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Abstract

We define a class of well-foliated domains for which explicit lower bounds for the first

non-trivial eigenvalue of the Neumann Laplacian are obtained. We show that p-Rohde

snowflakes for p ∈
[
1
4 ,

√
3−1
2

)
fall into this class. We establish conditions on snowflake-

like domains and quasidisks that ensure well-foliatedness via bi-Lipschitz invariance.

We prove that domains for which any sufficiently small inner ϵ-parallel neighbourhood

can be covered (with uniformly bounded multiplicity of the cover) by at most Cϵ−δ

well-foliated domains allow an upper bound of the remainder term of the spectral

counting function of the Neumann Laplacian at t asymptotic to tδ/2. It is discussed

how the cardinality of this cover relates to the upper inner Minkowski content and in

particular we show that p-Rohde snowflakes satisfy this property whenever their upper

inner Minkowski content is positive and finite. Applying the above results we obtain

explicit bounds in the cases of homogeneous p-Rohde snowflakes for p ∈
[
1
4 ,

√
3−1
2

)
and

of the classical Koch snowflake. Finally we construct a family of fractal sprays whose

gaps have fractal boundary and find non-trivial terms in the asymptotic expansion of

the spectral counting function and the volume of the inner ϵ-parallel neighbourhood

with comparable scaling behaviour.
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Chapter 1

Introduction

The celebrated 1966 article [52] by Kac asks which geometric information can be inferred

from the Laplace spectrum of a domain coining the famous question: Can one hear the

shape of a drum? Parallel to this well-known problem which naturally involves Dirichlet

boundary conditions one may ask the same question for Neumann boundary conditions.

These inverse problems, i. e. computing the “drum” (that is the domain of definition of

the Laplace eigenfunctions) given its spectrum, were shown to be ultimately unsolvable

in 1992 by Gordon-Webb-Wolpert [37] for domains with piecewise smooth boundary and

subsequently for domains with fractal boundary by Chen-Sleemann in [18] by showing

that different domains with identical spectrum exist. Nevertheless it is well known that

for example the volume of a bounded domain can be deduced from the spectrum of the

Laplace operator under Dirichlet boundary conditions. Other geometric quantities however

are often far less attainable in particular if the boundary is less regular or even fractal.

The present work is focused on the particular situation of Neumann boundary condi-

tions on a domain (that is an open, bounded and connected subset of Euclidean space)

which has a fractal boundary, meaning that its Minkowski dimension might be non-integral,

emphasising the complementary forward problem, namely to study the influence of a do-

main’s geometry on its Laplace spectrum. This forward problem has attracted an immense

amount of attention throughout the years (see for example [5, 48] for a summary). Since

the Laplace eigenvalue equation can be physically interpreted as the wave equation of a
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function that is periodic in time, an eigenvalue λ can be understood as acoustic frequency

of a wave mode. Heuristically, higher harmonics correspond to higher order eigenfunctions

displaying similar geometric aspects of their domain. As a consequence, it is particularly

interesting how the geometry of a domain dictates the asymptotic behaviour of eigenvalues

of the Laplace operator. The idea goes back to 1911 when Weyl established a remark-

able law for the eigenvalue counting function ND(Ω, t) (i. e. the number of eigenvalues less

or equal to t for the Dirichlet Laplace problem counted with multiplicity) for open and

bounded Ω ⊂ R2 in [112, 113], which had a tremendous impact in mathematics [23].

The very nature of fractals often renders analytical tools inapplicable. It should be

pointed out that for this reason several different approaches to spectral analysis of fractals

have been introduced over time and drastically depend on the nature of the fractal in

question and in particular whether the fractal has non-empty interior. On one side, Lapla-

cians on gasket-like fractals — the Sierpiński gasket being a leading example — have been

studied extensively based on ideas of Goldbach, Kigami and Strichartz in [36, 54, 103] by

introducing Dirichlet forms on corresponding prefractal structures and thus studying the

limiting behaviour of graph-Laplacians. Recently Post-Zimmer complemented the spectral

analysis on fractals with an analytical approach in [87] based on smooth Laplacians defined

on a shrinking ϵ-parallel neighbourhood around prefractal structures. On the other side

one may define a Laplacian off the domain (often called “spectral analysis off fractals”),

meaning to define the Laplace operator on the interior of the union of bounded connec-

ted components of the complement; again the Sierpiński gasket is the leading example.

Renewal theoretical spectral analysis was successfully applied in such cases (see also the

works of Kigami-Lapidus and Lalley in [55, 64]). Whenever the fractal object is a domain,

a direct analytical definition of differential operators on the domain is possible and this

approach is followed here for the most part. The leading example shall be the Koch snow-

flake introduced by Koch in [57]. In Ch. 5 however we take the point of view of spectral

analysis off fractals, too.

More precisely we are interested in the asymptotic behaviour of the spectral counting

functions of the Laplace operator subject to Neumann boundary conditions on snowflake-
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like domains with fractal boundary and we aim at obtaining explicit asymptotic upper

bounds of the remainder term (that is the second order asymptotic term). While Dirichlet

boundary conditions in the fractal setting have been explored to a good extent, such a

treatment is yet to be completed for other boundary conditions. One may regard the Neu-

mann boundary condition as the most irregular amongst all mixed boundary conditions

since it has minimal eigenvalues and therefore leads to fastest growth of the spectral count-

ing function. Moreover, Dirichlet boundary conditions avoid complications with non-empty

essential spectra and allow for simpler estimates of spectral counting functions based on

domain monotonicity (i.e. λDk (Ω
′) ≥ λDk (Ω) if Ω′ ⊂ Ω, where λDk (X) is the kth eigenvalue

of a domain X under Dirichlet boundary conditions). Neither of these properties are gen-

erally available under non-Dirichlet boundary conditions. We therefore restrict ourselves

to extension domains for which the essential spectrum is known to be empty. We then

obtain an explicit Poincaré-Wirtinger inequality (sometimes also called Poincaré-Sobolev

inequality) for W 1,2(Ω) (the usual Sobolev space) where Ω has fractal boundary that is

not necessarily the graph of a function and neither needs a cone condition nor an explicit

extension property with the following result:

Theorem (Cor. 3.9). Let D be a well-foliated domain (cf. Def. 3.3) with parameters

(r, L, Iβ, βinf , E) and let ΛN2 (X) be the infimum over all positive elements of the spectrum of

the Laplacian on X ∈ {D,E} subject to Neumann boundary conditions. Suppose ΛN2 (E)ϵ2,

r/ϵ, L/ϵ, Iβ/ϵ and βinf ≍ 1 are bounded away from 0 and ∞. Then there is an explicitly

known constant C ∈ R depending only on D and (r, L, Iβ, βinf , E) such that

ΛN2 (D) ≥ Cϵ−2.

In a secondary step this then allows us to use a modified Whitney cover to obtain

estimates on the spectral counting function NN (Ω, t) of Neumann eigenvalues of snowflake-

like domains Ω:

Theorem (cf. Thm. 4.15). Let Ω ⊂ Rn be uniformly well-covered (cf. Def. 4.1, 4.6) by

{Dϵ
i}i∈Iϵ with #Iϵ ≤ Cϵ−δ for fixed C, δ. Then there is a constant CM (given explicitly in
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Sec. 4.4) depending only on Ω such that

NN (Ω, t) ≤ (2π)−n
πn/2

Γ(n2 + 1)
voln(Ω)t

n/2 + CM t
δ/2.

In many cases this δ is given by the upper inner Minkowski dimension of the boundary.

Recent relatable results include a treatment of mixed boundary conditions by Dekkers,

Hinz, Rozanova-Pierrat and Teplyaev in [24, 43] where, in particular for our purposes,

Poincaré-Wirtinger inequalities are obtained for extension domains Ω ⊂ Rn. However the

corresponding results are far from explicit as they rely on Rellich-Kondrachov embeddings

W 1,p(Ω) ⊂⊂ L1,p(Rn). Therefore such results, while very general, cannot be used for

our purpose and instead we employ a modification of a method introduced by Netrusov-

Safarov in [80]. This is originally formulated for bounded variation domains with the

crucial property that their boundary can locally be described as a graph of a sufficiently

regular function. In this context we introduce a new framework of well-foliated domains

(Def. 3.3) allowing us to generalise results of Netrusov and Safarov in particular to domains

that cover an inner ϵ-parallel neighbourhood of snowflake-like domains and thus partially

resolving a question about possible generalisations raised in the aforementioned work.

This generalisation is achieved in Sec. 3.2 by introducing a new method of constructing

paths from the interior of a domain heading to its boundary, foliating this region but

leaving the Jacobian of the corresponding coordinate transformation sufficiently regular

but potentially unbounded. This reflects the fact that domains with fractal boundary

often have infinite circumference. The framework of well-foliated domains is designed to

embed well into the concept of quasidisks (i.e. the quasiconformal image of a disk) based

on a result by Rohde in [91]. There it is shown that any quasidisk is bi-Lipschitz equivalent

to a specific kind of snowflake-like domain called Rohde snowflake. We show (Prop. 3.14)

that the aforementioned method of constructing paths to the boundary applies to many

Rohde snowflakes and thus making them well-foliated. Since any bi-Lipschitz image of a

well-foliated domain is again well-foliated (Prop. 3.7), this allows a relatively general class

of planar domains for which explicit results are obtainable. By a famous result of Jones
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in [49], any planar topological disk for which the Neumann Laplacian has empty essential

spectrum is a quasidisk. In higher dimensions however, analogous statements are more

involved.

Our approach on the asymptotic behaviour of the spectral counting function is based on

a classical application of Dirichlet-Neumann bracketing using a modified Whitney cover (see

the proof of Thm. 4.15). Directly finding an explicit lower bound for the first non-trivial

eigenvalue of covering domains under Neumann boundary conditions allows us to avoid

using non-constructive methods based on the compactness of embeddings of Sobolev spaces.

It also allows a simple proof that the essential spectra of the Laplace operator subject to

Neumann boundary conditions on well-covered domains (cf. Def. 4.1 and Cor. 4.18) is

empty. Such explicit lower bounds for the first non-trivial Neumann eigenvalues of covering

domains then put us in the position to formulate explicit upper bounds on remainder

terms of spectral counting functions for snowflake-like domains. We include an explicit

application to Koch snowflake-like domains in Sec. 4.3.1 and find that

NN (K, t) ≤
vol2(K)

4π
t+ 104326 tlog3 2,

where NN (K, t) denotes the number (with multiplicity) of Neumann eigenvalues ≤ t of the

Koch snowflake K. To the author’s knowledge this is the first explicit upper bound for the

remainder term of the Neumann counting function of the classical Koch snowflake. This

complements existing results on such asymptotic behaviour as found by Lapidus in [65]:

Theorem (Thm. 2.1 in [65]). Let Ω be a domain and ND(Ω, t) and NN (Ω, t) be the counting

function of Dirichlet, resp. Neumann eigenvalues on Ω. Suppose the upper Minkowski

dimension of ∂Ω is given by δ ∈ (n − 1, n). If Ω has upper inner Minkowski content, the

remainder term of ND(Ω, t) is O(tδ/2). If the upper “full” Minkowski content exists then

the remainder term of NN (Ω, t) is O(tδ/2).

Besides making the above result explicit and allowing δ = n− 1, we are able to refine

Lapidus’ result by weakening the conditions under which such asymptotic upper bounds

exist by showing that the existence of an upper inner Minkowski content is in fact sufficient
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versus the stronger condition of existence of the upper “full” Minkowski content.

Theorem (cf. Prop. 4.4, Thm. 4.7). Thm. 4.15 applies to uniformly well-covered domains

with finite and positive upper inner Minkowski content.

By an observation of Netrusov-Safarov, the result on asymptotic remainder terms of

spectral counting functions is order-sharp in the sense that there are domains which have

the growth behaviour obtained as upper bound (in fact such domains can even be Lipschitz

domains). Finally it is worth mentioning an independent result by Gol’dshtein-Pchelintsev-

Ukhlov in [34] on estimates of the first non-trivial Neumann eigenvalue in quasidisks. This

approach directly uses a quasiconformal map which we avoid in our approach which does

also not explicitly rely on quasiconformality.

Since remainder term estimates for Neumann counting functions hold true for Dirichlet

counting functions, there are numerous possibilities to further analyse spectra of fractal

objects. One option is to apply renewal theoretic ideas based on Lalley’s work in [64]

to so-called fractal sprays, i.e. a disjoint union of infinitely many images of a common

domain (often called gap). This concept was introduced by Lapidus (see for example [70])

and analysed extensively therein. However the analysis was limited to fractal sprays where

the gap itself had regular boundary. Based on results of Kombrink in [58, 59] it is possible

to construct fractal sprays with several non-trivial asymptotic terms that correspond to

geometrical information of the fractal spray as discussed in [61] by Kombrink and the

author.

Structure. This work is structured as follows. In Ch. 2 we summarise several background

results and concepts used throughout. In Sec. 2.1-2.2 we cover necessary functional analytic

background focusing on the effect of Dirichlet and Neumann boundary conditions on the

spectrum of the Laplacian on a domain with possibly fractal boundary. In Sec. 2.3 we then

treat the necessary elements of fractal geometry, namely Hausdorff measure and dimension

as well as Minkowski content and dimension. Three classical variants of construction of

domains with fractal boundary are mentioned in Sec. 2.4 and in particular we define p-

Rohde snowflakes. We finish the chapter constructing Whitney covers in Sec. 2.5 and



Chapter 1. Introduction 7

finding bounds for the number of Whitney cubes necessary to cover a domain up to an

inner ϵ-parallel neighbourhood and summarising known results on asymptotic behaviour

of spectral counting functions of Laplacians in Sec. 2.6. In Ch. 3 we prove an explicit

spectral gap (Sec. 3.1) and present the framework of well-foliated domains (Sec. 3.2). We

show how p-Rohde snowflakes are included in this framework and discuss limiting cases

and counter examples in Sec. 3.3. Ch. 4 aims at using the results from the previous chapter

to obtain upper bounds for remainder terms of spectral counting functions. In Sec. 4.1 we

then introduce the concept of well-covered domains as domains that allow a well-controlled

cover by well-foliated domains and show that often p-Rohde snowflakes and similar domains

fall into this class. We recover existing results by Netrusov and Safarov in Sec. 4.2 and

finally show how well-covered domains allow upper bounds for remainder terms in Sec. 4.3.

Ch. 5 is devoted to fractal sprays and in particular to domains consisting of infinitely

many disjoint images of a common domain with fractal boundary. We focus on a class

of examples constructed in Sec. 5.2 and combine renewal theoretic results with remainder

term estimates for the Koch snowflake to obtain asymptotic expansions with several terms

for such fractal sprays. We then compare the asymptotic behaviour of spectral counting

functions with the asymptotic behaviour of the area of inner ϵ-parallel neighbourhoods.

Finally we collect different possible directions of further research in Ch. 6.

Notation. We use the following definitions throughout this document.

• Br(x) := {y : ∥y−x∥ < r} denotes the open ball of radius r centered at x in a metric

space.

• 0 /∈ N and N0 := N ∪ {0}.

• A ⊂ B includes equality.

• The cardinality of a set X is denoted by #X.

• Rn is understood as Euclidean space.

• X is the closure of X ⊂ Rn, int(X) is its interior.
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• If the meaning is not affected, we sometimes omit brackets (for example intX =

int(X)).

• The n-dimensional Lebesgue measure of a measurable set X is denoted by voln(X).

For intervals I the Lebesgue measure is sometimes denoted by |I|.

• For any set of real valued functions from an (n− 1)-dimensional cube Qn−1, denoted

by X ⊂ Map(Qn−1,R) we define X-domains as the set of domains Ω for which

every point x ∈ ∂Ω admits an open neighbourhood Ux ⊂ ∂Ω and an orthogonal

transformation Ox ∈ O(n) such that Ox(Ux) is a graph of some f ∈ X. The to-

pological dimension of these sets will always be clear from context. We then write

Ω ∈ X(Qn−1) or Ω ∈ X(Rn−1) if a cube Qn−1 is not specified.

• X ⊔ Y denotes the union of two disjoint sets X,Y .

• To simplify notation, we sometimes use ≪, ≫ and ≍ with the following meaning: For

two real-valued functions f, g with common domain of definition D we write f ≪ g if

there exists a constant c ∈ R such that f(x) ≤ cg(x) holds for all x ∈ D. Moreover,

we write f ≍ g if f ≪ g and f ≫ g.



Chapter 2

Background

We collect relevant results and concepts from functional and fractal analysis used through-

out. We start by discussing standard results on the theory of Laplace operators and

their spectra including Poincaré inequalities, Courant’s Min-Max-Principle, and differences

between the Laplace spectrum subject to Dirichlet and Neumann boundary conditions. It

turns out that the spectrum of Laplace operators subject to Dirichlet boundary condi-

tions is significantly simpler than under Neumann boundary conditions since the essential

spectrum is always empty in the first case. We cover criteria that ensure emptiness of the

essential spectrum under Neumann boundary conditions and discuss domain monotonicity.

Moreover we define spectral counting functions as well as fractal dimensions and Whitney

covers. The relevant functional analytic results stated here may be found for example in

[22, 26, 51, 76, 89, 98, 111] whenever not explicitly referenced. References to the necessary

fractal geometric background can be found in Falconer’s works [27, 28].

2.1 The Laplace operator and its spectrum

Let Ω ⊂ Rn be a domain, i. e. a bounded open connected subset of Euclidean Rn and

denote its boundary by ∂Ω. Let H1(Ω) = W 1,2(Ω) denote the usual Sobolev space, i. e.

the set of all weakly differentiable u ∈ L2(Ω) with a weak derivative ∇u ∈ L2(Ω). We

equip H1(Ω) with the usual inner product (u, v)H1(Ω) := (u, v)L2(Ω) + (∇u,∇v)L2(Ω) with

9
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which H1(Ω) becomes a Hilbert space. Further, H1
0 (Ω) ⊂ H1(Ω) denotes the closure of

the space of compactly supported smooth functions in H1(Ω). We consider the positive

Laplacian −∆ := −
∑n

i=1 ∂
2
i on Ω and the corresponding eigenvalue equation of −∆ sub-

ject to Neumann (2.1) or Dirichlet (2.2) boundary conditions


−∆u = λu in Ω

∂u
∂n = 0 on ∂Ω

(2.1)


−∆u = λu in Ω

u = 0 on ∂Ω
(2.2)

where n denotes the exterior normal to ∂Ω if ∂Ω is differentiable. Regardless of the

regularity of ∂Ω, the variational formulation, implied by Green’s identity, of the prob-

lem (2.1) is stated as follows: Find u ∈ H1(Ω) such that (∇u,∇v)L2(Ω) = λ(u, v)L2(Ω)

for all v ∈ H1(Ω). Note that the space in which this problem is studied dictates the

boundary condition; the variational formulation of (2.2) replaces H1(Ω) with H1
0 (Ω): Find

u ∈ H1
0 (Ω) such that (∇u,∇v)L2(Ω) = λ(u, v)L2(Ω) for all v ∈ H1

0 (Ω). Analogously, re-

placing H1(Ω) with any other closed subspace V satisfying H1
0 (Ω) ⊂ V ⊂ H1(Ω) gives

rise to variational problems with more general boundary conditions. Whenever needed, we

distinguish between different boundary conditions by an index D for Dirichlet boundary

condition and N for Neumann boundary condition. In particular we write ∆D and ∆N for

the Laplace operator with Dirichlet, resp. Neumann boundary condition.

Next, we cover necessary notation for the definition of a spectral counting function

stressing the implications and differences between Dirichlet and Neumann boundary con-

ditions. In this work, we focus on the Neumann case and to understand the difficulties that

arise from fractal boundaries, it makes sense to discuss where the spectral differences to the

Dirichlet case lie. Recall that an eigenvalue of a bounded self-adjoint operator T : X → X

on a Hilbert space X is a λ ∈ C for which T − λ idX is not injective.

Definition 2.1 (Spectrum of a bounded operator). Let T : X → X be a bounded self-

adjoint operator on a Hilbert space. Then we define the spectrum of T as σ(T ) := {λ ∈

C : (T − λ idX) does not have a bounded inverse}. We decompose σ(T ) = σd(T )⊔ σess(T )

into the discrete spectrum and the essential spectrum: The essential spectrum σess(T ) is

defined as the set of all λ ∈ σ(T ) for which ker(T − λ idX) or coker(T − λ idX) is infinite
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dimensional. It turns out (see for example the spectral characterisation by Reed-Simon in

[89, VII.3]) that indeed σd(T ) is discrete and only contains eigenvalues of finite multiplicity.

A classical result of early functional analysis is the characterisation of the spectrum

of −∆ under Dirichlet boundary conditions. The bilinear Dirichlet form E : H1(Ω) ×

H1(Ω), (f, g) 7→
∫
Ω∇f∇gdx =: (∇f,∇g)L2(Ω) is bounded, i.e. |E(f, g)| ≤ ∥f∥∥g∥, by

Cauchy-Schwartz. Poincaré inequalities (see below) then show that E is also coercive, i.e.

∃m (namely m = 1
1+C2 ) such that E(f, f) ≥ m∥f∥2.

Theorem 2.2 (Poincaré inequality for H1
0 (Ω)). Let Ω ⊂ Rn be any domain and 1 ≤ p <

∞. Then there is C (called Poincaré constant) such that for any f ∈ H1
0 (Ω) one has

∥f∥Lp(Ω) ≤ C∥∇f∥Lp(Ω).

The following is essentially a corollary of Riesz’ representation theorem.

Theorem 2.3 (Lax-Milgram). Let B be a bounded and coercive bilinear form on a Hilbert

space H. Then for any g ∈ H ′ there is a unique f with B(f, φ) = g(φ) for all φ ∈ H.

This map H ′ → H, g 7→ f is bounded has a bounded inverse.

Now for any g ∈ L2(Ω), the operator (φ 7→ (g, φ)L2(Ω)) is ∈ H1
0 (Ω)

′ so that there is

a unique f ∈ H1
0 (Ω) with E(f, φ) = (g, φ)L2(Ω) for all φ ∈ H1

0 (Ω). We denote this map

as −∆−1 : L2(Ω) → H1
0 (Ω), g 7→ f . By Green’s identity this map is formally self-adjoint.

In many cases, one can deduce the discreteness of the spectrum of ∆ as described above

by the spectral theorem. In the Dirichlet case this is achieved by Sobolev embedding

theorems implying that ι : H1
0 (Ω) ↪→ L2(Ω) is a compact embedding. In particular this

shows ι∆−1 : L2(Ω) → L2(Ω) is a compact self-adjoint operator.

Theorem 2.4 (Spectral theorem for compact operators). Let K : H → H be a compact

self-adjoint operator on a Hilbert space H. Then, up to eigenvalue 0, the operator K has

bounded discrete spectrum σ(K) = σd(K) consisting of a null sequence {λn}n∈N with finite

multiplicity and only accumulation point 0.

With the definition of the Rayleigh quotient one finds a formal expression for the nth

Laplace eigenvalue as follows:
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Theorem 2.5 (Max-Min and Min-Max-Principle for Dirichlet and Neumann Laplacian).

Let Ω be an arbitrary fixed domain. Define the Rayleigh quotient ρ(f) :=
∥∇f∥2

L2

∥f∥2
L2

and

write ΛBn (Ω) := min{inf σess (−∆B(Ω)) , λ
B
n (Ω)} for a boundary condition B ∈ {N,D}

(i.e. Neumann or Dirichlet) where λBn (Ω) denotes the nth entry (counted with multiplicity)

in the discrete spectrum of −∆B defined on Ω. Then

ΛDn (Ω) = sup
ψ1,··· ,ψn−1

inf
ψ∈H1

0 (Ω)\{0}
{ρ(ψ) : ψ ⊥ ψ1, · · · , ψn−1}

= inf
W∈H1

0 (Ω):
dim(W )=n

sup
w∈W

ρ(w).

ΛNn (Ω) = sup
ψ1,··· ,ψn−1

inf
ψ∈H1(Ω)\{0}

{ρ(ψ) : ψ ⊥ ψ1, · · · , ψn−1}

= inf
W∈H1(Ω):
dim(W )=n

sup
w∈W

ρ(w).

In particular, since the constant function trivially minimises the Rayleigh quotient in the

Neumann case,

ΛN2 (Ω) = inf
v∈H1(Ω)\{0}:∫

Ω vdx=0

∥∇v∥2L2(Ω)

∥v∥2
L2(Ω)

. (2.3)

The following corollary then explains why Poincaré inequalities (and Poincaré-Wir-

tinger inequalities as presented in Thm. 2.8) are sometimes referred to as spectral gap

theorems:

Corollary 2.6 (Spectral gap). Let Ω be an arbitrary domain. Writing 1⊥ for the set of

functions on Ω with vanishing integral,

ΛN2 (Ω) ≥ L−1 ⇔
(
∥u∥2L2(Ω) ≤ L∥∇u∥2L2(Ω) ∀u ∈ H1(Ω) ∩ 1⊥

)
.

Under both, Dirichlet and Neumann boundary conditions, the spectrum of the corres-

ponding Laplacian ∆D, resp. ∆N is well-known to be non-negative.
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The Dirichlet case. Since any eigenfunction is necessarily non-zero, 0 < λD1 (Ω) on any

domain Ω. The Poincaré inequality for H1
0 (Ω) for an arbitrary domain Ω implies that

the spectrum of the Dirichlet Laplacian is a discrete set λD1 (Ω) ≤ λD2 (Ω) · · · with finite

multiplicity which has a single accumulation point at ∞. In other words, σess(∆D) = ∅.

The Neumann case. In sharp contrast to the Dirichlet case, for any domain Ω and

therefore independent of geometrical properties, one has λN1 (Ω) = 0. Secondly the essential

spectrum of the Neumann Laplacian on a domain Ω is harder to control. As sketched

above, the existence of a Poincaré inequality paired with a suitable Sobolev embedding

theorem implies the discreteness of the spectrum of the Laplace operator on a given domain.

Focusing on explicit estimates of eigenvalues subject to Neumann boundary conditions

on domains with irregular boundary, this leaves us with two problems: Find a suitable

formulation of a Poincaré inequality for H1(Ω) and explain how a spectral theorem can be

applied to an inverse Neumann Laplacian ∆−1
N : L2(Ω) → H1(Ω). To the first problem,

variants of the Poincaré inequality exist that remain valid on H1(Ω) for certain classes

of domains. Often formulated for Lipschitz domains Ω ∈ Lip(Rn) or C1-domains, more

general versions of Thm. 2.8 are also known for continuous domains, i.e. Ω ∈ C0(Rn) as

presented for example by Burenkov in [14, 4.3-4.4]. We will discuss more general versions

after defining extension domains in Def. 2.13. From Ch. 3 onwards we focus on domains

with fractal boundary which are not necessarily locally graphs. For the second problem we

will define classes of domains (and in particular quasidisks) that allow a compact embedding

analogous to the case of Dirichlet boundary conditions.

Definition 2.7. A domain X ⊂ Rn satisfies the cone condition if there is a height h > 0

and opening angle α ∈ (0, π/2) such that for any point x ∈ X there is a cone Coneh,α(x) ⊂

X of height h and opening angle α with cusp x.

Theorem 2.8 (Poincaré-Wirtinger inequality for Lipschitz domains or domains with cone

condition, cf. [15, 24], Thm. 5.4 in [2]). Let 1 ≤ p ≤ ∞ and Ω ∈ Rn be a Lip(Rn)-domain

or a domain with cone property. Then there is a C depending only on Ω such that for any
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u ∈ H1(Ω)

∥∥∥∥u− 1

volnΩ

∫
Ω
udx

∥∥∥∥
Lp(Ω)

≤ C ∥∇u∥Lp(Ω) .

The constant C will be called Poincaré-Sobolev constant.

Remark 2.9. Under certain variants of definitions of Lipschitz domains and cone conditions,

cone condition domains and Lipschitz domains coincide. See for example Def. 2.4.1; 2.4.5

and Thm. 2.4.7 in [42] by Henrot-Pierre. In our definition an open slit unit square (0, 1)2 \

({1/2} × (0, 1/2)) has a cone property but is not Lipschitz while every Lipschitz domain

also satisfies a cone condition as shown for example by Burenkov in [14, 4.3].

Results such as Thm. 2.8 are restricted by the regularity conditions on ∂Ω. This

restriction is fundamentally unavoidable as can be shown by the following construction

based on an example of Courant-Hilbert in [21, Ch. VI, §2.6], cf. also the variants by

Cardone-Khrabustovskyi and Hempel-Seco-Simon in [16, 41].

Example 2.10. There are domains in which Thm. 2.8 is false. In other words, there are

domains D with inf σess(−∆N (D)) = 0. To see this, consider the following example of

a “room with infinitely many narrow passages” as shown in Fig. 2.1. Let 1 > ϵ > 0 be

sufficiently small and consider the domain D given by a unit square Q and a family of

squares Qk with parallel sides and side lengths (ϵk)k∈N attached to Q by narrow passages

of width ηk = ϵ4k and length ϵk. Now for every m ∈ N define ψm on D piecewise as

follows: ψm|Qm = ϵ−k, ψm|Q = cm and ψm changes linearly in the passage between Q and

Qm with cm fixed such that
∫
D ψmdx = 0.1 Then ψm ∈ H1(D) and ψm ⊥ 1 for all m. But

since
∫
Qm

|ψm|2dx = 1 for all m, cm → 0 as ϵm → 0 and limm→∞ ∥∇ψ∥2L2(D)ϵ
3m/ηm = 1.

Therefore limm→∞ ∥∇ψm∥2L2 = 0 and limm→∞ ∥ψm∥2L2 = 1.

In particular this shows that in difference to the Dirichlet spectrum, the Neumann

spectrum of a domain Ω does not allow for estimates under general transformations of the

domain. Indeed the spectrum of Neumann Laplacians is hardly controlled in the general
1Of course one can drop the condition of

∫
D
ψmdx = 0 and instead consider ψm − 1

voln D

∫
D
ψmdx as done

in Thm. 2.8.
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Q

ηk

ϵk

ϵk

ϵk

Qk

· · ·

Figure 2.1: The domain D as constructed in Ex. 2.10
whose essential spectrum of the Neumann Laplacian reaches 0,
inf σess(−∆N ) = 0. For better visualisation, the width ηk is not
to scale. Since the size of each attached small “room with narrow
passage” is scaled down by a factor of ϵ and ηk = ϵ4k, the total
measure necessary to accommodate {Qk}k∈N is finite.

case as was shown in the following result by de Verdière and Hempel-Seco-Simon:

Proposition 2.11 ([19, 41]). Any closed subset of R≥0 is the essential spectrum of the

Neumann Laplacian on a planar domain. Any set of N positive values coincides with the

first N non-trivial Neumann eigenvalues on a planar domain.

Several criteria have been found which ensure the emptiness of the essential spectrum.

As motivated above, one has the following criterion based on compact embeddings origin-

ally formulated by Rellich.

Theorem 2.12 ([90], see also Prop. 10.6 in [98]). The Neumann spectrum is discrete iff
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the inclusion ι : H1(Ω) ↪→ L2(Ω) is compact.2

In terms of capacities, Maz’ya showed in [75] that ι is compact iff

lim
M→0

inf
t∈(0,M)

t−1 inf
voln(F1)≥t
voln(F2)≤M

c(F1, F2) = 0.

Here, c(F1, F2) := inff∈V (F1,F2)

∫
Ω |∇f |2dx is called relative capacity where V (F1, F2) :=

{f ∈ C∞(Ω) : f |F1 = 1, f |F2 = 0} for any two disjoint F1, F2 ⊂ Ω that are closed in Ω

giving possible descriptions of such domains.

In contrast, Dirichlet boundary conditions allow for a simple but crucial observation:

Any function f ∈ H1
0 (Ω) can be extended by 0 to any superset of Ω without altering its

H1-norm. We finish this section by collecting some results relating the geometry of the

boundary to vanishing essential spectra.

Definition 2.13. A domain Ω ⊂ Rn is called extension domain if there is a bounded linear

extension operator E : H1(Ω) → H1(Rn).3

For any such extension domain the embedding H1(Ω)
E→ H1(Rn) → H1(Br(0)) →

L2(Br(0)) → L2(Ω) is compact with r = diamΩ. In recent years results on compact

embeddings where formulated in a vast variety of settings. In particular in [35] Gol’dshtein-

Ramm proved a compact embedding if the domain can be approximated from above and

below by Lipschitz functions. While it is known that a Poincaré-Wirtinger inequality

exists for extension domains, as shown for example by Arfi-Rozanova-Pierrat and Dekkers-

Rozanova-Pierrat-Teplyaev in [6, 24], the existence of such Poincaré-Sobolev constants is

commonly shown in a non-constructive way by contradiction using the compactness of

embedding operators.

An early breakthrough discovery regarding extension domains was the following ob-

servation by Jones and Vodop’yanov-Gol’dshtein-Latfullin: Planar extension domains are

characterised as images of disks under quasiconformal maps.
2The original German publication uses the concept of completely continuous operators („vollstetige Op-
eratoren“). Whenever the domain is a Hilbert space, this notion coincides with the usual notion of a
compact operator.

3Sometimes one instead requests existence of an extension for all W 1,p(Ω) →W 1,p(Rn) for all 1 ≤ p ≤ ∞.
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Theorem 2.14 ([49, 109]). Any planar connected and simply connected extension domain

Ω ⊂ R2 is a quasidisk, i.e. the image of the unit disk under a quasiconformal map. In

higher dimensions, any domain D ⊂ Rn is an extension domain if it is an (ϵ,∞)-domain,

i.e. if for any two points x, y ∈ Ω there is a rectifiable curve c in Ω connecting x and y

of length ℓ(c) ≤ |x−y|
ϵ and for all z ∈ c one has dist(z, ∂Ω) ≥ ϵ |x−z||y−z||x−y| . In particular,

quasidisks are always extension domains.

Here, quasiconformal maps are defined as homeomorphisms with bounded distortion.

Precisely, at any point x in a domain X ⊂ Rn we define the distortion of a homeomorphism

f : X → Rn as

H(x, f) := lim sup
r↘0

max|h|=r |f(x+ h)− f(x)|
min|h|=r |f(x+ h)− f(x)|

.

Notice that |f(x + h) − f(x)| is defined for all |h| < r with 0 < r < dist(x, ∂X) so that

H(x, f) exists for all x ∈ X.

Definition 2.15 (Quasiconformal map, [33]). Let X,Y ⊂ Rn be two domains. Then

a map f : X → Y is called quasiconformal if it is homeomorphic and its distortion is

bounded from above everywhere in X, i.e. if supx∈X H(x, f) <∞.

Jones correctly suspected that in higher dimensions quasidisks would no longer exhaust

the set of extension domains, cf. Rem. 2.32. The extensive literature on quasiconformal

maps in turn reveals simple criteria for quasidisks. We mention two well-known results by

Ahlfors (Prop. 2.16) and Jones (Prop. 2.18).

Proposition 2.16 (Ahlfors criterion, [3, 4, 76]). A Jordan curve γ is quasicircular (i.e.

the image of S1 under a quasiconformal map) iff the following is satisfied: for any two

points a, b ∈ γ one has diamΓ ≤ c|a − b|, where Γ ⊂ γ\{a, b} is a connected component

with smallest diameter.

As an application the Koch snowflake can be shown to be a quasidisk and therefore to

have vanishing essential Neumann spectrum.
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Example 2.17. Let K be the Koch snowflake (cf. Sec. 2.4). Then ∂K is a quasicircle based

on the Ahlfors’ criterion. To see this let x, y ∈ ∂K be arbitrary. Stressing the self-similarity

of the Koch snowflake, we may assume without loss of generality that x lies in the leftmost

or second leftmost segment (red and green in Fig. 2.2) and y lies in one of the three other

segments. If instead both x and y lie in the same segment, there is a largest scaled copy of

the Koch curve within that segment containing only one of the two so that the next larger

copy of the Koch curve within the segment contains both x, y in different sub-cylinders; if

no such segment existed, both x, y would coincide, which is trivial. We now discuss these

five cases individually.

(i). If x lies in the red segment and y lies in the blue segment, we find the smallest circle

covering all of the red and all of the blue segment. Let the radius of this circle be

rblue := rb. Let dist(red, blue) := drb. We define crb := 2rb
drb

.

(ii). If x lies in the red segment and y lies in the orange segment, we find the smallest

circle covering all of the red and all of the orange segment. Let the radius of this

circle be rorange := ro. Let dist(red, orange) := dro. We define cro := 2ro
dro

.

(iii). If x lies in the red segment and y lies in the green segment, we may regard the red

and green segments as boundary of another Koch snowflake (indicated in gray in

Fig. 2.2). This reduces the case again to one of the three other cases.

(iv). If x lies in the green segment and y lies in the blue segment, we differ between two

cases.

(a) If at least one of the two points lies outside the pale-red part of the union of

green and blue, both points are separated and we again find the smallest circle

covering all of the green and all of the blue segment. Let its radius be rgb+. Let

dist(green but not pale-red, blue) = drb+. We define crb+ :=
2rgb+
dgb+

.

(b) If both points lie in the pale-red segment, one may start over with the above

classification.
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It remains to explain what happens if the above classification does not terminate. This

can only occur the case (iv)b is called infinitely often. But then x = y which is trivial.

Therefore c := max{crb, cro, cgb+} satisfies the Ahlfors criterion.

Figure 2.2: Koch snowflake dissected into disjoint segments to
show that the Koch snowflake is a quasicircle by the Ahlfors cri-
terion as described in Ex. 2.17. This argument is based on the
idea that at sufficiently small scale any two points will eventually
lie in distinct rescaled segments as shown above or the two points
coincide.

Proposition 2.18 ([49]). Let γ ⊂ Rn be a quasicircle. Then voln(γ) = 0.

Finally, Rohde gave a complete classification of quasicircles up to bi-Lipschitz maps.

One goal of Ch. 3 is to provide explicit Poincaré-Sobolev constants for domains covering

ϵ-parallel neighbourhoods of quasicircles up to bi-Lipschitz maps. To formulate the classi-

fication it is necessary to define p-Rohde snowflakes which is done in Def. 2.33. In contrast

to more general mapping theorems that guarantee the existence of a, say bi-holomorphic,

map Ω → Ω′ for sufficiently regular domains, we will see in Prop. 2.30 that bi-Lipschitz

maps preserve the Minkowski dimension of the boundary.

Theorem 2.19 ([91]). Let Ω be a quasidisk. Then there is a global bi-Lipschitz function

f : R2 → R2 that maps Ω to a p-Rohde snowflake with p ∈
[
1
4 ,

1
2

)
.

Independent of this work and using a different techniques Gol’dshtein-Pchelintsev-

Ukhlov recently found estimates for Poincaré-Sobolev constants for p-Rohde snowflakes

in [34] based on quasiconformal geometrical information. In 2021 an approach to domains

with locally self-similar boundary was developed by Banjai-Boulton in [8].
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2.2 Dirichlet-Neumann bracketing

We now present the technique known as Dirichlet-Neumann bracketing which allows treat-

ing a domain as a union of much simpler covering domains. To this end with the spectral

counting function we now define spectral counting functions as crucial object in this work.

Definition 2.20 (Spectral counting function). For a domain Ω and boundary condition

B ∈ {D,N} with σess(−∆B(Ω)) = ∅, we define the spectral counting function (also called

eigenvalue counting function) t 7→ NB(Ω, t) as the number of eigenvalues less or equal to

t ∈ R (with multiplicity) of −∆B on Ω. NN (Ω, t) will often be called Neumann counting

function and analogously ND(Ω, t) will often be called Dirichlet counting function.

Thm. 2.5 implies a number of regularity results of Dirichlet and Neumann eigenvalues

of the Laplace operator. In particular it provides an estimate of eigenvalues that can be

applied to open covers:

(i). Assuming σ(−∆N (Ω)) = ∅ one has λNk ≤ λDk ∀k ∈ N because H1
0 (Ω) is isometrically

embedded in H1(Ω) by extension with 0. In terms of the spectral counting functions

this may be written as ND(Ω, t) ≤ NN (Ω, t) ∀t. In fact more is true: By the Min-

Max principle in Thm. 2.5, λNk is minimal amongst all kth eigenvalues for mixed

boundary conditions corresponding to some closed V with H1
0 (Ω) ⊂ V ⊂ H1(Ω) as

long as the essential spectrum is empty.

(ii). (Domain monotonicity). Let Ω′ ⊂ Ω be two domains. Then λDn (Ω
′) ≥ λDn (Ω),

since H1
0 (Ω

′) is isometrically embedded in H1
0 (Ω) be extending with 0. Contrary to

common belief and occasional statements like [50, Remark to Cor. 8.5.2]4, there is

no analogous domain monotonicity for Neumann eigenvalues. See Rem. 2.21 for an

example.

(iii). Let Ω1,Ω2 ⊂ Ω be two disjoint subdomains on which the Neumann Laplacian has

empty essential spectra such that Ω = Ω1∪Ω2. Then λDn (Ω) ≤ min(λDn (Ω1), λ
D
n (Ω2))

and λNn (Ω) ≥ max(λNn (Ω1), λ
N
n (Ω2)). This follows from the mapsH1

0 (Ω1)⊕H1
0 (Ω2) →

4This was corrected in the 2nd and 3rd edition.
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H1
0 (Ω) via (f1, f2) 7→

Ω ∋ x 7→


f1 if x ∈ Ω1

f2 if x ∈ Ω2

 and H1(Ω) → H1(Ω1)⊕H1(Ω2)

via f 7→ (f |Ω1 , f |Ω2).

(iv). Writing αΩ := {x ∈ Rn : α−1x ∈ Ω} for α > 0, one has NB(αΩ, t) = NB(Ω, α
2t)

for B ∈ {D,N}. This is because of an isomorphism (α−1)∗ : H1(Ω) → H1(αΩ), u 7→

u ◦ α−1 and equally (α−1)∗ : H1
0 (Ω) → H1

0 (αΩ).

Remark 2.21. As shown by Ni-Wang in [82], even for convex planar domains there is no

analogous statement about domain monotonicity as in (ii) above for the Neumann case.

Consider for example the domains Ω′,Ω′′ ⊂ Ω as shown in Fig. 2.3. Then the first non-

trivial Neumann eigenvalues is given by π2

L where L is the longer side of each rectangle.

Therefore d′′ < d < d′ implies

λN2 (Ω′) ≤ λN2 (Ω) ≤ λN2 (Ω′′).

A second example for smooth domains is given by nested annuli. For r < R let Ar,R be

the open annulus with inner radius r and outer radius R. Then

λN2 (Aa,1) > λN2 (Ab,1) while Aa,1 ⊃ Ab,1 if a < b < 1,

λN2 (A1,a) > λN2 (A1,b) while A1,a ⊂ A1,b if 1 < a < b.

In spite of the observation from Rem. 2.21, Funano very recently found a variant of do-

main monotonicity for convex domains in [31]: (Piecewise) smooth convex domains satisfy

domain monotonicity for Neumann eigenvalues up to a constant only depending on the

ambient dimension. More precisely:

Theorem 2.22 ([31]). Let Ω′ ⊃ Ω be convex domains in Rn with piecewise smooth bound-

ary. Then λNk (Ω
′) ≤ (92n)2 λNk (Ω) for all k ∈ N.

Definition 2.23 (Volume cover and multiplicity of a cover). For any domain Ω ⊂ Rn a

volume cover {Ωi}i∈I of Ω consists of at most countably many open sets Ωi ⊂ Ω with
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d′

d

Ω′

Ω

Ω′′

d′′

Figure 2.3: Example of the violation of domain monotonicity of
Neumann eigenvalues.

voln(Ω) = voln
(⋃

i∈I Ωi
)
. For any domain Ω and any cover or volume cover {Ωi}i∈I we

define its multiplicity by µ({Ωi}i∈I) := supx∈Ω#(j ∈ I : x ∈ Ωj). It is not to be confused

with the multiplicity of eigenvalues.

Next and in addition to the classical Dirichlet-Neumann bracketing linking the spectral

counting functions of Dirichlet and Neumann eigenvalues, we mention a version that allows

for non-disjoint covers as long as the elements of the cover do not intersect too often. More

precisely one has the following result which also follows from the Min-Max-Principle.

Proposition 2.24 (Dirichlet-Neumann bracketing with multiplicity, [80]). Let {Ωi}i∈I be

a volume cover of a domain Ω. If the elements of the cover are pairwise disjoint,

∑
i∈I

ND(Ωi, t) ≤ ND(Ω, t) ≤ NN (Ω, t) ≤
∑
i∈I

NN (Ωi, t)

If the volume cover has finite multiplicity µ, then

NN (Ω, t) ≤
∑
i∈I

NN (Ωi, µt).

An immediate corollary relates the difference of Neumann and Dirichlet counting func-

tions with the difference of Dirichlet counting functions and Dirichlet counting functions

on a cover.
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Corollary 2.25. Let {Ωn} be a finite volume cover of a domain Ω. We define Q(Ω′, t) :=

NN (Ω
′, t)−ND(Ω

′, t) for any bounded open set Ω′ and RD(t) := ND(Ω, t)−
∑

n∈NND(Ωn, t).

Then

RD(t) ≤ −Q(Ω, t) +
∑
n∈N

Q(Ωn, t).

Proof. Prop. 2.24 shows that Q(Ω′, t) ≥ 0 and NN (Ω, t)−
∑

nNN (Ωn, t) ≤ 0. Moreover,

RD(t) = ND(Ω, t)−
∑
n

ND(Ωn, t) = NN (Ω, t)−
∑
n

ND(Ωn, t)−Q(Ω, t)

≤
∑
n

NN (Ωn, t)−
∑
n

ND(Ωn, t)−Q(Ω, t) =
∑
n

Q(Ωn, t)−Q(Ω, t).

Therefore any estimate of NN (Ω, t) and ND(Ω, t) with the same asymptotic remainder

term yields a asymptotic estimate of RD(t) by the same asymptotic behaviour as the re-

mainder of the spectral counting functions; for certain bounded variation domains this was

done by Safarov-Filonov in [29]. This result shows that the error committed by erroneously

assuming a cover of a domain to be disjoint will not change the asymptotic behaviour as

long as Neumann and Dirichlet counting functions have a common upper bound.

2.3 Dimensions and contents

We cover the relevant notions of dimensions briefly. The algebraic notion of a dimension

for example as dimension of the tangent space to, say a manifold, is of very limited use

in the context of fractal geometry. Instead scaling properties of volumes of ϵ-parallel

neighbourhoods are used. Let X be any non-empty open bounded subset of Rn with

boundary ∂X. We write the (inner) ϵ-parallel neighbourhood as

Xϵ := {x ∈ Rn : dist(x,X) < ϵ} and

X−ϵ := {x ∈ X : dist(x, ∂X) < ϵ} = (∂X)ϵ ∩X.
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We define Hausdorff measure and dimension. Based on this, in a second step we define a

upper and lower Minkowski dimension and content.

Definition 2.26. Let X ⊂ Rn be bounded. Then we define

Hδ
s(X) := inf

{Ui}i∈I

∑
i∈I

diam(Ui)
s,

where the infimum is taken over all finite open covers {Ui}i∈I of X with diamUi ≤ δ ∀i ∈ I.

As any cover with smaller diameters will also be a cover of larger diameters, the limit δ → 0

exists. We define the s-Hausdorff measure as

Hs(X) := lim
δ→0

Hδ
s(X).

Since for d′ ≤ d and sufficiently small δ,
∑

i∈I diam(Ui)
d ≤

∑
i∈I diam(Ui)

d′δd−d
′ . This

shows that in the limit δ → 0, Hd′(X) <∞ ⇒ Hd(X) = 0 and Hd(X) > 0 ⇒ Hd′(X) = ∞.

Therefore there is a unique jump from in the values of Hs(X) from ∞ to 0 as s increases.

Definition 2.27. The Hausdorff dimension of a bounded set X ⊂ Rn is defined as

dimH(X) := inf{δ : Hδ(X) = 0}.

Notice that the Hausdorff dimension coincides with the usual concept of a dimension

for smooth submanifolds. Moreover one may define a generalised version of the “manifold

dimension” that can be applied to non-differentiable objects.

Definition 2.28 (Topological dimension). Let X ⊂ Rn. Then we define the topological

dimension as dimTop(X) := inf{dimH X
′ : X ′ is homeomorphic to X}.

With the definition of the Hausdorff dimension in mind, we now define the Minkowski

content and corresponding dimension similarly. Often the Minkowski dimension is defined

differently as scaling power of the remainder term in the expansion of voln(Xϵ). For later

results (cf. Prop. 4.4) the following approach appears better suited.

Definition 2.29. Let X,A ⊂ Rn be bounded. Then we define the ϵ-content at scaling

dimension s relative to A, M ϵ
s(X,A) as M ϵ

s(X,A) := voln(Xϵ ∩ A)ϵ−(n−s) and define the
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upper/lower Minkowski content at scaling dimension s relative to A as

Ms(X,A) := lim sup
ϵ↘0

M ϵ
s(X,A) and Ms(X,A) := lim inf

ϵ↘0
M ϵ
s(X,A)

For a domain Ω ⊂ Rn, we then define the upper inner Minkowski content of Ω at dimension

s as Ms(∂Ω,Ω) :=Ms(∂Ω,Ω) whenever this is finite. Likewise one may define a lower inner

Minkowski content as scaling dimension s. Whenever Ms(∂Ω,Ω) ∈ (0,∞), we say that Ω

is upper inner Minkowski measurable at dimension s. We say that the domain is Minkowski

measurable if it is upper and lower Minkowski measurable and both contents relative to

the ambient space A = Rn coincide.

Analogously to a scaling property of the s-Hausdorff content we notice that for fixed

X,A as above and s < t one has

M ϵ
s(X,A) := voln(Xϵ ∩A)ϵ−(n−s) = voln(Xϵ ∩A)ϵ−(n−t)ϵ−(t−s) =M ϵ

t (X,A)ϵ
−(t−s).

This implies that Ms(X,A) < ∞ ⇒ Mt(X,A) = 0 and Mt(X,A) > 0 ⇒ Ms(X,A) = ∞.

We therefore define the upper Minkowski dimension relative to A as dimM (X,A) := inf{s :

M s(X.A) = 0}. The upper inner Minkowski dimension of a set X is the upper Minkowski

dimension relative to itself. For later applications it will be crucial that this dimension is

bi-Lipschitz invariant.

Proposition 2.30. Let F : X → Y be a bi-Lipschitz map between two bounded sets

X,Y ∈ Rn. Then dimM (X,A) = dimM (F (X), A) whenever any of the two expressions

exist.

We finish this section by citing a recent result by Balka-Keleti giving some additional

context about the position of the Minkowski dimension in the spectrum of dimensions. We

refer the reader to Keleti’s paper for details.

Proposition 2.31 ([7]). Let D be a dimension function on the set of compact subsets of

Rn. Here, a dimension function is a function that satisfies the following three conditions.
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(i). If f : X → Rn is a Lipschitz map, D(f(X)) ≤ D(x)

(ii). D is monotone with respect to inclusion, X ′ ⊂ X ⇒ D(X ′) ≤ D(X)

(iii). If X is homogeneous self-similar and satisfies the strong open set condition (meaning

the open set condition as in Thm. 2.36 with X ∩O ̸= ∅), then D(X) = dimH(X)

then dimH(X) ≤ D(X) ≤ dimM (X).

Remark 2.32. Referring to Prop. 2.18 we now have a stronger result formulated in a recent

paper by García-Bravo-Rajala-Takanen in [32]: The Hausdorff dimension of a quasisphere

(or any (ϵ, δ)-domain is never full. However there are extension domains whose bound-

ary has full Hausdorff dimension. Indeed there exist extension domains in R3 that are

homeomorphic to S2 but have full Hausdorff dimension.

2.4 Snowflakes, limit sets of IFS and Moran sets

We present three different constructions of domains with fractal boundary. Besides the

already mentioned p-Rohde snowflakes we include the classical construction of Hutchinson

as well as Moran sets.

Definition 2.33 (p-Rohde curves and snowflakes). Let p ∈
[
1
4 ,

1
2

)
be fixed. Define four

maps (ϕi[p] : R2 → R2)i=1,··· ,4 as

ϕ1[p] : x 7→ px, ϕ2[p] : x 7→
(
p

0

)
+ pRα(x),

ϕ3[p] : x 7→
(

1/2
√
4p−1
2

)
+ pR−α(x), ϕ4[p] : x 7→ px+

(
1− p

0

)
,

where Rα is the usual planar rotation by α about the origin and α = arccos
(

1
2p − 1

)
. A

p-Rohde curve is now built by the following iterative procedure: Starting with the unit

interval I0 := [0, 1] × {0} ⊂ R2 one acts with Φ[q] :=
⋃4
i=1 ϕi[q] with q ∈ {1

4 , p} on I0.

The outcome of this is then read as union of disjoint smaller intervals and one repeats the

procedure on each interval (see Fig. 2.4). A p-Rohde snowflake is built out of 4 p-Rohde
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curves arranged on the boundary of a unit square. If at every level of iteration the q is the

same on all intervals, the curve and snowflake thus constructed is called homogeneous. If

q = p at every level and every interval, the curve and snowflake is called fully homogeneous.

q = 1
4

q = p

q = pq = 1
4

q = 1
4

q = p

Figure 2.4: Illustration of the two possible iterations at the first
two steps of the construction of a p-Rohde curve as described in
Def. 2.33 starting with a unit interval I0 = [0, 1]× {0} at the top.
The individual images of ϕi[ 14 ] are distinguished by dots in Φ[ 14 ].
The two iterations on the bottom line represent examples of non-
homogeneous iterations.

Example 2.34. Any 1
4 -Rohde curve is the unit interval. The Koch curve is the fully homo-

geneous 1
3 -Rohde curve. The Koch snowflake is then defined as the domain whose boundary

is given by the union of three equilateral 1
3 -Rohde curves. The Koch curve may also be

defined as the limit set of the IFS consisting of ϕ1[13 ], · · · , ϕ4[
1
3 ] as defined below.

It is common terminology to denominate a (finite) set of contractions defined on Rn

as iterated function set (IFS). In other words, an IFS is a (finite) set of contractions

ϕi : Rn → Rn. We call supx∈Rn |ϕ′i(x)| the contraction ratio of ϕi.

Consider the set of non-empty compact subsets Comp(Rn) of Rn or more generally of

any complete metric space. Then (Comp(Rn), dH) is again a complete metric space with

the Hausdorff metric given by dH(A,B) := max{supx∈A dist(x,B), supy∈B dist(A, b)}. If

a sequence (Xn)n∈N of non-empty compact subsets converges to a limit X in Hausdorff

metric we write Xn
H→ X.

Any IFS gives rise to a map Φ :=
⋃
i∈Σ ϕi. If the IFS is finite, Φ is a contraction

on Comp(Rn) so that Banach’s Fixed-point theorem gives the following celebrated result
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showing the existence of a limit set (also called attractor), i.e. a non-empty compact set

A with A =
⋃
i∈Σ ϕiA.

Theorem 2.35 (Hutchinson, [45]). Let {ϕi}i∈Σ be a finite IFS on a complete metric space

X. Then there is a unique non-empty compact set A with A =
⋃
i∈Σ ϕiA. Moreover(⋂

k≤nΦ
kX
)
n

H→ A for any non-empty compact X.

Under certain conditions of regularity, simple expressions for dimensions exists for such

attractors. We recall the following classical result for the sake of completeness.

Theorem 2.36 (Moran-Hutchinson formula). Let {ϕi : Rn → Rn}i∈Σ be a finite IFS.

Suppose all ϕi are similarity maps, i.e. if there are Mi ∈ O(n), vi ∈ Rn, ri ∈ (0, 1)

with ϕi(x) = riMi(x) + vi. Moreover suppose the IFS satisfies the open set condition,

i.e. there is an open set O with ϕiO ∩ ϕjO = ∅ ∀i ̸= j and ϕiO ⊂ O ∀i ∈ Σ. Then

dimH A = dimM (A,Rn) = s where s is the unique solution of 1 =
∑

i∈Σ ri
s.

We finally turn our attention to Moran sets which will play a role in Thm. 4.7. We

first recap some common notation for later use (see also Sec. 5.1). For any finite index

set Σ (called an alphabet), we define the set of finite words over Σ as Σfin :=
⋃
k∈N0

Σk,

where Σ0 := {∅}. The set of infinite words is defined as the set of sequences in Σ, Σ∞ :=

ΣN. Finally we set Σ∗ := Σfin ∪ Σ∞. On Σfin we define the right-shift σ as σ : w =

(w1w2 · · ·wm) 7→ (w1w2 · · ·wm−1) and σ(∅) := ∅. If {ϕi}i∈Σ is a family of maps, any

finite word (also called code) Σfin ∋ w = (w1w2 · · ·wm) defines a map by composition,

ϕw := ϕw1 ◦ · · · ◦ ϕwm . We define ϕ∅ := id. Lastly for a finite word w ∈ Σk, |w| := k is

defined as the length of the word.

Definition 2.37 ([38, 78]). Let Σfin be as above and suppose J ∈ Comp(Rn) has non-

empty interior. A collection of sets {Ju : u ∈ Σfin} is called Moran structure if

(i). To each u ∈ Σfin there is a similarity map ϕu so that ϕuJ = Ju.

(ii). For any u ∈ Σm−1, the sets {Jui : i ∈ Σ} all lie in Ju, have disjoint interior and

diam Jui
diam Ju

= cm,i with
∑#Σ

k=1 c
n
m,k ≤ 1.
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Then we define the Moran set by
⋂∞
k=1

⋃
u∈Σk Ju.

While the above version of the Moran-Hutchinson formula is often used, the following

variant of the Moran-Hutchinson formula includes the situation of Moran sets.

Proposition 2.38 (Cf. [38] and the references therein). Let M be a Moran set with ratios

cm,i as above with infm,i{cm,i} > 0. Let sq be the unique solution of

s 7→
q∏

m=1

#Σ∑
i=1

csm,i = 1.

Then dimHM = lim infq→∞ sq and dimMM := lim supq→∞ sq.

Remark 2.39 (p-Rohde snowflakes as Moran sets). Let p ∈ [1/4, 1/2) as before and J be

the equilateral triangle of base length I0 = [0, 1] and legs of length √
p. Setting ϕi := ϕi[q]

for q ∈ {1/4, p} defines an index set Σ := {1, · · · , 4} and for any Σfin ∋ (u1u2 · · ·uk) = u

we define ϕu by concatenation of maps as usual. By construction of p-Rohde snowflakes for

any u ∈ Σfin, maps ϕui = ϕu ◦ ϕi[q] have the same q for all i ∈ Σ. In this setup ϕuiJ ⊂ Ju

with intϕuiJ ∩ intϕujJ = ∅ ∀i ̸= j as desired and the corresponding cm,i coincide with the

contraction ratios of the maps ϕi.

Example 2.40. A simple application of the above Moran-Hutchinson formula yields: The

boundary of a fully homogeneous p-Rohde snowflake has Minkowski dimension is − logp 4.

In particular the Minkowski dimension of the boundary of a Koch snowflake is log3 4.

2.5 Regularisation of Ω \ Ω−ϵ by Whitney covers

Whitney covers are a common construction used to prove estimates on spectral counting

functions by approximating a domain by a discrete union of cubes. Let Ω ⊂ Rn be an

arbitrary domain. A Whitney cover of Ω is a volume cover of Ω by cubes of different

sizes such that a cube containing x ∈ Ω has a diameter that is uniformly comparable to

dist(x, ∂Ω). The construction of such a cover is well known and sometimes attributed to

Whitney, who used it to study extensions of functions for example in [114]. However, a
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similar idea had in fact already been published by Courant-Hilbert in [20, Ch. VI. §4.4] in

1924 when Whitney was only 17. For the sake of completeness we include the construction

from [102, Ch. VI. §1], as the notation employed here will be used in later results: Consider

the nested family of lattices
{
2−kZn

}
k∈Z. To each point p = (p1, . . . , pn) in the lattice

2−kZn we take the open cube
∏n
i=1

(
pi, pi + 2−k

)
with diagonal of length 2−k

√
n in the

positive quadrant of p. The set of these cubes is denoted by Cubes(2−kZn). We then slice

up Ω into sectors and cover them individually:

Wk :=
{
Q ∈ Cubes(2−kZn) : Q ∩

(
Ω−2−k+2

√
n\Ω−2−k+1

√
n

)
̸= ∅
}

(2.4)

W ′ :=
⋃
k∈Z

Wk.

Since Ω =
⋃
k∈Z

(
Ω−2−k+2

√
n\Ω−2−k+1

√
n

)
, it follows that volnΩ = voln

(⋃
Q∈W ′ Q

)
. For

the following, let Q ∈ W ′ and let k ∈ Z be so that Q ∈ Wk. Then by definition,

diam(Q) = 2−k
√
n and there exists x ∈ Q∩

(
Ω−2−k+2

√
n\Ω−2−k+1

√
n

)
. For this x we have

2−k+1√n ≤ dist(x, ∂Ω) ≤ 2−k+2√n. Furthermore, dist(Q, ∂Ω) ≤ 2−k+2√n = 4diam(Q).

Moreover, we have diam(Q) = 2−k+1√n− 2−k
√
n ≤ dist(x, ∂Ω)− diam(Q) ≤ dist(Q, ∂Ω).

However, W ′ might contain overlapping cubes. To rule out such cubes, observe that any

two intersecting cubes are nested. Suppose two cubes Q,Q′ intersect with Q ⊂ Q′. Then

by the above

diam(Q′) ≤ dist(Q′, ∂Ω) ≤ dist(Q, ∂Ω) ≤ 4 diam(Q).

This shows that to any nested sequence of intersecting cubes in W ′ there is a unique

maximal cube containing all others. We define W ⊂ W ′ as the set of all those maximal

cubes, which then are pairwise disjoint and W inherits the other properties from W ′. Such

a volume cover will be called a Whitney cover . The cubes used in this cover shall be called

Whitney cubes. The above consideration proves:

Lemma 2.41 (Existence of Whitney covers, Ch. VI. §1 in [102]). Let Ω ⊂ Rn be a domain.
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Then there is a volume cover of Ω consisting of pairwise disjoint cubes {Q}Q∈W and

diam(Q) ≤ dist(Q, ∂Ω) ≤ 4 diam(Q) ∀Q ∈ W. (2.5)

Based on this, we have an immediate estimate on the number of cubes of a certain size

in a Whitney cover. This result will play a crucial role in the proof of Thm. 4.15 since it

allows us to estimate the number of cubes that are necessary to cover Ω \ Ω−ϵ.

Proposition 2.42 (Cardinality of slices of Whitney covers). Let W be a Whitney cover

of a domain Ω ⊂ Rn, as constructed above. Suppose that there exists δ ∈ [n − 1, n) such

that Mδ(∂Ω,Ω) ∈ (0,∞). Then there is an MΩ ∈ R such that #Wk ≤ MΩ2
kδ.

A similar result with the upper inner Minkowski content replaced with the δ-Hausdorff

measure Hδ was obtained by Käenmäki-Lehrbäck-Vuorinen in [63].

Proof. Let dk := 2−k
√
n. By construction of Wk as in (2.4),

#Wk ≤
voln

(
Ω−(4dk+dk)

)
− voln

(
Ω−(2dk−dk)

)
2−kn

<
voln(Ω−5·2−k

√
n)

2−kn
.

Defining ϵ′(ϵ) := ϵδ−n voln(Ω−ϵ)/Mδ(∂Ω,Ω)− 1, we have

#Wk ≤ Mδ(∂Ω,Ω)
(
1 + ϵ′

(
5
√
n2−k

)) (
5
√
n
)n−δ

2kδ.

Then for MΩ := supkMδ(∂Ω,Ω)
(
1 + ϵ′

(
5
√
n2−k

))
(5
√
n)
n−δ and the assertion follows

from lim supϵ→0 ϵ
′(ϵ) = 0.

Proposition 2.43. Let Ω ⊂ Rn be bounded with δ := dimM (∂Ω,Ω) <∞ and upper inner

Minkowski content Mδ(∂Ω,Ω) ∈ (0,∞). Let W be a Whitney cover of Ω and for any

ϵ > 0, let

Wϵ := {Q ∈ W : Q ∩ (Ω\Ω−ϵ) ̸= ∅} ,

in other words, Wϵ is the smallest collection of Whitney cubes in W that covers {x ∈ Ω :
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dist(x, ∂Ω) ≥ ϵ}. Then there is an AΩ ∈ R such that

voln−1 ∂

 ⋃
Q∈Wϵ

Q

 ≤ AΩ · ϵ(n−1)−δ.

Proof. Since the closure of the outermost cubes in Wϵ intersect ∂Ω−ϵ, the (n− 1)-volume

of the boundary is bounded by the (n − 1)-volumes of the boundaries intersecting ∂Ω−ϵ:

voln−1 ∂
(⋃

Q∈Wϵ
Q
)
≤
∑

Q∈Wϵ:Q∩∂Ω−ϵ ̸=∅ voln−1 ∂Q. Suppose that Q has non-empty inter-

section with ∂Ω−ϵ. Then there exists x ∈ Q such that dist(x, ∂Ω) = ϵ. Now with Lem. 2.41

and dist(Q, ∂Ω) + diam(Q) ≥ supx∈Q dist(x, ∂Ω) ≥ ϵ ≥ dist(Q, ∂Ω), we observe that

5 diam(Q) ≥ ϵ ≥ diam(Q) ≥ ϵ

5
.

With kmin := min{k ∈ Z : 2−k
√
n ≤ ϵ}, the diameter of such a cube is therefore restricted

to one of at most three possible sizes, diam(Q) ∈ {2−kmin
√
n, 2−(kmin+1)√n, 2−(kmin+2)√n}.

Hence, an upper bound of the circumference of
⋃
Q∈Wϵ

Q is

voln−1 ∂

 ⋃
Q∈Wϵ

Q

 ≤
kmin+2∑
k=kmin

∑
Q∈Wk

voln−1 ∂Q = 2n

kmin+2∑
k=kmin

#Wk · 2−k(n−1)

≤ 2nMΩ

2∑
k=0

2−k((n−1)−δ) · 2−kmin((n−1)−δ) ≤ AΩϵ
(n−1)−δ,

where MΩ is defined in Prop. 2.42, AΩ := 2n(2
√
n)δ−(n−1)MΩ

∑2
k=0 2

−k((n−1)−δ) since one

has 2 · 2−kmin
√
n ≥ ϵ and n− 1 ≤ δ.

In particular in the regular case (i. e. when δ = n − 1), Prop. 2.43 shows that the

circumference of the closure of the union of all large enough cubes of a Whitney cover is

bounded.

Proposition 2.44. In the setting of Prop. 2.43 almost all Billard trajectories in
⋃
Q∈Wϵ

Q

are non-periodic.

Proof. We may assume that Wϵ consists only of cubes that have at least one face shared
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with another cube in Wϵ, as the statement follows from known results for isolated cubes.

Then there is kmax ∈ Z such that Wϵ ⊂
⋃
k≤kmax

Wk and all cubes in Wϵ have vertices in

the 2−kmaxZn-lattice. Let x ∈ ∂
⋃
Q∈Wϵ

Q and v be any direction of a Billard. Then, up to

lattice symmetry, the set of reflection points of such a trajectory in
⋃
Q∈Wϵ

Q is contained

in {x + tv : t ∈ R\{0}}. Up to lattice symmetry, this set contains the origin x iff v is

rational up to normalisation.

2.6 Weyl asymptotics of spectral counting functions

Suppose Ω ⊂ Rn is a domain with σess(−∆N ) = ∅ as discussed in Sec. 2.1. Then one

may define the spectral counting function as in Def. 2.20. A famous observation by Weyl

states that the kth eigenvalue under Dirichlet boundary conditions growth with power

k2/n. This amounts to the celebrated Weyl law which we state under minimal hypothesis

as formulated by Rozenbljum:

Theorem 2.45 (Weyl Law, [92, 93, 112]). Let Ω ⊂ Rn be open with bounded volume,

volnΩ <∞. Then

ND(Ω, t) = C
(n)
W voln(Ω)t

n/2 + o
(
tn/2

)
, as t→ ∞,

where C(n)
W := (2π)−nωn and ωn := voln(B0(1)) = πn/2

Γ(n
2
+1) is the volume of the n-dimen-

sional unit ball. Whenever Ω is a domain with vanishing essential spectrum of the corres-

ponding Laplacian, this law also holds true under Neumann or mixed boundary conditions.

Weyl original proof involved a simple covering argument; a planar domain Ω is ap-

proximated with a disjoint union of squares and applying a Dirichlet-Neumann bracketing

argument. Since the remainder term then depends on the discrepancy between this cover

by squares and Ω, it appears natural to assume that the remainder term is governed by

the geometry of the boundary of Ω. Based on this observation, in [113] Weyl conjectured
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that for sufficiently regular domains Ω ⊂ Rn, the asymptotic behaviour is given by

ND(Ω, t) = C
(n)
W voln(Ω)t

n/2 − 1

4
C

(n−1)
W voln−1(∂Ω)t

(n−1)/2

+ o
(
t(n−1)/2

)
as t→ ∞.

(2.6)

A similar conjecture was formulated for the Neumann counting function; it differs from

the Dirichlet case only by the sign of the second term. In several steps (see for example

[47, 97, 99, 100, 101, 106]) on proving Weyl’s conjecture, Thm. 2.45 was extended and

generalised to elliptic operators and manifolds. It is believed to be correct for all C∞(Rn)-

domains. Indeed, supposing that ∂Ω is smooth and additionally assuming that Billiard

trajectories are almost never periodic, the Weyl conjecture was proved by Ivrii in 1980

in [46] (see also [12, 47, 48, 96]) for several boundary conditions including Dirichlet and

Neumann type. It is conjectured that the Billard hypothesis is true for any domain with

smooth boundary but it is proven only in a few special cases as studied for example by

Vassiliev in [108]. However, a fundamental regularity assumption on ∂Ω is essential. In

fact, if the boundary is highly irregular such a result cannot be expected and is wrong in

general. In particular, the remainder term in (2.6) is meaningless whenever the boundary

shows fractal structure with non-integer Hausdorff-dimension dimH ∂Ω > n − 1 as then

voln−1 ∂Ω = ∞. Notice that under Ivrii’s conditions, the exponent in the second term

coincides with half the topological dimension dim(∂Ω)/2 = (dim(Ω)−1)/2 of the boundary

∂Ω and that the associated coefficient is linked to the domain’s surface area. It is therefore

natural to expect analogue substitutes of these quantities in case of non-integer dimensions.

Motivated by physical observations, in a first step in this direction, Berry conjectured

that the remainder term would be linked to the Hausdorff dimension and the Hausdorff

measure of the boundary in [9, 10]. This however turned out to be false as a number of

counterexamples were found in [13, 72, 73] leading to the formulation of a series of modified

Weyl-Berry conjectures by Lapidus et al.

Conjecture 2.46 ([65, 66]). Let Ω ⊂ Rn be a sufficiently regular domain but with

Minkowski dimension δ ∈ [n − 1, n) and Minkowski content M ∈ (0,∞). Then there
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is a Cn,δ depending only on n and δ such that

ND(Ω, t) = C
(n)
W tn/2 + Cn,δMtδ/2 + o

(
tδ/2
)

as t→ ∞.

Whenever σess(−∆N ) = ∅, the same asymptotic law holds true for NN (Ω, t) with a different

constant C̃n,δ.

A recent result by Frank-Larson in [30] shows that an averaged version of Berry’s ori-

ginal conjecture holds true: For Lipschitz domains Ω ⊂ Lip(Rn), the sum of the first

eigenvalues defined by the trace Tr(−∆D−λ) :=
∑

λk∈σ(−∆D):λk≤λ(λ−λk) has an asymp-

totic behavior that depends on the topological dimension of ∂Ω. Namely, Tr(−∆D − λ) =

n
n+2C

(n)
W voln(Ω)λ

1+n
2 − 1

4C
(δ)
W Hδ(∂Ω)λ

1+ δ
2 + o

(
λ1+

δ
2

)
, where δ := dimTop(∂Ω).

In case of Dirichlet boundary conditions and Ω ⊂ R1, Lapidus and Pomerance veri-

fied the modified Weyl-Berry conjecture in [68] by proving the existence of a cδ for which

ND(Ω, t) = C
(1)
W vol1(Ω)t

1/2 − cδMδ(∂Ω)t
δ/2 + o(tδ/2) as t → ∞. However it was sub-

sequently shown that the analogue is incorrect in higher dimensions in general in [69]

by providing counter examples. In arbitrary dimensions, Lapidus proved the following

asymptotic law.

Theorem 2.47 ([65]). Let Ω ⊂ Rn be a domain with upper inner Minkowski content

M δ(∂Ω,Ω) ∈ (0,∞) for δ ∈ [n− 1, n). Then

ND(Ω, t) = C
(n)
W voln(Ω)t

n/2 +O
(
tδ/2
)
.

If M δ(∂Ω,Rn) ∈ (0,∞) for δ ∈ [n− 1, n), then

ND(Ω, t) = C
(n)
W voln(Ω)t

n/2 +O
(
tδ/2
)
.

There is a notable difference of conditions for both kinds of boundary conditions, i.e.

existence of the upper inner Minkowski content at Dirichlet boundary conditions versus

the existence of “full” upper Minkowski content at Neumann boundary conditions.
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Of particular relevance to the present work is the article by Netrusov-Safarov in [80],

where an exact rather than an asymptotic bound on NN (Ω, t) − C
(n)
W voln(Ω)t

n/2 was

obtained for domains whose boundary locally is a graph of a BV -function. This will be

discussed in more detail in Sec. 4.2.



Chapter 3

Estimates of the second Neumann

eigenvalue

This chapter is partially based on [61] by Kombrink and the author. The main goal is

to provide lower bounds of the first non-trivial the eigenvalue λN2 of the Laplacian with

respect to Neumann boundary conditions for a given domain D of a class of domains

(defined in Def. 3.3) that is not restricted to domains with cone conditions or domains

whose boundary is locally a graph. We obtain a lower bound for the first non-trivial

eigenvalue of such domains in Lem. 3.8. This is achieved with the introduction of specific

1-foliations (Sec. 3.2). The construction is designed to naturally include p-Rohde snowflakes

and related snowflake-like domains. Afterwards we discuss several examples including Koch

snowflakes. We start by recalling a result for C0-domains.

Definition 3.1 (Def. 1.1-1.2 in [80]). Let Ω′ ⊂ Rn−1 be a domain and let f ∈ C0(Ω′). We

define the oscillation of f on Ω′ as

Osc(f,Ω′) :=
1

2

(
sup
x∈Ω′

f(x)− inf
x∈Ω′

f(x)

)
.

Theorem 3.2 (Lem. 2.6 in [80]). Let δ > 0 and Qcn−1 := (0, c)n−1 × {0} ⊂ Rn be an

(n − 1)-dimensional cube parallel to the coordinate axes and of side length c ≤ δ. Let

f ∈ C0(Qcn−1) with Osc(f,Qcn−1) ≤ δ/2 and b = inf f − c. Let D = Γf,b be the graph-set

37
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of the C0-function f in the following sense:

Γf,b := {x ∈ Rn : ∃y ∈ Qcn−1 s. t. x = (y, t) and t ∈ (b, f(y))}.

Then NN (Γf,b, t
2) = 1 if t ≤

(
1 + (2π)−2

)−1/2
δ−1.

A key idea of the proof of Thm. 3.2 is to observe that
∫
D g(x)dx =

∫
Qc

n−1

∫ f(y)
b g(y, t)dt

for g ∈ H1(D). In order to generalise this, we introduce a family of paths γ that should

reflect some kind of expected self-similarity of the boundary.

Suppose Ω satisfies the following property: For any sufficiently small ϵ > 0 there is b

such that Ω−ϵ can be covered by domains {Di}i∈I of the form Γf,b with Osc(f,dom(f)) ≤

ϵ/2. Thm. 3.2 then shows that NN (Ω−ϵ, t) ≤ #I whenever t is sufficiently small, namely

t <
(
1 + (2π)−2

)−1
ϵ−2. This idea will later be used to prove upper bounds for Neumann

counting functions in Thm. 4.15. Within their work (cf. [79, 80]), Netrusov-Safarov raised

the question about extending this result to domains with boundary of different nature. In

this section we define a framework with which one can extend this result to a substantial

class of domains that are not C0-domains. A prototypical example is the Koch snowflake.

3.1 Well-foliated domains and bounds on eigenvalues

The below definition will play a crucial role throughout this work since it allows for a direct

application to snowflake-like domains.

Definition 3.3 (Well-foliated domain). LetX,D ⊂ Rn be domains. Suppose φ : X → D is

a homeomorphism with continuous extension to X that is differentiable almost everywhere

following the rule for change of variables under integration (see also Prop. 3.5). Suppose

that I0 × (−r, 0) ⊂ X ⊂ I0 × [−r, L] for r, L ∈ (0,∞) where I0 is a convex domain

⊂ Rn−1 and suppose that φ(q, 0) = q ∈ D. A fibre through q := (q1, · · · , qn−1) ∈ I0 is

defined as the map γq : t 7→ φ(q, t − r) where t is assumed to be positive and sufficiently

small. We write dx1 · · · dxn = β(q, t)dqdt for the change of variables (with q ∈ I0) and set

E := φ(I0×(−r, 0)). The domainD is called well-foliated with parameters (r, L, Iβ, βinf , E)
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if the following properties are satisfied:

(i). Any fibre through a point q ∈ I0 satisfies |γ′q(t)| = 1 almost everywhere in D. We

then denote the length of the fibre by len γq.

(ii). The quantity β(q, t) as introduced above satisfies supq∈I0
∫ len γq
0 β(q, t − r)dt < ∞

and ess inf(q,t)∈X β(q, t) > 0.

The set of all paths of a well-foliated domain will be denoted by Γ := {γq : q ∈ I0}.

For any measurable S ⊂ D, we write βinf(S) := ess infx∈S β(x) and define Iβ(S) :=

supq∈I0
∫ len γq
0 1S(γq(t))β(γq(t))dt. We write ID := φ(I0 × {−r}) (called base) for the set

of starting points of paths in the foliated domain.

Note that we can identify such path γq with its intersection point γq(r) = q ∈ I0×{0}.

One has a straightforward gluing property for such domains by concatenating paths or

joining bases.

Proposition 3.4 (Gluing property of well-foliated domains). Let D and D′ be two disjoint

well-foliated domains with bases ID and ID′ . Let Y ′ ⊂ ∂D′ \ ID′ be the set of all end points

of paths in D′. If I0 ⊂ Y ′ when we allow the set E ⊂ D to be empty, then intD′ ∪D is

well-foliated with base ID′ .

Proof. To any q ∈ ID there is a unique q′ ∈ ID′ with limt→len γq′ γq′(t) = q. Concatenating

any such two pairs of fibres to γ̃q′ gives fibres of finite length len γ̃q′ = len γq + len γq′ . All

properties of well-foliated domains are then inherited.

We notice that sufficiently regular maps preserve the structure of a well-foliated do-

main. This follows directly from the fact that one may extend the classical calculus of

change of variables to certain non-differentiable maps that include locally Lipschitz maps

as shown in [39]. More precisely we have the following result. Recall that a function

f : X → R with open X ⊂ Rn is approximately totally differentiable at x0 ∈ X if there

is some L = (L1, · · · , Ln) ∈ Rn for which for every ϵ > 0 the set A(f, ϵ) := {x ∈ X :

|f(x)−f(x0)−L(x−x0)|
|x−x0| < ϵ} has a density point at x0, i.e limδ→0

voln(A(f,ϵ)∩Bδ(x0))
voln(Bδ(x0))

= 1.
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Proposition 3.5 ([39]). Let X ⊂ Rn be a domain and f : X → Rn be an injective map

that is approximately totally differentiable Lebesgue-almost everywhere in X. Then for any

measurable function u : Rn → R one has
∫
X(u ◦ f)|Jf |dx =

∫
f(X) u(y)dy, where Jf is the

Jacobian containing the approximate differentials Li.

In this context we recall Rademacher’s celebrated theorem and show that Lipschitz

maps preserve well-foliatedness.

Theorem 3.6 (Rademacher, [88]). Let X,X ′ be open subsets of a Euclidean space and

f : X → Rm be Lipschitz. Then f is differentiable Lebesgue-almost everywhere. If f is

injective, the rule for change of variables applies to f .

Proposition 3.7. If f : D → Rn is an injective Lipschitz map and D is a well-foliated do-

main as in Def. 3.3, then f(D) is also well-foliated. The same is true for any differentiable

bi-conformal map.

Proof. By Rademacher’s theorem, f is differentiable almost everywhere. In the notation of

Def. 3.3, this shows that f ◦φ is an almost everywhere differentiable homeomorphism. As

f is Lipschitz, the length of each fibre f(γq) in f(D) is finite so that a reparametrisation

by arc length is possible fulfilling (i) and similarly also (ii) by change of variables applied

to a Lipschitz map. Any conformal map on D has differential bounded away from 0 and

∞.

The concept of well-foliated domains allows for a generalisation of a result by Netrusov-

Safarov in [80] to certain non-graph domains. The following main result of this chapter will

enable us to apply this result in order to obtain estimates of spectral counting functions of

domains that have a related foliation property introduced later in Def. 4.1. We will recover

the result of Netrusov-Safarov from [80] for bounded variation domains in Sec. 4.2.

Lemma 3.8. Let D ⊂ Rn be a domain that is well-foliated with a family of fibres {γ}γ∈Γ

in the notation of Def. 3.3. Setting ΛN2 (X) := min{λN2 (X), inf σess(−∆N (X))} = inf{λ ∈

σ(−∆N (X)) : λ > 0} to be the infimum over all positive elements in the spectrum of the
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Neumann Laplacian defined on X for X ∈ {D,E},

ΛN2 (D) ≥ ΛN2 (E)

1 + Iβ(D \ E)

 1√
rβinf(E)

+

√
LλN2 (E)

βinf(D)

2−1

Proof. Let u ∈ H1(D) ∩ 1⊥ and set uE := 1
volE

∫
E udx. Then ∥u∥2L2(D) ≤ ∥u − uE∥2L2(D).

In particular, by Cor. 2.6, it suffices to show the following Poincaré-Wirtinger inequality

∥u− uE∥2L2(D) ≤ C∥∇u∥2L2(D), (3.1)

with C−1 given by the right hand side of the claim. To this end, we subdivide the expression

∥u− uE∥2L2(D) =

∫
E
|u(y)− uE |2dy︸ ︷︷ ︸

:=I1

+

∫
D\E

|u(x)− uE |2dx︸ ︷︷ ︸
:=I2

,

and estimate I1 and I2 separately. Applying Cor. 2.6 to E one has

I1 ≤ ΛN2 (E)−1∥∇u∥2L2(E) ≤ ΛN2 (E)−1∥∇u∥2L2(D). (3.2)

Recall that for any a, b, c ∈ R and α > 0, there is the following inequality: |a − b|2 ≤

(1 + α)|a− c|2 + (1 + α−1)|b− c|2.1 We now consider

I2 =

∫
D\E

|u(x)− uE |2dx =

∫
I0

∫ len γq

r
|u(γq(t))− uE |2β(q, t)dtdq,

=
1

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t))− uE |2β(q, t)dt′dtdq

≤ 1 + α

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t′))− uE |2β(q, t)dt′dtdq︸ ︷︷ ︸

=:I′2

+
1 + α−1

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t))− u(γq(t

′))|2β(q, t)dt′dtdq︸ ︷︷ ︸
=:I′′2

,

1This can be seen for example by minimising the function h(c) := A|a− c|2 +B|b− c|2 − |a− b|2 for fixed
a, b in dependence of A,B. This shows A = 1 + α and B = 1 + α−1 for some α. Finally the condition
α > 0 then follows from h(c) ≥ 0.
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which holds for any α > 0. By assumption,
∫ len γq
r β(q, t)dt ≤ Iβ(D\E) for all q ∈ I0.

Hence

I ′2 =
1 + α

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t′))− uE |2β(q, t)dt′dtdq

≤ 1 + α

r
Iβ(D\E)

∫
I0

∫ r

0
|u(γ(t′))− uE |2dt′dq

≤ 1 + α

r

Iβ(D\E)

βinf(E)

∫
I0

∫ r

0
|u(γq(t′))− uE |2β(q, t′)dt′dq

=
1 + α

r

Iβ(D\E)

βinf(E)
∥u− uE∥2L2(E) ≤ ΛN2 (E)−1 1 + α

r

Iβ(D\E)

βinf(E)
∥∇u∥2L2(D).

Using Jensen’s inequality and |∇γq(s)|2 = 1, |s| ≤ 1 and |∂su| = |⟨s,∇u⟩| ≤ |∇u|,

|γq(t)− γq(t0)|2 =
∣∣∣∣∫ t

t0

∂su(γq(s))ds

∣∣∣∣2 ≤ (t− t0)

∫ t

t0

|∂su(γq(s))|2 ds

≤ (t− t0)

∫ t

t0

|∇u|2 ds ≤ (t− t0)

∫ len γq

0

∣∣∇u|γq(s)∣∣2 ds.
Therefore

I ′′2 =
1 + α−1

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t))− u(γq(t

′))|2β(q, t)dt′dtdq

=
1 + α−1

r

∫
I0

∫ len γq

r

∫ r

0

∣∣∣∣∫ t

t′
∂su(γq(s))|s=σdσ

∣∣∣∣2 β(q, t)dt′dtdq
≤ 1 + α−1

r

∫
I0

∫ len γq

r

∫ r

0
(t− t′)

∫ t

t′
|∂su(γq(s))|s=σ|2 dσβ(q, t)dt′dtdq

Then since t− t′ ≤ L,

I ′′2 ≤ 1 + α−1

r

∫
I0

∫ len γq

r

∫ r

0
(t− t′)

∫ t

t′

∣∣∇u(x)|x=γq(σ)∣∣2 dσβ(q, t)dt′dtdq
≤ 1 + α−1

r

∫
I0

∫ len γq

r

∫ r

0
L

∫ len γq

0

∣∣∇u(x)|x=γq(σ)∣∣2 dσβ(q, t)dt′dtdq
≤ (1 + α−1)LIβ(D\E)

∫
I0

∫ len γq

0

∣∣∇u(x)|x=γq(σ)∣∣2 dσdq
≤ (1 + α−1)L

Iβ(D\E)

βinf(D)

∫
I0

∫ len γq

0

∣∣∇u(x)|x=γq(σ)∣∣2 β(q, σ)dσdq
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= (1 + α−1)L
Iβ(D\E)

βinf(D)
∥∇u∥2L2(D).

Maximising with respect to α > 0 yields the claim.

Importantly, Lem. 3.8 gives a substitute to the missing domain monotonicity from

Rem. 2.21. For domains which are geometrically similar to a cuboid, it provides an estimate

that plays a crucial role in estimates for the spectral function in Chap. 4.

Corollary 3.9 (“ΛN2 (D) ≍ diam(D)−2”). Let D be a well-foliated domain with paramet-

ers (r, L, Iβ, βinf , E) and ΛN2 (X) := min
(
inf (σess (−∆N (X))) , λN2 (X)

)
be defined as in

Thm. 2.5 for X ∈ {D,E}. Suppose ΛN2 (E) ≍ ϵ−2, r ≍ L ≍ Iβ ≍ ϵ and βinf ≍ 1. Then

there is a C depending on r, L, Iβ, βinf , E and D such that

ΛN2 (D) ≥ Cϵ−2

Proof. By on Lem. 3.8,

ΛN2 (D) ≥ ΛN2 (E)

1 + Iβ(D \ E)

 1√
rβinf(E)

+

√
LλN2 (E)

βinf(D)

2−1

.

By hypothesis there are constants c±r , c
±
L , c

±
I and c±Λ such that for all sufficiently small ϵ > 0

rϵ−1 ∈ [c−r , c
+
r ], Lϵ−1 ∈ [c−L , c

+
L ], Iβϵ−1 ∈ [c−I , c

+
I ] and ΛN2 (E)ϵ2 ∈ [c−Λ , c

+
Λ ].

These constants may be assumed positive since r, L, Iβ,ΛN2 (E) > 0. Moreover βinf does

not depend on ϵ. Therefore

ΛN2 (D) ≥ c−Λϵ
−2

1 + c+I ϵ

 1√
c−r ϵβinf(E)

+

√
c+Lϵc

+
Λϵ

−2

βinf(D)

2−1

.

Canceling all ϵ then gives C = c−Λ

1 + c+I

(
1√

c−r βinf(E)
+

√
c+Lc

+
Λ

βinf(D)

)2
−1

.
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Together with the notion introduced in Def. 4.1 this constant can be rewritten as in

Sec. 4.4.

Regarding generalisations of Lem. 3.8 we notice that in fact many of the involved steps

can be generalised to W 1,p-spaces. This is discussed in Sec. 6.2.1.

3.2 Construction of foliations for snowflake-like domains

In this section we give a method to construct well-foliated domains based on an idea

by Brolin in [11] to construct paths in Julia sets. Similar ideas are well-known and are

often used to study Julia sets, see for example Falconer’s application to Siegel disks in

[28, Ch. 14]. We begin by briefly summarising the original concept. This motivates an

adaptation to Koch curves and, more generally, p-Rohde curves. After introducing this

adjusted construction for p-Rohde curves, we generalise the setting even further. It will

then become evident that foliations of the basic building components of the construction

are necessary. These so-called seed foliations are introduced next. We combine the seed

foliation and the generalised setting to obtain iterative procedures to construct well-foliated

domains that cover a large class of snowflake-like domains including p-Rohde snowflakes.

Brolin construction. Focusing on domains that are topological disks bounded by a

Julia set, a family of paths is constructed using the iterative nature of the Julia set. More

precisely, let f : Ĉ → Ĉ be a rational map on the complex plane and let α be simple

attractive fixed point with a bounded attractive basin A(α) (i.e. the largest connected

component of points z ∈ C around α for which f (k)(z) → α as k → ∞). Let r > 0 be such

that B2r(α) ⊂ A(α) and define B0 := Br(α) and Bk := f−1Bk−1 for k ∈ N. Notice that

A(α) = limk→∞Bk in the Hausdorff sense. Then there is a bi-holomorphic map G (called

uniformisation) such that G(B1 \ B0) is an annulus of radii r1, r2 with r1 < r2. Then

one defines the family of radial paths in G(B1 \ B0) given by γθ : (r1, r2) → G(B1 \ B0)

via t 7→ teiθ for fixed θ ∈ [0, 2π). Now G−1γθ : (r1, r2) → B1 \ B0 and B1 \ B0 =⊔
θ∈[0,2π) imaget∈(r1,r2)G

−1γθ(t). Letting f−1 act on each such γθ we obtain a family of

paths in B2 \ B1. Iteratively applying f−1 then yields a family of disjoint paths covering
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each Bk \ Bk−1. For any path γ(k) := f−kG−1γθ in Bk \ Bk−1 there is a unique path

f−k+1G−1γθ′ in Bk−1 \Bk−2 whose endpoint match the starting point of γ(k). Connecting

any such two paths yields a family of disjoint paths covering Bk \B0. As k → ∞ this gives

a family of paths connecting ∂B0 with any point in intA(α). We define a projection πk by

mapping each endpoint of a path in Bk \Bk−1 to its starting point.

Example 3.10. We describe the unit disk B1(0) as the set bounded by the Julia set S1 ⊂ C

applying the above framework to the original construction by Brolin. Suppose f(z) = z2+c

with c = 0 and let B0 := B1/2(0) be a disk. Let Γ0 = ∂B0 and generally Γn := (f−1)n∂B0

with Bn
H→ S1. In this case the uniformisation G = idC is trivial. The projection πk then

acts on Γk as π : Γk ∋ x = 2−21−k
eiθ 7→ 2−2−k

eiθ, that is, πk : z 7→ 2−2−k
z. We have

ID = [0, 2π) corresponding to ∂B0 and the corresponding β(θ, |f−k(1/2)|) then reads

β(θ, |f−k(1/2)|) = 2(1−2−k) =
|f−k

(
1
2e
iθ
)
|

|12eiθ|

showing that β is radially symmetric and grows linearly with the radius as is expected

from the foliation by straight radial paths in the disk.

We now adapt the above construction to settings motivated by the Koch snowflake K

or, more precisely, to the open (disconnected) bounded set whose boundary is given by

the union of a Koch curve C and its base interval [0, 1]. After this first adjustment, the

generalisation to p-Rohde curves is natural.

Construction in Koch curves and p-Rohde curves. Recall that C is the limit set of

a self-similar IFS given by the four maps ϕ1[13 ], · · · , ϕ4[
1
3 ] as given in Def. 2.33 and Ex. 2.34.

We replace f−1 and B0 from the setting above with Φ :=
⋃
i ϕi, and the domain whose

boundary is given by the union of I0 := [0, 1] and ΦI0, respectively. This domain (the

largest prong of the Koch curve) is given by a equilateral triangle of length 1
3 . Since the

elements of the sequence In := ΦnI0 are not disjoint, a bi-holomorphic map as described

above does not exist. Instead we manually introduce a seed foliation from the domain with

boundary I0 ∩ I1 (cf. Fig. 3.2(a)) as set of vertical paths from any point in I0 to I1. Now
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acting Φ on this seed foliation yields a family of paths between I1 and I2. Iterating to

infinity and concatenating endpoints of images of the seed foliation then yields a family of

paths from I0 to C.

More generally, for any p-Rohde curve we have the following construction: Let Ω ⊂ R2

be the domain whose boundary is given by the union of any p-Rohde curve and I0 := [0, 1].

As before, put Φn :=
⋃4
i=1 ϕ

(n)
i . Depending on the p-Rohde curve, ϕ(n)i is either ϕi[p] or

ϕi[
1
4 ]. One defines a seed foliation for p ̸= 1/4 and the trivial foliation linking I0 to I0 if

p = 1
4 . In higher dimensions, this can be done analogously.

Based on the above construction we now propose a further generalised setting. We

maintain the idea of a domain with boundary given by the limit set of a system of iterated

maps but we allow additional liberty in the composition of the maps. As in the previous

construction, this needs a seed foliation. This seed foliation will be introduced immediately

afterwards as a basic step of a foliation based on which a full foliation can be constructed

iteratively.

Generalised setup for the construction of well-foliated domains. Let I0 :=

Dn−1 ⊂ Rn−1×{0} with Dk being a k-dimensional hyperplanar polyhedron2 and let Σ be a

(potentially infinite) index set of homeomorphic and bi-Lipschitz maps (ϕi)i∈Σ : Rn → Rn

with a composition rule A :
(
{∅} ∪ Σfin) × Σ → {0, 1}, i.e. two maps ϕw, ϕi can be com-

posed iff wi is admissible, i.e. A(w, i) = 1, where we set ϕ∅ := id. The set Σ∗
A is comprised

of all admissible finite and infinite words in this sense. We assume that A is “σ-complete”,

i.e. w ∈ ΣkA ⇒ σw ∈ Σk−1
A for any k ≥ 1.

For any finite word w = (w1w2 · · ·wk) ∈ Σfin, we set ϕw := ϕw1ϕw2 · · ·ϕwk
as before.

Suppose the family of maps {ϕi}i∈Σ satisfies the following properties:

(i). (Orientation). ϕw(I0) ⊂ Rn−1 × R≥0 for all w ∈ Σ∗
A.

(ii). (Separation). For any two words w ̸= v ∈ ΣkA of same finite length k we have
2More generality is possible here, but does not seem to provide much further insight. For example I0 could
be any compact and 1-connected subset of Dn−1. One could also replace I0 with a 1-connected (meaning
there is a single chart to Dn−1) n− 1-dimensional manifold with boundary.
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ϕw(int I0) ∩ ϕv(int I0) = ∅ for all k ∈ N, where we denote the interior in Rn−1 of

I0 by int I0. One may also see this as a form of injectivity of a parametrisation by

points in I0.

(iii). (Bounding domain). For any finite word w ∈ ΣkA the sets Sw :=
⋃
i:A(w,i)=1 ϕiI0 and

Sk :=
⋃
w∈Σk

A
ϕw(I0) are n−1-dimensional topological planes. The boundary of I0 is

contained in the boundaries of Sw, Sk, ∂I0 ⊂ ∂Sw and ∂I0 ⊂ ∂Sk. There are unique

unbounded connected components Yw and Yk of Rn \ (I0 ∪ Sw) and Rn \ (I0 ∪ Sk),

respectively. The interior of their complements are denoted by Xw and Xk. We

define Ωk := int (Rn \ intYk) and Dw := ϕwXw.

(iv). (Nestedness). The open sets {Ωk}k∈N are nested, i.e. Ωk ⊂ Ωk+1 and all Ωk are

contained in some common sufficiently large set. As a consequence (see for example

[42]) Ωk
H→
⋃
k≥1Ωk. We then define Ω := int

⋃
k≥1Ωk.

Seed foliation. Let k ∈ N and w ∈ ΣkA be arbitrary. We manually construct a family of

paths {γw}γw∈Γ0(w) differentiable up to at most finitely many points and of finite length

len γw ≤ T (independent of w) and parametrised by arc-length foliating Xw. We require

from this family of paths that for all paths γw one has γw(t) ∈ I0 iff t = 0 and either

γw(t) ∈ ∂Xw \ I0 iff t = len γw or len γw = 0. The set {Γ0(w) : w ∈ Σ∗
A} will be called seed

foliation from hereon. We define π :
⋃
wXw → I0 that maps points in a path γ ∈ Γ0 to

its starting point in I0. We will see in Prop. 3.14 that in the case of a p-Rohde snowflake

with p < (
√
3− 1)/2, the set of Xw to be considered contains only two fundamental sets.

Perhaps the most obvious kind of seed foliation and also the one mostly used in this work

will be called equidistant seed foliation. It is defined for planar sets by the condition that

the ratio of the distances between the endpoints and the starting points of any two fibres

in the seed foliation is constant for any connected component of the foliated set.

We finish the construction with an iteration procedure that produces a set of paths as

requested in Def. 3.3 based on a seed foliation in the above generalised setup.
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Iteration procedure. Let Ω ∋ x be arbitrary. Then, by (iv) in the general setting,

either there is a minimal k with x ∈ Ωk+1 but x /∈ Ωk or x ∈ Ω1. In other words, x lies in

a set bounded by
(⋃

w∈Σk+1
A

ϕwI0

)
∪
(⋃

w∈Σk
A
ϕwI0

)
for some k ≥ 0. But

 ⋃
w∈Σk+1

A

ϕwI0

 ∪

 ⋃
w∈Σk

A

ϕwI0

 =
⋃

w∈Σk
A

∂Dw

so that there is a w ∈ ΣkA with x ∈ Dw. Then, by definition, ϕ−1
w x ∈ Xw and the path

in Γ0(w) starting at xw := πϕ−1
w x, denoted by γwxw , runs through ϕ−1

w x. Then ϕwγ
w
xw is a

path in Dw through x. Its starting point ϕwxw lies in ϕσwI0 by assumption on the seed

foliation. But then there is a path γσwxσw
in Γ0(σw) through ϕ−1

σw(ϕwxw) which starts at

xσw := πϕ−1
σw(ϕwxw). Therefore there the concatenated path ϕwγ

w
xw ∗ ϕσwγσwxσw

goes from

x via ϕwxw through ϕσwxσw in Dw ∪ Dσw. In general one defines xσℓw := πϕ−1
σℓw

xσℓ−1w

and the concatenated path γq(x) := ϕwγ
w
xw ∗ ϕσwγσwxσw

∗ · · · ∗ ϕσkwγ
σkw
x
σkw

traverses Ω from x

to a base point q(x) ∈ I0. Conjugating the projection map π from the seed foliation with

ϕw, i.e. πw := ϕwπϕ
−1
w , results in a map πw : Dw → ϕwI0 mapping points x ∈ Dw to the

starting point of the path through x within Dw. The construction above yields a family

of paths Γ covering Ω sharing the same properties as the seed foliation covering Ω1 up to

differentiability; the global paths are differentiable almost everywhere.

Each path in the set Γ of such constructed paths (from hereon called fibre), traverses

a unique point q ∈ I0. Therefore one may parameterise Ω by γq(t) for t ∈ (0, len γq) and

q ∈ I0. We let φ : (q, t) 7→ γq(t) denote the associated change of coordinates, let q ∈ int I0

be fixed and t > 0 be such that x := γq(t) ∈ intDw for some w ∈ ΣkA. Further, we

let tw < t denote the curve parameter of γq of the intersection point qw of ϕw(I0) with

γq. To simplify notation, we set ξ := φ|φ−1(D∅) : (q, t) 7→ γq(t) ∈ D∅. Analogously to

the construction of πw we define ξw mapping (qw, t) with qw ∈ ϕw(I0) and small enough

t to the point in Dw whose fibre runs through qw and has a length t from qw. Then

φ(q, t) = ξw(π
−1
σwπ

−1
σ2w

· · ·π−1
σkw

q, t− tw). Notice that by definition π = π∅.

By Prop. 3.5 and Thm. 3.6, the density function β := |detDφ| of the change of co-
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ordinates is defined almost everywhere and satisfies

β(q, t) =

∣∣∣∣det( ∂

∂q

(
ξw(π

−1
σw ◦ · · · ◦ π−1

σkw
q, t− tw)

)
, eα

)∣∣∣∣ (3.3)

with a unit vector eα that lies tangential to the curve γq at curve parameter t. Whenever

{ϕi}i∈Σ are similarity maps, one may further simplify this based on the canceling of

Dϕw(x) and Dϕ−1
w (y) even if x ̸= y. In the case of triangulations (see Fig. 3.1) when

{∂qiφ(q, t)}i=1,··· ,n−1 spans an (n − 1)-dimensional polygon Pn−1 and eα := ∂tφ(q, t) are

locally constant in q and t, then β(q, t) = voln−1(Pn−1) sinα, where α is the angle between

the plane Pn−1 and eα.

This quantity is readily computed for triangles, which will play a crucial role later (see

also Sec. 6.1.2). An example is illustrated in Fig. 3.1.

a

b
α1

α2

α3 c

d

Figure 3.1: Basic case of a ’natural’ foliation in a sequence of
triangles. In such a situation an elementary calculation reveals
that the density function β is given by β1 = sinα1 in the bottom
triangle, β2 = b

a sinα2 in the middle triangle and β3 = c
a sinα3 in

the top triangle.

The collection of fibres thus constructed gives a partition of the domain into rectified

curves that are differentiable almost everywhere. We glue E := I0 × (−r, 0) to the set Ω

and extend each fibre γq through E by setting γq(t) := q+en for −r < t < 0 where en ⊥ I0

using Prop. 3.4. We adjust the parametrisation by t 7→ t + r so that any such extended

path γ is parameterised by an interval (0, len γ). After the gluing of E, supq∈I0 len γq > 0.

Remark 3.11. By Thm. 3.6, bi-Lipschitz maps satisfy the necessary differentiability condi-

tions above. However it was shown by Hata in [40] that α-Hölder maps are in general not

almost everywhere differentiable. Actually for any α < 1 there is an α-Hölder continuous
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map that is not Lebesgue-almost everywhere differentiable.

Definition 3.12. A set as constructed above with E = I0 × (−r, 0) is called regular

well-foliated domain if (i) and (ii) in Def. 3.3 are fulfilled.

We finish this section by noticing that in many cases the lengths of the paths constructed

above are finite. This is of great importance in later applications to eigenvalues. This

importance is visible for example from the proof of Lem. 3.8 as the length of corresponding

paths must be finite in such cases.

Proposition 3.13. Let ϕi be Lipschitz maps with Lipschitz constants Li for i ∈ Σ. If

Li ≤ L < 1 for all i ∈ Σ, all thus constructed paths have finite length.

Proof. Let the length of paths in Γ0 foliating Ω1 be bounded from above by T . Let x ∈ Dw

for some finite word x ∈ ΣkA and write γ for the path through x. Then

len γ :=

k∑
ℓ=0

len
(
ϕσℓwγ

σℓw
x
σℓw

)
≤ T

k∑
ℓ=0

Lk−ℓ ≤ T

1− L
.

Since this bound is independent of the length of the word, the length of any path foliating

Ω is also bounded like this.

3.3 Application to domains bounded by p-Rohde curves

In this section we give a more in-depth discussion of regular well-foliated domains with

a foliation as introduced in Sec. 3.2 whose boundary is given by the union of I0 and a

p-Rohde curve. It will later be shown in Thm. 4.7 and Prop. 4.9 that this setting covers a

reasonably large class of domains for our studies. We discuss a result applicable to p-Rohde

snowflakes whenever p ∈
[
1
4 ,

√
3−1
2

)
showing that domains whose boundary is given by the

union of some I0 and a p-Rohde curve are regular well-foliated domains.

Proposition 3.14. Let Ω ⊂ Rn be open. Suppose ∂Ω consists of a unit interval [0, 1] ×

{0} ⊂ R2 and a p-Rohde curve with p ∈
[
1
4 ,

√
3−1
2

)
. Then there is a foliation of Ω making

it regular well-foliated.
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Proof. We explicitly construct a suitable foliation and check its properties. As before

let {ϕpi }i=1,··· ,4 be the four self-similar maps for the Koch snowflake with parameter p ∈[
1
4 ,

√
3−1
2

)
and let ϕi(x) := ϕ

1/4
i−4 for i ∈ {5, · · · , 8}. Then for Σ := {1, · · · , 8}, any fixed

p-Rohde curve has a composition rule A such that the limit domain Ω has a boundary given

by the union of I0 = [0, 1] and the p-Rohde curve. By definition the maps are bi-Lipschitz

with Lipschitz constant given by p ≤
√
3−1
2 < 1 and satisfy conditions (i)-(iv) of the general

setting in Sec. 3.2. Next, we define a seed foliation. To this end, notice that there are at

most two distinct Xw’s to be taken into consideration.

(i). If ∃w ∈ ΣkA for which {i ∈ Σ : A(w, i) = 1} = {1, · · · , 4}, we use vertical lines as

paths. In other words, we define π : Xw → I0 as the usual projection to R×{0}, see

Fig. 3.2(a).

(ii). If ∃w ∈ ΣkA for which {i ∈ Σ : A(w, i) = 1} = {5, · · · , 8}, the foliation to be

constructed is forcedly trivial as no path of non-zero length is possible. Therefore

one has π : Xw → I0 by x 7→ x. One may also identify this with the usual projection

of the aforementioned case.

ϕ1(I0)

ϕ2(I0) ϕ3(I0)

ϕ4(I0)

E I0

Figure 3.2(a) Example of a seed foliation inX∅
in the case of a p = 1

3
-Rohde curve whose first

construction uses the maps {ϕi[p]}i∈{1,··· ,4}. It
connects I0 (a unit interval) and Φ(I0) (the first
iteration of the Koch curve, dashed) given by its
four maps {ϕi[p]}i=1,...,4 by straight lines. Addi-
tionally a box E has been added underneath I0
as needed in Lem. 3.8 and the fibres have been
extended (in dotted lines) through E.

Figure 3.2(b) Example of a seed foliation of
the conformally distorted Koch curve described
in Prop. 3.7 with I0 = [2, 17] under the con-
formal map f : R2\B1(0) → R2\B1(0), (x, y) 7→
(x2 − y2, 2xy).

By construction ess inf β = 1, each fibre γq is parametrised by arc length and by Prop. 3.13

the total length of any path is uniformly bounded. Finally, Def. 3.3(ii) is verified as follows:

Since the constructed foliation is piecewise parallel, β is piecewise constant. Any fibre

γ constructed as above can be split into fibres ϕwγwxw , ϕσwγ
σw
xσw

, · · · , ϕσkwγ
σkw
x
σkw

through
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Dw, Dσw, · · · , Dσkw for some k ∈ N and

sup
γ∈Γ

∫ len γ

0
βdt = sup

q∈I0

∫ len γq

0
β(q, t)dt ≤ sup

w∈Σ∗
A

∞∑
ℓ=1

(
sup

φ(q,t)∈Dw|ℓ

β(q, t)

)
︸ ︷︷ ︸

≤
(

2p
1−2p

)ℓ

(
sup
q∈I0

len(ϕw|ℓ(γq))

)
︸ ︷︷ ︸

≤pℓ
√
p− 1

4

≪
∑
ℓ≥1

(
2p2

1− 2p

)ℓ
<∞,

by hypothesis on p.

Remark 3.15. There is a correspondence between expansions of q ∈ I0 to certain bases and

the geometry of a fibre γ in a p-Rohde snowflake: To each starting point q ∈ I0 = [0, 1]

there are at most two expansions coming from the dynamical system given by


fp : [0, 1] → [0, 1] via x 7→ fpi (x) for i ∈ {1, · · · , 4}, with fpi : Jpi → [0, 1],

f1/4 : [0, 1] → [0, 1] via x 7→ f
1/4
i (x) for i ∈ {5, · · · , 8}, with f1/4i : J

1/4
i → [0, 1],

where Jp1 = [0, p), Jp2 = [p, 1/2), Jp3 = [1/2, 1 − p), Jp4 = [1 − p, 1] and fpi (x) = x−inf Ji
|Ji| .

The resulting expansion code for a q ∈ I0 may be written as w(q) = (a1a2a3 · · · ) for

ai ∈ {1, · · · , 8}. An immediate piece of information about q given in the code is that

the number of left and right turns corresponds to the number of 2s (left) and 3s (right):

#(left resp. right turns) = max{0,#(i : ai = 2 resp. 3)− 1}. Moreover, if aj ∈ {2, 3}, the

number of consecutive digits /∈ {2, 3} corresponds to the power of the scaling factor of the

next-level triangle. In the examples in Fig. 3.3 this means that the fibre with qred = 55
108

with an expansion code of w(qred) = (3113) goes up, “stays still” for two iterations to then

proceed straight up to terminate in the first equilateral triangle at the right side of size

3−4. Similarly, qblue = 238
405 with an expansion code of w(qblue) = (331242). This implies

that the fibre through qblue turns right into the first equilateral triangle to the right of size

3−1, “stays still” for one iteration to then go up into the a equilateral triangle of size 3−4.

From there it turns left, rests for one iteration and then turns left for every next iteration

for ever. Finally, the orange path corresponding to qorange =
97
162 with an expansion code of
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w(qorange) = (3332) runs straight into the next smaller equilateral triangle twice and then

terminates on its left side.

The given code for each path γq given by its base point q ∈ I0 also equals the code of

its final point γq(ℓγ) ∈ ∂K in the sense of the IFS. This also gives a quick method to find

q for special paths.

Example 3.16. Let γq be the path in the fully homogeneous p-Rohde snowflake as foliated in

Prop. 3.14 that goes upwards and then turns left into an infinite left spiral. It corresponds

to a base point q ∈ I0 with the code 2 and therefore is given by the intersection of

idI0 : x 7→ x and f2 : x 7→ x−p
1
2
−p . So q = 2p

2p+1 ∈ I0.

In contrast to Prop. 3.14 we show that the construction in the proof of Prop. 3.14 does

not necessarily fulfil the condition of Def. 3.3(ii). For ease of notation, we denote by 2 the

infinite word consisting of a recurring 2 in an alphabet Σ and so on.

Proposition 3.17. Let p ∈
[√

3−1
2 , 12

)
and suppose the composition rule A of a p-Rohde

curve is such that there is a finite word w0 with w0κ with κ ∈ {2, 3}. Then the construction

of Prop. 3.14 violates Def. 3.3(ii). Therefore the domain obtained by gluing a rectangle E

as before to the open set whose boundary is given by the union of that p-Rohde curve and

I0 = [0, 1] is not well-foliated.

Proof. Suppose without loss of generality w02 ∈ Σ∗
A and w0 = ∅. Otherwise consider ϕ−1

w0
Ω

and reflect to interchange 2 ↔ 3. Consider the fibre starting at Q := 2p
2p+1 ∈ I0. By

a simple geometric argument in Ex. 3.16, this fibre runs through D∅, D2, D22, D222, · · · .

Since β is locally constant with value
(

2p
1−2p

)ℓ
along every sub-fibre ϕ2|ℓ

(
γ
2|ℓ
x2|ℓ

)
for the

recurring word 2, one has

sup
q∈I0

∫ len γq

0
β(q, t)dt ≥

∫ len γQ

0
β(Q, t)dt =

∞∑
ℓ=1

(
2p

1− 2p

)ℓ (
len(ϕ2|ℓ(γQ)

)
︸ ︷︷ ︸
=pℓ

( √
2p−1(p+1)

2(p−2)(2p−1)

)

≍
∞∑
ℓ=0

(
2p2

1− 2p

)ℓ
= ∞

as p >
√
3−1
2 .
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1 2 3 4
1

0 p 1
2

1− p 1

1

2 3

4

Figure 3.3: Decompositions corresponding to three different
paths (cf. Fig. 4.5) of a classical Koch snowflake as fully homo-
geneous 1

3 -Rohde snowflake. The decomposition of the base points
of the red line then read w

(
qred = 55

108

)
= (3113). For the blue

curve, one has w
(
qblue =

238
405

)
=
(
331242

)
and finally the code of

the orange leave reads w
(
qorange =

97
162

)
= (3332).
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This shows that there are p-Rohde snowflakes, in particular with dimensions approach-

ing 2 for which the seed foliation proposed in Prop. 3.14 does not lead to a well-foliated

domain. The rest of this section is dedicated to a few instructive examples.

Example 3.18 (Square snowflakes). Let τ ∈
(
0, 13
]
. We consider a class of square Koch

curves SK(τ) depending on τ (see Fig. 3.4) with an equidistant seed foliation and show

that this construction allows for a well-foliation iff a snowflake bounded by four of these

curves is a quasidisk, cf. Fig. 3.6. More precisely, we show that Def. 3.3(ii) is violated

Figure 3.4(a) 3τ = 0,75. Figure 3.4(b) 3τ = 0,8. Figure 3.4(c) 3τ = 0,85.

Figure 3.4(d) 3τ = 0,9. Figure 3.4(e) 3τ = 0,95. Figure 3.4(f) 3τ = 1.

Figure 3.4: 4th iteration of sets bounded by square snowflakes
curves SK(τ) and [0, 1] in Ex. 3.18 at various instances of τ ∈
(0, 1/3] approaching 1

3 . Notice that SK(1/3) is not a part of a
boundary of a quasidisk.

in the case of an open set SQ(τ) bounded by SK(τ) and I0 := [0, 1] (see Fig. 3.5) with

a equidistant seed foliation precisely for τ = 1
3 . The sets SK(τ) are constructed as limit

set of a self-similar IFS: Let Σ := {1, · · · , 5} and let {ϕi}i∈Σ be the following bi-Lipschitz

contractions:

ϕ1(x) :=
1− τ

2
x, ϕ2(x) := τRπ/2(x) +

(1
2(1− τ)

0

)
, ϕ3(x) := τx+

(1
2(1− τ)

τ

)
,

ϕ4(x) := τR−π/2(x) +

(1
2(1 + τ)

τ

)
, ϕ5(x) = ϕ1(x) +

(1+τ
2

0

)
.

where Rα is the usual rotation matrix on R2 for angle α ∈ [0, 2π). We define an equidistant

seed foliation by defining paths as shown in Fig. 3.5 so that ϕ2(I0), ϕ3(I0) and ϕ4(I0) are

each reached by paths intersecting I0 in
[
1−τ
2 , 1+τ2

]
. We write SQ(τ) for the resulting

open set Ω in the notation of (iv). Now consider the central path γQ with starting point
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α

τ

τ

Figure 3.5: Equidistant seed foliation for a square snowflake
where any measurable X ⊂

⋃4
i=2 ϕiI0 is covered by a section of

I0 with Lebesgue measure λ1(X)/3, while ϕ1I0 ∪ ϕ5I0 coincide
with a subset of I0 and are therefore covered trivially by paths of
length 0. The construction is independent of τ and α = arctan 3
is the minimal angle of any path with I0.

Q = 1/2 ∈ I0, which traverses D∅, D3, D33, D333, . . . (notation of (iii)). Along this path,

β as defined in (3.3) changes by a factor 3 with each iteration step and is monotonic in

between any two iteration steps. Since the considered path has a length of τk+1 in the kth

iteration step, we arrive at

sup
q∈I0

∫ len γq

0
β(q, t)dt ≥

∫ len γQ

0
β(Q, t)dt =

∞∑
ℓ=1

3ℓ
(
len
(
ϕ3|ℓ(γQ)

))
︸ ︷︷ ︸

=τℓ+1

,

which diverges iff τ = 1
3 . Independent of τ , β(q, t) ∈

(
3k sin arctan 3, 3k+1

(
1 + 1

sin arctan 3

))
at a point in Dw|k for any word w so that ess inf β > 0. Likewise we have an upper bound

for Iβ whenever τ < 1
3 . Let Γ0 be the set of paths in the seed foliation as before. Then

sup
q∈I0

∫ len γq

0
β(q, t)dt ≤

∞∑
k=0

(
3k+1

(
1 +

1

sin arctan 3

)
τk sup

γ∈Γ0

len(γ)

)

which diverges iff τ = 1
3 . Similarly to Ex. 2.17) one can show that SK(τ) satisfies the

Ahlfors arc criterion in Prop. 2.16 iff τ < 1
3 . This shows that the sets SQ(τ) are well-

foliated whenever their boundary is part of a quasicircle.

A different kind of curve was studied by Knopp who showed that curves such as the

Koch curve belong to a wider class of Koch-like curves which sometimes have non-trivial

Lebesgue measure.
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Figure 3.6(a) 3τ = 0,75. Figure 3.6(b) 3τ = 0,8. Figure 3.6(c) 3τ = 0,85.

Figure 3.6(d) 3τ = 0,9. Figure 3.6(e) 3τ = 0,95. Figure 3.6(f) 3τ = 1.

Figure 3.6: 4th iteration of square snowflakes domains (i.e. the
domain bounded by four copies of SK(τ)) at the same instances
of τ ∈ (0, 1/3] as shown in Fig. 3.4. Notice that the domain for
τ = 1

3 is not a quasidisk.

T0
α1 α2

α0

T1 T2

Figure 3.7: First two construction steps of Knopp curves, as
described in [56].

Knopp curves. We study a class of curves introduced by Knopp in [56] as a further

instance of snowflake-like curves that may be addressed in the construction in Sec. 3.2.

Since the original reference is not commonly available, we give a brief summary of the result.

Consider a curve constructed in the following way: Let T0 be an obtuse triangle of angle

α0 > 90◦ and base interval I0 = [0, 1]. Chose a ratio θ1 and a sub-interval of the base side

of T0 corresponding to a sub-triangle T ′ to be removed from T0 with vol2(T
′) = θ1 vol2(T0)

as shown in Fig. 3.7 such that T0 \ T ′ consists of two obtuse triangles T1, T2 both of which

have angles α1, α2 with 90◦ < αi ≤ α0 for i = 1, 2. Now choose a ratio θ2 and repeat this

procedure with T1 and T2 (using the same θ2 for both T1 and T2) resulting in four triangles

T11, T12, T21, T22 and so on, giving a family of triangles indexed by finite words in {1, 2}n
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for any n ∈ N. Since the triangles are all measurable sets that are disjoint up to 2 points,

one may compute the area taken away at every iteration by

A0 = vol2 T0 , An+1 := An · (1− θn),

so that limn→∞An = vol2(T0)
∏∞
n=1(1 − θn). In other words, limn→∞An has non-trivial

volume if
∑

n θn converges. Indeed, in this setting Knopp showed the following.

Theorem 3.19 ([56]). The limit set K :=
⋃
w∈{0,1}∞

⋂
n∈⋉ Tw|n is a nowhere differentiable

Jordan curve. Moreover it is an Osgood curve (i.e. vol2(K) ̸= 0) iff
∑

n∈N θn converges.

Now Prop. 2.18 implies that a Knopp curve is not a quasicircle if
∑

n θn = ∞. More

precisely, we formulate a simple criterion for Knopp curves (cf. also Ex. 2.17).

Proposition 3.20. Let K be a Knopp curve to a sequence θi of ratios as above. Then K

is part of the boundary of a quasidisk if infi θi > 0.

The complement of the second iteration (cf. Fig. 3.7) is given by a triangle T ′ =

T0 \ (T1 ∪ T2). The fourth iteration than additionally removes four triangles that are

connected either to I0 or to T ′. More generally the union of all triangles that are removed

at an even iteration step of this procedure gives a snowflake-like set whose boundary is

given by the union of the base interval I0 and the Knopp curve. Therefore this class of

Knopp curves provides additional examples for the construction of well-foliated domains

as discussed in Sec. 3.2. In this context, the above Prop. 3.20 guarantees emptiness of

the essential Neumann spectrum of any domain whose boundary consists of unions of such

Knopp curves.



Chapter 4

Weyl asymptotics of spectral

counting functions

In this chapter we introduce a class of domains (Def. 4.1) whose inner ϵ-parallel neighbour-

hood can be covered by well-foliated domains in a controlled manner allowing estimates

of the spectral counting function of the Neumann problem on that domain. We study

the conditions under which this framework covers p-Rohde snowflakes and show how the

framework relates to a related approach by Netrusov-Safarov [80] in Sec. 4.2. Next we

prove our main result, Thm. 4.15 and apply this to snowflakes.

4.1 Well-covered domains

Definition 4.1. A domain Ω ⊂ Rn is called well-covered if there exists µ ∈ N and ϵ0 > 0

such that for any ϵ ∈ (0, ϵ0] there is a volume cover of Ω−ϵ by well-foliated domains

{Dϵ
i ⊂ Ω}i∈Iϵ with parameters (rϵi , L

ϵ
i , Iϵβi , β

ϵ
inf,i, E

ϵ
i ) as in Def. 3.3 and multiplicity of the

volume cover uniformly bounded from above by µ such that

(i). inf0<ϵ≤ϵ0 infi∈Iϵ βinf(D
ϵ
i ) > 0.

(ii). There is a cE independent of i ∈ Iϵ and ϵ ∈ (0, ϵ0] such that any Eϵi has first non-

trivial Neumann eigenvalue λN2 (Eϵi ) ≥ cE (rϵi )
−2.

59
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The second condition, (ii), is often satisfied automatically by the below result of Payne-

Weinberger, [83] (see also [1]).

Theorem 4.2 ([83]). Let E ⊂ R2 be convex and let λN2 (E) be the first non-trivial Neumann

eigenvalue of E. Then

λN2 (E) ≥
( π

diamE

)2
.

Remark 4.3. The reverse inequality in Def. 4.1.(ii) is often automatically satisfied. More

precisely, based on a result by Szegő in [105], Weinberger showed a Faber-Krahn-type

isoperimetric inequality in [110]:

λN2 (Ω) ≤ λN2 (Ω∗) =
p2n(

1
2 diamΩ∗

)2 = p2n

(
ωn

volnΩ

) 2
n

,

where Ω∗ is the ball with voln(Ω
∗) = voln(Ω), ωn is the volume of the n-dimensional unit

ball and pn is the first positive zero of
(
x1−

n
2 Jn

2
(x)
)′

, i. e. the smallest positive solution of

Jn
2
(x) = xJ1+n

2
(x) where Jm(x) is the m-th spherical Bessel function.

The cardinality of the cover {Dϵ
i}i∈Iϵ , denoted by #Iϵ in Def. 4.1 will play an important

role in Thm. 4.15. Next we show that it is closely related to upper inner Minkowski

measurability of Ω.

Proposition 4.4. Let Ω ⊂ Rn be a domain for which there are r± > 0 and v± > 0 and

µ ∈ N such that for every sufficiently small ϵ > 0 there is a finite volume cover
⋃
i∈Iϵ D

ϵ
i

of Ω−ϵ with multiplicity ≤ µ and

Ω−ϵr− ⊂ int
⋃
i∈Iϵ

Dϵ
i ⊂ Ω−ϵr+ and voln(D

ϵ
i )ϵ

−n ∈ [v−, v+]. (4.1)

Then Ω has finite upper inner Minkowski content at dimension δ iff one has #Iϵ ≍ ϵ−δ for

all sufficiently small ϵ.

We will later show in Thm. 4.7 that these conditions are satisfied when Ω is a p-Rohde

snowflakes with p ∈
[
1
4 ,

√
3−1
2

)
. More generally:
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Proposition 4.5. Let Ω be a quasidisk. Then there are r± > 0, v± > 0 and for any

sufficiently small ϵ > 0 there is a volume cover {Dϵ
i} of Ω−ϵ as in defined in Prop. 4.4.

We will prove Prop. 4.5 after Thm. 4.7.

Proof of Prop. 4.4. By Def. 2.29 the upper inner Minkowski content at dimension δ exists

and is non-zero, if voln(Ω−ϵ) ≍ ϵn−δ. Suppose #Iϵ ≍ ϵ−δ. Then

voln(Ω−ϵ) ≤
∑

i∈Iϵ/r−

voln(D
ϵ/r−
i ) ≤ #Iϵ/r−v+(ϵ/r−)

n ≪ ϵn−δ

gives an upper bound for the upper inner Minkowski content of Ω at dimension δ. A lower

bound can be obtained as follows.

voln(Ω−ϵ) ≥ µ−1
∑

i∈Iϵ/r+

voln(D
ϵ/r+
i ) ≥ µ−1#Iϵ/r−v−(ϵ/r+)

n ≫ ϵn−δ

showing that Ω has finite and non-zero upper inner Minkowski content at dimension δ.

Conversely, if the upper inner Minkowski content exists and is non-zero at dimension δ,

then

#Iϵϵ
n ≥ v−1

+

∑
i∈Iϵ

voln(D
ϵ
i ) ≥ v−1

+ voln(Ω−ϵr−) ≫ ϵn−δ

and

#Iϵϵ
n ≤ v−1

−
∑
i∈Iϵ

voln(D
ϵ
i ) ≤ µv−1

− voln(Ω−ϵr+) ≪ ϵn−δ

showing #Iϵ ≍ ϵ−δ.

We consider well-covered domains whose volume covering domains Dϵ
i have uniformly

comparable geometry in the following sense.

Definition 4.6. A family of volume covers {{Dϵ
i}i∈Iϵ}ϵ of Ω−ϵ for a common domain Ω is

said be of uniform shape (or uniform for short) if
(
λN2 (Eϵi )

)−1/2
, Iβ(Dϵ

i \Eϵi ), rϵi and Lϵi of
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each element Dϵ
i (in the notation of Def. 3.3) are uniformly comparable in ϵ, i.e. if there

are constants independent of i and ϵ with

(
λN2 (Eϵi )

)−1/2 ≍ Iβ(Dϵ
i \ Eϵi ) ≍ rϵi ≍ Lϵi ≍ ϵ.

If all Dϵ
i are regular well-foliated domains, we say that Ω is regular well-covered .

By Cor. 3.9, for any uniformly well-covered domain Ω (that is a well-covered by a

uniform volume cover) there is a constant C1(Ω) (cf. Sec. 4.4) with λN2 (Dϵ
i ) ≥ C1(Ω)ϵ

−2

for all i ∈ Iϵ and all sufficiently small ϵ.

4.1.1 Coverings of p-Rohde snowflakes by well-foliated domains

Let p ∈
[
1
4 ,

1
2

)
. Let Ω be a p-Rohde snowflake and ϵ > 0 be small enough. We construct

a cover by well-foliated domains {Dϵ
i}i∈Iϵ of Ω−ϵ where the growth behaviour of #(Iϵ) is

linked to the upper inner Minkowski content. We show that this property is preserved under

certain bi-Lipschitz transformations. The following result may be seen as the analogue to

Propositions 3.7 and 3.14 in the context of well-covered domains.

Theorem 4.7. Let p ∈
[
1
4 ,

√
3−1
2

)
and Ω ⊂ R2 be a p-Rohde snowflake. Then Ω is

uniformly regular well-covered and the conditions of Prop. 4.4 are met. If Ω is homogeneous,

it is also upper inner Minkowski measurable.

Proof. We define a volume cover of Ω−ϵ by regular well-foliated domains in the following

way. We define the contraction ratios of ϕi in the usual way:

q(i) :=


p if i ∈ {1, · · · , 4}

1
4 if i ∈ {5, · · · , 8}

Recall the notation of a composition rule of well-foliated domains from Sec. 3.2 and

Prop. 3.14. For any finite word w ∈ Σfin
A , we define ϵ(w) := ϵ0

∏|w|
ℓ=1 q(wℓ) and J(w) :=

(ϵ(w), ϵ(σw)]. The intervals J(w) agree with an approach by Lapidus-Pearse in [67] up a

constant prefactor. Let K be one of the four p-Rohde curves bounding Ω and consider the
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domain D whose boundary is given by the union of K and I0 = [0, 1]. By construction

(cf. Def. 2.33), D consists of sets {Dw}w∈Σfin
A

. For any such Dw = ϕwXw we consider the

union of Dw with all its higher iterations,

Gw := int

Dw ∪
⋃

i∈Σ:A(w,i)=1

Dwi ∪
⋃

j∈Σ:A(wi,j)=1

⋃
i∈Σ:A(w,i)=1

Dwij ∪ · · ·


Then ϕ−1

w Gw is a domain whose boundary is given by the union of I0 and a p-Rohde curve.

Now let ϵ > 0. Then following the foliation procedure as in Sec. 3.2 we obtain a collection

of regular well-foliated domains Gw(ϵ) := intGw ∪ φw(I0 × [−ϵ, 0]). We introduce three

classes of regular well-foliated domains used for the uniform cover of Ω−ϵ by domains

containing Gw(ϵ):

(i). fringed rectangles, denoted by fRw(ϵ), see Fig. 4.1(a). If w ends with 2, resp. 24

and w′ ends with 3, resp. 31, we construct one domain covering both Gw(0) and

Gw′(0): Take an isosceles triangle with legs of length
∏|w|
ℓ=1 q(wℓ) and base I ′0 of

length (1 − 2p)
∏|w|
ℓ=1 q(wℓ). We equip this triangle with an equidistant foliation (as

defined in the proof of Prop. 3.14) and glue a rectangle EfR = I ′0 × (−ϵ(w), 0) giving

a well-foliated domain Tw. We then glue Gw with the left leg and Gw′ with the right

leg. If w ends with 24, resp. 28 and w′ ends with 35, resp. 31, we replace the isosceles

triangle with one with two legs of lengths lw =
∏|w|
ℓ=1 q(wℓ) and lw′ =

∏|w′|
ℓ=1 q(w

′
ℓ) and

adapt the base of the triangle accordingly to length c =
√
l2w + l2w′ + 2lwlw′ cos(2αp).

Moreover we replace EfR from before with a parallelogram of height ϵ(w) and angle

δo := αp − arcsin
sin 2αp

lw′c , see Fig. 4.1(b). By Thm. 4.2 this satisfies 3.3(ii) with

λ22(EfR) ≥ π2(ϵ(w)2 + c2 + 2ϵ(w)c cos δp)
−1 ≍ ϵ−2.

(ii). short rectangles, denoted by sRw(ϵ), see Fig. 4.2(a). If w ends with 11, 21, 34, 44, we

take the usual regular well-foliated domain consisting of Gw(ϵ(w)).

(iii). long rectangles, denoted by lRw(ϵ), see Fig. 4.2(b). If w ends with 14, 41, take

Gw(0) with base ϕwI0 and glue it to E′ := (0, vol1 ϕwI0 + ϵ(w) sinαp) × (−ϵ(w), 0),

where sinαo =
√
4p−1
2p . Identify the base of Gw(0) as (0, vol1 ϕwI0) ⊂ (0, vol1 ϕwI0 +
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ϵ sinαp) or (ϵ(w) sinαp, vol1 ϕwI0+ϵ(w) sinαp) ⊂ (0, vol1 ϕwI0+ϵ(w) sinαp) and glue

accordingly.

(iv). If w ends with 5, 6, 7, 8, we proceed as with short rectangles (sR) but with p replaced

with 1
4 .

αp

ϵ(w) I0
′

p p

Figure 4.1(a) Construction of fRw(ϵ) for p = 1
3

as used in the proof of Thm. 4.7.

lw

lw′

ϵ(w)

Figure 4.1(b) Extract from a p-Rohde snow-
flake with p = 1

2(1+ 2√
29

)
≲

√
3−1
2

to illustrate the

construction of fRw(ϵ) in the event of asymmet-
ric iterations, i.e. if w ends with 24 but w′ ends
with 15.

ϵ(w)

Figure 4.2(a) Construction of sRw(ϵ) for p =
1
3
.

ϵ(w) sinαp

ϵ(w)

Figure 4.2(b) Construction of lRw(ϵ) for p =
1
3
.

By Prop. 3.14, all four types of domains are regular well-foliated domains. For a

sufficiently small given ϵ > 0, we select all domains fR, lR, sR as shown in Fig. 4.3

with ϵ ∈ J(w). We are left to show that this cover is uniform and to verify (4.1) in

Prop. 4.4. For any finite word w, the given objects cover one or two Gw(ϵ) for se-

lected instances of w. In any case of covering domain one has βinf = 1 and ϵ(w) =

r ≤ L ≤ Iβ ≤
∑∞

ℓ=0

(
2p

1−2p

)1+ℓ
len
(
ϕw (ϕ2)

ℓ γ1/2

)
=
∏|w|
ℓ=0 q(wℓ)

∑∞
m=1

(
p2

1−2p

)m √
4p−1
2 =∏|w|

ℓ=0 q(wℓ)
1−2p

1−2p−2p2

√
4p−1
2 = ϵ(w)

ϵ0
1−2p

1−2p−2p2

√
4p−1
2 for the path γ1/2 from the foliation of the

isosceles triangle as this is the longest path within the isosceles triangle and also within

the seed foliation of the domain whose boundary is given by the union of I0 and
⋃4
i=1 ϕiI0.
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sR

EfR

fR

lR

ϵ

(1− 2p)p−k

Figure 4.3: Example of a cover of the top side of Ω−ϵ by well
foliated domains where Ω is a (fully homogeneous) p-Rohde snow-
flake. The overlaps of domains is shown in dark gray. Notice that
the multiplicity of the cover of µ = 2 remains true for any such
cover. The domains are labeled up to symmetry.

While images of γ1/2 are not within one path, each image is a sharp upper bound to the

length of the path at each iteration level. Finally, since ϵ ∈ J(w), ϵ(w) ≤ ϵ ≤ ϵ(σw)

and ϵ(w)/ϵ(σw) ∈ {1
4 , p} showing ϵ ≍ ϵ(w). By construction of the covering domains

fR, lR and sR we observe that r− = min(14 , p) =
1
4 and r+ = max{4, p−1,

√
1 + sin2 αp}.

Moreover, any covering well-foliated domain with corresponding E as defined in (i)-(iv)

has a volume bounded from above by vol2(ElR(w))+vol2(Tw)+2
∑∞

ℓ=1 2
ℓ−1pℓ vol2(T0) and

from below by vol2E, where T0 is an isosceles triangle of base length 1 − 2p and height

1
2

√
4p− 1. The first non-trivial Neumann eigenvalues of the corresponding domains are

given by π2
(

1
ϵ(w)2

+ 1
b2

)
and for all domains, fR, sR and lR, b ≍ ϵ(w).

If Ω is homogeneous, the above discussion can be drastically simplified as only one

word in s ∈ {0, 1}N fully describes the construction of a homogeneous p-Rohde snowflake.

This is done by identifying {5, · · · , 8} with the digit 0 and {1, . . . , 4} with the digit 1.

The following dynamical system as k → k + 1 dictates the number of covering domains.

If sk+1 = 0, one replaces a domain sR or lR with 4 copies of sR rescaled by 1
4 and each

fR by 6 copies of sR and one copy of fR rescaled by 1
4 . Analogously, if sk+1 = 1, one

replaces each sR or lR with two copies of sR or lR and one copy of fR both rescaled by p.
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Each fR is replaced with two copies of sR and three copies of fR rescaled py p. Writing

sR/lR =:
(
1
0

)
and fR =:

(
0
1

)
, this replacement procedure of n copies of sR/lR and m copies

of fR at k-th iteration corresponds to B(sk)
(
n
m

)
with B(0) :=

(
4 6
0 1

)
and B(1) :=

(
2 2
1 3

)
.

Setting B(s|k) :=
∏k
ℓ=1B(sk) there are C(s|k) :=

∥∥B(s|k)
(
4
0

)∥∥
1

well-foliated domains with

r = ϵ(s|k) covering Ω−ϵ(s|k). Next, we obtain an expression of C(s|k) depending on the

word s. We write v :=
(
4
0

)
, x :=

(
2
−1

)
, A := B(0) and B := B(1) for brevity. Notice that

x is an eigenvector of both A and B to eigenvalue 1 and moreover

[Bp, Aq]Bkv = −4k+1

3
(4q − 1) (4p − 1)x,

Then for p0 +
∑m

ℓ=1 qℓ + pℓ = k and pi, qi ≥ 0

C(s|k) = (1, 1)Ap0Bq1Ap1Bq2Ap2 · · ·BqmApmv

= (1, 1)Ap0Bq1Ap1Bq2Ap2 · · ·Bqk−1Apk−1

(
ApkBqkv − 1

3
(4qk − 1) (4pk − 1)x

)
= (1, 1)Ap0Bq1Ap1Bq2Ap2 · · ·Bqk−1Apk−1+pkBqkv − 4

3
(4qk − 1) (4pk − 1)

= (1, 1)Ap0Bq1Ap1Bq2Ap2 · · ·Apk−1+pkBqk−1+qkv

− 4

3
(4qk − 1) (4pk − 1)− 4qk+1

3
(4qk−1 − 1)

(
4pk−1+pk − 1

)
= · · ·

= 4k+1 − 4k+1−p0

3
+

4k+1−p0−q1

3
− 4k+1−p0−q1−p1

3
± · · ·+ 4pm+1

3

∈
[
2 · 4k+1

3
,
10 · 4k+1

9

)
.

As in Rem. 2.39, ∂Ω can be understood as the union of four copies of R where R is a

Moran set as in Def. 2.37. Indeed, with the definition of ϵ, one has 4k = ϵ(s|k)−δk , where

δk is the unique root of t 7→ 1 −
∏k
ℓ=1 4q(sℓ)

t showing that #Iϵ ≍ ϵ(s|k)−δk . It can be

shown (cf. [38], Prop. 2.38) that δ := lim supk→∞ δk is the upper Minkowski dimension of

R and hence of ∂Ω.

Notice that the above argument for Minkowski measurability holds true if p ≥
√
3−1
2 . In
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the case of a non-homogeneous p-Rohde snowflake Ω, each point z ∈ ∂Ω has an individual

word s(z) ∈ Σ∞
A . Using the above covering technique and the theorem of Rohde, we can

now prove Prop. 4.5 in a relatively constructive manner.

Proof of Prop. 4.5. Let F : Ωp → Ω be bi-Lipschitz with a p-Rohde snowflake Ωp for

some p ∈
[
1
4 ,

1
2

)
. Then we cover the region near the boundary of Ωp as in the proof

of Thm. 4.7. Up to the condition in Def. 3.3(ii), the properties of this volume cover

do not change if p ∈
[√

3−1
2 , 12

)
so that any p-Rohde snowflake satisfies the condition

of Prop. 4.4. Let us denote this volume covering set by {Dϵ(w) : ϵ ∈ J(w)} and we

write the base of each Dϵ(w) as Iϵ(w). We define the inner boundary of the volume

cover as A := ∂
⋃
Dϵ(w) \ ∂Ω. Then FDϵ(w) is a finite volume cover of a region near

the boundary of Ω. Since F is bi-Lipschitz (see for example Wakin-Eftekhari in [25]),

vol2(FD
ϵ(w)) ≍ vol2(D

ϵ(w)). Let r− := infx∈∂Ω dist(x,A) and r+ := supx∈∂Ω dist(x,A).

Then r± satisfy the conditions of Prop. 4.4 for Ωp and since F is bi-Lipschitz, rF− :=

infx∈∂FΩ dist(x, FA) = infx∈∂Ω dist(Fx, FA) ≍ r− and analogously for rF+.

Similarly to the argument above, under a technical assumption (called E-property)

Thm. 4.7 can be extended to certain quasidisks.

Definition 4.8. Let X,X ′ ⊂ Rn be two domains. Then a bi-Lipschitz map f : X → X ′

is said to have the E-property if there is N ∈ N, α0 > 0 and κ ∈ R+ such that for any

sufficiently small ϵ > 0 and any cuboid of side length ϵ, denoted by Eϵ ⊂ X, with parallel

fibres {γq : q 7→ q + ten} that are parallel to one side of Eϵ, the image fEϵ is covered with

at most N (n − 1)-dimensional hyperplanar convex domains {Pj} with piecewise smooth

boundary and normal νj so that any fibre f ◦ γq traverses through at least one Pj and all

fibres through one Pj traverse it at an angle > α0 and Pj(ϵ′) := Pj + (0, ϵκ)νj ⊂ Ω.

Clearly any locally affine map has the E-property. If a quasicircle is bi-Lipschitz to a

p-Rohde snowflake as in Prop. 4.7 with E-property, it can be uniformly well-covered by

applying the bi-Lipschitz map to the uniform regular well-covering of the corresponding

p-Rohde snowflake. More generally:
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Proposition 4.9. Let Ω ⊂ Rn be a domain and f : Ω′ → Ω be bi-Lipschitz with E-property

and a (uniformly) well-covered Ω′. Then Ω is (uniformly) well-covered.

Proof. Let Ω′ be well-covered by {Dϵ
i}i∈Iϵ with corresponding {Eϵi }. Then with Prop. 3.7,

consider fDϵ
i as a volume cover of Ω−ϵ′ with ϵ′ := min{ϵ/L, Lϵ} where f has Lipschitz

constant L. By the E-property, f(Eϵi ) contains at most M ≤ N convex (n−1)-dimensional

regions {Pj}j=1,··· ,M with normal νj that intersect every fibre in fEϵi . Then Pj(κϵ(w)) ⊂ Ω

is convex and has diamPj(κϵ(w)) ≤
√
(diamE)2 + κ2ϵ(w)2. Then by the theorem of

Funano (Thm. 2.22), it satisfies Def. 4.1(ii) since for any j there is a sphere of radius ≍ ϵ

containing Pj .

4.2 Bounded Variation domains as well-covered domains

In this section we show that the class of well-covered domains contains the class of domains

of bounded variation. For the class of domains of bounded variation bounds on Laplace

eigenvalue counting functions have been found in [80]. Recall the definition of Osc(f,Qn)

in Def. 3.1

Definition 4.10 (Def. 1.1-1.2 in [80]). Let Qn be an n-dimensional cube with arbitrary

size whose edges are parallel to the axes.

(i). Let f : Qn → R be bounded. Then for any δ > 0, we define Vδ(f,Qn) as the maximal

number of disjoint open cubes Qn,i ⊂ Qn whose edges are parallel to coordinate axes

with Osc(f,Qn,i) ≥ δ for all i. If Osc(f,Qn) < δ, we set Vδ(f,Qn) := 1.

(ii). Let τ : R>0 → R>0 be non-decreasing. The space spanned by the continuous func-

tions f : Qn → R defined on some cube Qn such that V1/t(f,Qn) ≤ τ(t) for all t, is

called the set of functions with (τ,∞)-bounded variation and denoted by BVτ,∞(Qn).

For a domain Ω ⊂ Rn, we write Ω ∈ BVτ,∞ iff for any point p ∈ ∂Ω there is an open

neighbourhood Up ⊂ Rn such that (up to an SO(n)), Up ∩Ω is the set of points below the

graph of some f ∈ BVτ,∞(Qn−1) and a constant function b < inf f .
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Theorem 4.11. Let τ(t) ≍ tδ for some δ ≥ 1. Then the set of well-covered domains

contains BVτ,∞ as a proper subset.

Proof. Let Ω ∈ BVτ,∞ be a domain in Rn and let p ∈ ∂Ω with corresponding neighbour-

hood Up. Then Up ∩ Ω has boundary given by the union of a graph Γf of a function f :

Qn−1 → R from above and a constant b < inf f from below. Hence there is a foliation {γ ∈

Γ} by straight lines: For any x ∈ Qn−1, let γx : t 7→ (x1, x2, · · · , xn−1, b) + t(0, · · · , 0, 1)

be so that len γx = f(x) − b > 0. Such foliations satisfy conditions (i)-(ii) in Def. 3.3

trivially, as the corresponding density β is 1 everywhere. Then for some r ∈ (b, inf f), we

set E := {x ∈ Up : ∃γ s. t. x = γ(r)} showing that Up is well-foliated for all p ∈ ∂Ω.

Since ∂Ω is compact (being closed and bounded), there is a finite set of open neighbour-

hoods Up corresponding to some f ∈ BVτ,∞ that cover ∂Ω. By [80, Thm. 3.5, Cor. 3.8],

for any ϵ > 0 small enough, each of these can be covered by a family of well-foliated

domains of size ≍ ϵ with r = ϵ and of cardinality ≪ Vϵ/2(f,Qn−1) + ϵ−n voln(Ω−ϵ) +

ϵ−1
∫ 1/ϵ
1 t−2τ(t)dt≪ τ(1/ϵ) = ϵ−δ.

Since the Koch snowflake K is not locally a graph, K /∈ BVτ,∞ while K is well-covered

as shown in Sec. 4.3.1.

Remark 4.12. Suppose there is a bi-Lipschitz function f : Ω → Ω′ with Lipschitz constant

L, such that Ω′ ∈ BVτ,∞ with τ(t) ∼ t−δ for some δ > 1. Then Ω is well-covered. Such

domains are studied in [80] but in many practical cases, it appears to be easier to show a

domain is well-covered instead of showing it is BVτ,∞ up to a bi-Lipschitz transformation.

Moreover, Thm. 4.11 shows that Thm. 4.15 covers a larger class than BVτ,∞ addressing

the open problem raised in [80, Sec. 5.4.2].

4.3 Asymptotic behaviour of spectral counting functions of

well-covered domains

In this section we obtain an estimate on remainder terms of NN (Ω, t) in particular when

Ω is a snowflake-like domain. Before we prove the main result, Thm. 4.15, we recall the
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aforementioned result from [80] in Thm. 4.13 and Cor. 4.14. This result is restricted to

bounded variation domains which were briefly discussed in Sec. 4.2. We then show how

our setup enables us to study more general cases based on Lem. 3.8 which allows domains

whose boundary is not necessarily locally a graph. Afterwards we concentrate our attention

in particular on p-Rohde snowflakes in Sec. 4.3.1 stressing the construction in Sec. 3.2.

Theorem 4.13 (Cor. 1.5 in [80]). Let Ω ∈ BVτ,∞(Rn). Then there is CΩ ∈ R such that

|NN (Ω, t)− CW voln(Ω)λ
n/2| ≤ CΩλ

(n−1)/2

∫ CΩ

√
λ

C−1
Ω

(
1

t
+ t−nτ (t)

)
dt.

With Thm. 4.11 this gives the following result:

Corollary 4.14. For bounded variation domains Ω one has NN (Ω, t) = C
(n)
W tn/2+O(tδ/2),

if δ := dimM (∂Ω,Ω) > n− 1 is the upper inner Minkowski dimension.

We are now in the position to prove an analogous asymptotic result on NN (Ω, t) for

more general domains, with focus on domains with fractal boundary, thus generalising

the results and partially resolving a question raised in [80, Sec. 5.4.2] in Thm. 4.11 and

Rem. 4.12. Key for obtaining such an asymptotic result for NN (Ω, t) is the construction

of a foliation in Ω−ϵ paired with Lem. 3.8.

Theorem 4.15. Let Ω ⊂ Rn be uniformly well-covered by {Dϵ
i}i∈Iϵ with #Iϵ ≤ Cϵ−δ for

fixed C, δ. Then there is a CM depending only on Ω such that

NN (Ω, t) ≤ CW voln(Ω)t
n/2 + CM t

δ/2.

In particular, if p ∈
[
1
4 ,

√
3−1
2

)
, this applies to the cases where Ω ⊂ R2 is bi-Lipschitz

to an upper inner Minkowski measurable p-Rohde snowflake with E-property or if Ω is

bi-Lipschitz to a homogeneous p-Rohde snowflake with E-property.

Proof. Let {Q}Q∈W denote a Whitney cover of Ω (see Lem. 2.41). For ϵ > 0 we restrict

{Q}Q∈W to the smallest subset Wϵ ⊂ W of cubes volume covering Ω\Ω−ϵ, i. e. those cubes

that are sufficiently far away from ∂Ω and hence are sufficiently large. Suppose that ϵ is
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small enough so that Ω−ϵ is uniformly volume covered by well-foliated domains {Dϵ
i}i∈Iϵ .

Let Jϵ ⊂ Iϵ be such that Dϵ
i ∩

(
Ω \

⋃
Wϵ

Q
)
̸= ∅ for i ∈ Jϵ and set Uϵ := {Dϵ

i}i∈Jϵ .

Then Ω =
⋃
i∈Jϵ D

ϵ
i ∪
⋃

Wϵ
Q and this volume cover can be split into two disjoint volume

subcovers. Let Tϵ := {Q ∈ Wϵ : Q ∩
⋃
i∈Jϵ D

ϵ
i ̸= ∅} and UW

ϵ := Uϵ ∪ Tϵ be the set of all

well-foliated domains Dϵ
i together with all cubes in Wϵ that intersect some Dϵ

i . Next, we

restrict the Whitney cover further to the minimal set of cubes necessary to volume cover

Ω given the volume cover {U}U∈UW
ϵ

by defining W̃ϵ := {Q ∈ Wϵ : Q ∩ U = ∅ ∀U ∈ UW
ϵ }.

These volume covers are disjoint and have multiplicity µ(UW
ϵ ) ≤ µ+ 1 and µ(W̃ϵ) = 1 so

that volnΩ = voln

[(⋃
UW
ϵ
U
)
⊔
(
int
⋃

W̃ϵ
Q
)]

. Therefore

NN (Ω, t) ≤ NN

( ⋃
UW
ϵ

U, t

)
︸ ︷︷ ︸

:=Sϵ
1(t)

+NN

(
int
⋃
W̃ϵ

Q, t

)
︸ ︷︷ ︸

:=Sϵ
2(t)

and we estimate both terms separately.

Sϵ1(t). By construction one can estimate the first non-trivial eigenvalue of any Whitney cube

Q ∈ UW
ϵ as

λN2 (Q) =

( √
nπ

diamQ

)2

≥
( √

nπ

dist(Q, ∂Ω)

)2

≥
(√

nπ

r+ϵ

)2

,

where r+ is taken from Prop. 4.4. For large enough λ we can choose ϵ such that

(µ+1)λ = C2ϵ
−2. Any Q ∈ Tϵ satisfies dist(Q, ∂Ω) ≥ ϵ−diam(Q) (i. e. diamQ ≥ ϵ

5)

and diamQ ≤ dist(Q, ∂Ω) ≤ r+ϵ. Then, by Prop. 2.42,

Sϵ1(λ) ≤
∑

U∈UW
ϵ

NN (U, (µ+ 1)λ) ≤ #Iϵ +
∑

k−≤k≤k+

#Wk ≤ #Iϵ + 2k−δ
⌊2+log2(5r+)⌋∑

k=0

MΩ2
kδ

≤ C(Ω)ϵ−δ +MΩ

(√
n

r+

)δ
(8 · 5r+)δ − 1

2δ − 1
ϵ−δ ≤ C3(Ω)ϵ

−δ =
C3(Ω)(µ+ 1)δ/2

C2(Ω)δ/2
λδ/2,

where k− :=
⌊
log2

√
n

r+ϵ

⌋
and k+ :=

⌈
log2

5
√
n
ϵ

⌉
and hence k+ − k− ≤ 2 + log2(5r+).

Sϵ2(t). Notice that int
⋃
Q∈W̃ϵ

Q is a polygon whose volume is bounded by volnΩ. By
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Prop. 2.43, Prop. 2.44 and a result on two-term asymptotics for polygons (see Sec. 4.5

and Thm. 7.4.11 in [48] or [108]),

lim sup
t→∞

Sϵ2(t)

C
(n)
W voln(Ω)tn/2 +

C
(n−1)
W
4 AΩϵn−1−δt(n−1)/2

≤ 1.

The estimates for Sϵ1(t) and Sϵ2(t) together show that for large enough t

NN (Ω, t) ≤ C
(n)
W voln(Ω)t

n/2 +MΩt
δ/2.

The above theorem can be used to obtain explicit bounds for the spectral counting

function, see Rem. 5.8(i)-(ii). We shall make use of the following simple observation about

the spectrum of cubes based on a result by Pólya in [86].

Lemma 4.16. The Neumann counting function of a unit cube In = (0, 1)n ⊂ Rn has an

upper bound of NN (I
n, t) ≤ ND(I

n, (
√
t+ 2π

√
n)2) ≤ C

(n)
W (

√
t+ 2π

√
n)n.

Proof. NN (I
n, t) = #{k = (k1, · · · , kn) ∈ Nn0 : |k|22 ≤ t/π2} and ND(I

n, t) = #{k =

(k1, · · · , kn) ∈ Nn : |k|22 ≤ t/π2}. Defining ÑN (r) := #{k ∈ Nn0 : |k|22 ≤ r2} one observes

NN (I
n, t) = ÑN (

√
t/π) and analogously for ND. Notice that ÑN (r) ≤ ÑD(r + 2

√
n).

Thus NN (I
n, t) = ÑN (

√
t/π) ≤ ÑD(

√
t/π + 2

√
n) = ND(I

n, (π(
√
t/π + 2

√
n)2). Finally

ND(I
n, t) ≤ C

(n)
W tn/2 by Pólya’s result.

Remark 4.17. In the proof of Thm. 4.15 a couple of adaptations offer interesting variations.

Further observations are mentioned in Sec. 6.2.2.

(i). The minimal value of t for which the estimate of Thm. 4.15 holds true depends

entirely on the maximal value of ϵ in Def. 4.1. More precisely, if Ω is well-covered for

all ϵ < ϵ0, an upper bound for NN (Ω, t) for all t > t0 :=
C2ϵ

−2
0

µ+1 is presented below.

This variant of the above estimate involves estimating Sϵ2(t) ≤
∑

Q∈W̃ϵ
NN (Q, t).
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More precisely, setting k′− := ⌊− log2
diamΩ√

n
⌋, one has

Sϵ2(t) ≤
∑
Q∈W̃ϵ

NN (Q, t) ≤
k+∑

k=k′−

#WkNN (2
−kIn, t)

While more accurate estimates are possible, this is sufficient to provide an upper

bound in terms of counting functions of cubes. Applying Lem. 4.16 to the cubes in

Wϵ yields an explicit upper bound of Sϵ2(t) that is not only asymptotic but holds for

all t > t0.

Sϵ2(t) ≤ C
(n)
W

k+∑
k=k′−

#Wk

(
2−k

√
t+ 2π

√
n
)n

≤ C
(n)
W

vol(Ω)tn/2 +MΩ

k+∑
k=k′−

2kδ
[(

2−k
√
t+ 2π

√
n
)n

−
(
2−k

√
t
)n] .

With Sϵ2(t) ≤ Sϵ2(t0) if t ≤ t0 this extends to a global estimate of NN (Ω, t) and the

coefficient of such an error term estimate will be denoted by Mabs
K . Since the estimate

of Sϵ1 is also correct for all t, this gives an absolute estimate of the remainder term of

the Neumann counting function. In the regular case of δ = n− 1, this estimate then

only provides a weaker estimate of t(n−1)/2 log t instead of the boundary term t(n−1)/2.

Similarly such an asymptotic term is also obtained if one uses the regular asymptotic

law of the counting functions NN (2
−kIn, t) as shown for example by Lapidus in [65]

whenever the upper Minkowski content agrees the upper inner Minkowski content.

(ii). Let Ω ⊂ Rn be any open set with finite volume such that voln(Ω−ϵ) ≤ C̃ϵn−δ for

some δ ∈ (n− 1, n) and all sufficiently small ϵ > 0. Then, using Whitney covers and

an estimate of the form of Prop. 2.42, one can find lower bounds for ND(Ω, t) as was

shown by van den Berg and Lianantonakis in [107]. Indeed, for any such domain Ω

one has

ND(Ω, t) ≥ C
(n)
W voln(Ω)t

n/2 − 5C̃

(n− δ)(δ + 1− n)
tδ/2,
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if δ > n− 1 and t > 0, and

ND(Ω, t) ≥ C
(n)
W voln(Ω)t

n/2 − 3C̃t(n−1)/2
(
log
(
(2 volnΩ)

2/nt
))

,

if δ = n − 1 and t > 4
n
√

voln(Ω)2
. Together with Thm. 4.15, this gives explicit

upper and lower bounds for the remainder term of counting functions (for Neu-

mann, Dirichlet and mixed boundary conditions) of well-covered domains whenever

δ > n − 1: Since voln(Ω−ϵ) ≤ voln
(⋃

i∈Iϵ D
ϵ
i

)
≤ c+volC(Ω)ϵ

n−δ, we may set C̃ :=

c+volC(Ω) to obtain an estimate for all t > t0 for |NN (Ω, t) − C
(n)
W volnΩt

n/2| ≤

max{Mabs
K , 5C̃

((n−δ)(δ+1−n))}t
δ/2 with Mabs

K taken from (i) above. This constant will

be denoted by M̃K . It plays a central role in the companion paper [62]. In [62] these

estimates are used to deduce high order asymptotic terms for ND(U, t) for self-similar

sprays U whose generators are finite unions of pairwise disjoint Koch snowflakes.

(iii). Combining Thm. 1.10 of [80] with Thm. 4.11 it follows that for any n there is a well-

covered domain Ω ⊂ Rn and a tΩ ∈ R+ for which NN (Ω, t)−C(n)
W volnΩt

n/2 ≥ t−1
Ω tδ/2

for all t > tΩ. In this sense, the result of Thm. 4.15 is order-sharp.

(iv). One may consider only non-trivial eigenvalues, thus disregarding the trivial zero

eigenvalue of each Dϵ
i that comes with Neumann boundary conditions. In this case

one can adapt the proof above by setting Sϵ2(t) = 0 essentially re-obtaining existing

results (for example in [65]) for Dirichlet boundary conditions.

While it is sensible to restrict the attention to extension domains, we did not make use

of the existence of such an extension or, for that matter, the emptiness of the essential

spectrum of the Neumann Laplacian at any point in our argument. Since the above result

implies the finiteness of the spectral counting function, we obtain the following result.

Corollary 4.18. Let Ω ⊂ Rn be a well-covered domain with positive and finite upper inner

Minkowski content. Then σess(−∆N ) = ∅.
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EfR

fR

sR
lR

ε

3−k

Figure 4.4: Instance of the cover of an inner ϵ-neighbourhoodK−ϵ

of the classical Koch snowflake K and ϵ ∈ J
(1/3)
2 . In difference to

the cover suggested for p-Rohde snowflakes, both end segments of
this curve are parts of additional fR’s, as the snowflake is built out
of three equilateral Koch curves.

4.3.1 Application to snowflakes

For snowflake domains and more generally any domain whose boundary has a self-similar

structure, the values of β(γ, t) as in Def. 3.3 can often be easily understood: They increase

in discrete steps according to a power-law as t approaches len γ (cf. Fig. 4.5). For the Koch

snowflake for example, one might say, that β doubles in value each time a fibre passes

through an image of I0 under some ϕw for a w ∈ {1, . . . , 4}∗.

The remainder of this section is devoted to finding an explicit estimate for the remainder

term of the eigenvalue counting function of the Neumann Laplacian for fully homogeneous

p-Rohde snowflakes Rp, the classical Koch snowflakeK and more generally Koch snowflakes

with a parameter p (that is a snowflake bounded by three fully homogeneous p-Rohde

curves) denoted by Kp. To some extent this is a direct application of Thm. 4.7.

Fix p ∈
(
1
4 ,

√
3−1
2

)
and let δ := dimM∂Rp = dimM∂Kp = − logp 4 denote the upper

inner Minkowski dimension of the boundary of Rp and Kp. As shown in Thm. 4.7, Kp and

Rp are well-covered. Let ϵ ∈ J
(p)
k :=

(
pk+1 1−2p√

4p−1
, pk 1−2p√

4p−1

]
. In [67], it was shown that K

has finite upper inner Minkowski measure. We cover the classical Koch snowflake and Rp

as depicted in Fig. 4.4 and Fig. 4.3. Following the proof of Thm. 4.7, the regular uniform

well-covering of Kp−ϵ and Rp−ϵ consists of three types of objects: For ease of notation
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we replace ϵ(w) with ϵ in this application since both the Koch snowflake and the Rohde

snowflake are fully homogeneous.

(A) Fringed rectangles (fR) (1− 2p)pk−1 × ϵ with fractal top of height pk−1
√
4p−1
2 .

(B) Short rectangles (sR) pk × ϵ with a fractal top of height pk
√
4p−1
2 .

(C) Long rectangles (lR)
(
pk + ϵ

√
4p−1
2p

)
× ϵ and a fractal top of height pk

√
4p−1
2 .

β = 1

β = 2p
1−2p

β =
(

2p
1−2p

)2

β =
(

2p
1−2p

)3

E
Q

D

r
=
ϵ

(1− 2p)pk−1

Figure 4.5: Systematic construction of the foliation of sets near
the boundary of the p-snowflake of Rohde type in the case of a
“fringed rectangle (fR)” (see Sec. 4.3.1(A)). The well-foliated do-
main is the dotted rectangle (the set E) and the section of the
snowflake above it. The gray areas within the snowflake indicate
areas of constant β(γ, t). One notices that in the particular case of
p = 1/3, a connection between the ternary expansion of γ(0) ∈ R
and the shape of the curve (and in particular its number of turns)
is evident.

We now obtain numeric values for the estimates from Thm. 4.15: By the iteration

dynamics, Rp−ϵ is covered by 4
3(4

k − 1) instances of fR and 4
3(4

k + 2) copies of sR or

lR. In total this amounts to a cover of cardinality #Iϵ =
4
3(2 · 4k + 1) ≤ C(Rp)ϵ

−δ with

C(Rp) = 3
(

1−2p√
4p−1

)δ
. Analogously one can chose C(Kp) = 3

4C(Rp). For the classical

Koch snowflake K := K1/3, the cardinality of the cover is 2 · 4k − 2 ≤ C(K)ϵ−δ with
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C(K) = 1. By construction r = ϵ(w) for any finite word w, so that c±r = 1. The

length L of a fibre satisfies ϵ = r ≤ L < r +
∑∞

ℓ=0 p
ℓ+k−1

√
4p−1
2 ≤

(
1 + 4p−1

p2(2−6p+4p2)

)
ϵ

implying c−L ≥ 1 and c+L ≤ 1 + 4p−1
p2(2−6p+4p2)

. From our previous estimate on Iβ we infer

c−I ≥ 1 and c+I ≤ 1 + 4p−1
2p2(1−2p−2p2)

. The diameters of the covering domains (A)-(C) above

are found to be bounded from above by
√

[(1− 2p)pk−1]2 +
(
ϵ+ pk−1

√
4p−1
2

)2
so that

c+diam ≤
√

4p−1
p4

+
(
1− 4p−1

2p2(1−2p)

)2
. Moreover, c−diam ≥ 1.

To (i) and (ii): By minimising λN2 (ElR)ϵ
2 as a function of ϵ ∈ J

(p)
k we obtain cE(Rp) =

min
(
1, 4(1−2p)2p2

(3−2p)2(4p−1)

)
π2. Using the above constants we compute C1(Rp−ϵ) as given in

Cor. 3.9 so that λN2 (Dϵ
i ) ≥ ϵ−2C1(Rp−ϵ). See Fig. 4.6(a) for a plot of C1(Rp−ϵ). In

0.25 0.28 0.31 0.34 1
2
 3 - 1

p

0.1

0.3

0.5

C1(R(p)-ϵ)

Figure 4.6(a) Values of C1(Rp−ϵ) for values
for p ∈ ( 1

4
,
√
3−1
2

) as in Cor. 3.9. The values
approach 0 as p↗

√
3−1
2

.

0.25 0.28 0.31 0.34 1
2
 3 - 1

p

105

106

107

MR (p)

Figure 4.6(b) Values of MK(p) for values for
p ∈ ( 1

4
,
√

3−1
2

) as given by Thm. 4.15.

particular in the case of the classical Koch snowflake one finds λN2 (D) ≥ 0, 0031ϵ−2 for any

element of a cover of K−ϵ as given by (A)-(C) above.

Based on the above considerations, one now obtains expressions for MRp as well as

coefficients following Rem. 4.17.(i). As expected, the coefficients MRp diverge as p↗
√
3−1
2

and remain regular as p↘ 1/4, see Fig. 4.6(b).

In the case of the classical Koch snowflake K, a different better estimate is possible

based on an estimate of the area of the inner ϵ-parallel neighbourhood of K by Lapidus

and Pearse in [67]:

vol2(K−ϵ) ≤ 3

[
ϵ2−δ4−{x}

(
3
√
3

40
9{x} +

√
3

2
3{x} +

1

6

(π
3
−
√
3
))

− ϵ2

3

(π
3
+ 2

√
3
)]

,
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where δ = log3 4 = dimM (∂K,K) and {x} is the fractional part of x := − log3(ϵ
√
3).

Therefore,

Mδ(∂K,K) ≤ 1

480

(
723

√
3 + 20π

)
.

Moreover, the monotonicity of the above upper bound shows that ϵ′ ≤ 0 in our estimate

and hence MK ≤ 11.61. Based on this, C3(K) ≈ 1354 and Sϵ1(t) ≤ 104282 tδ/2. Computing

MK we finally obtain an asymptotic upper bound for the remainder term of the Neumann

counting function of the Koch snowflake of

NN (K, t)− C
(2)
W vol2(K)t ≤ 104325.5 tδ/2.

Alternatively, an absolute upper bound can be found following Rem. 4.17.(i):

NN (K, t)− C
(2)
W vol(K)t ≤ C

(2)
W

(
3.537 · 106 tδ/2 − 353− 911

√
t
)
. (4.2)

Since ϵ < 1/9 is more than sufficient to satisfy Def. 4.1, this holds true for all t ≥ 0.1.

Some limited computational results on the Neumann (or Dirichlet) spectrum of the Koch

Snowflake can be found in [81, 104]. A few estimations in the above application were delib-

erately chosen sub-optimally for the benefit of the presentation so that some improvements

in these constants are expected to be possible.

4.4 Constants

The following constants are used within this document. Let Ω be well-covered by {Dϵ
i}i∈Iϵ

with corresponding cE as in Def. 4.1(ii) and Eϵi , r
ϵ
i , L

ϵ
i , Iϵβ,i, βϵinf,i to each Dϵ

i in the cover

and indexed accordingly. Based on the conditions in Cor. 3.9 we define c±r , c
±
L , c

±
I via

rϵi ϵ
−1 ∈ [c−r , c

+
r ], Lϵiϵ

−1 ∈ [c−L , c
+
L ], Iϵβ,iϵ−1 ∈ [c−I , c

+
I ].
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MΩ and AΩ are defined in Prop. 2.42 and Prop. 2.43, respectively and r+ is as in the proof

of Thm. 4.15.

C
(n)
W :=

(4π)−n/2

Γ(1 + n
2 )

C1(Ω) := cE(c
+
r )

−2

1 + c+I

 1√
c−r infi,ϵ βinf(E

ϵ
i )

+

√
c+LcEc

+
r

infi,ϵ βinf(D
ϵ
i )

2−1

C2(Ω) := min

{
C1(Ω),

1

2

(√
nπ/r+

)2}
C3(Ω) := C(Ω) +MΩ

(40
√
n)δ

2δ − 1

MΩ := C3(Ω)

(
µ+ 1

C2(Ω)

)δ/2
+
C

(n−1)
W

4
AΩ

(
µ+ 1

C2(Ω)

) δ−(n−1)
2

.
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Chapter 5

Renewal theory and fractal sprays

In this chapter we combine renewal theoretic results with the above to study Dirichlet

counting functions on fractal sprays. We first discuss necessary background of graph direc-

ted systems and cite a result by Kombrink on asymptotic expansions of renewal functions

in Thm. 5.6. In Sec. 5.2 we apply the results on snowflakes from the previous chapter to

a setting of fractal sprays whose gaps have fractal boundary and compare the asymptotic

expansion of the spectral counting function to the one of the volume of the inner ϵ-parallel

neighbourhood. Section 5.2 is largely based on [61] by Kombrink and the author.

5.1 Graph directed systems

In this section the basic notion of a graph directed system (GDS) is defined, following

the approach in [74]. Let (V,Σ, i, t) be a directed multi-graph with vertex set V and an

alphabet Σ as the set of edges. Let i, t : Σ → V be the initial and terminal map on Σ

indicating start and end point of an edge such that Σ ∋ e : i(e) → t(e). Now to each

v ∈ V a compact complete metric space Xv is assigned and to each edge e a bijective

contraction ϕe : Xt(e) → Xi(e) with Lipschitz constant Le is assigned. This amounts to a

graph directed system (sometimes also called graph directed scheme) in the following way.

Definition 5.1. Let V be a finite set and Σ be at most countable. Then a graph directed

system (GDS) ({Xv}v∈V , {ϕe}e∈E) consists of a family of compact subsets Xv ⊂ Rn for

81
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each vertex v ∈ V and Lipschitz continuous maps ϕe : Xt(e) → Xi(e) along each edge

E ∋ e = (i(e), t(e)) such that supe∈Σ Le < 1, where Le is the Lipschitz constant of the

map ϕe.

Therefore this definition is contravariant in that the maps in the GDS point backwards

compared to the edge in the directed graph. The incidence matrix A of a GDS is then

defined analogously to the composition rule in the construction of well-foliated domains in

Sec. 3.2 via

A : Σ× Σ → {0, 1} via A(u, v) :=


1 if t(u) = i(v)

0 else

For any word w = w1w2w3 · · · the (left) shift map is defined via σw := w2w3 · · · and

w|m := w1w2w3 · · ·wm.

Following the definition of the incidence matrix of a GDS, two maps ϕu, ϕv for u, v ∈ Σ

can be composed as ϕuϕv = ϕuv iff uv ∈ Σ2
A:

directed graph i(u) t(u) i(v) t(v)

GDS Xi(u) Xt(u) Xi(v) Xt(v)

uv

u v

ϕu ϕv

ϕuv

This explains how the composition of words is related to the composition of maps. For

w = w1w2 · · ·wm ∈ Σfin
A , the map ϕw is given by ϕw := ϕw1ϕw2 · · ·wm as defined before.

For any ξ : Σ∞
A → C the n-th Birkhoff sum is defined as

Snξ :=


∑n−1

k=0 ξ ◦ σk if n ≥ 1

0 if n = 0

For any word w with lenw ≥ n the subword of length n is denoted by w|n := w1w2 · · ·wn.
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Any word w ∈ ΣnA gives rise to a cylinder of length n defined by [w] :=
{
x ∈ Σ∞

A s.t. x|n =

w
}
.

Let ({Xv}v∈V , {ϕe}e∈E) be a GDS as in Def. 5.1 and Σ∞
A ∋ w. Then the sequence

(w|n)n∈N gives rise to a sequence of contractions with the common codomain Xi(w1)

and Lipschitz constant ≤ (supi∈N Lwi)
n bounded away from 1. Therefore the sequence(

ϕw|n
(
Xt(wn)

))
n∈N of compact subsets of Xi(w1) is nested and, by Cantor’s Intersection

and the following intersection is non-empty:

⋂
n

ϕw|n(Xt(wn)) ̸= ∅.

Analogously to the case of an IFS the diameter of this intersection has an arbitrarily small

upper bound given by

diam
⋂
n

ϕw|n(Xt(wn)) ≤ lim
n
(supLe)

n diam(Xt(wn)) = 0,

so that this intersection contains exactly one point,
⋂
n ϕw|n(Xt(wn)) = {x}. This point

is defined as the projection (also called coding map) π from the word w to a subset of Xi(w1)

and by the above considerations this gives rise to the limit set of a GDS ({Xv}v∈V , {ϕe}e∈Σ),

defined as

J(F ) := π (Σ∞
A ) .

Definition 5.2. Let A be the incidence matrix of some GDS. Then A is called

(i). finitely irreducible if there is a finite subset Λ ⊂ Σfin
A such that for any two edges i, j

there is a path w ∈ Λ such that iwj is an admissible word.

(ii). finitely primitive if there is a p ∈ N and a finite subset Λ ⊂ ΣpA such that for any two

edges i, j there is a word w ∈ Λ such that iwj is admissible.

A GDS is called conformal if all maps are conformal and additionally all Xv = intXv

satisfy the cone condition in Def. 2.7 and the open set condition (see Thm. 2.36) is satisfied.
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In this case the limit set is called self-conformal.

Theorem 5.3 (Moran-Hutchinson formula for limits sets of GDS, [45, 74, 78]). Let J

be the limit set of a conformal GDS in the same notation as above with finitely primitive

incidence matrix and let ξ(y) := log |ϕ′y1πσy|. Then the Hausdorff dimension of J is

dimH J = inf

{
t ∈ R : P (tξ) := lim

n→∞

1

n
log

∑
lenw=n

sup
τ∈[w]

|ϕ′τ |t < 0

}

5.1.1 Motivation for renewal theory

We motivate the general idea behind a Laplacian off a fractal by the Sierpiński Gasket

(See Fig. 5.1).

Definition 5.4. Let G ⊂ Rn be any compact set. Then its bounded complement Gbc is

defined as the union of all bounded connected components of the complement.

T

Figure 5.1: (Left): The Sierpiński gasket SG with dimM (SG) =
log2 3. The bounded complement is filled with black. (Right):
The Sierpiński carpet SC with dimM (SC) = log3 8. The bounded
complement is filled with black. The base triangle is labeled with
T .

Let SG be the Sierpiński gasket: Let V be a singleton and Σ = {1, 2, 3} with ϕi given by

affine maps of the form x 7→ 1
2x+ qi for fixed q1 = (0, 0), q2 = (1/2,

√
3/2) and q3 = (1, 0).

Let Ω := SG
bc as the prototypical example. Then

Ω = T ⊔
⊔
i∈Σ

ϕiΩ,
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where T is the largest inner equilateral triangle (also called gap). Iterating this yields

Ω = T ⊔
⊔
i1∈Σ

ϕi1

T ⊔
⊔
i2∈Σ

ϕi2Ω

 = T ⊔
⊔
i∈Σ

ϕiT ⊔
⊔
w∈Σ2

ϕwΩ

...

=
M⊔
n=0

( ⊔
w∈Σn

ϕwT

)
⊔

⊔
w∈ΣM+1

ϕwΩ ∀M ∈ N (5.1)

=

(
M⊔
n=0

⊔
u∈Σn

⊔
w∈Σm

ϕuϕwT

)
︸ ︷︷ ︸

:=Ωfin
m

⊔

(
m−1⊔
n=0

⊔
w∈Σn

ϕwT

)
︸ ︷︷ ︸

:=Ωrest
m

⊔
⊔

w∈ΣM+m+1

ϕwΩ ∀M,m ∈ N.

(5.2)

Since any Dirichlet eigenvalue is positive, ∀λ0 ≥ 0∃M0 ∈ N such that ∀M ≥ M0,∀λ ≤

λ0 with ND

(⊔
w∈ΣM ϕwΩ, λ

)
= 0. This implies that the counting function of Dirichlet

eigenvalues of the Laplace operator on Ω, ND(Ω, λ) (resp. NN (Ω, λ) satisfies the following

renewal equation:

ND(Ω, λ) =
∑
n∈N0

∑
w∈Σn

ND(ϕwT, λ)

=
∑
n∈N0

∑
w∈Σn

ND

(
T,
(
ϕ′w
)2
λ
)
=
∑
n∈N0

3nND

(
T, 4−nλ

)
, (5.3)

since |ϕ′e| = 1/2 for any e ∈ Σ. Eigenvalues of the occurring gaps in this example were

extensively studied in [77]. Such relations are studied in Renewal Theory. The above

argument immediately generalises to the following result.

Proposition 5.5 (Renewal Equation). Let t : Σ∞
A → R be such that for any w ∈ Σ∞

A

lim
M→∞

∑
y∈Σ∞

A :σMy=w

Snt(w) = ∞.

Let c : Σ∞
A → R>0 and g : Σ∞

A × R → R be arbitrary. Let N : Σ∞
A × R → R be such that
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there is a t with supp (t 7→ N(w, t)) ⊂ [t,∞) for all w ∈ Σ∞
A and suppose N satisfies

N(w, t) = g(w, t) +
∑

x∈Σ∞
A :σx=w

cxN(x, t− tx).

Then there are ξ, η : Σ∞
A → R such that

N(w, t) =

∞∑
n=0

∑
y∈Σ∞

A :σny=w

g(y, t− Snξ(y))e
Snη(y).

This last expression is addressed in Renewal Theory.

Prop. 5.5 can be used to translate (5.3) to a renewal equation with N(t) := ND(Ω, e
t)

and g(t) := ND(T, e
t):

N(t) =
∑
n≥0

∑
y∈Σn

A

g(t− Snξ(y)),

where ξ(y) := −2 log ϕ′y1 . Based in particular on works by Kesseböhmer-Kombrink,

Mauldin-Urbańksi, Pollicott [60, 74, 84, 85] there are upper bounds for spectral count-

ing functions on the bounded complement of limit sets of GDS with finitely primitive

incidence matrix whenever there are such bounds for the spectral counting functions of the

gaps.

5.1.2 Renewal theoretical asymptotic behaviour of spectral counting

functions

Write Lipθ(Σ∞
A ,R) for the space (equipped with the metric ∥f∥∞+supn∈N supw∈Σn

A
{|f(x)−

f(y)| s.t. x, y ∈ [w]}θ−n) of bounded Lipschitz continuous maps with respect to the metric

dθ(x, y) := θmax(k∈N:x|k=y|k) in Σ∞
A . For any continuous (with respect to dθ) map f : Σ∞

A →

R with
∑

e∈Σ e
sup{f |[e]} < 1 we define the Ruelle-Perron-Frobenius Operator (also called

transfer operator) as

Lf : Lipθ(Σ
∞
A ,R) → Lipθ(Σ

∞
A ,R) via Lf (g)(x) :=

∑
y∈Σ∞

A :σy=x

ef(y)g(y).
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Let fx : R → R for each x ∈ Σ∞
A and suppose ξ ∈ Lipθ(Σ

∞
A ,R) is a-lattice, i. e.

∃ξ′, h ∈ Lipθ(Σ
∞
A ,R) such that ξ(y) = ξ′(y) + h(σy) − h(y) with lattice constant given

by a := sup
{
a′ > 0 : ξ′(ΣN

A) ⊂ a′Z
}
> 0. For any β ∈ [0, α) the two-sided Fourier-Laplace

transformation shifted by h is defined as

f̂xβ(z) :=
∑
ℓ∈Z

eaℓzfx(aℓ+ β − h(x))

The maximal strip of absolute convergence of this series is denoted by

abs-conv(fx) := {z ∈ C|f̂xβ(z) converges absolutely ∀β ∈ [0, a)}

= {z ∈ C|sfx,−abs-conv ≤ ℜ(z) ≤ sfx,+abs-conv},
(5.4)

Of course the boundaries sfx,±abs-conv of this strip can be infinite. From the definition it follows

that f̂xβ is holomorphic on abs-conv(fx) for all β. Finally let f̂x
mero

β be the maximal

meromorphic extension of f̂xβ and denote its domain by abs-convmero(fx). Since ξ is

a-lattice ∃ξ′ ∼ ξ such that ∀y ∈ Σ∞
A ∃ny ∈ Z : ξ′(y) = nya so that

Snξ(y) = Snξ
′(y) + Sn (h(σ(y))− h(y)) =

n−1∑
k=0

nσkya︸ ︷︷ ︸
∈aZ

+h(x)− h(y).

Let β ∈ [0, a),

Nx(t) =
∑
n∈N

∑
y∈Σ∞

A :σny=x

fy(t− Snξ(y)) (5.5)

and let z ∈ abs-conv(Nx)∩
⋂
y∈Σ∞

A
abs-conv(fy). Moreover we request ∥Lzξ′∥op < 1. Then

by the definition of the two-sided Fourier-Laplace transformation

N̂xβ(z) :=
∑
ℓ∈Z

eaℓz
∑
n∈N0

∑
σny=x

fy(aℓ+ β − h(x)− Snξ(y))

=
∑
n∈N0

∑
σny=x

∑
ℓ∈Z

eaℓzfy(aℓ+ β − h(y)− Snξ
′(y))
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=
∑
n∈N0

∑
σny=x

eSnξ′(y)z
∑
ℓ̃∈Z

eaℓ̃zfy(aℓ̃+ β − h(y))

=
∑
n∈N0

∑
σny=x

eSnξ′(y)z f̂yβ(z)

=
∑
n∈N0

∑
σy(n−1)=x

· · ·
∑

σy(1)=y(2)

∑
σy=y(1)

ezξ
′(σn−1y) · · · ezξ′(σy)ezξ′(y)f̂yβ(z)

=
∑
n∈N0

∑
σy(n−1)=x

· · ·
∑

σy(1)=y(2)

∑
σy=y(1)

ezξ
′(y(n−1)) · · · ezξ′(y(1))ezξ′(y)f̂yβ(z)

=
∑
n∈N0

∑
σy(n−1)=x

ezξ
′(y(n−1)) · · ·

∑
σy(1)=y(2)

ezξ
′(y(1))

∑
σy=y(1)

ezξ
′(y)f̂yβ(z)︸ ︷︷ ︸

=Lzξ′
(
w 7→f̂wβ(z)

)︸ ︷︷ ︸
=Lzξ′

(
Lzξ′

(
w 7→f̂wβ(z)

))︸ ︷︷ ︸
=Ln

zξ′
(
w 7→f̂wβ(z)

)
=
∑
n∈N0

Lnzξ′
(
w 7→ f̂wβ(z)

)
=
(
id−Lzξ′

)−1
(
w 7→ f̂wβ(z)

)

This motivates the analysis of the so-called dynamical ζ-function given by ζ : z 7→(
id−Lzξ′

)−1 and, in particular, conditions on z for which Lzξ′ has 1 in its spectrum.

This approach relies on perturbation theory of linear operators as presented by Kato in

[53]. Based on spectral results on the transfer operator by Pollicott and Ruelle in [84, 85]

and [94, Chap. 5], a result by Kato in [53, Chap. VII §1.3] shows that for an eigenvalue

λz of Lzξ the map w 7→ λz+w consists of branches of one or several (if multiplicity of

the eigenvalue at z is mz > 1) analytical functions with at most algebraic singularities at

w = 0. For a non-branching eigenvalue λz we observe that w 7→ λz+w is holomorphic in

a neighbourhood of 0 and either constant or ̸= λz in a small neighbourhood of 0 since it

would otherwise be non-constant with λz as accumulation point. In the latter case, an

eigenvalue λz is called strongly regular. For a transfer operator with a strongly regular

eigenvalue 1, Kesseböhmer-Kombrink (cf. [60]) showed the following asymptotic estimate

for renewal functions based on earlier works by Lalley in [64]. A simplified version of the
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proof can be found in Thm. 5.10.

Theorem 5.6 (Renewal Theorem, [59]). For any GDS with vertex set V , edge set Σ and

incidence matrix A, define

Z := {z ∈ C : 1 ∈ σ(Lzξ)}.

Put s± := sfx,±abs-conv as in (5.4) and assume s− < δ < t∗ with t∗ := sup{t ∈ R :∑
e∈Σ e

sup tξ|[e] < ∞}. Let A be finitely irreducible and suppose that 1 is a strongly reg-

ular eigenvalue for all z ∈ Z. Let Nx and fy be related as in (5.5) with ξ being a-lattice

with corresponding ξ′(y) ∈ aZ for all y ∈ ΣN
A such that for any small enough ϵ > 0 the

estimate

∑
n∈N0

∑
σny=x

|fy(t− Snξ(y))| ∈ o
(
e−t(s

−−ϵ)
)

holds true for all t ∈ R small enough. Let δ0 be such that (id−Lzξ)−1 is meromorphic in

{z ∈ C : ℜ(z) < δ0}. Then for any ϵ > 0 the sets

Z(ϵ) := {z ∈ Z : ℜ(z) < δ0 − ϵ,ℑ(z) ∈ [−π/a, π, a)} ,

Px,β(ϵ) :=

z ∈ abs-convmero(fx) : z is a pole of f̂x
mero

β

and ℑ(z) ∈ [−π/a, π/a)} ∩ C<δ0−ϵ}


are finite and there exist functions Ax,β(s, ℓ), Bx,β(s, ℓ) of polynomial growth in ℓ such that

Nx(aℓ+ β) =
∑

z∈Z(ϵ)\Px,β(ϵ)

e−aℓzAx,β(z, ℓ)

+
∑

z∈Px,β(ϵ)

e−aℓzBx,β(z, ℓ) + o
(
e−aℓ(min(δ,s+)−ϵ)

)
.

Remark 5.7. (i). Most renewal theorems contain a similar result for when ξ is non-lattice.

However it may occur that the error terms grow faster in such cases.

(ii). The set Z of points at which the dynamical ζ-function is singular is a natural gener-
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alisation of the set of complex dimensions introduced by Lapidus-Frankenhuijsen in

[70].

Remark 5.8. .

(i). The error term given by Thm. 5.6 follows from the necessary convergence of a power

series. The domain of absolute convergence of this sum depends on the asymptotic

properties of fx. Whenever the two-sided Fourier-Laplace transform of fx has a

global meromorphic extension, the error term vanishes.

(ii). This proof is constructive in the sense that the sequences of coefficients Ax,β(z, ℓ) and

Bx,β(z, ℓ) can be explicitly computed. This is particularly easy if the set of common

poles is empty since then the more involved effect of poles on poles is non-existent:

Suppose there are no z ∈ C such that Lzξ′ has an eigenvalue 1 and f̂x
mero

β has a pole

at z.

(a) Let z be a pole of f̂x
mero

β (z) and let C̃kx,β(z) be the corresponding residues as in

the proof of Thm. 5.6. Then the coefficients Ckx,β(z) are given by

Ckx,β(z) =
(
id−Lzξ′

)−1
(
C̃k−,β(z)

)
(x)

Whenever fx does not depend on x, this can be solved trivially. In the notation

of (5.6), this is the case if Yv is independent of v or more generally if all Yv are

isospectral.

(b) Let now z ∈ Z(ϵ). Let γw be the strongly regular eigenvalue of Lwξ such

that γz = 1 and denote the multiplicity of this eigenvalue with mw = mz as

before. Suppose that f̂x
mero

is non-singular at z. Since γz is strongly regular,

w 7→ (id−Lwξ)−1 is defined on a neighbourhood of z. Following the argument

of Ch.I §5.1 in [53] and [59] one shows that the simple pole of the dynamical

ζ-function corresponding to the simple eigenvalue 1 of Lzξ at z = δ has a



Chapter 5. Renewal theory and fractal sprays 91

coefficient of

D1
x,β(δ) = a

∫
ΣN

A
f̂−

mero

β (δ)dνδξ∫
ΣN

A
ξdmδξ

.

In the simple case where fx = f is independent of x ∈ ΣN
A, A = 1 and ξ is

constant on cylinders of length 1 this simplifies to

D1
x,β(δ) = a

f̂x
mero

β (δ)∑
e∈Σ ξe

δξ
.

In the case of common poles these two effects are combined. This is notationally

cumbersome but does not involve any other effects.

5.1.3 Spectral counting functions on complements of limit sets of GDS

This section focuses on applications of the general results above to counting problems on

complements of limits sets as motivated in Sec.5.1.1. The general aim is to find asymptotic

expansions for the counting function ND(Ω, t) where Ω = Jbc is the bounded complement

of the limit set J of a GDS.

Let V,Σ and A be given for some GDS ({Yv}, {ϕe}). Then the bounded complement

of some limit set is given by

Ω :=
⊔
v∈V

Yv

for gaps given defined as Yv := Xv\J . These gaps satisfy

Yv = Xv\

 ⋃
e∈Σ:i(e)=v

ϕeXt(e)


︸ ︷︷ ︸

:=Ωv

∪

 ⋃
e∈Σ:i(e)=v

ϕeYt(e)


︸ ︷︷ ︸

:=ΦY
v

. (5.6)

It is clear from this expression that certain separation conditions can be used in order to

achieve stronger results about the spectrum of gaps; see Fig. 5.2. Namely, if the images of

the gaps under ϕe intersect, the counting function of their union is not related to the sum
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⊔ ⊔ · · ·

Figure 5.2: A GDS where images of contractions share boundary
visualised by the first two iterations of the contractions. The “inner
boundaries” are drawn dashed. The limit set of the left component
is a Cantor dust. There are no self-replicating components in this
case.

of counting functions of ϕeYt(e) anymore. Moreover, if Ωv and ΦYv intersect, their union

will contain connected components that are not images under ϕe of another domain Yv′ .

Since spectral counting functions are in general not well-behaved under union of domains,

such intersections can cause non-trivial behaviour. A GDS is called separating if the family

of images
(
ϕe(Xt(e))

)
e∈Σ and

(
Ωv,Φ

Y
v

)
are almost disjoint (i.e. disjoint up to finitely many

points) for any v ∈ V . If a GDS is not separating, the gaps are not self-replicating under

the action of the contractions. In these cases, the spectral properties of the gaps can only

be estimated using more general concepts. Let RΦ
v (λ) be defined as

RΦ
v (t) := ND(Yv, t)−ND(Ωv, t)−

∑
e∈Σ:i(e)=v

ND(ϕeYt(e), t).

Prop. 2.24 implies that RΦ
v ≥ 0. In other words, RΦ

v accounts for the eigenfunctions that

vanish on the boundary but not on “inner boundaries”. Clearly RΦ
v vanishes identically if

the unions in (5.6) are disjoint or if the GDS is separating and RΦ
v (t) vanishes for small

enough t. The counting function of each gap Yv then satisfies

ND(Yv, λ) = ND(Ωv, λ) +RΦ
v (λ) +

∑
e∈Σ:i(e)=v

ND(ϕeYt(e), λ). (5.7)

Therefore RΦ
v as above has a strong influence on the asymptotics. The asymptotic beha-

viour of RΦ
v can be bounded with Cor. 2.25: Indeed Thm. 4.15 shows that RΦ

v (t) = O(tδv/2),
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where

δv := max
e:i(e)=v

dimM∂Yv,dimM∂Ωv,dimM∂ϕeYt(e), dimM∂
⋃

i(e)=v

ϕeYte

 (5.8)

if all Yv,Ωv,ΦYv are well-covered and all ϕe have the E-property.

5.2 Fractal sprays generated by the Koch snowflake

The goal of this section is to show directly how further asymptotic terms may arise from

specific function systems with a lattice property as already shown in Thm. 5.6. This section

is based on [62] by Kombrink and the author.

Our class of examples is based on the construction shown in Fig. 5.3(a) (see also

Fig. 5.4). More precisely, we consider the iterated function system (IFS) Φ := Φ(0, 0) :=

K

ϕ3 ϕ2

ϕ1

ϕ6ϕ5

ϕ4

ϕ8

ϕ7

ϕ12

ϕ11

ϕ10

ϕ9

b

Figure 5.3(a) Depiction of the IFS of the
fractal spray studied in Sec. 5.3 and Sec. 5.4.
The base length b of the snowflake K is also
shown.

K0

ϕ3 ϕ2

ϕ6ϕ5

ϕ4

ϕ8

ϕ7

ϕ12

ϕ11

ϕ10

ϕ9

K1
ϕ1,1

ϕ1,2ϕ1,3

ϕ1,4

ϕ1,5 ϕ1,6

Figure 5.3(b) Depiction of the variant Ω(1, 0)
of the IFS of the fractal spray studied in Sec. 5.3
and Sec. 5.4. In this case, the map ϕ1 was re-
placed by the six maps ϕ1,1, . . . , ϕ1,6 giving rise
to an additional connected component of the
generator G = K0 ∪ K1. Analogously one can
replace ϕ7, . . . , ϕ12.
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Figure 5.4: Example of the iterative construction of Ω as defined
in (5.10). From left to right the 0th, first and second iterations
of the generator K under Φ are shown, rotated by 30◦. The 0th

iteration (left) shows K. The first iteration (middle) shows K ∪
Φ(K) . The second iteration (right) then shows K∪Φ(K)∪Φ2(K).

{ϕ1, . . . , ϕ12} defined on R2 given by the maps

ϕi(x) :=



1
3x+ 2

√
3

3

cos[(i− 1)π/3]

sin[(i− 1)π/3]

 if i ∈ {1, . . . , 6}

1
3
√
3
Rπ/6(x) +

2
3

cos[π/6 + (i− 7)π/3]

sin[π/6 + (i− 7)π/3]

 if i ∈ {7, . . . , 12}

where Rπ/6 is a rotation by π/6 about the origin. Define the action of Φ on subsets of

R2 by ΦA :=
⋃
i∈Σ ϕiA with i ∈ {1, . . . , 12} =: Σ. Further, let F denote the unique

non-empty compact invariant set associated to the IFS, i. e. the set satisfying F = ΦF :=⋃
i∈Σ ϕiF . Note that F is contained in the disk around the origin of radius

√
3, with(−√

3
0

)
and

(√
3
0

)
belonging to F . As all ϕi are similarities, F is a self-similar set. From the

definition of the maps it is evident that Φ consists of six contractions with contraction ratios

r1, . . . , r6 = 1/3 = (exp(−a))2 and six contractions with contraction ratios r7, . . . , r12 =
√
3/9 = (exp(−a))3, where a := log 3/2 is known as the lattice constant. Note that by

construction, R2 \ F has got a unique unbounded connected component, which we denote

by U . Further, we let O := R2 \ U . Then O is open and satisfies ϕiO ⊆ O for i ∈ Σ and
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ϕiO ∩ ϕjO = ∅ for i ̸= j ∈ Σ. This implies that the open set condition (OSC) is satisfied

and that O is a feasible open set for the OSC. Fig. 5.3(a) shows the images of O under the

maps ϕ1, . . . , ϕ12.

For m ∈ N and ω = (ω1, . . . , ωm) ∈ Σm, let ϕω := ϕω1 ◦ · · · ◦ ϕωm and

rω := exp(−aνω) :=
m∏
i=1

ri with νω :=
m∑
i=1

νωi ∈ N. (5.9)

We define K := O \ ΦO, and note that K is the interior of a Koch snowflake with base

length b = 1, see Fig. 5.3(a). A central object of our studies is

Ω :=

∞⋃
m=0

Φm(K) := K ∪
∞⋃
m=1

⋃
ω∈Σm

ϕω(K) (5.10)

which is a countable union of disjoint open sets ϕw(K) and can be viewed as a fractal

spray with generator K. Here, Φ0(K) is understood to be K. The first three iterations of

the construction of Ω in (5.10) are shown in Fig. 5.4.

We will moreover study the sets Ω(k1, k2) which result from modifications of the above

construction as explained below. For (k1, k2) ∈ {0, . . . , 6}2, we replace each of ϕ1, . . . , ϕk1

with six maps of contraction ratio 1/9 and each ϕ7, . . . , ϕk2+6 with six maps with contrac-

tion ratio 1/(9
√
3). The replacement of ϕi with six maps ϕi,1, . . . , ϕi,6 is done in such a way

that
⋃6
k=1 ϕi,kO ⊂ ϕiO, that ϕi,kO∩ϕi,jO = ∅ for all k ̸= j, and that ∂ϕiO ⊂ ∂

⋃6
k=1 ϕi,kO.

See Fig. 5.3(b) for an example of the replacement procedure. The corresponding IFS con-

sisting of 12 + 5(k1 + k2) maps will be denoted by Φ(k1, k2) and the associated alphabet

by Σ(k1, k2). The generator O \ Φ(k1, k2)(O), that we denote by G in this setting, has

1 + k1 + k2 connected components. The fractal spray
⋃∞
m=0Φ

m(k1, k2)(G) generated by

G will be denoted by Ω(k1, k2). We write k1 = 0 when no replacement is intended for

ϕ1, . . . , ϕ6 (and correspondingly k2 = 0) so that Ω(0, 0) := Ω.
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5.2.1 Results for counting functions on the Koch snowflake

In the next section, Sec. 5.3, we prove asymptotic expansions for ND(Ω(k1, k2), t) with

Ω(k1, k2) as introduced above in Thm. 5.10. To this end an estimate for the spectral

counting function of the gaps (given for example by K in Fig. 5.3(a) and by K0 and K1 in

Fig. 5.3(b)) is necessary. We make use of our previous result in Sec. 4.3.1 to give numerical

upper and lower bounds in Cor. 5.9. This result is also included in [61] by Kombrink and

the author.

Corollary 5.9 (cf. [61]). Let K be a Koch snowflake of base length 1 as defined in

Fig. 5.3(a) and dimM ∂K = δ = log3 4. Then

C−λ
δ/2 ≤ NN (K,λ)−

1

4π
vol2(K)λ ≤ C+λ

δ/2.

for all λ ≥ 0.1 with C− := −1481 and C+ := 281.5 · 103.

5.3 Asymptotic behaviour of spectral counting functions

Let Ω(k1, k2) be the limit set described in Fig. 5.3(a)-5.3(b) and Sec. 5.2 with corresponding

generator K ⊂ R2 being a Koch snowflake with base length 1. As above, let δ = log 4/ log 3

denote the Minkowski dimension of the boundary of K.

Theorem 5.10. There is an asymptotic expansion of ND(Ω(k1, k2), e
t) of the form

ND(Ω(k1, k2), e
t) =

1

4π
vol2(Ω(k1, k2))e

t −
∑
z∈ZC,

ℜ(z)<−δ/2

H̃β(t)(z)e
−2a⌊ t

2a
⌋z + o

(
et(δ/2+γ)

)

as t→ ∞ for any γ > 0. The absolute values of H̃β(t)(z) are bounded from above according

to Tab. 5.1. Here, β(t) := 2a{ t
2a}, with {x} denoting the fractional part of x, and ZC :={

z ∈ C :
∑

i∈Σ r
−2z
i = 1, ℑ(z) ∈

[
0, πa

)}
.

Proof. We first consider Ω := Ω(0, 0). We defineN(t) := ND(Ω, e
t) and g(t) := ND(K, e

t) =

1
4π vol2(K)et +M(t)etδ/2 for an M ∈ O(1) as shown in Cor. 5.9. By (iii),(iv) in Sec. 2.2
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and (5.10), N(t) satisfies

N(t) =
∑
k≥0

∑
w∈Σk

ND(ϕwK, e
t)

=
∑
k≥0

∑
w∈Σk

g(t− 2 log rw1 − 2 log rw2 · · · − 2 log rwk
).

Let ℓ0 ∈ Z be maximal such that N(2aℓ0) = 0. Then for every β ∈ [0, 2a) we define its

two-sided Fourier-Laplace transform N̂β(z) for ℜ(z) < −1 and rewrite this to isolate the

poles of its maximal meromorphic extension. We make use of the fact that {−2 log ri :

i ∈ Σ} ⊂ 2aZ which follows from (5.9), so that for any w ∈ Σk there is a νω ∈ Z with

−2 log rω = 2aνω, and perform an index shift ℓ→ ℓ+
∑k

i=1 νi = ℓ̃.

N̂β(z) :=
∑
ℓ∈Z

e2aℓzN(2aℓ+ β) =
∑
k≥0

∑
w∈Σk

∑
ℓ∈Z

e2aℓzg(2aℓ+ β − 2 log rw1 · · · − 2 log rwk
)

=
∑
k≥0

∑
w∈Σk

ez(−2 log rw1−···−2 log rwk)
∑
ℓ̃∈Z

e2aℓ̃zg(2aℓ̃+ β)

=
∑
k≥0

∑
w∈Σk

rw
−2z

∑
ℓ≥ℓ0

e2aℓz
1

4π
vol2(K)e2aℓ+β +

∑
ℓ≥ℓ0

e2aℓzM(2aℓ+ β)e(2aℓ+β)δ/2


=

1

1−
∑

i∈Σ ri
−2z︸ ︷︷ ︸

:=P (z)

(
1
4π vol2(K)eβe2aℓ0(z+1)

1− e2a(z+1)
+Mβ(z)

)
︸ ︷︷ ︸

:=Hβ(z)

for some complex function Mβ bounded in C−δ/2 := {z ∈ C : ℜ(z) < −δ/2} by

0 ≤ |Mβ(z)| ≤

∣∣∣∣∣∣
∑
ℓ≥ℓ0

e2aℓzM(2aℓ+ β)e(2aℓ+β)δ/2

∣∣∣∣∣∣ ≤
∣∣∣∣∣ M̃Ke

βδ/2

1− e2a(z+δ/2)

∣∣∣∣∣ ,
where M̃K := max(C−, C+) is taken from Cor. 5.9. Therefore, N̂β can be meromorphically

extended to C−δ/2. Let

ZC :=

{
z ∈ C :

∑
i∈Σ

r−2z
i = 1, ℑ(z) ∈

[
0,
π

a

)}
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Then, since all poles in ZC are simple and −1 /∈ ZC,

∑
ℓ≥0

e2aℓsN(2aℓ+ β)−
∑

z∈ZC∩C−δ/2

−2aHβ(z)Resz P

1− e2a(s−z)
−

(
1
4π vol2(K)eβ

1−
∑

i∈Σ ri
2

)
1

1− e2a(s+1)

=
∑
ℓ≥0

e2aℓs

N(2aℓ+ β) +
∑

z∈ZC∩C−δ/2

−2aHβ(z)∑
i∈Σ 2 log(ri)ri−2z

e−2aℓz − 1

4π
· vol2(K)

1−
∑

i∈Σ ri
2
e2aℓ+β


=:
∑
ℓ≥0

e2aℓs · Yℓ

is holomorphic in C−δ/2. As a power series has a singularity on its radius of convergence,

and the above series expansion is holomorphic in C−δ/2 we deduce that Yℓ ∈ o(e2aℓ(δ/2+γ))

for any γ > 0 as ℓ→ ∞. Thus, for any γ > 0

N(2aℓ+ β) =
1

4π
· vol2(K)

1−
∑

i∈Σ ri
2
e2aℓ+β −

∑
z∈ZC∩C−δ/2

−2aHβ(z)∑
i∈Σ 2 log(ri)ri−2z

e−2aℓz + o(eaℓ(δ+2γ))

as ℓ → ∞. Notice that vol2(K)
1−

∑
i∈Σ ri

2 = vol2(K)
∑

ω∈Σ∗ rω
2 = vol2(Ω) as expected. Writing

t = 2a⌊ t
2a⌋+ β(t) with β(t) = 2a{ t

2a}, this implies an asymptotic expansion of N(t) given

by

N(t) =
1

4π
vol2(Ω)e

t −
∑

z∈ZC∩C−δ/2

H̃β(t)(z)e
−2a⌊ t

2a
⌋z + o(et(δ/2+γ)), (5.11)

with H̃β(t)(z) :=
−2aHβ(t)(z)∑

i∈Σ 2 log(ri)ri−2z . Since t 7→ Hβ(t)(z) is bounded, the asymptotic ex-

pansion in (5.11) already contains all terms corresponding to a growth rate etz
′ with

z′ ∈ (δ/2, 1).

This estimation remains correct in the case of (k1, k2) ̸= (0, 0) after adapting C± from

Cor. 5.9. By (iv) in Sec. 2.2, ND(αΩ, t) = ND(Ω, α
2t) ≤ CW vol2(αΩ)t+C+α

δtδ/2. So we

obtain an expression for an upper bound of the remainder term corresponding to Ω(k1, k2)

if we replace C± with C±+9−δk1C±+(9
√
3)−δk2C±. In Tab. 5.1, we provide approximates

of the exponents and bounds on the coefficients corresponding to z ∈ ZC ∩ (−1,−δ/2) for

three different allocations of (k1, k2) ∈ {0, . . . , 6}2 exhibiting different arrangements of the
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relevant poles.

(k1, k2) z ∈ ZC with ℜ(z) < − δ
2 mod 2πi

a Z Upper bound of
∣∣∣H̃β(t)(z)

∣∣∣
(0, 0) −0.952455 1.68 · 106
(0, 6) −0.928326, 1.81 · 106,

−0.71134± 2.58082i 2.45 · 105
(6, 6) −0.888243, 1.68 · 106,

−0.839089± 1.34671i, 3.46 · 105,
−0.666227± 2.8596i 2.92 · 105

Table 5.1: Upper bounds for coefficients of the asymptotic ex-
pansion at the relevant poles.

Remark 5.11. A critical problem occurs in the asymptotic expansion in the following sense:

Suppose ND(Ω, t) = (2π)nVnt
n/2 +M(log t)tδ/2 +A(log t)tδ/2 with some bounded M and

A : t 7→


1

⌊t/a⌋ if ∃m ∈ N0 : ⌊t/a⌋ = 2m

0 else

so that A(log t) ∈ o(1) and g(t) = (2π)nVne
tn/2 +M(t)etδ/2 + A(t)etδ/2. Then this third

term in g(t) leads to the following term in the two-sided Fourier-Laplace transform ĝβ(z):

∑
m∈N0

(
ea(z+δ/2)

)2m
2m

.

If this had a meromorphic extension beyond ℜ(z) < −δ/2, so would ĝ′β(z). But ĝ′β(z)

contains a series of the form

∑
m∈N0

(
ea(z+δ/2)

)2m
,

which diverges whenever ea(z+δ/2) is a root of unity of any power of 2. In other words,

whenever z = − δ
2 + 2πiq

a2p for some p ∈ Z and q ∈ N. However, this set lies dense in

− δ
2 + iR ⊂ C. This shows that further information about the behaviour of the remainder-

term of ND(Ω, t) is necessary in order to ensure existence of a meromorphic extension of

ĝβ(z) that has a pole at −δ/2.
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5.4 Asymptotic behaviour of ϵ-parallel volumes

In this section, we will derive an asymptotic expansion of ϵ 7→ vol2 (Ω(k1, k2)−ϵ) for the

sets Ω(k1, k2) with (k1, k2) ∈ {0, . . . , 6}2 that we defined in Sec. 5.2.

Theorem 5.12. Let Ω(k1, k2) be as in Sec. 5.2. Then for all β ∈ [0, a) we have an

asymptotic expansion of vol2
(
Ω(k1, k2)−e−(aℓ+β)

)
as ℓ→ ∞ of the following form.

vol2
(
Ω(k1, k2)−e−(aℓ+β)

)
= Qβ(2)e

−2aℓ +Qβ

(
2− log 4

log 3

)
e
−aℓ(2− log 4

log 3
)

+
∑
z∈ZP

e−aℓzQβ(z) + o(e−aℓγ),

as ℓ → ∞ for any γ > 0, with coefficients Qβ given in (5.16)-(5.18) and evaluated in

Tab. 5.2. Here, ZP := {z ∈ C :
∑

i∈Σ r
2−z
i = 1, ℑ(z) ∈

[
0, 2πa

)
}.

(k1, k2) Values of Qβ(2) Values of Qβ(2− log 4
log 3)

(0, 0) − e−2β

22 ·
[
v
(
β
2a

)
+ v

(
a+β
2a

)]
−2e

−β(2− log 4
log 3

)

5 ·
[
u
(
β
2a

)
+ ũ

(
a+β
2a

)]
(0, 6) − e−2β

82 ·
[
v
(
β
2a

)
+ v

(
a+β
2a

)]
−10e

−β(2− log 4
log 3

)

13 ·
[
u
(
β
2a

)
+ ũ

(
a+β
2a

)]
(6, 6) − e−2β

142 ·
[
v
(
β
2a

)
+ v

(
a+β
2a

)]
−22e

−β(2− log 4
log 3

)

19 ·
[
u
(
β
2a

)
+ ũ

(
a+β
2a

)]
Table 5.2: Exact values of the coefficients of the asymptotic ex-
pansion of the Lebesgue measure of an inner ϵ-parallel neighbour-
hood of Ω(k1, k2).

A key part of the proof of Thm. 5.12 relies on precise knowledge of the inner ϵ-parallel

volume of the generator G := O \Φ(k1, k2)O for all ϵ > 0. As G is a disjoint union of Koch

snowflakes of different sizes, a key step in the proof is to determine the inner ϵ-parallel

volume of the Koch snowflake of base length 1 in the next lemma.

Lemma 5.13. Let K denote the filled-in Koch snowflake with base-length 1. The map

ϵ 7→ vol2(K−ϵ), defined on the positive reals, which maps ϵ to the area of the inner ϵ

neighbourhood K−ϵ := {x ∈ K : dist(x, ∂K) < ϵ}, is continuous and can be evaluated as
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follows.

vol2(K−ϵ) =



2
√
3

5 : ϵ > 1
3

7
√
3

30 +
√
ϵ2 − 1

36 + 6ϵ2 arcsin
(
1
6ϵ

)
− πϵ2 :

√
3
9 < ϵ ≤ 1

3

8
√
3

45 + πϵ2 + 12 · vol2(K−ϵ ∩ Γ) : 1
9 < ϵ ≤

√
3
9

u ◦ α(ϵ)ϵ2−log 4/ log 3 + v ◦ α(ϵ)ϵ2 : ϵ ≤ 1
9 and α(ϵ) < 1

2

ũ ◦ α(ϵ)ϵ2−log 4/ log 3 + v ◦ α(ϵ)ϵ2 : ϵ ≤ 1
9 and α(ϵ) ≥ 1

2 .

(5.12)

Here, {t} := t− ⌊t⌋ denotes the fractional part of a real number t, α(ϵ) :=
{
− log ϵ

log 3

}
, Γ is

the equilateral filled-in triangle shown in Fig. 5.5(b) and defined in the proof of this lemma.

Further, u, ũ, v : [0, 1) → R are given by

u(t) :=

(
9

4

)t
·

[
21
√
3

40
+

3

4
·
√

3−2t − 1

4
+ 81 · vol2(K−3−t−2 ∩ Γ)

]

+

(
1

4

)t
·
[
3

2
· arcsin

(
3t

2

)
− π

6

]
,

ũ(t) :=

(
9

4

)t
·

[
2
√
3

5
+ 27 · vol2(K−3−t−1 ∩ Γ) + 81 · vol2(K−3−t−2 ∩ Γ)

]
+

(
1

4

)t
· π
3
,

v(t) := −π
3
− 324 · 9t · vol2(K−3−t−2 ∩ Γ).

Remark 5.14. Note that for ϵ ≤ 1/9 the area of the inner ϵ neighbourhood vol2(K−ϵ) of

the filled-in Koch snowflake K was determined in [67], where u ◦α(ϵ), ũ ◦α(ϵ) and v ◦α(ϵ)

are expressed as infinite complex series. With Lem. 5.13 we provide a more geometric

representation of vol2(K−ϵ) and an alternative and simpler proof of its scaling behaviour.

Proof of Lem. 5.13. Let F be the Koch curve that is generated by the four contractions

ψi : R2 → R2 for i ∈ {1, . . . , 4} given by

ψ1(x) =
1

3
x, ψ2(x) =

1

3
Rπ/3(x) +

1

3

(
1

0

)
,
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V
30◦

Figure 5.5(a) Visualisation of the set V .

Γ
Λ

ψ1V

ψ2V ψ3V

ψ4V

Figure 5.5(b) Decomposition of V into four con-
gruent copies of Γ, two congruent copies of Λ and
the sets ψ1(V ), . . . , ψ4(V ).

ψ3(x) =
1

3
R−π/3(x) +

1

6

(
3
√
3

)
, ψ4(x) =

1

3
x+

1

3

(
2

0

)
,

with Rα denoting the rotation matrix to the angle α about the origin. Further, let V

denote the open region whose boundary is given by the union of F and the two line

segments
{
t
( 3
−
√
3

)
: t ∈

[
0, 16
]}

and
{(

1
0

)
− t
( 3
−
√
3

)
: t ∈

[
0, 16
]}

, see Fig. 5.5(a). Suppose

without loss of generality that the position of K in R2 is so that K = V ∪ V 1 ∪ V 2 with

V k denoting the image of V under the rotation around 1
6

( 3
−
√
3

)
by the angle 2πk

3 . Then

vol2 (K−ϵ) = 3 · vol2 (K−ϵ ∩ V ) . (5.13)

Therefore, in the following, we focus on determining vol2(K−ϵ ∩ V ). For this, let Γ denote

the filled-in equilateral triangle with vertices 1
18

( 3
−
√
3

)
, 1

9

( 3
−
√
3

)
and 1

3

(
1
0

)
. Moreover, Λ

will denote the filled-in rhombus with vertices 1
3

(
1
0

)
, 1

9

( 3
−
√
3

)
, 1

6

( 3
−
√
3

)
and 1

18

( 9
−
√
3

)
. The

sets Γ and Λ are depicted in Fig. 5.5(b). For large enough ϵ, the sets Λ, Γ and ψi(V ),

i ∈ {1, . . . , 4}, are fully contained in K−ϵ. This changes when ϵ decreases (see Fig. 5.6(a))

and in the following we distinguish between different cases corresponding to ϵ, where this

behaviour changes.

Case 1: If ϵ > 1
3 then

vol2 (K−ϵ ∩ V ) = vol2 (V ) = vol2
(
V ∩ R× R+

)
+ vol2

(
V ∩ R× R−) = √

3

20
+

√
3

12
=

2
√
3

15
.
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Case 2: If ϵ ∈ (
√
3
9 ,

1
3 ] then

vol2 (K−ϵ ∩ V ) =

4∑
i=1

vol2 (K−ϵ ∩ ψi(V )) + 4 vol2 (K−ϵ ∩ Γ) + 2 vol2 (K−ϵ ∩ Λ)

= 4vol2 (ψ1(V )) + 4 vol2(Γ) + 2 vol2 (K−ϵ ∩ Λ) .

With ρ = ρ(ϵ) = 2π
3 − 2 arccos

(
1
6ϵ

)
being the angle that is shown in Fig. 5.6(b), we can

evaluate vol2 (K−ϵ ∩ Λ) as follows.

vol2 (K−ϵ ∩ Λ) =
ρ(ϵ)

2
ϵ2 + 2 · 1

2
·
√
3

9
· ϵ · sin

(
π

6
− ρ(ϵ)

2

)
=
π

3
ϵ2 − ϵ2 arccos

(
1

6ϵ

)
−

√
3

108
+

1

6

√
ϵ2 − 1

36

It follows that

vol2 (K−ϵ ∩ V ) =
4

9
· 2

√
3

15
+ 4 ·

√
3

108
+

2

3
πϵ2 − 2ϵ2 arccos

(
1

6ϵ

)
−

√
3

54
+

1

3

√
ϵ2 − 1

36

=
7
√
3

90
+

2

3
πϵ2 − 2ϵ2 arccos

(
1

6ϵ

)
+

1

3

√
ϵ2 − 1

36
.

Using the identity arccos(x) = π
2 − arcsin(x) the assertion follows.

Case 3: If ϵ ∈ (19 ,
√
3
9 ] then

vol2 (K−ϵ ∩ V ) =
4∑
i=1

vol2 (K−ϵ ∩ ψi(V )) + 4 · vol2 (K−ϵ ∩ Γ) + 2 · vol2 (K−ϵ ∩ Λ)

=
4

9
· 2

√
3

15
+ 4 vol2(K−ϵ ∩ Γ) +

π

3
ϵ2.

Case 4: Suppose that ϵ ≤ 1
9 . Let W := V \

⋃4
i=1 ψ(V ). Then

V =
∞⋃
k=0

⋃
ω∈{1,...,4}k

ψω(W ) ∪
∞⋂
k=0

⋃
ω∈{1,...,4}k

ψω(V ),

where all unions are disjoint. As
⋂∞
k=0

⋃
ω∈{1,...,4}k ψω(V ) ⊂

⋂∞
k=0

⋃
ω∈{1,...,4}k ψω(V ) ⊂ F ,
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we know that vol2(
⋂∞
k=0

⋃
ω∈{1,...,4}k ψω(V )) = 0. Therefore,

vol2 (K−ϵ ∩ V ) =
∞∑
k=0

∑
ω∈{1,...,4}k

vol2 (K−ϵ ∩ ψω(W ))

=
∞∑
k=0

∑
ω∈{1,...,4}k

vol2 ((ψωK)−ϵ ∩ ψω(W ))

=

∞∑
k=0

(
4

9

)k
vol2

(
K−3kϵ ∩W

)
.

(5.14)

Now, using the decomposition of W into four congruent copies of Γ and two congruent

copies of Λ, see Fig. 5.5(b), we obtain

vol2
(
K−3kϵ ∩W

)
= 4 · vol2

(
K−3kϵ ∩ Γ

)
+ 2 · vol2

(
K−3kϵ ∩ Λ

)

=



4 ·
√
3

108 + 2 ·
√
3

54 : k ≥ ⌊− log ϵ
log 3⌋

4 ·
√
3

108 + 2π
3 32kϵ2 − 2 · 32kϵ2 arccos

(
1

6·3kϵ
)

−
√
3

54 + 1
3

√
32kϵ2 − 1

36 : ⌊−1
2 − log ϵ

log 3⌋ ≤ k < ⌊− log ϵ
log 3⌋

4 · vol2
(
K−3kϵ ∩ Γ

)
+ π

3 3
2kϵ2 : k < ⌊−1

2 − log ϵ
log 3⌋.

(5.15)

Combining (5.14) with (5.15) we can evaluate vol2(K−ϵ ∩ V ), leading to (5.12). For this,

note the following.

(i). With α(ϵ) :=
{
− log ϵ

log 3

}
as defined in the statement of this Lemma, it is convenient

to write ⌊− log ϵ
log 3⌋ = − log ϵ

log 3 − α(ϵ).

(ii). If α(ϵ) < 1
2 , then ⌊−1

2−
log ϵ
log 3⌋ = ⌊− log ϵ

log 3⌋−1. If α(ϵ) ≥ 1
2 , then ⌊−1

2−
log ϵ
log 3⌋ = ⌊− log ϵ

log 3⌋.

Thus, the middle case of (5.15) occurs if and only if α(ϵ) < 1
2 .

(iii). Due to the self-similarity of the Koch curve, vol2(K−ϵ ∩ Γ) = 9 vol2(K−ϵ/3 ∩ Γ)

whenever ϵ ≤ 1
9 .
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1
3

√
3
9

1
9

Figure 5.6(a) Visualisation of the lengths which
lead to the different cases in the proof of Lem. 5.13:
vol2(K−ϵ ∩ Λ) = vol2(Λ) if and only if ϵ ≥ 1

3
.

vol2(K−ϵ ∩ Γ) = vol2(Γ) if and only if ϵ ≥
√
3

9
.

vol2(K−ϵ ∩ ψ1V ) = vol2(ψ1V ) if and only if ϵ ≥ 1
9
.

ρ

εΛΓ

Figure 5.6(b) Example of an inner ϵ neighbour-
hood of K for ϵ ∈ (

√
3

9
, 1
3
] as in Case 2 in the proof

of Lem. 5.13. Here, ψ1V and Γ are fully contained
in K−ϵ, whereas Λ is not.

Proof of Thm. 5.12. In this proof we fix (k1, k2) ∈ {0, . . . , 6}2 and abbreviate the fractal

spray Ω(k1, k2), the alphabet Σ(k1, k2) and the IFS Φ(k1, k2) as denoted in Sec. 5.2 by Ω,

Σ and Φ respectively. For β ∈ [0, a), we define

N(aℓ+ β) := vol2
(
Ω−e−(aℓ+β)

)
.

Recall from (5.10) that Ω is a disjoint union of open sets Ω =
⋃∞
k=0

⋃
ω∈Σk ϕω(G), where

the generator G := O \ΦO can have several connected components, depending on (k1, k2),

and where Σ0 := {∅} and ϕ∅ is the identity on R2. With the identity Ω−ϵ := {x ∈ Ω :

dist(x, ∂Ω) < ϵ} = (∂Ω)ϵ ∩Ω, where Fϵ := {x ∈ R2 : dist(x, F ) < ϵ} denotes the ϵ-parallel

set of a set F ⊂ R2, we have that

N(aℓ+ β) = vol2

(
(∂Ω)e−(aℓ+β) ∩

∞⋃
k=0

⋃
ω∈Σk

ϕωG
)
=

∞∑
k=0

∑
ω∈Σk

vol2 ((∂Ω)e−(aℓ+β) ∩ ϕωG)

=

∞∑
k=0

∑
ω∈Σk

vol2 ((ϕω(∂Ω))e−(aℓ+β) ∩ ϕωG)

=
∞∑
k=0

∑
ω∈Σk

vol2 (ϕω ((∂Ω)e−(aℓ+β−aνω) ∩G))

=

∞∑
k=0

∑
ω∈Σk

e−2aνω vol2
(
G−e−(a(ℓ−νω)+β)

)
.

In the last two equations (5.9) was used. Next, we consider the two-sided Fourier-Laplace
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transform N̂β dependent on β ∈ [0, a), acting on C and given by

N̂β(z) =

∞∑
ℓ=−∞

eaℓzN(aℓ+ β).

For z ∈ {z ∈ C | 0 < ℜ(z) < 2− dimM (∂Ω)}, where dimM (∂Ω) denotes the Minkowski di-

mension of ∂Ω, the Fourier-Laplace transform N̂β(z) converges and the order of summation

can be swapped, leading to the following conversion.

N̂β(z) =

∞∑
k=0

∑
ω∈Σk

e−2aνω

∞∑
ℓ=−∞

eaℓz vol2
(
G−e−(a(ℓ−νω)+β)

)
=

∞∑
k=0

∑
ω∈Σk

e−aνω(2−z)
∞∑

ℓ=−∞
eaℓz vol2

(
G−e−(aℓ+β)

)

In the last equality we have used an index shift, as νω ∈ Z by (5.9). Depending on (k1, k2),

the generator G may have several connected components K(0), . . . ,K(k1+k2), all of which

are Koch snowflakes. Thus,

vol2
(
G−e−(aℓ+β)

)
=

k1+k2∑
j=0

vol2

(
K

(j)

−e−(aℓ+β)

)
=

k2∑
j=−k1

b2j vol2

(
K−e−(aℓ+β+log bj)

)
,

with bj denoting the base length of the Koch snowflake K(j). In our setting, we have

b0 = 1 = e−0·a, bj =
√
3/3 = e−1·a for j < 0 and bj = 1/3 = e−2·a for j > 0, implying

N̂β(z) =
(
1 + k1e

a(z−2) + k2e
2a(z−2)

) ∞∑
k=0

∑
ω∈Σk

e−aνω(2−z)
∞∑

ℓ=−∞
eaℓz vol2

(
K−e−(aℓ+β)

)︸ ︷︷ ︸
=:h(ℓ)

.

We can evaluate the series with indices k and ℓ independently. For the series with index k

we use that e−aνω = rω and that
∑

ω∈Σk r2−zω =
(∑

i∈Σ r
2−z
i

)k. For the series with index

ℓ, we use (5.12), and split the series in the following way.
∑∞

ℓ=−∞ h(ℓ) =
∑1

ℓ=−∞ h(ℓ) +

h(2) + h(3) +
∑∞

ℓ=4 h(ℓ)12Z(ℓ) +
∑∞

ℓ=4 h(ℓ)12Z+1(ℓ).

N̂β(z) ·
(
1 + k1e

a(z−2) + k2e
2a(z−2)

)−1
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=
1

1−
∑

i∈Σ r
2−z
i

[
eaz

1− e−az
· 2

√
3

5
+
e2az

3

·

(
7
√
3

10
+

√
e−2β − 1

4
+ 2e−2β arcsin

(
eβ

2

)
− πe−2β

3

)

+ e3az ·

(
8
√
3

45
+
πe−2β

27
+ 12 vol2(K−e−β

√
3
−3 ∩ Γ)

)

+ u

(
β

2a

)
e
−β(2− log 4

log 3
) · e

4a(z−2+ log 4
log 3

)

1− e
2a(z−2+ log 4

log 3
)
+ v

(
β

2a

)
e−2β e4a(z−2)

1− e2a(z−2)

+ ũ

(
a+ β

2a

)
e
−β(2− log 4

log 3
) · e

5a(z−2+ log 4
log 3

)

1− e
2a(z−2+ log 4

log 3
)
+ v

(
a+ β

2a

)
e−2β e5a(z−2)

1− e2a(z−2)

]
=:

1

1−
∑

i∈Σ r
2−z
i

· L(z)

The right-hand side has a meromorphic extension to C with simple poles at z in

Z :=

{
z ∈ C

∣∣∣∣∑
i∈Σ

r2−zi = 1

}
∪ S :=

{
0, 2− log3 4, 2

}
.

Define

Qβ(2) :=
e−2β

2(1−#Σ)
·
[
v

(
β

2a

)
+ v

(
a+ β

2a

)]
, (5.16)

Qβ

(
2− log 4

log 3

)
:=

(1 + k1
2 + k2

4 )e
−β(2− log 4

log 3
)

2
(
1−

∑
i∈Σ r

log 4/log 3
i

) ·
[
u

(
β

2a

)
+ ũ

(
a+ β

2a

)]
and (5.17)

Qβ(z) := −a(1 + k1e
a(z−2) + k2e

2a(z−2))∑
i∈Σ log ri · r2−zi

· L(z) (5.18)

for z ∈ Z. Then

Hβ(s) := N̂β(s)−
−1∑

ℓ=−∞
eaℓsN(aℓ+ β)−

Qβ(2)

1− ea(s−2)
−

Qβ(2− log 4
log 3)

1− e
a(s−2+ log 4

log 3
)
−
∑
z∈ZP

Qβ(z)

1− ea(s−z)

extends to a holomorphic function on C, where ZP := {z ∈ Z : ℑ(z) ∈ [0, 2πa )}. On

{z ∈ C | 0 < ℜ(z) < mins∈Z ℜ(s)} each summand of Hβ can be developed into a power
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series:

Hβ(s) =

∞∑
ℓ=0

eaℓs
[
N(aℓ+ β)−Qβ(2)e

−2aℓ −Qβ

(
2− log 4

log 3

)
e
−aℓ(2− log 4

log 3
)

−
∑
z∈ZP

e−aℓzQβ(z)

]

As a power series has a singularity on its radius of convergence, Hβ being holomorphic on

C implies that as ℓ→ ∞

N(aℓ+ β) = Qβ(2)e
−2aℓ +Qβ

(
2− log 4

log 3

)
e
−aℓ(2− log 4

log 3
)
+
∑
z∈ZP

e−aℓzQβ(z) + o(e−aℓγ)

for any γ > 0. For a selection of choices of (k1, k2), the coefficients Qβ(z) at z ∈ S take

the values as shown in Tab. 5.2.



Chapter 6

Further developments and open

questions

In this final chapter we collect several further directions to be explored and we discuss

possible generalisations in particular of Lem. 3.8 and Thm. 4.15.

6.1 Generalisation of Thm. 4.15 to general quasidisks

Thm. 4.15 is restricted in two ways. First it only applies to sufficiently small p, i.e.

p <
√
3−1
2 and secondly it requires an bi-Lipschitz map with E-property as in Def. 4.8 in

order to translate to bi-Lipschitz equivalent maps.

6.1.1 Understand the E-property of a bi-Lipschitz map

Recall that by Rohde’s theorem, any quasidisk has a bi-Lipschitz map onto a p-Rohde

snowflake. It appears conceivable that any such bi-Lipschitz map has the E-property.

Suppose a bi-Lipschitz map f is (piecewise) smooth (by Rademacher’s theorem it is dif-

feomorphic almost everywhere). Then f maps (piecewise) smooth surfaces to piecewise

smooth surfaces. For such a piecewise smooth bi-Lipschitz map f the image of a ϵ-sized

cuboid Eϵ with foliation {γ}γ∈Γ and normal ν, ⟨df(ν), df(γ′)⟩ is continuous.

109
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6.1.2 Extension of Thm. 4.7 to p ∈
[√

3−1
2

, 1
2

)
Referring to the proof of Thm. 4.7, the proposed foliation does not lead to convergent

integrals if p ≥
√
3−1
2 , see also Prop. 3.17. One may consider alternative seed foliations

such as described in Fig. 6.1. As indicated in the visualisation, it is constructed in the

following way: One draws an isosceles triangle below each p-Rohde curve where each leg

touches I0 at angle α0 (coloured in green). For the next iteration this construction is

repeated but with new angles α01, α11 < α0 (coloured in red and blue, respectively). This

produces a domain that can easily be triangulated by dividing each of the two legs of the

big isosceles triangles (with angle α0) into four equidistant segments of which each is the

basis of a foliation heading entirely to one of the four images of the next iteration of the

p-Rohde curve. Within each triangle one then constructs a simple seed foliation parallel

to one side. At higher iterations this is repeated with a strictly decreasing sequence of

angles. It is expected that such a triangulated seed foliation allows adjusting angles so

that βinf > 0 and Iβ <∞. The key advantage of such a construction is that this foliation

covers each cylinder of the p-Rohde curve with the same density. In comparison, the

equidistant seed foliation discussed in Prop. 3.14 has a higher density in the central section

of each iteration leading to a faster divergence of Iβ . Notice that βinf → ∞ as α0 → 0

so that this construction cannot be understood as a small perturbation of the original

construction in Prop. 3.14.

6.2 Further generalisations

6.2.1 W 1,p-Poincaré-Wirtinger inequalities and p-Laplacians

In addition to elliptic operators, the so-called p-Laplacian attracted a considerable interest

in recent years, see for example Lê’s work in [71] and the references therein. Let 1 < p <∞)

and define the p-Laplacian on a domain Ω by its energy functional Ep(u) := p−1∥∇u∥pLp(Ω)

on W 1,p(Ω). On smooth functions this operator then acts as ∆pu := ∇ · (|∇u|p−2∇u) and

its eigenvalue equation reads −∆pu = λ|u|p−2u. Notice that ∆2 is the usual Laplacian.
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Figure 6.1: Example of a piece of boundary of a fully homo-
geneous p-Rohde snowflake with an alternative seed foliation for
p = 1

2+2 cos(70◦) >
√
3−1
2 . The coloured angles are explained in the

construction in Sec. 6.1.2. For the sake of a better overview the
angles are only shown in the right half while the triangulated seed
foliation is only shown in the left half; the construction is symmet-
ric.

While the spectral analysis of ∆p for p ̸= 2 is more involved if p ̸= 2, a modification of the

result in Lem. 3.8 still holds as a variant Poincaré-Wirtinger inequality. For any u ∈ Lp(Ω)

with 1 < p < ∞ the map R ∋ t 7→ ∥u − t∥Lp(Ω) has a unique minimiser denoted by uΩ.

The uniqueness follows from the strict convexity of Lp-norms if 1 < p <∞: Suppose t ̸= t′

are two minimisers. Then

∥∥∥∥u− t+ t′

2

∥∥∥∥
Lp(Ω)

=

∥∥∥∥u− t

2
+
u− t′

2

∥∥∥∥
Lp(Ω)

<
1

2
∥u− t∥Lp(Ω) +

1

2
∥u− t′∥Lp(Ω) = ∥u− t∥Lp(Ω)

contradicting the minimising property of t, t′. For this minimiser we have the following

inequality in W 1,p(D) where D is well-foliated.

Proposition 6.1. Let D ⊂ Rn be well-foliated with notation as in Def. 3.3. Suppose there

is a CE for E ⊂ D such that ∥u− uE∥Lp(E) ≤ CE∥∇u∥Lp(E) for all u ∈ W 1,p(E).1 Then

1Let ι : E ↪→ D be the usual inclusion. Then ι∗W 1,p(D) ⊂ W 1,p(E) and it actually is sufficient if there
exists a CE for all u ∈ ι∗W 1,p(D) = {u ∈W 1,p(E) : ∃U ∈W 1,p(D) : U |E = u}.
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for any u ∈W 1,p(D)

∥u− uD∥pLp(D) ≤ CD∥∇u∥pLp(D),

with CD = CE + CE
2p−1

r
Iβ(D\E)
βinf(E) + 2p−1L

Iβ(D\E)
βinf(D) .

As is seen immediately from the proof, we actually proves the slightly stronger inequal-

ity with uD replaced with uE . A classical Poincaré-Wirtinger inequality would be implied

if uE had the additional property that

∥∥∥∥u− 1

volnD

∫
D
udx

∥∥∥∥
Lp(D)

≤ ∥u− uE∥Lp(D) ∀u ∈W 1,p(D).

Proof. Essentially this is analogous to the proof of Lem. 3.8 after replacing 2 with p

wherever appropriate. Let u ∈ W 1,p(D). Then ∥u − uD∥pLp(D) ≤ ∥u − uE∥pLp(D). We

subdivide the expression

∥u− uE∥pLp(D) =

∫
E
|u(y)− uE |pdy︸ ︷︷ ︸

:=I1

+

∫
D\E

|u(x)− uE |pdx︸ ︷︷ ︸
:=I2

,

and estimate I1 and I2 separately. Then by definition of uE one has

I1 ≤ CE∥∇u∥pLp(E) ≤ CE∥∇u∥pLp(D). (6.1)

From convexity of x 7→ |x|p it follows that for any a, b, c ∈ R, there is the following

inequality: |a−b|p = 2p|(a−c)/2−(b−c)/2|p ≤ 2p−1 (|a− c|p + |b− c|p). Then analogously

to the proof of Lem. 3.8,

I2 =

∫
D\E

|u(x)− uE |pdx =

∫
I0

∫ len γq

r
|u(γq(t))− uE |pβ(q, t)dtdq,

=
1

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t))− uE |pβ(q, t)dt′dtdq
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≤ 2p−1

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t′))− uE |pβ(q, t)dt′dtdq︸ ︷︷ ︸

=:I′2

+
2p−1

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t))− u(γq(t

′))|pβ(q, t)dt′dtdq︸ ︷︷ ︸
=:I′′2

,

And by assumption
∫ len γq
r β(q, t)dt ≤ Iβ(D\E) for all q ∈ I0. For I ′2 one has

I ′2 =
2p−1

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t′))− uE |pβ(q, t)dt′dtdq

≤ 2p−1

r
Iβ(D\E)

∫
I0

∫ r

0
|u(γ(t′))− uE |pdt′dγ

≤ 2p−1

r

Iβ(D\E)

βinf(E)

∫
I0

∫ r

0
|u(γq(t′))− uE |pβ(q, t′)dt′dq

=
2p−1

r

Iβ(D\E)

βinf(E)
∥u− uE∥pLp(E) ≤ CE

2p−1

r

Iβ(D\E)

βinf(E)
∥∇u∥pLp(D),

Using Jensen’s inequality and |∇γq(s)|p = 1, |s| ≤ 1 and |∂su| = |⟨s,∇u⟩| ≤ |∇u|,

|u(x)− u(y)|p =
∣∣∣∣∫ t

t0

∂su(γq(s))ds

∣∣∣∣p ≤ (t− t0)

∫ t

t0

|∂su(γq(s))|p ds

≤ (t− t0)

∫ t

t0

|∇u|p ds ≤ (t− t0)

∫ len γq

0

∣∣∇u|γq(s)∣∣p ds.
Therefore

I ′′2 =
2p−1

r

∫
I0

∫ len γq

r

∫ r

0
|u(γq(t))− u(γq(t

′))|pβ(q, t)dt′dtdq

=
2p−1

r

∫
I0

∫ len γq

r

∫ r

0

∣∣∣∣∫ t

t′
∂su(γq(s))|s=σdσ

∣∣∣∣p β(q, t)dt′dtdq
≤ 2p−1

r

∫
I0

∫ len γq

r

∫ r

0
(t− t′)

∫ t

t′
|∂su(γq(s))|s=σ|p dσβ(q, t)dt′dtdq

Then since t− t′ ≤ L,

I ′′2 ≤ 2p−1

r

∫
I0

∫ len γq

r

∫ r

0
(t− t′)

∫ t

t′

∣∣∇u(x)|x=γq(σ)∣∣p dσβ(q, t)dt′dtdq
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≤ 2p−1

r

∫
I0

∫ len γq

r

∫ r

0
L

∫ len γq

0

∣∣∇u(x)|x=γq(σ)∣∣p dσβ(q, t)dt′dtdq
≤ 2p−1LIβ(D\E)

∫
I0

∫ len γq

0

∣∣∇u(x)|x=γq(σ)∣∣p dσdq
≤ 2p−1L

Iβ(D\E)

βinf(D)

∫
I0

∫ len γq

0

∣∣∇u(x)|x=γq(σ)∣∣p β(q, σ)dσdq
= 2p−1L

Iβ(D\E)

βinf(D)
∥∇u∥pLp(D).

6.2.2 Multifractal structure of boundaries

Suppose the boundary ∂Ω of a domain Ω exhibits a multifractal structure, that is, the

Minkowski dimension of an open neighbourhood of x ∈ ∂Ω depends on x. Extending

Prop. 2.43 to such contexts together with (C) is expected to provide estimates of the

counting function depending on the multifractal spectrum. Indeed one finds the following

version of Thm. 4.15.

Theorem 6.2. Let Ω ⊂ Rn be a domain, δ,M, C,A : (i0, i1) → [n − 1, n], be integrable

multifractal dimensional data (that is, local versions of dimensions and contents replacing

upper inner Minkowski dimension and the constants in Prop. 2.42 and Prop. 2.43 with the

following properties

(i). Let W :=
⋃
k≥k0 Wk be a Whitney cover of Ω as constructed in Sec. 2.5. Then the

kth slice Wk, i.e. the set of Whitney cubes in the Whitney cover of Ω of size 2−k, has

a cardinality bounded from above as

#Wk ≤
∫ i1

i0

M(i)2kδ(i)di

(ii). Ω is well-covered by {Dϵ
i}i∈Iϵ with

#Iϵ ≤
∫ i1

i0

C(i)ϵ−δ(i)di

(iii). The (n−1)-dimensional volume of the boundary of the inner Whitney cubes for some
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ϵ in the notation of Prop. 2.43 is bounded from above by

voln−1 ∂

 ⋃
Q∈Wϵ

Q

 ≤
∫ i1

i0

A(i)ϵn−1+δ(i)di.

Then NN (Ω, t) ≤ C
(n)
W volnΩt

n/2 +
∫ i1
i0
M(i)tδ(i)/2di with

M(i) =

(
C(i) +M(i)

(40
√
n)δ(i)

2δ(i) − 1

)(
µ+ 1

C2(Ω)

)δ(i)/2
+
C

(n−1)
W

4
A(i)

(
µ+ 1

C2(Ω)

) δ(i)−(n−1)
2

.

Proof. Analogously to the proof of Thm. 4.15 one has NN (Ω, t) ≤ Sϵ1(t) + Sϵ2(t) with

identical construction. It follows that for k± with k+ − k− ≤ 2 + log2(5r+),

Sϵ1(t) ≤ #Iϵ +
∑

k−≤k≤k+

#Wk

≤
∫ i1

i0

C(i)ϵ−δ(i)di+
∑

k−≤k≤k+

∫ i1

i0

M(i)2kδ(i)di

≤
∫ i1

i0

(
C(i) +M(i)

(√
n

r+

)δ(i)
(40r+)

δ(i) − 1

2δ(i) − 1
ϵ−δ(i)

)
di

Likewise we obtain an analogous estimate for Sϵ2:

Sϵ2(t) ≤ C
(n)
W volnΩt

n/2 +
C

(n−1)
W

4

∫ i1

i0

A(i)tδ(i)/2di.

6.2.3 Elliptic operators

This work restricts itself to the classical Laplacian operator throughout. There are however

straightforward generalisations to positive uniform elliptic operators with constant leading

coefficients, L : Ω ∋ x 7→
∑

|α|≤2m aα(x)∂
α with some C such that (−1)m

∑
|α|=2m aα(x)ξ

α >

C|ξ|2m for all ξ ∈ Rn as was shown by Lapidus in [65]. Both Lem. 3.8 and Thm. 4.15 allow

adaptations to such elliptic operators. By definition (ϵ,∞)-domains (and also quasidisks

by Jones’ characterisation of quasidisks in [49]), also admit higher extension operators

E : Hm(Ω) → Hm(Rn). Since quasidisks, being (ϵ,∞)-domains, also admit higher exten-
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sion operators E : Hm(Ω) → Hm(Rn), it remains to be studied under what conditions a

p-Rohde snowflakes remains well-covered.

6.3 Applications on other quasidisks

6.3.1 Julia sets

The formulation of well-foliated domains can also be applied to Julia sets if based on the

original construction by Brolin (cf. Sec. 3.2). The choice of a Julia set, say Jc to a map

fc(z) := z2 + c with |c| > 0 but sufficiently small, leads to specific uniformisation maps Gc

depending on c. The foliation built in this manner is then governed by upper bounds on

the derivatives of Gc and G−1
c and therefore non-trivially on c.

6.3.2 Stochastic p-Rohde snowflakes

Suppose the p in the construction of a p-Rohde curve (cf. Def. 2.33) is not constant

but varies according so a probabilistic distribution. Since the construction suggested in

Prop. 3.14 does not need constant p at each iteration step of the construction, this allows

for more general domains. In particular one may allow p >
√
3−1
2 occasionally as long as

Iβ <∞. It is to be expected that such stochastic p-Rohde snowflakes allow for analogues

of Lem. 3.8 and Thm. 4.15.

6.3.3 Numerical approximation of optimal Poincaré-Sobolev constants

for p-Rohde snowflakes

Rösler-Stepanenko showed “computability” (i.e. convergence of numerical approximations)

of Dirichlet eigenvalues in [95]. Similarly Hinz-Rozanova-Pierrat-Teplyaev proved the fol-

lowing Mosco convergence result.

Definition 6.3 (Convergence of domains, Def. 2.2.8 and 2.2.3 in [42]). A sequence of

bounded open sets On ⊂ Rd is said to converge in Hausdorff sense to some open set O if

there is a compact set K with O ∪
⋃
nOn ⊂ K for which the sequence K\On converges to



Chapter 6. Further developments and open questions 117

K\O in Hausdorff sense. This definition does not depend on the choice of K. The sequence

On is said to converge in the sense of characteristic functions to some O if χOn → χO in

Lp(Rd)-norm for all 1 ≤ p <∞.

These two notions are indeed independent as can be seen through the following counter-

examples.

• Let Cn ⊂ R2 be the nth iteration of an iterative construction of a Knopp curve C

over the unit interval [0, 1] ⊂ R2 with non-vanishing Lebesgue volume. Both Cn and

C are compact and Cn → C in Hausdorff sense. Then by definition On := [0, 1]2 \Cn

converges to O := [0, 1]2 \ C in Hausdorff sense. However, since vol2(Cn) = 0 for all

n but vol2(C) ̸= 0, On ̸→ O in the sense of characteristic functions.

• Conversely consider the open set In := [0, 1]\
⋃2n

k=0

{
k
2n

}
⊂ R. Then Im → (0, 1) in

the sense of characteristic functions but In → ∅ in Hausdorff sense.

Theorem 6.4 (Mosco convergence, Thm. 6.1 in [43]). Let {Ωm}m∈N be a sequence of quasi-

circles such that Ωm
H→ Ω and in the sense of characteristic functions (meaning voln(Ωm) →

voln(Ω)). Then there is a subsequence of (Ωmk
)k for which σ(−∆N (Ωmk

)k)
H→ σ(−∆N (Ω)).

Such results are known for snowflakes in particular in the Dirichlet case with numerical

results from Neuberger-Sieben-Swift in [81] and Banjai-Boulton in [8]. It is therefore

justified to employ numerical methods (for example as suggested by Carstensen-Gedicke

and Hu-Huang-Ma in [17, 44]) on finite approximation levels of p-Rohde snowflakes and

in particular to regular foliated domains. It is expected that the estimates presented in

Lem. 3.8 for the Poincaré-Sobolev constants are far from optimal.
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