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ABSTRACT

The power generation of variable renewable energy (VRE) is largely affected by natural
environmental factors, such as wind speed and solar irradiance, which can cause great
variability, fluctuation, and intermittency, and these characteristics will become more
severe as renewable energy penetration increases. These power variations will bring
operational challenges to the instantaneous balance, and will also increase in intraday
trading frequency, and increase re-scheduling operation costs in the electricity market.
Therefore, increasing penetration of VRE will cause fundamental and structural changes to
traditional power system operation regimes. This doctoral study focuses on the
investigation of increasing spatial-temporal resolution in high-penetration renewable
energy systems and evaluates their impact on electricity market operations, hence providing
scientific insights into the electricity market reform.

This thesis carries out a literature review and it is found: there is a lack of theoretical
research on the impact of power fluctuation characteristics on the day-ahead power curve
and the real-time power curve; there is a lack of quantitative scientific evaluation of the
entire electricity market at different temporal granularity; Current research on increasing
spatial granularity generally focuses on the regional and node electricity prices, but rarely
mentions the increase of spatial network granularity, and lacks a scientific model for
building spatial grid networks.

In terms of power fluctuation, this thesis proposes metrics including power incremental
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statistics, coefficient of variation, and peak power duration to characterize the power
variability characteristics. Based on these metrics, the mathematical relationship between
these variations and net-load power curves, and real-time power imbalance curves are
analysed. It is found that power variability will directly affect net-load power curves and
the power gradient will affect the real-time power imbalance. For example, the solar power
variability characteristics will cause the net-load power curve to look like a duck curve,
while real-time power imbalance to look like a butterfly curve.

In terms of increasing temporal resolution reform in electricity markets, this thesis
proposes an evaluation method for the electricity market at different time granularity,
including ex-ante real-time power deviation prediction; real-time power scheduling
operation and clearing; and ex-post power deviation settlement. Based on this evaluation
model proposed, this thesis provides strong evidence that the higher the time granularity,
the power step changes and the real-time power deviation quantities are smaller, and vice
versa. Increasing the time granularity from 30 to 5 minutes will reduce the balancing cost
by nearly half and reduce the power step amplitude standard deviation by nearly 80%.

In regarding the increasing spatial resolution for electricity market reform, including the
space granularity of renewable generation units and the space granularity of the
subnetworks, the thesis proposes the stochastic energy network theory to characterize the
supply-demand adaptation balance index (SDABI) and further proposes a subnetwork

networking method to evaluate the impact of increasing space granularity on reducing



power system operation costs, power flow losses, and power transmission network
congestion.

In summary, this doctoral thesis for the first time provides scientific evidence to support
the worldwide power market reform of the increasing spatial-temporal resolution with

massive renewable energy integration systems.
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1. INTRODUCTION

1.1.Research Background and Challenges
1.11  High Penetration Renewable Energy System

Recently, the world has suffered from a wide range of climate extremes, including heat
waves, hurricanes, wildfires, and droughts, and how to mitigate the frequency of extreme
weather and tackle climate change has become a global challenge that transcends national
boundaries. To combat climate change, at the 21st Conference of the Parties (COP) held in
Paris on December 12, 2015, 197 countries adopted the Paris Agreement. The agreement
aims to significantly reduce global greenhouse gas emissions and limit global temperature
rise this century to less than 2°C [1-2].

As the urgent issue of climate change continues to escalate, more and more countries
have committed to achieving net zero carbon emissions in the coming years [3], The global
renewable energy market has undergone qualitative changes:

(1) Renewable energy installed capacity is growing rapidly. During the whole year of
2023, { Renewable Capacity Statistics 2024 ) released by the International
Renewable Energy Agency (IRENA) shows that solar energy and wind energy
contribute more than 97% of the world’s renewable energy installed capacity. Among
them, solar energy accounts for about 73%, and wind power accounts for about 24%,

total renewable installed capacity is about 473 GW [4 - 5].
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(2) The cost of the entire renewable energy industry chain has been significantly
reduced. From 2010 to 2022, the levelized cost of electricity (LCOE) of newly
put-into-production grid-connected PV projects worldwide dropped by 88%.
Wind power dropped by 68%, and offshore wind power dropped by 60% [6 - 7].

(3) Renewable energy has net-zero carbon emissions and is environmentally
friendly. Based on the above characteristics, several research institutes have
given renewable energy future scenarios in recent decades, as shown in Error!
Reference source not found..

From Error! Reference source not found., this PhD study finds that variable renewable
energy (VRE) will play an important role in the future energy structure, such as the
Lappeenranta-Lahti University of Technology (LUT) predicts that 2050 share of renewable
energy electricity will account for about 89% of the primary energy; the University of
Technology Sydney predict that 2050 share of renewable energy electricity will account for
about 92.3% of the primary energy; the Standard University predict that 2050 share of
renewable energy electricity will account for about 99.1% of the primary energy; The
institutes, International Renewable Energy Agency (IRENA) and International Energy
Agency (IEA) predict that 2050 share of renewable energy electricity will account for about

90% and 88%, respectively [8 - 13].

Table 1-1 Renewable energy future scenarios in 2050
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Renewable

Renewable energy rate in
Research energy rate in 9y
) Target Energy sources total
Institutes total energy lectrici
supply electricity
supply
Solar photovoltaic (PV),
LUT 100% Concentrated solar
o renewable power (CSP), wind, 100% 89%
University
energy | hydropower, geothermal
and bioenergy
University Solar, wind, hydro,
of 1.5°C geothermal, biomass, 0 0
Technology target ocean energy (tidal and 100% 92.3%
Sydney wave)
100% Wind, PV, CSP,
Stanford WIND- | geothermal, hydro and 0 00 10
University | WATER- ocean energy. Solar 100% 99.1%
SOLAR thermal, geothermal.
International Solar, wind, biogas,
Renewable 15°C biomass, hydropower,
Energy ' geothermal, solar, ocean 74% 90%
target :
Agency energy, natural gas, oil,
(IRENA) coal and nuclear
International Solar, bioenergy, wind,
Ener Net-zero hydropower,
gy . geothermal, other 67% 88%
Agency emission
renewables, nuclear,
(IEA) .
natural gas, oil and coal.
1.1.2  Problems and Challenges

The main purpose of the power system is to maintain an immediate equilibrium between

power supply and load demand for the security of the power system [14-15]. However,

VREs face inherent challenges due to their reliance on natural environmental factors, such

as solar irradiance, air temperature, wind speed, and wind directions, etc. These factors

introduce significant volatility and uncertainty into the energy system [16-18]. As VREs

penetrate the power grid on a massive scale, the grid will encounter greater fluctuations and

intermittent than it does at present.
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In the traditional power system, traditional generation such as nuclear, thermal, gas, and
hydropower, etc. occupy a large proportion, and these generators have high inertia, which
can use mechanical rapid rotating power to serve as automatic power generators to help
keep the grid frequency stable [19]. However, with the high penetration of VREs, these
generators (including wind turbines and PVs) transfer power/energy to the main grid based
on an inverter technique. Through this technology, the inertia from the VREs is decoupled
from the other side of the grid, therefore the moment of inertia of the total grid will be
reduced and the lower rotational inertia will influence the power grid stability [20-23]. In
addition, the volatility and intermittency of VRE generators will also cause higher power
fluctuations, which will also cause power grid frequency fluctuations [14, 24-25]. Except
for influencing the power grid frequency stability, the volatility and intermittency of VRE
generators will bring higher power differences between day-ahead dispatch and real-time
dispatch process, and therefore increase the re-dispatch operating cost and power deviation
settlement cost, influencing the power market operation cost [26-29]. Therefore, high
penetration of renewable energy systems will cause the following challenges.

(1) Power grid operation stability: The VRE generators (including wind turbines [21]
and photovoltaics [23]) transmit power/energy to the main grid based on power
electronics rectification and inverter technology. Through this technology, the inertia
of the rotating parts of renewable energy units will be decoupled from the other side of

the grid, resulting in a lower inertia of the total power system, which will reduce a
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(2)

(3)

negative impact on the power system operation stability [14], [20], [23].

Power system operation and control: The frequent and rapid fluctuation
characteristics of high-penetration VREs will bring operational challenges to the
instantaneous balance of load demand and power supply [14], [18], [30-31].
Electricity market operation and settlement: The high penetration of VREs will
cause frequent fluctuations in the power supply of the electricity market, leading to an
increase in intraday trading frequency, thereby placing higher demands on the actual
electricity price that reflects the operation real states of the power system [32].
Meantime, its rapid and frequent fluctuations will also increase re-scheduling operation

costs in the electricity market [26-28].

1.2. Objectives, Contributions, and Thesis Outline

1.2.1  Objectives

Based on the literature in Chapter 2, the following research gaps have been identified:

1)

(2)

Research gap 1: The high penetration of renewable energy systems will bring more
variable characteristics of modern power systems. Currently, there is a lack of
theoretical research on the impact of this fluctuation characteristic on the day-ahead
electricity market and the real-time electricity market operations.

Research gap 2: Although the global electricity market is undergoing reforms to

improve time granularity, there is a lack of quantitative scientific evaluation of the
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3)

entire electricity market process, including ex-ante real-time power deviation
prediction, real-time power dispatch and clearing process, and ex-post power deviation
settlement.

Research gap 3: Regarding the reform of increasing spatial granularity, current
research generally focuses on the reform of regional and node electricity prices, but
rarely mentions the increase of spatial network granularity, and lacks a scientific model

for building spatial networks.

Based on the research gaps identified, this PhD study considers the following objectives,

Obj 1 and Obj 2 respond to address the research gap 1; Obj 3 respond to address the research

gap 2; Obj 4 respond to address the research gap 3. The main details of the objectives are

as below:

1)

(@)

3)

Obj 1: Proposed metrics including power incremental statistics, coefficient of
variation, and peak power duration to characterize the power variability characteristics
of different flexible resources.

Obj 2: The proposed mathematical model between these power variations and net-load
power curves and real-time power imbalance curve finds that power variability will
directly affect net-load power curves, and the power gradient will affect the real-time
power imbalance curve.

Obj 3: Proposed an evaluation method for the electricity market at different time

granularity, including ex-ante real-time power deviation prediction; real-time power
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scheduling operation and clearing; and ex-post power deviation settlement. Evaluate
the effect of increasing temporal granularity on reducing balance electricity market
costs and power grid frequency deviation.

(4) Obj 4: Proposed the stochastic energy network theory to characterize the supply-
demand adaptation balance index (SDABI) and further proposes a subnetwork
networking method to evaluate the impact of increasing space granularity on reducing

power system operation costs, power flow losses, and power congestion.

1.2.2 Contributions

This study includes the following contributions:

(1) Contribution 1: Proposed metrics such as power incremental statistics, coefficient of
variation, and peak power duration to characterize the variability in power output of
various flexible resources.

(2) Contribution 2: The mathematical model, which characterizes the relationship
between power variations metrics and net-load power and real-time power imbalance,
providing scientific guidance to the flexibility resources reserve, is proposed. High PV
penetration will make the net load curve look like a canyon and make the real-time
imbalanced power curve look like a butterfly.

(3) Contribution 3: This thesis proposed an evaluation method for the electricity market
at different time granularity, including ex-ante real-time power deviation prediction;

real-time power scheduling operation and clearing; and ex-post power deviation
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settlement. Evaluating the effect of increasing temporal granularity on reducing
balance electricity market costs and power grid frequency deviation, for the first time
provides quantitative scientific guidance to increase temporal granularity.

(4) Contribution 4: This thesis proposes the stochastic energy network theory to
characterize the three different operating states of the sub-network, including waste of
power supply (WoPS), represents renewable power supply plus energy storage is larger
than energy consumption, loss of load demand (LoLD) represents renewable power
supply plus energy stored in ESS is less than the load demand during a period, and
supply-demand adaptation balance represents renewable energy supply with the ESS
can meet the energy demand during a period, and then based on the supply-demand
adaptation balance index (SDABI), further established the SDABI-based subnetwork
networking method to improve spatial granularity.

(5) Contribution 5: This thesis evaluates the SDABI-based subnetwork networking
method for increasing spatial granularity, which will reduce power system operation

costs, power flow losses, and power congestion.

1.2.3  Thesis Outline

This study mainly evaluates the effect of increasing spatial-temporal resolution in high-
penetration renewable energy systems. Figure 1-1 shows the research structure of this PhD
thesis and the relationship between chapters.

Chapter 1 provides a background introduction to the research topic as well as issues and
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challenges.

Chapter 2 presented the literature review of relevant research works.

Chapter 3 proposed metrics including power incremental statistics, coefficient of
variation, and peak power duration to characterize the power variability characteristics,
based on these metrics, this study analyzes the mathematical relationship between these
variations and net-load power curves and real-time power imbalance curve, finds that
power variability will directly affect net-load power curves and the power gradient will
affect the real-time power imbalance curve, providing scientific guidance for the flexible
resources reserve strategy.

Chapter 4 proposed an evaluation method for the electricity market at different time
granularity, including ex-ante real-time power deviation prediction; real-time power
scheduling operation and clearing; and ex-post power deviation settlement, and based on
this method, provides strong evidence that the higher time granularity, the power step
changes, and real-time power deviation quantities are smaller, and vice versa. Reducing the
power step changes and real-time power deviations will reduce power grid frequency
deviations and power market balancing costs.

Chapter 5 proposed the stochastic energy network theory to characterize the supply-
demand adaptation balance index (SDABI) and further proposes a subnetwork networking
method, and then combines power system operation evaluation indicators, such as power

system operation costs, power flow losses, and mitigate power congestion situations, etc.
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to evaluate the influence of increasing space granularity on power system reform.

Chapter 6 summarized the main conclusions that can be drawn from this research study

and future research work plans. The main conclusions include the power fluctuation

characteristics and their impact on power system operation and then summarize the benefits

to power system operation by increasing spatial-temporal granularity reforms to solve the

above power fluctuations, including reducing balance electricity market costs, reducing

power grid frequency deviations, improving power system operation efficiency, providing

scientific guidance for flexible reserves, etc. And then giving future challenges and work

plans.

Increasing
temporal
granularity

High penetration renewable energy system

(1) Power grid operation security and stability;
(2) Power system operation and control;

(3) Electricity market operation and settlement;

Renewable energy power supply modeling
(1) Solar power prediction and modeling
(2) Wind power prediction and modeling

Power fluctuation characteristics

Evaluation of increasing time
granularity
(1) Reduce electricity market
balance costs;
(2) Reduce power grid

I
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:_ _ _(:Chapter Y
| _
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Increasing |
—»  spatial NN
granularity : S
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~
-~

N
N

¢ Chapter 5
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Figure 1-1 Research structure and the relationship between chapters of the thesis.
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2. LITERATURE REVIEW

2.1. Renewable Energy Power Supply Prediction Model

In recent years, the capacity of renewable energy installations has been growing rapidly.
From 2022 to 2023, renewables accounted for a record 86% of global power additions,
among them, solar energy and wind energy contribute more than 97% of the world’s
renewable energy installed capacity. Solar energy accounts for about 73%, wind power
accounts for about 24%, and total renewable installed capacity is about 473 GW. By the
end of 2023, renewables accounted for 43% of global installed power capacity, and the
solar installed capacity and wind installed capacity were more than 95% [4-5]. Therefore,
in this study, renewable energy mainly focuses on solar power and wind power.

(1) Solar power

Solar power is greatly impacted by meteorological factors, especially solar radiation and
ambient temperature [33-34]. The installed solar power capacity has increased year by year,
and solar resources account for an increasing share of the total primary energy [4]. In this
context, When meteorological conditions change, changes in solar power will directly
influence the power system's operation stability [14], [23] and reduce energy security,
power quality [35], etc. For example, In mid-February 2021, extreme winter storms and
cold weather hit the south-central United States, causing PV, wind turbines, natural gas, etc.

over 1,000 generator outages and derates across the region [36]. Luis Ceferino, etc. applied
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a probabilistic framework to evaluate the performance of solar infrastructure to generate
energy during hurricanes and evaluate the 2,694 counties in the 38 central and eastern US
states to elucidate the risk landscape of solar generation during hurricanes [37]. Therefore,
it becomes increasingly important to establish an accurate solar power generation output
and prediction model, especially for the high penetration renewable energy systems
operation and control.

Recently, amount of research has been carried out worldwide on the prediction and
characterization of solar power generation. Among them, according to the different
prediction timescales, solar power prediction can be divided into three different categories:
long-term solar power prediction, medium-term solar power prediction, and short-term
solar power prediction [38-41]. The medium- and long-term forecast period ranges from 30
days to 365 days, and the short-term forecast period ranges from minutes to several days.
The effect of short-term prediction of solar power generation will directly affect the power
consumption arrangement and dispatch plan of the power system as well as the stable
operation of the system. Therefore, the short-term solar power prediction has received the
focus of relevant research worldwide.

The prediction methods for short-term can be divided into indirect methods [41-43] and
direct methods [40], [44-46]: In the indirect method, the solar radiation intensity is first
predicted, then calculated and the short-term predicted output power based on the

photoelectric conversion physical model. The direct prediction method, based on the
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mathematical statistical prediction method, inputs meteorological data and historical power
generation data of solar power generation into the established prediction model, and obtains
short-term predicted output power from the output of the model. The indirect method model
does not require a large amount of data support, but its modeling process is very complex,
the amount of calculation is large, and the prediction accuracy is not high. The direct
method has high prediction accuracy, a simple modeling process, and a relatively small

calculation amount, but it requires the use of a large amount of historical data.
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Figure 2-1 Solar power prediction modeling classifications

In addition, the differences in solar power generation prediction algorithms also include
prediction methods based on physical models [47-49], prediction methods based on
statistics [50-52], and prediction methods based on artificial intelligent algorithms [44],
[46], [53-56]. Among them, the prediction method based on physical models adds solar
radiation intensity, temperature, observation and satellite remote sensing radiation
inversion data, and photovoltaic semiconductor component physical model data to the
physical model for predicting solar power generation. Forecasting methods based on

statistics include time series methods [51], trend extrapolation methods, and probability
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forecasting methods [52]. This method mainly uses a large amount of historical data
information combined with statistical principles to conduct corresponding forecasting
analysis. The prediction method based on artificial intelligence algorithms combines the
advantages of the above different methods and uses big data algorithms [54], support vector
machine methods [44], [55], artificial neural networks [46], [53], etc., and other methods
to train the parameters of the model to achieve prediction and modeling analysis of solar
power. Figure 2-1 summarizes the solar power prediction models, and Table 2-1

summarizes different solar power modeling methods and classifications in recent years.

Table 2-1 Solar power prediction modeling methods and classifications.

References Methods Classification types

Direct method: prediction method based

[40], [57-58] Deep learning methods on artificial intelligence algorithm

[41], [43], Photoelectric conversion Indirect method: prediction methods
[49] model based on physical model
[44], [55], Direct method: prediction method based

Support vector machine

[59] on artificial intelligence algorithm

Hybrid NARX-LSTM
[45], [51-52] | Model; time series model;
Bayesian Model

Direct method: prediction methods
based on statistics

Direct method: prediction method based

[46], [53] Artificial Neural Networks on artificial intelligence algorithm

(2) Wind power

Wind power is greatly affected by meteorological natural environment factors, especially
wind speed and wind direction, etc. At present, a lot of research has been carried out
worldwide on the prediction and characterization of wind power generation [60-62].
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Among them, according to the different prediction timescales, the wind power prediction
model can be divided into three categories: long-term, medium-term, and short-term. The
prediction methods for short-term can be divided into indirect methods and direct methods:
In the indirect method, the wind speed is first predicted, then calculated and the short-term
predicted output power is based on the physical conversion model. The direct prediction
method, based on the mathematical statistical prediction method, inputs meteorological
data and historical power generation data of wind power generation into the established
prediction model, and obtains short-term predicted output power from the output of the
model. The indirect method model does not require a large amount of data support, but its
modeling process is very complex, the amount of calculation is large, and the prediction
accuracy is not high. The direct method has high prediction accuracy, a simple modeling
process, and a relatively small calculation amount, but it requires the use of a large amount
of historical data.

After several years of research and practice worldwide, wind power generation
prediction has built a series of prediction processes including numerical weather prediction
(NWP) [63], wind power conversion model [64-65], prediction result application,
prediction result evaluation [66], etc. Based on these above processes there are two different
major technical categories of wind power prediction methods including physics [63], [67]
and statistics [68-72]. NWP is mainly used in physical methods, and statistical methods

mainly involve three technologies other than the NWP technique, but it is not absolute, and
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the two different technical methods also combine.
Based on the definition and technical characteristics of physical prediction methods, it
mainly includes three different technical parts [67]:

(1) NWP data injection, including wind speed and wind direction collection at
wind turbine hub height.

(2) Wind natural resources-power conversion physical module, that is,
considering information such as wind farm topography, NWP data is converted into
wind resources information under actual environmental conditions, calculating the
predicted power of the wind turbine based on the performance parameters of the wind
turbines.

(3) Accumulate total wind farm power output to obtain the theoretically predicted
power of the entire wind farm. The calculation of this method is relatively complex
and requires solving a multi-dimensional partial differential equation for prediction.
However, the requirements for the technical conditions of wind farm operation are
lower, and it does not require a large amount of historical wind farm operation data
information. It only requires the location, topography, landform, and basic information

of the wind turbine capacity, etc.
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Figure 2-2 Wind power prediction modeling classifications

Different from physical prediction methods, statistical prediction methods do not need
to consider the complex physical change process of wind resources and electric power. This
method uses statistical algorithms to learn the characteristic patterns shown by the historical
meteorological and power data of the wind farm and then combines the measured power
data or NWP data to predict the wind farm’s future power generation. This method does
not require the construction of complex differential equations to present the wind resources
exchange to electric power, but statistical learning modeling requires large amounts of data
for training [61-62], [70], [73]. Statistical forecasting methods include forecasting methods
based on time series characteristics [68], [74-76] and forecasting methods based on
artificial intelligence algorithms [69-70], [77-79]. Among them, the time series-based
method does not require natural environmental factors such as wind speed and direction. In
particular, according to the definition and technology of this method, we can obtain some
time series characteristics of the wind farm by training and learning its historical power

sequence characteristics, and then obtain its future power output, this kind of statistical time
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series characteristics can be characterized using statistical indicators, such as
autocorrelation and cross-correlation [74], moment [75], probability density function and
cumulative density function, etc. [72]. In addition, time series features can also be used in
other ways, including continuous method, auto-regressive and moving average (ARMA)
method [76], and Kalman filter algorithm [66], etc. The time series extrapolation prediction
method is simple to operate. On a shorter time scale, its prediction accuracy may even
exceed other complex artificial intelligence methods. However, as the time scale increases,
its prediction accuracy will drop sharply, so it is only suitable for ultra-short-term wind
forecasting [76].

The artificial intelligence-based prediction method combines the advantages of the above
different methods, comprehensively considers relevant influencing factors such as natural
environment factors and electricity uses one or more Al algorithms to train historical power
output data, extracts the connection between NWP data and power generation data, and
then based on the above relationship predicts wind power generation from NWP data is an
important research direction, which mainly includes artificial neural network method (ANN)
[69], [77], support vector machine (SVM) [78], deep learning algorithm [79], etc. The Al
prediction method does not need to establish a specific analytical relationship between
predicted power and meteorological data. Good prediction results can be obtained through
large amounts of data training, which is suitable for different time scales wind power

prediction, and the accuracy will be higher based on the massive training data and suitable
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Al algorithm [61], [70]. Figure 2-2 summarizes the wind power prediction models, and
Table 2-2 below summarizes different wind power modeling methods and classifications in

recent years.

Table 2-2 Wind power prediction modeling methods and classifications.

References Methods Types

NWP data; wind speed and direction; Indirect method: physical

[63-64], [67] wind speed-power conversion prediction
module
[69], [77] | Artificial neural network method Direct method; artificial
intelligence algorithms
[71-72], [74] Statistics; Bayesian model; Direct method,; statistical
[76] ' | autocorrelation and cross-correlation; prediction: based on time
ARMA series
. . Direct method; statistical
[70], [73] Data-driven; Big data mining prediction
. Direct method,; artificial
[78], [80] Support vector machine intelligence algorithms
. : Direct method,; artificial
[79], [81] Deep learning algorithm intelligence algorithms

2.2.Increasing Spatial Granularity

Increasing space granularity mainly reflects two aspects: one is increasing renewable
generation units' space granularity, that is to reduce the amount of renewable energy
injected into a single node or increase the number of inject nodes for renewable generation
units; the other one is increasing transmission network space granularity, that is to reduce
the complexity of the transmission network or reduce the repeated power flow transmission.

Increasing renewable generation units' space granularity can help system operators find
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the renewable generators' marginal electricity price, which will reduce the customers'
energy costs [80]. In addition, increasing the renewable energy generation space granularity
is also a key market design innovation in the electricity market, including node pricing
widely used in the US market [83-85] and regional pricing widely used in the pan-European
region [86-87]. For example, the Electric Reliability Council of Texas (ERCOT)
implements node pricing. By adding electricity price information at different nodes across
the state, it discovers the true energy usage of different nodes during the power transmission
process and formulates reasonable node prices based on the energy usage, thereby
improving the efficiency of the power grid operation and improving the economic benefits
of the whole society [85], [88]. The New York Independent System Operator (NYISO) in
the United States also uses nodal pricing in its wholesale electricity market to improve
system operating efficiency and aims to help increase the penetration of variable renewable
energy [84]. The pan-European electricity market increasing space granularity market
innovation is implementing zonal pricing. Electricity is traded through different bidding
zones and settled according to the prices in different zones. Some countries only have one
bidding zone, such as France, Great Britain, and Germany, etc. Other countries divide their
transmission systems into multiple bidding areas, including Denmark, Italy, Norway,
Sweden, etc. By increasing space granularity and reducing the amount of renewable energy
injected into a single node, this electricity market changes, on the one hand, improve the

power congestion problem of adjacent lines connected to VRE injected nodes, on the other
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hand, increasing renewable generation units space granularity can better discover the
marginal electricity price of the units, thereby reducing energy costs. Regarding the reform
of increasing spatial granularity, current research generally focuses on the reform of
regional and node electricity prices, but rarely mentions the increase of spatial network
granularity, and lacks a scientific model for building spatial networks.

To increase transmission network space granularity, the first idea is to construct many
space subnetworks. How to divide that transmission network topology into several
subnetworks and then reduce the power transmission amount, repeated power flow and
electricity power transfer distance is a vital problem. The subnetwork works in one of the
following three working states during a period:

(1) Waste of power supply, in this state means that if the power supply exceeds
the load demand for a period, the excess power will be stored in the energy storage
system (ESS) until it reaches its rated capacity, thus generating excess power [89-91].

(2) Loss of load demand, in this state means that the power supply plus energy
stored in the energy storage system (ESS) is less than the load demand during a period,
resulting in an energy shortage [92-93].

(3) Supply-demand adaptation balance, in this state means that the energy supply
with the energy storage system (ESS) can meet the energy demand during a period. To
solve the above problems, the cumulative energy production of VRES needs to meet

the cumulative energy consumption of all load nodes in the subnetwork, increasing the
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probability of a supply-demand adaptation balance state [91], [94-95].

2.3.Increasing Temporal Granularity

Increasing time granularity in power systems by reducing the energy settlement time unit
(pricing shorter market time units) is an important energy market innovation to address the
volatility, uncertainty, and intermittency challenges posed by the increased penetration of
VREs [32]. On the one hand, increasing more quickly solving the closing time of the
scheduling gate is more frequent and the scheduling interval is shorter, which allows system
operators to more quickly solve the power imbalance problem caused by the difference
between day-ahead dispatch and real-time dispatch [96]. Also, shortening the scheduling
intervals means that power step change at scheduling interval points and real-time power
deviation during the scheduling intervals will decrease, reducing power grid frequency
deviation [27], [97-98]. On the other hand, increased time granularity in the electricity
market helps system operators predict day-ahead and real-time operations more accurately
based on timely information [96], [99-100]. This helps avoid the re-dispatch process, which
will increase the ex-post power deviation settlement cost.

At present, across the whole world electricity markets (including the day-ahead market
and intra-day market), with the increasing shares of VRE generation resulting in larger
volatility and intermittency [17-19], more and more countries will focus on energy products
with a higher temporal resolution [32], for example, in the day-ahead market, the California

Independent System Operator (California ISO) reduce the temporal resolution of traded
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energy products from hours to minutes [101]. In the intraday market, several European
nations such as France [102], Germany, and the United Kingdom, had sub-hourly energy
products, for example, half-hour energy products [103]. By increasing time granularity,
shorter clearing, and financial settlement periods, these energy market changes, on the one
hand, reduced barriers to integrating variable energy resources and addressed market
inefficiencies, on the other hand, increased the granularity of prices in the wholesale energy
market can increase the short-term flexibility of the electricity system. Although the global
electricity market is undergoing reforms to improve time granularity, there is a lack of
quantitative scientific evaluation of the entire electricity market process, including ex-ante
real-time power deviation prediction, real-time power dispatch and clearing process, and

ex-post power deviation settlement.

2.4. Summary

This chapter reviews the renewable energy power supply modeling methods and
increasing spatial-temporal resolution reform in power systems, The renewable energy
power supply modeling part, can produce and provide abundant scientific datasets to do
further power fluctuation characteristics analysis when there is a lack of dataset and the
amount of data is relatively small; For the increase in spatial resolution, this chapter
provides a clear definition and overview of the latest research on reforms to increase spatial
granularity in power systems worldwide, aiming to help researchers quickly and accurately

understand the impact and role of spatial granularity reforms in power systems, but current
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research generally focuses on the reform of regional and node electricity prices, but rarely
mentions the increase of spatial network granularity, and lacks a scientific model for
building spatial networks; For the increase in temporal resolution, this chapter reviews the
reforms in electricity markets in different countries to increase time resolution, aiming to
help researchers quickly and accurately establish a theoretical framework for increasing
temporal resolution research by citing related articles, but there is a lack of quantitative
scientific evaluation of the entire electricity market process, including ex-ante real-time
power deviation prediction, real-time power dispatch and clearing process, and ex-post

power deviation settlement.
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3. POWER FLUCTUATION CHARACTERISTICS
OF HIGH PENETRATION RENEWABLE ENERGY
SYSTEM

Abstract: Compared with traditional energy systems, high-penetration renewable energy
systems have brought some new opportunities and challenges to the power balance process
due to power volatility, intermittency, and fluctuations. Based on high temporal resolution
datasets include load demand, wind power, and solar power located in three different
countries around the world. This PhD study proposes metrics including power incremental
statistics, coefficient of variation, and peak power duration to characterize the power
variability characteristics. Based on these metrics, the mathematical relationship between
these variations and net-load power curves, and real-time power imbalance curves are
analyzed. It is found that power variability will directly affect net-load power curves and
the power gradient will affect the real-time power imbalance. For example, the solar power
variability characteristics will cause the net-load power curve to look like a duck curve,
while real-time power imbalance to look like a butterfly curve. This chapter for the first
time scientifically describes the mathematical statistical characteristics of power
fluctuations. And reveals the mathematical relationship between power fluctuations, net-
load power curves, and real-time power imbalance curves, guiding the operation of high-

penetration energy systems.
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Abbreviations
RTIP

VRE

LD

CoV

PPD

CAISO

Real-time imbalanced power
Variable renewable energy
Load demand

Coefficient of variation

Peak power duration

California Independent System Operator

Variables, Parameters and Functions

P(t)
APt

Pmax

PLp,it
Ppviit

Pwr,it

Pu.t

Poit

APyr,
APgy .
APyr
APpy ¢
APl ¢
APpp,

The t-th power

Power increment of two adjacent points lagged by a time interval ¢
Mean value

Standard deviation

The third moment/ skewness

The fourth moment/ kurtosis

The maximum power

Probability

load demand under the sampling rate of i-th day and t-th time spot
PV power under the sampling rate of i-th day and t-th time spot
Wind power under the sampling rate of i-th day and t-th time spot
The penetration rate of photovoltaic

The penetration rate of wind power

Upward flexibility

Downward flexibility

Wind power real-time part larger than the day-ahead part

PV power real-time part larger than the day-ahead part

Wind power real-time part smaller than the day-ahead part

PV power real-time part smaller than the day-ahead part

Load demand the real-time part larger than the day-ahead part

Load demand the real-time part smaller than the day-ahead part
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3.1. Introduction

The primary purpose of the power system is to maintain an immediate equilibrium
between the supply of electrical energy and the demand from consumers [14]. Compared
with traditional energy systems, high-penetration renewable energy systems have brought
some new opportunities and challenges to the power balance process due to the power
volatility, intermittency, and fluctuations, mainly reflected in the higher requirement of
flexible resources, including day-ahead dispatch process and real-time dispatch process.
During the day-ahead dispatching process, the net load power curve will show fluctuation
characteristics as renewable energy penetration increases, manifesting as an increase in the
demand for flexible ramping resources; During the real-time dispatch process, the
renewable energy variability increase will also lead to an increase in the amount of real-
time imbalanced power (RTIP).

For the day-ahead dispatching process, the net load power curve represents the total
electricity demand minus whatever renewable energy is on the grid [104]. Its characteristics
guide flexible resources reserve in the day-ahead process. Based on the definition, the net
load power is influenced by variable renewable energy (VREs) and load demand, which
will be affected by natural meteorological resources and production schedules, having
timing characteristics. For photovoltaic resources, since their output is mainly affected by
light intensity [33-34], they exhibit the following distinct time series characteristics. The

photovoltaic power generation gradually increases from 0 to the maximum power
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(corresponding to zero solar irradiance to the strongest light intensity); then decreases from
the maximum power to O (corresponding to the light intensity from highest to 0). The
characteristics of photovoltaic resources result in the net load power curves in different load
zones around the world showing deeper duck curve characteristics in high penetration of
solar power systems [105-106].

For the real-time dispatch process, unlike the net load power curve, the RTIP curve refers
to the deviation in power between the day-ahead and real-time scheduling process, resulting
from changes in power levels [107]. According to its definition, the amount of RTIP is
mainly proportional to the power increment, that is, the power gradient, also has time series
characteristics. For photovoltaic resources, since their output is mainly affected by light
intensity, they exhibit the following distinct time series characteristics:

(1) Photovoltaic power gradient is often 0 when the power is minimum and
maximum, and this period is often in the early morning, evening, and noon.

(2) When the light intensity gradually increases or weakens, although the
photovoltaic power generation is not high, the power change rate of photovoltaic is
relatively larger [48], [51].

Wind power generation has different features in different geographical areas based on
natural wind resources. It also has these features:

(1) When the wind speed is relatively high, the wind power will be relatively

large, while the change rate of wind power will be relatively small.
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(2) When the wind speed is relatively small, the wind power will be relatively
small, and the power change rate will be relatively small [63], [67].

Compared with PV power and wind power, the load demand variability is not obvious,
but load demand also has time series characteristics at different locations based on the
production schedule:

(1) Load demand has peak periods and valley periods in time series.
(2) The amount of power change in load demand during peak/valley periods is
relatively small [14], [108].

In this chapter, we use the high temporal resolution dataset including load demand, wind
power, and solar power located in three different countries around the world to calculate
the influence of power variability on the high penetration renewable energy systems. First,
we established several metrics including power increment statistics, coefficient of variation
(CoV), and peak power duration (PPD) to characterize the power variability of renewable
energy supply and load demand. Second, based on these countries' variability resources
time series datasets, we analyze the net load power curves' time series characteristics under
different renewable energy penetrations. Then we analyze the timing characteristics of
RTIP quantities under different renewable energy penetrations based on the power
variability in these different countries. The main findings include three aspects: (1) Power
variability characteristics will be different for different types of resources, solar power has

the highest power variability, and the load demand has the lowest power variability, based
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on the metrics established in this chapter; (2) Renewable power generations have time
series characteristics: wind power generates higher power when the wind speed is higher,
and solar power generates relatively larger power when the light intensity is higher, so its
power changes directly affect the shape of the net-load power curve and it has obvious time
series characteristics, such as the canyon curve characteristics with massive solar power;
(3) The power variability will directly affect the amount of RTIP; The lowest power
variability means the lowest RTIP value, and vice versa. For example, the solar power

variability characteristics will cause the RTIP curve to look like a butterfly.

3.2.Data Setting and Description

In this chapter, we independently analyze the high temporal resolution dataset including
wind power, solar power, and load demand, which is in three different countries around the
world, including California Independent System Operator (CAISO), Czech grid, and Qatar
grid. Observing the power variability characteristics, and based on this variability, this
chapter will evaluate their impact on the net load power curve and RTIP curve timing
characteristics and draw some conclusions for the reform of high penetration renewable
energy systems. The description of the dataset in this chapter is as follows.

(1) Load demand time series dataset

CAISO: The load demand is in the California Independent System Operator (CAISO)

grid. The temporal resolution is 1 minute. The dataset includes nearly two years between

01/01/2018 and 31/12/2019 [109].
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Czech: The load demand is in the Czech grid. The temporal resolution is 1 minute. The
dataset includes nearly one year between 01/01/2021 and 31/12/2021 [110].

Qatar: The load demand is in the Qatar grid. The temporal resolution is 1 minute. The
dataset includes nearly one month between 20/11/2022 and 18/12/2022.

(2) Renewable energy time series dataset

CAISO: The renewable energy time series dataset in the CAISO grid has a high temporal
granularity, and the frequency rate is equal to 1 minute. The dataset includes nearly two
years between 01/01/2018 and 31/12/2019 [109]. For solar power, based on the dataset
from the National Solar Radiation Database (NSRDB), light intensity data information can
be obtained, and solar power is estimated based on solar radiation-related data through a
physical model [43]. For wind power, wind speed information is first collected from
weather stations at different locations, and then estimated wind power output through wind
turbine power curves associated with that location.

Czech: The renewable energy time series dataset in the Czech grid has a high temporal
granularity, the frequency rate is equal to 1 minute. The dataset includes nearly one year
between 01/01/2021 and 31/12/2021. This dataset includes solar and wind power data
aggregated from multiple photovoltaic and wind farms respectively.

Qatar: The renewable energy time series dataset in the Qatar grid has a high temporal
granularity, the frequency rate is equal to 1 minute. The dataset includes nearly one month

between 20/11/2022 and 18/12/2022. The dataset includes solar power output from

43



Alkarsaah PV farm [111].

Based on the above datasets, we can calculate the per unit load demand and unit
renewable energy power by dividing the load power by the peak load power and the
renewable energy power by the renewable energy installed capacity, respectively. The per-

unit power curves from the above dataset in this section are shown below.

(a) CAISO LD power curves (b) CAISO PV power curves (c) CAISO WT power curves (d) Qatar LD power curves
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Figure 3-1. Per unit power curves from different countries and different resources

3.3. Methods

3.3.1 Power Variability Metrics

Variable resources in high-penetration renewable energy power systems mainly include
wind power, solar power, and load demand. For our research, there are two main ways to
characterize power variability: (1) local power variability curve, mainly characterized by

power increments under different time lags (2) overall power curve fluctuation
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characteristics; mainly characterized by the overall power curve statistical characteristics,
including coefficient of power variation and peak power duration.
(1) Power increment statistics

To characterize these local power variabilities, we use the power increment of two
adjacent points lagged by a certain time interval 7 for statistical analysis, represents, APt
=P(t)-P(t-7). From the current state P(¢), the power increment value APt at lag 7 time can
have positive and negative values, representing the system requires upward flexibility
resources and downward flexibility resources. And the higher the APz, that means the more
flexibility resources need. The value of APr will only give the information of power
variability degree at time point #, while the distribution of the APz in the whole dataset will
tell us the whole power variability degree [112]. An effective way in statistics to
characterize the statistical properties of power increments at lag time 7 is called the n-order
power increment moment, which represents, AP*, and its n-th moment is defined as below

[113].

N
1
", = Nz AP (3.1)
i=1

where u,, represents a statistical n-th moment, the first moment of the power increment
distribution refers to the mean value, that is x1=u. In statistics, standard deviation is usually

used to characterize second-order moments. it is defined as below,

1 N
02 == (OPy — w)? (3.2)
i=1
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where o is the standard deviation. Finally, we use the normalized third and fourth

moments, f§ and x, respectively, which are defined as:

pon (et
-y (et

(2) Coefficient of variation

In statistics, the standard power deviation is an indicator, which is used to measure the
power series variation and dispersion. When the power series has a low standard deviation,
it means that all the power values in the dataset tend to be close to the average value, while
when the power series has a high standard power deviation, it means that all the power

values tend to be spread out over a wider range.

1 N
o= NZm-—u)z (3.5)
1 N
p== P, (3.6)

where P; represents the i-th value in the power series; u represents the average power; N

represents the power series number. o represents the standard power deviation.

To characterize the total power curve variability, we define the coefficient of power
variation (CoV), which is equal to the ratio of the standard deviation ¢ to the mean value.

This indicator combines the characteristics of the standard deviation and the means to
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describe the fluctuation characteristics of the total power curve. Based on these two
indicators, the coefficient of power variation can normalize different amplitudes, different
measurements, and different units of power curves to characterize volatility and fluctuation

[114]. It can be calculated by the equation below:

s |1v L /1%
CoV = ; = NZ(Pi - ,LL) Nzl Pi (37)
1= 1=

(3) Peak power duration

The peak power duration (PPD) is used to characterize the proportion of peak power
duration in the whole power curve, this index is another one to characterize the total power
curve variability. This duration can be arranged in descending order by the power curves
within the scheduling time interval, and then a probability statistical analysis is performed
according to the power time series sorted in descending order to guide the distribution of
different power requirements. According to the form of the descending power curve, there
are two representation calculation methods: (1) continuous probability density function
integration; (2) discrete probability mass function summation. These two forms of peak

power duration are as follows:

Pmax

PPD, = P(apmax <P< Pmax) = f f(P)dP (3-8)
aPmax

PPD, = P(apmax <SP< Pmax) = Zp(apmax <Pk < Pmax) (3-9)

=1

where PPD, represents larger and equal to o times peak power duration. P represents the

probability, f(P) represents the power curve continuous probability density function.
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3.3.2 Net Load Power and Real-time Imbalanced Power Analysis

Power fluctuations will challenge power system operation and balance settlement to
solve instantaneous power balance. In this chapter, based on the power variability
characteristics, we analyze the net load power curve and RTIP curve, and based on these
curves’ time series characteristics, give reasonable suggestions to system operators. We
assume that the energy measurement is correct based on the sampling frequency. Using the
dataset obtained at the sampling rate (1-minute) as the benchmark, we can get the day-
ahead dispatched power by equation (3.10), based on the definition of net load power and
RTIP [27], [104], [107], we can calculate them by the following equation (3.11) and (3.12)

respectively.

1 n
P, = Zz (P),T, = nT, (3.10)
=1

i

NLPTn = PLD,Tn - PRES,Tn (3.11)

1 n nl:)] - Z‘{l:l(Pl)
AR =Ph-=) () ==
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1—j)AP;_ 2—J)AP;_ —AP.
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3.3.3 Renewable Energy Penetration

The variability from the power supply is mainly influenced by the VREs penetration,
therefore, with the increased penetration of VREs, the power supply variability will also

increase. The penetration rate of renewable energy is often characterized as the proportion
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of renewable energy power generation to load demand [115]. Therefore, this chapter will
define a and y respectively to characterize the penetration rates of photovoltaic and wind

power. Their calculation methods are as follows:

a = (Ziel Xt PPV,i,t)/(ZiEI Xt PLD,i,t) (3.13)
Yy = z Z PWT,i,t/z 2 Pipit (3.14)
i€l teT €] teT

where a and y represent the photovoltaic and wind power penetration rate, respectively.
Pipi:, Prvi: and Pwr,; represent the load demand, PV power, and wind power under the

sampling rate of i-th day and #-th time spot, respectively.

3.4. Results

3.4.1 Power Variability Characteristics

The power increment under different time lags can describe the degree of power
fluctuations. Based on the methods part, we can calculate power increment at different time
lags, as shown in Figure 3-2. Comparing the power fluctuation characteristics of different
resources in Figure 3-2 ((a)-(c); (d) and (e); (f)-(h)), we found that, at the same time lag,
the different resources power increment probability density function (pdf) is different, that
1s, there are differences in the wind, PV, and load demand power fluctuation. Specifically,
in the CAISO grid, the PV power increment standard deviation is more than 10 times the
demand power increment at a 1-minute time lag. The wind power increment standard

deviation is nearly 2.5 times the load demand power increment. That is, the power
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fluctuation degree in the CAISO grid, PV power is higher than wind power, and wind power
is higher than the load demand. Observing the skewness index, we found that the skewness
of load demand and photovoltaic power is small, and its absolute value is generally lower
than 0.5, while the skewness of wind power is larger and higher than 1.5. Observing the
kurtosis index, we found that the load demand has the smallest kurtosis (the kurtosis
coefficient is close to 24 with a 1-minute lag, and the kurtosis coefficient is close to 3 with
a 10-minute lag), followed by photovoltaic power (the kurtosis coefficient is close to 52
with a 1-minute lag, the kurtosis coefficient is close to 26 under the 10-minute time lag),
and the wind power increment distribution kurtosis value is the largest, even as high as 150
under the 1-minute time lag. The skewness and kurtosis values of different resources in the
CAISO grid indicate that the wind power increment and the PV power increment
distribution is characterized by a peaked and thick-tailed distribution, that is, the probability
of extreme values in wind power increment and PV power increment is high [113], mainly
because of its relatively large power fluctuation.

In the Czech grid, the PV power increment standard deviation is more than 2.6 times the
load demand power increment at a 10-minute time lag. The wind power increment standard
deviation is nearly 2.9 times the load demand part. This means that the power fluctuation
degree in the Czech grid, PV power, and wind power are higher than the load demand part.
Observing the skewness index, we found that the absolute skewness value of different

resources is generally lower than 0.2 at a 1-minute time lag. Observing the kurtosis index,
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we found that the load demand has the smallest kurtosis (the kurtosis coefficient is close to
13 with a 1-minute lag, and the kurtosis coefficient is close to 6 with a 10-minute lag),
followed by wind power (the kurtosis coefficient is close to 9 with a 1-minute lag), and the
PV power increment distribution kurtosis value is the largest, even as high as 19 under the
I-minute time lag. The skewness and kurtosis values of different resources in the Czech
grid indicate that the wind power increment and the PV power increment distribution is
characterized by a peaked and thick-tailed distribution, that is, the probability of extreme
values in wind power increment and PV power increment is high, mainly because of its
relatively large power fluctuation.

In the Qatar grid, the PV power increment standard deviation is close to 3.6 times the
load demand power increment at a 1-minute time lag and is close to 10 times the load
demand power increment at a 10-minute time lag. Observing the skewness index, we found
that the skewness of load demand and photovoltaic power is small, and its absolute value
is generally lower than 0.1 at a 1-minute time lag. Observing the kurtosis index, we found
that the load demand has the smaller kurtosis (the kurtosis coefficient is close to 5 with a
I-minute lag, and the kurtosis coefficient is close to 3 with a 10-minute lag), followed by
photovoltaic power (the kurtosis coefficient is close to 100 with a 1-minute lag, the kurtosis
coefficient is close to 24 under the 10-minute time lag). The skewness and kurtosis values
of different resources in the Qatar grid indicate that the PV power increment distribution is

characterized by a peaked and thick-tailed distribution, that is, the probability of extreme
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values in PV power increment is high, mainly because of its relatively large power

fluctuation.
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Figure 3-2. Load demand, wind power, and solar power increment statistics in time lag 1-
min, 10-min, and 60-min probability density function (PDF) in the CAISO grid, Qatar grid,
and Czech grid.

Power increment describes the degree of adjacent continuous power fluctuations, which
reflects the local characteristics of power fluctuation. This chapter constructs other
indicators such as coefficient of variation (CoV) and peak power duration (PPD) in the
methods part to describe the overall power curve fluctuation characteristics of different
resources. Figure 3-3 and Figure 3-4 show the results.

In Figure 3-3, we can find that the CoV of the PV daily power curve is generally high
(the value generally between 1.2-2.0), followed by the wind power daily curve (the value
generally between 0.3-1.2), and the load demand daily curve is the smallest (the value

generally lower than 0.2). The above characteristics are mainly due to the renewable energy
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variability is higher than the load demand part, As for the fluctuation characteristics of
photovoltaic power and wind power, they mainly have the following different
characteristics: (1) Photovoltaic power has obvious time series characteristics within a day:
solar power is maximum at noon, while in the early morning and evening, its power is equal
to 0; (2)wind power fluctuates strongly within a day, the overall difference is not obvious,
that is, there is not much difference between the maximum power and the minimum power.
What is more, the above feature of PV will not change with the increase of PV capacity,
but wind power and load demand will reduce power fluctuation degree through
complementary characteristics. We can further observe that the value of CoV of the PV
daily power curve will be relatively low in summer and relatively high in winter. The main
reason is that the light irradiance is sufficient in summer and the average daily power of PV
is relatively high.

Observing Figure 3-4, we can find that PV power and load demand show obvious
seasonal characteristics, that is, in summer in CAISO, the value of PPD is relatively high,
while in winter, its value is relatively low. The above characteristics are mainly due to the
demand in summer in CAISO is relatively high and peak load duration time is longer, and
PV power output be greater in summer. There are also differences in the fluctuation
characteristics of different types of resources. Among them, the load demand PPD value is
generally longer than that of renewable energy sources, such as, in the CAISO grid, the

PPD of load demand above 95% is close to 17%, while the PPD of wind power and PV

53



power above 95% is about 3.6% and 6.1%, respectively; in the Czech grid, the PPD of load
demand above 95% is close to 28%, while the PPD of wind power and PV power above
95% is about 2.3% and 4.5%, respectively; in the Qatar grid, the PPD of load demand above
95% is close to 30%, while the PPD of PV power above 95% is about 23%. The PV power
PPD is relatively higher in the Qatar grid than in other grids, the above characteristics are

mainly due to the solar irradiation in Qatar is relatively abundant.

(a) CAISO grid power curve variability (b) Czech grid power curve variabilit
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Figure 3-3. Load demand, wind power, and solar power daily power coefticient of variation
(CoV) in the CAISO grid, Czech grid, and Qatar grid.

The PPD indicator comprehensively describes the duration of variable resources under
different power degrees. Based on the load PPD characteristics, it can help system operators
formulate reasonable demand response market strategies and incentive intensity, reduce
peak load power, and reduce transmission line rated capacity, thereby improving the system

operation stability; Based on the renewable energy PPD characteristics, it can effectively
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configure the energy storage capacity, reduce the peak power of renewable energy output,

and improve the system operation economy.
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Figure 3-4. Load demand, wind power, and solar power daily peak power duration (PPD)
distribution in the CAISO grid, Qatar grid, and Czech grid.

3.4.2 Net Load Power Curve Time Series Characteristics

Load demand is influenced by industrial structure and production plans in different
countries, and renewable energy power supply is influenced by natural indicators, therefore,
these power curves will have different time series characteristics, shown in Figure 3-5
below. In the CAISO grid, peak load demand usually occurs close to 17:00-20:00. In
addition, there will also be a local short-term load peak around 6:00-8:00. The valley of
load demand usually occurs at 23:00-4:30 and 13:30-15:30. While the peak power of PV
usually occurs close to 11:00-13:00, during this time, the load demand is not higher, but

when the load demand reaches to peak, the PV power supply is usually smaller, even to
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zero (during 19:00-6:00); Wind power is relatively large between periods 9:00-17:00 and
relatively small during period 20:00-6:00, but the overall difference is not clear. In the
Czech grid, peak load demand usually occurs close to 10:30-13:00. The valley of load
demand usually occurs at 23:00-4:30. And the peak power of PV usually occurs close to
11:00-13:00, during this time, the load demand is also higher, so in the Czech grid, the PV
can better match with the load demand, and wind power does not change significantly
throughout the day. In the Qatar grid, peak load demand usually occurs close to 12:00-
14:00. and the peak power of PV usually occurs close to 9:30-13:30, during this time, the
load demand is also higher.

By comparing the time series characteristics of different resources, we can further
calculate and get the net load power curve shown in Figure 3-6. In the CAISO grid, the net
load curve changes greatly in the period [8:00-18:00] and changes very little in the period
[19:00-6:00]. The main reason is that the PV penetration rate in the CAISO grid is high
(nearly 17.8%), and its power output is mainly concentrated in the period [8:00-18:00]. The
wind power penetration rate is low (almost 3.1%), so its impact on the net load power curve
in the period [19:00-6:00] is minimal. In the Czech grid and the Qatar grid, there is the
same change trend, the PV power output has a higher impact on the net load power curve
than wind power in these three countries.

Considering the renewable energy development trends in the above three countries, we

further analyzed the changing characteristics of the net load power curve under different
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renewable energy penetration rates, as shown in Figure 3-7. In the CAISO grid, PV
penetration increase will cause a higher requirement of flexibility resources, it will look
like the canyon curve [105]. By comparing different cases (case 1: a=0.178, y=0.031; case
2: 0=0.178, y=0.1; case 3: «=0.178, y=0.2, different cases means different renewable energy
penetrations), with the increase of wind penetration, the net load power curve changes
greatly in the period [9:00-16:00] and changes very little in the period [20:00-6:00], the
main reason is that during above different period, the wind power will be different, as
shown in Figure 3-5. With the PV penetration increase, by comparing the cases (case 1:
0=0.178, y=0.031; case 5: «a=0.3, y=0.031; case 6: a=0.5, y=0.031), we can find that the net
load power curve has a deep decrease and increase during the period [8:00-18:00]. That is,
PV power has a bigger influence on the net load power curve than wind power. As the PV
penetration rate increases, the net load power curve shows the characteristics: high on both
sides and low in the middle; while the lowest time point often corresponds to the point with
the largest PV power, close to 11:30-13:00, the net load power curve gradient will become
very large at certain points due to the timing characteristics of PV power, which is reflected
in the power system operation process, that is, the requirement of flexible ramping
resources will become very large. This section analyzes the net load power curves with
different renewable penetration rates in different countries, to guide the future reserve of

flexible resources in these countries.
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(a) CAISO LD power curves (b) CAISO PV power curves (c) CAISO WT power curves (d) Qatar LD power curves

1

g 1 5
£ £
i 800 2 8 30
£04 206
400
1000 1000 1000
500 500 500
Time 00 D Time 00 DAt Time 00 DaR Time o0 Dae
(e) Qatar PV power curves (f) Czech LD power curves (g) Czech PV power curves (h) Czech WT power curves
”»
g 1 2 1
g &
g 0.5 400 E 0.5
£ 0 £ 0
1000
500
Time 00 DiytE Time 00 DR Time 00 Do

Figure 3-5. Per unit power curves in different countries and different types of resources.

(a) CAISO grid net load curves (b) Czech grid net load curves (c) Qatar grid net load curves
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Figure 3-6. Net-load power curves. In the CAISO grid, the PV ratio is equal to 17.8%; the
WT ratio is equal to 3.1%; in the Czech grid, the PV ratio is equal to 3.6%, WT ratio is
equal to 0.9%; in the Qatar grid, the PV ratio is equal to 10.3%.
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(a) CAISO net load power (p.u.) at (b) Czech net load power (p.u.) at (c) Qatar net load power (p.u.) at
different renewable energy penetrations different renewable energy penetrations different renewable energy penetrations
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Figure 3-7. Expected daily net load power curves at different renewable penetration

3.4.3 Real-time Power Curve Time Series Characteristics

The main challenge of high-penetration renewable energy systems is the variability,
fluctuation, and intermittent brought by renewable energy. This characteristic will not only
affect the net load power curve, but its rapidly changing characteristics will also directly
lead to the difference between real-time power and day-ahead power scheduling process,
which means the system requires real-time imbalanced power backup. In this section, we
will analyze different flexible resources and their real-time imbalanced power time series

characteristics.

(1) Load demand real-time imbalanced power curve characteristics

The load peak and valley will have the minimum power gradient, affecting the real-time
imbalanced power curve, which minimizes real-time power imbalance reserve
requirements at these time points. The load peak/valley timing distribution characteristics
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of different countries are shown in Figure 3-8 below. By comparing Figure 3-8,

(a) CAISO real-time imbalnced power curve (b) Czech real-time imbalanced power curve (c) Qatar real-time imablanced power curve
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Figure 3-9, and Figure 3-10, we can find the power gradient at the peak/valley load
periods is the smallest, resulting in a lower real-time imbalanced power amount in the
corresponding period. From the above Figures, we can find that the load demands real-time

imbalanced power time series curves have these characteristics:

(1) In the CAISO grid, peak load demand usually occurs close to 17:00-20:00. In addition,
there will also be a local short-term load peak around 6:00-8:00. The valley of load demand
usually occurs at 23:00-4:30 and 13:30-15:30. Between the valley and peak, the power
gradient will increase from zero to a large value and then decrease to zero again. Between
the peak and valley, the power gradient will decrease from zero to a small value and then
increase to zero again. Therefore, the load demand RTIP has four lower periods, namely
[2:00-3:00], [7:00-8:00], [14:00-15:00], and [18:00-19:00]. From Figure 3-5, we can find
during periods [7:00-8:00] and [14:00-15:00], the load power gradient changes little, so the
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real-time power imbalance is not large, but the period from [2:00-3:00] to [7:00-8:00],
period from [14:00-15:00] to [18:00-19:00], and period from [18:00-19:00] to [2:00-3:00],
the load power gradient changes significantly, so the real-time power imbalance is large, as

shown in the
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— —pV _;"3
WT WT
Total Total J
1500 150 100
80
= 1000 = z
= 2> = 60
% 500 4 £ 40
& & 3
B 3 B 20
2 g g
£ z 0
5 500 5 G20
?é 1000 Téi Té “
& ~ o s
/ 4 - ) /3
/ /
-15i 25 - //
1500 /3 250 /3 80 /
0 / 0 / 0 2
500 2 500 . // 2
Time/min!000 Time/min 1000 Time/min 1000
1500 ! 1500 ! 1500 !

Figure 3-9 and Figure 3-10.

(2) In the Czech grid, peak load demand usually occurs close to 10:30-13:00. The valley
of load demand usually occurs at 23:00-4:30. Between the valley and peak, the power
gradient will increase from zero to a large value, and then decrease to zero again. Between
the peak and valley, the power gradient will decrease from zero to a small value and then
increase to zero again. Therefore, the load demand RTIP has two lower periods, namely
[10:00-11:00] and [2:30-4:00]. From Figure 3-5, we can find during periods [10:00-11:00]
and [19:00-20:00], the load power gradient changes little, so the real-time power imbalance
is not large, but the period from [2:30-4:00] to [10:00-11:00], period from [19:00-20:00] to

24:00, the load power gradient changes significantly, so the real-time power imbalance is
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large, as shown in Figure 3-9 and Figure 3-10.

(3) In the Qatar grid, peak load demand usually occurs close to 12:00-14:00. The valley
of load demand usually occurs at 4:00-6:00. Between the valley and peak, the power
gradient will increase from zero to a large value, and then decrease to zero again. Between
the peak and valley, the power gradient will decrease from zero to a small value and then
increase to zero again. Therefore, the load demand RTIP has two lower periods, namely
[4:00-6:00] and [12:00-14:00], as shown in Figure 3-9 and Figure 3-10.

We can find that the amount of load demand RTIP has a linear relationship with the load
demand power gradient. The greater the load power fluctuation, the greater the real-time
power imbalance quantities. Based on the time series of the load demand power curve,
especially the peak and valley points, the results of this chapter can give scientific guidance

for the balance market to prepare flexibility resources in advance.

(2) Solar power real-time imbalanced power curve characteristics

Solar power 1s mainly affected by natural resources such as light intensity, and its power
output is approximately proportional to light intensity [33], [38-39], [41-42], [47].
Therefore, its power output has obvious time series characteristics: The photovoltaic power
generation gradually increases from 0 to the maximum power (corresponding to zero solar
irradiance to the strongest light intensity); then decreases from the maximum power to 0
(corresponding to the light intensity from highest to 0); 2) The PV power change rate, that
1s, the PV power gradient, is often relatively small when the power is maximum (i.e., noon);
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3) When there is no light intensity (from evening to early morning), the photovoltaic power
generation is approximately 0, and its change rate is also 0; 4) When the light intensity
gradually increases or weakens, although the photovoltaic power generation is not high, the
PV power change rate is relatively large. Based on the above features, the PV power
peak/valley timing distribution characteristics and real-time imbalanced power timing
characteristics of different countries are shown in Figure 3-8 and Figure 3-9 below.

Comparing the PV power peak/valley distribution characteristics in different countries
from Figure 3-8, it can be seen that even though there are differences in solar resources in
different countries, their PV power timing characteristics show the same trend: (1) the PV
power peak distribution is mainly concentrated at noon (11:00-13:00); (2) the PV power
output is 0 in the early morning and evening.

From Figure 3-9 and Figure 3-10, we can find that the PV real-time imbalanced power
time series curves have these same characteristics:

The changing trend of real-time imbalanced power reserve requirement of solar power
1s consistent in three different countries: (a) During the early morning and night periods,
the real-time imbalanced power reserve requirement of photovoltaic power is 0; (b) During
the period close to noon, the real-time imbalanced power reserve requirement for
photovoltaic power is very small; (¢c) From early morning to noon, whether upward
flexibility or downward flexibility requirement, the real-time imbalanced power reserve

requirement for photovoltaic power first increases and then decreases; (d) From noon to the
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afternoon, whether it is an upward flexibility requirement or downward flexibility
requirement, the real-time imbalanced power reserve requirement of photovoltaic first
increases and then decreases to 0. (e) The change trend of the real-time imbalance amount
of photovoltaic power generation over time: first slowly increases from 0 to the maximum
(the maximum point corresponds to the maximum photovoltaic power gradient, generally
at [9:00-10:00]), and then slowly decrease from maximum point to O (The corresponding
point is the largest solar intensity, usually at [11:30-13:00]), and then slowly increases from
0 to maximum (the maximum point corresponds to the largest photovoltaic power gradient,
usually at [15:30-17:00]), and finally slowly decreases to 0 (corresponding to photovoltaic
power is equal to 0 and power gradient also equal to 0, usually after 19:00). The solar power

real-time imbalanced power curve looks like butterfly curve [115].

(a) CAISO grid LD peak/valley (b) CAISO grid PV peak/valley (c) CAISO grid WT peak/valley (d) Qatar grid LD peak/valley
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Figure 3-8. Peak/valley power timing distribution characteristics of different countries.
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(a) CAISO real-time imbalnced power curve (b) Czech real-time imbalanced power curve (c) Qatar real-time imablanced power curve
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Figure 3-9. Real-time imbalanced power curves.(In the CAISO grid, the PV ratio is equal
to 17.8%; the WT ratio is equal to 3.1%; in the Czech grid, the PV ratio is equal to 3.6%,
WT ratio is equal to 0.9%; in the Qatar grid, the PV ratio is equal to 10.3%.)

(3) Wind power real-time imbalanced power curve characteristics

Wind power does not have obvious time series characteristics like load power curve and
PV power, and there are differences in different countries. In Figure 3-8, we can find that
the wind power in the CAISO grid is usually larger during periods 9:00-17:00 and relatively
smaller during periods 20:00-6:00. But in the Czech grid, the wind power has an abundant
peak or valley points, mainly because the power output is fluctuation heavily. The
characteristic of wind power that many peak and valley powers appear alternately means
that the difference between adjacent peak and valley powers in the wind curve will not be
large. On the other hand, the real-time imbalanced power quantities will not be very large
either, as shown in Figure 3-9 (a) and (b).

The amount of RTIP is relatively small when the wind power gradient is small
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(combining Figure 3-5 (c) and Figure 3-10 (a), observation period 21:00-5:00), and is
relatively large when the wind power gradient is large (combining Figure 3-5 (c) and Figure
3-10 (a), the observation period 18:00-20:00), but its absolute value is also affected by the
power difference of the adjacent peak and valley. For example, in the CAISO grid, The
difference in real-time imbalanced power between periods 8: 00-12:00 and 18:00-20:00;
and in the Czech grid, there are many peak and valley power points, but the adjacent peak
and valley differences are small, making the real-time imbalanced power of wind power is
generally small, as can be seen by comparing Figure 3-5 (h) and Figure 3-10 (c).

The fluctuation characteristics of wind power will not bring obvious differences to the
RTIP, mainly due to: (1) Peak and valley alternations occur frequently; (2) The power
difference between adjacent peaks and valleys is not large; in the Czech grid, When the
wind power penetration rate is as high as 10%, the real-time imbalanced power quantity

caused by wind power fluctuations is even less than 0.1% of the load peak.

(4) The RTIP timing characteristics in the CAISO grid, Czech grid, and Qatar

grid with renewable energy penetration increase

The whole power system power variability is defined as the overall external
representation of all the variability resources in this area. There are differences in energy
structure and peak load in different countries' grids, and therefore their external real-time
imbalanced power reserve time series characteristics are also different. Considering that
the power variability characteristics from traditional generators (such as gas, thermal, and
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nuclear, etc.) are not obvious, that is, the power output is stable within the scheduling time
window. VREs (such as wind power, solar power, etc.) have large variability characteristics,
and with the penetration increases, their variability characteristics will become more
obvious. Therefore, the real-time imbalanced power reserve requirement in three different
countries' grids mainly comes from VRES' power variability and load demand variability.
When the real-time load demand becomes smaller while the renewable energy power
becomes larger, the real-time imbalanced power reserve needs upward flexibility Pu; when
the real-time demand becomes larger while the renewable energy power becomes smaller,
the real-time imbalanced power reserve needs downward flexibility Ppt. As shown in the
following equations (3.15) and (3.16).
Py, = APVT/T,L‘ + APr_fv,t — AP, (3.15)
Ppt = AP{p; — APy, — APy (3.16)
where APy, and APpy, . represent wind power and PV power real-time part larger than the
day-ahead part, respectively; APy r . and APpy, . represent wind power and PV power real-
time part smaller than the day-ahead part, respectively; AP}, . and APy, . represent load
demand real-time part larger than the day-ahead part and smaller than the day-ahead part,
respectively.
Based on the different variable resources in different grids, we can obtain their real-time
imbalanced power reserve requirement time series characteristics shown in Figure 3-9. At

the current renewable energy penetration (In the CAISO grid, the PV ratio is equal to 17.8%;
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the WT ratio is equal to 3.1%; in the Czech grid, the PV ratio is equal to 3.6%, WT ratio is
equal to 0.9%; in the Qatar grid, the PV ratio is equal to 10.3%.), it can be seen that, in the
CAISO grid, the real-time imbalanced power quantity has a higher value from 7:30-9:30
and 15:00-17:00, and in other periods, such as 20:00-6: 00, the real-time imbalanced power
is generally low. The higher periods are mainly affected by the PV imbalance component,
and the lower periods are mainly affected by the imbalance part caused by load power
fluctuations. In the Czech grid, the real-time imbalanced power quantity has a higher value
from 3:00 to 10:30 and a period from 20:00 to 24:00, these higher periods are mainly
affected by the load demand imbalance component, and the wind power and PV power
imbalances parts are relatively small. But when the PV penetration rate increases (increase
to 10%, and even up to 30%), shown in Figure 3-10 (c) and (d), the Czech grid's real-time
imbalanced power will be influenced by PV imbalanced characteristics, shown in the
butterfly curve. In the Qatar grid, the real-time imbalanced power quantity has a higher
value from 7:00-8:00 and 15:00-16:30, these higher periods are mainly affected by the PV
imbalance component, look like butterfly curve, in other periods, such as 17:00-6: 00, the
real-time imbalanced power is generally low, these periods are mainly affected by the load
demand power fluctuations. When the PV penetration rate increases (increase to 20%, and
even up to 60%), as shown in Figure 3-10 (e) and (f), the Qatar grid real-time imbalanced
power quantities curve will be clearly shown as the butterfly curve.

In areas with abundant solar resources, the real-time imbalanced power curve will show
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a butterfly curve, such as the CAISO grid and the Qatar grid (PV penetration rate more than
10%). However, in areas with relatively less abundant solar resources, such as the Czech
grid, the real-time imbalanced power curve characteristics will also be greatly affected by
the PV power fluctuation. The above features are mainly due to the PV power fluctuation
characteristics having obvious timing characteristics and the amount of RTIP caused by its
fluctuation are generally large, but the amount of RTIP caused by wind power and load

demand fluctuations is relatively small.
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(b) CAISO grid real-time imbalanced power (p.u.) at different renewable energy penetration rates
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Figure 3-10. Real-time imbalanced power curves at different renewable energy penetrations.

3.5. Summary

This chapter proposed metrics including power incremental statistics, coefficient of
variation, and peak power duration to characterize the power variability characteristics.
Based on these metrics, we analyze the mathematical relationship between these variations
and net-load power curves and real-time power imbalance curves, finding that power
variability will directly affect net-load power curves and the power gradient will affect the
real-time power imbalance curve. The main conclusions are as follows:

(1) The different types of resources in different countries have different power
fluctuation characteristics, PV power has the largest fluctuation, followed by wind power,
and load power has the smallest fluctuation.

(2) The time series characteristics of PV power are relatively obvious, which directly
affects the net load power curve. There is a higher flexible power requirement near noon

(that is, around the maximum PV power), and this feature will increase as the PV
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penetration rate increases. These features make the net load curve look like the canyon
curve; the timing characteristics of wind power in different countries are different, but the
overall impact of wind power on the net load power curve is not as obvious as that of PV
power.

(3) The real-time imbalanced power quantities of different types of resources are
proportional to their power gradient. The real-time power imbalance caused by PV power
has timing characteristics and looks like a butterfly curve.

(4) The method proposed in this chapter can effectively help system operators
rationally arrange flexible resource reserves, such as helping system operators prepare ramp
power requirement reserve based on net-load power curve time series results; and prepare
real-time power balance reserve based on the real-time imbalanced power curve time series

results.
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4. IMPACT ANALYSIS OF INCREASING TIME
GRANULARITY ON HIGH PENETRATION
RENEWABLE ENERGY

Abstract: The power system operation and settlement will face fundamental challenges with
increasing variable renewable energy (VRE). In this chapter, we propose an evaluation
method for the electricity market at different time granularity, including ex-ante real-time
power deviation prediction; real-time power scheduling operation and clearing; ex-post
power deviation settlement. Based on this evaluation model, we analyze high temporal
resolution datasets and find strong evidence that the higher the time granularity, the power
step changes and the real-time power deviation quantities are smaller, and vice versa.
Reducing the power step changes and real-time power deviations will reduce power grid
frequency deviations and power market balancing costs. Moreover, increasing the time
granularity from 30 to 5 minutes would reduce the balancing cost by nearly half, and reduce
the power step amplitude standard deviation by nearly 80%. This chapter for the first time
provides scientific evidence to support the worldwide reform of the electricity market with

massive renewable energy integration by increasing time granularity.
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Abbreviations
VRE

RTPD

MCM

Variable renewable energy
Real-time power deviation

Markov chain mixture distribution model

Variables, Parameters, and Functions

To

Th

Pi

PS

Bt

Nt
Mt
AP(t)

PU,s,t

PD,s,t

AP resss
AP ey
APl5
APLos
Psis:

Pg,i,s,t
Ns
Cs
Aast

U
AB,S,I

+
AI:)VREs,reaI,t

Power sampling rate

Power scheduling time granularity

The i-th sampling power

Power step changes between adjacent scheduling intervals

Bounded limit of power at the t-th time spot

Divide the power into N bins at t-th time spot

The transfer matrix at t-th time.

Real-time power deviation at the t-th time spot

Upward regulation power requirement at the t-th time spot under the
s-th scene

Downward regulation power requirement at the t-th time spot under
the s-th scene

VRE real-time power is larger than the day-ahead part

VRE real-time power is smaller than the day-ahead part

Load demand real-time power larger than the day-ahead part

Load demand real-time power smaller than the day-ahead part

The i-th flexible resources to provide upward flexible power at t-th
time slot and in the s-th scene

The i-th flexible resources to provide downward flexible power at t-
th time slot and in the s-th scene

The number of scenes

The real-time power scheduling cost

Downward regulation unit power price at the t-th time slot in the s-
th scene

Upward regulation unit power price at the t-th time slot in the s-th
scene

The VRE ex-post actual power is larger than the day-ahead part
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AP res reaiy The VRE ex-post actual power is smaller than the day-ahead part

AP ey Load demand ex-post actual power larger than the day-ahead part

AP b rea Load demand ex-post actual power smaller than the day-ahead part

Cr The ex-post power deviation settlement cost

APpgsit The downward regulation deviation at the t-th time slot in the s-th
scene

APuyst The upward regulation deviation at the t-th time slot in the s-th scene

4.1. Introduction

Recently, more countries have declared that they will achieve net-zero carbon emissions
to mitigate the urgency of climate change. To align with this global effort, variable renewable
energy (VRE) sources must be pivotal [3-5]. However, VREs face inherent challenges due
to their reliance on natural environmental factors, such as solar irradiance, air temperature,
wind speed and directions, etc. These factors introduce significant volatility and uncertainty
into the energy system [16-19], [31], [33]. As VREs penetrate the power grid on a massive
scale, the grid will encounter greater fluctuations and intermittent than it does presently.

Based on the definition and technical of the power system, it is important to maintain an
immediate equilibrium between the supply of electrical energy and the demand from
consumers [14]. Therefore, the variability and intermittency of the VREs will bring huge
challenges to the stability and operation of the power system. Traditional generation such as
nuclear, thermal, gas, hydropower, etc. occupy a large proportion of traditional power
systems, and these generators have high inertia, which can use mechanical rapid rotating
power to serve as automatic power generators to help keep the grid frequency stability.

However, with the high penetration of VREs, these generators (including wind turbines and
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PVs) transfer power/energy to the main grid based on an inverter technique. Through this
technology, the inertia from the VREs is decoupled from the other part of the grid, therefore
the moment of inertia in the total system will be reduced and the lower rotational inertia will
influence the power grid stability [14], [20-22], [25]. In addition, the volatility and
intermittency of VRE generators will also cause higher power fluctuations, which will also
cause power grid frequency fluctuations. Except for influencing the power grid frequency
stability, the volatility and intermittency of VRE generators will bring higher power
differences between day-ahead dispatch and real-time dispatch and increase the re-dispatch
operating cost and power deviation settlement cost, influencing the power market operation
cost [26-28], [107].

Recently, increasing time granularity in power systems by reducing the energy settlement
time unit (pricing shorter market time units) is an important energy market innovation to
address the volatility, uncertainty, and intermittency challenges posed by the increased
penetration of VREs [32]. On the one hand, increasing time granularity means the closing
time of the scheduling gate is more frequent and the scheduling interval is shorter, which
allows system operators to more quickly solve the power imbalance problem caused by the
difference between day-ahead dispatch and real-time dispatch. Also, shortening the
scheduling intervals means that power step change at scheduling interval points and real-
time power deviation during the scheduling intervals will decrease, reducing power grid
frequency deviation. On the other hand, increased time granularity in the electricity market
helps system operators predict day-ahead and real-time operations more accurately based on
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timely information. This helps avoid the re-dispatch process, which will increase the ex-post
power deviation settlement cost.

In this chapter, we use the minute-level temporal resolution datasets including load
demand, wind power, and solar power located in three different countries around the world
to how we can reduce balancing electricity market costs and power grid frequency deviations
by increasing time granularities. First, based on the historical datasets, we used the statistics
method and found that increasing the time granularity will reduce the power step change at
the scheduling interval points and real-time power deviation during the scheduling interval,
increasing time granularity from 30 minutes to 5 minutes would reduce the power step
amplitude by nearly 80%, improving power grid frequency stability. Then, based on the
electricity balance market model, including ex-ante real-time power deviation prediction,
real-time power scheduling, and ex-post power deviation settlement, we observe that
increasing time granularity will improve real-time power deviation prediction accuracy
(shorter time will provide more accurate forecast information); reduce real-time power
scheduling operation costs and reduce ex-post power deviation settlement cost, increasing
time granularity from 30 minutes to 5 minutes would reduce the balancing cost by nearly
half. This chapter for the first time provides scientific evidence to support the reform of the

global electricity market by increasing the time granularity.

4.2.Data Setting and Description

This chapter contains power datasets time series information from three different
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countries: Qatar power grid, Czech power grid, and California Independent System Operator
(California ISO) grid, these three different grides cover power information and grid
frequency information. Detailed information on these datasets is described below.

Dataset I: The dataset includes PV power (PV farm) and load demand in the Qatar grid;
the temporal resolution is 1 minute. (here, the dataset includes the 2022-2023 two-year data).
The peak load in the Qatar grid is about 4700MW, and the PV farm capacity is about SO0MW.

Dataset II: The dataset includes several wind farms and load demand in the Czech grid.
(here, the dataset includes the 2021 whole-year data) [110]. The peak load in the Czech grid
is about 13000MW, the PV capacity is about 1700MW, and the wind capacity is about
300MW.

Dataset III: The dataset includes wind power, solar power, and load demand located in the
California Independent System Operator (California ISO) grid. The temporal resolution is 1
minute. (Here, the dataset includes nearly two years between 01/01/2018 and 31/12/2019)
[109]. The peak load in the California ISO grid is about 48000MW, the PV capacity is about

18000MW, and the wind capacity is about 8100MW.

4.3. Methods

43.1 Power Grid Frequency Analysis

The variation in electricity frequency is mainly caused by the instantaneous power

imbalance. We can describe its relationship through the swing equation below [14], [24].
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dd;
dc A(l)i

. (4.1)
dlo; 2N (Pr = Poy)
a ~ T,

where each node i represents a generalized generator node (a subsystem connected to the
i-th node), its dynamic process is characterized by two independent variables: the first is
phase di and the second is relatively angular velocity Awi=2n(fi—fr). For relatively angular
velocity, fr represents the grid base frequency, which is equal to 50Hz or 60Hz, based on
the grid system. fj represents the frequency of the nodes i=1, ..., N. on=2nfr represents the
reference angular velocity, it is a constant for a stable power system; T;i represents the i-th
generator’s inertia constant. Pri represents i-th mechanical power; Pei represents the
electrical power of the i-th generator. Since the change speed of Pej is much higher than that
of mechanical power Pri, frequency stability is mainly affected by inertia constant T and
power fluctuations. The inertia constant Tj; is mainly affected by the generator mechanical
inertia of the whole system, which is a system-level problem; In contrast, the impact of
power fluctuations exists all the time. It can be seen from equation (4.1) that the frequency
change rate is directly proportional to the power fluctuation quantities and inversely
proportional to the inertia constant. Therefore, reducing power fluctuations and increasing
inertia constant are effective ways to improve the power grid frequency stability.

In most grid dispatch processes, dispatch runs are typically scheduled in 1-hour
increments, with shorter intervals of 30 also possible [32], [101-103]. Hence at different
interval widths, the power curve is steplike. From one interval point to another interval point,
the power balance rapidly switches from positive to negative or vice versa, leading to large
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deviations in the grid frequency; during the interval width, the power deviation curve
alternates around 0, and the total integral is 0. From one sampling point to another, the real-
time power deviation undergoes rapid switches between positive and negative values. These
fluctuations also directly impact the grid frequency, which is evident in Figure 4-1 (also
referenced as [122-123]). The daily average frequency depicted in Figure 4-1 results from
averaging data based on multiple days. Notably, The electricity market behavior, including
trading and regulation, has an obvious impact shown in Figure 4-1. Hourly observations in
various countries reveal sharp frequency jumps—both upward and downward. During each
interval, the frequency experiences an abrupt decrease or increase, followed by a gradual
trend in the opposite direction for the subsequent interval. The main reason is that at each
interval point, there is a power step, which will cause a frequency jump. During the interval,
real-time power deviation will cause the frequency to slowly change. Therefore, there are
two parts to power fluctuations that influence frequency change: the power step change at
the interval points and the power deviation during the interval. These two parts can be

described in the following part.
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Figure 4-1 Frequency deviation timing characteristics.

4.3.2 Power Step Change and Real-time Power Deviation

Based on the electricity market operation mechanism, dispatch usually has different time
intervals, such as 1 hour, 30 minutes, etc. Hence, at different interval widths, the power curve
is steplike. The power step change is the power difference at different interval points. Due
to power variability and uncertainty, real-time power deviation (RTPD) is equal to the power
difference between the sampled power and the average power within an interval.

Therefore, we can get power step changes at different time granularities as shown in

equations (4.2) and (4.3).

1 n
Pro=y). () Tu=nTy (42)

i=

PS =Py . — Py (4.3)

n
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where Ty represents the power sampling rate; 7, represents the power scheduling time
granularities, that is the width of the scheduled intervals. P; represents the i-th sampling
power; PS represents power step changes between adjacent scheduling intervals.

By comparing real-time power and the average power in scheduled intervals, we can get
real-time power deviation (RTPD) quantities at different time granularities. The details can

be shown in section 3.3.2.

4.3.3 Electricity Balance Market Operation

In general, the power system operators need to schedule the system reserve power in
advance according to the power deviation and guide different power units to participate in
the balanced electricity market to achieve instantaneous power balancing. Uncertainties and
variabilities in a large electricity system are inevitable. Therefore, the electricity balance
market operation includes the following processes: (1) ex-ante real-time power deviation
prediction; (2) real-time power scheduling operation and clearing; (3) ex-post power

deviation settlement [27], [107]. Figure 4-2 shows the detailed process below.
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Step 1: Ex-ante real-time power deviation Step 2: Real-time power scheduling and

prediction clearing process
(1) Training dataset processing divided by load (1) Determine imbalanced power requirements.
demand, WT power, PV power, etc.; Pyse = APyREsse — APipse
(2) Real-time power deviation prediction based APyp g, Pp,se = APps — APyRgs,sc

(2) Determine the marginal clearing price;

on the Markov: Chain Mixture Distribution: sp VREsst (3) Real-time power scheduling settlement cost ;
T

(MCM) Method;
(3) Using Monte Carlo to generate N different minCy = Z Z(Ag tPose + A% Py t)
scenarios SES t=1
- _ D
AP‘-/‘—REs,real,t APVREs,real,tf I APLD,real,t APITD,real,t {AB,S,C’ PD.SI} J

Step 3: Ex-post power deviation settlement

(1) Calculate power deviation based onactual monitoring data;
— APt - —
PU,real,t - APVREs,re‘al,t - APLD,rea.l,t: APU,s,t - |PU,real,t - PU,s,tl

— APt - -
Ppreatt = APLpreart — APYRESs reatt APpgt = |Pprears = Pojsel
(2) Power deviation settlement;

T
1
Cp= 52 Z(AE,S,tAPD,S,t + Y APy

SES t=1

Figure 4-2. The electricity balance market operation process.

1) Ex-ante real-time power deviation prediction

The RTPD is the power difference between sampling power and average power during
the scheduling interval caused by power variability and uncertainties. Therefore, we can use
equations (4.2) and (4.3) to calculate and get the RTPD training datasets at different time
granularities. Then we use the Markov chain mixture distribution (MCM) model to predict
real-time power deviation time series. The MCM based on N-state for probabilistic
forecasting was widely used in forecasting solar irradiance [116-117], electricity
consumption [118], etc. In this section, we will use the MCM model based on a single
observation RTPD point to produce a probabilistic forecast for the next point. The MCM

prediction process is shown in Algorithm 4-1 below.

Algorithm 4-1: MCM model to predict RTPD
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Step 1) Define bounded within limits Bi=[a:, bt] based on the training time series
datasets, Bt is different at different time slots.

Step 2) Choose bin N for the predicted model.

Step 3) Divide the training time series into Nt bins, evenly divided within the range
Be=[at, by].
Step 4) Calculate an N¢xN¢ transfer matrix Mt based on the transfer process occurring

between neighboring bins.

n. .
My = <g——Vij € N, (4.4)
k=1 ik

Step 5) Observe AP(t) at the t-th time point based on the test datasets, and then choose
the correct bin.

Step 6) Calculate the next step predicted distribution probability, that is calculate the

probability density function corresponding to the transfer matrix M.

Pri1(xy < AP(E) < x3)

F(AP(t + 1)) = Pryi(x; < AEP(t) < x3) (4.5)
Pey1(tn, < AP(E) < Xy41)
AP(t) € [at' bt]
s.t.{Xj = l;,tl (b — ar) + ag, i € [1,N¢] (4.6)

Peir(%) S AP(E) < Xj41) = My

Step 7) Forecasting the real-time power deviation at the neighboring time point, we
need to set the time value from t to t+1, then choose the point value AP(t+1) and go

back from Step 5 to do the same calculation.

Based on the trained model and transfer matrix M;, we can use the AP(¢) to predict the
probability distribution of the RTPD AP(#+1) at the next step. Through the above prediction

method, we can obtain the probability distribution characteristics of the RTPD time series.
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Then, we will use Monte Carlo simulation to generate S random scenarios to participate in
the real-time power scheduling process.

(2) Real-time power scheduling process

Power system operators will complete real-time scheduling control and clearing processes
based on the predicted RTPD and combined with the information of flexible resources in the
electricity balance market. This process aims to minimize the real-time scheduling operation
cost and satisfy the constraints of predicted real-time power deviation.

The primary function of a balanced electricity market is to facilitate transactions between
power generation and load demand, ensuring instantaneous balance between supply and
demand. Based on the predicted real-time power deviation (RTPD) from supply and demand,

power imbalances in the balancing market primarily manifest in two parts [115], [119]:
1) Upward regulation (Pu,,): This part usually occurs when load demand exceeds power
supply at the sampling time, to meet these power gaps, the system requires additional power

generation to meet this demand. The upward regulation is shown below.

Pyse = AP\-}-REs,s,t —APps: (4.7)
2) Downward regulation (Pp,,): This part usually occurs when supply surpasses demand
at the sampling time, to meet these power gaps, the system needs to reduce generation to

align with demand. The downward regulation is shown below.

PD,s,t = AP]:I-D,S,t - AP\?REs,s,t (4-8)
where APugg,,, and APy, represents VREs real-time power larger than the day-ahead part

and smaller than the day-ahead part, respectively; AP;,,, and APy, represents load demand
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real-time power larger than the day-ahead part and smaller than the day-ahead part,
respectively.
Within a scheduling window width, real-time power deviation needs to be balanced

through the bidding of flexible resources, these resources need to meet the power balance

constraints:
n
PY. =Py, VtET,V
B,i,st — 'Ust» , VS € Ns (4‘9)
i=1
n
Z PRt =Ppst, Vt €T, Vs € Ny (4.10)
i=1

where Py, and P;,,, represent i-th flexible resources to provide upward and downward
flexible power at #-th time slot and in the s-th scenes; Ny represents the number of scenes.
In this chapter, we use a pay-as-clear mechanism bid and participate in a real-time power
scheduling process, which means the real-time power deviation clearing price is based on
the most expensive offer accepted balancing unit marginal price [120]. Therefore, the real-
time power scheduling operation cost is as follows, which have constraints shown in

equations (4.9) and (4.10).

T
RN
minCs === > | > (BaePose + WoePuse) (4.11)
Ns s=1 t=1

where Cp represents the real-time power scheduling cost; Az, and A,,, represent the
downward regulation and upward regulation unit power price at the #-th time slot in the s-th
scene, respectively; Pp, and Py, represent the downward and upward regulation provided
by flexible resources to participate in balance service at the #-th time slot in the s-th scene.

(3) Ex-post power deviation settlement
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In large electricity systems, uncertainties are inevitable. Therefore, power system
operators need to calculate additional operation costs based on the real power data collected
in the SCADA system afterward. The further operation costs mainly include two parts: (1)
power system reserve operation costs due to prediction errors, borne by the power system
operator; (2) suppliers/consumers do not stick to their clearing given schedules during real-
time power scheduling process, borne by the users. This thesis mainly evaluates the power
system operation economy, therefore, the uncertainty from suppliers/consumers is ignored.

Therefore, the actual upward and downward reserves are shown below:

PU,real,t = AI')\-/FREs,real,t - APL_D,real,t (4.12)

Ppreatt = AP[D reart = APYREs reat (4.13)
where APuyre, ea; and APy, represents VREs ex-post actual power larger than the day-
ahead part and smaller than the day-ahead part, respectively; APip, ..., and AP, ..., represents
load demand ex-post actual power larger than the day-ahead part and smaller than the day-
ahead part, respectively.

By comparing the actual reserve and planned reserve, the ex-post power deviation

quantities are shown in the following equations.

APU,s,t = |PU,real,t - PU,s,tl (4.14)

APD,s,t = |PD,real,t - PD,s,tl (4.15)

To simplify the analysis process, this thesis chooses the system buy price (SBP) at real-
time scheduling process to achieve power deviation settlement analysis [121]. The ex-post

power deviation settlement is shown below:

T

1
Cp = A Z Z(Ag,s,tAPD,S,t + A8 APy sy) (4.16)
S

SENs t=1
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where Cp represents the ex-post power deviation settlement cost; APp s, and APy, represent

the downward and upward regulation deviation at the #-th time slot in the s-the scene.

4.4. Results

4.4.1 Impact Analysis of Increasing Time Granularity on Power Step

Change And Real-Time Power Deviation Amplitude

For the power step change at the interval point, we obtain the power step change
distribution characteristics at different time granularities in different countries, as shown in
Figure 4-3. Overall, as time granularity increases, the power step change value will be
smaller and concentrate around 0. For example, the standard deviation of the California ISO
power step change value at the 30-minute granularity is nearly 5.9 times at the 5-minute
granularity; the standard deviation of the Czech grid power step change value at the 30-
minute granularity is almost 4.2 times at the 5-minute granularity; Next, we observe the
shape of the probability density function (pdf) of the power step change at different time
granularities. We can find that when there is a large power step change in different countries,
the probability is generally relatively small, that is, an extreme event [113]. In a word, the
larger the time granularity is, the smaller the probability of occurrence of extreme power
step change events. That is, increasing time granularity can significantly reduce the
occurrence of extreme events, such as higher power step changes, and improve the power

system stability.
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Figure 4-3. The probability density function of the load demand power step changes at
different time granularities.

For the real-time power deviation during the interval, we obtain the power deviation
distribution characteristics at different time granularities in different countries, as shown in
Figure 4-4. As the time granularity increases, the load demand power step change (LDPS)
at the interval points and the real-time power deviation (RTPD) during the interval will
decrease significantly, as shown in Figure 4-4 (a-1), (a-2), and (a-3) or (b-1), (b-2), and (b-
3) or (c-1), (c-2), and (c-3). At the same time granularity, the power step change will
generally be larger than the real-time power deviation during the interval. Although the real-
time power deviation will occasionally be no less than the power step change, the probability
is extremely low, or even lower than 107, which means in extreme events that scene will
happen. The phenomenon that the power step change is larger than the real-time power
deviation means that frequency jumps generally occur at interval points, as shown in Error!
Reference source not found.. Therefore, increasing the scheduling time granularity will, on

the one hand, reduce the power step change at interval points, reduce the frequency jump
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degree, and on the other hand, reduce the real-time power deviation during the interval,

reduce the frequency change degree, that is, improving the power grid frequency stability.
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Figure 4-4. Statistical characteristics of load demand power step change at interval point and
real-time power deviation during the interval width at different time granularities.

4.4.2 TImpact Analysis of Increasing Time Granularity on Power Market

Balancing Costs

Increasing time granularity by reducing the scheduling interval width (pricing shorter

market time units) allows system operators to more quickly solve the power imbalance

problem caused by the difference between day-ahead dispatch and real-time dispatch

process, which can effectively address the volatility, uncertainty, and intermittency

challenges. The main reason is that increasing time granularities can reduce the real-time
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power deviation, as shown in Figure 4-5. Observing the time series of RTPD in different
countries in Figure 4-5, we can find that the larger the time granularity, from 30-minute
granularity to 5-minute granularity, the more concentrated the RTPD, which value is near 0,
in other words, increasing the time granularity, the RTPD will significantly decrease; For
example, the standard deviation of RTPD in the California ISO grid at the 30-minute
granularity is nearly 6.2 times at the 5-minute granularity; the standard deviation of RTPD
in the Czech grid at the 30-minute granularity is almost 2.3 times at the 5-minute granularity;
the standard deviation of RTPD in the Qatar grid, at the 30-minute granularity is nearly 2
times at the 5-minute granularity; Reducing the RTPD value will bring new opportunities to
the electricity balance market, as the power balancing market objective is to solve the power
deviation problems by dispatching the dispatchable resources. Therefore, the electricity
market balance cost is proportional to the RTPD quantities. We can find that the time
granularity from 30 minutes to 5 minutes would reduce the balancing cost by nearly five-
sixth in the California ISO grid; the time granularity from 30 minutes to 5 minutes would

reduce the balancing cost by more than half in the Czech and Qatar grid.
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Figure 4-5. Increasing time granularity reduces the real-time power deviation (RTPD).
Next, by zooming in on the local curve in Figure 4-5, we notice that RTPD has time series
characteristics during the daily curve. In the California ISO grid, (a) During the early
morning and night periods, the RTPD is relatively small; (b) During the period close to noon,
the RTPD is also small; (c) From early morning to noon, whether RTPD is positive or
negative, the value of RTPD first increases and then decreases; (d) From noon to the
afternoon, whether it is positive or negative, the RTPD first increases and then decreases. In
the Czech and Qatar grid, the moment corresponding to the lowest point of the RTPD
corresponds to the peak/valley load period (in the Czech grid, it is 3:00-5:00 am and 4:30-
6:30 pm; and in the Qatar grid, it is 4:30-6:00 am and 12:00-15:00). The main reason for the
above timing characteristics in the RTPD daily curve is that its value is mainly affected by
the power gradient. The greater the power gradient, the higher the RTPD, and vice versa. In
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the California ISO grid, variability resources mainly include load demand, photovoltaic
(capacity is as high as about 42% of the peak load), and wind power (capacity is about 18%
of the peak load), therefore, the RTPD value is mainly affected by photovoltaic power and
load demand, which looks like a butterfly curve. In the Qatar grid, the current proportion of
photovoltaic installed capacity is not high (nearly 14% of the peak load). Still, it is
foreseeable that as photovoltaic installed capacity increases, Its RTPD characteristics will
show butterfly curve characteristics like the California ISO grid. This daily curve time series
characteristic of real-time power deviation will play an important role in achieving a
reasonable flexibility resources reserve and predicting flexibility power demand during
power system scheduling and operation.

We further zoom in to observe the RTPD during the interval at different time granularity
in Figure 4-5, we can find that the RTPD is positive or negative alternatively, and as time
granularity increases, the alternative frequency is quicker. Based on equation (4.16), RTPD
amplitude will cause power grid frequency fluctuations. But when RTPD is a positive or
negative alternative occurs, the frequency change direction will change frequently, that is, it
will reduce power grid frequency fluctuation amplitude, In other words, that improves the
power grid frequency stability. Therefore, increasing time granularity reduces the RTPD
amplitude and increases the RTPD direction change frequency, improving power grid

frequency stability.

(1) Ex-ante real-time power deviation prediction

In the ex-ante real-time power deviation prediction process, we construct a training
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dataset of RTPD based on our datasets. Then we use the Markov Chain Mixture distribution
(MCM) model to predict real-time power deviation time series. For details on the processing
of the training dataset and the MCM prediction method, see the Methods section. The
predicted results are displayed in Figure 4-6.

The RTPD predicted daily curve is consistent with the test daily curve in terms of timing
characteristics, that is: In the California ISO grid, (a) During the early morning and night
periods, the RTPD is relatively small; (b) During the period close to noon, the RTPD is also
small; (c) From early morning to noon, whether RTPD is positive or negative, the value of
RTPD first increases and then decreases; (d) From noon to the afternoon, whether it is
positive or negative, the RTPD first increases and then decreases, RTPD looks like the
butterfly curve. In the Czech and Qatar grids, the moment corresponding to the lowest point
of the RTPD corresponds to the peak/valley load period (in the Czech grid, it is 3:00-5:00
am and 4:30-6:30 pm; and in the Qatar grid, it is 4:30-6:00 am and 12:00-3:00 pm). In
particular, the Qatar and Czech grid are also affected by the photovoltaic power gradient (PV
capacity in Qatar and Czech are nearly 14% of peak load power). At nearly 12:00 am (that
is the PV power is highest), the RTPD value will be relatively lower than before and after
the time point. The above timing characteristics can also be obtained from Figure 4-5. The
timing characteristics of the power gradient affecting the RTPD quantities can further

improve the prediction accuracy.
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Figure 4-6. The real-time power deviation (RTPD) prediction at different time granularities.

Comparing the mean square error (MSE) between the prediction daily curve and the test
daily curve at different time granularities, we find that, in the California ISO grid, the value
of the MSE at the 30-minute granularity is more than six times and twice that at 5-minute
granularity, and 15-minute granularity, respectively; in the Czech grid, the value of the MSE
at the 30-minute granularity is nearly five times and twice that at the 5-minute granularity
and 15-minute granularity, respectively; in the Qatar grid, the value of the MSE at the 30-
minute granularity is nearly 1.6 times and 1.2 times that at the 5-minute granularity and 15-
minute granularity, respectively. Increasing the time granularity will reduce the prediction
error of RTPD in different countries. The main reason is that increasing the time granularity
will, on the one hand, reduce the amplitude of the RTPD, thereby reducing the prediction
amplitude; on the other hand, it can more accurately obtain the power deviation at the nearest
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point, thereby improving the prediction accuracy.

(2) Real-time power scheduling and clearing process

During this process, power system operators will complete real-time scheduling control
and clearing processes based on the predicted RTPD and combine them with flexible
resource information in the electricity balance market. These flexibility resources can
provide quick responses to ensure the power balance in the real-time market, these flexibility
resources usually include chemical energy storage, quick load demand response, etc. This
chapter assumes the different types of flexibility resources that participate in this process are

shown in Table 4-1.

Table 4-1. Different types of flexibility resources provide balanced service information.

Power/MW Price/($/MWh)
Type Upward Downward Upward Downward
Type A 50 60 200 250
Type B 100 120 300 320
Type C 100 100 320 360
Type D 120 150 350 400
Type E 4000 4500 400 500

Considering the flexible resource participation levels different in the electricity balance
market, this thesis selects different cases to further discuss the impact of the abundance of
flexible resource products on power system operation costs. 1) Case A represents that
flexible resource products are barely abundant, just including Type A and Type E; 2) Case B
represents that flexible resource includes Type A, Type B, and Type E; 3) Case C represents

that flexibility resource includes all the types in Table 4-1.
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Table 4-2. Real-time power scheduling costs in different cases and different time
granularities ($).

Time granularity

Case Countries 30min 15min Smin

California ISO 2.17E+06 1.03E+06 2.78E+05

Case A Czech 1.71E+05 7.94E+04 3.42E+04
Qatar 5.68E+04 2.91E+04 1.30E+04

California ISO 2.07E+06 9.26E+05 2.26E+05

Case B Czech 1.47E+05 7.56E+04 3 42E+04
Qatar 5.55E+04 2.91E+04 1.30E+04

California ISO 1.93E+06 8.43E+05 2.16E+05

Case C Czech 1.46E+05 7.56E+04 3 42E+04
Qatar 5.55E+04 2.91E+04 1.30E+04

As the time granularity increases, the real-time power scheduling cost is significantly
reduced, and as the richness of flexible resource products increases, the reduction effect
becomes more significant. The results are shown in Table 4-2. For example, in Case A, the
operation cost of the California ISO grid at the 5-minute granularity is approximately 13%
of that at the 30-minute granularity; the operation costs of the Czech and Qatar grids at the
5-minute granularity are also approximately 20% of the 30-minute granularity, respectively;
By comparing Case A, Case B, and Case C, we found that by increasing the richness of
flexible resource products in the California ISO grid, the operation costs at the 30-minute
granularity were reduced by approximately 4% and 11% respectively; the operation costs at
the 5-minute granularity were reduced by approximately 19% and 23%; the main reason is
that increasing time granularity reduces the RTPD on the one hand while increasing flexible
resource richness significantly reduces the electricity marginal price, thereby reducing

operation costs. However, in the Czech grid and Qatar grid, changes in flexible resource
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abundance in this chapter have little impact on operation costs. The main reason is that the
RTPD is relatively small in these two grids and the corresponding flexible resource products
are relatively single. Therefore, when designing flexible resource products in the electricity
market, it is necessary to design products based on the actual market needs in different
countries.

Increasing time granularity reduces the amount of RTPD, thereby reducing real-time
power operation costs and improving the economics of power grid operation; in addition, it
also provides some new opportunities for the design of flexible resource markets that are
more abundant, economical, and lightweight flexible products will play a greater role in the

operation of power systems with high time granularity and bring greater economic benefits.

(3) Ex-post power deviation settlement

In general, uncertainties are inevitable in large electricity systems. Therefore, power
system operators need to calculate the additional operation costs based on the actual data
collected in the Supervisory Control and Data Acquisition (SCADA) systems afterward. The
additional operation costs mainly include two parts: (1) power system reserve operation
costs due to prediction errors, borne by the power system operator; (2) suppliers/consumers
do not stick to their clearing given schedules during real-time power scheduling process,
borne by themself. This thesis mainly evaluates the power system operation economy;

therefore, the uncertainty of suppliers/consumers is ignored.

Table 4-3. Additional power system operation costs due to power deviation at different
cases and different time granularities on test day ($).
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Time granularity

Case Countries
30min 15min Smin

California ISO 1.31E+06 7.50E+05 3.07E+05

Case A Czech 2.09E+05 1.30E+05 7.96E+04
Qatar 5.40E+04 4.79E+04 4.16E+04

California ISO 1.22E+06 6.50E+05 2.51E+05

Case B Czech 1.93E+05 1.26E+05 7.96E+04
Qatar 5.37E+04 4.79E+04 4.16E+04

California ISO 1.12E+06 6.00E+05 2.48E+05

Case C Czech 1.92E+05 1.26E+05 7.96E+04
Qatar 5.37E+04 4.79E+04 4.16E+04

As the time granularity increases, the ex-post power deviation settlement cost from the
power system operator is significantly reduced. As the richness of flexible resource products
increases, the reduction effect becomes more significant. The results are shown in Table 4-3.
For example, under Case A, the power deviation settlement cost of the California 1ISO grid
at the 5-minute granularity is approximately 23% of that at the 30-minute granularity; By
comparing Case A, Case B, and Case C, we found that by increasing the richness of flexible
resource products in the California 1ISO grid, the ex-post power deviation settlement costs at
the 30-minute granularity were reduced by approximately 7% and 14% respectively; the
operation costs at the 5-minute granularity were reduced by approximately 18% and 20%;
The ex-post power deviation settlement cost is mainly affected by two factors: 1) the power
deviation caused by the prediction error; as the time granularity increases, more information
near the prediction time point will be obtained in a more timely and effective manner. It is

helpful to improve the prediction accuracy, as the results are displayed in Figure 4-6, 2) Ex-
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post power deviation settlement electricity price; as the abundance of flexible resources
products increases, the marginal settlement electricity price will be reduced.

In the whole electricity balance market operation process, increasing time granularity will
improve RTPD prediction accuracy, reduce real-time power scheduling operation costs,
reduce ex-post power deviation settlement costs, and significantly improve the power
system operation economy. For example, the electricity balance market operation total cost
of the California ISO grid at the 5-minute granularity is approximately 15% of that at the
30-minute granularity; the Czech and Qatar grid will also be reduced by nearly 70% and
50%, respectively. This improvement in the power system economy is not only reflected in
the reduction of real-time power deviation quantities but also has an important impact on
the flexible resource products market, giving more chances to the more abundant,
economical, and lightweight flexible products, further reducing the settlement marginal
electricity price. Therefore, increasing time granularity will have a profound impact on the

operation economy of the power system

4.5. Summary

Through statistical analysis of high temporal resolution power data from three countries
around the world, we found that with the time granularity increases, power step changes at
different scheduled interval points and real-time power deviations during the scheduling
interval will be significantly reduced, thereby reducing power market balancing costs and

power grid frequency deviations. Specifically, when the time granularity is increased from
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30 minutes to 5 minutes, the power step magnitude will be reduced (the power step change
in the California ISO grid will be reduced by nearly five-sixths; the Czech and Qatar grid
will also be reduced by almost 80%), and the RTPD will also be reduced (The RTPD in
California ISO grid was reduced by nearly five-sixths; the Czech and Qatar grid also reduced
by nearly half). Power grid frequency deviations are directly proportional to power change
quantities; therefore, power grid frequency stability can be improved by increasing time
granularity.

What is more, increasing time granularity will not only reduce the amount of real-time
power deviations but also improve real-time power deviation prediction accuracy (shorter
time will provide more accurate forecast information); reduce real-time power scheduling
operation costs and reduce ex-post power deviation settlement cost, giving more chances to
the more abundant, economical, and lightweight flexible products, reducing the settlement
marginal electricity price and significantly improve the economics of power market

operations with integration of massive renewable energy sources.
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5. IMPACT ANALYSIS OF INCREASING SPACE
GRANULARITY ON HIGH PENETRATION
RENEWABLE ENERGY

Abstract: As variable renewable energy (VRE) penetration continues to increase, electricity
transmission networks between regions with high penetration renewable energy generators
and large load demand centers will become more congested. One of the possible methods to
solve the above problem is to increase the space granularity, which includes the space
granularity of renewable generation units and the space granularity of the subnetworks. This
chapter mainly focuses on the evaluation of the impact of growing space granularity based
on the above two levels. To reasonably construct subnetworks and increase the space
granularity, this chapter proposes the stochastic energy network theory to characterize the
supply-demand adaptation balance index (SDABI) and further proposes a subnetwork
networking method to evaluate the impact of increasing space granularity on reducing power
system operation costs, power flow losses, and power congestion. Finally, the IEEE 33-node
system as a benchmark and combined with the power system operation evaluation indicators
to evaluate the impact of increasing space granularity on power system operation cost, power

flow losses, and power congestion to verify the effectiveness of the method.
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Abbreviations
VRE

DERs

ESS

SDABI

SOC
Nomenclature
Sets and Indices
K

k

I

T

t

Variables
PS(s,t)

LD(s,t)

&/ &
2\)

&5 (X)/e: ()5 () (X)
[X]*

ne

1nd

Bess,i/ Pessii
SOCekssiit
SOCEss,i,min/
SOCEss,i,max
LoLD(s,t)
WoPS(s,t)
SDABI(s,t)

F1

F2

Vitmin/ Vitmax

Variable renewable energy

Distributed energy resources

Energy storage system

Supply-demand adaptation balance index
State-of-charge

Sets of subnetworks

Index node in subnetworks
Sets of wind turbines
Schedule periods

Dispatching time interval

The cumulative energy production during a period [s,t]
The cumulative energy consumption during a period [s,t]
The upper/lower supply curve function
The upper/lower demand curve function
The bounding functions
Choose the maximum value between 0 and x
Energy storage battery charging efficiency
Energy storage battery discharging efficiency

Rated energy/power capacity of the ESS in i-th wind turbine
ESS SOC at time t in i-th wind turbine

Minimum/ maximum SOC of ESS in i-th wind turbine

Loss of load demand

Waste of power supply

Supply-demand adaptation balance index during (s,t)
Subnetworks' total operation cost

Backbone network operation cost

Minimum/maximum voltage amplitude of node i at time t
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N Number of nodes in network topology

Nk Number of nodes in the backbone network

B Number of branches in network topology

A Network topology node adjacency matrix

Pig,t Active power generated from i-th wind turbine at time t
Pem.t Active power from the energy market at time t

Qijt Reactive power flow between node i and node j at time t
Pij.t Active power flow between node i and node j at time t
Cit Cost of per kWh of i-th wind turbine at the t-th time spot
CEM;t Cost of per kWh of electricity market at the t-th time spot
ALP The absolute sum of all line power

5.1. Introduction

To solve the problem of climate change, variable renewable energy (VRE) will account
for an important proportion of primary energy in the future [3-5]. As VRE penetration
continues to increase, Transmission networks between regions with high-penetration
renewable energy generators and large load demand centers will become more congested
[82]. Increasing the space granularity can effectively mitigate the congestion problems.

The congestion problems brought by the increase in the penetration of VRE are mainly
due to two reasons. On the one hand, the centralized development and centralized access of
VRE causes congestion of some adjacent power lines; on the other hand, it is caused by the
space mismatch of supply and demand, causing congestion by repeated power flow.
Increasing the space granularity is the main method to mitigate the above congestion
problem. This space granularity mainly reflects on two aspects: one is increasing renewable

generation units' space granularity, that is to reduce the amount of renewable energy injected
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into a single node or increase the number of inject nodes for renewable generation units;
another one is increasing transmission network space granularity, that is to reduce the
complexity of the transmission network or reduce the repeated power flow transmission.

To solve the large number of renewable generation units resulting in congestion, the main
idea is to adopt the distributed injection model, which increases the number of inject system
nodes for renewable generation units. Increasing renewable generation units' space
granularity can help system operators find the renewable generators' marginal electricity
price, which will reduce the customers' energy costs [82]. In addition, increasing the
renewable energy generation space granularity is also a key market design innovation in the
electricity market, including node pricing widely used in the US market [83-85] and regional
pricing widely used in the pan-European region [86-87]. By increasing space granularity
and reducing the amount of renewable energy injected into a single node, this electricity
market changes, on the one hand, improve the power congestion problem of adjacent lines
connected to VRE injected nodes, on the other hand, increasing renewable generation units
space granularity can better discover the marginal electricity price of the units, thereby
reducing energy costs.

To increase transmission network space granularity, an innovative idea is to construct
many space subnetworks. How to divide that transmission network topology into several
subnetworks and then reduce the power transmission amount, repeated power flow and
electricity power transfer distance is a vital problem. The subnetwork works in one of the
following three working states during a period:
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(1)  Waste of power supply, in this state means that the power supply is more than the
load demand during a period, and then the excess energy will be stored in the energy
storage system until it reaches its rated capacity, resulting in excess energy [89-91].

2 Loss of load demand, in this state means that the power supply plus energy stored
in ESS is less than the load demand during a period, resulting in an energy shortage [92-
93].

(3)  Supply-demand adaptation balance, in this state means that the energy supply with
the ESS can meet the energy demand during a period. To solve the above problems, the
cumulative energy production of VRESs needs to meet the cumulative energy consumption
of all load nodes in the subnetwork, increasing the probability of a supply-demand
adaptation balance state [91], [94-95].

Therefore, we define the supply-demand adaptation balance index (SDABI) to
characterize energy balancing ability, in this chapter, we use the arrival process and
departure process in the stochastic network theory to correspond to the energy production
and energy consumption processes and then characterize the SDABI. Furthermore, based on
the SDABI and power system operation information, we further proposed a subnetwork
networking method, which can independently conduct spatial subnetworks based on the
power supply and load demand information, combined with grid operation information and
network topology, to achieve economic dispatch within the subnetwork and energy
exchange between different subnetworks. The constructed subnetworks based on our model
can improve the economy of the entire power grid operation, reduce power flow congestion,
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etc.

Increasing space granularity in the power system, on the one hand, will change the
distribution of renewable generation units, on the other hand, it will also change the network
topology by using the space networking method. To evaluate the benefits of increasing space
granularity reform, we choose three aspects:

(1) Power system operation economy.
(2) Power flow loss.
(3) Power transmission congestion evaluation.

This chapter constructs a spatial subnetwork networking method by establishing the
SDABI model to improve the spatial granularity of the power grid. Then, we aim to provide
evidence for reforming the power system spatial resolution by evaluating the beneficial

impact of this method on operating indicators of the power system.

5.2.Data Setting and Description

The wind power and load demand datasets are shown in Figure 5-1 and Figure 5-2 below.
The wind power includes 20 wind turbine units, and the load demand is distributed in the
IEEE 33-node system. These datasets include a whole year of historical data, and the
sampling rate is one hour. We use these datasets to analyze the SDABI and divide several
subnetworks based on Algorithm 5-1, and then calculate the system operation evaluation

indicators in the methods part to evaluate the impact of increasing space granularity.

107



0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 5-2. Per unit curve loads in different nodes.

Table 5-1 summarizes the number of units, marginal power generation price, rated power

capacity, and equipped ESS information of different wind turbines. The initial SOC of ESS

is 50%.
Table 5-1. Wind turbines information
Number of Wind turbine
TYPE  ind turbines LMP/($/kWh) PIkW  ESS/(kW/kwh)
Type 1 {1-4} 0.080 100 100/200
Type 2 {5-7} 0.065 150 150/300
Type 3 {8-12} 0.045 200 200/400
Type 4 {13-20} 0.035 250 250/500
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Table 5-2 summarizes the different cases to characterize the space granularity of 20 wind
turbines. It has 6 cases including their having no renewable generation units and having 20
wind turbines injected into the different nodes. The wind turbines in different cases, from
centralized access to a single node to separate access to multiple different nodes are in

different cases. Different cases represent different space granularities of 20 wind turbines.

Table 5-2. Case description of different space granularity of 20 wind turbines

Case Number of wind turbines Input node number
case 0 - -

case 1 {1-20} {18}

case 2 {1-4};{5-10};{11-20} {20};{6};{18}
case 3 {1-4};{5-10};{11-16};{17-20} {20};{6};{18};{25}

case 4 {1-4};{5-7};{8-12};{13-16};{17-20} {20};{6};{18};{25};{28}

cases  (HAHSEHEMNL I operusnesyiear2)

5.3. Methods

5.3.1  Supply-Demand Adaptation Degree Index

To ensure that the subnetworks have the best supply-demand adaptability and reduce
power exchange with the backbone network. We establish the supply-demand adaptation
balance index (SDABI) to characterize the cumulative energy production of renewable
energy generations to meet the cumulative energy consumption of all load nodes in the
subnetwork, and the subnetwork will contain renewable generations, energy storage, load

demand, etc. The subnetwork supply and demand states are shown in Figure 5-3 below.
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Figure 5-3. Schematic diagram of energy status in subnetwork.

From Figure 5-3, there are three different energy statuses in the subnetwork, including
WoPS, LoLD, and power supply and load demand energy balance. PS(s.f) and LD(s,f)
represent the value of energy production and energy consumption during the period [s,]; b(¢)
represents the energy stored in ESS at time ¢, Bess represents the energy rated capacity of
ESS; WoPS(s.t) represents the waste of power supply during [s,f], and LoLD(s.,t) represents

loss of load demand during [s,z].

(1) Energy supply and energy demand.

In this section, we assume that in the subnetwork, the energy production looks like the
arrival process, and the energy consumption process looks like the departure process, based
on the stochastics network theory, respectively. Therefore, we can characterize the energy

production and consumption process shown in equations (5.1)-(5.4), respectively.

prd sup [PS(s,t) — £4(t — )] > n} < £4(n) (5.1)
0sss<t

Prisup [E(t —s) — PS(s,t)] > n} < el(m) (5.2)
0ss<t

Prisup [LD(s,t) — A%(t — s)] > n} < gy(m) (5.3)
0ss<t
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Pr {Osupt[/ll(t —5)—LD(s,t)] > n} < eb(m) (5.4)
<s<
where the energy production process function shown above (5-1) and (5-2), which can be
characterized by parameter set {PS, &, &, &, €.}; the energy production function PS(s,f) can
be obtained by accumulated power generation energy from renewable generations during
[5,£], the upper and lower curve functions &(£) and &(f) of the energy supply can be obtained
through linearization, the rate is equal to the long-term average rate over a certain period in
the historical fit data. The boundary function £%(m) and £.(7) can be fit by exponential
functions based on historical data and upper and lower curve functions [91], [95]. The energy
consumption process function shown in above (5-3) and (5-4), which can be characterized
by parameter set {LD, 1*, ', €\, &, } ; the energy consumption function LD(s,f) can be obtained
by accumulated power consumption by load nodes in the whole subnetwork during [s,¢], the
upper and lower curve functions %(¢) and //(f) of the energy demand can be obtained through
linearization, the rate is equal to the long-term average rate over a certain period in the
historical fit data. The boundary functions £%() and €4(r) can be fit by exponential
functions based on historical data, and upper and lower curve functions [91], [95]. For
different subnetworks containing different renewable energy capacities/load demand
capacities, the characterization methods are the same, but the value of the functions and

parameters set in equation (5.1)-(5.4) may be different. We can get all the above functions

and set parameters based on the historical renewable energy supply and demand information.

(2) ESS Charging/Discharging Process

From the schematic diagram of subnetwork supply and demand states shown in Figure

5-3, the ESS would work in two working states: (1) The charging state, which indicates that
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the cumulative energy production is larger than the cumulative energy consumption during
[s,7], and the excess part is stored in the ESS until the ESS reaches its rated capacity. (2) The
discharging state, which indicates that the cumulative energy production is less than the
cumulative energy consumption during [s,], and the shortage part will be emitted by the
ESS until the ESS storage reaches its minimum required capacity. Therefore, the energy

stored by the ESS at time ¢ can be expressed as follows:

. Bgss, b(t — 1)
b(t) = min +[(PS(t—1,t) = LD(t — 1,1))|n. (5:5)
b(t) =[b(t—1)—[LD(t —1,t) — PS(t — 1,t)In4]" (5.6)

(3) Supply-demand Adaptation Balance Index (SDABI)

The supply-demand adaptation balance index refers to the cumulative energy production
of renewable energy generations that can meet the cumulative energy consumption of all
load nodes in the subnetwork. The subnetwork including renewable generation and load
nodes works in one of the following three states during a period: (1) waste of power supply
(WoPS), in this state means that the cumulative energy production is larger than the
cumulative energy consumption during the period, and the excess energy is stored in the
ESS until the ESS reaches the rated energy capacity, resulting in excess energy; (2) loss of
load demand (LoLD), in this state means that the cumulative energy production plus energy
stored in ESS is less than the cumulative energy consumption during a period, resulting in
energy shortage. (3) supply-demand adaptation balance, in this state means that the

cumulative energy production plus the ESS can meet the cumulative energy consumption
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during a period. Based on these three states, we can use WoPS(t), LoLD(t), and SDABI(t) to
represent the excess energy process, shortage energy process, and balanced energy process.

Based on the above analysis, we can characterize these states as below.

b(t—1)+PS(t—1,¢) 1"

WoPS() = "™ | Dt = 1,£) = Byg

(5.7)
LoLD(t) = [LD(t —1,t) = PS(t —1,t) — b(t — D)]* (5.8)

Furthermore, we can calculate these states' probability as shown below.

Pr(WoPS(t)) = Pr{WoPS(t) > 0} < e¥ ® &} (BESS — sup [E%(s) — Al(s)]> (5.9)

0<s<t

Pr(LoLD(t)) = Pr{LoLD(t) > 0} < €% ® ¢! (BESS — sup [A%(s) — fl(s)]> (5.10)

0<s<t

Pr (SDABI(T)) = %Z (1 — Pr(LoLD(D)) — Pr(WoPS(t))) <
t=1
1 (1= e @ el (Buss — sup [1(5) - £
Osss<t

%Z o ) | (5.11)

i\ e ® e (Bass — sup [£49) - ()]

Based on equation (5.11) and relevant assumptions, when the cumulative energy
consumption is much less than the cumulative energy production of renewable energy
resources, as the load demand increases (that is, the number of load nodes in the sub-network
increases), Pr(LoLD(t)) will decrease, Pr (SDABI(T)) will increase; when the cumulative
energy consumption is much greater than the cumulative energy production of renewable
energy resources, as the load demand decreases (that is, the number of load nodes in the sub-

network decreases), Pr(WoPS(t)) will decrease, Pr (SDABI(T)) will increase; Therefore,

when Pr (SDABI(T)) is the largest, it means that the space sub-network has the best energy
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balance ability.

5.3.2  Spatial Subnetwork Networking Method

For a given network, when changing the scale of the space subnetwork (adding more load
nodes or reducing load nodes), it will affect the SDABI of the subnetwork, therefore, it is of
great significance to select the scale of the space subnetwork reasonably based on the
network topology information. We will introduce the method and steps for forming a
reasonable space subnetwork based on SDABI as shown in Algorithm 5-1.

In Algorithm 5-1, when dividing the subnetworks, we do not need the location information
of the distributed energy resources (DERs), based on the power flow calculation results, we
can get the DERs node information, Through the historical statistical information of different
node loads and the historical statistical power supply information of renewable generation
units, and then we can construct several subnetworks which have the best Pr(SDABI(7)).
These subnetworks guarantee their highest supply-demand adaptation ability, that is these
subnetworks have the best energy balance ability, they will not cause more energy waste due
to excessive renewable power generation, it will also not cause load loss due to energy

shortage.

Algorithm 5-1: SDABI-based subnetwork networking method
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Step 1) Input distribution network topology information Q{N, B, A} and distribute
energy resources information DERs.

N: Node matrix.

B: Branch matrix.

A: Node affinity matrix.

Ns: DERs node matrix.

Step 2) Construct subnetwork node set based on DERs power supply nodes and power
flow information:

Use the following equation to calculate power flow based on Q and DERs, to get
power flow results{Pi;,Qj;,Vi} without DERs and {P;,Q;,V: } with DERs.

{Pij,t = 9i; (VA = Vi(V; rcos8y.) — biViV;sindyj (5.12)

Qije = —GijViiVjeSinbyj e — bijVi — ViV ccos8ij
Construct possible subnetwork node subset based on the following equation and A.

AV, =V -V, < (5.14)

(Each subnetwork contains only one DERs node, and the DERs node is the starting
point, and the rest of the nodes are all load nodes.)

Step 3) Modify the subnetwork networking scheme based on SDABI:

Traverse the load nodes in any subnetwork, and select the corresponding a* and o

based on the load nodes set, until satisfy the following equation,

T (1 el @ el (Boss — sup [24(5) — §1(5)])

1 0ss<t
max—
T; —& ® 3(11 (BESS — sup [§%(s) — /11(5)]>

0ss<t

(5.15)
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5.3.3  Evaluation Indicators of Power System Operation

We evaluate the influence of increasing space granularity from three aspects, including
operation economy [124], power flow loss [125], and power flow congestion [126]. The
details of the evaluation indicators are as follows.

(1) Power system operation economy evaluation

The operation is a two-stage analysis process. The first stage needs to analyze the
operation of each space subnetwork, considering that the renewable generation units in
different subnetworks are equipped with energy storage systems (ESS), and the ESS can
store energy when the renewable generation units are higher than the load demand and emit
energy when the renewable generation units are lower than the load demand, therefore, the
first stage is a multi-period optimization power flow model combined with ESS. The second
stage needs to combine the net load conditions of different space subnetworks (different
generalized nodes) for operation analysis [127].

a) Objective: The operation process has two objectives, the first one is to minimize the
operation cost of subnetworks, and the second one is to minimize the operation cost of the

backbone network. which are written as

Pl:min F, = Z Z(ci_tpiglt) (5.16)

teT i€l

P2: mln FZ = Z(CEM,tPEM,t) (517)

teT

where F represents the subnetwork (includes wind turbines) power generation operation
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cost, that is equal to electricity price times wind power generation amount, ¢;;represents the
per unit electricity price from the i-th wind turbine at the #-th time spot; P;s; represents active
power generated from i-th wind turbine at time ¢. F> represents the backbone network
(includes electricity market transaction) operation cost, which is equal to the electricity price
from the electricity market times power transaction amount, cgu, represents the per unit
electricity price from the electricity market at the z-th time spot; Pea; represents transaction
power from the electricity market.
b) Constraints:

Power flow constraints:

_ 2 .
{Pij,t = 9i;(VZ4 — ViV; 088y ) — byjV; 1V rSin;; . (5.18)

_ . 2

Qijc = —9ijViiVjesinbyj . — bV — VitV ccos0;j .

where Pj;; and Q;;, represent active power and reactive power flow between node i and node
J at time #; Vi represents the voltage at node i at time ¢; 6;;; represents the phase angle

difference between node i and node j at time z.
Node voltage constraints:
Viemin < Vie < Viemax (5.19)
ESS operation constraints:
Assume that the wind turbines in our model will be equipped with ESS. ESS usually
operates in three different states, including charging, discharging, or neither charging nor

discharging. Therefore, the operating state of ESS can be present by equation (5.20).
Sciet+sdiy <1LVIieELtET (5.20)
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where sci: and sd;:.represent the i-th ESS is charged or discharged at #-th time point,
respectively. They are binary variables. Considering the operating state of ESS, the power
output of ESS should be constrained by the following equations.

0 < Pgssc,it = SCit * Pgssi (5.21)

0 < Pgssp,it < Sdi¢ * Pgss,; (5.22)
where Pgss; represents rated power capacity of the ESS in i-th wind turbine; Pgssc,i: and
Pessp,ir represent charging power and discharging power of ESS at #th time spot,
respectively.

What is more, to meet the needs of ESS to continuously participate in dispatching, the

state of charge of ESS needs to meet the following constraints.

BgssiSOC; (t—1) + AtPgss i iNe) Prss,ic = 0

Bree SOC: . = AtPrgs 2
pssiSOCic BgssiSOC; (1) + —iss'l't y Prssic <0 (5-23)
d

{SOCi,min < S50C;¢ < SOC;max (5.24)

S0C;y =S0C;r
where Bgss represents rated energy capacity of the ESS in i-th wind turbine; SOCi,
represents state of charge of ESS at #-th time, it has maximum value and minimum value; 7,
and 7, represent charging and discharging efficiency of ESS.

(2) Power flow loss evaluation

Based on Algorithm 5-1, we can construct different sub-networks and different sub-
networks will be seen as generalized nodes (pro-consumer) to participate in the backbone
network operation after they have finished the dispatching process based on their own

topology and power supply/load demand resources. Therefore, in our evaluation model, for
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the whole system, the power flow loss includes two parts, one part is the power flow loss
based on the sub-networks including ESS power flow calculation, and the second part is the
power flow loss from the backbone network power flow calculation, in which the
subnetworks will be seen as generalized nodes.

In each subnetwork, the power flow loss satisfies the following equation.

Prossk = Z z Vi z Vi t9ijcosb;; (5.25)
teT \i€K JEi

The power flow loss of the system mainly includes two parts, one part is the subnetworks
power flow loss, and the other part is the backbone network power flow loss (subnetworks
have been treated as generalized nodes), the system power flow loss satisfies the following

equation.

Pross = Z PLoss,k + Z Z Vi,t Z Vj,tgijcoseij,t (5.26)

k€K teT ie% JEi
(3) Power transmission congestion evaluation
System congestion management strategies can be divided into two aspects: (1) network
topology reconfiguration, this way through switch operation to realize network topology
reconfiguration and improve network congestion; (2) power supply/load demand locally
matching, this way through direct load control (DLC) and market mechanism to modify the
load demand and power supply, respectively to improve power congestion [128]. In this

chapter, we through increasing space granularity to reduce the power congestion, it does not

need to change the switch state, that is, the system operating mode, nor does it need to change
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the load demand. It is a brand-new mechanism for increasing network space granularity to
achieve power flow congestion management. Increasing renewable generation units' space
granularity and increasing subnetwork space granularity will both help to realize power
supply/load demand locally matching.

To describe the impact of increasing space granularity on power congestion and repeated
power flow, we define average line power (ALP) to calculate the absolute sum of all line
power, and using this indicator can help us analyze the concentration degree of all line power
near to zeros and the total power flow of the power lines. The ALP indicator can be easily
calculated using the equation below.

ALP = <ZB: Z|P,,,t|)/(3 xT) (5.27)

b=1 teT
where Py represents the power flow in the b-th line at time #; B represents the number of the

branch.

5.4. Test Results
5.4.1 Evaluation of the Spatial Networking Method

Based on Algorithm 5-1 and wind turbines inject information in the IEEE 33-node system
in Table 5-2, we can calculate power flow and then get the results of branch power flow
deviation and voltage magnitude deviation in different nodes. Considering case 0 does not
have the wind power injection, we get the results from case 1 to case 5 shown in Figure 5-4

below.

120



APF/MW
o
i

wo
N Y

Number of Branch Number of Node

(a) case 1

APF/ MW

Number of Branch Number of Node

APF/MW

Number of Branch Number of Node

(c) case 3

121



APF/MW
- =
T

Number of Branch Number of Node

(d) case 4

APF/ MW
o
S

Number of Branch Number of Node

(e) case 5

Figure 5-4. Power flow and node voltage difference under different spatial distributions of
wind turbines

From Figure 5-4. we can find that:

(1) In different cases, that is in different space granularity of wind turbines, there will be
differences in the branch power flow and the node voltage magnitude. The main reason for
the above differences is that the injection of wind turbines into different nodes will change
the power flow of adjacent nodes and branches.

(2) Comparing the deviation branch power flow in case 1, case 2, case 3, case 4 and case

5, we can find that the branch power flow related to wind turbines inject node changes
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significantly, and based on this feature, we can put it as the first node into subnetwork node
subset. For example, in case 1, branch 17 power flow deviation has changed significantly,
in case 3, branch 24, branch 19, branch 17, and branch 5 power flow deviation has changed
significantly, and in case 5, branch 27, branch 24, branch 19, branch 17 and branch 5 power
flow deviation have changed significantly. Therefore, based on the branch power flow
deviation we can find the results where the wind turbines are injected are consistent with
case setting.

(3) Comparing the deviation node voltage magnitude and adjacent node voltage amplitude
in case 1, case 2, case 3, case 4 and case 5, we can find that the node voltage magnitude
related to wind turbines inject node changes significantly, and based on this feature, we can
put these nodes into subnetwork node subset. For example, in case 1, node-set {6-18} and
{26-33} have changed significantly, in case 3, node-set {4-18} and node-set {20-33} voltage
magnitude have changed significantly, in case 5, node-set {4-18} and {20-33} have changed
significantly, based on the wind turbines inject nodes results and node adjacency matrix A,
we can construct the possible load node-set containing a group of wind turbines as the
subnetworks. In case 1, the subnetwork may contain nodes set {6-18}, in case 3, the
subnetworks may contain nodes set {6, 26-33}, {7-18}, {23-25} and {20-22}, in case 5, the
subnetworks may contain nodes set {6, 26-33}, {7-12}, {13-18}, {23-25} and {20-22}.

Then we set the above load node as the complete set, construct several subsets including
the wind turbines inject node, traverse these subsets in turn, and select the largest
Pr(SDABI(T)) that contains the load node subset as the subnetwork. In different cases, the
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subnetwork includes nodes' information as shown in Table 5-3.

Table 5-3. The subnetwork nodes result in different spatial distributions of wind turbines
The subnetwork

Case nodes Pr(SDABI(T))

case 1 {7-18} {0.482}

case 2 {20'21{3‘1;§?1'§§'27}; {0.526}:{0.475}:{0.438}

case 3 {20{i1}1%§3{252}7} £0.526}:{0.475}:{0.491}:{0.403}

case 4 {16{_21%'}2;3;5{}6;{;28} {0.526}:{0.453}:{0.428}:{0.435}:{0.486}
{20-

case 5 21},{6};{18};{25}; | {0.526};{0.453};{0.407};{0.412},{0.435};{0.486}
{28-29};{11-12}

5.4.2Evaluation Indicators at Different Spatial Granularities

Increasing space granularity mainly has two aspects: (1) increasing wind turbines' space
granularity, that is decreasing the number of wind turbines connected to the same one node;
(2) increasing subnetworks' space granularity, that is increasing the number of subnetworks.
Aiming at the evaluation operation indicators, we focus on the above two aspects, the results
are as follows.

(1) Power system operation economy evaluation

Different cases characterize the different wind turbines' space granularity, and considering
subnetworks means that we characterize the different subnetwork space granularity.
Comparing Table 5-4 and Table 5-5 in different cases operation economy results, increasing

space granularity can improve the power system operation economy, the details can be
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described as follows:

(1) From Table 5-4, comparing the operation cost in different cases, such as F2 is lower
in case 1 to case 5 than case 0. F> of case 5 is nearly 30% lower than case 0. That means
wind power is injected into the power system; on the one hand, it will reduce the dependence
on the main grid, on the other hand, it will improve the economy of power system operation.
By comparing the power flow loss part in Table 5-4, the power flow loss of case 5 is about
48% of the power flow loss of case 1. That means by increasing wind turbines' space
granularity, the power flow loss will also be reduced, further leading to a reduction in system
operation cost.

(2) In the same cases, with the increasing subnetwork space granularity, F2, system

operation cost and power flow loss will all decrease.

Table 5-4. Without considering subnetworks in different cases

Case F2 ($) (F1+F2) (%) Power flow loss (MWh)
case 0 12565.2 12565.2 3.821
case 1 9112.1 10927.7 3.496
case 2 8902.8 10221.6 2.101
case 3 8879.8 10167.8 1.948
case 4 8861.3 10034.7 1.824
case 5 8836.8 10010.2 1.661
Table 5-5. With considering subnetworks in different cases
Case F2 ($) (F1+F2) ($) Power flow loss (MWh)
case 1 9082.9 10898.6 3.302
case 2 8886.3 10205.1 1.991
case 3 8867.7 10155.7 1.867
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case 4 8854.5 10027.9 1.779

case 5 8829.4 10002.8 1.611

When the subnetwork is not considered, the system operation cost difference between
different cases is mainly affected by two factors. One is the differences in local marginal
electricity prices of wind turbines due to differences in space granularity. When the wind
turbine's space granularity is smaller (that is, the more types of wind turbines are connected
to the same node), the higher cost of wind turbine marginal electricity price will increase the
DERSs generation cost. The other one is the difference in power loss caused by the difference
in space granularity of wind turbines, this difference is mainly reflected in the operation cost
in the balanced market.

When the subnetwork is considered, the difference in operation cost in the same cases is
mainly due to the difference in power loss caused by the difference in subnetwork space
granularity. The main reason is that the increase in the subnetwork space granularity will

reduce the transmission distance of the power flow, thereby reducing the power flow loss.
(2) Power flow loss evaluation

The injection of wind power will reduce the system power flow loss, and the system power
flow loss will be significantly reduced regardless of the position of the wind turbine
connected to the system and the change of the wind turbine space granularity. In Figure 5-5,
we can find the injection of wind power minimizes the reduction in power flow loss and is
close to 9%, what is more, with the increasing of the wind turbine space granularity, the

power flow loss is further reduced, and reduction in case 5 is close to 57%.
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Figure 5-5. The relative difference of power loss deviation under different cases (without
considering subnetworks)
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Figure 5-6. The relative difference of power loss deviation under different cases (considering
sub-networks)

From Figure 5-5 and Figure 5-6, we can find that increasing wind turbines' space
granularity will reduce power flow loss, and then increasing subnetwork space granularity
will also reduce power flow loss. In Figure 5-6, the power flow loss can be reduced by

increasing the subnetwork space granularity. Compared with the same wind turbine space
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granularity, the power flow loss can be reduced by at least 2.5% by increasing subnetwork
space granularity.
(3) Power transmission congestion evaluation

Based on the historical data from wind power and load demand, we solved the IEEE 33
node system power flow in different branches under different cases, and the results as shown
below. From Figure 5-7, we can find that:

(1) When we just consider the difference of wind turbines' space granularity (from the
view of column), showing the difference in Figure 5-7 (b), (d) and (f) or Figure 5-7 (a), (¢)
and (e). With the increasing wind turbines' space granularity, the more concentrated the
power flow range of the same branch is near 0, that is, the smaller the power flow of the
same branch, the lower the possibility of power congestion of the branch. We can also find
there is the same trend in Figure 5-8, the value of ALP will decrease with the increase of
wind turbines' space granularity.

(2) When we consider the difference of subnetwork space granularity (from the view of
row), shown the difference in Figure 5-7 (@) and (b), or Figure 5-7 (c) and (d), or Figure 5-7
(e) and (f). With the increasing subnetwork space granularity, the more concentrated the
power flow range of the same branch is near 0, that is, the smaller the power flow of the
same branch, the lower the possibility of power congestion of the branch. We can also find
there is the same trend in Figure 5-8, the value of ALP considering networking will be lower
than that without considering networking.

(3) Combining Figure 5-7 and Figure 5-8, we can find that with the increase of space
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granularity, the power flow values will be more concentrated around 0 at the same branches,

and at the same time, the ALP index will be smaller, that is, the lower the possibility of

power congestion of the branches.
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Figure 5-8. ALP indicators in different cases

5.5.Summary

In this chapter, we construct the supply-demand adaptation balance index and further
propose a subnetwork networking method to increase the space granularity of networks, and
then mainly evaluate the impact of growing space granularity on system operation cost,
power flow loss, and power congestion evaluation. Increasing space granularity not only
increases wind turbines' injection space granularity but also increases subnetworks' space
granularity. The main conclusions are as follows:

Increasing space granularity by increasing the number of wind turbine injections and
increasing subnetworks space granularity, on the one hand, will help to find the marginal
generation price and reduce the customers’ operation cost; on the other hand, it will decrease
power flow loss and improve power congestion by improving the power flow distribution

and reduce the repeat power flow. Compared with case 0, there is no wind turbine injection,
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case 1 will reduce operating cost by about 13%, reduce power flow loss by about 8.5%, and
further increase space granularity in case 5, which will further reduce operating cost by about
8.5% and reduce power flow loss about 54% than case 1.

The conclusions and methods of this chapter have important guiding and reference
significance for the space layout of renewable generation units. At the same time, the
relevant conclusions of increasing space granularity in this chapter are of great significance

to the reform of power system operation.
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6. CONCLUSIONS AND FUTURE WORKS

6.1. Conclusions

This study focuses on the reform of increasing spatial-temporal resolution in high-
penetration renewable energy power systems. For the power fluctuation, this thesis proposed
metrics including power incremental statistics, coefficient of variation, and peak power
duration to characterize the power variability characteristics, based on these metrics, further
analyze the mathematical relationship between these variations and net-load power curves
and real-time power imbalance curve, finds that power variability will directly affect net-
load power curves and the power gradient will affect the real-time power imbalance curve.
For increasing temporal resolution reform, this thesis proposes an evaluation method for the
electricity market at different time granularity, including ex-ante real-time power deviation
prediction; real-time power scheduling operation and clearing; ex-post power deviation
settlement. Based on this evaluation model, this thesis provides strong evidence that the
higher the time granularity, the power step changes and the real-time power deviation
quantities are smaller, and vice versus; For increasing spatial resolution reform, this study
proposes the stochastic energy network theory to characterize the supply-demand adaptation
balance index (SDABI) and further proposes a subnetwork networking method to evaluate
the impact of increasing space granularity on reducing power system operation costs, power
flow losses, and power congestion. This study for the first time provides scientific evidence
to support the worldwide reform of the increasing spatial-temporal resolution with massive
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renewable energy integration systems. The main conclusions are as follows:

1. The statistical characteristics of power fluctuations of different types of resources
can help system operators reasonably make the operations and reserve plans, which
are mainly as follows:

1) The time series characteristics of PV power are relatively obvious, which directly
affects the net load power curve. There is a higher flexible power requirement near
noon (that is, around the maximum PV power), and this feature will increase as the
PV penetration rate increases. It seems to look like the canyon curve; the timing
characteristics of wind power in different countries are different, but the overall
impact of wind power on the net load power curve is not as obvious as that of PV
power.

2) The real-time imbalanced power quantities of different types of resources are
proportional to their power gradient. The real-time power imbalance caused by PV
power has timing characteristics and looks like a butterfly curve, this characteristic
will be more obvious with high penetration of PV generation.

3) The different resource power fluctuation statistics characteristics in different countries
can effectively help system operators rationally arrange flexible resource reserves,
such as ramp power requirement and real-time power balance reserve based on these
resource power fluctuations timing characteristics.

2. Increasing the time granularity will significantly reduce power market balancing
costs and power grid frequency deviations. Which are mainly as follows:
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1) With time granularity increases, power step changes at different scheduled interval
points and real-time power deviations during the scheduling interval will be
significantly reduced, thereby reducing power market balancing costs and power grid
frequency deviations.

2) Specifically, when the time granularity is increased from 30 minutes to 5 minutes, the
power step magnitude will be reduced (the power step change in the California ISO
grid will be reduced by nearly five-sixths; the Czech and Qatar grid will also be
reduced by almost 80%), and the real-time power deviation will also be reduced (The
real-time power deviation in California ISO grid was reduced by nearly five-sixths;
the Czech and Qatar grid also reduced by nearly half). Power grid frequency
deviations are directly proportional to power change quantities; therefore, power grid
frequency stability can be improved by increasing time granularity.

3. Increasing space granularity not only increases renewable energy generators'
injection space granularity but also subnetworks' space granularity. This reform
can reduce system operation costs, power flow loss, and mitigate power congestion.
Which are mainly as follows:

1) Increasing space granularity by increasing the number of wind turbine injections and
increasing subnetworks space granularity, on the one hand, will help to find the
marginal generation price and reduce the customers’ operation cost; on the other hand,
it will decrease power flow loss and improve power congestion by improving the
power flow distribution and reduce the repeat power flow.
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2) Increase space granularity by the above two aspects, which will further reduce

operating costs by about 8.5% and reduce power flow loss by nearly half.

6.2. Future Works

As variable renewable energy (VRES) penetrates the power grid on a massive scale, the
grid will encounter greater fluctuations and intermittent than it does presently.
Consequently, this paradigm shift will necessitate fundamental changes in power system
planning, operation, and settlement approaches. To solve the above problems, we plan to
conduct further research in the following aspects:

(1) Build a cross-domain energy power time series database for different research
objects based on rich open-source meteorological data information: According to
different levels of space granularity, we plan to build a cross-domain open dataset
includes renewable energy time series data, load demand time series data, renewable
generation installed capacity, and future resources evaluation information, etc.

(2) Using stochastic energy network theory to construct a new planning method
based on the cross-domain open dataset: Given the power system planning problems
caused by the randomness, volatility, and uncertainty of high-penetration renewable
energy systems, we aim to combine the arrival process and departure process in the
stochastic energy network theory to correspond to the energy production and energy
consumption processes, and based on this theory we can characterize the three different

operating states of the high penetration power grid, including waste of power supply,
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loss of load demand and balance of energy supply and demand. Based on the probability
characteristics of these three different work states, we can establish a high-energy
reliable, and high-energy security power grid system unit.

(3) Design a new system flexible resource reserve and transaction strategies based
on net-load power curve and real-time power imbalance curve timing characteristics:
Using the cross-domain dataset, we can analyse the power development dynamic
characteristic curves including net load power curves and real-time imbalanced power
curves for research objects at different development degrees (that is different renewable
penetration, different load consumption development, etc.), and provide scientific
guidance for infrastructure construction (including lines, cables, substations, network
infrastructure, etc.) and electricity market development models based on this dynamic

development characteristic.
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APPENDIX. IEEE 33-NODE DISTRIBUTION
SYSTEM

A.1. IEEE 33-Node Distribution System Topology
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Figure A-1. IEEE 33-node system topology

A.2. IEEE 33-Node Distribution System Bus Data

Table A-1. IEEE 33-node system bus information

BN | BT | PD QD GS |BS| BA | VM| VA BV | Zone | VMAX | VMIN
1 3 0 0 0 0 1 1 0 12.66 1 1 1
2 1 0.1 0.06 0 0 1 1 0 12.66 1 11 0.9
3 1 0.09 | 0.04 0 0 1 1 0 12.66 1 1.1 0.9
4 1 0.12 | 0.08 0 0 1 1 0 12.66 1 1.1 0.9
5 1 0.06 | 0.03 0 0 1 1 0 12.66 1 11 0.9
6 1 0.06 | 0.02 0 0 1 1 0 12.66 1 1.1 0.9
7 1 0.2 0.1 0 0 1 1 0 12.66 1 11 0.9
8 1 0.2 0.1 0 0 1 1 0 12.66 1 1.1 0.9
9 1 0.06 | 0.02 0 0 1 1 0 12.66 1 11 0.9
10 1 0.06 | 0.02 0 0 1 1 0 12.66 1 11 0.9
11 1 | 0.045 | 0.03 0 0 1 1 0 12.66 1 1.1 0.9
12 1 0.06 | 0.035 0 0 1 1 0 12.66 1 11 0.9
13 1 0.06 | 0.035 0 0 1 1 0 12.66 1 1.1 0.9
14 1 0.12 | 0.08 0 0 1 1 0 12.66 1 11 0.9
15 1 0.06 | 0.01 0 0 1 1 0 12.66 1 1.1 0.9
16 1 0.06 | 0.02 0 0 1 1 0 12.66 1 1.1 0.9
17 1 0.06 | 0.02 0 0 1 1 0 12.66 1 11 0.9
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BN | BT | PD QD GS |BS| BA | VM| VA BV | Zone | VMAX | VMIN
18 1 0.09 | 0.04 0 0 1 1 0 12.66 1 11 0.9
19 1 0.09 | 0.04 0 0 1 1 0 12.66 1 1.1 0.9
20 1 0.09 | 0.04 0 0 1 1 0 12.66 1 11 0.9
21 1 0.09 | 0.04 0 0 1 1 0 12.66 1 11 0.9
22 1 0.09 | 0.04 0 0 1 1 0 12.66 1 11 0.9
23 1 0.09 | 0.05 0 0 1 1 0 12.66 1 11 0.9
24 1 0.42 0.2 0 0 1 1 0 12.66 1 1.1 0.9
25 1 0.42 0.2 0 0 1 1 0 12.66 1 11 0.9
26 1 0.06 | 0.025 0 0 1 1 0 12.66 1 1.1 0.9
27 1 0.06 | 0.025 0 0 1 1 0 12.66 1 11 0.9
28 1 0.06 | 0.02 0 0 1 1 0 12.66 1 11 0.9
29 1 0.12 | 0.07 0 0 1 1 0 12.66 1 11 0.9
30 1 0.2 0.6 0 0 1 1 0 12.66 1 11 0.9
31 1 0.15 | 0.07 0 0 1 1 0 12.66 1 1.1 0.9
32 1 0.21 0.1 0 0 1 1 0 12.66 1 11 0.9
33 1 0.06 | 0.04 0 0 1 1 0 12.66 1 11 0.9

Note: BN represent bus number; BT represent bus type (PQ=1, PV=2, ref=3, isolated=4); PD represent real power demand; QD represent
reactive power demand; GS represent shunt conductance; BS represent shunt susceptance; BA represent area number; VM represent
voltage magnitude; VA represent voltage angle; BV represent base voltage; Zone represent loss zone; VMAX represent maximum voltage
magnitude; VMIN represent minimum voltage magnitude.

A.3. IEEE 33-Node Distribution System Branch Data

Table A-2. IEEE 33-node system branch data

FB B R X B | Rate-A | Rate-B | Rate-C | TAP | SHIFT | STATUS | AMIN | AMAX
1 2 0.0057526 | 0.0029324 | 0 0 0 0 0 0 1 -360 360
2 3 0.0307595 | 0.0156668 | 0 0 0 0 0 0 1 -360 360
3 4 0.0228357 | 0.01163 0 0 0 0 0 0 1 -360 360
4 5 0.0237778 | 0.0121104 | © 0 0 0 0 0 1 -360 360
5 6 0.0510995 | 0.0441115 | © 0 0 0 0 0 1 -360 360
6 7 0.0116799 | 0.0386085 | 0 0 0 0 0 0 1 -360 360
7 8 0.044386 | 0.0146685 | O 0 0 0 0 0 1 -360 360
8 9 0.0642643 | 0.0461705 | 0 0 0 0 0 0 1 -360 360
9 10 0.0651378 | 0.0461705 | O 0 0 0 0 0 1 -360 360

10 11 0.0122664 | 0.0040555 | 0 0 0 0 0 0 1 -360 360

11 12 0.0233598 | 0.0077242 | 0 0 0 0 0 0 1 -360 360

12 13 0.0915922 | 0.0720634 | 0 0 0 0 0 0 1 -360 360

13 14 0.0337918 | 0.0444796 | 0 0 0 0 0 0 1 -360 360

14 15 0.036874 | 0.0328185 | 0O 0 0 0 0 0 1 -360 360

15 16 0.0465635 | 0.0340039 | 0 0 0 0 0 0 1 -360 360

16 17 0.080424 | 0.1073775 | O 0 0 0 0 0 1 -360 360

17 18 0.0456713 | 0.0358133 | 0 0 0 0 0 0 1 -360 360
2 19 0.0102324 | 0.0097644 | 0 0 0 0 0 0 1 -360 360

19 20 0.0938508 | 0.0845668 | 0 0 0 0 0 0 1 -360 360

20 21 0.0255497 | 0.0298486 | 0 0 0 0 0 0 1 -360 360
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FB B R X B | Rate-A | Rate-B | Rate-C | TAP | SHIFT | STATUS | AMIN | AMAX
21 22 0.0442301 | 0.0584805 | 0 0 0 0 0 0 1 -360 360
3 23 0.0281515 | 0.0192356 | 0 0 0 0 0 0 1 -360 360
23 24 0.0560285 | 0.0442425 | 0 0 0 0 0 0 1 -360 360
24 25 0.0559037 | 0.0437434 | 0 0 0 0 0 0 1 -360 360
6 26 0.0126657 | 0.0064514 | 0 0 0 0 0 0 1 -360 360
26 27 0.017732 | 0.0090282 | 0O 0 0 0 0 0 1 -360 360
27 28 0.0660737 | 0.0582559 | 0 0 0 0 0 0 1 -360 360
28 29 0.0501761 | 0.0437122 | 0 0 0 0 0 0 1 -360 360
29 30 0.0316642 | 0.0161285 | 0 0 0 0 0 0 1 -360 360
30 31 0.0607953 | 0.060084 | 0 0 0 0 0 0 1 -360 360
31 32 0.0193729 | 0.0225799 | 0 0 0 0 0 0 1 -360 360
32 33 0.0212759 | 0.0330805 | 0 0 0 0 0 0 1 -360 360
21 8 0.1247851 | 0.1247851 | O 0 0 0 0 0 0 -360 360
9 15 0.1247851 | 0.1247851 | O 0 0 0 0 0 0 -360 360
12 22 0.1247851 | 0.1247851 | O 0 0 0 0 0 0 -360 360
18 33 0.0311963 | 0.0311963 | 0 0 0 0 0 0 0 -360 360
25 29 0.0311963 | 0.0311963 | 0 0 0 0 0 0 0 -360 360

Note: FB represent “from” bus number; TB represent “to” bus number; R represent resistance (p.u.); X represent reactance (p.u.); B
represent total line charging susceptance (p.u.); Rate-A set to 0 for unlimited; Rate-B set to 0 for unlimited; Rate-C set to 0 for unlimited,
TAP represent transformer off nominal turns ratio, TAP=0 used to indicate transmission line rather than transformer; SHIFT represent
transformer phase shift angle degree; STATUS represent initial branch status, in-service=1, out-of-service=0; AMIN represent minimum
angle difference; AMAX represent maximum angle difference.
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