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Abstract

In recent works of Buryak, Clader, Gross, Kelly and Tessler, genus zero open enumerative

theories and their mirrors for the Landau-Ginzburg models W0 = xr and W0 = xr1
1 + xr2

2

were constructed. We build on this work by defining an open mirror B-model with gravi-

tational descendants for any Fermat, chain or loop polynomial. This is done by presenting

a recursive algorithm for finding flat coordinates of Dubrovin’s Frobenius manifold for a

Landau-Ginzburg B-model. Furthermore, we present formulas for these coordinates for

any ADE or elliptic singularity. Although these open Saito potentials do not yet have an

enumerative interpretation, we present explicit formulas for these generating functions,

together with modularity properties in the elliptic case. Finally, we find that the B-model

exhibits a wall-crossing structure. We classify this structure by describing a Lie group

action of wall-crossing transformations, which we prove is faithful and transitive in the

rank 2 case.
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CHAPTER 1

INTRODUCTION

In a sequence of papers, [FJR08; FJR11b; FJR13] Fan, Jarvis and Ruan developed FJRW

theory as a closed enumerative theory for Landau-Ginzburg A-models, inspired by phys-

ical work of Witten [Wit93a]. This was done as there is currently no complete theory

of how to take a N = (2, 2) supersymmetric Landau-Ginzburg action and perform an

A-twist to obtain a topological field theory coupled to gravity whilst retaining Lorentz in-

variance. See sections 2 and 3.1 of [GS09] where Guffin and Sharpe discuss the difficulties

of such a theory.

FJRW theory takes as input data (W0, G) where W0 : CN → C is a weighted homoge-

neous polynomial and G is an admissible choice of subgroup of the automorphism of W0.

The polynomial W0 is further restricted to be invertible and such superpotentials were

classified by Kreuzer and Skarke [KS92] as Sebastiani-Thom sums of Fermat, chain and

loop polynomials. One reason for this added condition of invertibility is that the corre-

sponding hypersurfaces in weighted projective space are suitably well-behaved under the

Landau-Ginzburg / Calabi-Yau correspondence [Wit93b].

Given this input data, the output of FJRW theory is an enumerative theory which

enjoys the properties of a cohomological field theory, in the sense of Kontsevich and

Manin [KM94]. By construction, the CohFT has an enumerative interpretation as a

count of W -spin curves. In particular, for W0 = xr and G = Gmax
W0 = µr where µr

is the group of rth roots of unity, the resulting FJRW theory is equivalent to the r-
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spin construction of Abramovich, Chiodo, Jarvis, Kimura and Vaintrob [AJ03; Jar00;

JKV01; Chi08]. See [FJR11a] for an exposition of the relation between FJRW theory

and r-spin structures. Although the enumerative picture of closed FJRW theory is well

understood, computations are notoriously difficult, especially if the invariants do not

satisfy a condition known as concavity. For example, Guéré overcame the problem of non-

concavity in [Gué16] by explicitly calculating the virtual fundamental cycle for FJRW

theory via Givental’s quantum Riemann-Roch formalism. On the other hand, [HLSW22]

bypass such tricky calculations through the use of various reconstruction theorems and

the WDVV equations.

Conversely, the mirror Landau-Ginzburg B-model is easy to compute with. As

(twisted) topological field theories, these were investigated in [LVW89; Vaf91; Wit92].

These works also give motivation for the particular focus on the case of quasi-homogeneous

potentials on CN , although we do not dwell on the details here. In this thesis, from the

physical viewpoint, we consider a deformation Ws of W0 by adding certain source terms to

the superpotential and writing descent equations to compute correlation functions. From

a mathematical viewpoint, the deformation Ws is a versal deformation of the singularity.

Using primitive forms, the mathematical foundations of the closed B-model as a coho-

mological field theory were developed by Saito [Sai83a; Sai83b] for genus zero; Givental

then provided a remarkable formula in [Giv96; Giv01] for the higher genus theory with

descendants. This was subsequently completed by Teleman [Tel12] and applied to the

Landau-Ginzburg case by Milanov [Mil14].

This modern formulation of the B-model, now called Saito-Givental theory in the

literature, is dependent on the local algebra of the invertible singularityW0 which plays the

role of the B-model chiral ring. The local algebra has a flat Frobenius structure encoded

in the flat coordinates {tµ}µ∈B of Dubrovin’s Frobenius manifolds [Dub96]. Here, the set

B ⊆ ZN
≥0 is an index set for a unique choice of basis of the local algebra. This special

choice of basis, {xµ := ∏N
i=1 x

µi
i |µ ∈ B}, is called the standard good basis in Definition

2.9 of [HLSW22]. Via the work of Givental, the flat coordinates can be extended to
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descendant parameters tµ,d with the identification tµ,0 = tµ.

Nevertheless, finding explicit formulas for tµ in Saito-Givental theory is difficult. Our

first result in this thesis is a calculation of flat coordinates for singularities whose type is

either ADE or simple elliptic.

Flat Coordinates for the B-Model Using Oscillatory Integrals

Roughly speaking, the B-model involves period integrals of the form

∫
Ξµ

eW/ℏfdNx.

Here, W is a deformation of W0 and f is a regular function on CN × M with M the

parameter space of the deformation. Furthermore, if f is chosen so that f · dNx is a

primitive form, the manifold M can be endowed with a Frobenius structure with local

coordinates (tµ). See Definition 3.2.12. Moreover, ℏ ∈ C∗ is an auxiliary parameter

and the Ξµ form a special basis of non-compact cycles in CN , often known as Lefschetz

thimbles in the literature. This basis is dual to the standard good basis of [HLSW22]

under a perfect pairing defined by oscillatory integrals in Section 3.2.

There are numerous methods to calculate flat coordinates for simple and elliptic sin-

gularities. For Ar, the authors of [IN82] carry out computations via a generating function,

whilst in [BGK16] Belavin, Gepner and Kononov find flat coordinates by directly solving

the Gauss-Manin system. They obtain a conjecture for the integral representation of flat

coordinates which we prove in Proposition 1.0.1 and Corollary 1.0.2 below. Computations

for E6 and E8 are done in [Yan81] and [KW81] respectively.

The cases of Dr and E7 are chain polynomials and are more computationally technical.

The flat structure of E7 is considered via E7-invariant polynomials in [Abr09]. On the

other hand, Klemm, Theisen and Schmidt derive potentials via topological conformal

field theory in [KTS92]. The advantage of this physical perspective is that it also allows

for computations of the flat structure of elliptic singularities. Such structures for the
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elliptic singularities W
E

(1,1)
6

= x3
1 + x3

2 + x3
3 and W

E
(1,1)
7

= x4
1 + x4

2 are also derived in

[Kat86; Sat93].

In [Nou84; NY98], there is a unifying systematic treatment of flat coordinates of sim-

ple and elliptic singularities, which includes Dr and E(1,1)
8 . This was done by solving the

Riemann-Hilbert-Birkhoff problem of the Gauss-Manin system associated to the singu-

larity. The details of this calculation are quite technical. Thus, a different approach to

finding flat coordinates is valuable. In particular, we prove the following.

Proposition 1.0.1. Given an invertible singularity W0, denote by Ws the versal defor-

mation in the local coordinates (sµ)µ∈B of M:

Ws = W0 +
∑
µ∈B

sµx
µ.

For k ∈ ZB
≥0, define l(k) = ∑

α∈B kα · α. Then

∫
Ξµ

eWs/ℏdNx =
∑
i∈Z

J (i)
µ (s)ℏ−i, J (i)

µ (s) =
∑

k∈Z|B|
≥0

deg sk=deg sµ−1+i

 1
ℏq(k,i)

∫
Ξµ

eW0/ℏxl(k)dNx

sk

k!

where q(k, i) defined in equation (3.2.9) is the number of times integration by parts is

used to reduce xl(k) to an element xµ of the good basis. Furthermore, deg sµ is given in

Definition 3.1.13.

Using this proposition, we prove the following generalisation of Theorem 1.1 of [NY98].

Corollary 1.0.2. Let W0 be an ADE or simple elliptic singularity. A primitive form and

flat coordinates for W0 are given by

fdNx = dNx

J (0)
0 (s)

, tµ(s) =
J (1)

µ (s)
J (0)

0 (s)
.

For an ADE singularity, J (0)
0 (s) ≡ 1 and for a simple elliptic singularity, J (0)

0 (s) is a

function of the marginal parameter s only. See Definition 3.2.9.
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The proof follows by a calculation that uses only Taylor expansion and integration by

parts, compared to the transcendental methods of Noumi and Yamada. It is exactly this

simplification that allows us to easily compute flat coordinates of the elliptic singularities

not considered in [NY98], such as the chain polynomial W̃
E

(1,1)
7

= x4
1 + x1x

3
2.

Furthermore, in the notation of Noumi and Yamada, we have

ψ(i)
µ := J (i)

µ

wt(k) := deg sk =
∑
α∈B

deg sα · kα,

cµ(l(k)) := 1
ℏq(k,i)

∫
Ξµ

eW0/ℏxl(k)dNx.

Here, we use J (i)
µ instead of ψ(i)

µ as we wish to emphasise the enumerative importance of

these coefficients as related to a J function. The integrals cµ(l(k)) can be calculated in

terms of Γ functions and hypergeometric functions via the results in Section 3.2.4. This

gives a concrete realisation, in the case of Landau-Ginzburg models, for the variations of

semi-infinite Hodge structures developed by Barannikov [Bar01].

Open Saito-Givental Theory.

Proposition 1.0.1 and Corollary 1.0.2 are enough to specify the closed Landau-Ginzburg

B-model invariants for ADE and simple elliptic singularities. Construction of topological

Landau-Ginzburg models for open strings, however, is still not clear in many cases. There

are perhaps three main interlinked approaches that are currently available.

The first uses ideas from topological gravity. Pandharipande, Solomon and Tessler

[PST22] first constructed a moduli space of genus zero Riemann surfaces with boundary

for the case of 2-spin structures. They furthermore conjectured an open analogue of Wit-

ten’s conjecture in the A1 case: that a generating function of intersection numbers on

this moduli space is a τ -function of the open KdV hierarchy. Buryak [Bur15] interpreted

this open KdV hierarchy as part of the Burgers-KdV hierarchy. The open Witten con-
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jecture was subsequently proven in [BT17]. The main tool was the Kontsevich-Penner

matrix model, formed from the Hermitian matrix model in [Kon92] by adding a loga-

rithmic term to the potential. Based on Alexandrov’s calculations in [Ale15a; Ale15b;

Ale17] of W-algebra constraints for the Kontsevich-Penner matrix model, Safnuk [Saf16]

introduced a topological recursion procedure involving half integer genera on a spectral

curve to compute open intersection numbers. Although the matrix model is very explicit,

Basalaev and Buryak were able to generalise these potentials to the case of Ar and Dr

singularities in [BB21]. This was done by considering open WDVV equations, solutions

to which give rise to flat F -manifolds.

The second approach is homological. Kapustin and Li [KL03] argued that the correct

category of D-branes for a Landau-Ginzburg model W0 was the associated category of

matrix factorisations of W0. Results of Kontsevich [Kon95] and Costello [Cos07] hinted

that this category should give rise to the chiral ring of a Landau-Ginzburg B-model. This

was confirmed when Dyckerhoff proved that the Hochschild homology of this category

was the local algebra of the singularity [Dyc11]. See also the work of Efimov [Efi18].

In [Orl09] Orlov subsequently proved that the category of matrix factorisations of W0

is equivalent to (a Verdier quotient of) the derived category of coherent sheaves over a

hypersurface defined by W0 = 0. Orlov’s equivalence was later interpreted as a B-model

analogue for the Landau-Ginzburg / Calabi-Yau correspondence by Chiodo, Iritani and

Ruan [CIR14]. More recently, Saito theory has been recast categorically: one may define

a categorical primitive form as in [CLT21]. See also the results in [Tu21a]. Homological

mirror theorems may then be proven via isomorphisms of the corresponding cohomolog-

ical field theories. Indeed, by working with the category of matrix factorisations, He,

Polishchuk, Shen and Vaintrob in [HPSV22] prove a mirror theorem with the additional

removal of a technical assumption of [HLSW22, Theorem 1.2]. Furthermore, Tu [Tu21b]

constructs a categorical Saito theory with a non-trivial choice of subgroup of Gmax
W0 . It is

then demonstrated that this is mirror to the expected FJRW theory.

A third approach to open topological Landau-Ginzburg models is via mirror symmetry

9



and enumerative geometry. This is the route we take in this thesis. An open r-spin

theory has been constructed in [BCT22a; BCT22b; BCT23]; an open B-model, on the

other hand, for W0 = xr and W0 = xr1
1 + xr2

2 has been established in [GKT22a; GKT22b]

by Gross, Kelly and Tessler. The main point of this thesis is the construction of an open

enumerative B-model for any invertible singularity. In Section 3.1 we describe an iterative

algorithm for the computation of primitive forms and flat coordinates for generic rank

two polynomials. Our method is based on work by Gross, Kelly and Tessler [GKT22a;

GKT22b] where these authors consider higher order deformations of the superpotentials

W0 = xr and W0 = xr1
1 + xr2

2 . This is different from the perturbative primitive form

expansions outlined in [LLS14; LLSS17], although the two approaches are related.

Similar to the rank two Fermat case, we find that there are non-uniqueness issues

surrounding the computation of the flat coordinates for rank two chains and loops. Our

main result is then Theorem 1.0.6 which provides structure for this non-uniqueness.

Let us now make this more precise.

Definition 1.0.3. Given a Landau-Ginzburg model W0, let I be a multiset of µ ∈ B.

Consider the ring AI,sym := Q[tµ,d |µ ∈ B, d ∈ Z≥0]/Ideal(I) for an ideal, Ideal(I),

generated by monomials of the form ∏
d t

nd
µ,d so that ∑nd is greater than the number of

times the element µ appears in I. Given rational numbers νk1,...,kN ,I,d ∈ Q indexed by

ki ≥ 0, a multiset I and descendant vector d, an open ancestor Saito potential for W0 is

W :=
∑
l≥0

∑
k1,...,kN≥0

∑
A={(µi,di)}∈Al

(−1)l−1νk1,...,kN ,I,d

|Aut(A)|

l∏
i=1

tµi,di

N∏
i=1

xki
i

where Al denotes a set whose elements A are cardinality l multisets of tuples I :=

{(µi)}l
i=1 together with the descendant vector d.

An important special case of open Saito potentials are primary open Saito potentials

where the descendant vector d = 0. Given W0, one may calculate the flat coordinates

and change variable in the versal deformation Ws to write the sµ parameters in terms of

the flat coordinates tµ. We identify the formal parameters tµ,0 of the open Saito potential
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with the flat coordinates tµ via tµ,0 = tµ. In Corollaries 4.3.7 and 4.3.12, we provide

justification for this identification in rank two.

Definition 1.0.3 extends Definition 4.12 in [GKT22b] from rank two Fermat superpo-

tentials to any invertible Landau-Ginzburg potential. The authors of that paper have

shown that if the νk1,...,kN ,I,d are enumerative for W0 = xr or W0 = xr1
1 + xr2

2 , then the

open Saito potential is a natural choice of deformation of W0. It is furthermore analogous

to generating functions involved in toric Fano / Landau-Ginzburg mirror symmetry of

[CO06; Gro10; FOOO10]. See [Gro11; FOOO12] for expositions. Crucially, in all of these

works, the enumerative invariants are not uniquely defined in all cases as they exhibit a

wall-crossing structure.

In Definition 4.18 of [GKT22b], a wall-crossing group is defined for W0 = xr1
1 +xr2

2 that

classifies such wall-crossing transformations and thus what invariants can be obtained in

open Saito-Givental theory. In this thesis, we propose a definition of the wall-crossing

group, GA,W0 ≤ AutA(A[[x1, . . . , xN ]]) depending on some ring A and any invertible

W0. More precisely, we extend the previous definition of the wall-crossing group given in

[GKT22b] to cover the cases of chain and loop polynomials, which are defined in Theorem

2.1.6.

Definition 1.0.4. Let A = AI,sym. For a Landau-Ginzburg model W0, the Landau-

Ginzburg wall-crossing group GA,W0 ≤ AutA(A[[x1, . . . , xN ]]) is the group of elements ψ

such that the following axioms hold.

1. ψ must satisfy

ψ = id mod ⟨(tµ,d)|µ ∈ B, d ∈ Z≥0⟩ .

2. ψ preserves the volume form dx1 ∧ · · · ∧ dxN .

3. ψ preserves the ideal generated by ∏N
i=1 xi.

4. Each monomial in ψW is a count of balanced νk1,...,kN ,I,d.

11



The primary Landau-Ginzburg wall-crossing group is defined by restrictingGA,W0 to d = 0

with the additional quasi-homogeneity condition: ψ commutes with the grading operator,

E :=
∑
µ∈B

sµ deg sµ
∂

∂sµ

+
N∑

i=1
xi deg xi

∂

∂xi

.

This definition of the wall-crossing group consists of four axioms, three of which

appear in [GKT22b]. The first three are dealt with by considering GA,W0 as a subgroup

of a group, GA, of vector fields. See Proposition 5.2.1. The final axiom is new: it

ensures that open Saito potentials should match with an enumerative theory. These are

combinatorial conditions that are referred to as balancing conditions or selection rules for

νk1,...,kN ,I,d. See Definition 4.1.1 for the definition of balanced νk1,...,kN ,I,d.

To make the construction of the wall-crossing group more explicit, in Sections 4.2 and

4.3 we consider restrictions to primary open Saito potentials. As a simple consequence of

this definition, we give a description of the primary wall-crossing group for any singularity

with central charge c ≤ 1. To state this, we first need some technical details. For W0 an

elliptic singularity, we define the marginal basis element xµc , with µc ∈ B, as the unique

standard good basis element whose degree induced by E is equal to one. The marginal flat

coordinate tµc is then the flat coordinate associated to xµc and correspondingly satisfies

deg tµc = 0. Finally, for W0 = ∑N
i=1

∏N
j=1 x

rij

j , the exponent matrix is EW0 = (rij).

Proposition 1.0.5. The primary wall-crossing group is trivial if and only if W0 is simple.

Moreover, let W0 be an elliptic singularity in rank N = 2 or N = 3 with exponent matrix

EW0 and marginal flat coordinate t := tµc . If g = eV is an element of the primary

Landau-Ginzburg wall-crossing group then V is of the form

V =
N∑

i=1
tki(x1∂1 − xi∂i)

where each ki must satisfy

ki

(
ET

W0

)−1
µc ∈ ZN . (1.0.1)
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Equation (1.0.1) is identical to equation (15) of [MS16], although in that paper it

appears in the context of Picard-Fuchs equations for elliptic periods.

In analogy to Theorem 4.26 of [GKT22b] for rank 2 Fermat polynomials, our main

result is the following theorem, which, provides justification, in rank two, for our choice

of definition of the wall-crossing group.

Theorem 1.0.6. For a generic rank two chain or loop polynomial, the wall-crossing group

acts faithfully and transitively on open ancestor Saito potentials of balanced νk1,...,kN ,I,d.

Mirror Symmetry and Open FJRW Theory

In order to prove Theorem 1.0.6, we take inspiration from mirror symmetry. Mirror

theorems in the Landau-Ginzburg case were first developed in [FJR13], generalised by

Krawitz in [Kra10], and subsequently proven for most cases in [HLSW22]. This was

based on the early physical work of Berglund, Hübsch and Henningson [BH93; BH95]. In

contrast to Calabi-Yau/Calabi-Yau models or toric/Landau-Ginzburg models, we remark

that in this type of mirror symmetry, there are Landau-Ginzburg models on both A and

B sides.

In this thesis, we consider open Saito potentials as a sum over coefficients νk1,...,kN ,I,d

whose indices are balanced. We refer the reader to Definition 4.1.1 for a more thor-

ough introduction to balancing conditions and the notation. Briefly, however, we define

νk1,...,kN ,I,d to be balanced if:

1. For each i = 1, . . . , N , the integral degree condition holds,

qT
i (2|I| +

N∑
j=1

kj − 1) − 2
∑
µ∈I

Θµ
i −

N∑
j=1

kjΘxj

i − Θroot
j =: −1 − ei ∈ Z.

2. For each i, we have the grading condition

ei = ki mod 2.
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3. We have the dimension condition

|I|∑
i=1

2di +
N∑

i=1
ei = 2|I| +

N∑
j=1

kj − 2.

If any of these conditions are not satisfied, then we take νk1,...,kN ,I,d = 0. These three

numeric conditions seem unpleasant at a first glance. However, these are precisely the

selection rules that we predict will give non-vanishing open FJRW invariants in genus

zero and where ei plays the role of the rank of some vector bundle. This is inspired by

work of Buryak, Clader and Tessler [BCT22a; BCT22b] which establishes an open FJRW

theory for W0 = xr whilst the same is done in [GKT22b] for W0 = xr1
1 + xr2

2 . In both of

these cases, Gross, Kelly and Tessler have proven mirror symmetry statements. We do

not attempt here to develop an open FJRW theory for more general Landau-Ginzburg

models: instead we produce results on wall-crossing from the open B-model and any such

open FJRW theory should match with our results.

Summary - Structure of the Thesis

Chapter 2 contains no new results and is instead a review of closed FJRW theory

as geometric motivation for the thesis. The selection rules in section 2.4 will become

particularly important in later chapters.

Chapter 3 is a review of Saito theory from the perspective of deformations. Using

integration by parts formulas for oscillatory integrals, in the case of any ADE and simple

elliptic singularity we derive expressions for primitive forms and flat coordinates, some

of which are new.

Chapter 4 defines open Saito-Givental theory for any Landau-Ginzburg model,

with descendants, and generalises Definition 4.6 of [GKT22b]. Inspired by the selection
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rules of FJRW theory, we write the open Saito-Givental potentials using balancing con-

ditions. Using the results of Chapter 3, we then construct new examples of open primary

Saito potentials in the chain cases for D4 and E7. We also give new expressions for an

open Saito potential of the cubic in P2 given as W
E

(1,1)
6

= x3
1 + x3

2 + x3
3 = 0. This is

done both in terms of the flat marginal coordinate t and in terms of a q-expansion, where

q = e2πit is a modular parameter. We speculate that this may be useful for an open

analogue of the Landau-Ginzburg / Calabi-Yau correspondence.

Finally, we perform a perturbative calculation of flat coordinates for any Landau-

Ginzburg model in two variables. This is employed in the subsequent chapter.

Chapter 5 begins by illustrating how perturbative calculations of flat coordinates

leads to non-uniqueness of open Saito potentials in the chain case of W
E

(1,1)
7

= x4
1 +

x1x
3
2. We then generalise this structure, concluding with the main results of the thesis:

Theorems 5.3.3 and 5.3.4. These are generalisations of Theorem 4.26 in [GKT22b].

Chapter 6 speculates on definitions for an open FJRW theory such that an analo-

gous mirror theorem holds. We prove some new results concerning concavity of certain

invariants. We also review and use the theory of Coxeter and elliptic Weyl groups to

predict some equivalences in open Saito theories.

Appendix A gives a review of triangle functions necessary for understanding the

modularity property of the open Saito potentials in Chapter 4. Moreover, we provide

details of the computation for the modular expansion of the open Saito potential in this

chapter.

Appendix B contains a minor correction to the proof of Theorem 6.1 in [BB21].
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CHAPTER 2

CLOSED FJRW THEORY

We briefly review an enumerative construction of the Landau-Ginzburg A-model that was

first proposed by Witten [Wit93a] and fully established by Fan, Jarvis and Ruan [FJR08;

FJR11b; FJR13]. Roughly speaking, this is an intersection theory on the moduli space

of solutions to Witten’s equation,

∂ui + ∂W

∂ui

= 0.

Here, the Landau-Ginzburg superpotential W is a quasi-homogeneous polynomial and ui

are sections of an orbifold line bundle over an orbicurve. Let us now explain these notions

in turn.

2.1 Landau-Ginzburg Models

Definition 2.1.1. A Landau-Ginzburg model is a triple (X,W,G) where X is a quasi-

projective variety, W is a regular function on X and G is a group which acts on X such

that W is G-invariant.

We now place several restrictions on the potential W and the group G.

16



2.1.1 Quasi-Homogeneous Polynomials

For the quasi-projective variety, X, we take X = CN and the regular function W must

thus be a polynomial in N variables. We place additional constraints on W so that it

has certain homogeneity properties.

Definition 2.1.2. A polynomial W ∈ C[x1, . . . , xN ] is called quasi-homogeneous if there

exist positive integers c1, . . . , cN , d such that gcd(c1, . . . , cN) = 1 and

W
(
λc1x1, . . . , λ

cNxN

)
= λdW (x1, . . . , xN)

for all λ ∈ C. The positive integers c1, . . . , cN are called weights while d is the degree of

W . The rational numbers qi = ci/d are called the charges of W .

Remark 2.1.3. In regards to Definition 2.1.1, the reason we have chosen to specialise

to X = CN and W a quasi-homogeneous polynomial is natural from supersymmetric

field theory. Indeed, given a supersymmetric action in two dimensions with F -terms

specified by a function W : X → C, it can be shown that W must be holomorphic so

that supersymmetry is preserved. This further implies that the manifold X must be

non-compact so that W is both non-constant and holomorphic. Furthermore, choosing

X to be a (non-compact) Calabi-Yau variety yields a non-anomalous field theory after

quantisation. Finally, to obtain a conformal field theory at fixed points of the renormali-

sation group flow, a sufficient condition is that W is quasi-homogeneous. These physical

considerations justify the choice X = CN and W a quasi-homogeneous polynomial.

Explicitly, we may write W : CN → C via

W (x1, . . . , xN) =
M∑

i=1
αi

N∏
j=1

x
rij

j .

We define the M × N exponent matrix EW via (EW )ij = rij. The condition of quasi-
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homogeneity then implies

EW


c1

...

cN

 =


1
...

1

 d.

Alternatively, written in terms of charges, this becomes

EW


q1

...

qN

 =


1
...

1

 . (2.1.1)

One may view W as a polynomial in CN so that V (W ) is a hypersurface in the weighted

projective space

P(c1, . . . , cN) = (CN \ {0})/C∗ (2.1.2)

where C∗ ⊂ CN acts by a scaling (x1, . . . , xN) 7→ (λc1x1, . . . , λ
cNxN) for λ ∈ C∗.

Definition 2.1.4. A quasi-homogeneous polynomial W with charges q1, . . . , qN is called

non-degenerate if the hypersurface V (W ) has exactly one singularity that is required to be

isolated at the origin. A non-degenerate polynomial is called admissible if W contains no

monomials of the form xixj. An admissible polynomial is called invertible if the number

of variables equals the number of monomials.

Remark 2.1.5. If W is invertible, then in the above notation, we have M = N so that

W (x1, . . . , xN) =
N∑

i=1
αi

N∏
j=1

x
rij

j .

Since there are N monomials, the αi ∈ C can be absorbed into the variables x1, . . . , xN

by a rescaling. Hence, without loss of generality, we set αi = 1.

Non-degeneracy of W implies that V (W ) is quasi-smooth in P(c1, . . . , cN). In other

words, V (W ) has at worst finite quotient singularities so that it is a smooth Deligne-

Mumford stack. Furthermore if W is invertible, the exponent matrix EW is square. From
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equation (2.1.1), the charges are uniquely determined and lie in (0, 1/2) ∩ Q if EW is

invertible.

The classification of invertible polynomials was completed by Kreuzer-Skarke [KS92]

and is described in the following theorem.

Theorem 2.1.6. An admissible polynomialW is invertible if and only if it can be written,

up to a rescaling and relabelling, as a Sebastiani-Thom sum of the following Fermat, chain

and loop polynomials

WFermat = xr, (i)

WChain = xr1
1 x2 + xr2

2 x3 + · · · + xrN
N , (ii)

WLoop = xr1
1 x2 + xr2

2 x3 + · · · + xrN
N x1. (iii)

For details of the Sebastiani-Thom construction, see [Dim92, Chapter 3]. As a result

of this classification theorem, these three types of polynomials are referred to as atomic

type. In this thesis, the Landau-Ginzburg potential W will always be assumed invertible.

2.1.2 Groups of Diagonal Symmetries

In FJRW theory, one also has to make a choice of symmetry group G ≤ Gmax
W for a

Landau-Ginzburg model W .

Definition 2.1.7. The multiplicative group of maximal diagonal symmetries, Gmax
W , of a

Landau-Ginzburg model W is defined as

Gmax
W := {(λ1, . . . , λN) ∈ (C×)N |W (λ1x1, . . . , λnxN) = W (x1, . . . , xN) ∀x1, . . . , xN}.

Via the following proposition given in [Kra10], it is straightforward to give of a de-

scription of Gmax
W .
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Proposition 2.1.8. Let W : CN → C be a Landau-Ginzburg model with exponent

matrix EW . Write

E−1
W =

(
ρ1

∣∣∣ · · ·
∣∣∣ρN

)
, ρk =


φ

(k)
1
...

φ
(k)
N

 .

Then the ρk generate Gmax
W under the action

ρk · xj = e2πiφ
(k)
j xj. (2.1.3)

As a consequence of this proposition and the Kreuzer-Skarke classification, to char-

acterise Gmax
W one needs only calculate E−1

W in the Fermat, chain and loop case. This was

done by Kreuzer [Kre94] and Artebani, Boissière and Sabani [ABS14, Proposition 2].

Proposition 2.1.9. Let W be a Sebastiani-Thom sum of Fermat, chain and loop polyno-

mials, W = ∑n
k=1 Wk. Then Gmax

W is the direct product of the groups Gmax
Wk

. Furthermore,

if W is atomic type, Gmax
W is cyclic of order |det EW | and has the following generators.

1. If W is a Fermat polynomial, W = xr, then Gmax
W is generated by e2πi/r.

2. For W = xr1
1 + · · ·xN−1x

rN
N a chain polynomial, E−1

W is the lower triangular matrix

given by

(E−1
W )ij = (−1)i+j

∏
j≤l≤i

1
rl

for j ≤ i and is zero otherwise. Thus Gmax
W is generated by ρ1 = (φ1, . . . , φN) ∈

(C∗)N where

φj = exp
(

2πi · (−1)N+j
N∏

l=1

1
rl

)
.

3. For W = xr1
1 x2 + · · · + xN−1x

rN
N a loop polynomial with

D = detEW =
N∏

i=1
ri + (−1)N+1
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then E−1
W is given by

(E−1
W )ij =


(−1)N+j−i

D

∏i−1
k=j+1 rk, i > j

(−1)j−i

D

∏N
k=j+1 rk ·∏i−1

l=1 rl, i ≤ j.

Here, we interpret the empty product as having a value of 1. Thus, Gmax
W is generated

by ρ1 = (φ1, . . . , φN) ∈ (C∗)N where

φ1 = exp
(

2πi(−1)N

D

)
, and φi = exp

(
2πi(−1)N+1−i

D
·

i−1∏
l=1

rl

)
, i ≥ 2.

This can be proven by Gaussian elimination with the inverse exponent matrix of chain

polynomial particularly simple to calculate since the matrices are lower triangular in this

case.

Admissibility. In the data of a Landau-Ginzburg model, (CN ,W,G), we consider

choices of G ≤ Gmax
W . Suppose W has weights c1, . . . , cn. In this case, we have the

quasi-smooth hypersurface

V (W ) ⊆ P(c1, . . . , cN) = CN \ {0}
C∗

(2.1.4)

where the C∗ action is given by λ · (x1, . . . , xN) = (λc1x1, . . . , λ
cNxN). For some choice of

G ≤ Gmax
W , one is often interested in the orbifold

V (W )/G ⊆ P(c1, . . . , cN)/G.

However, we see from the right hand side that there are constraints on the choice of G

for this construction to make sense. In particular, we define

J := Gmax
W ∩ C∗ = {(λc1 , . . . , λcN ) ∈ (C∗)N |W (λc1x1, . . . , λ

cNxN) = W (x1, . . . , xN)}
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where the C∗ is the same as that given in (2.1.4). Thus, in order to define FJRW theory,

we require that the choice of subgroup G must contain J .

Definition 2.1.10. A subgroup G ≤ Gmax
W is called admissible if J ≤ G.

Remark 2.1.11. In fact one can show that J = ⟨(e2πiq1 , . . . , e2πiqN )⟩. Indeed, it is

straightforward to verify that (e2πiq1 , . . . , e2πiqN ) ∈ J while the converse inclusion is the

content of Proposition 2.1.8.

2.2 W -Spin Curves

2.2.1 Recollections on Orbifold Structures.

In Satake’s original definition in [Sat57], an orbifold structure on a topological space X

gives an open cover U of X such that for each U ∈ U there is a smooth manifold V , a

smooth finite group G that acts on V , and a continuous map π : V → U which factors

through the quotient to induce a homeomorphism U ∼= V/G. The collection (V,G, π) is

called a uniformising system of U . The uniformising system must be compatible with

the orbifold structure in the following sense.

1. If U ′ ⊂ U are both elements in the open cover U of the orbifold structure on X,

then there exists an injection (V ′, G′, π′) → (V,G, π) of uniformising systems which

we define in a moment.

2. For any p ∈ U1 ∩ U2 with U1, U2 ∈ U , there exists U3 ∈ U such that p ∈ U3 ⊂

U1 ∩ U2.

The definition of an injection of uniformising systems is given as follows. Let U ′ ⊂ U

be open subsets of X with uniformising systems (V ′, G′, π′) and (V,G, π) respectively.

Then the embedding i : U ′ → U is said to induce an injection (V ′, G′, π′) → (V,G, π) of

uniformising systems if there exists an injective τ : G′ → G that is an isomorphism on
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the kernel of the action, and there exists a τ -equivariant open embedding ψ : V ′ → V

such that i ◦ π′ = π ◦ ψ.

An orbifold bundle may be defined using a similar notion of uniformising system for

bundles. However, much like ordinary vector bundles, it is often more convenient to

describe them using transition functions. Indeed, let U be an open cover of X and

let U ′ ⊂ U with U ′, U ∈ U . Given the embedding i : U ′ → U and any injection

(V ′, G′, π′) → (V,G, π), a transition function for an orbifold bundle of rank k is a map

gi : V → Aut(Ck) such that V ′×Ck → V ×Ck given by (x, v) 7→ (i(x), gi(x)v) is an open

embedding and for any composition of injections j ◦ i we have

gj◦i(x) = gj(i(x)) ◦ gi(x). (2.2.1)

The data of the maps gi can be used to reconstruct an orbifold bundle pr : E → X.

Isomorphisms of orbifold bundles may also be given in terms of transition functions:

two collections of transition functions g(1) and g(2) define isomorphic bundles if for any

injection i : (V ′, G′, π′) → (V,G, π) there exist morphisms δV : V → Aut(Ck) such that

g
(2)
i (x) = δV (i(x)) ◦ g(1)

i (x) ◦ (δV (x))−1.

A section of pr : E → X is any continuous map s such that, for (V,G, π) a uniformising

system, s is given locally by a G-equivariant function sV : V → V × Ck and such that

pr ◦ sV = idV .

2.2.2 Marked Orbicurves and Line Bundles.

We now specialise to the case where X = C is a one dimensional orbifold and E = S

is an orbifold line bundle. In FJRW theory and in [CR04], it is useful to define orbifold

structures on C on the level of germs at points rather than open covers. In this case, for

each p ∈ C there is a uniformising system (Vp, Gp, πp) with some compatibility conditions.
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Definition 2.2.1. An orbicurve (C, p1, . . . , pn) is a Riemann surface C with an orbifold

structure at each marked point pi. More precisely, at each marked point there is a group

Gpi
and a canonical isomorphism Gpi

∼= Zmi
.

Definition 2.2.2. An orbicurve is called smooth if the underlying coarse curve |C| is

smooth, where |C| is obtained by forgetting the orbifold structure. We denote this for-

getful morphism by ϱ : C → |C|. Similarly, C is called nodal if |C| is nodal.

Explicitly, the action of Zm on an orbifold line bundle S is constructed as follows.

At non-orbifold points p ∈ C where Gp is trivial, there is nothing to be done. At each

orbifolded point p ∈ C, suppose ∆ ×C is a chart of S with local coordinates (z, s). Then

1 ∈ Gp
∼= Zm acts via

(z, s) 7→
(
e

2πi
m z, e

2πiv
m s

)
(2.2.2)

with e
2πiv

m ∈ U(1) and v ∈ {0, 1, . . . ,m − 1}. In this way, at each orbifold point there is

an induced representation Gp → Aut(S) ∼= U(1).

An important example of an orbifold line bundle is given in the following definition.

Definition 2.2.3. Let ω|C| be the canonical bundle of |C|. The log canonical bundle of

|C| is defined as

ω|C|,log := ω|C| ⊗ O(p1) ⊗ · · · ⊗ O(pn)

where O(pi) is the sheaf of functions which may have simple pole at pi. The log canonical

bundle of C is defined as ωC,log := ϱ∗ω|C|,log.

As described in [FJR13], for smooth orbicurves C one may pushforward an orbifold

line bundle S to the underlying curve |C| by virtue of the fact that the sheaf of locally

invariant sections of S is locally free and of rank one if C is smooth. Thus, we take the

double dual of this sheaf and denote the resulting line bundle over |C| as |S|. If C is

nodal, one may consider |S| as a line bundle on the normalisation of C. Furthermore, a

cohomology theory of orbifolds is established in [CR04] and the following result is shown

in Section 2.1.2 of [FJR13].
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Lemma 2.2.4. The forgetful morphism ϱ : C → |C| induces an isomorphism on coho-

mologies,

H i(C, S) ∼−→ H i(|C|, |S|) (2.2.3)

for i = 0, 1.

Proof. We first define a map H0(|C|, |S|) → H0(C, S). Let s be a holomorphic section

of |S| that has local representative f(u). We thus have that
(
z, zvf(zm)

)
is a local

representative of a holomorphic section ϱ∗(s) of S. At non-orbifolded points, ϱ∗(s) and s

can be identified via Equation (2.2.2). This process can be reversed so that a section of

|S| can be constructed from a section of S.

Similarly, we define a map H1(|C|, |S|) → H1(C, S). To do this, we first define

the map of (0, 1) forms Ω0,1(|S|) → Ω0,1(S) in the same way as above. Explicitly, if

f(u)du is a local section of Ω0,1(|S|), then zvf(zm)mzm−1dz is a local section of Ω0,1(S).

By reversing this process and using the Dolbeault isomorphism, we have the desired

isomorphism H1(|C|, |S|) → H1(C, S).

Definition 2.2.5. Let W = ∑N
i=1

∏N
j=1 x

rij

j be an invertible polynomial. A W -spin curve

is an orbicurve (C, p1, . . . , pn) together with orbifold line bundles S1, . . . , SN , called spin

bundles, and isomorphisms

φi :
N⊗

j=1
S

rij

j
∼−→ ωC,log.

Furthermore, the Sj induce a representation Πpi
: Gpi

→ U(1)N which we require to be

faithful.

We shall explain the requirement of a faithful representation in a moment.

Definition 2.2.6. For each orbifold marked point, pi, we denote

γi = Πpi
(1) =

(
e2πiΘγi

1 , . . . , e2πiΘγi
N

)

Such group elements are called decorations at pi and the associated Θγi =
(
Θγi

1 , . . . ,Θγi
N

)
are called phases.
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In a moment we will give an example of the phases Θγ for the potential W = xr. For

more general potentials, we calculate the phases using mirror symmetry in Chapter 4.

Furthermore, the phases may also be thought of as twists in the sense of the following

result [FJR13, Proposition 2.1.24].

Proposition 2.2.7. Let W be a quasi-homogeneous singularity with matrix of exponents

EW = (rij). Given a W -spin curve on a smooth orbicurve (C, p1, . . . , pk), there are

induced isomorphisms

N⊗
j=1

|Sj|rij ∼= ω|C|,log ⊗ O
(

−
k∑

l=1

N∑
j=1

rijΘγl
j pl

)
∼= ω|C| ⊗ O

(
−

k∑
l=1

N∑
j=1

(rijΘγl
j − 1)pl

)

for each i = 1, . . . , N .

Example 2.2.8. We will illustrate some of the ideas using the potential W = xr. This

ultimately reproduces r-spin theory of Jarvis, Kimura and Vaintrob [JKV01]. An xr-

structure is a choice of orbicurve (C, p1, . . . , pk) and isomorphism S⊗r → ωC,log. Further-

more, we have

ωC,log = ω|C|,log.

This is because given an orbifold point p with local group Gp
∼= Zm and local coordinate

z, the sheaf ωC,log is generated by dz
z

, while ω|C|,log is generated by dx
x

with x = zm.

However, we note that ωC,log

dx

x
= m

dz

z

and that this is invariant under the Zm action given in (2.2.2). Now since ωC,log ∼= S⊗r,

from the second coordinate in the action (2.2.2) we have must have v
m

= l
r

for some

l ∈ {0, 1, . . . , r − 1}. Thus, we have that the phases for γl are given by

Θγl = l

r
.
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Thus Proposition (2.2.7) gives an isomorphism

|S|r ∼= ω|C|,log ⊗ O
(

−
k∑

l=1
rΘγlpl

)
. (2.2.4)

This isomorphism is the required data in the definition of r-spin curves.

Moreover, the following lemma is proven in Lemma 2.1.18 of [FJR13].

Lemma 2.2.9. Each decoration γ is an element of Gmax
W .

Proof. Recall that we have isomorphisms φi : Sri,1
1 ⊗ · · · ⊗ Sri,N

N → ωC,log. We have seen

in the previous example the local groups act trivially on ωC,log. However, γ ∈ Gp acts

on Sri,1
1 ⊗ · · · ⊗ Sri,N

N as exp
(
2πi∑j rijΘγ

j

)
. Since the representation is faithful, we must

have ∑j rijΘγ
j ∈ Z. For W = ∑N

i=1
∏N

j=1 x
rij

j , we thus have that γ ∈ Gmax
W .

2.3 Stacks of Stable W -Spin Curves

To define a moduli space of W -spin curves, we need an appropriate notion of morphism

of such curves.

Definition 2.3.1. Given two W -spin curve structures, (C, p1, . . . , pn, {Sj}, {φj}) and

(C, p1, . . . , pn, {S ′j}, {φ′j}), we note that morphisms ξj : Sj → S ′j induce morphisms

Ξi :
N⊗

j=1
S

rij

j →
N⊗

j=1
(S ′j)rij

for each i since equation (2.2.1) behaves naturally under tensor products. An isomorphism

of W -spin curves is a collection of orbifold bundle isomorphisms ξi : Sj → S ′j such that

φi = φ′i ◦ Ξi.

Roughly speaking, to obtain a compact moduli space, one needs as usual to add stable

orbicurves to the stack of smooth curves.

Definition 2.3.2. An orbicurve is called stable if the underlying coarse curve is stable.
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Definition 2.3.3. A genus g, n-pointed stable W -spin orbicurve over a base T is a flat

family of genus g, n-pointed stable orbicurves C → T with markings Pi ⊂ C and

sections σi : T → Pi together with orbifold line bundles {Sj} on C and isomorphisms

φi : ⊗N
j=1 S

rij

j
∼−→ ωC/T,log where ωC/T,log is the relative log-canonical bundle. We require

that ({Sj}, {φj}) induce a W -spin structure on every fibre Ct.

Definition 2.3.4. We denote the stack of stable W -spin orbicurves by MW

g,k.

Remark 2.3.5. There is an isomorphism MW
g,k

∼= M1/r
g,k for W = xr where M1/r

g,k is the

stack of r-spin curves. This is shown in section 2.4 of [FJR11a] as a consequence of

Proposition 2.2.7 applied on the smooth locus. The isomorphism also holds for nodal

curves but the details are more tedious. For details, see section 4 of [AJ03].

A crucial component of the enumerative theory is the natural forgetful morphism

st : MW

g,k → Mg,k defined by forgetting the spin bundles and orbifold structure. For

g = 0, the map st is a bijection of sets, but not of stacks since W -spin have extra

automorphisms. However, Fan, Jarvis and Ruan prove the following theorem.

Theorem 2.3.6. The morphism st is flat, proper and quasi-finite.

This ensures that MW

g,k is smooth and compact as an orbifold or a Deligne-Mumford

stack, and that the dimensions of MW
g,k and Mg,k coincide. The above theorem also

ensures that the moduli space MW
g,k has a universal curve Cg,k → MW

g,k that can be

constructed from the universal curve of Mg,k. See Theorem 2.2.6 of [FJR13].

The orbifold structure along with each decoration γi is locally constant and is thus

constant for each component of MW
g,k. Thus, for γ1, . . . , γk ∈ Gmax

W there is a decomposi-

tion into open and closed substacks,

MW
g,k =

⊕
γ1,...,γk∈Gmax

W

MW
g,k(γ1, . . . , γk)

in which the decoration of the marked point pi is γi.
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Proposition 2.3.7. Fix an invertible polynomial W with charges q1, . . . , qN . Then

MW

g,k(γ1, . . . , γk) is non-empty if and only if

qj(2g − 2 + k) −
k∑

l=1
Θγl

j ∈ Z

for each j = 1, . . . , N and where γ1, . . . , γk ∈ Gmax
W with γl =

(
e2πiΘγl

1 , . . . , e2πiΘγl
N

)
The key idea of the proof here is that given the line bundles Si of a W -spin curve,

due to the isomorphism in the data of a W -spin curve, we have

N∑
j=1

rij deg |Sj| = qj(2g − 2 + k) −
N∑

j=1

k∑
l=1

rijΘγl
j .

Since qj satisfy ∑N
j=1 rijqj = 1, we have

deg |Sj| = qj(2g − 2 + k) −
k∑

l=1
rijΘγl

j .

As a degree of a line bundle, this must be an integer. The converse is slightly more

involved and we refer the reader to [FJR13].

Example 2.3.8. Let us briefly illustrate these ideas in the r-spin case. To calculate the

degree of the bundle |S|, we use the isomorphism of (2.2.4). Indeed equating degrees of

both sides of this isomorphism, we have

r · deg |S| = degω|C|,log − r
k∑

l=1
Θγl .

By a calculation using the Riemann-Roch theorem, we find

degω|C|,log = 2g − 2 + k.
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Thus, we indeed find that

deg |S| = 1
r

(2g − 2 + k) −
k∑

l=1
Θγl

which, as a degree of a line bundle, must be an integer.

2.4 FJRW Cohomological Field Theory

2.4.1 The Chiral Ring

The input data for FJRW theory is a quasi-homogeneous, invertible and non-degenerate

W and is defined for a choice of subgroup G ≤ Gmax
W . In summary, the most general

A-model state space is given by the following.

Definition 2.4.1. Let G be an admissible subgroup of Gmax
W . Define the fixed locus of

γ ∈ G by

Fix(γ) := {(a1, . . . , aN) ∈ CN | γ(a1, . . . , aN) = (a1, . . . , aN)}.

with dimension Nγ := dimC Fix(γ). The A-model state space is defined as

HW,G :=
⊕
γ∈G

(
HNγ

(
Fix(γ),

(
W |Fix(γ)

)∞
;C
))G

where, for R ≫ 0, we have defined

(
W |Fix(g)

)∞
:=
(

Re
(
W |Fix(g)

))−1
(R,∞).

In general, FJRW theory can be defined for any admissible subgroup G ≤ Gmax
W .

However, it is not currently known how to define a corresponding B-model if G ̸= Gmax
W .

Hence, in the following discussion, the choice of admissible subgroup will be Gmax
W .
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In [CR04], an orbifold analogue of Poincaré duality is proven. Hence,

HW,Gmax
W

∼=
⊕

γ∈Gmax
W

(
HNγ

(
Fix(γ),

(
W |Fix(γ)

)∞
;C
))Gmax

W

.

Thus, we will write the state space as

HW,Gmax
W

=
⊕

γ∈Gmax
W

Hγ

with

Hγ =
(
HNγ

(
Fix(γ),

(
W |Fix(γ)

)∞
;C
))Gmax

W

.

2.4.2 A Glimpse of Intersection Theory

In [FJR13], a virtual fundamental cycle is constructed

[MW
g,k]vir ∈ H∗(M

W
g,k,C) ⊗

k∏
i=1

Hγi
.

The following theorem is then proven.

Theorem 2.4.2. Let Li denote the tautological line bundles over Mg,k whose fibre at

each point (C, p1, . . . , pk) ∈ Mg,k is the cotangent space T ∗pi
C. Denote ψi = c1(Li). Define

ΛW
g,k,d : H ⊗k

W,Gmax
W

→ H∗(Mg,k) by

ΛW
g,k,d(α1, . . . , αk) = |Gmax

W |g

deg(st)PD st∗
(

[MW
g,k]vir ∩

k∏
i=1

αi

)
∪

k∏
i=1

ψdi
i

with αi ∈ Hγi
and PD the Poincaré dual. Then the maps ΛW

g,k,d define a cohomological

field theory in the sense of Kontsevich-Manin [KM94].

As usual with enumerative theories, the technical details required to construct the

virtual fundamental cycle make computations difficult. Fortunately, there exists a drastic

simplification, under some fairly mild assumptions, which we presently explain.
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Definition 2.4.3. Sectors of the state space where Fix(γ) = {0} are called narrow.

Otherwise the sector is called broad.

Example 2.4.4. For the potential W = xr we have Gmax
W = µr, the rth roots of unity.

We have already calculated the phases

Θγl = l

r

for l = 0, 1, . . . , r − 1. Hence γl = e2πiΘγl ̸= 1 for l ̸= 0. Hence, all insertions in r-spin

theory with l ̸= 0 are narrow.

The property of being narrow is important for the following reason in genus zero.

Theorem 2.4.5. Suppose each γi is narrow and let (S1, . . . , SN) be the universal line

bundles of the universal W -spin genus zero curve defined over the universal curve π :

C0,k → MW

0,k. Suppose π∗
(⊕N

i=1 Si

)
= 0. Then

[MW
0,k]vir = e

( N⊕
i=1

(R1π∗Si)∨
)

∩ [MW
0,k]

where e represents the Euler class.

For convenience, we define the Witten bundles Wi := (R1π∗Si)∨ so that the total

Witten bundle is defined as

W =
N⊕

i=1
Wi.

Denote W(γ) to be the restriction of W to MW

0,k(γ1, . . . , γk). Thus, given the hypotheses

of Theorem 2.4.5, we may think of this intersection theory as an integral:

⟨τ γ1 · · · τ γk⟩ :=
∫

[MW
0,k]

e
(
W(γ)

)
=
∫

[M0,k]
st∗e

(
W(γ)

)
. (2.4.1)

Remark 2.4.6. We may also restrict the virtual fundamental class to its components

[MW

0,k(γ1, . . . , γk)]vir so that the genus zero intersection numbers can be written more
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compactly,

⟨τ γ1 · · · τ γk⟩ =
∫

[MW
0,k(γ1,...,γk)]vir

1.

We have specialised to genus zero so that the Witten bundle is indeed a vector bundle

with fibers
N⊕

i=1
H1(C0,k, S)∨ ∼=

N⊕
i=1

H1(|C0,k|, |S|)∨

where we have used the isomorphism in equation (2.2.3) induced by the forgetful mor-

phism ϱ : C0,k → |C0,k|.

From dimension considerations in equation (2.4.1), we match the degree of e(W) with

the real dimension of MW
0,k. We note that, as the top Chern class, the degree of e(W) is

2 rk W . Consequently, to define a non-vanishing FJRW invariant, we must have that

rk W = dimC M0,k.

This is an example of what we will call a selection rule later in the thesis.
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CHAPTER 3

CLOSED SAITO-GIVENTAL THEORY AND
LANDAU-GINZBURG MIRROR SYMMETRY

Saito theory was originally developed in the works of Saito, Sekiguchi and Yano [SSY80;

Sai93]. These authors considered Frobenius structures of orbit spaces of finite Coxeter

groups. Equivalently, one may consider Saito theory as endowing a singularity W with

a Frobenius structure by deforming W . This is the approach that is useful from the per-

spective of mirror symmetry in this thesis. Indeed, much like the B-model that computes

Gromov-Witten invariants of Fano varieties as summarised in [Gro11], Saito theory for

quasi-homogeneous polynomials W is described by the following period integrals

∫
Ξ
eWs/ℏζ.

Here, Ξ is a standard good basis element of the Landau-Ginzburg B-model state space,

Ws is versal deformation of W0 and ζ is a primitive form. We shall describe each of

these notions in turn using Saito’s original work on higher residues, after which we shall

explain the modern interpretation using oscillatory integrals. Finally, we review the

mirror symmetry construction of Berglund, Hübsch and Krawitz that interprets Saito

theory as B-model that is mirror to FJRW theory.
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3.1 Saito Theory Via Deformations

In this section, we give an exposition of Saito theory as established in [Sai81; Sai83a;

Sai83b]. However, we use the modern formulation in terms of Frobenius manifolds and

flat coordinates. For a more detailed exposition, we refer the reader to [Her02] and

[Sab07].

3.1.1 Simple and Elliptic Singularities

We start by describing the most basic types of quasi-homogeneous singularity from Chap-

ter 2. These are the simple singularities

WAr = xr+1
1 , r ≥ 1,

WDr = xr−1
1 + x1x

2
2, r ≥ 4,

WE6 = x3
1 + x4

2,

WE7 = x3
1 + x1x

3
2,

WE8 = x3
1 + x5

2,

and simple elliptic singularities

W
E

(1,1)
6

= x3
1 + x3

2 + x3
3,

W
E

(1,1)
7

= x4
1 + x4

2,

W
E

(1,1)
8

= x6
1 + x3

2.

We note that Theorem 2.1.5 implies that all these polynomials are invertible. One char-

acterisation of simple and elliptic singularities is in terms of the central charge,

cW :=
N∑

i=1
(1 − 2qi)
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of a quasi-homogeneous polynomial W with qi = deg xi. Simple singularities are char-

acterised by 0 < c < 1 while elliptic singularities are characterised by c = 1. We note,

however, that this labelling of quasi-homogeneous polynomials by Dynkin diagrams is

not one-to-one. We refer to the full list in Part II of [AGV12]. See also Table 1 of [MS16]

for elliptic singularities. We illustrate this by briefly explaining a link between singularity

theory and Lie algebras.

Blow Ups and Du Val Singularities.

Via blow ups, we first resolve the singular variety X defined by the vanishing of the du

Val singularity W . In this way, we obtain a non-singular variety X̃. Subsequently, we

consider an intersection graph of the corresponding exceptional divisors. It is instructive

to do this for singularities of type Ar.

Example 3.1.1. Consider the A1 singularity

W = z2 + x2 + y2

with X := V (W ). Here, we have used a Morse stabilisation. We shall explain and justify

this later. We now embed X ⊂ C3 so that the blow up is also embedded,

X̃ ⊂ Bl0C3 = {(x, y, z), [s : t : u] ∈ C3 × P2 |xt = sy, xu = sz, tz = uy}.

The blow up Bl0C3 comes with a projection map π : Bl0C3 → C3. Recall that the proper

transform, Y , of X is defined to be the Zariski closure of π−1(X\{0}) in Bl0C3. Now, Y is

covered by the three standard open affines sets, with s = 1, t = 1 and u = 1 respectively.

For the open affine where u = 1, we find x = sz and y = tz in Bl0C3. In these coordinates

the A1 singularity reads

z2(s2 + t2 + 1) = 0.

There are now two irreducible components defined by z = 0 and s2 + t2 +1 = 0. We recall

36



the exceptional divisor is defined by E := Y ∩π−1({0}). The component z = 0 corresponds

to π−1(0), while on the other hand, the proper transform Y is given by s2 + t2 + 1 = 0.

For the A1 singularity, E is a smooth curve in P2 defined by s2 + t2 + u2 = 0. This is

verified by considering the other affine opens where t = 1 and s = 1. Observe that in

this case E is isomorphic to P1. Indeed, via the genus-degree formula, we find that the

genus of E is zero. As a graph, we represent the A1 singularity by a single vertex.

Consider now the A2 singularity, W = z3 +x2 +y2. With the same notation as before,

we find

z2(s2 + t2 + z) = 0

for the open affine where u = 1. To find the exceptional divisor E, we set z = 0 which im-

plies x = y = 0. In this chart, E is therefore given by the line La = {(0, 0, 0), [a,±ia, 1] :

a ∈ C}. In the chart where s = 1 we have

x2(1 + t2 + xu3) = 0.

Similar to the above, E in this chart is given by the line Lb = {(0, 0, 0), [1,±i, b]|b ∈ C}.

This is the same line as La viewed in this chart. There is no need to consider the chart

where t = 1; by symmetry this will give the same result as s = 1. Considering the limit

b → ∞ or equivalently b−1 → 0, we find that Lb becomes the point {(0, 0, 0), [0, 0, 1]|}.

This is the same as taking a = 0 in La. Hence, we find that E is two projective lines

intersecting at {(0, 0, 0), [0, 0, 1]|}. It is readily verified that this point is a non-singular

point of the proper transform. Hence, we have found a resolution of the A2 singularity.

The intersection graph is then two vertices joined by a single edge.

For the Ar singularity, with r > 2, the intersection point {(0, 0, 0), [0, 0, 1]|} is in fact

a singular point of type Ar−2. One may blow up again and repeat the above procedure

inductively to find the corresponding Dynkin diagram for Ar.

Example 3.1.2. We first consider the singularity W = x2 +y3 +z3. In the same notation
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as above, in the chart where u = 1 we find the equations

x2 + y3 + z3 = 0

xt = sy

x = sz

tz = y

which we solve to find z2(s2 + t3z + z) = 0. The proper transform is thus the singular

surface

s2 + z(t3 + 1) = 0.

The exceptional divisor occurs when z = 0 which implies s = 0. This gives a copy of P1

which we call E0. In the other two charts where s = 1 and where t = 1 respectively, we

obtain

1 + x(u3 + t3) = 0, s2 + y(u3 + 1) = 0.

Thus, we observe that the only singularities were in the first chart, where u = 1, s = z = 0

and t3 + 1 = 0. We claim that these are A1 singularities. Indeed, one may calculate the

ideal generated by the partial derivatives for this singularity and compare to the A1

singularity. We now blow up again since we wish to calculate the intersection graph. To

this end, we blow up the curve

x̃2 + z̃(ỹ3 + 1) = 0.

We let ζ satisfy ζ3 = −1. Define the translation ỹ1 := ỹ − ζ so that the above surface

becomes

x̃2 + z̃(ỹ3
1 + 3ỹ2

1ζ + 3ỹ1ζ
2) = 0

and is now singular at the origin in these coordinates. Blowing up in the ũ = 1 chart we
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find

s̃2 + z̃2t̃3 + 3ζb̃2z̃ + 3ζ2t̃ = 0.

The exceptional divisor E1 is given by the intersection of this with z̃ = 0. Thus, E1 is

given by s̃2 + 3ζ2t̃ = 0 which is again a copy of P1. Intersecting E0 and E1 we find the

point given by s̃ = t̃ = z̃ = 0. There are three copies of E1 corresponding to the three

possible ζ values. The intersection graph of W = x2 + y3 + z3 is shown in Figure 3.1 and

coincides with the Dynkin diagram for D4.

One may apply the same procedure to WD4 = x2 + y2z+ z3, although we omit details

here. The exceptional divisor E in this case is again a copy of P1. There is no intersection

of E with the blow up in the chart with s = 1; for t = 1 we find

s2 + yu+ yu3 = 0.

This is an A1 singularity. For the chart where u = 1 we have

s2 + zt2 + z = 0.

This has two singular points, s = 0, t = ±i, z = 0 which are both A1 type.

Figure 3.1: The intersection graph for both (WD4)Fermat = x2 + y3 + z3 and (WD4)Chain =
x2 + y2z+ z3. The middle vertex corresponds to the line E0. This intersects three copies
of the line E1 corresponding to the three edges in the above Dynkin diagram.

One may repeat this procedure for each case and show that each intersection graph

coincides with the corresponding Dynkin diagram. This procedure can be extended to

simple elliptic singularities. We refer the reader to [Rei97, Chapter 4] and [Dim92, Ap-

pendix A].
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3.1.2 The Local Algebra

Classifying generic singularities using Dynkin diagrams is in general a rather difficult

problem. Thus, we return to Definition 2.4.1 where the chiral ring for the A-model of a

singularity W was given as

HW,G :=
⊕
γ∈G

(
HNγ

(
Fix(γ),

(
W |Fix(γ)

)∞
;C
))G

.

Currently, the full B-model of enumerative Saito-Givental theory is defined only for the

trivial group G = {1}. Consequently, we make the following definition.

Definition 3.1.3. The B-model chiral ring is defined as

HW := HN
(
CN ,W∞;C

)
.

This defines theB-model chiral ring as a vector space. The main goal of this subsection

is to endow HW with the structure of a Frobenius algebra. We start by defining a pairing.

Lemma 3.1.4. There is a well defined perfect pairing

η : HW ⊗ HW → C.

Proof. We first observe that there is a pairing

HN(CN ,W−∞;C) ⊗HN(CN ,W∞;C) → C (3.1.1)

given by the usual intersection pairing of cycles in homology. Here, we set W−∞ :=

(ReW )−1(−∞,−R) with R ≫ 0. We explicitly describe this pairing on basis elements.

Such homology groups have a basis of Lefschetz thimbles ∆±i ∈ HN(CN ,W±∞;C). These

cycles are constructed by deforming W to a holomorphic Morse function Ws and taking

preimages of non-intersecting paths in C which start at critical values ofWs. Furthermore,

we assume these paths are open and horizontal in the direction Re Ws = ±∞. The
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Lefschetz thimbles satisfy

∆−i ∩ ∆+
j = δij.

Hence this pairing is perfect. We now show that

HN(CN ,W∞;C) ∼= HN(CN ,W−∞;C). (3.1.2)

Indeed, if W has degree d and weights c1, . . . , cN , choose any ξ ∈ C such that ξd =

−1. Multiplication by the diagonal matrix diag(ξc1 , . . . , ξcN ) defines a map CN → CN

sending W∞ to W−∞. This map induces the required isomorphism (3.1.2) on the relative

homology.

Thus, from (3.1.1) we obtain a pairing

HN(CN ,W∞;C) ⊗HN(CN ,W∞;C) → C.

Poincaré duality on Chen-Ruan cohomology [CR04, Propsoition 3.3.1] implies that the

relative cohomology group HN(CN ,W∞;C) is dual to HN(CN ,W∞;C). Thus, by dual-

ising, we obtain a perfect pairing as required.

Although we have defined a pairing, we also require HN(CN ,W−∞;C) to have a ring

structure. We do this by giving a different presentation of the chiral ring.

Proposition 3.1.5. Let W be a Landau-Ginzburg model. Then the B-model state space

HW is isomorphic to the local algebra DW :

HW
∼= DW := C[x1, . . . , xN ]〈

∂W
∂x1
, . . . , ∂W

∂xN

〉 · dNx.

Here dNx = dx1 ∧ · · · ∧ dxN .

Proof. Consider the long exact sequence of relative homology of the pair (CN ,CN
t ) where

we define CN
t := CN ∩W−1(t) as the Milnor fibre. Since CN is contractible, we have that
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HN+1(CN ;Z) = HN−1(CN ;Z) = 0. In particular, we see that the connecting morphism

HN(CN ,CN
t ;Z) → HN−1(CN

t ;Z) in the long exact sequence for relative homology is

an isomorphism. Furthermore, the rescaling (x1, . . . , xN) 7→ (λc1x1, . . . , λ
cNxN) induces

the isomorphism HN(CN ,W∞;Z) ∼= HN(CN ,CN
t ;Z). Then tensoring with C and using

Poincaré duality on Chen-Ruan cohomology gives

HN(CN ,W∞;C) ∼= HN(CN ,CN
t ;C) ∼= HN−1(CN

t ;C).

Now, a theorem of Wall [Wal80a; Wal80b] shows that in fact,

HN−1(CN
t ;C) ∼=

ΩN
CN

dW ∧ ΩN−1
CN

= Γ
(
CN , coker(ΩN−1

CN

dW∧−−−→ ΩN
CN )

))
. (3.1.3)

Here, we implicitly use the analytic topology so that Ωp
CN is the sheaf of differential p-

forms on CN . Observe that the above map given in the cokernel above is described in

local coordinates (x1, . . . , xN) by

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxN 7→ ∂W

∂xi

dx1 ∧ · · · ∧ dxN .

Thus, we find that the state space is given as

HN(CN ,W∞;C) ∼=
C[x1, . . . , xN ]〈
∂W
∂x1
, . . . , ∂W

∂xN

〉 · dNx

as desired.

The following result describing the perfect pairing η on the local algebra is originally

due to Cecotti [Cec91] and is stated precisely in Proposition 2.12 of [FS13].

Lemma 3.1.6. Define a pairing

DW ⊗ DW → C,
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given by the residue map

(f · dNx, g · dNx) 7→ Res
xi=0

(
fg∏N

i=1 ∂iW
· dNx

)
= 1

(2πi)N

∫
C

fg∏N
i=1 ∂iW

· dNx

where C is the boundary of a polydisc containing the origin in CN . This pairing is induced

by the intersection pairing η : HW ⊗ HW → C via the isomorphism HW
∼= DW .

The following result is then well-known. See [Dub96; Dub99] for example.

Proposition 3.1.7. The local algebra DW with usual ring structure and residue pairing

η is a Frobenius algebra.

3.1.3 Families of Frobenius Algebras

We start by using a deformation of quasi-homogeneous superpotentials.

Definition 3.1.8. Let W be a Fermat, chain or loop polynomial. Suppose B is an index

set such that {xµ}µ∈B is a basis of the local algebra. For s = (sµ)µ∈B ∈ CB, where

|B| = dim DW , a versal deformation of such a polynomial is

Ws = W +
∑
µ∈B

sµx
µ.

Remark 3.1.9. A priori, there are of course many different choices for the basis of

the local algebra. Later, we will choose a specific basis according to [HLSW22] that is

canonical for our purpose of mirror symmetry.

Example 3.1.10. Consider the potential W = xr+1. The local algebra is

DW = C[x]
(xr) · dx.

One choice of basis is {1, x, . . . , xr−1} with corresponding versal deformation

Ws = xr+1 + s0 + s1x+ · · · + sr−1x
r−1.
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Proposition 3.1.11. There is an isomorphism of C[s]-modules

n⊕
i=1

C[s] ∂
∂si

→ C[s][x1, . . . , xN ]〈
∂Ws

∂x1
, . . . , ∂Ws

∂xN

〉 .

Proof. The required isomorphism is defined on generators as ∂
∂si

7→
[

∂Ws

∂si

]
.

The above map is called the Kodaira-Spencer isomorphism. One may define an anal-

ogous residue pairing

ηWs : C[s][x1, . . . , xN ]〈
∂Ws

∂x1
, . . . , ∂Ws

∂xN

〉⊗2

→ C[s], ηWs(f, g) = 1
(2πi)N

∫
C

fg∏N
i=1 ∂iWs

· dNx

where C is the boundary of a polydisc containing all the critical points {x ∈ CN : ∂Ws

∂xi
=

0 for each i}.

In [Sai93], Saito found special parameters t1, . . . , tn. such that the following result

holds.

Theorem 3.1.12. There exists a change of coordinates s 7→ t such that

ηWs

∂Ws(t)

∂tµ
,
∂Ws(t)

∂tν

 ∈ C.

Via the Kodaira-Spencer isomorphism, we move this flat pairing to ⊕n
i=1 C[s] ∂

∂si
. In

this way, we obtain a flat family of Frobenius algebras parameterised by s. The aim

of the rest of section 3.1 is to more precisely interpret the tµ as flat coordinates for

a certain Frobenius manifold. Moreover, this Frobenius structure is conformal: in the

case of Landau-Ginzburg models this means there is a grading induced by the quasi-

homogeneous W which we explain in the following definition.

Definition 3.1.13. Let W be a quasi-homogeneous polynomial of degree 1 where xi

has degree qi for i = 1, . . . , N . Let {xµ}µ∈B be a basis of the local algebra with versal
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deformation Ws. We define a grading on C[x1, . . . , xN ][{sµ}µ∈B] given by deg xi := qi and

deg sµ := 1 − deg xµ = 1 −
N∑

i=1
µi deg xi

so that Ws is also quasi-homogeneous of degree one. The vector field given by

E :=
∑
µ∈B

sµ deg sµ
∂

∂sµ

+
N∑

i=1
xi deg xi

∂

∂xi

we call a grading operator. We may restrict E to C[{sµ}µ∈B] giving the Euler vector field,

E :=
∑
µ∈B

sµ deg sµ
∂

∂sµ

.

3.1.4 Hypercohomology and The Brieskorn Lattice.

There is another useful description of the state space that is given by hypercohomology. A

standard introduction to hypercohomology and spectral sequences in terms of homological

algebra is given in Chapters 15 and 17 of [CE99].

Proposition 3.1.14. We have the following isomorphism

Hi
(
CN , (Ω•CN , dW∧)

)
=


DW , i = N,

0, i ̸= N.

Proof. We use the hypercohomology spectral sequence where one can show that

Ep,q
2 := Hq(CN ,Hp(Ω•CN , dW∧)) =⇒ Hp+q

(
CN , (Ω•CN , dW∧)

)

where Hq is the cohomology of (Ω•Cn , dW∧) and Hp is sheaf cohomology. One can induc-

tively show that Hp(ΩCN , dW∧) = 0 for p < N . See Example 2.32 of [Gro10]. For p = N

we have already seen that

HN(Ω•CN , dW∧) ∼= DW .
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Since W has isolated critical points, the sheaf HN(ΩCN , dW∧) is supported on a zero

dimensional space. Given that Hp(ΩCN , dW∧) is only non-trivial for p = N on which its

support is zero dimensional, the hypercohomology spectral sequence degenerates at E2.

In other words, Ep,q
2 = 0 for all q > 0. Thus, by Theorem 5.12 [CE99, Chapter 15], we

have that HN
(
CN , (Ω•CN , dW∧)

) ∼= EN,0
2 . This isomorphism reads

HN
(
CN , (Ω•CN , dW∧)

) ∼= H0(Cn,HN(ΩCN , dW∧)) ∼= Γ
(
CN , coker(ΩN−1

CN

dW∧−−−→ Ωn
CN )

)

while the other hypercohomologies Hp
(
CN , (Ω•CN , dW∧)

)
vanish for p ̸= N .

To obtain the full cohomological field theory, the Frobenius algebra pairing on the

B-model chiral ring is not sufficient. Hence, by modifying the above hypercohomology

group, we define a new pairing using the twisted de Rham complex (Ω•CN , ℏd+ dW∧).

Definition 3.1.15. Let ℏ ∈ C∗. The Brieskorn lattice as a C[ℏ]-module is defined as the

hypercohomology group H•
(
CN , (Ω•CN , ℏd+ dW∧)

)
.

Lemma 3.1.16. The Brieskorn lattice is only non-trivial for i = N in which case we

have the following isomorphism:

HN
(
CN , (Ω•CN , ℏd+ dW∧)

) ∼= HN(Γ(CN ,Ω•CN ), ℏd+ dW∧).

Proof. We use another hypercohomology sequence

Ep,q
1 = Hp(Hq(CN ,Ω•CN ), ℏd+ dW∧) =⇒ Hp+q

(
CN , (Ω•CN , ℏd+ dW∧)

)
.

Now, CN is affine and Ωr
CN is a coherent sheaf. Therefore, by Serre’s vanishing theorem,

we have that Hq(CN ,Ω•CN ) = 0 for q > 0. Thus, the spectral sequence degenerates at the

E1 term and so we have that Ep,0
1

∼= Hp
(
CN , (Ω•CN , ℏd+ dW∧)

)
. This is only non-trivial

in the case p = N .
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Corollary 3.1.17. The Brieskorn lattice is isomorphic to

H (0)
W = ΩN

CN [[ℏ]]
(ℏd+ dW∧)ΩN−1

CN [[ℏ]]
.

By setting ℏ = 0, we see that

DW
∼= H (0)

W /ℏH (0)
W .

The above corollary shows that, as sets, we may consider DW ⊆ H (0)
W . Later on,

Lemma 3.2.2 shows that this containment holds as C[ℏ]-modules.

Remark 3.1.18. Since the complexes (Ω•CN , ℏd + dW∧) and (Ω•CN , d + ℏ−1dW∧) are

quasi-isomorphic, we have that

HN
(
CN , (Ω•CN , ℏd+ dW∧)

) ∼= HN
(
CN , (Ω•CN , d+ ℏ−1dW∧)

) ∼=
ΩN

CN [[ℏ]]
(d+ ℏ−1dW∧)ΩN−1

CN [[ℏ]]
.

Example 3.1.19. It is instructive to illustrate these ideas with the example of the sin-

gularity W = xr. From the above corollary and remark, it is enough to compute the

cohomology of the complex

0 → Ω0
C[[ℏ]] d+h−1dW∧−−−−−−→ Ω1

C[[ℏ]] → 0

so that

H1
(
C, (Ω•C, d+ ℏ−1dW∧)

) ∼=
Ω1

C[[ℏ]]
(d+ ℏ−1dW∧)Ω0

C[[ℏ]] .

We note that

(d+ ℏ−1dW ) · 1 = ℏ−1rxr−1dx.

We also observe that

(d+ ℏ−1dW ) · xa = (axa−1 + ℏ−1rxa+r−1)dx
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for a > 0. Thus, we find the relations

xr−1dx = 0,

xa−1+rdx = −ℏ
a

r
xa−1dx.

The first of these is the usual relation arising in the local algebra for W = xr whilst the

second is an ‘integration by parts’ formula.

Remark 3.1.20. The local algebra is invariant up to isomorphism if one rescales the

holomorphic volume form ω = dNx 7→ Cω for C ∈ C∗. Thus the pairing defined above is

also invariant if one changes the cycles accordingly.

3.1.5 The Gauss-Manin Vector Bundle

In this section, we define the Gauss-Manin vector bundle and equip it with a connection.

We furthermore define higher residue pairings as this will be essential to be able to define

a primitive form. We mostly follow the material presented in [LLS14].

Definition 3.1.21. Let W be a Landau-Ginzburg model with Ws a versal deformation

and index set B. Suppose M is a small ball in CB. The Gauss-Manin vector bundle is

given by the sheaf of OM [ℏ]-modules

H (0)
Ws

:=
ΩN

CN×M/M [[ℏ]]
(ℏd+ dWs∧)ΩN−1

CN×M/M [[ℏ]]

where ΩN
CN×M/M is a sheaf of relative differential N -forms.

One can show that H (0)
Ws

is a locally free sheaf of rank n on M × D∗ where D∗ is a

punctured disk in C with coordinate ℏ. More precisely, for an open U ⊂ M × D∗, we

have an isomorphism

H (0)
Ws

|U ∼=
⊕
µ∈B

OM×D∗|U · xµdNx. (3.1.4)
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On this bundle we have the Gauss-Manin connection, ∇ : T (M × D∗) × H (0)
Ws

→ H (0)
Ws

where T (M×D∗) is the holomorphic tangent bundle of M×D∗. For ζ a section of H (0)
Ws

,

the connection ∇ is defined via

∇∂sµ
ζ = ∂ζ

∂sµ

+ 1
ℏ
∂Ws

∂sµ

ζ, ∇∂ℏζ = ∂ζ

∂ℏ
− 1

ℏ2Wsζ.

Higher Residues. We present a simplified theory of the higher residue pairing

originally considered in [Sai83c].

Let

ηW : HW ⊗C HW → C

be the classical residue pairing. There is a pairing ⟨−,−⟩ : ΩN
CN [[ℏ]]×ΩN

CN [[ℏ]] → C given

by

⟨f(ℏ)χ1, g(ℏ)χ2⟩ = Res
ℏ=0

(
f(ℏ)g(−ℏ)dℏ

)
ηW ([χ1], [χ2])

where [χ] is the class of χ in DW .

Lemma 3.1.22. For α ∈ ΩN−1
CN , the following equation holds

⟨ℏdα + dW ∧ α,−⟩ = 0.

Proof. One can work in local coordinates to use the residue pairing and Cauchy’s theorem

to show explicitly that the above equation is true.

As an alternative, simpler proof, see Lemma 3.2.11. From the above lemma, the

pairing ⟨−,−⟩ descends to H (0)
W . Moreover, ηW is symmetric and non-degenerate, while

the residue in ℏ provides skew-symmetry. Hence, we have in fact a symplectic pairing

⟨−,−⟩ : H (0)
W × H (0)

W → C.

In a similar way, one may define higher residues.
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Definition 3.1.23. The higher residue is the map KW : H (0)
W ×H (0)

W → ℏNC[[ℏ]] defined

via the following formula,

KW

(
f(ℏ)χ1, g(ℏ)χ2

)
= ℏNf(ℏ)g(−ℏ)ηW ([χ1], [χ2]).

This is indeed well defined via the same argument in Lemma 3.1.22.

Remark 3.1.24. Observe that KW and the symplectic pairing ⟨−,−⟩ are related via

⟨−,−⟩ = Res
ℏ=0

(
ℏ−NKW (−,−)dℏ

)
.

One may extend the higher residue to the versal deformation Ws. This is the map

KWs : H (0)
Ws

× H (0)
Ws

→ ℏNOM [[ℏ]] given by

KWs

(
f(ℏ)χ1, g(ℏ)χ2

)
= ℏNf(ℏ)g(−ℏ)ηWs([χ1], [χ2]).

Here, ηWs is the classical residue pairing with respect to Ws.

Remark 3.1.25. In [LLS14], the triple (H (0)
Ws
, KWs ,∇) is called a variation of semi-

infinite Hodge structure. This was originally studied in the case of Calabi-Yau varieties

by Barannikov [Bar01].

3.1.6 Primitive Forms

In this subsection we define a primitive form. This is the crucial step in endowing the

ball M ⊂ CB with the structure of a Frobenius manifold.

Definition 3.1.26. A primitive form is a section ζ of H (0)
Ws

such that

1. (Primitivity) The element ζ induces an OM -module isomorphism

ϕ : TM → H (0)
Ws
/ℏH (0)

Ws
, V 7→ ℏ∇V ζ.
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2. (Homogeneity) For the Euler vector field

E =
∑
µ∈B

sµ deg sµ, ∂sµ

the following equation is satisfied

(
∇ℏ∂ℏ + ∇E

)
ζ =

( N∑
i=1

deg xi

)
ζ

where ∇ is the Gauss-Manin connection.

3. (Orthogonality) For any two vector fields V1, V2 on M we have

KWs

(
∇V1ζ,∇V2ζ

)
∈ ℏN−2OM .

4. (Holonomicity) For any three vector fields V1, V2, V3 on M , we have

KWs

(
∇V1∇V2ζ,∇V3ζ

)
∈ ℏN−3OM ⊕ ℏN−2OM

KWs

(
∇ℏ∂ℏ∇V1ζ,∇V3ζ

)
∈ ℏN−3OM ⊕ ℏN−2OM .

The isomorphism ϕ, called the period mapping, in the primitivity condition is critical

for the following reason. Roughly speaking, one may construct and solve a Riemann-

Hilbert-Birkhoff problem on the bundle H (0)
Ws
/ℏH (0)

Ws
. Via ϕ−1, one may carry over this

structure to TM , thus endowing M with a Frobenius manifold structure. This is the

content of Saito’s original paper [Sai83a]. We refer the reader interested in the Frobenius

structure of M to [Sab07].
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3.2 Saito Theory as Oscillatory Integrals

The previous definition of a primitive form is slightly unwieldy. Indeed, it is not clear

how to calculate them from the data (H (0)
Ws
, KWs ,∇), even for simple singularities. We

therefore review a useful characterisation of primitive forms in terms of oscillatory inte-

grals. Subsequently, we use this to calculate the flat Frobenius structure for the ADE

and simple elliptic singularities.

3.2.1 Primitive Forms Via Oscillatory Integrals

Work of Barannikov [Bar01] established the use of oscillatory integrals in the B-model,

thereby avoiding the technical details of variations of semi-infinite Hodge structure. This

was then later fully developed by Li, Li, Saito and Shen [LLS14; LLSS17], the contents

of which we partially summarise here.

We first extend the definition of the Brieskorn lattice H (0)
W . Define

H (0)
W ((ℏ)) := ΩN

CN ((ℏ))
(ℏd+ dW∧)ΩN−1

CN ((ℏ))
.

The higher residue pairing extends to a pairing

KW : H (0)
W ((ℏ)) ⊗ H (0)

W ((ℏ)) → C((ℏ)).

Recall that we have a symplectic pairing ⟨−,−⟩ on H (0)
W . This can naturally be

extended to H (0)
W ((ℏ)) via

⟨−,−⟩ : H (0)
W ((ℏ)) ⊗ H (0)

W ((ℏ)) → C, ⟨−,−⟩ = Res
ℏ=0

(
ℏ−NKW (−,−)dℏ

)
.

Definition 3.2.1. Let L be a splitting of H (0)
W ((ℏ)) with H (0)

W ((ℏ)) = H (0)
W ⊕ L. If L

satisfies ℏ−1L ⊂ L and is also an isotropic subspace with respect to ⟨−,−⟩, then L is

called an opposite filtration.
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As the next lemma shows, the choice of an opposite filtration is equivalent to the

choice of a basis of the local algebra DW .

Lemma 3.2.2. Let A := H (0)
W ∩ ℏL. Then A ∼= DW and we can identify

H (0)
W = A[[ℏ]], H (0)

W ((ℏ)) = A((ℏ)), L = ℏ−1A[ℏ−1].

Proof. Introduce the semi-infinite Hodge filtration on H (0)
W ((ℏ)) by H (−k)

W := ℏkH (0)
W for

k ∈ Z≥0. Since L is a splitting such that ℏ−1L ⊂ L, we find

H (0)
W ((ℏ)) = ℏkH (0)

W ((ℏ)) = H (−k)
W ⊕ ℏkL.

This implies

H (−k)
W = H (−k−1)

W ⊕ (H (−k)
W ∩ ℏk+1L).

In particular, we have

H (0)
W /H (−1)

W
∼= H (0)

W ∩ ℏL = A.

But

H (0)
W /H (−1)

W = H (0)
W /ℏH (0)

W = DW .

The identifications then follow.

To define the notion of a good opposite filtration, we introduce a Q-grading on

H (0)
W ((ℏ)) with grading operator

E := ℏ∂ℏ +
N∑

i=1
xi deg xi∂xi

.

Definition 3.2.3. An opposite filtration L of H (0)
W ((ℏ)) is called good if it preserves the

Q-grading or more precisely, if EL ⊂ L. Thus, given a good opposite filtration L, we call

the corresponding basis a good basis of the local algebra DW .

Remark 3.2.4. It is shown in Proposition 5.11 of [LLS14] that the condition EL ⊂ L is
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equivalent to ∇ℏ∂ℏL ⊂ L where ∇ is the Gauss-Manin connection of (3.1.4).

The following theorem, proven by Li, Li and Saito [LLS14], characterises primitive

forms in terms of good opposite filtrations.

Proposition 3.2.5. Given a good opposite filtration L, there is a unique section ζ of

H (0)
Ws

up to scalar multiplication, such that

[e
Ws−W

ℏ ζ] ∈ [1 · ω] + L[[s]] (3.2.1)

as elements in H (0)
W ((ℏ)). Any ζ such that the above holds is a primitive form. Further-

more, let

M := {primitive forms}/∼

where ζ1 ∼ ζ2 if and only if ζ1 = kζ2 for some k ∈ C∗. Then there is a well defined

bijection of sets

{good opposite filtrations of H (0)
W ((ℏ))} → M, L → ζ.

Hence, to describe primitive forms, we need only describe the set of good opposite

filtrations, or equivalently, the set of good bases of DW . We do this in the next section.

3.2.2 Oscillatory Integrals

Based on the previous section, we now reformulate Saito theory that is more transparent

in its use of integration. We first give the definition of the standard good basis for the

local algebra associated to a general invertible polynomial. In particular, we review the

definitions and results in section 2.2 of [HLSW22].

Definition 3.2.6. Let W be a Fermat, chain or loop polynomial as in Theorem 2.1.6.

In multi-index notation, xµ := ∏N
j=1 x

µj

j , the standard good bases indexed by a set B is{
xµ

∣∣∣∣µ ∈ B
}

where B is given by the following.
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i. If W is a Fermat polynomial, then B = BFermat = {0, 1, . . . , r − 2}.

ii. If W is a chain polynomial, then B = BChain consists of those (µ1, . . . , µN) ∈ ZN
≥0

such that µi ≤ ri − 1 and (µ1, . . . , µN) is not of the form (∗, ∗, . . . , ∗, k, rN−2l −

1, 0, rN−2l+2 − 1, . . . , 0, rN−2 − 1, 0, rN − 1) with k ≥ 1.

iii. If W is a loop polynomial, then B = BLoop = {(µ1, . . . , µN) ∈ ZN
≥0

∣∣∣µi ≤ ri − 1}.

That this standard basis is indeed good in the sense of Definition 3.2.3 is the content

of Theorem 2.10 of [HLSW22].

Remark 3.2.7. A priori, have simply chosen a basis of the local algebra. We have

seen that a good basis corresponds to different good splittings of the Hodge filtration

associated to the singularity. Among these good splittings, or equivalently good bases,

He, Li Shen and Webb in [HLSW22] then make a further unique choice of good basis that

they call standard which is Definition 3.2.6 presented here. In that paper, this choice is

necessary in order to identify the A and B model Frobenius cohomological field theories.

From a physical perspective, this choice is related to the holomorphic anomaly equation

[BCOV94].

Example 3.2.8. Let us consider the chain polynomial W = x3
1 + x1x

3
2. This is the E7

singularity. The standard good basis of DW is given by

{1, x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2} · dx1dx2.

Concerning the grading, we observe that deg x1 = 1/3 and deg x2 = 2/9. Hence, using

Definition 3.1.13 we find the grading on the vesral deformation parameters s as

deg s00 = 1, deg s01 = 7
9 , deg s10 = 2

3 ,

deg s02 = 5
9 , deg s11 = 4

9 , deg s20 = 1
3 , deg s21 = 1

9 .

Consider also the chain polynomial W = x4
1 +x1x

3
2 that represents the elliptic singularity,
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E
(1,1)
7 . The standard basis is now given by

{1, x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2, x

3
1, x

3
1x2} · dx1dx2.

Concerning the grading, we first observe that deg x1 = deg x2 = 1/4. Hence we find

deg s00 = 1, deg s10 = deg s01 = 3
4 , deg s20 = deg s11 = deg s02 = 1

2
deg s21 = deg s30 = 1

4 , deg s31 = 0.

In this example, for E(1,1)
7 we observe that there is a unique parameter with deg s = 0,

or equivalently, a unique standard basis element xµ with deg xµ = 1. This is in fact a

characteristic trait of all simple elliptic singularities.

Definition 3.2.9. Let W be a simple elliptic singularity. The basis element of the local

algebra with degree one is denoted xµc . The corresponding parameter s := sµc of degree

zero we call the marginal parameter.

Remark 3.2.10. For a generic invertible singularity W , the central charge defined in

Section 3.1.1,

cW =
N∑

i=1
(1 − 2 deg xi)

is in fact also equal to

cW = max
µ∈B

{deg xµ}.

By definition, we immediately see that simple elliptic singularities have a central charge

of one.

Having now given a concrete basis of volume forms for the local algebra DW , we now

proceed to integrate them.

We recall from Section 3.1.2 that in the relative homology group HN(CN ,W−∞;C)

we allow cycles which are unbounded in the direction Re W → −∞. Integrating over

elements in this group, as opposed to HN(CN ,W∞;C), leads to much better convergence
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properties. Hence, we have a pairing with the Brieskorn lattice defined by oscillatory

integrals

HN(CN ,W−∞;C) ⊗ HN
(
CN , (Ω•CN , d+ ℏ−1dW∧)

)
→ C, (Ξ, χ) 7→

∫
Ξ
eW/ℏχ (3.2.2)

where χ is a representative of an element in HN
(
CN , (Ω•CN , d+ ℏ−1dW∧)

)
.

Lemma 3.2.11. The pairing above is well-defined.

Proof. We show that this pairing does not depend on the choice of representative. Indeed,

observe that for α an N − 1 form on CN we have

d(eW/ℏα) = eW/ℏ(dα + ℏ−1dW ∧ α).

Using Stokes’ theorem, we find

∫
Ξ
eW/ℏχ =

∫
Ξ
eW/ℏχ+ d(eW/ℏα) =

∫
Ξ
eW/ℏ(χ+ dα + ℏ−1dW ∧ α). (3.2.3)

Consequently, we indeed find the integral does not depend on the choice of rep-

resentative in the hypercohomology HN
(
CN , (Ω•CN , d + ℏ−1dW∧)

)
. Furthermore, we

were able to apply Stokes’ theorem to set the boundary terms to zero precisely because

Ξ ∈ HN(CN ,W−∞;C).

Given the standard good basis {xµ}µ∈B of DW , we denote the corresponding dual

basis of cycles by {Ξµ}µ∈B. By considering DW as contained in the Brieskorn lattice, this

dual basis has the defining property

∫
Ξµ

dNx eW/ℏxλ = δµλ

under the pairing (3.2.2).
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Definition 3.2.12. Let W be an invertible, non-degenerate quasi-homogeneous poly-

nomial and let Ws be its versal deformation with respect to the standard good ba-

sis {xµ}µ∈B. Denote Ξ0 to be the basis element that is dual to 1 · dNx ∈ DW . Let

f ∈ C[[(sµ)µ∈B, (xi)N
i=1]]. Consider the oscillatory integral,

∫
Ξµ

eW/ℏfdNx =
∑
i∈Z

J (i)
µ (s)ℏ−i. (3.2.4)

where the above series is considered formally. If J (i)
µ (s) ≡ 0 for all i < 0 and J (0)

µ (s) =

δµ,0, then fdNx is called a primitive form. In this case, we define the flat coordinates as

tµ(s) = J (1)
µ (s).

That these are, in fact, the same flat coordinates of Saito’s Frobenius manifold is

proven in [LLSS17]. Using this definition, one may show that for any Fermat, chain or

loop polynomial,

tµ = sµ + O(s2
∗). (3.2.5)

The flat coordinates further satisfy

Etµ(s) = (deg tµ)tµ

where deg tµ = deg sµ. Hence, the Euler vector field can be written as

E =
∑
µ∈B

tµ deg tµ
∂

∂tµ
.
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3.2.3 Summary of Saito Theory for Landau-Ginzburg Models

Let us summarise the important notions in Saito theory that we have discussed.

• For the purposes of the B-models in this thesis, a Landau-Ginzburg model is a quasi-

homogeneous polynomial W : CN → C where a polynomial W ∈ C[x1, . . . , xN ] is

called quasi-homogenous of rank N if there exist q1, . . . , qN ∈ Q such that

W
(
λq1x1, . . . , λ

qNxN

)
= λW (x1, . . . , xN)

for all λ ∈ C. The rational numbers qi are called the charges of W .

• A quasi-homogeneous polynomial W is called non-degenerate if W has precisely

one singularity that is isolated at the origin. A non-degenerate polynomial is called

invertible if the number of variables equals the number of monomials.

• A non-degenerate, quasi-homogeneous polynomial W is invertible if and only if it

can be written, up to a rescaling and relabelling, as a Sebastiani-Thom sum of the

following Fermat, loop and chain polynomials

WFermat = xr, (i)

WChain = xr1
1 x2 + xr2

2 x3 + · · · + xrN
N , (ii)

WLoop = xr1
1 x2 + xr2

2 x3 + · · · + xrN
N x1. (iii)

• The B-model chiral ring is given as the local algebra

DW = C[x1, . . . , xN ]〈
∂W
∂x1
, . . . , ∂W

∂xN

〉 · dNx ∼=
ΩN

CN

dW ∧ ΩN−1
CN

.

• There is a relative homology group HN(CN ,Re W/ℏ ≪ 0;C) where ℏ ∈ C∗ is

an auxiliary parameter and we allow cycles which are unbounded in the direction

Re W/ℏ → −∞.
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• We consider the twisted de Rham complex (Ω•CN , ℏd+dW∧). There is a well-defined

perfect pairing defined by oscillatory integrals

HN(CN ,Re W/ℏ ≪ 0;C)⊗HN
(
CN , (Ω•CN , ℏd+dW0∧)

)
→ C, (Ξ, χ) 7→

∫
Ξ
eW/ℏχ,

where HN
(
CN , (Ω•CN , ℏd+ dW∧)

)
is a hypercohomology group.

• There is an isomorphism between this hypercohomology group and the Brieskorn

lattice

HN
(
CN , (Ω•CN , ℏd+ dW∧)

) ∼=
ΩN

CN [[ℏ]]
(ℏd+ dW∧)ΩN−1

CN [[ℏ]]
.

By setting ℏ = 0, we may consider DW as contained in this hypercohomology group.

More precisely, there is an isomorphism

HN
(
CN , (Ω•CN , ℏd+ dW0∧)

) ∼= ℏHN
(
CN , (Ω•CN , ℏd+ dW0∧)

)
⊕ DW0

so that we may consider DW0 as contained in this hypercohomology group.

• In multi-index notation, xµ := ∏N
j=1 x

µj

j , the standard good bases indexed by a set

B is
{
xµ

∣∣∣∣µ ∈ B
}

where B is given by the following.

i. If W is a Fermat polynomial, then B = BFermat = {0, 1, . . . , r − 2}.

ii. If W is a chain polynomial, then B = BChain consists of those (µ1, . . . , µN) ∈

ZN
≥0 such that µi ≤ ri−1 and (µ1, . . . , µN) is not of the form (∗, ∗, . . . , ∗, k, rN−2l−

1, 0, rN−2l+2 − 1, . . . , 0, rN−2 − 1, 0, rN − 1) with k ≥ 1.

iii. If W is a loop polynomial, then B = BLoop = {(µ1, . . . , µN) ∈ ZN
≥0

∣∣∣µi ≤ ri −1}.

• Given the standard good basis {xµ}µ∈B of DW together with the perfect pairing,

we denote the corresponding dual basis of cycles by {Ξµ}µ∈B. This has the defining

duality property ∫
Ξα

eW/ℏxβdNx = δαβ
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where δαβ is 1 if α = β and 0 otherwise.

• Fix a versal deformation of W parameterised by coordinates (sµ)µ∈B,

Ws := W +
∑
µ∈B

sµx
µ.

We define a grading on C[x1, . . . , xN ][{sµ}µ∈B] given by deg xi := qi and

deg sµ := 1 − deg xµ = 1 −
N∑

i=1
µi deg xi

so that Ws is also quasi-homogeneous of degree one.

• The vector field given by

E :=
∑
µ∈B

sµ deg sµ
∂

∂sµ

+
N∑

i=1
xi deg xi

∂

∂xi

we call a grading operator.

• For simple elliptic singularities with standard good basis fixed, there is a unique

highest degree basis element. We write this element as xµc and it satisfies deg xµc =

1. The corresponding parameter sµc has degree zero and is called marginal.

• Denote by Ξ0 the basis element that is dual to 1 ·dNx ∈ DW . Let f : Cn ×CN → C

be a polynomial function. Consider the oscillatory integral,

∫
Ξµ

eWs/ℏfdNx =
∑
i∈Z

J (i)
µ (s)ℏ−i

where the above series is considered formally. If J (i)
µ (s) ≡ 0 for all i < 0 and

J (0)
µ (s) = δµ,0, then fdNx is called a primitive form.

• In this case, we define the flat coordinates as

tµ(s) = J (1)
µ (s).
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• Using this definition, one may show that for any Fermat, chain or loop polynomial,

tµ = sµ + O(s2
∗).

• The flat coordinates satisfy

Etµ(s) = (deg tµ)tµ

where deg tµ = deg sµ. Hence, the grading operator can be written as

E =
∑
µ∈B

tµ deg tµ
∂

∂tµ
+

N∑
i=1

xi deg xi
∂

∂xi

.

3.2.4 Flat Coordinates of Simple and Elliptic Singularities

In practice, how one calculates primitive forms and flat coordinates is to expand the

integral
∫

Ξµ
eWs/ℏdNx perturbatively. One can then read off what the primitive form

fdNx is. In the case of ADE and simple elliptic singularities, one may obtain closed

expressions for primitive forms. To this end, we define the following quantity.

Definition 3.2.13. Let W be an ADE or simple elliptic singularity. Write Ws for the

versal deformation with respect to the standard good basis. Define the deformed flat

coordinates

t̃µ :=
∫

Ξµ

eWs/ℏ dNx (3.2.6)

with Ξµ ∈ HN(CN ,Re W/ℏ ≪ 0;C) for each µ ∈ B.

Remark 3.2.14. The deformed flat coordinates have geometric significance as the flat

coordinates of a deformation of the Levi-Civita connection for the corresponding Frobe-

nius manifold. See Lecture 2 of [Dub99] for more details. Here, however, we simply view

the t̃µ as a useful computational tool.
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Proposition 3.2.15. Let W be a Fermat, chain or loop polynomial that is either ADE

or simple elliptic type. For k ∈ ZB
≥0 denote

l(k) :=
∑
α∈B

kα · α ∈ NN , deg sk :=
∑
α∈B

kα · deg sα ∈ QN

where B is the index set for the standard good basis. The deformed flat coordinates are

t̃µ =
∑
i∈Z

J (i)
µ (s)
ℏi

,

where

J (i)
µ (s) =

∑
k∈ZB

≥0
deg sk=deg sµ−1+i

cµ(l(k))sk

k!

and

cµ(l(k)) = 1
ℏq(k,i),i)

∫
Ξµ

eW/ℏxl(k) dNx.

Here, q(k, i) is defined in equation (3.2.9).

Proof. To prove this, we write the deformed flat coordinates as

t̃µ =
∫

Ξµ

eW/ℏe
1
ℏ
∑

α∈B
sαxα

dNx =
∫

Ξµ

eW/ℏ
∞∑

m=0

1
ℏmm!

( ∑
α∈B

sαx
α
)m

dNx

where we have expanded the exponential. We now further expand the multinomial to

obtain

t̃µ =
∫

Ξµ

eW/ℏ
∞∑

m=0

∑
k1,...,k|B|≥0∑

kβ=m

1
ℏ
∑

β
kβm!

(
m

k1, . . . , k|B|

) ∏
α∈B

skα
α xkαα dNx.

Employing multi-index notation and cancelling the m! in the multinomial coefficient, we

find

t̃µ =
∫

Ξµ

eW/ℏ
∞∑

m=0

∑
k1,...k|B|≥0∑

kβ=m

1
ℏ
∑

β
kβ

sk

k!x
l(k) dNx.
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Since we consider this as a formal series, we formally interchange the sum with the integral

to obtain

t̃µ =
∑

k∈ZB
≥0

sk

k!ℏ
∑

kα

∫
Ξµ

eW/ℏxl(k) dNx. (3.2.7)

Let us now organise the terms so that

t̃µ =
∑
i∈Z

J (i)
µ (s)
ℏi

(3.2.8)

where J (i)
µ (s) ∈ C[[s]] does not depend on ℏ. For each k ∈ ZB

≥0 and i ∈ Z, define the

integer q(k, i) by
|B|∑

α=1
kα − q(k, i) = i. (3.2.9)

Comparing (3.2.8) to (3.2.7), we find

J (i)
µ (s) =

∑
k∈ZB

≥0

sk

k!ℏq(k,i)

∫
Ξµ

eW/ℏxl(k) dNx. (3.2.10)

The integer q(k, i) is the total number of times integration by parts is used to reduce

xl(k) to an element of the standard good basis of the local algebra.

We now prove that a necessary condition for a summand of J (i)
µ (s) to be non-zero is

deg sk = deg sµ−1+i. We use a grading where deg ℏ = 1. Since W/ℏ has degree zero, the

element eW/ℏ also has a well-defined degree of zero. Moreover, under such a grading, the

‘integration by parts’ map ℏd+ dW∧ : Ω•CN [[ℏ]] → Ω•CN [[ℏ]] is a homogeneous morphism

of graded vector spaces. Combining these two observations, we find that the deformed

flat coordinates also have a well defined degree. This implies deg t̃µ = deg sµ − 1 since

t̃µ contains the term sµ

ℏ via equation (3.2.5). Matching degrees on both sides of (3.2.8)

implies that J (i)
µ (s) are also quasi-homogeneous with degree

deg J (i)
µ (s) = deg sµ − 1 + i.
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On the other hand, since J (i)
µ does not depend on ℏ, we observe that

deg J (i)
µ (s) = deg sk

via equation (3.2.10). Equating the two above equations gives the desired result.

Remark 3.2.16. In the proof we assigned ℏ a degree of 1. It is perhaps also natural,

nonetheless, to define deg ℏ = 2. Indeed, this degree is chosen by Costello [Cos09] and

Căldăraru-Costello-Tu [CCT20] using topological conformal field theory, as well as in the

description of Airy structures by Kontsevich-Soibelman [KS18]. If we assign deg ℏ = 2

instead, the proof of Proposition 3.2.15 is readily modified. For example, we may shift

indices in the expansion of t̃µ to write

t̃µ =
∑

i∈2Z+ 1
2

J (i)
µ (s)
ℏ i

2 + 1
2
.

In this case we have

deg t̃µ = deg sµ − 2

since t̃µ contains the term sµ

ℏ . This now implies that

deg J (i)
µ = deg sµ − 2 + 2

(
i

2 + 1
2

)
= deg sµ − 1 + i

as before. Furthermore, to ensure that W/ℏ has degree zero, we may modify the values of

deg xi so that W is quasi-homogeneous of degree two. Since the exact value for deg ℏ ̸= 0

is unimportant for our purposes, we keep deg ℏ = 1.

Corollary 3.2.17. The flat coordinates of a simple singularity are given by

tµ(s) = J (1)
µ (s)
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The flat coordinates for an elliptic singularity with marginal parameter s are given by

tµ(s) =
J (1)

µ (s)
J (0)

0 (s)
.

Proof. Case I: ADE Singularities. One may prove this by numerically expanding out the

relevant integral for each simple singularity to show that

∫
Ξµ

eWs/ℏdNx = δµ,0 + ℏ−1tµ(s) +O(ℏ−2) (3.2.11)

where Ξ0 is the cycle that is dual to the element dNx in the local algebra. Alternatively,

one may use the following degree counting argument. Recall from Proposition 3.2.15 that

t̃µ =
∫

Ξµ

eWs/ℏdNx =
∑
i∈Z

J (i)
µ (s)
ℏi

where

J (i)
µ (s) =

∑
k∈ZB

≥0
deg sk=deg sµ−1+i

cµ(l(k))sk

k! . (3.2.12)

However, we observe that for an ADE polynomial,

deg sµ > 0 (3.2.13)

for all µ ∈ B. Since deg sk ≥ 0 for k ∈ ZB
≥0, we find that J (i)

µ (s) ≡ 0 for all i < 0. This

implies that t̃µ contains no positive powers of ℏ. For similar reasons, fixing i = 0 implies

that the only contributing term is when µ = 0 and k = 0. From the definition of cµ, we

find that the coefficient is indeed 1.

Case II: Elliptic Singularities. The marginal parameter s satisfies deg s = 0. In the

expansion (3.2.12) we find J (i)
µ (s) ≡ 0 for all µ ∈ B and i < 0. However, for i = 0 we

find that there are non-trivial contributions, but for µ = 0 only. Since deg sµ=0 = 1, we
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observe that J (0)
0 is a function of s only. Hence, we find the expansion

∫
Ξµ

eWs/ℏdNx = J (0)
0 (s)δµ,0 + ℏ−1J (1)

µ (s) +O(ℏ−2).

One choice of a primitive form is therefore dN x

J (0)
0 (s)

implying that the flat coordinates are

tµ(s) =
J (1)

µ (s)
J (0)

0 (s)
.

as desired.

3.2.5 Period Integrals in Rank Two and Formulas for Flat Co-
ordinates

Throughout the thesis, we need explicit formulas for oscillatory integrals. To calculate

such integrals, we use the following lemmas.

Lemma 3.2.18. For W = xr, we have

∫
Ξµ

xkeW/ℏdx = (−ℏ)m
Γ
(

k+1
r

+m
)

Γ
(

µ+1
r

) δk,rm+µ

for some m ∈ Z≥0.

Proof. We use integration by parts to find

∫
Ξµ

xkeW/ℏdx = −ℏ
(
k + 1
r

− 1
) ∫

Ξµ

xk−reW/ℏ dx = −ℏ
Γ
(

k+1
r

)
Γ
(

k+1
r

− 1
) ∫

Ξµ

xk−reW/ℏ dx

where we used functional equation Γ(z+ 1) = zΓ(z). Repeated application of integration
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by parts m times yields cancellation of Γ functions. Hence,

∫
Ξµ

xkeW/ℏ dx = (−ℏ)m
Γ
(

k+1
r

)
Γ
(

k+1
r

−m
) ∫

Ξµ

xk−mreW/ℏ dx = (−ℏ)m
Γ
(

k+1
r

+m
)

Γ
(

µ+1
r

) δk,rm+µ

as desired.

Corollary 3.2.19. For W = xr1
1 + xr2

2 we have

∫
Ξµ

xk1
1 x

k2
2 e

W/ℏ dx1dx2 = (−ℏ)m1+m2
Γ
(

k1+1
r1

+m1

)
Γ
(

µ1+1
r1

) Γ
(

k2+1
r2

+m2

)
Γ
(

µ2+1
r2

)

if ki = rimi + µi for some mi ∈ Z≥0 and the integral is zero otherwise.

Proof. For the Fermat singularity in rank 2, W = xr1
1 + xr2

2 , the x1 and x2 variables

decouple and integration by parts can be used independently on each variable. Therefore,

we need only apply the previous lemma to each variable in this case.

Lemma 3.2.20. For the rank 2 chain W = xr1
1 + x1x

r2
2 we have

∫
Ξµ

eW/ℏxk1
1 x

k2
2 dx1dx2 = (−ℏ)m1+m2

Γ
(

µ2+1
r2

+m2

)
Γ
(

µ2+1
r2

) Γ
(

µ1+1
r1

− µ2+1
r1r2

+m1

)
Γ
(

µ1+1
r1

− µ2+1
r1r2

)

if k1 = r1m1 + µ1 + m2 and k2 = r2m2 + µ2 for some mi ∈ Z≥0 and the integral is zero

otherwise.

Proof. Performing integration by parts on the x2 variable we find

∫
eW/ℏxk1

1 x
k2
2 dx1dx2 = −ℏ

(
k2 + 1
r2

− 1
) ∫

eW/ℏxk1−1
1 xk2−r2

2 dx1dx2

= −ℏ
Γ
(

k2+1
k2

)
Γ
(

k2+1
r2

− 1
) ∫ eW/ℏxk1−1

1 xk2−r2
2 dx1dx2
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Similarly, for the x1 variable,

∫
eW/ℏxk1

1 x
k2
2 dx1dx2 = −ℏ

(
k1 + 1
r1

− k2 + 1
r1r2

− 1
) ∫

eW/ℏxk1−r1
1 xr2

2 dx1dx2

= −ℏ
Γ
(

k1+1
r1

− k2+1
r1r2

)
Γ
(

k1+1
r1

− k2+1
r1r2

− 1
) ∫ eW/ℏxk1−r1

1 xk2
2 dx1dx2.

Hence, repeated application of integration by parts yields the desired formulas.

Lemma 3.2.21. For the rank 2 loop singularity W = xr1
1 x2 + x1x

r2
2 , we have

∫
Ξµ

eW/ℏxk1
1 x

k2
2 dx1dx2 = (−ℏ)m1+m2

Γ
(

r2k1+r2−k2−1
r1r2−1 +m1

)
Γ
(

r2µ1+r2−µ2−1
r1r2−1

) Γ
(

r1k2+r1−k1−1
r1r2−1 +m2

)
Γ
(

r1µ2+r1−µ1−1
r1r2−1

)

if k1 = r1m1 + µ1 + m2 and k2 = r2m2 + µ2 + m1 for some mi ∈ Z≥0 and the integral is

zero otherwise.

Proof. Performing integration by parts on the x1 variable we find

∫
Ξµ

eW/ℏxk1
1 x

k2
2 dx1dx2 = (−ℏ)r2k1 + r2 − k2 − r1r2

r1r2 − 1

∫
Ξµ

eW/ℏxk1−r1
1 xk2−1

2 dx1dx2

so that

∫
Ξµ

eW/ℏxk1
1 x

k2
2 dx1dx2 = (−ℏ)

Γ
(

r2k1+r2−k2−1
r1r2−1

)
Γ
(

r2k1+r2−k2−1
r1r2−1 − 1

) ∫
Ξµ

eW/ℏxk1−r1
1 xk2−1

2 dx1dx2

For the x2 variable we have

∫
Ξµ

eW/ℏxk1
1 x

k2
2 dx1dx2 = (−ℏ)r1k2 + r1 − k1 − r1r2

r1r2 − 1

∫
Ξµ

eW/ℏxk1−1
1 xk2−r2

2 dx1dx2
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so that

∫
Ξµ

eW/ℏxk1
1 x

k2
2 dx1dx2 = (−ℏ)

Γ
(

r1k2+r1−k1−1
r1r2−1

)
Γ
(

r1k2+r1−k1−1
r1r2−1 − 1

) ∫
Ξµ

eW/ℏxk1−1
1 xk2−r2

2 dx1dx2

Repeated application of integration by parts gives the desired result.

It is a straightforward exercise to generalise this to rank 3. We will, however, omit

these calculations as they are largely irrelevant for our purposes.

Example 3.2.22. Let us now apply these formulas to the simple elliptic singularity

W = x4
1 + x1x

3
2. The basis element of highest degree is x3

1x2. The marginal parameter

is s31. Remarkably, J (0)
0 (s) and J (1)

31 (s) can be identified with a certain hypergeometric

function. Recall that the hypergeometric functions are defined through

2F1(α, β, γ; z) =
∞∑

m=0

(α)m(β)m

(γ)m

zm

m!

where (·)m is the Pochhammer symbol. The identifications are

J (0)
0 (s) = 2F1

( 1
12 ,

7
12 ,

2
3; −4s3

27

)
=

∞∑
m=0

(1/12)m(7/12)m

(2/3)m

(−1)m4ms3m

27mm! (3.2.14)

and

J (1)
31 (s) = s · 2F1

( 5
12 ,

11
12 ,

4
3; −4s3

27

)
.

We will only give explicit details for J (0)
0 as J (1)

31 is similar. By definition of J (0)
0 we have

J (0)
0 (s) =

∑
k∈Z9

≥0
deg(sk)=0

c0(l(k))sk

k! .

As we have discussed before, we have k = (0, 0, . . . , 0, i) for i ∈ Z≥0. For such a k, we

have by definition of l(k)

l(k) = (3i, i).
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Thus we have

J (0)
0 (s) =

∑
i∈Z≥0

c0
(
(3i, i)

)si

i! .

To calculate c0
(
(3i, i)

)
we use Proposition 3.2.20. In that notation we find λ1 = λ2 = 0.

Hence, we obtain the equations

3i = 4m1 +m2, i = 3m2.

This implies that m1 = 2m2. Relabelling m2 = m we have

c0
(
(3i, i)

)
= (−1)m

(1
3

)
m

(1
6

)
2m
.

Thus,

J (0)
0 (s) =

∞∑
m=0

(−1)m
(1

3

)
m

(1
6

)
2m

s3m

(3m)! .

However, we observe that

(3m)! = (33)mm! ·
m∏

j=1

(
j − 1

3
)(
j − 2

3
)

= 27mm!
(2

3

)
m

(1
3

)
m
.

Hence to complete the identification given in (3.2.14), we must show that

4m
( 1

12

)
m

( 7
12

)
m

=
(1

6

)
2m
.

One may proceed by induction. Indeed, this equation is trivially true for m = 0. Assum-

ing that it is true for some m, observe that

(1
6

)
2m+2

=
(1

6 + 2m
)(1

6 + 2m+ 1
)(1

6

)
2m

= 4
( 1

12 +m
)( 7

12 +m
)(1

6

)
2m
.

Hence, with the induction hypothesis we have

(1
6

)
2m+2

= 4
( 1

12 +m
)( 7

12 +m
)

· 4m
( 1

12

)
m

( 7
12

)
m

= 4m+1
( 1

12

)
m+1

( 7
12

)
m+1
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as claimed. Consequently, the primitive form we have found may be written as

ζ = d2x

2F1

(
1
12 ,

7
12 ,

2
3 ; −4s3

27

) .

This agrees with the original computation in [Sai81] and generalises the calculation of

Noumi and Yamada [NY98]. Thus, the expression for the marginal flat coordinate t := t31

of W = x4
1 + x1x

3
2 is

t =
s · 2F1( 5

12 ,
11
12 ,

4
3 ; −4s3

27 )
2F1( 1

12 ,
7
12 ,

2
3 ; −4s3

27 )
.

3.3 Mirror Symmetry

In previous sections we have alluded to the existence of mirror relations between FJRW

theory and Saito theory. In this section, we review how to precisely construct the mirror

Landau-Ginzburg model W T given a Landau-Ginzburg model W . This construction was

first proposed by Berglund, Henningson and Hübsch [BH93; BH95] and Krawitz [Kra10]

subsequently provided the explicit mirror map as a Frobenius algebra isomorphism for

the chiral rings.

3.3.1 A Review of the Krawitz Mirror Map

We first recall the definition of the state space of the orbifolded Landau-Ginzburg model

given in section 2.3. To this end, let DW be the local algebra. We choose a subgroup

G ≤ Gmax
W . Recall that for the full A-model to be defined, FJRW theory requires that

G be admissible. Similarly, the full B-model is currently only defined for the choice

G = {1}. Here, however, the orbifolded A and B-model chiral rings can in principle be

defined for any admissible subgroup G.

For g ∈ G, denote Wg := W |Fix(g) and let eg be the standard volume form on Fix(g).
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Then the state space of the Landau-Ginzburg model (CN ,W,G) is

DW,G :=
⊕
g∈G

(
DWg · eg

)G

where DWg is the local algebra of the restriction Wg. We write the elements of DW,G as

p(x1, . . . , xN)eg where eg is the standard volume form on Fix(g). For example if g = id,

then Fix(g) = CN and eg = dx1 ∧ · · · dxN . If Fix(g) = {0}, we put eg = 1.

Roughly speaking, the Krawitz mirror map interchanges elements of the local algebra

with elements of the symmetry group.

More precisely, for a superpotential W , let EW be the exponent matrix. Recall that

the mirror polynomial W T is defined via the exponent matrix EW T := ET
W . Denote

E−1
W =

(
ρ1| · · · |ρN

)
, where ρk =


φ

(k)
1
...

φ
(k)
N

 .

We recall from Section 2.1.2 that the group Gmax
W is generated by the ρk. These act on

the variables as

ρkxj = exp
(
2πiφ(k)

j

)
xj

and acts trivially on constants. On the other hand, letting

E−1
W =


— ρ1 —

...

— ρN —

 ,

we observe that the group Gmax
W T is generated by the ρk. We recall that there exists a dual

group GT ≤ Gmax
W T such that (GT )T = G and (Gmax

W )T = {1}. See section 2.7 of [Kra10]

for details of this construction.

For g ∈ G, denote the set of fixed indices by Fg. That is to say, g can be written in

the form g = (e2πiθ1 , . . . , e2πiθN ) with θj ∈ [0, 1) and so we put Fg = {j | θj = 0}. The
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following proposition will allow us to define the Krawitz mirror map.

Proposition 3.3.1. Let h ∈ Gmax
W . Write

H =
∏

j∈Fh

x
µj

j

so that

H · eh ∈ DWh
· eh.

Denote γH = ∏
j∈Fh

ρ
µj+1
j ∈ Gmax

W T . Then if W is of Fermat or chain type, there is a unique

element

Γh =
∏

j∈FγH

x
rj

j

with

Γh · eγH
∈ DW T

γH
· eγH

such that h = ∏
j∈FγH

ρ
rj+1
j . If W is a loop potential, there is a unique choice of Γh as

above, unless γH = 1.

In the above notation, if W is a loop potential with γH = 1, Krawitz gives a prescrip-

tion for choosing rj. For details and a proof of the above proposition more generally, see

Lemma 2.2 of [Kra10].

Definition 3.3.2. The unprojected mirror map

⊕
h∈G

DWh
· eh →

⊕
γ∈GT

DW T
γH

· eγH

is defined on generators as

H · eh 7→ Γh · eγH
.

Given this definition, we have the following two results due to Krawitz [Kra10, The-

orem 2.3, Theorem 2.4]

Theorem 3.3.3. The unprojected mirror map is a vector space isomorphism.
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Corollary 3.3.4. There is a vector space isomorphism

DW,G
∼= DW T ,GT .

The proof Theorem 3.3.3 is to simply replace G with GT and recall that (GT )T = G.

The proof of Corollary 3.3.4 is to restrict to the G-invariant part of the unprojected mirror

map. The dual group GT is defined so that the projected mirror map is well defined. The

vector space isomorphism given in the above corollary is called the Krawitz mirror map.

Remark 3.3.5. An alternative shorthand notation that Krawitz introduces is to write

ξ = m |g⟩ ∈ DW,G for a monomial m ∈ DWg . Here the volume form is omitted in

the notation as it is fixed once the element g is prescribed. The Krawitz mirror map

Ψ : DW T → DW,G can then be written as

Ψ(xi) =


xi |1⟩ if xi is a loop variable with ai = N = 2

1
∣∣∣ρi
∏N

j=1 ρj

〉
otherwise

and furthermore,

Ψ
( N∏

j=1
x

αj

j

)
∈ DWg , where g =

N∏
j=1

ρ
αj+1
j . (3.3.1)

Example 3.3.6. Let us first consider the case of the ungauged Landau Ginzburg model

(W,G) = (x3
1 + x1x

3
2, {1}) corresponding to the E7 singularity. Denote the chiral ring as

DW,1 = DW whereby the mirror is

DW T ,Gmax
W T

=
⊕

g∈Gmax
W T

(
DW T

g
· eg

)Gmax
W T .

Since G is the trivial group we take h = id. Note that Fh = {1, 2}. For the first basis

element of DW we take H = 1 = x0
1x

0
2 i.e. µ1 = µ2 = 0. We have

E−1
W =

 1
3 0

−1
9

1
3

 .
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Thus, we have ρ1 =
(
e2πi/3, 1

)
and ρ2 =

(
e−2πi/9, e2πi/3

)
.Define γH = ρ1

1ρ
1
2 =

(
e4πi/9, e2πi/3

)
.

Notice that FγH
= ∅. Hence, under the mirror map we find

1 · eid 7→ eρ1
1ρ1

2
.

Similarly,

x1 · eid 7→ eρ2
1ρ1

2
,

x2 · eid 7→ eρ1
1ρ2

2
,

x2
1 · eid 7→ eρ3

1ρ1
2
,

x2
2 · eid 7→ x3

1eρ1
1ρ3

2
,

x1x2 · eid 7→ eρ2
1ρ2

2
,

x2
1x2 · eid 7→ eρ3

1ρ2
2
.

We note that for each good basis element except x2
2, the set FγH

was empty. Only

for x2
2 did we have Fix(γH) = Fix(ρ1

1ρ2
3) = Fix(id) = C2 ̸= {0}. This is related to the

notion of concavity that we shall explain in Chapter 6.

3.3.2 Closed Landau-Ginzburg Mirror Symmetry

The main result of [Kra10] is that, if all charges qi <
1
2 , it is possible to upgrade the vector

space isomorphism of state spaces to a Frobenius algebra isomorphism. The condition

qi <
1
2 ensures that all algebra generators are narrow; this is a mild assumption that only

excludes the A1 singularity and chain polynomials with aN = 2. The Frobenius algebra

isomorphism can be further upgraded to an isomorphism of Frobenius manifolds as done

in [HLSW22].

Theorem 3.3.7. Let W : CN → C be an invertible polynomial where no variable has

charge qi = 1/2. Then the Frobenius manifold from FJRW theory of W and G = Gmax
W ,
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and the Frobenius manifold from Saito theory of W T , are isomorphic.

The strategy for the proof of the above theorem is as follows. One computes the three

point correlation functions and a subset of four point correlators. These are matched with

the mirror FJRW invariants. Then in [LLSS17; HLSW22], the authors use the WDVV

equations and topological recursion relations to match both A and B-model invariants.

The three and four point correlation functions of the B-model are computed via the

method developed in [LLSS17]. For a simple singularity, it is possible to uniquely rewrite

sµ in terms of the flat coordinates tµ. Under this change of variables, we can rewrite

J (r)
µ ∈ C[s] as J (r)

µ ∈ C[t]. The polynomials J (2)
µ ∈ C[t] in fact give rise to genus zero

enumerative invariants in the following way. On the state space DW , recall that we have

a pairing η. We let ηµν denote the matrix of η with respect to the standard basis. It

can be calculated that ηµ,ν is the anti-diagonal matrix with 1’s along the anti-diagonal.

From Saito’s Frobenius manifold, we have a Frobenius potential F satisfying the WDVV

equations. It is shown further in [LLSS17] that F satisfies

∂tµF (t) =
∑
ν∈B

ηµνJ (2)
µ (t).

One then integrates these equations to obtain F . From the Frobenius potential F , we

define the B-model correlation functions,

⟨τa1 , · · · , τak
⟩ := ∂kF

∂ta1 · · · ∂tak

∣∣∣∣
t=0
.

This gives a concrete method of calculating the Frobenius potential F .

Example 3.3.8. Consider the E7 singularity W = x3
1 + x1x

3
2. The ℏ−2 terms of the J

function, up to quadratic order in s, are given by

(s00s02 + 1
2s

2
01)x2

1 + (s00s21 + s01s20 + s10s11 − 3
2s

2
02)x1x

2
2 + (s00s11 + s01s10)x1x2

+ s00s01x1 + (s00s20 + 1
2s

2
10 − 3s01s02)x2

2 + s00s10x2 + 1
2s

2
00.
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For the cubic terms, we may simply replace tµ = sµ as all other terms will be of higher

order. After tedious calculations we find that the cubic part of the Frobenius potential is

F |cubic terms = t01t20t00 + t10t11t00 + 1
2t21t

2
00 + 1

2t
2
10t01 − 3

2t
2
02t00 − 3

2t
2
01t02.

To obtain the full semi-simple cohomological field theory, one may use Givental’s

formula in [Giv96; Giv01] for the higher genus theory with descendants. Hence, the

Frobenius manifold isomorphism of the Theorem 3.3.7 is enough to imply the mirror

symmetry for the full cohomological field theory.

3.3.3 Using Mirror Symmetry to Calculate FJRW Phases

Recall Definition 2.2.6 where we defined the FJRW phases 0 ≤ Θγ
i < 1 for an internal

marked point with decoration γ ∈ Gmax
W . Let us now calculate the FJRW phases of

internal marked points for any Fermat, chain or loop polynomial in rank N .

Definition 3.3.9. Let W be a Fermat, chain or loop polynomial in rank N . Let W T be

the BHK mirror polynomial with charges qT
1 , . . . , q

T
N and exponent matrix EW T = (rij).

Given a W T -spin curve, the FJRW phase Θµ of a marked point with twist µ is given by

Θµ = E−1
W T


µ1

...

µN

+


qT

1
...

qT
N

 (3.3.2)

where xµ is the unique standard basis element of the B-model local algebra such that

Ψ(xµ) ∈ DW T
g

with g = e2πiΘµ .

Remark 3.3.10. The significance of this definition is that the good basis elements on

the B-model in fact determine the FJRW phases and twists of the A-model. Indeed, we

first observe that g = e2πiΘµ , with Θµ given by (3.3.2), is the group element sector that
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is the image of xµ under the Krawitz mirror map Ψ. Recalling that

EW T


qT

1
...

qT
N

 =


1
...

1



we find that (3.3.2) is equivalent to


µ1

...

µN

 = EW T


Θµ

1
...

Θµ
N

−


1
...

1



or equivalently

µi =
N∑

j=1
rijΘµ

j − 1

in agreement with the twist in Proposition 2.2.7. Thus if we assume that the index µ of

the standard good basis element is equal to the FJRW twist of a marked point, we find

that Θµ given in (3.3.2) coincides with the FJRW phase.

For convenience, we present two corollaries which give the explicit expressions for

FJRW phases in the case of a chain and loop polynomial in generic rank.

Corollary 3.3.11. Let W be a chain polynomial of rank N . Then the jth entry of the

phase Θµ is

Θµ
j =

∑
j≤i≤N

(−1)i+j(µi + 1)
∏

j≤l≤i

1
rl

.

Corollary 3.3.12. Let W be a loop polynomial of rank N . Then the jth entry of the

phase Θµ is

Θµ
j =

∑
1≤i<j

(−1)N+i+j µi + 1
D

j−1∏
k=i+1

rk +
∑

j≤i≤N

(−1)i+j µi + 1
D

N∏
k=i+1

rk ·
j−1∏
l=1

rj.

Both corollaries follow from Definition 3.3.9 and Proposition 2.1.9.
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CHAPTER 4

OPEN SAITO-GIVENTAL THEORY

In this section, we review and extend the work of Gross-Kelly-Tessler [GKT22a; GKT22b]

by defining open Saito potentials for any chain or loop polynomial. To be able to handle

any chain and loop polynomial of rank two, we define B-model selection rules that are

expected from the mirror open FJRW theory. We then give examples of primary open

potentials for ADE and simple elliptic singularities. These are new examples of open

potentials and are constructed in Examples 4.2.2, 4.2.4 and 4.2.9 using results from

Chapter 3. In the case of simple elliptic singularities, we further explore the modularity

properties. Finally, we present a perturbative algorithm for the computation of open

Saito potentials. To this end, Theorems 4.3.4 and 4.3.9 and their corollaries are the

important results used in Chapter 5.

4.1 Open Saito-Givental Potentials

In this section, we review and extend the open Landau-Ginzburg B-model of Gross,

Kelly, and Tessler [GKT22a; GKT22b]. We change notation slightly and denote an

invertible polynomial by W0 rather than W . For the following definition, recall that for

W0 = ∑N
i=1

∏N
j=1 x

rij

j , the exponent matrix is EW0 = (rij). We also recall that the mirror

polynomial W T
0 is defined by the transposed exponent matrix EW T

0
:= (EW0)T .

Definition 4.1.1. Let W0 be an invertible polynomial with exponent matrix EW0 = (rij).
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Let W T
0 be the mirror polynomial with charges qT

1 , . . . , q
T
N . For each µ = (µ1, . . . , µN) ∈

B ⊆ ZN
≥0, define the internal phase

Θµ =


Θµ

1
...

Θµ
N

 := (ET
W0)−1


µ1

...

µN

+


qT

1
...

qT
N

 ∈ QN . (4.1.1)

Define the boundary phase Θxi ∈ QN as the vector with components

Θxi
j := δij + qT

j − 2(E−1
W0)ij (4.1.2)

and the root phase as

Θroot
j := 1 − qT

j . (4.1.3)

Let I be a multiset containing elements µ ∈ B. Let d ∈ ZI
≥0. We say that (k1, . . . , kN) ∈

ZN
≥0 is balanced with respect to I and d if the following conditions hold:

qT
i (2|I| +

N∑
j=1

kj − 1) − 2
∑
µ∈I

Θµ
i −

N∑
j=1

kjΘxj

i − Θroot
j =: −1 − ei ∈ Z, (4.1.4)

ei = ki mod 2, (4.1.5)

|I|∑
i=1

2di +
N∑

i=1
ei = 2|I| +

N∑
j=1

kj − 2. (4.1.6)

Taken together, we refer to these three conditions as selection rules. We write (k1, . . . , kN) ∈

Q-Bal(I,d) to denote (k1, . . . , kN) that is balanced with respect to I and d.

Remark 4.1.2. For the case of the rank two Fermat polynomial, the conditions (4.1.4)-

(4.1.6) provide enumerative constraints for the mirror FJRW theory. See Proposition

2.30 of [GKT22b].

To illustrate the selection rules, we write them out explicitly for chain and loop poly-

nomials in rank two in the following examples. These will be important examples for the

rest of the paper.
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Example 4.1.3. Let W0 = xr1
1 + x1x

r2
2 which implies W T

0 = xr1
1 x2 + xr2

2 . To write the

selection rules, we first calculate the phases and twists of each marked point. The charges

of W T
0 are

qT
1 = r2 − 1

r1r2
, qT

2 = 1
r2
.

Fix a multiset I whose elements are µn = (an, bn) and we denote the corresponding

internal phases by Θµn . Via equation (4.1.1) we have

Θµn =
(
r2an − bn

r1r2
+ r2 − 1

r1r2
,
bn + 1
r2

)
.

The root and boundary phases are

Θroot =
(

1−r2 − 1
r1r2

, 1− 1
r2

)
, Θx1 =

(
1+r2 − 1

r1r2
− 2
r1
,

1
r2

)
, Θx2 =

(
r2 − 1
r1r2

+ 2
r1r2

, 1− 1
r2

)
.

The integral degree constraint (4.1.4) now gives

qT
j (2|I| + k1 + k2 − 1) − Θroot

j − k1Θx1
j − k2Θx2

j − 2
|I|∑

n=1
Θµn

j = −1 − ej ∈ Z.

For j = 1, this simplifies to

e1 = k1 + 2(k2 − r2k1 +∑|I|
n=1 r2an − bn)

r1r2
∈ Z.

The graded condition (4.1.5) is

e1 = k1 mod 2.

By combining the above two equations and setting

r1(I) :=
|I|∑

n=1
an, r2(I) :=

|I|∑
n=1

bn

we find
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r2k1 − k2 ≡ r2r1(I) − r2(I) mod r1r2.

Similarly, for the second integral degree constraint where we take j = 2, we ultimately

find

k2 ≡ r2(I) mod r2.

The dimension condition, given as equation (4.1.6), reads

∑
i∈I

2di + k1 + k2 + 2(k2 − r2k1 + r2r1(I) − r2(I))
r1r2

+ 2(r2(I) − k2)
r2

= 2|I| + k1 + k2 − 2.

To simplify notation, we set

m(I,d) := r1r2 + r2r1(I) + r1r2(I) − r2(I) +
∑
i∈I

r1r2(di − 1). (4.1.7)

Hence, for W0 = xr1
1 + x1x

r2
2 , we have found that (k1, k2) ∈ Q-Bal(I,d) if and only if

r2k1−k2 ≡ r2r1(I)−r2(I) mod r1r2, k2 ≡ r2(I) mod r2, r2k1+r1k2−k2 = m(I,d).

Example 4.1.4. Let W0 = xr1
1 x2 + x1x

r2
2 . The charges of W T

0 = W0 are

q1 = r2 − 1
r1r2 − 1 , q2 = r1 − 1

r1r2 − 1 .

Fix a multiset I whose elements are µn = (an, bn). The corresponding internal phases are

Θµn =
((r2 − 1)(an + 1) − bn

r1r2 − 1 ,
(r1 − 1)(bn + 1) − an

r1r2 − 1

)
.

The root and boundary phases are

Θroot =
(

1 − r2 − 1
r1r2 − 1 , 1 − r1 − 1

r1r2 − 1

)
,
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Θx1 =
(

1+ r2 − 1
r1r2 − 1 −2 r2

r1r2 − 1 ,
r1 + 1
r1r2 − 1

)
, Θx2 =

(
r2 + 1
r1r2 − 1 , 1+ r1 − 1

r1r2 − 1 −2 r1

r1r2 − 1

)
,

One may perform similar calculations to the previous example to find the integral degree

constraints as

r2k1 −r2 ≡ r2r1(I)−r2(I) mod (r1r2 −1), r1k2 −r1 ≡ r1r2(I)−r1(I) mod (r1r2 −1).

Furthermore, the dimension condition gives

r1k2 + r2k1 − k1 − k2 = m(I,d).

where

m(I,d) = r1r2(I) + r2r1(I) − r1(I) − r2(I) + (r1r2 − 1) +
∑
i∈I

(r1r2 − 1)(di − 1) (4.1.8)

In order to define open Saito potentials, we show that Q-Bal(I,d) is not always empty.

Proposition 4.1.5. For each i = 1, . . . , N , denote by êxi
as the vector with one in the

ith place and zeroes otherwise. For Ii = {êxi
}, we have (δi,1, . . . , δi,N) ∈ Q-Bal(Ii, d = 0).

Proof. Fix i = 1, . . . , N . We show that these sets satisfy the 3 conditions (4.1.4), (4.1.5)

and (4.1.6). Indeed, the left hand side of the integral degree condition reads

2qT
j − Θroot

j − Θxi
j − 2Θµ=êxi

j

for each j = 1, . . . , N . After substituting the phases, we find that the above expression

is equal to −1 − δij which is certainly an integer. Furthermore, the grading condition is

immediately satisfied.

Finally, for the left hand side of the dimension condition with d = 0, we have

N∑
j=1

δij = 1.
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On the other hand, since |Ii| = 1, the right hand side becomes

2 +
N∑

j=1
δij − 2 = 1

as desired.

Corollary 4.1.6. The set Q-Bal(I,d) is non-empty for some I ̸= ∅ and d = 0.

With this corollary, we now make the following definition which extends Definitions

4.10 and 4.12 in [GKT22b] to the case of a rank N polynomial.

Definition 4.1.7. Let I be a multiset containing elements µ ∈ B. Given W0, let Ideal(I)

be an ideal of Q[tµ,d |µ ∈ B, d ∈ Z≥0] that is generated by monomials of the form∏
d t

nd
µ,d so that ∑nd is greater than the multiplicity of the element µ ∈ I. Consider

the ring AI,sym := Q[tµ,d |µ ∈ B, d ∈ Z≥0]/Ideal(I). Given νk1,...,kN ,I,d ∈ Q such that

(k1, . . . , kN) ∈ Q-Bal(I,d), we define an open ancestor Saito-Givental potential

W ν,sym :=
∑
l≥0

∑
A=(I,d)∈Al

∑
k1,...,kN≥0,

k1,...,kN∈Q-Bal(I,d)

(−1)l−1νk1,...,kN ,I,d

|Aut(A)|

l∏
i=1

tµi,di

N∏
i=1

xki
i ∈ AI,sym[[x1, . . . , xN ]]

where Al denotes the set whose elements are cardinality l multisets of tuples I = {(µi)}l
i=1,

together with the descendant vector d and Aut(A) is the automorphism group of the

multiset A. Moreover, we require that W ν,sym is quasi-homogeneous of degree one:

EW ν,sym = W ν,sym.

Abusing terminology, we also say that νk1,...,kN ,I,d is balanced if (k1, . . . , kN) ∈ Q-Bal(I,d).

We will comment on the finiteness of this sum in Remark 4.3.2.
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4.2 Primary Open Saito Potentials

An important special case of open Saito potentials are primary open Saito potentials

where the descendant vector d = 0. Given W0, one may calculate the flat coordinates

and change variable in the versal deformation Ws to write the sµ parameters in terms of

the flat coordinates tµ. We identify the formal parameters tµ,0 of the open Saito potential

with the flat coordinates tµ via tµ,0 = tµ. In Corollaries 4.3.7 and 4.3.12, we provide

justification for this identification in rank two. We write

Wt :=
∑
l≥0

∑
k1,...,kN≥0

∑
A=(µi,0)∈Al

(−1)l−1νk1,...,kN ,I,0

|Aut(A)|

l∏
i=1

tµi,0

N∏
i=1

xki
i ∈ AI,sym[[x1, . . . , xN ]].

Using Proposition 4.1.5 and equation (3.2.5), the first order terms in Ws(t) are balanced.

Moreover, we note that since Ws is quasi-homogeneous of degree one with respect to the

grading operator E , primary open Saito potentials Ws(t) must also be quasi-homogeneous

of degree one by equation (3.2.5).

Observation 4.2.1. The rational coefficients νk1,...,kN ,I,0 for small l are given by the

following reasoning. In a primary open Saito potential Wt, for l = 0 we must have A = ∅

and |Aut(A)| = 1. Since there are no t variables in these terms, this must agree with W0

and hence ν = −1. Similarly, for l = 1, we must have ν = 1 via equation (3.2.5).

We note that the change of variables sµ to tµ cannot necessarily be done uniquely.

This means that primary open Saito potentials W are not unique in general. In other

words, the coefficients νk1,...,kN ,I,0 are not uniquely defined. We say that they exhibit a

wall-crossing structure. This is the key point of the paper that is discussed in this chapter

and the next.

To illustrate the non-uniqueness issue, we perform concrete calculations of primary

open Saito potentials and chamber indices for certain simple and elliptic singularities.
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4.2.1 ADE Singularities

In this subsection, we give explicit formulas for the open Saito potentials in the case of

D4 and E7 singularities. These are less well studied in the literature as these are chain

polynomials.

Example 4.2.2. Using Corollary 3.2.17, we see that dx1 ∧dx2 is a primitive form for the

D4 singularity (W0)D4 = x3
1 + x1x

2
2. Explicitly writing out the Γ functions using Lemma

3.2.20, we find the flat coordinates are

t20 = s20

t01 = s01

t10 = s10 − 1
12s

2
20

t00 = s00 − 1
6s10s20 + 7

216s
3
20.

These may be uniquely inverted to give

s20 = t20

s01 = t01

s10 = t10 + 1
12t

2
20

s00 = t00 + 1
6t10t20 − 1

54t
3
20.

We thus find

Wt = x3
1 + x1x

2
2 + t20x

2
1 + t01x2 +

(
t10 + 1

12t
2
20

)
x1 + t00 + 1

6t10t20 − 1
54t

3
20. (4.2.1)

Example 4.2.3. The D4 singularity is also given by (W̃0)D4 = x3
1 + x3

2. We find the flat
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coordinates for (W̃0)D4 are

t11 = s11

t01 = s01

t10 = s10

t00 = s00 + 1
54s

3
11.

Therefore, the open Saito generating potential is

Wt −W0 = t11x
2
1 + t01x2 + t10x1 + t00 − 1

54t
3
11. (4.2.2)

We will later define a notion of equivalence of open Saito theories that will clarify

these calculations.

Example 4.2.4. For the E7 singularity W0 = x3
1 +x1x

3
2, the open Saito potential is given

by

Wt −W0 = t21x
2
1x2 +

(
t20 − 4t321

81

)
x2

1 +
(
t11 + 4t21t20

9 − t421
243

)
x1x2 + t02x

2
2

+
(
t10 + t02t21

3 − 5t11t
2
21

54 + 5t220
18 − 5t20t

3
21

243 + t621
19683

)
x1

+
(
t01 + t10t21

9 + t11t20

9 − t11t
3
21

486 + t220t21

54 − t20t
4
21

4374

)
x2

+
(
t00 − t01t

2
21

27 + t02t11

3 + 4t02t20t21

27 − t02t
4
21

729 + 2t10t20

9 − t211t21

27 − t11t20t
2
21

81

+ 4t320
243 − t220t

3
21

729 + t20t
6
21

118098 − t921
28697814

)
.

Remark 4.2.5. It is not obvious how to identify the open Saito potential for (W0)D4 =

x3
1 + x1x

2
2 found in this thesis with the open Saito potential F o

D4 found in Example 5.5 of

[BB21]. We will comment on this discrepancy in Appendix B.
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4.2.2 Modularity and Elliptic Singularities

In this subsection, we present computations of open Saito potentials for some elliptic

singularities.

The following result characterises the primitive forms for elliptic singularities given

originally in [Sai83a].

Proposition 4.2.6. Let W be an elliptic singularity of rank 3, using Morse stabilisation if

necessary. Let s the marginal versal deformation parameter corresponding to the standard

good basis element xµc . That is, deg xµc = 1 and deg s = 0. Consider the family of elliptic

curves Es = {W0 + sxµc = 0} ⊂ P2. Let

z(1 − z)d
2π

dz2 +
(
γ − (1 + α + β)z

)dπ
dz

− αβπ = 0 (4.2.3)

be the corresponding Picard-Fuchs equation for the periods of Es with α, β, γ ∈ C and

z = Cs
1

1−γ for a constant C given in Lemma 2.1 of [MS16]. Then a primitive form for

W0 is

ζ = d3x

2F1(α, β, γ; z) .

For a proof, see Lemma 2.1 of [MS16]. The following proposition is then proven in

[NY98].

Proposition 4.2.7. Let W0 be an elliptic singularity of Fermat type. In the notation of

Proposition 4.2.6, for an elliptic singularity W0 the marginal flat coordinate is

t = s · 2F1(α− γ + 1, β − γ + 1, 2 − γ;Cs
1

1−γ )
2F1(α, β, γ;Cs

1
1−γ )

(4.2.4)

for the same parameters α, β, γ and variables z, s given in the Picard-Fuchs equation

(4.2.3)for Es.

Using the formulas presented in the previous chapter, one may check case-by-case

that the above proposition extends to any invertible simple elliptic singularity. This
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proposition now has important consequences for the corresponding primary open Saito

potentials.

Proposition 4.2.8. Consider the primary open Saito potentials Wt for an elliptic sin-

gularity W0 of Fermat type. Suppose all non-marginal flat coordinates are set to zero.

There exists a primary open Saito potential Wt that is a (meromorphic) modular function

of weight zero.

Proof. We note that the marginal flat coordinate t given in (4.2.4) is a ratio of hyperge-

ometric functions. This has an inverse given by a Schwarz triangle function s(t). This

implies that a primary open Saito potential is

Wt = W0 + s(t)xµc .

Modularity then immediately follows from the fact s(t) is modular invariant and W0 is

constant in t.

See Chapter VI of [Neh75] for an expansive survey of the theory of Schwarz triangle

functions.

In light of equation (3.2.22), the above two propositions extend to the chain poly-

nomial W0 = x4
1 + x1x

3
2. It is natural to expect that these results extend to any simple

elliptic singularity; one may check this by exhaustive direct calculation of flat coordinates

for such singularities. However, we postpone a discussion until Chapter 5.

We now focus on the E(1,1)
6 singularity since this is of geometric interest as the cubic

elliptic curve in P2.

Example 4.2.9. Consider the elliptic singularity W0 = x3
1 + x3

2 + x3
3. The versal defor-

mation is

W = W0 + sx1x2x3 + s110x1x2 + s101x1x3 + s011x2x3 + s100x1 + s010x2 + s001x3 + s000
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The marginal flat coordinate is

t(s) =
s · 2F1(2

3 ,
2
3 ,

4
3 ; − 1

27s
3)

2F1(1
3 ,

1
3 ,

2
3 ; − 1

27s
3) . (4.2.5)

We expand this around s = 0 and use series reversion (see Appendix A) to find one

possible s(t). Furthermore, we consider the pencil of elliptic curves W0 + s(t)x1x2x3 = 0

by setting all non-marginal variables to zero. In this case, we find that an open Saito

potential is

Wt −W0 = x1x2x3

(
t+ 1

162t
4 + 37

918540t
7 + 47

223205220t
10 + 50233

51707721265200t
13

+ 50131
11727311182947360t

16 + 207140851
11505811592979441738000t

19

+ 376053259
5219036138575474772356800t

22 + 2977848681889
10695370758782720450990790240000t

25

+ 59515502138947
56761616061350951359862242698508800t

28 +O(t31)
)
.

We note that series reversion only provides one possible inverse to (4.2.5) and so s(t) is

not uniquely defined. Thus, the open Saito potential is also not unique.

To see modularity, we change variable s = −3w1/3 in (4.2.5) where we choose the

branch of the cube root such that w1/3 ∈ R if w ∈ R≥0. Thus we find

t(w) = −3f(w)

where

f(w) =
w1/3 · 2F1(2

3 ,
2
3 ,

4
3 ;w)

2F1(1
3 ,

1
3 ,

2
3 ;w)

defines a mapping f : H → ∆. Here, we denote the upper half plane as H and ∆ is the

hyperbolic triangle enclosed by three circular arcs with angles {π
3 , 0, 0} at the respective

vertices {f(0), f(∞), f(1)}. We denote by Γ ⊂ SL2(R) the group generated by pairs of

reflections across the sides of ∆. One may analytically continue f through the real axis:
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we obtain in this way a map from P1 with a branch cut to the set ∆ ∪ g · ∆ where g ∈ Γ.

Iterating, we obtain an infinitely many-valued function on P1 \{0, 1,∞}. It is well known

that the inverse w(t) is a single-valued meromorphic function that is modular invariant

and also automorphic with respect to Γ. In particular, s(t) is also modular invariant; this

is stated in Lemma 9 of [Str12]. For a discussion of triangle groups, see Appendix A.

Remark 4.2.10. Due to modularity, one may calculate the q-series expansion. Indeed,

following Lehner [Leh54] details of which are in Appendix A, we calculate the q-expansion:

w(t) =
∞∑

n=−1
= q−1+5

9+ 2
27q−

76
19683q

2− 1
2187q

3+ 44
531441q

4− 1384
387420489q

5− 4
14348907q

6+O(q7)

where q = e
2πit

3 . Furthermore, in section 3 of [Leh54], the asymptotics are extracted as

w(t) =
∞∑

n=−1
anq

n, an ∼ 2π
3
√
n
J1

(4π
√
n

3

)
, n → ∞

where J1 is the Bessel function of the first kind 1. As expected from above, this is

meromorphic: there is a simple pole at the ‘large volume limit’ q = 0, or equivalently

t = i∞. The resulting Fourier coefficients in the above expansion, and in the expansion

of s(t) = −3w1/3(t), may be of interest in open orbifold Gromov-Witten theory of [X/G]

where X = V (W0) ⊂ P2 and G = Z3
3/Z3. In particular, it would be interesting to

compare these results to that of [LZ15] and also [AL23; PSW08]. It is currently an open

problem to find an analogue of the Landau-Ginzburg / Calabi-Yau correspondence for

open FJRW and Gromov-Witten theory. See [CIR14; CR10; PS16; Wit93b] for more

details of this correspondence in the closed case.

Explicitly, the full set of the versal deformation parameters are given by

s(t) = −3z 1
3 (t)

1We have successfully run a machine learning program, the LSTM recurrent neural net, to learn the
Fourier coefficients which would suggest the existence of a recursion relation or closed form expression
as presented here for these coefficients.
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and

s110(t) = (1 − z) 2
3 2F1

(1
3 ,

1
3 ,

2
3; z

)
t110,

s101(t) = (1 − z) 2
3 2F1

(1
3 ,

1
3 ,

2
3; z

)
t101

s011(t) = (1 − z) 2
3 2F1

(1
3 ,

1
3 ,

2
3; z

)
t011

s001(t) = (1 − z) 1
3 2F1

(1
3 ,

1
3 ,

2
3; z

)
t001 +O(t2),

s010(t) = (1 − z) 1
3 2F1

(1
3 ,

1
3 ,

2
3; z

)
t010 +O(t2),

s100(t) = (1 − z) 1
3 2F1

(1
3 ,

1
3 ,

2
3; z

)
t100 +O(t2),

s000(t) = t000 + z
2
3 (1 − z)2F1

(1
3 ,

1
3 ,

2
3; z

)(
2F1

(1
3 ,

1
3 ,

2
3; z

))′
(t001t110 + t010t101 + t100t011) +O(t3)

where O(t2) and O(t3) are quadratic and cubic in the non-marginal variables. This

computation can be found in [NY98]. It is an interesting question as to whether one may

consider this full set of parameters and still have modularity. In the case of the cubic

in P2, the answer is affirmative as found by Verlinde and Warner [VW91]. In particular,

the full open primary Saito potential Wt − W0 is modular invariant. The corresponding

transformations are

t 7→ at+ b

ct+ d
,

a b

c d

 ∈ SL(2;Z),

tµ 7→ tµ
ct+ d

, µ ̸= (1, 1, 1), (0, 0, 0)

t000 7→ t000 + 1
2

c

ct+ d
(t001t110 + t010t101 + t100t011).

This is fully explained in terms of modular Frobenius manifolds in [MS11; MS12].
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4.3 Flat Coordinates and Primitive Forms for Chains
and Loops of Rank Two

For the remainder of this chapter, we specialise to the N = 2 case.

Definition 4.3.1. Fix a finite multiset I ⊆ N. Define

AI := Q[{ui,d | i ∈ I, d ∈ Z≥0}]/⟨{ui,dui,d′ | i ∈ I, d, d′ ∈ Z≥0}⟩.

Let (k1, k2) ∈ Q-Bal(I,d). Then the potential associated to ν is

W ν :=
∑

J⊆I,d∈ZJ
≥0

(k1,k2)∈Q-Bal(J,d)

(−1)|J |−1νk1,k2,J,dx
k1
1 x

k2
2
∏
i∈J

ui,d ∈ AI [[x1, x2]].

Remark 4.3.2. In the case of rank two Fermat, chain or loop polynomials, we observe

that for a fixed k1 and k2, there are only a finite number of J ⊂ I and d ∈ ZJ
≥0 such that

(k1, k2) ∈ Q-Bal(J,d). Therefore, the coefficient of xk1
1 x

k2
2 is indeed polynomial.

We recall Definition 4.13, Lemma 4.14 and Corollary 4.15 of [GKT22b]. We define

the map

ψI : AI,sym → AI , t(α,β),d 7→
∑

i∈I:(ai,bi)=(αi,βi)
ui,d.

This induces a map ψI : AI,sym[[x1, x2]] → AI [[x1, x2]]. Furthermore, this map is a well-

defined and injective homomorphism such that for A ∈ Al,

ψI

∏l
i=1 t(αi,βi)

|Aut(A)|

 =
∑
J⊆I
d′∈S

∏
j∈J

uj,d′
j

and where S ⊂ ZJ
≥0 is the set for which there exists a bijection ϕ : J → {1, 2, . . . , l} such

that (ai, bi) = (αϕ(i), βϕ(i)) and d′j = dϕ(j). For balanced ν with respect to I, this now

implies that

ψI(W ν,sym) = W ν . (4.3.1)
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We perform calculations using W ν in the variables ui,d thereby obtaining corollaries for

W ν,sym in the variables tµ,d. We treat the chain and loop cases separately.

Chain Potentials.

Lemma 4.3.3. Define

d(J,d) := r1r2(J) + r2r1(J) − r2(J) −m(J,d)
r1r2

− 1.

If νk1,k2,J,d is balanced then d(J,d) < 0. Conversely, if d(J,d) < 0 then there exists a

(k1, k2) ∈ Z2
≥0 such that νk1,k2,J,d is balanced.

Proof. Suppose that νk1,k2,J,d is balanced. Recall from Example 4.1.3 that νk1,k2,{(aj ,bj)}j∈J ,d

is balanced if and only if

k2 ≡ r2(J) mod r2, r2k1−k2 ≡ r2·r1(J)−r2(J) mod r1r2, r2k1+r1k2−k2 = m(J,d).

Since k1, k2 ≥ 0 we find

k2 = r2(J) + p2r2, r2k1 − k2 = r2 · r1(J) − r2(J) + p1r1r2 (4.3.2)

for some p1, p2 ∈ Z≥0. Substituting this into the third balancing condition yields

r1r2(J) + r2r1(J) − r2(J) + (p1 + p2)r1r2 = m(J,d).

For p1, p2 ≥ 0, this is equivalent to

d(J,d) = −p1 − p2 − 1 < 0 (4.3.3)

as desired. For the converse direction, since d(J,d) < 0, we define p1, p2 via (4.3.3) and

thus define the desired k1 and k2 via (4.3.2).
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Theorem 4.3.4. If W ν := xr1
1 + x1x

r2
2 mod ⟨{ui,d | i ∈ I, d ∈ Z≥0}⟩ then

∫
Ξ(a,b)

eW ν/ℏΩ = δa,0δb,0 +
∑
J⊆I
J ̸=∅

∑
d∈ZJ

≥0

(−1)|J |(−ℏ)−d(J,d)−2A(J, ν,d)δr1(J),aδr2(J),b
∏
i∈J

ui,di

(4.3.4)

where

A(J, ν,d) =
|J |∑

h=1

1
h!

∑
J1⊔···⊔Jh=J

{k1(j),k2(j)}h
j=1∈Q-Bal(Jj ,d|Jj

)

Γ{k1(j),k2(j),Jj}h
j=1

h∏
j=1

νk1(j),k2(j),Jj ,d|Jj
.

with

Γ{k1(j),k2(j),Jj}h
j=1

=
Γ
(

1+
∑h

j=1 k2(j)
r2

)
Γ
(

1+r2(J)
r2

) Γ
(

1+
∑h

j=1 k1(j)
r1

−
1+
∑h

j=1 k2(j)
r1r2

)
Γ
(

1+r1(J)
r1

− 1+r2(J)
r1r2

)
and where {k1(j), k2(j)}h

j=1 ∈ Q-Bal(Jj,d|Jj
) means

k2(j) = r2(Jj) mod r2, r2k1(j) − k2(j) = r2r1(Jj) − r2(Jj) mod r1r2

and

r1k2(j) + r2k1(j) − k2(j) = m(Jj,d|Jj
). (4.3.5)

Proof. Fix J ⊆ I. The case J = ∅ follows from the definition of a good basis and gives

the contribution δa,0δb,0. Thus, consider J ̸= ∅. Recall that νk1,k2,{(aj ,bj)}j∈J ,d is balanced

if and only if

k2 ≡ r2(J) mod r2, r2k1−k2 ≡ r2·r1(J)−r2(J) mod r1r2, r2k1+r1k2−k2 = m(J,d).

By definition of r1(J) and r2(J), there exist non-negative integers l1(J) and l2(J) such

that ∑
j∈J

aj = r1(J) + l1(J)r1,
∑
j∈J

bj = r2(J) + l2(J)r2.
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We may write

∫
Ξ(a,b)

eW ν/ℏΩ =
∫

Ξ(a,b)

( ∞∑
h=0

(W ν − xr1
1 − x1x

r2
2 )

h!ℏh

)
e(xr1

1 +x1x
r2
2 )/ℏΩ.

Noting that W ν − xr1
1 − x1x

r2
2 ≡ 0 mod ⟨{ui,dui,d′ | i ∈ I, d, d′ ∈ Z≥0}⟩ we expand the

summation. If J ̸= ∅ then the coefficient uJ = ∏
i∈J ui,di

is

ΛJ =
∫

Ξ(a,b)

|J |∑
h=1

1
h!

∑
J1⊔···⊔Jh=J
{k1(j),k2(j)}h

j=1

(
x

∑
j

k1(j)
1 x

∑
j

k2(j)
2 ℏ−h

h∏
j=1

(−1)|Jj |−1νk1(j),k2(j),Jj ,d|Jj

)
e(xr1

1 +x1x
r2
2 )/ℏΩ.

For convenience, we simplify the notation {k1(j), k2(j)}h
j=1 ∈ Q-Bal(Jj,d|Jj

) by assuming

that all sums over {k1(j), k2(j)}h
j=1 are of balanced indices. We recall from Lemma 3.2.20

that for the rank 2 chain W0 = xr1
1 + x1x

r2
2 we have

∫
Ξµ

eW0/ℏxk1
1 x

k2
2 dx1dx2 = (−ℏ)m1+m2

Γ
(

µ2+1
r2

+m2

)
Γ
(

µ2+1
r2

) Γ
(

µ1+1
r1

− µ2+1
r1r2

+m1

)
Γ
(

µ1+1
r1

− µ2+1
r1r2

)

if k1 = r1m1 + µ1 + m2 and k2 = r2m2 + µ2 for some mi ∈ Z≥0 and the integral is

zero otherwise. Thus, performing integration by parts on ΛJ we see that the integral is

zero unless (a, b) = (r1(J), r2(J)). Integrating the monomial x
∑

j
k1(j)

1 x

∑
j

k2(j)
2 produces

a factor ℏn1+n2 where

∑
j∈J

k1(j) = r1(J) + n1r1 + n2,
∑
j∈J

k2(j) = r2(J) + n2r2. (4.3.6)

Again using Lemma 3.2.20 we find

ΛJ =
|J |∑

h=1

1
h!

∑
J1⊔···⊔Jh=J
{k1(j),k2(j)}h

j=1

(−1)|J |−1+n1+n2ℏn1+n2−hΓ{k1(j),k2(j),Jj}h
j=1

h∏
j=1

νk1(j),k2(j),Jj ,d|Jj
δr1(J),aδr2(J),b.

Using the definition of m(J,d) in (4.1.7), we obtain ∑j m(Jj,d|Jj
) = (h−1)r1r2+m(J,d).

97



Combining with (4.3.5) and (4.3.6) thus gives,

n2 + n1 =
∑

j k2(j) − r2(J)
r2

+
∑

j k1(j) − r1(J)
r1

−
∑

j k2(j) − r2(J)
r1r2

=
∑

j m(Jj,d|Jj
) − r1r2(J) − r2r1(J) + r2(J)

r1r2

= (h− 1)r1r2 +m(J,d) − r1r2(J) − r2r1(J) + r2(J)
r1r2

.

Hence,

(n1 + n2 − h+ 1)r1r2 = m(J,d) − r1r2(J) − r2r1(J) + r2(J) = (−d(J,d) − 1)r1r2.

Thus, we find

ΛJ = (−1)|J |(−ℏ)−d(J,d)−2A(J, ν,d)δr1(J),aδr2(J),b

as desired.

Corollary 4.3.5. For

W ν,sym = xr1
1 + x1x

r2
2 mod ⟨{tα,β,d}⟩

we have

∫
Ξ(a,b)

eW ν,sym/ℏΩ = δa,0δb,0+
∑
l≥1

∑
{(αi,βi,di)}∈Al

(−1)l(−ℏ)−d(J,d)−2A(J, ν,d)δr1(J),aδr2(J),b

∏l
i=1 tαi,βi,di

|Aut(A)|

.
Proof. This follows from the previous theorem and equation (4.3.1).

Corollary 4.3.6. For a rank two chain polynomial, there exists (νk1,...,kN ,J,d) ∈ Q such

that, if d(J,d) < 0 and |J | ≥ 2, then

A(J, ν,d) = 0.
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Proof. Recall that

A(J, ν,d) =
|J |∑

h=1

1
h!

∑
J1⊔···⊔Jh=J

∑
{k1(j),k2(j)}h

j=1
(k1(j),k2(j))

Γ{k1(j),k2(j),Jj}h
j=1

h∏
j=1

νk1(j),k2(j),Jj ,d|Jj

where

Γ{k1(j),k2(j),Jj}h
j=1

=
Γ
(

1+
∑h

j=1 k2(j)
r2

)
Γ
(

1+r2(J)
r2

) Γ
(

1+
∑h

j=1 k1(j)
r1

−
1+
∑h

j=1 k2(j)
r1r2

)
Γ
(

1+r1(J)
r1

− 1+r2(J)
r1r2

) .

We proceed by induction. For the base case, fix J = {j1, j2}. We split A(J, ν,d) into

h = 1 and h = 2 terms. For h = 2 terms, partition J into J1 = {j1} and J2 = {j2}, or

J1 = {j2} and J2 = {j1}. Thus

A(J, ν,d) =
∑

k1,k2∈Q-Bal(J,d)
Γk1,k2,Jνk1,k2,J,d

+ 1
2

 ∑
k1(1),k2(1)∈Q-Bal({j1},d|{j1})
k1(2),k2(2)∈Q-Bal({j2},d|{j2})

Γk1(j),k2(j),{j1},{j2}νk1(1),k2(1),{j1},dj1
νk1(2),k2(2),{j2},dj2

+
∑

k1(1),k2(1)∈Q-Bal({j2},d|j2 )
k1(2),k2(2)∈Q-Bal({j1},d|j1 )

Γk1(j),k2(j),{j1},{j2}νk1(1),k2(1),{j2},dj2
νk1(2),k2(2),{j1},dj1

.

We now choose a collection (νk1,k2,J,d) such that only one νk1,k2,J,d is non-zero in the first

summation. Since d(J,d) < 0, using Lemma 4.3.3 we are able to find such a non-vanishing

νk1,k2,J,d. Hence, given νk1(m),k2(m),{jm},djm
on the singletons {jm} for m = 1, 2 we see that

the choice of

νk1,k2,J,d = −1
2Γk1,k2,J

 ∑
k1(1),k2(1)∈Q-Bal({j1},d|{j1})
k1(2),k2(2)∈Q-Bal({j2},d|{j2})

Γk1(j),k2(j),{j1},{j2}νk1(1),k2(1),{j1},dj1
νk1(2),k2(2),{j2},dj2

+
∑

k1(1),k2(1)∈Q-Bal({j2},d|{j2})
k1(2),k2(2)∈Q-Bal({j1},d|j1 )

Γk1(j),k2(j),{j1},{j2}νk1(1),k2(1),{j2},dj2
νk1(2),k2(2),{j1},dj1



forces A(J, ν,d) = 0.

99



Assume the result is true for all J ′ ⊂ J with 2 ≤ |J ′| < |J |. For such a J with |J | > 2,

A(J, ν,d) reads

A(J, ν,d) =
∑

k1,k2∈Q-Bal(J,d)
Γk1,k2,Jνk1,k2,J,d

+
|J |∑

h=2

1
h!

∑
J1⊔···⊔Jh=J

∑
{k1(j),k2(j)}h

j=1
(k1(j),k2(j))∈Q-Bal(Jj ,d|Jj

)

Γ{k1(j),k2(j),Jj}h
j=1

h∏
j=1

νk1(j),k2(j),Jj ,d|Jj
.

We again choose (ν) such that only one νk1,k2,J,d is non-zero in the first summation. The

ν terms in the h ≥ 2 summation are defined on proper subsets of J and so are chosen in

the inductive step. Thus, we choose

νk1,k2,J,d = − 1
Γk1,k2,J

|J |∑
h=2

1
h!

∑
J1⊔···⊔Jh=J

∑
{k1(j),k2(j)}h

j=1
(k1(j),k2(j))∈Q-Bal(Jj ,d|Jj

)

Γ{k1(j),k2(j),Jj}h
j=1

h∏
j=1

νk1(j),k2(j),Jj ,d|Jj

which forces A(J, ν,d) = 0.

Corollary 4.3.7. There exists (νk1,...,kN ,J,d) ∈ Q such that Ω = dx1 ∧ dx2 is a primitive

form and tα,β,0 are flat coordinates.

Proof. From Observation 4.2.1, we see that W ν,sym satisfies the hypothesis of Theorem

4.3.4. Moreover, since νk1,...,kN ,J,d = 0 if (k1, . . . , kN) /∈ Q-Bal(J,d), there is no contri-

bution of the form (−ℏ)−d(J,d)−2A(J, ν,d) with d(J,d) < 0 and |J | ≥ 2. However, for

J = {(a, b)} and d = 0 so that d(J,d) = −1, we indeed find the stated formula for the

coefficient of ℏ−1 using Observation 4.2.1 and equation (4.3.4).

In Section 5.1 we give an example of how to calculate flat coordinates for W0 =

x4
1 + x1x

3
2 using this method.
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Loop Potentials.

Lemma 4.3.8. Define

d(J,d) := r1r2(J) + r2r1(J) − r1(J) − r2(J) −m(J,d)
r1r2 − 1 − 1.

If νk1,k2,J,d is balanced then d(J,d) < 0. Conversely, if d(J,d) < 0 then there exists a

(k1, k2) ∈ Z2
≥0 such that νk1,k2,J,d is balanced.

Proof. Suppose that νk1,k2,J,d is balanced. Recall from Example 4.1.4 that νk1,k2,{(aj ,bj)}j∈J ,d

is balanced if and only if

r1k2 −k2 ≡ r1r2(J) − r1(J) mod r1r2 − 1, r2k1 −k2 ≡ r2 · r1(J) − r2(J) mod r1r2 − 1

and

r2k1 + r1k2 − k1 − k2 = m(J,d)

Upon calculating d(J,d), we find that for some p1, p2 ≥ 0, we have

d(J,d) = −p1 − p2 − 1 < 0

as desired. The converse direction is proven similarly to Lemma 4.3.3.

Theorem 4.3.9. If W ν := xr1
1 x2 + x1x

r2
2 mod ⟨{ui,dui,d′ | i ∈ I, d, d′ ∈ Z≥0}⟩ then

∫
Ξ(a,b)

eW ν/ℏΩ = δa,0δb,0 +
∑
J⊆I
J ̸=∅

∑
d∈ZJ

≥0

(−1)|J |(−ℏ)−d(J,d)−2A(J, ν,d)δr1(J),aδr2(J),b
∏
i∈J

ui

(4.3.7)

where

A(J, ν,d) =
|J |∑

h=1

1
h!

∑
J1⊔···⊔Jh=J

{k1(j),k2(j)}h
j=1∈Q-Bal(Jj ,d|Jj

)

Γ{k1(j),k2(j),Jj}h
j=1

h∏
j=1

νk1(j),k2(j),Jjd|Jj
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with

Γ{k1(j),k2(j),Jj}h
j=1

:=
Γ
(

r2
∑

k1(j)+r2−
∑

k2(j)−1
r1r2−1

)
Γ
(

r2r1(J)+r2−r2(J)−1
r1r2−1

) Γ
(

r1
∑

k2(j)+r1−
∑

k1(j)−1
r1r2−1

)
Γ
(

r1r2(J)+r1−r1(J)−1
r1r2−1

)

and where {k1(j), k2(j)}h
j=1 ∈ Q-Bal(Jj,d|Jj

) means

r1k2(j)−k1(j) = r1r2(Jj)−r1(J) mod r1r2−1, r2k1(j)−k2(j) = r2r1(Jj)−r2(Jj) mod r1r2−1

and

r2k1(j) + r1k2(j) − k1(j) − k2(j) = m(Jj,d|Jj
). (4.3.8)

Proof. Fix J ⊆ I. The case J = ∅ follows from the definition of a good basis and gives

the contribution δa,0δb,0. Thus, consider J ̸= ∅. Recall that νk1,k2,{(aj ,bj)}j∈J ,d is balanced

if and only if

r1k2 − k1 ≡ r1 · r2(J) − r1(J) mod (r1r2 − 1), r2k1 − k2 ≡ r2 · r1(J) − r2(J) mod (r1r2 − 1),

r2k1 + r1k2 − k1 − k2 = m(J,d).

By definition of r1(J) and r2(J), there exist integers l1(J) and l2(J) such that

∑
j∈J

aj = r1(J) + l1(J)r1,
∑
j∈J

bj = r2(J) + l2(J)r2.

We may write

∫
Ξ(a,b)

eW ν/ℏΩ =
∫

Ξ(a,b)

( ∞∑
h=0

(W ν − xr1
1 x2 − x1x

r2
2 )

h!ℏh

)
e(xr1

1 x2+x1x
r2
2 )/ℏΩ.

Noting that W ν − xr1
1 x2 − x1x

r2
2 ≡ 0 mod ⟨{u2

i | i ∈ I}⟩ we expand the summation. If
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J ̸= ∅ then the coefficient uJ = ∏
i∈J ui is

ΛJ =
∫

Ξ(a,b)

|J |∑
h=1

1
h!

∑
J1⊔···⊔Jh=J
{k1(j),k2(j)}h

j=1

(
x

∑
j

k1(j)
1 x

∑
j

k2(j)
2 ℏ−h

h∏
j=1

(−1)|Jj |−1νk1(j),k2(j),Jjd|Jj

)
e

x
r1
1 x2+x1x

r2
2

ℏ Ω.

For convenience, we simplify the notation {k1(j), k2(j)}h
j=1 ∈ Q-Bal(Jj,d|Jj

) by assuming

that all sums over {k1(j), k2(j)}h
j=1 are of balanced indices. We recall from Lemma 3.2.21

that for the rank 2 loop singularity W0 = xr1
1 x2 + x1x

r2
2 , we have

∫
Ξµ

eW0/ℏxk1
1 x

k2
2 dx1dx2 = (−ℏ)m1+m2

Γ
(

r2k1+r2−k2−1
r1r2−1 +m1

)
Γ
(

r2µ1+r2−µ2−1
r1r2−1

) Γ
(

r1k2+r1−k1−1
r1r2−1 +m2

)
Γ
(

r1µ2+r1−µ1−1
r1r2−1

)

if k1 = r1m1 + µ1 + m2 and k2 = r2m2 + µ2 + m1 for some mi ∈ Z≥0 and the integral is

zero otherwise. Thus performing integration by parts on ΛJ , we see that the integral is

zero unless (a, b) = (r1(J), r2(J)). Integrating the monomial x
∑

j
k1(j)

1 x

∑
j

k2(j)
2 produces

a factor ℏn1+n2 where

∑
j∈J

k1(j) = r1(J) + n1r1 + n2,
∑
j∈J

k2(j) = r2(J) + n2r2 + n1. (4.3.9)

Again using Lemma 3.2.21 we find

ΛJ =
|J |∑

h=1

1
h!

∑
J1⊔···⊔Jh=J
{k1(j),k2(j)}h

j=1

(−1)|J |−1+n1+n2ℏn1+n2−hΓ{k1(j),k2(j),Jj}h
j=1

h∏
j=1

νk1(j),k2(j),Jj ,d|Jj
δr1(J),aδr2(J),b.

From the definition of m(J,d) in (4.1.8) we find ∑
j m(Jj,d|Jj

) = (h − 1)(r1r2 − 1) +

m(J,d). Combining with (4.3.8) and (4.3.9) we obtain

n1 + n2 = r1
∑
k2(j) −∑

k1(j) − r1r2(J) + r1(J)
r1r2 − 1 + r2

∑
k1(j) −∑

k2(j) − r2r1(J) + r2(J)
r1r2 − 1

=
∑

j m(Jj,d|Jj
) − r1r2(J) − r2r1(J) + r2(J)

r1r2 − 1

= (h− 1)(r1r2 − 1) +m(J,d) − r1r2(J) − r2r1(J) + r1(J) + r2(J)
r1r2 − 1 .
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Hence,

(n1+n2−h+1)(r1r2−1) = m(J,d)−r1r2(J)−r2r1(J)+r1(J)+r2(J) = (−d(J,d)−1)(r1r2−1).

Thus, we find

ΛJ = (−1)|J |(−ℏ)−d(J,d)−2A(J, ν,d)δr1(J),aδr2(J),b

as desired.

Corollary 4.3.10. For

W ν,sym = xr1
1 x2 + x1x

r2
2 mod ⟨{tα,β,d}⟩

we have

∫
Ξ(a,b)

eW ν,sym/ℏΩ = δa,0δb,0+
∑
l≥1

∑
{(αi,βi,di)}∈Al

(−1)l(−ℏ)−d(J,d)−2A(J, ν,d)δr1(J),aδr2(J),b

∏l
i=1 tαi,βi,di

|Aut(A)|

.
Proof. This follows from the Theorem 4.3.9 and equation (4.3.1).

Corollary 4.3.11. For a rank two loop polynomial, there exists (νk1,...,kN ,J,d) ∈ Q such

that, if d(J,d) < 0 and |J | ≥ 2, then

A(J, ν,d) = 0.

Proof. This is proved in exactly the same way as Corollary 4.3.6, except now we use

Lemma 4.3.8 and a different set of Γ functions given by

Γ{k1(j),k2(j),Jj}h
j=1

:=
Γ
(

r2
∑

k1(j)+r2−
∑

k2(j)−1
r1r2−1

)
Γ
(

r2r1(J)+r2−r2(J)−1
r1r2−1

) Γ
(

r1
∑

k2(j)+r1−
∑

k1(j)−1
r1r2−1

)
Γ
(

r1r2(J)+r1−r1(J)−1
r1r2−1

) .
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Corollary 4.3.12. There exists (νk1,...,kN ,J,d) ∈ Q such that, Ω = dx1 ∧dx2 is a primitive

form and tα,β,0 are flat coordinates for a rank two loop polynomial.

Proof. This is proved in the same way as the chain case in Corollary 4.3.7.

This method of calculating flat coordinates could be extended to Fermat, chain and

loop polynomials in rank N > 2, although the details are tedious to write down.

In the rest of this thesis, we assume that any collection (νk1,k2,I,d) in rank two is

suitably chosen such that dx1 ∧ dx2 is a primitive form and tα,β,0 are flat coordinates.
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CHAPTER 5

WALL-CROSSING

In the previous chapter we defined a primary open Saito potential as the versal defor-

mation written in terms of the flat coordinates tµ(s). However, we have already noted

that the change of variables s 7→ t cannot necessarily be done uniquely. In this chapter,

we start by giving an example of Corollary 4.3.7 in the case that W0 = x4
1 + x1x

3
2 by

explicitly constructing an open Saito potential given that dx1 ∧ dx2 is a primitive form.

We then describe the set of possible open ancestor Saito-Givental potentials by defining

a Lie group of wall-crossing transformations. We conclude by proving that this group

acts faithfully and transitively on such potentials, whereby the main results of the thesis

are Theorems 5.3.3 and 5.3.4. Corollary 5.3.5 is a direct consequence of these results and

explains the computational result given for W0 = x4
1 + x1x

3
2 in Section 5.1.

5.1 Motivation

To motivate this section, we consider the example of the elliptic singularity W0 = x4
1 +

x1x
3
2. In Chapter 3, we have seen that dx1dx2 is not a primitive form. In particular, for

the expression ∫
eWs/ℏdx1dx2

contains ℏ0 terms of the form 1 +O(s3
31) when integrated over a cycle Ξ00 and where s31

is the marginal parameter.
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To overcome this issue, we consider an open Saito potential W ∈ A[x1, x2] where

A = C
[
{tij}(i,j)∈B

]
/I with I an ideal in A and B is the index set for the standard good

basis which in this case reads,

B = {(0, 0), (0, 1), (1, 0), (2, 0), (1, 1), (0, 2), (2, 1), (3, 0), (3, 1)}.

Suppose we choose the ideal I that is generated by (tij) for (i, j) ∈ B \ {(3, 1)}. One

open Saito potential at first order in t31 is

W = x4
1 + x1x

3
2 + t31x

3
1x2.

Now suppose we consider higher order terms and define

W (3) := x4
1 + x1x

3
2 + t31x2x

3
1 + λ1t

3
31x

3
2x1 + µ1t

3
31x

4
1. (5.1.1)

One may view the addition of the terms λ1t
3
31x

3
2x1 and µ1t

3
31x

4
1 as a scaling of the original

potential. Another reason for perturbing by these terms is that, viewed as sections of the

Gauss-Manin vector bundle, we have

[x4
1] = −ℏ

6 [1], [x1x
3
2] = −ℏ

3 [1].

Hence, the addition of these terms corresponds to a point in the moduli space of primitive

forms for E(1,1)
7 defined in Section 5.4 of Li, Li and Saito [LLS14].

The factor of t331 in the perturbation is a judicious choice for the following reason.

Suppose we chose the ideal I to be the generated by the same parameters but with t431

as an additional generator. Then working over this ring we have

∫
Ξ00

eW (3)/ℏdx1dx2 =
∫

Ξ00
eW/ℏ

∞∑
k=0

(t31x2x
3
1 + λ1t

3
31x

3
2x1 + µ1t

3
31x

4
1)k

k!ℏk
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where we have expanded the exponential. Modulo t431 we find that this is equal to

∫
Ξ00

eW0/ℏ
(

1 + t331
3!ℏ3x

3
2x

9
1 + λ1

t331
ℏ
x3

2x1 + µ1
t331
ℏ
x4

1

)
.

There are no t231 terms since these vanish using integration by parts. To calculate the

other terms, we use the by parts formula in Lemma 3.2.20,

∫
Ξ00

dx1dx2 x
i
2x

j
1e

W0/ℏ = (−ℏ)m2+m1
Γ
(

1
3 +m2

)
Γ
(

1
3

) Γ
(

1
6 +m1

)
Γ
(

1
6

)

which is valid for i = 3m2 and j = 4m1 +m2. This yields the expression

∫
Ξ00

eW (3)/ℏdx1dx2 = 1 − t331
6

( 7
108 + 2λ1 + µ1

)
+O(t631).

Choosing λ1 and µ1 such that

7
108 + 2λ1 + µ1 = 0 (5.1.2)

then ensures that the appropriate ℏ0 terms vanish at O(t331). One may repeat this proce-

dure perturbatively to all orders to give a primitive form.

Remark 5.1.1. This matches the spirit of the Gross-Siebert program [GPS10; GS11b]

whereby degenerations are constructed order by order using scattering diagrams and

interpreted as instanton corrections. See [Aur09; GS11a; GOR15] for an exposition.

Despite this similarity, it is not obvious how to incorporate Landau-Ginzburg mirror

symmetry into the Gross-Siebert program: there is no target space for a Landau-Ginzburg

model and hence no corresponding SYZ fibration. Therefore, the combinatorial machinery

of the Gross-Siebert program is currently out of reach for us.

Rather than calculate these linear constraints directly, we will describe a wall-crossing

group for Landau-Ginzburg potentials. This is analogous to the construction of the wall-
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crossing group of Gross-Kelly-Tessler. The wall crossing does in fact contain information

on these relations.

More precisely, consider again W0 = x4
1 + x1x

3
2. Let V be the vector field defined by

V = C · t331(x1∂1 − x2∂2)

where C is a constant. The wall crossing group is then generated by eV and where the

group multiplication is given by the Baker-Campbell-Hausdorff formula.

The action is given by the following lemma.

Lemma 5.1.2. With V as above, we have

x1 7→ eV x1 = eCtk
31x1, x2 7→ eV x2 = e−Ctk

31x2. (5.1.3)

Proof. By virtue that x1∂x1 and x2∂x2 commute, we observe that

eV = eCtk
31x1∂x1 · e−Ctk

31x2∂x2 .

Hence, since αz∂z is the generator of multiplication by eα, we find

eV x1 = eCtk
31x1∂x1x1 = eCtk

31x1, eV x2 = e−Ctk
31x2∂x2x2 = e−Ctk

31x2

as desired.

Thus, taking W (3) as in equation (5.1.1), we find that, modulo t431 terms, W (3) trans-

forms as

W (3) 7→ W̃ (3) = x4
1 + x1x

3
2 + t31x2x

3
1 + t331x1x

3
2(λ1 − 2C) + t313(µ1 + 4C)x4

1.
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Comparing to (5.1.1), the wall crossing relations on λ1 and µ1 are therefore

λ1 7→ λ1 − 2C, µ1 7→ µ1 + 4C. (5.1.4)

We note that this transformation leaves the linear relation (5.1.2) invariant.

To further emphasise this point, we repeat this procedure up to t631 terms. We choose

the maximal ideal I to be generated by (tij) for (i, j) ∈ B \ {(3, 1)} and additionally t731.

The potential is now

W (6) = x4
1 + x1x

3
2 + t31x2x

3
1 + λ1t

3
31x

3
2x1 + µ1t

3
31x

4
1 + γt431x2x

3
1 + λ2t

6
31x

3
2x1 + µ2t

6
31x

4
1.

Acting via eV yields the wall crossing formulas

λ2 7→ λ2 − 2Cλ1 + 2C2, µ2 7→ µ2 + 4Cµ1 + 8C2, γ 7→ γ + 2C (5.1.5)

with λ1 and µ1 transforming the same way as before. It can also be calculated that at

O(t631) the integral we have is

∫ (
λ2

1x
6
2x

2
1

2 +µ
2
1x

8
1

2 +λ2x
3
2x1+µ2x

4
1+
λ1x

6
2x

10
1

6 +µ1x
3
2x

13
1

6 +λ1µ1x
3
2x

5
1+
γx3

2x
9
1

2 +x
6
2x

18
1

720

)
t631e

W0/ℏdx1dx2.

Repeated application of the by parts formula yields the linear relation

2
9λ

2
1 + 7

72µ
2
1 − 1

3λ2 − 1
6µ2 + 7

486λ1 + 91
3888µ1 + 1

18λ1µ1 − 7
216γ + 1729

2916 = 0.

Again, we find that this relation is invariant under the wall crossing transformations in

equations (5.1.4) and (5.1.5).
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5.2 The Wall-Crossing Group

We now define the Landau-Ginzburg wall-crossing GA,W0 group for a general Landau-

Ginzburg model W0. To define GA,W0 , we construct a larger group GA considered in

Section 4.3 of [GKT22b] of which GA,W0 is a subgroup.

Proposition 5.2.1. Let A = AI,sym. Fix a maximal ideal m ⊂ A. Then the vector space

gA,K :=
⊕

(a1,...,aN )∈ZN
≥0∑

ai≤K

N∑
i=1

m ·
(
xa1

1 · · ·xaN
N

(
(ai + 1)x1∂x1 − (a1 + 1)xi∂xi

))
. (5.2.1)

can be endowed with the structure of a graded nilpotent Lie algebra. Furthermore, denote

GA := lim←
K

exp(gA,K).

Then ψ ∈ GA ≤ AutA(A[[x1, . . . , xN ]]) satisfies the following properties:

1. ψ has the form

ψ = id mod ⟨{tµ,d}|µ ∈ B, d ∈ Z≥0⟩ .

2. ψ preserves the volume form dx1 ∧ · · · ∧ dxN .

3. ψ preserves the ideal generated by ∏N
i=1 xi.

Proof. Define

RK = A[x1, . . . , xN ]/(x1, . . . , xN)K+1

so that the power series ring A[[x1, . . . , xN ]] is the inverse limit of RK . Let

DK =
N⊕

i=1
RK∂xi

be the A-module of derivations of RK equipped with the usual commutator as the Lie

bracket. The vector space gA,K is a subspace of DK and we claim that it is closed under
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the commutator. Indeed, set

Va =
N∑

i=1
gi ·

(
xa1

1 · · ·xaN
N

(
(ai + 1)x1∂x1 − (a1 + 1)xi∂xi

))

and

Vb =
N∑

j=1
gj ·

(
xb1

1 · · ·xbN
N

(
(bj + 1)x1∂x1 − (b1 + 1)xj∂xj

))

for some gi, gj ∈ m with i, j = 1, . . . , N . We calculate

[Va, Vb] =
N∑

i,j=1
gigj

(
N∏

l=1
xal+bl

l

)((
(ai+bi+1)α+(aj+bj+1)β

)
x1∂x1−(a1+b1+1)(αxi∂xi

+βxj∂xj
)
)

(5.2.2)

with

α = −(bj + 1)(a1 + 1)a1 + (b1 + 1)(a1 + 1)aj

a1 + b1 + 1 , β = (ai + 1)(b1 + 1)b1 − (a1 + 1)(b1 + 1)bi

a1 + b1 + 1

which implies closure under the Lie bracket. We define a grading on gA,K as the one

induced by the grading on A[x1, . . . , xN ]. In order for (5.2.1) to be a decomposition into

homogeneous pieces, we require that each gi ∈ m in the summation is homogeneous and

of the same degree. Compatibility of the Lie bracket and the grading then follows from

equation (5.2.2). As gA,K is nilpotent, we form the Lie group GA,K := exp(gA,K) upon

which we take the inverse limit. As sets, we identify GA with the inverse limit of gA,K ,

which we write as gA. We note that for V ∈ gA, the group element exp(V ) acts via

f 7→
∞∑

n=0

V n(f)
n! . (5.2.3)

The exponential ensures that elements of GA,K are the identity modulo the ideal linear in

tµ,d. Thus property 1 is satisfied. Property 3 can be seen by acting elements of gA,K on∏N
i=1 xi. Finally, we show that elements ofGA preserve the volume form. This is equivalent

to showing that LV (dx1 ∧· · ·∧dxN) = 0 for V = xa1
1 · · ·xaN

N

(
(ai +1)x1∂x1 − (a1 +1)xi∂xi

)
and where LV is the Lie derivative. Applying the homotopy formula for the Lie derivative,
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we find

LV (dx1 ∧ · · · ∧ dxN) = d(ι(V )dx1 ∧ · · · ∧ dxN)

since dx1 ∧ · · · ∧ dxN is closed. The right hand side of the above equation reads

d
(
xa1

1 · · · xaN
N

(
(ai + 1)x1dx2 ∧ · · · dxN − (−1)i−1(a1 + 1)dx1 ∧ · · · d̂xi ∧ · · · ∧ dxN

))
= xa1

1 · · ·xaN
N

(
(a1 + 1)(ai + 1) − (ai + 1)(a1 + 1)

)
dx1 ∧ · · · ∧ dxN

= 0

as desired.

Remark 5.2.2. We remark that the vector fields in gA are not the only ones that preserve

the volume form. Indeed, vector fields of the form f(x1, . . . , x̂i, . . . , xN)∂xi
also preserve

dx1 ∧ · · · ∧ dxN . However, these vector fields are irrelevant for our purposes in relation

to enumerative theories. See Definition 3.18 of strongly positive in [GKT22b].

Definition 5.2.3. For a Landau-Ginzburg model W0, the Landau-Ginzburg wall-crossing

group GA,W0 ≤ GA is the group of elements ψ such that ψW is still an open Saito potential

i.e. each monomial in ψW with non-zero coefficient νk1,...,kN ,I,d must satisfy (k1, . . . , kN) ∈

Q-Bal(I,d). The primary Landau-Ginzburg wall-crossing group is defined by restricting

GA,W0 to d = 0 with the additional quasi-homogeneity condition: ψ commutes with the

grading operator E .

In the rest of this section, we use Definition 5.2.3 to obtain necessary conditions so

that the exponential of V ∈ gA is an element of GA,W0 .

5.2.1 Quasi-Homogeneity

The quasi-homogeneity condition is necessary since it implies that ψ preserves the quasi-

homogeneity of primary open Saito potentials W . Indeed, assuming that Eψ = ψE on
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primary open Saito potentials, we observe

LE(ψW ) = E(ψW ) = ψ(EW ) = ψ(LEW ) = ψW

since W is quasi-homogeneous of degree one.

Lemma 5.2.4. Fix Va1,...,aN
∈ gA where

Va1,...,aN
=

N∑
i=1

gi ·
(
xa1

1 · · ·xaN
N

(
(ai + 1)x1∂x1 − (a1 + 1)xi∂xi

))

for some choice of homogeneous elements gi ∈ m with degree deg gi = c ∈ Q for each i.

Then

[E , Va1,...,aN
] = (deg Va1,...,aN

) · Va1,...,aN

where

deg Va1,...,aN
= c+

N∑
i=1

ai deg xi.

Proof. One may see this via a direct calculation. As an alternative proof, one recalls the

Lie derivative on vector fields,

LEVa1,...,aN
:= [E , Va1,...,aN

].

Since deg gi = c is the same for each i, we have

LEgi = c · gi.

This is sufficient to imply Va1,...,aN
is homogeneous. More precisely, there is a well-defined

deg Va1,...,aN
∈ Q such that

LEVa1,...,aN
= deg Va1,...,aN

· Va1,...,aN
.

Indeed, to calculate deg Va1,...,aN
, we treat ∂xi

as having degree − deg xi since LE∂xi
=

114



[E , ∂xi
] = − deg xi∂xi

. Noting that xk∂k thus has degree 0 for each k, we find using the

Leibniz rule for the Lie derivative

LEVa1,...,aN
=

N∑
i=1

(
LEgi · xa1

1 · · ·xaN
N + giLE(xa1

1 · · ·xaN
N )

)
·
(
(ai + 1)x1∂x1 − (a1 + 1)xi∂xi

))

=
(
c+

N∑
j=1

aj deg xj

)
· Va1,...,aN

as desired.

Proposition 5.2.5. Fix Va1,...,aN
∈ gA such that ψ = exp(Va1,...,aN

) ∈ GA is a correspond-

ing element of the primary wall-crossing group. Then the quasi-homogeneity condition

Eψ = ψE

is equivalent to

[E , Va1,...,aN
] = 0.

Proof. We first observe that the quasi-homogeneity condition is equivalent to [E , ψ] = 0.

Assuming that this holds, we now show that [E , Va1,...,aN
] = 0 by calculating the commu-

tator [E , ψ]. By (5.2.3), we have

[E , ψ] = [E , exp(Va1,...,aN
)] =

∞∑
k=0

1
k!
[
E , V k

a1,...,aN

]
=
∞∑

k=0

1
k!

k∑
r=1

V r−1
a1,...,aN

[E , Va1,...,aN
]V k−r

a1,...,aN
.

(5.2.4)

Using Lemma 5.2.4 yields

[E , ψ] = deg Va1,...,aN
·
∞∑

k=0

k

k!V
k

a1,...,aN
= deg Va1,...,aN

· Va1,...,aN
· exp(Va1,...,aN

).

Hence, if [E , ψ] = 0, we find

deg Va1,...,aN
= 0

which, employing Lemma 5.2.4, implies [E , Va1,...,aN
] = 0. The converse direction is de-

duced from equation (5.2.4).
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Corollary 5.2.6. The primary wall-crossing group is trivial if and only if W0 is an ADE

singularity.

Proof. Let W0 be an ADE singularity. For a contradiction, assume that the primary

wall-crossing group is non-trivial. Hence, V ∈ gA is of the form

N∑
i=1

gi · xa1
1 · · ·xaN

N

(
(ai + 1)x1∂x1 − (a1 + 1)xi∂xi

)
.

where there is at least one i = 2, . . . , N such that gi ̸= 0. From the previous proposition,

we have the condition

deg V = deg gi +
N∑

j=1
aj deg xj = 0 (5.2.5)

for each i = 2, . . . , N . The aj are non-negative and the deg xj are positive. Thus, for

equation (5.2.5) to hold, we must have deg gi = 0 and ai = 0 for each i. This provides the

contradiction: simple singularities are characterised by their flat coordinates all having

strictly positive degree so that deg gi > 0 if gi ̸= 0. Thus, gi = 0 for each i and the

wall-crossing group is trivial. The converse is proven similarly.

Corollary 5.2.7. For simple elliptic singularities with unique marginal flat coordinate t

of degree zero, the primary Landau-Ginzburg wall-crossing group is generated, as a Lie

group, by vector fields of the form

V =
N∑

i=1
Cit

ki

(
x1∂1 − xi∂i

)

where Ci ∈ C and for some ki ∈ Z>0.

Proof. Denote a generator of the primary Landau-Ginzburg wall-crossing group by V ∈

gA. Due to the additive structure of gA, without loss of generality, we assume that the

gi’s are monomials. Applying the same reasoning as before, we find that deg gi = 0 for

each i = 2, . . . , N . Simple elliptic singularities, however, are characterised by the fact

that all such gi have non-negative degrees and the unique flat coordinate with vanishing
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degree is the marginal coordinate t. Thus, we must have gi = Cit
ki implying that V is of

the required form.

Remark 5.2.8. For generic singularities, one may have deg g < 0 and the previous

reasoning fails.

The final step for the primary wall-crossing group of elliptic singularities is thus to

determine ki. To do this, we return to Definition 5.2.3.

5.2.2 Wall-Crossing for Elliptic Singularities

In Definition 5.2.3, we enforce the condition of ψW is an open Saito potential as a

necessary condition for the existence of a mirror to an expected open FJRW theory.

For simple elliptic singularities, this is sufficient to completely describe the primary wall-

crossing group. The algorithm that we propose for finding V applies to any simple elliptic

singularity in Fermat, chain or loop form in either rank two or three.

Firstly, the following lemma is useful.

Lemma 5.2.9. Let W0 be an elliptic singularity in rank three. Fix

V := tk2(x1∂1 − x2∂2), V ′ := tk3(x1∂1 − x3∂3)

as two elements of gA. If eV and eV ′ are both elements of the wall-crossing group GA,W0 ,

then k2 and k3 are not coprime.

Proof. Let xm1
1 xm2

2 xm3
3 be a monomial in an open Saito potential of a simple elliptic

singularity W0. Under V the monomial transforms as

eV xm1
1 xm2

2 xm3
3 = e(m1−m2)tk2xm1

1 xm2
2 xm3

3 . (5.2.6)

Similarly, we observe that

eV ′
xm1

1 xm2
2 xm3

3 = e(m1−m3)tk3xm1
1 xm2

2 xm3
3 . (5.2.7)
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After expanding the exponentials in (5.2.6) and (5.2.7), the transformed open Saito po-

tentials contain terms proportional to tk2xm1
1 xm2

2 xm3
3 and tk3xm1

1 xm2
2 xm3

3 respectively. Ap-

plying Definition 5.2.3, we find the same form of balancing conditions that constrain k2

also constrain k3. Although the ki are not necessarily uniquely determined from these

conditions, we deduce that k2 and k3 must have a common factor greater than one.

Proposition 5.2.10. Fix W0 an elliptic singularity in rank N = 2 or N = 3. Denote

by t the marginal parameter corresponding to the standard good basis element xµc . If

g = eV is an element of the primary Landau-Ginzburg wall-crossing group then V is of

the form

V =
N∑

i=1
tki(x1∂1 − xi∂i)

with each ki satisfying

ki

(
ET

W0

)−1
µc ∈ ZN . (5.2.8)

Proof. In the following we consider the wall-crossing in three cases: the Fermat term xri
i ,

the chain term xi−1x
ri
i and the loop term xri

i xi+1 for fixed i in the open Saito potential.

Without loss of generality, we assume that ki = k for each i and for some k. Indeed, we

choose k as the smallest among the set {ki}N
i=1; since k and each ki have a common factor

greater than one via Lemma 5.2.9, any selection rule which is true for k is also true for

ki. The strategy for each term is then the same: we act via eV on each term and expand

the exponential. To first order, this has the effect of adding tkxri
i to the Fermat, tkxi−1x

ri
i

to the chain, and tkxri
i xi+1 to the loop terms in the open Saito potential. Each of these

terms must be balanced according to Definition 5.2.3. We thus write down the selection

rules for each of these terms which will constrain the values of k.

Case (i): Terms of the Form tkxri
i . The Fermat term tkxri

i in the open Saito potential

must satisfy the integral degree condition (4.1.4). The left hand side of this condition

reads

qT
j (2k + ri − 1) − Θroot

j − riΘxi
j − 2kΘµc

j
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for each j. The integral degree condition is that this expression must be an integer.

Substituting the values of the phases, we find that the above selection rule becomes the

following constraint on k,

(ri − 2)δij + 2k(E−1
W T

0
µc)j ∈ Z (5.2.9)

for each 1 ≤ j ≤ N . Although the first term appears to be redundant as it is an integer

already, we temporarily keep this term. We may further strengthen constraint (5.2.9) by

imposing the grading condition of Definition 4.1.1. Indeed, we find that (4.1.5) reads

(ri − 2)δij + 2k(E−1
W T

0
µc)j = riδij mod 2

for each j. Hence, we indeed find

kE−1
W T

0
µc ∈ ZN .

Case (ii): Terms of the Form tkxi−1x
ri
i . Consider the chain term tkxri

i xi−1. The

integral degree condition for this term is

qT
j (2k + ri) − Θroot

j − riΘxi
j − Θxi−1

j − 2kΘµc
j ∈ Z.

Substituting the values of the twists we find

(ri − 2)δij − δi−1,j − 2k(E−1
W T

0
µc)j ∈ Z

similar to (5.2.9). As before, we impose the grading condition which yields

(ri − 2)δij + δi−1,j + 2k(E−1
W T

0
µc)j = riδij + δi−1,j mod 2.
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Hence

k(E−1
W T

0
µc)j ∈ Z.

Case (iii): Terms of the Form tkxri
i xi+1. This is essentially the same as Case (ii). The

integral degree condition for this loop term is

qT
j (2k + ri) − Θroot

j − riΘxi
j − Θxi+1

j − 2kΘµc
j ∈ Z.

for each j. Substituting the values of the phases gives the constraint

(ri − 2)δij + δi+1,j + 2k(E−1
W T

0
µc)j ∈ Z.

as desired. Imposing the grading condition,

(ri − 2)δij + δi+1,j + 2k(E−1
W T

0
µc)j = riδij + δi+1,j mod 2,

one finds the same desired result as above.

Remark 5.2.11. The above proposition shows that the wall-crossing group is not always

the trivial group. Furthermore, equation (5.2.8) is identical to equation (15) of [MS16]

which arises in the related context of Picard-Fuchs equations for elliptic curves. The

tuple (µc, k) satisfying (5.2.8) is known as the charge vector.

Example 5.2.12. Consider the singularity W0 = x3
1 + x3

2 + x3
3. Consider the vector field

V given by

V = tk(x1∂1 − x2∂2) + tk(x1∂1 − x3∂3).

In the case of x3
3, this can be used to find conditions for k given that i = 3 and r3 = 3,
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together with µc = (1, 1, 1) and

E−1
W T

0
=


1
3 0 0

0 1
3 0

0 0 1
3

 .

Thus the equation (5.2.8) of the above proposition yields

kE−1
W T

0
µc =



1
3k

1
3k

1
3k


∈ Z3.

Hence, k must be divisible by 3. This agrees with the primitive form calculation in section

6 of [LLS14]. Therefore, the action of the wall-crossing group is given by eV ·W where

V = t3
(

(x1∂1 − x2∂2) + (x1∂1 − x3∂3)
)
.

Using equation (5.2.6) we calculate that

eV x1x2x3 = x1x2x3.

As in Proposition 4.2.8, we restrict W so that all non-marginal parameters vanish. We

choose s(t) to be the inverse of the Schwarz triangle function. We refer the reader to

Appendix A.1 for details of these functions. Thus, we have

W (t) −W0 = s(t)x1x2x2

we find that W (t) is a fixed point of the wall-crossing group action. Thus, since s(t)

is modular, modularity is preserved by the action of eV for the cubic in P2. However,
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this will fail for generic simple elliptic singularities. For example, consider the singularity

W = x4
1 + x1x

3
2. The versal deformation is given by W (t) − W0 = s(t)x3

1x2. Under the

wall crossing group generated by

V = t3(x1∂1 − x2∂2)

this transforms as

eV
(
W (t) −W0

)
= eV

(
s(t)x3

1x2
)

= e2t3
s(t)x3

1x2.

However, e2t3
s(t) is not modular invariant.

Example 5.2.13. Consider W0 = x4
1 + x4

2. We find

E−1
W T

0
=

1
4 0

0 1
4

 .

Thus we find

kE−1
W T

0
µc =

k
2

k
2

 ∈ Z2.

Thus, k must be divisible by 2.

Remark 5.2.14. We remark that the open Saito theory of a singularity W0 is equivalent

to the open Saito theory of its Morse stabilisation W̃0. This can be seen for an elliptic

singularity from the viewpoint of wall-crossing. Indeed, for an elliptic singularity W0

consider the vector field

V = C2t
k(x1∂1 − x2∂2) + C3t

k(x1∂1 − x3∂3).

We have that

W̃0 = W0(x1, x2) + x2
3 7→ eVW0(x1, x2) + e−2C3sk

x2
3.
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However, the presence of the term tkx2
3 places no extra constraint on k. Indeed, we have

that

kE−1
W T

0
µc = k


∗ ∗ 0

∗ ∗ 0

0 0 1
2




∗

∗

0

 .

Thus, the third component of kE−1
W T

0
µc vanishes and so is automatically an integer.

5.3 Properties of the Landau-Ginzburg Wall-Crossing
Group

To show that we have made the correct choices when constructing the Landau-Ginzburg

wall-crossing group, in this section we prove that the corresponding group action of GA,W0

is faithful and transitive on open ancestor Saito potentials.

5.3.1 Faithfulness

The main result in this subsection is the following.

Proposition 5.3.1. Let W0 be a chain or loop polynomial in rank two and let A = AI or

AI,sym. Suppose GA,W0 is the Landau-Ginzburg wall-crossing group. The action of GA,W0

on the open ancestor Saito potential is faithful.

Proof. Let eV ∈ GA,W0 so that V is contained in the Lie algebra gA,W0,K . Let K ≥ 2 be

the smallest integer such that V = 0 mod mK but V ̸= 0 mod mK+1. Then working

modulo mK+1 we find

W 7→ eVW = W + V (W ).

Hence, to show that this action is faithful it suffices to check that VW = 0 modulo mK+1

implies V = 0.

The element V is a linear combination of vector fields given in gA,W0,K . Choose a

minimal a1 so that V has a non-zero summand in the (a1, a2) sector of the direct sum

123



(5.2.1) for some a2. Choose a2 such that it is minimal among choices that fix a1. In

particular, we consider the minimal pair (a1, a2) occurring in V mod mK+1 with respect

to the lexicographic ordering so that V ′ is a summand of V . Thus we may write V ′ as

V ′ = C · xa1
1 x

a2
2

(
(a2 + 1)x1∂x1 − (a1 + 1)x2∂x2

)
.

Here, C ∈ mK/mK+1. Now, for the chain polynomial W = xr1
1 + x1x

r2
2 we find

VW = C ·
(
r1(a2 + 1)xa1+r1

1 xa2
2 + (a2 + 1 − a1r2 − r2)xa1+1

1 xa2+r2
2

)
.

Note that the first term is always non-zero. However, by minimality of (a1, a2), there is

no cancellation of such terms in VW = 0. This implies C = 0 so that V = 0 mod mk+1

contradicting the definition of k. Thus V = 0.

For the loop polynomial W = xr1
1 x2 + x1x

r2
2 a similar calculation yields

V ′W = C ·
(

(a2r1 + r1 − a1 − 1)xa1+r1
1 xa2+1

2 + (a2 + 1 − a1r2 − r2)xa1+1
1 xa2+r2

2

)
.

It suffices to show that at least one of these terms is always non-zero, since the same

reasoning as the chain polynomial will then apply. Hence, assume that

a2r1 + r1 − a1 − 1 = a2 + 1 − a1r2 − r2 = 0.

Solving for a2 and substituting yields the equation

(a1 + 1)(r1r2 − 1) = 0.

This cannot be true since r1, r2 ≥ 1 by assumption that W0 is non-degenerate and a1 ≥ 0

by definition of the wall-crossing group. This completes the proof for loop polynomials.

Remark 5.3.2. The proof of faithfulness of the wall-crossing group action for rank 3
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elliptic singularities is immediate. Indeed, the action is given by multiplication which is

certainly faithful.

5.3.2 Transitivity

The main result of the paper consists of the following two theorems. Via Corollaries

4.3.7 and 4.3.12, we assume that any collection (νk1,k2,I,d) in rank two is chosen such that

dx1 ∧ dx2 is a primitive form and tα,β,0 are flat coordinates.

Theorem 5.3.3. The Landau-Ginzburg wall-crossing group GA,W0 acts transitively on

open Saito potentials for W0 = xr1
1 + x1x

r2
2 .

Proof. We first consider the non-symmetric case and work with the ring AI . Let νk1,k2,I,d

and ν ′k1,k2,I,d be two coefficients of open Saito potentials. We use induction and prove

that for any positive integer k, there exists g ∈ GA,W0 such that g(νk1,k2,I,d) = ν ′k1,k2,I,d for

any (k1, k2) ∈ Q-Bal(I,d) with r2k1 + r1k2 − k2 < k. The base case k = 0 is immediate

since we take g = id. Define an ideal Ik = ⟨xk1
1 x

k2
2 ∈ AI [[x1, x2]] | r2k1 + r1k2 − k2 ≥ k⟩.

For the induction hypothesis, assume that there is a g which for a given k satisfies the

transitivity property. By replacing νk1,k2,I,d with g(νk1,k2,I,d), we assume that W ν ≡ W ν′

mod Ik. Now let J ⊆ I be a set with (k1, k2) ∈ Q-Bal(J,d) and r2k1 + r1k2 − k2 = k.

Consider the coefficient of uJ in W ν′ −W ν ,

(−1)|J |−1 ∑
(k1,k2)∈Q-Bal(J,d)

(ν ′k1,k2,J,d − νk1,k2,J,d)xk1
1 x

k2
2 .

Recall that we have a complete classification of balanced conditions for rank 2 chain

polynomials in Example 4.1.3. Namely, we must have

r2k1 − k2 ≡ r2r1(J) − r2(J) mod r1r2, k2 ≡ r2(J) mod r2.
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Equivalently, k1 and k2 can be written in terms of an integer

p = 0, . . . , N − 1, N =
∑

i∈J ai − r1(J)
r1

+
∑

i∈J bi − r2(J)
r2

− |J | + 1

with

k1(p) = r1(J) + pr1 +N − p, k2(p) = r2(J) + (N − p)r2.

Note that r2k1 + r1k2 − k2 is independent of p and hence is always k.

Thus, we write the coefficient uJ of W ν′ −W ν as

(−1)|J |−1
N∑

p=0
(ν ′k1,k2,J,d − νk1,k2,J,d)xr1(J)+pr1+N−p

1 x
r2(J)+(N−p)r2
2 .

Let p′ ≥ 0 be the smallest p such that ν ′k1,k2,J,d ̸= νk1,k2,J,d. Consider the vector field

V = (−1)|J |uJ

ν ′k1,k2,J,d − νk1,k2,J,d

k2(p′ + 1) + 1 − r2k1(p′)
x

k1(p′)−1
1 x

k2(p′+1)
2

(
(k2(p′+1)+1)x1∂1 −k1(p′)x2∂2

)
.

Observe that this is an element of gAI
. Modulo Ik+1, we observe that eVW ν differs from

W ν only in the coefficients of uJx
k1(p′)
1 x

k2(p′)
2 and uJx

k1(p′+1)
1 x

k2(p′+1)
2 . This implies that eV

is indeed an element of the wall-crossing group. Moreover, the coefficient of uJx
k1(p′)
1 x

k2(p′)
2

in eVW ν coincides with the coefficient of the same monomial in W ν′ . Hence, by replacing

W ν with eVW ν and repeating inductively on p′, we assume that the coefficient of uJ in

W ν′ −W ν is

(−1)k(ν ′k1,k2,J,d − νk1,k2,J,d)xr1(J)+Nr1
1 x

r2(J)
2 .

Therefore, there is at most one element (k1, k2) ∈ Q-Bal(J,d) with νk1,k2,J,d ̸= ν ′k1,k2,J,d.

Furthermore, we inductively assumed νk′
1,k′

2,J ′,d′ = ν ′k′
1,k′

2,J ′,d′ when J ′ ⊂ J . From the

selection rules, we calculate

m(J,d) = r2k1 +r1k2 −k2 = r2r1(J)+r1r2(J)−r2(J)+Nr1r2 ≥ r2r1(J)+r1r2(J)−r2(J).
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Hence, if |J | ≥ 2, by definition of ν and the balancing conditions, we have A(J,d, ν) =

A(J, ν ′,d) = 0. For |J | = 1, we also have the same equality. Unravelling these equations,

we observe that they coincide apart from the contributions from the terms νk1,k2,J,d and

ν ′k1,k2,J,d. Hence, these two terms must be equal.

The symmetric case A = AI,sym is similar.

Theorem 5.3.4. The Landau-Ginzburg wall-crossing group GA,W0 acts transitively on

open Saito potentials for W0 = xr1
1 x2 + x1x

r2
2 .

Proof. We first consider the non-symmetric case and work with the ring AI . Let νk1,k2,I,d

and ν ′k1,k2,I,d be two coefficients of open Saito potentials. We use induction and prove that

for any positive integer k, there exists g ∈ GA,W0 such that g(νk1,k2,I,d) = ν ′k1,k2,I,d for any

(k1, k2) ∈ Q-Bal(I,d) with r2k1 + r1k2 − k1 − k2 < k. The base case k = 0 is immediate

since we take g = id. Define an ideal Ik = ⟨xk1
1 x

k2
2 ∈ AI [[x1, x2]] | r2k1+r1k2−k1−k2 ≥ k⟩.

For the induction hypothesis, assume that there is a g which for a given k satisfies the

transitivity property. By replacing νk1,k2,I,d with g(νk1,k2,I,d), we assume that W ν ≡ W ν′

mod Ik. Now let J ⊆ I be a set with (k1, k2) ∈ Bal(J,d) with r2k1 + r1k2 − k1 − k2 = k.

Consider the coefficient of uJ in W ν′ −W ν . That is to say,

(−1)|J |−1 ∑
(k1,k2)∈Bal(J,d)

(ν ′k1,k2,J,d − νk1,k2,J,d)xk1
1 x

k2
2 .

Recall that we have a complete classification of balanced conditions for rank 2 loop

polynomials in Example 4.1.4. Namely, we must have

r2k1 − k2 ≡ r2r1(J) − r2(J) mod r1r2 − 1, r1k2 − k1 ≡ r2(J) mod r1r2 − 1

Equivalently, k1, k2 can be written in terms of an integer

p = 0, . . . , N − 1, N =
∑

i∈J ai − r1(J)
r1

+
∑

i∈J bi − r2(J)
r2

− |J | + 1
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so that

k1(p) = r1(J) + pr1 +N − p, k2(p) = r2(J) + (N − p)r2 + p

Observe that r2k1 + r1k2 − k1 − k2 is independent of p and hence is always k. Thus, we

write the coefficient uJ of W ν′ −W ν as

(−1)|J |−1
N∑

p=0
(ν ′k1,k2,J,d − νk1,k2,J,d)xr1(J)+pr1+N−p

1 x
r2(J)+(N−p)r2+p
2 .

Let p′ ≥ 0 be the smallest p such that ν ′k1,k2,J,d ̸= νk1,k2,J,d. Consider the vector field

V = (−1)|J |uJ

ν ′k1,k2,J,d − νk1,k2,J,d

k2(p′ + 1) − r2k1(p′)
x

k1(p′)−1
1 x

k2(p′+1)−1
2

(
k2(p′ + 1)x1∂1 − k1(p′)x2∂2

)
.

Observe that this is an element in gAI
. Modulo Ik+1, we note that eVW ν differs from W ν

only in the coefficients of uJx
k1(p′)
1 x

k2(p′)
2 and uJx

k1(p′+1)
1 x

k2(p′+1)
2 . This implies that eV is

indeed an element of the wall-crossing group. Moreover, the coefficient of uJx
k1(p′)
1 x

k2(p′)
2

coincides with the coefficient of the same monomial in W ν′ . Hence, by replacing W ν with

eVW ν and repeating inductively on p′, we assume that the coefficient of uJ in W ν′ −W ν

is

(−1)k(ν ′k1,k2,J,d − νk1,k2,J,d)xr1(J)+Nr1
1 x

r2(J)+N
2 .

Therefore, there is at most one element (k1, k2) ∈ Q-Bal(J,d) with νk1,k2,J,d ̸= ν ′k1,k2,J,d.

Furthermore, we inductively assumed νk′
1,k′

2,J ′,d′ = ν ′k′
1,k′

2,J ′,d′ when J ′ ⊂ J . From the

selection rules, we calculate

m(J,d) = r2k1 + r1k2 − k1 − k2 = r2r1(J) + r1r2(J) − r1(J) − r2(J) +Nr1r2

≥ r2r1(J) + r1r2(J) − r1(J) − r2(J).

Hence, if |J | ≥ 2, by the definition of ν and the balancing conditions, we find A(J,d, ν) =

A(J, ν ′,d) = 0. For |J | = 1, we also have the same equality. Unravelling these equations,

we notice that they coincide apart from the contribution from the terms ν and ν ′. Hence,
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these two terms must be equal.

The symmetric case A = AI,sym is similar.

Using these results we now clarify the computational result from the motivation sec-

tion at the start of this chapter.

Corollary 5.3.5. Let W0 be a chain or loop polynomial in rank two. Let I be a finite

marking set. Suppose that ν and ν ′ are balanced chamber indices with respect to I. Then

A(J,d, ν) = A(J,d, ν ′)

Proof. By the previous theorems on transitivity, there exists a g ∈ GA,W0 such that

gν = ν ′. Viewing g as a map on the coordinates x1, . . . , xN , we find via the projection

formula, ∫
Ξ
eW ν/ℏdx1 ∧ · · · ∧ dxN =

∫
g−1(Ξ)

g∗
(
eW ν/ℏdx1 ∧ · · · ∧ dxN

)
.

However, from the definition of the wall crossing group, we know that g is identity modulo

an ideal linear in the t variables. Thus, the integral is unchanged if we integrate over

g−1(Ξ) or Ξ. Again by the definition of the wall crossing group, we know that g preserves

the volume form; for g = eV this implies

g∗(dx1 ∧ · · · ∧ dxN) = LV (dx1 ∧ · · · ∧ dxN) = 0.

Since g acts on W ν via g ·W ν = W gν = W ν′ , putting this all together we find

∫
Ξ
eW ν/ℏdx1 ∧ · · · ∧ dxN =

∫
Ξ
eW ν′

/ℏdx1 ∧ · · · ∧ dxN .

Comparing coefficients using Corollaries 4.3.7 and 4.3.12, we find the desired result.
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CHAPTER 6

TOWARDS OPEN FJRW THEORY

In Chapter 2 we began by reviewing closed FJRW theory as the geometric motivation

for the study of Landau-Ginzburg models. In subsequent chapters, we then reviewed

and extended open Saito theory. The advantage of this approach is that we can make

predictions about enumerative open FJRW theory, whilst bypassing the technicalities of

such a theory. This allows for the prediction of the existence of modular FJRW generating

functions in the elliptic case. This is stated more precisely in Conjecture 6.2.21. Given

the results of Chapters 4 and 5, we predict, moreover, the definitions of balanced W -

spin disks so that the open Landau-Ginzburg mirror conjecture holds. This is stated in

Conjecture 6.1.14.

6.1 W -Spin Structures

6.1.1 Open r-Spin Disks

To motivate the main definitions, we review some constructions of open r-spin theory

given in [BCT22a].

We recall that an r-spin disk is defined, roughly, by the data of an orbicurve C together

with an involution ϕ : C → C so that the coarse underlying curve |C| is given by gluing

two curves Σ and Σ along the common boundary ∂Σ and where Σ is obtained by reversing
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the complex structure. In particular, if z1, . . . , zl ∈ Σ \ ∂Σ are internal marked points,

then the conjugates zi = ϕ(zi) are internal marked points in Σ \ ∂Σ for some internal

marking set I with l = |I|. We also let w1, . . . , wk ∈ ∂Σ be boundary marked points for

some boundary marking set B with k = |B|.

The r-spin structure also contains the data of a spin bundle S which is an orbifold

line bundle over C together with an isomorphism of orbifold line bundles

φ : S⊗r → ωC,log := ρ∗ω|C|,log = ρ∗
(
ω|C| ⊗ O

( |I|∑
n=1

[zn] +
|I|∑

n=1
[zn] +

|B|∑
m=1

[wm]
))

(6.1.1)

where [zp], [zp], [wq] are the corresponding divisors on C and ρ : C → |C| is defined by

forgetting the orbifold structure on C. It can be shown that the underlying coarse bundle

|S| = ρ∗S satisfies

|S|r ∼= ω|C| ⊗ O
(

−
|I|∑

n=1
an[zn] −

|I|∑
n=1

an[zn] −
|B|∑

m=1
bm[wm]

)
(6.1.2)

for some choice of twists an and bm,

an ∈ {0, 1, . . . , r − 2}, bm = r − 2. (6.1.3)

These twists correspond to the standard good basis elements of DW0 for W0 = xr and in

Example 6.1.10 we shall, explain, via mirror symmetry, the origin of the twist r − 2 for

each boundary point.

Remark 6.1.1. Based on work of Chiodo [Chi08] and Norbury [Nor23], the authors of

[CGG23] establish a version of r-spin theory where one considers instead the log anti-

canonical bundle ω∨|C|. The authors subsequently show that, for r = 2 and r = 3, a

generating function for this enumerative theory is the so-called Brézin-Gross-Witten τ -

function [BG80; GW80] of the r-KdV hierarchy. By computing W-algebra constraints

as evidence, it is conjectured that this also holds for all r. This τ -function is a continu-

ation of Kontsevich’s matrix model [Kon92] to negative values of r. For further details,
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see [MMS96]. It may be interesting to construct an analogous ‘open negative r-spin’

theory, with corresponding structures of topological recursion relations and integrable

hierarchies.

6.1.2 Open W -Spin Disks

The case of r-spin disks is a specific case of W -spin disks for the choice the Ar−1 singular-

ity. For a proof of this fact, see [AJ03; FJR11a]. Here, we generalise this to any Sebastiani-

Thom sums of Fermat, chain or loop polynomial following [FJR13] and [GKT22b]. We

denote such a polynomial by W whose exponent matrix is EW = (rij). The following

is a simplification of the usual notion of marked W -spin disk but it is sufficient for our

purposes. We say that a marked W -spin disk is a genus zero W -spin curve with boundary,

(C, {wm}k
m=1, {zn}l

n=1, {zn}l
n=1, ϕ, {Si}N

i=1, {φi}N
i=1)

where

1. C is an orbicurve

2. ϕ : C → C is an anti-holomorphic involution that realises |C| as a union of curves

Σ and Σ with conjugate complex structures and common boundary ∂Σ = ∂Σ which

is the fixed locus of |ϕ|.

3. zn, zn are internal marked points such that ϕ(zn) = zn,

4. wj are marked points on the boundary of C so that ϕ(wm) = wm,

5. Si are orbifold line bundles over C such that the maps

φi :
N⊗

j=1
S

rij

j
∼−→ ωC,log

are isomorphisms.
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To introduce the twists, recall that the spin bundles Sj induce a representation Πx :

Gx → (Gmax
W )N of the local group Gx at each orbifold point x. For each orbifold marked

point, x, we denote

γx = Πx(1) =
(
e2πiΘγx

1 , . . . , e2πiΘγx
N

)
∈ (Gmax

W )N .

We recall that such group elements are called decorations at x and the associated Θγx =(
Θγx

1 , . . . ,Θγx

N

)
are called FJRW phases. Given (6.1.1) in the r-spin case, we expect that

there is an isomorphism,

N⊗
j=1

|Sj|rij ∼= ω|C| ⊗ O
(

−
l∑

n=1

N∑
j=1

(rijΘγn
j − 1)([zn] + [zn]) −

k∑
m=1

N∑
j=1

(rijΘγm
j − 1)[wm]

)
.

(6.1.4)

It will therefore be important to calculate and give explicit expressions for the phases of

the corresponding internal and boundary marked points as this allows one to deduce the

twists in (6.1.4). The main tool we use here are selection rules that arise from integral

degree constraints of spin bundles and the dimension axiom for non-vanishing FJRW

invariants.

6.1.3 Selection Rules for Open FJRW Theory.

In this section, with the absence of an open FJRW theory for general potentials, we define

balanced W -spin disks as those disks which satisfy certain numerical conditions: these

conditions are precisely the selection rules for the non-vanishing of invariants that would

be expected from such an enumerative theory. This is already well-known for r-spin disks

as described in [BCT22a], although it is instructive to review this here to set up notation.

Example 6.1.2. Let us consider these consider these integrality and balancing calcula-

tions from the point of view of open r-spin theory. Suppose that C is an orbicurve with

|I| internal marked points of phases Θi = ai+1
r

and |B| boundary marked points of phases
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Θj = bj+1
r

. Here we take ai, bj ∈ Zr and we include the root marked point in the set B of

boundary marked points. Given the antiholomorphic involution, we consider that there

are 2|I| + |B| marked points. Hence, given a r-spin disk with spin bundle S, the degree

of |S| is given by

deg |S| = 1
r

(2|I| + |J | − 2) − 2
|I|∑

n=1

an + 1
r

−
|B|∑

m=1

bm + 1
r

.

This simplifies to

deg |S| = −1
r

(
2 + 2

|I|∑
n=1

an +
|B|∑

m=1
bm

)
.

This quantity must be an integer and we will impose this selection rule in a moment.

Since deg |S| < 0, there cannot be any non-trivial global sections of |S|. This implies

H0(C, |S|) = 0. By definition of the Witten bundle, we have

rk W = dimCH
1(C, |S|) = − deg |S| − 1 =

2 − r + 2∑|I|i=1 ai +∑|B|
j=1 bj

r

where in the second equality we have used the Riemann-Roch theorem. Thus to have

non-vanishing FJRW invariants we must have that this rank is an integer. Hence, we

recover equation (2.8) of [BCT22a].

We will now generalise the above example for any quasi-homogeneous superpotential

W .

Definition 6.1.3. Let C0,k,l be a genus zero W -spin disk with k boundary points and l

internal points and where W is an invertible polynomial with charges q1, . . . , qN . We say

that C0,k,l is balanced if the following two conditions hold.

1. For each i = 1, . . . , N ,

qi(2l + k − 2) − 2
l∑

n=1
Θγn

i −
k∑

m=1
Θγm

i =: −1 − ei ∈ Z (6.1.5)

where Θγp

i ,Θ
γq

i are the ith components of the phases of internal and boundary
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marked points respectively.

2. Furthermore, we have
l∑

n=1
2dn +

N∑
i=1

ei = 2l + k − 3. (6.1.6)

The conditions (6.1.5) and (6.1.6) coincide with (4.1.4) and (4.1.6). The following

observation reveals the geometric origins of these conditions.

Observation 6.1.4. The anti-holomorphic involution contained in the data of a W -spin

disk doubles the number of internal marked points. Hence the degree of Si is

degSi = qi(2l + k − 2) − 2
l∑

n=1
Θγn

i −
k∑

m=1
Θγm

i .

Thus, equation (6.1.5) is obtained by requiring degSi ∈ Z for each i. For simplicity we

now define

degSi := −1 − ei

for some ei ∈ Z. Supposing that the ith Witten bundle Wi has been constructed over

the open W -spin disk C in an analogous way to Section 2.4.2, the ei will play the role of

the degree of the Euler class of Wi. We also note that since degSi < 0, we must have

H0(C, Si) = 0. This observation will be useful for Riemann-Roch calculations.

To obtain (6.1.6), we first suppose that the analogous Witten bundle together with

the tautological line bundles Ldn
n , as defined in Chapter 2, has been constructed over a

W -spin disk. We then match the rank of the Witten bundle and the dimension of the

moduli space of genus zero disks with k boundary marked points and l boundary marked

points. We denote such a moduli soace as M0,k,l. For more details, see for example

[PST22]. Indeed, we have that

rk Wi = h1(Si) = h1(|Si|).

Assuming |C0,k,l| is smooth, h1(|Si|) can be calculated via the Riemann-Roch theorem.
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Indeed, as before we have h0(|Si|) = 0 for reasons of degree. Thus, we find

rk Wi = h1(|Si|) = − deg |Si| − 1 = ei.

Thus,

rk W =
N∑

i=1
rk Wi =

N∑
i=1

ei.

We note that the degree of e(W) is 2 rk W . We now suppose there exists a moduli space,

MW

0,k,l, of W -spin disks with k boundary marked points and l internal marked points.

This moduli space has been constructed for W = xr and W = xr + ys in [BCT22a;

GKT22b]. To calculate dimR MW

0,k,l we consider M0,k,l, the moduli space of disks with k

boundary points and l internal marked points. Suppose further that there is an quasi-

finite and flat morphism st: MW
0,k,l → M0,k,l defined by forgetting the W -spin structure.

We conjecture that such a morphism exists in the case of disks as it already exists in the

case of closed curves as explained in Theorem 2.3.6 and Theorem 2.2.6 of [FJR13]. By

pushing forward through st we have

dimR MW
0,k,l = dimR M0,k,l = 2 dimC M0,k,l = 2(2l + k − 3).

The first equality holds via the fact that st is assumed quasi-finite and flat. Consequently,

to define a non-vanishing FJRW invariant, we must have that

rk W +
l∑

n=1
2dn = dimC M0,k,l

from dimension considerations when integrating. Hence, we find

N∑
i=1

ei +
l∑

n=1
2dn = 2l + k − 3

as desired.
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6.1.4 Concavity

Recall that we already defined a narrow and broad insertion in the framework of FJRW

theory of Chapter 2. However, we now recast this definition into the B-model using

Krawitz mirror symmetry in order to predict the concavity of boundary marked points.

Closed Invariants.

Definition 6.1.5. Consider a term in the closed Saito potential of the form ∏l
i=1 tµi

for

a potential W0. We say that the insertion tµi
is narrow if the corresponding phase Θµi

given in (4.1.1) has no integer components. Otherwise, the insertion is called broad.

The following lemmas are proven in Lemmas 2.1 and 2.2 of [Kra10, section 2.8],

although we provide more explicit detail here.

Lemma 6.1.6. For the rank N chain polynomial W = xr1
1 + · · · + xN−1x

rN
N , the variable

tµ in a Saito potential is a broad insertion if and only if the components of µ satisfy

µj = δeven
N−j(rj − 1) where s ≤ j ≤ N for some s.

Proof. For an insertion tµ to be non-concave, we must have that the associated phase

Θµ contains identity elements in some components. By permuting indices if necessary,

assume that these components are {s, s+1, . . . , N}. In other words, γµ = e2πiΘµ fixes the

variables xs, xs+1, . . . , xN . Using the explicit expression for the phases Θµ in Corollary

3.3.11, for the component j = N we find the equation

Θµ
N = µN + 1

rN

∈ Z.

This integer must be 1 since 0 ≤ µN ≤ rN − 1. Thus we find µN = rN − 1. We can then

solve the other equations iteratively. Indeed, for the j = N − 1 component, we find

Θµ
N−1 = µN−1 + 1

rN−1
− µN + 1
rN−1rN

∈ Z
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again via Corollary 3.3.11. For µN = rN − 1 we thus have

µN−1

rN−1
∈ Z.

Since 0 ≤ µN−1 ≤ rN−1 − 1 we find µN−1 = 0. One may repeat this procedure to find

that if the insertion τµ is non-concave then µ has components µj = δeven
N−j(rj − 1) for some

s ≤ j ≤ N . Conversely, such a µ gives a non-concave insertion by definition.

Lemma 6.1.7. Suppose the loop potential W = xr1
1 x2 + xr2

2 x3 + · · · + xrN
N x1 satisfies

ri ≥ 2 for each i. If N is even, then there are exactly two broad insertions corresponding

to µj = δodd
j (rj − 1) and µj = δeven

j (rj − 1). If N is odd, all insertions are narrow.

Proof. Suppose that tµ is a non-concave insertion. The only symmetry with non-trivial

fixed locus is the identity. Thus for a broad insertion, the group element that xµ maps

to is the identity. However, by Lemma 1.2 of [Kra10], this can only happen for N even.

Therefore, all insertions for loops of odd rank are concave.

For N even, we claim that tµ is broad if and only if µj = δodd
j (rj − 1) or µj =

δeven
j (rj − 1). Indeed, for an insertion tµ to be broad, we must have that the associated

phase Θµ contains identity elements in some components. However, when solving Θµ
j ∈ Z

for some jth component, the equations are identical modulo some permutation of the

indices. Hence it is sufficient to consider the j = N component which is given in Corollary

3.3.12. For N odd, we note that this component satisfies,

0 < 1
D

(
(µ1 + 1) − (µ2 + 1)r1 + · · · + (µN + 1)r1 · · · rN−1

)
≤ 1 (6.1.7)

since 0 ≤ µi ≤ ri − 1 and where D = detEW0 . Hence, a non-concave invariant must

satisfy

(µ1 + 1) − (µ2 + 1)r1 + · · · + (µN + 1)r1 · · · rN−1 = D = r1 · · · rN + 1. (6.1.8)

Since µi ≤ ri − 1 and ri ≥ 2 we compare the coefficients of r1 · · · rN and 1 to find
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µN = rN − 1 and µ1 = 0 respectively. However, since N is assumed odd, there is at least

one equation that cannot be satisfied if µi ≤ ri − 1. Hence for loops of odd rank, all

invariants are concave, as already proven above. For N even, a similar analysis shows

that there are two non-concave insertions when µ = (0, r2 − 1, 0, r4 − 1, . . . , 0, rN − 1) and

µ = (r1 − 1, 0, r3 − 1, . . . , rN−1 − 1, 0).

Open Invariants.

Analogously to the closed case, we define narrow and broad insertions for boundary

marked points.

Definition 6.1.8. Consider a term of the open Saito potential of the form∏l
i=1 tµi

∏N
i=1 x

ki
i

for an invertible Landau-Ginzburg model W . We say that the boundary insertion xj is

narrow if the corresponding phase Θxi has no integer components. Otherwise, the inser-

tion is called broad.

Observation 6.1.9. Via Definition 3.3.9, we see that Θ having no integer components

is equivalent to the corresponding twist µ in equation (3.3.2) being a narrow insertion.

To illustrate the main ideas in calculating the FJRW phases of boundary marked

points and whether they are narrow, we first discuss the open r-spin case.

Example 6.1.10. In [GKT22a], the primary open Saito potential for W = xr is given

by fixing the versal deformation

Ws −W0 =
r−2∑
j=0

sjx
j (6.1.9)

with an appropriate change of coordinates

sj = tj +O(t2).

There are two types of boundary marked point to consider: the boundary x-points and

the root. To calculate the phase of the root, we consider the term s0 ∼ t0 in (6.1.9). At
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leading order, this corresponds to an r-spin disk with one root boundary point and two

internal marked points. Thus, the selection rule (6.1.5) reads

1
r

− 2Θ0 − Θroot =: m ∈ Z

where Θ0 is the phase of the two internal marked points. The value of Θ0 is given in

(4.1.1) with µ = 0. The integer m is chosen such that 0 ≤ Θroot < 1. In this case, we

choose m = −1 yielding

Θroot = 1 − 1
r
.

To calculate the phase Θx of the x-boundary point, we consider the term s1x ∼ t1x in the

open Saito potential. This corresponds to a count over r-spin disks with one x-boundary

point, two internal marked points of phase Θ1, and the root point. The selection rule is

2
r

− 2Θ1 − Θx − Θroot ∈ Z.

Proceeding similar to the above, we solve for Θx to find

Θx = 1 − 1
r
.

Thus, we have that the twist for the x boundary point and root are

rΘx − 1 = r − 2 = rΘroot − 1

in agreement with the expression for bm in (6.1.3). Since the twist r−2 corresponds to the

standard good basis element xr−2 which is a narrow insertion, the root and x boundary

marked points are also narrow via observation 6.1.9. In other words, Θx and Θroot are

never integers for integer r ≥ 2.

The above example is perhaps convoluted since we already stated in Chapter 2 that all

insertions are in fact narrow for W = xr. Nevertheless, we can now extend this argument
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to the case of a general Sebastiani-Thom sum of Fermat, chain and loop polynomials.

Proposition 6.1.11. Let W be a Sebastiani-Thom sum of Fermat, chain and loop poly-

nomials. A boundary insertion of any W -spin disk is narrow.

Proof. Let W be any invertible polynomial with exponent matrix EW = (rij). Let W T

be the BHK mirror polynomial with charges qT
1 , . . . , q

T
N . Let Θroot, Θxi ∈ QN be the

phases of the root and xi boundary point respectively. We first calculate the phases of

root and xi boundary points. Indeed, recall that the we denote the phases of internal

marked points are given by Θµ.

The standard good basis of the local algebra for any W always contains the element

µ = 0. Hence, there is always the term t0 in the open Saito potential since s0 ∼ t0 to

leading order. This corresponds to a W -spin disk, with two internal marked points of

phase Θµ=0 and a root boundary point. Hence the phase of the root is given by the

selection rule (6.1.5),

qT
j − Θroot

j − 2Θµ=0 ∈ Z.

As in the previous example, Θµ=0 is given in (4.1.1) which implies

Θroot
j = 1 − qT

j

since Θroot
j ∈ [0, 1).

Similarly, the standard good basis contains the element µ = êxi
for any W where êxi

is the vector whose only non-vanishing component is unity in the ith place. Thus, the

open Saito potential always contains the term têxi
xêxi . The two internal marked points

corresponding to têxi
each have phase Θµ=êxi . The selection rules therefore read

2qT
j − Θroot

j − Θxi
j − 2Θµ=êxi

j =: −1 − e
(i)
j ∈ Z
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for each j = 1, . . . , N . The integers e(i)
j are chosen so that 0 ≤ Θxi

j < 1. This implies

Θxi
j = e

(i)
j + qT

j − 2(E−1
W T êxi

)j = e
(i)
j + qT

j − 2(E−1
W )ij.

To determine e(i)
j , we use the balancing condition (6.1.6) for the term tµx

µ in the versal

deformation. This corresponds to a W -spin disk with total number of marked points

3 +∑N
i=1 µi. The selection rule is

qT
j (1 +

N∑
i=1

µi) −
N∑

i=1
µiΘxi

j − Θroot
j − 2Θµ ∈ Z.

Writing µ = ∑N
i=1 µiêxi

we find the left hand side becomes

−1 −
N∑

i=1
µie

(i)
j (6.1.10)

which is an indeed an integer. The dimension condition (6.1.6) reads

N∑
i=1

N∑
j=1

µie
(i)
j =

N∑
i=1

µi. (6.1.11)

Since (6.1.11) must hold for each µ, we find e
(i)
j = δij. In summary, we have calculated

Θroot
j = 1 − qT

j , Θxi
j = δij + qT

j − 2(E−1
W )ij. (6.1.12)

We now substitute both these phases into (3.3.9) to find that the jth component of the

twist of the root boundary point is

µj =
N∑

i=1
rij − 2

and the jth component of the twist of the xi boundary point is

µxi
j = rij − 2δij.
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Via lemmas (6.1.6) and (6.1.7), these correspond to narrow insertions. This completes

the proof.

Remark 6.1.12. We remark that equation (6.1.10) can be interpreted as degree of a

certain spin bundle Sj; that the degree is also negative implies that h0(Sj) = 0 and

therefore, the balancing condition (6.1.6) is expected to hold in such a theory.

6.1.5 Grading of W -Spin Disks.

Now that we have calculated the twists of the root and xi boundary points, we may

impose a grading on the boundary points following [GKT22b].

Definition 6.1.13. Let W be an invertible polynomial with charges q1, . . . , qN and whose

exponent matrix has diagonal elements (rj)N
j=1. For a boundary marking w on a W -spin

disk, define

alti(w) =


1 if µw

i = ri − 2 or ri − 1

0 otherwise.

Denote alt(w) := (alti(w))N
i=1. Then a graded, balanced W -spin disk is a genus zero

W -spin disk C0,k,l such that the following two conditions hold.

1. For each i = 1, . . . , N ,

qi(2l + k − 2) − 2
l∑

n=1
Θγn

i −
k∑

m=1
Θγm

i =: −1 − ei ∈ Z

where Θγn
i ,Θ

γm
i are the ith components of the phases of internal and boundary

marked points respectively.

2. If all insertions are narrow,

ei = −1 +
k∑

m=1
alti(wm) mod 2. (6.1.13)
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3. We have
N∑

i=1
ei = 2l + k − 3.

We observe that for an xi boundary point we have altj(xi) = δij, while for a root

boundary point we have altj(root) = 1. Hence, equations (4.1.5) and (6.1.13) coincide.

6.1.6 Open Mirror Symmetry

We start this subsection with the open Landau-Ginzburg mirror conjecture.

Conjecture 6.1.14. Given any quasi-homogeneous invertible and non-degenerate poly-

nomial W0, there exists an open FJRW theory for W T
0 , such that the open Saito-Givental

theory of W0 computes the open FJRW theory of W T
0 .

Work of Buryak-Clader-Tessler [BCT22a; BCT22b] establishes an open FJRW theory

for W0 = xr whilst the same is done in [GKT22b] for W0 = xr1
1 + xr2

2 . In both of these

cases, Conjecture 6.1.14 has been proven by Gross-Kelly-Tessler. In this thesis we have

not attempted to develop a open FJRW theory for more general superpotentials; instead

we produced results on explicit computations of potentials wall-crossing from the open

B-model. Any such open FJRW theory should match with our results.

The major difficulty with the open FJRW theory considered in [GKT22b] is the con-

struction of an orientable moduli space, together with a universal curve, of open W -spin

disks that one may integrate over. Indeed, these moduli spaces are typically real orbifolds

with corners. An example is shown below.

Remark 6.1.15. These moduli spaces have an intersting connection to A∞-structures:

the original definition of A∞-spaces given by Stasheff in [Sta63] involves associahedra.

These associahedra correspond precisely to moduli spaces of disks with no internal marked

points.
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Figure 6.1: The moduli space of stable disks with 5 boundary marked points.

6.2 Equivalences in Landau-Ginzburg Theories

The main question we wish to tackle in this section concerns defining when two FJRW

theories, or two Saito theories, are equivalent. We also discuss how one may practically

determine equivalence. This turns out to be a slightly easier problem for open Saito

theories than FJRW theories. Under the common theme in the thesis of using Saito

theory to avoid open FJRW theory, we discuss equivalences in open Saito theories. For

simplicity, we restrict attention to simple singularities, given typically by the following

WAr = xr+1
1 , r ≥ 1,

WDr = xr−1
1 + x1x

2
2, r ≥ 4,

WE6 = x3
1 + x4

2,

WE7 = x3
1 + x1x

3
2,

WE8 = x3
1 + x5

2,
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and the simple elliptic singularities given typically as the Fermat polynomials

W
E

(1,1)
6

= x3
1 + x3

2 + x3
3,

W
E

(1,1)
7

= x4
1 + x4

2,

W
E

(1,1)
8

= x6
1 + x3

2.

6.2.1 Equivalences in FJRW Theory

This subsection is entirely taken from section 2 of [FHS23].

Definition 6.2.1. We say that two closed FJRW theories are equivalent if there is a

Frobenius algebra isomorphism of the chiral rings that induces a coordinate transforma-

tion between ancestor FJRW generating functions.

Since the mirror to an FJRW theory with maximal admissible group is the semi-simple

Saito theory of the mirror polynomial, via Givental’s formula it suffices to consider the

primary theories. We have the following theorem proven in [FHS23, Theorem 2.8].

Theorem 6.2.2. Let W̃ be a quasi-homogeneous invertible polynomial in two variables

with central charge strictly less than one. Then the closed FJRW theory of any admissible

pair (W̃ ,G) is equivalent to either (x2 + y2, ⟨J⟩) or (W,Gmax
W ) where W is an ADE

polynomial given as above.

It is hoped that one may prove similar results in the case of open FJRW theory, if one

defines such a theory correctly. In light of the open Landau-Ginzburg mirror symmetry

conjecture, equivalences in open Saito theory may be a tool for such results.

6.2.2 Equivalences in Primary Saito Theories

Definition 6.2.3. Let W and W̃ be two simple singularities. We say that two primary

Saito theories of W and W̃ are equivalent if there is a Frobenius algebra isomorphism of

the chiral rings that induces a coordinate transformation between Saito potentials.
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Remark 6.2.4. We restrict to primary theories of ADE polynomials for simplicity; the

Saito potentials are uniquely defined in this case and so there is no added technicality of

wall-crossing.

Example 6.2.5. It is straightforward to see that the open Saito theory of a Morse

stabilisation of a singularity W is equivalent to the original open Saito theory of W .

Indeed, the local algebras are certainly isomorphic, via a direct calculation of partial

derivatives. On the other hand, the standard good bases of W and a Morse stabilisation

of W are also identical. Consequently, the flat coordinates and open Saito potentials are

identical.

Right Equivalence

It is a classical problem to find the right notion of isomorphism of singularities in order

to have a classification of ADE and simple elliptic singularities. For example, recall that

the D4 singularity may be obtained by either of the following two singularities

(WD4)Chain = x3
1 + x1x

2
2, (WD4)Fermat = x3

1 + x3
2 (6.2.1)

Similarly, a full list of presentations for the elliptic singularities are given in Table 1 of

[MS16].

This classification problem was solved Benson, Mather and Yau [MY82; BY90], which

we briefly review.

Definition 6.2.6. Two singularities are called right equivalent if they are equal up to a

biholomorphic change of variables. Furthermore, two singularities are called D-equivalent

if the corresponding local algebras are isomorphic.

Theorem 6.2.7. Two singularities are right equivalent if and only if they are D-equivalent.

A proof of this theorem is the main result of [MY82]. See also Theorem 3.3 of [BY90].
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Thus, to show that the local algebras are isomorphic, we need only find a transforma-

tion between the singularities themselves. Moreover, we have the following theorem due

to Saito [Sai87, Theorem 2].

Theorem 6.2.8. If a non-degenerate, invertible, quasi-homogeneous polynomial W has

a central charge strictly less than one. Then W is right equivalent to a simple singularity.

If a non-degenerate, invertible, quasi-homogeneous polynomial W has a central charge

equal to one, then W is equivalent to a simple elliptic singularity.

Orbit Spaces of Coxeter Groups

The second part of Definition 6.2.3 is to find a transformation of Saito potentials. This

means finding an isomorphism of Frobenius manifold that induces a transformation on

the flat coordinates. For this identification, we use the theory of reflection groups and

invariant polynomials. We briefly review this here and we follow the exposition of [Her02].

Definition 6.2.9. Suppose V is a real dimensional vector space with an inner product

(·, ·). For u, α ∈ V , a reflection is a linear operator rα : V → V given by

sα(u) = u− 2 (u, α)
(α, α)α.

Definition 6.2.10. A finite set R of non-zero vectors is called a root system if rαR ⊂ R

for every α ∈ R and the only vectors colinear to α ∈ R are ±α.

Definition 6.2.11. Given a root system R, we say it is crystallographic if

2(α, β)
(β, β) ∈ Z

for all α, β ∈ R. The corresponding group W := ⟨rα : α ∈ R⟩ is then called the Weyl

group.

It is well-known that W is a finite group. Indeed, letting SR be the symmetric group
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on R, we define the injective group homomorphism ϕ : W → SR by sending r ∈ W to

the element of SR that permutes the roots in the identical way to r.

Theorem 6.2.12. There exists a set ∆ ⊂ R such that the Weyl group is generated by

the set S = {rα : α ∈ ∆} with relations

(rαrβ)mα,β = 1

for α, β ∈ ∆, mα,β ∈ Z≥0 and mα,α = 1.

See [Cox34, Theorem 8] for a proof, or see [Her02, Section 5.3] for a summary. The pair

(W,S) is called a Coxeter system and the collection mα,β determine W up to isomorphism.

The Coxeter diagram is constructed by assigning a vertex to each element α ∈ ∆ and

an edge is drawn between α, β ∈ ∆ if mα,β ≥ 3. The edge acquires a label if mα,β ≥ 4,

although for our purpose we content ourselves with the unlabelled case where mα,β ≤ 3.

Definition 6.2.13. A Coxeter system (W,S) is said to be irreducible if the Coxeter

diagram is connected.

An equivalent way of saying this is that the generating S cannot be partitioned into

two commuting subsets. This means that the root system R cannot be decomposed as

R = R1 ∪ R2 such that (R1,R2) = 0. Irreducible Coxeter systems have been classified;

in the ADE case they coincide with the simply laced Dynkin diagrams.

Let us now discuss the associated Frobenius structure. Denote S(V ∗)⊗C ∼= C[s1, . . . , sn]

as the complexified symmetric algebra of the dual space. This has a natural graded ring

structure. We define an action of W on S(V ∗) by

(w · f)(u) = f(w−1u)

for w ∈ W, f ∈ V ∗ and u ∈ V .

The following two theorems are then results of Dubrovin, Saito, Sekiguchi and Yano

[Dub98; SSY80; Sai93].
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Theorem 6.2.14. Let MW denote the orbit space (V ⊗ C)/W . Suppose D is the

collection of irregular orbits. That is to say, orbits whose cardinality is different from

|W |. Then MW \ D can be endowed with the structure of a Frobenius manifold.

Theorem 6.2.15. Consider the ring of invariants S(V ⊗C)W where W is a Weyl group

W and V is a vector space. Then there exists a basis of homogeneous polynomials

{t1, . . . , tn} ⊂ S(V )W such that

S(V ⊗ C)W ∼= C[t1, . . . , tn]

and the ti are flat coordinates of the Frobenius manifold MW \ D.

The existence of such homogeneous polynomials inducing the isomorphism above is

sometimes called Chevalley’s Theorem.

A result of Hertling [Her02] then says the following.

Theorem 6.2.16. Any Frobenius manifold that has a polynomial solution to the WDVV

equations is isomorphic to a Frobenius manifold induced by the above construction from

Coxeter groups.

Let us illustrate Hertling’s theorem using the example of the Ar singularity.

Example 6.2.17. For W = xr+1 we write the versal deformation as

Ws = xr+1 + s0 + s1x+ · · · + sr−1x
r−1 =

r+1∏
i=1

(x− ai)

for some ai such that ∑r+1
i=1 ai = 0. In other words, the sµ are elementary symmetric

polynomials of degree r+1−µ in the ai variables. We observe that the space of parameters

ai,

h :=
{
(a1, . . . , ar+1) ∈ Cr+1

∣∣∣ r+1∑
i=1

ai = 0
}

is a Cartan subalgebra of type Ar. Moreover, Chevalley’s theorem gives an isomorphism
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of complex manifolds

Cr ∼= h/Sr+1.

Here, Sr+1 is the symmetric group but can also be considered as the Weyl group of SL(r+

1;C). In fact, the Frobenius structure arising from deformation theory are isomorphic

to those arising from invariant polynomials. Indeed, let D ⊂ Cr be the discriminant

locus; that is to say, where Ws = 0 has multiple roots. Then for s ∈ Cr \ D, the lattice

H1(C,W−1
s (0);Z) is isomorphic to the root lattice with type Ar. By taking the covering

space C̃r \ D and a primitive form dx, the period mapping is given by

ϕ : C̃r \ D → h = HomZ(L,C),

s 7→
(
γij 7→

∫ ai(s)

aj(s)
dx
)

where γij ∈ H1(C,W−1
s (0);Z) is a path from aj to ai.

Elliptic Root Systems

One may generalise the above discussion to elliptic root systems. These were first intro-

duced by Saito [Sai85; Sai90; ST97; SY00] to describe the versal deformation of simple

elliptic singularities. Work of Bertola [Ber00a; Ber00b] and Satake [Sat10] has shown

that, in certain ‘codimension one cases’, the quotient space can again be given the struc-

ture of a Frobenius manifold. Here, ‘codimension one’ means that there is a unique flat

coordinate of highest degree. For our purpose, this is the marginal coordinate for the

singularities E(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 . In such cases, the ring of invariants is no longer a

polynomial ring, but a ring of modular functions instead. It is currently an open prob-

lem to classify these modular solutions to the WDVV equations, in analogy to Hertling’s

theorem for Coxeter groups.

Remark 6.2.18. There are other generalisations in addition to elliptic Weyl groups. For

example, one may consider extended affine Weyl groups where solutions to the WDVV
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equations are trigonometric. See [DZ98; BG22] for example.

Equivalences in Open Saito Theories

Let us comment on the two open Saito potentials we have calculated for D4.

Example 6.2.19. Recall that we have calculated the open Saito potentials for the

presentations of the D4 singularity given in equation (6.2.1). Firstly, the singularities

(WD4)Chain = 0 and (WD4)Fermat = 0 are a union of 3 lines intersecting at the origin.

Thus, there must be a linear transformation between them, proving that they are right

equivalent. This implies that their local algebras are isomorphic using Theorem 6.2.7. To

show that there is an isomorphism of Frobenius manifolds, we know that the flat coordi-

nates of both are polynomials. Hertling’s theorem then implies the Frobenius manifolds

of these du Val singularities arise as Frobenius manifolds from the Coxeter group D4.

Hence, there must be a coordinate transformation between the flat coordinates. Since we

have shown in Chapter 5 that the primary wall crossing group is trivial for the primary

theory of simple singularities, this is enough to imply equivalence of the primary open

Saito theory.

It is hoped that the above example may be straightforwardly generalised to the open

Saito theory of any simple singularity. In light of the open Landau-Ginzburg mirror

conjecture, one may hope to prove a result analogous to Theorem 6.2.2, once open FJRW

has been fully defined.

One may try, furthermore, to extend the above reasoning to elliptic singularities.

Example 6.2.20. Consider the example

(W
E

(1,1)
7

)Chain = x4
1 + x1x

3
2, (W

E
(1,1)
7

)Fermat = x4
1 + x4

2

Similar to before, the vanishing of these polynomials both define a union of 4 lines inter-

secting at the origin, thus proving D-equivalence. It is known that they both correspond
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to the Dynkin diagram of E(1,1)
7 and from Section 4.2.2 we know that both admit open

primary Saito potentials which are modular.

Generalising the above example and combining with the open Landau-Ginzburg mir-

ror conjecture, we obtain the following conjecture. This is a generalisation of Proposition

4.2.8 to all simple elliptic singularities of either Fermat, chain or loop type.

Conjecture 6.2.21. Consider the primary open Saito potentials W for a simple elliptic

singularity W0. Suppose all non-marginal flat coordinates are set to zero. Then there

exists a primary open Saito potential such that W (t) is a meromorphic modular function

of weight zero. Furthermore, there is a transformation involving all flat coordinates that

leaves the primary open Saito potential invariant. Combining this with the open Landau-

Ginzburg mirror symmetry conjecture, the corresponding mirror open FJRW potential

should exhibit the same modularity properties.

Although one could prove the modularity parts of conjecture via exhaustive calculation

of open Saito potentials, a slicker proof may result from understanding the equivalences

between Saito theories of simple elliptic singularities.
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APPENDIX A

THE HYPERGEOMETRIC EQUATION FOR THE
CUBIC ELLIPTIC CURVE

A.1 Triangle Functions

In this appendix we follow [Neh75, Section 5, Chapter 6]. Consider a conformal map

from the upper half complex plane to a curvilinear triangle. By the Riemann mapping

theorem, such a mapping exists. The following result is then well known.

Theorem A.1.1. Suppose that z = f(w) is a map from {w ∈ C : Im w > 0} to the

interior of curvilinear triangle △ with angles πθ, πϕ, πψ corresponding to the vertices

f(0), f(∞) and f(1). Then f is of the form

f(w) = y1(w)
y2(w)

where y1 and y2 are linearly independent solutions to the following hypergeometric equa-

tion:

w(1 − w) d
2y

dw2 + [γ − (α + β + 1)w] dy
dw

− αβy = 0

with

α = 1
2(1 + ϕ− θ − ψ), β = 1

2(1 − θ − ϕ− ψ), γ = 1 − θ.

For details of this result, we refer the reader to [Neh75, Section 7, Chapter 5]. However,
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what we are most interested in is the determination of existence of an inverse function,

which we denote by w = S(z). We call such a function a Schwarz triangle function.

To fix the position of the curvilinear triangle in the z plane, we fix the vertex at the

angle πθ so that it is at the origin and the two edges of the triangle are linear. We claim

that this is always possible if θ ̸= 0 using a Möbius transformation. Indeed, suppose C1

and C2 are the two circles of the triangle △ that meet at z = A for the angle πθ. Since

θ ̸= 0, there exists another intersection point, z = B say, of C1 and C2. The desired

Möbius transformation is then

z 7→ z − A

z −B
.

This transformation maps C1 and C2 to linear segments through the origin, while the

third edge forms an arc of a circle. We denote this circle by Γ.

Definition A.1.2. An orthogonal circle C to the curvilinear triangle △ is a circle that

perpendicularly intersects Γ (that is, the tangent lines of C and Γ at their points of

intersection are perpendicular).

Lemma A.1.3. Orthogonal circles exist for θ + ϕ+ ψ < 1.

Proof. We use the above transformation to bring the vertex with angle πθ to be positioned

at the origin. We use an additional rotation so that the vertex with angle πψ lies on the

positive real axis. Then any circle centred at the origin is orthogonal to the linear sides.

Let Γ be the circle for the third side. If θ+ϕ+ψ < 1, then the origin is outside Γ. Thus,

we draw a tangent line from the origin to a point P on Γ. The circle C centred at the

origin passing through P is then the desired orthogonal circle.

The following result is not new and can be found in [Neh75, Section 5, Chapter 6],

but we reproduce it here for completeness.

Theorem A.1.4. The Schwarz triangle function w = S(z) for the triangle △ with angles

πθ, πϕ and πψ with θ+ ϕ+ ψ < 1 is single valued in the interior of the orthogonal circle

174



C if and only if

θ = 1
m
, ϕ = 1

n
, ψ = 1

p
(A.1.1)

where m,n, p ∈ Z>0. Furthermore, it is not possible to continue S beyond the boundary

of C.

Proof. For the first direction, suppose that the angles satisfy equation (A.1.1). Since the

map w maps two lines with angle πθ onto the real axis, w = S(z) must have the form

S(z) = z
1
θS1(z)

where S1 is single-valued around z = 0. Since θ = 1
m

, we must have that

S(z) = zmS1(z)

is also single-valued around z = 0. By transforming the angles πϕ or πψ to the origin,

the same reasoning applies to ϕ = 1
n

and ψ = 1
p
.

Conversely, suppose that w = S(z) is single valued in the orthogonal circle C of △. We

claim that S(z) in its domain of definition has no singularities other than poles of order

n. Indeed, all analytic continuations of the original domain △ of S(z) can be obtained by

iterative reflections through the sides of △ in the z-plane. Such a transformation maps

circles to circles, hence preserving the magnitude of the angles while reversing orientation.

The corresponding reflections in the upper half w-plane are reflections through the real

axis. Thus, the boundaries of the triangles in the z plane are mapped to segments of

the real axis. From the reasoning above, S(z) is single valued near the vertices of the

reflected triangles if θ, ϕ, ψ satisfy condition (A.1.1). Moreover, such vertices are the only

possible singularities of S and, again due to the form of S, can only be singular at the

vertices corresponding to the angle πϕ. This proves the claim.

To prove the theorem, we will show that the domain of existence coincides with the

orthogonal circle C. In particular, this domain is simply connected and the result in the
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theorem will follow from the monodromy theorem. To show that the domain coincides

with C, we first observe that any inverted triangle lies within C. Indeed, any reflected

triangle is still orthogonal to the image of C under this reflection, since the reflection

preserves angles. However, this image is precisely C. Thus, all inverted triangles lie

within the same orthogonal circle as the original domain △.

Conversely, for the reverse inclusion, we show that any point in C can be obtained

by reflections. Indeed, suppose that all reflections have been performed to reach a point

in C. At the domain boundary, there are no circles whose radii are positive as one could

then carry out another reflection; this would be in contradiction to maximality of the

domain. All such circular arcs of radius tending to zero must be orthogonal to C. This

implies that they also intersect C. Due to the vanishing of the radii, the points of the

circular arcs must therefore also be contained in C. This shows that the domain coincides

with C and completes the proof.

Corollary A.1.5. If the conditions of the above theorem are satisfied, then S(z) is an

automorphic function in the domain |z| < 1.

Proof. From the proof of the above theorem, we know that an even number of reflec-

tions preserves both magnitude and orientation of the angles. This induces a conformal

map. Since reflections preserve circles, this reflection must be equivalent to a Möbius

transformation γ(z) in the z-plane where γ is the map

γ · z = az + b

cz + d

for a, b, c, d ∈ C. However, in the w-plane, an the corresponding even number of reflections

in the real axis returns the original point. Thus, we find that

S
(
γ · z

)
= S(z).

We now describe the automorphy group which we call the triangle group. It is well

176



known that the set of such γ form a group which can be generated by three elements

corresponding to an even number of reflections across the sides of the original triangle △.

Moreover, reflections, and thus actions of the triangle group, leave the orthogonal circle

invariant. However, normalising S with the requirement that C mist have radius 1, we

know that any such action of the triangle group must be of the form

z 7→ δ
(
a− z

1 − az

)
(A.1.2)

for |δ| = 1 and |a| < 1. Thus, S(z) must be a single valued automorphic form with

respect to the triangle group action given by (A.1.2).

A.2 Solving Hypergeometric Equations Near Infin-
ity

We note that the normalisation of S in the above proof is not the one we use for the

hypergeometric equation. Indeed, the solution we use is

y1(w) = w1−γ
2F1(α−γ+1, β−γ+1, 2−γ;w), y2(w) = 2F1(α, β, γ;w), f(w) = y1(w)

y2(w) .

This is a solution around w = 0.

For the case of W
E

(1,1)
6

= x3
1 + x3

2 + x3
3 + sx1x2x3, the marginal flat coordinate t is

t = −3
w1/3 · 2F1(2

3 ,
2
3 ,

4
3 ;w)

2F1(1
3 ,

1
3 ,

2
3 ;w) .

where w = − 1
27s

3. That is to say, t is proportional to the a ratio of linearly independent

solutions around to the hypergeometric equation,

w(1 − w) d
2y

dw2 +
(2

3 − 5
3w
)
dy

dw
− 1

9y = 0. (A.2.1)
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The resulting open Saito potentials are expansions around t = 0.

However, we may also solve the above equation as w or equivalently t become large.

This will allow us to deduce q expansions of Saito potentials in the next subsection.

To study the solution to equation (A.2.1) as w → ∞, we use the substitution w = x−1.

Thus we obtain the differential equation

(x3 − x2)d
2y

dx2 +
(4

3x
2 − 1

3x
)
dy

dx
− 1

9y = 0. (A.2.2)

It can be checked that the point x = 0 is a regular singular point and thus we use the

method of Frobenius to solve (A.2.2).

We use the ansatz

y =
∞∑

r=0
arx

r+c (A.2.3)

with a0 ̸= 0. Substituting (A.2.3) into (A.2.2) we find

(x3 − x2)
∞∑

r=0
ar(r + c)(r + c− 1)xr+c−2 +

(4
3x

2 − 1
3x
) ∞∑

r=0
ar(r + c)xr+c−1 − 1

9

∞∑
r=0

arx
r+c = 0.

Expanding the terms and changing indices in the sums, the above equation becomes

∞∑
r=1

ar−1(r + c− 1)(r + c− 2)xr+c−
∞∑

r=0
ar(r + c)(r + c− 1)xr+c + 4

3

∞∑
r=1

ar−1(r + c− 1)xr+c

− 1
3

∞∑
r=0

ar(r + c)xr+c − 1
9

∞∑
r=0

arx
r+c = 0.

Employing linear independence, we equate coefficients of xk to zero for all k. For xc, we

find

a0
(

− c(c− 1) − c

3 − 1
9
)

= 0.

Since a0 ̸= 0, we find c as the double root c = 1
3 . From the other terms, we ultimately
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obtain the recursion relation

ar =

(
r + c− 1

)(
r + c− 2

3

)
(
r + c− 1

3

) ar−1 =
(c)r

(
c+ 1

3

)
r(

c+ 2
3

)
r

·
(
c+ 2

3

)
r

a0.

Thus, our general solution has the form

y = a0

∞∑
r=0

(c)r

(
c+ 1

3

)
r(

c+ 2
3

)
r

·
(
c+ 2

3

)
r

xr+c.

It is only the ratio of y1 and y2 that we are interested in. Thus, without loss of generality,

we set a0 = 1. Our two linearly independent solutions are given by

y1 = y|c=1/3, y2 = ∂y

∂c

∣∣∣∣
c=1/3

.

With x = w−1, we observe that

y1 = x1/3
2F1

(1
3 ,

2
3 , 1;x

)
= w−1/3

2F1

(1
3 ,

2
3 , 1;w−1

)
.

To calculate the derivative in y2, we have the following lemma.

Lemma A.2.1. Define

Mr =
(c)r

(
c+ 1

3

)
r(

c+ 2
3

)
r

·
(
c+ 2

3

)
r

.

Then
∂Mr

∂c
= Mr

r−1∑
k=0

( 1
c+ k

+ 1
c+ 1

3 + k
− 2
c+ 2

3 + k

)
.

Proof. Observe that

logMr =
r−1∑
k=0

log(c+ k) + log
(
c+ 1

3 + k
)

− 2 log
(
c+ 2

3 + k
)
.

The result now follows from differentiating with respect to c.
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Thus, we find that

∂

∂c

(
xc
∑
r=0

Mrx
r
)

= xc
(

log x
∞∑

r=0
Mrx

r +
∞∑

r=0
Mr

r−1∑
k=0

( 1
c+ k

+ 1
c+ 1

3 + k
− 2
c+ 2

3 + k

)
xr
)
.

Evaluating at c = 1
3 and noting that x = w−1 we find

y2 = w−1/3
∞∑

r=0

(
1
3

)
r

(
2
3

)
r

(1)r · (1)r

(
logw−1 +

r−1∑
k=0

( 1
1
3 + k

+ 1
k + 2

3 + k
− 2
k + 1

))
w−r.

Thus we find that two linearly independent solutions are

y1 = w−1/3
2F1

(1
3 ,

2
3 , 1;w−1

)
y2 = w−1/3

[
F
(1

3 ,
2
3 , 1;w−1

)
− logw · 2F1

(1
3 ,

2
3 , 1;w−1

)]

where

F
(1

3 ,
2
3 , 1;w−1

)
=
∞∑

r=0

(
1
3

)
r

(
2
3

)
r

(1)r · (1)r

r−1∑
k=0

( 1
1
3 + k

+ 1
k + 2

3 + k
− 2
k + 1

)
w−r.

A.3 Series Reversion and Modular Expansions

As an aside, we review the series reversion technique to obtain the open Saito potential

for E(1,1)
6 in section 4.1.2.

For a power series with no constant term

t = a1s+ a2s
2 + · · · (A.3.1)

we wish to find an expansion of an inverse

s = A1t+ A2t
2 + · · · . (A.3.2)
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This can be done simply by substituting (A.3.2) into (A.3.1) so that

t = a1(A1t+ A2t
2 + · · · ) + a2(A1t+ A2t

2 + · · · )2 + · · · .

This allows us to determine Ai recursively.

We now use this series reversion technique to find a Fourier series for the Schwarz

triangle functions. Recall that we have two linearly independent solutions to the hyper-

geometric equation at infinity, we may calculate the Fourier series of the triangle function

w = S(z) =
∞∑

n=−∞
cnq

n (A.3.3)

where cn are to be determined and q = e2πiz.

To do this, we follow the algorithm proposed by Lehner [Leh54]. Indeed, recall

y1 = w−1/3
2F1

(1
3 ,

2
3 , 1;w−1

)
y2 = w−1/3

[
F
(1

3 ,
2
3 , 1;w−1

)
− logw · 2F1

(1
3 ,

2
3 , 1;w−1

)]
.

We take

−2πiz = −y2

y1
= logw −

F
(

1
3 ,

2
3 , 1;w−1

)
2F1

(
1
3 ,

2
3 , 1;w−1

) .
One may calculate a series expansion of the above expression so that

−2πiz = logw + A1

w
+ A2

w2 + · · ·

where Ak ∈ Q. Exponentiating gives another series expansion

q−1 = e−2πiz = w · exp
(
A1

w
+ A2

w2 + · · ·
)

= w ·
(

1 + B1

w
+ B2

w2 + · · ·
)

(A.3.4)

where Bk ∈ Q.
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Thus, in equation (A.3.3) we must have cn = 0 for n < −1 and c−1 = 1. To find the

higher order terms in

w = q−1(1 + c0q + c1q
2 + · · · ) (A.3.5)

we set

w−1 = q(1 + d0q + d1q
2 + · · · ) (A.3.6)

where the dk are calculated in terms of the ck via the binomial theorem. This can also

be done for w−n. Then substituting A.3.5 and A.3.6 into A.3.4 we find

q−1 = q−1(1+c0q+c1q
2+· · · )

(
1+B1q(1+d0q+d1q

2+· · · )+B2q
2(1+d′0q+d′1q2+· · · )+· · ·

)
.

The above equation then allows us to determine ck recursively.
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APPENDIX B

A REMARK ON OPEN WDVV EQUATIONS FOR
SIMPLE SINGULARITIES

As an aside, we return to Remark 4.2.5 where there is disagreement on the open Saito

potentials for WD4 = x3
1 + x1x

3
2 in the Gross-Kelly-Tessler construction and in the paper

of Basalaev-Buryak. Worse still, it may seem that our results for WD4 = x3
1 + x1x

3
2

contradicts Theorem 6.1 of [BB21]. Let us briefly comment on the discrepancy. In that

paper, the authors take a different approach where they consider solutions to open WDVV

equations with an extra parameter which we call σ here. Their approach comes with a

significant advantage: much like solutions of the closed WDVV equations inducing a

Frobenius manifold, solutions of open WDVV equations give a flat F manifold structure.

However, the potential that is found for WD4 = x3
1 + x1x

2
2 contains a pole along σ = 0.

Whilst an analogue of open WDVV equations are unknown in approach of [GKT22b],

the advantage of the Gross-Kelly-Tessler method is that the generating potential is a

homogeneous polynomial and there is a proven corresponding mirror theorem in some

cases.

To illustrate why the results of [BB21] do not contradict our expressions for the open

Saito potential for WE7 = x3
1+x1x

2
2, we give a brief survey of the Basalaev-Buryak method

and consider homogeneous, polynomial solutions to the open WDVV equations for E7.

In doing so, we give a small correction to the proof of Theorem 6.1 of Basalaev-Buryak

by using the correct good basis for WE7 = x3
1 + x1x

3
2.
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Throughout this section we employ Einstein summation convention.

Let W be a simple singularity. Let {tµ}µ∈B be a system of flat coordinates for the

Saito-Frobenius manifold. Recall that, locally, this Frobenius manifold is described by a

solution of the WDVV equations. Let F (t0, . . . , tn) be a solution of this system of PDE’s.

There is another system of PDE’s for a function F o(t0, . . . , tn, σ) with σ an additional

parameter that describes the corresponding open geometry. These equations are given as

∂3F

∂tα∂tβ∂tµ
ηµν ∂

2F o

∂tν∂σ
+ ∂2F o

∂tα∂tβ
∂2F o

∂σ2 = ∂2F o

∂tα∂σ

∂2F o

∂tβ∂σ
. (B.0.1)

In open Gromov-Witten theory and in open r-spin theory in [PST22; BCT22a], solutions

of the open WDVV equations are considered subject to the condition

∂2F o

∂t0∂σ
= 1. (B.0.2)

We will impose the same condition here. Recall that the coordinate t0 plays a special

role, since the vector field e = ∂
∂t0 is the unit of the corresponding Frobenius algebra.

Recall for a general simple singularity W , the Euler vector field E is given by

E =
∑
µ∈B

(deg sµ)sµ
∂

∂sµ

.

The Euler field E may also be written in terms of the flat coordinates

E =
∑
µ=1

(deg tµ)tµ
∂

∂tµ
.

This may be extended to the open case by declaring that the degree of σ is 1−δ
2 . Here, we

recall that δ is the conformal dimension of the Frobenius manifold. It is defined through

the conformal Killing equation,

LEη = (2 − δ)η.
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Equivalently, δ is given by

δ = 1 − 2
h

where h is the Coxeter number of the corresponding Lie algebra for a simple singularity.

Definition B.0.1. A polynomial F o(t, σ) is called homogeneous if there exists degF o ∈ Q

such that

LEF
o + 1 − δ

2 σ
∂F o

∂σ
= (degF o)F o. (B.0.3)

In the works of [PST22; BCT22a], homogeneous solutions of the WDVV equations

were considered where degF o is necessarily given by 3−δ
2 . Henceforth, we shall only

consider such solutions.

The main result of this section is the following proposition, due to Basalaev-Buryak.

Proposition B.0.2. Consider the Frobenius manifold associated to the E7 singularity

W = x3
1 + x1x

3
2. Let F be the corresponding Frobenius potential. Then there are no

homogeneous polynomial solutions F o to the open WDVV equations (B.0.1) subject to

(B.0.2).

Before we can prove this result, we need a technical lemma.

Lemma B.0.3. We have

∂F o

∂sµ

∣∣∣∣
s,σ=0

= 0, ∂2F o

∂σ2

∣∣∣∣
s,σ=0

= 0.

Proof. For E7 we find δ = 8/9. If ∂F o

∂sµ

∣∣∣∣
s,σ=0

did not vanish, this would imply that F o

contains a linear term in v. However, given that deg sµ ̸= 3−δ
2 for all µ, this linear term

does not obey the homogeneity condition (B.0.3). Hence we must have ∂F o

∂sµ

∣∣∣∣
s,σ=0

= 0.

Similarly, if we assume that ∂2F o

∂σ2

∣∣∣∣
s,σ=0

did not vanish then F o would contain a σ2 term.

However, we have that 3−δ
2 > 2 · 1−δ

2 and so F o would not be homogeneous.

Proof of Proposition B.0.2. Recall that the structure constants (ct) of the Frobenius al-
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gebra are defined by
∂

∂tα
◦ ∂

∂tβ
= (ct)µ

αβ

∂

∂tµ
.

They are related to the Frobenius potential via

(ct)ν
αβ = (ct)αβµη

µν = ∂3F

∂tα∂tβ∂tµ
ηµν .

Thus we rewrite the open WDVV equations (B.0.1) as

(ct)ν
αβ

∂2F o

∂tν∂σ
+ ∂2F o

∂tα∂tβ
∂2F o

∂σ2 = ∂2F o

∂tα∂σ

∂2F o

∂tβ∂σ
. (B.0.4)

We wish now to change variables from the flat coordinates t to the versal deformation

parameters s. Recall that the structure constants (ct)ν
αβ obey the following tensor trans-

formation law

(ct)ν
αβ = (cs)ν̃

α̃β̃

∂tν

∂sν̃

∂sα̃

∂tα
∂sβ̃

∂tβ
.

It is also useful to recall that
∂tν

∂sν̃

∂sµ

∂tν
= δµ

ν̃ .

After some manipulation, one may rewrite (B.0.4) as

(cs)µ
αβ

∂2F o

∂sµ∂σ
+ ∂2F o

∂sα∂sβ

∂2F o

∂σ2 + ∂tα̃

∂sα

∂tβ̃

∂sβ

∂2sµ

∂tα̃∂tβ̃
∂F o

∂sµ

∂F o

∂σ2 = ∂2F o

∂sα∂σ

∂2F o

∂sβ∂σ
.

We now differentiate this equation with respect to sγ and set s, σ = 0.

From the previous lemma, we calculate that

∂

∂sγ

(
∂tα̃

∂sα

∂tβ̃

∂sβ

∂2sµ

∂tα̃∂tβ̃
∂F o

∂sµ

∂F o

∂σ2

)∣∣∣∣
s,σ=0

= 0.
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Thus, we obtain the following equation

∂

∂sγ

(
(cs)µ

αβ

∂2F o

∂sµ∂σ

)∣∣∣∣
s,σ=0

+ ∂

∂sγ

(
∂2F o

∂sα∂sβ

∂2F o

∂σ2

)∣∣∣∣
s,σ=0

= ∂

∂sγ

(
∂2F o

∂sα∂σ

∂2F o

∂sβ∂σ

)∣∣∣∣
s,σ=0

.

(B.0.5)

To prove the proposition, it is now sufficient to find indices α, β, γ such that

(cs)µ
αβ|s=0 = 0,

∂(cs)µ
αβ

∂sγ

= Aδµ,0, A ∈ C∗ (B.0.6)

and

∂2F 0

∂sα∂sβ

= 0, ∂

∂sγ

(
∂2F o

∂sα∂σ

∂2F o

∂sβ∂σ

)
= 0 (B.0.7)

hold. This is because equation (B.0.5) would then imply

∂2F o

∂s0∂σ
= 0.

After changing variables back to the flat coordinates, this in turn implies

∂2F o

∂t0∂σ
= 0.

This contradicts the constraint (B.0.2).

We claim that α = (1, 0), β = (0, 2) and γ = (0, 1) suffices. Indeed, the structure

constants (cs) are defined through the Frobenius algebra multiplication,

∂

∂sα
◦ ∂

∂sβ
= (cs)µ

αβ

∂

∂sµ
. (B.0.8)

However, we may also define an equivalent algebra multiplication via the following con-

struction. Let Ws be the versal deformation. Explicitly,

Ws = x3
2x1 + x3

1 + s0 + s01x2 + s10x1 + s02x
2
2 + s11x1x2 + s20x

2
1 + s21x2x

2
1.
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In [BB21], the good basis that is required to define the Landau-Ginzburg B-model was

not used. We therefore modify their calculation slightly. Let M be the Saito-Frobenius

manifold for E7 and let TM be its tangent sheaf. Recall that TM(Cn) is the C[s]-module

freely generated by
{

∂
∂sµ

}
µ∈I

. We identify TM(Cn) as an algebra via the Kodaira-Spencer

isomorphism

Ψ : TM(Cn) → C[x1, x2, v]/
(
∂x1Ws, ∂x2Ws

)
, Ψ

(
∂

∂sµ

)
= [xµ].

Thus, TM(Cn) inherits an algebra structure via Ψ. We now calculate that

Ψ
(

∂

∂s10
◦ ∂

∂s02

)
= [x2

2x1].

Observe that
∂Ws

∂x2
= 3x2

2x1 + s01 + 2s02x2 + s11x1 + s21x
2
1.

Therefore, as an element in C[x1, x2, s]/
(
∂x1Ws, ∂x2Ws

)
we have

[x2
2x1] = −1

3
(
s01 + 2s02x2 + s11x1 + s21x

2
1

)
.

Under the isomorphism Ψ−1, this element maps to

−1
3
(
s01

∂

∂s0
+ 2s02

∂

∂s01
+ s11

∂

∂s10
+ s21

∂

∂s20

)
. (B.0.9)

Comparing equations (B.0.9) and (B.0.8) we find that equation (B.0.6) is satisfied with

A = −1/3. To show that (B.0.7) is true, one can argue in a similar way to Lemma B.0.3.

The details here are the same whether one uses the standard good basis or the basis

chosen by Basalaev-Buryak. See [BB21] for the explicit calculation.

A similar conclusion can be found for D4, and DN more generally as in [BB21, The-

orem 6.1].
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