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ABSTRACT 

The power generation of variable renewable energy (VRE) is largely affected by natural 

environmental factors, such as wind speed and solar irradiance, which can cause great 

variability, fluctuation, and intermittency, and these characteristics will become more 

severe as renewable energy penetration increases. These power variations will bring 

operational challenges to the instantaneous balance, and will also increase in intraday 

trading frequency, and increase re-scheduling operation costs in the electricity market. 

Therefore, increasing penetration of VRE will cause fundamental and structural changes to 

traditional power system operation regimes. This doctoral study focuses on the 

investigation of increasing spatial-temporal resolution in high-penetration renewable 

energy systems and evaluates their impact on electricity market operations, hence providing 

scientific insights into the electricity market reform. 

This thesis carries out a literature review and it is found: there is a lack of theoretical 

research on the impact of power fluctuation characteristics on the day-ahead power curve 

and the real-time power curve; there is a lack of quantitative scientific evaluation of the 

entire electricity market at different temporal granularity; Current research on increasing 

spatial granularity generally focuses on the regional and node electricity prices, but rarely 

mentions the increase of spatial network granularity, and lacks a scientific model for 

building spatial grid networks. 

In terms of power fluctuation, this thesis proposes metrics including power incremental 
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statistics, coefficient of variation, and peak power duration to characterize the power 

variability characteristics. Based on these metrics, the mathematical relationship between 

these variations and net-load power curves, and real-time power imbalance curves are 

analysed. It is found that power variability will directly affect net-load power curves and 

the power gradient will affect the real-time power imbalance. For example, the solar power 

variability characteristics will cause the net-load power curve to look like a duck curve, 

while real-time power imbalance to look like a butterfly curve. 

In terms of increasing temporal resolution reform in electricity markets, this thesis 

proposes an evaluation method for the electricity market at different time granularity, 

including ex-ante real-time power deviation prediction; real-time power scheduling 

operation and clearing; and ex-post power deviation settlement. Based on this evaluation 

model proposed, this thesis provides strong evidence that the higher the time granularity, 

the power step changes and the real-time power deviation quantities are smaller, and vice 

versa. Increasing the time granularity from 30 to 5 minutes will reduce the balancing cost 

by nearly half and reduce the power step amplitude standard deviation by nearly 80%. 

In regarding the increasing spatial resolution for electricity market reform, including the 

space granularity of renewable generation units and the space granularity of the 

subnetworks, the thesis proposes the stochastic energy network theory to characterize the 

supply-demand adaptation balance index (SDABI) and further proposes a subnetwork 

networking method to evaluate the impact of increasing space granularity on reducing 
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power system operation costs, power flow losses, and power transmission network 

congestion. 

In summary, this doctoral thesis for the first time provides scientific evidence to support 

the worldwide power market reform of the increasing spatial-temporal resolution with 

massive renewable energy integration systems. 
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1. INTRODUCTION 

1.1. Research Background and Challenges 

1.1.1 High Penetration Renewable Energy System 

Recently, the world has suffered from a wide range of climate extremes, including heat 

waves, hurricanes, wildfires, and droughts, and how to mitigate the frequency of extreme 

weather and tackle climate change has become a global challenge that transcends national 

boundaries. To combat climate change, at the 21st Conference of the Parties (COP) held in 

Paris on December 12, 2015, 197 countries adopted the Paris Agreement. The agreement 

aims to significantly reduce global greenhouse gas emissions and limit global temperature 

rise this century to less than 2°C [1-2]. 

As the urgent issue of climate change continues to escalate, more and more countries 

have committed to achieving net zero carbon emissions in the coming years [3], The global 

renewable energy market has undergone qualitative changes:  

(1)  Renewable energy installed capacity is growing rapidly. During the whole year of 

2023, 《 Renewable Capacity Statistics 2024 》  released by the International 

Renewable Energy Agency (IRENA) shows that solar energy and wind energy 

contribute more than 97% of the world’s renewable energy installed capacity. Among 

them, solar energy accounts for about 73%, and wind power accounts for about 24%, 

total renewable installed capacity is about 473 GW [4 - 5]. 
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(2)  The cost of the entire renewable energy industry chain has been significantly 

reduced. From 2010 to 2022, the levelized cost of electricity (LCOE) of newly 

put-into-production grid-connected PV projects worldwide dropped by 88%. 

Wind power dropped by 68%, and offshore wind power dropped by 60% [6 - 7]. 

(3)  Renewable energy has net-zero carbon emissions and is environmentally 

friendly. Based on the above characteristics, several research institutes have 

given renewable energy future scenarios in recent decades, as shown in Error! 

Reference source not found.. 

From Error! Reference source not found., this PhD study finds that variable renewable 

energy (VRE) will play an important role in the future energy structure, such as the 

Lappeenranta-Lahti University of Technology (LUT) predicts that 2050 share of renewable 

energy electricity will account for about 89% of the primary energy; the University of 

Technology Sydney predict that 2050 share of renewable energy electricity will account for 

about 92.3% of the primary energy; the Standard University predict that 2050 share of 

renewable energy electricity will account for about 99.1% of the primary energy; The 

institutes, International Renewable Energy Agency (IRENA) and International Energy 

Agency (IEA) predict that 2050 share of renewable energy electricity will account for about 

90% and 88%, respectively [8 - 13]. 

Table 1-1 Renewable energy future scenarios in 2050 
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Research 

Institutes 
Target Energy sources 

Renewable 

energy rate in 

total energy 

supply 

Renewable 

energy rate in 

total 

electricity 

supply 

LUT 

University 

100% 

renewable 

energy 

Solar photovoltaic (PV), 

Concentrated solar 

power (CSP), wind, 

hydropower, geothermal 

and bioenergy 

100% 89% 

University 

of 

Technology 

Sydney 

1.5℃ 

target 

Solar, wind, hydro, 

geothermal, biomass, 

ocean energy (tidal and 

wave) 

100% 92.3% 

Stanford 

University 

100% 

WIND-

WATER-

SOLAR 

Wind, PV, CSP, 

geothermal, hydro and 

ocean energy. Solar 

thermal, geothermal. 

100% ~99.1% 

International 

Renewable 

Energy 

Agency 

(IRENA) 

1.5℃ 

target 

Solar, wind, biogas, 

biomass, hydropower, 

geothermal, solar, ocean 

energy, natural gas, oil, 

coal and nuclear 

74%  90% 

International 

Energy 

Agency 

(IEA) 

Net-zero 

emission 

Solar, bioenergy, wind, 

hydropower, 

geothermal, other 

renewables, nuclear, 

natural gas, oil and coal. 

67% 88% 

1.1.2 Problems and Challenges 

The main purpose of the power system is to maintain an immediate equilibrium between 

power supply and load demand for the security of the power system [14-15]. However, 

VREs face inherent challenges due to their reliance on natural environmental factors, such 

as solar irradiance, air temperature, wind speed, and wind directions, etc. These factors 

introduce significant volatility and uncertainty into the energy system [16-18]. As VREs 

penetrate the power grid on a massive scale, the grid will encounter greater fluctuations and 

intermittent than it does at present. 
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In the traditional power system, traditional generation such as nuclear, thermal, gas, and 

hydropower, etc. occupy a large proportion, and these generators have high inertia, which 

can use mechanical rapid rotating power to serve as automatic power generators to help 

keep the grid frequency stable [19]. However, with the high penetration of VREs, these 

generators (including wind turbines and PVs) transfer power/energy to the main grid based 

on an inverter technique. Through this technology, the inertia from the VREs is decoupled 

from the other side of the grid, therefore the moment of inertia of the total grid will be 

reduced and the lower rotational inertia will influence the power grid stability [20-23]. In 

addition, the volatility and intermittency of VRE generators will also cause higher power 

fluctuations, which will also cause power grid frequency fluctuations [14, 24-25]. Except 

for influencing the power grid frequency stability, the volatility and intermittency of VRE 

generators will bring higher power differences between day-ahead dispatch and real-time 

dispatch process, and therefore increase the re-dispatch operating cost and power deviation 

settlement cost, influencing the power market operation cost [26-29]. Therefore, high 

penetration of renewable energy systems will cause the following challenges. 

(1)  Power grid operation stability: The VRE generators (including wind turbines [21] 

and photovoltaics [23]) transmit power/energy to the main grid based on power 

electronics rectification and inverter technology. Through this technology, the inertia 

of the rotating parts of renewable energy units will be decoupled from the other side of 

the grid, resulting in a lower inertia of the total power system, which will reduce a 
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negative impact on the power system operation stability [14], [20], [23]. 

(2)  Power system operation and control: The frequent and rapid fluctuation 

characteristics of high-penetration VREs will bring operational challenges to the 

instantaneous balance of load demand and power supply [14], [18], [30-31]. 

(3)  Electricity market operation and settlement: The high penetration of VREs will 

cause frequent fluctuations in the power supply of the electricity market, leading to an 

increase in intraday trading frequency, thereby placing higher demands on the actual 

electricity price that reflects the operation real states of the power system [32]. 

Meantime, its rapid and frequent fluctuations will also increase re-scheduling operation 

costs in the electricity market [26-28]. 

1.2. Objectives, Contributions, and Thesis Outline 

1.2.1 Objectives 

Based on the literature in Chapter 2, the following research gaps have been identified: 

(1)  Research gap 1: The high penetration of renewable energy systems will bring more 

variable characteristics of modern power systems. Currently, there is a lack of 

theoretical research on the impact of this fluctuation characteristic on the day-ahead 

electricity market and the real-time electricity market operations. 

(2)  Research gap 2: Although the global electricity market is undergoing reforms to 

improve time granularity, there is a lack of quantitative scientific evaluation of the 
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entire electricity market process, including ex-ante real-time power deviation 

prediction, real-time power dispatch and clearing process, and ex-post power deviation 

settlement. 

(3)  Research gap 3: Regarding the reform of increasing spatial granularity, current 

research generally focuses on the reform of regional and node electricity prices, but 

rarely mentions the increase of spatial network granularity, and lacks a scientific model 

for building spatial networks. 

Based on the research gaps identified, this PhD study considers the following objectives, 

Obj 1 and Obj 2 respond to address the research gap 1; Obj 3 respond to address the research 

gap 2; Obj 4 respond to address the research gap 3. The main details of the objectives are 

as below: 

(1)  Obj 1: Proposed metrics including power incremental statistics, coefficient of 

variation, and peak power duration to characterize the power variability characteristics 

of different flexible resources. 

(2)  Obj 2: The proposed mathematical model between these power variations and net-load 

power curves and real-time power imbalance curve finds that power variability will 

directly affect net-load power curves, and the power gradient will affect the real-time 

power imbalance curve. 

(3)  Obj 3: Proposed an evaluation method for the electricity market at different time 

granularity, including ex-ante real-time power deviation prediction; real-time power 
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scheduling operation and clearing; and ex-post power deviation settlement. Evaluate 

the effect of increasing temporal granularity on reducing balance electricity market 

costs and power grid frequency deviation.  

(4)  Obj 4: Proposed the stochastic energy network theory to characterize the supply-

demand adaptation balance index (SDABI) and further proposes a subnetwork 

networking method to evaluate the impact of increasing space granularity on reducing 

power system operation costs, power flow losses, and power congestion. 

1.2.2 Contributions 

This study includes the following contributions: 

(1)  Contribution 1: Proposed metrics such as power incremental statistics, coefficient of 

variation, and peak power duration to characterize the variability in power output of 

various flexible resources. 

(2)  Contribution 2: The mathematical model, which characterizes the relationship 

between power variations metrics and net-load power and real-time power imbalance, 

providing scientific guidance to the flexibility resources reserve, is proposed. High PV 

penetration will make the net load curve look like a canyon and make the real-time 

imbalanced power curve look like a butterfly. 

(3)  Contribution 3: This thesis proposed an evaluation method for the electricity market 

at different time granularity, including ex-ante real-time power deviation prediction; 

real-time power scheduling operation and clearing; and ex-post power deviation 
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settlement. Evaluating the effect of increasing temporal granularity on reducing 

balance electricity market costs and power grid frequency deviation, for the first time 

provides quantitative scientific guidance to increase temporal granularity. 

(4)  Contribution 4: This thesis proposes the stochastic energy network theory to 

characterize the three different operating states of the sub-network, including waste of 

power supply (WoPS), represents renewable power supply plus energy storage is larger 

than energy consumption, loss of load demand (LoLD) represents renewable power 

supply plus energy stored in ESS is less than the load demand during a period, and 

supply-demand adaptation balance represents renewable energy supply with the ESS 

can meet the energy demand during a period, and then based on the supply-demand 

adaptation balance index (SDABI), further established the SDABI-based subnetwork 

networking method to improve spatial granularity. 

(5)  Contribution 5: This thesis evaluates the SDABI-based subnetwork networking 

method for increasing spatial granularity, which will reduce power system operation 

costs, power flow losses, and power congestion. 

1.2.3 Thesis Outline 

This study mainly evaluates the effect of increasing spatial-temporal resolution in high-

penetration renewable energy systems. Figure 1-1 shows the research structure of this PhD 

thesis and the relationship between chapters. 

Chapter 1 provides a background introduction to the research topic as well as issues and 
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challenges. 

Chapter 2 presented the literature review of relevant research works. 

Chapter 3 proposed metrics including power incremental statistics, coefficient of 

variation, and peak power duration to characterize the power variability characteristics, 

based on these metrics, this study analyzes the mathematical relationship between these 

variations and net-load power curves and real-time power imbalance curve, finds that 

power variability will directly affect net-load power curves and the power gradient will 

affect the real-time power imbalance curve, providing scientific guidance for the flexible 

resources reserve strategy. 

Chapter 4 proposed an evaluation method for the electricity market at different time 

granularity, including ex-ante real-time power deviation prediction; real-time power 

scheduling operation and clearing; and ex-post power deviation settlement, and based on 

this method, provides strong evidence that the higher time granularity, the power step 

changes, and real-time power deviation quantities are smaller, and vice versa. Reducing the 

power step changes and real-time power deviations will reduce power grid frequency 

deviations and power market balancing costs.  

Chapter 5 proposed the stochastic energy network theory to characterize the supply-

demand adaptation balance index (SDABI) and further proposes a subnetwork networking 

method, and then combines power system operation evaluation indicators, such as power 

system operation costs, power flow losses, and mitigate power congestion situations, etc. 
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to evaluate the influence of increasing space granularity on power system reform. 

Chapter 6 summarized the main conclusions that can be drawn from this research study 

and future research work plans. The main conclusions include the power fluctuation 

characteristics and their impact on power system operation and then summarize the benefits 

to power system operation by increasing spatial-temporal granularity reforms to solve the 

above power fluctuations, including reducing balance electricity market costs, reducing 

power grid frequency deviations, improving power system operation efficiency, providing 

scientific guidance for flexible reserves, etc. And then giving future challenges and work 

plans. 

 

Figure 1-1 Research structure and the relationship between chapters of the thesis.  

High penetration renewable energy system

(1) Power grid operation security and stability ;

(2) Power system operation and control;

(3) Electricity market operation and settlement;

Increasing 

temporal 

granularity

Increasing 

spatial 

granularity

Renewable energy power supply modeling

(1) Solar power prediction and modeling

(2) Wind power prediction and modeling

Power fluctuation characteristics

(1) Power variability metrics

(2) Net load power curve time 

series characteristics 

(3) Real-time imbalanced power 

time series characteristics

Evaluation of increasing time 

granularity

(1) Reduce electricity market 

balance costs;

(2) Reduce power grid 

frequency deviations;

Evaluation of increasing space 

granularity

(1) Reduce system operation 

costs

(2) Reduce power flow loss

(3) Mitigate power congestion

Conclusions and future works

Chapter 1

Chapter 2

Chapter 4 Chapter 5

Chapter 3

Chapter 6
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2. LITERATURE REVIEW 

2.1. Renewable Energy Power Supply Prediction Model 

In recent years, the capacity of renewable energy installations has been growing rapidly. 

From 2022 to 2023, renewables accounted for a record 86% of global power additions, 

among them, solar energy and wind energy contribute more than 97% of the world’s 

renewable energy installed capacity. Solar energy accounts for about 73%, wind power 

accounts for about 24%, and total renewable installed capacity is about 473 GW. By the 

end of 2023, renewables accounted for 43% of global installed power capacity, and the 

solar installed capacity and wind installed capacity were more than 95% [4-5]. Therefore, 

in this study, renewable energy mainly focuses on solar power and wind power. 

(1)  Solar power 

Solar power is greatly impacted by meteorological factors, especially solar radiation and 

ambient temperature [33-34]. The installed solar power capacity has increased year by year, 

and solar resources account for an increasing share of the total primary energy [4]. In this 

context, When meteorological conditions change, changes in solar power will directly 

influence the power system's operation stability [14], [23] and reduce energy security, 

power quality [35], etc. For example, In mid-February 2021, extreme winter storms and 

cold weather hit the south-central United States, causing PV, wind turbines, natural gas, etc. 

over 1,000 generator outages and derates across the region [36]. Luis Ceferino, etc. applied 
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a probabilistic framework to evaluate the performance of solar infrastructure to generate 

energy during hurricanes and evaluate the 2,694 counties in the 38 central and eastern US 

states to elucidate the risk landscape of solar generation during hurricanes [37]. Therefore, 

it becomes increasingly important to establish an accurate solar power generation output 

and prediction model, especially for the high penetration renewable energy systems 

operation and control. 

Recently, amount of research has been carried out worldwide on the prediction and 

characterization of solar power generation. Among them, according to the different 

prediction timescales, solar power prediction can be divided into three different categories: 

long-term solar power prediction, medium-term solar power prediction, and short-term 

solar power prediction [38-41]. The medium- and long-term forecast period ranges from 30 

days to 365 days, and the short-term forecast period ranges from minutes to several days. 

The effect of short-term prediction of solar power generation will directly affect the power 

consumption arrangement and dispatch plan of the power system as well as the stable 

operation of the system. Therefore, the short-term solar power prediction has received the 

focus of relevant research worldwide. 

The prediction methods for short-term can be divided into indirect methods [41-43] and 

direct methods [40], [44-46]: In the indirect method, the solar radiation intensity is first 

predicted, then calculated and the short-term predicted output power based on the 

photoelectric conversion physical model. The direct prediction method, based on the 
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mathematical statistical prediction method, inputs meteorological data and historical power 

generation data of solar power generation into the established prediction model, and obtains 

short-term predicted output power from the output of the model. The indirect method model 

does not require a large amount of data support, but its modeling process is very complex, 

the amount of calculation is large, and the prediction accuracy is not high. The direct 

method has high prediction accuracy, a simple modeling process, and a relatively small 

calculation amount, but it requires the use of a large amount of historical data. 

 

Figure 2-1 Solar power prediction modeling classifications 

In addition, the differences in solar power generation prediction algorithms also include 

prediction methods based on physical models [47-49], prediction methods based on 

statistics [50-52], and prediction methods based on artificial intelligent algorithms [44], 

[46], [53-56]. Among them, the prediction method based on physical models adds solar 

radiation intensity, temperature, observation and satellite remote sensing radiation 

inversion data, and photovoltaic semiconductor component physical model data to the 

physical model for predicting solar power generation. Forecasting methods based on 

statistics include time series methods [51], trend extrapolation methods, and probability 
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forecasting methods [52]. This method mainly uses a large amount of historical data 

information combined with statistical principles to conduct corresponding forecasting 

analysis. The prediction method based on artificial intelligence algorithms combines the 

advantages of the above different methods and uses big data algorithms [54], support vector 

machine methods [44], [55], artificial neural networks [46], [53], etc., and other methods 

to train the parameters of the model to achieve prediction and modeling analysis of solar 

power. Figure 2-1 summarizes the solar power prediction models, and Table 2-1 

summarizes different solar power modeling methods and classifications in recent years. 

Table 2-1 Solar power prediction modeling methods and classifications. 

References Methods Classification types 

[40], [57-58] Deep learning methods 
Direct method: prediction method based 

on artificial intelligence algorithm 

[41], [43], 

[49] 

Photoelectric conversion 

model 

Indirect method: prediction methods 

based on physical model 

[44], [55], 

[59] 
Support vector machine 

Direct method: prediction method based 

on artificial intelligence algorithm 

[45], [51-52] 

Hybrid NARX-LSTM 

Model; time series model; 

Bayesian Model 

Direct method: prediction methods 

based on statistics 

[46], [53] Artificial Neural Networks 
Direct method: prediction method based 

on artificial intelligence algorithm 

(2)  Wind power 

Wind power is greatly affected by meteorological natural environment factors, especially 

wind speed and wind direction, etc. At present, a lot of research has been carried out 

worldwide on the prediction and characterization of wind power generation [60-62]. 
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Among them, according to the different prediction timescales, the wind power prediction 

model can be divided into three categories: long-term, medium-term, and short-term. The 

prediction methods for short-term can be divided into indirect methods and direct methods: 

In the indirect method, the wind speed is first predicted, then calculated and the short-term 

predicted output power is based on the physical conversion model. The direct prediction 

method, based on the mathematical statistical prediction method, inputs meteorological 

data and historical power generation data of wind power generation into the established 

prediction model, and obtains short-term predicted output power from the output of the 

model. The indirect method model does not require a large amount of data support, but its 

modeling process is very complex, the amount of calculation is large, and the prediction 

accuracy is not high. The direct method has high prediction accuracy, a simple modeling 

process, and a relatively small calculation amount, but it requires the use of a large amount 

of historical data. 

After several years of research and practice worldwide, wind power generation 

prediction has built a series of prediction processes including numerical weather prediction 

(NWP) [63], wind power conversion model [64-65], prediction result application, 

prediction result evaluation [66], etc. Based on these above processes there are two different 

major technical categories of wind power prediction methods including physics [63], [67] 

and statistics [68-72]. NWP is mainly used in physical methods, and statistical methods 

mainly involve three technologies other than the NWP technique, but it is not absolute, and 
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the two different technical methods also combine. 

Based on the definition and technical characteristics of physical prediction methods, it 

mainly includes three different technical parts [67]:  

(1)  NWP data injection, including wind speed and wind direction collection at 

wind turbine hub height.  

(2)  Wind natural resources-power conversion physical module, that is, 

considering information such as wind farm topography, NWP data is converted into 

wind resources information under actual environmental conditions, calculating the 

predicted power of the wind turbine based on the performance parameters of the wind 

turbines. 

(3)  Accumulate total wind farm power output to obtain the theoretically predicted 

power of the entire wind farm. The calculation of this method is relatively complex 

and requires solving a multi-dimensional partial differential equation for prediction. 

However, the requirements for the technical conditions of wind farm operation are 

lower, and it does not require a large amount of historical wind farm operation data 

information. It only requires the location, topography, landform, and basic information 

of the wind turbine capacity, etc. 
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Figure 2-2 Wind power prediction modeling classifications 

Different from physical prediction methods, statistical prediction methods do not need 

to consider the complex physical change process of wind resources and electric power. This 

method uses statistical algorithms to learn the characteristic patterns shown by the historical 

meteorological and power data of the wind farm and then combines the measured power 

data or NWP data to predict the wind farm’s future power generation. This method does 

not require the construction of complex differential equations to present the wind resources 

exchange to electric power, but statistical learning modeling requires large amounts of data 

for training [61-62], [70], [73]. Statistical forecasting methods include forecasting methods 

based on time series characteristics [68], [74-76] and forecasting methods based on 

artificial intelligence algorithms [69-70], [77-79]. Among them, the time series-based 

method does not require natural environmental factors such as wind speed and direction. In 

particular, according to the definition and technology of this method, we can obtain some 

time series characteristics of the wind farm by training and learning its historical power 

sequence characteristics, and then obtain its future power output, this kind of statistical time 
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series characteristics can be characterized using statistical indicators, such as 

autocorrelation and cross-correlation [74], moment [75], probability density function and 

cumulative density function, etc. [72]. In addition, time series features can also be used in 

other ways, including continuous method, auto-regressive and moving average (ARMA) 

method [76], and Kalman filter algorithm [66], etc. The time series extrapolation prediction 

method is simple to operate. On a shorter time scale, its prediction accuracy may even 

exceed other complex artificial intelligence methods. However, as the time scale increases, 

its prediction accuracy will drop sharply, so it is only suitable for ultra-short-term wind 

forecasting [76]. 

The artificial intelligence-based prediction method combines the advantages of the above 

different methods, comprehensively considers relevant influencing factors such as natural 

environment factors and electricity uses one or more AI algorithms to train historical power 

output data, extracts the connection between NWP data and power generation data, and 

then based on the above relationship predicts wind power generation from NWP data is an 

important research direction, which mainly includes artificial neural network method (ANN) 

[69], [77], support vector machine (SVM) [78], deep learning algorithm [79], etc. The AI 

prediction method does not need to establish a specific analytical relationship between 

predicted power and meteorological data. Good prediction results can be obtained through 

large amounts of data training, which is suitable for different time scales wind power 

prediction, and the accuracy will be higher based on the massive training data and suitable 
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AI algorithm [61], [70]. Figure 2-2 summarizes the wind power prediction models, and 

Table 2-2 below summarizes different wind power modeling methods and classifications in 

recent years. 

Table 2-2 Wind power prediction modeling methods and classifications. 

References Methods Types 

[63-64], [67] 

NWP data; wind speed and direction; 

wind speed-power conversion 

module 

Indirect method; physical 

prediction 

[69], [77] Artificial neural network method 
Direct method; artificial 

intelligence algorithms 

[71-72], [74], 

[76] 

Statistics; Bayesian model; 

autocorrelation and cross-correlation; 

ARMA 

Direct method; statistical 

prediction: based on time 

series 

[70], [73] Data-driven; Big data mining 
Direct method; statistical 

prediction 

[78], [80] Support vector machine 
Direct method; artificial 

intelligence algorithms 

[79], [81] Deep learning algorithm 
Direct method; artificial 

intelligence algorithms 

2.2. Increasing Spatial Granularity 

Increasing space granularity mainly reflects two aspects: one is increasing renewable 

generation units' space granularity, that is to reduce the amount of renewable energy 

injected into a single node or increase the number of inject nodes for renewable generation 

units; the other one is increasing transmission network space granularity, that is to reduce 

the complexity of the transmission network or reduce the repeated power flow transmission. 

Increasing renewable generation units' space granularity can help system operators find 
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the renewable generators' marginal electricity price, which will reduce the customers' 

energy costs [80]. In addition, increasing the renewable energy generation space granularity 

is also a key market design innovation in the electricity market, including node pricing 

widely used in the US market [83-85] and regional pricing widely used in the pan-European 

region [86-87]. For example, the Electric Reliability Council of Texas (ERCOT) 

implements node pricing. By adding electricity price information at different nodes across 

the state, it discovers the true energy usage of different nodes during the power transmission 

process and formulates reasonable node prices based on the energy usage，  thereby 

improving the efficiency of the power grid operation and improving the economic benefits 

of the whole society [85], [88]. The New York Independent System Operator (NYISO) in 

the United States also uses nodal pricing in its wholesale electricity market to improve 

system operating efficiency and aims to help increase the penetration of variable renewable 

energy [84]. The pan-European electricity market increasing space granularity market 

innovation is implementing zonal pricing. Electricity is traded through different bidding 

zones and settled according to the prices in different zones. Some countries only have one 

bidding zone, such as France, Great Britain, and Germany, etc. Other countries divide their 

transmission systems into multiple bidding areas, including Denmark, Italy, Norway, 

Sweden, etc. By increasing space granularity and reducing the amount of renewable energy 

injected into a single node, this electricity market changes, on the one hand, improve the 

power congestion problem of adjacent lines connected to VRE injected nodes, on the other 



 

33 

 

hand, increasing renewable generation units space granularity can better discover the 

marginal electricity price of the units, thereby reducing energy costs. Regarding the reform 

of increasing spatial granularity, current research generally focuses on the reform of 

regional and node electricity prices, but rarely mentions the increase of spatial network 

granularity, and lacks a scientific model for building spatial networks. 

To increase transmission network space granularity, the first idea is to construct many 

space subnetworks. How to divide that transmission network topology into several 

subnetworks and then reduce the power transmission amount, repeated power flow and 

electricity power transfer distance is a vital problem. The subnetwork works in one of the 

following three working states during a period:  

(1)  Waste of power supply, in this state means that if the power supply exceeds 

the load demand for a period, the excess power will be stored in the energy storage 

system (ESS) until it reaches its rated capacity, thus generating excess power [89-91].  

(2)  Loss of load demand, in this state means that the power supply plus energy 

stored in the energy storage system (ESS) is less than the load demand during a period, 

resulting in an energy shortage [92-93].  

(3)  Supply-demand adaptation balance, in this state means that the energy supply 

with the energy storage system (ESS) can meet the energy demand during a period. To 

solve the above problems, the cumulative energy production of VREs needs to meet 

the cumulative energy consumption of all load nodes in the subnetwork, increasing the 
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probability of a supply-demand adaptation balance state [91], [94-95]. 

2.3. Increasing Temporal Granularity 

Increasing time granularity in power systems by reducing the energy settlement time unit 

(pricing shorter market time units) is an important energy market innovation to address the 

volatility, uncertainty, and intermittency challenges posed by the increased penetration of 

VREs [32]. On the one hand, increasing more quickly solving the closing time of the 

scheduling gate is more frequent and the scheduling interval is shorter, which allows system 

operators to more quickly solve the power imbalance problem caused by the difference 

between day-ahead dispatch and real-time dispatch [96]. Also, shortening the scheduling 

intervals means that power step change at scheduling interval points and real-time power 

deviation during the scheduling intervals will decrease, reducing power grid frequency 

deviation [27], [97-98]. On the other hand, increased time granularity in the electricity 

market helps system operators predict day-ahead and real-time operations more accurately 

based on timely information [96], [99-100]. This helps avoid the re-dispatch process, which 

will increase the ex-post power deviation settlement cost. 

At present, across the whole world electricity markets (including the day-ahead market 

and intra-day market), with the increasing shares of VRE generation resulting in larger 

volatility and intermittency [17-19], more and more countries will focus on energy products 

with a higher temporal resolution [32], for example, in the day-ahead market, the California 

Independent System Operator (California ISO) reduce the temporal resolution of traded 
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energy products from hours to minutes [101]. In the intraday market, several European 

nations such as France [102], Germany, and the United Kingdom, had sub-hourly energy 

products, for example, half-hour energy products [103]. By increasing time granularity, 

shorter clearing, and financial settlement periods, these energy market changes, on the one 

hand, reduced barriers to integrating variable energy resources and addressed market 

inefficiencies, on the other hand, increased the granularity of prices in the wholesale energy 

market can increase the short-term flexibility of the electricity system. Although the global 

electricity market is undergoing reforms to improve time granularity, there is a lack of 

quantitative scientific evaluation of the entire electricity market process, including ex-ante 

real-time power deviation prediction, real-time power dispatch and clearing process, and 

ex-post power deviation settlement. 

2.4. Summary 

This chapter reviews the renewable energy power supply modeling methods and 

increasing spatial-temporal resolution reform in power systems, The renewable energy 

power supply modeling part, can produce and provide abundant scientific datasets to do 

further power fluctuation characteristics analysis when there is a lack of dataset and the 

amount of data is relatively small; For the increase in spatial resolution, this chapter 

provides a clear definition and overview of the latest research on reforms to increase spatial 

granularity in power systems worldwide, aiming to help researchers quickly and accurately 

understand the impact and role of spatial granularity reforms in power systems, but current 
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research generally focuses on the reform of regional and node electricity prices, but rarely 

mentions the increase of spatial network granularity, and lacks a scientific model for 

building spatial networks; For the increase in temporal resolution, this chapter reviews the 

reforms in electricity markets in different countries to increase time resolution, aiming to 

help researchers quickly and accurately establish a theoretical framework for increasing 

temporal resolution research by citing related articles, but there is a lack of quantitative 

scientific evaluation of the entire electricity market process, including ex-ante real-time 

power deviation prediction, real-time power dispatch and clearing process, and ex-post 

power deviation settlement. 
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3. POWER FLUCTUATION CHARACTERISTICS 

OF HIGH PENETRATION RENEWABLE ENERGY 

SYSTEM 

Abstract: Compared with traditional energy systems, high-penetration renewable energy 

systems have brought some new opportunities and challenges to the power balance process 

due to power volatility, intermittency, and fluctuations. Based on high temporal resolution 

datasets include load demand, wind power, and solar power located in three different 

countries around the world. This PhD study proposes metrics including power incremental 

statistics, coefficient of variation, and peak power duration to characterize the power 

variability characteristics. Based on these metrics, the mathematical relationship between 

these variations and net-load power curves, and real-time power imbalance curves are 

analyzed. It is found that power variability will directly affect net-load power curves and 

the power gradient will affect the real-time power imbalance. For example, the solar power 

variability characteristics will cause the net-load power curve to look like a duck curve, 

while real-time power imbalance to look like a butterfly curve. This chapter for the first 

time scientifically describes the mathematical statistical characteristics of power 

fluctuations. And reveals the mathematical relationship between power fluctuations, net-

load power curves, and real-time power imbalance curves, guiding the operation of high-

penetration energy systems. 
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Abbreviations  

RTIP Real-time imbalanced power  

VRE Variable renewable energy  

LD Load demand 

CoV Coefficient of variation 

PPD Peak power duration 

CAISO California Independent System Operator  

Variables, Parameters and Functions  

P(t) The t-th power 

ΔPτ Power increment of two adjacent points lagged by a time interval τ 

μ Mean value 

σ Standard deviation 

β  The third moment/ skewness 

κ
 

The fourth moment/ kurtosis 

Pmax The maximum power 

P Probability 

PLD,i,t  load demand under the sampling rate of i-th day and t-th time spot 

PPV,i,t  PV power under the sampling rate of i-th day and t-th time spot 

PWT,i,t  Wind power under the sampling rate of i-th day and t-th time spot 

α The penetration rate of photovoltaic  

γ The penetration rate of wind power 

PU,t Upward flexibility  

PD,t  Downward flexibility  

Δ𝑃𝑊𝑇,𝑡
+   Wind power real-time part larger than the day-ahead part 

Δ𝑃𝑃𝑉,𝑡
+  PV power real-time part larger than the day-ahead part 

Δ𝑃𝑊𝑇,𝑡
−   Wind power real-time part smaller than the day-ahead part 

Δ𝑃𝑃𝑉,𝑡
−  PV power real-time part smaller than the day-ahead part 

Δ𝑃𝐿𝐷,𝑡
+  Load demand the real-time part larger than the day-ahead part 

Δ𝑃𝐿𝐷,𝑡
−  Load demand the real-time part smaller than the day-ahead part 
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3.1. Introduction 

The primary purpose of the power system is to maintain an immediate equilibrium 

between the supply of electrical energy and the demand from consumers [14]. Compared 

with traditional energy systems, high-penetration renewable energy systems have brought 

some new opportunities and challenges to the power balance process due to the power 

volatility, intermittency, and fluctuations, mainly reflected in the higher requirement of 

flexible resources, including day-ahead dispatch process and real-time dispatch process. 

During the day-ahead dispatching process, the net load power curve will show fluctuation 

characteristics as renewable energy penetration increases, manifesting as an increase in the 

demand for flexible ramping resources; During the real-time dispatch process, the 

renewable energy variability increase will also lead to an increase in the amount of real-

time imbalanced power (RTIP). 

For the day-ahead dispatching process, the net load power curve represents the total 

electricity demand minus whatever renewable energy is on the grid [104]. Its characteristics 

guide flexible resources reserve in the day-ahead process. Based on the definition, the net 

load power is influenced by variable renewable energy (VREs) and load demand, which 

will be affected by natural meteorological resources and production schedules, having 

timing characteristics. For photovoltaic resources, since their output is mainly affected by 

light intensity [33-34], they exhibit the following distinct time series characteristics. The 

photovoltaic power generation gradually increases from 0 to the maximum power 
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(corresponding to zero solar irradiance to the strongest light intensity); then decreases from 

the maximum power to 0 (corresponding to the light intensity from highest to 0). The 

characteristics of photovoltaic resources result in the net load power curves in different load 

zones around the world showing deeper duck curve characteristics in high penetration of 

solar power systems [105-106]. 

For the real-time dispatch process, unlike the net load power curve, the RTIP curve refers 

to the deviation in power between the day-ahead and real-time scheduling process, resulting 

from changes in power levels [107]. According to its definition, the amount of RTIP is 

mainly proportional to the power increment, that is, the power gradient, also has time series 

characteristics. For photovoltaic resources, since their output is mainly affected by light 

intensity, they exhibit the following distinct time series characteristics:  

(1)  Photovoltaic power gradient is often 0 when the power is minimum and 

maximum, and this period is often in the early morning, evening, and noon.  

(2)  When the light intensity gradually increases or weakens, although the 

photovoltaic power generation is not high, the power change rate of photovoltaic is 

relatively larger [48], [51].  

Wind power generation has different features in different geographical areas based on 

natural wind resources. It also has these features:  

(1)  When the wind speed is relatively high, the wind power will be relatively 

large, while the change rate of wind power will be relatively small.  
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(2)  When the wind speed is relatively small, the wind power will be relatively 

small, and the power change rate will be relatively small [63], [67].  

Compared with PV power and wind power, the load demand variability is not obvious, 

but load demand also has time series characteristics at different locations based on the 

production schedule:  

(1)  Load demand has peak periods and valley periods in time series.  

(2)  The amount of power change in load demand during peak/valley periods is 

relatively small [14], [108]. 

In this chapter, we use the high temporal resolution dataset including load demand, wind 

power, and solar power located in three different countries around the world to calculate 

the influence of power variability on the high penetration renewable energy systems. First, 

we established several metrics including power increment statistics, coefficient of variation 

(CoV), and peak power duration (PPD) to characterize the power variability of renewable 

energy supply and load demand. Second, based on these countries' variability resources 

time series datasets, we analyze the net load power curves' time series characteristics under 

different renewable energy penetrations. Then we analyze the timing characteristics of 

RTIP quantities under different renewable energy penetrations based on the power 

variability in these different countries. The main findings include three aspects: (1) Power 

variability characteristics will be different for different types of resources, solar power has 

the highest power variability, and the load demand has the lowest power variability, based 
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on the metrics established in this chapter; (2) Renewable power generations have time 

series characteristics: wind power generates higher power when the wind speed is higher, 

and solar power generates relatively larger power when the light intensity is higher, so its 

power changes directly affect the shape of the net-load power curve and it has obvious time 

series characteristics, such as the canyon curve characteristics with massive solar power; 

(3) The power variability will directly affect the amount of RTIP; The lowest power 

variability means the lowest RTIP value, and vice versa. For example, the solar power 

variability characteristics will cause the RTIP curve to look like a butterfly. 

3.2. Data Setting and Description 

In this chapter, we independently analyze the high temporal resolution dataset including 

wind power, solar power, and load demand, which is in three different countries around the 

world, including California Independent System Operator (CAISO), Czech grid, and Qatar 

grid. Observing the power variability characteristics, and based on this variability, this 

chapter will evaluate their impact on the net load power curve and RTIP curve timing 

characteristics and draw some conclusions for the reform of high penetration renewable 

energy systems. The description of the dataset in this chapter is as follows. 

(1)  Load demand time series dataset 

CAISO: The load demand is in the California Independent System Operator (CAISO) 

grid. The temporal resolution is 1 minute. The dataset includes nearly two years between 

01/01/2018 and 31/12/2019 [109]. 
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Czech: The load demand is in the Czech grid. The temporal resolution is 1 minute. The 

dataset includes nearly one year between 01/01/2021 and 31/12/2021 [110]. 

Qatar: The load demand is in the Qatar grid. The temporal resolution is 1 minute. The 

dataset includes nearly one month between 20/11/2022 and 18/12/2022. 

(2)  Renewable energy time series dataset 

CAISO: The renewable energy time series dataset in the CAISO grid has a high temporal 

granularity, and the frequency rate is equal to 1 minute. The dataset includes nearly two 

years between 01/01/2018 and 31/12/2019 [109]. For solar power, based on the dataset 

from the National Solar Radiation Database (NSRDB), light intensity data information can 

be obtained, and solar power is estimated based on solar radiation-related data through a 

physical model [43]. For wind power, wind speed information is first collected from 

weather stations at different locations, and then estimated wind power output through wind 

turbine power curves associated with that location. 

Czech: The renewable energy time series dataset in the Czech grid has a high temporal 

granularity, the frequency rate is equal to 1 minute. The dataset includes nearly one year 

between 01/01/2021 and 31/12/2021. This dataset includes solar and wind power data 

aggregated from multiple photovoltaic and wind farms respectively. 

Qatar: The renewable energy time series dataset in the Qatar grid has a high temporal 

granularity, the frequency rate is equal to 1 minute. The dataset includes nearly one month 

between 20/11/2022 and 18/12/2022. The dataset includes solar power output from 
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Alkarsaah PV farm [111]. 

Based on the above datasets, we can calculate the per unit load demand and unit 

renewable energy power by dividing the load power by the peak load power and the 

renewable energy power by the renewable energy installed capacity, respectively. The per-

unit power curves from the above dataset in this section are shown below. 

 

Figure 3-1. Per unit power curves from different countries and different resources 

3.3. Methods 

3.3.1 Power Variability Metrics 

Variable resources in high-penetration renewable energy power systems mainly include 

wind power, solar power, and load demand. For our research, there are two main ways to 

characterize power variability: (1) local power variability curve, mainly characterized by 

power increments under different time lags (2) overall power curve fluctuation 
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characteristics; mainly characterized by the overall power curve statistical characteristics, 

including coefficient of power variation and peak power duration. 

(1)  Power increment statistics  

To characterize these local power variabilities, we use the power increment of two 

adjacent points lagged by a certain time interval τ for statistical analysis, represents, ΔPτ 

=P(t)-P(t-τ). From the current state P(t), the power increment value ΔPτ at lag τ time can 

have positive and negative values, representing the system requires upward flexibility 

resources and downward flexibility resources. And the higher the ΔPτ, that means the more 

flexibility resources need. The value of ΔPτ will only give the information of power 

variability degree at time point t, while the distribution of the ΔPτ in the whole dataset will 

tell us the whole power variability degree [112]. An effective way in statistics to 

characterize the statistical properties of power increments at lag time τ is called the n-order 

power increment moment, which represents, ∆𝑃𝜏
𝑛, and its n-th moment is defined as below 

[113]. 

𝜇𝑛 =
1

𝑁
∑Δ𝑃𝜏𝑖

𝑛

𝑁

𝑖=1

(3.1) 

where 𝜇𝑛 represents a statistical n-th moment, the first moment of the power increment 

distribution refers to the mean value, that is μ1=μ. In statistics, standard deviation is usually 

used to characterize second-order moments. it is defined as below, 

𝜎2 =
1

𝑁
∑(Δ𝑃𝜏𝑖 − 𝜇)

2

𝑁

𝑖=1

(3.2) 
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where σ is the standard deviation. Finally, we use the normalized third and fourth 

moments, β and κ, respectively, which are defined as: 

𝛽 =
1

𝑁
∑(

Δ𝑃𝜏𝑖 − 𝜇

𝜎
)
3𝑁

𝑖=1

(3.3) 

𝜅 =
1

𝑁
∑(

Δ𝑃𝜏𝑖 − 𝜇

𝜎
)
4𝑁

𝑖=1

(3.4) 

(2)  Coefficient of variation 

In statistics, the standard power deviation is an indicator, which is used to measure the 

power series variation and dispersion. When the power series has a low standard deviation, 

it means that all the power values in the dataset tend to be close to the average value, while 

when the power series has a high standard power deviation, it means that all the power 

values tend to be spread out over a wider range. 

𝜎 = √
1

𝑁
∑(𝑃𝑖 − 𝜇)2
𝑁

𝑖=1

(3.5) 

𝜇 =
1

𝑁
∑𝑃𝑖

𝑁

𝑖=1

(3.6) 

where Pi represents the i-th value in the power series; µ represents the average power; N 

represents the power series number. σ represents the standard power deviation. 

To characterize the total power curve variability, we define the coefficient of power 

variation (CoV), which is equal to the ratio of the standard deviation σ to the mean value. 

This indicator combines the characteristics of the standard deviation and the means to 
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describe the fluctuation characteristics of the total power curve. Based on these two 

indicators, the coefficient of power variation can normalize different amplitudes, different 

measurements, and different units of power curves to characterize volatility and fluctuation 

[114]. It can be calculated by the equation below: 

CoV =
𝜎

𝜇
= √

1

𝑁
∑(𝑃𝑖 − 𝜇)2
𝑁

𝑖=1

1

𝑁
∑𝑃𝑖

𝑁

𝑖=1

⁄ (3.7) 

(3)  Peak power duration 

The peak power duration (PPD) is used to characterize the proportion of peak power 

duration in the whole power curve, this index is another one to characterize the total power 

curve variability. This duration can be arranged in descending order by the power curves 

within the scheduling time interval, and then a probability statistical analysis is performed 

according to the power time series sorted in descending order to guide the distribution of 

different power requirements. According to the form of the descending power curve, there 

are two representation calculation methods: (1) continuous probability density function 

integration; (2) discrete probability mass function summation. These two forms of peak 

power duration are as follows: 

𝑃𝑃𝐷𝛼 = 𝑷(𝛼𝑃𝑚𝑎𝑥 ≤ 𝑃 ≤ 𝑃𝑚𝑎𝑥) = ∫ 𝑓(𝑃)𝑑𝑃
𝑃𝑚𝑎𝑥

𝛼𝑃𝑚𝑎𝑥

(3.8) 

𝑃𝑃𝐷𝛼 = 𝑷(𝛼𝑃𝑚𝑎𝑥 ≤ 𝑃 ≤ 𝑃𝑚𝑎𝑥) =∑𝑷(𝛼𝑃𝑚𝑎𝑥 ≤ 𝑃𝑖 ≤ 𝑃𝑚𝑎𝑥)

𝑖=1

(3.9) 

where 𝑷𝑷𝑫𝛂 represents larger and equal to α times peak power duration. P represents the 

probability, 𝒇(𝑷) represents the power curve continuous probability density function. 
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3.3.2 Net Load Power and Real-time Imbalanced Power Analysis 

Power fluctuations will challenge power system operation and balance settlement to 

solve instantaneous power balance. In this chapter, based on the power variability 

characteristics, we analyze the net load power curve and RTIP curve, and based on these 

curves’ time series characteristics, give reasonable suggestions to system operators. We 

assume that the energy measurement is correct based on the sampling frequency. Using the 

dataset obtained at the sampling rate (1-minute) as the benchmark, we can get the day-

ahead dispatched power by equation (3.10), based on the definition of net load power and 

RTIP [27], [104], [107], we can calculate them by the following equation (3.11) and (3.12) 

respectively. 

𝑃𝑇𝑛 =
1

𝑛
∑ (𝑃𝑖)

𝑛

𝑖=1
, 𝑇𝑛 = 𝑛𝑇0 (3.10) 

𝑁𝐿𝑃𝑇𝑛 = 𝑃𝐿𝐷,𝑇𝑛 − 𝑃𝑅𝐸𝑆,𝑇𝑛 (3.11) 

Δ𝑃𝑗 = 𝑃𝑗 −
1

𝑛
∑ (𝑃𝑖)

𝑛

𝑖=1
=
𝑛𝑃𝑗 − ∑ (𝑃𝑖)

𝑛
𝑖=1

𝑛

=
(1 − 𝑗)∆𝑃𝜏(𝑗−1)

𝑛
+
(2 − 𝑗)∆𝑃𝜏(𝑗−2)

𝑛
+⋯+

−∆𝑃𝜏1
𝑛

+⋯

+
(𝑛 − 𝑗)∆𝑃𝜏𝑗

𝑛
+⋯+

∆𝑃𝜏(𝑛−1)

𝑛
(3.12)

 

3.3.3 Renewable Energy Penetration 

The variability from the power supply is mainly influenced by the VREs penetration, 

therefore, with the increased penetration of VREs, the power supply variability will also 

increase. The penetration rate of renewable energy is often characterized as the proportion 
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of renewable energy power generation to load demand [115]. Therefore, this chapter will 

define α and γ respectively to characterize the penetration rates of photovoltaic and wind 

power. Their calculation methods are as follows: 

𝛼 = (∑ ∑ 𝑃𝑃𝑉,𝑖,𝑡𝑡𝑖∈𝐼 ) (∑ ∑ 𝑃LD,𝑖,𝑡𝑡𝑖∈𝐼 )⁄ (3.13) 

𝛾 =∑∑𝑃WT,𝑖,𝑡

𝑡∈𝑇𝑖∈𝐼

∑∑𝑃LD,𝑖,𝑡
𝑡∈𝑇𝑖∈𝐼

⁄ (3.14) 

where α and γ represent the photovoltaic and wind power penetration rate, respectively. 

PLD,i,t , PPV,i,t and PWT,i,t represent the load demand, PV power, and wind power under the 

sampling rate of i-th day and t-th time spot, respectively. 

3.4. Results 

3.4.1 Power Variability Characteristics  

The power increment under different time lags can describe the degree of power 

fluctuations. Based on the methods part, we can calculate power increment at different time 

lags, as shown in Figure 3-2. Comparing the power fluctuation characteristics of different 

resources in Figure 3-2 ((a)-(c); (d) and (e); (f)-(h)), we found that, at the same time lag, 

the different resources power increment probability density function (pdf) is different, that 

is, there are differences in the wind, PV, and load demand power fluctuation. Specifically, 

in the CAISO grid, the PV power increment standard deviation is more than 10 times the 

demand power increment at a 1-minute time lag. The wind power increment standard 

deviation is nearly 2.5 times the load demand power increment. That is, the power 
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fluctuation degree in the CAISO grid, PV power is higher than wind power, and wind power 

is higher than the load demand. Observing the skewness index, we found that the skewness 

of load demand and photovoltaic power is small, and its absolute value is generally lower 

than 0.5, while the skewness of wind power is larger and higher than 1.5. Observing the 

kurtosis index, we found that the load demand has the smallest kurtosis (the kurtosis 

coefficient is close to 24 with a 1-minute lag, and the kurtosis coefficient is close to 3 with 

a 10-minute lag), followed by photovoltaic power (the kurtosis coefficient is close to 52 

with a 1-minute lag, the kurtosis coefficient is close to 26 under the 10-minute time lag), 

and the wind power increment distribution kurtosis value is the largest, even as high as 150 

under the 1-minute time lag. The skewness and kurtosis values of different resources in the 

CAISO grid indicate that the wind power increment and the PV power increment 

distribution is characterized by a peaked and thick-tailed distribution, that is, the probability 

of extreme values in wind power increment and PV power increment is high [113], mainly 

because of its relatively large power fluctuation. 

In the Czech grid, the PV power increment standard deviation is more than 2.6 times the 

load demand power increment at a 10-minute time lag. The wind power increment standard 

deviation is nearly 2.9 times the load demand part. This means that the power fluctuation 

degree in the Czech grid, PV power, and wind power are higher than the load demand part. 

Observing the skewness index, we found that the absolute skewness value of different 

resources is generally lower than 0.2 at a 1-minute time lag. Observing the kurtosis index, 
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we found that the load demand has the smallest kurtosis (the kurtosis coefficient is close to 

13 with a 1-minute lag, and the kurtosis coefficient is close to 6 with a 10-minute lag), 

followed by wind power (the kurtosis coefficient is close to 9 with a 1-minute lag), and the 

PV power increment distribution kurtosis value is the largest, even as high as 19 under the 

1-minute time lag. The skewness and kurtosis values of different resources in the Czech 

grid indicate that the wind power increment and the PV power increment distribution is 

characterized by a peaked and thick-tailed distribution, that is, the probability of extreme 

values in wind power increment and PV power increment is high, mainly because of its 

relatively large power fluctuation. 

In the Qatar grid, the PV power increment standard deviation is close to 3.6 times the 

load demand power increment at a 1-minute time lag and is close to 10 times the load 

demand power increment at a 10-minute time lag. Observing the skewness index, we found 

that the skewness of load demand and photovoltaic power is small, and its absolute value 

is generally lower than 0.1 at a 1-minute time lag. Observing the kurtosis index, we found 

that the load demand has the smaller kurtosis (the kurtosis coefficient is close to 5 with a 

1-minute lag, and the kurtosis coefficient is close to 3 with a 10-minute lag), followed by 

photovoltaic power (the kurtosis coefficient is close to 100 with a 1-minute lag, the kurtosis 

coefficient is close to 24 under the 10-minute time lag). The skewness and kurtosis values 

of different resources in the Qatar grid indicate that the PV power increment distribution is 

characterized by a peaked and thick-tailed distribution, that is, the probability of extreme 
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values in PV power increment is high, mainly because of its relatively large power 

fluctuation. 

 

Figure 3-2. Load demand, wind power, and solar power increment statistics in time lag 1-

min, 10-min, and 60-min probability density function (PDF) in the CAISO grid, Qatar grid, 

and Czech grid. 

Power increment describes the degree of adjacent continuous power fluctuations, which 

reflects the local characteristics of power fluctuation. This chapter constructs other 

indicators such as coefficient of variation (CoV) and peak power duration (PPD) in the 

methods part to describe the overall power curve fluctuation characteristics of different 

resources. Figure 3-3 and Figure 3-4 show the results. 

In Figure 3-3, we can find that the CoV of the PV daily power curve is generally high 

(the value generally between 1.2-2.0), followed by the wind power daily curve (the value 

generally between 0.3-1.2), and the load demand daily curve is the smallest (the value 

generally lower than 0.2). The above characteristics are mainly due to the renewable energy 

-0.2 -0.1 0 0.1 0.2

 P  p   

10
-6

10
-4

10
-2

10
0

P
ro

b
a
b
il

it
y

(a) CAISO LD power increment statistics

lag 1-min

lag 10min

lag 60min

-0.5 0 0.5

 P  p   

10
-6

10
-4

10
-2

10
0

P
ro

b
a
b
il

it
y

(b) CAISO PV power increment statistics

lag 1min

lag 10min

lag 60min

-0.2 0 0.2 0.4

 P  p   

10
-6

10
-4

10
-2

10
0

P
ro

b
a
b
il

it
y

(c) CAISO WT power increment statistics

lag 1min

lag 10min

lag 60min

-0.1 -0.05 0 0.05

 P  p   

10
-5

10
-4

10
-3

10
-2

10
-1

P
ro

b
a
b
il

it
y

(d) Qatar LD power increment statistics

lag 1min

lag 10min

lag 60min

-1 -0.5 0 0.5 1

 P  p   

10
-5

10
0

P
ro

b
a
b
il

it
y

(e) Qatar PV power increment statistics

lag 1min

lag 10min

lag 60min

-0.15 -0.1 -0.05 0 0.05

 P  p   

10
-6

10
-4

10
-2

10
0

P
ro

b
a
b
il

it
y

(f) Czech LD power increment statistics

lag 1min

lag 10min

lag 60min

-0.4 -0.2 0 0.2 0.4

 P  p   

10
-6

10
-4

10
-2

10
0

P
ro

b
a
b
il

it
y

(g) Czech PV power increment statistics

lag 1min

lag 10min

lag 60min

-0.2 -0.1 0 0.1 0.2

 P  p   

10
-6

10
-4

10
-2

10
0

P
ro

b
a
b
il

it
y

(h) Czech WT power increment statistics

lag 1min

lag 10min

lag 60min



 

53 

 

variability is higher than the load demand part, As for the fluctuation characteristics of 

photovoltaic power and wind power, they mainly have the following different 

characteristics: (1) Photovoltaic power has obvious time series characteristics within a day: 

solar power is maximum at noon, while in the early morning and evening, its power is equal 

to 0; (2)wind power fluctuates strongly within a day, the overall difference is not obvious, 

that is, there is not much difference between the maximum power and the minimum power. 

What is more, the above feature of PV will not change with the increase of PV capacity, 

but wind power and load demand will reduce power fluctuation degree through 

complementary characteristics. We can further observe that the value of CoV of the PV 

daily power curve will be relatively low in summer and relatively high in winter. The main 

reason is that the light irradiance is sufficient in summer and the average daily power of PV 

is relatively high. 

Observing Figure 3-4, we can find that PV power and load demand show obvious 

seasonal characteristics, that is, in summer in CAISO, the value of PPD is relatively high, 

while in winter, its value is relatively low. The above characteristics are mainly due to the 

demand in summer in CAISO is relatively high and peak load duration time is longer, and 

PV power output be greater in summer. There are also differences in the fluctuation 

characteristics of different types of resources. Among them, the load demand PPD value is 

generally longer than that of renewable energy sources, such as, in the CAISO grid, the 

PPD of load demand above 95% is close to 17%, while the PPD of wind power and PV 
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power above 95% is about 3.6% and 6.1%, respectively; in the Czech grid, the PPD of load 

demand above 95% is close to 28%, while the PPD of wind power and PV power above 

95% is about 2.3% and 4.5%, respectively; in the Qatar grid, the PPD of load demand above 

95% is close to 30%, while the PPD of PV power above 95% is about 23%. The PV power 

PPD is relatively higher in the Qatar grid than in other grids, the above characteristics are 

mainly due to the solar irradiation in Qatar is relatively abundant. 

 

Figure 3-3. Load demand, wind power, and solar power daily power coefficient of variation 

(CoV) in the CAISO grid, Czech grid, and Qatar grid. 

The PPD indicator comprehensively describes the duration of variable resources under 

different power degrees. Based on the load PPD characteristics, it can help system operators 

formulate reasonable demand response market strategies and incentive intensity, reduce 

peak load power, and reduce transmission line rated capacity, thereby improving the system 

operation stability; Based on the renewable energy PPD characteristics, it can effectively 
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configure the energy storage capacity, reduce the peak power of renewable energy output, 

and improve the system operation economy. 

 

Figure 3-4. Load demand, wind power, and solar power daily peak power duration (PPD) 

distribution in the CAISO grid, Qatar grid, and Czech grid. 

3.4.2 Net Load Power Curve Time Series Characteristics 

Load demand is influenced by industrial structure and production plans in different 

countries, and renewable energy power supply is influenced by natural indicators, therefore, 

these power curves will have different time series characteristics, shown in Figure 3-5 

below. In the CAISO grid, peak load demand usually occurs close to 17:00-20:00. In 

addition, there will also be a local short-term load peak around 6:00-8:00. The valley of 

load demand usually occurs at 23:00-4:30 and 13:30-15:30. While the peak power of PV 

usually occurs close to 11:00-13:00, during this time, the load demand is not higher, but 

when the load demand reaches to peak, the PV power supply is usually smaller, even to 
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zero (during 19:00-6:00); Wind power is relatively large between periods 9:00-17:00 and 

relatively small during period 20:00-6:00, but the overall difference is not clear. In the 

Czech grid, peak load demand usually occurs close to 10:30-13:00. The valley of load 

demand usually occurs at 23:00-4:30. And the peak power of PV usually occurs close to 

11:00-13:00, during this time, the load demand is also higher, so in the Czech grid, the PV 

can better match with the load demand, and wind power does not change significantly 

throughout the day. In the Qatar grid, peak load demand usually occurs close to 12:00-

14:00. and the peak power of PV usually occurs close to 9:30-13:30, during this time, the 

load demand is also higher. 

By comparing the time series characteristics of different resources, we can further 

calculate and get the net load power curve shown in Figure 3-6. In the CAISO grid, the net 

load curve changes greatly in the period [8:00-18:00] and changes very little in the period 

[19:00-6:00]. The main reason is that the PV penetration rate in the CAISO grid is high 

(nearly 17.8%), and its power output is mainly concentrated in the period [8:00-18:00]. The 

wind power penetration rate is low (almost 3.1%), so its impact on the net load power curve 

in the period [19:00-6:00] is minimal. In the Czech grid and the Qatar grid, there is the 

same change trend, the PV power output has a higher impact on the net load power curve 

than wind power in these three countries. 

Considering the renewable energy development trends in the above three countries, we 

further analyzed the changing characteristics of the net load power curve under different 
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renewable energy penetration rates, as shown in Figure 3-7. In the CAISO grid, PV 

penetration increase will cause a higher requirement of flexibility resources, it will look 

like the canyon curve [105]. By comparing different cases (case 1: α=0.178, γ=0.031; case 

2: α=0.178, γ=0.1; case 3: α=0.178, γ=0.2, different cases means different renewable energy 

penetrations), with the increase of wind penetration, the net load power curve changes 

greatly in the period [9:00-16:00] and changes very little in the period [20:00-6:00], the 

main reason is that during above different period, the wind power will be different, as 

shown in Figure 3-5. With the PV penetration increase, by comparing the cases (case 1: 

α=0.178, γ=0.031; case 5: α=0.3, γ=0.031; case 6: α=0.5, γ=0.031), we can find that the net 

load power curve has a deep decrease and increase during the period [8:00-18:00]. That is, 

PV power has a bigger influence on the net load power curve than wind power. As the PV 

penetration rate increases, the net load power curve shows the characteristics: high on both 

sides and low in the middle; while the lowest time point often corresponds to the point with 

the largest PV power, close to 11:30-13:00, the net load power curve gradient will become 

very large at certain points due to the timing characteristics of PV power, which is reflected 

in the power system operation process, that is, the requirement of flexible ramping 

resources will become very large. This section analyzes the net load power curves with 

different renewable penetration rates in different countries, to guide the future reserve of 

flexible resources in these countries. 
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Figure 3-5. Per unit power curves in different countries and different types of resources. 

 

 

Figure 3-6. Net-load power curves. In the CAISO grid, the PV ratio is equal to 17.8%; the 

WT ratio is equal to 3.1%; in the Czech grid, the PV ratio is equal to 3.6%, WT ratio is 

equal to 0.9%; in the Qatar grid, the PV ratio is equal to 10.3%. 
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Figure 3-7. Expected daily net load power curves at different renewable penetration 

 

3.4.3 Real-time Power Curve Time Series Characteristics 

The main challenge of high-penetration renewable energy systems is the variability, 

fluctuation, and intermittent brought by renewable energy. This characteristic will not only 

affect the net load power curve, but its rapidly changing characteristics will also directly 

lead to the difference between real-time power and day-ahead power scheduling process, 

which means the system requires real-time imbalanced power backup. In this section, we 

will analyze different flexible resources and their real-time imbalanced power time series 

characteristics. 

(1)  Load demand real-time imbalanced power curve characteristics 

The load peak and valley will have the minimum power gradient, affecting the real-time 

imbalanced power curve, which minimizes real-time power imbalance reserve 

requirements at these time points. The load peak/valley timing distribution characteristics 
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of different countries are shown in Figure 3-8 below. By comparing Figure 3-8, 

 

Figure 3-9, and Figure 3-10, we can find the power gradient at the peak/valley load 

periods is the smallest, resulting in a lower real-time imbalanced power amount in the 

corresponding period. From the above Figures, we can find that the load demands real-time 

imbalanced power time series curves have these characteristics: 

(1) In the CAISO grid, peak load demand usually occurs close to 17:00-20:00. In addition, 

there will also be a local short-term load peak around 6:00-8:00. The valley of load demand 

usually occurs at 23:00-4:30 and 13:30-15:30. Between the valley and peak, the power 

gradient will increase from zero to a large value and then decrease to zero again. Between 

the peak and valley, the power gradient will decrease from zero to a small value and then 

increase to zero again. Therefore, the load demand RTIP has four lower periods, namely 

[2:00-3:00], [7:00-8:00], [14:00-15:00], and [18:00-19:00]. From Figure 3-5, we can find 

during periods [7:00-8:00] and [14:00-15:00], the load power gradient changes little, so the 
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real-time power imbalance is not large, but the period from [2:00-3:00] to [7:00-8:00], 

period from [14:00-15:00] to [18:00-19:00], and period from [18:00-19:00] to [2:00-3:00], 

the load power gradient changes significantly, so the real-time power imbalance is large, as 

shown in the 

 

Figure 3-9 and Figure 3-10. 

(2) In the Czech grid, peak load demand usually occurs close to 10:30-13:00. The valley 

of load demand usually occurs at 23:00-4:30. Between the valley and peak, the power 

gradient will increase from zero to a large value, and then decrease to zero again. Between 

the peak and valley, the power gradient will decrease from zero to a small value and then 

increase to zero again. Therefore, the load demand RTIP has two lower periods, namely 

[10:00-11:00] and [2:30-4:00]. From Figure 3-5, we can find during periods [10:00-11:00] 

and [19:00-20:00], the load power gradient changes little, so the real-time power imbalance 

is not large, but the period from [2:30-4:00] to [10:00-11:00], period from [19:00-20:00] to 

24:00, the load power gradient changes significantly, so the real-time power imbalance is 



 

62 

 

large, as shown in Figure 3-9 and Figure 3-10. 

(3) In the Qatar grid, peak load demand usually occurs close to 12:00-14:00. The valley 

of load demand usually occurs at 4:00-6:00. Between the valley and peak, the power 

gradient will increase from zero to a large value, and then decrease to zero again. Between 

the peak and valley, the power gradient will decrease from zero to a small value and then 

increase to zero again. Therefore, the load demand RTIP has two lower periods, namely 

[4:00-6:00] and [12:00-14:00], as shown in Figure 3-9 and Figure 3-10. 

We can find that the amount of load demand RTIP has a linear relationship with the load 

demand power gradient. The greater the load power fluctuation, the greater the real-time 

power imbalance quantities. Based on the time series of the load demand power curve, 

especially the peak and valley points, the results of this chapter can give scientific guidance 

for the balance market to prepare flexibility resources in advance. 

(2)  Solar power real-time imbalanced power curve characteristics 

Solar power is mainly affected by natural resources such as light intensity, and its power 

output is approximately proportional to light intensity [33], [38-39], [41-42], [47]. 

Therefore, its power output has obvious time series characteristics: The photovoltaic power 

generation gradually increases from 0 to the maximum power (corresponding to zero solar 

irradiance to the strongest light intensity); then decreases from the maximum power to 0 

(corresponding to the light intensity from highest to 0); 2) The PV power change rate, that 

is, the PV power gradient, is often relatively small when the power is maximum (i.e., noon); 
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3) When there is no light intensity (from evening to early morning), the photovoltaic power 

generation is approximately 0, and its change rate is also 0; 4) When the light intensity 

gradually increases or weakens, although the photovoltaic power generation is not high, the 

PV power change rate is relatively large. Based on the above features, the PV power 

peak/valley timing distribution characteristics and real-time imbalanced power timing 

characteristics of different countries are shown in Figure 3-8 and Figure 3-9 below.  

Comparing the PV power peak/valley distribution characteristics in different countries 

from Figure 3-8, it can be seen that even though there are differences in solar resources in 

different countries, their PV power timing characteristics show the same trend: (1) the PV 

power peak distribution is mainly concentrated at noon (11:00-13:00); (2) the PV power 

output is 0 in the early morning and evening. 

From Figure 3-9 and Figure 3-10, we can find that the PV real-time imbalanced power 

time series curves have these same characteristics: 

The changing trend of real-time imbalanced power reserve requirement of solar power 

is consistent in three different countries: (a) During the early morning and night periods, 

the real-time imbalanced power reserve requirement of photovoltaic power is 0; (b) During 

the period close to noon, the real-time imbalanced power reserve requirement for 

photovoltaic power is very small; (c) From early morning to noon, whether upward 

flexibility or downward flexibility requirement, the real-time imbalanced power reserve 

requirement for photovoltaic power first increases and then decreases; (d) From noon to the 
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afternoon, whether it is an upward flexibility requirement or downward flexibility 

requirement, the real-time imbalanced power reserve requirement of photovoltaic first 

increases and then decreases to 0. (e) The change trend of the real-time imbalance amount 

of photovoltaic power generation over time: first slowly increases from 0 to the maximum 

(the maximum point corresponds to the maximum photovoltaic power gradient, generally 

at [9:00-10:00]), and then slowly decrease from maximum point to 0 (The corresponding 

point is the largest solar intensity, usually at [11:30-13:00]), and then slowly increases from 

0 to maximum (the maximum point corresponds to the largest photovoltaic power gradient, 

usually at [15:30-17:00]), and finally slowly decreases to 0 (corresponding to photovoltaic 

power is equal to 0 and power gradient also equal to 0, usually after 19:00). The solar power 

real-time imbalanced power curve looks like butterfly curve [115]. 

 

Figure 3-8. Peak/valley power timing distribution characteristics of different countries. 
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Figure 3-9. Real-time imbalanced power curves.(In the CAISO grid, the PV ratio is equal 

to 17.8%; the WT ratio is equal to 3.1%; in the Czech grid, the PV ratio is equal to 3.6%, 

WT ratio is equal to 0.9%; in the Qatar grid, the PV ratio is equal to 10.3%.) 

(3)  Wind power real-time imbalanced power curve characteristics 

Wind power does not have obvious time series characteristics like load power curve and 

PV power, and there are differences in different countries. In Figure 3-8, we can find that 

the wind power in the CAISO grid is usually larger during periods 9:00-17:00 and relatively 

smaller during periods 20:00-6:00. But in the Czech grid, the wind power has an abundant 

peak or valley points, mainly because the power output is fluctuation heavily. The 

characteristic of wind power that many peak and valley powers appear alternately means 

that the difference between adjacent peak and valley powers in the wind curve will not be 

large. On the other hand, the real-time imbalanced power quantities will not be very large 

either, as shown in Figure 3-9 (a) and (b). 

The amount of RTIP is relatively small when the wind power gradient is small 
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(combining Figure 3-5 (c) and Figure 3-10 (a), observation period 21:00-5:00), and is 

relatively large when the wind power gradient is large (combining Figure 3-5 (c) and Figure 

3-10 (a), the observation period 18:00-20:00), but its absolute value is also affected by the 

power difference of the adjacent peak and valley. For example, in the CAISO grid, The 

difference in real-time imbalanced power between periods 8: 00-12:00 and 18:00-20:00; 

and in the Czech grid, there are many peak and valley power points, but the adjacent peak 

and valley differences are small, making the real-time imbalanced power of wind power is 

generally small, as can be seen by comparing Figure 3-5 (h) and Figure 3-10 (c). 

The fluctuation characteristics of wind power will not bring obvious differences to the 

RTIP, mainly due to: (1) Peak and valley alternations occur frequently; (2) The power 

difference between adjacent peaks and valleys is not large; in the Czech grid, When the 

wind power penetration rate is as high as 10%, the real-time imbalanced power quantity 

caused by wind power fluctuations is even less than 0.1% of the load peak. 

(4)  The RTIP timing characteristics in the CAISO grid, Czech grid, and Qatar 

grid with renewable energy penetration increase 

The whole power system power variability is defined as the overall external 

representation of all the variability resources in this area. There are differences in energy 

structure and peak load in different countries' grids, and therefore their external real-time 

imbalanced power reserve time series characteristics are also different. Considering that 

the power variability characteristics from traditional generators (such as gas, thermal, and 
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nuclear, etc.) are not obvious, that is, the power output is stable within the scheduling time 

window. VREs (such as wind power, solar power, etc.) have large variability characteristics, 

and with the penetration increases, their variability characteristics will become more 

obvious. Therefore, the real-time imbalanced power reserve requirement in three different 

countries' grids mainly comes from VREs' power variability and load demand variability. 

When the real-time load demand becomes smaller while the renewable energy power 

becomes larger, the real-time imbalanced power reserve needs upward flexibility PU,t; when 

the real-time demand becomes larger while the renewable energy power becomes smaller, 

the real-time imbalanced power reserve needs downward flexibility PD,t . As shown in the 

following equations (3.15) and (3.16). 

𝑃U,𝑡 = Δ𝑃WT,𝑡
+ + Δ𝑃PV,𝑡

+ − Δ𝑃LD,𝑡
− (3.15) 

𝑃D,𝑡 = Δ𝑃LD,𝑡
+ − Δ𝑃PV,𝑡

− − Δ𝑃WT,𝑡
− (3.16) 

where Δ𝑃𝑊𝑇,𝑡
+  and Δ𝑃𝑃𝑉,𝑡

+  represent wind power and PV power real-time part larger than the 

day-ahead part, respectively; Δ𝑃𝑊𝑇,𝑡
−  and Δ𝑃𝑃𝑉,𝑡

−  represent wind power and PV power real-

time part smaller than the day-ahead part, respectively; Δ𝑃𝐿𝐷,𝑡
+  and Δ𝑃𝐿𝐷,𝑡

−  represent load 

demand real-time part larger than the day-ahead part and smaller than the day-ahead part, 

respectively. 

Based on the different variable resources in different grids, we can obtain their real-time 

imbalanced power reserve requirement time series characteristics shown in Figure 3-9. At 

the current renewable energy penetration (In the CAISO grid, the PV ratio is equal to 17.8%; 
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the WT ratio is equal to 3.1%; in the Czech grid, the PV ratio is equal to 3.6%, WT ratio is 

equal to 0.9%; in the Qatar grid, the PV ratio is equal to 10.3%.), it can be seen that, in the 

CAISO grid, the real-time imbalanced power quantity has a higher value from 7:30-9:30 

and 15:00-17:00, and in other periods, such as 20:00-6: 00, the real-time imbalanced power 

is generally low. The higher periods are mainly affected by the PV imbalance component, 

and the lower periods are mainly affected by the imbalance part caused by load power 

fluctuations. In the Czech grid, the real-time imbalanced power quantity has a higher value 

from 3:00 to 10:30 and a period from 20:00 to 24:00, these higher periods are mainly 

affected by the load demand imbalance component, and the wind power and PV power 

imbalances parts are relatively small. But when the PV penetration rate increases (increase 

to 10%, and even up to 30%), shown in Figure 3-10 (c) and (d), the Czech grid's real-time 

imbalanced power will be influenced by PV imbalanced characteristics, shown in the 

butterfly curve. In the Qatar grid, the real-time imbalanced power quantity has a higher 

value from 7:00-8:00 and 15:00-16:30, these higher periods are mainly affected by the PV 

imbalance component, look like butterfly curve, in other periods, such as 17:00-6: 00, the 

real-time imbalanced power is generally low, these periods are mainly affected by the load 

demand power fluctuations. When the PV penetration rate increases (increase to 20%, and 

even up to 60%), as shown in Figure 3-10 (e) and (f), the Qatar grid real-time imbalanced 

power quantities curve will be clearly shown as the butterfly curve. 

In areas with abundant solar resources, the real-time imbalanced power curve will show 
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a butterfly curve, such as the CAISO grid and the Qatar grid (PV penetration rate more than 

10%). However, in areas with relatively less abundant solar resources, such as the Czech 

grid, the real-time imbalanced power curve characteristics will also be greatly affected by 

the PV power fluctuation. The above features are mainly due to the PV power fluctuation 

characteristics having obvious timing characteristics and the amount of RTIP caused by its 

fluctuation are generally large, but the amount of RTIP caused by wind power and load 

demand fluctuations is relatively small. 

 
(a) CAISO grid different flexible resources real-time imbalanced power (p.u.) 
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(b) CAISO grid real-time imbalanced power (p.u.) at different renewable energy penetration rates 

 
(c) Czech grid different flexible resources real-time imbalanced power (p.u.) 

 
(d) Czech grid real-time imbalanced power (p.u.) at different renewable energy penetration rates 

 
(e) Qatar grid different flexible resources real-time imbalanced power (p.u.) 
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(f) Qatar grid real-time imbalanced power (p.u.) at different renewable energy penetration rates 

Figure 3-10. Real-time imbalanced power curves at different renewable energy penetrations. 

3.5. Summary 

This chapter proposed metrics including power incremental statistics, coefficient of 

variation, and peak power duration to characterize the power variability characteristics. 

Based on these metrics, we analyze the mathematical relationship between these variations 

and net-load power curves and real-time power imbalance curves, finding that power 

variability will directly affect net-load power curves and the power gradient will affect the 

real-time power imbalance curve. The main conclusions are as follows: 

(1)  The different types of resources in different countries have different power 

fluctuation characteristics, PV power has the largest fluctuation, followed by wind power, 

and load power has the smallest fluctuation. 

(2)  The time series characteristics of PV power are relatively obvious, which directly 

affects the net load power curve. There is a higher flexible power requirement near noon 

(that is, around the maximum PV power), and this feature will increase as the PV 
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penetration rate increases. These features make the net load curve look like the canyon 

curve; the timing characteristics of wind power in different countries are different, but the 

overall impact of wind power on the net load power curve is not as obvious as that of PV 

power. 

(3)  The real-time imbalanced power quantities of different types of resources are 

proportional to their power gradient. The real-time power imbalance caused by PV power 

has timing characteristics and looks like a butterfly curve. 

(4)  The method proposed in this chapter can effectively help system operators 

rationally arrange flexible resource reserves, such as helping system operators prepare ramp 

power requirement reserve based on net-load power curve time series results; and prepare 

real-time power balance reserve based on the real-time imbalanced power curve time series 

results. 
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4. IMPACT ANALYSIS OF INCREASING TIME 

GRANULARITY ON HIGH PENETRATION 

RENEWABLE ENERGY 

Abstract: The power system operation and settlement will face fundamental challenges with 

increasing variable renewable energy (VRE). In this chapter, we propose an evaluation 

method for the electricity market at different time granularity, including ex-ante real-time 

power deviation prediction; real-time power scheduling operation and clearing; ex-post 

power deviation settlement. Based on this evaluation model, we analyze high temporal 

resolution datasets and find strong evidence that the higher the time granularity, the power 

step changes and the real-time power deviation quantities are smaller, and vice versa. 

Reducing the power step changes and real-time power deviations will reduce power grid 

frequency deviations and power market balancing costs. Moreover, increasing the time 

granularity from 30 to 5 minutes would reduce the balancing cost by nearly half, and reduce 

the power step amplitude standard deviation by nearly 80%. This chapter for the first time 

provides scientific evidence to support the worldwide reform of the electricity market with 

massive renewable energy integration by increasing time granularity. 
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Abbreviations  

VRE Variable renewable energy  

RTPD Real-time power deviation  

MCM Markov chain mixture distribution model 

Variables, Parameters, and Functions  

T0 Power sampling rate 

Tn Power scheduling time granularity 

Pi The i-th sampling power 

PS Power step changes between adjacent scheduling intervals 

Bt Bounded limit of power at the t-th time spot 

Nt 
Divide the power into N bins at t-th time spot 

Mt The transfer matrix at t-th time. 

∆P(t)  Real-time power deviation at the t-th time spot 

PU,s,t Upward regulation power requirement at the t-th time spot under the 

s-th scene 

PD,s,t Downward regulation power requirement at the t-th time spot under 

the s-th scene 

∆P
+ 

VREs,s,t  VRE real-time power is larger than the day-ahead part  

∆P
- 

VREs,s,t  VRE real-time power is smaller than the day-ahead part  

∆P
+ 

LD,s,t  Load demand real-time power larger than the day-ahead part  

∆P
- 

LD,s,t  Load demand real-time power smaller than the day-ahead part  

P
U 

B,i,s,t  The i-th flexible resources to provide upward flexible power at t-th 

time slot and in the s-th scene 

P
D 

B,i,s,t  The i-th flexible resources to provide downward flexible power at t-

th time slot and in the s-th scene 

Ns  The number of scenes 

CB The real-time power scheduling cost 

λ
D 

B,s,t  Downward regulation unit power price at the t-th time slot in the s-

th scene 

λ
U 

B,s,t Upward regulation unit power price at the t-th time slot in the s-th 

scene 

∆P
+ 

VREs,real,t  The VRE ex-post actual power is larger than the day-ahead part 
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∆P
- 

VREs,real,t The VRE ex-post actual power is smaller than the day-ahead part 

∆P
+ 

LD,real,t  Load demand ex-post actual power larger than the day-ahead part  

∆P
- 

LD,real,t  Load demand ex-post actual power smaller than the day-ahead part 

CP The ex-post power deviation settlement cost 

∆PD,s,t  The downward regulation deviation at the t-th time slot in the s-th 

scene 

∆PU,s,t  The upward regulation deviation at the t-th time slot in the s-th scene 

4.1. Introduction 

Recently, more countries have declared that they will achieve net-zero carbon emissions 

to mitigate the urgency of climate change. To align with this global effort, variable renewable 

energy (VRE) sources must be pivotal [3-5]. However, VREs face inherent challenges due 

to their reliance on natural environmental factors, such as solar irradiance, air temperature, 

wind speed and directions, etc. These factors introduce significant volatility and uncertainty 

into the energy system [16-19], [31], [33]. As VREs penetrate the power grid on a massive 

scale, the grid will encounter greater fluctuations and intermittent than it does presently. 

Based on the definition and technical of the power system, it is important to maintain an 

immediate equilibrium between the supply of electrical energy and the demand from 

consumers [14]. Therefore, the variability and intermittency of the VREs will bring huge 

challenges to the stability and operation of the power system. Traditional generation such as 

nuclear, thermal, gas, hydropower, etc. occupy a large proportion of traditional power 

systems, and these generators have high inertia, which can use mechanical rapid rotating 

power to serve as automatic power generators to help keep the grid frequency stability. 

However, with the high penetration of VREs, these generators (including wind turbines and 
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PVs) transfer power/energy to the main grid based on an inverter technique. Through this 

technology, the inertia from the VREs is decoupled from the other part of the grid, therefore 

the moment of inertia in the total system will be reduced and the lower rotational inertia will 

influence the power grid stability [14], [20-22], [25]. In addition, the volatility and 

intermittency of VRE generators will also cause higher power fluctuations, which will also 

cause power grid frequency fluctuations. Except for influencing the power grid frequency 

stability, the volatility and intermittency of VRE generators will bring higher power 

differences between day-ahead dispatch and real-time dispatch and increase the re-dispatch 

operating cost and power deviation settlement cost, influencing the power market operation 

cost [26-28], [107]. 

Recently, increasing time granularity in power systems by reducing the energy settlement 

time unit (pricing shorter market time units) is an important energy market innovation to 

address the volatility, uncertainty, and intermittency challenges posed by the increased 

penetration of VREs [32]. On the one hand, increasing time granularity means the closing 

time of the scheduling gate is more frequent and the scheduling interval is shorter, which 

allows system operators to more quickly solve the power imbalance problem caused by the 

difference between day-ahead dispatch and real-time dispatch. Also, shortening the 

scheduling intervals means that power step change at scheduling interval points and real-

time power deviation during the scheduling intervals will decrease, reducing power grid 

frequency deviation. On the other hand, increased time granularity in the electricity market 

helps system operators predict day-ahead and real-time operations more accurately based on 



 

77 

 

timely information. This helps avoid the re-dispatch process, which will increase the ex-post 

power deviation settlement cost. 

In this chapter, we use the minute-level temporal resolution datasets including load 

demand, wind power, and solar power located in three different countries around the world 

to how we can reduce balancing electricity market costs and power grid frequency deviations 

by increasing time granularities. First, based on the historical datasets, we used the statistics 

method and found that increasing the time granularity will reduce the power step change at 

the scheduling interval points and real-time power deviation during the scheduling interval, 

increasing time granularity from 30 minutes to 5 minutes would reduce the power step 

amplitude by nearly 80%, improving power grid frequency stability. Then, based on the 

electricity balance market model, including ex-ante real-time power deviation prediction, 

real-time power scheduling, and ex-post power deviation settlement, we observe that 

increasing time granularity will improve real-time power deviation prediction accuracy 

(shorter time will provide more accurate forecast information); reduce real-time power 

scheduling operation costs and reduce ex-post power deviation settlement cost, increasing 

time granularity from 30 minutes to 5 minutes would reduce the balancing cost by nearly 

half. This chapter for the first time provides scientific evidence to support the reform of the 

global electricity market by increasing the time granularity. 

4.2. Data Setting and Description 

This chapter contains power datasets time series information from three different 
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countries: Qatar power grid, Czech power grid, and California Independent System Operator 

(California ISO) grid, these three different grides cover power information and grid 

frequency information. Detailed information on these datasets is described below. 

Dataset I: The dataset includes PV power (PV farm) and load demand in the Qatar grid; 

the temporal resolution is 1 minute. (here, the dataset includes the 2022-2023 two-year data). 

The peak load in the Qatar grid is about 4700MW, and the PV farm capacity is about 500MW. 

Dataset II: The dataset includes several wind farms and load demand in the Czech grid. 

(here, the dataset includes the 2021 whole-year data) [110]. The peak load in the Czech grid 

is about 13000MW, the PV capacity is about 1700MW, and the wind capacity is about 

300MW. 

Dataset III: The dataset includes wind power, solar power, and load demand located in the 

California Independent System Operator (California ISO) grid. The temporal resolution is 1 

minute. (Here, the dataset includes nearly two years between 01/01/2018 and 31/12/2019) 

[109]. The peak load in the California ISO grid is about 48000MW, the PV capacity is about 

18000MW, and the wind capacity is about 8100MW. 

4.3. Methods 

4.3.1 Power Grid Frequency Analysis 

The variation in electricity frequency is mainly caused by the instantaneous power 

imbalance. We can describe its relationship through the swing equation below [14], [24]. 
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𝑑𝛿𝑖
𝑑𝑡

= Δ𝜔𝑖

𝑑Δ𝜔𝑖
𝑑𝑡

=
𝜔𝑁
𝑇𝐽𝑖

(𝑃𝑇𝑖 − 𝑃𝑒𝑖)
(4.1) 

where each node i represents a generalized generator node (a subsystem connected to the 

i-th node), its dynamic process is characterized by two independent variables: the first is 

phase δi and the second is relatively angular velocity Δωi=2π(fi−fR). For relatively angular 

velocity, fR represents the grid base frequency, which is equal to 50Hz or 60Hz, based on 

the grid system. fi represents the frequency of the nodes i=1, …, N. ωN=2πfR represents the 

reference angular velocity, it is a constant for a stable power system; TJi represents the i-th 

generator’s inertia constant. PTi represents i-th mechanical power; Pei represents the 

electrical power of the i-th generator. Since the change speed of Pei is much higher than that 

of mechanical power PTi, frequency stability is mainly affected by inertia constant TJi and 

power fluctuations. The inertia constant TJi is mainly affected by the generator mechanical 

inertia of the whole system, which is a system-level problem; In contrast, the impact of 

power fluctuations exists all the time. It can be seen from equation (4.1) that the frequency 

change rate is directly proportional to the power fluctuation quantities and inversely 

proportional to the inertia constant. Therefore, reducing power fluctuations and increasing 

inertia constant are effective ways to improve the power grid frequency stability. 

In most grid dispatch processes, dispatch runs are typically scheduled in 1-hour 

increments, with shorter intervals of 30 also possible [32], [101-103]. Hence at different 

interval widths, the power curve is steplike. From one interval point to another interval point, 

the power balance rapidly switches from positive to negative or vice versa, leading to large 
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deviations in the grid frequency; during the interval width, the power deviation curve 

alternates around 0, and the total integral is 0. From one sampling point to another, the real-

time power deviation undergoes rapid switches between positive and negative values. These 

fluctuations also directly impact the grid frequency, which is evident in Figure 4-1 (also 

referenced as [122-123]). The daily average frequency depicted in Figure 4-1 results from 

averaging data based on multiple days. Notably, The electricity market behavior, including 

trading and regulation, has an obvious impact shown in Figure 4-1. Hourly observations in 

various countries reveal sharp frequency jumps—both upward and downward. During each 

interval, the frequency experiences an abrupt decrease or increase, followed by a gradual 

trend in the opposite direction for the subsequent interval. The main reason is that at each 

interval point, there is a power step, which will cause a frequency jump. During the interval, 

real-time power deviation will cause the frequency to slowly change. Therefore, there are 

two parts to power fluctuations that influence frequency change: the power step change at 

the interval points and the power deviation during the interval. These two parts can be 

described in the following part. 
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Figure 4-1 Frequency deviation timing characteristics. 

4.3.2 Power Step Change and Real-time Power Deviation 

Based on the electricity market operation mechanism, dispatch usually has different time 

intervals, such as 1 hour, 30 minutes, etc. Hence, at different interval widths, the power curve 

is steplike. The power step change is the power difference at different interval points. Due 

to power variability and uncertainty, real-time power deviation (RTPD) is equal to the power 

difference between the sampled power and the average power within an interval. 

Therefore, we can get power step changes at different time granularities as shown in 

equations (4.2) and (4.3). 

𝑃𝑇𝑛 =
1

𝑛
∑ (𝑃𝑖)

𝑛

𝑖=1
, 𝑇𝑛 = 𝑛𝑇0 (4.2) 

𝑃𝑆 = 𝑃𝑇𝑛+1 − 𝑃𝑇𝑛 (4.3) 
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where T0 represents the power sampling rate; Tn represents the power scheduling time 

granularities, that is the width of the scheduled intervals. Pi represents the i-th sampling 

power; PS represents power step changes between adjacent scheduling intervals. 

By comparing real-time power and the average power in scheduled intervals, we can get 

real-time power deviation (RTPD) quantities at different time granularities. The details can 

be shown in section 3.3.2. 

4.3.3 Electricity Balance Market Operation 

In general, the power system operators need to schedule the system reserve power in 

advance according to the power deviation and guide different power units to participate in 

the balanced electricity market to achieve instantaneous power balancing. Uncertainties and 

variabilities in a large electricity system are inevitable. Therefore, the electricity balance 

market operation includes the following processes: (1) ex-ante real-time power deviation 

prediction; (2) real-time power scheduling operation and clearing; (3) ex-post power 

deviation settlement [27], [107]. Figure 4-2 shows the detailed process below. 
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Figure 4-2. The electricity balance market operation process. 

 

(1)  Ex-ante real-time power deviation prediction 

The RTPD is the power difference between sampling power and average power during 

the scheduling interval caused by power variability and uncertainties. Therefore, we can use 

equations (4.2) and (4.3) to calculate and get the RTPD training datasets at different time 

granularities. Then we use the Markov chain mixture distribution (MCM) model to predict 

real-time power deviation time series. The MCM based on N-state for probabilistic 

forecasting was widely used in forecasting solar irradiance [116-117], electricity 

consumption [118], etc. In this section, we will use the MCM model based on a single 

observation RTPD point to produce a probabilistic forecast for the next point. The MCM 

prediction process is shown in Algorithm 4-1 below. 

(1) Training dataset processing divided by load 

demand, WT power, PV power, etc.;

(2) Real-time power deviation prediction based

on the Markov Chain Mixture Distribution

(MCM) Method;

(3) Using Monte Carlo to generate NS different 

scenarios

Step 1: E -ante real-time power deviation 

prediction

(1) Determine imbalanced power requirements.

(2) Determine the marginal clearing price;

(3) Real-time power scheduling settlement cost ;

Step 2: Real-time power scheduling and 

clearing process

(1) Calculate power deviation based on actual monitoring data;

(2) Power deviation settlement;

Step 3: E -post power deviation settlement

Algorithm 4-1: MCM model to predict RTPD 
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Based on the trained model and transfer matrix Mt, we can use the ∆P(t) to predict the 

probability distribution of the RTPD ∆P(t+1) at the next step. Through the above prediction 

method, we can obtain the probability distribution characteristics of the RTPD time series. 

Step 1) Define bounded within limits Bt=[at, bt] based on the training time series 

datasets, Bt is different at different time slots. 

Step 2) Choose bin Nt for the predicted model. 

Step 3) Divide the training time series into Nt bins, evenly divided within the range 

Bt=[at, bt]. 

Step 4) Calculate an Nt×Nt transfer matrix Mt based on the transfer process occurring 

between neighboring bins. 

𝑀𝑡,𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑘
𝑁𝑡
𝑘=1

, ∀𝑖, 𝑗 ∈ 𝑁𝑡 (4.4) 

Step 5) Observe ∆P(t) at the t-th time point based on the test datasets, and then choose 

the correct bin. 

Step 6) Calculate the next step predicted distribution probability, that is calculate the 

probability density function corresponding to the transfer matrix M. 

𝑓(∆𝑃(𝑡 + 1)) =

{
 

 
𝑃𝑡+1(𝑥1 ≤ ∆𝑃(𝑡) < 𝑥2)

𝑃𝑡+1(𝑥2 ≤ ∆𝑃(𝑡) < 𝑥3)
⋮

𝑃𝑡+1(𝑥𝑁𝑡 ≤ ∆𝑃(𝑡) < 𝑥𝑁𝑡+1)

(4.5) 

𝑠. 𝑡.

{
 
 

 
 ∆𝑃(𝑡) ∈ [𝑎𝑡, 𝑏𝑡]

𝑥𝑗 =
𝑖 − 1

𝑁𝑡
(𝑏𝑡 − 𝑎𝑡) + 𝑎𝑡, 𝑖 ∈ [1, 𝑁𝑡]

𝑃𝑡+1(𝑥𝑗 ≤ ∆𝑃(𝑡) < 𝑥𝑗+1) = 𝑀𝑡,𝑖𝑗

(4.6) 

Step 7) Forecasting the real-time power deviation at the neighboring time point, we 

need to set the time value from t to t+1, then choose the point value ∆P(t+1) and go 

back from Step 5 to do the same calculation. 
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Then, we will use Monte Carlo simulation to generate S random scenarios to participate in 

the real-time power scheduling process. 

(2)  Real-time power scheduling process 

Power system operators will complete real-time scheduling control and clearing processes 

based on the predicted RTPD and combined with the information of flexible resources in the 

electricity balance market. This process aims to minimize the real-time scheduling operation 

cost and satisfy the constraints of predicted real-time power deviation. 

The primary function of a balanced electricity market is to facilitate transactions between 

power generation and load demand, ensuring instantaneous balance between supply and 

demand. Based on the predicted real-time power deviation (RTPD) from supply and demand, 

power imbalances in the balancing market primarily manifest in two parts [115], [119]: 

1) Upward regulation (PU,s,t): This part usually occurs when load demand exceeds power 

supply at the sampling time, to meet these power gaps, the system requires additional power 

generation to meet this demand. The upward regulation is shown below. 

𝑃U,𝑠,𝑡 = 𝛥𝑃VREs,𝑠,𝑡
+ − 𝛥𝑃LD,𝑠,𝑡

− (4.7) 

2) Downward regulation (PD,s,t): This part usually occurs when supply surpasses demand 

at the sampling time, to meet these power gaps, the system needs to reduce generation to 

align with demand. The downward regulation is shown below. 

𝑃D,𝑠,𝑡 = Δ𝑃LD,𝑠,𝑡
+ − Δ𝑃VREs,𝑠,𝑡

− (4.8) 

where ∆P
+ 

VREs,s,t and ∆P
- 

VREs,s,t represents VREs real-time power larger than the day-ahead part 

and smaller than the day-ahead part, respectively; ∆P
+ 

LD,s,t and ∆P
- 

LD,s,t represents load demand 
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real-time power larger than the day-ahead part and smaller than the day-ahead part, 

respectively. 

Within a scheduling window width, real-time power deviation needs to be balanced 

through the bidding of flexible resources, these resources need to meet the power balance 

constraints: 

∑𝑃𝐵,𝑖,𝑠,𝑡
𝑈

𝑛

𝑖=1

= 𝑃U,𝑠,𝑡, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑁𝑠 (4.9) 

∑𝑃𝐵,𝑖,𝑠,𝑡
𝐷

𝑛

𝑖=1

= 𝑃D,𝑠,𝑡, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑁𝑠 (4.10) 

where P
U 

B,i,s,t and P
D 

B,i,s,t represent i-th flexible resources to provide upward and downward 

flexible power at t-th time slot and in the s-th scenes; Ns represents the number of scenes. 

In this chapter, we use a pay-as-clear mechanism bid and participate in a real-time power 

scheduling process, which means the real-time power deviation clearing price is based on 

the most expensive offer accepted balancing unit marginal price [120]. Therefore, the real-

time power scheduling operation cost is as follows, which have constraints shown in 

equations (4.9) and (4.10). 

𝑚𝑖𝑛𝐶𝐵 =
1

𝑁𝑠
∑ (∑(𝜆𝐵,𝑠,𝑡

𝐷 𝑃D,𝑠,𝑡 + 𝜆𝐵,𝑠,𝑡
𝑈 𝑃U,𝑠,𝑡)

𝑇

𝑡=1

)
𝑁𝑠

𝑠=1
(4.11) 

where CB represents the real-time power scheduling cost; λ
D 

B,s,t and λ
U 

B,s,t represent the 

downward regulation and upward regulation unit power price at the t-th time slot in the s-th 

scene, respectively; PD,s,t and PU,s,t represent the downward and upward regulation provided 

by flexible resources to participate in balance service at the t-th time slot in the s-th scene. 

(3)  Ex-post power deviation settlement 
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In large electricity systems, uncertainties are inevitable. Therefore, power system 

operators need to calculate additional operation costs based on the real power data collected 

in the SCADA system afterward. The further operation costs mainly include two parts: (1) 

power system reserve operation costs due to prediction errors, borne by the power system 

operator; (2) suppliers/consumers do not stick to their clearing given schedules during real-

time power scheduling process, borne by the users. This thesis mainly evaluates the power 

system operation economy, therefore, the uncertainty from suppliers/consumers is ignored. 

Therefore, the actual upward and downward reserves are shown below: 

𝑃U,𝑟𝑒𝑎𝑙,𝑡 = Δ𝑃VREs,𝑟𝑒𝑎𝑙,𝑡
+ − Δ𝑃LD,𝑟𝑒𝑎𝑙,𝑡

− (4.12) 

𝑃D,𝑟𝑒𝑎𝑙,𝑡 = Δ𝑃LD,𝑟𝑒𝑎𝑙,𝑡
+ − Δ𝑃VREs,𝑟𝑒𝑎𝑙,𝑡

− (4.13) 

where ∆P
+ 

VREs,real,t and ∆P
- 

VREs,real,t represents VREs ex-post actual power larger than the day-

ahead part and smaller than the day-ahead part, respectively; ∆P
+ 

LD,real,t and ∆P
- 

LD,real,t represents 

load demand ex-post actual power larger than the day-ahead part and smaller than the day-

ahead part, respectively. 

By comparing the actual reserve and planned reserve, the ex-post power deviation 

quantities are shown in the following equations. 

𝛥𝑃U,𝑠,𝑡 = |𝑃U,𝑟𝑒𝑎𝑙,𝑡 − 𝑃U,𝑠,𝑡| (4.14) 

𝛥𝑃D,𝑠,𝑡 = |𝑃D,𝑟𝑒𝑎𝑙,𝑡 − 𝑃D,𝑠,𝑡| (4.15) 

To simplify the analysis process, this thesis chooses the system buy price (SBP) at real-

time scheduling process to achieve power deviation settlement analysis [121]. The ex-post 

power deviation settlement is shown below: 

𝐶𝑃 =
1

𝑁𝑠
∑∑(𝜆𝐵,𝑠,𝑡

𝐷 𝛥𝑃D,𝑠,𝑡 + 𝜆𝐵,𝑠,𝑡
𝑈 𝛥𝑃U,𝑠,𝑡)

𝑇

𝑡=1𝑠∈𝑁𝑠

(4.16) 
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where CP represents the ex-post power deviation settlement cost; ∆PD,s,t and ∆PU,s,t represent 

the downward and upward regulation deviation at the t-th time slot in the s-the scene. 

4.4. Results 

4.4.1 Impact Analysis of Increasing Time Granularity on Power Step 

Change And Real-Time Power Deviation Amplitude 

For the power step change at the interval point, we obtain the power step change 

distribution characteristics at different time granularities in different countries, as shown in 

Figure 4-3. Overall, as time granularity increases, the power step change value will be 

smaller and concentrate around 0. For example, the standard deviation of the California ISO 

power step change value at the 30-minute granularity is nearly 5.9 times at the 5-minute 

granularity; the standard deviation of the Czech grid power step change value at the 30-

minute granularity is almost 4.2 times at the 5-minute granularity; Next, we observe the 

shape of the probability density function (pdf) of the power step change at different time 

granularities. We can find that when there is a large power step change in different countries, 

the probability is generally relatively small, that is, an extreme event [113]. In a word, the 

larger the time granularity is, the smaller the probability of occurrence of extreme power 

step change events. That is, increasing time granularity can significantly reduce the 

occurrence of extreme events, such as higher power step changes, and improve the power 

system stability. 
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Figure 4-3. The probability density function of the load demand power step changes at 

different time granularities. 

 

For the real-time power deviation during the interval, we obtain the power deviation 

distribution characteristics at different time granularities in different countries, as shown in 

Figure 4-4. As the time granularity increases, the load demand power step change (LDPS) 

at the interval points and the real-time power deviation (RTPD) during the interval will 

decrease significantly, as shown in Figure 4-4 (a-1), (a-2), and (a-3) or (b-1), (b-2), and (b-

3) or (c-1), (c-2), and (c-3). At the same time granularity, the power step change will 

generally be larger than the real-time power deviation during the interval. Although the real-

time power deviation will occasionally be no less than the power step change, the probability 

is extremely low, or even lower than 10-5, which means in extreme events that scene will 

happen. The phenomenon that the power step change is larger than the real-time power 

deviation means that frequency jumps generally occur at interval points, as shown in Error! 

Reference source not found.. Therefore, increasing the scheduling time granularity will, on 

the one hand, reduce the power step change at interval points, reduce the frequency jump 
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degree, and on the other hand, reduce the real-time power deviation during the interval, 

reduce the frequency change degree, that is, improving the power grid frequency stability. 

 

Figure 4-4. Statistical characteristics of load demand power step change at interval point and 

real-time power deviation during the interval width at different time granularities. 

4.4.2 Impact Analysis of Increasing Time Granularity on Power Market 

Balancing Costs 

Increasing time granularity by reducing the scheduling interval width (pricing shorter 

market time units) allows system operators to more quickly solve the power imbalance 

problem caused by the difference between day-ahead dispatch and real-time dispatch 

process, which can effectively address the volatility, uncertainty, and intermittency 

challenges. The main reason is that increasing time granularities can reduce the real-time 
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power deviation, as shown in Figure 4-5. Observing the time series of RTPD in different 

countries in Figure 4-5, we can find that the larger the time granularity, from 30-minute 

granularity to 5-minute granularity, the more concentrated the RTPD, which value is near 0, 

in other words, increasing the time granularity, the RTPD will significantly decrease; For 

example, the standard deviation of RTPD in the California ISO grid at the 30-minute 

granularity is nearly 6.2 times at the 5-minute granularity; the standard deviation of RTPD 

in the Czech grid at the 30-minute granularity is almost 2.3 times at the 5-minute granularity; 

the standard deviation of RTPD in the Qatar grid, at the 30-minute granularity is nearly 2 

times at the 5-minute granularity; Reducing the RTPD value will bring new opportunities to 

the electricity balance market, as the power balancing market objective is to solve the power 

deviation problems by dispatching the dispatchable resources. Therefore, the electricity 

market balance cost is proportional to the RTPD quantities. We can find that the time 

granularity from 30 minutes to 5 minutes would reduce the balancing cost by nearly five-

sixth in the California ISO grid; the time granularity from 30 minutes to 5 minutes would 

reduce the balancing cost by more than half in the Czech and Qatar grid. 
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Figure 4-5. Increasing time granularity reduces the real-time power deviation (RTPD). 

 

Next, by zooming in on the local curve in Figure 4-5, we notice that RTPD has time series 

characteristics during the daily curve. In the California ISO grid, (a) During the early 

morning and night periods, the RTPD is relatively small; (b) During the period close to noon, 

the RTPD is also small; (c) From early morning to noon, whether RTPD is positive or 

negative, the value of RTPD first increases and then decreases; (d) From noon to the 

afternoon, whether it is positive or negative, the RTPD first increases and then decreases. In 

the Czech and Qatar grid, the moment corresponding to the lowest point of the RTPD 

corresponds to the peak/valley load period (in the Czech grid, it is 3:00-5:00 am and 4:30-

6:30 pm; and in the Qatar grid, it is 4:30-6:00 am and 12:00-15:00). The main reason for the 

above timing characteristics in the RTPD daily curve is that its value is mainly affected by 

the power gradient. The greater the power gradient, the higher the RTPD, and vice versa. In 
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the California ISO grid, variability resources mainly include load demand, photovoltaic 

(capacity is as high as about 42% of the peak load), and wind power (capacity is about 18% 

of the peak load), therefore, the RTPD value is mainly affected by photovoltaic power and 

load demand, which looks like a butterfly curve. In the Qatar grid, the current proportion of 

photovoltaic installed capacity is not high (nearly 14% of the peak load). Still, it is 

foreseeable that as photovoltaic installed capacity increases, Its RTPD characteristics will 

show butterfly curve characteristics like the California ISO grid. This daily curve time series 

characteristic of real-time power deviation will play an important role in achieving a 

reasonable flexibility resources reserve and predicting flexibility power demand during 

power system scheduling and operation. 

We further zoom in to observe the RTPD during the interval at different time granularity 

in Figure 4-5, we can find that the RTPD is positive or negative alternatively, and as time 

granularity increases, the alternative frequency is quicker. Based on equation (4.16), RTPD 

amplitude will cause power grid frequency fluctuations. But when RTPD is a positive or 

negative alternative occurs, the frequency change direction will change frequently, that is, it 

will reduce power grid frequency fluctuation amplitude, In other words, that improves the 

power grid frequency stability. Therefore, increasing time granularity reduces the RTPD 

amplitude and increases the RTPD direction change frequency, improving power grid 

frequency stability. 

(1)  Ex-ante real-time power deviation prediction 

In the ex-ante real-time power deviation prediction process, we construct a training 
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dataset of RTPD based on our datasets. Then we use the Markov Chain Mixture distribution 

(MCM) model to predict real-time power deviation time series. For details on the processing 

of the training dataset and the MCM prediction method, see the Methods section. The 

predicted results are displayed in Figure 4-6. 

The RTPD predicted daily curve is consistent with the test daily curve in terms of timing 

characteristics, that is: In the California ISO grid, (a) During the early morning and night 

periods, the RTPD is relatively small; (b) During the period close to noon, the RTPD is also 

small; (c) From early morning to noon, whether RTPD is positive or negative, the value of 

RTPD first increases and then decreases; (d) From noon to the afternoon, whether it is 

positive or negative, the RTPD first increases and then decreases, RTPD looks like the 

butterfly curve. In the Czech and Qatar grids, the moment corresponding to the lowest point 

of the RTPD corresponds to the peak/valley load period (in the Czech grid, it is 3:00-5:00 

am and 4:30-6:30 pm; and in the Qatar grid, it is 4:30-6:00 am and 12:00-3:00 pm). In 

particular, the Qatar and Czech grid are also affected by the photovoltaic power gradient (PV 

capacity in Qatar and Czech are nearly 14% of peak load power). At nearly 12:00 am (that 

is the PV power is highest), the RTPD value will be relatively lower than before and after 

the time point. The above timing characteristics can also be obtained from Figure 4-5. The 

timing characteristics of the power gradient affecting the RTPD quantities can further 

improve the prediction accuracy. 
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Figure 4-6. The real-time power deviation (RTPD) prediction at different time granularities. 

 

Comparing the mean square error (MSE) between the prediction daily curve and the test 

daily curve at different time granularities, we find that, in the California ISO grid, the value 

of the MSE at the 30-minute granularity is more than six times and twice that at 5-minute 

granularity, and 15-minute granularity, respectively; in the Czech grid, the value of the MSE 

at the 30-minute granularity is nearly five times and twice that at the 5-minute granularity 

and 15-minute granularity, respectively; in the Qatar grid, the value of the MSE at the 30-

minute granularity is nearly 1.6 times and 1.2 times that at the 5-minute granularity and 15-

minute granularity, respectively. Increasing the time granularity will reduce the prediction 

error of RTPD in different countries. The main reason is that increasing the time granularity 

will, on the one hand, reduce the amplitude of the RTPD, thereby reducing the prediction 

amplitude; on the other hand, it can more accurately obtain the power deviation at the nearest 
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point, thereby improving the prediction accuracy. 

(2)  Real-time power scheduling and clearing process 

During this process, power system operators will complete real-time scheduling control 

and clearing processes based on the predicted RTPD and combine them with flexible 

resource information in the electricity balance market. These flexibility resources can 

provide quick responses to ensure the power balance in the real-time market, these flexibility 

resources usually include chemical energy storage, quick load demand response, etc. This 

chapter assumes the different types of flexibility resources that participate in this process are 

shown in Table 4-1. 

Table 4-1. Different types of flexibility resources provide balanced service information. 

Type 

Power/MW Price/($/MWh) 

Upward Downward Upward Downward 

Type A 50 60 200 250 

Type B 100 120 300 320 

Type C 100 100 320 360 

Type D 120 150 350 400 

Type E 4000 4500 400 500 

Considering the flexible resource participation levels different in the electricity balance 

market, this thesis selects different cases to further discuss the impact of the abundance of 

flexible resource products on power system operation costs. 1) Case A represents that 

flexible resource products are barely abundant, just including Type A and Type E; 2) Case B 

represents that flexible resource includes Type A, Type B, and Type E; 3) Case C represents 

that flexibility resource includes all the types in Table 4-1. 
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Table 4-2. Real-time power scheduling costs in different cases and different time 

granularities ($). 

Case Countries 

Time granularity 

30min 15min 5min 

Case A 

California ISO 2.17E+06 1.03E+06 2.78E+05 

Czech 1.71E+05 7.94E+04 3.42E+04 

Qatar 5.68E+04 2.91E+04 1.30E+04 

Case B 

California ISO 2.07E+06 9.26E+05 2.26E+05 

Czech 1.47E+05 7.56E+04 3.42E+04 

Qatar 5.55E+04 2.91E+04 1.30E+04 

Case C 

California ISO 1.93E+06 8.43E+05 2.16E+05 

Czech 1.46E+05 7.56E+04 3.42E+04 

Qatar 5.55E+04 2.91E+04 1.30E+04 

As the time granularity increases, the real-time power scheduling cost is significantly 

reduced, and as the richness of flexible resource products increases, the reduction effect 

becomes more significant. The results are shown in Table 4-2. For example, in Case A, the 

operation cost of the California ISO grid at the 5-minute granularity is approximately 13% 

of that at the 30-minute granularity; the operation costs of the Czech and Qatar grids at the 

5-minute granularity are also approximately 20% of the 30-minute granularity, respectively; 

By comparing Case A, Case B, and Case C, we found that by increasing the richness of 

flexible resource products in the California ISO grid, the operation costs at the 30-minute 

granularity were reduced by approximately 4% and 11% respectively; the operation costs at 

the 5-minute granularity were reduced by approximately 19% and 23%; the main reason is 

that increasing time granularity reduces the RTPD on the one hand while increasing flexible 

resource richness significantly reduces the electricity marginal price, thereby reducing 

operation costs. However, in the Czech grid and Qatar grid, changes in flexible resource 
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abundance in this chapter have little impact on operation costs. The main reason is that the 

RTPD is relatively small in these two grids and the corresponding flexible resource products 

are relatively single. Therefore, when designing flexible resource products in the electricity 

market, it is necessary to design products based on the actual market needs in different 

countries. 

Increasing time granularity reduces the amount of RTPD, thereby reducing real-time 

power operation costs and improving the economics of power grid operation; in addition, it 

also provides some new opportunities for the design of flexible resource markets that are 

more abundant, economical, and lightweight flexible products will play a greater role in the 

operation of power systems with high time granularity and bring greater economic benefits. 

(3)  Ex-post power deviation settlement 

In general, uncertainties are inevitable in large electricity systems. Therefore, power 

system operators need to calculate the additional operation costs based on the actual data 

collected in the Supervisory Control and Data Acquisition (SCADA) systems afterward. The 

additional operation costs mainly include two parts: (1) power system reserve operation 

costs due to prediction errors, borne by the power system operator; (2) suppliers/consumers 

do not stick to their clearing given schedules during real-time power scheduling process, 

borne by themself. This thesis mainly evaluates the power system operation economy; 

therefore, the uncertainty of suppliers/consumers is ignored. 

Table 4-3. Additional power system operation costs due to power deviation at different 

cases and different time granularities on test day ($). 
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Case Countries 
Time granularity 

30min 15min 5min 

Case A 

California ISO 1.31E+06 7.50E+05 3.07E+05 

Czech 2.09E+05 1.30E+05 7.96E+04 

Qatar 5.40E+04 4.79E+04 4.16E+04 

Case B 

California ISO 1.22E+06 6.50E+05 2.51E+05 

Czech 1.93E+05 1.26E+05 7.96E+04 

Qatar 5.37E+04 4.79E+04 4.16E+04 

Case C 

California ISO 1.12E+06 6.00E+05 2.48E+05 

Czech 1.92E+05 1.26E+05 7.96E+04 

Qatar 5.37E+04 4.79E+04 4.16E+04 

As the time granularity increases, the ex-post power deviation settlement cost from the 

power system operator is significantly reduced. As the richness of flexible resource products 

increases, the reduction effect becomes more significant. The results are shown in Table 4-3. 

For example, under Case A, the power deviation settlement cost of the California ISO grid 

at the 5-minute granularity is approximately 23% of that at the 30-minute granularity; By 

comparing Case A, Case B, and Case C, we found that by increasing the richness of flexible 

resource products in the California ISO grid, the ex-post power deviation settlement costs at 

the 30-minute granularity were reduced by approximately 7% and 14% respectively; the 

operation costs at the 5-minute granularity were reduced by approximately 18% and 20%; 

The ex-post power deviation settlement cost is mainly affected by two factors: 1) the power 

deviation caused by the prediction error; as the time granularity increases, more information 

near the prediction time point will be obtained in a more timely and effective manner. It is 

helpful to improve the prediction accuracy, as the results are displayed in Figure 4-6, 2) Ex-
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post power deviation settlement electricity price; as the abundance of flexible resources 

products increases, the marginal settlement electricity price will be reduced. 

In the whole electricity balance market operation process, increasing time granularity will 

improve RTPD prediction accuracy, reduce real-time power scheduling operation costs, 

reduce ex-post power deviation settlement costs, and significantly improve the power 

system operation economy. For example, the electricity balance market operation total cost 

of the California ISO grid at the 5-minute granularity is approximately 15% of that at the 

30-minute granularity; the Czech and Qatar grid will also be reduced by nearly 70% and 

50%, respectively. This improvement in the power system economy is not only reflected in 

the reduction of real-time power deviation quantities but also has an important impact on 

the flexible resource products market, giving more chances to the more abundant, 

economical, and lightweight flexible products, further reducing the settlement marginal 

electricity price. Therefore, increasing time granularity will have a profound impact on the 

operation economy of the power system 

4.5. Summary 

Through statistical analysis of high temporal resolution power data from three countries 

around the world, we found that with the time granularity increases, power step changes at 

different scheduled interval points and real-time power deviations during the scheduling 

interval will be significantly reduced, thereby reducing power market balancing costs and 

power grid frequency deviations. Specifically, when the time granularity is increased from 



 

101 

 

30 minutes to 5 minutes, the power step magnitude will be reduced (the power step change 

in the California ISO grid will be reduced by nearly five-sixths; the Czech and Qatar grid 

will also be reduced by almost 80%), and the RTPD will also be reduced (The RTPD in 

California ISO grid was reduced by nearly five-sixths; the Czech and Qatar grid also reduced 

by nearly half). Power grid frequency deviations are directly proportional to power change 

quantities; therefore, power grid frequency stability can be improved by increasing time 

granularity. 

What is more, increasing time granularity will not only reduce the amount of real-time 

power deviations but also improve real-time power deviation prediction accuracy (shorter 

time will provide more accurate forecast information); reduce real-time power scheduling 

operation costs and reduce ex-post power deviation settlement cost, giving more chances to 

the more abundant, economical, and lightweight flexible products, reducing the settlement 

marginal electricity price and significantly improve the economics of power market 

operations with integration of massive renewable energy sources. 
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5. IMPACT ANALYSIS OF INCREASING SPACE 

GRANULARITY ON HIGH PENETRATION 

RENEWABLE ENERGY 

Abstract: As variable renewable energy (VRE) penetration continues to increase, electricity 

transmission networks between regions with high penetration renewable energy generators 

and large load demand centers will become more congested. One of the possible methods to 

solve the above problem is to increase the space granularity, which includes the space 

granularity of renewable generation units and the space granularity of the subnetworks. This 

chapter mainly focuses on the evaluation of the impact of growing space granularity based 

on the above two levels. To reasonably construct subnetworks and increase the space 

granularity, this chapter proposes the stochastic energy network theory to characterize the 

supply-demand adaptation balance index (SDABI) and further proposes a subnetwork 

networking method to evaluate the impact of increasing space granularity on reducing power 

system operation costs, power flow losses, and power congestion. Finally, the IEEE 33-node 

system as a benchmark and combined with the power system operation evaluation indicators 

to evaluate the impact of increasing space granularity on power system operation cost, power 

flow losses, and power congestion to verify the effectiveness of the method. 
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Abbreviations  

VRE Variable renewable energy 

DERs Distributed energy resources 

ESS Energy storage system 

SDABI Supply-demand adaptation balance index 

SOC State-of-charge 

Nomenclature  

Sets and Indices  

K Sets of subnetworks 

k Index node in subnetworks 

I Sets of wind turbines 

T Schedule periods 

t Dispatching time interval 

Variables  

PS(s,t) The cumulative energy production during a period [s,t] 

LD(s,t) The cumulative energy consumption during a period [s,t] 

ξu(t)/ ξl(t) The upper/lower supply curve function 

λu(t)/λl(t) The upper/lower demand curve function 

ε
u 

s (x)/ε
l 

s (x)/ε
u 

d (x)/ε
l 

d (x) The bounding functions 

[x]+ Choose the maximum value between 0 and x 

ηc 
Energy storage battery charging efficiency 

ηd Energy storage battery discharging efficiency 

BESS,i/ PESS,i Rated energy/power capacity of the ESS in i-th wind turbine 

SOCESS,i,t ESS SOC at time t in i-th wind turbine 

SOCESS,i,min/ 

SOCESS,i,max 

Minimum/ maximum SOC of ESS in i-th wind turbine 

LoLD(s,t) Loss of load demand 

WoPS(s,t) Waste of power supply 

SDABI(s,t) Supply-demand adaptation balance index during (s,t) 

F1 Subnetworks' total operation cost 

F2 Backbone network operation cost 

Vi,t,min/ Vi,t,max Minimum/maximum voltage amplitude of node i at time t 
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N Number of nodes in network topology 

N/K Number of nodes in the backbone network 

B Number of branches in network topology 

A Network topology node adjacency matrix 

Pig,t Active power generated from i-th wind turbine at time t 

PEM,t Active power from the energy market at time t 

Qij,t Reactive power flow between node i and node j at time t 

Pij,t Active power flow between node i and node j at time t 

ci,t Cost of per kWh of i-th wind turbine at the t-th time spot 

cEM,t Cost of per kWh of electricity market at the t-th time spot 

ALP The absolute sum of all line power 

5.1. Introduction 

To solve the problem of climate change, variable renewable energy (VRE) will account 

for an important proportion of primary energy in the future [3-5]. As VRE penetration 

continues to increase, Transmission networks between regions with high-penetration 

renewable energy generators and large load demand centers will become more congested 

[82]. Increasing the space granularity can effectively mitigate the congestion problems. 

The congestion problems brought by the increase in the penetration of VRE are mainly 

due to two reasons. On the one hand, the centralized development and centralized access of 

VRE causes congestion of some adjacent power lines; on the other hand, it is caused by the 

space mismatch of supply and demand, causing congestion by repeated power flow. 

Increasing the space granularity is the main method to mitigate the above congestion 

problem. This space granularity mainly reflects on two aspects: one is increasing renewable 

generation units' space granularity, that is to reduce the amount of renewable energy injected 
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into a single node or increase the number of inject nodes for renewable generation units; 

another one is increasing transmission network space granularity, that is to reduce the 

complexity of the transmission network or reduce the repeated power flow transmission. 

To solve the large number of renewable generation units resulting in congestion, the main 

idea is to adopt the distributed injection model, which increases the number of inject system 

nodes for renewable generation units. Increasing renewable generation units' space 

granularity can help system operators find the renewable generators' marginal electricity 

price, which will reduce the customers' energy costs [82]. In addition, increasing the 

renewable energy generation space granularity is also a key market design innovation in the 

electricity market, including node pricing widely used in the US market [83-85] and regional 

pricing widely used in the pan-European region [86-87]. By increasing space granularity 

and reducing the amount of renewable energy injected into a single node, this electricity 

market changes, on the one hand, improve the power congestion problem of adjacent lines 

connected to VRE injected nodes, on the other hand, increasing renewable generation units 

space granularity can better discover the marginal electricity price of the units, thereby 

reducing energy costs. 

To increase transmission network space granularity, an innovative idea is to construct 

many space subnetworks. How to divide that transmission network topology into several 

subnetworks and then reduce the power transmission amount, repeated power flow and 

electricity power transfer distance is a vital problem. The subnetwork works in one of the 

following three working states during a period:  
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(1)  Waste of power supply, in this state means that the power supply is more than the 

load demand during a period, and then the excess energy will be stored in the energy 

storage system until it reaches its rated capacity, resulting in excess energy [89-91].  

(2)  Loss of load demand, in this state means that the power supply plus energy stored 

in ESS is less than the load demand during a period, resulting in an energy shortage [92-

93].  

(3)  Supply-demand adaptation balance, in this state means that the energy supply with 

the ESS can meet the energy demand during a period. To solve the above problems, the 

cumulative energy production of VREs needs to meet the cumulative energy consumption 

of all load nodes in the subnetwork, increasing the probability of a supply-demand 

adaptation balance state [91], [94-95].  

Therefore, we define the supply-demand adaptation balance index (SDABI) to 

characterize energy balancing ability, in this chapter, we use the arrival process and 

departure process in the stochastic network theory to correspond to the energy production 

and energy consumption processes and then characterize the SDABI. Furthermore, based on 

the SDABI and power system operation information, we further proposed a subnetwork 

networking method, which can independently conduct spatial subnetworks based on the 

power supply and load demand information, combined with grid operation information and 

network topology, to achieve economic dispatch within the subnetwork and energy 

exchange between different subnetworks. The constructed subnetworks based on our model 

can improve the economy of the entire power grid operation, reduce power flow congestion, 
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etc. 

Increasing space granularity in the power system, on the one hand, will change the 

distribution of renewable generation units, on the other hand, it will also change the network 

topology by using the space networking method. To evaluate the benefits of increasing space 

granularity reform, we choose three aspects:  

(1)  Power system operation economy. 

(2)  Power flow loss. 

(3)  Power transmission congestion evaluation. 

This chapter constructs a spatial subnetwork networking method by establishing the 

SDABI model to improve the spatial granularity of the power grid. Then, we aim to provide 

evidence for reforming the power system spatial resolution by evaluating the beneficial 

impact of this method on operating indicators of the power system. 

5.2. Data Setting and Description 

The wind power and load demand datasets are shown in Figure 5-1 and Figure 5-2 below. 

The wind power includes 20 wind turbine units, and the load demand is distributed in the 

IEEE 33-node system. These datasets include a whole year of historical data, and the 

sampling rate is one hour. We use these datasets to analyze the SDABI and divide several 

subnetworks based on Algorithm 5-1, and then calculate the system operation evaluation 

indicators in the methods part to evaluate the impact of increasing space granularity. 
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Figure 5-1. Per unit curve wind turbine power. 

 

Figure 5-2. Per unit curve loads in different nodes. 

Table 5-1 summarizes the number of units, marginal power generation price, rated power 

capacity, and equipped ESS information of different wind turbines. The initial SOC of ESS 

is 50%. 

Table 5-1. Wind turbines information 

Type 
Number of 

wind turbines 

Wind turbine 

LMP/($/kWh) 
P/kW ESS/(kW/kWh) 

Type 1 {1-4} 0.080 100 100/200 

Type 2 {5-7} 0.065 150 150/300 

Type 3 {8-12} 0.045 200 200/400 

Type 4 {13-20} 0.035 250 250/500 
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Table 5-2 summarizes the different cases to characterize the space granularity of 20 wind 

turbines. It has 6 cases including their having no renewable generation units and having 20 

wind turbines injected into the different nodes. The wind turbines in different cases, from 

centralized access to a single node to separate access to multiple different nodes are in 

different cases. Different cases represent different space granularities of 20 wind turbines. 

Table 5-2. Case description of different space granularity of 20 wind turbines 

Case Number of wind turbines Input node number 

case 0 - - 

case 1 {1-20} {18} 

case 2 {1-4};{5-10};{11-20} {20};{6};{18} 

case 3 {1-4};{5-10};{11-16};{17-20} {20};{6};{18};{25} 

case 4 {1-4};{5-7};{8-12};{13-16};{17-20} {20};{6};{18};{25};{28} 

case 5 
{1-4};{5-7};{8-9};{10-12};{13-

16};{17-20} 
{20};{6};{18};{25};{28};{12} 

5.3. Methods 

5.3.1 Supply-Demand Adaptation Degree Inde  

To ensure that the subnetworks have the best supply-demand adaptability and reduce 

power exchange with the backbone network. We establish the supply-demand adaptation 

balance index (SDABI) to characterize the cumulative energy production of renewable 

energy generations to meet the cumulative energy consumption of all load nodes in the 

subnetwork, and the subnetwork will contain renewable generations, energy storage, load 

demand, etc. The subnetwork supply and demand states are shown in Figure 5-3 below. 
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Figure 5-3. Schematic diagram of energy status in subnetwork. 

From Figure 5-3, there are three different energy statuses in the subnetwork, including 

WoPS, LoLD, and power supply and load demand energy balance. PS(s,t) and LD(s,t) 

represent the value of energy production and energy consumption during the period [s,t]; b(t) 

represents the energy stored in ESS at time t; BESS represents the energy rated capacity of 

ESS; WoPS(s,t) represents the waste of power supply during [s,t], and LoLD(s,t) represents 

loss of load demand during [s,t]. 

(1)  Energy supply and energy demand. 

In this section, we assume that in the subnetwork, the energy production looks like the 

arrival process, and the energy consumption process looks like the departure process, based 

on the stochastics network theory, respectively. Therefore, we can characterize the energy 

production and consumption process shown in equations (5.1)-(5.4), respectively. 

                                 𝑃𝑟 { 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝑃𝑆(𝑠, 𝑡) − 𝜉𝑢(𝑡 − 𝑠)] > 𝜋} ≤ 𝜀𝑠
𝑢(𝜋)                              (5.1) 

                                 𝑃𝑟 { 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝜉𝑙(𝑡 − 𝑠) − 𝑃𝑆(𝑠, 𝑡)] > 𝜋} ≤ 𝜀𝑠
𝑙(𝜋)                                (5.2) 

                                 𝑃𝑟 { 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝐿𝐷(𝑠, 𝑡) − 𝜆𝑢(𝑡 − 𝑠)] > 𝜋} ≤ 𝜀𝑑
𝑢(𝜋)                              (5.3) 

PS(s,t)

WoPS(s,t)

BESS

b(t) LoLD(s,t)

LD(s,t)
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                                  𝑃𝑟 { 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝜆𝑙(𝑡 − 𝑠) − 𝐿𝐷(𝑠, 𝑡)] > 𝜋} ≤ 𝜀𝑑
𝑙 (𝜋)                               (5.4) 

where the energy production process function shown above (5-1) and (5-2), which can be 

characterized by parameter set {PS, ξ , ξl, ε
  

s , ε
l 

s}; the energy production function PS(s,t) can 

be obtained by accumulated power generation energy from renewable generations during 

[s,t], the upper and lower curve functions ξ (t) and ξl(t) of the energy supply can be obtained 

through linearization, the rate is equal to the long-term average rate over a certain period in 

the historical fit data. The boundary function 𝜀𝑠
𝑢(𝜋)  and 𝜀𝑠

𝑙(𝜋)  can be fit by exponential 

functions based on historical data and upper and lower curve functions [91], [95]. The energy 

consumption process function shown in above (5-3) and (5-4), which can be characterized 

by parameter set {LD, λ , λl, ε
l 

d, ε
l 

d }; the energy consumption function LD(s,t) can be obtained 

by accumulated power consumption by load nodes in the whole subnetwork during [s,t], the 

upper and lower curve functions λ (t) and λl(t) of the energy demand can be obtained through 

linearization, the rate is equal to the long-term average rate over a certain period in the 

historical fit data. The boundary functions 𝜀𝑑
𝑢(𝜋)  and 𝜀𝑑

𝑙 (𝜋)  can be fit by exponential 

functions based on historical data, and upper and lower curve functions [91], [95]. For 

different subnetworks containing different renewable energy capacities/load demand 

capacities, the characterization methods are the same, but the value of the functions and 

parameters set in equation (5.1)-(5.4) may be different. We can get all the above functions 

and set parameters based on the historical renewable energy supply and demand information. 

(2)  ESS Charging/Discharging Process 

From the schematic diagram of subnetwork supply and demand states shown in Figure 

5-3, the ESS would work in two working states: (1) The charging state, which indicates that 
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the cumulative energy production is larger than the cumulative energy consumption during 

[s,t], and the excess part is stored in the ESS until the ESS reaches its rated capacity. (2) The 

discharging state, which indicates that the cumulative energy production is less than the 

cumulative energy consumption during [s,t], and the shortage part will be emitted by the 

ESS until the ESS storage reaches its minimum required capacity. Therefore, the energy 

stored by the ESS at time t can be expressed as follows: 

                                      𝑏(𝑡) = 𝑚𝑖𝑛 [
𝐵𝐸𝑆𝑆, 𝑏(𝑡 − 1)

+[(𝑃𝑆(𝑡 − 1, 𝑡) − 𝐿𝐷(𝑡 − 1, 𝑡))]𝜂𝑐
]                 (5.5) 

                                   𝑏(𝑡) = [𝑏(𝑡 − 1) − [𝐿𝐷(𝑡 − 1, 𝑡) − 𝑃𝑆(𝑡 − 1, 𝑡)]𝜂𝑑]
+              (5.6) 

(3)  Supply-demand Adaptation Balance Inde  (SDABI) 

The supply-demand adaptation balance index refers to the cumulative energy production 

of renewable energy generations that can meet the cumulative energy consumption of all 

load nodes in the subnetwork. The subnetwork including renewable generation and load 

nodes works in one of the following three states during a period: (1) waste of power supply 

(WoPS), in this state means that the cumulative energy production is larger than the 

cumulative energy consumption during the period, and the excess energy is stored in the 

ESS until the ESS reaches the rated energy capacity, resulting in excess energy; (2) loss of 

load demand (LoLD), in this state means that the cumulative energy production plus energy 

stored in ESS is less than the cumulative energy consumption during a period, resulting in 

energy shortage. (3) supply-demand adaptation balance, in this state means that the 

cumulative energy production plus the ESS can meet the cumulative energy consumption 



 

113 

 

during a period. Based on these three states, we can use WoPS(t), LoLD(t), and SDABI(t) to 

represent the excess energy process, shortage energy process, and balanced energy process. 

Based on the above analysis, we can characterize these states as below. 

                                                  𝑊𝑜𝑃𝑆(𝑡) = [
𝑏(𝑡 − 1) + 𝑃𝑆(𝑡 − 1, 𝑡) −
𝐿𝐷(𝑡 − 1, 𝑡) − 𝐵𝐸𝑆𝑆

]
+

                    (5.7) 

                                   𝐿𝑜𝐿𝐷(𝑡) = [𝐿𝐷(𝑡 − 1, 𝑡) − 𝑃𝑆(𝑡 − 1, 𝑡) − 𝑏(𝑡 − 1)]+              (5.8) 

Furthermore, we can calculate these states' probability as shown below. 

𝑃𝑟(𝑊𝑜𝑃𝑆(𝑡)) = 𝑃𝑟{𝑊𝑜𝑃𝑆(𝑡) > 0} ≤ 𝜀𝑠
𝑢⊗ 𝜀𝑑

𝑙 (𝐵𝐸𝑆𝑆 − 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝜉𝑢(𝑠) − 𝜆𝑙(𝑠)])  (5.9) 

  𝑃𝑟(𝐿𝑜𝐿𝐷(𝑡)) = 𝑃𝑟{𝐿𝑜𝐿𝐷(𝑡) > 0} ≤ 𝜀𝑑
𝑢⊗ 𝜀𝑠

𝑙 (𝐵𝐸𝑆𝑆 − 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝜆𝑢(𝑠) − 𝜉𝑙(𝑠)]) (5.10) 

     𝑃𝑟 (SDABI(𝑇)) =
1

𝑇
∑(1 − 𝑃𝑟(𝐿𝑜𝐿𝐷(𝑡)) − 𝑃𝑟(𝑊𝑜𝑃𝑆(𝑡)))

𝑇

𝑡=1

≤ 

                     
1

𝑇
∑(

1 − 𝜀𝑑
𝑢⊗ 𝜀𝑠

𝑙 (𝐵𝐸𝑆𝑆 − 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝜆𝑢(𝑠) − 𝜉𝑙(𝑠)])

−𝜀𝑠
𝑢⊗ 𝜀𝑑

𝑙 (𝐵𝐸𝑆𝑆 − 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝜉𝑢(𝑠) − 𝜆𝑙(𝑠)])
)

𝑇

𝑡=1

                            (5.11) 

Based on equation (5.11) and relevant assumptions, when the cumulative energy 

consumption is much less than the cumulative energy production of renewable energy 

resources, as the load demand increases (that is, the number of load nodes in the sub-network 

increases), Pr(LoLD(t)) will decrease, 𝑃𝑟 (SDABI(𝑇)) will increase; when the cumulative 

energy consumption is much greater than the cumulative energy production of renewable 

energy resources, as the load demand decreases (that is, the number of load nodes in the sub-

network decreases), Pr(WoPS(t)) will decrease, 𝑃𝑟 (SDABI(𝑇))  will increase; Therefore, 

when 𝑃𝑟 (SDABI(𝑇)) is the largest, it means that the space sub-network has the best energy 
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balance ability. 

5.3.2 Spatial Subnetwork Networking Method 

For a given network, when changing the scale of the space subnetwork (adding more load 

nodes or reducing load nodes), it will affect the SDABI of the subnetwork, therefore, it is of 

great significance to select the scale of the space subnetwork reasonably based on the 

network topology information. We will introduce the method and steps for forming a 

reasonable space subnetwork based on SDABI as shown in Algorithm 5-1. 

In Algorithm 5-1, when dividing the subnetworks, we do not need the location information 

of the distributed energy resources (DERs), based on the power flow calculation results, we 

can get the DERs node information, Through the historical statistical information of different 

node loads and the historical statistical power supply information of renewable generation 

units, and then we can construct several subnetworks which have the best Pr(SDABI(T)). 

These subnetworks guarantee their highest supply-demand adaptation ability, that is these 

subnetworks have the best energy balance ability, they will not cause more energy waste due 

to excessive renewable power generation, it will also not cause load loss due to energy 

shortage. 

Algorithm 5-1:  SDABI-based subnetwork networking method 
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Step 1) Input distribution network topology information Ω{N, B, A} and distribute 

energy resources information DERs. 

N: Node matrix. 

B: Branch matrix. 

A: Node affinity matrix. 

NS: DERs node matrix. 

Step 2) Construct subnetwork node set based on DERs power supply nodes and power 

flow information:  

Use the following equation to calculate power flow based on Ω and DERs, to get 

power flow results{Pij,Qij,Vi} without DERs and {P
* 

ij ,Q
* 

ij ,V
* 

i } with DERs. 

                      {
𝑃𝑖𝑗,𝑡 = 𝑔𝑖𝑗(𝑉𝑖,𝑡

2 − 𝑉𝑖,𝑡𝑉𝑗,𝑡cos𝜃𝑖𝑗,𝑡) − 𝑏𝑖𝑗𝑉𝑖,𝑡𝑉𝑗,𝑡sin𝜃𝑖𝑗,𝑡

𝑄𝑖𝑗,𝑡 = −𝑔𝑖𝑗𝑉𝑖,𝑡𝑉𝑗,𝑡sin𝜃𝑖𝑗,𝑡 − 𝑏𝑖𝑗𝑉𝑖,𝑡
2 − 𝑉𝑖,𝑡𝑉𝑗,𝑡𝑐𝑜𝑠𝜃𝑖𝑗,𝑡

                   (5.12) 

Construct possible subnetwork node subset based on the following equation and A. 

                                                         𝛥𝑃𝑖𝑗 = 𝑃𝑖𝑗 − 𝑃𝑖𝑗
∗ ≥ 𝛼                                            (5.13) 

                                                         𝛥𝑉𝑖 = 𝑉𝑖
∗ − 𝑉𝑖 ≤ 𝛽                                               (5.14) 

(Each subnetwork contains only one DERs node, and the DERs node is the starting 

point, and the rest of the nodes are all load nodes.) 

Step 3) Modify the subnetwork networking scheme based on SDABI:  

Traverse the load nodes in any subnetwork, and select the corresponding 𝛼𝑢 and 𝛼𝑙 

based on the load nodes set, until satisfy the following equation,  

                max
1

𝑇
∑(

1 − 𝜀𝑑
𝑢⊗𝜀𝑠

𝑙 (𝐵𝐸𝑆𝑆 − 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝜆𝑢(𝑠) − 𝜉𝑙(𝑠)])

−𝜀𝑠
𝑢⊗ 𝜀𝑑

𝑙 (𝐵𝐸𝑆𝑆 − 𝑠𝑢𝑝
0≤𝑠≤𝑡

[𝜉𝑢(𝑠) − 𝜆𝑙(𝑠)])
)                 (5.15)

𝑇

𝑡=1
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5.3.3 Evaluation Indicators of Power System Operation 

We evaluate the influence of increasing space granularity from three aspects, including 

operation economy [124], power flow loss [125], and power flow congestion [126]. The 

details of the evaluation indicators are as follows.  

(1)  Power system operation economy evaluation 

The operation is a two-stage analysis process. The first stage needs to analyze the 

operation of each space subnetwork, considering that the renewable generation units in 

different subnetworks are equipped with energy storage systems (ESS), and the ESS can 

store energy when the renewable generation units are higher than the load demand and emit 

energy when the renewable generation units are lower than the load demand, therefore, the 

first stage is a multi-period optimization power flow model combined with ESS. The second 

stage needs to combine the net load conditions of different space subnetworks (different 

generalized nodes) for operation analysis [127]. 

a) Objective: The operation process has two objectives, the first one is to minimize the 

operation cost of subnetworks, and the second one is to minimize the operation cost of the 

backbone network. which are written as 

                                                  𝑷𝟏:𝑚𝑖𝑛   𝐹1 =∑∑(𝑐𝑖,𝑡𝑃𝑖𝑔,𝑡)

𝑖∈𝐼𝑡∈𝑇

                                    (5.16) 

                                                  𝑷𝟐:𝑚𝑖𝑛   𝐹2 =∑(𝑐𝐸𝑀,𝑡𝑃𝐸𝑀,𝑡)

𝑡∈𝑇

                                      (5.17) 

where F1 represents the subnetwork (includes wind turbines) power generation operation 
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cost,  that is equal to electricity price times wind power generation amount, ci,t represents the 

per unit electricity price from the i-th wind turbine at the t-th time spot; Pig,t represents active 

power generated from i-th wind turbine at time t. F2 represents the backbone network 

(includes electricity market transaction) operation cost, which is equal to the electricity price 

from the electricity market times power transaction amount, cEM,t represents the per unit 

electricity price from the electricity market at the t-th time spot; PEM,t represents transaction 

power from the electricity market. 

b) Constraints: 

Power flow constraints: 

                            {
𝑃𝑖𝑗,𝑡 = 𝑔𝑖𝑗(𝑉𝑖,𝑡

2 − 𝑉𝑖,𝑡𝑉𝑗,𝑡cos𝜃𝑖𝑗,𝑡) − 𝑏𝑖𝑗𝑉𝑖,𝑡𝑉𝑗,𝑡sin𝜃𝑖𝑗,𝑡

𝑄𝑖𝑗,𝑡 = −𝑔𝑖𝑗𝑉𝑖,𝑡𝑉𝑗,𝑡sin𝜃𝑖𝑗,𝑡 − 𝑏𝑖𝑗𝑉𝑖,𝑡
2 − 𝑉𝑖,𝑡𝑉𝑗,𝑡𝑐𝑜𝑠𝜃𝑖𝑗,𝑡

                    (5.18) 

where Pij,t and Qij,t represent active power and reactive power flow between node i and node 

j at time t; Vi,t represents the voltage at node i at time t; 𝜃𝑖𝑗,𝑡 represents the phase angle 

difference between node i and node j at time t. 

Node voltage constraints: 

                                                             𝑉𝑖,𝑡,𝑚𝑖𝑛 ≤ 𝑉𝑖,𝑡 ≤ 𝑉𝑖,𝑡,𝑚𝑎𝑥                                         (5.19) 

ESS operation constraints: 

Assume that the wind turbines in our model will be equipped with ESS. ESS usually 

operates in three different states, including charging, discharging, or neither charging nor 

discharging. Therefore, the operating state of ESS can be present by equation (5.20). 

                                                       𝑠𝑐𝑖,𝑡 + 𝑠𝑑𝑖,𝑡 ≤ 1, ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                    (5.20) 
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where sci,t and sdi,t.represent the i-th ESS is charged or discharged at t-th time point, 

respectively. They are binary variables. Considering the operating state of ESS, the power 

output of ESS should be constrained by the following equations.  

                                                             0 ≤ 𝑃𝐸𝑆𝑆𝐶,𝑖,𝑡 ≤ 𝑠𝑐𝑖,𝑡 ∗ 𝑃𝐸𝑆𝑆,𝑖                                  (5.21) 

                                                             0 ≤ 𝑃𝐸𝑆𝑆𝐷,𝑖,𝑡 ≤ 𝑠𝑑𝑖,𝑡 ∗ 𝑃𝐸𝑆𝑆,𝑖                                  (5.22) 

where PESS,i represents rated power capacity of the ESS in i-th wind turbine; PESSC,i,t and 

PESSD,i,t represent charging power and discharging power of ESS at t-th time spot, 

respectively. 

What is more, to meet the needs of ESS to continuously participate in dispatching, the 

state of charge of ESS needs to meet the following constraints. 

                         𝐵𝐸𝑆𝑆,𝑖𝑆𝑂𝐶𝑖,𝑡 = {

𝐵𝐸𝑆𝑆,𝑖𝑆𝑂𝐶𝑖,(𝑡−1) + 𝛥𝑡𝑃𝐸𝑆𝑆,𝑖,𝑡𝜂𝑐, 𝑃𝐸𝑆𝑆,𝑖,𝑡 ≥ 0

𝐵𝐸𝑆𝑆,𝑖𝑆𝑂𝐶𝑖,(𝑡−1) +
𝛥𝑡𝑃𝐸𝑆𝑆,𝑖,𝑡
𝜂𝑑

, 𝑃𝐸𝑆𝑆,𝑖,𝑡 < 0
            (5.23) 

                                                     {
𝑆𝑂𝐶𝑖,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑖,𝑡 ≤ 𝑆𝑂𝐶𝑖,𝑚𝑎𝑥

𝑆𝑂𝐶𝑖,0 = 𝑆𝑂𝐶𝑖,𝑇
                                  (5.24) 

where BESS,i represents rated energy capacity of the ESS in i-th wind turbine; SOCi,t 

represents state of charge of ESS at t-th time, it has maximum value and minimum value; 𝜂𝑐 

and 𝜂𝑑 represent charging and discharging efficiency of ESS. 

(2)  Power flow loss evaluation 

Based on Algorithm 5-1, we can construct different sub-networks and different sub-

networks will be seen as generalized nodes (pro-consumer) to participate in the backbone 

network operation after they have finished the dispatching process based on their own 

topology and power supply/load demand resources. Therefore, in our evaluation model, for 
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the whole system, the power flow loss includes two parts, one part is the power flow loss 

based on the sub-networks including ESS power flow calculation, and the second part is the 

power flow loss from the backbone network power flow calculation, in which the 

subnetworks will be seen as generalized nodes.  

In each subnetwork, the power flow loss satisfies the following equation. 

                                          𝑃Loss,𝑘 =∑(∑𝑉𝑖,𝑡∑𝑉𝑗,𝑡𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗,𝑡
𝑗∈𝑖𝑖∈𝐾

)

𝑡∈𝑇

                            (5.25) 

The power flow loss of the system mainly includes two parts, one part is the subnetworks 

power flow loss, and the other part is the backbone network power flow loss (subnetworks 

have been treated as generalized nodes), the system power flow loss satisfies the following 

equation. 

                              𝑃Loss = ∑𝑃𝐿𝑜𝑠𝑠, 𝑘
𝑘∈𝐾

+∑(∑𝑉𝑖,𝑡∑𝑉𝑗,𝑡𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗,𝑡
𝑗∈𝑖𝑖∈

𝑁
𝐾

)

𝑡∈𝑇

                (5.26) 

(3)  Power transmission congestion evaluation 

System congestion management strategies can be divided into two aspects: (1) network 

topology reconfiguration, this way through switch operation to realize network topology 

reconfiguration and improve network congestion; (2) power supply/load demand locally 

matching, this way through direct load control (DLC) and market mechanism to modify the 

load demand and power supply, respectively to improve power congestion [128]. In this 

chapter, we through increasing space granularity to reduce the power congestion, it does not 

need to change the switch state, that is, the system operating mode, nor does it need to change 
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the load demand. It is a brand-new mechanism for increasing network space granularity to 

achieve power flow congestion management. Increasing renewable generation units' space 

granularity and increasing subnetwork space granularity will both help to realize power 

supply/load demand locally matching. 

To describe the impact of increasing space granularity on power congestion and repeated 

power flow, we define average line power (ALP) to calculate the absolute sum of all line 

power, and using this indicator can help us analyze the concentration degree of all line power 

near to zeros and the total power flow of the power lines. The ALP indicator can be easily 

calculated using the equation below. 

                                                     𝐴𝐿𝑃 = (∑∑|𝑃𝑏,𝑡|

𝑡∈𝑇

𝐵

𝑏=1

) (𝐵 ∗ 𝑇)⁄                                  (5.27) 

where Pb,t represents the power flow in the b-th line at time t; B represents the number of the 

branch. 

5.4. Test Results 

5.4.1 Evaluation of the Spatial Networking Method 

Based on Algorithm 5-1 and wind turbines inject information in the IEEE 33-node system 

in Table 5-2, we can calculate power flow and then get the results of branch power flow 

deviation and voltage magnitude deviation in different nodes. Considering case 0 does not 

have the wind power injection, we get the results from case 1 to case 5 shown in Figure 5-4 

below. 
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(d) case 4 

 

(e) case 5 

Figure 5-4. Power flow and node voltage difference under different spatial distributions of 

wind turbines 

From Figure 5-4. we can find that: 

(1) In different cases, that is in different space granularity of wind turbines, there will be 

differences in the branch power flow and the node voltage magnitude. The main reason for 

the above differences is that the injection of wind turbines into different nodes will change 

the power flow of adjacent nodes and branches. 

(2) Comparing the deviation branch power flow in case 1, case 2, case 3, case 4 and case 

5, we can find that the branch power flow related to wind turbines inject node changes 
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significantly, and based on this feature, we can put it as the first node into subnetwork node 

subset. For example, in case 1, branch 17 power flow deviation has changed significantly, 

in case 3, branch 24, branch 19, branch 17, and branch 5 power flow deviation has changed 

significantly, and in case 5, branch 27, branch 24, branch 19, branch 17 and branch 5 power 

flow deviation have changed significantly. Therefore, based on the branch power flow 

deviation we can find the results where the wind turbines are injected are consistent with 

case setting. 

(3) Comparing the deviation node voltage magnitude and adjacent node voltage amplitude 

in case 1, case 2, case 3, case 4 and case 5, we can find that the node voltage magnitude 

related to wind turbines inject node changes significantly, and based on this feature, we can 

put these nodes into subnetwork node subset. For example, in case 1, node-set {6-18} and 

{26-33} have changed significantly, in case 3, node-set {4-18} and node-set {20-33} voltage 

magnitude have changed significantly, in case 5, node-set {4-18} and {20-33} have changed 

significantly, based on the wind turbines inject nodes results and node adjacency matrix A, 

we can construct the possible load node-set containing a group of wind turbines as the 

subnetworks. In case 1, the subnetwork may contain nodes set {6-18}, in case 3, the 

subnetworks may contain nodes set {6, 26-33}, {7-18}, {23-25} and {20-22}, in case 5, the 

subnetworks may contain nodes set {6, 26-33}, {7-12}, {13-18}, {23-25} and {20-22}. 

Then we set the above load node as the complete set, construct several subsets including 

the wind turbines inject node, traverse these subsets in turn, and select the largest 

Pr(SDABI(T)) that contains the load node subset as the subnetwork. In different cases, the 
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subnetwork includes nodes' information as shown in Table 5-3. 

Table 5-3. The subnetwork nodes result in different spatial distributions of wind turbines 

Case 
The subnetwork 

nodes 
Pr(SDABI(T)) 

case 1 {7-18} {0.482} 

case 2 
{20-21};{6,26-27}; 

{13-18} 
{0.526};{0.475};{0.438} 

case 3 
{20-21};{6,26-27}; 

{14-18};{25} 
{0.526};{0.475};{0.491};{0.403} 

case 4 
{20-21};{6}; 

{16-18};{25};{28} 
{0.526};{0.453};{0.428};{0.435};{0.486} 

case 5 

{20-

21};{6};{18};{25}; 

{28-29};{11-12} 

{0.526};{0.453};{0.407};{0.412};{0.435};{0.486} 

5.4.2 Evaluation Indicators at Different Spatial Granularities 

Increasing space granularity mainly has two aspects: (1) increasing wind turbines' space 

granularity, that is decreasing the number of wind turbines connected to the same one node; 

(2) increasing subnetworks' space granularity, that is increasing the number of subnetworks. 

Aiming at the evaluation operation indicators, we focus on the above two aspects, the results 

are as follows. 

(1)  Power system operation economy evaluation 

Different cases characterize the different wind turbines' space granularity, and considering 

subnetworks means that we characterize the different subnetwork space granularity. 

Comparing Table 5-4 and Table 5-5 in different cases operation economy results, increasing 

space granularity can improve the power system operation economy, the details can be 
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described as follows: 

(1) From Table 5-4, comparing the operation cost in different cases, such as F2 is lower 

in case 1 to case 5 than case 0. F2 of case 5 is nearly 30% lower than case 0. That means 

wind power is injected into the power system; on the one hand, it will reduce the dependence 

on the main grid, on the other hand, it will improve the economy of power system operation. 

By comparing the power flow loss part in Table 5-4, the power flow loss of case 5 is about 

48% of the power flow loss of case 1. That means by increasing wind turbines' space 

granularity, the power flow loss will also be reduced, further leading to a reduction in system 

operation cost.  

(2) In the same cases, with the increasing subnetwork space granularity, F2, system 

operation cost and power flow loss will all decrease. 

Table 5-4. Without considering subnetworks in different cases 

Case F2 ($) (F1+F2) ($) Power flow loss (MWh) 

case 0 12565.2 12565.2 3.821 

case 1 9112.1 10927.7 3.496 

case 2 8902.8 10221.6 2.101 

case 3 8879.8 10167.8 1.948 

case 4 8861.3 10034.7 1.824 

case 5 8836.8 10010.2 1.661 

Table 5-5. With considering subnetworks in different cases 

Case F2 ($) (F1+F2) ($) Power flow loss (MWh) 

case 1 9082.9 10898.6 3.302 

case 2 8886.3 10205.1 1.991 

case 3 8867.7 10155.7 1.867 
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case 4 8854.5 10027.9 1.779 

case 5 8829.4 10002.8 1.611 

When the subnetwork is not considered, the system operation cost difference between 

different cases is mainly affected by two factors. One is the differences in local marginal 

electricity prices of wind turbines due to differences in space granularity. When the wind 

turbine's space granularity is smaller (that is, the more types of wind turbines are connected 

to the same node), the higher cost of wind turbine marginal electricity price will increase the 

DERs generation cost. The other one is the difference in power loss caused by the difference 

in space granularity of wind turbines, this difference is mainly reflected in the operation cost 

in the balanced market. 

When the subnetwork is considered, the difference in operation cost in the same cases is 

mainly due to the difference in power loss caused by the difference in subnetwork space 

granularity. The main reason is that the increase in the subnetwork space granularity will 

reduce the transmission distance of the power flow, thereby reducing the power flow loss. 

(2)  Power flow loss evaluation 

The injection of wind power will reduce the system power flow loss, and the system power 

flow loss will be significantly reduced regardless of the position of the wind turbine 

connected to the system and the change of the wind turbine space granularity. In Figure 5-5, 

we can find the injection of wind power minimizes the reduction in power flow loss and is 

close to 9%, what is more, with the increasing of the wind turbine space granularity, the 

power flow loss is further reduced, and reduction in case 5 is close to 57%. 
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Figure 5-5. The relative difference of power loss deviation under different cases (without 

considering subnetworks) 

 

Figure 5-6. The relative difference of power loss deviation under different cases (considering 

sub-networks) 

From Figure 5-5 and Figure 5-6, we can find that increasing wind turbines' space 

granularity will reduce power flow loss, and then increasing subnetwork space granularity 

will also reduce power flow loss. In Figure 5-6, the power flow loss can be reduced by 

increasing the subnetwork space granularity. Compared with the same wind turbine space 
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granularity, the power flow loss can be reduced by at least 2.5% by increasing subnetwork 

space granularity. 

(3)  Power transmission congestion evaluation 

Based on the historical data from wind power and load demand, we solved the IEEE 33 

node system power flow in different branches under different cases, and the results as shown 

below. From Figure 5-7, we can find that: 

(1) When we just consider the difference of wind turbines' space granularity (from the 

view of column), showing the difference in Figure 5-7 (b), (d) and (f) or Figure 5-7 (a), (c) 

and (e). With the increasing wind turbines' space granularity, the more concentrated the 

power flow range of the same branch is near 0, that is, the smaller the power flow of the 

same branch, the lower the possibility of power congestion of the branch. We can also find 

there is the same trend in Figure 5-8, the value of ALP will decrease with the increase of 

wind turbines' space granularity. 

(2) When we consider the difference of subnetwork space granularity (from the view of 

row), shown the difference in Figure 5-7 (a) and (b), or Figure 5-7 (c) and (d), or Figure 5-7 

(e) and (f). With the increasing subnetwork space granularity, the more concentrated the 

power flow range of the same branch is near 0, that is, the smaller the power flow of the 

same branch, the lower the possibility of power congestion of the branch. We can also find 

there is the same trend in Figure 5-8, the value of ALP considering networking will be lower 

than that without considering networking. 

(3) Combining Figure 5-7 and Figure 5-8, we can find that with the increase of space 



 

129 

 

granularity, the power flow values will be more concentrated around 0 at the same branches, 

and at the same time, the ALP index will be smaller, that is, the lower the possibility of 

power congestion of the branches. 

 

Figure 5-7. Power flows in different branches with and without subnetwork under different 

cases 
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Figure 5-8. ALP indicators in different cases 

5.5. Summary 

In this chapter, we construct the supply-demand adaptation balance index and further 
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case 1 will reduce operating cost by about 13%, reduce power flow loss by about 8.5%, and 

further increase space granularity in case 5, which will further reduce operating cost by about 

8.5% and reduce power flow loss about 54% than case 1. 

The conclusions and methods of this chapter have important guiding and reference 

significance for the space layout of renewable generation units. At the same time, the 

relevant conclusions of increasing space granularity in this chapter are of great significance 

to the reform of power system operation. 
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6. CONCLUSIONS AND FUTURE WORKS 

6.1. Conclusions 

This study focuses on the reform of increasing spatial-temporal resolution in high-

penetration renewable energy power systems. For the power fluctuation, this thesis proposed 

metrics including power incremental statistics, coefficient of variation, and peak power 

duration to characterize the power variability characteristics, based on these metrics, further 

analyze the mathematical relationship between these variations and net-load power curves 

and real-time power imbalance curve, finds that power variability will directly affect net-

load power curves and the power gradient will affect the real-time power imbalance curve. 

For increasing temporal resolution reform, this thesis proposes an evaluation method for the 

electricity market at different time granularity, including ex-ante real-time power deviation 

prediction; real-time power scheduling operation and clearing; ex-post power deviation 

settlement. Based on this evaluation model, this thesis provides strong evidence that the 

higher the time granularity, the power step changes and the real-time power deviation 

quantities are smaller, and vice versus; For increasing spatial resolution reform, this study 

proposes the stochastic energy network theory to characterize the supply-demand adaptation 

balance index (SDABI) and further proposes a subnetwork networking method to evaluate 

the impact of increasing space granularity on reducing power system operation costs, power 

flow losses, and power congestion. This study for the first time provides scientific evidence 

to support the worldwide reform of the increasing spatial-temporal resolution with massive 



 

133 

 

renewable energy integration systems. The main conclusions are as follows: 

1. The statistical characteristics of power fluctuations of different types of resources 

can help system operators reasonably make the operations and reserve plans, which 

are mainly as follows: 

1) The time series characteristics of PV power are relatively obvious, which directly 

affects the net load power curve. There is a higher flexible power requirement near 

noon (that is, around the maximum PV power), and this feature will increase as the 

PV penetration rate increases. It seems to look like the canyon curve; the timing 

characteristics of wind power in different countries are different, but the overall 

impact of wind power on the net load power curve is not as obvious as that of PV 

power. 

2) The real-time imbalanced power quantities of different types of resources are 

proportional to their power gradient. The real-time power imbalance caused by PV 

power has timing characteristics and looks like a butterfly curve, this characteristic 

will be more obvious with high penetration of PV generation. 

3) The different resource power fluctuation statistics characteristics in different countries 

can effectively help system operators rationally arrange flexible resource reserves, 

such as ramp power requirement and real-time power balance reserve based on these 

resource power fluctuations timing characteristics. 

2. Increasing the time granularity will significantly reduce power market balancing 

costs and power grid frequency deviations. Which are mainly as follows: 
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1) With time granularity increases, power step changes at different scheduled interval 

points and real-time power deviations during the scheduling interval will be 

significantly reduced, thereby reducing power market balancing costs and power grid 

frequency deviations. 

2) Specifically, when the time granularity is increased from 30 minutes to 5 minutes, the 

power step magnitude will be reduced (the power step change in the California ISO 

grid will be reduced by nearly five-sixths; the Czech and Qatar grid will also be 

reduced by almost 80%), and the real-time power deviation will also be reduced (The 

real-time power deviation in California ISO grid was reduced by nearly five-sixths; 

the Czech and Qatar grid also reduced by nearly half). Power grid frequency 

deviations are directly proportional to power change quantities; therefore, power grid 

frequency stability can be improved by increasing time granularity. 

3. Increasing space granularity not only increases renewable energy generators' 

injection space granularity but also subnetworks' space granularity. This reform 

can reduce system operation costs, power flow loss, and mitigate power congestion. 

Which are mainly as follows: 

1) Increasing space granularity by increasing the number of wind turbine injections and 

increasing subnetworks space granularity, on the one hand, will help to find the 

marginal generation price and reduce the customers’ operation cost; on the other hand, 

it will decrease power flow loss and improve power congestion by improving the 

power flow distribution and reduce the repeat power flow. 



 

135 

 

2) Increase space granularity by the above two aspects, which will further reduce 

operating costs by about 8.5% and reduce power flow loss by nearly half. 

6.2. Future Works 

As variable renewable energy (VREs) penetrates the power grid on a massive scale, the 

grid will encounter greater fluctuations and intermittent than it does presently. 

Consequently, this paradigm shift will necessitate fundamental changes in power system 

planning, operation, and settlement approaches. To solve the above problems, we plan to 

conduct further research in the following aspects: 

(1)  Build a cross-domain energy power time series database for different research 

objects based on rich open-source meteorological data information: According to 

different levels of space granularity, we plan to build a cross-domain open dataset 

includes renewable energy time series data, load demand time series data, renewable 

generation installed capacity, and future resources evaluation information, etc. 

(2)  Using stochastic energy network theory to construct a new planning method 

based on the cross-domain open dataset: Given the power system planning problems 

caused by the randomness, volatility, and uncertainty of high-penetration renewable 

energy systems, we aim to combine the arrival process and departure process in the 

stochastic energy network theory to correspond to the energy production and energy 

consumption processes, and based on this theory we can characterize the three different 

operating states of the high penetration power grid, including waste of power supply, 
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loss of load demand and balance of energy supply and demand. Based on the probability 

characteristics of these three different work states, we can establish a high-energy 

reliable, and high-energy security power grid system unit. 

(3)  Design a new system flexible resource reserve and transaction strategies based 

on net-load power curve and real-time power imbalance curve timing characteristics: 

Using the cross-domain dataset, we can analyse the power development dynamic 

characteristic curves including net load power curves and real-time imbalanced power 

curves for research objects at different development degrees (that is different renewable 

penetration, different load consumption development, etc.), and provide scientific 

guidance for infrastructure construction (including lines, cables, substations, network 

infrastructure, etc.) and electricity market development models based on this dynamic 

development characteristic. 
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APPENDIX.  IEEE 33-NODE DISTRIBUTION 

SYSTEM 

A.1. IEEE 33-Node Distribution System Topology 

 

Figure A-1. IEEE 33-node system topology 

A.2. IEEE 33-Node Distribution System Bus Data 

Table A-1. IEEE 33-node system bus information 

BN BT PD QD GS BS BA VM VA BV Zone VMAX VMIN 

1 3 0 0 0 0 1 1 0 12.66 1 1 1 

2 1 0.1 0.06 0 0 1 1 0 12.66 1 1.1 0.9 

3 1 0.09 0.04 0 0 1 1 0 12.66 1 1.1 0.9 

4 1 0.12 0.08 0 0 1 1 0 12.66 1 1.1 0.9 

5 1 0.06 0.03 0 0 1 1 0 12.66 1 1.1 0.9 

6 1 0.06 0.02 0 0 1 1 0 12.66 1 1.1 0.9 

7 1 0.2 0.1 0 0 1 1 0 12.66 1 1.1 0.9 

8 1 0.2 0.1 0 0 1 1 0 12.66 1 1.1 0.9 

9 1 0.06 0.02 0 0 1 1 0 12.66 1 1.1 0.9 

10 1 0.06 0.02 0 0 1 1 0 12.66 1 1.1 0.9 

11 1 0.045 0.03 0 0 1 1 0 12.66 1 1.1 0.9 

12 1 0.06 0.035 0 0 1 1 0 12.66 1 1.1 0.9 

13 1 0.06 0.035 0 0 1 1 0 12.66 1 1.1 0.9 

14 1 0.12 0.08 0 0 1 1 0 12.66 1 1.1 0.9 

15 1 0.06 0.01 0 0 1 1 0 12.66 1 1.1 0.9 

16 1 0.06 0.02 0 0 1 1 0 12.66 1 1.1 0.9 

17 1 0.06 0.02 0 0 1 1 0 12.66 1 1.1 0.9 

1 2 3 4 5 6

19 20 21 22

23 24 25

7 8 9 10 11 12 13
Substation

14 15 16 17 18

27 28 29 30 31 32 3326
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BN BT PD QD GS BS BA VM VA BV Zone VMAX VMIN 

18 1 0.09 0.04 0 0 1 1 0 12.66 1 1.1 0.9 

19 1 0.09 0.04 0 0 1 1 0 12.66 1 1.1 0.9 

20 1 0.09 0.04 0 0 1 1 0 12.66 1 1.1 0.9 

21 1 0.09 0.04 0 0 1 1 0 12.66 1 1.1 0.9 

22 1 0.09 0.04 0 0 1 1 0 12.66 1 1.1 0.9 

23 1 0.09 0.05 0 0 1 1 0 12.66 1 1.1 0.9 

24 1 0.42 0.2 0 0 1 1 0 12.66 1 1.1 0.9 

25 1 0.42 0.2 0 0 1 1 0 12.66 1 1.1 0.9 

26 1 0.06 0.025 0 0 1 1 0 12.66 1 1.1 0.9 

27 1 0.06 0.025 0 0 1 1 0 12.66 1 1.1 0.9 

28 1 0.06 0.02 0 0 1 1 0 12.66 1 1.1 0.9 

29 1 0.12 0.07 0 0 1 1 0 12.66 1 1.1 0.9 

30 1 0.2 0.6 0 0 1 1 0 12.66 1 1.1 0.9 

31 1 0.15 0.07 0 0 1 1 0 12.66 1 1.1 0.9 

32 1 0.21 0.1 0 0 1 1 0 12.66 1 1.1 0.9 

33 1 0.06 0.04 0 0 1 1 0 12.66 1 1.1 0.9 

Note: BN represent bus number; BT represent bus type (PQ=1, PV=2, ref=3, isolated=4); PD represent real power demand; QD represent 
reactive power demand; GS represent shunt conductance; BS represent shunt susceptance; BA represent area number; VM represent 

voltage magnitude; VA represent voltage angle; BV represent base voltage; Zone represent loss zone; VMAX represent maximum voltage 

magnitude; VMIN represent minimum voltage magnitude. 

A.3. IEEE 33-Node Distribution System Branch Data 

Table A-2. IEEE 33-node system branch data 

FB TB R X B Rate-A Rate-B Rate-C TAP SHIFT STATUS AMIN AMAX 

1 2 0.0057526 0.0029324 0 0 0 0 0 0 1 -360 360 

2 3 0.0307595 0.0156668 0 0 0 0 0 0 1 -360 360 

3 4 0.0228357 0.01163 0 0 0 0 0 0 1 -360 360 

4 5 0.0237778 0.0121104 0 0 0 0 0 0 1 -360 360 

5 6 0.0510995 0.0441115 0 0 0 0 0 0 1 -360 360 

6 7 0.0116799 0.0386085 0 0 0 0 0 0 1 -360 360 

7 8 0.044386 0.0146685 0 0 0 0 0 0 1 -360 360 

8 9 0.0642643 0.0461705 0 0 0 0 0 0 1 -360 360 

9 10 0.0651378 0.0461705 0 0 0 0 0 0 1 -360 360 

10 11 0.0122664 0.0040555 0 0 0 0 0 0 1 -360 360 

11 12 0.0233598 0.0077242 0 0 0 0 0 0 1 -360 360 

12 13 0.0915922 0.0720634 0 0 0 0 0 0 1 -360 360 

13 14 0.0337918 0.0444796 0 0 0 0 0 0 1 -360 360 

14 15 0.036874 0.0328185 0 0 0 0 0 0 1 -360 360 

15 16 0.0465635 0.0340039 0 0 0 0 0 0 1 -360 360 

16 17 0.080424 0.1073775 0 0 0 0 0 0 1 -360 360 

17 18 0.0456713 0.0358133 0 0 0 0 0 0 1 -360 360 

2 19 0.0102324 0.0097644 0 0 0 0 0 0 1 -360 360 

19 20 0.0938508 0.0845668 0 0 0 0 0 0 1 -360 360 

20 21 0.0255497 0.0298486 0 0 0 0 0 0 1 -360 360 
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FB TB R X B Rate-A Rate-B Rate-C TAP SHIFT STATUS AMIN AMAX 

21 22 0.0442301 0.0584805 0 0 0 0 0 0 1 -360 360 

3 23 0.0281515 0.0192356 0 0 0 0 0 0 1 -360 360 

23 24 0.0560285 0.0442425 0 0 0 0 0 0 1 -360 360 

24 25 0.0559037 0.0437434 0 0 0 0 0 0 1 -360 360 

6 26 0.0126657 0.0064514 0 0 0 0 0 0 1 -360 360 

26 27 0.017732 0.0090282 0 0 0 0 0 0 1 -360 360 

27 28 0.0660737 0.0582559 0 0 0 0 0 0 1 -360 360 

28 29 0.0501761 0.0437122 0 0 0 0 0 0 1 -360 360 

29 30 0.0316642 0.0161285 0 0 0 0 0 0 1 -360 360 

30 31 0.0607953 0.060084 0 0 0 0 0 0 1 -360 360 

31 32 0.0193729 0.0225799 0 0 0 0 0 0 1 -360 360 

32 33 0.0212759 0.0330805 0 0 0 0 0 0 1 -360 360 

21 8 0.1247851 0.1247851 0 0 0 0 0 0 0 -360 360 

9 15 0.1247851 0.1247851 0 0 0 0 0 0 0 -360 360 

12 22 0.1247851 0.1247851 0 0 0 0 0 0 0 -360 360 

18 33 0.0311963 0.0311963 0 0 0 0 0 0 0 -360 360 

25 29 0.0311963 0.0311963 0 0 0 0 0 0 0 -360 360 

Note: FB represent “from” bus number; TB represent “to” bus number; R represent resistance (p.u.); X represent reactance (p.u.); B 
represent total line charging susceptance (p.u.); Rate-A set to 0 for unlimited; Rate-B set to 0 for unlimited; Rate-C set to 0 for unlimited; 

TAP represent transformer off nominal turns ratio, TAP=0 used to indicate transmission line rather than transformer; SHIFT represent 

transformer phase shift angle degree; STATUS represent initial branch status, in-service=1, out-of-service=0; AMIN represent minimum 
angle difference; AMAX represent maximum angle difference. 
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