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Abstract

We define a class of well-foliated domains for which explicit lower bounds for the first

non-trivial eigenvalue of the Neumann Laplacian are obtained. We show that p-Rohde

snowflakes for p € [%, ‘/52_1) fall into this class. We establish conditions on snowflake-

like domains and quasidisks that ensure well-foliatedness via bi-Lipschitz invariance.
We prove that domains for which any sufficiently small inner e-parallel neighbourhood
can be covered (with uniformly bounded multiplicity of the cover) by at most C'e™°
well-foliated domains allow an upper bound of the remainder term of the spectral
counting function of the Neumann Laplacian at ¢ asymptotic to t°/2. It is discussed
how the cardinality of this cover relates to the upper inner Minkowski content and in
particular we show that p-Rohde snowflakes satisfy this property whenever their upper

inner Minkowski content is positive and finite. Applying the above results we obtain

explicit bounds in the cases of homogeneous p-Rohde snowflakes for p € [i, ‘/5’2*1) and

of the classical Koch snowflake. Finally we construct a family of fractal sprays whose
gaps have fractal boundary and find non-trivial terms in the asymptotic expansion of
the spectral counting function and the volume of the inner e-parallel neighbourhood

with comparable scaling behaviour.
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Chapter 1

Introduction

The celebrated 1966 article [52] by Kac asks which geometric information can be inferred
from the Laplace spectrum of a domain coining the famous question: Can one hear the
shape of a drum? Parallel to this well-known problem which naturally involves Dirichlet
boundary conditions one may ask the same question for Neumann boundary conditions.
These inverse problems, i.e. computing the “drum” (that is the domain of definition of
the Laplace eigenfunctions) given its spectrum, were shown to be ultimately unsolvable
in 1992 by Gordon-Webb-Wolpert [37] for domains with piecewise smooth boundary and
subsequently for domains with fractal boundary by Chen-Sleemann in [I8] by showing
that different domains with identical spectrum exist. Nevertheless it is well known that
for example the volume of a bounded domain can be deduced from the spectrum of the
Laplace operator under Dirichlet boundary conditions. Other geometric quantities however
are often far less attainable in particular if the boundary is less regular or even fractal.
The present work is focused on the particular situation of Neumann boundary condi-
tions on a domain (that is an open, bounded and connected subset of Euclidean space)
which has a fractal boundary, meaning that its Minkowski dimension might be non-integral,
emphasising the complementary forward problem, namely to study the influence of a do-
main’s geometry on its Laplace spectrum. This forward problem has attracted an immense
amount of attention throughout the years (see for example [5 48] for a summary). Since

the Laplace eigenvalue equation can be physically interpreted as the wave equation of a
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function that is periodic in time, an eigenvalue A can be understood as acoustic frequency
of a wave mode. Heuristically, higher harmonics correspond to higher order eigenfunctions
displaying similar geometric aspects of their domain. As a consequence, it is particularly
interesting how the geometry of a domain dictates the asymptotic behaviour of eigenvalues
of the Laplace operator. The idea goes back to 1911 when Weyl established a remark-
able law for the eigenvalue counting function Np(€2,t) (i.e. the number of eigenvalues less
or equal to t for the Dirichlet Laplace problem counted with multiplicity) for open and

bounded Q C R? in [112} 113], which had a tremendous impact in mathematics [23].

The very nature of fractals often renders analytical tools inapplicable. It should be
pointed out that for this reason several different approaches to spectral analysis of fractals
have been introduced over time and drastically depend on the nature of the fractal in
question and in particular whether the fractal has non-empty interior. On one side, Lapla-
cians on gasket-like fractals — the Sierpinski gasket being a leading example — have been
studied extensively based on ideas of Goldbach, Kigami and Strichartz in [36], 54} [103] by
introducing Dirichlet forms on corresponding prefractal structures and thus studying the
limiting behaviour of graph-Laplacians. Recently Post-Zimmer complemented the spectral
analysis on fractals with an analytical approach in [87] based on smooth Laplacians defined
on a shrinking e-parallel neighbourhood around prefractal structures. On the other side
one may define a Laplacian off the domain (often called “spectral analysis off fractals”),
meaning to define the Laplace operator on the interior of the union of bounded connec-
ted components of the complement; again the Sierpiriski gasket is the leading example.
Renewal theoretical spectral analysis was successfully applied in such cases (see also the
works of Kigami-Lapidus and Lalley in [55, [64]). Whenever the fractal object is a domain,
a direct analytical definition of differential operators on the domain is possible and this
approach is followed here for the most part. The leading example shall be the Koch snow-
flake introduced by Koch in [57]. In Ch. |5 however we take the point of view of spectral

analysis off fractals, too.

More precisely we are interested in the asymptotic behaviour of the spectral counting

functions of the Laplace operator subject to Neumann boundary conditions on snowflake-
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like domains with fractal boundary and we aim at obtaining explicit asymptotic upper
bounds of the remainder term (that is the second order asymptotic term). While Dirichlet
boundary conditions in the fractal setting have been explored to a good extent, such a
treatment is yet to be completed for other boundary conditions. One may regard the Neu-
mann boundary condition as the most irregular amongst all mixed boundary conditions
since it has minimal eigenvalues and therefore leads to fastest growth of the spectral count-
ing function. Moreover, Dirichlet boundary conditions avoid complications with non-empty
essential spectra and allow for simpler estimates of spectral counting functions based on
domain monotonicity (i.e. AP () > AP(Q) if @' C Q, where AP (X) is the k*® eigenvalue
of a domain X under Dirichlet boundary conditions). Neither of these properties are gen-
erally available under non-Dirichlet boundary conditions. We therefore restrict ourselves
to extension domains for which the essential spectrum is known to be empty. We then
obtain an explicit Poincaré-Wirtinger inequality (sometimes also called Poincaré-Sobolev
inequality) for W12(Q) (the usual Sobolev space) where Q has fractal boundary that is
not necessarily the graph of a function and neither needs a cone condition nor an explicit

extension property with the following result:

Theorem (Cor. . Let D be a well-foliated domain (cf. Def. with parameters
(r, L, g, Bint, E) and let AY (X) be the infimum over all positive elements of the spectrum of
the Laplacian on X € {D, E} subject to Neumann boundary conditions. Suppose Ay (E)e?,
r/e, L/e, Ig/e and Ping < 1 are bounded away from 0 and co. Then there is an explicitly

known constant C' € R depending only on D and (r, L, Zg, Bint, E) such that

AY(D) > Ce 2,

In a secondary step this then allows us to use a modified Whitney cover to obtain
estimates on the spectral counting function Ny (€2, t) of Neumann eigenvalues of snowflake-

like domains €:

Theorem (cf. Thm. [4.15). Let Q C R™ be uniformly well-covered (cf. Def. @) by
{DS}ier, with #1. < Ce™® for fized C,5. Then there is a constant Cpy (given explicitly in



Sec. depending only on £ such that

7.[.n/2

n/2 6/2
F(% n 1) VOln(Q)t + Cpto’~.

Ny(Q,t) < (2m)™"

In many cases this § is given by the upper inner Minkowski dimension of the boundary.

Recent relatable results include a treatment of mixed boundary conditions by Dekkers,
Hinz, Rozanova-Pierrat and Teplyaev in [24] 43] where, in particular for our purposes,
Poincaré-Wirtinger inequalities are obtained for extension domains 2 C R”. However the
corresponding results are far from explicit as they rely on Rellich-Kondrachov embeddings
WhP(Q) cc LY (R™). Therefore such results, while very general, cannot be used for
our purpose and instead we employ a modification of a method introduced by Netrusov-
Safarov in [80]. This is originally formulated for bounded variation domains with the
crucial property that their boundary can locally be described as a graph of a sufficiently
regular function. In this context we introduce a new framework of well-foliated domains
(Def. allowing us to generalise results of Netrusov and Safarov in particular to domains
that cover an inner e-parallel neighbourhood of snowflake-like domains and thus partially
resolving a question about possible generalisations raised in the aforementioned work.
This generalisation is achieved in Sec. [3.2] by introducing a new method of constructing
paths from the interior of a domain heading to its boundary, foliating this region but
leaving the Jacobian of the corresponding coordinate transformation sufficiently regular
but potentially unbounded. This reflects the fact that domains with fractal boundary
often have infinite circumference. The framework of well-foliated domains is designed to
embed well into the concept of quasidisks (i.e. the quasiconformal image of a disk) based
on a result by Rohde in [91]. There it is shown that any quasidisk is bi-Lipschitz equivalent
to a specific kind of snowflake-like domain called Rohde snowflake. We show (Prop. (3.14))
that the aforementioned method of constructing paths to the boundary applies to many
Rohde snowflakes and thus making them well-foliated. Since any bi-Lipschitz image of a
well-foliated domain is again well-foliated (Prop. , this allows a relatively general class

of planar domains for which explicit results are obtainable. By a famous result of Jones



Chapter 1. Introduction

in [49)], any planar topological disk for which the Neumann Laplacian has empty essential
spectrum is a quasidisk. In higher dimensions however, analogous statements are more
involved.

Our approach on the asymptotic behaviour of the spectral counting function is based on
a classical application of Dirichlet-Neumann bracketing using a modified Whitney cover (see
the proof of Thm. . Directly finding an explicit lower bound for the first non-trivial
eigenvalue of covering domains under Neumann boundary conditions allows us to avoid
using non-constructive methods based on the compactness of embeddings of Sobolev spaces.
It also allows a simple proof that the essential spectra of the Laplace operator subject to
Neumann boundary conditions on well-covered domains (cf. Def. and Cor. is
empty. Such explicit lower bounds for the first non-trivial Neumann eigenvalues of covering
domains then put us in the position to formulate explicit upper bounds on remainder
terms of spectral counting functions for snowflake-like domains. We include an explicit

application to Koch snowflake-like domains in Sec. [£.3.1] and find that

voly(K)

Ny(K,t) < t + 104326 ¢'°83 2,

where Ny (K, t) denotes the number (with multiplicity) of Neumann eigenvalues < ¢ of the
Koch snowflake K. To the author’s knowledge this is the first explicit upper bound for the
remainder term of the Neumann counting function of the classical Koch snowflake. This

complements existing results on such asymptotic behaviour as found by Lapidus in [65]:

Theorem (Thm. 2.1in [65]). Let Q be a domain and Np(£2,t) and N (§2,t) be the counting
function of Dirichlet, resp. Neumann eigenvalues on €. Suppose the upper Minkowski
dimension of 02 is given by 0 € (n — 1,n). If Q has upper inner Minkowski content, the
remainder term of Np(Q,t) is O(t*/2). If the upper “full” Minkowski content exists then

the remainder term of Nx(Q,t) is O(t%/?).

Besides making the above result explicit and allowing 6 = n — 1, we are able to refine
Lapidus’ result by weakening the conditions under which such asymptotic upper bounds

exist by showing that the existence of an upper inner Minkowski content is in fact sufficient



versus the stronger condition of existence of the upper “full” Minkowski content.

Theorem (cf. Prop. Thm. . Thm. applies to uniformly well-covered domains

with finite and positive upper inner Minkowski content.

By an observation of Netrusov-Safarov, the result on asymptotic remainder terms of
spectral counting functions is order-sharp in the sense that there are domains which have
the growth behaviour obtained as upper bound (in fact such domains can even be Lipschitz
domains). Finally it is worth mentioning an independent result by Gol’dshtein-Pchelintsev-
Ukhlov in [34] on estimates of the first non-trivial Neumann eigenvalue in quasidisks. This
approach directly uses a quasiconformal map which we avoid in our approach which does
also not explicitly rely on quasiconformality.

Since remainder term estimates for Neumann counting functions hold true for Dirichlet
counting functions, there are numerous possibilities to further analyse spectra of fractal
objects. Ome option is to apply renewal theoretic ideas based on Lalley’s work in [64]
to so-called fractal sprays, i.e. a disjoint union of infinitely many images of a common
domain (often called gap). This concept was introduced by Lapidus (see for example [70])
and analysed extensively therein. However the analysis was limited to fractal sprays where
the gap itself had regular boundary. Based on results of Kombrink in [58, 59] it is possible
to construct fractal sprays with several non-trivial asymptotic terms that correspond to
geometrical information of the fractal spray as discussed in [6I] by Kombrink and the

author.

Structure. This work is structured as follows. In Ch.[2]we summarise several background
results and concepts used throughout. In Sec. we cover necessary functional analytic
background focusing on the effect of Dirichlet and Neumann boundary conditions on the
spectrum of the Laplacian on a domain with possibly fractal boundary. In Sec. we then
treat the necessary elements of fractal geometry, namely Hausdorff measure and dimension
as well as Minkowski content and dimension. Three classical variants of construction of
domains with fractal boundary are mentioned in Sec. and in particular we define p-

Rohde snowflakes. We finish the chapter constructing Whitney covers in Sec. 2.5 and
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finding bounds for the number of Whitney cubes necessary to cover a domain up to an
inner e-parallel neighbourhood and summarising known results on asymptotic behaviour
of spectral counting functions of Laplacians in Sec. 2.6] In Ch. [3] we prove an explicit
spectral gap (Sec. and present the framework of well-foliated domains (Sec. . We
show how p-Rohde snowflakes are included in this framework and discuss limiting cases
and counter examples in Sec.[3.3] Ch.[]aims at using the results from the previous chapter
to obtain upper bounds for remainder terms of spectral counting functions. In Sec. we
then introduce the concept of well-covered domains as domains that allow a well-controlled
cover by well-foliated domains and show that often p-Rohde snowflakes and similar domains
fall into this class. We recover existing results by Netrusov and Safarov in Sec. and
finally show how well-covered domains allow upper bounds for remainder terms in Sec. [£.3]
Ch. [j| is devoted to fractal sprays and in particular to domains consisting of infinitely
many disjoint images of a common domain with fractal boundary. We focus on a class
of examples constructed in Sec. [5-2] and combine renewal theoretic results with remainder
term estimates for the Koch snowflake to obtain asymptotic expansions with several terms
for such fractal sprays. We then compare the asymptotic behaviour of spectral counting
functions with the asymptotic behaviour of the area of inner e-parallel neighbourhoods.

Finally we collect different possible directions of further research in Ch. [6]

Notation. We use the following definitions throughout this document.

B, (z) :={y : |ly—z|| < r} denotes the open ball of radius r centered at x in a metric

space.

0 ¢ N and Ny :=NU{0}.

A C B includes equality.

The cardinality of a set X is denoted by #.X.
e R” is understood as Euclidean space.

e X is the closure of X C R", int(X) is its interior.



e If the meaning is not affected, we sometimes omit brackets (for example int X =

int(X)).

e The n-dimensional Lebesgue measure of a measurable set X is denoted by vol, (X).

For intervals I the Lebesgue measure is sometimes denoted by |I].

e For any set of real valued functions from an (n — 1)-dimensional cube @,,—1, denoted
by X C Map(Qn—1,R) we define X-domains as the set of domains Q for which
every point x € 02 admits an open neighbourhood U, C 92 and an orthogonal
transformation O, € O(n) such that O,(U,) is a graph of some f € X. The to-
pological dimension of these sets will always be clear from context. We then write

Q€ X(Qn1)or Qe X(R" 1) if a cube Q,_1 is not specified.
e X LIY denotes the union of two disjoint sets X, Y.

e To simplify notation, we sometimes use <, > and < with the following meaning: For
two real-valued functions f, g with common domain of definition D we write f < g if
there exists a constant ¢ € R such that f(z) < cg(z) holds for all z € D. Moreover,

we write f < gif f < gand f>g.



Chapter 2

Background

We collect relevant results and concepts from functional and fractal analysis used through-
out. We start by discussing standard results on the theory of Laplace operators and
their spectra including Poincaré inequalities, Courant’s Min-Max-Principle, and differences
between the Laplace spectrum subject to Dirichlet and Neumann boundary conditions. It
turns out that the spectrum of Laplace operators subject to Dirichlet boundary condi-
tions is significantly simpler than under Neumann boundary conditions since the essential
spectrum is always empty in the first case. We cover criteria that ensure emptiness of the
essential spectrum under Neumann boundary conditions and discuss domain monotonicity.
Moreover we define spectral counting functions as well as fractal dimensions and Whitney
covers. The relevant functional analytic results stated here may be found for example in
[22, 26, 51, [76], [89] O8] 111] whenever not explicitly referenced. References to the necessary

fractal geometric background can be found in Falconer’s works [27], 28].

2.1 The Laplace operator and its spectrum

Let © C R"™ be a domain, i.e. a bounded open connected subset of Euclidean R™ and
denote its boundary by 9. Let H'(Q2) = W12(Q) denote the usual Sobolev space, i.e.
the set of all weakly differentiable u € L?(Q) with a weak derivative Vu € L2(Q). We

equip H'(Q) with the usual inner product (u, V) () = (W,0)12(0) + (Vu, Vo) 2 () with

9
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2.1. The Laplace operator and its spectrum

which H!(2) becomes a Hilbert space. Further, H}(Q) C H'(Q2) denotes the closure of
the space of compactly supported smooth functions in H'(£2). We consider the positive
Laplacian —A := — Y7, 2 on Q and the corresponding eigenvalue equation of —A sub-

ject to Neumann ({2.1)) or Dirichlet (2.2)) boundary conditions

—Au=Xu in —Au=Xu in
(2.1) (2.2)

%:O on 0f) u=20 on 0f)

where n denotes the exterior normal to 02 if 9 is differentiable. Regardless of the
regularity of 0f), the variational formulation, implied by Green’s identity, of the prob-
lem is stated as follows: Find v € H'(Q) such that (Vu, Vv)r2) = A(u,v)2(q)
for all v € H'(2). Note that the space in which this problem is studied dictates the
boundary condition; the variational formulation of replaces H'(Q) with H}(Q): Find
u € Hg(Q) such that (Vu, Vo)2q) = AMu,v)p2(q) for all v € Hj(Q). Analogously, re-
placing H'(Q) with any other closed subspace V satisfying H}(Q) Cc V C HY(Q) gives
rise to variational problems with more general boundary conditions. Whenever needed, we
distinguish between different boundary conditions by an index D for Dirichlet boundary
condition and N for Neumann boundary condition. In particular we write Ap and Ay for
the Laplace operator with Dirichlet, resp. Neumann boundary condition.

Next, we cover necessary notation for the definition of a spectral counting function
stressing the implications and differences between Dirichlet and Neumann boundary con-
ditions. In this work, we focus on the Neumann case and to understand the difficulties that
arise from fractal boundaries, it makes sense to discuss where the spectral differences to the
Dirichlet case lie. Recall that an eigenvalue of a bounded self-adjoint operator T': X — X

on a Hilbert space X is a A € C for which T'— Aidx is not injective.

Definition 2.1 (Spectrum of a bounded operator). Let 7' : X — X be a bounded self-
adjoint operator on a Hilbert space. Then we define the spectrum of T as o(T) := {\ €
C: (T — Midx) does not have a bounded inverse}. We decompose o(T") = 04(T") U 0ess(T")
into the discrete spectrum and the essential spectrum: The essential spectrum oess(T) is

defined as the set of all A € (T for which ker(7 — Aidx) or coker(T — Aidx) is infinite
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dimensional. It turns out (see for example the spectral characterisation by Reed-Simon in

[89, VIL.3]) that indeed o4(T) is discrete and only contains eigenvalues of finite multiplicity.

A classical result of early functional analysis is the characterisation of the spectrum
of —A under Dirichlet boundary conditions. The bilinear Dirichlet form & : H'(2) x
HYQ), (f.9) ~ o VIVgde = (Vf, V)2 is bounded, ie. |£(f,g) < [fllgl. by
Cauchy-Schwartz. Poincaré inequalities (see below) then show that £ is also coercive, i.e.

dm (namely m = H%) such that E(f, f) > m||f|%.

Theorem 2.2 (Poincaré inequality for H}(Q)). Let Q C R™ be any domain and 1 < p <

oo. Then there is C' (called Poincaré constant) such that for any f € H}()) one has

1 fllze) < CIV fllr@)-
The following is essentially a corollary of Riesz’ representation theorem.

Theorem 2.3 (Lax-Milgram). Let B be a bounded and coercive bilinear form on a Hilbert
space H. Then for any g € H' there is a unique f with B(f,¢) = g(¢) for all p € H.

This map H' — H, g+ f is bounded has a bounded inverse.

Now for any g € L?(Q), the operator (¢ + (9,9)12(0)) s € H(Q) so that there is
a unique f € H}(Q) with £(f,¢) = (g, ©)r2(q) for all ¢ € H(Q). We denote this map
as —A7L: L2(Q) — HY(Q),9 — f. By Green’s identity this map is formally self-adjoint.
In many cases, one can deduce the discreteness of the spectrum of A as described above
by the spectral theorem. In the Dirichlet case this is achieved by Sobolev embedding
theorems implying that ¢ : H}(2) — L%(Q) is a compact embedding. In particular this

shows tA~!: L2(Q) — L?() is a compact self-adjoint operator.

Theorem 2.4 (Spectral theorem for compact operators). Let K : H — H be a compact
self-adjoint operator on a Hilbert space H. Then, up to eigenvalue 0, the operator K has
bounded discrete spectrum o(K) = 04(K) consisting of a null sequence {\, }nen with finite

multiplicity and only accumulation point 0.

With the definition of the Rayleigh quotient one finds a formal expression for the nt®

Laplace eigenvalue as follows:

11



12 2.1. The Laplace operator and its spectrum

Theorem 2.5 (Max-Min and Min-Max-Principle for Dirichlet and Neumann Laplacian).

17112,
T,

write AB(Q) 1= min{inf oo (—AB(Q)), \B(Q)} for a boundary condition B € {N, D}

Let Q be an arbitrary fived domain. Define the Rayleigh quotient p(f) = and

(i.e. Neumann or Dirichlet) where \B(Q) denotes the n' entry (counted with multiplicity)

in the discrete spectrum of —Ap defined on 2. Then

AEQ = sup inf p(Y) Y Lbr, - ,hp—
@) 1, 1 ¢€H(%(Q)\{0}{ @) )

= inf  sup p(w).
WEeHHQ): wew
dim(W)=n

ANQ) =  su inf b LAy,
& 71’17"',11/?”,1¢€H1(Q)\{O}{p(¢) YLy UYn—1}

= inf  sup p(w).
WeHY(Q): weW
dim(W)=n

In particular, since the constant function trivially minimises the Rayleigh quotient in the

Neumann case,

||VU||%2(Q)

fopngoy: 0P
veEH 0}:
fgvdxzo L2(@)

AY(Q) =

The following corollary then explains why Poincaré inequalities (and Poincaré-Wir-
tinger inequalities as presented in Thm. [2.8]) are sometimes referred to as spectral gap

theorems:

Corollary 2.6 (Spectral gap). Let  be an arbitrary domain. Writing 1+ for the set of

functions on Q with vanishing integral,

A (@ 2 L7 & (ulfa < LIVulfag Ve H'(@)N1H).

Under both, Dirichlet and Neumann boundary conditions, the spectrum of the corres-

ponding Laplacian Ap, resp. Ay is well-known to be non-negative.
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The Dirichlet case. Since any eigenfunction is necessarily non-zero, 0 < AP () on any
domain Q. The Poincaré inequality for H}(Q) for an arbitrary domain Q implies that
the spectrum of the Dirichlet Laplacian is a discrete set AP(Q) < AP(Q)--- with finite

multiplicity which has a single accumulation point at oco. In other words, oess(Ap) = 0.

The Neumann case. In sharp contrast to the Dirichlet case, for any domain 2 and
therefore independent of geometrical properties, one has )\{V (©2) = 0. Secondly the essential
spectrum of the Neumann Laplacian on a domain €2 is harder to control. As sketched
above, the existence of a Poincaré inequality paired with a suitable Sobolev embedding
theorem implies the discreteness of the spectrum of the Laplace operator on a given domain.
Focusing on explicit estimates of eigenvalues subject to Neumann boundary conditions
on domains with irregular boundary, this leaves us with two problems: Find a suitable
formulation of a Poincaré inequality for H'(£2) and explain how a spectral theorem can be
applied to an inverse Neumann Laplacian Ay' : L2(Q) — H'(Q). To the first problem,
variants of the Poincaré inequality exist that remain valid on H!(Q) for certain classes
of domains. Often formulated for Lipschitz domains Q € Lip(R") or C'-domains, more
general versions of Thm. are also known for continuous domains, i.e. € CO(R") as
presented for example by Burenkov in [14], 4.3-4.4]. We will discuss more general versions
after defining extension domains in Def. 2.13] From Ch. Bl onwards we focus on domains
with fractal boundary which are not necessarily locally graphs. For the second problem we
will define classes of domains (and in particular quasidisks) that allow a compact embedding

analogous to the case of Dirichlet boundary conditions.

Definition 2.7. A domain X C R" satisfies the cone condition if there is a height h > 0
and opening angle a € (0,7/2) such that for any point z € X there is a cone Coney, o(z) C

X of height h and opening angle o with cusp z.

Theorem 2.8 (Poincaré-Wirtinger inequality for Lipschitz domains or domains with cone
condition, cf. [I5 24], Thm. 5.4 in [2]). Let 1 < p < 0o and 2 € R™ be a Lip(R™)-domain

or a domain with cone property. Then there is a C' depending only on 2 such that for any

13
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u € HY(Q)

< ClVull gy -

e f
U — udx
VOln Q Q Lp (Q)

The constant C will be called Poincaré-Sobolev constant.

Remark 2.9. Under certain variants of definitions of Lipschitz domains and cone conditions,
cone condition domains and Lipschitz domains coincide. See for example Def. 2.4.1; 2.4.5
and Thm. 2.4.7 in [42] by Henrot-Pierre. In our definition an open slit unit square (0,1)?\
({1/2} x (0,1/2)) has a cone property but is not Lipschitz while every Lipschitz domain

also satisfies a cone condition as shown for example by Burenkov in [14] 4.3].

Results such as Thm. are restricted by the regularity conditions on 0f). This
restriction is fundamentally unavoidable as can be shown by the following construction
based on an example of Courant-Hilbert in [2I, Ch. VI, §2.6], cf. also the variants by

Cardone-Khrabustovskyi and Hempel-Seco-Simon in [16], 4T].

Ezxample 2.10. There are domains in which Thm. is false. In other words, there are
domains D with inf oess(—An(D)) = 0. To see this, consider the following example of
a “room with infinitely many narrow passages’ as shown in Fig. Let 1 > € > 0 be
sufficiently small and consider the domain D given by a unit square @ and a family of
squares @), with parallel sides and side lengths (¢*)en attached to @ by narrow passages
of width 7, = €** and length €*. Now for every m € N define v, on D piecewise as
follows: ¥p,|Q,, = ek, Ym|Q = ¢m and 1y, changes linearly in the passage between @) and
Qm with ¢, fixed such that fD Umdr = OH Then v, € H'(D) and 1, L 1 for all m. But
since me [m|?dz = 1 for all m, ¢, — 0 as €™ — 0 and limy, o0 ||V1j)||2L2(D)€3m/77m =1.

Therefore limpm o0 [|[Vim||72 = 0 and limp oo [[thm |72 = 1.

In particular this shows that in difference to the Dirichlet spectrum, the Neumann
spectrum of a domain €2 does not allow for estimates under general transformations of the

domain. Indeed the spectrum of Neumann Laplacians is hardly controlled in the general

LOf course one can drop the condition of fD Ymdxr = 0 and instead consider ¥, — m fD Pmdr as done

in Thm. @
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L PPpe.

Figure 2.1: The domain D as constructed in Ex. [2.10
whose essential spectrum of the Neumann Laplacian reaches 0,
inf oess(—Apn) = 0. For better visualisation, the width 7 is not
to scale. Since the size of each attached small “room with narrow
passage” is scaled down by a factor of € and 7, = €**, the total
measure necessary to accommodate {Qx }ren is finite.

case as was shown in the following result by de Verdiére and Hempel-Seco-Simon:

Proposition 2.11 (|19, 41]). Any closed subset of R>q is the essential spectrum of the
Neumann Laplacian on a planar domain. Any set of N positive values coincides with the

first N non-trivial Neumann eigenvalues on a planar domain.

Several criteria have been found which ensure the emptiness of the essential spectrum.
As motivated above, one has the following criterion based on compact embeddings origin-

ally formulated by Rellich.

Theorem 2.12 (|90], see also Prop. 10.6 in [98]). The Neumann spectrum is discrete iff

15
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the inclusion v : H*(Q) — L?(Q) is compactﬂ

In terms of capacities, Maz’ya showed in [75] that ¢ is compact iff

lim inf ¢! inf  ¢(Fy, Fy) =0.
M—0te(0,M) vol, (F1)>t
voly, (F2)<M

Here, ¢(F1, Fy) := inf ey (py i) Jo [V fI?de is called relative capacity where V(Fy, Fy) :=
{f €C®Q): flp =1, flp, = 0} for any two disjoint Fi, Fo C § that are closed in 2
giving possible descriptions of such domains.

In contrast, Dirichlet boundary conditions allow for a simple but crucial observation:
Any function f € H}(Q) can be extended by 0 to any superset of { without altering its
H'-norm. We finish this section by collecting some results relating the geometry of the

boundary to vanishing essential spectra.

Definition 2.13. A domain 2 C R" is called extension domain if there is a bounded linear

extension operator £ : H*(Q) — H! (R”)H

For any such extension domain the embedding H!(£2) 5 H YR — HY(B.(0)) —
L?(B.(0)) — L?*(Q) is compact with r = diam Q. In recent years results on compact
embeddings where formulated in a vast variety of settings. In particular in [35] Gol’dshtein-
Ramm proved a compact embedding if the domain can be approximated from above and
below by Lipschitz functions. While it is known that a Poincaré-Wirtinger inequality
exists for extension domains, as shown for example by Arfi-Rozanova-Pierrat and Dekkers-
Rozanova-Pierrat-Teplyaev in [0, 24], the existence of such Poincaré-Sobolev constants is
commonly shown in a non-constructive way by contradiction using the compactness of
embedding operators.

An early breakthrough discovery regarding extension domains was the following ob-
servation by Jones and Vodop’yanov-Gol’dshtein-Latfullin: Planar extension domains are

characterised as images of disks under quasiconformal maps.

2The original German publication uses the concept of completely continuous operators (,,vollstetige Op-
eratoren”). Whenever the domain is a Hilbert space, this notion coincides with the usual notion of a
compact operator.

3Sometimes one instead requests existence of an extension for all W'?(Q) — W?(R™) for all 1 < p < oo.
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Theorem 2.14 (|49, [109]). Any planar connected and simply connected extension domain
Q C R? is a quasidisk, i.e. the image of the unit disk under a quasiconformal map. In
higher dimensions, any domain D C R"™ is an extension domain if it is an (€, 00)-domain,
i.e. if for any two points x,y € Q there is a rectifiable curve ¢ in 0 connecting x and y
of length {(c) < @ and for all z € ¢ one has dist(z,00) > e%. In particular,

quasidisks are always extension domains.

Here, quasiconformal maps are defined as homeomorphisms with bounded distortion.
Precisely, at any point x in a domain X C R"™ we define the distortion of a homeomorphism

f: X —>R"as

. maxp— | f(z + h) — f(z)]
H(z, f) :=limsup — .
0 D)= iy 1 ) — )
Notice that |f(z + h) — f(x)| is defined for all |h| < r with 0 < r < dist(x,0X) so that
H(z, f) exists for all z € X.

Definition 2.15 (Quasiconformal map, [33]). Let X,Y C R"™ be two domains. Then
amap f : X — Y is called quasiconformal if it is homeomorphic and its distortion is

bounded from above everywhere in X, i.e. if sup,cx H(z, f) < .

Jones correctly suspected that in higher dimensions quasidisks would no longer exhaust
the set of extension domains, cf. Rem. [2.32] The extensive literature on quasiconformal
maps in turn reveals simple criteria for quasidisks. We mention two well-known results by

Ahlfors (Prop. 2.16|) and Jones (Prop. [2.18).

Proposition 2.16 (Ahlfors criterion, [3, 4 [76]). A Jordan curve vy is quasicircular (i.e.
the image of S' under a quasiconformal map) iff the following is satisfied: for any two
points a,b € v one has diamI" < c|a — b|, where I' C y\{a, b} is a connected component

with smallest diameter.

As an application the Koch snowflake can be shown to be a quasidisk and therefore to

have vanishing essential Neumann spectrum.

17
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Ezample 2.17. Let K be the Koch snowflake (cf. Sec.[2.4)). Then 0K is a quasicircle based
on the Ahlfors’ criterion. To see this let x,y € 0K be arbitrary. Stressing the self-similarity
of the Koch snowflake, we may assume without loss of generality that x lies in the leftmost
or second leftmost segment (red and green in Fig. and y lies in one of the three other
segments. If instead both = and y lie in the same segment, there is a largest scaled copy of
the Koch curve within that segment containing only one of the two so that the next larger
copy of the Koch curve within the segment contains both x,y in different sub-cylinders; if
no such segment existed, both z,y would coincide, which is trivial. We now discuss these

five cases individually.

(i). If x lies in the red segment and y lies in the blue segment, we find the smallest circle
covering all of the red and all of the blue segment. Let the radius of this circle be

Thlue := Tp. Let dist(red, blue) := d,. We define ¢, := 3—’"’;.

(ii). If x lies in the red segment and y lies in the orange segment, we find the smallest
circle covering all of the red and all of the orange segment. Let the radius of this

circle be rorange 1= 7. Let dist(red, orange) := d,,. We define ¢, := 3—:.

(iii). If z lies in the red segment and y lies in the green segment, we may regard the red
and green segments as boundary of another Koch snowflake (indicated in gray in

Fig. [2.2). This reduces the case again to one of the three other cases.

(iv). If x lies in the green segment and y lies in the blue segment, we differ between two

cases.

(a) If at least one of the two points lies outside the pale-red part of the union of
green and blue, both points are separated and we again find the smallest circle

covering all of the green and all of the blue segment. Let its radius be rg . Let

2rght
dgb+

dist(green but not pale-red, blue) = d,p4. We define ¢4y 1=

(b) If both points lie in the pale-red segment, one may start over with the above

classification.
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It remains to explain what happens if the above classification does not terminate. This
can only occur the case is called infinitely often. But then x = y which is trivial.

Therefore ¢ := max{c4, Cro, Cgp+ } satisfies the Ahlfors criterion.

Figure 2.2: Koch snowflake dissected into disjoint segments to
show that the Koch snowflake is a quasicircle by the Ahlfors cri-
terion as described in Ex. This argument is based on the
idea that at sufficiently small scale any two points will eventually
lie in distinct rescaled segments as shown above or the two points
coincide.

Proposition 2.18 (|49]). Let v C R™ be a quasicircle. Then vol,(y) = 0.

Finally, Rohde gave a complete classification of quasicircles up to bi-Lipschitz maps.
One goal of Ch. [3]is to provide explicit Poincaré-Sobolev constants for domains covering
e-parallel neighbourhoods of quasicircles up to bi-Lipschitz maps. To formulate the classi-
fication it is necessary to define p-Rohde snowflakes which is done in Def. In contrast
to more general mapping theorems that guarantee the existence of a, say bi-holomorphic,
map Q — ' for sufficiently regular domains, we will see in Prop. that bi-Lipschitz

maps preserve the Minkowski dimension of the boundary.

Theorem 2.19 ([91]). Let Q be a quasidisk. Then there is a global bi-Lipschitz function

f:R%2 = R? that maps ) to a p-Rohde snowflake with p € [%, %)

Independent of this work and using a different techniques Gol’dshtein-Pchelintsev-
Ukhlov recently found estimates for Poincaré-Sobolev constants for p-Rohde snowflakes
in [34] based on quasiconformal geometrical information. In 2021 an approach to domains

with locally self-similar boundary was developed by Banjai-Boulton in [§].

19
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2.2 Dirichlet-Neumann bracketing

We now present the technique known as Dirichlet-Neumann bracketing which allows treat-
ing a domain as a union of much simpler covering domains. To this end with the spectral

counting function we now define spectral counting functions as crucial object in this work.

Definition 2.20 (Spectral counting function). For a domain Q2 and boundary condition
B € {D,N} with 0ess(—Ap(Q)) = 0, we define the spectral counting function (also called
eigenvalue counting function) ¢ — Np(€,t) as the number of eigenvalues less or equal to
t € R (with multiplicity) of —Ap on . Nx(,t) will often be called Neumann counting

function and analogously Np(€,t) will often be called Dirichlet counting function.

Thm. 2.5 implies a number of regularity results of Dirichlet and Neumann eigenvalues
of the Laplace operator. In particular it provides an estimate of eigenvalues that can be

applied to open covers:

(i). Assuming o(—An(Q2)) = 0 one has AY < A\ Vk € N because H} () is isometrically
embedded in H'(2) by extension with 0. In terms of the spectral counting functions
this may be written as Np(2,t) < Nyn(£,t) Vt. In fact more is true: By the Min-
Max principle in Thm. )\{CV is minimal amongst all k"™ eigenvalues for mixed
boundary conditions corresponding to some closed V with H}(Q) ¢ V C HY(Q) as

long as the essential spectrum is empty.

(ii). (Domain monotonicity). Let €' C Q be two domains. Then A2 () > A\P(Q),
since H}(€Y) is isometrically embedded in H}(€2) be extending with 0. Contrary to
common belief and occasional statements like [50, Remark to Cor. 8.5.2]E|, there is
no analogous domain monotonicity for Neumann eigenvalues. See Rem. for an

example.

(iii). Let ©9,9Q2 C Q2 be two disjoint subdomains on which the Neumann Laplacian has
empty essential spectra such that Q = Q7 UQy. Then A2(Q) < min(A\2(91), A2 (95))

and A (Q) > max(AY (1), A (Q2)). This follows from the maps H3 (Q1)DHE (Q2) —

4This was corrected in the 24 and 3" edition.
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f1 if.%'EQl
H}(Q) via (fi, f2) = | Q22— and H1(Q) — HY(Q1) ® HY(Q9)

f2 ifﬂl‘EQz
via f = (f|917f|92)

(iv). Writing aQ := {z € R" : otz € Q} for a > 0, one has Ng(afQ,t) = Np(Q,a?t)
for B € {D, N}. This is because of an isomorphism (a~1)* : HY(Q) — H(aQ),u

uwoa~t and equally (a™1)* : H}(Q) — Hi(af).

Remark 2.21. As shown by Ni-Wang in [82], even for convex planar domains there is no
analogous statement about domain monotonicity as in above for the Neumann case.
Consider for example the domains ', Q" C Q as shown in Fig. Then the first non-
trivial Neumann eigenvalues is given by %2 where L is the longer side of each rectangle.

Therefore d’ < d < d’ implies
AV () <0 (@) < A (@),

A second example for smooth domains is given by nested annuli. For r < R let A, r be

the open annulus with inner radius r and outer radius R. Then

AV (A1) > N (Apy)  while A, D Ay ifa<b<l,

M (Ara) > A (Arp)  while Aj, C Ay, ifl<a<b.

In spite of the observation from Rem. Funano very recently found a variant of do-
main monotonicity for convex domains in [31]: (Piecewise) smooth convex domains satisfy
domain monotonicity for Neumann eigenvalues up to a constant only depending on the

ambient dimension. More precisely:

Theorem 2.22 ([31]). Let Q' D Q be convex domains in R™ with piecewise smooth bound-

ary. Then AN (V) < (92n)> \N(Q) for all k € N.

Definition 2.23 (Volume cover and multiplicity of a cover). For any domain 2 C R" a

volume cover {§;};cr of © consists of at most countably many open sets ; C Q with

21
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Q//

—
d//

d/

d

Figure 2.3: Example of the violation of domain monotonicity of
Neumann eigenvalues.

voly (€2) = vol, (U;e; %). For any domain Q and any cover or volume cover {€2;};c; we
define its multiplicity by p({Qi}icr) == sup,cq #(j € I : x € Q;). It is not to be confused

with the multiplicity of eigenvalues.

Next and in addition to the classical Dirichlet-Neumann bracketing linking the spectral
counting functions of Dirichlet and Neumann eigenvalues, we mention a version that allows
for non-disjoint covers as long as the elements of the cover do not intersect too often. More

precisely one has the following result which also follows from the Min-Max-Principle.

Proposition 2.24 (Dirichlet-Neumann bracketing with multiplicity, [80]). Let {;}icr be

a volume cover of a domain ). If the elements of the cover are pairwise disjoint,
> Np(Q,t) < Np(,t) < Ny (Q,1) <> Ny (i, 1)
i€l el
If the volume cover has finite multiplicity u, then
Ny(9,t) < Ny (Q, pit).
i€l

An immediate corollary relates the difference of Neumann and Dirichlet counting func-
tions with the difference of Dirichlet counting functions and Dirichlet counting functions

on a cover.
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Corollary 2.25. Let {Q,} be a finite volume cover of a domain Q. We define Q(Q,t) :=

Ny (&, t)=Np (¥, t) for any bounded open set Q' and Rp(t) := Np(Q,t)—=>", o Np(Qn, ).

Then

Rp(t) < Q1)+ > Q(Qn,t).

neN

Proof. Prop. shows that Q(Q',t) > 0 and Nn(Q,t) — >, Nn(y,t) < 0. Moreover,

RD(t> = ND(Q’t) - ZND(Qnat) = NN(Qvt) - ZND(Qnat) - Q(Q’t)

<D NN Qnst) = > Np(Qn, ) = Q1) = > Q1) — Q(Q, ). O

Therefore any estimate of Ny (2,¢) and Np(€2,¢) with the same asymptotic remainder
term yields a asymptotic estimate of Rp(t) by the same asymptotic behaviour as the re-
mainder of the spectral counting functions; for certain bounded variation domains this was
done by Safarov-Filonov in [29]. This result shows that the error committed by erroneously
assuming a cover of a domain to be disjoint will not change the asymptotic behaviour as

long as Neumann and Dirichlet counting functions have a common upper bound.

2.3 Dimensions and contents

We cover the relevant notions of dimensions briefly. The algebraic notion of a dimension
for example as dimension of the tangent space to, say a manifold, is of very limited use
in the context of fractal geometry. Instead scaling properties of volumes of e-parallel
neighbourhoods are used. Let X be any non-empty open bounded subset of R"™ with

boundary 0X. We write the (inner) e-parallel neighbourhood as

Xe = {x € R" : dist(z, X) < €} and

X_:={x e X :dist(z,0X) < e} = (0X). N X.

23
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We define Hausdorff measure and dimension. Based on this, in a second step we define a

upper and lower Minkowski dimension and content.

Definition 2.26. Let X C R"™ be bounded. Then we define

HYX) = inf Y diam(U;)*,
Witier i7
where the infimum is taken over all finite open covers {U; };cr of X with diamU; < 6 Vi € I.
As any cover with smaller diameters will also be a cover of larger diameters, the limit 6 — 0
exists. We define the s-Hausdorff measure as

Ho(X) = ;ii%ﬂi(X).

Since for @’ < d and sufficiently small 8, 3, ; diam(U;)? < 3", diam(U;)? 694", This
shows that in the limit § — 0, Hg(X) < 0o = Hq(X) =0and Hg(X) > 0= Ha (X) = oco.

Therefore there is a unique jump from in the values of Hy(X) from oo to 0 as s increases.

Definition 2.27. The Hausdorff dimension of a bounded set X C R" is defined as
dimpy (X) := inf{d : Hs5(X) = 0}.

Notice that the Hausdorff dimension coincides with the usual concept of a dimension
for smooth submanifolds. Moreover one may define a generalised version of the “manifold

dimension” that can be applied to non-differentiable objects.

Definition 2.28 (Topological dimension). Let X C R™. Then we define the topological

dimension as dimrep(X) := inf{dimy X’ : X’ is homeomorphic to X}.

With the definition of the Hausdorff dimension in mind, we now define the Minkowski
content and corresponding dimension similarly. Often the Minkowski dimension is defined
differently as scaling power of the remainder term in the expansion of vol,(X,). For later

results (cf. Prop. the following approach appears better suited.

Definition 2.29. Let X, A C R" be bounded. Then we define the e-content at scaling
dimension s relative to A, MS(X, A) as MS(X, A) := vol,(X. N A)e~ %) and define the
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upper/lower Minkowski content at scaling dimension s relative to A as

M(X, A) :=limsup M(X, A) and My(X,A) := lirr{‘iglfMéf(X, A)
e\ T €

For a domain 2 C R™, we then define the upper inner Minkowski content of Q at dimension
s as M(09, Q) := M (92, Q) whenever this is finite. Likewise one may define a lower inner
Minkowski content as scaling dimension s. Whenever M (99, Q) € (0,00), we say that
is upper inner Minkowski measurable at dimension s. We say that the domain is Minkowsk:
measurable if it is upper and lower Minkowski measurable and both contents relative to

the ambient space A = R" coincide.

Analogously to a scaling property of the s-Hausdorff content we notice that for fixed

X, A as above and s < t one has
ME(X, A) := vol, (X N A)e™ %) = vol,, (X, N A)e D=9 = pe(X, A)e ).

This implies that M(X, A) < co = M (X, A) =0 and M (X, A) > 0= M (X, A) = occ.
We therefore define the upper Minkowski dimension relative to A as dimy; (X, A) := inf{s :
M(X.A) = 0}. The upper inner Minkowski dimension of a set X is the upper Minkowski
dimension relative to itself. For later applications it will be crucial that this dimension is

bi-Lipschitz invariant.

Proposition 2.30. Let F' : X — Y be a bi-Lipschitz map between two bounded sets
X, Y € R". Then dimp/(X,A) = dimy (F(X), A) whenever any of the two expressions

exist.

We finish this section by citing a recent result by Balka-Keleti giving some additional
context about the position of the Minkowski dimension in the spectrum of dimensions. We

refer the reader to Keleti’s paper for details.

Proposition 2.31 ([7]). Let D be a dimension function on the set of compact subsets of

R™. Here, a dimension function is a function that satisfies the following three conditions.

25



26

2.4. Snowflakes, limit sets of IFS and Moran sets

(i). If f: X — R"™ is a Lipschitz map, D(f(X)) < D(x)
(ii). D is monotone with respect to inclusion, X' C X = D(X') < D(X)

(1i3). If X is homogeneous self-similar and satisfies the strong open set condition (meaning

the open set condition as in Thm. with X N O #0), then D(X) = dimp (X)
then dimg (X) < D(X) < dimp, (X).

Remark 2.32. Referring to Prop. [2.18 we now have a stronger result formulated in a recent
paper by Garcia-Bravo-Rajala-Takanen in [32]: The Hausdorff dimension of a quasisphere
(or any (e€,d)-domain is never full. However there are extension domains whose bound-
ary has full Hausdorff dimension. Indeed there exist extension domains in R3 that are

homeomorphic to S? but have full Hausdorff dimension.

2.4 Snowflakes, limit sets of IFS and Moran sets

We present three different constructions of domains with fractal boundary. Besides the
already mentioned p-Rohde snowflakes we include the classical construction of Hutchinson

as well as Moran sets.

Definition 2.33 (p-Rohde curves and snowflakes). Let p € [1,3) be fixed. Define four

maps (¢;[p] : R? — R?);_;... 4 as

)

p

") + plta(a).

ol e dal o
1/2 1—p
sl (e ) R, ol iz (1),
where R, is the usual planar rotation by a about the origin and « = arccos (ﬁ — ) A
p-Rohde curve is now built by the following iterative procedure: Starting with the unit
interval Iy := [0,1] x {0} C R? one acts with ®[q] := [J;_, ¢:[q] with ¢ € {1,p} on L.
The outcome of this is then read as union of disjoint smaller intervals and one repeats the

procedure on each interval (see Fig. . A p-Rohde snowflake is built out of 4 p-Rohde
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curves arranged on the boundary of a unit square. If at every level of iteration the ¢ is the
same on all intervals, the curve and snowflake thus constructed is called homogeneous. If

q = p at every level and every interval, the curve and snowflake is called fully homogeneous.

i o /\

Figure 2.4: Illustration of the two possible iterations at the first
two steps of the construction of a p-Rohde curve as described in
Def. starting with a unit interval Iy = [0,1] x {0} at the top.
The individual images of ¢;[1] are distinguished by dots in ®[1].
The two iterations on the bottom line represent examples of non-
homogeneous iterations.

FEzample 2.34. Any %—Rohde curve is the unit interval. The Koch curve is the fully homo-
geneous %—Rohde curve. The Koch snowflake is then defined as the domain whose boundary
is given by the union of three equilateral %—Rohde curves. The Koch curve may also be

defined as the limit set of the IFS consisting of ¢1[3], -+, ¢4[3] as defined below.

It is common terminology to denominate a (finite) set of contractions defined on R"
as iterated function set (IF'S). In other words, an IFS is a (finite) set of contractions
¢i : R" — R". We call sup,cgn |¢}(2)| the contraction ratio of ¢;.

Consider the set of non-empty compact subsets Comp(R"™) of R™ or more generally of
any complete metric space. Then (Comp(R"),dy) is again a complete metric space with
the Hausdorff metric given by dy(A, B) := max{sup,c 4 dist(z, B),sup,cp dist(A4,b)}. If
a sequence (X, )pen of non-empty compact subsets converges to a limit X in Hausdorff
metric we write X, E) X.

Any IFS gives rise to a map ® := J;c5, ¢i. If the IFS is finite, ® is a contraction

on Comp(R"™) so that Banach’s Fixed-point theorem gives the following celebrated result
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showing the existence of a limit set (also called attractor), i.e. a non-empty compact set

A with A = ey piA.

Theorem 2.35 (Hutchinson, [45]). Let {¢;}ies be a finite IFS on a complete metric space
X. Then there is a unique non-empty compact set A with A = |J;cx, 9iA.  Moreover

(ﬂkgn @kX)n LY for any non-empty compact X.

Under certain conditions of regularity, simple expressions for dimensions exists for such

attractors. We recall the following classical result for the sake of completeness.

Theorem 2.36 (Moran-Hutchinson formula). Let {¢; : R" — R"},ex be a finite IFS.
Suppose all ¢; are similarity maps, i.e. if there are M; € O(n),v; € R",r; € (0,1)
with ¢i(x) = riM;(z) + v;. Moreover suppose the IFS satisfies the open set condition,
i.e. there is an open set O with ¢;0 N ¢;0 = O Vi # j and ¢;0 C O Vi € ¥. Then

dimpg A = dimp/(A,R") = s where s is the unique solution of 1 =, s r;°.

We finally turn our attention to Moran sets which will play a role in Thm. .7 We
first recap some common notation for later use (see also Sec. . For any finite index
set ¥ (called an alphabet), we define the set of finite words over ¥ as Xfin := Uken, k,
where ¥ := {(}}. The set of infinite words is defined as the set of sequences in 3, ¥°° :=
YN, Finally we set ¥* := Xfin U £ On Xf* we define the right-shift & as @ : w =
(wrwg -+ W) = (wrwae - wp—1) and (0) := 0. If {¢i}liex is a family of maps, any
finite word (also called code) X" > w = (wjwsg---wy,) defines a map by composition,
Gw = Guy © - 0 Pu,,. We define ¢y := id. Lastly for a finite word w € ¥¥, |w| := k is

defined as the length of the word.

Definition 2.37 ([38, [78]). Let Xfi* be as above and suppose J € Comp(R™) has non-

empty interior. A collection of sets {.J, : u € X"} is called Moran structure if
(i). To each u € X" there is a similarity map ¢, so that ¢,J = J,.

(ii). For any v € ¥ 1 the sets {J,; : i € X} all lie in J,, have disjoint interior and

diam J,; __ — #X n
diam JT:; = Cmyi with Zk:l cm,k <1
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Then we define the Moran set by (e Uyesk Ju-

While the above version of the Moran-Hutchinson formula is often used, the following

variant of the Moran-Hutchinson formula includes the situation of Moran sets.

Proposition 2.38 (Cf. [38] and the references therein). Let M be a Moran set with ratios

Cm,i as above with inf,, i{cm i} > 0. Let sq be the unique solution of

Then dimpg M =liminf, o sq and dimp M := limsup,_,, 54

Remark 2.39 (p-Rohde snowflakes as Moran sets). Let p € [1/4,1/2) as before and J be
the equilateral triangle of base length Iy = [0,1] and legs of length \/p. Setting ¢; := ¢;[q]
for ¢ € {1/4, p} defines an index set ¥ := {1,---,4} and for any X" > (ujug---up) = u
we define ¢, by concatenation of maps as usual. By construction of p-Rohde snowflakes for
any u € % maps ¢y; = ¢y 0 ¢;[q] have the same ¢ for all i € . In this setup ¢y;J C J,
with int ¢y J Nint ¢y jJ = BVi # j as desired and the corresponding ¢, ; coincide with the

contraction ratios of the maps ¢;.

Example 2.40. A simple application of the above Moran-Hutchinson formula yields: The
boundary of a fully homogeneous p-Rohde snowflake has Minkowski dimension is — log,, 4.

In particular the Minkowski dimension of the boundary of a Koch snowflake is logs 4.

2.5 Regularisation of Q2 \ 2_. by Whitney covers

Whitney covers are a common construction used to prove estimates on spectral counting
functions by approximating a domain by a discrete union of cubes. Let € C R™ be an
arbitrary domain. A Whitney cover of 2 is a volume cover of €2 by cubes of different
sizes such that a cube containing z € 2 has a diameter that is uniformly comparable to
dist(x,0Q). The construction of such a cover is well known and sometimes attributed to

Whitney, who used it to study extensions of functions for example in [114]. However, a
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similar idea had in fact already been published by Courant-Hilbert in [20, Ch. VI.§4.4] in
1924 when Whitney was only 17. For the sake of completeness we include the construction
from [102], Ch. VI.§1], as the notation employed here will be used in later results: Consider
the nested family of lattices {Q_an}keZ' To each point p = (p1,...,pn) in the lattice
27F7Z" we take the open cube I, (pi,pi + 2*’“) with diagonal of length 27%,/n in the
positive quadrant of p. The set of these cubes is denoted by Cubes(27¥Z"). We then slice

up {2 into sectors and cover them individually:

We = {Q € Cubes(2*2") : Q1 (g kv i\ Qg i i) # 0} (2.4)
W = U W,..
keZ

Since Q = ez (m\Q_Q—k+1ﬁ), it follows that vol,, Q = vol, (UQGW’ Q) For
the following, let Q@ € W’ and let k € Z be so that Q € W;. Then by definition,
diam(Q) = 27%\/n and there exists z € QN <m\072—k+1\/ﬁ). For this x we have
27k+ /n < dist(z,09) < 2752 /n. Furthermore, dist(Q,09) < 27*+2,/n = 4diam(Q).
Moreover, we have diam(Q) = 27%+1/n — 27%/n < dist(z, 0Q) — diam(Q) < dist(Q, 09).
However, W might contain overlapping cubes. To rule out such cubes, observe that any
two intersecting cubes are nested. Suppose two cubes @, @’ intersect with @ C @Q’. Then

by the above
diam(Q") < dist(Q', 99Q) < dist(Q, Q) < 4diam(Q).

This shows that to any nested sequence of intersecting cubes in W’ there is a unique
maximal cube containing all others. We define W C W' as the set of all those maximal
cubes, which then are pairwise disjoint and WV inherits the other properties from W’. Such
a volume cover will be called a Whitney cover. The cubes used in this cover shall be called

Whitney cubes. The above consideration proves:

Lemma 2.41 (Existence of Whitney covers, Ch. VI.§1 in [102]). Let Q@ C R™ be a domain.
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Then there is a volume cover of Q consisting of pairwise disjoint cubes {Q}gew and
diam(Q) < dist(Q, 092) < 4diam(Q) vQ e W. (2.5)

Based on this, we have an immediate estimate on the number of cubes of a certain size
in a Whitney cover. This result will play a crucial role in the proof of Thm. [£.15] since it

allows us to estimate the number of cubes that are necessary to cover Q \ Q_..

Proposition 2.42 (Cardinality of slices of Whitney covers). Let W be a Whitney cover
of a domain  C R™, as constructed above. Suppose that there exists § € [n — 1,n) such

that M5(09, Q) € (0,00). Then there is an Mq € R such that #W), < M2k,

A similar result with the upper inner Minkowski content replaced with the J-Hausdorff

measure H; was obtained by Kédenmaki-Lehrbéck-Vuorinen in [63].

Proof. Let dj, := 27%\/n. By construction of Wj, as in (2.4),

voln (2 adray)) = Vol (a—ay)) _ vohn(Q-52-4m)

#Wk < ka:n 27kn

Defining €'(¢) := €/~ vol, (Q_.)/M;s(0Q, Q) — 1, we have
Vi / —k n—=0 ks
#W), < Ms(09, Q) (1 te (5\/52 )) (5¢/m)" 0 24,

Then for Mg := sup, Ms(0, Q) (1+ € (5/n27")) (5\/ﬁ)n_5 and the assertion follows

from limsup,_,q € (€) = 0. O

Proposition 2.43. Let Q C R™ be bounded with 6 := dimy; (09, Q) < oo and upper inner
Minkowski content Ms(0Q,Q) € (0,00). Let W be a Whitney cover of Q and for any

e>0, let
We:={Q eW: QN (L) # 0},

in other words, W, is the smallest collection of Whitney cubes in W that covers {x € 2 :



32

2.5. Regularisation of Q \ Q_. by Whitney covers

dist(xz,0Q) > €}. Then there is an Aq € R such that

vol,_10 W < Agq-enD-9,
QEW:
Proof. Since the closure of the outermost cubes in W, intersect 9Q_¢, the (n — 1)-volume
of the boundary is bounded by the (n — 1)-volumes of the boundaries intersecting 9_:
vol,_10 (W) < EQ EW.ONIQ_ 2D vol,_1 0Q. Suppose that Q has non-empty inter-
section with 9Q_.. Then there exists x € @ such that dist(x, dQ) = e. Now with Lem.
and dist(Q, 0S2) + diam(Q) > sup,¢q dist(z, Q) > € > dist(Q, I2), we observe that

5diam(Q) > € > diam(Q) >

ot e

With kmyin := min{k € Z : 2=k v/n < €}, the diameter of such a cube is therefore restricted
to one of at most three possible sizes, diam(Q) € {2 Fmin\/n, 2~ Fmint1), /5 9= (kmin+2) /Y.

Hence, an upper bound of the circumference of UQEWE Q is

[ kmin“l‘2 kmin+2
vol, 10 [ | J @< D D vl 10Q=2n ) #Wp-27H0
QEWE k=kmin Qewk k=kmin

2
< 200t Y 27 M D=0 L g—hmin(=1)=0) < g (iD=,
k=0

where Mg is defined in Prop. Ag = 2n(2y/n)°~ (=D Zizo 2~ k(n=1)=9) gince one

has 2 -2 Fmin/n > e and n — 1 < 6. O

In particular in the regular case (i.e. when § = n — 1), Prop. shows that the
circumference of the closure of the union of all large enough cubes of a Whitney cover is

bounded.

Proposition 2.44. In the setting of Prop. almost all Billard trajectories in UQEWC Q

are non-periodic.

Proof. We may assume that W, consists only of cubes that have at least one face shared
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with another cube in W,, as the statement follows from known results for isolated cubes.
Then there is kpnax € Z such that W, C ng Ko W, and all cubes in W, have vertices in
the 2~ Fmax7Z" ]attice. Let z € 8W and v be any direction of a Billard. Then, up to
lattice symmetry, the set of reflection points of such a trajectory in m is contained
in {x +tv:¢t e R\{0}}. Up to lattice symmetry, this set contains the origin x iff v is

rational up to normalisation. O

2.6 Weyl asymptotics of spectral counting functions

Suppose Q C R"™ is a domain with cess(—Apxn) = 0 as discussed in Sec. Then one
may define the spectral counting function as in Def. A famous observation by Weyl
states that the k' eigenvalue under Dirichlet boundary conditions growth with power
k%/™. This amounts to the celebrated Weyl law which we state under minimal hypothesis

as formulated by Rozenbljum:

Theorem 2.45 (Weyl Law, [92, 03] 112]). Let Q C R™ be open with bounded volume,

vol, < oco. Then

Np(Q,t) = C"(,;) vol, (Q)t"? + o (t”/2> , as t — oo,
where C‘(,(,L) = (2m)"wy, and wy, = vol,(By(1l)) = F(%fl) is the volume of the n-dimen-
2

sional unit ball. Whenever € is a domain with vanishing essential spectrum of the corres-

ponding Laplacian, this law also holds true under Neumann or mixed boundary conditions.

Weyl original proof involved a simple covering argument; a planar domain 2 is ap-
proximated with a disjoint union of squares and applying a Dirichlet-Neumann bracketing
argument. Since the remainder term then depends on the discrepancy between this cover
by squares and , it appears natural to assume that the remainder term is governed by

the geometry of the boundary of Q. Based on this observation, in [I13] Weyl conjectured
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that for sufficiently regular domains 2 C R”, the asymptotic behaviour is given by

Np(@,t) = CIf vola (@)¢"/% = 105 vol,a (0012
(2.6)
+o (t(nfl)p) as t — oo.

A similar conjecture was formulated for the Neumann counting function; it differs from
the Dirichlet case only by the sign of the second term. In several steps (see for example
[47, 97, 99| 100} 101, 106]) on proving Weyl’s conjecture, Thm. was extended and
generalised to elliptic operators and manifolds. It is believed to be correct for all C*°(R")-
domains. Indeed, supposing that 92 is smooth and additionally assuming that Billiard
trajectories are almost never periodic, the Weyl conjecture was proved by Ivrii in 1980
in [46] (see also [12, 47, 48, [96]) for several boundary conditions including Dirichlet and
Neumann type. It is conjectured that the Billard hypothesis is true for any domain with
smooth boundary but it is proven only in a few special cases as studied for example by
Vassiliev in [108]. However, a fundamental regularity assumption on 0f) is essential. In
fact, if the boundary is highly irregular such a result cannot be expected and is wrong in
general. In particular, the remainder term in is meaningless whenever the boundary
shows fractal structure with non-integer Hausdorff-dimension dimg 92 > n — 1 as then
vol,_1 0 = oco. Notice that under Ivrii’s conditions, the exponent in the second term
coincides with half the topological dimension dim(0f2)/2 = (dim(£2) —1)/2 of the boundary
0f) and that the associated coefficient is linked to the domain’s surface area. It is therefore
natural to expect analogue substitutes of these quantities in case of non-integer dimensions.

Motivated by physical observations, in a first step in this direction, Berry conjectured
that the remainder term would be linked to the Hausdorff dimension and the Hausdorff
measure of the boundary in [9, 10]. This however turned out to be false as a number of
counterexamples were found in [I3}[72} [73] leading to the formulation of a series of modified

Weyl-Berry conjectures by Lapidus et al.

Conjecture 2.46 ([65, [66]). Let © C R™ be a sufficiently regular domain but with

Minkowski dimension 6 € [n — 1,n) and Minkowski content M € (0,00). Then there
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is a (), 5 depending only on n and ¢ such that
Np(Q,t) = C(Wn)t"/2 + C'n’(;]Wt(S/2 +o0 (t5/2> as t — oo.

Whenever oess(—Apn) = 0, the same asymptotic law holds true for Ny (€, t) with a different

constant énﬁ'

A recent result by Frank-Larson in [30] shows that an averaged version of Berry’s ori-
ginal conjecture holds true: For Lipschitz domains Q C Lip(R"), the sum of the first
eigenvalues defined by the trace Tr(—Ap —A) := 3 _) co(—ap)r,<r(A— Ax) has an asymp-
totic behavior that depends on the topological dimension of 9Q2. Namely, Tr(—Ap — \) =
1O Vol (ATFE — 1O Hs (0N + 0 (AH%), where § := dimop(99).

In case of Dirichlet boundary conditions and © C R!, Lapidus and Pomerance veri-
fied the modified Weyl-Berry conjecture in [68] by proving the existence of a c¢s for which
Np(Q,t) = 1(41,) voly (Q)t1/2 — csMs(O)t%/% + o(t9/?) as t — oco. However it was sub-
sequently shown that the analogue is incorrect in higher dimensions in general in [69]

by providing counter examples. In arbitrary dimensions, Lapidus proved the following

asymptotic law.

Theorem 2.47 ([65]). Let Q@ C R™ be a domain with upper inner Minkowski content
M5(09,9Q) € (0,00) for § € [n—1,n). Then

Np(,) = C vol, ("2 + O (t5/2> .
If M5(0Q,R™) € (0,00) for & € [n—1,n), then
N (Q t) :C(n) 1L (0 n/2 5/2
D y % VO n( )t + 0O (t .

There is a notable difference of conditions for both kinds of boundary conditions, i.e.
existence of the upper inner Minkowski content at Dirichlet boundary conditions versus

the existence of “full” upper Minkowski content at Neumann boundary conditions.
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Of particular relevance to the present work is the article by Netrusov-Safarov in [80],
where an exact rather than an asymptotic bound on Ny (9,t) — CI(/I?}) vol, (Q)t"/? was
obtained for domains whose boundary locally is a graph of a BV -function. This will be

discussed in more detail in Sec. [4.2]
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Estimates of the second Neumann

eigenvalue

This chapter is partially based on [6I] by Kombrink and the author. The main goal is
to provide lower bounds of the first non-trivial the eigenvalue A\Y of the Laplacian with
respect to Neumann boundary conditions for a given domain D of a class of domains
(defined in Def. that is not restricted to domains with cone conditions or domains
whose boundary is locally a graph. We obtain a lower bound for the first non-trivial
eigenvalue of such domains in Lem. This is achieved with the introduction of specific
1-foliations (Sec. . The construction is designed to naturally include p-Rohde snowflakes
and related snowflake-like domains. Afterwards we discuss several examples including Koch

snowflakes. We start by recalling a result for C°-domains.

Definition 3.1 (Def. 1.1-1.2 in [80]). Let ' C R""! be a domain and let f € C°(€Y'). We

define the oscillation of f on Q' as

Osc( .2 i= 5 (sup 1) - inf (o).

2 zeQ) e

Theorem 3.2 (Lem. 2.6 in [80]). Let § > 0 and Q°_; := (0,¢)" ! x {0} C R" be an
(n — 1)-dimensional cube parallel to the coordinate axes and of side length ¢ < 6. Let

f e C%Q:_,) with Osc(f,Q%_1) < §/2 and b =inf f —c. Let D =Ty be the graph-set
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of the CO-function f in the following sense:
Fip={zeR":JyeQs_istx=(yt)andte (b f(y)}

Then Ny(Upp,t2) = 1ift < (1+ (2m)72) /%671,

A key idea of the proof of Thm. 3.2/is to observe that [, g(z)dx = fQZ_l bf(y) gy, t)dt
for g € H'(D). In order to generalise this, we introduce a family of paths v that should
reflect some kind of expected self-similarity of the boundary.

Suppose (2 satisfies the following property: For any sufficiently small € > 0 there is b
such that Q_ can be covered by domains {D;};er of the form I'¢j with Osc(f, dom(f)) <
€/2. Thm. then shows that Ny (Q_¢,t) < #I whenever ¢ is sufficiently small, namely

'¢=2. This idea will later be used to prove upper bounds for Neumann

t< (14 (2m)72%)"
counting functions in Thm. Within their work (cf. |79, [80]), Netrusov-Safarov raised
the question about extending this result to domains with boundary of different nature. In

this section we define a framework with which one can extend this result to a substantial

class of domains that are not C°-domains. A prototypical example is the Koch snowflake.

3.1 Well-foliated domains and bounds on eigenvalues

The below definition will play a crucial role throughout this work since it allows for a direct

application to snowflake-like domains.

Definition 3.3 (Well-foliated domain). Let X, D C R™ be domains. Suppose ¢ : X — D is
a homeomorphism with continuous extension to X that is differentiable almost everywhere
following the rule for change of variables under integration (see also Prop. . Suppose
that Iy x (-r,0) € X C Iy x [-r,L] for r,L € (0,00) where Iy is a convex domain
C R"! and suppose that (q,0) = ¢ € D. A fibre through q := (q1,-+* ,qn—1) € Ig is
defined as the map v, : t — ¢(g,t — ) where ¢ is assumed to be positive and sufficiently
small. We write dxy - - - dx,, = B(q,t)dqdt for the change of variables (with ¢ € Iy) and set

E := ¢(lyx(—r,0)). The domain D is called well-foliated with parameters (r, L, Zg, Sins, E)
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if the following properties are satisfied:

(i). Any fibre through a point ¢ € I satisfies |v,(t)| = 1 almost everywhere in D. We

then denote the length of the fibre by len .

(ii). The quantity B(g,t) as introduced above satisfies sup,¢y, féerwq Blg,t — r)dt < oo

and essinf(, yex B(g,t) > 0.

The set of all paths of a well-foliated domain will be denoted by I' := {v, : ¢ € Ip}.
For any measurable S C D, we write [in(S) := essinfyeg S(x) and define Zg(S) :=
SUPger, folen’yq 15(v4(t))B(vq(t))dt. We write Ip := p(Iy x {—r}) (called base) for the set

of starting points of paths in the foliated domain.

Note that we can identify such path v, with its intersection point v4(r) = ¢ € Iy x {0}.
One has a straightforward gluing property for such domains by concatenating paths or

joining bases.

Proposition 3.4 (Gluing property of well-foliated domains). Let D and D’ be two disjoint
well-foliated domains with bases Ip and Ip:. Let Y C 9D\ Ips be the set of all end points
of paths in D'. If Iy C Y’ when we allow the set E C D to be empty, then int D’ U D 1is

well-foliated with base Ip:.

Proof. To any q € Ip there is a unique ¢’ € I with lim;_jepn vy Ve (t) = q. Concatenating
any such two pairs of fibres to 7, gives fibres of finite length len~y, = len~, + len~y,. All

properties of well-foliated domains are then inherited. O

We notice that sufficiently regular maps preserve the structure of a well-foliated do-
main. This follows directly from the fact that one may extend the classical calculus of
change of variables to certain non-differentiable maps that include locally Lipschitz maps
as shown in [39]. More precisely we have the following result. Recall that a function
f X — R with open X C R" is approzimately totally differentiable at x¢g € X if there

is some L = (L1, -+ ,L,) € R™ for which for every e > 0 the set A(f,e) := {x € X :
(@)~ ()~ L( voln (A(NBs (o)) _ 1

z—1x0)| } . . . .
m— < €} has a density point at zg, i.e lims_,q oL, (B (z0))
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Proposition 3.5 (|39]). Let X C R™ be a domain and f : X — R™ be an injective map
that is approximately totally differentiable Lebesgue-almost everywhere in X. Then for any
measurable function u : R" — R one has [y (uo f)|Jf|dx = ff(X) u(y)dy, where Jy is the

Jacobian containing the approrimate differentials L;.

In this context we recall Rademacher’s celebrated theorem and show that Lipschitz

maps preserve well-foliatedness.

Theorem 3.6 (Rademacher, [88]). Let X, X' be open subsets of a Euclidean space and
f: X — R™ be Lipschitz. Then f is differentiable Lebesque-almost everywhere. If f is

injective, the rule for change of variables applies to f.

Proposition 3.7. If f : D — R” is an injective Lipschitz map and D is a well-foliated do-
main as in Def. then f(D) is also well-foliated. The same is true for any differentiable

bi-conformal map.

Proof. By Rademacher’s theorem, f is differentiable almost everywhere. In the notation of
Def. this shows that f o is an almost everywhere differentiable homeomorphism. As
[ is Lipschitz, the length of each fibre f(v,) in f(D) is finite so that a reparametrisation
by arc length is possible fulfilling |(i)| and similarly also by change of variables applied
to a Lipschitz map. Any conformal map on D has differential bounded away from 0 and

00. O]

The concept of well-foliated domains allows for a generalisation of a result by Netrusov-
Safarov in [80] to certain non-graph domains. The following main result of this chapter will
enable us to apply this result in order to obtain estimates of spectral counting functions of
domains that have a related foliation property introduced later in Def. We will recover

the result of Netrusov-Safarov from [80] for bounded variation domains in Sec.

Lemma 3.8. Let D C R" be a domain that is well-foliated with a family of fibres {v} er
in the notation of Def. . Setting AY (X) := min{\Y (X),inf gess(—An(X))} = inf{\ €

o(—AN(X)) : X > 0} to be the infimum over all positive elements in the spectrum of the



Chapter 3. Estimates of the second Neumann eigenvalue 41

Neumann Laplacian defined on X for X € {D, E},

2y —1
1 LAY (E)

V rﬁinf(E) " Binf(D)

AY(D) 2 AJ(E) [ 1+ Zs(D\ E)

Proof. Let u € H'(D) N1+ and set g := — [, udz. Then ||u||%2(D) < lu _EH%Q(D)'

In particular, by Cor. 2.6} it suffices to show the following Poincaré-Wirtinger inequality
—12 2
lw = Bll72 () < ClIVullza(p), (3.1)
with C~! given by the right hand side of the claim. To this end, we subdivide the expression

=53y = [ fulo) ~ Py + [ fule) — wpa,
E D\E

=1 =1

and estimate I; and Is separately. Applying Cor. to E one has

I < AY(B) [Vl < AY (B) 7 |Vul3a ). (3.2)

Recall that for any a,b,c € R and o > 0, there is the following inequality: |a — b|> <

(1+a)la—c|®+ (1 +a~1)|b— c¢|*[] We now consider

len vq4

_1 lenyg pr o )
=L o) - e vy

14+« lenyg pr o
= / / / lu(vq(t")) — up|*B(q, t)dt'dtdg
" Io Jr 0
=:1}
1+ a~ L lenvyg pr . ,
B /1 / /0 u(vq(t)) — u(rq(t))|*Blg, t)dt'dtdg,
0 T

/

—
=14

!This can be seen for example by minimising the function h(c) := Ala — ¢|*> 4+ B|b — ¢|*> — |a — b|? for fixed
a,b in dependence of A, B. This shows A =1+« and B = 1+ a~* for some «. Finally the condition
a > 0 then follows from h(c) > 0.
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which holds for any o > 0. By assumption, f:en%’ B(g,t)dt < Zg(D\E) for all ¢ € Iy.

Hence

1+a lenyqg pr o
B= 2 [ [ ) ~ wE et Dt dedg
0 T
1
+azﬂ (D\E) /]/ lu(y(¢)) — wp|2dt' dg
0

s““Iﬂ(D\E /1/ (1) — TB28(q, ¢)dt dg

IN

r 6lnf(
1+ aZg(D\E) 2 N, 11+ aZs(D\E) ,
N B (E) T <Ay (B Vu
r 6inf(E) H E||L2(E) = 32 ( ) r /Binf(E) ” ||L2(D)

Using Jensen’s inequality and [V7,(s)|*> = 1, |s| <1 and [dsu| = |(s, Vu)| < |V,

t 2 t
Yq(t) = 7q(to)|” = t dsu(q(s))ds| < (t —to) t |Dsu(rg(s)) [ ds
’ t Olenyq 9
<(t—to) | |Vul*ds < (t—to)/ |Vl | ds.
to 0

Therefore

. 1+ afl len g r o ,
= [ [ )~ uu @) Rata. narasa

len 74 t 2
Isu(v4(s))|s=oda| B(g,t)dt'dtdq
Iy Jr v
len g . t ) /
I (t=1) [ 0.020(5)) ol dorBla. ) 1
0oJr %
Then since t —t' < L,
lenyqg o7 , t ) /
0= 1) [ V@)oo o0, )
Ip Jr 0 '
lenvq len ~yq4 ) /
= | V()| yry (0| doB(g, t)dt dtdg
0 T

len vq
<(1+ a_l)LZB(D\E)/ / ‘Vu(az:)\gczyq(g)‘2 dodg

I D E len vq
<(14at T(D\E) // V(@) ey ()| Bg, 0)dordg
/Bll’lf Iy
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Zs(D\E)

_ Oé_l
= (e )L Dy

2
IVl 72 py-
Maximising with respect to a > 0 yields the claim. O

Importantly, Lem. [3.8] gives a substitute to the missing domain monotonicity from
Rem. For domains which are geometrically similar to a cuboid, it provides an estimate

that plays a crucial role in estimates for the spectral function in Chap.

Corollary 3.9 (“AY (D) =< diam(D)~2"). Let D be a well-foliated domain with paramet-
ers (r,L,Zg, Bins, E) and AY(X) := min (inf (dess (—AN(X))), A (X)) be defined as in
Thm. for X € {D,E}. Suppose AY(E) < e 2, r < L <xTIg <€ and Bint < 1. Then

there is a C' depending on r,L,1g, Bint, E and D such that
AY (D) > Ce?

Proof. By on Lem.

2y —1
1 LAY(E)

/7Bt (E) " Bint (D)

AY(D) > A (E) [ 1+ Zs(D\ E)

By hypothesis there are constants ¢, cf, c% and cf such that for all sufficiently small € > 0
ret €le,ef], Let e, cf], Ige ' €cr,cf] and AY (B)é* € [cy, cf].

These constants may be assumed positive since r, L, Zg, AY (E) > 0. Moreover Siy¢ does

not depend on €. Therefore

2, —1
1 Foto2
AY(D) > cye? | 1+ cfe cé'ec[(\le))
cr 6/Binf(E1) inf

9\ —1
| R R otk
Canceling all € then gives C' =c, | 1+c¢; [ ————+ . O

Ver Bint(E) Bint (D)
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Together with the notion introduced in Def. this constant can be rewritten as in
Sec. 4.4l
Regarding generalisations of Lem. [3.§ we notice that in fact many of the involved steps

can be generalised to WP-spaces. This is discussed in Sec.[6.2.1]

3.2 Construction of foliations for snowflake-like domains

In this section we give a method to construct well-foliated domains based on an idea
by Brolin in [11I] to construct paths in Julia sets. Similar ideas are well-known and are
often used to study Julia sets, see for example Falconer’s application to Siegel disks in
[28, Ch. 14]. We begin by briefly summarising the original concept. This motivates an
adaptation to Koch curves and, more generally, p-Rohde curves. After introducing this
adjusted construction for p-Rohde curves, we generalise the setting even further. It will
then become evident that foliations of the basic building components of the construction
are necessary. These so-called seed foliations are introduced next. We combine the seed
foliation and the generalised setting to obtain iterative procedures to construct well-foliated

domains that cover a large class of snowflake-like domains including p-Rohde snowflakes.

Brolin construction. Focusing on domains that are topological disks bounded by a
Julia set, a family of paths is constructed using the iterative nature of the Julia set. More
precisely, let f : C — C be a rational map on the complex plane and let a be simple
attractive fixed point with a bounded attractive basin A(«) (i.e. the largest connected
component of points z € C around « for which f*)(2) — a as k — 00). Let 7 > 0 be such
that Ba,.(a) C A(a) and define By := B,.(a) and By := f~!B_; for k € N. Notice that
A(a) = limg_, o0 By in the Hausdorff sense. Then there is a bi-holomorphic map G (called
uniformisation) such that G(Bj \ Bp) is an annulus of radii 71,72 with 1 < re. Then
one defines the family of radial paths in G(By \ By) given by g : (r1,72) — G(B1 \ Bo)
via t +— te? for fixed § € [0,2m). Now G~ lvg : (r1,72) — B1 \ Bo and By \ By =
Lloeo,2r) Imagese s, ry) G~ '9p(t). Letting f~! act on each such 7y we obtain a family of

paths in By \ By. Iteratively applying f~! then yields a family of disjoint paths covering
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each By \ Bp_1. For any path AR = f7EG~ 1y in By \ Bj_1 there is a unique path
f*1 G719y in By_1 \ By_2 whose endpoint match the starting point of ~(¥) . Connecting
any such two paths yields a family of disjoint paths covering By \ By. As k — oo this gives
a family of paths connecting 0By with any point in int A(«). We define a projection 7 by

mapping each endpoint of a path in By, \ Bi_1 to its starting point.

Ezample 3.10. We describe the unit disk B;(0) as the set bounded by the Julia set S C C
applying the above framework to the original construction by Brolin. Suppose f(z) = z2+c¢
with ¢ = 0 and let By := By/2(0) be a disk. Let I'g = 0By and generally I';, := (f~HroBy
with By B 61, In this case the uniformisation G = idc is trivial. The projection 7 then
acts on Ty as m: T > 2 = 272 ¢t s 2727610 that is, mp : 2 = 2727 2. We have
Ip = [0,27) corresponding to 0By and the corresponding 3(6, | f~%(1/2)|) then reads

(1-27%) _ I (%eie) |
e

B, 1F7*(1/2)]) =2

showing that  is radially symmetric and grows linearly with the radius as is expected

from the foliation by straight radial paths in the disk.

We now adapt the above construction to settings motivated by the Koch snowflake K
or, more precisely, to the open (disconnected) bounded set whose boundary is given by
the union of a Koch curve C' and its base interval [0,1]. After this first adjustment, the

generalisation to p-Rohde curves is natural.

Construction in Koch curves and p-Rohde curves. Recall that C' is the limit set of
a self-similar IFS given by the four maps ¢1[3], -+ , ¢4[3] as given in Def. and Ex. .
We replace f~! and By from the setting above with ® := \U; ¢i, and the domain whose
boundary is given by the union of Iy := [0,1] and ®Ij, respectively. This domain (the
largest prong of the Koch curve) is given by a equilateral triangle of length % Since the
elements of the sequence I, := ®"Ij are not disjoint, a bi-holomorphic map as described
above does not exist. Instead we manually introduce a seed foliation from the domain with

boundary Iy N I; (cf. Fig.|3.2(a)]) as set of vertical paths from any point in Iy to I;. Now
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acting ® on this seed foliation yields a family of paths between I and I5. Iterating to
infinity and concatenating endpoints of images of the seed foliation then yields a family of
paths from Iy to C.

More generally, for any p-Rohde curve we have the following construction: Let Q C R?
be the domain whose boundary is given by the union of any p-Rohde curve and Iy := [0, 1].
As before, put ¢, := U?Zl qSZ("). Depending on the p-Rohde curve, gi)z(") is either ¢;[p] or
¢i[4]. One defines a seed foliation for p # 1/4 and the trivial foliation linking Iy to Iy if

p= %. In higher dimensions, this can be done analogously.

Based on the above construction we now propose a further generalised setting. We
maintain the idea of a domain with boundary given by the limit set of a system of iterated
maps but we allow additional liberty in the composition of the maps. As in the previous
construction, this needs a seed foliation. This seed foliation will be introduced immediately
afterwards as a basic step of a foliation based on which a full foliation can be constructed

iteratively.

Generalised setup for the construction of well-foliated domains. Let [y :=
D, 1 C R"1x{0} with Dy being a k-dimensional hyperplanar polyhedrorﬂ and let X be a
(potentially infinite) index set of homeomorphic and bi-Lipschitz maps (¢;)iex : R — R™
with a composition rule A : ({@} U Eﬁn) x % — {0, 1}, i.e. two maps ¢y, ¢; can be com-
posed iff wi is admissible, i.e. A(w,i) = 1, where we set ¢y := id. The set 3% is comprised
of all admissible finite and infinite words in this sense. We assume that A is “&-complete”,
ie. we E{Z = ow € ngl for any k£ > 1.

For any finite word w = (wyws - --wy) € L we set ¢y 1= Puy P« + - ¢w, as before.

Suppose the family of maps {¢; }iex satisfies the following properties:
(i). (Orientation). ¢, (lp) C R"™! x R for all w € ¥%.

(ii). (Separation). For any two words w # v € %% of same finite length k we have

2More generality is possible here, but does not seem to provide much further insight. For example Iy could
be any compact and 1-connected subset of D,,_1. One could also replace Iy with a 1-connected (meaning
there is a single chart to D,—1) n — 1-dimensional manifold with boundary.
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bw(int Ip) N ¢, (int Iy) = @ for all k € N, where we denote the interior in R*~! of
Iy by int Iy. One may also see this as a form of injectivity of a parametrisation by

points in Ij.

(iii). (Bounding domain). For any finite word w € X% the sets S,, := Ui A(w,i)=1 ¢ilo and
Sy = Uwezfg ow(lo) are n — 1-dimensional topological planes. The boundary of I is
contained in the boundaries of Sy, S, 0ly C 3S,, and 0y C 3Si. There are unique
unbounded connected components Y,, and Yy of R" \ (Ip U S,,) and R™\ (Ip U Sk),
respectively. The interior of their complements are denoted by X,, and Xj. We

define Q := int (R™ \ int Yy) and Dy, := ¢y Xo.

(iv). (Nestedness). The open sets {Q}ren are nested, i.e. Qi C Qpy1 and all Q are
contained in some common sufficiently large set. As a consequence (see for example

[42]) B Uks>1 k- We then define © := int ;> Q.

Seed foliation. Let k € Nand w € Efﬁ‘ be arbitrary. We manually construct a family of
paths {7y} wery(w) differentiable up to at most finitely many points and of finite length
leny® < T (independent of w) and parametrised by arc-length foliating X,,. We require
from this family of paths that for all paths v* one has v (t) € Ip iff ¢t = 0 and either
Y (t) € 0Xy \ o iff t =len~y™ or leny" = 0. The set {I'g(w) : w € 3%} will be called seed
foliation from hereon. We define 7 : (J, X — Io that maps points in a path v € T'g to
its starting point in fy. We will see in Prop. [3:14] that in the case of a p-Rohde snowflake
with p < (v/3 — 1)/2, the set of X,, to be considered contains only two fundamental sets.
Perhaps the most obvious kind of seed foliation and also the one mostly used in this work
will be called equidistant seed foliation. It is defined for planar sets by the condition that
the ratio of the distances between the endpoints and the starting points of any two fibres

in the seed foliation is constant for any connected component of the foliated set.

We finish the construction with an iteration procedure that produces a set of paths as

requested in Def. [3:3] based on a seed foliation in the above generalised setup.
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Iteration procedure. Let 2 5 z be arbitrary. Then, by in the general setting,
either there is a minimal k with z € Q41 but ¢ Qj or x € Q;. In other words, z lies in

a set bounded by (Uwezgﬂ gbwlo) U (Uwez’; qwa()) for some k£ > 0. But

LJ ¢wL) U LJ ¢wﬂ) = LJ aDw

weEXH wEEi wGEZ

so that there is a w € Efﬁl with @ € D,,. Then, by definition, ¢,'x € X,, and the path
in [o(w) starting at x,, := m¢,' 2, denoted by Ve, Tuns through bgtx. Then by, is a
path in D,, through z. Its starting point ¢z, lies in ¢z, Iy by assumption on the seed
foliation. But then there is a path 4Z% in I'g(Gw) through ¢=L () which starts at
Tgw 1= 7'['(15;1}) (puwrw). Therefore there the concatenated path ¢,y * ¢zwyay goes from
x via ¢y through ¢z,2zy in Dy U Dzy. In general one defines xge,, = Wqﬁ;elwl'nglw
and the concatenated path v,(,) = w7y, * (#w%m ok Pk w’yx Fw traverses Q from x
to a base point g(x) € Iy. Conjugating the projection map 7 from the seed foliation with
b, 1.6. Ty 1= GuTdyt, results in a map 7, : Dy — ¢y Ip mapping points € D,, to the
starting point of the path through z within D,,. The construction above yields a family
of paths I' covering €2 sharing the same properties as the seed foliation covering €21 up to

differentiability; the global paths are differentiable almost everywhere.

Each path in the set I' of such constructed paths (from hereon called fibre), traverses
a unique point ¢ € Iy. Therefore one may parameterise £ by ~4(t) for ¢ € (0,len~y,) and
q € In. Welet ¢ : (g,t) — v4(t) denote the associated change of coordinates, let ¢ € int I
be fixed and ¢ > 0 be such that = := 7,(t) € int D,, for some w € ¥¥. Further, we
let t,, < t denote the curve parameter of v, of the intersection point g, of ¢ (ly) with
Yg- To simplify notation, we set £ := ¢[,-1(p,) : (¢,t) = Y(t) € Dy. Analogously to
the construction of m, we define &, mapping (qy,t) with ¢, € ¢ (Ip) and small enough
t to the point in D,, whose fibre runs through ¢, and has a length t from ¢,. Then

olq,t) = Ep(mzin) ;klwq, t — ty). Notice that by definition m = 7.

ow o-w

By Prop. and Thm. the density function 8 := |det D¢y| of the change of co-
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ordinates is defined almost everywhere and satisfies

Bla,t) = (3.3)

0 _ _
det ((3(] (gw(ﬂﬁul; 00 Wﬁklwq’t o tw)) ,€a>

with a unit vector e, that lies tangential to the curve 7, at curve parameter t. Whenever
{¢i}icy are similarity maps, one may further simplify this based on the canceling of
Déy(x) and D¢t(y) even if x # y. In the case of triangulations (see Fig. when
{04,0(q,t) }i=1,... n—1 spans an (n — 1)-dimensional polygon P,_; and e, := 0;p(q,t) are
locally constant in ¢ and ¢, then 3(q,t) = vol,—1(P,—1) sin o, where « is the angle between

the plane P,_1 and e,.

This quantity is readily computed for triangles, which will play a crucial role later (see

also Sec. [6.1.2]). An example is illustrated in Fig.

Figure 3.1: Basic case of a 'natural’ foliation in a sequence of
triangles. In such a situation an elementary calculation reveals
that the density function § is given by 81 = sina; in the bottom
triangle, By = 2 sinas in the middle triangle and (3 = Zsinag in

the top trianglg.

The collection of fibres thus constructed gives a partition of the domain into rectified
curves that are differentiable almost everywhere. We glue E := Iy x (—r,0) to the set Q
and extend each fibre 7, through E by setting ~,(t) := ¢+e, for —r <t < 0 where e, L I
using Prop. 3:4] We adjust the parametrisation by ¢ — ¢ + r so that any such extended

path 7 is parameterised by an interval (0, len~y). After the gluing of F, sup,¢, lenvy, > 0.

Remark 3.11. By Thm. [3.6], bi-Lipschitz maps satisfy the necessary differentiability condi-
tions above. However it was shown by Hata in [40] that a-Holder maps are in general not

almost everywhere differentiable. Actually for any o < 1 there is an a-Holder continuous
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map that is not Lebesgue-almost everywhere differentiable.

Definition 3.12. A set as constructed above with E = Iy x (—r,0) is called regular
well-foliated domain if and in Def. are fulfilled.

We finish this section by noticing that in many cases the lengths of the paths constructed
above are finite. This is of great importance in later applications to eigenvalues. This
importance is visible for example from the proof of Lem. as the length of corresponding

paths must be finite in such cases.

Proposition 3.13. Let ¢; be Lipschitz maps with Lipschitz constants L; for i € X. If

L; <L <1 forallieX, all thus constructed paths have finite length.

Proof. Let the length of paths in I'y foliating €21 be bounded from above by T'. Let x € D,,

for some finite word x € Eljl and write  for the path through x. Then

k

T
len ~y —Zlen( ow’yxz )STZL’“*ESE.
=0

Since this bound is independent of the length of the word, the length of any path foliating
Q is also bounded like this. O

3.3 Application to domains bounded by p-Rohde curves

In this section we give a more in-depth discussion of regular well-foliated domains with
a foliation as introduced in Sec. whose boundary is given by the union of Iy and a
p-Rohde curve. It will later be shown in Thm. and Prop. [£.9] that this setting covers a

reasonably large class of domains for our studies. We discuss a result applicable to p-Rohde

1\/1

snowflakes whenever p € [ ) showing that domains whose boundary is given by the

union of some Iy and a p-Rohde curve are regular well-foliated domains.

Proposition 3.14. Let Q C R"™ be open. Suppose OS2 consists of a unit interval [0, 1] x

{0} € R? and a p-Rohde curve with p € [1 \/‘;’2 1). Then there is a foliation of ) making

it reqular well-foliated.
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Proof. We explicitly construct a suitable foliation and check its properties. As before

let {¢?}i=1.... 4 be the four self-similar maps for the Koch snowflake with parameter p €

[%, \/%_1) and let ¢;(x) := qﬁiﬁ for i € {5,---,8}. Then for ¥ := {1,---,8}, any fixed

p-Rohde curve has a composition rule A such that the limit domain €2 has a boundary given
by the union of Iy = [0, 1] and the p-Rohde curve. By definition the maps are bi-Lipschitz
with Lipschitz constant given by p < @ < 1 and satisfy conditions|(i) of the general
setting in Sec. Next, we define a seed foliation. To this end, notice that there are at

most two distinct X,,’s to be taken into consideration.

(i). If 3w € XX for which {i € ¥ : A(w,i) = 1} = {1,---,4}, we use vertical lines as
paths. In other words, we define 7 : X,, — Iy as the usual projection to R x {0}, see

Fig. B2(a]

(ii). If 3w € ¥¥ for which {i € ¥ : A(w,i) = 1} = {5,---,8}, the foliation to be
constructed is forcedly trivial as no path of non-zero length is possible. Therefore
one has 7 : X, — Ip by x — . One may also identify this with the usual projection

of the aforementioned case.

/|

¢1(lo) . $alo)
] 1

Figure 3.2(a) Example of a seed foliation in X Figure 3.2(b) Example of a seed foliation of
in the case of a p = %-Rohde curve whose first the conformally distorted Koch curve described
construction uses the maps {¢:[p]}icqa,... a3- It in Prop. with Iy = [2,17] under the con-
connects Iy (a unit interval) and ®(Iy) (the first formal map f: R*\ B1(0) — R?\ B1(0), (z,y) —
iteration of the Koch curve, dashed) given by its (x? — 92, 227).

four maps {¢:[p]}i=1,...,4 by straight lines. Addi-

tionally a box E has been added underneath Iy

as needed in Lem. 3.8 and the fibres have been

extended (in dotted lines) through E.

By construction essinf 3 = 1, each fibre «, is parametrised by arc length and by Prop.|3.13
the total length of any path is uniformly bounded. Finally, Def.|3.3(ii)|is verified as follows:
Since the constructed foliation is piecewise parallel, S is piecewise constant. Any fibre

~ constructed as above can be split into fibres gbwq/;”w,gbgw’yg;"w, e ,¢5kw7§:gw through

o1
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Dy, Dz, -+, Dgr,, for some k € N and

len~y len 4 9]
sup/o Bdt = sup/0 B(g,t)dt < sup Z( sup  B(q, t)) (Sup 1en(¢w(vq))>

yer q€lo wes 177 \@(@t)€D,), qely
(%) <p'yr=d
¢
9 2
< (1 = ) o
>1 P
by hypothesis on p. ]

Remark 3.15. There is a correspondence between expansions of ¢ € Iy to certain bases and
the geometry of a fibre v in a p-Rohde snowflake: To each starting point ¢ € Iy = [0, 1]

there are at most two expansions coming from the dynamical system given by

fP:[0,1] = [0,1] via z+— fF(z) forie {1,---,4}, with f7: J? —[0,1],

FYA0,1] = [0,1] via 2 f/%2) forie {5,---,8}, with £/ T = (0, 1],

i % %

where JV = [0,p),J5 = [p,1/2),J8 = [1/2,1 —p),J} = [1 —p,1] and fF(z) = xfﬁzfl‘]l
The resulting expansion code for a ¢ € Iy may be written as w(q) = (ajazas---) for
a; € {1,---,8}. An immediate piece of information about ¢ given in the code is that
the number of left and right turns corresponds to the number of 2s (left) and 3s (right):
# (left resp. right turns) = max{0, #(i : a; = 2 resp. 3) — 1}. Moreover, if a; € {2, 3}, the
number of consecutive digits ¢ {2,3} corresponds to the power of the scaling factor of the
next-level triangle. In the examples in Fig. this means that the fibre with g..q = %
with an expansion code of w(greq) = (3113) goes up, “stays still” for two iterations to then
proceed straight up to terminate in the first equilateral triangle at the right side of size
374, Similarly, quiue = % with an expansion code of w(gpe) = (331242). This implies
that the fibre through gpue turns right into the first equilateral triangle to the right of size
371, “stays still” for one iteration to then go up into the a equilateral triangle of size 37
From there it turns left, rests for one iteration and then turns left for every next iteration

for ever. Finally, the orange path corresponding to gorange = % with an expansion code of
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W(Gorange) = (3332) runs straight into the next smaller equilateral triangle twice and then
terminates on its left side.

The given code for each path v, given by its base point ¢ € Iy also equals the code of
its final point v4(¢y) € 0K in the sense of the IFS. This also gives a quick method to find

q for special paths.

Ezxample 3.16. Let v4 be the path in the fully homogeneous p-Rohde snowflake as foliated in

Prop. that goes upwards and then turns left into an infinite left spiral. It corresponds

to a base point ¢ € Iy with the code 2 and therefore is given by the intersection of

T—p _ _2p
T, So q= 51 € Iy.

idj, :z+— x and fo: 2 —

In contrast to Prop. [3.14] we show that the construction in the proof of Prop. 3.14] does
not necessarily fulfil the condition of Def. . For ease of notation, we denote by 2 the

infinite word consisting of a recurring 2 in an alphabet ¥ and so on.

Proposition 3.17. Let p € {@, %) and suppose the composition rule A of a p-Rohde

curve is such that there is a finite word wo with wok with k € {2,3}. Then the construction

of Prop. violates Def.|3.4(11). Therefore the domain obtained by gluing a rectangle

as before to the open set whose boundary is given by the union of that p-Rohde curve and

Iy = [0, 1] is not well-foliated.

Proof. Suppose without loss of generality w2 € X% and wy = (. Otherwise consider gb;gQ

and reflect to interchange 2 <+ 3. Consider the fibre starting at Q) := 25% € Iy. By

a simple geometric argument in Ex. [3.16] this fibre runs through Dy, Dy, D23, Da2g, - - - .

e —
Since [ is locally constant with value (ﬁ—gp) along every sub-fibre qb% <%%¥u> for the

recurring word 2, one has

len g4 len 00 V4
sup/o ! 5(q,t)dt2/0 “ B(Q.tydt =Y (13p2p> <len(¢§‘é(’y¢2)>

q€lo ———— —
_ e( V2p—1(p+1) )
=P\ 2p-2)(2p-1)

asp>@. O
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Figure 3.3: Decompositions corresponding to three different
paths (cf. Fig. of a classical Koch snowflake as fully homo-
geneous %—Rohde snowflake. The decomposition of the base points

of the red line then read w (qmd = %) = (3113). For the blue

curve, one has w (qblue = %) = (33124?) and finally the code of
the orange leave reads w (qorange = 1%—72) = (3332).
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This shows that there are p-Rohde snowflakes, in particular with dimensions approach-
ing 2 for which the seed foliation proposed in Prop. [3.14] does not lead to a well-foliated

domain. The rest of this section is dedicated to a few instructive examples.

Ezample 3.18 (Square snowflakes). Let 7 € (0, %} We consider a class of square Koch
curves SK(7) depending on 7 (see Fig. with an equidistant seed foliation and show
that this construction allows for a well-foliation iff a snowflake bounded by four of these

curves is a quasidisk, cf. Fig. . More precisely, we show that Def. [3.3(ii)| is violated

PR TSR NS 4N

Figure 3.4(a) 37 = 0,75. Figure 3.4(b) 37 =0,8. Figure 3.4(c) 37 = 0,85.
ﬁé“*g@éﬁﬁ %

Figure 3.4(d) 37 =0,9. Figure 3.4(e) 37 = 0,95. Figure 3.4(f) 37 = 1.

Figure 3.4: 4% iteration of sets bounded by square snowflakes
curves SK(7) and [0,1] in Ex. at various instances of 7 €
(0,1/3] approaching . Notice that SK(1/3) is not a part of a
boundary of a quasidisk.

in the case of an open set SQ(7) bounded by SK(7) and Iy := [0,1] (see Fig. with
a equidistant seed foliation precisely for 7 = % The sets SK(7) are constructed as limit
set of a self-similar IFS: Let ¥ := {1,--- 5} and let {¢;};ex be the following bi-Lipschitz

contractions:

T

o) =257 ) = e+ (100), s (U7,

oi0) = R o)+ (20T7). an@r =i+ (7))

where R, is the usual rotation matrix on R? for angle o € [0,27). We define an equidistant

seed foliation by defining paths as shown in Fig. so that ¢a(Ip), ¢3(lp) and ¢4(1py) are

each reached by paths intersecting Iy in [I_TT, H‘TT] We write SQ(7) for the resulting

open set 2 in the notation of Now consider the central path vg with starting point
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T

Figure 3.5: Equidistant seed foliation for a square snowflake
where any measurable X C U?:z oily is covered by a section of
Iy with Lebesgue measure A;(X)/3, while ¢11y U ¢5ly coincide
with a subset of Iy and are therefore covered trivially by paths of
length 0. The construction is independent of 7 and o = arctan 3
is the minimal angle of any path with Ij.

Q = 1/2 € Iy, which traverses Dy, D3, D33, D333, ... (notation of |(ii1)). Along this path,
B as defined in (3.3)) changes by a factor 3 with each iteration step and is monotonic in
between any two iteration steps. Since the considered path has a length of 7#+1 in the kth

iteration step, we arrive at

o /Olemq Sla.t)it > /Ole“’YQ B(Q, t)dt — g?f (len (¢§|g(’YQ))>v

q€lo

— 1

which diverges iff 7 = % Independent of 7, B(q,t) € (3"’ sin arctan 3, 351 (1 + é))

sin arctan 3

at a point in D, for any word w so that essinf 8 > 0. Likewise we have an upper bound

wlg

for Zg whenever 7 < % Let I'g be the set of paths in the seed foliation as before. Then

len 4 o0 1
SUP/ Blg,t)dt < Z 3htt <1 + ) 7% sup len(7)
q€lo JO P sin arctan 3 ~eTo

which diverges iff 7 = % Similarly to Ex. [2.17) one can show that SK(r) satisfies the
Ahlfors arc criterion in Prop. iff 7 < % This shows that the sets SQ(7) are well-

foliated whenever their boundary is part of a quasicircle.

A different kind of curve was studied by Knopp who showed that curves such as the
Koch curve belong to a wider class of Koch-like curves which sometimes have non-trivial

Lebesgue measure.
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Figure 3.6(a) 37 = 0,75. Figure 3.6(b) 37 =0,8. Figure 3.6(c) 37 = 0,85.

Figure 3.6(d) 37 =0,9. Figure 3.6(e) 37 = 0,95. Figure 3.6(f) 37 = 1.

Figure 3.6: 4'" iteration of square snowflakes domains (i.e. the
domain bounded by four copies of SK(7)) at the same instances
of 7 € (0,1/3] as shown in Fig. Notice that the domain for

T= % is not a quasidisk.

m
T ill T2

Figure 3.7: First two construction steps of Knopp curves, as
described in [56].

Knopp curves. We study a class of curves introduced by Knopp in [56] as a further
instance of snowflake-like curves that may be addressed in the construction in Sec. 3.2
Since the original reference is not commonly available, we give a brief summary of the result.
Consider a curve constructed in the following way: Let Ty be an obtuse triangle of angle
ap > 90° and base interval Iy = [0, 1]. Chose a ratio §; and a sub-interval of the base side
of Ty corresponding to a sub-triangle 7" to be removed from T with voly(T”) = 61 voly(Tp)
as shown in Fig. such that Ty \ 7" consists of two obtuse triangles Ti, T both of which
have angles aq, as with 90° < «a; < aq for ¢ = 1,2. Now choose a ratio 6 and repeat this
procedure with 77 and T, (using the same 60 for both T} and T%) resulting in four triangles

Ti1,Ti2,T51, To2 and so on, giving a family of triangles indexed by finite words in {1,2}"
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3.3. Application to domains bounded by p-Rohde curves

for any n € N. Since the triangles are all measurable sets that are disjoint up to 2 points,

one may compute the area taken away at every iteration by
AO = V012 T(), An+1 = An . (1 — Qn),

so that lim, o Ap = vola(Tp) [1721(1 — 6,,). In other words, lim,_, A, has non-trivial

volume if ) 6, converges. Indeed, in this setting Knopp showed the following.

Theorem 3.19 ([56]). The limit set K :=J,,eq0,130 (new Tw), is @ nowhere differentiable

nex

Jordan curve. Moreover it is an Osgood curve (i.e. vola(K) #0) iff Y° - 0n converges.

Now Prop. implies that a Knopp curve is not a quasicircle if ) 6, = oo. More

precisely, we formulate a simple criterion for Knopp curves (cf. also Ex. [2.17)).

Proposition 3.20. Let K be a Knopp curve to a sequence 0; of ratios as above. Then K

1s part of the boundary of a quasidisk if inf; 8; > 0.

The complement of the second iteration (cf. Fig. is given by a triangle 77 =
To \ (Th U T3). The fourth iteration than additionally removes four triangles that are
connected either to Iy or to 7. More generally the union of all triangles that are removed
at an even iteration step of this procedure gives a snowflake-like set whose boundary is
given by the union of the base interval Iy and the Knopp curve. Therefore this class of
Knopp curves provides additional examples for the construction of well-foliated domains
as discussed in Sec. In this context, the above Prop. [3.20] guarantees emptiness of
the essential Neumann spectrum of any domain whose boundary consists of unions of such

Knopp curves.



Chapter 4

Weyl asymptotics of spectral

counting functions

In this chapter we introduce a class of domains (Def. whose inner e-parallel neighbour-
hood can be covered by well-foliated domains in a controlled manner allowing estimates
of the spectral counting function of the Neumann problem on that domain. We study
the conditions under which this framework covers p-Rohde snowflakes and show how the
framework relates to a related approach by Netrusov-Safarov [80] in Sec. . Next we

prove our main result, Thm. and apply this to snowflakes.

4.1 Well-covered domains

Definition 4.1. A domain 2 C R” is called well-covered if there exists 4 € N and ¢y > 0
such that for any € € (0,¢p] there is a volume cover of Q_. by well-foliated domains
{D§ C Q}ier, with parameters (rf, L§, Zg , B¢ ;» E) as in Def. and multiplicity of the

volume cover uniformly bounded from above by u such that
(l) inf0<egeo infieje Binf(Df) > 0.

(ii). There is a c¢g independent of i € I, and € € (0, €] such that any Ef has first non-

trivial Neumann eigenvalue AY (ES) > ¢ (1) 2

99
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4.1. Well-covered domains

The second condition, is often satisfied automatically by the below result of Payne-

Weinberger, [83] (see also [1]).

Theorem 4.2 ([83]). Let E C R? be convex and let \y (E) be the first non-trivial Neumann

eigenvalue of E. Then

e ()

Remark 4.3. The reverse inequality in Def. 4.1}|(ii)| is often automatically satisfied. More
precisely, based on a result by Szegs in [105], Weinberger showed a Faber-Krahn-type

isoperimetric inequality in [110]:

9 2
* Dy 2 Wn, "
/\N(Q)S/\N(Q)==pn< ) :
2 2 (% diam Q*)2 vol,,
where Q* is the ball with vol, (2*) = vol,, (), wy, is the volume of the n-dimensional unit
n /
ball and p,, is the first positive zero of (wl_iJ% (x)) , 1. e. the smallest positive solution of
Ju(z) = xJi4 2 (x) where Jp,(2) is the m-th spherical Bessel function.
The cardinality of the cover {Df}ey,, denoted by #1 in Def. [f. 1] will play an important

role in Thm. Next we show that it is closely related to upper inner Minkowski

measurability of 2.

Proposition 4.4. Let Q C R™ be a domain for which there are T > 0 and vy > 0 and
i € N such that for every sufficiently small € > 0 there is a finite volume cover Uie[e D5

of Q_¢ with multiplicity < u and

Q_¢r_ Cint U D CQ o, and vol, (D5)e ™ € [v_,vy]. (4.1)
i€l
Then § has finite upper inner Minkowski content at dimension & iff one has #1. =< €% for

all sufficiently small €.

We will later show in Thm. that these conditions are satisfied when €2 is a p-Rohde

1 v3-1
1 2

snowflakes with p € [ ) More generally:
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Proposition 4.5. Let 2 be a quasidisk. Then there are r+ > 0, v > 0 and for any

sufficiently small € > 0 there is a volume cover {D$} of Q_c as in defined in Prop. .
We will prove Prop. after Thm. [£.7]

Proof of Prop. [{.4 By Def. the upper inner Minkowski content at dimension § exists

and is non-zero, if vol,(Q_) =< €"%. Suppose #I. =< ¢ %. Then

vol, (2_,) < Z voln(Df/T_) SH#Hlyp_vi(e/r )" < o
Z'Ele/r,
gives an upper bound for the upper inner Minkowski content of ) at dimension 6. A lower

bound can be obtained as follows.

vol,(Q_¢) > pt Z voln(Dg/”) > M_l#le/,.iv_(e/nr)" > "0

ie]e/?ur

showing that  has finite and non-zero upper inner Minkowski content at dimension J.

Conversely, if the upper inner Minkowski content exists and is non-zero at dimension ¢,

then
#HI.e" > v;l Z vol, (D) > vfrl Vol (Qeer_) > o
icl.
and
#HI.e" < vt Zvoln(Df) < =t Vol (Qer, ) < €70
i€l
showing #1, =< e 9. O

We consider well-covered domains whose volume covering domains D{ have uniformly

comparable geometry in the following sense.

Definition 4.6. A family of volume covers {{Df }ics. }e of Q_, for a common domain  is

said be of uniform shape (or uniform for short) if ()\év(Ef))_l/2 ,Zg(DS§\ EY), r$ and LS of
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4.1. Well-covered domains

each element D (in the notation of Def. [3.3) are uniformly comparable in ¢, i.e. if there

are constants independent of i and € with
(W (ED) 2 = To(Ds\ EBf) = = L =
2 i —~ 5 i i —~ TZ —~ i €.

If all D§ are regular well-foliated domains, we say that €2 is regular well-covered.

By Cor. for any uniformly well-covered domain Q (that is a well-covered by a
uniform volume cover) there is a constant Cq(£2) (cf. Sec. with AY(D§) > C1(Q)e 2

for all ¢ € I, and all sufficiently small e.

4.1.1 Coverings of p-Rohde snowflakes by well-foliated domains

Let p € E, %) Let 2 be a p-Rohde snowflake and ¢ > 0 be small enough. We construct
a cover by well-foliated domains {Df};cr. of 2_. where the growth behaviour of #(1) is
linked to the upper inner Minkowski content. We show that this property is preserved under

certain bi-Lipschitz transformations. The following result may be seen as the analogue to

Propositions and in the context of well-covered domains.

Theorem 4.7. Let p € H, ‘/5271> and Q C R? be a p-Rohde snowflake. Then Q is
uniformly regular well-covered and the conditions of Prop.[4.4) are met. If Q2 is homogeneous,

it 1s also upper inner Minkowski measurable.

Proof. We define a volume cover of 2_, by regular well-foliated domains in the following

way. We define the contraction ratios of ¢; in the usual way:

P ifie{l,---,4}

: ifi € {5,---,8}
Recall the notation of a composition rule of well-foliated domains from Sec. [3.2] and
Prop. For any finite word w € £ we define e(w) := ¢ H';i'l q(wy) and J(w) :=

(e(w), e(cw)]. The intervals J(w) agree with an approach by Lapidus-Pearse in [67] up a

constant prefactor. Let K be one of the four p-Rohde curves bounding €2 and consider the
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domain D whose boundary is given by the union of K and Iy = [0,1]. By construction

(cf. Def. , D consists of sets {Dw}wezgn. For any such Dy, = ¢, X,, we consider the

union of D,, with all its higher iterations,

Gy:=int(D,u |J Dwu J U Duyu--
1€X:A(w,i)=1 jeX:A(wi,j)=11€2:A(w,i)=1

Then ¢, Gy, is a domain whose boundary is given by the union of Iy and a p-Rohde curve.

Now let € > 0. Then following the foliation procedure as in Sec. [3:2] we obtain a collection

of regular well-foliated domains G,(€) := int Gy U (1o X [—€,0]). We introduce three

classes of regular well-foliated domains used for the uniform cover of 2_. by domains

containing G, (e):

().

fringed rectangles, denoted by fR,,(¢€), see Fig. If w ends with 2, resp. 24
and w’ ends with 3, resp. 31, we construct one domain covering both G,,(0) and
G (0): Take an isosceles triangle with legs of length leill q(wy) and base I of
length (1 — 2p) H';i'l q(wg). We equip this triangle with an equidistant foliation (as
defined in the proof of Prop. and glue a rectangle Eg = I X (—e(w), 0) giving
a well-foliated domain T,,. We then glue G,, with the left leg and G, with the right
leg. If w ends with 24, resp. 28 and w’ ends with 35, resp. 31, we replace the isosceles

|w|

triangle with one with two legs of lengths [,, = H‘;ﬂl q(we) and Iy = [],_; q(wy) and

adapt the base of the triangle accordingly to length ¢ = \/Z?U + l?u, + 2y lyy cos(2ay).

Moreover we replace Egr from before with a parallelogram of height e¢(w) and angle

sin 2ay,

-, see Fig. 4.1(b), By Thm. this satisfies [3.3|(ii)| with

do = oy — arcsin

Loyt

M (Er) > m2(e(w)? + ¢ + 2e(w)ccos §p) 71 < 2.

. short rectangles, denoted by sRy,(€), see Fig. 4.2(a)l If w ends with 11,21, 34,44, we

take the usual regular well-foliated domain consisting of G, (e(w)).

long rectangles, denoted by 1Ry (€), see Fig. 4.2(b)l If w ends with 14,41, take
G (0) with base ¢, Iy and glue it to E’ := (0, vol; ¢,y + €(w) sina,y) X (—e(w),0),

where sin o, = — . Identify the base of G, as (0,voly ¢1g) C (0,voly ¢yl +
here si V2=, Tdentify the base of Gy(0) as (0,voly ¢, To) C (0, voly ¢y
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4.1. Well-covered domains

esin ay) or (e(w) sin oy, voly ¢y lo+€(w) sin ) C (0, voly ¢y, o +€(w) sin yy) and glue

accordingly.

(iv). If w ends with 5,6, 7, 8, we proceed as with short rectangles (sR) but with p replaced

|
with 1

Figure 4.1(a) Construction of fRu,(€) for p = & Figure 4.1(b) Extract from a p-Rohde snow-
as used in the proof of Thm. @ flake with p = 2(1+%) < ‘/‘6’2*1 to illustrate the

construction of fR., (€) in the event of asymmet-
ric iterations, i.e. if w ends with 24 but w’ ends
with 15.

Figure 4.2(a) Construction of sRu(c) for p = Figure 4.2(b) Construction of IRy (c) for p =
3 3
By Prop. [3:14] all four types of domains are regular well-foliated domains. For a
sufficiently small given ¢ > 0, we select all domains fR, 1R, sR as shown in Fig.
with € € J(w). We are left to show that this cover is uniform and to verify in
Prop. 4.4, For any finite word w, the given objects cover one or two G, (€) for se-

lected instances of w. In any case of covering domain one has [y = 1 and e(w) =
2

DTy < N (25) e (6 (09 s2) = Ty atwn) Sy (25) " Y57 =

H'ei'o q(w@% V472:'_1 = 6(;:) % v 472’_1 for the path 7, /5 from the foliation of the

isosceles triangle as this is the longest path within the isosceles triangle and also within

the seed foliation of the domain whose boundary is given by the union of Iy and U?Zl oilop.
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Em

R
— &
(1—2p)p~

Figure 4.3: Example of a cover of the top side of Q_. by well
foliated domains where 2 is a (fully homogeneous) p-Rohde snow-
flake. The overlaps of domains is shown in dark gray. Notice that
the multiplicity of the cover of u = 2 remains true for any such
cover. The domains are labeled up to symmetry.

While images of 7;/p are not within one path, each image is a sharp upper bound to the
length of the path at each iteration level. Finally, since € € J(w), e(w) < € < e(ow)
and €(w)/e(cw) € {,p} showing € < e(w). By construction of the covering domains
fR, IR and sR we observe that r_ = min(i,p) = % and r; = max{4,p~ 1, /1 +sin® q,}.
Moreover, any covering well-foliated domain with corresponding E as defined in
has a volume bounded from above by vols(Ejg (w)) +vola(Ty,) +2 372, 2¢71pf voly(Tp) and
from below by voly E/, where Tj is an isosceles triangle of base length 1 — 2p and height
%\/éﬁ The first non-trivial Neumann eigenvalues of the corresponding domains are

given by 72 <ﬁ + b%) and for all domains, fR, sR and 1R, b < e¢(w).

If Q is homogeneous, the above discussion can be drastically simplified as only one
word in s € {0, 1} fully describes the construction of a homogeneous p-Rohde snowflake.
This is done by identifying {5,---,8} with the digit 0 and {1,...,4} with the digit 1.
The following dynamical system as k — k + 1 dictates the number of covering domains.
If sx+1 = 0, one replaces a domain sR or IR with 4 copies of sR rescaled by % and each
fR by 6 copies of sR and one copy of fR rescaled by i. Analogously, if sy+1 = 1, one

replaces each sR or IR with two copies of sR or IR and one copy of fR both rescaled by p.

65



66

4.1. Well-covered domains

Each fR is replaced with two copies of sR and three copies of fR rescaled py p. Writing
sR/IR =: ((1)) and fR =: ((1)), this replacement procedure of n copies of sR/IR and m copies
of fR at k-th iteration corresponds to B(sg)(]!) with B(0) := (g (15) and B(1) := @ %)

Setting B(s|y) := H?:l B(sg) there are C(s|y) := HB(S|]€)(§) H1 well-foliated domains with

r = ¢(s])) covering _ Next, we obtain an expression of C(s|;) depending on the

sk)

word s. We write v := (é), x = (_21), A := B(0) and B := B(1) for brevity. Notice that

x is an eigenvector of both A and B to eigenvalue 1 and moreover

k+1
B?, A7) Bk — —47 (49— 1) (4 — 1)z,

Then for po + >_y~, q¢ + pe = k and p;,q; > 0

C(S|k) — (1’ 1)APOBQ1APIBQ2AP2 ... BIm APmy,
— (1 1)APOBQ1AplBQ2AP2 ... B3k—1 APk-1 (ApkBq"v _ 1 (4% _ 1) (4pk _ 1) .SC>
’ 3
— (1 1)AP0341AplBQQAp2 .. BQkflApkflJFpkBQk/U _ % (4% _ 1) (41% _ 1)
’ 3
— (17 l)ApqulApquzAm - Apk—1+pkBQk—1+ka

4 4‘1k:+1
_ g (4% _ 1) (4Pk _ 1) _

(4%4 _ 1) (4pk71+17k _ 1)

gktl=po  gk+l-po—q1  gk+1-pPo—q1—p1 4pm+1
3 3 3 3
2.481  10. 4k+1>
3 ’ 9 '

As in Rem. 0f2 can be understood as the union of four copies of R where R is a
Moran set as in Def. Indeed, with the definition of €, one has 4F = ¢(s|;) %, where
) is the unique root of t +— 1 — Héf:l 4q(sp)t showing that #I. = e(s|z)™%. It can be
shown (cf. [38], Prop. that § := limsupy_, ., 0y is the upper Minkowski dimension of
R and hence of 012. O

Notice that the above argument for Minkowski measurability holds true if p > @ In
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the case of a non-homogeneous p-Rohde snowflake €2, each point z € 92 has an individual
word s(z) € X%. Using the above covering technique and the theorem of Rohde, we can

now prove Prop. [£.5] in a relatively constructive manner.

Proof of Prop.[{.5. Let F : Q, — € be bi-Lipschitz with a p-Rohde snowflake €, for

11

some p € [1, 5). Then we cover the region near the boundary of €2, as in the proof

of Thm. . Up to the condition in Def. the properties of this volume cover

. V3-1 1
do not change if p € [ R

) so that any p-Rohde snowflake satisfies the condition
of Prop. [£.4] Let us denote this volume covering set by {D(w) : € € J(w)} and we
write the base of each D(w) as I°(w). We define the inner boundary of the volume
cover as A := dJDe(w) \ 9Q. Then FD¢(w) is a finite volume cover of a region near
the boundary of Q. Since F is bi-Lipschitz (see for example Wakin-Eftekhari in [25]),
volp(FD(w)) < vola(D(w)). Let r— := infyepq dist(z, A) and ry := sup,cgq dist(z, A).
Then 74 satisfy the conditions of Prop. for €, and since F' is bi-Lipschitz, rf o=

inf,cogrqdist(z, FA) = inf,cpq dist(Fz, FA) < r_ and analogously for rf. a

Similarly to the argument above, under a technical assumption (called E-property)

Thm. can be extended to certain quasidisks.

Definition 4.8. Let X, X’ C R" be two domains. Then a bi-Lipschitz map f : X — X’
is said to have the E-property if there is N € Nyag > 0 and x € R, such that for any
sufficiently small € > 0 and any cuboid of side length €, denoted by E. C X, with parallel
fibres {7 : ¢ — ¢ + te, } that are parallel to one side of E, the image fE, is covered with
at most NV (n — 1)-dimensional hyperplanar convex domains {P;} with piecewise smooth
boundary and normal v; so that any fibre f o+, traverses through at least one P; and all

fibres through one P; traverse it at an angle > ag and Pj(¢') := P; + (0, ex)v; C Q.

Clearly any locally affine map has the E-property. If a quasicircle is bi-Lipschitz to a
p-Rohde snowflake as in Prop. [£.7] with E-property, it can be uniformly well-covered by
applying the bi-Lipschitz map to the uniform regular well-covering of the corresponding

p-Rohde snowflake. More generally:
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4.2. Bounded Variation domains as well-covered domains

Proposition 4.9. Let Q C R™ be a domain and f : Q' — Q be bi-Lipschitz with E-property

and a (uniformly) well-covered Q. Then Q is (uniformly) well-covered.

Proof. Let Q' be well-covered by {D5 }ies. with corresponding { Ef}. Then with Prop.
consider fDf as a volume cover of Q_o with ¢ := min{e/L, Le} where f has Lipschitz
constant L. By the E-property, f(Ef) contains at most M < N convex (n—1)-dimensional

regions {P;}j—1,.. » with normal v; that intersect every fibre in fEf. Then Pj(re(w)) C

is convex and has diam Pj(ke(w)) < y/(diam E)2 + r2¢(w)2. Then by the theorem of
Funano (Thm. [2.22)), it satisfies Def. |4.1§(ii)| since for any j there is a sphere of radius < €

containing P;. O

4.2 Bounded Variation domains as well-covered domains

In this section we show that the class of well-covered domains contains the class of domains
of bounded variation. For the class of domains of bounded variation bounds on Laplace

eigenvalue counting functions have been found in [80]. Recall the definition of Osc(f, @y,)

in Def. 3.1

Definition 4.10 (Def. 1.1-1.2 in [80]). Let @, be an n-dimensional cube with arbitrary

size whose edges are parallel to the axes.

(i). Let f: Qn — R be bounded. Then for any § > 0, we define Vs(f, Q,) as the maximal
number of disjoint open cubes @, ; C (), whose edges are parallel to coordinate axes

with Osc(f, Qn,i) > 0 for all i. If Osc(f, Qn) < 9, we set V5(f,Qp) := 1.

(ii). Let 7 : Ryg — Rs( be non-decreasing. The space spanned by the continuous func-
tions f : @, — R defined on some cube Q,, such that Vie(f; Qn) < 7(t) for all ¢, is

called the set of functions with (7, co)-bounded variation and denoted by BV (Q5,).

For a domain 2 C R", we write Q € BV, o, iff for any point p € 02 there is an open
neighbourhood U, C R" such that (up to an SO(n)), U, N is the set of points below the

graph of some f € BV, o(Qn—1) and a constant function b < inf f.
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Theorem 4.11. Let 7(t) < t° for some § > 1. Then the set of well-covered domains

contains BV, o as a proper subset.

Proof. Let Q € BV, o be a domain in R" and let p € 92 with corresponding neighbour-
hood U,. Then U, N {1} has boundary given by the union of a graph I'y of a function f :
Q1 — R from above and a constant b < inf f from below. Hence there is a foliation {v €
I'} by straight lines: For any x € Q,—1, let v, : t — (z1, 29, -+ ,2p—1,b) + t(0,---,0,1)
be so that lenvy, = f(z) —b > 0. Such foliations satisfy conditions in Def.
trivially, as the corresponding density /3 is 1 everywhere. Then for some r € (b,inf f), we
set B :={x € Up: Iy s.t. x = y(r)} showing that U, is well-foliated for all p € €.

Since 012 is compact (being closed and bounded), there is a finite set of open neighbour-
hoods U, corresponding to some f € BV, o, that cover 0Q. By [80, Thm. 3.5, Cor. 3.8|,
for any € > 0 small enough, each of these can be covered by a family of well-foliated
domains of size < e with r = € and of cardinality < V/o(f, Qn-1) + ¢ " vol, () +
et fll/e t727(t)dt < 7(1/€) = 9.

Since the Koch snowflake K is not locally a graph, K ¢ BV, o while K is well-covered
as shown in Sec. 131 O

Remark 4.12. Suppose there is a bi-Lipschitz function f : Q — € with Lipschitz constant
L, such that Q' € BV, o, with 7(t) ~ ¢t79 for some § > 1. Then  is well-covered. Such
domains are studied in [80] but in many practical cases, it appears to be easier to show a
domain is well-covered instead of showing it is BV, o, up to a bi-Lipschitz transformation.
Moreover, Thm. shows that Thm. covers a larger class than BV, o, addressing

the open problem raised in [80, Sec. 5.4.2].

4.3 Asymptotic behaviour of spectral counting functions of

well-covered domains

In this section we obtain an estimate on remainder terms of Ny (€2,¢) in particular when

2 is a snowflake-like domain. Before we prove the main result, Thm. £.15] we recall the
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aforementioned result from [80] in Thm. and Cor. This result is restricted to
bounded variation domains which were briefly discussed in Sec. [£.:2] We then show how
our setup enables us to study more general cases based on Lem. [3.8 which allows domains
whose boundary is not necessarily locally a graph. Afterwards we concentrate our attention

in particular on p-Rohde snowflakes in Sec. [£.3.1] stressing the construction in Sec. [3:2]

Theorem 4.13 (Cor. 1.5 in [80]). Let Q € BV, (R™). Then there is Cq € R such that

Cav'x
Ny (1) — Cy vol, (Q)AY2| < CoA—1)/2 L) dr
1 t
Cq

With Thm. this gives the following result:

Corollary 4.14. For bounded variation domains 2 one has Ny(€Q,t) = CI(,{,I)t”/Q—i—O(t‘S/Q),

if 6 := dimps (09, Q) > n — 1 is the upper inner Minkowski dimension.

We are now in the position to prove an analogous asymptotic result on Ny (€2,¢) for
more general domains, with focus on domains with fractal boundary, thus generalising
the results and partially resolving a question raised in [80), Sec. 5.4.2] in Thm. and
Rem. Key for obtaining such an asymptotic result for Ny (€2,t) is the construction
of a foliation in 2_. paired with Lem.

Theorem 4.15. Let Q C R™ be uniformly well-covered by {D¢}ier. with #1. < Ce™® for

fixed C, 5. Then there is a Cyy depending only on Q such that

Nn (€, 1) < Cyy vol, ()2 + Cpyt®/2.

In particular, if p € H, ‘/‘3’271), this applies to the cases where Q C R? is bi-Lipschitz
to an upper inner Minkowski measurable p-Rohde snowflake with E-property or if € is

bi-Lipschitz to a homogeneous p-Rohde snowflake with E-property.

Proof. Let {Q}gew denote a Whitney cover of Q (see Lem. [2.41). For € > 0 we restrict
{Q}qew to the smallest subset W, C W of cubes volume covering Q\2_, i. e. those cubes

that are sufficiently far away from 02 and hence are sufficiently large. Suppose that € is
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small enough so that _, is uniformly volume covered by well-foliated domains {D5 }icr. .
Let Je C I be such that D§ N (Q\UWe Q) # 0 for i € J. and set Ue := {Df}ic..
Then @ = ;. Df U Uy, @ and this volume cover can be split into two disjoint volume
subcovers. Let T, := {Q € W, : @ N UieJe DS # (0} and UY .= U.UT., be the set of all
well-foliated domains DS together with all cubes in W, that intersect some D{. Next, we
restrict the Whitney cover further to the minimal set of cubes necessary to volume cover
Q given the volume cover {U}yepw by defining W, = {QeW::QNU =P VU € UV}.
These volume covers are disjoint and have multiplicity u(UYY) < p+ 1 and M(We) =1so

that vol,, 2 = vol,, [(Uer U) L (int Uss. @)} . Therefore

Ny (Q,t) < NN( U U,t) +NN<intLNJQ,t>

Uy

€

=S5 (t) =S5(t)

and we estimate both terms separately.

S$(t). By construction one can estimate the first non-trivial eigenvalue of any Whitney cube

Qe UY as

v@- (aine) = (wigam) = (¥10)

where 7 is taken from Prop. [£.4] For large enough A we can choose € such that
(n+1)X = Coe 2 Any Q € T, satisfies dist(Q, Q) > e —diam(Q) (i.e. diam Q > )
and diam @ < dist(Q, 92) < rpe. Then, by Prop. [2.42

[2+1logy (574
ST < Y Ny (U (p+ 1N S #L+ Y #Wp < #I+ 280 M2
UeuWw k_<k<k, k=0
9 5 _ 5/2
_ 8-5ry )0 —1 _ 5 C3()(p+1)
< OO0 v\ ( + 8 < ()= — 5/2
< C(Q)e +9JTQ(r+> o1 € < C3(N)e Co( )2 N/

where k_ := LlogQ ‘/EJ and k4 := {10g2 5ﬁ—‘ and hence ky — k_ <2+ logy(5ry).

i€ €

S$(t). Notice that int UQ W Q is a polygon whose volume is bounded by vol, ). By
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Prop. [2.43} Prop. and a result on two-term asymptotics for polygons (see Sec. 4.5
and Thm. 7.4.11 in [48] or [108]),
S5(t)

lim sup D)
t=roo o) vol,, (Q)1n/2 4 W Aqen—1-3¢(n=1)/2

<1

The estimates for S§(t) and S5(t) together show that for large enough ¢

Ny (2,t) < C vol,, ()12 4 Mqt?/?. O

The above theorem can be used to obtain explicit bounds for the spectral counting
function, see Rem. [5.§(1)H(i1)}l We shall make use of the following simple observation about

the spectrum of cubes based on a result by Polya in [86].

Lemma 4.16. The Neumann counting function of a unit cube I" = (0,1)" C R™ has an

upper bound of Ny(I™,t) < Np(I™, (vt + 2my/n)?) < C’l(;)(\/f + 2my/n)"™.

Proof. Ny(I",t) = #{k = (k1, -+ ,kn) € N : |k|3 < t/n%} and Np(I",t) = #{k =
(k1,--- ,kn) € N*: |k|2 < t/7?}. Defining J/\f;(r) := #{k € N : |k|3 < 72} one observes
Nn(I",t) = Ny(v/t/7) and analogously for Np. Notice that Ny (r) < Np(r + 2/n).
Thus Ny (I",#) = Ny(Vi/7) < No(/i/7 + 207) = No(I™, (x(v{/7 + 2/7)?). Finally
Np(I™,t) < C’I(/;)t’"‘/2 by Pélya’s result. O

Remark 4.17. In the proof of Thm. a couple of adaptations offer interesting variations.

Further observations are mentioned in Sec. [6.2.2

(i). The minimal value of ¢ for which the estimate of Thm. holds true depends

entirely on the maximal value of € in Def. [£.1] More precisely, if € is well-covered for

-2
all € < €p, an upper bound for Ny (2,¢) for all ¢t > ¢y := Cij_ol is presented below.

This variant of the above estimate involves estimating S§(¢) < ZQ e, (@ 1).
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More precisely, setting ¥ := | —log, dif/n%gj, one has

k+
Ss(t) < Y Nn(Q.1) < > #WpNy (2751, 1)
QeW. k=k_

While more accurate estimates are possible, this is sufficient to provide an upper
bound in terms of counting functions of cubes. Applying Lem. to the cubes in
We yields an explicit upper bound of S5(¢) that is not only asymptotic but holds for

all ¢ > tg.

Ky .
S5() < O ST #w (2—’%/% + 2w\/ﬁ)

k=K'
ko
<cm n/2 ks [ (9=k /7 "o —k /7 "
< [ vol(Q)t —i—ka:Zk/_Q [(2 t+27r\/ﬁ> (2 t) ]

With S§(t) < S5(to) if t < to this extends to a global estimate of Ny (€2,t) and the
coefficient of such an error term estimate will be denoted by M f(bs. Since the estimate
of S is also correct for all ¢, this gives an absolute estimate of the remainder term of
the Neumann counting function. In the regular case of § = n — 1, this estimate then
only provides a weaker estimate of t("1/2log ¢ instead of the boundary term ¢("~1)/2.
Similarly such an asymptotic term is also obtained if one uses the regular asymptotic

law of the counting functions Ny (27%I",t) as shown for example by Lapidus in [65]

whenever the upper Minkowski content agrees the upper inner Minkowski content.

. Let © C R™ be any open set with finite volume such that vol,(Q_.) < Cen=9 for

some § € (n—1,n) and all sufficiently small € > 0. Then, using Whitney covers and
an estimate of the form of Prop. one can find lower bounds for Np(£2,t) as was
shown by van den Berg and Lianantonakis in [I07]. Indeed, for any such domain

one has

No(©,8) 2 O voln(@)t"? — st/
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(ii).

4.3. Asymptotic behaviour of spectral counting functions of well-covered domains

ifd >n—1and ¢ >0, and

Np(,) > C vol, (Q)¢"/2 — 30t =172 (log ((2V01n Q)Z/nt)) ,

ifd =n—-—1andt > #@)2. Together with Thm. [4.15] this gives explicit
voly,

upper and lower bounds for the remainder term of counting functions (for Neu-
mann, Dirichlet and mixed boundary conditions) of well-covered domains whenever

§ > n —1: Since vol,(Q—¢) < vol, (U;e;. Df) < ¢ C(Q)e0 we may set C =

vol
¢t C(Q) to obtain an estimate for all ¢ > to for [Ny(Q,t) — C"(,[T,L) vol, Qt"/?| <
max{Mabs, %}t‘s/ 2 with M2 taken from |(i)| above. This constant will

be denoted by M. It plays a central role in the companion paper [62]. In [62] these
estimates are used to deduce high order asymptotic terms for Np(U, t) for self-similar

sprays U whose generators are finite unions of pairwise disjoint Koch snowflakes.

Combining Thm. 1.10 of [80] with Thm. it follows that for any n there is a well-
covered domain 2 C R™ and a tg € Ry for which Ny (€2, 1) fC'(Wn) vol,, Qt"/2 > t§1t5/2

for all t > tq. In this sense, the result of Thm. is order-sharp.

. One may consider only non-trivial eigenvalues, thus disregarding the trivial zero

eigenvalue of each Df that comes with Neumann boundary conditions. In this case
one can adapt the proof above by setting S5(¢) = 0 essentially re-obtaining existing

results (for example in [65]) for Dirichlet boundary conditions.

While it is sensible to restrict the attention to extension domains, we did not make use

of the existence of such an extension or, for that matter, the emptiness of the essential
spectrum of the Neumann Laplacian at any point in our argument. Since the above result

implies the finiteness of the spectral counting function, we obtain the following result.

Corollary 4.18. Let 2 C R™ be a well-covered domain with positive and finite upper inner

Minkowski content. Then oess(—An) = 0.
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Figure 4.4: Instance of the cover of an inner e-neighbourhood K _

of the classical Koch snowflake K and € € J2(1/ ) In difference to
the cover suggested for p-Rohde snowflakes, both end segments of
this curve are parts of additional fR’s, as the snowflake is built out
of three equilateral Koch curves.

4.3.1 Application to snowflakes

For snowflake domains and more generally any domain whose boundary has a self-similar
structure, the values of §(~,t) as in Def. can often be easily understood: They increase
in discrete steps according to a power-law as t approaches len vy (cf. Fig. . For the Koch
snowflake for example, one might say, that 8 doubles in value each time a fibre passes
through an image of Iy under some ¢,, for a w € {1,...,4}*.

The remainder of this section is devoted to finding an explicit estimate for the remainder
term of the eigenvalue counting function of the Neumann Laplacian for fully homogeneous
p-Rohde snowflakes R, the classical Koch snowflake K and more generally Koch snowflakes

with a parameter p (that is a snowflake bounded by three fully homogeneous p-Rohde

curves) denoted by K,. To some extent this is a direct application of Thm. |4.7

Fix p € (i, \/‘5’2_1) and let ¢ := dimpydR, = dimpy;0K, = —log, 4 denote the upper

inner Minkowski dimension of the boundary of R, and K,. As shown in Thm. @ K, and

Va1 P Jap1

has finite upper inner Minkowski measure. We cover the classical Koch snowflake and R,

R, are well-covered. Let € € J,Ep) = (pk“ A } In [67], it was shown that K

as depicted in Fig. [f.4] and Fig. [1.3] Following the proof of Thm. [£.7 the regular uniform

well-covering of K, _ and R, __ consists of three types of objects: For ease of notation

75
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we replace e(w) with € in this application since both the Koch snowflake and the Rohde

snowflake are fully homogeneous.

(A) Fringed rectangles (fR) (1 — 2p)p*~! x e with fractal top of height p#~1 22— 4’2)_1.

(B) Short rectangles (sR) p* x e with a fractal top of height p* 7“172%1.

(C) Long rectangles (IR) (pk + 67%) x € and a fractal top of height p¥ 7\/412"771.

(1—2p)pFt

Figure 4.5: Systematic construction of the foliation of sets near
the boundary of the p-snowflake of Rohde type in the case of a
“fringed rectangle (fR)” (see Sec. [1.3.](A)). The well-foliated do-
main is the dotted rectangle (the set E) and the section of the
snowflake above it. The gray areas within the snowflake indicate
areas of constant 3(vy,t). One notices that in the particular case of
p = 1/3, a connection between the ternary expansion of v(0) € R
and the shape of the curve (and in particular its number of turns)
is evident.

We now obtain numeric values for the estimates from Thm. [4.15; By the iteration
dynamics, R, _ is covered by (4% — 1) instances of fR and 3(4* + 2) copies of sR or

IR. In total this amounts to a cover of cardinality #1. = %(2 4k 1 1) < C(Rp)e~® with

6
C(Rp,) = 3 (\}%) . Analogously one can chose C(K,) = 3C(R,). For the classical
Koch snowflake K := K3, the cardinality of the cover is 2 - 4k — 2 < C(K)e™® with
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C(K) = 1. By construction r = €(w) for any finite word w, so that ¢& = 1. The

length L of a fibre satisfies e = r < L < r + Zﬁopﬂk*l@ < (1 + %) €

implying ¢; > 1 and c <1+ %. From our previous estimate on Zg we infer
Z>landcf <1+ W}lw The diameters of the covering domains |(A){(C)|above

2
are found to be bounded from above by \/[(1 — 2p)pF-1)2 + (e—i—pk_li”%%l) so that

2
cdiam S \/ p4 (1 — m) . MOreOVer, cdiam Z 1.

To |(i)| and By minimising A\YY (Ejr)e? as a function of € € Jlgp) we obtain cg(R,) =

min (1, %) 72, Using the above constants we compute C; (R,_,) as given in

Cor. so that AY(Df) > € 2C1(R,_,). See Fig. 4.6(a)| for a plot of C1(R,_,). In
Ci(R(p)-¢) Mr o)
0.5

107

0.3
108

0.1

10°

0.25 0.28 0.31 0.34 g(\/s_-p1) 0.25 0.28 0.31 0.34 ;-(«/E—p1)

Figure 4.6(a) Values of C1(R,_,) for values Figure 4.6(b) Values of My, for values for
-

for p € (3, V3= ’~1) as in Cor. E The values pe (5, ‘f 1) as given by Thm. [4.1

approach 0 as p @

particular in the case of the classical Koch snowflake one finds AYY (D) > 0,0031¢~2 for any
element of a cover of K_, as given by above.

Based on the above considerations, one now obtains expressions for Mg, as well as
coefficients following Rem. As expected, the coefficients Mg, diverge as p / @
and remain regular as p \, 1/4, see Fig. 4.6(b)!

In the case of the classical Koch snowflake K, a different better estimate is possible
based on an estimate of the area of the inner e-parallel neighbourhood of K by Lapidus

and Pearse in [67]:

e (s B0, 349) 5]

7



4.4. Constants
where § = logg4 = dimp/ (0K, K) and {z} is the fractional part of x := —logs(ev/3).
Therefore,

- 1
Ms(0K, K) < 1 (723x/§ + 207r) .

Moreover, the monotonicity of the above upper bound shows that ¢ < 0 in our estimate
and hence My < 11.61. Based on this, C5(K) ~ 1354 and S§(t) < 104282%/2. Computing
My we finally obtain an asymptotic upper bound for the remainder term of the Neumann

counting function of the Koch snowflake of
Ny (K, t) — C voly(K)t < 104325.5 9/,
Alternatively, an absolute upper bound can be found following Rem.
Ny (K, t) — CPvol(K)t < ¢ (3.537 -10849/2 — 353 — 911\/Z> . (4.2)

Since € < 1/9 is more than sufficient to satisfy Def. this holds true for all ¢ > 0.1.
Some limited computational results on the Neumann (or Dirichlet) spectrum of the Koch
Snowflake can be found in 81} [104]. A few estimations in the above application were delib-
erately chosen sub-optimally for the benefit of the presentation so that some improvements

in these constants are expected to be possible.

4.4 Constants

The following constants are used within this document. Let © be well-covered by {Df }ier,

with corresponding cg as in Def. and Ef, 7, L, Tf ;, 55 ; to each Df in the cover

R R inf,3

and indexed accordingly. Based on the conditions in Cor. we define ¢ cf, c% via

)

rie b€ e, ¢t Lie ! €leg,cf], Bi€

7 TOT

le [c},c}r].
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M and Ag are defined in Prop. and Prop. [2.43] respectively and 74 is as in the proof
of Thm. [4.15

(47.[.)—71/2
1+ %)

2
- 1 C+CEC7—1_
C1(2) := D2 5 .
1(2) ce(c)) |: ez (\/CT inf; . Binf(Eie) + inf; ¢ /Blnf(Df))
C2(€?) := min {01(9), % (\/ﬁﬂ/“r)z}

é
) = () + 12 10D

5/2 (n—1
+1 C +1 2
o= (&) P ()

C’g,t) =

-1
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Chapter 5

Renewal theory and fractal sprays

In this chapter we combine renewal theoretic results with the above to study Dirichlet
counting functions on fractal sprays. We first discuss necessary background of graph direc-
ted systems and cite a result by Kombrink on asymptotic expansions of renewal functions
in Thm. In Sec. we apply the results on snowflakes from the previous chapter to
a setting of fractal sprays whose gaps have fractal boundary and compare the asymptotic
expansion of the spectral counting function to the one of the volume of the inner e-parallel

neighbourhood. Section is largely based on [61] by Kombrink and the author.

5.1 Graph directed systems

In this section the basic notion of a graph directed system (GDS) is defined, following
the approach in [74]. Let (V,X,4,t) be a directed multi-graph with vertex set V' and an
alphabet Y as the set of edges. Let i,t : 3 — V be the initial and terminal map on X
indicating start and end point of an edge such that ¥ > e : i(e) — t(e). Now to each
v € V a compact complete metric space X, is assigned and to each edge e a bijective
contraction ¢, : Xy) — Xj(e) with Lipschitz constant L. is assigned. This amounts to a

graph directed system (sometimes also called graph directed scheme) in the following way.

Definition 5.1. Let V be a finite set and X be at most countable. Then a graph directed

system (GDS) ({Xy}vev, {@e}ecr) consists of a family of compact subsets X, € R” for

81
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each vertex v € V and Lipschitz continuous maps ¢ : Xy) — Xj() along each edge

E > e = (i(e), t(e)) such that sup,cy, Le < 1, where L. is the Lipschitz constant of the

map Qe.

Therefore this definition is contravariant in that the maps in the GDS point backwards
compared to the edge in the directed graph. The incidence matrix A of a GDS is then

defined analogously to the composition rule in the construction of well-foliated domains in

Sec. B2 via

A Y xY > {0’ 1} via A(u, ’U) _ 1 if t(u) = Z(U)

0 else

For any word w = wjwaws--- the (left) shift map is defined via ow := wows--- and
W 1= Wiwaws -+ + Wy,
Following the definition of the incidence matrix of a GDS, two maps ¢, ¢, for u,v € 3

can be composed as ¢y, = @y, iff uv € Ei:

directed graph i(u) —— t(u) i(v) —— t(v)
Pu Pv
GDS Kitw < Xy Kiw) < Xiw)

Puv

This explains how the composition of words is related to the composition of maps. For
W = Wiws - - Wy, € ZE‘“, the map ¢,, is given by ¢y = Pw, Gus, - - - Wy, as defined before.

For any £ : 3% — C the n-th Birkhoff sum is defined as

n—1 k .
o oo ifn>1
S =
0 ifn=0

For any word w with lenw > n the subword of length n is denoted by w|,, := wiws - - - wy,.



Chapter 5. Renewal theory and fractal sprays 83

Any word w € X' gives rise to a cylinder of length n defined by [w] := {3: € XY st x|p, =
w}.

Let ({Xy}oev, {@e}ecr) be a GDS as in Def. and X% > w. Then the sequence
(wln)nen gives rise to a sequence of contractions with the common codomain Xj(, )
and Lipschitz constant < (sup;cy Lw,)" bounded away from 1. Therefore the sequence
(qﬁw‘n (Xt(wn)))nGN of compact subsets of Xj(,,) is nested and, by Cantor’s Intersection

and the following intersection is non-empty:

() bl Kiw,)) # 0.

Analogously to the case of an IFS the diameter of this intersection has an arbitrarily small

upper bound given by

diamﬂ ¢w\n(Xt(wn)) < lirrln(sup L))" diam(Xt(wn)) =0,

so that this intersection contains exactly one point, [, ¢, (Xi(w,)) = {x}. This point
is defined as the projection (also called coding map) 7 from the word w to a subset of Xi(wr)
and by the above considerations this gives rise to the limit set of a GDS ({ Xy }vev, {Pe feex),

defined as
J(F) :=m(XF).

Definition 5.2. Let A be the incidence matrix of some GDS. Then A is called

(1). finitely irreducible if there is a finite subset A C Zgn such that for any two edges i, j

there is a path w € A such that wj is an admissible word.

ii). finitely primitive if there is a p € N and a finite subset A C X, such that for any two
A

edges 1, j there is a word w € A such that w7 is admissible.

A GDS is called conformal if all maps are conformal and additionally all X, = int X,
satisfy the cone condition in Def. and the open set condition (see Thm. [2.36]) is satisfied.
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In this case the limit set is called self-conformal.

Theorem 5.3 (Moran-Hutchinson formula for limits sets of GDS, [45] [74] [78]). Let J
be the limit set of a conformal GDS in the same notation as above with finitely primitive

incidence matriz and let §(y) := log |¢}, moy|. Then the Hausdorff dimension of J is

1

dimg J = inf {t eR: P(t&) == 1i_>m —log g sup |¢-]" < 0}
n—oo n

lenw:nTe[w]

5.1.1 Motivation for renewal theory

We motivate the general idea behind a Laplacian off a fractal by the Sierpinski Gasket

(See Fig. p.1].

Definition 5.4. Let G C R™ be any compact set. Then its bounded complement GP° is

defined as the union of all bounded connected components of the complement.

Figure 5.1: (Left): The Sierpiriski gasket S with dimy, (Sg) =
log, 3. The bounded complement is filled with black. (Right):
The Sierpiniski carpet S¢ with dimps(S¢) = logs 8. The bounded
complement is filled with black. The base triangle is labeled with
T.

Let S¢ be the Sierpiriski gasket: Let V' be a singleton and ¥ = {1, 2, 3} with ¢; given by
affine maps of the form @ — Lz + ¢; for fixed ¢; = (0,0), g2 = (1/2,V/3/2) and g3 = (1,0).

Let Q := S as the prototypical example. Then

Q=Tu| |9,
IEX
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where T is the largest inner equilateral triangle (also called gap). Iterating this yields

Q=Tu || ¢ |TU|] ¢ =TU| |6:TU | | ¢u®

11EX 12€X ) weX2

M
| | ( | ] (;sz) U || éu2 VMeN (5.1)
n=0 \weXn

werM+1

(Iﬁ L L %M)u(ﬁ ] %T)

n=0ueX” wexm n=0 wexn"

=Qfin :=QQrest (52)

U |_| bt VYM,m eN.

werM+m+1

Since any Dirichlet eigenvalue is positive, VA9 > 03My € N such that VM > My, VA <
Ao with Np (l_leEM gwa,)\) = 0. This implies that the counting function of Dirichlet
eigenvalues of the Laplace operator on £, Np (2, \) (resp. Ny (€, \) satisfies the following

renewal equation:

Np(2,0) =Y > Np(¢uT, )

neENg wexn
=3 3 N (T (60)°A) = 3 8" Np (1,47 (5.3)
neNg weX” n€Np
since |¢L| = 1/2 for any e € X. Eigenvalues of the occurring gaps in this example were

extensively studied in [77]. Such relations are studied in Renewal Theory. The above

argument immediately generalises to the following result.

Proposition 5.5 (Renewal Equation). Let t : ¥ — R be such that for any w € X%

N}gnoo Z Spt(w) = oo.

yeXF:oMy=w

Let ¢ : X — Ryg and g : X x R — R be arbitrary. Let N : X% x R — R be such that
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there is a t with supp (t — N(w,t)) C [t,00) for all w € X% and suppose N satisfies

N(w,t) = g(w,t) + Z ceN(z,t —t).

oo . —
€L ior=w

Then there are §,n : X§ — R such that

Nw )= > gly.t— Suf(y))e "W).

n=0yeXy:0"y=w
This last expression is addressed in Renewal Theory.

Prop. can be used to translate (5.3)) to a renewal equation with N(t) := Np(€Q,e’)
and g(t) := Np(T,e'):

NE) =Y gt —Seé)),
n>0yexy
where £(y) = —2log (;S;ﬂ Based in particular on works by Kessebohmer-Kombrink,
Mauldin-Urbariksi, Pollicott [60} [74], 84, [85] there are upper bounds for spectral count-
ing functions on the bounded complement of limit sets of GDS with finitely primitive

incidence matrix whenever there are such bounds for the spectral counting functions of the

gaps.

5.1.2 Renewal theoretical asymptotic behaviour of spectral counting

functions

Write Lipy (357, R) for the space (equipped with the metric || f{|oo +sup,en supyesn {|.f (%) —
f(y)] s.t. x,y € [w]}0~™) of bounded Lipschitz continuous maps with respect to the metric
do(x,y) = gmaxFENzl=ylr) jp ¥°°. For any continuous (with respect to dg) map f : X% —
R with ) s P} < 1 we define the Ruelle-Perron-Frobenius Operator (also called

transfer operator) as

Ly :Lipg(SF,R) = Lipg(SF,R)  via  Lp(g)(x):= > e/Wy(y).
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Let fr : R — R for each € X% and suppose £ € Lipy(X%,R) is a-lattice, i. e.
3¢, h € Lipg(X%,R) such that {(y) = & (y) + h(oy) — h(y) with lattice constant given
by a:=sup{a’ >0:¢(Z) C d’Z} > 0. For any 3 € [0, ) the two-sided Fourier-Laplace

transformation shifted by h is defined as

fep(2) =Y e fulal + B — h(x))

LeZ

The maximal strip of absolute convergence of this series is denoted by

abs-conv(f,) :={z € C|fw(z) converges absolutely V5 € [0,a)}
(5.4)
— {Z c (C’Sfam_ S §R( ) < Sfaca

abs-conv abs- conv}

f:rv:t

hecony Of this strip can be infinite. From the definition it follows

Of course the boundaries s
that fw is holomorphic on abs-conv(f,) for all 5. Finally let f;glem be the maximal
meromorphic extension of J?»TB and denote its domain by abs-conv™®°(f,). Since ¢ is

a-lattice 3¢ ~ € such that Vy € X 3n, € Z : £'(y) = nya so that

Sn€(y) = Sn€'(y) + Sn (Ao (y) Z Ngkya+h(z) — h(y).
\ﬂ,_/
car
Let 8 € [0, a),

=Y ) ft—Sa) (5.5)

neNyel P o"y=x

and let z € abs-conv(Ny) N ﬂyer abs-conv( f,). Moreover we request ||£.¢|op < 1. Then

by the definition of the two-sided Fourier-Laplace transformation

=Y e N fylal+ B — h(z) — Spé(y))

LEZ nENg oy=x

=S Y S (al + B () — S.E())

n€Ng oY=z LeZ
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= Z Z eSnfl(y)z ZeaZny(aZ_i_ /3 _ h(y))

neNo o"y=x ez
Sné&’ >
= Z Z e £(y)2fyﬂ(z)
neNg oc"y=x

= Z Z Z Z 626’(0"’1?;)...eZE’(Gy)EZE’(y)ﬁﬁ(Z)

’HEN() Uy(n_l):x o'y(l):y(2) a-y:y(l)

- Z Z Z Z ezgl(y("_l))...gé’(y“))ezé’(y)ﬁﬁ(z)

HENO o'y(nfl):gj o'y(l):y<2) o'y:y(l)

= Z Z o2 WD) Z 7 (M) Z ezfl(y)j’;ﬁ(z)

neNp o-y("*l):,z’ o'y(l):y(2) o-y:y(l)

~~

=L,¢/ <w»—>]/‘;ﬁ (z))

=£Z£/ (ﬁzgl (w»—)ﬁﬁ(z)>>

=7, (wFup(2))

= Z Ll (w = ﬁﬁ(@)

n€eNg

— (id —,ngl)_l (w — Eﬁ(z)>

This motivates the analysis of the so-called dynamical (-function given by ( : z —
(id —Ezgf)fl and, in particular, conditions on z for which £, has 1 in its spectrum.
This approach relies on perturbation theory of linear operators as presented by Kato in
[53]. Based on spectral results on the transfer operator by Pollicott and Ruelle in [84] 85]
and [94, Chap. 5|, a result by Kato in [53, Chap. VII §1.3| shows that for an eigenvalue
A, of L;¢ the map w +— \.4, consists of branches of one or several (if multiplicity of
the eigenvalue at z is m, > 1) analytical functions with at most algebraic singularities at
w = 0. For a non-branching eigenvalue A, we observe that w + A,y is holomorphic in
a neighbourhood of 0 and either constant or # A, in a small neighbourhood of 0 since it
would otherwise be non-constant with A, as accumulation point. In the latter case, an
eigenvalue A, is called strongly regular. For a transfer operator with a strongly regular
eigenvalue 1, Kessebohmer-Kombrink (cf. [60]) showed the following asymptotic estimate

for renewal functions based on earlier works by Lalley in [64]. A simplified version of the
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proof can be found in Thm.

Theorem 5.6 (Renewal Theorem, [59]). For any GDS with vertex set V, edge set ¥ and

incidence matrix A, define
Z:={zeC:1€0(Ly)}

Put st := sgf)’sionv as in (5.4) and assume sT < § < t* with t* = sup{t € R :
Y oees Sl < oo}, Let A be finitely irreducible and suppose that 1 is a strongly reg-
ular eigenvalue for all z € Z. Let Ny and f, be related as in (5.5) with & being a-lattice
with corresponding &' (y) € aZ for all y € Eﬁ such that for any small enough € > 0 the

estimate

> It = Susw)l € o (e779)

neNg c"y=x

holds true for all t € R small enough. Let 6y be such that (id —Ezg)_l is meromorphic in
{z € C: R(z) < do}. Then for any € > 0 the sets

Z(e):={2€ Z:R(2) < —¢,3(2) € [-7/a,m,a)},

z € abs-conv™°(f;) : z is a pole of fw?er

and 3(z) € [-m/a,m/a)} NCcsy—e}

Py ple) =

)

are finite and there exist functions Ay g(s,£), By g(s,¢) of polynomial growth in € such that

Na(al + B) = Yo e A p(z,0)

2€Z(€)\Pg,p(€)

+ Z e~z p ,5 z,0) +0< —af(min(é,sﬂ—e)) .
2€P, [3( )

Remark 5.7.  (i). Most renewal theorems contain a similar result for when ¢ is non-lattice.

However it may occur that the error terms grow faster in such cases.

(ii). The set Z of points at which the dynamical ¢-function is singular is a natural gener-
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alisation of the set of complex dimensions introduced by Lapidus-Frankenhuijsen in
[70].
Remark 5.8.

(i)-

The error term given by Thm. follows from the necessary convergence of a power
series. The domain of absolute convergence of this sum depends on the asymptotic
properties of f,. Whenever the two-sided Fourier-Laplace transform of f, has a

global meromorphic extension, the error term vanishes.

. This proof is constructive in the sense that the sequences of coefficients A, 3(z,¢) and

By (z,£) can be explicitly computed. This is particularly easy if the set of common
poles is empty since then the more involved effect of poles on poles is non-existent:
Suppose there are no z € C such that £.¢ has an eigenvalue 1 and f;glem has a pole

at z.

(a) Let z be a pole of f;glem(z) and let 5’5 5(2) be the corresponding residues as in

the proof of Thm. Then the coefficients Cgﬁ, ﬁ(z) are given by
. -1/
CF 5(2) = (id —Lagr) (0&75(2)) ()

Whenever f, does not depend on z, this can be solved trivially. In the notation
of (5.6)), this is the case if Y, is independent of v or more generally if all Y,, are

isospectral.

(b) Let now z € Z(e). Let 7, be the strongly regular eigenvalue of Ly such
that v, = 1 and denote the multiplicity of this eigenvalue with m,, = m, as
before. Suppose that fwmero is non-singular at z. Since 7, is strongly regular,
w — (id —Ewg)fl is defined on a neighbourhood of z. Following the argument
of Ch.I §5.1 in [53] and [59] one shows that the simple pole of the dynamical

¢-function corresponding to the simple eigenvalue 1 of L. at z = 0 has a
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coefficient of

——~1mero

fZN f—,@ (6>d1/6§'
1 §) = A

In the simple case where f, = f is independent of z € ¥, A = 1 and € is

constant on cylinders of length 1 this simplifies to

-~ mero

1 —a fmﬁ (5)
Dac, (5) - Zeez 5655'

In the case of common poles these two effects are combined. This is notationally

cumbersome but does not involve any other effects.

5.1.3 Spectral counting functions on complements of limit sets of GDS

This section focuses on applications of the general results above to counting problems on
complements of limits sets as motivated in Sec[5.1.1] The general aim is to find asymptotic
expansions for the counting function Np(£,t) where Q = J" is the bounded complement
of the limit set J of a GDS.

Let V, X and A be given for some GDS ({Y,},{¢c}). Then the bounded complement

of some limit set is given by

Q::|_|Yv

veV

for gaps given defined as Y, := X,\J. These gaps satisfy

Yy, = Xo\ U ¢eXie | U U oeYie | - (5.6)

e€Xii(e)=v eeX:i(e)=v

=Qy =Y

It is clear from this expression that certain separation conditions can be used in order to
achieve stronger results about the spectrum of gaps; see Fig. Namely, if the images of

the gaps under ¢, intersect, the counting function of their union is not related to the sum
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Figure 5.2: A GDS where images of contractions share boundary
visualised by the first two iterations of the contractions. The “inner
boundaries” are drawn dashed. The limit set of the left component
is a Cantor dust. There are no self-replicating components in this
case.

of counting functions of @Y} anymore. Moreover, if €, and ®) intersect, their union
will contain connected components that are not images under ¢, of another domain Y.
Since spectral counting functions are in general not well-behaved under union of domains,
such intersections can cause non-trivial behaviour. A GDS is called separating if the family
of images ((be(Xt(e)))eGE and (QU, CPUY) are almost disjoint (i.e. disjoint up to finitely many
points) for any v € V. If a GDS is not separating, the gaps are not self-replicating under
the action of the contractions. In these cases, the spectral properties of the gaps can only

be estimated using more general concepts. Let R®(\) be defined as

RY(t) == Np(Yy,t) = Np(Qu,t) — Y Np(¢eYie) t).
e€Xi(e)=v
Prop. implies that R® > 0. In other words, RT accounts for the eigenfunctions that
vanish on the boundary but not on “inner boundaries”. Clearly R® vanishes identically if
the unions in (5.6) are disjoint or if the GDS is separating and R® () vanishes for small

enough ¢. The counting function of each gap Y, then satisfies

Np(Yy, A) = Np(Qu, )+ Ry(N) + Y. Np(¢eYiey M- (5.7)
e€X:i(e)=v

Therefore Rg’ as above has a strong influence on the asymptotics. The asymptotic beha-

viour of R® can be bounded with Cor.[2.25t Indeed Thm. shows that R®(t) = O(t%/2),
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where

Sy 1= max dim 9y, dim 99, dimp0¢eYyey, dimpd | ) deYie (5.8)
e:le)=v i(e):y

if all Yy, Q,, ®) are well-covered and all ¢, have the E-property.

5.2 Fractal sprays generated by the Koch snowflake

The goal of this section is to show directly how further asymptotic terms may arise from
specific function systems with a lattice property as already shown in Thm.[5.6] This section

is based on [62] by Kombrink and the author.

Our class of examples is based on the construction shown in Fig. [5.3(a) (see also

Fig. . More precisely, we consider the iterated function system (IFS) & := &(0,0) :=

Figure 5.3(a) Depiction of the IFS of the Figure 5.3(b) Depiction of the variant (1, 0)
fractal spray studied in Sec. and Sec. of the IF'S of the fractal spray studied in Sec.
The base length b of the snowflake K is also and Sec. In this case, the map ¢1 was re-
shown. placed by the six maps ¢1,1,. .., ¢1,6 giving rise

to an additional connected component of the
generator G = Ko U Ki. Analogously one can
replace ¢7, ..., ¢12.
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L I
@ * :*':. .:.m

Figure 5.4: Example of the iterative construction of 2 as defined
in (5.10). From left to right the 0", first and second iterations
of the generator K under ® are shown, rotated by 30°. The O
iteration (left) shows K. The first iteration (middle) shows K U
®(K) . The second iteration (right) then shows K U®(K)UP?(K).

{¢1,...,¢12} defined on R? given by the maps

%5”%3 if i € {1,...,6}
sin[(¢ — 1)7/3]

cos[m/6 + (i — T)m /3]
L= Roys(e) + 3 ifie{7,...,12}
sin[7/6 + (i — 7)7/3]

where R/ is a rotation by 7/6 about the origin. Define the action of ® on subsets of
R? by ®A := J;oy, A with ¢ € {1,...,12} =: . Further, let F denote the unique
non-empty compact invariant set associated to the IFS, i.e. the set satisfying F' = ®F :=
Uies ¢iF. Note that F' is contained in the disk around the origin of radius V3, with
(_(\)/g) and (\/Og) belonging to F'. As all ¢; are similarities, F' is a self-similar set. From the
definition of the maps it is evident that ® consists of six contractions with contraction ratios
r1,...,76 = 1/3 = (exp(—a))? and six contractions with contraction ratios r7,...,712 =
V3/9 = (exp(—a))?, where a := log3/2 is known as the lattice constant. Note that by

construction, R? \ F has got a unique unbounded connected component, which we denote

by U. Further, we let O := R?\ U. Then O is open and satisfies ;O C O for i € ¥ and



Chapter 5. Renewal theory and fractal sprays

;0 N ¢;0 = for i # j € . This implies that the open set condition (OSC) is satisfied
and that O is a feasible open set for the OSC. Fig. shows the images of O under the

maps d)l) .. '7¢12~

For m € Nand w = (w1, ...,wp) € X™, let ¢y, := ¢, 00 ¢y, and
m m
Ty = exp(—ay,) = Hri with v, = Z Ve, € N. (5.9)
i=1 i=1

We define K := O\ ®0, and note that K is the interior of a Koch snowflake with base
length b = 1, see Fig. [5.3(a)l A central object of our studies is

Q= L_Jocbm(K) =Kul]J | ¢u(K) (5.10)

m=1weXm

which is a countable union of disjoint open sets ¢, (K) and can be viewed as a fractal
spray with generator K. Here, ®°(K) is understood to be K. The first three iterations of
the construction of € in (5.10) are shown in Fig. [5.4

We will moreover study the sets Q(k1, k2) which result from modifications of the above
construction as explained below. For (k1,ks) € {0,...,6}2, we replace each of ¢1,..., ¢,
with six maps of contraction ratio 1/9 and each ¢r, ..., ¢k, +¢ With six maps with contrac-
tion ratio 1/(9v/3). The replacement of ¢; with six maps ¢; 1, ..., ¢;¢ is done in such a way
that JS_, ¢ixO0 C $;0, that ¢; ,ONG; ;O = 0 for all k # j, and that dp;0 C dUs_, ¢; 4O.
See Fig. for an example of the replacement procedure. The corresponding IF'S con-
sisting of 12 + 5(k1 + k2) maps will be denoted by ®(kq, k2) and the associated alphabet
by L(ki,k2). The generator O \ ®(ki, k2)(O), that we denote by G in this setting, has
1 + k1 + k2 connected components. The fractal spray (J;o_, " (k1, k2)(G) generated by
G will be denoted by Q(ki,k2). We write k1 = 0 when no replacement is intended for
é1,...,0¢ (and correspondingly ko = 0) so that £(0,0) := Q.

95
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5.2.1 Results for counting functions on the Koch snowflake

In the next section, Sec. we prove asymptotic expansions for Np(Q(kq, ke),t) with
Q(k1, ko) as introduced above in Thm. To this end an estimate for the spectral
counting function of the gaps (given for example by K in Fig.[5.3(a){and by Ky and K in
Fig.[5.3(b)) is necessary. We make use of our previous result in Sec. to give numerical
upper and lower bounds in Cor. [5.9] This result is also included in [61] by Kombrink and

the author.

Corollary 5.9 (cf. [61]). Let K be a Koch snowflake of base length 1 as defined in
Fug. and dimy; OK = § =logg4. Then

C_X/2 < Ny(K, ) — %VOIQ(K))\ < O N2,
7'['

for all X > 0.1 with C_ := —1481 and C, := 281.5-103.

5.3 Asymptotic behaviour of spectral counting functions

Let Q(k1, k2) be the limit set described in Fig. [5.3(a)}f5.3(b)]and Sec. 5.2 with corresponding
generator K C R? being a Koch snowflake with base length 1. As above, let § = log4/log 3

denote the Minkowski dimension of the boundary of K.

Theorem 5.10. There is an asymptotic expansion of Np(Q(k1, k2),el) of the form

1 —
Np(Q(ky1, ko), ") = 1 Vol (Q(kn, k))et— 3 Hyg(z)e ksl 40 (et(6/2+7)>
2€2¢,

R(z)<—0/2

ast — oo for any v > 0. The absolute values ofﬁ;(/t)(z) are bounded from above according
to Tab. . Here, B(t) := 2a{s=}, with {x} denoting the fractional part of x, and Z¢ :=
{zeC : Yxr =1, S(2) € [0,2)}.

Proof. We first consider Q := Q(0,0). We define N(¢) := Np(Q,e!) and g(t) := Np(K,e!) =

L voly(K)et + M(t)et/? for an M € O(1) as shown in Cor. . By in Sec.
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and (5.10), N(t) satisfies

Nt)=>" Y Np(¢uK, e

k>0 wexk

= Z Z g(t —2logry, —2logry, -+ — 2logry, ).
k>0 wexk

Let ¢y € Z be maximal such that N(2afy) = 0. Then for every 5 € [0,2a) we define its
two-sided Fourier-Laplace transform N, 5(z) for R(z) < —1 and rewrite this to isolate the
poles of its maximal meromorphic extension. We make use of the fact that {—2logr; :
i € ¥} C 2aZ which follows from , so that for any w € ¥ there is a v, € Z with

—2logr, = 2av,, and perform an index shift £ — ¢ + Zle v; = ‘.

~

Ng(z) == ZGQGEZN(QCLE—F B) = Z Z 262“&9(2%—1— B —2logry, - - — 2logry,)

LETL k>0 weXk LeZ
_ Z Z ez(72logrwlf---72logrwk) Z GQaZZg(Q(ZZ—F /8)
k>0 wexk ZEZ
_ 1
— Z Z Tw 2z Z 62(%2@ VOIQ(K)€2CL5+B + Z 62aZzM(2a€ + 5)6(2a£+ﬁ)6/2
k>0 weXk >4 >4y
_ 1 ﬁ voly (K)ePe?atolz+1) My(2)
R 1 — e2a(=+1) g
~—_—— —

=P(2) =Hpg(2)

for some complex function Mg bounded in C_s5/5 := {2z € C: R(2) < —6/2} by

MyeeH?

2alz (2a+5)5/2 R
0< |Mg(2) < | e M(2al + B)e S T cater5/9)

> )
>4

where ]\7;( := max(C_, C}) is taken from Cor. Therefore, N 3 can be meromorphically

extended to C_s/5. Let

2= {ZG(C PY =1, S(2) € [O,Z)}

1€
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Then, since all poles in Z¢ are simple and —1 ¢ Z¢,

—2aHg(z) Res, P L voly(K)eP 1
> PN @al+8) - Y a4 B(j)(s_eiz [ 3z vola( )e2 L
€20 2€ZcNC_g/9 1= et 1= ies i I —e
=Y et [ N@at+ g+ ) —2aHp(z) et 1 %e%@rﬁ
£>0 2€2cNC_g/9 > iex 2log(ri)ri dm 1= eni
—. Z eZaES Y,
£>0

is holomorphic in C_s/5. As a power series has a singularity on its radius of convergence,
and the above series expansion is holomorphic in C_s/5 we deduce that Y € 0(62“(5/ 2+7))

for any v > 0 as £ — oo. Thus, for any v > 0

—2aH,
N(2a€ i 6) _ i VOIZ(K) 62a€+ﬁ _ Z Z a 5(2) 672a€z + O(ea€(5+2'y))

’ _ 2 Ny —22
dr 1= i e iex 2log(r;)r;

as { — oo. Notice that % = volp(K) Y e Tw? = vola(Q) as expected. Writing
1€X T

t = 2a| 4| + B(t) with B(t) = 2a{s:}, this implies an asymptotic expansion of N(t) given
by

N(t) = ivolg(Q)et — Z %(z)e—zaﬁiz + o(e!0/24), (5.11)

 4rm
ZGZcﬂ(C,(;/Q

L *QGHB(t)(Z)
T Yiex 2log(ry)ri T2

pansion in (5.11) already contains all terms corresponding to a growth rate et?’ with

with Hy (=)

Since t + Hg)(2) is bounded, the asymptotic ex-

2 e (6/2,1).

This estimation remains correct in the case of (k1, k2) # (0,0) after adapting C1 from
Cor. By in Sec. , Np(a,t) = Np(Q,a?t) < Cy vola(aQ)t + Ca’t%/2. So we
obtain an expression for an upper bound of the remainder term corresponding to Q(ky, k2)
if we replace Cy with Cy 49 %k Cy + (9v/3) —0kyCy. In Tab. we provide approximates
of the exponents and bounds on the coefficients corresponding to z € Zc N (—1,—46/2) for

three different allocations of (ki, k2) € {0,...,6}2 exhibiting different arrangements of the
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relevant poles. O
(k1. k2) | z € Z¢ with R(z) < —2 mod 2XZ | Upper bound of ‘ﬁ;(/t)(z)’

(0,0) | —0.952455 1.68-10°

(0,6) | —0.928326, 1.81- 106,
—0.71134 £+ 2.58082: 2.45 - 10°

(6,6) | —0.888243, 1.68 - 106,
—0.839089 £ 1.346713, 3.46 - 107,
—0.666227 £ 2.8596¢ 2.92-10°

Table 5.1: Upper bounds for coefficients of the asymptotic ex-
pansion at the relevant poles.

Remark 5.11. A critical problem occurs in the asymptotic expansion in the following sense:

Suppose Np(Q,t) = (2m)"V,,t™? 4+ M(log t)t%/? + A(log t)t%/? with some bounded M and

et ﬁ if Im e Ny : [t/a] =2™

0 else

so that A(logt) € o(1) and g(t) = (27)"Vne!™? + M(t)e!%/? + A(t)e!®/2. Then this third

term in g(t) leads to the following term in the two-sided Fourier-Laplace transform gg(2):

(ea(z+6/2))2m

om
meENy

If this had a meromorphic extension beyond R(2) < —d/2, so would gjs(z). But gj(2)

contains a series of the form

3 (ea<z+a/z>>2m

meENy
which diverges whenever e**19/2) is a root of unity of any power of 2. In other words,
whenever z = —% + 2;;? for some p € Z and ¢ € N. However, this set lies dense in

—g + R C C. This shows that further information about the behaviour of the remainder-
term of Np(€,t) is necessary in order to ensure existence of a meromorphic extension of

gs(z) that has a pole at —0/2.

99



100 5.4. Asymptotic behaviour of e-parallel volumes

5.4 Asymptotic behaviour of e-parallel volumes

In this section, we will derive an asymptotic expansion of € — vols (Q2(ky, k2)—.) for the

sets Q(k1, ko) with (k1,ks) € {0,...,6}? that we defined in Sec.

Theorem 5.12. Let Q(ki,k2) be as in Sec. [5.4  Then for all 8 € [0,a) we have an

asymptotic expansion of voly (Q(kl, kQ)_e—(af+5)) as £ — oo of the following form.

1 4 —a lo
voly (Qk1, k2)_o-ers) = Qa(2)e > + Q5 (2 - 1023) 2 153)
o

+ Z e~ Qp(2) + o(e™),

2EZp

as L — oo for any v > 0, with coefficients Qg given in (5.16)-(5.18)) and evaluated in
Tab. | Here, Zp:={2€C : Y, .5ri " =1, 3(z) € [0,2)}.

(k1, k2) Values of Q3(2) Values of Qs(2 — %4
001 | =5 o (&) o (2] | 2 (8) o (%)
00 | <2 [o() +r ()] () o
(6,6) |~ [0 (2) +v(52)] PO u(2) +i (22

Table 5.2: Exact values of the coeflicients of the asymptotic ex-

pansion of the Lebesgue measure of an inner e-parallel neighbour-
hood of Q(kq, k2).

A key part of the proof of Thm. relies on precise knowledge of the inner e-parallel
volume of the generator G := O\ ®(k1, k2)O for all € > 0. As G is a disjoint union of Koch
snowflakes of different sizes, a key step in the proof is to determine the inner e-parallel

volume of the Koch snowflake of base length 1 in the next lemma.

Lemma 5.13. Let K denote the filled-in Koch snowflake with base-length 1. The map
€ — vola(K_.), defined on the positive reals, which maps € to the area of the inner €

neighbourhood K_. := {x € K : dist(x,0K) < €}, is continuous and can be evaluated as
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follows.
73*‘63+m+662arcsin(é)—7r62 :§<e§%
vola(K_¢) = %+W62+12~v012(K,€ﬂF) rg<e< @ (5.12)
u o afe)e2 1084/ 1083 1y o o(e)e? re< ¢ and afe) < 3
o afe)e?1og4/ 1083 4y 6 o(e)e? re < % and a(e) > 1.

\

Here, {t} :=t — [t]| denotes the fractional part of a real number t, a(e) := {—%ggg}, T s

the equilateral filled-in triangle shown in Fig. and defined in the proof of this lemma.

Further, u,u,v: [0,1) = R are given by

o\ |21v3 3 [ . 1
u(t) = (4) . [40 + Z . 3 - Z + 81 - VOIQ(K_g—t—2 N F)
N 1\' [3 o (3t T
1 5 arcsin 5 Gl

_ N [2v3
u(t) = <4> . \5[ + 27 - VOlQ(K_gftfl N F) + 81 - VO]Q(K_37t72 N F)
u(t) == —g — 324 9" voly(K_g-e2NT).

X0

Remark 5.14. Note that for ¢ < 1/9 the area of the inner e¢ neighbourhood vola(K_) of
the filled-in Koch snowflake K was determined in [67], where uo a(e), woa(e) and v o a(e)
are expressed as infinite complex series. With Lem. [5.13] we provide a more geometric

representation of vole(K_.) and an alternative and simpler proof of its scaling behaviour.

Proof of Lem.[5.13 Let F be the Koch curve that is generated by the four contractions
;i R?2 — R? for i € {1,...,4} given by

1
D1(@) = 50, Ua(e) = 3Reysle) + 3 <O>
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Figure 5.5(a) Visualisation of the set V. Figure 5.5(b) Decomposition of V into four con-
gruent copies of I', two congruent copies of A and
the sets ¥1(V), ..., ¥4 (V).

1 1( 3 1 1(2
Ys(z) = gR—w/:z(SU) +t5 <\/§>7 Yy(x) = 3T 3 <0>,

with R, denoting the rotation matrix to the angle o about the origin. Further, let V'
denote the open region whose boundary is given by the union of F' and the two line
segments {t(_?/g) cte [O, %]} and {(é) — t(_?\’/g) cte [0, %] }, see Fig.|5.5(a)l Suppose
without loss of generality that the position of K in R? is so that K = V U VI U V2 with

V¥ denoting the image of V under the rotation around %(_f’/g) by the angle % Then
voly (K_¢) =3-volg (K_.NV). (5.13)

Therefore, in the following, we focus on determining vola(K_. N'V'). For this, let I' denote
the filled-in equilateral triangle with vertices %(_?/g), %(_?/g) and %((1)) Moreover, A
will denote the filled-in rhombus with vertices %((1)), %(_‘?/3), %(_f’/g) and %(_\9/3). The
sets I" and A are depicted in Fig. For large enough e, the sets A, I' and v¢;(V),
i€{l,...,4}, are fully contained in K_.. This changes when e decreases (see Fig.[5.6(a))

and in the following we distinguish between different cases corresponding to e, where this

behaviour changes.

Case 1: If € > % then

3 3 2v/3
voly (K_N'V) = voly (V) = voly (VORXR+)+VOIQ (VﬁRxR‘) :\2€+\1€:1\5[.
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Case 2: If e € (ﬁ

3, 2] then

4
voly (K_cNV) =Y voly (K_c Nhi(V)) + 4voly (K_c NT) + 2voly (K_c N A)

= 4voly (1 (V)) + 4vola(T') + 2voly (K_c N A).

With p = p(e) = 2; 2arccos( ) being the angle that is shown in Fig. |5.6(b), we can

evaluate voly (K_ N A) as follows.

p(e) o 1 V3 (7 ple)
(K nA)=R92 9. 2 V2 T_£AY
voly ( NA) 5 € + 5 g €sin g 5
= T _ 2 arccos 1 — v3 —l—l €2 — L
3 Ge 108 6 36
It follows that
4 zf V3 1 V3 o1 1
o (K_.NV VO Y2 _9 Ve e =
volp (K= V) =5+ =5+ 108+37T6 631"&08(66) 54 3V T 36
7 1 1 1
—;0[—1—36—26 arccos<6€>+3 62—%.

Using the identity arccos(z) = § — arcsin(z) the assertion follows.

Case 3: If € € (3, i] then

4
volg (K_cNV) = voly (K Nhi(V)) +4 - volp (K_NT) + 2 voly (K_ N A)
=1
_ 4 23
— It dvoly(K_ . NT €.
=5 15 TAvok(EnD)+ ge

Case 4: Suppose that e < . Let W :=V'\ U?:l (V). Then

VUU% ﬂUm()

k=0we{1,...,4}* k=0we{1,... 4}

where all unions are disjoint. As (V2o Uyeqr,apr Yo(V) € NiZo Useqr,. ayr (V) C F,
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we know that vola (72, Uweqt,... apx Yw(V)) = 0. Therefore,

voly (K_NV) = Z > voly (K- Nepu(W))

k=0 we{l,... .4}k

= Z Z voly (YK )—e NP (W)) (5.14)

k_o w6{17 el }

_Z< ) voly (K _gr, NW) .

Now, using the decomposition of W into four congruent copies of I' and two congruent

copies of A, see Fig.[5.5(b)l we obtain

V012 (K?:},ke N W)

=4-voly (K_3:,NT) +2-voly (K_z. NA)

LRz ERIE =1 -
B 4. 1\[/); + 2”32]‘7 2 _92.3%e2arccos (ﬁ) |
SH R 5 -z - i) <k < L)
4-voly (K_ge NT) + £3%¢2 k< |3 - 25).

Combining ([5.14)) with (5.15) we can evaluate vola(K_. N'V), leading to (5.12). For this,

note the following.

(i). With a(e) := {_11355} as defined in the statement of this Lemma, it is convenient

to write L—%gggj = —llggg —a(e).
. 1 1 I 1
(ii). If a(e) < 1, then L—%—lgggj = [—qoes) —1. Ifa(e) > 5, then L—%—1§§§J = |~ Toe3l-

Thus, the middle case of (5.15) occurs if and only if a(e) < 5.

(iii). Due to the self-similarity of the Koch curve, vola(K_. NT') = 9vola(K_.3 N T)

whenever € < %.
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dl

<

Figure 5.6(a) Visualisation of the lengths which ~ Figure 5.6(b) Example of an inner e neighbour-
lead to the different cases in the proof of Lem.[5.13} hood of K for € € (g’ 1] as in Case 2 in the proof
vola(K_« N A) = vola(A) if and only if € > of Lem. Here, ¢1V and T" are fully contained

vola(K—e NT) = vola(T') if and only if € > in K_., whereas A is not.
VOlQ(K-g n w1 V) = V012(¢1V) if and only if € >

“’@ww

Ol

Proof of Thm.[5.12 In this proof we fix (k1,k2) € {0,... ,6}2 and abbreviate the fractal
spray (k1, k2), the alphabet X(kq, k2) and the IFS ®(ky, k2) as denoted in Sec. by Q,

Y and ® respectively. For 8 € [0,a), we define
N(al + B) :=voly (Q_, et ) -

Recall from (5.10) that © is a disjoint union of open sets Q = (J;—q U, exr ¢w(G), where

the generator G := O\ @O can have several connected components, depending on (k1, k2),
and where XV := {(} and ¢ is the identity on R?. With the identity Q_. := {x € Q :
dist(z,00) < €} = (02).NQ, where F, := {z € R? : dist(x, F) < €} denotes the e-parallel

set of a set F' C R?, we have that

N(al + 8) = voly ((aQ)e,(EHB) nUJ U qst) =33 Vol ((09),—twees) N 6,G)

k=0 wexk k=0 wexk
=> ) voly ((¢u(09)) - wers) N 6uG)
k=0 wexk
=37 D Vol (6 (0~ wti - N G))
k=0 wexk
= Z Z e 2 voly (G_y(ate-nri)) -
k=0 wexk

In the last two equations (5.9) was used. Next, we consider the two-sided Fourier-Laplace
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transform N 5 dependent on /3 € [0, a), acting on C and given by

= Z e N(al + B).

l=—0c0

For z € {z€ C|0< R(z) <2—dim(09)}, where dimps(9€2) denotes the Minkowski di-
mension of 0F), the Fourier-Laplace transform N 3(2) converges and the order of summation

can be swapped, leading to the following conversion.

00 L)
-2 14
= Z Z e—2av0 Z e vol, (Gfef(aauyw)mr))
k=0 wexk l=—o00
0o o)
— Z Z e—de(Q—Z) Z eaé?«’ V012 (G_e—(a€+[3))
k=0 weXxk f=—00

In the last equality we have used an index shift, as v,, € Z by (5.9). Depending on (k1, k2),
the generator G may have several connected components K ©), ..., Kk1tk2) 4]l of which

are Koch snowflakes. Thus,

k1+k2

voly (G_y—wersy) = Z VOlz( ho (QZH;)) Z b} Volz( _ —<aua+1ogbj>),

j=0 Jj=—k1

with b; denoting the base length of the Koch snowflake K (@), In our setting, we have
bo=1=e"b;=v3/3=e"1for j <0and bj =1/3 =e 2% for j > 0, implying

oo

N( ) = <1—|—/€16a(z 2) 4 fge?alz— 2)>Z Z e~ Ww(2-2) Z e? Volz _e—(a£+,8)).

k= k —_
0wexn f=—00 .h(ﬁ)

We can evaluate the series with indices k and ¢ independently. For the series with index k

we use that e~ = 1, and that > 5w 127% = (3,cnr?” z) . For the series with index
¢, we use (5.12), and split the series in the following way. S°0° _ h(f) = S,_ _ h(f) +
h(2) + h(3) + 224 MO Laz,(6) + 32024 h(O)Laz11(£).

~ -1
Ng(z) - (1 + k1e®*=2) 4 kzeQa(z_2)>
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- 1 |: el% 2\/§ N 62az
1= Yjexri Fll-e® 5 3

W3 [ L, 1 B /B re—28
B -28 _ = 28 R
<10 +1/e 4+26 arcsm<2 5
S\f
3az
+e -<45 27 (K e By3? ﬂP))

R 4a(z72+12i4) 4a(z—2
+u<6> 6_5(2_%). ¢ o )+U<B> 6_26716 -

2a 1— eZa(z 2+ig§g 2a — e2a(2—2)

. Sa(z—2+1281) Ba(z—2
+u<a+5> po-lut) e )+v<a+ﬂ>e—251€a(z)

2a 1— 62a(z72+}g§g 2a — e2a(2—2)

1
)
1- Z’LGE i

The right-hand side has a meromorphic extension to C with simple poles at z in

Z .= {ZE(C Zr?_'zzl} U S:= {072—10g34,2}_
1EX
Define
_ e B a+f
Qp(2) := 07T [ <2a> +v< o ﬂ : (5.16)
log4y (1+ %1 + %)6_6(2_12531) 3 _fa+p
Qp <2 - log3> = 2(1 B Z'L’EE riogzl/logg) . {u <2a> +u ( 50 >] and (5.17)

a(z—2) 2a(z—2)
Qs(2) = _a(l+ ke + ke ) L(2) (5.18)

2—z
Y iex logri -y

for z € Z. Then

—1 log4
T als Q (2) Q (27 lo Q

Hy(s) = Nas) = 3 e™*N(at +5) - =0y = ——— 2+glfg4 > 7 6“ 5

e

{=—00 1-— log 3 GZp

extends to a holomorphic function on C, where Zp := {z € Z : S(2) € [0,25)}. On

{z€C|0 < RN(2) < mingez N(s)} each summand of Hg can be developed into a power



108 5.4. Asymptotic behaviour of e-parallel volumes

series:

Hg(s) =) e™ [N (al + B) — Qa(2)e 2 — Qg (2 _ 10g4> -at(2—1253)
=0

log 3
log 3

= e—aKZQ/B(Z):|

ZEZP

As a power series has a singularity on its radius of convergence, Hg being holomorphic on

C implies that as £ — oo

log 4

N(at +9) = Qu(2)e "+ Qa (2 122

log 4
> e~ 15g3) + Z e‘“ﬂzQ/@(z) + o(e_ah)

ZEZp

for any v > 0. For a selection of choices of (ki,k2), the coefficients Qg(z) at z € S take
the values as shown in Tab. (5.2 O



Chapter 6

Further developments and open

questions

In this final chapter we collect several further directions to be explored and we discuss

possible generalisations in particular of Lem. and Thm. [4.15

6.1 Generalisation of Thm. [4.15] to general quasidisks

Thm. is restricted in two ways. First it only applies to sufficiently small p, i.e.
p < @ and secondly it requires an bi-Lipschitz map with E-property as in Def. in

order to translate to bi-Lipschitz equivalent maps.

6.1.1 TUnderstand the E-property of a bi-Lipschitz map

Recall that by Rohde’s theorem, any quasidisk has a bi-Lipschitz map onto a p-Rohde
snowflake. It appears conceivable that any such bi-Lipschitz map has the FE-property.
Suppose a bi-Lipschitz map f is (piecewise) smooth (by Rademacher’s theorem it is dif-
feomorphic almost everywhere). Then f maps (piecewise) smooth surfaces to piecewise
smooth surfaces. For such a piecewise smooth bi-Lipschitz map f the image of a e-sized

cuboid E, with foliation {},er and normal v, (df (v),df(v’)) is continuous.

109
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6.1.2 Extension of Thm. 4.7|to p € [\/‘;’2_1 ,%)

Referring to the proof of Thm. the proposed foliation does not lead to convergent

integrals if p > ‘/32_1, see also Prop. One may consider alternative seed foliations
such as described in Fig. [6.1] As indicated in the visualisation, it is constructed in the
following way: One draws an isosceles triangle below each p-Rohde curve where each leg
touches Iy at angle ag (coloured in green). For the next iteration this construction is
repeated but with new angles a1, 11 < ap (coloured in red and blue, respectively). This
produces a domain that can easily be triangulated by dividing each of the two legs of the
big isosceles triangles (with angle «ag) into four equidistant segments of which each is the
basis of a foliation heading entirely to one of the four images of the next iteration of the
p-Rohde curve. Within each triangle one then constructs a simple seed foliation parallel
to one side. At higher iterations this is repeated with a strictly decreasing sequence of
angles. It is expected that such a triangulated seed foliation allows adjusting angles so
that Bing > 0 and Zg < 0o. The key advantage of such a construction is that this foliation
covers each cylinder of the p-Rohde curve with the same density. In comparison, the
equidistant seed foliation discussed in Prop. has a higher density in the central section
of each iteration leading to a faster divergence of Zg. Notice that B — oo as ag — 0

so that this construction cannot be understood as a small perturbation of the original

construction in Prop.

6.2 Further generalisations

6.2.1 W'P-Poincaré-Wirtinger inequalities and p-Laplacians

In addition to elliptic operators, the so-called p-Laplacian attracted a considerable interest
in recent years, see for example Lé’s work in [71] and the references therein. Let 1 < p < o0)
and define the p-Laplacian on a domain by its energy functional &,(u) := p_lHVuH’zp(Q)
on W1P(Q). On smooth functions this operator then acts as Apu := V - (|Vul[P~2Vu) and

its eigenvalue equation reads —A,u = Au[P"2u. Notice that Ay is the usual Laplacian.
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Figure 6.1: Example of a piece of boundary of a fully homo-
geneous p-Rohde snowflake with an alternative seed foliation for

P = 3730 015(700) > ‘/‘5’2*1. The coloured angles are explained in the
construction in Sec. [6.1.2 For the sake of a better overview the
angles are only shown in the right half while the triangulated seed
foliation is only shown in the left half; the construction is symmet-
ric.

While the spectral analysis of A, for p # 2 is more involved if p # 2, a modification of the
result in Lem. still holds as a variant Poincaré-Wirtinger inequality. For any u € LP()
with 1 < p < co the map R 3 ¢ + |lu — t||p() has a unique minimiser denoted by ugq.
The uniqueness follows from the strict convexity of LP-norms if 1 < p < oco: Suppose t # t/

are two minimisers. Then

u—t u—t

2+2

t+t
w— Tt

2

Lr(Q)

Lr(Q)

1 1 ,
< §||U —tllr () + §||U —tlr) = llu =t Lr(o)

contradicting the minimising property of ¢,#'. For this minimiser we have the following

inequality in W1P(D) where D is well-foliated.

Proposition 6.1. Let D C R" be well-foliated with notation as in Def.[3.5 Suppose there

is a Cp for E C D such that ||u — ug||prp)y < Cel|Vull gy for all u € Wl’p(E)D Then

TLet + : E < D be the usual inclusion. Then *W"P(D) C WHP(E) and it actually is sufficient if there
exists a Cp for all u € *W'P(D) = {u € W"P(E) : 3U € W'P(D) : U|g = u}.
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for any uw € WHP(D)

flu — uD”Lp (D) = < CDHVUHLP (D)

. 17 (D\E) Zs(D\E)
with Cp = Cg + CEg 2p ﬁ nt(B) +2071L gmf( D) -

As is seen immediately from the proof, we actually proves the slightly stronger inequal-
ity with up replaced with ug. A classical Poincaré-Wirtinger inequality would be implied

if ug had the additional property that

1
— d
H“ vol, D /D“ v

Proof. Essentially this is analogous to the proof of Lem. [3.§| after replacing 2 with p

< lu — gl o(p) Yu € WHH(D).
Lp(D)

wherever appropriate. Let u € WP(D). Then |u — uD||I£p(D) < lu — uE||I£p(D). We

subdivide the expression

lu—welyp) = [ fulo) —uePdy+ [ Juta) - uspa
E  Jp\E

~~

=0 =1

and estimate I; and Iy separately. Then by definition of ug one has
I < CEHVUH < CEHVuH (6.1)

From convexity of  ~— |z|P it follows that for any a,b,c € R, there is the following
inequality: |a—b|P = 2P|(a—c)/2—(b—c)/2|P < 2P~ (|a — ¢|P + |b — c[P). Then analogously

to the proof of Lem.

len vq
I = /D\E lu(z) —upPde = /IO/T [u(y4(t)) — ug|PB(g, t)dtdq,

_1 lenyg g7 B , )
=2 [ [ et~ uspata, g
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2]7*1 1en'Yq s , ,
= /f / /0 u(vq(t)) — upl’B(q, t)dt'dtdq
oJr

r

=:1

- len 4 r
+Z : /IO/T ' /0 [u(vg(t)) — u(yg(t'))PB(q, t)dt dtdg,

r

I

And by assumption frlenfyq B(g,t)dt < Zg(D\E) for all ¢ € Iy. For I one has

, 9p—1 lenyg pr / /
e /1 / /0 u(Yq(t)) — ugl|’B(q, t)dt dtdg
ovr

,
or—1

IN

—2\B) [ [ @)~ sty

YLD [T »
= Bint (E) /]0/0 [u(vq(t)) —urlPB(g,t")dt' dg

20~1 T5(D\E) 20~1 T5(D\E)
= el = gl < Co =" Vullf ),

r Binf(E) Binf(E)

Using Jensen’s inequality and |V~,(s)|P =1, |s| <1 and |0su| = [(s, Vu)| < |Vu,

Ouu(q(s))ds

to

< (t—tp) t |0su(vq(s)) [P ds

u(e) —u(y)[” =

t len 74
< (t—to) [ |[Vulfds < (t—to)/ |Vl (| ds.
0

to

Therefore

I// —

p—1 lenvyg, pr
2"” /1/ /0 [u(vq(t)) — ulyg(t)I"B(g, t)dt'dtdg

2p—1 lenyg pr t
e Y R CH e
T JIJr o |J¢

2p—1 lenyg pr t
<Z [ [ [ =) [ autns)ll dosta, it atdy
Ig Jr 0 t

r

p
B(q, t)dt'dtdq

Then since t — ' < L,

" op—1 lenygy pr , t » ,
I < /] / / (t—t )/ ‘Vu(x)\z:%(g)’ do3(q,t)dt'dtdg
oJr 0 t/

r

113
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op—1 lenyg pr len vq4
< / / / L / V()] gy (o) |” doB(q, t)dt' dtdg
roJnJr 0 0

len vq
< 27" LT4(D\E) / / V(@) amyy ()| dod

T DE len vq4
< op i TN s(D\F) // V(@) gy (o) | B, 0)dordg
5lnf I

I,6’(D\E)
Binf(D)

= 2 L [Vl - O

6.2.2 Multifractal structure of boundaries

Suppose the boundary 02 of a domain 2 exhibits a multifractal structure, that is, the
Minkowski dimension of an open neighbourhood of x € 92 depends on x. Extending
Prop. to such contexts together with is expected to provide estimates of the
counting function depending on the multifractal spectrum. Indeed one finds the following

version of Thm. 4.5

Theorem 6.2. Let Q@ C R™ be a domain, 6, M, C, A : (ig,i1) — [n — 1,n], be integrable
multifractal dimensional data (that is, local versions of dimensions and contents replacing
upper inner Minkowski dimension and the constants in Prop. and Prop.[2.73 with the

following properties

(i). Let W := Ujsp, Wk be a Whitney cover of  as constructed in Sec. . Then the
k™ slice Wy, i.e. the set of Whitney cubes in the Whitney cover of Q of size 2%, has

a cardinality bounded from above as
i1 )
#W,, < / M ()27 dj
10

(ii). Q is well-covered by {DS}icr, with

i1 ‘
#1I, < / C(i)e 00 dj
0

(i1i). The (n—1)-dimensional volume of the boundary of the inner Whitney cubes for some
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€ in the notation of Prop. is bounded from above by

- i A
vol,—1 0 U Q §/ A(i)e" 100 g

QeW. 0

Then Ny (,t) < Cff vol, Q™2 + [ M(i)t®)/2di with

(’I’L—l) 5(71)72(77‘71)

N PN ¢ (N D AN R R A e Y
M) = <c<z>+zm<z> 0T ) (02<Q)> A0 <02<Q>>

Proof. Analogously to the proof of Thm. one has Ny (,t) < S{(t) + S5(t) with

identical construction. It follows that for ki with k4 — k— < 2 + logy(5r4),

Si) < #L+ DY #Wi

ke <k<ky

11 (4) T4 6(1) _ .
G

Likewise we obtain an analogous estimate for S5:
o1
S5(t) < Y vol, Q™2 + W / A@) D2 g5, O

6.2.3 Elliptic operators

This work restricts itself to the classical Laplacian operator throughout. There are however
straightforward generalisations to positive uniform elliptic operators with constant leading
coefficients, L : 2 5 &+ 37 <9y, @a(2)0” with some C' such that (—1)™ 3,29, @a()" >
C|&*™ for all £ € R™ as was shown by Lapidus in [65]. Both Lem. [3.8/and Thm. allow
adaptations to such elliptic operators. By definition (e, 00)-domains (and also quasidisks
by Jones’ characterisation of quasidisks in [49]), also admit higher extension operators

E : H™(Q) — H™(R™). Since quasidisks, being (¢, c0)-domains, also admit higher exten-
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sion operators E : H™(2) — H™(R"™), it remains to be studied under what conditions a

p-Rohde snowflakes remains well-covered.

6.3 Applications on other quasidisks

6.3.1 Julia sets

The formulation of well-foliated domains can also be applied to Julia sets if based on the
original construction by Brolin (cf. Sec. . The choice of a Julia set, say J. to a map
fe(2) := 2%+ ¢ with |c| > 0 but sufficiently small, leads to specific uniformisation maps G,
depending on ¢. The foliation built in this manner is then governed by upper bounds on

the derivatives of G, and G ! and therefore non-trivially on c.

6.3.2 Stochastic p-Rohde snowflakes

Suppose the p in the construction of a p-Rohde curve (cf. Def. [2.33]) is not constant
but varies according so a probabilistic distribution. Since the construction suggested in

Prop. does not need constant p at each iteration step of the construction, this allows

V3—1

for more general domains. In particular one may allow p > *5

occasionally as long as
Ig < oo. It is to be expected that such stochastic p-Rohde snowflakes allow for analogues

of Lem. B.8 and Thm. [4.15l

6.3.3 Numerical approximation of optimal Poincaré-Sobolev constants

for p-Rohde snowflakes

Rosler-Stepanenko showed “computability” (i.e. convergence of numerical approximations)
of Dirichlet eigenvalues in [95]. Similarly Hinz-Rozanova-Pierrat-Teplyaev proved the fol-

lowing Mosco convergence result.

Definition 6.3 (Convergence of domains, Def. 2.2.8 and 2.2.3 in [42]). A sequence of
bounded open sets O,, C R? is said to converge in Hausdorff sense to some open set O if

there is a compact set K with O U|J,, O, C K for which the sequence K\O,, converges to
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K\O in Hausdorff sense. This definition does not depend on the choice of K. The sequence
Oy, is said to converge in the sense of characteristic functions to some O if xo, — Xxo in

LP(R%)-norm for all 1 < p < oo.

These two notions are indeed independent as can be seen through the following counter-

examples.

e Let C,, C R? be the n'! iteration of an iterative construction of a Knopp curve C
over the unit interval [0, 1] € R? with non-vanishing Lebesgue volume. Both C,, and
C are compact and C,, — C' in Hausdorff sense. Then by definition O,, := [0,1]?\ C,,
converges to O := [0,1]? \ C in Hausdorff sense. However, since voly(Cy,) = 0 for all

n but vola(C) # 0, O, 4 O in the sense of characteristic functions.

e Conversely consider the open set I, := [0, 1]\Uin:0 %1 CR. Then I,, — (0,1) in

the sense of characteristic functions but I,, — 0 in Hausdorff sense.

Theorem 6.4 (Mosco convergence, Thm. 6.1 in [43]). Let {Q, }men be a sequence of quasi-
circles such that €y, 20 and in the sense of characteristic functions (meaning voly,(£y,) —

vol, () ). Then there is a subsequence of (Qum, )i for which o(—AN(Qm, k) A o(—An(Q)).

Such results are known for snowflakes in particular in the Dirichlet case with numerical
results from Neuberger-Sieben-Swift in [8I] and Banjai-Boulton in [8]. It is therefore
justified to employ numerical methods (for example as suggested by Carstensen-Gedicke
and Hu-Huang-Ma in [I7, 44]) on finite approximation levels of p-Rohde snowflakes and
in particular to regular foliated domains. It is expected that the estimates presented in

Lem. [3.8] for the Poincaré-Sobolev constants are far from optimal.
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Weyl asymptotic, 33
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