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ABSTRACT

The use of in silico and in vitro methods, commonly referred to as new approach method-

ologies (NAMs), has been proposed to support environmental (and human) chemical

safety decisions, ensuring enhanced environmental protection. Toxicokinetic (TK) mod-

els developed for environmentally relevant species are fundamental to the deployment of a

NAMs-based safety strategy, enabling the conversion between external and internal chem-

ical concentrations, although they require historical TK data and robust physical models

to be considered a viable solution. Daphnia magna is a key model organism in ecotox-

icology albeit with limited quantitative TK data, as for most invertebrates, resulting in

a lack of robust TK models. Moreover, current D. magna models are chemical specific,

which restricts their applicability domain.

The overall aim of this thesis was to advance theoretical and probabilistic methods for TK

predictions in Daphnia magna for use in environmental risk assessment (ERA). Firstly, to

address current data limitations a D. magna TK dataset was collated from the literature

and developed into an R package named AquaTK. Subsequently, a proof-of-concept

Bayesian framework was developed to predict steady-state concentration ratios from the

data. The application of the Bayesian framework to ERA was illustrated with an atrazine

case study that showed prediction improvements (uncertainty reductions) with increasing

amounts of data availability.

A substantial fraction of chemicals in the AquaTK dataset are ionisable at environmen-

tally relevant pHs, therefore, the e↵ect of ionisation on TK predictions was investigated

within the Bayesian framework. Inferred steady-state concentration ratios were compared
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with predictions from the Bayesian predictive model and the state-of-the-art non-lipid or-

ganic matter (NLOM) model. Predictions from the Bayesian model did not improve after

accounting for ionisation but the prediction errors were lower relative to the NLOMmodel.

Additionally, the largest prediction errors occurred primarily for neutral chemicals, indi-

cating that factors beyond ionisation also should be considered.

A protein surface-binding (PSB) model was developed to integrate protein binding, which

is a key pharmacokinetic parameter, as a function of D. magna protein fraction and

external concentration. A theoretical upper bound for the PSB model was determined

and evaluated against the AquaTK dataset, which highlighted that the bound holds for

a range of external concentration scenarios. This will have positive implications for ERA

where risk assessors can predict concentration ratios under any exposure scenario with

minimum data requirements and without the need for in vivo data.

To integrate biotransformation into TK models requires quantitative data for biotrans-

formation products (BTPs) that can only be obtained with standards. However, the

lack of commercially available standards for BTPs presents a significant challenge. Semi-

quantification methods that predict concentrations from ionisation e�ciency values have

been developed. Therefore, a random forest regression model to predict relative ionisa-

tion e�ciency values was developed on experimental parent and BTP data and showed

promising results compared to other studies, in addition to robust predictions on unseen

data. This was an important first step in the semi-quantification of BTPs for TK mod-

elling purposes with further work required to predict concentrations of BTPs without

standards.

A consistent theme throughout this research is the use of in silico NAMs with an “open

data” approach to sharing and generating data for ERA. Overall, this work provides the

foundations of a modern ERA that does not require animal testing through the increased

use of theoretical and probabilistic methods. Further work should endeavour to integrate

all these methods into a predictive tool for ERA.
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CHAPTER 1 : INTRODUCTION

1.1 Current environmental risk assessment landscape

1.1.1 Global chemical estimates

There has been an exponential increase in the variety and volume of chemicals used

globally in recent decades [256]. The chemical industry has grown at a significant rate

since the 1960s, where between 1965 and 2006, the number of chemicals registered on the

Chemical Abstracts Service (CAS) database increased from around 211,000 to 89,000,000

[35, 86]. Recent estimates reported that over 174,000 chemicals were pre-registered with

the European Chemicals Agency (ECHA), 100,000 were inventoried in United States (US)

commerce, and more than 350,000 chemicals were available commercially [267, 256]. Fur-

thermore, there are an estimated 600 new chemicals registered every year with the US

Environmental Protection Agency (US EPA) [262]. These chemicals have a wide range

of applications within food additives, cosmetic ingredients, cleaning products, pharma-

ceuticals, biocides, and industrial chemicals [86]. However, throughout the 20th century,

a substantial amount of available chemicals were released without prior safety informa-

tion or risk assessment [262]. This meant that information concerning environmental or

toxicological profiles was missing for many chemicals [86].
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1.1.2 Environmental risk assessment and regulations

Environmental risk assessment (ERA) aims to quantify the e↵ect of anthropogenic stres-

sors, such as chemical use, with the aim of identifying potential e↵ects on organisms or

ecosystems [102]. This involves a culmination of methodologies to determine the risk

of chemicals on the environment [22]. ERA can be divided into a four step framework

developed by the National Research Council (NRC) of the US in 1983 [37]:

1. problem formulation (including hazard identification)

2. hazard characterisation

3. exposure assessment

4. risk characterisation

Problem formulation is a critical first step in ERA that involves the comprehensive analysis

of all the key factors that need to be considered for risk assessment [239]. Firstly, the

problem formulation phase identifies the objectives, scope, and purpose of the ERA [239].

For example, the risk assessment could be centred around a specific set of chemicals or

hazardous exposure from a particular source, such as wastewater e✏uent [239]. A key part

of problem formulation is the identification of the hazard or stressor and the information

needed to assess the likelihood and potential impacts on the environment and the e↵ects

of exposure [77]. This includes the definition of appropriate endpoints for assessment and

measurement [238, 22].

The second step of ERA is hazard characterisation. This step aims to quantify the prob-

ability of adverse e↵ects through dose-response relationships. Dose-response relationships

quantify the change in an observable e↵ect as a result of a change in dose [179]. This

results in a predicted no e↵ect concentration (PNEC), which is the estimated chemical

concentration expected not to have an adverse e↵ect [5]. Traditionally, methods such

as the acute or chronic toxicity test can be conducted to establish the e↵ects on rep-

resentative environmentally relevant species, such as aquatic vertebrates, invertebrates,
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and algae [248]. An important assumption is that the most sensitive species is chosen as

the protective benchmark for all species. This creates thresholds that protect all species

within a given compartment, air, water, or soil [248].

Exposure assessment is the next step. The exposure assessment involves the quantification

of the internal and external concentrations [221]. This yields a measured or estimated envi-

ronmental concentration, referred to as the predicted environmental concentration (PEC).

Exposure assessment can be divided into the environmental fate that describes factors that

influence the chemicals availability and exposure and toxicokinetics (TK) that describes

the fate of the chemical in a given organism [22]. Finally, the risk characterisation step

involves analysing and evaluating the data from the previous steps and establishing the

potential risk from exposure to the chemical [221]. A standardised way of characterising

risk is by calculating a risk quotient by dividing the PEC by the PNEC [32].

A considerable number of regulatory and advisory bodies undertake ERA worldwide,

which include ECHA, US EPA, the Organisation for Economic Cooperation and Devel-

opment (OECD), Environmental Food Safety Authority (EFSA), and the World Health

Organisation (WHO) [22]. ERA is required under chemical regulations, such as the Cana-

dian Chemicals Management Plan (CMP), Registration, Evaluation, Authorisation and

Restriction of Chemicals (REACH) in the European Union (EU), and the U.S. Toxic

Substance Act (TSCA) in order to further push an international endeavour to ensure the

safety of chemicals [129]. As an example, in Europe, the REACH regulatory framework

specifies standardised toxicity tests for key trophic levels, such as primary producers,

primary consumers, and secondary consumers [32]. Consequently, this makes plants, in-

vertebrates, and fish key model organisms for ERA [108].

1.2 Daphnia magna as a model organism

Daphnia are one of the most extensively studied model organisms with a vast number of

publications spanning multiple scientific disciplines, such as ecology, evolution, genomics
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and toxicology [241, 9]. Specifically, Daphnia magna commonly referred to as the water

flea, are of particular interest to ERA, due to their key ecological role. D. magna provide

a link between primary production and the higher trophic levels of the aquatic food

chain [112, 148, 9]. D. magna act as a primary consumer feeding on algae but are also

predated on by other invertebrates and fish [250]. Populations of D. magna are found in

the pelagic zone of freshwater environments, ranging from small temporary pools to lakes

[241, 9].

1.2.1 Anatomy, morphology & physiology

D. magna are some of the largest Daphniidae with adults ranging from 5 to 6mm [135].

The anatomy and physiology of D. magna can be seen in Figure 1.1. The most distinc-

tive anatomical features include the compound eye and two-branched antennae [246]. D.

magna have a chitinuous shell called a carapace, which encloses their inner wall and

provides protection. The carapace is made up of colourless chitin, however, due to

haemoglobin production the D. magna have a reddish colour [206, 250]. Rather than

a system of blood vessels like fish, D. magna have an open circulatory system, which

contains haemolymph that surrounds all the organs [84]. D. magna have 10 pairs of ap-

pendages, which include antennae, antennules, mandibles, and maxillae, with five thoracic

limbs located at the trunk and an abdominal claw [250].

D. magna are only capable of collecting food particles by filtration, which makes them

unable to actively select food particles [47]. The movement of the thoracic limbs generates

a current that sucks water between the filtering limbs and the carapace valves. The sucked

in water is enclosed by the end of the limbs and then forced through the setules, which

act as sieves on the filtering limbs [47]. This filtration is not only essential for feeding but

also respiratory exchange. The importance of feeding current for oxygen uptake has been

identified using a combination of microscopy and special optical techniques [210].
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Figure 1.1: The functional anatomy of Daphnia magna from [84].

1.2.2 Life cycle & development

Under favourable conditions the D. magna reproductive cycle can transition between

asexual and sexual phases, also known as cyclic parthenogenesis [84, 133, 250]. In the

parthenogenic phase, the D. magna population is made up entirely of females, which

produce diploid eggs in the ovary (Figure 1.2). If feeding and environmental factors allow

a female will produce parthenogenetic eggs after each adult molt [84] . Females can

produce eggs in the brood chamber every 3-4 days, which can last up to 2 months in a

laboratory setting [84].

D. magna primarily reproduces through parthenogenesis, however, environmental condi-

tions, such as droughts or extreme cold, in addition to external factors, such as scarcity

of food or high population density can activate sexual reproduction and form males iden-
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Figure 1.2: Life cycle of a cyclic parthenogenetic Daphnia magna from [84].

tical to the mother during a special parthenogenic event (Figure 1.2) [241]. During these

environmental or external stimuli, it is possible for D. magna to produce haploid resting

eggs by meiosis, which requires fertilisation by males and a period of dormancy. Resting

eggs are encapsulated by a structure called an ephippium, which protects the eggs [84].

Development of these eggs is only resumed under favourable external stimuli, such as

rising temperature, to establish a new population [241].

Sexual reproduction can be easily removed using specific culture conditions in the labo-

ratory, resulting in genetically identical D. magna. Consequently, leading to the removal

of any genetic variation that could impact ecotoxicology studies. Additionally, the short

reproductive cycles, high fecundity, ubiquitous nature, ease of handling, and short life
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span have made D. magna an important experimental organism for the US EPA and the

OECD [246, 250].

1.2.3 Daphnia magna in ecotoxicology

Daphnia have an extensive range of biomarkers related to their behavioural and physiolog-

ical responses, which are induced by chemical substances and environmental factors [250].

The accumulation of contaminants in organisms is influenced by their size [46]. It has been

argued that the greater the surface area to volume ratio the greater the uptake rate in

small organisms [137, 135]. A brief search of Google Scholar (https://scholar.google.com)

with “Daphnia magna” as a keyword resulting in over 580,000 related publications. Fur-

thermore, using “Daphnia magna risk assessment” and “Daphnia magna ecotoxicology”

as individual keywords resulted in over 118,000 and 49,000 publications, respectively. This

highlights the extensive use of D. magna as a key model organism in ecotoxicology and

risk assessments.

1.3 Review of in silico new approach methodologies

1.3.1 What are new approach methodologies and why are they important?

New approach methodologies (NAMs) can be defined as in silico, in vitro, and in chemico

based approaches that can be used to support chemical safety decisions [129, 263]. NAMs

incorporate data from a wide variety of resources, such as computational chemistry, high-

throughput toxicity testing, toxicogenomics, exposure science, and new animal models

[129]. The introduction of the LD50 (lethal dose for 50% of the population) in the 1920s

led to a significant increase in animal use in toxicity testing. Throughout the 20th cen-

tury several methods have been developed involving whole animal testing, however, these

methods have ethical implications and are not always time or cost e↵ective [96, 171].

There is a societal and regulatory push of the 3Rs principle, which encompasses the re-

duction, replacement, and refinement of animal-based toxicity studies through the use of
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NAMs [49]. In recent years there has been a paradigm shift towards replacing these ani-

mal intensive methods in ERA with NAMs [129]. In 2020 Europe unveiled the “GREEN

DEAL” with a Chemicals Strategy for Sustainability that promoted the replacement of

animal testing with alternative approaches, such as NAMs and committed to the reduc-

tion of animal testing [221]. While the cosmetic industry in Canada, EU, and the US

have the prohibition of animal testing under consideration or already in place [3], it does

not directly apply to environmental testing.

1.3.2 Overview of in silico new approach methodologies and their develop-

ment

In silico approaches are referred to as any computational simulation that replicates in

vitro or in vivo experiments, in addition to assisting in the interpretation of complex

toxicological experiments [200]. There has been significant focus on the replacement of

traditional toxicity testing with in silico methods because they do not require any animal

tissues or samples [251]. Additionally, a major advantage of in silico methods is that

they can provide predictions for novel chemicals that have not been synthesised yet [214].

However, regulatory acceptance of in silico approaches is low because of the uncertainty

of model predictions, which may be attributed to concerns of data quality and appropri-

ateness of the data used, the chemical applicability domain, and the interpretation of how

the input model features relate to the model predictions [3].

There is a wide range of computational tools under the in silico approach umbrella, with

databases containing key toxicity data or chemical properties, prediction software for

chemical descriptors, system biology simulation tools, predictive models generated from

statistical packages and software, pre-built models available on-line or in application form,

and visualisation tools [214]. Development of these models can be divided into 5 major

steps [214]:

1. biological data acquisition
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2. generate chemical descriptors

3. generate a predictive model

4. evaluate the accuracy of the model

5. interpret the model

There are many methods that can be utilised to generate a predictive model, which

can encompass quantitative structure-activity relationships (QSARs) and read-across ap-

proaches.

QSARs correlate the structure of a chemical with physiochemical properties (e.g. lipophilic-

ity), biological (e.g toxicity), and environmental fate properties to create predictive models

[22]. The QSAR theory assumes that similar chemicals will have similar activities and

properties, which allows estimation of toxicological endpoints to be deduced for those

similar chemicals without endpoint values available [228]. For example, a QSAR was suc-

cessfully developed for the acute toxicity of anionic surfactants in D. magna by correlating

the EC50 (50% maximal e↵ect concentration) with the partition coe�cient of the chem-

ical with R
2 values of 0.99 and 0.89 for alkylbenzene sulphonates and ester sulphonates,

respectively [117]. QSARs can be used to predict the mode of action (MoA) of a chemical

[22]. A chemical is assigned to a MoA group dependent on its chemical structure and the

e↵ect of the chemical on the model organism [45]. However, there is a lack of high-quality

data and the varied classification systems can lead to varied results [45].

The read across method involves evaluating a toxic endpoint of an untested target chemical

using results of the same endpoint for a tested chemical considered similar in terms of

structure, properties, or biological e↵ects [236]. There is a level of expertise required to

successfully group chemicals and there is a lack of application of read across to ERA

[22]. Statistical and numerical scoring can be applied to help group similar chemicals

[22]. However, the major source of uncertainty in this method stems from the assumption

underlying the similarity scoring between the untested target chemical and the library
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of tested chemicals.[29]. Read across extrapolations can be integrated with QSARs to

improve model predictions, which when combined with other in vitro and in vivo data in

a weight of evidence approach can provide reliable characterisation of toxicological hazard

[29].

1.4 Role of toxicokinetics as an in silico new approach methodology

and its application in environmental risk assessment

TK is an important in silico NAM for environmental and human safety assessments.

TK relies on understanding absorption, distribution, metabolism (biotransformation) and

elimination (ADME) processes of a chemical within a biological system over time [59, 21,

26]. TK models can help provide a quantitative mechanistic framework of these ADME

processes to establish the fate and e↵ects of a chemical in an organism and its physiological

processes [105, 120]. TK data is essential for route-to-route extrapolations, interspecies

extrapolations, and mechanistic understanding [60]. TK studies allow the concentration

at a target site to be understood, which can then be used to support toxicodynamic (TD)

investigations [171]. TK models are particularly important for quantitative in vitro-in

vivo extrapolations (qIVIVE) to relate in vitro assay data to the entire target organism

[60]. Regulatory bodies are beginning to encourage the integration of TK data into ERAs.

In REACH, TK data is not currently required, but it is advised that the kinetic profile

is considered for human risk assessment [65]. Similarly, TK data is starting to be used

within several OECD Test Guidelines to improve testing robustness, namely OECD Test

Guideline 417, which states that in vitro tests can be used instead of in vivo animal testing

as TK information [197, 65, 60]. Additionally, Test Guideline 417 provides information on

utilising TK data to inform study design through dose selection, accumulation potential,

and exposure routes [244].

TK models vary in complexity, ranging from the simplest one-compartment models to

multi-compartment models, and at the most complex level, physiologically based toxicoki-
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netic (PBTK) models. Visual representations of one-compartment, multi-compartment,

and PBTK models can be seen in Figure 1.3. The simplest compartmental model consists

of one compartment, where the organism is represented as one homogenous unit [149, 165].

However, compartmental models are not always based on anatomy or physiology [105].

Even without physiological relevance, compartments are still useful in describing and pre-

dicting TK when calibrated on specific chemicals. A one-compartment model represents

the organism as a single homogeneous volume with chemical mass accumulation governed

by Fick’s theory of di↵usion [94, 105]. As per Anderson. (2013) it is possible to consider

the di↵usion of a material i.e chemical, between two compartments (environment and

organism) separated by a membrane through which a material can di↵use, though not

necessarily with the same di↵usion rates in the two directions i.e. uptake and elimination

rates [11]. Therefore, it is the uptake rate and an elimination rate that modulate the

uptake of external concentration and the elimination of internal concentration, respec-

tively.

There are also multi-compartment TK models that are usually comprised of two [235] or

three [24, 245] compartments. Multi-compartmental models may have compartments that

represent specific organs. Generally, multi-compartment models have a central compart-

ment and two peripheral compartments depending on the model complexity [105]. The

mechanistic degree of the model can be linked to the number of compartments with each

compartment usually reliant on empirical data to inform parameterisation of the model

[105]. A multi-compartment model was utilised to model the TK of diethylhexyl phtha-

late in rainbow trout by introducing a separate gill compartment that included absorption

and metabolism, due to the non-homogenous distribution of the chemical [24, 105].

PBTK models provide quantitative descriptions of ADME processes defined by the rela-

tionship between an organisms anatomy, biochemistry, and physiology [191, 140]. Typi-

cally, PBTK models are constructed of the specific organs or tissues essential in describing

the ADME processes of the chosen chemical [105]. PBTK models can be parameterised
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Figure 1.3: Examples of a one-compartment model (A), multi-compartment model (B)
where the compartments do not necessarily represent physiological compartments, and
a physiologically based toxicokinetic model (C) where compartments are physiologically
relevant and movement between di↵erent compartments is taken into account. Figure
from [192].

by in vitro, in vivo, and in silico data and allow extrapolation between di↵erent exposure

scenarios [105]. PBTK models are built with the physiology of the organism in mind

and have significant a priori knowledge, such as organ volumes and flow rates. These

models are conventional in the pharmaceutical industry, however, the frameworks and

exposure scenarios di↵er significantly with risk assessment of chemicals in the environ-

ment [185]. There are many examples of PBTK models for fish but models developed

for invertebrates are sparse. A generalised fish PBTK has been developed for use in the

ERA of pharmaceuticals [266]. A recent study has developed a PBTK model of perfluo-

roalkyl substances (PFAS) in zebrafish that can account for co-exposure scenarios of any

number of chemicals [104]. There are no generic PBTK models for aquatic invertebrates

and to develop a large number of chemical-specific models would be very resource inten-
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sive [211]. Furthermore, development of only a single chemical-specific D. magna PBTK

model would not be applicable to the significant number of chemicals that need to be

assessed using ERA.

In the context of ERA, TK describes the internal concentration of a chemical within a

given organism over time. This is important because adverse e↵ects are not only depen-

dent on the external environmental concentration but the concentration of chemical that

penetrates into the interior of the organism. Utilising TK models enables the prediction

of internal concentration of chemicals within organisms. These predictions are pivotal

to accurately assessing the risk posed by exposure to chemicals. Overall, this enables

informed decisions to guide environmental protection without the need for further animal

toxicity testing.

1.5 Review of deterministic modelling and influential factors im-

pacting chemical internal concentration predictions for envi-

ronmental risk assessment

1.5.1 Long exposure environmental risk assessments

Aquatic environmental exposure to chemicals is typically over the lifetime of the organism

[233, 183]. The accumulation of the chemical in the organism is typically assumed to be

driven by the chemical concentration gradient, the di↵erence between the external water

concentration and the internal organism concentration and chemical partition profile.

Over very long exposures, the chemical will reach steady state, e.g. an equilibrium is

reached [94, 16, 105].

Steady-state internal concentrations relative to external concentrations (concentration

ratio) provide a meaningful measure of chemical accumulation for long exposure envi-

ronmental scenarios [149, 105]. Under controlled laboratory conditions the steady-state
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concentration ratio is a widely used metric when assessing the accumulative potential of

a chemical to an organism [164, 277].

1.5.2 Toxicokinetic di↵usion models

The accumulation of chemical in an organism can be described by a mathematical model.

Specifically, the exchange of chemical mass between the water and the organism can be

modelled by a mathematical di↵usion process [64]. A di↵usion process driven by the

concentration di↵erence corresponds to a Fickian-like di↵usion process [94]. Symbolically

this is represented by the following di↵erential equation,

dy

dt
/ �y (1.1)

where y is the internal concentration in kg/kg, t is time in days, and �y is the scalar

concentration di↵erence between compartments. For the law to apply to ERAs, one must

assume that the distribution of chemical in both the organism and the water are homo-

geneous, i.e., the equation has no dependence on spatial coordinates. The concentration

di↵erence is then defined as the di↵erence between the internal and external concentra-

tions,

�y = yw � y (1.2)

where yw is the external concentration. Equation 1.1 becomes,

dy

dt
= D (yw � y) (1.3)

where D is the di↵usion coe�cient. TK models often assume di↵usion is bidirectional,

where the concentration can be allowed to di↵use at di↵erent rates in and out of com-

partments,

14



dy

dt
= yw · kin � y · kout. (1.4)

This is explains why the di↵usion process is often referred to as “Fickian-like”. For the

initial condition y(t = 0) = 0 Equation 1.4 has the particular solution,

y = yw · kin

kout

�
1� e

�t·kout
�

(1.5)

In relation to long exposures, which as suggested previously is typical for ERA, the rate

of change in internal concentration is negligible, resulting in an approximate steady-state

internal concentration,

y ⇡ yw · kin

kout
(1.6)

The ratio of internal to external concentrations is then directly expressed as the ratio of

transfer rates (y/yw = kin / kout). Given an external water concentration, the internal

concentration is completely determined by the particular solution when the transfer rates

are known.

The assumption that the accumulation of chemical in the organism follows Fickian-like

behaviour means that the internal concentration can be predicted from actual measure-

ments of the external concentration and transfer rate parameters. Measurements of the

external concentration are relatively straightforward to obtain, which means predictions

of the internal concentration depends on calculating uptake and elimination rates, which

can be measured experimentally through TK studies. This approach is useful for ERA be-

cause the steps outlined can be performed with minimal di�culty, as seen in the literature

and regulatory guidance.

A great deal of e↵ort has been invested in determining semi-empirical expressions for the

rates for di↵erent fish species, for many di↵erent chemicals, and for a range of physiological
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and environmental parameters [114, 113, 16]. However, there is a lack of available models

to predict the transfer rates of chemicals for D. magna with most studies being chemical

specific, meaning the application to a wider range of chemicals is restricted. Based on the

above there is a clear lack of available generic TK models for aquatic invertebrates, such

as D. magna and further research is needed to investigate and develop generic simple one-

compartment models specifically for D. magna that can be applied across an extensive

range of chemicals for use in ERA. Furthermore, once a generalised model for D. magna

has been developed the next logical step would be to create a species agnostic model

where physiological di↵erences that govern toxicokinetic processes are understood as they

can vary across species space.

1.5.3 Factors influencing toxicokinetic processes

1.5.3.1 Lipophilicity - octanol-water partition coe�cient (Kow)

The lipophilicity of a chemical is measured by the partition coe�cient of a chemical

between n-octanol and water [10]. It is used extensively in the chemical industry, phar-

maceutical R&D, and environmental sciences [67, 54]. The octanol-water partition coef-

ficient commonly has the symbol Kow and is often represented in its logarithmic form as

log10 Kow [115]. Kow is an important parameter as it can act as a surrogate for the ac-

cumulation potential of a chemical [15]. The relationship between accumulation metrics

and log10 Kow is well documented [187, 259, 163, 79, 17]. There are di↵erent methods

for measuring Kow including experimentally through the OECD Test Guideline 107, also

known as the “shake flask method” [196]. A more reliable version of the shake flask

method is OECD Test Guideline 123, referred to as the “slow-stirring method” [115, 198].

Both methods involve dissolving a chemical into octanol, adding water, and measuring

the concentrations in each phase after shaking or stirring [115]. In silico predictions for

Kow are easily accessible because experimental data is available for a significant number of

chemicals and predictions can be obtained from QSARs or free software [115]. A compar-

ison between various prediction software highlighted that ADMET Predictor, ACDLabs,
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and ChemSilico software predicted log10 Kow within ± 0.5 log unit of measured values for

94.2%, 93.5%, and 93.5% of a 138 chemical test set, respectively [72]. This highlights the

potential of utilising prediction software for Kow predictions.

1.5.3.2 Ionisation – pKa, pH and distribution coe�cient (Dow)

Researchers have become aware of ionising chemicals sensitivity to pH and the impact

that has on toxicity and uptake in organisms [224]. The distribution coe�cient (Dow)

is able to account for ionised and non-ionised forms of a chemical at a given pH [67].

The ratio of ionised and non-ionised forms is dependent on the pH and the pKa of the

chemical [278]. According to the Brønsted-Lowry definition of acids and bases an acidic

chemical is one that can donate a proton, while a base is capable of accepting a proton

[28]. The acid-dissociation constant (pKa) of a chemical represents the pH of the solvent

needed to obtain a 50/50 ionised/non-ionised state. Therefore, highlighting how acidic the

environment must be so that the acid no longer dissociates protons. For example, if the

functional group of a given chemical had a pKa of 9, at experimental pH 7, the chemical

will tend to accept protons because the group itself has a smaller acidic behaviour (9)

than water (7) and thus it accepts protons (receiving the acidic behaviour value of -1);

alternatively, a functional group with a pKa of 3 will release protons in neutral solution

(receiving thus an acidic behaviour value of +1) unless the water is more acidic than pH

3; finally, if the compound does not undergo ionisation in water, like alkanes, the chemical

will be given an acidic behaviour value of 0. One example from the literature shows it is

possible to determine the Dow of a chemical at a given pH from the value of the Kow and

the pKa of the chemical using equation 1.7 [78],

log10Dow = log10 Kow � log10(1 + 10A(pH�pKa)) · Abs(A) (1.7)

where A is either +1 for acids or -1 for bases and 0 for neutrals. This is a generalised

equation that allows all three states to be accounted for and allows the chemical partition
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coe�cient predictions to revert back to Kow when the chemical is not ionised. Multiple

studies have shown the improvement of TK predictions for ionisable chemicals using the

Dow over the Kow [99, 13]. Comparatively to Kow most commercial software packages

are able to predict Dow using predictions of both Kow and the pKa value of a chemical

[73].

1.5.3.3 Lipid partitioning & protein binding

Many organic chemicals accumulate in the lipid fractions of aquatic organisms [278].

Bertelsen et al. (1998) showed that chemicals are concentrated in organisms and tissues

with the highest lipid content [31]. Further studies have shown that concentration ratios

are approximately proportional to Kow with proportionality constants equal to the lipid

fraction [187, 48]. Therefore, the steady-state concentration ratio depends not only the

Kow but also the lipid content as well [212]. Moreover, several studies have shown that

the steady-state concentration ratio approximately doubles with the doubling of the lipid

content [17, 75].

The steady-state concentration ratio is also determined by other biochemical components,

such as protein. Debruyn & Gobas. (2007) suggest that if the lipid fraction makes up to

less than 5% of the dry weight organic content, the absorption capacity of an organism

will be dominated by the protein fraction [74]. This means investigation into protein

chemical relationships are important for small aquatic invertebrates like D. magna, which

have relatively small lipid fractions. Protein partitioning of chemicals can be described

by the protein-water partition coe�cient (Kpw), which highlights the distribution of a

chemical between the protein fraction and environment [88]. These partition coe�cients

have been calculated for neutral chemicals using muscle protein from chicken, fish, and

pig [88]. However, this limits the application of the calibrated model to neutral chemicals

only. Additionally, as they are calibrated on species with large variations in physiology

and biochemical content it may not be applicable to aquatic invertebrates, such as D.

magna. While there is conservation at the cellular level where all animals will be similar
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there might be potential physiological di↵erences that drive variation in predictions. An

alternative approach is by integrating protein binding, which is of particular interest to

pharmacology R&D as only the unbound portion of a drug will have a pharmacological

response [261]. In pharmacokinetics a drug binding to a protein in its simplest form is a

rapid equilibrium and reversible process governed by the law of mass action [272, 261].

However, there is a lack of knowledge on the application of protein binding to aquatic

invertebrates. A recent study was the first of its kind to demonstrate a mechanistic link

between protein binding and TK modelling for the exposure of thiacloprid on Gammarus

pulex [215]. Other key environmental chemicals of interest including PFAS have been

shown to bind to human serum albumin in addition to protein-rich tissues [95, 160]. Most

protein binding studies are chemical specific and further research is needed to establish

the potential for a generalisable protein binding TK model for aquatic organisms.

1.5.3.4 Biotransformation

Biotransformation describes the process by which an organism transforming parent chem-

icals into biotransformation products (BTPs) through metabolic pathways [50]. Often

biotransformation forms more hydrophilic compounds that can be excreted easier than

their parent counterpart [255]. It was originally thought that all chemicals became less

toxic after biotransformation, however, it is now known biotransformation can result in

BTPs more potent than the parent chemical. For example, the insecticide parathion when

converted to paraoxon is a more toxic chemical [50]. Additionally, EC50 values for growth

inhibition of aquatic organisms were lower for ciprofloxacin (BTP) than the parent com-

pound enrofloxacin [85, 278]. The biotransformation of the pharmaceutical diclofenac to

diclofenac methyl ester resulted in a 430-fold increase in acute toxicity [98]. In relation

to TK modelling, biotransformation is important to consider because it decreases the

parent chemical concentration, which could lead to over predictions of the parent chem-

ical. There are few available TK models that incorporate biotransformation processes

for D. magna, mainly due to the lack of available reference standards for BTPs, which
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hinders identification and absolute quantification of the internal concentration [58]. In the

sections above (1.5.3) the influence of key parameters on TK predictions across human

and ERA have been highlighted. Further research is needed to understand the impact

of these parameters on TK predictions in D. magna and attempt to incorporate them

into D. magna specific TK models, where ‘D. magna specific’ refers to using biochemical

compositions within the model to distinguish between organisms.

1.6 Methods for quantification of biotransformation products

1.6.1 Traditional quantification methods

Traditional quantitative methods for chemicals typically relies on the analytical technique

mass spectrometry (MS). MS measures the mass-to-charge ratio (m/z) and the relative

intensities of ionised molecules [8]. Advancement in MS instruments over the last decade

has meant that MS has greater sensitivity in detecting small molecules like BTPs com-

pared to other methods, such as nuclear magnetic resonance spectroscopy [56]. Generally,

MS methods can be either untargeted or targeted. Untargeted methods aim to cover a

broad range of small molecules, while targeted analysis aims to quantify one or a low

number of pre-defined small molecules [260]. Untargeted analysis has greater scope in

comparison with targeted from the perspective of its capability to discover and measure

BTPs that are unreported [116]. There are two common types of quantification, which is

relative or absolute quantification [152]. Relative quantification involves comparing the

signal intensity of small molecules against reference or control groups [249]. As this does

not require chemical standards it is commonly used for untargeted analysis of large num-

bers of analytes [270]. However, absolute quantification relies on authentic standards or

isotope labelled standards to determine the exact quantity of the small molecule [152]. To

achieve absolute quantification, a range of analyte concentrations are measured to create

calibration curves to help define instrument linearity [125]. This is more applicable to

targeted analysis where information about the identity of the small molecules is known a
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priori [270]. The signal intensity of a small molecule is impacted not only by its concen-

tration but its chemical structure and matrix [152]. Matrix e↵ects and ion suppression

can cause inaccurate quantification, especially in complex biological systems such as in

pharmacokinetic studies [172, 152]. One major limitation of absolute quantification meth-

ods for BTPs is that standards are rarely commercially available or in reference databases

[136]. Therefore, except in pesticide and drug toxicity studies, the absolute quantification

of BTPs is rarely, if ever, conducted.

1.6.2 Methods for semi-quantification of biotransformation products

To overcome the limitations of available internal standards, new methodologies involving

“semi-quantification” have been developed. Semi-quantification is utilised when reference

standards are not available and under the assumption that a surrogate analyte with re-

latable characteristics can translate MS detector responses of a BTP into concentrations

[249]. Over the last decade methods for semi-quantification of chemicals without reference

standards have been undertaken, which are mainly based on structurally similar chemi-

cals, closely eluting chemicals, using the response factor (RF) of the parent compound to

predict the concentration of the BTP, related substructure, and electrospray ionisation

e�ciency [201, 1, 143, 167, 2]. The use of electrospray ionisation e�ciency typically pro-

duces the best results compared to other methods [2]. Ionisation e�ciency (IE) describes

the extent to which analyte molecules in the liquid phase are converted to gas-phase

ions and detected in the mass spectrometer [153, 201]. It is an important parameter

because it varies dependent on the physiochemical properties of the chemical, chemical

structure, and properties of the matrix and eluent of the study [167]. Multiple studies

have identified key physiochemical properties that can be correlated with the IE of chem-

icals. Chalcraft et al. (2009) identified log10 Kow, molecular volume, e↵ective charge and

absolute mobility as key in ion evaporation of polar metabolites [55]. Alternatively, Oss

et al. (2021) highlighted that IE by protonation is a↵ected by basicity, molecular size in

terms of molar volume or surface area, and hydrophobicity of the ion [202]. The most
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common physicochemical parameters associated with a chemical’s IE are related to the

ionisability and hydrophobicity of the chemical [157]. However, most of the studies that

have correlated parameters with IE are usually developed on a limited number of chem-

icals or the model is not able to describe the IE using the physiochemical descriptors of

the chemicals [202].

A popular method for developing IE predictive models is using machine learning to train

models on experimental measurements of IE values [167]. The most comprehensive anal-

ysis of IE data was conducted using a random forest regression analysis on 353 unique

chemicals, including drugs, exogenous metabolites, amino acids, organic precursors, and

lipids [156]. A random forest regression is an ensemble learning method that utilises mul-

tiple decision trees to improve the accuracy of predictions The algorithm creates subsets

of the data through random sampling and a decision tree is trained on each subset of the

data. After all the trees are created the model makes predictions based on an average of

all the individual trees [234]. Liigand et al. (2020) used chemicals PaDEL descriptors,

which are calculated molecular descriptors from open source software, to correlate with

the IE data alongside multiple eluent composition descriptors, in positive and negative

ion mode [273, 156]. The measured IE data was made relative to an “anchor compound”

because the IE value can vary dependent on the instrument configuration [167].

Relative ionisation e�ciency (RIE) predictions can then be used to estimate, or semi-

quantify, concentrations of BTPs. Generally, RIE values are converted back to absolute

IE values [156]. Then RF values are calculated for a set of calibration chemicals (internal

standards) of known concentrations to make the RF instrument-specific by dividing each

intensity measured in the MS by these known concentrations. These instrument specific

RFs are correlated with predicted IE values for each calibration chemical through linear

regression to enable the prediction of RFs. Finally, a predicted concentration for a BTP

without a standard can be determined assuming the structure of the BTP is known, and

an intensity is measured in the MS. The BTPs structure is used to predict an IE from a
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predictive model, which can be used to predict an RF from the regression between the

predicted IE and instrument specific RF values. Finally, a prediction of the concentration

is calculated by dividing the measured intensity by the predicted RF. An overview of

the workflow from predicting IE values to predicting concentrations of BTPs without

standards can be seen in Figure 1.4.

Liigand et al. (2020) used a similar approach to predict the concentration of 35 pesticides

and mycotoxins not included in the training dataset of the random forest regression model

[156]. Overall, the root mean squared prediction error of the IE predictions were 2.2 and

2.0 times, in positive and negative ionisation mode, respectively. Moreover, the average

quantification error was 5.4 times the experimental concentration, which is acceptable in

relation to toxicology predictions [156]. This study highlighted the potential to predict

IE, and therefore to semi-quantify the concentrations of chemicals, and also highlighted

the importance of a robust chemical dataset and appropriate descriptors to obtain high

quality results.

Mayhew et al. (2020) developed a machine learning approach that predicted RIE for

51 carboxylic acids, spanning a wide range of additional functionalities, to produce a

model for predicting the RIE of chemicals without standards [173]. Rather than chemical

descriptors, this study used molecular fingerprints, which turn chemical structures into

binary bits (1s and 0s) to allow comparisons between chemicals [53]. For example, if a

chemical has a hydroxyl group (-OH) then it would be represented with a 1, whereas if

the chemical did not have this functional group it would be given a 0. This approach is

applied across many di↵erent substructures and functional groups depending on the length

of the fingerprints. The prediction results from Mayhew et al. (2020) were comparable

with [201, 142, 141, 157]. A significant conclusion of this study was the ability to obtain

comparatively good results while using molecular fingerprints instead of physiochemical

descriptors.

Studies have shown the ability to predict RIE and concentrations relatively well, however,
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there are few studies on the application of this approach to quantifying BTPs. A recent

study measured the relative response factors of 26 pharmaceuticals and their BTPs [111].

Response factors were calculated by normalising the integrated peak area of each BTP

with the peak area of the parent chemical. Results varied significantly even for parents

and BTPs that had similar structures with relative response factors ranging from 70-fold

lower relative response factors than the parent to 8.6-fold higher than the parent [111].

A drawback of using relative to parent concentrations is the assumed similarity in parent

and BTP structure, but under biotransformation processes the structure of a BTP can

change considerably, e.g. losing a functional group that impacts their IE [167]. Kruve

et al. (2021) compared the BTP to parent method, with the closest eluting chemical

method [209] and the ionisation e�ciency method [156] for predicting concentrations for

341 chemicals [143]. The chemicals included pesticides, pharmaceuticals, and their trans-

formation products in groundwater samples from Switzerland [143]. Evaluation of each

method showed that the ionisation e�ciency-based method had the best prediction ac-

curacy, however, there were some major chemical outliers, and it was suggested that the

IE predictive model training dataset should be updated with new chemical structures to

achieve more accurate results [143]. Therefore, there is a clear need to obtain a wide

variety of parent chemicals and related BTPs to enable the development of robust IE pre-

dictive models. This is important from a regulatory perspective as assessment schemes

discuss including stable or toxic BTPs in risk assessment [90]. Additionally, if robust

predictions of BTP concentrations using ionisation e�ciency-based methods can be ob-

tained then the predictions can be implemented into TK models as internal concentration

compartments or to calculate biotransformation rates, which as previously described is

essential for robust TK predictions. Having described the state-of-the-art in the semi-

quantification of analytes, it is clear that the majority of research has focused on parents

chemicals and further research into the semi-quantification of BTPs of industrial chem-

icals is required as a first step to predicting concentrations of BTPs for TK modelling

purposes.
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Figure 1.4: A 5-step workflow for predicting the concentrations of BTPs without stan-
dards.
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1.7 Data considerations and acquisition methods for developing

toxicokinetic models for Daphnia magna

1.7.1 Importance of data quality for the development of robust toxicokinetic

models

The quality of the input data is essential to TK model predictions. The old adage is

“garbage in = garbage out”, where if poor data is input into the model it will give poor

results [220]. A study extensively reviewed measured accumulation metric values for

organic chemicals in aquatic organisms alongside the key factors that impact variance

of the results [17]. A criterion was developed, which gave confidence scores ranking 1-3

(high to low score) for water analysis, radio-labelled chemical, aqueous solubility, exposure

duration, and tissue analysis. The data quality assessment highlighted that 45% of steady-

state concentration ratios had at least one major source of uncertainty leading to an

underestimation of actual values [17]. This highlights the importance of reviewing study

data and even applying criteria to establish uncertainty that could impact predictive

model results.

1.7.2 Daphnia magna toxicokinetic data availability

The development of a TKmodel is dependent on the availability of experimental data. The

US EPA created a large database of ecotoxicology data called “ECOTOX” [254]. This

contained data for many toxicity endpoints for a wide range of species and chemicals.

According to their website there is ecotoxicology data for over 12,000 chemicals spanning

across more than 13,000 species. The data from ECOTOX is predominantly from peer-

reviewed articles or gray literature, such as government documents and reports [199].

However, it is important to note that all data should be assessed for quality to assure

confidence in the data before use in any model development or validation. Specifically

for accumulation metrics there is a lack of raw data where the whole time-course profile
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of the chemical is available [216]. Recent work has attempted to fill this data gap and

create a publicly available database for accumulation study data [216]. This database

is called MOSAICbioacc and is available as a web application [184, 219]. MOSAICbioacc

contains more than 200 accumulation datasets for more than 50 genus across more than

120 chemicals [216].

Investigating these databases for D. magna data resulted in over 1,000 datapoints from the

ECOTOX database, while the MOSAICbioacc database returned 6 relevant time-courses

for D. magna. The datapoints from the ECOTOX database lack the whole time-course

data, which means important information about the uptake and elimination rates is lost.

Conversely, the MOSAICbioacc database provides whole time-course data but does not

provide a substantial number of TK datasets for D. magna. Therefore, a collation of all

available TK D. magna time-course data from the literature was required. Review of the

available D. magna TK literature highlighted two major problems. Firstly, quantitative

TK studies in invertebrates and D. magna specifically, are very limited especially in

comparison to humans, rats, or fish. Secondly, even when quantitative TK data is available

it is not fully accessible as it is restricted primarily to time-course plots, lacking the

underlying data.

1.7.3 Methods for digitisation of toxicokinetic data

A significant amount of TK data is only available in plots. This has meant digitisation

methods are essential to capture the historical quantitative internal concentration over

time measurements. Digitisers can take images of TK time-course plots from available

studies and extract each internal concentration and time datapoint with high accuracy.

The accuracy of digitisation was illustrated during the development of a PBTK model

where the error was shown to be less than 0.5% for biomarker concentrations following

inhalation exposure [25]. Other key examples of the use of digitisation to obtain in

vivo data include the MOSAICbioacc database development, pharmacokinetic data, and

parametrisation of a growth model for a mechanistic TK-TD model [231, 264, 216].
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An example of how the digitisation process works and its accuracy is presented using

TK data from in Figure 1.5 [87]. The TK time-course plot was screenshotted from the

publication and uploaded to the free digitisation software [225]. The plot is calibrated by

inputting the axes data. In this case the x axis would be set to 0 and 120 (hours) and the

y axis would be set to -2 and 1 (log residue in daphnids µg g�1). Focusing on the atrazine

TK profile only (black outlined squares), each datapoint on the plot is manually marked

with a cross (‘X’). The digitiser includes the magnification of each data point to improve

accuracy. Finally, the data is exported to CSV files. Figure 1.5 middle plot shows the

exported data (orange crosses) for atrazine from the digitiser. The final plot on the right

hand side shows the original plot overlayed on top of the digitised data plot with the

axes matched [87]. It is clear that the atrazine digitised data near perfectly replicates the

experimental data as the orange crosses can be seen in between each of the white squares

representing the experimental data. Given the lack of readily available TK time-course

data for D. magna there is a necessity for utilisation of the digitisation method to collect,

extract, and consolidate publicly available data to fill quantitative data gaps and then

compare it to other TK databases containing D. magna studies.
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Figure 1.5: Digitisation process for extracting toxicokinetic data from [87].
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1.8 Review of statistical modelling for inference and predictions of

hierarchical data structures and its application to toxicokinetic

data

1.8.1 A review of classical Frequentist approaches and their limitations

The foundations of frequentist theory were laid out by Fisher in the 1920s [97, 63]. These

ideas were developed further by Neyman & Pearson whose school of thought is based

on physical and ontological probabilities [188, 110, 243]. The frequentist approach to

statistical inference has been around for over a century and became the dominant statis-

tical theory in science [93]. Frequentist inference is based on conceptual repetition and

the accumulation of data, with probability represented as the expected frequency of an

event happening over many experimental repeats [134, 166]. The uncertainty related to

unknown parameters is determined by confidence and significance levels in relation to

hypothetical repetition [62].

There are two main limitations to the frequentist approach. The first limitation is the

interpretation of confidence intervals used to define intervals over either model parameters

or predictions. A common misconception is that once a confidence interval has been

calculated (X%) that there is X% probability that observed intervals contains the true

value. However, X% refers to the proportion of confidence intervals from repeated samples

that would contain the true value. Although for a singular confidence interval you do not

know if it contains the true value [181]. The second main limitation is the inability to

build complex hierarchical models in a non-gaussian setting, corresponding to complex

data and information structures like in TK modelling. Generalised linear models attempt

to model this property but their interpretation is also non-intuitive e.g. link functions.

In a Bayesian setting the distributions of parameters, observations, and error terms are

directly defined in the model specification, which can be done for an arbitrarily complex

system.
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1.8.2 Modern hierarchical Bayesian modelling approaches and their benefits

compared with classical frequentist methods

The Bayesian view of probability is that it represents a degree of belief about a given

event, so it is possible to assign probability distributions to hypotheses (events) even

if it is not possible to repeat the same event [150, 154]. For example, it is possible to

assign probabilities to the event “the steady-state internal concentration of D. magna is

between 10 and 1000 µg kg
�1”. Moreover, one can assign distributions over parameters

in statistical and mathematical models that represent the physical world.

A key benefit of Bayesian thinking is the common sense interpretation of the probability

distributions associated with a given event [101]. For example, a Bayesian probability

interval for an unknown quantity of interest, like the internal concentration in D. magna,

can be directly interpreted as having that probability of containing the unknown quantity.

Conversely, a frequentist interval confidence interval does not have an intuitive interpre-

tation, which provides a strong motivation for Bayesian approaches [101].

The practical advantages of a Bayesian framework are its flexibility and generality to

allow it to cope with complex problems. Another key benefit of Bayesian inference is the

explicit and transparent quantification of uncertainty. Furthermore, Bayesian models have

an advantage when modelling multi-tiered data structures. These structures can contain

many parameters to describe group-level e↵ects, but the hierarchical nature of Bayesian

models allows for the use of partial pooling, which allows for variation and similarity

information to be shared between groups [91]. This method is useful in reducing e↵ective

degrees of freedom of the parameter space to be somewhere within the range starting from

the nominal number of groups (no pooling) to a single parameter (complete pooling).

This helps to prevent overfitting of the model to the data. It is possible to build complex

models in both frequentist and Bayesian frameworks. However, the ability to actually

evaluate the posterior distribution of Bayesian models (i.e., make them actually useful)

only truly emerged towards the end of the 20th century as advances in Markov chain Monte
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Carlo (MCMC) techniques and desktop computing power began to make it possible; for

many examples see [101].

These aforementioned advantages of Bayesian modelling have resulted in a recent increase

in popularity in TK modelling as it allows the merging of a priori information and in

vivo experimental data, while e↵ectively managing the hierarchical structure of TK data

[43]. TK models represent simplifications of complex biological systems with variability

in populations, such as weight, biochemical compositions, biotransformation rate, or size.

Therefore, to properly evaluate risk requires the incorporation of uncertainty into risk

assessment [107]. Other sources of uncertainty come from not knowing parameter values

altogether. Uncertainty analysis can implement MCMC methods to calculate data driven

posterior distributions for all parameters within a Bayesian approach [107]. Hierarchical

population models have been implemented in PBTK to determine uncertainty and to

estimate large numbers of parameters [42, 43, 107]. Quantification of uncertainty in TK

parameters has become important to regulatory bodies [61, 219].

An example of a hierarchical model for a TK model across multiple time-courses can be

seen in Figure 1.6. It has two major components, across time-course variability and within

time-course variability. Across time-course variability is a characterisation of how time-

course specific parameters vary across the time-course space. Specifically, time-course

specific parameters, such as ✓, are assumed to be draws from some population distribution

described by the mean (Loc) and standard deviation (Scale). Loc and standard deviation

Scale are hyper parameters and are assigned independent prior distributions. Within each

time-course the time-course specific parameters ✓ deterministically generate the average

internal concentration through the TK model. ' represents quantities that cannot be

estimates from the data and therefore need to be specified a priori, which can be achieved

through well-defined priors or as a constant. These can include specific physiological or

physiochemical characteristics. Within time-course variability pertains to experimental

measurements, which are assumed to be draws from some probability distribution whose
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median is the prediction of the TK model and whose variance is defined by a common

parameter �.

Figure 1.6: Example of a hierarchical model for a toxicokinetic time-course dataset. Loc
is the mean uncertainty across the time-courses, Scale is the variance of the uncertainty
across the time-courses, ✓ is the individual time-course uncertainty, ' represent quantities
that are included in the TK model as a well-defined prior or as a constant, TK model is
the deterministic toxicokinetic model, experimental data is the time-course data, and �

is the measurement or model error. Figure was adapted from [107].
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1.9 Aims & objectives

The overarching aim of the research presented in this thesis is to advance theoretical and

probabilistic methods for toxicokinetic predictions in Daphnia magna for use in ERA.

The importance and limited knowledge of TK models in D. magna is illustrated in the

previous sections. D. magna are a key model organism used in ecotoxicology and safety

assessments, especially with the move away from the generation of new animal toxic-

ity data. Even though there are TK models developed for other aquatic species, there

is no comprehensive understanding of their application to D. magna, which is key to

next-generation risk assessment. Any D. magna TK models are chemical specific, which

restricts their application to the significant number of chemicals needed to be evaluated

in ERA. Furthermore, there is insu�cient D. magna TK data accessible in the literature,

however, digitisation methods have shown the potential to collate available data from

TK time-course plots. Additionally, the hierarchical data structure of TK data makes

Bayesian modelling more applicable as the statistical framework alongside the need for

direct quantification of uncertainty that can be applied to ERA. Several key factors that

influence TK processes across human and ERA include ionisation of the chemical at en-

vironmentally relevant pHs, lipid and protein partitioning, and biotransformation. The

impact of these factors on D. magna and their integration into TK models needs to be

examined to obtain a holistic understanding of TK processes in D. magna. Therefore, to

achieve the overarching aim of this research, four specific objectives have been developed.

The results are presented in chapters 2-5:

1. Develop a proof-of-concept multi-tiered Bayesian approach for the integration of

physiochemical properties and toxicokinetic time-course data for Daphnia magna

with the longer term ambition to deploy this new tool to enable quantification of

uncertainty associated with TK predictions in ERA.

2. Investigate the e↵ect of ionisation on toxicokinetic predictions of neutral and ion-

isable organic chemicals in Daphnia magna within a Bayesian framework in order
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to establish if the prediction performance can be improved for specific groups of

chemicals and therefore establish the applicability domain of the model.

3. Develop a theoretical protein surface-binding model and apply it to Daphnia magna

toxicokinetic predictions that di↵ers from empirically derived models and enables

the simulation of a broad range of external concentration scenarios without the need

for in vivo data generation.

4. Develop a random forest regression model for predicting the ionisation e�ciency

values of parent and biotransformation products of industrial chemicals as a first step

in a workflow for the semi-quantification of biotransformation products with the long

term ambition of integrating biotransformation product concentration predictions

into the toxicokinetic modelling of Daphnia magna.
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CHAPTER 2 : A PROOF-OF-CONCEPT

MULTI-TIERED BAYESIAN APPROACH FOR

THE INTEGRATION OF PHYSICOCHEMICAL

PROPERTIES AND TOXICOKINETIC

TIME-COURSE DATA FOR DAPHNIA MAGNA

2.1 Introduction

Due to the large number and variety of chemicals currently in use worldwide, there is a

drive towards enhanced safety assessment using the latest scientific knowledge, ensuring

robustness and e�ciency, as well as avoiding the generation of new in vivo animal toxicity

data. One proposed strategy is to use in silico and in vitro methods commonly referred

to as NAMs as hazard descriptors [129]. The main advantages foreseen are enhanced

mechanistic understanding of toxicological processes leading to robust decisions, higher-

throughput, and reduced cost while at the same time answering the societal desire towards

a reduction and eventual avoidance in the use of animals for toxicity testing purposes, in

line with the 3Rs [49].

The evolving NAMs-based safety assessment framework integrates increased in silico and

in vitro information alongside more traditional alternative approaches (e.g. QSARs) as

part of a weight of evidence approach, which is a framework that takes into account

di↵erent lines of evidence to evaluate the potential risk when a single piece of evidence
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is insu�cient [119]. This is critical to enabling the use of in vitro derived points of

departure (PoDs), which are determined from dose-response curves and correspond to

a low or no e↵ect concentration, as part of such safety assessments [229]. However,

this creates an information mismatch. Traditionally, ERA is on the comparison between

the evaluation of eco-toxicological e↵ects, described by the PNEC, which represents the

maximum water concentration at which no e↵ect is anticipated in environmental species,

with exposure, defined by the PEC, which estimates the concentration reached in the

relevant environmental compartment [248]. In vitro data, however, generally reflect an

internal e↵ect concentration, e.g., tissue or cellular target site (intra and/or extracellular)

of the organism. To re-align the two, it is fundamental to have the ability to relate

internal and external concentrations, similar to qIVIVE, making the availability of robust

TK mass-transfer models fundamental. Over the last few decades several such models

have been developed, but they are mostly chemical-specific models, making the need for

generic models ever more important, especially for environmentally relevant invertebrate

species and those commonly used to support safety assessment of chemicals in the aquatic

environment [195].

Generally, TK models for aquatic invertebrates provide estimates for the uptake and elim-

ination rate values without accounting for uncertainty or variability [158]. To characterise

uncertainty, a Bayesian statistical framework could be implemented to interpret available

TK data more robustly [100, 218]. The application of Bayesian methods in TK modelling

of chemicals to estimate parameters in aquatic invertebrates is becoming more common, as

illustrated by the examples of the interspecies variation of imidacloprid, generalisable ac-

cumulation in benthic invertebrates, and in the evaluation of deltamethrin and its impact

on D. magna survival [82, 218, 242]. Currently, there are no TK models that incorporate

Bayesian inference for the key species, D. magna that can also be applied generally to a

wide range of chemicals.

D. magna is an aquatic invertebrate species, used extensively as a model organism in
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ecotoxicology and safety assessments, due to its ease of use under laboratory conditions

and key ecological role, providing a link between primary production and higher trophic

levels of the aquatic food web [84, 148, 9]. Yet to date, quantitative TK data for aquatic

invertebrates, including D. magna is extremely limited, while most have been generated

in humans, rodents and fish. As the robustness of developed TK models is evaluated

by predictions built and benchmarked against currently available data, the lack of con-

solidated data is a fundamental obstacle for the development of robust TK and qIVIVE

models for invertebrates [105].

The few available TK studies for D. magna are typically chemical specific and the devel-

oped models are fit to chemical data with limited applicability to other chemicals. The

lack of access to the underlying data within these studies is also a constraint, as while it

is possible to see the output of the currently available models in the form of time-course

internal concentration plots, the exact internal concentration measurements at each time

point are often not easily retrievable from the literature. Digitisers are a tool that have

enabled the collection of historical quantitative internal concentration measurements from

the literature. Digitisers can take images of time-course data plots from studies and cal-

ibrate the image axes so that numerical data for each time point can be extracted with

high accuracy. Similar approaches have been used in pharmacology and physiologically

based pharmacokinetic modelling with proven robustness [269].

The overall aim of this work was to propose a hierarchical Bayesian framework to infer

steady-state concentration ratios from D. magna TK time-course data. This aim can be

divided into three main objectives. The first objective was to collate publicly available

D. magna TK data and make it readily available to the modelling community as as open-

source R package and evaluate its uniqueness compared to other TK databases containing

D. magna studies. The second objective was to develop a Bayesian framework using the

collated TK to infer steady-state concentration ratios and associated uncertainty for each

chemical from the uptake time-course data only to allow more data to be included in
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the process. The third objective is to present a case study of atrazine to highlight the

capabilities of the model to estimate the steady-state concentration ratio at di↵erent levels

of precision within di↵erent data availability scenarios and its application to ERA.

2.2 Materials & methods

2.2.1 Extraction of Daphnia magna toxicokinetic data from literature

TK measurements for D. magna were extracted from available literature by searching

for the following key terms: “toxicokinetics”, “bioconcentration”, and“uptake” and/or

“elimination” in D. magna using the journal publication repositories Google Scholar

(scholar.google.com) and PubMed (pubmed.ncbi.nlm.nih.gov). All literature databases

have pros and cons, however, these were chosen, due to familiarity and easy access. The

literature searches did not involve truncation or sets of logical operators. The US EPA

ECOTOX database and the MOSAICbioacc database were also evaluated for applicable

TK measurements [184, 254]. Results were filtered by analysis of the whole text to en-

sure that only studies that measured the external and internal concentrations of at least

one chemical over a range of time points (uptake and/or elimination) were considered

for the following steps. The exposures were split into an uptake and elimination phase

for D. magna where applicable. Further data quality requirements for a suitable study

were:

1. Measurements recorded with units that enable standardisation

2. Chemical concentration measurements from whole body homogenates

3. Organic chemicals only (environmentally relevant)

4. D. magna specific study – no ecosystem, mesocosm or food chain studies

5. Static exposures only

6. Wet weight internal concentrations only
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7. Study reduces impact of confounding factors, such as dissolved organic carbon or

pH variations

This meant that some studies were excluded from the dataset because they did not contain

enough measurement information for the unit conversion required. In total, there were

48 time-courses covering 30 chemicals from 17 studies that fit the defined criteria.

However, internal concentration measurements were often only available through plots in

figures and were not recorded in tables, which made digitisation necessary for data extrac-

tion. Plots were uploaded to the Automeris WebPlotDigitizer (https://apps.automeris.

io/wpd/) to manually extract the TK data [225]. A graphical representation of the time-

course plot was uploaded to the digitiser tool with the axes calibrated to replicate the

studies internal concentration units and values. Finally, each datapoint was added to the

dataset by marking each individual point on the plot. The digitiser allows the magnifica-

tion of specific data points before marking them to ensure accuracy. In respect to quality

assurance multiple time-courses were checked by overlaying the plots as seen in Figure

1.5, however, no quantification of error was conducted. A qualitative method of error

assessment was undertaken as the digitisation method is well established across pharma-

cokinetic modelling and there are low errors associated with the process, as highlighted

by the digitisation error of biomarker concentrations following inhalation exposure, which

was shown to be less than 0.5% [25].

The data from the extraction procedure were then collated into what is hereafter referred

to as the AquaTK dataset containing information on a total of 48 time-courses for 30

unique chemicals from 17 studies. Chemicals in the dataset covered a broad chemical

space including insecticide/herbicides, pharmaceuticals, surfactants, and flame retardants.

Metadata for each chemical is available in Appendix A Table A.1.

In addition to internal and external concentration measurements, to support model de-

velopment, other key experimental data were collected for each study including the

Kow, water temperature, water pH, organism age, number of replicates, and wet-weight,
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where available. The Kow was taken directly from the study, or alternatively, retrieved

from other available databases, e.g., CompTox Chemical Dashboard (https://comptox.

epa.gov) or PubChem (https://pubchem.ncbi.nlm.nih.gov) to fill data gaps [132, 253].

The study-collected values were also independently verified against currently available

databases.

The internal and external concentration of the AquaTK dataset were standardised to µg

kg
�1 and µg L

�1, respectively. Exposure times were standardised to hours and wet weights

were converted to kg. The processing and standardisation scripts are captured in the

R-package AquaTK, hosted on the author’s website https://github.com/J-Collins1294/

AquaTK.

2.2.2 Evaluating the uniqueness of the AquaTK dataset

The uniqueness of the AquaTK dataset was evaluated by comparing the number of stud-

ies contained in other available databases, such as the ECOTOX and MOSAICbioacc

databases. The ECOTOX database provides comprehensive ecotoxicology data for over

13,000 terrestrial and aquatic species. It contains single ecotoxicity data from over 52,000

references covering approximately 125,000 unique chemical CAS numbers [199]. Any rel-

evant TK data was found by searching explicitly for D. magna accumulation data in the

database. This resulted in 1,032 potential datapoints from 125 studies. Additionally, the

MOSAICbioacc database contains a TK (uptake and elimination specific) database with

time-course data for 211 uptake and elimination individual datasets for 52 aquatic and ter-

restrial genera from 56 studies [217]. Additionally, this TK dataset includes 124 unique

chemical substances with three exposure routes; water, sediment and soil [217]. How-

ever, this database only contains 6 relevant D. magna studies, due to the MOSAICbioacc

database needing both uptake and elimination data. Both databases were examined

against the criteria set out in the previous section for its applicability to the AquaTK

dataset.
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2.2.3 Statistical analysis of time-course data

Each time course in the AquaTK dataset described above is modelled using a mechanistic,

one-compartment, di↵usion model. This model is then embedded within a statistical

model that describes the distribution of experimental measurements conditional on the

deterministic component. The joint model is defined within a Bayesian framework where

each model parameter is treated as a random variable and the fitting of the model entails

calculation of the joint distribution of model parameters after conditioning on the available

data.

All of the chemical time-courses are modelled within a single statistical model. To keep

track of variables, each unique time-course is assigned an integer index denoted using the

subscript i. When i is present on a variable it indicates its association with time-course

i.

2.2.4 Mechanistic component – Fickian di↵usion model

The choice of mechanistic model is somewhat arbitrary, however, for illustrative purposes

it can be assumed the di↵usion follows a Fickian-like di↵usion process where the rate

of change of concentration is proportional to the concentration gradient between distin-

guishable regions or compartments [94].

Symbolically, ci(t), represents the median internal concentration of the time-indexed ran-

dom variable, Ci(t), in each time course i, with units µg/kg. A Fickian di↵usion process

corresponds to a first-order di↵erential equation relating the rate of change of the median

internal concentration to the internal/external concentration gradient,

dci(t)

dt
= Cwater,ikin,i � kout,ici(t) = Cwater,iKikout,i � kout,ici(t) (2.1)

where Cwater,i, is the external water concentration with units µg/L, kin,i = Kikout,i, and

kout,i, are the uptake and elimination rates with units 1/h, expressed in terms of the
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transfer rate ratio, Ki, and t is the exposure time measured in hours. The transfer rates

represent the rate at which the chemical absorbs or eliminates.

Equation 2.1 has the particular solution,

ci(t) = Cwater,iKi

�
1� e�kout,it

�
(2.2)

for the initial condition ci(t = 0) = 0. For long exposures, which are typical in envi-

ronmental risk assessments, the rate of change of internal concentration is negligible,

corresponding to an approximately steady or constant internal concentration,

ci(t) ⇡ Cwater,iKi

The ratio of internal to external concentrations is then directly expressed as the ratio

of transfer rates. The steady-state concentration ratio is an important quantity in TK

modelling as it directly measures the amount of accumulation of a chemical. Figure 2.1

plots each individual time-points internal concentration against the external concentration

for all chemical time-courses in the AquaTK dataset. This highlights the accumulation

of chemicals showing that nearly all chemicals in the dataset accumulate in D. magna

because the internal concentrations exceed the external concentrations in almost every

study at nearly every time-point. Long-term exposure data highlights the e↵ect of octanol-

water partition coe�cient on the concentration ratio. For example, DDT has a high

log10 Kow of 6.91, and after a two-day exposure on D. magna, it resulted in a significantly

higher internal concentration than external concentration. In the context of ERA, the

concentration ratio is the most environmentally relevant quantity as it provides insights

into the long-exposure internal concentration of the chemical in the D. magna. If the

concentration ratio >1 (equivalently the transfer rate ratio) the chemical accumulates in

the D. magna, however if the ratio <1 it will not accumulate. The parameter kout,i is

defined as the e↵ective elimination rate of chemical from the organism. The magnitude of

43



the elimination rate determines the amount of time required to reach an e↵ective steady

state. Finally, the parameter Cwater,i, is the concentration of chemical in water and is

assumed to be constant for each time course.

Figure 2.1: Internal concentration (µg kg
�1) of the Daphnia magna plotted against the

external concentration (µg kg
�1) in the experiment for each individual time-point across

the uptake phase for all 30 chemicals from 17 studies. Note that D. magna experiments
are time-courses hence the single external concentration and increasing internal concen-
trations. The dashed bisection highlights chemicals that accumulate in the organism
corresponding to a concentration ratio greater than 1.

2.2.5 Statistical component - Bayesian inference

To relate the deterministic model to experimental measurements requires us to specify the

assumed sampling distribution of experimental measurements, conditional on a correctly

parameterised mechanistic component. Let yi,j be the jth measurement in time course i

with corresponding observation time ti,j. The natural logarithm of this measurement is

modelled as being drawn from a Gaussian distribution, such that
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log yi,j ⇠ Normal

✓
log (ci (ti,j)) ,

�
p
ni,j

◆
(2.3)

where � is a universal parameter governing measurement variability and ni,j is the number

of replicates that measurement yi,j is an average over. The measurements are converted

to a scale with unbounded support, i.e. from positive to a whole set of real numbers

by logarithmic transformation. The normal distribution on that scale is the simplest

assumption that can be made, assuming finite variance.

Parameter estimates ofKi and kout,i are regularised using an adaptive prior structure. The

distribution of log10 Ki across all time courses is assumed to be Gaussian, such that

log10Ki ⇠ Normal (Kloc, Kscale) (2.4)

The elimination rate kout,i determines the time for the internal concentration to reach

95% of the steady-state concentration, t95,i, via the relationship

t95,i =
� log(0.05)

kout,i
⇡ 3

kout,i
. (2.5)

It is desirable to penalise very fast times to steady state (e.g., of the time-scale seconds

or quicker) in the prior structure. An adaptive prior of the form

t95,i ⇠ InverseGamma (tshape, tscale) (2.6)

is assumed for the time to 95% steady state. This achieves the desired penalty since the

inverse gamma distribution density rapidly approaches zero in its left tail.
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2.2.6 Prior distributions

Prior distributions for �, Kloc, Kscale, tshape and tscale are chosen to be weakly informative.

Distribution choices are

� ⇠ HalfNormal(0, 1),

Kloc ⇠ Normal(2, 1),

Kscale ⇠ HalfNormal(0, 1),

tshape ⇠ HalfNormal(0, 1),

tscale ⇠ HalfNormal(0, 10).

These prior parameters are fixed and updated conditional on the data, whereas, the

log10Ki and t95,i parameters are hierarchal in nature. This means they represent distri-

butions over the prior distribution parameters.

2.2.7 Using Kow and the external concentration to predict the steady-state

concentration ratio

The external water concentration and Kow parameters are always available for any given

study with robust tools available for predicting the Kow parameter if experimental values

are not available [73]. Both the external water concentration and Kow are assumed to

significantly a↵ect the rate at which the organism accumulates a given chemical and

exist as the predictive component in several popular models [187, 240, 163, 114, 16]. It

is possible to include other covariates into the model like the water temperature, the

organism wet weight, etc., but this simple two parameter predictive model is su�cient to

illustrate its potential use in ERA.

A relatively simple model that includes information from both the Kow parameter and the

external water concentration replaces the prior distribution for Kloc and expresses it as a

linear combination of the log-transformed external water concentration and Kow
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Kloc = ↵K + �K,Cwater log10 Cwater,i + �K,Kow log10 Kow,i (2.7)

with weakly regularising priors:

↵K ⇠ Normal(2, 1),

�K,Cwater ⇠ Normal(0, 1),

�K,Kow ⇠ Normal(0, 1).

This model is fit to the data, after which, we obtain posterior estimates of ↵K , �K,Cwater ,

�K,Kowand Kscale. For each time course, the external water concentration and Kow value

for the chemical are combined with these parameter estimates, then Kpredicted,i is sampled

from the following equation

log10 Kpredicted,i ⇠ Normal (↵K + �K,Cwater log10 Cwater,i + �K,Kow log10 Kow,i, Kscale) (2.8)

2.2.8 Computation

Data processing and figure generation was performed using the coding software Python

3.11, with packages Matplotlib 3.8, NumPy 1.26, pandas 2.1, PyStan 3.7, and SciPy 1.11.

The Bayesian model was realised numerically in the probabilistic programming language

Stan [52]. The posterior distribution of each model was approximated by sampling meth-

ods using a MCMC approach. Specifically, the software Stan implements a variant of

the Hamiltonian Monte Carlo algorithm called the No-U-turn sampler (NUTS). For each

model fit, 10 MCMC chains of length 2,000 iterations were run. The default choice of

discarding 10,000 samples as burn-in was made, which discards earlier samples that have

not yet converged towards the true values at the start of the MCMC simulation [258].

This left 20,000 samples from which to calculate summary statistics such as posterior
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expectations and quantile estimates. The random seed was set to “42” to enable the

reproducibility of the sample values.

2.3 Results

2.3.1 Uniqueness of the AquaTK dataset

The AquaTK dataset covers 30 unique chemicals covering pharmaceuticals, biocides, sur-

factants, and flame retardants and includes 48 di↵erent time-courses for each distinct

chemical and external concentration. The range of log10 Kow values is between -1.19 and

6.91 with a median value of 3.85. The studies in the AquaTK dataset were compared

against the D. magna studies in the US EPA ECOTOX and MOSAICbioacc databases to

evaluate the uniqueness of the dataset. The ECOTOX and MOSAICbioacc databases con-

tained 125 and 6 D. magna relevant studies, respectively. However, only five of the ECO-

TOX and two of MOSAICbioacc database studies are also contained within the AquaTK

dataset. Only one of these MOSAIC TK studies was unique with the other study also

contained in the ECOTOX database. Overall, when evaluating the uniqueness of the

AquaTK dataset, there are 11 unique studies out of the 17 collected when compared with

ECOTOX and MOSAICbioacc databases. The comparisons between the AquaTK dataset

and databases are visualised in the form of a Venn diagram in Figure 2.2.

2.3.2 Results of Bayesian analysis

A Bayesian hierarchical model was fit to the observed data using Stan to draw parameter

samples from the posterior distribution [52]. Posterior estimates of the parameters for �,

Kloc, Kscale, tshape and tscale were compared against their respective priors in Figure 2.3.

Recall, the parameters here correspond to parameters of distributions of parameters across

all time-courses in the dataset. For each parameter, the posterior mass is concentrated

away from the tails of the priors, indicating the absence of any prior-posterior conflict that

might lead to the assertion that the priors are weakly informative being questioned. The
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Figure 2.2: Venn diagram showing the overlap of relevant toxicokinetic Daphnia magna
studies across the US EPA ECOTOX database, MOSIACbioacc database, and the
AquaTK dataset collated within this study. The Venn diagram highlights that the
AquaTK dataset has only 6 distinct studies found across the databases and therefore
contains 11 unique studies overall.

parameter Kloc has a posterior expectation of 1.7 implying that the average steady-state

concentration ratio Ki is around 55 (which implies chemicals accumulate significantly

across the dataset). The posterior expectation of Kscale is close to 1, indicating that

the steady-state concentration ratio varies over roughly four orders of magnitude across

the dataset. The posterior distributions for tshape and tscale can be pushed through the

distribution Inverse Gamma (tshape, tscale) to generate samples for the time to reach 95% of

steady state. This distribution has a median of 7 hours and a mean of 92 hours. The 2.5th

and 97.5th percentiles are 1.3 and 168 hours (1 week) respectively. From these estimates

it can be concluded that 95% of time-courses take between than 1 hour and a week to

reach steady state. Posterior predictive summaries of the mean internal concentration, as

a function of time, are presented in Appendix A Figure A.1. There is no evidence from

this plot that the model results in a poor fit of the data.

49



Figure 2.3: Comparison of posterior estimates (grey histograms) for the universal vari-
ability parameter (�), the mean and standard deviation of the steady-state concentration
ratio (Kloc, Kscale), and the mean and standard deviation of the time to 95% steady-state
(tshape, tscale) versus prior density.

2.3.3 Estimates of the steady-state concentration ratio

For each time course, the estimated parameter Ki is the e↵ective steady-state concentra-

tion ratio, and their distributions are represented as intervals in Figure 2.4. The chemi-

cals propiconazole and prochloraz have limited uptake phase time-course data, therefore

steady-state concentration ratio estimates for these chemicals are considerably more un-

certain. Steady-state concentration ratio estimates for triphenyl phosphate (TPHP) and

chlorpyrifos are also relatively uncertain. It is clear from Appendix A Figure A.1 that

the time courses for these chemicals have not reached steady state. There are multiple

instances where the steady-state concentration ratios for the same chemical di↵er by or-

ders of magnitude. This variation is likely due to di↵erences in external concentrations.

For example, diazinon has steady-state concentration ratio values of 18 and 16 at exter-

nal concentrations of 1.46 and 1.58 µg kg
�1, respectively. In contrast, propranolol has

steady-state concentration ratio values of 25 and 7 at external concentrations of 5 and

100 µg kg
�1, respectively. This suggests that larger di↵erences in external concentrations

of the same chemical are associated with more significant variations in the steady-state
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concentration ratio. In fact, the increase in the steady-state concentration ratio is almost

proportional to the di↵erence in external concentration, which may be related to a phys-

iological process. Almost all steady-state concentration ratio estimates are greater than

1, indicating each of these chemicals are expected to bioaccumulate.

Figure 2.4: Estimates of steady-state concentration ratios (internal concentration / ex-
ternal concentration) for each time course of the 30 chemicals. Estimates are summarised
using the distribution median (bullet) and a centred 95% interval. Some chemicals have
multiple external concentration scenarios resulting in more than one set of time course
data, hence the presence of multiple estimates for some chemicals.
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2.3.4 Predicting the steady-state concentration ratio

Equation 2.8 represents the parameter Kloc as a linear combination of the log-transformed

Kow and external water concentration, which is fitted to the dataset and allows predictions

of the steady-state concentration ratio (Kpredicted,i). Estimates of Kpredicted,i are overlayed

on top of estimates of Ki obtained using the time course data in Figure 2.5, left panel. In

the top right panel of Figure 2.5, the median estimates of Kpredicted,i are plotted against

the median estimates of Ki. However, as indicated by the width of the red bars, there

is relatively large uncertainty in estimates of Kpredicted,i. Nevertheless, the uncertainty

characterisation can be leveraged to provide a (mostly reliable) upper bound to Ki when

estimated using only Kow and the external water concentration. In the bottom right panel

of Figure 2.5 the 95th percentile of Kpredicted,i is, for most time courses, greater than the

95th percentile of Ki. On average, the 95th percentile of Kpredicted,i is approximately 8-fold

higher than the 95th percentile ofKi and exceeds it for 46 / 48 (96%) of the estimates. That

96% is close to the nominal percentile of 95% indicates that the uncertainty intervals are

well-calibrated. Therefore, the 95th percentile of Kpredicted,i may be considered a generally

conservative, and potentially useful upper bound for the concentration ratio that may be

used within a risk assessment framework.

2.3.5 Estimation of the steady-state concentration ratio in di↵erent data sce-

narios

The predictive model based on the log10 Kow and the external water concentration in the

previous section can be used to estimate the e↵ective steady-state concentration ratio

with di↵erent data scenarios of an ERA framework.

Consider the following scenarios of varying data availability:

• Scenario 1 – only the Kow of the chemical and the external water concentration

under consideration are known.
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Figure 2.5: Left: Estimates of the steady-state concentration ratios Ki estimated using
time course data are plotted in black. Estimates of the predicted steady-state concentra-
tion ratio Kpredicted,i, which use only the external water concentration and the octanol-
water partition coe�cient Kow are shown in red (95% centred interval). Right: 50th

percentile of Kpredicted,i against the 50th of Ki and 95th percentile of Kpredicted,i is, for most
time-courses, greater than the 95th percentile of Ki to highlight the di↵erences in steady-
state concentration ratio prediction methods.

• Scenario 2 – internal chemical concentration in D. magna at the end of the uptake

phase has been measured (single time point TK data).

• Scenario 3 – full time-course data for the internal concentration.

The estimates of the atrazine steady-state concentration ratio within each of the three

scenarios are presented in Figure 2.6 on the left-hand side. In the middle column of

Figure 2.6, the time-course of internal concentration with 50 and 95% credible intervals

are displayed with the additional time points included for each scenario. As previously

stated, the concentration ratio is equivalent to the transfer rate ratios for long exposures,

therefore plotting the relationship between the concentration ratio (K) and the elimination
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rate (kout) can illustrate the importance of the elimination rate in estimating the time to

steady state resulting in reduced uncertainty of steady-state concentration ratio estimates.

On the right-hand side of Figure 2.6 this relationship is plotted.

In Scenario 1, predictions of the steady-state concentration ratio are informed by the

external water concentration and Kow only. These predictions are the most uncertain

out of the 3 scenarios with the 95% credible interval ranging two orders of magnitude,

however, they require the least amount of data to predict the concentration ratios. In

Scenario 1 there is no correlation between parameter estimates as there is no predictive

information from time-course data used to estimate Kout other than its prior distribution.

In Scenario 2, the inputs used in Scenario 1 are supplemented with the measured internal

concentration at day-2 (end of uptake phase) time point. The updated steady-state

concentration ratio estimate uncertainty is considerably reduced, the 95% credible interval

for the steady-state concentration ratio ranges just less than an order of magnitude. The

correlation between K and kout indicates the challenge in predicting from a single time-

point as the correlation reflects the tradeo↵ between the various combinations of K and

Kout that could fit the observed data. For example, a single time-point can be fit to the

model using either a small value of K and a fast kout or a slow kout and a high value of K.

In Scenario 3, the full time-course is used, reducing the uncertainty in the estimate of the

steady-state concentration ratio further still. There is relatively little correlation between

K and kout in Scenario 3 because the full time-course data provides su�cient information

to constrain estimates of both parameters. It is clear from Figure 2.6 that the more

time-course data is inputted into the model the higher the precision of the steady-state

concentration ratios, due to the higher level of information that can be extracted.
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Figure 2.6: Scenario estimation of the steady-state concentration ratio for atrazine. In
Scenario 1, only Kow and the external water concentration are used to estimate concen-
tration ratio. In Scenario 2, the internal concentration at the end of the uptake phase
is used in addition to Kow and the external water concentration. In Scenario 3, all time
course measurements are used. Red is used in the plots in the middle column to indicate
that the data point is not used within the scenario. The concentration ratio (K) plotted
against the elimination rate (kout) highlights the information obtained from each scenario
and its importance to predicting the time to 95% steady-state.
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2.4 Discussion

This work has extracted substantial high-quality TK uptake and elimination data for

D. magna from available literature to fill quantitative data gaps. Moreover, the AquaTK

dataset has been shown to be unique when compared to the ECOTOX andMOSAICbioacc

databases with 11 unique studies out of 17 encapsulated within the extracted dataset.

The collated dataset is the largest time-course database for D. magna available, however,

ECOTOX has the greatest number of studies for D. magna, but these were generally

single time points. It was decided that adding singular datapoints from ECOTOX would

introduce more covariates, due to their varied study design. Therefore, the decision was

made to prioritise the utilisation of high-quality temporal data in this proof-of-concept

study, in alignment with Arnot & Gobas. (2006) [17]. Providing high-quality and unique

data is essential for the in silico modelling community to develop robust and precise mod-

els [213]. Furthermore, this signifies the importance of making the data readily available

for use by the modelling community with the development of the R package.

Methods for analysing and utilising TK time-course data with other essential data types,

such as chemical parameters, are limited. However, Bayesian modelling is the best ap-

proach to take advantage of time-course data by allowing the incorporation of prior knowl-

edge, such as the steady-state concentration ratios and time to 95% steady state across

the chemicals, handling of varying sampling sizes, incorporation of a given mechanistic

model, which can be changed and adapted within the framework, and enables the inte-

gration of new time-course data without the need for redefining the model. An advantage

of the Bayesian approach is that unlike current ERA it provides a range of values for

the e↵ective steady-state concentration ratio, which is important for risk assessment [26].

Previous Bayesian modelling to TK in aquatic invertebrates is limited with recent studies

requiring robust time-course datasets, including both uptake and elimination data [218].

This reduces the number of studies that can be input into the model, specifically for D.

magna, which already has limited TK data available. The Bayesian approach in this study
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enables estimations of e↵ective steady-state concentration ratios and the associated un-

certainties from singular time-points of the uptake phase only, which means more unique

TK study data can be analysed in comparison to other studies. Furthermore, this di↵ers

from other Bayesian studies in this space by utilising a predictive component that can

predict steady-state concentration ratios in scenarios where TK data is limited (singular

time point) or absent. Additionally, the time-course data is treated hierarchically so that

inference and prediction information between time-courses can be shared.

Presenting uncertainties and results poses a challenge when incorporating Bayesian mod-

elling into a probability-based risk assessment [69]. However, this study clearly illustrates

the potential use of the Bayesian approach for a risk assessor conducting an ERA by pro-

viding estimates of the e↵ective steady-state concentration ratios and associated uncer-

tainties with di↵erent data availability scenarios. These scenarios range from a prediction

of the concentration ratio using only the log-transformed Kow and external concentration,

singular time-course data points, and full time-course data. Increasing the number of TK

data points input into the model reduces the uncertainty of the steady-state concentra-

tion ratio in most cases, due to more information about the uptake and elimination of the

chemical being extracted from the data. An important aspect to highlight is that in a

few cases the chemical had not reached steady-state meaning there were larger uncertain-

ties. It is possible to leverage these uncertainty values to obtain conservative steady-state

concentration ratio estimates for ERA. On average the 95th percentile of the predicted

steady-state concentration ratios was 8-fold higher than the concentration ratios from the

experimental data for 96% of the data. Therefore, using the 95th percentile in any of the

data availability scenarios would be a conservative estimate and essentially avoids, in 95%

of cases, underestimating the true concentration ratio values. Using the higher percentile

provides a risk assessor with a calibrated uncertainty of the estimate and would be a more

appropriate conservative estimate in comparison to using the arbitrary 10x safety factor

usually applied to TK data. These conservative estimates can then be compared against

known or predicted no e↵ect concentrations to establish the impact of the chemical on
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the environment at that external concentration scenario.

There are potential limitations associated with the mechanistic component of the one

compartment, partitioning model, where for very long exposure scenarios the model is

unable to capture the true uptake dynamics. A few potential sources of uncertainty in

the current model and potential data that could be included to reduce these uncertainties

are discussed. All experiments are subject to measurement error, associated with mea-

suring the internal and external concentration or the chemical’s partitioning coe�cient.

Previous studies have shown that partitioning measurement errors for some chemicals can

be as large as one order of magnitude [30, 126]. It could be argued that the generic TK

model used within this study may be too simple and not incorporate key TK processes

of the D. magna. When analysing directly from time-course data the TK processes are

already encompassed within the estimates of the concentration ratio. However, to enable

more precise predictions of the concentration ratio the standard deviation (Kscale) needs

to be reduced by including other predictors which can explain the variance in the steady-

state concentration ratio across chemical space. For example, organisms biotransform

xenobiotics by creating biotransformation products that often lack the toxic structures

of the parent chemical or create products that have lower octanol-water partition coe�-

cients that can be excreted more rapidly [123]. However, the Bayesian predictive model

did not consider biotransformation as a predictor, despite evidence to suggest multiple

chemicals within this study were in fact biotransformed. The presence of irgarol and

terbutryn biotransformation products in D. magna have been identified [123]. Without

consideration of these BTPs, the overall internal concentration of the parent products

would be underestimated. This could potentially impact the ability of the model in this

study to successfully predict the uptake dynamics of chemicals that are biotransformed

when compared to the experimental data by overestimating the internal concentration of

the parent chemical resulting in overpredicted concentration ratio values as well. There-

fore, future TK modelling studies should focus on collecting and implementing parent

and biotransformation product concentration data and potentially implement available
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biotransformation models developed in fish [18].

Figure 2.4 shows that experiments using the same chemical but with di↵erent external

concentrations have di↵erent steady-state concentration suggesting the relationship be-

tween the internal and external concentrations are not linearly proportional. Dependence

between the steady-state concentration ratio and the external concentration has also been

observed in other TK studies including [17]. Further investigation of the phenomenon is

di�cult, since it would leave underdetermined subpopulations of the data. The proposed

“placeholder” model considers only the lipid partitioning, however, it has been argued

that the chemical uptake of aquatic invertebrates is dominated by the protein fraction

under the condition that the lipid fraction is relatively small (<5% dry weight) [74]. Fu-

ture work could therefore incorporate protein partitioning into the mechanistic component

of the model to improve model prediction accuracy. There is a clear distinction between

the steady-state concentration ratio values of a given chemical at di↵erent external water

concentrations suggesting future work could focus on identifying the relationship between

exposure concentration and internal concentration further by exposing the D. magna to

the same chemical but with more than two external water concentrations. This would

help identify whether the nonlinear dependence between the external water concentration

and steady-state concentration ratio truly exists. Further development of this idea could

include creating a model that accounts for multiple external concentrations while linking

the underlying physiological mechanisms in the D. magna that impact the steady-state

concentration ratio.

Six of the chemicals in the study were PFAS. PFAS are a group of man-made chemicals

often persistent in the environment. They generally have low pKa values, which means

they are ionised (acidic) at environmentally relevant pH levels [190]. Acidic chemicals

can be partially ionised with the neutral and ionic species exhibiting di↵erent polarities

resulting in pH dependent partitioning [126]. Current approaches only model the neutral

fraction, which can result in large errors in predictions for substance groups like PFAS.
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Furthermore, tetracycline has multiple pKa values; 3.2, 7.7, and 9.3, meaning it behaves as

both an acid and a base with the 3.2 fraction acting like an acid in the environment [131].

Consequently, the predictions are unable to account for the pH of the medium the study

was conducted under. To account for the potential impact from ionisable chemicals, future

work should focus on including estimates of the distribution ratio (log10 Dow) and using

the pH of the studies to establish whether the performance is improved, i.e., uncertainty

is reduced.

2.5 Conclusions

To conclude, this work has filled quantitative TK data gaps for D. magna and provided

this in an available R package for use by the modelling community. The uniqueness of the

AquaTK dataset has been evaluated against key databases and highlights the importance

of this data with the increased unique data collection and accessibility essential for in

silico modelling and the future of quantitative research in this area. This work has

provided a Bayesian framework model that can predict the steady-state concentration

ratio and its uncertainties from the log-transformed Kow and external water concentration

of a chemical. Furthermore, this work demonstrates how steady-state concentration ratio

predictions can be generated for di↵erent data availability scenarios within a self-contained

and consistent framework. These predictions are essential in enabling the implementation

of high-throughput NAMs ERA. There is still a need to develop a D. magna specific TK

model due to the large unexplained uncertainties within the results and the need for a

specific aquatic invertebrate model within ERA. Future work could focus on improving

the model for the D. magna by accounting for the potential ionisation of chemicals at

environmentally relevant pHs.
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CHAPTER 3 : INVESTIGATING THE EFFECT

OF IONISATION ON TOXICOKINETIC

PREDICTIONS OF NEUTRAL AND IONISABLE

ORGANIC CHEMICALS IN DAPHNIA MAGNA

WITHIN A BAYESIAN FRAMEWORK

3.1 Introduction

In Chapter 2 a proof-of-concept Bayesian analysis linking physiochemical properties and

D. magna time-course data to estimate the steady-state concentration ratio at di↵erent

levels of precision was presented. This work provided predictive capabilities based on

a linear combination of log-transformed covariates, the external concentration and Kow,

but without further analysis of the applicability of the model. Despite the substantial

step forward in the Bayesian approach there were multiple factors that potentially im-

pact prediction error unaccounted for within the model. Ionisation was not considered,

however, multiple chemicals had poor predictions and were likely ionisable at environmen-

tally relevant pH levels, such as PFAS. The Bayesian approach developed was not able

to distinguish between neutral and ionisable chemicals, which may have a↵ected overall

model performance. Therefore, in this study the ionisation of the chemical is going to be

investigated within the Bayesian framework.

Ionisation is the process by which an atom or molecule gains a positive or negative charge

61



by either losing or gaining electrons, often in conjunction with other chemical changes.

The resulting electrically charged atom or molecule is called an ion [168]. Ionisation po-

tential is heavily dependent on external factors, including chemical structure, pH and

pKa [222]. A substantial fraction of chemicals in use are ionisable, with over 55% of the

chemicals registered under REACH and 60% of active pharmaceutical ingredients bear-

ing a net charge at natural water and physiologically relevant pH’s [20, 169]. This fact

highlights the importance of considering ionisation potential when evaluating the relation-

ship between concentration of chemicals in natural water bodies and the corresponding

internal concentration in aquatic organisms for safety assessment purposes. Given the

variation of pH between 6 – 9 in water bodies, and the ionisable nature of so many chem-

icals in current use, ionisation may substantially a↵ect the partitioning a�nity of these

substance into organisms, as seen by the shifting of accumulation metrics of many sub-

stances with potentially large consequences in terms of their fate and toxicity to aquatic

systems [223, 266]. To account for ionisation, the distribution coe�cient (Dow) can be

used instead of the octanol-water partition coe�cient (Kow). Dow is able to account for

ionised and un-ionised forms at a given pH [67].

The overall aim of this study was to investigate the e↵ect of ionisation on steady-state

concentration ratio predictions in D. magna. This is achieved by comparing predictions

generated with in silico estimates of Kow and Dow. The first objective was to examine the

e↵ect of ionisation on the deterministic non-lipid organic matter (NLOM) model steady-

state concentration ratio predictions in D. magna. The second objective evaluates the

impact of ionisation on the Bayesian model steady-state concentration ratio predictions

in D. magna. The third objective was to test the sensitivity of the Bayesian model

prediction parameters to the input data using a cross-validation methodology.
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3.2 Materials & methods

3.2.1 Daphnia magna toxicokinetic data

TK measurements for D. magna were taken from the AquaTK R package, which was

curated by taking readily available data from the literature and digitisation methods from

Chapter 2. This package contained standardised TK data for the internal and external

concentrations of 30 organic chemicals across 48 time-courses from 17 unique studies,

which fit the high-quality data criteria set out in Chapter 2. The chemical space covered

biocides, pharmaceuticals, surfactants, and organophosphates. The package contained

other key experimental data important for model development, such as, the octanol-

water partition coe�cient (Kow), experimental pH, water temperature, organism age, wet

weight where applicable, and number of replicates. If the experimental pH was unavailable

the average (pH = 7.55) of all the studies pH values was used to fill the data gap as it

is comparable with the default pH (7.4) set by commercial software. For more details on

the data collation process and the data available please refer to the package details that

are available at https://github.com/J-Collins1294/AquaTK.

3.2.2 Daphnia magna biochemical composition metadata

The fractional tissue composition data for D. magna was obtained from [39], which pro-

vides the variation (upper and lower bounds) of the live form of the tissue components

over a year-long observation period, summarised in Table 3.1. The measured values were

transformed into fractional compositions by assuming the four key components (carbohy-

drates, lipids, proteins, and water content) make up 100% of the D. magna.

3.2.3 In silico predictions of partitioning coe�cients

To enable comparison between partition coe�cients it was decided that in silico soft-

ware ACDLabs (https://www.acdlabs.com) would be used to predict Kow and Dow val-

ues to allow consistency across all the chemicals in the dataset. In the previous chap-
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Table 3.1: Biochemical composition of Daphnia magna from [39] for carbohydrates, lipids,
proteins, and water content. Normalised values are calculated assuming the four com-
ponents make up 100% of the Daphnia magna. Normalised median values were used as
model inputs for the non-lipid organic matter (NLOM) model.

Component Lower Upper Median Normalised

Carbohydrates 0.6% 4.0% 2.3% 2.3%

Lipids 0.1% 0.8% 0.45% 0.5%

Proteins 1.3% 5.4% 3.35% 3.4%

Water 86.4% 97.6% 92.0% 93.8%

Total 88.4% 104.2% 98.1% 100%

ter, the log10 Kow values initially from the study and filled any resulting data gaps

using available databases, such as, CompTox (https://comptox.epa.gov) or PubChem

(https://pubchem.ncbi.nlm.nih.gov). However, this resulted in a combination of exper-

imental and predicted values across the dataset, which would confound results when

generating partitioning coe�cients for ionisable chemicals. Additionally, many of the

chemicals did not have experimental pKa values readily available. Overall, only 9 out of

29 of the unique chemicals had experimental log10 Kow and pKa values available, which

meant calculations of Dow would be di�cult and only be accessible through predictive

commercial software. Therefore, chemical canonical SMILES for each of the 30 chemi-

cals in the dataset were run in ACDLabs PhysChem suite alongside the pH value each

of the studies were conducted under and resulted in predictions for log10 Kow, log10 Dow

and pKa values. Dow is estimated in ACDLabs through predictions of Kow, the predicted

pKa value, and the pH of the experimental environment. Tributyltin chloride was ex-

cluded from the study because it is an organotin compound, which meant that ACDLabs

PhysChem suite was unable to estimate the key chemical descriptors. This resulted in a

final dataset with 47 time-courses for 29 chemicals from 16 studies.

Each chemical was either classified as neutral or ionisable to distinguish between the e↵ect

of ionisation on these defined groups. A chemical was classified as neutral if the predicted

ACDLabs partition coe�cients were equal (Kow = Dow) and ionisable if the partition
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coe�cients were not equal (Kow < Dow). A detailed overview of each time-courses chem-

ical, source ID, external concentration, pH, ACDLabs log10 Kow prediction, ACDLabs

log10 Dow prediction, and ionisable or neutral classification can be seen in Appendix B

Table B.1.

3.2.4 Deterministic modelling - NLOM model

Previous work has highlighted improved model performance by accounting for ionisation

with Dow [13]. However, this was done for empirical fish data only. Therefore, the first

step was to evaluate the performance of a state-of-the-art deterministic model on the D.

magna dataset. The NLOM model developed by Arnot & Gobas. (2004) was chosen

because of its extensive use within the ERA community [16]. The NLOM model was

developed to predict the partitioning of organic chemicals between an organism and its

environment through lipid, NLOM, and water where each of these parts can absorb and

store the chemical [16]. Therefore, a daphnia-water partition coe�cient (Dbw) can be

calculated as,

Dbw = vlb ·Kow + vnb · � ·Kow + vwb (3.1)

where vlb is the lipid fraction, Kow is the octanol-water partitioning coe�cient, vnb is the

NLOM fraction, � is a proportionality constant corresponding to a sorption capacity and

vwb is the water content of the D. magna. Given the D. magna biochemical composition

data in Table 3.1 a value of 0.005 can be assigned to vlb. vnb can be calculated by adding to-

gether the NLOM (protein and carbohydrate content), which equals 0.057. Other NLOM

such as bio-ash were not considered significant for modelling [145]. Comparable to Arnot

& Gobas. (2004) � is given as 0.035 [16]. vwb is taken from Table 3.1 and is given as 0.938.

The NLOM model performance was evaluated against inferred steady-state concentration

ratio values from the Bayesian method developed in the previous chapter. Geometric

mean residual error for the NLOM model were also calculated for comparison.
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3.2.5 Statistical analysis of the time-course data

In Chapter 2, the TK time-course data in AquaTK dataset is modelled using a hierarchical

Bayesian model. The average internal concentration of a chemical in D. magna is modelled

using a one-compartment Fickian-like di↵usion model involving two parameters to capture

uptake and elimination rates. Parameter estimates are assumed to be time-course specific.

The model assumes adaptive prior distributions to describe the variation in uptake and

eliminations rates across the time-course space in the AquaTK dataset. Prior distributions

act as a regularisation device when estimating these parameters from the dataset. This

model is used to estimate the steady-state concentration ratio for each time-course. For

convenience, this model, from here-on referred to as the reference model, is defined in

Appendix B Table B.2

This model was extended in the previous chapter to utilise Kow and external water con-

centration as a predictor for the steady-state concentration ratio in D. magna. For the

purposes of investigating ionisability with respect to prediction errors, and furthermore to

enable fairer comparisons against the NLOM model (which assumes steady-state concen-

tration ratios are invariant to changes in the external water concentration), this model is

modified slightly such that external water concentration is no longer used as a predictor.

The modified model is defined in Appendix B Table B.3 and from here-on is referred to

as the predictive model. A key di↵erence between the NLOM and Bayesian predictive

model is that the NLOM model is derived from fugacity concepts with a physical inter-

pretation, while the Bayesian predictive model is data driven. The priors in the Bayesian

inference model encode the mechanistic assumptions. This encoded information should

be consistent with the NLOM model.

3.2.6 Computation

The coding software Python 3.11, with packages Matplotlib 3.8, NumPy 1.26, pandas

2.1, PyStan 3.7, and SciPy 1.11 were used for data processing and figure generation.
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The probabilistic programming language Stan was used to develop the Bayesian model

[52]. The software Stan uses a Hamiltonian Monte Carlo algorithm called the No-U-turn

sampler (NUTS) to estimate posterior distributions. 10 Monte Carlo Markov Chains with

2,000 iterations were run for each of the models fit the data with 10,000 samples as burn-in

leaving 20,000 samples.

3.3 Results

3.3.1 E↵ect of accounting for ionisation on NLOM predictions

The NLOM model has been shown to improve steady-state concentration ratio predictions

when accounting for ionisation with Dow in fish [13]. However, it was important to

establish whether the model performed similarly on the D. magna dataset. From Figure

3.1, it can be seen that NLOM model predictions for ionisable chemicals using Kow as

an input result in an overprediction, on average. Conversely, NLOM predictions with

Dow consistently underpredict the steady-state concentration ratio for ionisable chemicals,

even though the average magnitude of the prediction error is smaller. Predictions for

neutral chemicals are comparatively unbiased; there are examples of both under and over

predictions of similar magnitude.

The strong bias towards overpredictions usingKow and underpredictions usingDow presents

an interesting opportunity to drastically improve prediction performance of the NLOM

model. If both predictions with Kow and Dow are generated, then the geometric mean

of predictions is considerably closer to the target steady state, on average, than either

prediction in isolation.

3.3.2 E↵ect of accounting for ionisation on Bayesian model predictions

The Bayesian predictive model defined in Appendix B Table B.3 was used twice to gen-

erate predictions for the steady-state concentration ratio. Firstly, the model was trained
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Figure 3.1: Estimates of steady-state concentration ratios Ki from the reference model are
plotted in black with the bullet indicating the median and the horizontal line a centred
95% interval. The non-lipid organic matter model (NLOM) predictions using Kow are
plotted as blue vertical bars and orange bars indicated predictions using Dow. Predictions
for neutral chemicals are green (Kow = Dow). Some chemicals have two time-course
datasets, with distinct external concentrations. Distinct steady-state concentration ratios
are estimated from these data using reference. NLOM model predictions of the steady-
state concentration ratio are independent of the external concentration, hence a single
prediction is made for all time-course datasets for each chemical.

using Kow as the data input Pi, followed secondly, by using Dow. Median estimates of

K
pred

i
are plotted against the reference model estimates of Ki in Figure 3.2.
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Predictions of the steady-state concentration ratio are generally within the range of values

estimated using the reference model. The predictive model uses regression to relate the

partitioning coe�cient (log10 P ) to the steady-state concentration ratio, which results in

shrinkage to the mean. This naturally results in under-prediction of the largest steady-

state ratios in the dataset and overprediction of the smallest. This approach results in

soft guarantees for the magnitude of the prediction error; the inferred prediction error

standard deviation (summarised by the model parameter Kscale) is smaller than the stan-

dard deviation of the steady-state concentration ratio across the chemical space in the

AquaTK dataset (see left plot, Figure 3.3). Furthermore, estimates of Kscale are smaller

when using Kow as the chemical partitioning coe�cient than when using Dow. That is,

the model infers a stronger association between Kow and the steady-state concentration

ratio than with Dow. Within the AquaTK dataset, not accounting for ionisation using

the method to compute Dow allows for more accurate predictions, on average.

Interestingly, prediction errors (as measured using absolute fold-error) for time-courses

corresponding to the ionisable subset of chemicals are on average smaller than prediction

errors for the neutral subset when using the predictive model. This occurs when using

either Kow or Dow as the partitioning coe�cient, see Table 3.2. However, this is not

true for the NLOM model, which produces much more accurate predictions for neutral

chemicals. Switching from Kow to Dow within the NLOM model reduces the average

prediction error, but the average remains considerably higher than the average error for

the Bayesian predictive model.
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Figure 3.2: Estimates of steady-state concentration ratios Ki from the reference model are
plotted in black with the bullet indicating the median and the horizontal line a centred
95% interval. Median estimates of predictions from the Bayesian predictive model using
Kow are plotted as blue vertical bars and orange bars indicated median predictions using
Dow. Unlike the NLOM model, for which predictions for neutral chemicals (green) are
the same (Kow = Dow), the Bayesian predictive model parameters change for each input,
hence predictions di↵er for neutral chemicals despite chemical-specific information being
the same.
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Figure 3.3: Left: Posterior estimates of the parameter Kscale estimated from the reference
model (black) and the predictive model when trained with Kow (blue) and Dow (orange).
Right: Median estimates of Kpred

i
estimates from the predictive model (x-axis) plotted

against median estimates of Ki (y-axis) from the reference model.

Table 3.2: Chemicals from the AquaTK dataset grouped by neutral and ionisable classi-
fication. Source ID, external concentration, inferred steady-state concentration from the
reference model (Ki) and prediction errors, as measured by median absolute fold error
(Kpred

i
/Ki) for both NLOM and Bayesian predictive models with Kow and Dow as the

partitioning coe�cient.

Neutral

chemicals

Source

ID

External

concen-

tration

(µg L
�1)

Reference

Ki

K
pred
i ,Kow

fold

error

K
pred
i , Dow

fold

error

NLOM

& Kow

fold

error

NLOM

& Dow

fold

error

Atrazine d12 100 1.8 11 32 2.3 2.3

Carbamazepine d08 5 180 12 4.1 80 80

Carbamazepine d08 100 21 1.4 2.2 9.1 9.1

Chlorpyrifos d05 0.08 680 8.3 3.3 1.6 1.6

DDT d12 10 350 1.6 1.7 33 33

Diazinon d02 1.5 18 2.4 6.6 2.6 2.6

Diazinon d02 1.6 16 2.6 7.1 2.7 2.7

Imidacloprid d04 190 0.97 4.1 14 1.1 1.1

Imidacloprid d04 240 1.2 3.3 11 1.3 1.3

Irgarol d03 200 8.7 3.2 9.2 1.4 1.4
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Kepone d15 0.17 630 5 2 2.6 2.6

Mirex d15 0.12 5800 16 7 9.8 9.8

Prochloraz d13 640 14 3.6 9.7 6 6

Propiconazole d13 480 41 1.4 2.4 1.7 1.7

TBOEP d14 20 2.2 15 42 9.4 9.4

TBOEP d14 100 1.3 26 73 16 16

TCEP d14 20 24 2.9 1.3 21 21

TCEP d14 100 39 4.8 1.5 34 34

TDCPP d14 20 78 2.7 1.3 5.7 5.7

TDCPP d14 100 260 8.9 3.1 19 19

Terbutryn d03 200 10 3.1 8.8 1.7 1.7

TPHP d14 20 200 3.8 1.6 2.1 2.1

TPHP d14 100 2300 44 17 25 25

Neutral geometric mean of fold error 5.1 5.7 5.8 5.8

Ionisable chemicals

2,4-

Dichlorophenoxyacetic

Acid

d12 1000 2.9 7.6 2.2 2 3.1

Diclofenac d09 5 63 1.2 2 3.3 49

Diclofenac d09 100 7 9.7 4.5 30 5.4

Fluoxetine d10 0.5 350 6.1 13 2.9 310

Fluoxetine d10 5 54 1.2 2 2.2 47

Pentachlorophenol d16 20 280 2.8 1.9 2.7 2.8

PFDA d06 5 430 1.4 4.1 400 14

PFDA d06 5 200 2.6 1.9 880 6.3

PFDoA d06 5 650 1.6 3.4 2300 2.4

PFDoA d06 5 460 2.1 2.4 3200 1.7

PFNA d06 5 260 1.3 4 110 44

PFNA d06 5 150 1.9 2.4 180 26
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PFOA d06 5 210 1.4 6.2 13 150

PFOA d06 5 89 1.6 2.6 30 63

PFOS d06 5 400 7.3 24 3.8 410

PFOS d06 5 170 3.1 11 1.7 180

PFUnA d06 5 560 1.5 3.6 1200 4.5

PFUnA d06 5 300 2.6 1.9 2300 2.4

Propranolol d01 5 25 1.3 1.5 1.8 25

Propranolol d01 100 7.5 3.9 2.4 1.8 7.6

Roxithromycin d01 5 57 1.6 1.3 2.2 20

Roxithromycin d01 100 9 4 5.5 2.9 3.1

Tetracycline d11 100 3.1 1.5 2.4 3.3 3.3

Tetracycline d11 1000 1.4 1.7 1.7 1.4 1.4

Ionisable geometric mean of fold error 2.4 3.2 21 14

Overall geometric mean of fold errors 3.4 4.3 11 9

3.3.3 Sensitivity of predictive model parameters to the input dataset

The Bayesian predictive model infers its predictive performance from theAquaTK dataset.

The robustness of these estimates for the purposes of assuming similar predictive per-

formance on novel chemicals is therefore of interest. In this section a cross-validation

methodology was used to assess how estimates of Kscale change following perturbations

to the data used to train the model. The AquaTK dataset was partitioned by source ID

and a leave-one-out method was used to re-estimate Kscale following iterative removal of

all data corresponding to each source ID. Figure 3.4 highlights that the expected value of

Kscale is similar in all cross-validation folds except for when source ID d14 is removed.

Source ID d14 contains four organophosphate chemicals for two di↵erent external con-

centration exposures that were classified as neutral at the experimental pH. The two

largest prediction errors for the predictive model using Kow as the partition coe�cient

were TPHP and TBEOP, while the largest prediction error for the predictive model using
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Dow as partition coe�cient were the two exposures of TBEOP. These chemicals were from

source ID d14.

Figure 3.4: The mean residual standard deviation for each study (Source ID) removed
using a leave-one-out method was plotted for the Bayesian predictive models optimised
on Kow (blue) and Dow (orange). The blue and orange dotted lines represent the mean
residual standard deviation when no studies were removed for Kow and Dow, respectively.

3.4 Discussion

This study examines the e↵ect of accounting for ionisation when generating predictions

of the steady-state concentration ratio in D. magna. Ionisation was accounted for in the

NLOM and Bayesian predictive models through the use of the distribution coe�cient

(Dow), which accounts for the pH the experiment is conducted under and the predicted

pKa value of the chemical. The magnitude of errors for the NLOM model improves

when accounting for ionisation, however, this leads to consistent underpredictions for the

ionisable chemicals. Conversely, the magnitude of errors for the Bayesian predictive model

gets worse when accounting for ionisation using Dow. Overall, the prediction error in the

Bayesian predictive models were smaller than those in the NLOM model. The Bayesian

model predictions of the steady-state concentration ratio regress towards the mean of
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the those inferred within the (reference model) AquaTK dataset. This has the e↵ect

of bounding the prediction error variance by the variance of steady-state concentration

ratios in the AquaTK dataset.

The sensitivity of the predictive model parameters to the input dataset was tested using

a cross-validation methodology to indicate whether predictive performance is consistent

and can therefore be assumed for chemicals not found within the AquaTK dataset. This

highlighted that the prediction error for all cross-validation folds was comparable apart

from source ID d14. This study contained data for four neutral organophosphates, with

TPHP and TBEOP the worst predicted chemicals for the predictive model with Kow

and Dow, respectively. Overall, it is clear from the results that the worst predictions of

the Bayesian predictive model were for the neutral chemicals, which suggests improve-

ments to predicting this specific group of chemicals is crucial to improving prediction

performance.

In the context of ERA, an estimate that is greater than the experimental steady-state

concentration ratio would enable a conservative evaluation of the risk. Therefore, the

use of the NLOM model with Dow for D. magna may not be applicable, due to the

underpredictions of the ionisable chemicals. Additionally, even though the magnitude

of the prediction errors is smaller relative to NLOM, the Bayesian model significantly

overpredicts the lowest steady-state concentration ratios and underpredicts the highest

steady-state concentration ratios. Alternatively, a more conservative estimate for the

Bayesian predictive model could be achieved by using the 95% credible interval values

rather than the median, which has been applied in the previous chapter. However, the

degree of conservativeness is correlated with the magnitude of the steady-state ratio being

estimated, where the fold-di↵erence of the overprediction is expected to increase for the

smallest steady-state concentration ratios.

There are some limitations of this work in terms of the data itself and the modelling

approach. Part of the prediction error may be as a result of inaccuracies in predictions
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of Kow and Dow values. In future work the model predictions could be tested with al-

ternative Dow prediction methodologies through other prediction software. Alternatively,

the Henderson-Hasselbach equation could be used to predict pKa values to establish the

ionised and neutral forms of chemicals [222]. However, true utility of this method re-

quires experimental data of the pH and pKa value. In this study only 9 of the 29 unique

chemicals had experimental pKa and log10 Kow values meaning there would have been a

reduced dataset and reduced confidence in the interpretation of the results.

A more advanced mechanistic model using an adapted version of the NLOM was developed

for ionogenic organic chemicals in fish using empirical steady-state concentration data [13].

This study was able to characterise the partitioning of ionisable chemicals to phospholipids

by separating the overall lipid fraction into phospholipids and storage lipids [13]. This is

important because ionisable chemicals are expected to accumulate in these phospholipids

and even protein fractions but not the storage lipids [38]. However, in the scope of this

study there is a lack of available empirical data for aquatic invertebrates [14]. While under

current knowledge there is scattered data on the separation ofD. magna lipid fractions into

phospholipids / membrane and storage lipids. Studies have evaluated lipidomic profiles

of the major lipid classes of D. magna [124]. However, the results were not presented

as fractions relative to the overall biochemical composition, which means they cannot be

used in the adapted version of NLOM. Future work could potentially conduct experiments

to obtain these di↵erent fraction percentages and conduct a similar assessment set out in

the study on the impact of membrane-water partitioning on the prediction error.

The Bayesian prediction model could be improved by accounting for other variables or

processes. In this study the predictive model only has one covariate, the partition coe�-

cient, but there is evidence that suggests external concentration needs to be considered.

In Chapter 2 a log-transformed external concentration and Kow was implemented in a

linear combination to predict steady-state concentration ratios. However, the external

concentration was not included in the predictive model of this study to isolate the e↵ect
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of accounting for ionisation in the estimate of the partitioning coe�cient. Examining the

results highlights multiple examples where external concentration may have an impact on

the residual errors of the model. For example, diclofenac and roxithromycin had di↵erent

predictions under the same experimental conditions but at di↵erent external concentra-

tions. Furthermore, TPHP with an external concentration of 100 µg kg
�1 was ranked the

worst on the predictive model optimised on Kow with a fold error of 44. However, TPHP

exposed at 20 µg kg
�1 had a fold error of 3.8 for the predictive model optimised on Kow.

As a neutral chemical this would suggest that variations in the prediction error are at least

impacted by the external concentration. Future work could use the Bayesian framework

to investigate the impact of the external concentration on steady-state concentration ratio

predictions.

Another important process that is not encompassed within the Bayesian framework is

protein binding. Out of the 24 ionisable chemical time-courses 8 of the 10 worst predic-

tion errors based on fold error from the best predictive model (Kpred

i
, Kow) were either

pharmaceuticals or PFAS. Pharmaceuticals are known to compete for binding sites of

plasma proteins, which impacts the free concentration of the molecule and influences

toxicokinetic processes [237]. Research suggests that PFAS interact with a number of dif-

ferent proteins within organisms [189]. Protein binding has a relationship with ionisation

where anionic forms of acidic chemicals are less likely to be eliminated by an organism,

due to being bound to plasma proteins [170]. Additionally, the pKa value that is a key

component of ionisation predictions is known to play an integral role in protein binding

[265]. Accounting for ionisation only resulted in some improvement of the fold errors for

the NLOM model. Considerable work has been done to account for sorption of chemicals

to NLOM including proteins within the proportionality constant of the NLOM model

[103, 16, 17, 74]. However, this is through retrospective interpolation where experimental

data is continually added to a database to widen its domain of applicability and then con-

fidence intervals are added so that 95% of the values are within the desired range leading

to an updated proportionality constant. However, for the prediction of novel chemicals
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without experimental data it may be more advantageous to develop a generalisable protein

binding model from first principles for use in ERA.

Multiple neutral chemicals had high prediction error within the Bayesian framework. For

example, mirex was the third worst predicted chemical for the predictive model optimised

on Kow. Mirex is described as a chlorine box where chlorine has replaced every hydrogen

atom attached to a carbon [66]. This degree of halogenation may impact metabolism as

there is a relationship between halogenation and decreased metabolism [66]. In terms of

the Bayesian model presented here there is potential to add structurally relevant param-

eters to help inform predictions. In the case of mirex it could be number of halogenated

atoms. Further important structural features could be added, such as hydrogen bonding.

Hydrogen bonding can a↵ect chemical solubility and partitioning into di↵erent phases

with QSARs simplifying hydrogen bonding into the number of hydrogen bond acceptors

and donors [268].

3.5 Conclusions

To conclude, this work highlights the applicability of using a Bayesian framework to eval-

uate the e↵ect of di↵erent parameters on model performance. The e↵ect of ionisation was

accounted for by using Dow over Kow and resulted in improved NLOM prediction errors

but had a negative impact on the Bayesian model prediction error. However, overall the

geometric mean prediction error of D. magna steady-state concentration ratio predictions

were lowest in the Bayesian model with either partition coe�cient suggesting the Bayesian

model is able to capture the TK profile of D. magna more accurately than the determin-

istic NLOM model. It was clear from the results that the neutral chemicals in the dataset

primarily had the largest prediction errors in the Bayesian model. Therefore, future work

could work on implementing key chemical structures, such as hydrogen bonding, that may

help explain the uptake dynamics of the chemical more e↵ectively. Additionally, there

were large di↵erences in predictions error for the same chemical at di↵erent external con-
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centration exposures, which suggests the external concentration needs to be considered

in future TK models.
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CHAPTER 4 : A THEORETICAL PROTEIN

SURFACE-BINDING MODEL AND ITS

APPLICATION TO DAPHNIA MAGNA

TOXICOKINETIC PREDICTIONS

4.1 Introduction

Current general models utilised in TK modelling of uptake and elimination data are mostly

based on empirical studies in fish. The empirical origin of the steady-state equation relat-

ing the concentration ratio with the product of the partition coe�cient and lipid fraction

was [187] with further contributions from [259], [163], [36], and [177]. A generalisable

model for a range of aquatic organisms was developed that considers the partitioning

of chemicals from the water to the lipid and non-lipid parts of the organism [16]. This

model was developed for fish from empirical data and is known as the non-lipid organic

matter (NLOM) model. In this model there is a proportionality constant that expresses

the sorption capacity of non-lipid components relative to octanol [16]. Many studies have

empirically updated this constant [103, 16, 17, 74]. This method works through retrospec-

tive interpolation where experimental data is added to the modelled dataset to expand

the domain of applicability. This limits the application of these models to chemicals in the

dataset and requires more experimental data to update the model parameters each time.

Therefore, this makes applying these models to novel chemicals especially di�cult.
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It was argued that in fish the chemical a�nity to non-lipid organic matter was lower

compared to lipid [16]. However, it could impact partitioning in organisms with smaller

lipid fractions, such as phytoplankton or aquatic invertebrates [16]. Further research

suggests that if the lipid fraction makes up to less than 5% of the dry weight organic

content, the absorption capacity of an organism will be dominated by the protein fraction

[74]. Dry weight estimates of the lipid content in D. magna were 4.98% [39, 40]. This

suggests that the protein fraction and the binding of chemicals into this specific component

needs to be accounted for to understand the TK processes in D. magna.

Protein binding is an important aspect of pharmacokinetics, due to the significant number

of proteins in plasma and the numerous drugs that can bind to them, impacting the e↵ec-

tive drug concentration [41]. Chemical structure and physiochemical properties, such as

lipophilicity represented by Kow, the pKa that represents acidic or neutral characteristics,

and hydrogen bonding can influence protein binding [265]. There are two types of protein

binding, specific and non-specific. Specific binding can be described as a high a�nity,

saturable binding of a chemical to its target receptor resulting in a pharmacological re-

sponse. Non-specific binding is described as non-saturable and low a�nity binding with

endogenous proteins without pharmacological response [74, 41]. Previous protein binding

modelling has taken a stochastic approach where attachment to a binding site is based

on a probability as a function of already attached binding sites [121]. Other popular ap-

proaches to quantifying protein partitioning is the creation of absorption isotherms, such

as the Brunauer-Emmett Teller, Langmuir or Freundlich isotherm models [151]. These

isotherms describe the protein absorbed to a surface as a function of the solution concen-

tration [151]. Each isotherm has di↵erent applications and requirements for its utilisation.

The Langmuir isotherm is based on the assumption that absorption occurs on a monolayer

with no interactions between absorbed chemicals. Conversely, the Freundlich isotherm de-

scribes monolayer absorption but for heterogeneous surfaces with unique absorption sites

in terms of absorption rates and energies. Finally, the Brunauer-Emmett-Teller isotherm

di↵ers from the other isotherms by considering multilayer absorption on di↵erent areas of a
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surface [151]. These isotherms can reflect the binding of chemicals to di↵erent biochemical

components. For example, it has been illustrated for the environmentally prevalent PFAS

that their binding to proteins can be expressed in the form of the Freundlich isotherm

suggesting that it is an absorption process rather than a linear process [271].

There is a lack of knowledge in terms of how protein binding theory can be applied

to aquatic invertebrates, due to the lack of specific experimental data. However, a re-

cent study of the impact of thiacloprid on the aquatic invertebrate G. pulex was the

first to demonstrate a mechanistic link between protein binding and TK modelling [215].

Through parameterisation of the experimental data a receptor-binding TK model was

developed. Irreversible binding of thiacloprid to membrane proteins was shown to cause

elimination resistance, in addition to a dependence on external concentration, due to

a maximum binding capacity and lack of elimination from the membrane protein com-

partment [215]. Additionally, it has been shown in previous chapters that the inferred

steady-state concentration ratios from D. magna time-course data are dependent on the

external concentration, which could be a result of chemical protein binding.

The overall aim of this study was to develop a theoretical model for chemical partition-

ing in lipids and surface-binding in proteins for determining a theoretical physiological

upper bound for steady-state concentration ratios in D. magna. This can be divided into

three key objectives. The first objective was to develop a theoretical framework for de-

composition analysis of chemical partitioning and derive a new protein surface-binding

(PSB) model. The second objective was to use the PSB model to define an external con-

centration and protein dependent theoretical upper bound for use in environmental risk

assessment and evaluate the bound on historical in vivo measurements. The third objec-

tive was to use the PSB model to predict steady-state concentration ratios and compare

the prediction performance with the NLOM model and on available aquatic invertebrate

experimental data with several external concentration exposure scenarios.
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4.2 Materials & methods

4.2.1 Daphnia magna toxicokinetic data

The R package AquaTK provided D. magna TK measurements. This package contains

digitised internal and external concentration data from available literature for 48 time-

courses across 30 organic chemicals from 17 studies. The data covers a broad chemical

space with pharmaceuticals, biocides, organophosphates, and surfactants. The package

also contained other key experimental data for model development with more details

available at https://github.com/J-Collins1294/AquaTK.

4.2.2 Daphnia magna biochemical composition data

The biochemical composition of D. magna over a year-long observation period with upper

and lower bounds of the live form taken from [39] is summarised in Table 4.1. Normali-

sation of the data was conducted assuming the carbohydrates, lipids, proteins, and water

content made up 100% of the D. magna.

Table 4.1: Biochemical composition of Daphnia magna from [39] for carbohydrates, lipids,
proteins, and water content. Normalised values are calculated assuming the four compo-
nents make up 100% of the Daphnia magna.

Component Lower Upper Median Normalised

Carbohydrates 0.6% 4.0% 2.3% 2.3%

Lipids 0.1% 0.8% 0.45% 0.5%

Proteins 1.3% 5.4% 3.35% 3.4%

Water 86.4% 97.6% 92.0% 93.8%

Total 88.4% 104.2% 98.1% 100%

4.2.3 In silico partition coe�cient predictions

Previous work has shown an improvement on steady-state concentration ratio predictions

using the dissociation constant (Dow) over the octanol-water partition coe�cient (Kow)
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[13]. The ACDLabs PhysChem suite commercial software was used to generate in silico

predictions of log10 Kow and log10 Dow. ACDLabs PhysChem suite predictions ofKow have

been shown to correlate with experimental values for a range of chemical classes with a

coe�cient of 0.992 [208]. It is one of the consensus best software for predicting pKa values

[268]. Dow is estimated by inputting the predicted Kow, the predicted pKa value, and

the pH of the experimental study. The pH was collected from the studies otherwise a

mean pH of 7.55 from across the studies was applied. 30 chemical canonical SMILES

were run through the ACDLabs PhysChem suite to obtain Dow predictions. However,

the time-course data for tributyltin chloride [92] was removed as the software is unable

to predict organotin compounds. Therefore, the dataset was reduced to 47-time courses

for 29 chemicals from 16 studies.

The chemicals within the dataset were labelled as either neutral or ionisable. A chemical

was labeled neutral when,

Dow = Kow (4.1)

and ionisable when,

Dow < Kow (4.2)

A table containing a detailed overview of the 47 time-courses including the chemical

name, source ID, external concentration, pH, ACD log10 Kow, and log10 Dow predictions,

and ionisable or neutral classification can be seen in Appendix B Table B.1.

4.2.4 Fickian-di↵usion steady-state internal concentration

The exchange of a chemical between its environment, in this case water, and the organ-

ism can be described by a Fickian-like di↵usion first-order ordinary di↵erential equation

(ODE),
dy(t)

dt
= kin · yw � kout · y(t) (4.3)

where y(t) is the organisms internal concentration at time t of exposure, and the yw is
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the external concentration, which is assumed to be constant throughout the experiment.

kin and kout are transfer rates modulating the amount of chemical coming in and coming

out of the organism.

Equation 4.3 has the following particular solution,

y(t) = yw · kr(1� e
�t·kout) (4.4)

for an initial concentration of zero, y(t = 0) = 0, where kr = kin/kout is the transfer

rate ratio. The concentration ratio, z(t), is an important quantity for measuring the

accumulation of a chemical in the organism.

z(t) =
y(t)

yw
= kr(1� e

�t·kout) (4.5)

When z(t) > 1 the chemical accumulates, however, when z(t)  1 then the chemical

does not accumulate. Long exposures scenarios are the most relevant for ERA. For long

exposures t · kout � 0, the internal concentration reaches an e↵ective steady-state,

zss ⇡ lim
t!1

z(t) = kr; (4.6)

For the special case where it is assumed the chemical mass contributions can be linearly

decomposed into lipid-water, and protein contributions,

y = y
(I) + y

(II) (4.7)

where y is the internal concentration, y(I) is the contribution to the internal concentration

by the lipid-water partitioning, and y
(II) is the protein surface-binding process contribu-

tion. It is important to specify that these two processes are modelled independently and

their contributions can be added together. It is important to note that interaction terms

have been avoided because of empirical evidence from the previous chapters that high-
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light the dependency of steady-state concentration ratios on external concentration. It is

possible that interaction terms exist but these are di�cult to validate empirically without

an experiment similar to Raths et al. (2023) [215]. Such validation would require an

extensive number of chemicals across a range of Kow values.

4.2.5 Generalised partitioning model

In Appendix C.1.3 a general expression is derived for the steady-state concentration ratio

in terms of mass fractions �i and partitioning coe�cients Ki,

zss =
yss

yw
=

X

i

�i ·Ki + 1�
X

i

�i (4.8)

Note, the partitioning coe�cients Ki are general and do not represent any particular

compartment partition, that is they can be set to Kow, Dow, or their respective estimates

from prediction software.

The partitioning model in Equation 4.8 predicts a steady-state concentration ratio,

zss = ⌫ ·K + ' ·Kpw + 1� ⌫ � ' (4.9)

where ⌫ is the lipid fraction, K represents the lipid partitioning coe�cient, which is Kow

for neutral chemicals and Dow for ionisable chemicals, ' is the protein fraction, Kpw is the

protein-water partition coe�cient. For highly lipophilic chemicals K � 1 and negligible

protein bindingKpw ⌧ 1, this model describes the empirical observations of [187]. Further

studies by Debruyn & Gobas. (2007) derive estimates of the protein partitioning Kpw(K)

in terms of K [74],

Kpw(K) = � ·K (4.10)

where K = Kow, and � is empirically derived from experimental data. In this study

K = Dow since the dataset for benchmarking contains multiple ionisable chemicals at

environmentally relevant pH levels.
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4.2.6 Protein surface-binding model

Current protein partitioning models cannot account for external concentration as a vari-

able, however, recent studies in D. magna [68] and G. pulex [215] have shown that steady-

state concentration ratios depend significantly on the external concentration. To address

this limitation, a toy surface-binding model is proposed that relates the organism em-

bedding water density, assumed equal to the external water concentration, to the protein

surface density (Appendix C.2.4). The model predicts a protein surface density upper

bound conditional on the chemical’s protein a�nity defined as,

P :=
pb

pu
(4.11)

where pb is the probability the molecule binds, and pu is the probability the molecules

unbinds.

In Appendix C.2.6, it is shown that for chemicals with a protein a�nity P < (1
⇢
� 1),

the density on the protein surface cannot exceed the density of the enclosing volume (⇢),

which can be interpreted as the internal water concentration. For 1 < P < (1
⇢
� 1), the

upper bound of the protein binding process can be defined as,

y
(II) = ⇢

(S)
p


✓
1

'

◆ 2
3 p

yw (4.12)

where ⇢
(S)
p is the protein-chemical surface density, ' is the protein fraction, and yw is

the nominal external water concentration. The derivation can be found in Appendix

C.2.7.

Combining the lipid partitioning and the protein surface-binding process yields the fol-

lowing concentration upper bound,

zss =
y

yw
=

y
(I)

yw
+

y
(II)

yw
 ⌫ ·K + 1� ⌫ +

✓
1

'

◆ 2
3 1
p
yw

(4.13)
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The lipid-binding model can be interpreted as an upper bound on the amount of chemical

in a two-phase system under the assumption there are no barriers limiting di↵usion across

a membrane. In reality the amount of chemical that binds to the lipid fraction would be

less than or equal to the ideal two-phase system estimated by Kow. The protein surface-

binding model can also be interpreted as an upper bound due to the assumptions of the

model, specifically that the chemical binds uninhibited to the surface. An expression for

the amount of chemical bound to the protein surface is derived in Appendix C.2.

4.2.7 Determination of PSB model theoretical upper bound

A theoretical upper bound of zss can be determined for the proposed PSB model given the

protein fraction set to the lower bound (' = 0.013) and lipid fraction is set to the upper

bound (⌫ = 0.008) from Table 4.1, across a range of partition coe�cient values. Since

the steady-state concentration ratio is now a function of the external concentration, the

upper bound must be computed for di↵erent values of yw. The theoretical upper bound is

compared to inferred median steady-state concentration ratios estimated from D. magna

time course data using Bayesian methods from Chapter 3. To show that the theoretical

upper bound holds for di↵erent exposure scenarios the upper bounds were calculated

with external concentrations of 0.08 µg kg
�1 (minimum external concentration from the

dataset), 1 µg kg
�1, 10 µg kg

�1, and 100 µg kg
�1, which made up the four external

concentration scenarios. All steady-state concentration ratios were included in the first

scenario with the minimum external concentration upper bound (� 0.08). However, for

each of the subsequent scenarios the steady-state concentration ratio was only included

if the external concentration was greater than the external concentration used in the

theoretical upper bound calculation. The theoretical lower bound was calculated by using

the upper bound for the protein fraction (' = 0.054) and the lower bound of the lipid

fraction (⌫ = 0.001) from Table 4.1 with the maximum external concentration (1000 µg

kg
�1) across a range of Ki values.
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4.2.8 Benchmarking against the NLOM model

To evaluate the performance of the PSB model it was benchmarked against the non-

lipid organic matter (NLOM) model developed by [16], due to its extensive use for ERA

within the exposure modelling community. The NLOM model predicts the partitioning

of chemicals from the environment into the organism into lipid, non-lipid organic matter

and water, where each of these components can absorb and store chemical [16]. The mass

decomposition analysis that was used to determine the lipid and non-lipid correction in

the PSB model can be applied to the lipid, protein, and complement to obtain the NLOM

model. The relationship between the steady-state concentration ratio and the partitioning

by composition can be described as follows,

y

yw
= ⌫ ·K + ' · � ·K + 1� ⌫ � ' (4.14)

where ⌫ is the lipid fraction, K is the predicted distribution coe�cient (Dow), ' is the

protein fraction, and 1 � ⌫ � ' is the NLOM fraction. � is a proportionality constant

with a value of 0.035. The water content variable encompassed in the NLOM model is

accounted for by assuming everything other than the proteins or lipids is water 1� ⌫�'.

Median normalised biochemical composition data from Table 4.1 can be used for the lipid

fraction (⌫ = 0.005) and the protein fraction (' = 0.034). The proportionality constant

was taken from the NLOM model study with � = 0.035.

4.2.9 Evaluating the PSB model against experimental data

To further evaluate the applicability of the PBS model the steady-state concentration

ratio predictions were compared against chemicals with experimental TK data across

3 or more external concentrations. There is a lack of available D. magna TK data with

multiple external concentrations, however the best experimental data available was for six

PFAS chemicals from [68]. In this study perfluorooctanesulfonic acid (PFOS) was chosen

as the example chemical with D. magna exposed to 1, 5, and 10 µg L
�1 for 25 days [68].
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Additionally, to examine the wider applicability to other aquatic invertebrates, the G.

pulex TK data exposed to 0.05, 0.5, 5, 50, 500, 1500, and 5000 µg L
�1 of thiacloprid was

collated from [215]. The PFOS data was digitised using the same method as in Chapter

2. While the thiacloprid concentration ratio data was available in the supplementary

information [215]. The log10 Dow of thiacloprid (1.22) was obtained using the same in

silico methods as the other chemicals in this study.

4.3 Results

4.3.1 Theoretical upper bound for multiple external concentration scenar-

ios

To test the theoretical upper bound of the PSB model the inferred steady-state concentra-

tion ratios were plotted against the predicted Dow with the theoretical upper (red dashed

line) and lower (green dashed line) bounds plotted for each of the external concentration

scenarios (� 0.08, 1, 10, and 100 µg kg
�1) (Figure 4.1). Generally, most of the 47 time-

course inferred steady-state concentration ratios fit the theoretical upper bound across

the four external concentration scenarios. While there are some datapoints that are close

to and break the theoretical upper bound. It can be argued that this is attributed to ex-

perimental variation or the low protein a�nity to concentration ratio, which is explored

further in subsequent sections of the results. However, the greatest outlier across the

� 0.08, 1, and 10 µg kg
�1 scenarios is triphenyl phosphate (TPHP) with an external

concentration of 100 µg kg
�1 highlighted by the red square in each relevant scenario.

There are multiple steady-state concentration ratios below the lower bound, which are

theoretically still plausible results but suggest that a physiological process or component

is unaccounted for in the PSB model.
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Figure 4.1: For 47 Daphnia magna toxicokinetic time-courses the inferred steady-state
concentration ratio was plotted against the Dow of the chemical with the theoretical
upper (red dashed lines) and lower bounds (green dashed lines) of the protein surface-
binding (PSB) model plotted for each external concentration scenario (� 0.08, 1, 10, and
100 µg kg

�1). Steady-state concentration ratio data was only included if the external
concentration met the threshold of the scenario. Ionisable (orange) and neutral (blue)
chemicals were highlighted. Triphenyl phosphate (TPHP) was a clear outlier highlighted
by the red square.

4.3.2 Benchmarking the PSB model against the NLOM model

The PSB model was benchmarked against the NLOM model by plotting the predicted

steady-state concentration ratio against the inferred steady-state concentration ratio for

the 47 time-courses (Figure 4.2). Both the PSB and NLOM model were run with Dow as

the partition coe�cient. The 10-fold error bounds are highlighted with red dashed lines.

The PSB model predicted 70.21% of time-courses (33/47) within 10-fold error while the

NLOM model predicted 59.57% time-courses (28/47) within 10-fold error. Overall, it is

clear that the NLOM model tends to underpredict the steady-state concentration ratio in

comparison to the PSB model. The NLOM model underpredicts the 10-fold error margin
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for 36.17% of time-courses (17/47) while the PSB model underpredicts for 25.53% of time-

courses (12/47). Several of the underpredicted chemicals by the NLOM model are either

pharmaceuticals or PFAS chemicals. Both the PSB and NLOM model overpredicts the

10-fold error margin for the neutral classified chemicals dichlorodiphenyltrichloroethane

(DDT) and tris(2-butoxyethyl) phosphate (TBOEP) at 100 µg kg
�1.

Figure 4.2: Predicted steady-state concentration ratio for the non-lipid organic matter
(NLOM) model (light orange dots) and protein surface-binding (PSB) model (blue dots)
plotted against the inferred steady-state concentration ratio for the 47 Daphnia magna
toxicokinetic time-courses. The black dashed line shows the predicted and inferred steady-
state concentration ratio are the same. A 10-fold error margin is highlighted with a red
dashed line.

4.3.3 PSB model predictions for PFOS in Daphnia magna

To test the PSB model performance the steady-state concentration ratio predictions (solid

red line) were compared with steady-state concentration ratios for PFOS experimental

data for 1, 5, and 10 µg kg
�1 external concentration exposures from [68] (Figure 4.3).

The NLOM model prediction was also highlighted for comparison (dashed black line).

Based on the in silico log10 Dow prediction of 0.68 the PSB model prediction clearly

92



underpredicts across all external concentration exposures. However, it is able to capture

the decrease in steady-state concentration ratio as external concentration increases more

accurately than the NLOM model. This underprediction suggests that some process or

specific PFOS physiochemical property is unaccounted for in the model.

Figure 4.3: Experimental steady-state concentration ratios from [68] for perfluorooctane-
sulfonic acid (PFOS) in Daphnia magna across three di↵erent external concentrations (1,
5, and 10 µg kg

�1). The protein surface-binding (PSB) model (red line) and the non-
lipid organic matter (NLOM) model (black dashed line) are highlighted to evaluate the
performance of both models against the experimental data.

4.3.4 PSB model predictions for thiacloprid in Gammarus pulex

The PSB model prediction (red solid line) was plotted against the external concentrations

alongside the experimental steady-state concentration ratios from [215] for thiacloprid on

G. pulex at 2, 4 and 10 day exposures (Figure 4.4). The NLOM model prediction (black

dashed line) was shown for comparison and to highlight the importance of accounting

for external concentration changes for predicting the steady-state concentration ratio. It

was important to test the PSB model against another aquatic invertebrate that had been

exposed to external concentrations across several orders of magnitude to examine the
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model’s domain of applicability. Figure 4.4 illustrates the ability of the PSB model to

account for a range of external concentration scenarios and capture the saturation e↵ect

seen in the experimental data. Conversely, the NLOM model steady-state concentration

ratio predictions are the same across the range of external concentrations and does not

capture the saturation e↵ect in the experimental data.

Figure 4.4: Experimental steady-state concentration ratios from [215] for thiacloprid in
Gammarus pulex plotted against external concentrations from 0.05 – 5000 µg kg

�1 for 2
(blue squares), 4 (orange diamonds), and 10 (green circle) day exposures. The protein
surface-binding (PSB) model (red line) and the non-lipid organic matter (NLOM) model
(black dashed line) are highlighted to compare the predictive capabilities of the two models
against the experimental data.

4.4 Discussion

This work has proposed a new theoretical protein-surface binding model that encom-

passes lipid fraction partitioning derived from decomposition analysis. Generally, TK

models have been developed empirically, however, this requires large amounts of data

and restricts the applicability of these model to chemicals within the training dataset.
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This surface-binding approach taken in this study diverges from traditional empirical

modelling and Fickian-like di↵usion mass transfer by proposing a predictive model that

accounts for protein-surface binding as a function of the external concentration and the

protein fraction. However, the PSB model takes a more holistic approach to predicting the

steady-state concentration ratio of the protein partitioning by assuming that the external

concentration has the same density as the internal water concentration, which encloses

the protein so that the chemical can bind to the surface of the total volume of the pro-

tein fraction. The protein surface-binding is a stochastic process where the probability of

binding over the probability of unbinding is equal to the protein a�nity. The theoretical

upper bound scenarios highlight that PSB model predictions remain valid across external

concentrations, which relates directly to the application of the PSB model to ERA with a

risk assessor able to test di↵erent exposure scenarios. Furthermore, as the model does not

require experimental data to widen the chemical space domain it can be easily applied to

novel chemicals, which is essential to reducing animal testing and providing key toxicity

data for ERA.

There is potential for chemical steady-state concentration ratio predictions to break the

theoretical upper bound because either the chemical had a very high protein a�nity or

because the concentration relative to the a�nity was low. As stated in Equation 4.11 the

protein a�nity is the ratio between the probability of a molecule binding to a probability

of a molecule unbinding. Using the assumption that P < (1/⇢ � 1) will give you an

upper bound for the protein a�nity. In Appendix C.3.1 the protein a�nity denoted by P

can be interpreted as a relevant pharmacokinetic parameter or physiochemical property

given the correct data, which could be evaluated against the same assumption to see if the

physiochemical property breaks the model assumption and creates a tighter upper bound.

The fup describes the extent of binding to plasma proteins and is a function of the protein

binding a�nity and the protein concentration [275]. This parameter can be estimated

using in silico methods with a study showing that 87% of 441 chemicals predicted fup

values were within 1-3 fold of empirical data [276]. Furthermore, fup data is not the only
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physiochemical property that can be related to P . Developed QSARs have highlighted

the correlation between protein a�nity and lipophilicity [247]. A hydrophobic surface

will bind 1000-fold faster than a hydrophilic surface, due to water creating a barrier to

surface assembly [128]. Replacement of the protein a�nity with a lipophilicity parameter,

such as log10 Kow would allow the applicability domain of the PSB model to be defined

further. Future work could investigate the relationship between the protein a�nity and

key parameters, such as fup and log10 Kow of the chemical to identify whether these

parameters fit the model assumptions. Other steady-state concentration ratios above the

theoretical upper limit could be attributed to experimental variation although one clear

outlier was TPHP. However, this could be explained by the large standard deviation of

the steady-state concentration ratio (890.32 ± 971.5) seen in the parent study [161]. The

large uncertainties around the TPHP steady-state concentration ratio prediction were

also highlighted through Bayesian analysis of the chemicals time-course data in Chapter

2.

The PSB model outperformed the state-of-the-art NLOM model in predicting the steady-

state concentration ratio in D. magna with a higher percentage of predictions falling

within 10-fold of the inferred steady-state concentration ratio values. The NLOM model

tended to underpredict the steady-state concentration ratio, which can arise from the

model not accounting for protein binding. Many of the underpredicted chemicals by

NLOM were known to undergo protein binding. For example, fluoxetine and diclofenac

as well as other pharmaceuticals are known to compete for binding sites of plasma pro-

teins in humans [237, 44]. Additionally, there was no relationship between fluoxetine and

lipid content in other aquatic invertebrates [176]. Pharmaceuticals such as diclofenac,

propranolol, roxithromycin, and fluoxetine (at 5 µg kg
�1) were all underpredicted by the

NLOM model, whereas, all four steady-state concentration ratios predictions by the PSB

model were within 10-fold of the margin error. Fluoxetine exposed at 0.5 µg kg
�1 was

still outside the 10-fold error margin for the PSB model, which might be a consequence

of a low concentration relative to protein a�nity. Fluoxetine has been shown to have
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a high a�nity to plasma proteins with 94.5% bound in pooled plasma [19]. However,

more research would need to be undertaken to evaluate the relationship between protein

a�nity and steady-state concentration ratios. Therefore, accounting for protein partition-

ing through protein-surface binding processes in the PSB model can improve results for

those chemicals, especially pharmaceuticals, that bind to proteins and further suggests

that protein partitioning is an important process in accumulation of chemicals in aquatic

invertebrates.

In the comparison between the NLOM and PSB models DDT and TBEOP steady-state

concentration predictions were above the 10-fold error margin for both models. Both

chemicals were neutral at the study pH and neither model predicted the chemicals well.

DDT had a predicted octanol-water partition coe�cient of 6.22, which makes it lipophilic

and likely to accumulate in lipid components of organism. Previous work has shown that

the total concentration of DDT partitioned into phospholipids is greater than the con-

centration bound to the protein of rat hepatic microsomes [23]. DDT is readily biotrans-

formed into dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane

(DDD), which can be present in greater concentrations than DDT in certain scenarios

[162]. Similarly, it has been highlighted that TBOEP can be biotransformed into bis (2-

butoxyethyl) hydroxyethyl phosphate (BBOEHEP) and bis (2-butoxyethyl) 3-hydroxyl-

2-butoxyethyl phosphate (3-OH-TBOEP) [161]. This suggests that biotransformation of

chemicals needs to be accounted for in the model and is the likely source of the overpre-

dictions for these particular chemicals.

PFAS chemicals were a particular chemical group of interest in this study, due to their

regulatory concern, widespread nature in the environment, and great uncertainty related

to their exposure and e↵ects in the environment [12, 174]. It is well established that PFAS

chemicals bind to proteins [271]. Therefore, it was expected that the PSB model would

be able to predict all the PFAS chemicals within a 10-fold error margin by accounting

for protein binding. However, 7 out of the 12 PFAS time-courses were underpredicted
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and outside the 10-fold error margin for the NLOM and PSB model. This suggests

that the internal concentration is partitioning into a component unaccounted for in the

model. It has been theorised that the biochemical component bio-ash could be relevant for

the partitioning of ionisable chemicals, however, there are a lack of studies that focused

specifically on this component [57]. This may be even more relevant for D. magna as

the fraction of bio-ash is similar to the lipid fraction calculated in Bogut et al. (2010)

[40].

While the theoretical PSB model holds for predictions of the steady-state concentration

ratios in the D. magna dataset, there is limited chemical data for a range of external

concentrations. Application of the PSB model to the PFOS steady-state concentration

data from three di↵erent external concentrations in D. magna and thiacloprid across ex-

ternal concentrations spanning 5 orders of magnitude in G. pulex allowed the domain

of applicability to be tested. A clear limitation in the D. magna example was that the

external concentrations only covered one order of magnitude but the data available was

limited. It highlighted a clear underprediction of the steady-steady concentration ratio

across the external concentrations, however, the PSB model was able to marginally cap-

ture the change in steady-state concentration ratio over external concentration over the

NLOM model. One explanation is the experimental variability of PFAS chemicals. Inter-

laboratory studies have shown coe�cients of variation of 125% for PFOS concentrations

in fish tissues [257]. This suggests that internal concentrations can have large variations

between experiments. Additionally, the two distinct PFOS internal concentrations in D.

magna at 24 hours exposure time from the AquaTK dataset was 1995.1 µg kg
�1 [271]

and 590.9 µg kg
�1 [68]. This constitutes a 3-fold di↵erence in internal concentration at

the same external concentration, which could account for some of the underprediction of

the PSB model. Conversely, the PSB model predicts some of the experimental properties

of the thiacloprid steady-state concentration ratios in G. pulex dependent on the external

concentration. It is established that thiacloprid binds to proteins, which makes it a perfect

example of the PSB models predictive capabilities across di↵erent external concentration
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scenarios. Furthermore, this example suggests that the PSB model may not be limited

to D. magna and could be applied to a wider range of organisms. Further work would

involve using the PSB model for steady-state concentration ratios across a wider range

of chemicals and organism to truly test the domain of applicability and its application to

environmental risk assessment.

A key assumption of the PSB model is that the protein fraction is a smooth homogenous

flat surface with a uniform distribution of chemical. Alternatively, protein surfaces are

chemically heterogeneous and rough [4]. A non-smooth surface would increase the surface

area enclosed in the protein volume resulting in a decrease in internal concentration.

An empirical parameter than describes the heterogeneity of the surface and absorption

intensity is the Freundlich constant (1/n). Favourable absorption is indicated when 1/n <

1 [252]. Comparatively, the PSB model exponent is 2/3, which is equivalent to the

Freundlich constant and is assumed to be the ideal case across the dataset based on

the assumptions of a flat surface. However, the exponent could be much larger if the

surface is not flat and the surface contained di↵erent number and types of proteins to

bind to on the surface. Conversely, the exponent could be much smaller if there there

was only a percentage of the the surface of the protein to bind to or only a percentage of

the chemical can bind to the protein. The percentage of chemical molecules available to

bind could be impacted by the chemical concentration, which results in a change in the

chemicals protein a�nity. Two anaesthetics propofol and halothane [33], alongside the

anticoagulant warfarin [207] were shown to bind to proteins with di↵erent a�nities as the

concentration of the chemical increased [138]. Further work could incorporate di↵erent

empirical or in silico derived values of n to allow more chemical specific predictions of the

surface-binding process.
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4.5 Conclusions

To conclude, this work has developed a new TK model that incorporates lipid partitioning

and protein surface-binding processes through decomposition analysis for TK predictions

in D. magna. The distinction between the PSB model and other TK models is that it is

not necessary to calibrate on experimental data and integrates protein surface-binding as a

function of the protein fraction and external concentration. A theoretical upper bound was

validated using available steady-state concentration ratios to increase confidence in the use

of the PSB model. This model will have a positive impact on NAMs-based ERA as it can

provide predictions of the steady-state concentration ratio across external concentration

scenarios, which removes the restrictions of risk assessors to available experimental data

only and reduces the need for further animal testing. Furthermore, this will enable novel

chemicals outside the training dataset of the model to be evaluated. Additionally, the

PSB model predicted steady-state concentration ratios more consistently within a 10-fold

error margin than the state-of-the-art NLOM model, which is relevant to ERA as a 10-fold

safety factor is usually applied to TK data. Further work could focus on expanding the

domain of applicability by testing the PSB model predictions against a wider chemical

space and other available aquatic invertebrate experimental data with the example of G.

pulex showing good correlation with the PSB model predictions.
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CHAPTER 5 : A RANDOM FOREST

REGRESSION MODEL FOR PREDICTING THE

RELATIVE IONISATION EFFICIENCY OF

PARENT CHEMICALS AND THEIR

BIOTRANSFORMATION PRODUCTS

5.1 Introduction

To understand the potential risk on the environment it is important to take into account

both the parent contaminant and its transformation products [136]. BTPs can be more

prevalent than their respective parent chemical and can contribute to the risk of the par-

ent if they are formed with high abundance, have a high toxicity, or are more mobile

and persistent [90]. Regulatory documents highlight the need to include BTPs in risk

assessment but di↵er significantly in guidance and applicable tools [90]. Traditional ana-

lytical methods to quantify the concentrations of chemicals employ MS with an internal

standard (for each pre-selected chemical), which limits these studies to known substances

[106]. However, many BTPs have not been identified yet, which leaves a significant num-

ber of chemicals and their impacts on the environment unknown [90, 106]. Moreover,

even if BTPs are known, the ability to quantify them is restricted by the lack of authentic

standards [122]. This problem spans not only ERA but human risk assessment as well, as

only 18.5% of the ca. 114,100 largely synthetic chemicals have been detected and identi-
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fied in the Human Metabolome Database [157]. This has considerable consequences for

TK model development where relevant BTPs cannot be characterised in compartments or

in terms of biotransformation rates to understand the fate of the chemical in an organism

[147].

Due to the shortage and typically high cost for synthesising standards, alternative method-

ologies are being developed that involve “semi-quantification” without standards. While

there are several emerging methods available, one of the most popular is the use of IE,

which has been shown relative to other methods to produce the most accurate semi-

quantification of chemicals compared to experimental values [143, 2]. IE values are de-

pendent on the configuration of the MS instrumentation and therefore many studies cal-

culate the IE relative to an “anchor compound” to make the values generalisable across

labs [167]. Multiple IE predictive models have been developed from multiple linear re-

gressions to a variety of machine learning algorithms [156, 173, 204]. However, the most

generalisable and extensive model is derived from the random forest regression developed

by [156]. This model included experimental IE data from 353 unique chemicals in positive

ion mode and 109 unique chemicals in negative ion mode across a range of liquid chro-

matography eluent compositions [156]. The model is able to predict IE of chemicals using

PaDEL descriptors, which are predicted molecular descriptors for each chemical. Reliable

predictive IE models are the first step to predicting the concentration of chemicals with-

out standards including BTPs. See section 1.6.2 for an introduction to this approach, and

Figure 1.4 for an overview of the modelling strategy.

Multiple studies have used the IE prediction model from Liigand et al. (2020) to predict

the concentrations of chemicals (i.e. semi-quantify the chemicals) [156], such as hydrox-

ylated polychlorinated biphenyls that resulted in a mean quantification error of 4.4x the

actual value [130]. More relevant is the use of the model to predict concentrations of 60

BTPs with a mean error of 2x and a maximum error of 11x of the actual value when

compared to standards [143]. However, this is the full extent to which models have been
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applied for predicting the IEs of BTPs and hence their concentrations, with the latest

research showing no specific model developed for parents and BTPs, which is a significant

knowledge gap that needs investigating further especially for ERA TK modelling pur-

poses. Other methods have tried calculating RF of BTPs relative to parent chemicals for

71 drugs and BTPs, focusing on a limited number of transformation pathways, resulting

in large errors in prediction accuracy with fold responses varying from 70-fold lower to

8.6-fold higher than the parent drug [111].

Therefore, the overall aim of this research was to design a study comprising the generation

of a new MS dataset and subsequent development of a random forest regression model to

predict the RIE values of parents and BTPs from the new experimental IE data. This aim

can be divided into three specific objectives. The first objective was to perform a chemical

criteria assessment where commercially available parent and BTPs were identified (for

purchase) and assessed against a criterion for selection in IE experiments. The second

objective was to collect experimental IE data using MS (conducted by the Phenome Centre

Birmingham, University of Birmingham). The third objective was to develop a random

forest regression model using the experimental IE values and evaluate its performance

using di↵erent validation methods.

5.2 Material & methods

5.2.1 Chemical selection

As standards for parent chemicals and BTPs are limited, the first step was to identify

what standards were available to buy commercially. A comprehensive analysis of par-

ent and BTP pairs in the Eawag parent-BTP pair [232] and MetxBioDB [83] databases

were checked for availability from online vendors, such as Sigma-Aldrich (https://www.

sigmaaldrich.com) and LGC Standards (https://www.lgcstandards.com), which resulted

in 213 parent chemicals and BTPs. Specifically, each parent and BTP was given a spe-

cific ID, where each chemical is given a number and a letter. Each related parent and
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BTP is given the same number, while an A represents the parent chemical of the group,

any other letter represents a biotransformation of A. For example, atrazine was labelled

16A, while its BTPs atrazine-desethyl and atrazine-desisopropyl were labelled 16B and

16C. The number of letters is dependent on the number of available BTPs, which varies

between chemicals.

Based on resource constraints, the first list of chemicals needed to be reduced. A criteria

list made up of seven key questions was created with answers given as “Yes” or “No”,

which allowed a binary scoring system (1,0):

1. Is the molecular weight of the chemical > 100 Da (chemicals with larger molecular

weights are easier to detect in the MS)

2. Is the mass of the available chemical standard > 10 mg (important to have a high

enough quantity to create calibration curves)

3. Are the number of BTPs linked to parent � 2 (attempt to include as many related

BTPs to a given parent as possible)

4. Is the price of the chemical < £200 (cost e↵ective to include lower priced chemicals)

5. Is the source MetXBioDB (considered the most reliable database)

6. Is the BTP pathway known (enables as many transformation pathways to be in-

cluded as possible)

7. Is the purity of the standard known and above 95% (more reliable and reproducible

calibration curves)

The total scores (out of 7) for each chemical standard were inspected and low scoring

chemicals were removed. This resulted in the chemical dataset being reduced from 213 to

125. Further inspection of the chemical list highlighted multiple further chemicals that

needed to be removed as they were either known to not ionise well or were relatively high

cost. Some chemicals that had lower criteria scores were able to be included, such as
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imidazole, that had low mass (68 Da) but have been known to ionise and be detected

with wider m/z ranges [175]. After manual review, the chemical list was reduced to 109

parent and BTPs. Finally, the chemicals were given CLP Toxicity ratings subdivided into

decreasing toxicity groups from 1 to 4 [71]. Twenty-two chemicals were characterised as

either group 1 or 2, which meant they were some of the most toxic and of particular con-

cern. To avoid any safety concerns for the lab team in the Phenome Centre Birmingham,

these 22 chemicals were removed from the dataset resulting in a final chemical dataset of

88 parent and BTPs plus an anchor chemical (tetraethylammonium chloride) that were

purchased from vendors.

5.2.2 Experimental data collection and results of pilot studies

The standard preparation, preliminary and primary experiments, and initial processing of

the raw flow injection-mass spectrometry (FI-MS) data was conducted by the Phenome

Centre Birmingham.

5.2.2.1 Standard preparation

All standards were prepared in 100% methanol (LC-MS grade, VWR). Serial dilutions

were conducted with 100% methanol. Standard solutions in methanol were loaded into

96-well plates (TwinTec, Eppendorf) which were placed in the autosampler (Transcend

Vanquish Flex Duo LX-2 system Vanquish LC system, ThermoScientific).

5.2.2.2 Overview of flow injection-MS method for preliminary and primary experiments

Samples were analysed as triplicate injections, one compound at a time with the analysis

order going from most dilute to the most concentrated. The FI-MS assay was conducted

on a Transcend Vanquish Flex Duo LX-2 system Vanquish LC system (Thermo Scien-

tific) using a metal coupler instead of an LC column. Data were acquired on an Orbitrap

Exploris 120 mass spectrometer (Thermo Scientific) in positive ion mode only. Ion source

parameters: Sheath gas = 40 arbitrary units, Aux gas = 8 arbitrary units, Sweep gas =
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1 arbitrary unit, Spray Voltage = 3.2 kV, Capillary temp. = 300°C, Vaporiser temp. =

300°C. The raw FI-MS acquisition data was processed using the R package proFIA [76]

to identify peaks for each chemical under consideration and its corresponding concentra-

tions. The resulting peak matrix was then matched to the mass-to-charge ratios of the

chemicals.

5.2.2.3 Preliminary experiments

Preliminary experiments were undertaken to identify the optimal concentrations to achieve

a linear gradient (of detector response versus concentration), the most relevant m/z range

to allow detection but minimise loss of accuracy, and to identify chemicals in the list that

do not ionise at all. In preliminary experiment 1, six serial dilutions of a 100 µM stan-

dard were prepared with a 1 in 5 dilution factor resulting in 100, 20, 4, 0.8, 0.16, and

0.032 µM with a m/z range set to 150 and above with each sample analysed with 10 µL

injections. In preliminary experiment 2, six serial dilutions of a 200 µM were prepared

with a 1 in 30 dilution factor resulting in 0.00000823, 0.00025, 0.0074, 0.22, 6.67, and 200

µM with a wider m/z range set to 60 and above. These samples were analysed with 5 µL

injections. Three chemicals were also removed from the study because of solubility issues

in standard preparation. Across the two preliminary experiments there were chemicals

that had no peaks detected and also had low R
2 values. Therefore, these chemicals were

also removed from the study and this resulted in a final dataset of 67 parent and BTPs,

including the anchor chemical. This was comprised of 29 parent chemicals (including the

anchor) and 38 BTPs. Based on the preliminary experiment results each chemical was

assigned a concentration group from A (best ionisers) to D (poor ionisers).

5.2.2.4 Primary experiment

The primary experiment used the final 67 chemicals and the assigned concentration groups

to obtain linear gradients of MS detector response verse concentration of standards. Each

chemicals concentration group had six serial dilutions of the highest concentration and
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were prepared with a 1 in 5 dilution factor, which generated a maximum number of 18

intensities across six concentrations. A table illustrating the concentrations of each group

can be seen in Table 5.1. The MS acquisition range was over 2 x m/z ranges (range 1:

60-205 m/z; range 2: 200-2000 m/z) defined as separate MS scan events within a single

assay. Each sample was analysed with triplicate 10 µL injections in the MS.

Table 5.1: Concentration values for each of the assigned concentration groups A, B, C,
and D.

Concentration group Conc 1 (µM) Conc 2 (µM) Conc 3 (µM) Conc 4 (µM) Conc 5 (µM) Conc 6 (µM)

A 0.00128 0.0064 0.032 0.16 0.8 4

B 0.0064 0.032 0.16 0.8 4 20

C 0.032 0.16 0.8 4 20 100

D 0.064 0.32 1.6 8 40 200

Calibration curves between the concentration and intensity were created with linear re-

gressions fit for each specific chemical forcing the intercept through the origin. The

calibration curves with R
2 values can be seen for all chemicals in Appendix D Figures

D.1 - D.6. The linear regressions of the calibration curves and figure generation were con-

ducted in R. As a result of the calibration curves and R
2 values it was evident for some

chemicals that the detector was becoming saturated at higher concentrations and not

exhibiting a linear relationship between the intensity and the concentration. Therefore,

initially the highest concentration (concentration 6) and associated intensity was removed

from the dataset for all chemicals and the linear regression lines refit. The new R
2 values

for the reduced dataset were compared with the values from the original dataset with all

concentrations included. If the R
2 value improved by greater than 2.5% when removing

the highest concentration from the dataset then the new R
2 value was accepted and the

highest concentration was removed for that chemical. This improved the R
2 values of

11 chemicals. Moreover, there were still some low R
2 values and it seemed that multiple

chemicals were saturated beginning at the second highest concentration (concentration 5).

Therefore, the same method with a 2.5% improvement threshold was also implemented

but when removing the two highest concentrations (concentration 5 and concentration
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6). This improved R
2 values for a further 5 chemicals and especially the chemicals with

low R
2 of concern. Overall, all 67 chemicals had R

2 values > 0.97. Finally, RIE values

were calculated by dividing the gradient of each chemical by the gradient of the anchor

chemical,

RIE =
gradient of chemical

gradient of anchor
(5.1)

The RIE values were log-transformed (log10RIE) to reduce the variance as the RIE

spanned 5 orders of magnitude. An overview of the chemical ID, chemical name, concen-

tration group, gradient of linear regression, R2 value, RIE, and log10RIE for each chemical

can be seen in Appendix D Table D.1.

5.2.3 Model development and evaluation

All pre-processing of the log10RIE and PaDEL descriptor data, model development, and

figure generation were conducted in Python 3.11 with packages Matplotlib 3.8, NumPy

1.26, PaDELPy 0.1, pandas 2.2, scikit-learn 1.4, SciPy 1.13, Seaborn 0.13, and Shap 0.45.

Prior to developing the log10RIE predictive model chemical SMILES were used to calculate

2D PaDEL descriptors (1444 descriptors) for the 67 chemicals from the PaDELPy package.

Pre-processing steps were taken to reduce the potential of the model capturing noise or

increasing complexity of the model as a result of too many descriptors. Firstly, any

PaDEL descriptor that was unable to be predicted was removed. After that descriptors

that had the same value for 60% or more of the chemicals were identified, which resulted

in 541 descriptors being removed. Finally, descriptors that correlated highly with each

other but less so with the log10RIE value were removed to address multicollinearity as it

could impact the reliability of model estimates [7]. If a descriptor had an R
2 correlation

greater than 0.6 with another descriptor then the descriptor with the lower correlation

with the log10RIE value was removed. The final number of descriptors was reduced to

113.

The random forest regression algorithm has been shown to consistently predict the RIE
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of chemicals [156, 143], therefore, it was chosen as the model for this study. The dataset

was split into X (PaDEL descriptors) and y (log10RIE) variables. Initially the 67 parent

and BTPs (including the anchor chemical as a parent chemical) were randomly split into

training and test datasets with 70% of the chemicals used for training the model and

30% as a validation test set. However, this split resulted in overfitting where the model

was learning too well on the training set. Therefore, a 60% (40 chemicals) and 40%

(27 chemicals) training to test split was implemented. The test set is independent and

only used for assessing the predictive power of the model, which is considered the gold

standard [6]. A random seed of “2024” was assigned to allow reproducibility of results.

The descriptors were scaled using the standard scaler function from scikit-learn, which

standardises each PaDEL descriptors by making the mean and variance equal to 0 and

1, respectively. This makes sure that any descriptors with large means or variances are

reduced and not dominating over other descriptors, which would skew the model decision-

making.

A GridSearchCV procedure from scikit-learn was carried out to identify the appropriate

parameters for the random forest regression model, including the number of decision trees,

the criterion to decide the quality of each split in the decision tree, depth of each individual

decision tree, and the maximum number of features (PaDEL descriptors). A 5-fold internal

cross validation on the training set was undertaken to tune the best parameters, with the

lowest scoring parameters scored by mean squared error chosen. The best parameters

were 10 decision trees, squared error as the criterion, maximum depth of 4, and maximum

number of descriptors of 4. The random forest regressor package from scikit-learn with

the best parameters was fit to the training dataset.

The model performance was evaluated on both the training and test sets using the RMSE

and Pearsons R
2 values and comparing the ratio of the standard deviation of log10RIE

values and RMSE to show the model performance relative to a random prediction. Ad-

ditionally, an internal validation on the training set was undertaken using a 10-fold cross
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validation to investigate the generalisability of the model on unseen data. The training set

containing the random 40 parent and BTPs was split into 10 subsets (4 chemicals each).

For each of the 10 iterations the optimised random forest regression model was fit to nine

of the subsets, acting as a training set and the other subset was used as the validation set

and evaluated with the RMSE. The RMSE was chosen as the main performance metric as

it is typically more practically important than R
2 [6]. It has been highlighted that models

with low R
2 values can still be useful with low RMSE values [6]. The robustness of the

model was tested further by performing a y-scramble, which is a test widely used in ma-

chine learning evaluation [178]. The y-scramble breaks any meaningful link between the

X variable (PaDEL descriptors) and the y variable (log10RIE) by randomly assigning the

y variables to di↵erent X variables [178]. This was done 1000 times and the performance

metric for each iteration using RMSE and Pearsons R2 was compared.

The most influential descriptors on predicting log10RIE values from the model were ob-

tained using the SHAP: Shapley additive explanation, which is a method based on game

theory to enable the contribution of important descriptors to be interpreted [159]. Re-

cently, SHAP values have been used in metabolomics studies to identify the key features

for metabolites [34]. The relative importance of each PaDEL descriptor is assessed by

removing a descriptor and assessing the impact on the unique SHAP values of the other

descriptors. Each unique SHAP value determines the contribution of the descriptor on the

target variable [27]. The SHAP values were applied to both the training and test dataset

to evaluate whether the same influential descriptors appear, in this way it is possible to

make sure the model makes the same decisions when seeing chemicals from the training

and test set.

5.2.4 Chemical similarity

The chemical space that the final dataset of 67 parent and BTPs (including the anchor

chemical) captured was evaluated against the original dataset collated in 5.2.1 containing

213 chemicals and then the Eawag parent-BTP pair and MetXBioDB databases, which
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included 1530 chemical entries across the two databases by comparing the molecular sim-

ilarity. Molecular similarity between the di↵erent datasets was compared by using the

molecular fingerprints of each chemical and visualising using principal component analy-

sis (PCA). Morgan fingerprints, are one of the most popular molecular fingerprints and

represent chemical structural characteristics as a vector. These structural characteristics

are encoded as binary bits (1s and 0s). For example, if a chemical contains a hydroxyl

group, it is represented by a 1, but if it does not contain that functional group, it is repre-

sented by a 0. Morgan fingerprints typically have a length of 2048 bits and are generated

using the RDKit library package 2023.03.2 [182, 51]. This allows the structure of chem-

icals to be compressed and simplified to be used for comparing structural similarity. A

PCA was applied to the collated Morgan fingerprints to explain the similarity or variation

in molecular structures.

5.3 Results

5.3.1 Model performance

To understand the prediction performance of the random forest regression model the

predicted log10RIE were compared against the experimental log10RIE for the 67 parent

and BTPs divided into a 60% training set (blue) and a 40% test set (orange) (Figure

5.1). Overall the experimental log10RIE values span approximately 5 orders of magni-

tude, which illustrates the variability in log10RIE across the physiochemical and structural

characteristics of parent and BTPs. From a qualitative perspective it can be argued that

the model tends to overpredict the lowest log10RIE values (poorest ionisers) while un-

derpredicting the highest log10RIE values (best ionisers). The training set showed strong

prediction performance with RMSE of log10RIE and Pearsons R2 values of 0.37 and 0.92,

respectively, which is expected as the model is optimised on this set of chemicals. Alter-

natively, the test set showed worse prediction performance with RMSE of log10RIE and

Pearsons R2 values of 0.77 and 0.64, respectively. A worse prediction performance on the
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test set is expected as the optimisation of the model did not include these chemicals.

Figure 5.1: Predicted log-transformed relative ionisation e�ciency (log10RIE) values from
the random forest regression model against the experimental log10RIE values for the
training set (blue) and the test set (orange) for 67 parent and biotransformation products
split into a 60% and 40% training and test split. The root mean square error (RMSE) of
log10RIE for the training and test sets were 0.37 and 0.77, respectively. The R

2 values of
the training and test set were 0.92 and 0.64, respectively.

To estimate the generalisability of the model across di↵erent subsets of parents and BTPs a

10-fold cross-validation was performed on the training set of chemicals. For the remaining

analysis the RMSE of log10RIE is used as the metric performance and is hereafter referred

to as RMSE for brevity. The distribution of the RMSE of log10RIE of each fold of the

cross-validation can be seen in Figure 5.2 with the mean (red cross), median (orange

line), RMSE test set (green dashed line), and RMSE of the training set (blue dashed

line). The minimum RMSE is 0.34 and the maximum is 1.54 with a range of 1.2. It could

be argued that the random forest regression model struggles to predict certain subsets

of the chemicals. The mean RMSE across each cross-validation fold is 0.768, which is
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relatively central in relation to the minimum and maximum RMSE values and therefore

representative on average of the model performance. The mean RMSE value is greater

than the training set RMSE (0.37) and rounded to 2 decimal places is the same as the

test set RMSE (0.77). Additionally, there is variance of RMSE across cross-validation

folds, which will be driven by the fact RMSE for each fold is calculated from 4 chemicals,

as opposed to 27 chemicals in the test set. Furthermore, as the average RMSE and the

RMSE of the test set are similar it highlights the consistency of the model in predicting

unseen data. The RMSE of log10RIE can be interpreted as a multiplicative factor, see

Liigand et al. (2020) for a similar interpretation [156]. Therefore, the cross-validation

folds mean RMSE of log10RIE value of 0.77 can be interpreted as a multiplicative factor of

6. This means that any future predictions on average will be 6 times away from the true

value. Additionally, as previously stated the cross-validation RMSE of log10RIE ranges

from 0.34 to 1.54. Therefore, the cross-validation RMSE of log10RIE ranges from 2 times

and 35 times away from the true value. This highlights that the performance can di↵er

significantly depending on each of the 4 chemicals contained within a cross-validation

fold.

To assess the robustness of the random forest regression model a chance correlation anal-

ysis in the form of a y-scramble where log10RIE values were randomly shu✏ed across the

unchanged X variables (descriptors) 1000 times was performed on the test set of parent

and BTPs (Figure 5.3). This was performed to establish whether the model performance

is dependent on the specific arrangement of X and y variables input into the original

model. The RMSE of log10RIE i.e. multiplicative factor (top plot) and Pearsons R
2

(bottom plot) performance metrics were calculated for every iteration and compared with

the original models RMSE test set (dotted red line - top plot) and Pearsons R2 test set

(dotted red line - bottom plot). The y-scramble results highlight that through 1000 ran-

dom permutations the calculated RMSE value is never less than the RMSE of the test

set (0.77). Similarly, the Pearson R
2 values through the permutations are never greater

than the R2 values of the test set (0.64). This strongly suggests that the model is able to
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Figure 5.2: Box plot showing the distributions of the root mean squared error (RMSE) of
log10RIE values i.e. multiplicative factor from a 10-fold cross-validation of the training set
of parent and biotransformation products with representations of the mean (red cross),
median (orange line), RMSE test set (green dashed line), and RMSE of the training set
(blue dashed line).

capture a relationship between the log10RIE and the chosen descriptors, which is not as

a consequence of randomness. Following the method highlighted in the previous section

the RMSE of log10RIE test set value of 0.77 can be interpreted as a multiplicative factor

of 6 times. This suggests that any future prediction will on average be 6 times away from

the true value. Furthermore, the average scrambled model had a RMSE of log10RIE of

approximately 1.2, which has a multiplicative factor of 16. Overall, the model perfor-

mance on the test set was approximately 2.7 times better than the average scrambled

model.

114



Figure 5.3: Histograms showing the frequency of the root mean square error (RMSE) of
log10RIE i.e. multiplicative factor (top plot) and Pearsons R2 values (bottom plot) as a
result of a y-scramble where the y-variable (log-transformed relative ionisation e�ciency
- log10RIE) is shu✏ed 1000 times across the unchanged X variables (PaDEL descriptors).
The RMSE test set and Pearsons R2 values are highlighted with dotted red lines on the
top and bottom plot, respectively.

5.3.2 Most influential model parameters

To establish the most influential PaDEL descriptors the top 10 highest SHAP values sum-

marising the impact of descriptors on model predictions of the log10RIE were calculated

for the training set (top plot) and test set (bottom plot) in Figure 5.4. The SHAP values
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were repeated for the training and test sets to see if the most influential parameters were

the same in the test and training set. The greater the colour and value separation the

more influential the descriptor is to the model output. If a datapoint is blue it represents

a negative value for that descriptor whereas a red colour represents a positive value. A

negative SHAP value represents a negative e↵ect on the log10RIE value and a positive

SHAP value represents a positive e↵ect. There are multiple influential descriptors that

impact the models prediction of the training (top plot) and test set (bottom plot) in-

cluding “ATSC8m”, ranked 1st (training) and 3rd (test), where really high values of the

descriptor have negative e↵ects on the predictions. Alternatively, “AATSC3s”, ranked

3rd (training) and 2nd (test), “ATSC8p”, ranked 5th (training) and 5th (test), “C1SP2”,

ranked 7th (training) and 7th (test), “MaxHother”, ranked 10th (training) and 10th (test),

have clear distinction of colours and values where negative descriptor values have a neg-

ative impact on the predictions and vice versa for positive values of the descriptor.

5.3.3 Visualisation of chemical similarity

A PCA of chemical molecular fingerprints from the 67 final selected parent and BTPs

(green) compared to the 213 commercially available chemicals (black circles) to visualise

the chemical similarity (Figure 5.5 PCA (A) - top plot). To further understand the

chemical space captured in this study a PCA was conducted on the wider Eawag parent-

BTP pair and MetXBioDB databases that contained 1530 chemicals (Figure 5.5 PCA

(B) - bottom plot). In terms of the chemical similarity comparisons of the commercially

available parents and BTPs the selected chemicals capture most of the chemical structures

out of the 213 parent and BTPs. This highlights that the model includes structures that

cover most of the commercially available parents and BTPs that were identified. However,

when the chemical similarity of the selected chemicals is compared with the Eawag and

MetXBioDB databases there are substantial numbers of chemicals that are not captured.

While the main cluster of chemicals are similar in structure there are a considerable

number of structures unique to the databases.
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Figure 5.4: The PaDEL descriptors with the top 10 highest SHAP values summarising
each descriptors contribution to the random forest regression models prediction of log-
transformed relative ionisation e�ciency (log10RIE) values for the training (top plot) and
test set (bottom plot). A datapoint with a red colour highlights a high value for the
descriptor and a blue colour represents a lower value for the descriptor. Negative SHAP
values represent negative impacts on the log10RIE values, while positive SHAP values
represent positive impacts on the log10RIE values.
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Figure 5.5: Principal component analysis (PCA) (A) shows the chemical similarity be-
tween the 67 selected parent and biotransformation products (including the anchor chem-
ical) for the ionisation e�ciency study (green) and the collated commercial database
of 213 parent and biotransformation products (black circles) with PC 1 and PC 2 ex-
plaining 7.12% and 6.03% of the variance, respectively. PCA (B) shows the chemical
similarity between the 67 selected parent and biotransformation products (including the
anchor chemical) (green) and the Eawag parent-biotransformation pair and MetXBioDB
databases (black circles) with PC 1 and PC 2 explaining 3.15% and 3.13% of the variance
respectively.
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5.4 Discussion

This research has resulted in the development of a random forest regression model for

the prediction of log10RIE values for 67 parent and BTPs, as a route towards the semi-

quantification of BTPs with the overarching aim of integrating BTP concentration pre-

dictions into TK models. The performance of the model was analysed by comparing the

predicted log10RIE against the experimental log10RIE for the training and test chemi-

cal sets and calculating the RMSE of log10RIE and Pearsons R
2 values. The RMSE of

log10RIE for the test set was 0.77 compared to 0.37 in the training set, with R
2 values of

0.64 and 0.92 for the test and training set, respectively. Comparison between the eval-

uation metrics of the training and test sets showed the model was able to predict the

log10RIE of unseen data relatively well and could have generalisability to other datasets

within the same log10RIE ranges. The model performed comparably to other log10RIE

predictive models, such as the multi linear regression model developed by Oss et al. (2021)

on 334 chemicals, which had a RMSE in the range of 0.7 - 0.8 log IE units compared to

the RMSE of the test set in this study of 0.77 [202]. Additionally, the Bayesian ridge

regression model related to molecular fingerprints developed by Mayhew et al. (2020) re-

sulted in an RMSE of 0.362 and R
2 of 0.62 compared to the RMSE and R

2 test set values

in this study of 0.77 and 0.64, respectively [173]. Moreover, the RMSE obtained from pre-

dictions of IE in di↵erent biological matrices varied between 0.36 and 1.31 and R
2 varied

between 0.55 and 0.81 [157]. Furthermore, the RMSE of log10RIE for the test set had a

multiplicative factor of 6. While not directly comparable these results are within the same

order of magnitude as Liigand et al. (2020) findings that showed a 2.2 times prediction

error in IE values [156]. It is important to highlight that many studies are restricted to

specific groups of similar chemicals, which limits the application of the established models

and will generally improve results for similar chemicals as the model is learning from a

homogenous group of chemicals in terms of structure and function. Alternatively, in this

study a wide range of parent and BTPs were included in the model regardless of chemical

grouping or function, which makes modelling more challenging because of the diversity
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of chemical structures for the model to learn from and results in dependency on the test

and training split especially with a smaller group of chemicals.

To further evaluate the generalisability of the model a 10-fold cross validation of the

training set was performed. The average RMSE of log10RIE was virtually the same as the

RMSE test set but higher than the RMSE training set. It could be argued that the model

overfits to some of the specific characteristics in the training set but on average it performs

well and generalises to the di↵erent subsets of the data. The average RMSE had a central

tendency that shows it represents the performance of the model well and highlights the

stability of the model in di↵erent scenarios, however, at the extreme end the RMSE was

1.54. The minimum RMSE of log10RIE had a multiplicative factor of approximately

2. However, the maximum RMSE of log10RIE had a multiplicative factor of 35. This

highlights the significant variation in performance between the di↵erent folds of the cross-

validation. Further work could investigate the subsets of chemicals with the worst RMSE

to understand the potential characteristics that result in poor prediction performance.

Finally, the robustness of the model was tested by performing a y-scramble on the test set

to evaluate whether the model performance results were a result of randomness. Through

1000 random iterations the RMSE and Pearson R
2 values were never better than the

RMSE and Pearsons R2 test set values, which suggests there is a relationship between the

PaDEL descriptors and the log10RIE that the model is able to capture from the training

data.

Even though the model performs relatively well on unseen data and the results of the

model outperformed randomness further optimisation of the model performance could be

achieved by increasing the number of the parent and BTPs in the training set. It has been

argued that prediction models should be continually updated with new data to improve

the coverage of chemical structures [143]. Sixty-seven total parents and BTPs including

the anchor is relatively small in comparison to some predictive models that have been

shown to perform well. For example, the random forest regression model developed by
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Liigand et al. (2020) had 353 unique chemicals in positive ion mode and 109 in negative

ion mode [156], while Oss et al. (2021) developed a model on 334 chemical IE values

[202]. It would be interesting to investigate the performance of these other predictive

models developed on a wider set of chemicals on the 67 parent and BTPs in this study.

Additionally, in this study the model chosen was the random forest regression. However,

it is plausible that other models could provide similar or better predictions. For example,

other machine learning algorithms have shown promise in predicting IEs with examples

including artificial neural networks [204] and Bayesian ridge regressions [173]. However,

while other methods can provide good predictions they may be less interpretable than

the random forest regression, which has clear feature importance measures. Alternatives,

such as, artificial neural networks have complex structures that are considered black-box

models, due to the inability to interpret the internal logic of the network [205].

Three of the most influential PaDEL descriptors represented by the highest SHAP values

and qualitatively had the best colour and value separation were auto-correlated descriptors

(“ATSC8m”, “AATSC3s”, and “ATSC8p”) proposed by Moreau & Broto [180]. Auto-

correlation descriptors are able to encode the chemical structure in addition to numerical

properties atoms properties in a 2D conformation [118, 89]. Each autocorrelation de-

scriptor highlighted in this study is weighted by a di↵erent physiochemical property and

accounts for di↵erent atoms at various lengths of bonds away from each other. “ATSC8m”

is the total mass of the terminal atoms that are 8 bonds away in the molecular structure

[274]. “AATSC3s” is the intrinsic state of the atoms 3 bonds away in the molecular struc-

ture, which is related to the electrotopological state [109] “ATSC8p” is the polarisability

of the atoms 8 bonds away in the molecular structure. The other important descriptors in-

cluded “C1SP2” that relates to the number of double bonded carbons bound with another

carbon [127], and the final descriptor was “MaxHother”, which describes the maximum

hydrogen electrotopological state for hydrogen atoms present on aromatic carbons, dou-

ble bonded substituted carbon, and double bonded unsubstituted carbon [226]. Basicity

descriptors, the size of the molecule, and hydrophobicity / charge (de) localisation of the
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chemicals were highlighted as the most influential parameters in a multiple linear regres-

sion of a IE dataset of 334 chemicals spanning six orders of magnitude [202]. Therefore, it

is unsurprising that the most influential descriptors in this study are also related to mass,

polarisability, and descriptors related to electrotopological state. Oss et al. (2021) showed

through PCA analysis of compounds and chemical properties that parameters related to

size, such as mass, area, and molecular volume were all clustered together [202]. This

may explain the reason other key parameters were not identified as the most influential

in this study as there are many that have co-linearity and were therefore removed during

processing. Further work could evaluate the relationships between these specific 2D de-

scriptors that are hard to interpret and other generally explainable descriptors through

correlation analysis.

The PCA of the selected parent and BTPs compared to those available commercially

and compared to the Eawag and MetXBioDB databases highlighted that the chemical

space of the commercially available parent and BTPs were captured well in this study.

However, there are clusters of chemicals in the Eawag and MetXBioDB databases not

captured in the selected chemicals. This suggests an even wider structural coverage of

parent and BTPs could potentially improve the domain of applicability of the model.

As previously stated, the availability of standards commercially available is limited but

with more time and resources the number of parents and BTPs in the model could be

increased. A unique use of this PCA to map chemical space would be in future studies to

compare potential parent and BTP chemical structures before experimentation to make

sure that similar structures were not already included in the model. This would enable

the focus of resources on chemical structures not already accounted for within the model.

Another use of the PCA would be to identify parents and BTPs that are representative of

the data set through chemical similarity and use them for the test set instead of a random

training test split, which has greater statistical fluctuations in smaller datasets [6].

A key ambition of this work is to enable the semi-quantification of BTPs that can be
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utilised in TK models. Therefore, a reliable RIE predictive model that captures the rela-

tionship between the RIE and chemical descriptors is the first major step in this study.

To achieve the long term ambition, the next phase of this research should focus on using

the RIE predictive model to calculate concentrations of BTPs without reference standards

using a comparable methodology presented by [156, 143, 203]. Firstly, RIEs are converted

back to absolute IE values. Then a set of instrument specific calibration chemicals (in-

ternal standards) with known concentrations measured using the MS to obtain intensity

values. Instrument specific RF values are calculated by dividing the measured intensity

by the known concentration of each calibration chemical. The instrument specific RF ac-

count for variations in the instrumentation setup and result in a more accurate prediction

of the BTPs of interest, which would have measured intensities using the same MS config-

uration. These instrument specific RFs are correlated with predicted IE values from the

random forest model for the calibration chemicals using a linear regression, which enables

the predictions of RF values. Finally, the predicted concentration of a BTP without a

standard can be calculated assuming the structure is known. Firstly, the BTP IE value

can be predicted from the random forest regression using calculated chemical descriptors

from its structure. This is followed by inputting the IE prediction into the predicted RF

linear regression and dividing the measured intensity of the BTP by the predicted RF to

predict the BTP concentration. This method can then be validated by comparing the pre-

dicted concentrations against the known concentrations for a set of BTPs and analysing

the prediction accuracy as described by [156]. If it possible to predict BTP concentrations

within a reasonable margin of error then the need for standards for every BTP, which is

not feasible, would be removed and these semi-quantitative values could be implemented

in TK models. This could either be as specific TK compartments or as a calculated rate

of change between the parent and BTP in the form of a biotransformation rate, which

are key for understanding the true accumulation potential of chemicals [146].

To make the work more relevant to D. magna the impact of matrix e↵ects also need to be

understood. Most research in this area has been carried out using solvent mixtures, which
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makes application to complex biological mixtures di�cult [157]. Matrix e↵ects can cause

a change in the response of the chemical and e↵ect its measurement accuracy in the MS

[186]. It has been shown that IE of warfarin can di↵er by an order of magnitude between

urine and solvent matrices [157]. Therefore, further work should conduct IE experiments

with D. magna exposed to a select number of parents and BTPs to establish the matrix

e↵ects. Consequently, this could enable a D. magna specific IE predictive model, which

would be an important step in achieving the integration of biotransformation predictions

into D. magna TK models.

5.5 Conclusions

To conclude, this work demonstrates the capabilities of the random forest regression model

to predict the log10RIE of parents and BTPs from PaDEL descriptors. In comparison to

other predictive models, the performance quality was relatively similar. Additionally, the

cross-validation of the training set highlighted the potential generalisability of the model

to unseen data while the y-scramble illustrated that there was a significant relationship

between the descriptors and the log10RIE values captured by the model. The data from

this study is an essential contribution to the IE research area where BTPs have not gener-

ally been evaluated and can be used and accessed by the IE and TK modelling community.

Further work could increase the structural diversity of the parent and BTP experimental

RIE values unaccounted for within the new model reported here, which would improve the

domain of applicability and potentially improve prediction performance. The work under-

taken is a first step towards predicting the concentrations (termed semi-quantifying) of

BTPs. Consequently, the early progress described here builds confidence in this approach

towards supporting improved ERA and TK modelling, with the ability to predict concen-

trations of BTPs without internal standards, which could improve the understanding of

the accumulation potential of BTPs.
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CHAPTER 6 : CONCLUSIONS & FUTURE

WORK

The overarching aim of the research presented in this thesis is to advance theoretical and

probabilistic methods for toxicokinetic predictions in Daphnia magna for use in ERA.

This aim is motivated by the significant increase in the variety and volume of chemicals

used globally in the last few decades. This growth has resulted in increased pressure to

generate toxicity data for these chemicals, to perform safety assessments, and to evaluate

potential impacts on the environment. The need to generate toxicity data has motivated

a necessary shift towards NAMs, including in silico and in vitro methods to replace

traditional toxicity testing and help inform chemical safety decisions without the need for

animal testing, which is low-throughput, expensive, and ultimately raises ethical concerns.

The development of in silico TK models for environmentally relevant species, such as D.

magna, are crucial for a NAMs-based safety strategy.

In silico methods are necessarily model and data driven. In Chapter 1, a comprehen-

sive analysis of literature highlighted limited availability of quantitative D. magna TK

data and a modelling approach focused on understanding chemical specific TK processes

rather than a general modelling framework that applies to a large chemical space (as

required for a modern NAMs-based ERA). Primarily, approaches for modelling TK data

are deterministic point-wise predictions that rely on nonlinear regressions as opposed to

probabilistic descriptions of predictions and (hierarchical) model parameters. In Chapter

2, a novel Bayesian framework is developed from limited available historical D. magna
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TK data and evaluated as a NAM for ERA.

The literature review in Chapter 1 identified several key research questions relevant for

TK modelling in D. magna. Ionisation has been shown to have an e↵ect on TK predictions

in fish, therefore, in Chapter 3 the e↵ect of ionisation is investigated within a Bayesian

framework by using Dow over Kow. Additionally, protein binding is a key parameter in

human PBTK and is known to impact the pharmacological relevant concentration. In

Chapter 4, a theoretical protein surface-binding model for D. magna that accounts for

the protein binding as a function of the protein fraction and external concentration is

developed through decomposition analysis. Finally, the biotransformation of chemicals

has been highlighted as a key process in TK as it can lead to overestimations of the

parent chemical and/or result in more toxic BTPs. D. magna BTP TK data is virtually

absent from the literature and commercially available standards that are needed for their

absolute quantification are limited. Chapter 5 defines a semi-quantification method using

relative ionisation e�ciencies as a first step to predicting BTP concentrations that can be

implemented into semi-quantitative TK modelling of BTPs.

6.1 Bayesian framework conclusions

In Chapter 2 a proof-of-concept Bayesian analysis was developed to estimate the steady-

state internal concentrations (and their ratios) on TK time-course data for D. magna from

theAquaTK dataset. The Bayesian framework consists of two components, an inference of

the steady-state internal concentration and an inference with a predictive component. The

inference of the steady-state internal concentration assumes an exponential decay di↵usion

profile while the predictive model uses information about the experiment’s external water

concentration and the chemical’s lipid partitioning. An important feature of a Bayesian

inference and prediction framework is the common-sense probabilistic interpretation of

the results. The inferred concentration ratio is a distribution over plausible concentration

ratio values and so the prediction is also a distribution over all plausible values of the
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concentration ratio.

In the proposed Bayesian framework in Chapter 2, the predictions can be intuitively

benchmarked against the inferences by comparing the 95th percentiles of the predicted

and the inferred steady-state concentration ratios. On average the 95th percentile of the

predicted steady-state concentration ratios was 8-fold higher than the concentration ratios

from the experimental data for 96% of the data. Therefore, using the 95th percentile in

any of the data availability scenarios would be a conservative estimate and essentially

avoids, in 95% of cases, underestimating the true concentration ratio values. Using the

higher percentile provides a risk assessor with a calibrated uncertainty of the estimate,

which is more meaningful than arbitrary safety factors usually applied to TK data.

In the atrazine case study in Chapter 2, atrazine data was presented at three di↵erent

levels of precision given three di↵erent data availability scenarios (low to high). The

multi-level modelling approach shows how Bayesian inference adapts its ability to improve

(uncertainty reductions) in predictions of steady-state concentration ratios for increasing

amounts of data availability. In a world with limited data it has been demonstrated that

in vivo data can be readily substituted by mechanistic based information with substantial

gains in performance, robustness, and transparency, resulting in an extremely valuable

modelling approach that accurately reflects uncertainty given the lack or abundance of

data.

A unique aspect of the analysis performed in Chapter 2 is the inclusion of only the uptake-

phase time-course profile. Previous studies required both uptake and elimination time-

course data to be present. However, relaxing this requirement and focusing on estimating

steady-state concentration ratios, meant that the number of suitable studies was increased

significantly. Moreover, the analysis is able to estimate steady-state concentrations even

for singular data points and combine that information between studies where applicable,

which is one of the benefits of using an integrated framework. This feature means that

ERAs applying a Bayesian framework can estimate predictions and quantify uncertainties
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where experimental data is limited.

Many of the chemicals in the AquaTK dataset are ionisable at environmentally relevant

pHs, which if accounted for might a↵ect prediction error. This e↵ect is studied in Chapter

3 for neutral and ionisable chemicals within the Bayesian framework. The ionisation e↵ect

is first studied in a deterministic setting by comparing NLOM steady-state concentration

ratios predictions using first Kow and then Dow. Mean fold-error is reduced from 11

to 9 when using Dow over Kow suggesting that, in a deterministic setting, accounting

for ionisation improves predictions for the NLOM model. Although Dow improved overall

prediction error, predictions for ionisable chemicals usingDow consistently underpredicted;

underpredictions in ERAs are undesirable in general, suggesting that applying the NLOM

model with Dow for D. magna predictions is not beneficial in an ERA.

In Chapter 3 the evaluation of the e↵ect of ionisation in the Bayesian predictive model

showed that the magnitude of prediction error gets larger when ionisation is accounted for

using Dow. Overall, the prediction errors of the Bayesian prediction model were smaller

than the NLOM model with geometric means of fold error of 3.4 and 4.3 respectively.

A key feature of the Bayesian model is that the steady-state concentration ratios regress

towards the mean, which bounds the prediction error variance by the steady-state con-

centration ratio variance in the AquaTK dataset.

The cross-validation of each study ID to test the sensitivity of the Bayesian parameters to

the input data in Chapter 3 highlighted that the expected value of the standard deviation

parameter was similar across all cross-validation folds apart from when source ID 14

removed. Consequently, the largest prediction errors were primarily neutral chemicals,

which suggests that factors other than ionisation need to be considered to improve model

performance.

Chapters 2 and 3 provide concrete examples of applying Bayesian methods in di↵erent

settings relevant for ERAs: steady-state concentration ratio inference at varying levels of

data availability, probabilistic predictions that are consistent and intuitive to benchmark
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against inferences, hypothesis and model testing and evaluation, complex data structure

modelling, and an example of an ERA that combine all of the components together.

6.2 Bayesian framework future work

Chapters 2 and 3 provide a proof-of-concept Bayesian framework for the quantification

of uncertainty in D. magna TK predictions and the ability to compare parameters to

investigate the e↵ects of ionisation on prediction performance. As a proof-of-concept, the

Bayesian framework used the experiment’s external water concentration and the chemi-

cals lipid partition coe�cient for predictions because they were two experimental factors

that were expected to significantly a↵ect the internal concentration. The benefit of the

Bayesian approach is the ability to include any number of parameters to make more accu-

rate inferences and predictions. Future work should aim to expand the Bayesian predictive

model with other key parameters, such as temperature, wet weight, or size.

In Chapter 3, to improve the NLOM model predictions rather than treat each partition

coe�cient independently a geometric mean of Kow and Dow predictions could be used to

achieve a closer prediction to the target steady-state concentration ratio. Furthermore,

di↵erent models, such as the NLOM model, could easily be implemented into the Bayesian

framework and the performance of the various models predictive performance evaluated

in a consistent and open framework.

The Bayesian framework in Chapters 2 and 3 could be advanced further by potentially

including important structural features of the chemical including the number of hydrogen

acceptors and donors or number of halogenated atoms. Collectively, an important next

step would be to test the Bayesian framework on a wider set of chemicals and environ-

mentally relevant species to establish the domain of applicability. Even though ECOTOX

database is generally only point estimates it could be useful for a more extensive analysis

to test whether the 95th percentile could serve as a conservative estimate across all ERA

relevant species and chemicals.
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6.3 Theoretical protein surface-binding model conclusions

In Chapter 4 a theoretical protein surface-binding model for predicting TK predictions in

D. magna was developed to integrate external concentration as a parameter. As a result

of recent work in G. pulex by Raths et al. (2023), it has been suggested that the external

concentration measured e↵ect is related to protein surface-binding [215]. The PSB model

provides an expression for the concentration ratio upper bound expressed as a function

of the external concentration and the protein fraction of the organism.

A theoretical upper-bound was evaluated against the inferred D. magna steady-state

concentration ratios from Chapter 3 to show that the theoretical model is valid for a

range of external concentration scenarios. Additionally, the PSB model was used as a

predictive model and benchmarked against the NLOM model, which resulted in 70.21%

of time-courses within 10-fold error while the NLOM model predicted 59.57% time-courses

within 10-fold error. This will have positive implications for ERA as the PSB model can

estimate TK predictions across any external concentration scenario with minimum data

requirements and without the need for experimental data. A risk assessor would only

need the lipid and protein fractions, which are readily available in this work and in the

literature, an in silico partition coe�cient value, and the chosen external concentration

scenario to predict an upper bound of the steady-state concentration ratio. The true value

of the D. magna steady-state concentration will in most cases be less than the predicted

value, but this allows a conservative estimate for use in ERA.

6.4 Theoretical protein surface-binding future work

As the theoretical protein surface-binding model was shown to successfully capture TK of

D. magna and G. pulex, the next logical phase for further work would be to evaluate the

model across multiple trophic levels and an extended array of chemicals. This phase was

outside the scope of the PhD research, however, an initial investigation of the application

of the theoretical upper bound using similar methods as in Chapter 4 was conducted on the
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Arnot & Gobas. (2006) database that is also contained in the ECOTOX database [17]. A

dataset was curated of 56 species covering both aquatic vertebrates and invertebrates apart

from algae and only included the highest quality rated data (criteria score = 1). The total

number of high quality steady-state concentration ratio values equalled 2,315. CompTox

Chemical Dashboard was used to predict log10 Dow7.4 values for all the chemicals [253].

As there were a range of species the lowest protein fraction was set to 0.01 and the highest

lipid fraction was set to 0.1. The external concentration scenarios were chosen as 0.026,

1, 5.4, 50, 300, 1000 µg kg
�1 (corresponding to the 10th, 25th, 50th, 75th, 90th, and 95th

percentiles).

Figure 6.1 shows the steady-state concentrations ratios plotted against the Dow7.4 val-

ues from CompTox with the PSB model theoretical upper bound represented by the red

dashed line. This initial investigation suggests that the PSB model is applicable to a

wider range of environmentally relevant species, which suggests this model could have

widespread positive impacts on ERA with predictions without the need for animal test-

ing. Future work could focus on quantifying the performance for di↵erent species and

identifying any outliers that break the theoretical upper bound.

From Chapter 4 for 1 < P < (1
⇢
� 1) the PSB model defines a maximum theoretical

steady-state concentration given the protein and lipid fraction. The use of a PSB model

as a predictive model was shown to perform more accurately than the NLOM model in

predicting D. magna steady-state concentration ratios. However, there was still large

variance in prediction performance across the chemical space. There are many processes

that will a↵ect the accumulation of the chemical resulting in a concentration ratio less

than the upper bound, e.g. biotransformation, inhomogeneous chemical distribution, and

imperfect di↵usion, due to respiration. Therefore, the loss of chemical mass from the

maximum upper bound can be represented by a random variable,

Loss := log

✓
PSB prediction

Measurement

◆
> 0, Measurement  PSB prediction (6.1)
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Figure 6.1: 2315 steady-state concentration ratios across 56 species of aquatic verte-
brates and invertebrates from [17] and ECOTOX database plotted against the Dow7.4
of the chemical with the theoretical upper of the protein surface-binding (PSB) model
(red dashed line) plotted for each external concentration scenario (0.026, 1, 5.4, 50, 300,
1000 µg kg

�1 ). Steady-state concentration ratio data was only included if the external
concentration met the threshold of the scenario. Ionisable (orange) and neutral (blue)
chemicals were highlighted.

where the measurement is the concentration ratio and the PSB prediction is the pre-

dicted steady-state concentration ratio based on the maximum upper bound. The mea-

sured concentration ratios were taken from the ECOTOX database again but a range

of physiochemical descriptors were predicted from ADMET PredictorTM software, which
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resulted in marginally more concentration ratios being available. Overall, there was 2,444

steady-state concentration ratios defined as high quality to use for this analysis. As the

external concentrations are the same the loss is only determined by comparison of the

internal concentrations. Figure 6.2 plots the steady-state concentration ratio prediction

for the PSB and NLOM models against the measured steady-state concentration ratios

from the ECOTOX database. It is clear that most of the steady-state concentration ra-

tios are bound by the PSB theoretical upper bound. Comparatively, the NLOM model

predictions are not bound and tend to underpredict compared to the measured data from

the ECOTOX database.

Figure 6.2: Predictions from the protein surface-binding (PSB) model (blue) and the
non-lipid organic matter (NLOM) model (orange) plotted against the measured steady-
state concentration ratio from the ECOTOX database for 2444 high quality steady-state
concentration ratios. The black bisection highlights those predicted steady-state concen-
tration ratios captured by the theoretical upper bound of the PSB model with a positive
loss and those not bound.

A simple predictive model of the “true” internal organism concentration can be developed

using the loss where the expected true internal organism concentration can be estimated

using the mean of the loss as a correction factor. Figure 6.3 shows the distribution of
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the internal concentration loss across the steady-state concentration ratios with the mean

value represented by a red dashed line.

Figure 6.3: Distribution of the internal concentration loss across the 2,344 high quality
steady-state concentration ratios with the mean loss represented with a red dashed line.

A more advanced predictive model can be constructed by looking for correlations between

the loss and chemical ADMET properties. Following similar methods to Chapter 5 a

random forest regression model was developed with the aim of predicting the internal

concentration loss. As a simple proof-of-concept the steady-state concentration ratios

from the ECOTOX database were used as the training set and the AquaTK dataset

was used an independent test set. The loss was calculated using Equation 6.1 and only

positive loss was used to train the model and predict positive loss in D. magna. If the loss

was negative it would be mean it was breaking the theoretical upper bound and therefore

would not be applicable for regression prediction. The default 50 ADMET predicted

chemical properties were used as the X variable and the internal concentration loss as

the y variable. As a result of chemicals needing positive internal concentration loss and

ADMET prediction properties the ECOTOX and AquaTK datasets were reduced to 2,237
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and 14, respectively. The predicted internal concentration loss was plotted against the

measured loss for the training set (ECOTOX) and test set (AquaTK) (Figure 6.4). There

was a strong prediction performance on the training set (ECOTOX) with a R
2 value of

0.96. Moreover, there was a good prediction performance on the test set (AquaTK) with a

R
2 value of 0.85. Overall, the predictive model was able to predict the D. magna internal

concentration loss within 3-fold of the measured loss, which is a significant improvement

on the safety factors usually applied to TK data.

The number of times a descriptor was chosen as the root node was used to evaluate the

most important descriptors. The root node describes the first descriptor used to split

the data. If a descriptor is consistently chosen as the root node across di↵erent trees in

the random forest it highlights its importance. This resulted in the descriptor with the

highest (negative) correlation being the molecular di↵usion coe�cient. This suggested

that the lower the di↵usion coe�cient the greater the internal concentration loss. It could

be argued that chemicals with a low di↵usion coe�cient will have limited absorption and

struggle to cross the membrane barriers of organisms. Consequently, leading to reduced

bioavailability of the chemical and less accurate predictions of the internal concentration.

Further investigation could identify a range of neutral chemicals (limit influential co-

factors) that have a range of di↵usion coe�cients and try to evaluate the relationship with

the internal concentration loss. The loss could be a function of the di↵usion coe�cient

and be implemented as a correction factor into the PSB model to potentially improve

prediction performance.

Another avenue of future work is an estimation of a tighter upper bound by representing

the protein a�nity P as a pharmacokinetic parameter or physiochemical property. In

Chapter 4 this is initially discussed and in Appendix C.3.1 the mathematical derivation

of this idea is presented. One key parameter that could be related to the protein a�nity

is the fup. A key assumption of the protein surface-binding model is that all proteins

interact with the chemical in a similar way. Therefore, fup was chosen as it is a key
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Figure 6.4: Predicted internal concentration loss from the random forest regression model
against the measured internal concentration loss for the training set (2,237 positive inter-
nal concentration loss values from the ECOTOX database) and the test set (14 positive
internal concentration loss values from the AquaTK dataset). The R

2 of the training
(ECOTOX) and test set (AquaTK) were 0.96 and 0.85, respectively.

parameter in human PBTK, which is supported by extensively evaluated empirical data

rather than other specific proteins that have more limited data. An initial investigation

was undertaken to relate human and rat fup values with P values and to test whether

they break the theoretical protein surface-binding model. Fup values were predicted

using chemical canonical SMILES in ADMET PredictorTM software. Table 6.1 shows the

method to test whether the protein a�nity breaks the density (i.e. P > ((1/⇢) � 1))

when human and rat fup values are used instead. The method for estimating fup values is

presented in detail in Appendix C.3.2. An example would be prochloraz for rats that has a

fup = 6.23% giving an estimate for P ⇡ 15. This is then compared to the protein surface-

binding density (⇢ = ⇢
(S)
p ) in normalised units, which results in an external concentration,

yw = 640.322 µg / L = 6.4e-6 kg / L. The protein surface-binding density is then estimated

as
�

1
0.034

� 2
3
p
6.4⇥ 10�6 ⇡ 0.024, and the bound is set at 1

0.024 � 1 ⇡ 40 > 15. This would
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mean that it would not break the theoretical model, which is represented by a “FALSE”

in Table 6.1. Overall, the predictions for P would not break the model for human and rat

fup values. Considering the substantial di↵erences between the biochemical composition

of D. magna and humans and rats and the fact the P predictions are within an order of

magnitude suggest there is some relationship between the protein a�nity and predicted

fup values. However, from the analysis of the theoretical upper bound in Chapter 4

it is clear that some chemicals break the model. Therefore, to better replicate the D.

magna dataset specifically further work could work on deciphering a scaling metric or

correction factor between the fup values of humans and rats and D. magna or re-analyse

the dataset with D. magna specific fup data using in vitro assays. Alternatively, research

could decipher other surrogates of protein a�nity. For example, protein a�nity has been

shown to depend on the lipophilicity of the chemical, which suggests some function of

Kow could represent P and be tested in a similar framework.
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A final direction for further research could integrate the PSB model into the Bayesian

statistical framework and evaluate its model performance and application to ERA. As the

previous deterministic models used in the Bayesian framework in Chapters 2 and 3 were

essentially placeholder models it would be more appropriate to input the mechanistically

derived PSB model. This would hopefully result in improved model predictions compared

with the inferred steady-state concentration ratios and reduced uncertainty, which could

lead to better estimates for ERA. An interesting comparison would be to re-run the

methods in Chapter 2 and 3 to investigate the e↵ect of ionisation on the PSB model in

the Bayesian framework. In a deterministic setting the NLOM & PSB model showed

improved predictions when using Dow over Kow, whereas the Bayesian model predictions

performed better when using Kow. Therefore, it would be interesting to see if a di↵erent

model choice improved the predictions with Dow within the Bayesian framework.

6.5 Relative ionisation e�ciency conclusions

In Chapter 5 a random forest regression model was developed to predict the log10RIE

values of parents and BTPs as the first step in a workflow to predicting concentrations

of BTPs for use in TK models. Overall, the predictive capabilities of the random forest

regression model were demonstrated with a positive correlation between the predicted

log10RIE and experimental log10RIE values for the independent test set of parent and

BTPs. Further evaluation of the models prediction performance was performed with

a 10-fold cross validation of the training set. This analysis highlighted that the average

RMSE across each cross validation was equivalent to the RMSE on the training set, which

demonstrates the consistency of the model predictions on unseen data. The robustness

of the predictive model was tested with a y-scramble. It confirmed that the predictive

performance could not be achieved by chance through 1000 random iterations and there-

fore captures a significant relationship between the calculated chemical descriptors and

the log10RIE.
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The calculated SHAP values revealed the most influential chemical descriptors on the

log10RIE across the training and test set of chemicals. It was clear that the model made the

same descriptor choices across the training and test set. The most influential parameters

were related to mass, polarisability, and descriptors related to electrotopological state,

which is consistent with findings of important descriptors from other studies who have

analysed larger and more diverse IE datasets.

An important aspect of the research in Chapter 5 is the generation of RIE data for a

group of chemicals that have not typically been studied. The data from Chapter 5 is now

available and can contribute to the IE and TK modelling community.

6.6 Relative ionisation e�ciency future work

In Chapter 5 the random forest regression model was shown to provide reliable predic-

tions of the log10RIE of the parents and BTPs. Therefore, the next phase in this research

should focus on the models implementation into a workflow for predicting concentrations

of BTPs without standards that can then be applied to TK modelling. To achieve this

goal requires several steps. Firstly, intensities from a set of specific calibration chemicals

(internal standards) with known concentrations are measured using the MS. Instrument

specific RF are calculated by dividing the measured intensity and the known concentra-

tion. These are important to account for any variation in instrumentation setup and

will more accurately reflect the concentration of the BTP that will be measured on the

same MS configuration. A linear regression between the predicted IE values from the

random forest regression model and the instrument specific RF values for each calibra-

tion chemical enables the predictions of the RF. Consequently, as long as the structure

of the BTP of interest is known the concentration can be determined from its measured

intensity in the MS. A predicted IE from the random forest regression is calculated using

the chemical descriptors of the BTP. This predicted IE is then used to predict the RF

from the linear regression. Finally, the predicted concentration of the BTP is the ratio
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between the measured intensity in the MS and the predicted RF value. This method

can then be validated by comparing a set of BTPs with known concentrations against

their predicted concentrations and measure the prediction accuracy. If it is possible to

reliably predict BTP concentrations without the reliance on reference standards within an

acceptable margin of error then the semi-quantitative values can be implemented in TK

models. These quantitative values can be converted to biotransformation rates for use in

TK modelling. For example, imagine there is a D. magna TK experiment where the D.

magna are exposed to a chemical analysed at di↵erent time-points over a 48 hour period.

The concentration of a parent chemical with a standard could be calculated at each time

point using a calibration curve alongside the prediction of a BTP concentration using

the intensity measured assuming the structure is known. The structure is important not

only for the predictive element of the workflow but for determining the presence of the

BTP and its intensity in the MS. As the intensity changes with concentration it is possi-

ble to create an absolute quantification time-course of the parent and semi-quantification

time-course of the BTP over the 48 hours. The di↵erence between the concentration

of the parent and predicted concentration of the BTP can be calculated at each time

point and divided by the time interval to obtain a biotransformation rate. This approach

will enable biotransformation to be accounted for in TK models, leading to an improved

understanding of the accumulation potential of BTPs and enhancement of ERA.

To make the research in Chapter 5 more relevant to D. magna future work could in-

vestigate the matrix e↵ects on the IE predictions and concentration predictions. The

experimental IE data in Chapter 5 was determined in solvents, however, it has been illus-

trated that IE predictions can change significantly dependent on the matrix. Therefore,

to determine the matrix e↵ects future work could re-run the experimental workflow in

Chapter 5 but by exposing D. magna to each chemical. This would result in a D. magna

specific IE predictive model that would be more relevant for the prediction of concentra-

tions for use in D. magna TK models.

141



Additionally, the prediction performance and domain of applicability of the random forest

regression in Chapter 5 could be improved further by generating more experimental IE

data for parent and BTPs not included in the study. The more diverse the chemical

dataset the greater the domain of applicability and the more chemicals for the model

to learn from and identify stronger relationships between the structure and IE values.

Consequently, resulting in more robust IE predictions, which could lead to more accurate

concentration predictions.

6.7 Final remarks

An overarching theme of this thesis is the use of in silico NAMs and an “open data” ap-

proach to generating and sharing important data for ERA to reduce the need for animal

testing. The main data source provided is the AquaTK R package used in Chapters 2, 3

and 4, which contains D. magna TK time-course data with experimental parameters, such

as experimental and predicted log10 Kow values, pH, wet weight, and temperature where

applicable. Other key data provided in this thesis include the ACDLabs predictions of

log10 Kow and log10 Dow in Chapter 3, collated D. magna biochemical composition data

used in Chapters 3 and 4, the RIE experimental dataset and predicted PaDEL descriptors

for the chemicals in Chapter 5, the predicted fup data from ADMET PredictorTM software

and the subsets of the US EPA ECOTOX database including 2315 and 2444 steady-state

concentration ratios defined as high quality with log10 Dow predictions from CompTox

Chemical Dashboard and descriptors from ADMET PredictorTM software where appli-

cable. Each one of these datasets has multiple uses in terms of modelling in ERA and

together make a compelling case highlighting alternative approaches available to risk asses-

sors. Importantly, each dataset alongside the relevant code will be made available in sepa-

rate Github repositories for public access (https://github.com/J-Collins1294/thesis-data

& https://github.com/J-Collins1294/thesis-code).

Ultimately, the research contained in this thesis provides a proof-of-concept for the next
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generation of ERA. It lays the foundations of a modern ERA that does not require animal

testing through the increased use of theoretical and probabilistic methods. Future work

should endeavour to integrate these methods into an all-purpose predictive tool in the

form of an R package that risk assessors can use for ERA.

Throughout this thesis, data-driven computational methods were explored to relate inter-

nal and external concentrations of chemicals in a key aquatic invertebrate, D. magna, using

relevant biological and physiochemical properties that govern these processes. This work

highlighted the application of these methods to ERA and demonstrated their significance

in eliminating the need for further animal testing, which is of considerable importance to

society and regulatory bodies.
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APPENDIX A

A.1 AquaTK chemical overview

Table A.1: 30 unique chemicals from 17 studies digitised and collated from journal pub-
lication repositories with their associated CAS registry number for identification and
references.

Chemical CAS Number Reference

Atrazine 001912-24-9 [87]

2-4-Dichlorophenoxyacetic Acid 000094-75-7 [87]

Carbamazepine 000298-46-4 [194]

Chlorpyrifos 002921-88-2 [227]

Diazinon 000333-41-5 [139]

Dichlorodiphenyltrichloroethane (DDT) 000050-29-3 [87]

Diclofenac 015307-86-5 [193]

Fluoxetine 054910-89-3 [81]

Imidacloprid 138261-41-3 [155]

Irgarol 028159-98-0 [123]
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Table A.1 – continued from previous page

Chemical CAS Number Reference

Kepone 000143-50-0 [230]

Mirex 002385-85-5 [230]

Pentachlorophenol 000087-86-5 [144]

Perfluorodecanoic Acid (PFDA) 000335-76-2 [68][271]

Perfluorododecanoic Acid (PFDoA) 000307-55-1 [68][271]

Perfluorononanoic Acid (PFNA) 000375-95-1 [68][271]

Perfluorooctanesulfonic Acid (PFOS) 001763-23-1 [68][271]

Perfluorooctanoic Acid (PFOA) 000335-67-1 [68][271]

Perfluoroundecanoic Acid (PFUnA) 002058-94-8 [68][271]

Prochloraz 067747-09-5 [70]

Propiconazole 060207-90-1 [70]

Propranolol 000525-66-6 [80]

Roxithromycin 080214-83-1 [80]

Terbutryn 000886-50-0 [123]

Tetracycline 000060-54-8 [131]

Tributyltin chloride 001461-22-9 [92]

Triphenyl Phosphate (TPHP) 000115-86-6 [161]
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Table A.1 – continued from previous page

Chemical CAS Number Reference

Tris(1,3-Dichloro-2-Propyl) Phosphate (TDCPP) 013674-87-8 [161]

Tris(2-Butoxyethyl) Phosphate (TBOEP) 000078-51-3 [161]

Tris(2-Chloroethyl) Phosphate (TCEP) 000115-96-8 [161]

A.2 Posterior internal concentration time-course estimates

Samples from the posterior distribution of the model, conditional on the D. magna time

course data, were used to sample continuous time-courses. The distribution of sampled

time courses was summarised in terms of centred 95% and 50% credible intervals. These

intervals are plotted against measured internal concentrations in Figure A.1.
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Figure A.1: Posterior predictive plots for the internal concentration time course for the 30
chemicals at each external concentration. Light blue regions cover a 95% centred interval
for ci(t) and dark blue regions a 50% centred interval. Measured concentrations are shown
as black crosses.
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APPENDIX B

B.1 Time-course data ionisation classification

Table B.1: 47 chemical time-courses, Source ID for each time-course, pH either from the
study or a mean value of 7.55 overall, octanol-water partition coe�cient (Kow) and dissoci-
ation constant (Dow) predictions from ACDLabs, and an ionisable or neutral classification
based on whether the Kow = Dow (neutral) or Dow < Kow (ionisable).

Chemical name Source

ID

Ext.

Conc.

pH ACD

log10 Kow

ACD

log10 Dow

Ionisable/

Neutral

2,4-Dichlorophenoxyacetic

Acid

d12 1000 7.55 2.84 -0.84 Ionisable

Atrazine d12 100 7.7 2.66 2.66 Neutral

Carbamazepine d08 5 7 2.28 2.28 Neutral

Carbamazepine d08 100 7 2.28 2.28 Neutral

Chlorpyrifos d05 0.08 7.91 4.78 4.78 Neutral

DDT d12 10 7.55 6.22 6.22 Neutral

Diazinon d02 1.4604 7.8 3.8 3.8 Neutral

Diazinon d02 1.5821 7.8 3.8 3.8 Neutral

Diclofenac d09 5 7 4.48 1.71 Ionisable

Diclofenac d09 100 7 4.48 1.71 Ionisable

Fluoxetine d10 0.5 7 4.23 1.46 Ionisable

Fluoxetine d10 5 7 4.23 1.46 Ionisable

Imidacloprid d04 190 8.05 0.38 0.38 Neutral

Imidacloprid d04 240 8.05 0.38 0.38 Neutral
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Table B.1 – continued from previous page

Chemical name Source

ID

Ext.

Conc.

pH ACD

log10 Kow

ACD

log10 Dow

Ionisable/

Neutral

Irgarol d03 200 7.9 3.21 3.21 Neutral

Kepone d15 0.175 7.3 5.37 5.37 Neutral

Mirex d15 0.118 7.3 6.91 6.91 Neutral

Pentachlorophenol d16 20 5.5 5.04 4.16 Ionisable

PFDA d06 5 7.8 7.39 3.63 Ionisable

PFDA d07 5 7.8 7.39 3.63 Ionisable

PFDoA d06 5 7.8 8.33 4.58 Ionisable

PFDoA d07 5 7.8 8.33 4.58 Ionisable

PFNA d06 5 7.8 6.6 2.85 Ionisable

PFNA d07 5 7.8 6.6 2.85 Ionisable

PFOA d06 5 7.8 5.58 1.83 Ionisable

PFOA d07 5 7.8 5.58 1.83 Ionisable

PFOS d06 5 7.8 4.17 0.68 Ionisable

PFOS d07 5 7.8 4.17 0.68 Ionisable

PFUnA d06 5 7.8 8 4.25 Ionisable

PFUnA d07 5 7.8 8 4.25 Ionisable

Prochloraz d13 640.322 7.9 4.08 4.08 Neutral

Propiconazole d13 479.108 7.15 3.52 3.52 Neutral

Propranolol d01 5 7 3.26 0.81 Ionisable

Propranolol d01 100 7 3.26 0.81 Ionisable

Roxithromycin d01 5 7 3.55 2.45 Ionisable

Roxithromycin d01 100 7 3.55 2.45 Ionisable

TBOEP d14 20 7.55 3.46 3.46 Neutral

TBOEP d14 100 7.55 3.46 3.46 Neutral

TCEP d14 20 7.55 1.42 1.42 Neutral
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Table B.1 – continued from previous page

Chemical name Source

ID

Ext.

Conc.

pH ACD

log10 Kow

ACD

log10 Dow

Ionisable/

Neutral

TCEP d14 100 7.55 1.42 1.42 Neutral

TDCPP d14 20 7.55 3.26 3.26 Neutral

TDCPP d14 100 7.55 3.26 3.26 Neutral

Terbutryn d03 200 7.9 3.35 3.35 Neutral

Tetracycline d11 100 6.8 -0.45 -3.25 Ionisable

Tetracycline d11 1000 6.8 -0.45 -3.25 Ionisable

TPHP d14 20 7.55 4.12 4.12 Neutral

TPHP d14 100 7.55 4.12 4.12 Neutral

B.2 Bayesian reference model

Table B.2: Reference model used to estimate steady-state concentration ratios.

Parameter type Parameter symbol and definition

Random variable ci(t) - Concentration in time-course i at time t

Random variable Ki - Steady-state concentration rate for time-course i

Random variable Kloc - Average log10 steady-state concentration ratio

Random variable Kscale - Standard deviation of log10 steady-state con-

centration ratios

Random variable kout,i - Clearance rate for time-course i

Random variable tshape - Shape parameter of distribution describing

time to 95% steady state
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Table B.2 – continued from previous page

Parameter type Parameter symbol and definition

Random variable tscale - Scale parameter of distribution describing time

to 95% steady state

Random variable � - Scale parameter of distribution of data with re-

spect to estimated internal concentration

Data Cwater,i - External concentration for time-course i

Data yi,j - jth measured internal concentration for time-

course i

Data ni,j - Number of replicates underpinning the average

yi,j

Prior Likelihood

� ⇠ HalfNormal(0, 1) t95,i ⇠ InverseGamma (tshape, tscale)

Kloc ⇠ Normal(2, 1) kout,i =
3

t95,i

Kscale ⇠ HalfNormal(0, 1) log10 Ki ⇠ Normal (Kloc, Kscale)

tshape ⇠ HalfNormal(0, 1) ci(t) = Cwater,iKi

�
1� e�kout,it

�

tscale ⇠ HalfNormal(0, 10) log yi,j ⇠ Normal
⇣
log (ci (ti,j)) ,

�p
ni,j

⌘
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B.3 Bayesian predictive model

Table B.3: Specification of the Bayesian predictive model that uses chemical-specific
partition coe�cients to estimate steady-state concentration ratios.

Parameter type Parameter symbol and definition

Random variable ci(t) – Concentration in time-course i at time t

Random variable Ki – Steady-state concentration rate for time-course i

Random variable ↵ – intercept for predicting steady-state concentration

ratio using partition coe�cient

Random variable � – slope for predicting steady-state concentration ra-

tio using partition coe�cient

Random variable K
pred
i

– predicted steady-state concentration rate for

time-course i

Random variable Kscale – standard deviation of log10 steady-state con-

centration ratio prediction error

Random variable kout,i – Clearance rate for time-course i

Random variable tshape – Shape parameter of distribution describing

time to 95% steady state

Random variable tscale – Scale parameter of distribution describing time

to 95% steady state

Random variable � – Scale parameter of distribution of data with re-

spect to estimated internal concentration

Data Cwater,i – External concentration for time-course i
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Parameter type Parameter symbol and definition

Data yi,j – jth measured internal concentration for time-

course i

Data ni,j – number of replicates underpinning the average

yi,j

Data log10Pi – base 10 logarithm of the partitioning coef-

ficient for the chemical corresponding to time-course

i

Prior Likelihood

� ⇠ HalfNormal(0, 1) t95,i ⇠ InverseGamma (tshape, tscale)

↵ ⇠ Normal(2, 1) kout,i =
3

t95,i

� ⇠ Normal(0, 1) log10 K
pred
i

= ↵ + �log10Pi

Kscale ⇠ HalfNormal(0, 1) log10Ki ⇠ Normal
⇣
log10 K

pred
i

, Kscale

⌘

tshape ⇠ HalfNormal(0, 1) ci(t) = Cwater,iKi

�
1� e�kout,it

�

tscale ⇠ HalfNormal(0, 10) log yi,j ⇠ Normal
⇣
log (ci (ti,j)) ,

�p
ni,j

⌘
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APPENDIX C

C.1 Partitioning model

C.1.1 Assumptions

Steady-state is assumed for all quantities unless explicitly stated, i.e., the internal con-

centration is assumed to be the steady-state internal concentration.

C.1.2 Two-phase partitioning model

Let m be the total chemical mass, and let M be the total organism mass, then y is the

total internal concentration defined as the ratio,

y :=
m

M
, M > 0

Let y@ = m@
(M@+m@)

be the partition internal concentration in a two-phase partition such

that,

M = M` +M@ +m,

and

m = m` +m@ .
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In environmental exposure scenarios, the mass of the chemical in each partition is assumed

to be much smaller than the mass of the partition it “occupies” and therefore the mass

of the compartment, which implies that y@ ⇡ m@
M@

and M ⇡ M` +M@ .

Show that,

y

y@
= ⌫ ·K + 1� ⌫, y@ > 0

where ⌫ is defined as the `-partition mass fraction,

⌫ :=
M`

M
,

and K is the true organism-specific partitioning coe�cient defined as the ratio of the

concentrations of each partition,

K :=
y`

y@
=

m`/M`

m@/M@

=
m`

m@

· M@

M`

.

From the definitions of y, y@ , m, and K,

z :=
y

y@
= ⌫

m/M`

m@/M@

= ⌫
m

m@

M@

M`

= ⌫

✓
m` +m@

m@

◆
M@

M`

= ⌫

✓
m`

m@

+ 1

◆
M@

M`

= ⌫
m`

m@

M@

M`

+ ⌫
M@

M`

= ⌫K + 1� ⌫
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where it possible to use the fact that,

y =
m

M
= ⌫

m

M`

,

in the first step, and the last step uses the definition ofK and the fact thatM@ = (1�⌫)M

and M` = ⌫M giving,

⌫
M@

M`

= ⌫
1� ⌫

⌫
= 1� ⌫.

C.1.3 General partitioning model

The total internal concentration can be expressed as,

y =
m@

M@

✓
⌫
m`

m@

M@

M`

+
M@

M

◆
= ⌫

m`

M`

+
m@

M
,

composed of two terms that contain only masses from either partition whereM is assumed

constant. Let m` = m1 +m2 and M` = M1 +M2, which implies that,

⌫ =
M`

M
=

M1

M
+

M2

M
= ⌫1 + ⌫2

Substituting into the left-hand term in the expression for total internal concentration,
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⌫
m`

M`

= ⌫1
m`

M`

+ ⌫2
m`

M`

= ⌫1
m1 +m2

M1 +M2
+ ⌫2

m1 +m2

M1 +M2

=
M1

M

m1 +m2

M1 +M2
+

M2

M

m1 +m2

M1 +M2

=
m1

M
+

m2

M

= ⌫1
m1

M1
+ ⌫2

m2

M2

Thus, for any sub-partition of a partition, results in a linear combination of each of the

sub-partitions. In general, then, for i sub-partitions

m =
X

i

mi +m@

and,

M =
X

i

Mi +M@ +m,

the concentration ratio can then be expressed as,

y

y@
=

X

i

�iKi + 1�
X

i

�i,

where �i is the mass fraction of the ith sub-partition, Ki is the partitioning coe�cient of

the ith sub-compartment, and the last term results from the fact thatM@ = (1�
P

i
�i)M

must be over all partition’s mass fractions.
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C.2 Protein surface-binding model

C.2.1 Limitations of current models

TK studies for propranolol show that for the same study, for the same chemical, over

the same time exposure, but at di↵erent external concentrations, significant di↵erences

in steady-state internal-external ratios are observed. This motivates the development of

a model that captures an external concentration dependence, i.e.,

z = y/yw = f (K, yw; ⌫, . . .) , yw > 0.

Studies of protein binding in Gammarus pulex at di↵erent concentrations provide empir-

ical evidence that suggest the dependence on external concentration is linked to protein

binding. Protein binding is typically modelled as a surface-binding process. This moti-

vates the development of a protein surface-binding model.

C.2.2 Assumptions

Under the assumption that chemical mass contributions can be linearly decomposed into

lipid-water, and protein contributions,

y =
m

M
=

m` +mw +mp

M
=

m` +mw

M
+

mp

M
= y

(I) + y
(II)

.

The key point here being that each of the two processes can be modelled independently and

combine their contributions. Specifically, the previous section shows that the first term

can be expressed as a function of the partitioning coe�cient and the mass fraction,

y

yw
=

y
(I)

yw
+

y
(II)

yw
= ⌫K + 1� ⌫ +

1

yw

mp

M
.

The aim of the remaining text is to obtain an estimate of the protein chemical mass term
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mp since both yw and M are both known.

C.2.3 Densities

The term mp/M can be interpreted as both a mass concentration and a density, since

Daphnia are 93% water, and the density of water is close to 1, the protein-chemical density

is defined as,

⇢p :=
mp

V
⇡ mp

M
= y

(II)
.

A similar argument applies to the water concentration, defined here with respect to the

water-chemical density,

⇢w :=
mw

V
⇡ mw

M
⇡ mw

Mw

= yw.

It is expected that the surface density of chemical on the protein to be closely related to

the volume density of chemical in the water. The aim is to develop a model relating the

two quantities.

Remark 1. For unit length-scales length, surface, and volume densities interchangeably

can be used interchangeably since, b⇢ = m

L3 = m

L2 = m

L
.

Most environmental measurements of external water concentrations have unit length-

scale, i.e., they are measured in X per unit litre. For L 6= 1, it is important to make a

distinction between the volume density ⇢
(v) and the surface density ⇢

(s) = m/L
2.

Remark 2. It is implicitly assumed in the previous statement that the internal water-

chemical density in the organism that “encloses” the protein is the same as the external
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water-chemical density.

In the next section the relationship between the number of available molecules in an

enclosing space, an embedded D � 1 dimensional subspace, and the maximum possible

surface density is investigated.

C.2.4 Toy surface-binding model

Let V be a unit volume representing the water partition of the organism that is assumed

to enclose a unit surface S representing the surface of the protein partition. Let b be the

number of binding sites in a unit length-scale so that BS = b
2 and BV = b

3. For example,

set b = 50 so that BS = 502 = 2, 500 and BV = 503 = 125, 000.

Figure C.1: Unit volume representing the water partition of the organism enclosing a
protein unit surface. Both have approximately the same average density hZi ⇡ 1/1000.

Let Z ⇠ Bern(p⇢) be a random variable representing a molecule with unit mass that

is randomly present with probability p⇢ at any given binding site i. Set p⇢ = ⇢, so

that the expected density of the volume is E(Z) = ⇢. The randomness here corresponds

to the random movement of the chemical molecules in the water partition of the organism.

Concretely, suppose the external water concentration is yw = 1, 000 µg/L. It is as-
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sumed that the water partition in the organism has the same chemical-water density,

so ⇢w = yw = 1, 000 µg/L = 10�6 kg/L ⇡ 10�6 kg / kg.

Remark. It’s important the density is dimensionless (kg/kg) to represent it as a proba-

bility – so the chemical mass must always be normalised with respect to the enclosing

volume’s mass. This avoids probabilities greater than 1.

Simulation steps. Sample from a Bern(p⇢) with p⇢ = ⇢w at each binding site. Figure C.1

provides an example simulation for ⇢w = 10�3. The average density across the volume (in

fact any space) will be hZi ⇡ ⇢w. Any surface embedded in the volume will have the same

density. This is simply because the density is defined at each binding site, independently

of the geometry. An example of a volume simulation and surface embedded in the volume

is presented in Figure C.1.

In other words, it is plausible to imagine each binding site independently of its geometry

and talk about surface and volume densities interchangeably provided the space is suit-

ably normalised. This provides the link between the external water concentration and the

number of available chemical molecules at the surface of the protein.

C.2.5 Binding & unbinding probabilities

Given an enclosing volume density ⇢
(V )
w and an embedded surface with density ⇢

(S)
w = ⇢

(V )
w ,

the probability the molecule binds to the surface is defined as,

P (B| {Z = 1}) := pb,

where B is the event the molecule binds. The probability the molecule binds and then
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unbinds is defined as,

P (U | {Z = 1} \ B) := pu,

where U is the event the molecule unbinds after it has first bound. The protein a�nity

is defined as,

P :=
pb

pu
.

Let Y0 be a random variable representing an available molecule with unit mass that has

bound and not unbound to the surface of the protein, i.e., Y0 ⇠ Bern(p). The value of p

can be calculated using Bayes law and the probability of intersection,

p = P ({Z = 1} \ B \ U
c) = P (Z = 1)P (B|Z = 1)P (U c|{Z = 1} \ B) = p⇢pb (1� pu) .

The expected density follows E (Y0) = p⇢pb (1� pu) from the Bernoulli distribution. Fig-

ure C.2 is a simulation of a binding and unbinding process.

Remark. This is under the assumption that the time it takes a molecule to bind and

unbind is essentially instantaneous. The timescales that protein binding and unbinding

take place at are many orders of magnitude smaller than Fickian di↵usion. Protein binding

typically reaches steady-state after a few seconds compared with lipid-binding di↵usion

that reaches steady-state over potentially several days.
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Figure C.2: Toy surface-binding model: Bs⇢ grey binding sites, Bsp⇢pp red bound
molecules, Bsp⇢pbpu blue unbound molecules, Bsp⇢pb(1 � pu) orange accumulated
molecules; left at initial time t = 0, right: next step in time t = 1.

C.2.6 Repeated binding & occupancy

Given an available binding site, the molecule at that site has a probability pb of binding

to that site. Moreover, once the molecule has bound, there is a probability pu it unbinds.

Figure 3 illustrates the toy model for an initial and following timestep.

Once a molecule has bound, that site is occupied, and a molecule cannot bind again to

that site until the occupying molecule unbinds. Occupancy requires a notion of available

space. Let B be the total number of available binding sites (this could be a surface or a

volume) and let �Bn = B � BE(Yn) be the expected number of remaining sites at the

nth repeated binding process, since BE (Yn) = Bp.

The expected number of molecules bound in the next experiment will depend on the

number of sites that have been occupied in the previous experiment,

BE(Yn+1) = (BE(Y
n
) +�BnE (Ib))E(1� Iu),
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where Ib and Iu are indicator random variables representing the event of the molecules

binding and unbinding with probabilities pb and pu as defined in the previous section.

In other words, the total expected number of occupied sites at time n will be the expected

number of occupied sites from the previous time BE(Yn) plus the proportion of remaining

unoccupied sites that bind �BnE (Ib). The total is then multiplied by the proportion that

do not unbind E(1� Iu).

Substituting back �Bn = B � BE(Yn) it is possible to factor out B,

E (Yn+1) = (E (Yn) + 1� E (Yn)E (Ib))E (1� Iu) .

Expanding out the terms expressed as probabilities and taking n ! 1, the steady-state

surface density is given by,

⇢ss ⇡
pb (pu � 1)2 p⇢

pb (pu � 1)2 p⇢ + pu

=
p⇢q

p⇢q + pu
=

⇢q

⇢q + pu
.

Setting ⇢ss = ⇢ and rearranging,

⇢ =
⇢q

⇢q + pu

⇢q + pu = q

⇢ =
q � pu

q
=

pb (pu � 1)2 + pu

pb (pu � 1)2
⇡ pb � pu

pb

In other words, pu needs to be at least a factor
⇣

1
⇢
� 1

⌘
larger than pb for ⇢ss to be at
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least as large as ⇢. In general, ⇢ ⌧ 1, requiring the chemical protein a�nity to be several

orders of magnitude greater for the steady-state surface density to exceed the availability

density ⇢. Thus, the enclosing density, the number of molecules available to the surface,

e.g., the water-chemical density enclosing the protein, can be considered an upper bound

on the surface density.

Simulation. Create an array of B binding sites. Generate occupancy by sampling from a

Bernoulli distribution with Bern(p⇢) at each binding site. For each binding sites sample

another Bernoulli random variable with Bern(pb) and multiply the previous value. Then

multiply again for Bern(1 � pu). In the next step, generate occupancy sampling for the

sites that have 0. This tracks the occupancy from the previous step. Apply the binding

step to the subset but apply the unbinding step to all binding sites. Repeat n times.

Figure C.3 simulates a repeated binding process and tracks the steady-state density. As

the number of sites become occupied, the probability any single remaining site gets oc-

cupied becomes smaller and smaller, and the number of molecules that unbinds becomes

larger and larger. An equilibrium is reached when pb(pu�1)2p⇢
pb(pu�1)2p⇢+pu

sites are occupied. For

the parameters in the simulation, ⇢ss ⇡ 0.1611.. which agrees with the simulation.

C.2.7 Estimating surface densities

In the previous section chemicals with a protein a�nity P <
1
⇢
� 1 were shown that the

enclosing density ⇢ is an upper bound on the surface density. The next step is to estimate

⇢ from the (internal) water concentration.

As a simple example, assume all the mass in the water in the organism is available to

bind to the protein surface at any given instance of time, then,
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Figure C.3: Density of molecules on a surface of B = 106 binding sites with ⇢ = 1/50,
pb = 1/5, and pu = bb/10.

⇢
(S)
p

 ⇢
(V )
w

=
mw

V
⇡ mw

Mw

= yw.

Remark. It doesn’t matter if all the mass binds to the protein and is replaced in the water

over a long period of time. From the results in the previous section, the density on the

protein surface cannot exceed the density of the enclosing volume provided P <
1
⇢
� 1 .

Note, surface and volume densities can discussed interchangeably at this point because

the densities (so far) are defined with respect to unit length-scales as is usually the case,

i.e., V has unit 1 (litre).

Suppose now that all the mass in the internal water occupies the protein volume, which

it indeed must do before it binds. The density in the protein volume will be much higher

than in the water volume because the protein volume is much smaller than the water vol-

ume. Figure C.4 illustrates the increase in density for a protein fraction Mp

M
⇡ Vp

V
= 1/2.
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Figure C.4: Chemical mass in a water volume compacted into a protein volume.

In fact,

Vp = 'V ⇡ 'Vw,

where Vp is the protein partition volume and ' is the protein mass fraction where it is

assumed that ' = Mp/M ⇡ Vp/V .

Thus, the density in the protein volume should instead be bound by,

⇢
(S)
p

 mw

Vp

=
mw

'V
=

1

'
⇢w ⇡ 1

'
yw.

However, rescaling the volume by a factor of ' means the volume density is no longer

defined over a unit length. The di↵erence between a surface and a volume density must

therefore be considered through a transform that preserves the density between a surface

and a volume.

As a concrete example, consider estimating a scalar volume density ⇢ = m/V = 10/100

and keeping the mass fixed and converting the volume density into a surface density by

transformation of the volume such that,
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⇢
(S) =

�
⇢
(V )

� 2
3 =

⇣
m

V

⌘ 2
3
=

⇣
m

L3

⌘ 2
3
=

✓
m

2

L2

◆
=

✓
10

100

◆ 2
3

= 0.21..

The resulting density is much higher than the original density creating an overestima-

tion of the upper bound. For extremely small volume densities, which is the case in

environmental settings, the overestimation could be several orders of magnitude.

This can be corrected in the upper bound by taking the square-root of the mass in the

estimated water-chemical volume density,

⇢
(S)
p


✓
1

'

◆ 2
3 p

yw.

The right-hand side can now be interpreted as an upper bound on the protein-chemical

surface density ⇢
(S)
p with the scaling of ' adjusted accordingly.

C.3 Combined lipid and protein surface-binding model

The combined model follows from the inequality,

y

yw
=

y
(I)

yw
+

y
(II)

yw
= ⌫K + 1� ⌫ +

1

yw

mp

M
 ⌫K + 1� ⌫ +

✓
1

'

◆ 2
3 1
p
yw

C.3.1 Tighter upper bound

It is observed that,

⇢  ⇢ss

when,
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P <

✓
1

⇢
� 1

◆
.

Rearranging the expression above,

1 + P <
1

⇢
,

and since 1 + P >
1
⇢
> 0,

1

1 + P
> ⇢

Since ⇢ as yw can be interpreted,

yw ⌘ ⇢ <
1

1 + P

Substituting into the model,

⇢
(S)
p

<

✓
1

'

◆ 2
3
r

1

1 + P


✓
1

'

◆ 2
3 p

yw, yw >
1

1 + P

Given both P and yw are known, a tighter upper bound can be achieved by knowing

P , provided 1
1+P

is less than yw. Moreover, P can often be predicted from chemical

properties, suggesting a reduced parameter version of the model might be possible. For

example, if P ⇡ f(Kow) the model can be reduced to a single variable model.
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C.3.2 Fup% protein a�nity estimates

A key condition of the model is the requirement that P < ((1/⇢)�1). P can be estimated

with the fraction unbound in plasma (fup%) predicted from ADMET predictor software.

Since P is the ratio of probability of binding to unbinding,

100� fup%

fup%
⇡ pb

pu
= P
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APPENDIX D

D.1 Calibration curves and linear regression fits
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Figure D.1: Calibration curves and linear regression fits with R
2 values for chemicals 10A

- 27A.
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Figure D.2: Calibration curves and linear regression fits with R
2 values for chemicals 27B

- 46A.
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Figure D.3: Calibration curves and linear regression fits with R
2 values for chemicals 46B

- 48C.
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Figure D.4: Calibration curves and linear regression fits with R
2 values for chemicals 48D

- 60C.
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Figure D.5: Calibration curves and linear regression fits with R
2 values for chemicals 61A

- 78B.
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Figure D.6: Calibration curves and linear regression fits with R
2 values for chemicals 80A

- Anchor.
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D.2 Overview of relative ionisation e�ciency data

Table D.1: Overview of chemical ID, chemical name, concentration group, gradient, R2

value, relative ionisation e�ciency (RIE) values, and log10RIE values for the 67 parent
and biotransformation products including the anchor chemical.

ID Chemical name Concentration

group

Gradient R2 RIE log10RIE

10A 9-anthraldehyde C 5.58 ⇥ 106 0.994 0.066 -1.183

10B 9-Anthracenecarboxylic acid D 6.80 ⇥ 104 0.996 0.001 -3.097

12A Acetochlor C 2.33 ⇥ 108 0.996 2.743 0.438

12B 2-Chloro-N-(2-ethyl-6-

methylphenyl)acetamide

C 3.68 ⇥ 107 0.990 0.433 -0.363

13A Alachlor C 2.22 ⇥ 108 0.981 2.615 0.418

13B 2-Chloro-N-(2,6-

diethylphenyl)acetamide

C 7.11 ⇥ 107 0.976 0.837 -0.077

14A Ametryn A 4.30 ⇥ 109 0.987 50.547 1.704

16A Atrazine B 7.89 ⇥ 108 0.976 9.281 0.968

16B Atrazine-desethyl B 1.35 ⇥ 108 0.994 1.585 0.200

16C Atrazine-desisopropyl B 1.17 ⇥ 108 0.992 1.376 0.139

25A Chlorpyrifos-oxon A 1.72 ⇥ 109 0.979 20.277 1.307

27A DEET A 6.94 ⇥ 108 0.978 8.169 0.912

27B N-ethyl-m-toluamide A 4.66 ⇥ 108 0.995 5.490 0.740

27C N,N-diethyl-m-

hydroxymethylbenzamide

A 2.31 ⇥ 109 0.983 27.162 1.434

33A Diflubenzuron D 1.04 ⇥ 106 0.994 0.012 -1.910

33B 1-(4-Chlorophenyl)urea D 2.73 ⇥ 106 0.995 0.032 -1.494

39A Diuron C 1.75 ⇥ 108 0.980 2.055 0.313

39B Diuron-desdimethyl D 7.82 ⇥ 105 0.997 0.009 -2.036

39C Diuron-desmonomethyl C 2.87 ⇥ 107 0.983 0.338 -0.471

43A Fenthion-sulfoxide A 2.35 ⇥ 109 0.977 27.669 1.442

43B Fenthion-sulfone C 3.19 ⇥ 107 0.999 0.375 -0.426

44A Flufenacet C 4.55 ⇥ 107 0.986 0.536 -0.271

44B Flufenacet OXA D 1.44 ⇥ 105 0.997 0.002 -2.772
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Table D.1 – continued from previous page

ID Chemical name Concentration

group

Gradient R2 RIE log10RIE

46A Imidazole B 4.79 ⇥ 108 0.990 5.638 0.751

46B 1-methylimidazole B 2.15 ⇥ 108 0.985 2.530 0.403

46C 1,2-dimethylimidazole B 3.71 ⇥ 108 0.974 4.368 0.640

46D 2-methyl imidazole B 7.62 ⇥ 108 0.988 8.966 0.953

46E 4-methyl imidazole B 7.05 ⇥ 108 0.985 8.292 0.919

46F 2-ethyl-4-methyl imidazole B 1.16 ⇥ 109 0.982 13.615 1.134

46G 1H-imidazole-1-propylamine B 5.53 ⇥ 108 0.999 6.510 0.814

46H 2-ethylimidazole B 1.32 ⇥ 109 0.996 15.576 1.192

46I 1-ethyl-1H-imidazole D 4.82 ⇥ 108 0.993 5.671 0.754

46J 1-vinylimidazole B 1.13 ⇥ 108 0.998 1.335 0.126

48A Isoproturon A 2.65 ⇥ 109 0.988 31.167 1.494

48B 4-Isopropylaniline A 2.66 ⇥ 107 0.998 0.313 -0.505

48C Isoproturon-didemethyl B 1.26 ⇥ 108 0.980 1.486 0.172

48D Isoproturon-monodemethyl B 5.34 ⇥ 108 0.980 6.285 0.798

50A Kresoxim-methyl C 1.48 ⇥ 108 0.987 1.747 0.242

50B Kresoxim-methyl acid C 1.53 ⇥ 107 0.973 0.180 -0.745

54A Metalaxyl A 2.93 ⇥ 109 0.985 34.450 1.537

54B Metalaxyl-hydroxymethyl B 8.76 ⇥ 108 0.991 10.310 1.013

54C Metalaxyl acid B 5.64 ⇥ 108 0.986 6.633 0.822

58A Metolachlor B 1.92 ⇥ 109 0.987 22.558 1.353

58B Metolachlor OXA C 2.14 ⇥ 107 0.978 0.252 -0.598

58C Metolachlor-Morpholinone A 3.76 ⇥ 109 0.988 44.237 1.646

60A Metsulfuron-methyl B 6.92 ⇥ 108 0.992 8.147 0.911

60B Methyl 2-

(aminosulfonyl)benzoate

D 1.94 ⇥ 105 0.998 0.002 -2.642

60C 2-Amino-4-methoxy-6-methyl-

1,3,5 triazine

B 1.89 ⇥ 108 0.992 2.230 0.348

61A N,N-Dimethylaniline D 4.23 ⇥ 107 0.997 0.498 -0.303

61B N-Methylaniline D 3.69 ⇥ 107 0.999 0.434 -0.362
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Table D.1 – continued from previous page

ID Chemical name Concentration

group

Gradient R2 RIE log10RIE

65A p-Toluidine D 2.19 ⇥ 107 1.000 0.258 -0.588

65B 4’-Methylacetanilide D 2.55 ⇥ 107 0.982 0.300 -0.524

70A Prometon A 5.10 ⇥ 109 0.989 60.045 1.778

71A Prometryn A 4.69 ⇥ 109 0.991 55.173 1.742

73A Propazine A 1.32 ⇥ 109 0.995 15.571 1.192

73B Propazine-2-hydroxy A 1.35 ⇥ 109 0.991 15.894 1.201

77A Terbuthylazine A 1.28 ⇥ 109 0.990 15.094 1.179

77C Terbutylazine-desethyl B 2.37 ⇥ 108 0.993 2.785 0.445

78A Terbutryn A 3.66 ⇥ 109 0.986 43.096 1.634

78B Terbumeton A 4.05 ⇥ 109 0.985 47.638 1.678

80A Thiacloprid B 7.83 ⇥ 108 0.974 9.217 0.965

80B Thiacloprid-amide B 7.02 ⇥ 108 0.992 8.263 0.917

81A Thifensulfron methyl B 5.16 ⇥ 108 0.996 6.073 0.783

82A Triadimenol C 1.49 ⇥ 108 0.998 1.751 0.243

84A Trinexapac-ethyl C 8.21 ⇥ 106 0.998 0.097 -1.015

84B Trinexapac acid D 3.87 ⇥ 105 0.997 0.005 -2.342

ANCHOR Tetraethylammonium chloride A 8.50 ⇥ 107 0.991 1.000 0.000

180



BIBLIOGRAPHY

[1] Aalizadeh, R., Nika, M.-C., and Thomaidis, N. S. (2019). Development and application

of retention time prediction models in the suspect and non-target screening of emerging

contaminants. Journal of Hazardous materials, 363:277–285.

[2] Aalizadeh, R., Nikolopoulou, V., Alygizakis, N., Slobodnik, J., and Thomaidis, N. S.

(2022). A novel workflow for semi-quantification of emerging contaminants in envi-

ronmental samples analyzed by LC-HRMS. Analytical and Bioanalytical Chemistry,

414(25):7435–7450.

[3] Achar, J., Cronin, M. T., Firman, J. W., and Öberg, G. (2024). A problem formu-
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