_ (2pby — o)
b= 2p — e~ (2pb1—0)(T+b2)’ (4.92)
substituting (4.92) into (4.83) and (4.85) yields
N P <2pb1 —0‘)
Q= ’Y_U {Qp — e—(2pb1—0)(T+b2) | ’ (4.93)
fo = ; {Zp — e~ (2pb1—0)(T+b2) + 01 . (4.94)

Moreover, substituting (4.91) into (4.92), then the long-timescale solution for hy-

drogen peroxide can be expressed as follows:

Py(T) = 2Ph — 0 : (4.95)

2p — (o/by) exp [_ (2pb1 — o) (T — Tiw)
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and, hence,

1 —exp [— (QPbl _U> (T_Tsw)

10(T) = pby (4.96)

2pby — 0 exp [ — (2pb1 — o) (T = T)

Two cases can be distinguished in equations (4.95) and (4.96). The first case is if
(2pby — o) > 0, i.e. there is sufficient hydrogen peroxide remaining following the

switchover time, then in the limit as T" — oo,

L2 —o 2(p—1)+0(20—1) (4.97a)
2p 2p ’ '

Io(T) ~ % (4.97b)

as a result, it means that all of the iodide and hypoiodous acid is converted to
molecular iodine.
The second case is if however (2pb; — o) < 0, i.e. there is insufficient hydrogen

peroxide remaining following the switchover time, then in the limit as T — oo,

Py(T) ~ 0, (4.98a)

phr _ptop—1
o N o '

Io(T) ~ (4.98b)

We consider the first case, where there must be sufficient hydrogen peroxide to
convert all iodide to iodine by the end of the whole process of the clock reaction.
The condition (2pb; — o) > 0 is required and equivalent to py > (n0/2) + ¢o — to

in dimensional variables. In summary, the leading order of Region IV solutions
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which represent the long-term evolution of the system are,

Po(T) = 20p=)+0(26=1)  (4.999)

%—(Hﬁ1>wpl%2@—ﬂ+0@¢—DﬂT—ﬂw

(1) — 2(p— 1) +0(26—1)

o 2p — <p+§(’;_1) exp [— 2(p—1)4+0c20—1))(T —Tsw)

(4.99b)

Co(T) =0, (4.99¢)

(T)=(p+0oo—1) (1 —exp[=(2(p—1) +0 (20 — 1)) (T — Tow)))

((p+odp—1)—ogexp[-(2(p—1) +0 (20 — 1)) (T — Tow))) ",
(4.99d)

where T, is given in equation (4.47). Alternatively, in the original variables, the

approximate solutions in Region IV are, therefore,

(2pby; — o)
P) = o @ O (4.100a)
_€p (2pby — 0) )
W=7 Lp — Gy | TOE), (4.100b)
C(t) =0+ O(e"), for alln > 0, (4.100c)
p —(2pby — o)
I(t) =~ [2/) —— e T | 00, (4.100d)
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where the constants b; and by are given in equations (4.86) and (4.91).

Comparison Of Asymptotic And Numerical Approximations Of Model
FCR-M-HP

Matlab (ode45 solver) is used to calculate a numerical solution with initial con-
ditions P(0) = 1, Q(0) = 0, C(0) = 1 and I(0) = ¢, and the dimensionless
parameter values are v = 0.7, f = 0.6, p = 2, 0 = 0.8, ¢ = 0.2 (iodide:iodine
ratio) and € = 0.01 (the reaction rate ratio), these values are chosen arbitrarily.
The numerical solutions are compared with the asymptotic solutions found for
each region.

A comparison of the asymptotic and numerical solution of the model (4.12) is
shown in Figure 4.3. The Region I and Region I-a solutions follow the numerical
approximation very closely up to around ¢t = 400. The Region II solution then
follows the numerical solution up to around ¢ = 5,000. At the end of Region II
(induction period), the switchover time point occurs when the concentration of
the clock chemical reaction iodine (I) increases after the concentration of vitamin
C (C) has been used. It illustrates that ¢ = 7,000. The Region III solution then
closely follows the numerical solution around the switchover time ¢t = 7, 000, up to
around t = 8,000. After that, the agreement between the numerical and asymp-
totic solutions is excellent, using the shifted time coordinate ¢t = ¢ 2 (et + Tyy),
in Region IV. Importantly, the matching between the numerical and asymptotic
solutions is becoming more adequate for smaller values of € (examples not shown
for brevity).

Figure 4.4 depicts the intersecting point of C' and [ from the numerical solu-

tion of the model (4.12) and the evaluated switchover time (%4, ); there is excellent
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Figure 4.3: Comparison between numerical and asymptotic solutions of the Model
FCR-M-HP (4.12) for all regions with initial conditions P(0) = 1, Q(0) = 0,
C(0) = 1 and I(0) = ¢, and the dimensionless parameter values are v = 0.7,

B=06,p=2,0=0.8 ¢=0.2and e =0.01.
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Figure 4.4: Numerical solutions for C(t) and I(t) of the model (4.12) shown along-
side the value of the switchover time (intersecting point) calculated by the approx-
imate formula (4.47), with initial conditions P(0) = 1, Q(0) = 0, C(0) = 1 and
I(0) = ¢, and the dimensionless parameter values are v = 0.7, 3 = 0.6, p = 2,
o =0.8 ¢=0.2and e =0.001.
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Figure 4.5: Relative error between the asymptotic approximation for the
switchover time formula (4.47) of the model (4.12) and the point at which the
numerical solution falls below a threshold value of €, as a function of the param-
eter €. The dimensionless parameter values are vy = 0.7, = 0.6, p =2, 0 = 0.8
and ¢ = 0.2.
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agreement. Figure 4.5 plots the relative error between the asymptotic approxima-
tion of the switchover time formula (4.47) and the switchover time point computed
from the numerical solution of the model (4.12), as a function of €. The conver-
gence of the error as € — 0 is approximately linear, and the gradient on a log-log
scale is approximately 1.

A log-log plot can be used to visualize how errors decrease as € decreases. In

this case, the relative errors have been calculated by

|Tnum - Tasymp|

)
Tasymp

where T}, represents the switchover time point computed from the numerical
solution of the model (4.12) and T,sym, represents the switchover time formula

derived through asymptotic analysis, given in (4.47). It yields

’Tnum - Tasymp‘ 1

~ e,

Tasymp

because the slope (gradient) on a log-log scale is &~ 1 (is calculated based on the
last two points of smaller € values from the log-log plot using MATLAB). This
result is consistent with taking only the leading-order terms of the asymptotic

expansion approach, as we expected the convergence to be O(e).

4.3.2 Model FCR-H-HP: The Full Model With High Hy-

drogen Peroxide

We consider, now, that there is a high hydrogen peroxide (P) concentration in

the system. Thus, we assume that p is order ¢! in the Model FCR (4.8), where
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p = Po/co, denoting p = ep. We obtain the following model, named Model FCR-

H-HP:
‘;_f — Po(1-Q—2)P - 2BoQP, (4.101a)
%:eﬁ(l—Q—QI)P—eva(l—Q—QI)Q—eBpAQP, (4.101Db)
ac
— = —oIC, (4.101c)
%:E’}/U(l—Q—QI)Q—IC. (4.101d)

P(0)=1, Q(0)=0, C(0)=1, I(0)=g¢. (4.102)

Figure 4.1b illustrates the concentrations of the reactants as a function of time, for
the high hydrogen peroxide model (4.101). The clock reaction (in which iodine (1)
appears after the induction period) occurs when vitamin C' is totally consumed.
It reveals when p = O(e™!), the hydrogen peroxide (P) concentration stays high
whereas hypoiodous acid (@) concentration is not low at the beginning of the
reaction, however, it decreases slowly, and eventually goes to zero. Similar to
the previous section, Model FCR-H-HP (4.101) will be analysed through four

asymptotic regions in detail in the following sections.

Region I: Initial Adjustment

The first region can be defined as where the dependent variables I, C, P are order
1, @ is order € and the independent variable ¢ = O(1). Re-scaling Q) = €. The

leading order terms for the asymptotic expansion of the Model FCR-H-HP (4.101)
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are:

dFy

— =0 4.1
d}f , (4.103a)
d
% = (1 —2Iy) Py, (4.103b)
dC,
dto — _o1,Co, (4.103¢)
dl
— = —1,C,. 4.103d
dt 00 (4.103d)

As stated in the analysis of the Model FCR-M-HP section, this yields

Py=1, (4.104)

6 (1= 09)c ()
1~ oge-(-00t

Iy = (4.105)

and,
79 (1~ 99) =070

Co = = T ogetiea

+(1-09). (4.106)

Substituting (4.104) and (4.105) into (4.103b) leads to the separable ordinary

differential equation,

dQoy . 20 (1 — o¢p) e~ (1-79)t
— =51 4.1
a7 | —ogeGoni |’ (4.107)
with solution,
S, 2 —(1-od)ty | 2P
Qo =pt — —1In (1 —oge )+ =In(l-09). (4.108)
g g
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We observe that as ¢t — oo,

(Polt), Qol®). Colt), (1)) = (1, pt, (1 = 39) ,0) .
It follows that the approximation solutions at Region I are:

P(t) =1+ O(e), (4.1092)

Q(t) = €| pt — Py (1 — ope™1779)) + 2 (1—0¢)| +0(?),  (4.109b)
ag g

L
1 — ope—(1-oo)t
¢(1—ag)e 779"

1) = = am + 0L0) (4.109d)

C(t) =

+ (1 —0¢)+ O(e), (4.109¢)

Region II: Induction Period

The second region can be represented as where the dependent variables @, C, P
are order 1, I is order € and the independent variable t = O(e™1), i.e., we re-scale
I = ¢l and t = ¢ '7. The leading order for the asymptotic expansion of the Model
FCR-H-HP (4.101) takes the form,

Py
7 0 (4.110a)
dQo _ - 4 R .
dT'—P( — Qo) Po —v0 (1 = Qo) Qo — BpQoF, (4.110b)
o _ sk, (4.110c)
dr

0 =70 (1= Qo) Qo — 1oCo. (4.110d)
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Note that the Cj equation (i.e., (4.110c)) is balanced. We can solve the equation

(4.110a) directly by matching to Region I, obtaining the solution

Py=1, (4.111)

and substituting (4.111) into (4.110b) yields

d ~ A
_(572_0 =p (1= Qo) — o (1 = Qo) Qo — B0, (4.112)
which can be written as
d A
% = Qo (y0Qo — a) + p, (4.113)
-
where,
a=p(l+p)+~o. (4.114)

Solving (4.113) through integration, we find the following,

2 2v0Qy — a ]
———————arctan | ——| =7 + ¢y, 4.115
VAyop — a? [\/470',6—@2 ' ( )
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where ¢ is the constant of integration, and the expression under the square root

is negative since a? — 4yop is positive because

a® — dyop=p* (1+ B)° + 0y + 2y0p (B — 1)
=P L+ B+ +2y0p(B— 1)+ (B— 1) — p* (B —1)°
= (p(B—1) +70)* + 485

> 0. (4.116)

Equation (4.115) can be expressed as

1 1 a
% arctan [E (70@0 - 5) ] =T+ (4.117)
The constant b is real-valued given by
2 _ dvop
p= VLT TP (4.118)
2
Therefore, the solution for () is
Q ib t b(T+c1) | + (4.119)
= —tan [ib(T+c —. .
0 Yo ! 2vo

Using the relations between trigonometric and hyperbolic functions, tan (iz) =
itanh (2), yields

—b a
= — h —_ 4.12
Qo o tan [b (T + cl)} + o ( 0)
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The constant ¢; of the integration can be determined by matching the conditions

to Region I (as t — 00, Qo(t) — 0); therefore,

1
a=y arctanh <%> (4.121)

We express the solution (4.120) using the sum of angles properties, which is defined

as,

_ tanh (6;) + tanh (6)
tanh (91 + 02) = 1+ tanh (01) tanh (02), (4122)

by applying (4.122) into (4.120) leads to

Qo = —b[ tanh (br) + tanh (bc;) a (4.123)
vo | 1+ tanh (b7) tanh (bey) 2y0
Note that ¢; is given by (4.121), and, hence,
barctanh (5
tanh (bc;) = tanh ( e ar; & )> : (4.124)
or equivalently,
a
tanh (bcy) = —. 4.125
anh (bey) = & (4.125)
Hence,
—b [ tanh (b7) + 57
Qo = _[ ana( )5 } @ (4.126)
yo |1+ 5 tanh (b7) 2vyo
From equation (4.110d), we have
1Cy = v0 (1 — Qo) Qo, (4.127)
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where () has the solution (4.126). Substituting (4.127) into (4.110c) leads to

dCy 2btanh (b7) +a] oa b [2btanh (bT) + a a
o _Jop LAY S i -
dr 2b + atanh (b7) 2 vo |2b+ atanh (b7)| 2y0

}. (4.128)

Solving the equation above through integration, we find

2b
2b + atanh (br)

cosh (b1) + % sinh (b7)

Co=wiln

+w2{ ] + wsT + wy, (4.129)

where w, is the constant of integration and can be found by matching to Region

I (as t — oo, Cy(t) — (1 — 0¢)), and

wy = LT (4.130)

-9 )
—— (4.131)
a

ﬁ{a (1+p)— 270}
ws = > , (4.132)

wy = (1 —0¢) — wy, (4.133)

(we remark that wy, we < 0 and w3, w, > 0). Substituting (4.126) and (4.129) into
(4.127) and rearranging for Iy completes the leading order solutions in Region II.

As this expression is quite long, the solution is given below in terms of )y and Cj.
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The leading order solutions in Region II are therefore,

B =1, (4.134a)
@)= ;_: Bifﬁiﬁ%ﬂ o (4.134D)
R N e R e

+ws + (1 —09), (4.134c)
fitr) = 220 @A) Qlr) i

Studying the clock reaction model’s details means carefully looking at what fac-
tors affect the switchover time formula, helping us understand when the reaction

changes state.

Switchover Time:

The switchover time occurs when the concentration of iodine (/) increases, indi-
cating that the vitamin C' concentration is low (that is, C' ~ 0), and the solu-
tion changes color to dark blue, indicating the end of the induction period. The

switchover time can again be approximated by solving Cy(7s,) =~ 0, yielding

0 ~ wy In | cosh (bry,) + 2% sinh (b7,)| —

w a tanh (b7g,)
% 2b + atanh (b7yy)

+ w3Tgw + (1 — 09) (4.135)
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which can be simplified using the following hyperbolic function properties:

1

Slnh (stw) — 5 (eb’rsw o e—stw) , (4136)
1
cosh (stw) = 5 (estw + e*stw) ’ (4137)
estw _ 6_177'.9111
tanh (bryy) = — 4.138
an ( T ) estw _|_ e*stw ( )
leading to
1 a 1 a
~ 1 brsw [ = el —bTsw [ =
wln[e (2+4b)+6 (2 4b>]
a (eb'rsw _ e_stw)
W2 2 (V7w + e—bTow) £ g (Ve — o)
+wsT+1—00¢. (4.139)

For even moderately sized values of br,,, the value of e "™ is negligible due to
exponential decay (i.e., e™*» — 0 as 7, — 00). Therefore, the solution for

Co(Tsw) can be written as

1 a a
~ = 1 brow (2 4 Z — —_— 1—00¢. (4.14
0~ Co(Tsw) = wy In {e (2 + 4b) ] Wa (2() n a) + W3Tew + op. ( 0)

Applying the logarithm properties for In (zy) = In(z) + In(y) and rearranging
(4.140) leads to

1 a aws
~ (b In{=+—] — 1—o00. 4.141
0 =~ (bwy + w3) Tew + w1 n(2+4b) (Zb+a)+ o ( )
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Accordingly, this yields

(3 5) g 10
(bwy + w3) ’

(4.142)

~
TS’U] ~

We simplify the expression in (4.142) in terms of the dimensionless parameters.

Focusing on the numerator of (4.142), this can be written as,

ﬁ(1+5)ln<1+ a )_ 20/

Y 2 2\/a? — 4vyop a? —4yop+a

— 1406 (4.143)

Using the logarithmic and binomial expansion formula of rational exponents where

dovp/a® < 1 since a® > 4ovyp (as mentioned above), the equation (4.143) leads to

p(1+5) (70ﬁ+_._) _O_ﬁ(1+.,.)—1+a¢, (4.144)

v a? a
and the leading order terms of the expansion is

po
2

p(1+8)—a| —1+0¢. (4.145)

Substituting (4.114) into (4.145) renders this to

—— —1+00. (4.146)
(ﬂ(1+ﬁ) + 7)

Note that its maximum value occurs when v = p (14 () /o, in which case the

term takes the value

0 1+ 06, (4.147)
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We can neglect the first term in (4.147) since ¢ is small in comparison with

4 (1 + B), which means
—0

T 0, (4.148)

and hence, the numerator of (4.142) can be approximated by:
—1 4 o00¢. (4.149)

In dimensional variables, this assumption used above corresponds to ng/cy <
4 (1 + ky/k2), which holds if the initial vitamin C concentration is high enough.

Moving onto the denominator of (4.142) we have

=/
2

(1+p) (a +va?— 470[)) - 270] : (4.150)

The dimensionless expression of the switchover time formula can therefore be sim-

plified to,
27 (—1
Tow A 7 (=1+09) , (4.151)
—p| (14 5) (x/a2 —4dyop — a> + 2v0
or in dimensional variables (i.e., recall (4.7) and (4.9)),
L ()
tou : (4.152)

eszo <Eﬂ> <m> [(1+,8)(A—B)+27]
co co 2y
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where,

2

2
A= |20 (1+8)? - 2922 4 29870 4 2, (4.153)

ng Mo o
(4.154)
B= (@ +yt ﬁ@) . (4.155)

Un) Un

Therefore, the switchover time formula can be written as

€0 = #Mo (4.156)

Lsw = .
n%{ekQ (%) [(1+B)(z‘21;3)+2v] }

We now compare this result with that derived by Kerr et al [27] with high hydrogen
peroxide in the clock reaction, but with less detail used to capture the slow reaction.

There, the switchover time formula was characterized by,

Kerr o % (4.157)
0

(with dependence on initial concentrations cq and ng, and the rate kg of the slow
reaction). Hence, there is an agreement between our switchover time formula in
(4.156) and the formula by Kerr et al [27] in (4.157). Both numerators of (4.156)
and (4.157) are identical, and kg in the denominator of (4.157) can be described
by the expression within the braces in (4.156). The switchover time in a clock
reaction is the moment when a visible change (dark-blue color) occurs. Increasing
the molecular iodine concentration (ng) speeds up the switchover time in equa-

tions (4.156) and (4.157), which will shorten the duration of the induction period
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because more molecular iodine (ng) will be available to react with vitamin C (¢y),
allowing the reaction to reach the visible color more quickly (i.e., as ng increases,
tsw decreases because the denominator grows quadratically). Decreasing the vita-
min C concentration (cp) reduces the amount of molecular iodine (ng) needed to be
consumed, thereby shortening the induction period. We can control the switchover
time and the length of the induction period by adjusting the concentrations of io-
dine and vitamin C. This result highlights that an expression of the slow reaction
rate (ko, as stated in the article [27]) can be composed to

o ()

(1+8)(A—=B)+2y

ko =

4.158
= (4158)

The parameter kg depends on the initial concentrations py and ng only through

their ratio, expressed as

2k €2p? € €
ko:Q—Q(@) {(Hﬁ) 048 -2y 2y 4 2
7 \To ny No )
€ €
= (ﬂ +~y+ﬁﬂ) +2’y}. (4.159)
o o

To keep our approximation as simple as possible and to minimise the number of

parameters, we will assume that ky can be expressed as

ko ~ ks (@> : (4.160)

no

(we will see in Chapter 5 that this simplification works well). Therefore, the
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switchover time formula in (4.156) can be simplified as :

oy = 27070 (4.161)

ksnopo

(depending on initial concentrations ¢y, po and ng, and the rate limiting k3 of the

slow reaction where ¢2ky = k3). This result, the simplified switchover time formula

in (4.161), is consistent with the switchover time formula obtained by Kerr et al

[27] in (4.157) for the clock reaction model with high hydrogen peroxide.
Approximation solution at Steady-state in R-II:

To consider the approximate scaling to move to R-11I, we consider the behaviour

as T — o00:
Py =1, (4.162a)
Qo = Qy’, (4.162b)
Co = —vyo? (1 — Q) Q& T, (4.162¢)
|
Ip=—, (4.162d)
oT
with,

where a = (p+yo+ (p). (4.163)

Hence, for a more realistic (small) value for the reactant @), the quasi-steady- state

for j° will be chosen as

SS

0 =

(p+70 + 8p) = \/(p+ 70 + Bp)} — dyop
2o '

(4.164)

That enables us to find the most structured balance for the corner region.
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Region III: Corner

Scaling the variables C' = I = O(e!/?) and introducing the shifted time coordinate
F=€1? (€t — Tsw). The leading order for the asymptotic expansion of the Model

FCR-H-HP (4.101), of the re-scaled system, is then,

dP,

— =0 4.165
dr 7 (4.165a)
dQo

— =0 4.165b
dz—— ’ ( )
dC, o

d_fo = —0lyCy, (4.165c¢)
dly o

7= e (1 = Qo) Qo — LoCh. (4.165d)

We can gain the solutions for the variables Py and @)y, directly by matching to the

steady-state solution in R-II (4.162), leading to

Py=1, (4.166)

and,
Qo = Qp’, (4.167)

which is given in (4.164). Hence, the system (4.165) can be reduced to

dCy

e 1oCo, (4.168a)
dCy -
s 4.168b
d7—_ M 0007 ( 68 )
where,
p=0(1—Q) Q5% (4.169)
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note that p is a constant. The system (4.168) can be rearranged to yield the
Riccati equation:
dC, A
d—; = — (O',u77' +c3 + OQ) Oo. (4170)
A similar analysis to Region IIT with a low hydrogen peroxide model can be done,

therefore, the approximate solutions in Region III are

P(t) =1, (4.171a)

N A N A\ 2 _4 ~
() = (p+0 + Bp) \/;Z;L vo + Bp) 17 (4171b)

s \/7T_/2{ref[ o2 (e71/2 (et—Tswt))] +1} | e
" o aexp { = anf2| (7 et = ) H

} + p (€t — Towe) . (4.171d)

: am{ref[m@—w (et - Tm»] 1

Region IV: Long-term state

The variables are now P = @Q = I = O(1), C = O(e) and t = O(e™!). Denoting

C = eC and the shifted time coordinate t = €1 (¥ — 7y,), the system (4.101) at
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leading order of asymptotic expansion takes the form,

dFy

— =0 4.172
a7 (4.1722)
d . .
% =p(1=Qo—2Ip) o —vo (1 = Qo — 21Ip) Qo — BpQo P, (4.172b)
0= —0I,Cy, (4.172¢)
dl ~
E = Yo (]_ - QO - 2]0) QO - ]OCO. (4172d)
Hence,
Py=1, (4.173)
and,
Co=0, atall O("). (4.174)

To obtain a more accurate matching for the variable P, we find the second-order

term of the asymptotic expansion. Thus,

dpP,

5z = 0 (1= Qo —2[o) By — fo Qo Fy, (4.175)

where Py = 1, and P; can be solved numerically to have the solution of the form

P(7) = Py(T) + ePi(T). (4.176)
We then obtain
Qo A
oz P (1= Qo —21p) —yo (1 = Qo — 21Ip) Qo — BpQ, (4.177a)
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The pair of equations above (4.177) has two approaches for solving. One approach
can be solving the pair of equations (4.177) numerically. The second approach can
be solving the pair of equations (4.177) close to the equilibrium point. To find
the equilibrium point, we set the pair of equations to zero and solve for 0y and I,

which leads to

0= pA (1 — QO — 2[0) — Yo (1 - QO — 2[0) QO — Bﬁ@o, (4178&)

It is clear that the system (4.178) has a single equilibrium point (0,1/2), i.e. all
iodide and hypoiodous acid has been converted to iodine. The Jacobian matrix of
the system evaluated at the equilibrium point is given by

—p(1+p) —2p | (4.179)
0 0

and the eigenvalues are 0 and —p (1 + ). Note that the zero eigenvalue corre-
sponds to the slow manifold, and the negative real eigenvalue indicates a stable
manifold. The dynamics close to the equilibrium point can be deduced approxi-
mately by considering a quasi-state balance of substituting (4.178b) into (4.178a),
yielding

0~ p(1 = Qo—2I) — BiQo. (4.180)

Rearranging provides the following approximate relationship between Iy and @)y,

I CRaOL (4.181)

1
Iy~ —
0 92 9 )
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from which we infer that,

dly — —(1+3)dQo
—_—- 4.182
dr 2 dr (4.182)

Substituting equations (4.180) and (4.182) into equation (4.177b) gives

- d
(1; 51% ~ 70 BQ2, (4.183)

leading to an approximation of the long-term dynamics of Qq:

dQo - —20v0

=~ (1+6)Q%' (4.184)

The equation (4.184) has the following solution,

0, 0H5)

- ) 4.185
2Bv0T + cg’ ( )

where ¢g is a constant of integration. Substituting equation (4.184) into (4.181)

provides an approximation of the long-term dynamics of Ij:

1 (14 3)°

h~-|1l— ————. 4.186
0 2[ 20v0T + cg ( )

The constant cg can be determined by matching the solution for I to the Region
1T solution (i.e., Io(7sy) & 0), giving the value cg = (1 + 3)° — 2870 Tw. Therefore,

the approximate solutions in Region IV, expected to be increasingly accurate close
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to the equilibrium point are:

P(7) =1, (4.187a)
L (1+75)

G oG AT L

Co(7) =0, (4.187¢)

Io(7) = 5 2670 (7 ~ Tou) (4.187d)

T 2(28v0 (F— 1) + (1 + 82|

Both approaches provide similar solutions in terms of validity in this region.

Comparison Of Asymptotic And Numerical Approximations Of Model
FCR-H-HP

Figure 4.6 illustrates a comparison of the asymptotic and numerical solution of the
model (4.101) with initial conditions P(0) =1, Q(0) =0, C(0) =1 and I(0) = ¢,
and the dimensionless parameter values are v = 0.7, § = 0.6, p = 0.9, 0 = 0.7,
¢ = 0.2 and ¢ = 0.001, these values are chosen arbitrarily. The approximate solu-
tion of Region I closely follows the numerical solution up to t = 100. The approxi-
mate solution of Region II follows the numerical solution up to around ¢ ~ 10, 000,
and the switchover time point ends the induction period. The approximate solu-
tion of Region III closely follows the numerical solution around the dimensionless
changeover time ¢t = 10,354, up to around ¢ = 11,500 (Figure 4.6¢ is zoomed in
to capture the transition between the induction period and the long-term steady
state). The approximate solution of Region IV has an excellent match to the
numerical solution, with the shifted time coordinate t = ¢! (el/ 27 + Tsw). The

agreement between the asymptotic and numerical solutions improves for smaller

132



() (b)

Region I Region IT
1 1
P(Numerical)
0.8 1 — NG T 0.8 1
C(Numerical)
I(Numerical)

0.6 1 m P(Asymptotic) | [ 0.6 1

mm = Q(Asymptotic) K
== = C(Asymptotic) | 0.4 1 F
= m [(Asymptotic)
0.2 ‘! - 0.2 F
0 - 0

0.4 1

0 50 100 0 5000 10000 15000
t t
(c)
Region I]I.
1 ——————
0.8 1
0.6 1 —
0.4 o]
i - |
0

08 09 1 1.1 12
t x10*

Figure 4.6: Comparison between numerical and asymptotic solutions of the model
(4.101) with initial conditions P(0) = 1, Q(0) = 0, C(0) = 1 and I(0) = ¢,
and the dimensionless parameter values are v = 0.7, 3 = 0.6, p = 0.9, 0 = 0.7,
¢ =0.2 and € = 0.001. (a) Region I, (b) Region II, (c) Region III, (d) Region IV,
where the variables P(t), Q(t) and I(t) are numerically solved using the asymptotic
expansion terms namely, equations (4.177) and (4.176).
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Figure 4.7: Solutions in Region IV illustrate the agreement between the two ap-
proaches of approximate solutions, with numerical solutions shown with solid lines,
leading order asymptotic solutions shown with dashed lines, the analytical approxi-
mate solutions shown with dotted lines. The initial conditions P(0) =1, Q(0) =0,
C(0) =1 and I(0) = ¢, and dimensionless parameter values are v = 0.7, 8 = 0.6,
p=09 06=0.8,¢=0.2and € = 0.01.

values of € (examples not shown for brevity).

Figure 4.7 compares approximate solutions in Region IV in accordance with
the two approaches stated in the previous section, namely, equations (4.177) and
(4.176) solved numerically in the first approach, and the second approach is the
constant approximate solution close to the equilibrium point in (4.187). The so-
lutions are quite close in their region of validity. As time progresses, a significant
drift develops between the numerically computed values of P in the first approach
(where 7 = €'/2t — ¢~ '/21,,) and the constant approximation close to the equilib-
rium point in the second approach; the discrepancy appears to be on the order of
1/2

€

Figure 4.8 indicates the intersecting point of the numerical solutions for ¢ and
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Figure 4.8: Numerical solutions C(t) and I(t) of the model (4.101) shown alongside
the value of the switchover time (intersecting point) calculated by the approximate
formula (4.142), with initial conditions P(0) = 1, Q(0) = 0, C(0) =1 and I(0) =
¢, and dimensionless parameter values are v = 0.7, # = 0.6, p = 0.9, ¢ = 0.7,
¢ = 0.2 and € = 0.001.
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Figure 4.9: Relative error between the asymptotic approximation for the
switchover time formula (4.142) of the model (4.101) and the point at which the
numerical solution falls below a threshold value of €, as a function of the small
parameter €. The dimensionless parameter values are v = 0.7, 5 = 0.6, p = 0.9,
oc=0.7Tand ¢ =0.2.

135



I from the model (4.101) and the evaluated switchover time (ts,); again there
is good agreement. Figure 4.6b and Figure 4.8 show that ¢4, ~ 10,000, when
e = 0.001, is the point at which the concentration of the iodine (/) chemical
reaction of the clock increases after the concentration of vitamin (C') has been
used. Figure 4.9 plots the relative error between the asymptotic approximation of
the switchover time formula (4.142) and the switchover time point computed from
the numerical solution of the model (4.101), as a function of e. As e decreases,
errors decrease. The convergence of the error as € — 0 is approximately sublinear
and the gradient on a log-log scale approaches approximately 0.45 (determined
using MATLAB based on the last two points of smaller € values from the log-log
plot). These results provide evidence that the asymptotic expansion has sublinear
accuracy in this region, and therefore a correction with a fractional power of €
may be needed. We will not pursue this analysis as it appears likely to involve
significant additional complications for limited additional insight.

It is worth noting that the outcomes of the asymptotic analysis for all regions
align precisely with the numerical solution of both models (Model FCR-M-HP and
Model FCR-H-HP). A combined plot of all regions of the asymptotic solutions is
given in Figure 4.10, showing the concentrations of the reactants against a loga-
rithmic time axis. This result matches the previous one of the numerical solutions
in Figure 4.2. Moreover, Figure 4.11 illustrates the merged results of Figure 4.2
and Figure 4.10, demonstrating a close correlation between the asymptotic and nu-
merical solutions within the relevant time range, and the dash-dotted lines indicate

the boundaries of each region.
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(a)
1.2

== RI
== Rla

Figure 4.10: Asymptotic solutions of the concentrations of the reactants as a
function of time (logarithmic scale) for all regions of the model (4.101) to match
Figure 4.2, where the dash-dotted lines indicate the ends of each region. The
dimensionless parameters are chosen as in Figure 4.2. (4.10a) The Model FCR-M-
HP (4.12). (4.10b) The Model FCR-H-HP (4.101).
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(b)

10° 10 10* 108

Figure 4.11: Asymptotic solutions of the concentrations of the reactants as a
function of time (logarithmic scale) for all regions of the model (4.101) to match
Figure 4.2. The solid lines represent the numerical solutions, the dashed lines
represent the approximate asymptotic solutions, and the dash-dotted lines indicate
the ends of each region. The dimensionless parameters are chosen as in Figure 4.2.
(4.11a) Model FCR-M-HP (4.12). (4.11b) Model FCR-H-HP (4.101).

138



4.4 Conclusion

This chapter incorporates the detailed slow reaction with the fast reaction asso-
ciated with vitamin C. Asymptotic analysis on the full model of chemical clock
reaction (slow and fast) was explored in each case, of moderate and high hydrogen
peroxide concentration regimes. Through the development of a new non-linear
differential equation model, this study explores the kinetics of the reaction, par-
ticularly focusing on the role of hydrogen peroxide concentration.

By employing an asymptotic analysis, the study provides a better understand-
ing of the clock reaction, supported by approximation solutions for each model.
Asymptotic approximations are found to agree closely with numerical solutions in
the appropriate time regions. This enables us to obtain an approximate formula
for the switchover time of each model, depending on initial concentrations and the
rate of the slow reaction. The quantitative analysis illustrates the relative errors
between the asymptotic approximation switchover time formula and the switchover
time point calculated from the numerical solution of both models, based on €. A
log-log plot shows decreasing errors as e decreases.

An interesting result is that the switchover time formula of the model with
moderate hydrogen peroxide provided here is identical to the simplified linear
kinetic model illustrated earlier in Chapter 2. In addition, the switchover time
formula of the high hydrogen peroxide model presented here is in line with the
switchover formula derived by Kerr et al. [27] in their paper, which pertains to
the clock reaction model with high concentrations of hydrogen peroxide.

In the next chapter, both switchover time formulas of moderate and high hy-

drogen peroxide models will be tested through running experiments, fitting the
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parameters in these formulas to the data.
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Chapter 5

Experiments And Validation Of
Asymptotic Analysis Of Model
FCR

5.1 Motivation

It is of interest to test the switchover time formula of Model FCR-M-HP and Model
FCR-H-HP by running experimental data for parameter fitting. This chapter will
present the results of several experimental series in the moderate and high-peroxide
regimes, with starting quantities of each of iodine, vitamin C and hydrogen per-
oxide varied individually, and the switchover time measured through imaging the
colour of the solution. Analysis of the data is conducted using least-squares fit-
ting, with uncertainty quantified through log-likelihood ratios and bootstrapping.
The models are tested by fitting to several of the experimental series simultane-

ously, then testing the fit against the remaining data; this process is carried out for
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three different partitions of fitting and test data. It will be found that parameter

estimates and confidence intervals agree closely for each choice of fitting data.

5.2 Experimental Testing

The switchover time formulas of Model III-M-HP and Model III-H-HP, namely
(4.49) and (4.161) will be tested through tabletop experiments, using a combina-
tion of vitamin C powder, Lugol’s iodine, hydrogen peroxide solution, and pow-
dered laundry starch.

The procedure of the tabletop experiment is similar to that described in [27, 56],
with the refinement of using a webcam sensor running under Matlab (R2020b) to
detect the point at which the colour change occurred, different choices of vitamin
C and iodine increments, and a greater range of hydrogen peroxide concentrations.
The experiments employed by [56] used the tincture of iodine 2%, whereas we fol-
lowed Kerr et al. in using 3% Lugol’s iodine. The switchover time experimental
results by [27] were performed with two repeats for varying vitamin C concentra-
tion and varying iodine concentration of the high hydrogen peroxide model. In
our experiments, we looked at both moderate and high hydrogen peroxide concen-
trations and varied hydrogen peroxide across this range in 6 separate series. The
setup for clock reaction experiments follows the structure outlined in the provided
Figure 2.1, in Chapter 2. There are two solutions to this clock reaction. Solution
A when iodine is converted to iodide in the presence of vitamin C, and uses up
vitamin C in the process. The brownish yellow color of iodine disappears (fast re-
action). Solution B when iodide is converted to iodine in the presence of hydrogen

peroxide. Pouring Solution A to Solution B, the dark blue color appears (slow
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reaction). First, preparing Vitamin C stock solution (diluted) is by dissolving a
1000 mg vitamin C tablet with 30-120 ml water. The beaker of Solution A is
prepared from 60 ml of warm water at 40°C', 5 ml of vitamin C stock solution, and
3-10 ml of 3% Lugol’s iodine. The beaker of Solution B is prepared from 60 ml of
warm water at 40°C', 1-20 ml of 3% hydrogen peroxide and 1 teaspoon of powdered
laundry starch. Starch is not directly involved in the chemical reaction but used
as an indicator that signals when all the vitamin C has been consumed and results
in an abrupt change of color from clear to dark blue in the presence of iodine.
Also, more precisely, starch directly reveals the presence of iodine, not whether or
not the vitamin C has been used up. The beaker of Solution A is poured into the
beaker of Solution B, at which point a webcam starts filming via Matlab code,
then the mixture is stirred well for 5 seconds. The filming is completed after the
colour change from clear to blue occurs.

The practical experiment for the clock reaction was primarily based on the
work by Kerr et al. [27], we used different quantities of the chemical reactants
which included various levels derived from multiple experiments conducted over 6
months of work. The presented results in this thesis represent the best outcomes
obtained during this period, enabling us to run the clock reaction over a timescale
that was practical for the subsequent image analysis. We conducted our experi-
ments using natural light from the office window without specific lighting controls.
To minimize the influence of variations in ambient light, we designed a ’corner de-
tection’ strategy rather than relying on absolute intensity values, ensuring that the
result is not sensitive to changes in natural light. More details on corner detection

are provided in the next section.
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Figure 5.1: Identifying the switchover time point (sharp corner) where the intensity
signal undergoes notable change. The total red channel intensity as a function of
time, the sharp corner at ¢4, = 396.76 (red circle) is located by MATLAB code at
the highest difference between forward and backward averages.

5.2.1 Imaging

The switchover time point (ts,) was measured by imaging the solution from above
the beaker under natural lighting conditions using a RGB USB camera running
in Matlab with Image Processing Toolbox (Mathworks, Natick) 2020b, recording
images at 15 frames per second. The region of interest was set at 80 x 100 pixels
in the center of the beaker.

The digital images are formed of pixels containing three colour channels (RGB)
which are red, green, and blue. The intensity of each channel expresses the amount
of colour in the pixel. The red channel was sufficient for a clear measurement be-
cause it displays the brightness of each pixel, ranging from 0 (black) to 255 (white).
Briefly, the signal values were processed by adding the intensity across all pixels

in the red channel of an image. To account for fluctuations in the data we utilized
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forward and backward moving averages with 10 frame windows. The point of the
largest difference of the forward and backward moving averages then revealed the
point of the sharpest change in the signal, as shown in Figure 5.1 (as one example of
the data set has been collected). It demonstrates a sample of the imaging process
using MATLAB code to locate the ’sharp corner’ (indicating the greatest decrease
in intensity between the forward and backward averages) as the switchover time
point (ts, = 396.76 s) in which a significant change has occurred, for one of the
experimental trials has done with high hydrogen peroxide concentration (5 ml as
0.032666595 mol/1), 5 ml iodine concentration (as 0.007380894 mol/1) and 5 ml of
30 ml of vitamin C diluted as 0.007009652 mol/l. The key concept behind using
the corner feature is that the outcome becomes less affected to changes in lighting

levels. More details of the experimental trials will be discussed in the next sections.

5.2.2 Fitting Series

Four experimental series will be carried out for fitting of the parameters ¢ and ks,
referred to as Ny, and C); (moderate hydrogen peroxide regime), and Ny and Cy

(high hydrogen peroxide regime).

Moderate Hydrogen Peroxide Trials (Ny&Cyy):

The amount of hydrogen peroxide is fixed as 1 ml of 3% hydrogen peroxide in these
trials. Results for both trials, (Nys) varying iodine with fixed vitamin C, and (C)y)
varying vitamin C with fixed iodine, are shown in Table 5.1. The molar mass of
hydrogen peroxide, HoO>, is 34.01368 grams per mole. The concentrations of 1 ml

of 3% hydrogen peroxide are 0.00656-0.00678 mol/l (varied due to total volume
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Table 5.1: Switchover time experimental results for Moderate Hydrogen Peroxide

Trials.

| Trial (N,) Variable iodine concentration.
VitC | Lugol’s | Hydrogen| ¢ (mol/1) ny (mol/1) po (mol/1) tow (8) | P0/ng
Di- (ml) Peroxide
luted (ml)
(m)
90 4 1 0.002426418 | 0.00613182 0.006784601 | 714.92 | 1.11
90 4.5 1 0.002417121 | 0.006871867 | 0.006758606 | 503.75 | 0.98
90 5 1 0.002407896 | 0.007606265 | 0.00673281 | 432.67 | 0.89
90 9.5 1 0.00239874 0.008335078 | 0.00670721 332.83 | 0.80
90 6 1 0.002389654 | 0.00905837 0.006681804 | 237.2 | 0.74
90 6.5 1 0.002380636 | 0.009776203 | 0.006656589 | 204.26 | 0.68
90 7 1 0.002371687 | 0.010488639 | 0.006631564 | 185.21 | 0.63
90 7.5 1 0.002362804 | 0.011195738 | 0.006606727 | 122.68 | 0.59
90 8 1 0.002353988 | 0.01189756 0.006582075 | 101.26 | 0.55
90 8.5 1 0.002345237 | 0.012594165 | 0.006557606 | 60.22 | 0.52

| Trial (C)) Variable vitamin C concentration.
VitC | Lugol’s | Hydrogen| ¢q (mol/1) ny (mol/1) po (mol/1) tsw (8) | P0/ng
Di- (ml) Peroxide
luted (ml)
()
70 5 1 0.003095866 | 0.007606265 | 0.00673281 707.98 | 0.89
75 5 1 0.002889475 | 0.007606265 | 0.00673281 604.37 | 0.89
80 5 1 0.002708883 | 0.007606265 | 0.00673281 538.51 | 0.89
85 5 1 0.002549537 | 0.007606265 | 0.00673281 | 426.54 | 0.89
90 5 1 0.002407896 | 0.007606265 | 0.00673281 372.71 | 0.89
100 5 1 0.002167106 | 0.007606265 | 0.00673281 315.48 | 0.89
110 5 1 0.001970096 | 0.007606265 | 0.00673281 225.23 | 0.89
120 5 1 0.001805922 | 0.007606265 | 0.00673281 185.21 | 0.89
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Table 5.2: Switchover time experimental results for High Hydrogen Peroxide Trials.

|

Trial (Ng) Variable iodine concentration.

VitaminLugol’s | Hydrogen| ¢ (mol/1) ny (mol/1) po (mol/1) tow (8) | P0/ng
C Di- | (ml) Peroxide
luted (ml)
()
30 3 20 0.006393939 | 0.004039543 | 0.119188928 | 191.42 | 29.51
30 3.5 20 0.006372411 | 0.004696932 | 0.118787618 | 138.49 | 25.29
30 4 20 0.006351027 | 0.00534991 | 0.118389002 | 135.28 | 22.13
30 4.5 20 0.006329786 | 0.005998519 | 0.117993052 | 121.86 | 19.67
30 5 20 0.006308687 | 0.006642804 | 0.117599742 | 107.89 | 17.70
30 5.5 20 0.006287727 | 0.007282809 | 0.117209045 | 87.74 | 16.08
30 6 20 0.006266907 | 0.007918575 | 0.116820936 | 79.43 | 14.75
30 6.5 20 0.006246224 | 0.008550144 | 0.116435388 | 72.8 13.62
30 7.5 20 0.006205265 | 0.009800859 | 0.115671878 | 53.45 | 11.80
30 10 20 0.006105181 | 0.012857041 | 0.113806202 | 37.63 | 8.85

| Trial (Cy) Variable vitamin C concentration.
VitaminLugol’s | Hydrogen| ¢q (mol/1) ny (mol/1) po (mol/1) tsw (8) | P0/ng
C Di- | (ml) Peroxide
luted (ml)
(un)
30 5 20 0.006308687 | 0.006642804 | 0.117599742 | 91.34 | 17.70
40 5 20 0.004731515 | 0.006642804 | 0.117599742 | 64.62 | 17.70
20 5 20 0.003785212 | 0.006642804 | 0.117599742 | 49.22 | 17.70
60 5 20 0.003154343 | 0.006642804 | 0.117599742 | 42.08 | 17.70
70 5 20 0.002703723 | 0.006642804 | 0.117599742 | 36.87 | 17.70
80 5 20 0.002365757 | 0.006642804 | 0.117599742 | 26.05 | 17.70
90 5 20 0.002102896 | 0.006642804 | 0.117599742 | 23.46 | 17.70
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effect). The molar mass of vitamin C, or ascorbic acid, CsHgOg, is 176.124 grams
per mole. The concentrations of 5 ml of vitamin ¢ stock solution (1000 mg tablet
diluted in 70-120 ml water) are 0.00181-0.00310 mol/1.

The formula of Lugol’s iodine is a 1 : 2 mixture of iodine (/3) and potassium
iodide (KI). The molar mass of iodine is 126.9 grams per mole and the molar
mass of potassium iodide is 166 g/mol, and hence, the molar mass of 3% Lugol’s
iodine is 25.28916 g/mol. The concentrations of 4-8.5 ml of 3% Lugol’s iodine are
0.00613-0.01259 mol/1.

High Hydrogen Peroxide Trials (Ng&Cq):

The amount of hydrogen peroxide is fixed as 20 ml of 3% hydrogen peroxide in these
trials. Results for both trials, (Ny) varying iodine with fixed vitamin C, and (Cy)
varying vitamin C with fixed iodine, are shown in Table 5.2. The concentrations
of 20 ml of 3% hydrogen peroxide are 0.11381-0.11919 mol/1 (varied due to total
volume effect). The concentrations of 5 ml of vitamin C stock solution (1000 mg
tablet diluted in 30-90 ml water) are 0.00210-0.00639 mol/l. The concentrations
of 3-10 ml of 3% Lugol’s iodine are 0.00404-0.01286 mol/1.

Figure 5.2 illustrates the experimental data results of Moderate and High Hy-
drogen Peroxide Trials from Table 5.1 and Table 5.2.

5.2.3 Testing Series

The switchover time models and the fitted parameters, $ and /%3, will be then
tested by comparing against two independent data series, referred to as Py and

Py
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Figure 5.2: Experimental data results of Moderate and High Hydrogen Perox-
ide Trials from Table 5.1 and Table 5.2. (a) Varying iodine concentration with
moderate hydrogen peroxide. (b) Varying vitamin C concentration with moderate
hydrogen peroxide. (c) Varying iodine concentration with high hydrogen peroxide.
(d) Varying vitamin C concentration with high hydrogen peroxide
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Table 5.3: Switchover time experimental results for Varying Hydrogen Peroxide

Trials.

’ Trial (Py) Variable high hydrogen peroxide concentration.
Vitamin | Lugol’s | Hydrogen| ¢ (mol/1) no (mol/1) po (mol/1) tsw (8)
C  Di- | (ml) Peroxide
luted (ml)
(ml)
30 5 5 0.007009652 | 0.007380894 | 0.032666595 | 396.76
30 5 7.5 0.006882204 | 0.007246696 | 0.048108985 | 263.09
30 5 10 0.006759307 | 0.007117291 | 0.062999862 | 180.06
30 5 12.5 0.006640723 | 0.006992426 | 0.077368251 | 155.12
30 5 15 0.006526227 | 0.006871867 | 0.091241179 | 122.42
30 5 17.5 0.006415613 | 0.006755394 | 0.104643838 | 109.27
30 5 20 0.006308687 | 0.006642804 | 0.117599742 | 100.69
30 5 22.5 0.006205265 | 0.006533906 | 0.130558924 | 93.07
30 5 25 0.006105181 | 0.00642852 0.142257753 | 78.85
30 5 30 0.005914394 | 0.006227629 | 0.165374637 | 70.11

’ Trial (Pys) Variable moderate hydrogen peroxide concentration.
Vitamin | Lugol’s | Hydrogen| ¢ (mol/1) no (mol/1) po (mol/1) tsw (8)
C Di- | (ml) Peroxide
luted (ml)
(ml)
90 5 5.5 0.002327929 | 0.007353658 | 0.03580066 67.35
90 5 5 0.002336551 | 0.007380894 | 0.032666595 | 59.91
90 5 4.5 0.002345237 | 0.007408332 | 0.029509229 | 84.14
90 5 4 0.002353988 | 0.007435975 | 0.0263283 91.91
90 5 3.5 0.002362804 | 0.007463825 | 0.023123545 | 107.06
90 5 3 0.002371687 | 0.007491885 | 0.019894693 | 136.06
90 5 2.5 0.002380636 | 0.007520156 | 0.016641473 | 155.99
90 5 2 0.002389654 | 0.007548641 | 0.013363607 | 202.02
90 5 1.5 0.00239874 0.007577344 | 0.010060814 | 312.84
90 5 1 0.002407896 | 0.007606265 | 0.00673281 446.06
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Figure 5.3: Experimental data results of Varying Hydrogen Peroxide Trials from
Table 5.3. (a) Varying High hydrogen peroxide. (b) Varying Moderate hydrogen
peroxide.

Varying Hydrogen Peroxide Trials (Py&Py):

The amount of iodine is fixed as 5 ml of 3% Lugol’s iodine in these trials. Results
for both trials, (Py) varying high hydrogen peroxide concentration (5 — 30 ml)
with fixed vitamin C (5 ml of 30 ml of vitc solution), and (Pp) varying moderate
hydrogen peroxide concentration (1 — 5.5 ml) with fixed vitamin C (5 ml of 90
ml of vitc solution), are shown in Table 5.3. The concentrations of 5 ml of 3%
Lugol’s iodine are 0.00623-0.00764 mol/1 (varied due to total volume effect). The
concentrations of 5 ml of vitamin C stock solution (1000 mg tablet diluted in 30
and 90 ml water) are 0.00233-0.00701 mol/l. The concentrations of 1-30 ml of 3%
hydrogen peroxide are 0.00673-0.16537 mol/1.

Figure 5.3 displays the experimental data results of Varying Hydrogen Peroxide
Trials from Table 5.3.
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5.3 Parameter Estimation Methods

Parameter estimation involves determining the values of the two parameters ¢ and
ks in the switchover time formula of Model FCR-M-HP and Model FCR-H-HP,
namely (4.49) and (4.161), that best fit to experimental data in Table 5.1 and
Table 5.2. Henceforth, for simplicity, we shall denote the switchover time formula

(4.49) of the Model FCR-M-HP as follows:

1
- ln< Po ) (5.1)

kang Po + ¢ng — co

and denote the switchover time formula (4.161) of the Model FCR-H-HP as follows:

fH o co — Png

sw . 52
ksnopo ( )

Both formulas above, (5.1) and (5.2), can be combined in one formula and written

as follows:

— k31no In <P0+¢ﬁgo—60> for (pO < 1-5n0) y (5 3)

(M) for  (po > 1.5ny),

tS’LU

k3nopo

where the threshold value of 1.5 being chosen arbitrarily. Our data, presented in
Table 5.1 and Table 5.2, revealed a significant distinguishing feature: The condition
(po/no < 1.5) is satisfied when p = O(1); hydrogen peroxide is moderate while the
condition (pg/ng > 1.5) is satisfied when p = O(e™!); hydrogen peroxide is high.
To ensure clarity and consistency, the three switchover time formulas above are in
dimensional quantities and the units stated earlier in Chapter 4.

This chapter examines the three switchover time formulas mentioned earlier,

namely (5.1), (5.2) and (5.3), in relation to our data in Tables (Table 5.1, Table
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5.2 and Table 5.3), employing parameter techniques such as least-squares, likeli-
hood ratio, and bootstrapping. The approach will entail introducing each method

individually initially, followed by a subsequent discussion of the results.

5.3.1 Least-squares Fitting

The method of least-squares is applied to approximate the parameters ¢ and k3 by
minimising the total sum of the squares of the differences between the experimental
data (experimental data; ts, date) and the switchover time formula of the model
(the model values; tsy moder) [33]. It aims to find the parameter values of ¢ and
ks that optimize the model’s fit to the data. Hence, the least-squares standard

objective function to minimise is

N

S(¢7 k3) - Z (tsw,model - tsw,data)2 5 (54)

where N is the number of experimental data.
In Matlab, fminsearch is an optimisation function [37], used for nonlinear op-
timization to find the minimum values of a sum squared errors with initial guesses

¢ = 0.2 and k3 = 0.6 chosen arbitrarily.

5.3.2 The 95% Confidence Intervals For Parameters

The 95% confidence interval is a statistical range that provides an estimated range
of values which is likely to include the true value of unknown parameters ¢ and
ks in the switchover time formula of Model FCR-M-HP and Model FCR-H-HP,
namely (5.1) and (5.2). The log-likelihood ratio test and bootstrap sampling are

two different methods used to obtain the 95% confidence intervals for parameters.
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Each method has its strengths and methodologies. Throughout this section, we
will describe each method and its implementation individually, and then discuss

the results of applying them to our models.

The Log-Likelihood Ratio (Wilk’s Theorem)

Wilk’s Theorem provides an asymptotic distribution of the log-likelihood ratio,
which can be used to produce the 95% confidence intervals [50, 54]. The log-
likelihood ratio is a statistical measure used in hypothesis testing, particularly in
the context of maximum likelihood estimation. The test involves the log-likelihood

ratio, which is the logarithm of the ratio of the maximum likelihoods for two

L(¢, k
210%( (9 3)> < X%,o.%a (5.5)

competing models.

L(¢, ks)

where (ngﬁ, /2:3) is the estimated values and X%,0A95 is the critical value corresponding to
Chi-squared distribution with 2 degree of freedom [50, 54] (the number of unknown
parameters), at confidence level of 0.95. Hypothesis testing requires both null (Hy)

and alternative (H;) hypotheses to be defined:

Hy (¢, ks) = (¢, k), (5.6)

Hy (¢, ks) # (&, ks); (5.7)

we reject the null hypothesis (Hp) if the likelihood ratio > critical value and we
fail to reject if it is < critical value.

When the errors are assumed to be normally distributed, the likelihood function
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is given as follows

N
1 —1
L(gba kS) = H o \/% eXP{J_ (tsw,model - tsw,data)Z }7 (58)

where o, is the standard deviation of errors, which can be found by taking the

partial derivative of the log-likelihood, and hence,

1 N IR 2
O = N Z (tsw,model(gb, kB) - tsw,data) . (59)

The log-likelihood function, (¢, k3) = log(L(¢, k3)) yields

N

-1
Z (tsw,model - tsw,data)Q . (510)

I, ks) o

e

Obviously, maximizing [ in (5.10) is equivalent to minimizing S in (5.4) (i.e., the

negative log-likelihood is equivalent to the sum squared errors). Therefore,

21og (EEQ’Z Zz;) = =2 (U, ks) — (6, ks)]

A A

2
N <tsw,model(¢> k?)) - tsw,data)
-2y .
N
Z sw ,model (ba k?)) sw,data)2:|

Oe

(5.11)

= 9N |:1 ZN( sw model(ﬁb k’g) — tsw,data)Q :|

S (o6 B

x>

3) - tsw,data
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Hence, the log-likelihood ratio test in (5.5) can be written as

ZN (tsw,model<¢7 k?)) - tsw,data)2
A A 2
ZN (tsw,model<¢7 kS) - tsw,data)

—2N [1 — } < X5.0.05- (5.12)

In Matlab, we start by generating a parameter grid using meshgrid of 100 values
of the parameters (¢, k3) and calculate the objective function in (5.4) (such as the
sum of the squared errors between a model and data) for each combination of
(¢, k3). Finally, we need to determine the 95% confidence intervals by calculating

the log-likelihood ratio test in (5.12) and the critical value, x3 45, can be found

using Chi2inv(0.95,2) = 5.9914.

Bootstrap Sampling

Bootstrap sampling is a resampling method used to quantify the accuracy of pa-
rameter estimates. The technique introduced by Efron in 1979, is a statistical
resampling technique that involves repeatedly sampling from data with replace-
ment [19]. Bootstrapping will be used below to estimate 95% confidence intervals
for the two parameters ¢ and ks of the switchover time formulae, namely (5.1),
(5.2) and (5.3).

Bootstrap sampling was implemented using built-in functions in Matlab. The
function bootstrp was used to create 10,000 resampled results through randomly
sampling with replacement from the experimental data in Table 5.1 and Table 5.2.
The seed for reproducibility was set to be rng(42) (random number generator,
ensuring that each time we run the code, we get the same sequence of bootstrap
samples). The parameter estimation was then carried out on each bootstrap sam-

ple. The 95% confidence interval was then constructed from the percentiles of the
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bootstrap resampling of the data. As an alternative method, the bootci function
in Matlab was also used, which implements the bias corrected and accelerated

percentile method [20].

5.4 Parameter Estimation Results

In this section, we demonstrate the results of parameter estimation techniques in-
cluding least-squares, likelihood ratio test, and bootstrapping of the three switchover
time formulas, namely (5.1), (5.2) and (5.3), with our experimental data (Table
5.1, Table 5.2 and Table 5.3). The results will be presented as follows:

e the outcome of fitting to the series experiments N,, and Cj; using the least-
squares equation (5.1) of the Model FCR-M-HP for the two parameters ¢ and

ks, and the testing against series Py, and Py using these estimated values;

e the outcome of fitting to the series experiments Ny and C'y using the least-
squares equation (5.2) of the Model FCR-H-HP for the two parameters ¢ and

ks, and the testing against series Py, and Py using these estimated values;

e the outcome of fitting to all series experiments Ny, Cys, Ny and Cy using
the least-squares equation (5.3) for both models FCR-M-HP and FCR-H-HP
for the two parameters ¢ and k3, and the testing against series Py, and Py

using these estimated values;

e (observing the other way around) the outcome of fitting the series exper-
iments Py, and Py using the least-squares equation (5.3) for both models
FCR-M-HP and FCR-H-HP for the two parameters ¢ and k3, and the testing

against series Ny, Cy, Ny and C'y using these estimated values.
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The discussion of the experimental validation will be analysed further in the fol-

lowing sections.

5.4.1 Model FCR-M-HP

The results for different increments of Moderate Hydrogen Peroxide Trials, (Nyy)
varying iodine with vitamin C and moderate hydrogen peroxide fixed, and (C)y)
varying vitamin C with iodine and moderate hydrogen peroxide fixed, are shown in
Table 5.1. The outcome of least-squares fitting equation (5.1) for the two parame-
ters ¢ and k3 to both experimental data simultaneously, involves fitting a moderate
HP model to multiple sets of data points at once (Trails Ny, and C)), and aiming
to find the best-fitting parameters that minimize the overall sum of squared differ-
ences across all dataset (ZNM (tsw,model — t8w7dam)2 + ZCM (tsw,model — tsw’dam)Q).
These are shown in Figure 5.4 (note that the curve is plotted for the full range of
the independent variable). Therefore, the estimated values of the switchover time
(5.1) of Model FCR-M-HP is (QBM, M ) — (0.1676,0.0586).

Figure 5.5 illustrates an independent test (i.e. against data not used during the
fitting process) across a full range of varying hydrogen peroxide data from Table
5.3 and least-squares fitting of the switchover time formula of Model FCR-M-HP
(5.1). This result ties well with moderate hydrogen peroxide trials more than the
high hydrogen peroxide trials as we predicted.

In Figure 5.6, the contour plot provides a visual representation of the logarithm
of the objective function (5.4), evaluated at each combination of the two param-
eters, in two dimensions. Each contour line corresponds to a specific level of the

objective function. It identifies the estimated values <¢EM , /%é” ) = (0.1676,0.0586)
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Figure 5.4: Experimental data results of Moderate Hydrogen Peroxide Trials (blue
circles) from Table 5.1 and least-squares fitting equation (5.1) to both experimental

data, namely N,; and C);, simultaneously with (qﬁM kM ) = (0.1676,0.0586) (red
lines). (a) Varying iodine concentration. (b) Varying vitamin C concentration.
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Figure 5.5: An independent test (i.e. against data not used during the fitting
process) across full range of Varying Hydrogen Peroxide Trials (blue circles) from
Table 5.3 and least-squares fitting of the switchover time formula of Model FCR-
M-HP (5.1) to both experimental data, namely Nj; and Cjs, simultaneously with

(4", K") = (0.1676,0.0586) (red lines)
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Figure 5.6: A contour plot of the logarithm of the objective function with the
estimated value (&M kM ) = (0.1676,0.0586) (red circle mark) of the switchover
time formula (5.1) of the Model FCR-M-HP.

located in the centre, of the inner ellipse, of the minimum level in the contour plot,
which means that they have the minimum errors. Significantly, the estimated val-
ues using the least-squares fitting have the best model fit to the data. These results
demonstrate the consistency with what has been found previously.

Figure 5.7 displays the pcolor plot of the satisfying condition; the log-likelihood
ratio < critical value. It indicates two colour regions, where the yellow region
typically represents true (i.e., the condition is satisfied), while the blue region
represents false (i.e., the condition is not satisfied). As a result, the 95% confidence
interval using the log-likelihood ratio test (Wilk’s Theorem) for the two parameters

¢ and kj of the switchover time formula (5.1) of Model FCR-M-HP, of all moderate
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Figure 5.7: A pcolor plot of the satisfying condition; log-likelihood ratio < critical
value with the bar plot of the numeric values (the yellow region for true, and the

blue region for false), and the estimated value (&M ,lAcé” ) = (0.1676,0.0586) (red
circle mark) of the switchover time formula (5.1) of the Model FCR-M-HP.

hydrogen peroxide trials (N, Car) is as follows:

CIMsy = [0.1592, 0.1752), (5.13a)

CI}M 455, = [0.0554, 0.0622]. (5.13b)

Figure 5.8 shows the 95% confidence region of the objective function at the specific
level v, which is calculated by re-arranging the expression of the log-likelihood ratio

test in (5.12) as

N

N
Z (tsw,model(¢, k3) - tsw,data)2 - ll + <X2 095):| Z ( sw,model ¢, k3) - tsw data.)2

= . (5.14)

We now analyse the histogram derived from bootstrap samples to gain a better
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Figure 5.8: A contour plot of the logarithm of the objective function at level
v (satisfied the 95% confidence region) with the estimated value (J)M kM ) =
(0.1676,0.0586) (red circle mark) of the switchover time formula (5.1) of the Model

FCR-M-HP.
understanding of parameter behaviour under different re-sampling scenarios. Fig-
ure 5.9 indicates the histogram plots and frequency of the two parameters (¢ and
k3) with the lower and upper bounds of the 95% confidence interval of the param-
eters as dashed vertical lines, using the bootstrap sampling of the switchover time
formula of Model FCR-M-HP (5.1). Figure 5.10 illustrates a scatter plot of the two
parameters ¢ and ks of each bootstrap sample with the lower and upper bounds
of the parameter ¢ with the 95% confidence interval as dashed vertical lines, and
the lower and upper bounds of the parameter ks with the 95% confidence interval
as dashed horizontal lines.

Figure 5.11 indicates the lower and upper quantiles of the 95% confidence
interval using the bootstrapping method. By carrying out bootstrapping on our

moderate HP data, Table 5.1, we calculate the minimum sum of squared errors
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Figure 5.9: Histogram of the bootstrapping re-sampling for estimating the two
parameters ¢ and ks of the switchover time formula (5.1) of the Model FCR-M-
HP with 95% confidence intervals as red dashed lines. (a) For the parameter ¢.
(b) For the parameter kj.
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Figure 5.10: A scatter plot of the two parameters ¢ and k3 of each bootstrap sample
with the lower and upper bounds of the parameters with the 95% confidence inter-

vals as dashed lines (red), and the estimated value (QASM kM ) = (0.1676,0.0586)

(red circle mark).
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Figure 5.11: The lower and upper quantiles of the bootstrapping method (black
dash-dotted lines) for the experimental data results of Moderate Hydrogen Perox-
ide Trials (blue circles) from Table 5.1 and least-squares fitting equation (5.1) to
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both experimental data, namely N, and C);, simultaneously with (QASM , l%éw ) =

(0.1676,0.0586) (red lines). (a) Varying iodine concentration. (b) Varying vitamin

C concentration.
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to estimate the parameters (¢ and k3) for each bootstrap sample, and then find
the 2.5th and 97.5th precentiles of the bootstrap distribution to construct 95%
confidence intervals.

Our findings on the 95% confidence interval using bootstrapping resampling
for the two parameter ¢ and ks of the switchover time formula (5.1) of Model

FCR-M-HP, of all moderate hydrogen peroxide trials (N, Cyy) is as follows:

CI} 59 = [0.1597, 0.1770], (5.15a)

CI}i) g5, = [0.0540, 0.0640]. (5.15b)

The 95% confidence intervals for the two parameter ¢ and ks of the switchover time
formula (5.1) of Model FCR-M-HP obtained through both the likelihood ratio test
(Wilk’s Theorem) and bootstrapping methods, namely in (5.13) and (5.15), show
agreement. We have verified that using the function ¢z = bootci produces similar

results which computes a 95% bootstrap confidence interval precisely given by

CI o500 = [0.1598, 0.1773], (5.16a)

CIY g590.0; = [0.0538, 0.0639]. (5.16b)

5.4.2 Model FCR-H-HP

Similarly, results for different increments of High Hydrogen Peroxide Trials, (Ng)
varying iodine with vitamin C and low hydrogen peroxide fixed, and (Cy) varying
vitamin C with iodine and low hydrogen peroxide fixed, are shown in Table 5.2.
The outcome of least-squares fitting equation (5.2) for the parameters ¢ and kj

to both experimental data simultaneously is shown in Figure 5.12 (note that the
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Figure 5.12: Experimental data results of High Hydrogen Peroxide Trials (blue
circles) from Table 5.2 and least-squares fitting equation (5.2) to both experimental

data, namely Ny and Cy, simultaneously with ((,%H kH ) = (0.1734,0.0654) (red

lines). (a) Varying iodine concentration. (b) Varying vitamin C concentration.

curve is plotted for the full range of the independent variable). The estimated
value of Model FCR-H-HP is (¢3H, ol ) — (0.1734,0.0654).

Figure 5.13 illustrates an independent test across a full range of varying hy-
drogen peroxide data from Table 3 and least-squares fitting of the switchover time
formula of Model FCR-H-HP (5.2). This outcome ties agreeably with high hy-
drogen peroxide trials more than the moderate hydrogen peroxide trials as we
expected.

In Figure 5.14, the contour plot provides a visual representation of the log-
arithm of the objective function (5.4), with the estimated values (d;H kH ) =
(0.1734,0.0654) located in the centre, of the inner ellipse, of the minimum level in
the contour plot.

Figure 5.15 displays the pcolor plot of the satisfying condition; the log-likelihood
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Figure 5.13: An independent test across full range of Varying Hydrogen Peroxide
Trials (blue circles) from Table 5.3 and least-squares fitting of the switchover time
formula of Model FCR-H-HP (5.2) to both experimental data, namely Ny and

Ch, simultaneously with ((jABH kH ) = (0.1734,0.0654) (red lines).
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Figure 5.14: A contour plot of the logarithm of the objective function with the

estimated value (qASH kH ) = (0.1734,0.0654) (red circle mark) of the switchover
time formula (5.2) of the Model FCR-H-HP.
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Figure 5.15: A pcolor plot of the satisfying condition; log-likelihood ratio < critical
value with the bar plot of the numeric values (the yellow region for true, and the

blue region for false), and the estimated value (¢ASH , lAc:f ) = (0.1734,0.0654) (red
circle mark) of the switchover time formula (5.2) of the Model FCR-H-HP.

ratio < critical value. The 95% confidence interval using the log-likelihood ratio
test (Wilk’s Theorem) for the two parameters ¢ and ks of the switchover time

formula (5.2) of Model FCR-H-HP, of all high hydrogen peroxide trials (N, Cy)

as follows:

C Iy, = [0.1300, 0.2128], (5.17a)

CIE 455, = [0.0618, 0.0694]. (5.17D)

Figure 5.16 shows the 95% confidence region of the objective function at the
specific level v as given in (5.14).

Figure 5.17 indicates the histogram plots and frequency of the two parameters

(¢ and k3). Figure 5.18 illustrates a scatter plot of the two parameters ¢ and k;

of each bootstrap sample with the 95% confidence interval of the parameter ¢ and
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Figure 5.16: A contour plot of the logarithm of the objective function at level
v (satisfied the 95% confidence region) with the estimated value <¢ASH kA ) =

(0.1734,0.0654) (red circle mark) of the switchover time formula (5.2) of the Model
FCR-H-HP.

k3.

A bootstrapping method is used to calculate the lower and upper quantiles of
the 95% confidence interval shown in figure 5.19.

Our results on the 95% confidence interval using bootstrapping resampling

for the two parameters ¢ and ks of the switchover time formula (5.2) of Model

FCR-H-HP, of all high hydrogen peroxide trials (Ng, Cy) are as follows:

CIHqsy = [0.1190, 0.2188), (5.18a)

CIE 455, = [0.0608, 0.0733)]. (5.18b)

In Model FCR-H-HP, the 95% confidence intervals for the parameters ¢ and ks of
the switchover time formula (5.2) have shown agreement using both the likelihood

ratio test (Wilk’s Theorem) and bootstrapping methods, namely (5.17) and (5.18).
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Figure 5.17: Histogram of the bootstrapping re-sampling for estimating the two
parameters ¢ and k3 of the switchover time formula (5.2) of the Model FCR-H-HP.
(a) For the parameter ¢. (b) For the parameter k;.
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Figure 5.18: A scatter plot of the two parameters ¢ and ks of each bootstrap
sample with the 95% confidence interval as dashed horizontal vertical lines (red),

and the estimated value (QASH kH ) = (0.1734,0.0653) (red circle mark).
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Figure 5.19: The lower and upper quantiles of the bootstrapping method (black
dash-dotted lines) for the experimental data results of High Hydrogen Peroxide
Trials (blue circles) from Table 5.2 and least-squares fitting equation (5.2) to

both experimental data, namely Ny and Cy, simultaneously with (quSH ,l%é{ ) =

(0.1734,0.0653) (red lines). (a) Varying iodine concentration. (b) Varying vita-
min C concentration.
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We have ascertained that using the function ci = bootci produces similar results

which computes a 95% bootstrap confidence interval precisely given by

CI} 590 = [0.1196, 0.2196], (5.19a)

CI}! g0, = [0.0607, 0.0733]. (5.19D)

It should be pointed out that the confidence intervals of the two parameters ¢
and k3 are consistent between the two models above, Model FCR-M-HP and Model
FCR-H-HP, and their experimental data because they represent the same reactants
regardless of the level of hydrogen peroxide (moderate or high). We anticipate
similarities in parameter estimates from the two models and driven data, although
we acknowledge that data noise prevents them from being identical. The 95%
confidence intervals of the Model FCR-M-HP, in (5.13) and (5.15) are overlapping
with the confidence intervals of the Model FCR-H-HP, in (5.17) and (5.18).

5.4.3 Both Models FCR-M-HP and FCR-H-HP

We now determine the values of the two parameters ¢ and ks in the switchover
time formula for both models, Model FCR-M-HP and Model FCR-H-HP, when
given in one formula (5.3). In this study, we apply the least squares method to
find the estimated values of the two parameters ¢ and k3 in the switchover time
formula (5.3) that best fit all the experimental data in Table 5.1 and Table 5.2.
Hence, the least-squares fitting with relative errors is useful to account for the wide

range of measured switchover times, especially when dealing with data of different
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scales. We now seek to minimise

al (tsw,model - tsw,data)2
S(dks) = 2 , (5.20)
sw,data

where N is the number of experimental data. This approach ensures that the
resulting model provides the closest approximation to the observed data.

Figure 5.20 shows the outcome of fitting to the series experiments Ny, Cyr, Ny
and Cy, and least-squares fitting of the switchover time formula of both models
(5.3) with ¢ = 0.15835 and ks = 0.066302. The results provide an excellent fit
to the experimental data for moderate and high hydrogen peroxide, as shown in
Figure 5.21.

In Figure 5.22, the contour plot provides a visual representation of the loga-
rithm of the objective function (5.20).

Figure 5.23 shows the pcolor plot of the satisfying condition with the log-
likelihood ratio. The 95% confidence interval using the log-likelihood ratio test
(Wilk’s Theorem) for the two parameters ¢ and k3 of the switchover time formula
(5.3) of all moderate and high hydrogen peroxide trials (Ny, Car,Ng, C) is as

follows:

Cly959% = [0.1553, 0.1610], (5.21a)

Cl, 059 = [0.0644, 0.0683). (5.21Db)

Figure 5.24 shows the 95% confidence regions for the two parameters ¢ and ks,
using the log-likelihood ratio test given in (5.21), of the objective function with

relative errors of the switchover time formula (5.3).
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Figure 5.20: Outcome of simultaneous fitting to data series Nys, Car, Ny and Ch.
The experimental (blue circles) and fitted switchover time equation (5.3) with sum

square relative error best fit of (qz;, lAc3) = (0.15835,0.066302) (red lines).
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Figure 5.21: Test of the parameter fits (from Figure 5.20) with (qg, 1}3) =

(0.15835,0.066302), against independent experimental series Pys and Py in which
initial hydrogen peroxide mass is varied.
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Figure 5.22: A contour plot of the logarithm of the objective function (5.20)
with the estimated value (g%, 1:73) = (0.15835,0.066302) (red circle mark) of the
switchover time formula (5.3).
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Figure 5.23: A pcolor plot of the satisfying condition; log-likelihood ratio < critical
value (yellow region for true, and blue region for false), and the estimated value
(dA), 1273) = (0.15835,0.066302) (red circle mark) of the switchover time formula
(5.3).
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Figure 5.24: A contour plot of the logarithm of the objective function at level
v (satisfied the 95% confidence region) with the estimated value ((13, IA€3) =
(0.15835,0.066302) (red circle mark) of the switchover time formula (5.3).
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Figure 5.25: Histogram of the bootstrapping re-sampling for estimating the two
parameters ¢ and ks of the switchover time formula (5.3) of both models, Model
FCR-M-HP and Model FCR-H-HP, with the lower and upper bounds of the pa-
rameters confidence interval as dashed vertical lines (red). (a) For the parameter
¢. (b) For the parameter k.

Figure 5.25 displays the histogram plots and frequency of the two parameters
(¢ and k3) using the bootstrap sampling of the switchover time formula for both
models (5.3). Figure 5.26 demonstrates a scatter plot of the two parameters ¢ and
ks with the 95% confidence intervals.

A bootstrapping method is used to calculate the lower and upper quantiles of
the 95% confidence interval across full range of hydrogen peroxide concentrations,
shown in Figure 5.27. Our findings on the 95% confidence interval using the
bootstrapping of the switchover time formula (5.3) of the two models, Model FCR-
M-HP and Model FCR-H-HP, of all moderate and high trials (Nys, Cys, Ny, Cr)
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Figure 5.26: A scatter plot of the two parameters ¢ and ks of each bootstrap
sample with 95% confidence intervals (red dashed lines) with the estimated value

(qAS,lAc:,\) = (0.15835, 0.066302) (red circle mark).
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Figure 5.27: The lower and upper quantiles of the bootstrapping method (black
dash-dotted lines) for the experimental data results of Varying Hydrogen Peroxide
Trials (blue circles) from Table 5.3 and least-squares fitting equation (5.3) to all ex-

perimental data, namely N,;, Cys, Ny and Cy, with (q’;, ]2?3) = (0.15835,0.066302)

(red lines).
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is as follows:

Cly05% = [0.15197, 0.16080], (5.22a)

C I, 050 = [0.06389, 0.06940). (5.22b)

The bootstrap confidence interval is computed using the function c¢i = bootci which

produces equivalent results:

C]qb,%%,ci = [01519, 01608], (523&)

Cli, 05%.0i = [0.0640, 0.0693]. (5.23b)

The confidence intervals of the combined formula (5.3) of both moderate and
high model, in (5.21) and (5.22) are consistent with the confidence intervals we
have found earlier of the moderate model (Model FCR-M-HP), in (5.13) and (5.15),
and the confidence intervals of the high model (Model FCR-H-HP), in (5.17) and
(5.18). We would expect that parameters estimated from different models and
datasets will be similar, but not exactly the same due to data noise. There is
agreement between all the confidence intervals of the two parameters ¢ and ks
between the results of the three models. Table 5.4 summarizes our results for each
parameter estimation technique and model.

By switching this final approach around (fitting to the series Py, and Py, and
then testing against series Cy;, Ny, Cy, and Npy) was also performed and is

presented in Appendix A.
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5.5 Conclusion

This chapter presented the results of six experimental series designed to test the
model of chapter 4 through both moderate and high hydrogen peroxide regimes.
Model parameters were fitted through relative error least squares fitting to account
for the large range of switchover times measured, with uncertainties quantified
through the likelihood ratio test and bootstrapping. The switchover time formu-
las have been proven highly accurate when tested with different concentrations
of hydrogen peroxide, iodine, and vitamin C, with excellent consistency across
different combinations of fitting and testing datasets. In certain conditions (not
presented here) the clock reaction failed to occur; this can be the subject of future

work.

181



Chapter 6

Conclusions And Future Work

The study of chemical kinetics, particularly the interesting phenomenon of clock
reactions, has a rich history spanning over a century. This research contributes
to this field by employing mathematical modeling and analysis to gain deeper
insights into clock reactions involving vitamin C and hydrogen peroxide. Through
the development of new nonlinear differential equation models, this study explores
the kinetics of the reaction, particularly focusing on the role of hydrogen peroxide
concentration. Through our analysis, we have resolved the discrepancy between the
choice of kinetics in the slow reaction, demonstrating mathematically that linear
kinetics are appropriate when hydrogen peroxide is present in moderate levels, and
quadratic kinetics are appropriate when hydrogen peroxide concentration exceeds
that of the other chemicals. Using asymptotic analysis, the study provides a better
understanding of the clock reaction, supported by both approximation solutions
and experimental validation. Furthermore, this research explores the applicability
of parameter estimation, such as least-squares and bootstrapping in analyzing

experimental data.
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6.1 Contributions of the Thesis

We can conclude the thesis by providing a summary of each chapter separately.
Chapter 1 revealed the main aim of this thesis which is to use mathematical mod-
elling to understand a specific chemical reaction. We reviewed some of the basic
chemical reaction preliminaries needed for the thesis. An outline of the thesis is
also included. In Chapter 2, we discussed and analysed the simple clock reaction
model (fast and slow) by extending the work of Kerr et al. [27] to include hydrogen
peroxide and assuming that the rate of the slow reaction is linear in both iodine
and hydrogen peroxide concentrations as predicted by the experimental data of
Copper and Koubek [16]. Here, we assumed hydrogen peroxide was present in
comparable concentrations to the other reactants — i.e. the moderate case — (un-
like in the experiments performed in Kerr et al. [27]). Our asymptotic solutions
closely matched the numerical results over appropriate time intervals. Addition-
ally, we formulated a useful switchover time formula to identify the significant
occurrence of when the clock reaction occurs and the solution appears dark blue.
Crucially, our derived switchover time formula closely correlates with the outcome
presented by Parra Cordova and Pena [40], lending weight to its validity.
Chapter 3 investigated whether the chemical slow reaction converting iodide to
iodine should be quadratic or linear and the role of hydrogen peroxide concentra-
tion. To understand how hydrogen peroxide concentration affects the kinetics of
the chemical clock reaction, the slow reaction was analyzed in isolation by includ-
ing the hypoiodous acid reactant and reverse reaction. The analysis demonstrates
that the kinetics of the clock reaction can exhibit either linear or quadratic be-

haviour depending on the ratio of hydrogen peroxide to iodide. Thus we were able
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to demonstrate why the linear assumption worked in the study of Copper and
Koubek [16] (where moderate levels of hydrogen peroxide were used), while the
quadratic assumption was valid in Kerr et al. [27] (where high hydrogen peroxide
levels were used).

In Chapter 4, we explored the incorporation of the more detailed slow reaction
with the fast reaction associated with vitamin C. Asymptotic analysis on this
unified full model of the chemical clock reaction (slow and fast) was explored
in each case of moderate and high hydrogen peroxide concentration regimes. In
this chapter a nonlinear differential equation model was developed to examine the
kinetics of the reaction, with a focus on hydrogen peroxide concentration again. In
appropriate time regions, asymptotic approximations agree closely with numerical
solutions. Using this approach, we could estimate the switchover time for either
hydrogen peroxide regime as a function of initial concentrations and the slow
reaction rates. Essentially, we found that the switchover time formula of the
model with moderate hydrogen peroxide provided is identical to the simplified
linear kinetic model illustrated earlier in Chapter 2. In addition, the simplified
switchover time formula of the high hydrogen peroxide model presented is in line
with the switchover formula derived by Kerr et al. [27].

It has been shown in Chapter 5 that the switchover time formulae for both
cases, moderate and high hydrogen peroxide, are highly accurate when tested
through experiments with various concentrations of hydrogen peroxide, iodine,
and vitamin C. The effectiveness of the parameter estimation methods least-
squares, log-likelihood ratio, and bootstrapping were considered in analyzing the
data. There was good agreement between the parameter estimates using each ap-

proach presented, with significant overlap on the confidence intervals for the two
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parameters ¢ and ks.

Overall, this research advances our understanding of the clock reaction and its
kinetics. The insights gained from this research advance our deep mathematical
analysis and offer practical implications for experimental design. The approach
we have taken enables an experimentalist to be able to conduct the clock reaction
and determine the induction duration of the experiment needed to capture the
switchover point depending on how much of each chemical ingredient they are
using initially. We have further developed the theory and experimental framework
for clock chemical reactions based on kinetics principles, performing numerical and
asymptotic analyses, conducting experiments to test the model, using statistical
techniques to optimize the parameters, and documenting the results. This research

paves the way for future research endeavours in the study of the clock reaction.

6.2 Future Work

The work in this thesis can be extended in several directions, such as exploring the
effect of temperature on the reaction kinetics, both through how this might affect
the ODE structure, but also by running the experiments at different temperatures
to see how this might change our parameter estimates. We could also investigate
the iodate variation via three-step reaction, involving the iodate ion (/03 ), iodide
(I7), and iodine (I3) (see Figure 3.1) to bring additional detail and complexity
into the model. We could also explore further optimization against additional
experimental data to enhance the sensitivity of the model outcomes to initial
conditions of the reactants. Finally, there are many other chemical clock reactions

that could similarly be investigated through asymptotic analysis.
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In respect of experimental technique, another area for development would be
the use of ultraviolet light spectrophotometry [52] to measure the time evolution
of iodine levels (via blue iodine-starch complex) rather than simply the switchover
time, so that model curves could be fitted directly, providing a more complete test
of the accuracy of the solutions in each asymptotic region. Explicit mathematical
modelling of the formation of starch-iodine complex may in turn be required to
interpret spectrophotometry data.

These potential avenues for further examining the chemical clock reactions,
however, should not detract from the valuable findings of this work: we have used
asymptotic analyses to resolve the discrepancy in the literature regarding the form
of the reaction kinetics involved, developed a unified model capable of capturing
the effect of either moderate or high hydrogen peroxide levels, derived analytical
formulae for the switchover time, and demonstrated the validity of these formulae

against novel experimental data.

186



Bibliography

1]

[4]

[5]

JM Anderson. Computer simulation in chemical kinetics. Journal of Chemical

Education, 53(9):561, 1976.

P Asrani, MS Eapen, C Chia, G Haug, HC Weber, MdI Hassan, and SS So-
hal. Diagnostic approaches in COVID-19: clinical updates. Expert review of

respiratory medicine, pages 1-16, 2020.

A Bermtdez and LM Garcia-Garcia. Mathematical modeling in chemistry.

Application to water quality problems. Applied numerical mathematics,

62(4):305-327, 2012.

Y Bichsel and U Von Gunten. Oxidation of iodide and hypoiodous acid
in the disinfection of natural waters. FEnvironmental science & technology,

33(22):4040-4045, 1999.

Y Bichsel and U Von Gunten. Formation of iodo-trihalomethanes during
disinfection and oxidation of iodide-containing waters. Environmental Science

€9 Technology, 34(13):2784-2791, 2000.

187



[6]

[12]

J Billingham and PV Coveney. Simple chemical clock reactions: application
to cement hydration. Journal of the Chemical Society, Faraday Transactions,

89(16):3021-3028, 1993.

J Billingham and PV Coveney. Kinetics of self-replicating micelles. Journal

of the Chemical Society, Faraday Transactions, 90(13):1953-1959, 1994.

J Billingham and DJ Needham. Mathematical modelling of chemical clock
reactions. I. induction, inhibition and the iodate-arsenous-acid reaction. Philo-
sophical Transactions of the Royal Society of London. Series A: Physical and
Engineering Sciences, 340(1659):569-591, 1992.

J Billingham and DJ Needham. Mathematical modelling of chemical clock

reactions. Journal of Engineering Mathematics, 27(2):113-145, 1993.

Science Bob. Rapid color changing chemistry. https://sciencebob.com/

rapid-color-changing-chemistry. [Online; accessed 19-December-2020].

AE Burgess and JC Davidson. Kinetics of the rapid reaction between io-
dine and ascorbic acid in aqueous solution using UV-visible absorbance and
titration by an iodine clock. Journal of Chemical Education, 91(2):300-304,

2014.

GM Burnett and HW Melville. Determination of the velocity coefficients
for polymerization processes. I. The direct photopolymerization of vinyl ac-

etate. Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences, 189(1019):456-480, 1947.

188



[13]

[14]

[15]

[16]

[17]

[18]

[21]

[22]

J-Y Chien. Kinetic analysis of irreversible consecutive reactions. Journal of

the American Chemical Society, 70(6):2256-2261, 1948.

KA Connors. Chemical kinetics: the study of reaction rates in solution. Wiley-

VCH Verlag GmbH, 1990.

W J Conway. A modified lecture experiment. Journal of Chemical Education,

17(8):398, 1940.

CL Copper and E Koubek. A kinetics experiment to demonstrate the role of
a catalyst in a chemical reaction: a versatile exercise for general or physical

chemistry students. Journal of chemical education, 75(1):87, 1998.

AJ Demello. Control and detection of chemical reactions in microfluidic sys-

tems. Nature, 442(7101):394-402, 2006.

ET Denisov, E Denisov, O Sarkisov, and GI Likhtenshtein. Chemical kinetics:

fundamentals and recent developments. Elsevier, 2003.

B Efron. The jackknife, the bootstrap and other resampling plans. SIAM,
1982.

B Efron. Better bootstrap confidence intervals. Journal of the American

statistical Association, 82(397):171-185, 1987.
P Eykhoft. System identification, volume 14. Wiley New York, 1974.

T M Farris, J P Humes, and M A Nussbaum. Mix-bricks and flip-lids: 3d
printed devices for simple, simultaneous mixing of reactant solutions. Ana-

lytical chemistry, 92(5):3522-3527, 2020.

189



[23]

[24]

[27]

28]

[29]

[30]

M Galajda, G Lente, and I Fabidn. Photochemically induced autocatalysis in
the chlorate ion- iodine system. Journal of the American Chemical Society,

129(25):7738-7739, 2007.

A Hanna, A Saul, and K Showalter. Detailed studies of propagating fronts
in the iodate oxidation of arsenous acid. Journal of the American Chemical

Society, 104(14):3838-3844, 1982.

A K Horvath and 1 Nagypal. Classification of clock reactions.
ChemPhysChem, 16(3):588-594, 2015.

E Jones, CG Munkley, ED Phillips, and G Stedman. Kinetics and equilibria
in the nitric acid-nitrous acid-sodium thiocyanate system. Journal of the

Chemical Society, Dalton Transactions, (9):1915-1920, 1996.

R Kerr, WM Thomson, and DJ Smith. Mathematical modelling of the vitamin

C clock reaction. Royal Society Open Science, 6(4):181367, 2019.

H Landolt. Ueber die zeitdauer der reaction zwischen jodsaure und schwe-
fliger saure. Berichte der deutschen chemischen Gesellschaft, 19(1):1317-1365,
1886.

G Lente, G Bazsa, and I Fabian. What is and what isn’t a clock reaction?

New Journal of Chemistry, 31(10):1707-1707, 2007.

J Li, J Jiang, Y Zhou, S-Y Pang, Y Gao, C Jiang, J Ma, Y Jin, Y Yang,
G Liu, et al. Kinetics of oxidation of iodide (I-) and hypoiodous acid (HOI)

by peroxymonosulfate (PMS) and formation of iodinated products in the

190



[31]

[36]

PMS/I-/NOM system. Environmental Science & Technology Letters, 4(2):76—
82, 2017.

HA Liebhafsky and A Mohammad. The kinetics of the reduction, in acid so-
lution, of hydrogen peroxide by iodide ion. Journal of the American Chemical

Society, 55(10):3977-3986, 1933.

A Molla and J H Youk. Chemical clock reactions with organic dyes: Perspec-

tive, progress, and applications. Dyes and Pigments, 202:110237, 2022.

Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduc-

tion to linear regression analysis. John Wiley & Sons, 2021.

J C Nagy, K Kumar, and D W Margerum. Nonmetal redox kinetics: oxida-
tion of iodide by hypochlorous acid and by nitrogen trichloride measured by
the pulsed-accelerated-flow method. Inorganic Chemistry, 27(16):2773-2780,
1988.

I Nagypal and IR Epstein. Fluctuations and stirring rate effects in the chlorite-
thiosulfate reaction. The Journal of Physical Chemistry, 90(23):6285-6292,
1986.

I Nagypal and IR Epstein. Stochastic behavior and stirring rate effects in the
chlorite-iodide reaction. The Journal of chemical physics, 89(11):6925-6928,
1988.

J A Nelder and R Mead. A simplex method for function minimization. The
computer journal, 7(4):308-313, 1965.

191



[38]

[39]

[40]

[44]

[45]

AP Oliveira and RB Faria. The chlorate- iodine clock reaction. Journal of

the American Chemical Society, 127(51):18022-18023, 2005.

M C Pagnacco, J P Maksimovi¢, N T Nikoli¢, D V Bajuk Bogdanovi¢, M M
Kragovi¢, M D Stojmenovié, S N Blagojevi¢, and J V Sencanski. Indigo
carmine in a food dye: Spectroscopic characterization and determining its

micro-concentration through the clock reaction. Molecules, 27(15):4853, 2022.

A Parra Cordova and O I Gonzalez Pena. Enhancing student engagement with
a small-scale car that is motion-controlled through chemical kinetics and basic

electronics. Journal of Chemical Education, 97(10):3707-3713, 2020.

L Perko. Differential equations and dynamical systems, volume 7. Springer

Science & Business Media, 2013.
MJ Pilling and PW Seakins. Reaction kinetics. Oxford University Press, 1995.

TV Porgo, SL Norris, G Salanti, LF Johnson, JA Simpson, N Low, M Egger,
and CL Althaus. The use of mathematical modeling studies for evidence

synthesis and guideline development: A glossary. Research synthesis methods,

10(1):125-133, 2019.

PD Sattsangi. A microscale approach to chemical kinetics in the general
chemistry laboratory: the potassium iodide hydrogen peroxide iodine-clock

reaction. Journal of Chemical Education, 88(2):184-188, 2011.

J Shin, Y Lee, and U von Gunten. Kinetics of the reaction between hydrogen
peroxide and aqueous iodine: Implications for technical and natural aquatic

systems. Water research, 179:115852, 2020.

192



[46]

[49]

[51]

J Shin, U von Gunten, D A Reckhow, S Allard, and Y Lee. Reactions of
ferrate (vi) with iodide and hypoiodous acid: Kinetics, pathways, and impli-
cations for the fate of iodine during water treatment. Environmental science

€ technology, 52(13):7458-7467, 2018.

AP Silverman and ET Kool. Detecting RNA and DNA with templated chem-
ical reactions. Chemical reviews, 106(9):3775-3789, 2006.

Murray R Spiegel. Schaum’s Qutline Series of Theory and Problems of Mathe-
matical Handbook of Formulas and Tables. McGraw-Hill Publishing Company;,
1968.

G Stedman, E Jones, and MS Garley. Travelling waves in autocatalytic oxida-
tions by nitric acid. Reaction Kinetics and Catalysis Letters, 42(2):395-399,

1990.

K Strimmer. Statistical methods: Likelihood, bayes and regression. likelihood-
based confidence interval and likelihood ratio. https://strimmerlab.

github.io, June 2023. [Online; accessed 12-October-2023].

E Sucre-Rosales, R Fernandez-Terdan, D Carvajal, L Echevarria, and
FE Hernandez. Experience-based learning approach to chemical kinetics:
Learning from the covid-19 pandemic. Journal of Chemical Education,

97(9):2598-2605, 2020.

H Sulistyarti, Q Fardiyah, S Febriyanti, and Asdauna. A simple and safe spec-
trophotometric method for iodide determination. Makara Journal of Science,

19(2):1, 2015.

193



[53]

[54]

[55]

CFH Tipper, SA Rice, CH Bamford, RG Compton, and NJB Green. Com-
prehensive chemical kinetics. Section 8. Heterogeneous reactions. Elsevier,

1969.

SS Wilks. The large-sample distribution of the likelihood ratio for testing com-

posite hypotheses. The annals of mathematical statistics, 9(1):60-62, 1938.

SW Wright. Tick tock, a vitamin C clock. Journal of Chemical Education,
79(1):40A, 2002.

SW Wright. The vitamin C clock reaction. Journal of Chemical Education,

79(1):41, 2002.

X Zhao, E Salhi, H Liu, J Ma, and U Von Gunten. Kinetic and mecha-
nistic aspects of the reactions of iodide and hypoiodous acid with perman-
ganate: Oxidation and disproportionation. Environmental science € technol-

0gy, 50(8):4358-4365, 2016.

194



Appendix A

A.1 Results of Setting The Fitting to Series Py,
and Py, and Then Testing against Series (),

NM, CH and NH

A.1.1 Fitting series

Two experimental series were carried out for fitting of the constants ¢ and ks,
referred to as Py (moderate hydrogen peroxide regime), and Py (high hydrogen
peroxide regime. The results of different increments of varying Hydrogen Peroxide
Trials, (Py and Py), with vitamin C and iodine fixed, are shown in Table 5.3.
Again, the values of ¢ and k3 were estimated through relative error least squares
fitting in order to account for the wide range of measured switchover time, carried
out in Matlab with the optimisation function frninsearch. The 95% confidence

limits were estimated through bootstrapping with the function bootci.



A.1.2 Testing Series

The switchover time equation (5.3), of both models III-M-HP and III-H-HP, and
fitted parameters were then tested by comparing against the independent data

series, referred to as Cy;, Ny, Cy and Np.

A.1.3 Results

Figure A.1 shows the outcome of fitting to the series experiments P); and Ppy,
where the estimated parameter values are (;3 = 0.1467 and k3 = 0.0683. Figure
A.2 illustrates the testing of the series against Cy;, Ny, Cy and Np, using the
estimated parameters; we see a match between the experiment and the fitted model
that is roughly the same as the fitted data. Figure A.3 demonstrates a scatter plot
of the two parameters ¢ and k3 of each bootstrap sample with the lower and upper
bounds. Our results on the 95% confidence interval using the bootstrapping of the

switchover time formula (5.3) of fitting series (Pys, Py) are as follows:

Cly 059 = [0.1296, 0.1640], (A.1a)

C I, 05% = [0.0654 0.0712). (A.1b)

Our results match well with all of the confidence intervals of the two parameters

¢ and k3 reported in Chapter 5.
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Figure A.1: Outcome of simultaneous fitting to data series P); and Py. The
experimental data (blue circles) and fitted switchover time (red lines) with sum
square relative error best fit of ¢ = 0.1467 and k3 = 0.0683.
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Figure A.2: Test of the parameter fits (Figure A.1) against independent experi-
mental series Cs, Nys, Cy and Ny, in which initial vitamin C and iodine concen-

trations are varied.
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Figure A.3: Bootstrapping results with 10000 repeats (blue dots), best fit (red
circle mark) and 95% confidence intervals for each parameter (dashed red lines).





