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Abstract

In recent works of Buryak, Clader, Gross, Kelly and Tessler, genus zero open enumerative
theories and their mirrors for the Landau-Ginzburg models Wy = " and Wy = x}' + 257
were constructed. We build on this work by defining an open mirror B-model with gravi-
tational descendants for any Fermat, chain or loop polynomial. This is done by presenting
a recursive algorithm for finding flat coordinates of Dubrovin’s Frobenius manifold for a
Landau-Ginzburg B-model. Furthermore, we present formulas for these coordinates for
any ADE or elliptic singularity. Although these open Saito potentials do not yet have an
enumerative interpretation, we present explicit formulas for these generating functions,
together with modularity properties in the elliptic case. Finally, we find that the B-model
exhibits a wall-crossing structure. We classify this structure by describing a Lie group
action of wall-crossing transformations, which we prove is faithful and transitive in the

rank 2 case.
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CHAPTER 1

INTRODUCTION

In a sequence of papers, [FJRO8; FJR11b; [FJR13| Fan, Jarvis and Ruan developed FJRW
theory as a closed enumerative theory for Landau-Ginzburg A-models, inspired by phys-
ical work of Witten [Wit93a]. This was done as there is currently no complete theory
of how to take a N’ = (2,2) supersymmetric Landau-Ginzburg action and perform an
A-twist to obtain a topological field theory coupled to gravity whilst retaining Lorentz in-
variance. See sections 2 and 3.1 of [GS09] where Guffin and Sharpe discuss the difficulties
of such a theory.

FJRW theory takes as input data (Wy, G) where Wy : CV — C is a weighted homoge-
neous polynomial and G is an admissible choice of subgroup of the automorphism of Wj.
The polynomial W is further restricted to be invertible and such superpotentials were
classified by Kreuzer and Skarke [KS92| as Sebastiani-Thom sums of Fermat, chain and
loop polynomials. One reason for this added condition of invertibility is that the corre-
sponding hypersurfaces in weighted projective space are suitably well-behaved under the
Landau-Ginzburg / Calabi-Yau correspondence [Wit93b].

Given this input data, the output of FJRW theory is an enumerative theory which
enjoys the properties of a cohomological field theory, in the sense of Kontsevich and
Manin [KM94]. By construction, the CohFT has an enumerative interpretation as a
count of W-spin curves. In particular, for Wy = 2" and G = GR* = p, where p,

is the group of 7" roots of unity, the resulting FJRW theory is equivalent to the r-



spin construction of Abramovich, Chiodo, Jarvis, Kimura and Vaintrob |AJ03; Jar00;
JKVO01; (Chi0g]. See [FJR1la] for an exposition of the relation between FJRW theory
and r-spin structures. Although the enumerative picture of closed FJRW theory is well
understood, computations are notoriously difficult, especially if the invariants do not
satisfy a condition known as concavity. For example, Guéré overcame the problem of non-
concavity in [Guél6] by explicitly calculating the virtual fundamental cycle for FJRW
theory via Givental’s quantum Riemann-Roch formalism. On the other hand, [HLSW22]
bypass such tricky calculations through the use of various reconstruction theorems and
the WDVV equations.

Conversely, the mirror Landau-Ginzburg B-model is easy to compute with. As
(twisted) topological field theories, these were investigated in [LVW89; Vaf9l; Wit92].
These works also give motivation for the particular focus on the case of quasi-homogeneous
potentials on CV, although we do not dwell on the details here. In this thesis, from the
physical viewpoint, we consider a deformation W, of W}, by adding certain source terms to
the superpotential and writing descent equations to compute correlation functions. From
a mathematical viewpoint, the deformation Wj is a versal deformation of the singularity.
Using primitive forms, the mathematical foundations of the closed B-model as a coho-
mological field theory were developed by Saito [Sai83a; [Sai83b] for genus zero; Givental
then provided a remarkable formula in |[Giv96; |Giv01] for the higher genus theory with
descendants. This was subsequently completed by Teleman [Tell2] and applied to the
Landau-Ginzburg case by Milanov |[Mill4].

This modern formulation of the B-model, now called Saito-Givental theory in the
literature, is dependent on the local algebra of the invertible singularity W, which plays the
role of the B-model chiral ring. The local algebra has a flat Frobenius structure encoded
in the flat coordinates {¢,},cp of Dubrovin’s Frobenius manifolds [Dub96]. Here, the set
B C ZJZVO is an index set for a unique choice of basis of the local algebra. This special

i

choice of basis, {z# := [IX, z!"| u € B}, is called the standard good basis in Definition

2.9 of [HLSW22|. Via the work of Givental, the flat coordinates can be extended to



descendant parameters ¢, 4 with the identification ¢, = ¢,,.
Nevertheless, finding explicit formulas for ¢, in Saito-Givental theory is difficult. Our
first result in this thesis is a calculation of flat coordinates for singularities whose type is

either ADE or simple elliptic.

Flat Coordinates for the B-Model Using Oscillatory Integrals

Roughly speaking, the B-model involves period integrals of the form

/ e .

o

Here, W is a deformation of W, and f is a regular function on CV x M with M the
parameter space of the deformation. Furthermore, if f is chosen so that f - dVz is a
primitive form, the manifold M can be endowed with a Frobenius structure with local
coordinates (t,). See Definition [3.2.12] Moreover, h € C* is an auxiliary parameter
and the Z,, form a special basis of non-compact cycles in CV, often known as Lefschetz
thimbles in the literature. This basis is dual to the standard good basis of [HLSW22]
under a perfect pairing defined by oscillatory integrals in Section 3.2.

There are numerous methods to calculate flat coordinates for simple and elliptic sin-
gularities. For A,, the authors of [IN82] carry out computations via a generating function,
whilst in [BGK16| Belavin, Gepner and Kononov find flat coordinates by directly solving
the Gauss-Manin system. They obtain a conjecture for the integral representation of flat
coordinates which we prove in Proposition 1.0.1 and Corollary 1.0.2 below. Computations
for Es and Eg are done in |Yan81| and [KW81]| respectively.

The cases of D, and E7 are chain polynomials and are more computationally technical.
The flat structure of E; is considered via Er-invariant polynomials in [Abr09]. On the
other hand, Klemm, Theisen and Schmidt derive potentials via topological conformal
field theory in [KTS92]. The advantage of this physical perspective is that it also allows

for computations of the flat structure of elliptic singularities. Such structures for the



elliptic singularities WEél,l) = 73 + a3 + 23 and WES’” = x} + 23 are also derived in
[Kat86; [Sat93].

In [Nou84; INY9§|, there is a unifying systematic treatment of flat coordinates of sim-
ple and elliptic singularities, which includes D, and Eél’l). This was done by solving the
Riemann-Hilbert-Birkhoff problem of the Gauss-Manin system associated to the singu-
larity. The details of this calculation are quite technical. Thus, a different approach to

finding flat coordinates is valuable. In particular, we prove the following.
Proposition 1.0.1. Given an invertible singularity Wy, denote by W the versal defor-

mation in the local coordinates (s,),ep of M:

Wy =Wy + Z st

neB

For k € 25, define I(k) = ¥ ,cp ko - . Then

4 . 4 1
/5 ANy =S T (s)h, TP (s) = > (hq(k,i)/E k!

. i€z kezl?!
deg sk=deg sp—1+14

sk
oWo/hl(k) gN ..

m

where ¢(k,i) defined in equation (3.2.9)) is the number of times integration by parts is
used to reduce z!®) to an element z* of the good basis. Furthermore, deg s, is given in

Definition B.1.13]
Using this proposition, we prove the following generalisation of Theorem 1.1 of [NY98].

Corollary 1.0.2. Let W, be an ADE or simple elliptic singularity. A primitive form and

flat coordinates for W, are given by

N VAC
fdVz = (07):6’ tu(s) = ’ZO)( )
Ty (8) Jo " (8)

For an ADE singularity, jo(o)(s) = 1 and for a simple elliptic singularity, jo(o)(s) is a

function of the marginal parameter s only. See Definition [3.2.9



The proof follows by a calculation that uses only Taylor expansion and integration by
parts, compared to the transcendental methods of Noumi and Yamada. It is exactly this
simplification that allows us to easily compute flat coordinates of the elliptic singularities

3

not considered in [NY98], such as the chain polynomial WE;I’” =z} + 1123,

Furthermore, in the notation of Noumi and Yamada, we have

wl(j) — ju(i)

wt(k) := deg s¥ = > deg sq - ka,

aeB

1
cu(l(k)) = W/: eWo/hglk) gN 4.

Here, we use ju(i) instead of wl(j) as we wish to emphasise the enumerative importance of
these coefficients as related to a J function. The integrals ¢,(I(k)) can be calculated in
terms of I functions and hypergeometric functions via the results in Section 3.2.4. This
gives a concrete realisation, in the case of Landau-Ginzburg models, for the variations of

semi-infinite Hodge structures developed by Barannikov [Bar(O1].

Open Saito-Givental Theory.

Proposition and Corollary are enough to specify the closed Landau-Ginzburg
B-model invariants for ADE and simple elliptic singularities. Construction of topological
Landau-Ginzburg models for open strings, however, is still not clear in many cases. There
are perhaps three main interlinked approaches that are currently available.

The first uses ideas from topological gravity. Pandharipande, Solomon and Tessler
[PST22] first constructed a moduli space of genus zero Riemann surfaces with boundary
for the case of 2-spin structures. They furthermore conjectured an open analogue of Wit-
ten’s conjecture in the A; case: that a generating function of intersection numbers on
this moduli space is a 7-function of the open KdV hierarchy. Buryak [Burl5| interpreted

this open KdV hierarchy as part of the Burgers-KdV hierarchy. The open Witten con-



jecture was subsequently proven in [BT17]. The main tool was the Kontsevich-Penner
matrix model, formed from the Hermitian matrix model in [Kon92| by adding a loga-
rithmic term to the potential. Based on Alexandrov’s calculations in [Alelb5a; Alelbb;
Alel7] of W-algebra constraints for the Kontsevich-Penner matrix model, Safnuk [Saf16]
introduced a topological recursion procedure involving half integer genera on a spectral
curve to compute open intersection numbers. Although the matrix model is very explicit,
Basalaev and Buryak were able to generalise these potentials to the case of A, and D,
singularities in [BB21|. This was done by considering open WDVV equations, solutions
to which give rise to flat F-manifolds.

The second approach is homological. Kapustin and Li [KLO3| argued that the correct
category of D-branes for a Landau-Ginzburg model W, was the associated category of
matrix factorisations of W. Results of Kontsevich [Kon95] and Costello [Cos07] hinted
that this category should give rise to the chiral ring of a Landau-Ginzburg B-model. This
was confirmed when Dyckerhoff proved that the Hochschild homology of this category
was the local algebra of the singularity [Dycll]. See also the work of Efimov [Efi1§].
In [Orl09] Orlov subsequently proved that the category of matrix factorisations of W
is equivalent to (a Verdier quotient of) the derived category of coherent sheaves over a
hypersurface defined by W, = 0. Orlov’s equivalence was later interpreted as a B-model
analogue for the Landau-Ginzburg / Calabi-Yau correspondence by Chiodo, Iritani and
Ruan |[CIR14]. More recently, Saito theory has been recast categorically: one may define
a categorical primitive form as in [CLT21|. See also the results in [Tu2la]. Homological
mirror theorems may then be proven via isomorphisms of the corresponding cohomolog-
ical field theories. Indeed, by working with the category of matrix factorisations, He,
Polishchuk, Shen and Vaintrob in [HPSV22| prove a mirror theorem with the additional
removal of a technical assumption of [HLSW22, Theorem 1.2]. Furthermore, Tu |[Tu21b]
constructs a categorical Saito theory with a non-trivial choice of subgroup of Gy2*. It is
then demonstrated that this is mirror to the expected FJRW theory.

A third approach to open topological Landau-Ginzburg models is via mirror symmetry



and enumerative geometry. This is the route we take in this thesis. An open r-spin
theory has been constructed in [BCT22a; BCT22b; BCT23|; an open B-model, on the
other hand, for Wy = 2" and Wy = 27" + 25* has been established in |[GKT22a; | GKT22b|
by Gross, Kelly and Tessler. The main point of this thesis is the construction of an open
enumerative B-model for any invertible singularity. In Section 3.1 we describe an iterative
algorithm for the computation of primitive forms and flat coordinates for generic rank
two polynomials. Our method is based on work by Gross, Kelly and Tessler |[GKT22a;
GKT22b| where these authors consider higher order deformations of the superpotentials
Wy = 2" and Wy = z}' + z3?. This is different from the perturbative primitive form
expansions outlined in [LLS14; [LLSS17], although the two approaches are related.
Similar to the rank two Fermat case, we find that there are non-uniqueness issues
surrounding the computation of the flat coordinates for rank two chains and loops. Our
main result is then Theorem which provides structure for this non-uniqueness.

Let us now make this more precise.

Definition 1.0.3. Given a Landau-Ginzburg model Wy, let Z be a multiset of p € B.
Consider the ring Azgm = Qt,alp € B,d € Zxo|/ldeal(Z) for an ideal, Ideal(Z),
generated by monomials of the form [], thd so that >~ ng is greater than the number of
times the element ;o appears in Z. Given rational numbers vy, . xy.7.4 € Q indexed by

k; > 0, a multiset I and descendant vector d, an open ancestor Saito potential for Wy is

W::Z Z Z (— 1)1 17/’kA1,Ut,kN,IdH o Hm

>0 k1,....,kn>0 AZ{(ui,di)}E.Al

where A; denotes a set whose elements A are cardinality [ multisets of tuples I :=

{(pi)}._, together with the descendant vector d.

An important special case of open Saito potentials are primary open Saito potentials
where the descendant vector d = 0. Given Wy, one may calculate the flat coordinates
and change variable in the versal deformation W to write the s, parameters in terms of

the flat coordinates ¢,. We identify the formal parameters ¢, o of the open Saito potential

10



with the flat coordinates ¢, via t,o = t,. In Corollaries [£.3.7] and [£.3.12] we provide

justification for this identification in rank two.

Definition extends Definition 4.12 in |[GKT22b| from rank two Fermat superpo-
tentials to any invertible Landau-Ginzburg potential. The authors of that paper have
shown that if the vy, j,.7.4 are enumerative for Wy = 2" or Wy = 27" + z3?, then the
open Saito potential is a natural choice of deformation of Wj. It is furthermore analogous
to generating functions involved in toric Fano / Landau-Ginzburg mirror symmetry of
[CO06; (Grol0; FOOO10]. See [Groll; FOOO12| for expositions. Crucially, in all of these
works, the enumerative invariants are not uniquely defined in all cases as they exhibit a
wall-crossing structure.

In Definition 4.18 of |[GKT22b|, a wall-crossing group is defined for Wy = x}* +x5* that
classifies such wall-crossing transformations and thus what invariants can be obtained in
open Saito-Givental theory. In this thesis, we propose a definition of the wall-crossing
group, Gaw, < Auts(A[[z1,...,2zn]]) depending on some ring A and any invertible
Wy. More precisely, we extend the previous definition of the wall-crossing group given in

|GK'T22b| to cover the cases of chain and loop polynomials, which are defined in Theorem

2.1.6l

Definition 1.0.4. Let A = Azg,,. For a Landau-Ginzburg model Wy, the Landau-
Ginzburg wall-crossing group G aw, < Auta(A[[x1,...,xn]]) is the group of elements 1)

such that the following axioms hold.

1. 1 must satisfy

w = id mod <(t,u,,d)| n e B,d S ZZO> .

2. 1) preserves the volume form dz; A --- A dxy.
3. 1) preserves the ideal generated by [IY, z;.

4. Each monomial in YW is a count of balanced vk, x4

11



The primary Landau-Ginzburg wall-crossing group is defined by restricting G 4w, tod = 0

with the additional quasi-homogeneity condition: ) commutes with the grading operator,

0 N 0
E:=) sudeg Suge + > z;deg Tig -
pooi=1 i

neB

This definition of the wall-crossing group consists of four axioms, three of which
appear in |[GKT22b|. The first three are dealt with by considering G 4w, as a subgroup
of a group, G4, of vector fields. See Proposition 5.2.1. The final axiom is new: it
ensures that open Saito potentials should match with an enumerative theory. These are
combinatorial conditions that are referred to as balancing conditions or selection rules for
Vky....kn.Id- O€e Definition for the definition of balanced vy, k.1.d-

To make the construction of the wall-crossing group more explicit, in Sections 4.2 and
4.3 we consider restrictions to primary open Saito potentials. As a simple consequence of
this definition, we give a description of the primary wall-crossing group for any singularity
with central charge ¢ < 1. To state this, we first need some technical details. For W, an
elliptic singularity, we define the marginal basis element x*<, with u. € B, as the unique
standard good basis element whose degree induced by £ is equal to one. The marginal flat
coordinate t,, is then the flat coordinate associated to x#¢ and correspondingly satisfies

degt,, = 0. Finally, for Wy = >, TI)L, 2", the exponent matriz is Eyw, = (ri;).

Proposition 1.0.5. The primary wall-crossing group is trivial if and only if W} is simple.

Moreover, let W, be an elliptic singularity in rank N = 2 or N = 3 with exponent matrix

EW 1%

, and marginal flat coordinate ¢ := ¢, . If g = ¢

is an element of the primary

Landau-Ginzburg wall-crossing group then V' is of the form

N
V = Ztki(.flal — xz&)
i=1
where each k; must satisfy
k(EL,) pe ez, (1.0.1)

12



Equation is identical to equation (15) of [MS16], although in that paper it
appears in the context of Picard-Fuchs equations for elliptic periods.

In analogy to Theorem 4.26 of [GKT22b| for rank 2 Fermat polynomials, our main
result is the following theorem, which, provides justification, in rank two, for our choice

of definition of the wall-crossing group.

Theorem 1.0.6. For a generic rank two chain or loop polynomial, the wall-crossing group

acts faithfully and transitively on open ancestor Saito potentials of balanced vy, . y.1.d-

Mirror Symmetry and Open FJRW Theory

In order to prove Theorem [I.0.6, we take inspiration from mirror symmetry. Mirror
theorems in the Landau-Ginzburg case were first developed in [FJR13|, generalised by
Krawitz in |Kral0O|, and subsequently proven for most cases in [HLSW22|. This was
based on the early physical work of Berglund, Hiibsch and Henningson [BH93; BH95|. In
contrast to Calabi-Yau/Calabi-Yau models or toric/Landau-Ginzburg models, we remark
that in this type of mirror symmetry, there are Landau-Ginzburg models on both A and
B sides.

In this thesis, we consider open Saito potentials as a sum over coefficients v, xy.1.d
whose indices are balanced. We refer the reader to Definition 1.1l for a more thor-
ough introduction to balancing conditions and the notation. Briefly, however, we define

Vi ... kn.I,d T0 be balanced if:

1. For each i = 1,..., N, the integral degree condition holds,

N N
g I+ kj—1)=2> 0 =3 k0] -0 = -1 —¢; € Z.
j=1

j=1 nel

2. For each i, we have the grading condition
€, = k’l mod 2.
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3. We have the dimension condition

1] N

N
=1 =1 j=1

If any of these conditions are not satisfied, then we take vy, xy.ra = 0. These three
numeric conditions seem unpleasant at a first glance. However, these are precisely the
selection rules that we predict will give non-vanishing open FJRW invariants in genus
zero and where e; plays the role of the rank of some vector bundle. This is inspired by
work of Buryak, Clader and Tessler [BCT22a; BCT22b] which establishes an open FJRW
theory for W, = 2" whilst the same is done in |[GKT22b| for Wy = 21' + z3?. In both of
these cases, Gross, Kelly and Tessler have proven mirror symmetry statements. We do
not attempt here to develop an open FJRW theory for more general Landau-Ginzburg
models: instead we produce results on wall-crossing from the open B-model and any such

open FJRW theory should match with our results.
Summary - Structure of the Thesis

Chapter 2 contains no new results and is instead a review of closed FJRW theory
as geometric motivation for the thesis. The selection rules in section 2.4 will become

particularly important in later chapters.

Chapter 3 is a review of Saito theory from the perspective of deformations. Using
integration by parts formulas for oscillatory integrals, in the case of any ADE and simple
elliptic singularity we derive expressions for primitive forms and flat coordinates, some

of which are new.

Chapter 4 defines open Saito-Givental theory for any Landau-Ginzburg model,

with descendants, and generalises Definition 4.6 of [GKT22b|. Inspired by the selection
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rules of FJRW theory, we write the open Saito-Givental potentials using balancing con-
ditions. Using the results of Chapter 3, we then construct new examples of open primary
Saito potentials in the chain cases for D, and FE;. We also give new expressions for an
open Saito potential of the cubic in P? given as Wgan = 3+ 23 + 23 = 0. This is
done both in terms of the flat marginal coordinate ¢t and in terms of a g-expansion, where
q = ¥ is a modular parameter. We speculate that this may be useful for an open
analogue of the Landau-Ginzburg / Calabi-Yau correspondence.

Finally, we perform a perturbative calculation of flat coordinates for any Landau-

Ginzburg model in two variables. This is employed in the subsequent chapter.

Chapter 5 begins by illustrating how perturbative calculations of flat coordinates
leads to non-uniqueness of open Saito potentials in the chain case of W a1 = ri +
7

r125. We then generalise this structure, concluding with the main results of the thesis:

Theorems [5.3.3|and |5.3.4l These are generalisations of Theorem 4.26 in [GKT22b].

Chapter 6 speculates on definitions for an open FJRW theory such that an analo-
gous mirror theorem holds. We prove some new results concerning concavity of certain
invariants. We also review and use the theory of Coxeter and elliptic Weyl groups to

predict some equivalences in open Saito theories.

Appendix A gives a review of triangle functions necessary for understanding the
modularity property of the open Saito potentials in Chapter 4. Moreover, we provide
details of the computation for the modular expansion of the open Saito potential in this

chapter.

Appendix B contains a minor correction to the proof of Theorem 6.1 in [BB21].

15



CHAPTER 2

CLOSED FJRW THEORY

We briefly review an enumerative construction of the Landau-Ginzburg A-model that was
first proposed by Witten [Wit93a| and fully established by Fan, Jarvis and Ruan [FJROS;
FJR11b; [FJR13|. Roughly speaking, this is an intersection theory on the moduli space
of solutions to Witten’s equation,

oW
8’&7; N

Here, the Landau-Ginzburg superpotential W is a quasi-homogeneous polynomial and wu;
are sections of an orbifold line bundle over an orbicurve. Let us now explain these notions

in turn.

2.1 Landau-Ginzburg Models

Definition 2.1.1. A Landau-Ginzburg model is a triple (X, W, G) where X is a quasi-
projective variety, W is a regular function on X and G is a group which acts on X such

that W is G-invariant.

We now place several restrictions on the potential W and the group G.
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2.1.1 Quasi-Homogeneous Polynomials

For the quasi-projective variety, X, we take X = CV and the regular function W must
thus be a polynomial in N variables. We place additional constraints on W so that it

has certain homogeneity properties.

Definition 2.1.2. A polynomial W € Clzy,...,zy] is called quasi-homogeneous if there

exist positive integers c1, ..., cy,d such that ged(cq,...,cx) = 1 and
W()\Clml, ce AcNacN) = \W(xy,...,2N)

for all A € C. The positive integers cy, ..., cy are called weights while d is the degree of

W. The rational numbers ¢; = ¢;/d are called the charges of W.

Remark 2.1.3. In regards to Definition [2.1.1] the reason we have chosen to specialise
to X = CV and W a quasi-homogeneous polynomial is natural from supersymmetric
field theory. Indeed, given a supersymmetric action in two dimensions with F-terms
specified by a function W : X — C, it can be shown that W must be holomorphic so
that supersymmetry is preserved. This further implies that the manifold X must be
non-compact so that W is both non-constant and holomorphic. Furthermore, choosing
X to be a (non-compact) Calabi-Yau variety yields a non-anomalous field theory after
quantisation. Finally, to obtain a conformal field theory at fixed points of the renormali-
sation group flow, a sufficient condition is that W is quasi-homogeneous. These physical

considerations justify the choice X = C¥ and W a quasi-homogeneous polynomial.
Explicitly, we may write W : CY — C via
M N
W(zy,...,zn) = Zai H x;.
=1 j

J=1

We define the M x N exponent matrix Ey via (Ew);; = ;. The condition of quasi-
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homogeneity then implies

CN 1

Ew| i |=]:]. (2.1.1)

One may view W as a polynomial in CV so that V(W) is a hypersurface in the weighted

projective space

P(er,....,en) = (CV\ {0})/C" 212
where C* C CV acts by a scaling (x1,...,2x5) = (A2, ..., AV zy) for A € C*.

Definition 2.1.4. A quasi-homogeneous polynomial W with charges q1, ..., qy is called
non-degenerate if the hypersurface V(W) has exactly one singularity that is required to be
isolated at the origin. A non-degenerate polynomial is called admissible if W contains no
monomials of the form x;z;. An admissible polynomial is called invertible if the number

of variables equals the number of monomials.

Remark 2.1.5. If W is invertible, then in the above notation, we have M = N so that

W(zxy,...,zN) :Zainx?’.

i=1 j=1

Since there are N monomials, the «; € C can be absorbed into the variables x1,...,zn

by a rescaling. Hence, without loss of generality, we set a; = 1.

Non-degeneracy of W implies that V(W) is quasi-smooth in P(cy,...,cy). In other
words, V(W) has at worst finite quotient singularities so that it is a smooth Deligne-

Mumford stack. Furthermore if W is invertible, the exponent matrix Eyy is square. From
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equation (2.1.1), the charges are uniquely determined and lie in (0,1/2) N Q if Ey is
invertible.
The classification of invertible polynomials was completed by Kreuzer-Skarke |[KS92]

and is described in the following theorem.

Theorem 2.1.6. An admissible polynomial W is invertible if and only if it can be written,
up to a rescaling and relabelling, as a Sebastiani-Thom sum of the following Fermat, chain

and loop polynomials

r .
WFermat =T, (1)
Wehain = T 2o + xh2xs + - - + 2, (ii)

WLoop = */E?IEQ + :L’QQZ’g +---+ .1'1;\]]\71'1. (111)

For details of the Sebastiani-Thom construction, see [Dim92, Chapter 3]. As a result
of this classification theorem, these three types of polynomials are referred to as atomic

type. In this thesis, the Landau-Ginzburg potential W will always be assumed invertible.

2.1.2 Groups of Diagonal Symmetries

In FJRW theory, one also has to make a choice of symmetry group G < Gy for a

Landau-Ginzburg model W.

Definition 2.1.7. The multiplicative group of maximal diagonal symmetries, G, of a

Landau-Ginzburg model W is defined as
Gnv[l/ax = {()\1, RN /\N) € (CX)N | W()\ll'l, ey /\n.I'N) = W(ZEl, R ,a:N)Vxl, . ,I’N}.
Via the following proposition given in [Kral0], it is straightforward to give of a de-

scription of Gy*.
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Proposition 2.1.8. Let W : C¥ — C be a Landau-Ginzburg model with exponent

matrix Ey,. Write

k
@
k
o
Then the p; generate G737 under the action
(k)
pp - xj; = ¥ ;. (2.1.3)

As a consequence of this proposition and the Kreuzer-Skarke classification, to char-
max

acterise GI* one needs only calculate E};' in the Fermat, chain and loop case. This was

done by Kreuzer [Kre94] and Artebani, Boissiére and Sabani [ABS14, Proposition 2].

Proposition 2.1.9. Let W be a Sebastiani-Thom sum of Fermat, chain and loop polyno-
mials, W = 370, Wy. Then Gy is the direct product of the groups Gy7*. Furthermore,

if W is atomic type, G3#** is cyclic of order |det Ey/| and has the following generators.

1. If W is a Fermat polynomial, W = 2", then G is generated by €2/,

2. For W =z +---xy_12y a chain polynomial, E’V_V1 is the lower triangular matrix
given by

(Bw')iy = (=)™ 1] e

j<i<i T
for j < i and is zero otherwise. Thus G} is generated by py = (p1,...,¢0n) €
(C*)N where

NEL |
©j = exp (27m' S(=1)NH 11 )
=171

3. For W =zx"x9+ -+ xy_123) aloop polynomial with

N
D = det EW = HT’i + (—1>N+1

=1
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then Ey is given by

—1)N+i—i -1 . .
4 ( )D H;’Q:jJrl Tk, t>]
(Ew )ij = .

—1)i—% =N i—1 . .
( ,% Hk:j.H re-IhZim, 1<

Here, we interpret the empty product as having a value of 1. Thus, G}3? is generated

by P1 = (Solv s 790]\/) € (C*)N where

(_1)N+1—i i1

D-Hrl>,z’22.

(=1)Y :
1 = exp <2mD>, and ¢; = exp (27rz

This can be proven by Gaussian elimination with the inverse exponent matrix of chain
polynomial particularly simple to calculate since the matrices are lower triangular in this

case.

Admissibility. In the data of a Landau-Ginzburg model, (CY, W, &), we consider
choices of G < GJ™*. Suppose W has weights c;,...,¢,. In this case, we have the

quasi-smooth hypersurface

V(W) CPcy,. .. cn) = (CN(\:*{O} (2.1.4)

where the C* action is given by A- (z1,...,zx5) = (A% 21, ..., AV xy). For some choice of

G < Gy, one is often interested in the orbifold
V(W)/G g P(Cla s aCN)/G‘

However, we see from the right hand side that there are constraints on the choice of G

for this construction to make sense. In particular, we define
J =GR C = {(A . AN € (COYY | W (A2, ..., ANVay) = W(zy,...,2Nn)}
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where the C* is the same as that given in (2.1.4]). Thus, in order to define FJRW theory,

we require that the choice of subgroup G must contain J.
Definition 2.1.10. A subgroup G' < G is called admissible if J < G.

Remark 2.1.11. In fact one can show that J = ((e*™ ... e*™)). Indeed, it is
straightforward to verify that (e*™ ... e*™~) € J while the converse inclusion is the

content of Proposition 2.1.8]

2.2 W-Spin Curves

2.2.1 Recollections on Orbifold Structures.

In Satake’s original definition in [Sat57], an orbifold structure on a topological space X
gives an open cover % of X such that for each U € % there is a smooth manifold V', a
smooth finite group G that acts on V', and a continuous map 7 : V' — U which factors
through the quotient to induce a homeomorphism U = V/G. The collection (V, G, ) is
called a uniformising system of U. The uniformising system must be compatible with

the orbifold structure in the following sense.

1. If U’ C U are both elements in the open cover % of the orbifold structure on X,
then there exists an injection (V/,G', 7’') — (V, G, 1) of uniformising systems which

we define in a moment.

2. For any p € Uy NU; with Uy,Us € %, there exists Us € % such that p € Us C

U, NUs.

The definition of an injection of uniformising systems is given as follows. Let U’ C U
be open subsets of X with uniformising systems (V' ,G',7') and (V,G,7) respectively.
Then the embedding i : U" — U is said to induce an injection (V/,G',7') — (V,G,7) of

uniformising systems if there exists an injective 7 : G’ — G that is an isomorphism on
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the kernel of the action, and there exists a T-equivariant open embedding ¢ : V! — V
such that i o7’ = w o 1.

An orbifold bundle may be defined using a similar notion of uniformising system for
bundles. However, much like ordinary vector bundles, it is often more convenient to
describe them using transition functions. Indeed, let % be an open cover of X and
let U C U with U, U € %. Given the embedding i : U’ — U and any injection
(V',G', ") — (V,G, ), a transition function for an orbifold bundle of rank & is a map
gi - V — Aut(CF) such that V' x C* — V x C* given by (x,v) — (i(z), g:(x)v) is an open

embedding and for any composition of injections j o 7 we have

gjoi(z) = g;(i(7)) 0 gi(). (2.2.1)

The data of the maps ¢g; can be used to reconstruct an orbifold bundle pr : £ — X.
Isomorphisms of orbifold bundles may also be given in terms of transition functions:
two collections of transition functions ¢! and ¢® define isomorphic bundles if for any

injection i : (V/,G', ') — (V, G, ) there exist morphisms dy : V — Aut(CF) such that

9 (@) = o (i(x)) 0 gV () 0 (5 (2)) L.

A section of pr : ' — X is any continuous map s such that, for (V, G, 7) a uniformising
system, s is given locally by a G-equivariant function sy : V' — V x C* and such that

pro sy = idy.

2.2.2 Marked Orbicurves and Line Bundles.

We now specialise to the case where X = (' is a one dimensional orbifold and £ = S
is an orbifold line bundle. In FJRW theory and in [CR04], it is useful to define orbifold
structures on C' on the level of germs at points rather than open covers. In this case, for

each p € C there is a uniformising system (V,,, G,, m,) with some compatibility conditions.
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Definition 2.2.1. An orbicurve (C,py,...,p,) is a Riemann surface C' with an orbifold
structure at each marked point p;. More precisely, at each marked point there is a group

G, and a canonical isomorphism G, = Z,,,.

Definition 2.2.2. An orbicurve is called smooth if the underlying coarse curve |C] is
smooth, where |C| is obtained by forgetting the orbifold structure. We denote this for-

getful morphism by ¢ : C' — |C|. Similarly, C is called nodal if |C| is nodal.

Explicitly, the action of Z,, on an orbifold line bundle S is constructed as follows.
At non-orbifold points p € C' where G, is trivial, there is nothing to be done. At each
orbifolded point p € C, suppose A x C is a chart of S with local coordinates (z, s). Then

1€ G, = Zy, acts via

(2,8) — (e%z, e s) (2.2.2)

27miv

with e"n € U(1) and v € {0,1,...,m — 1}. In this way, at each orbifold point there is

an induced representation G, — Aut(S) = U(1).

An important example of an orbifold line bundle is given in the following definition.

Definition 2.2.3. Let wj¢| be the canonical bundle of |C]. The log canonical bundle of
|C| is defined as

W|C|,log +— W|C| ® O<p1) - ® O<pn)

where O(p;) is the sheaf of functions which may have simple pole at p;. The log canonical

bundle of C' is defined as wc jog := 0" W|c) l0g-

As described in [FJR13|, for smooth orbicurves C' one may pushforward an orbifold
line bundle S to the underlying curve |C| by virtue of the fact that the sheaf of locally
invariant sections of S is locally free and of rank one if C' is smooth. Thus, we take the
double dual of this sheaf and denote the resulting line bundle over |C| as |S|. If C is
nodal, one may consider |S| as a line bundle on the normalisation of C. Furthermore, a
cohomology theory of orbifolds is established in |[CR04] and the following result is shown
in Section 2.1.2 of [FJR13].
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Lemma 2.2.4. The forgetful morphism o : C' — |C| induces an isomorphism on coho-
mologies,

Hi(C,S) > H(|C|,|S)]) (2.2.3)

fori=0,1.

Proof. We first define a map H°(|C|,|S|) — H°(C,S). Let s be a holomorphic section
of |S| that has local representative f(u). We thus have that (z,z” f (zm)> is a local
representative of a holomorphic section p*(s) of S. At non-orbifolded points, o*(s) and s
can be identified via Equation . This process can be reversed so that a section of
|S| can be constructed from a section of S.

Similarly, we define a map H'(|C|,|S|) — H'(C,S). To do this, we first define
the map of (0,1) forms Q%(|S]) — Q%}(S) in the same way as above. Explicitly, if
f(u)du is a local section of Q%(|S]), then 2V f(z™)mz™"'dz is a local section of Q%(S).
By reversing this process and using the Dolbeault isomorphism, we have the desired

isomorphism H'(|C],|S|) — H'(C, S). O

Definition 2.2.5. Let W = 3V, [, 2" be an invertible polynomial. A W-spin curve
is an orbicurve (C|p1,...,p,) together with orbifold line bundles Sy, ..., Sy, called spin

bundles, and isomorphisms
N
©; ® S;” = Welog-
j=1
Furthermore, the S; induce a representation II,, : G,, — U(1)" which we require to be
faithful.
We shall explain the requirement of a faithful representation in a moment.

Definition 2.2.6. For each orbifold marked point, p;, we denote
v =11,,(1) = (ezm'@]l'7 e ,627”@7\;)

Such group elements are called decorations at p; and the associated ©7 = (@?, e @7\,)

are called phases.
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In a moment we will give an example of the phases ©7 for the potential W = z". For
more general potentials, we calculate the phases using mirror symmetry in Chapter 4.
Furthermore, the phases may also be thought of as twists in the sense of the following

result [FJR13, Proposition 2.1.24].

Proposition 2.2.7. Let W be a quasi-homogeneous singularity with matrix of exponents
Ew = (r;j). Given a W-spin curve on a smooth orbicurve (C,py,...,py), there are

induced isomorphisms

N

E N
rijG);-”pl> = wio ® (9< — Z 7“”@ b )

1=1j=1

k
Tij W|C\,log ® O( — Z

=1 j=1

N
X 1S;
j=1

foreacht=1,..., N.

Example 2.2.8. We will illustrate some of the ideas using the potential W = x". This
ultimately reproduces r-spin theory of Jarvis, Kimura and Vaintrob [JKVO01]. An z'-
structure is a choice of orbicurve (C, py, ..., px) and isomorphism S®" — weee. Further-

more, we have

WClog = W|C|,log-

This is because given an orbifold point p with local group G, = Z,, and local coordinate

24

z, the sheaf we e is generated by %, while wic|1og 1 generated by d? mn

with z = 2z™.

However, we note that we e
dx dz

—_— = m—
T z

and that this is invariant under the Z,, action given in (2.2.2). Now since weog = S,

from the second coordinate in the action (2.2.2) we have must have - = % for some

1 €{0,1,...,7 —1}. Thus, we have that the phases for -, are given by

@wzl

, .
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Thus Proposition ([2.2.7) gives an isomorphism

k

|S|r = u}‘cuog ® O( — ZT@Wlpl> . (224)

=1
This isomorphism is the required data in the definition of r-spin curves.
Moreover, the following lemma is proven in Lemma 2.1.18 of [FJR13].

Lemma 2.2.9. Each decoration v is an element of Gy™.

Tw

Proof. Recall that we have isomorphisms ; : ST“ - ® SN = Weleg. We have seen
in the previous example the local groups act trivially on weoe. However, v € G, acts
on SIi’l X ® SJT\}’ as exp (27rz ;0] ) Since the representation is faithful, we must

have 3~ 7’”@ €7Z. For W =N TI¥ we thus have that v € G O

31]’

2.3 Stacks of Stable I¥V-Spin Curves

To define a moduli space of W-spin curves, we need an appropriate notion of morphism

of such curves.

Definition 2.3.1. Given two W-spin curve structures, (C,pi,...,pn, {5}, {¢;}) and

(Cip1y- -5 pns 1571195 }), we note that morphisms ¢ : S; — S’ induce morphisms
N N
2 @S = Q(S))
j=1 j=1

for each 7 since equation ([2.2.1)) behaves naturally under tensor products. An isomorphism

of W-spin curves is a collection of orbifold bundle isomorphisms §; : S; — S} such that
Pi = @5 0 ;.

Roughly speaking, to obtain a compact moduli space, one needs as usual to add stable

orbicurves to the stack of smooth curves.

Definition 2.3.2. An orbicurve is called stable if the underlying coarse curve is stable.
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Definition 2.3.3. A genus g, n-pointed stable W -spin orbicurve over a base T is a flat
family of genus ¢, n-pointed stable orbicurves C — T with markings &; C C and
sections o; : T" — Z; together with orbifold line bundles {S;} on C' and isomorphisms
0 ;\721 S;ij = WeyT10g Where weyrog 18 the relative log-canonical bundle. We require

that ({S;}, {¢;}) induce a W-spin structure on every fibre C;.

Definition 2.3.4. We denote the stack of stable W-spin orbicurves by ﬂfk.

Remark 2.3.5. There is an isomorphism ﬂzlk = 7;/,: for W = 2" where ﬂ;/ . is the

stack of r-spin curves. This is shown in section 2.4 of [FJR11a] as a consequence of
Proposition [2.2.7] applied on the smooth locus. The isomorphism also holds for nodal

curves but the details are more tedious. For details, see section 4 of [AJ03].

A crucial component of the enumerative theory is the natural forgetful morphism
st : ﬂfk — M, . defined by forgetting the spin bundles and orbifold structure. For
g = 0, the map st is a bijection of sets, but not of stacks since W-spin have extra

automorphisms. However, Fan, Jarvis and Ruan prove the following theorem.
Theorem 2.3.6. The morphism st is flat, proper and quasi-finite.

This ensures that ﬂ;}[fk is smooth and compact as an orbifold or a Deligne-Mumford
stack, and that the dimensions of ﬂyk and M, coincide. The above theorem also
ensures that the moduli space ﬂ;fk has a universal curve Cyj; — MZZ that can be
constructed from the universal curve of M, ;. See Theorem 2.2.6 of [FJR13)].

The orbifold structure along with each decoration ~; is locally constant and is thus
constant for each component of ﬂ‘;;. Thus, for v1,...,7 € Gy there is a decomposi-

tion into open and closed substacks,

M= @ Mon.m)

7 »"'7’Yk€Gr‘f‘lfux

in which the decoration of the marked point p; is ;.
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Proposition 2.3.7. Fix an invertible polynomial W with charges ¢i,...,qy. Then

ﬂ;‘jk(fyl, .. .,7k) is non-empty if and only if

k
(29 —2+k)—-> Ol el

=1
for each j = 1,..., N and where 71, ...,V € G with v, = (627”.@?[, . ,e2m@7vl)

The key idea of the proof here is that given the line bundles S; of a W-spin curve,

due to the isomorphism in the data of a WW-spin curve, we have

N N k
Zrij deg|SJ| = QJ(QQ -2 + k’) - ZZ?"”@;I

j=1 j=11=1

Since g; satisfy Zé-vzl ri;¢; = 1, we have
k
deg ’S]| = QJ(29 -2 + k) — Z?‘ij@;”.
=1

As a degree of a line bundle, this must be an integer. The converse is slightly more

involved and we refer the reader to [FJR13].

Example 2.3.8. Let us briefly illustrate these ideas in the r-spin case. To calculate the
degree of the bundle |S|, we use the isomorphism of (2.2.4]). Indeed equating degrees of

both sides of this isomorphism, we have
k
r-deg|S| = degwicpiog — 7> O
=1

By a calculation using the Riemann-Roch theorem, we find

degwicliog = 29 — 2+ k.
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Thus, we indeed find that

1 k
deg|S|==(2g—2+k)—>_ O
=1

r

which, as a degree of a line bundle, must be an integer.

2.4 FJRW Cohomological Field Theory

2.4.1 The Chiral Ring

The input data for FJRW theory is a quasi-homogeneous, invertible and non-degenerate
W and is defined for a choice of subgroup G < G3*. In summary, the most general

A-model state space is given by the following.

Definition 2.4.1. Let GG be an admissible subgroup of Gy#*. Define the fized locus of
v € G by

Fix(y) := {(a1,...,an) € CV |y(ay,...,an) = (a1,...,an)}.

with dimension N, := dim¢ Fix(y). The A-model state space is defined as

Hve =P <HN7 (FiX(’Y)> (W|Fix(v))oo; C)>G

veG

where, for R > 0, we have defined

(W)~ = (Re(W!Fix@))_l(R 00).

In general, FJRW theory can be defined for any admissible subgroup G' < G3*.
However, it is not currently known how to define a corresponding B-model if G # Gj**.

Hence, in the following discussion, the choice of admissible subgroup will be Gy**.
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In |[CRO4], an orbifold analogue of Poincaré duality is proven. Hence,

max
GW

A== @ (Hy, (Fixz), (W) 7))

yeGmax

Thus, we will write the state space as

e = @

YEGmRX

with
(o.9] G%ax
2, = (Hy, (Fix(3), (Wlew) ~:C))
2.4.2 A Glimpse of Intersection Theory

In [FJR13|, a virtual fundamental cycle is constructed

w

k
M, " € Ho (M,,,,C) @ [[ ..
=1

The following theorem is then proven.

Theorem 2.4.2. Let LL; denote the tautological line bundles over Mg,k whose fibre at
each point (C, py, ..., pr) € M,y is the cotangent space 17 C. Denote ¢; = ¢;(L;). Define
A‘Q/V,k,d . %‘gg%ax _> H*(ﬂng) by

W _ ’Grﬁl/ax’g W vir £ : di
Ajpalar, ... o) = dog(5t) PD st, <[/\/lgyk,] N g Ozi> U H (e

with ; € 7, and PD the Poincaré dual. Then the maps A}, ; define a cohomological

field theory in the sense of Kontsevich-Manin [KM94].

As usual with enumerative theories, the technical details required to construct the
virtual fundamental cycle make computations difficult. Fortunately, there exists a drastic

simplification, under some fairly mild assumptions, which we presently explain.
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Definition 2.4.3. Sectors of the state space where Fix(y) = {0} are called narrow.

Otherwise the sector is called broad.

Example 2.4.4. For the potential W = 2" we have G = 1., the r'' roots of unity.

We have already calculated the phases

@wzl
r

2miO

for { =0,1,...,7 — 1. Hence vy = ¢ # 1 for [ # 0. Hence, all insertions in r-spin

theory with [ # 0 are narrow.
The property of being narrow is important for the following reason in genus zero.

Theorem 2.4.5. Suppose each ; is narrow and let (Si,...,Sy) be the universal line

bundles of the universal W-spin genus zero curve defined over the universal curve 7 :

Cox — ﬂgt/k. Suppose W*(@fvzl S¢> = 0. Then

A = o @A 5)") 0 (M

=1
where e represents the Euler class.

For convenience, we define the Witten bundles W; := (R'T,.S;)" so that the total
Witten bundle is defined as
N
W= @wW.
i=1

Denote W(y) to be the restriction of W to ﬂg&l,ﬂ(vl, ...»7)- Thus, given the hypotheses

of Theorem [2.4.5], we may think of this intersection theory as an integral:

(77 7)== /7 e(W(v)) z/f ste(W(7)). (2.4.1)

Mo 1) Mo 1]

Remark 2.4.6. We may also restrict the virtual fundamental class to its components

[M(V),V 2 (715 -, 7)Y so that the genus zero intersection numbers can be written more
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compactly,

(777 7k) :/7 1.

[M(‘)/‘,/k(')’l,-..,’yk)]vir
We have specialised to genus zero so that the Witten bundle is indeed a vector bundle

with fibers
N N

D H (Cox, S) =P H (|ICoxl,|5])"
i=1 =1
where we have used the isomorphism in equation ([2.2.3)) induced by the forgetful mor-
phism ¢ : Cy i — |Coxl.
From dimension considerations in equation ([2.4.1]), we match the degree of e(WW) with

the real dimension of MXV,,V We note that, as the top Chern class, the degree of e(W) is

2 rk W. Consequently, to define a non-vanishing FJRW invariant, we must have that
rk W = dim(c mo,k-

This is an example of what we will call a selection rule later in the thesis.
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CHAPTER 3

CLOSED SAITO-GIVENTAL THEORY AND
LANDAU-GINZBURG MIRROR SYMMETRY

Saito theory was originally developed in the works of Saito, Sekiguchi and Yano [SSY80;
Sai93]. These authors considered Frobenius structures of orbit spaces of finite Coxeter
groups. Equivalently, one may consider Saito theory as endowing a singularity W with
a Frobenius structure by deforming W. This is the approach that is useful from the per-
spective of mirror symmetry in this thesis. Indeed, much like the B-model that computes
Gromov-Witten invariants of Fano varieties as summarised in [Groll|, Saito theory for

quasi-homogeneous polynomials W is described by the following period integrals

/_eWS/hg.

Here, = is a standard good basis element of the Landau-Ginzburg B-model state space,
Wy is versal deformation of Wy and ( is a primitive form. We shall describe each of
these notions in turn using Saito’s original work on higher residues, after which we shall
explain the modern interpretation using oscillatory integrals. Finally, we review the
mirror symmetry construction of Berglund, Hiibsch and Krawitz that interprets Saito

theory as B-model that is mirror to FJRW theory.
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3.1 Saito Theory Via Deformations

In this section, we give an exposition of Saito theory as established in [Sai81} [Sai83a;
Sai83b|. However, we use the modern formulation in terms of Frobenius manifolds and
flat coordinates. For a more detailed exposition, we refer the reader to |[Her02] and

[Sab07].

3.1.1 Simple and Elliptic Singularities

We start by describing the most basic types of quasi-homogeneous singularity from Chap-
ter 2. These are the simple singularities

_r+1
Wy, =217, r>1,

r

Wp, =7 4oy, r >4,
.3, .4
WEG — fEl + :C27

_ .3 3
Wg, = o] + 2125,
_ .3 5
WEg — 131 + IZ,
and simple elliptic singularities
3 3 3
WE((jl,l) — ZEl + 132 + ZL'3,
4 4
WE‘S’I) = x|+ x5,

_ .6 3
WEél’l) =T + Z5.

We note that Theorem 2.1.5 implies that all these polynomials are invertible. One char-

acterisation of simple and elliptic singularities is in terms of the central charge,

N

oW = Z(l — 2q;)

i=1
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of a quasi-homogeneous polynomial W with ¢; = degx;. Simple singularities are char-
acterised by 0 < ¢ < 1 while elliptic singularities are characterised by ¢ = 1. We note,
however, that this labelling of quasi-homogeneous polynomials by Dynkin diagrams is
not one-to-one. We refer to the full list in Part IT of [AGV12]. See also Table 1 of [MS16]
for elliptic singularities. We illustrate this by briefly explaining a link between singularity

theory and Lie algebras.

Blow Ups and Du Val Singularities.

Via blow ups, we first resolve the singular variety X defined by the vanishing of the du
Val singularity . In this way, we obtain a non-singular variety X. Subsequently, we
consider an intersection graph of the corresponding exceptional divisors. It is instructive

to do this for singularities of type A,.

Example 3.1.1. Consider the A; singularity

W:Z2+$2+y2

with X := V(W). Here, we have used a Morse stabilisation. We shall explain and justify

this later. We now embed X C C3? so that the blow up is also embedded,

X CBLC? = {(x,y,2),[s : t : u] € C* x P*|at = sy, xu = sz, tz = uy}.

The blow up BlyC? comes with a projection map 7 : BlyC* — C3. Recall that the proper
transform, Y, of X is defined to be the Zariski closure of 7=1(X '\ {0}) in BlyC?. Now, Y is
covered by the three standard open affines sets, with s = 1, ¢ = 1 and v = 1 respectively.
For the open affine where u = 1, we find # = sz and y = tz in BlyC3. In these coordinates
the A; singularity reads

A+ +1)=0.
There are now two irreducible components defined by z = 0 and s> +t?>+1 = 0. We recall
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the exceptional divisor is defined by F := YN7~1({0}). The component z = 0 corresponds
to 771(0), while on the other hand, the proper transform Y is given by s* + t* + 1 = 0.
For the A; singularity, F is a smooth curve in P? defined by s? + t2 + u? = 0. This is
verified by considering the other affine opens where ¢ = 1 and s = 1. Observe that in
this case E is isomorphic to P*. Indeed, via the genus-degree formula, we find that the
genus of F is zero. As a graph, we represent the A; singularity by a single vertex.

Consider now the A, singularity, W = 2%+ 2?4+ y*. With the same notation as before,
we find

AP+t +2)=0

for the open affine where u = 1. To find the exceptional divisor F, we set z = 0 which im-
plies x = y = 0. In this chart, E is therefore given by the line L, = {(0,0,0), [a, £ia, 1] :

a € C}. In the chart where s =1 we have

2*(1 4+ * + zu®) = 0.

Similar to the above, E in this chart is given by the line L, = {(0,0,0), [1, £4, b]|b € C}.
This is the same line as L, viewed in this chart. There is no need to consider the chart
where ¢t = 1; by symmetry this will give the same result as s = 1. Considering the limit
b — oo or equivalently b~! — 0, we find that L, becomes the point {(0,0,0),[0,0,1]|}.
This is the same as taking a = 0 in L,. Hence, we find that E is two projective lines
intersecting at {(0,0,0),[0,0,1]|}. It is readily verified that this point is a non-singular
point of the proper transform. Hence, we have found a resolution of the A, singularity.
The intersection graph is then two vertices joined by a single edge.

For the A, singularity, with r > 2, the intersection point {(0,0,0),[0,0,1]|} is in fact
a singular point of type A, 5. One may blow up again and repeat the above procedure

inductively to find the corresponding Dynkin diagram for A,.

Example 3.1.2. We first consider the singularity W = 22 +13+23. In the same notation
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as above, in the chart where u = 1 we find the equations

?+yt 422 =0

Tt = sy
T =8z
tz =y

which we solve to find 2%(s? + t32 + z) = 0. The proper transform is thus the singular

surface

s+ 2(t*+1) = 0.

The exceptional divisor occurs when z = 0 which implies s = 0. This gives a copy of P!
which we call Ey. In the other two charts where s = 1 and where ¢ = 1 respectively, we
obtain

Il+a@®+t) =0, s*+y®+1)=0.

Thus, we observe that the only singularities were in the first chart, whereu =1, s = 2 =0
and t3 + 1 = 0. We claim that these are A; singularities. Indeed, one may calculate the
ideal generated by the partial derivatives for this singularity and compare to the A;
singularity. We now blow up again since we wish to calculate the intersection graph. To

this end, we blow up the curve

P4+ 25 +1)=0.

We let ¢ satisfy (3 = —1. Define the translation §; := 7 — ¢ so that the above surface
becomes

T+ 237 + 357 + 33¢%) = 0
and is now singular at the origin in these coordinates. Blowing up in the @ = 1 chart we
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find

§ 4+ 22 4+ 3¢z + 3¢t = 0.

The exceptional divisor F; is given by the intersection of this with Z = 0. Thus, E; is
given by 32 4+ 3¢t = 0 which is again a copy of P!. Intersecting Fy and E; we find the
point given by § = = Z = 0. There are three copies of E; corresponding to the three
possible ¢ values. The intersection graph of W = 2%+ y3 + 23 is shown in Figure 3.1 and
coincides with the Dynkin diagram for Dj.

One may apply the same procedure to Wp, = 22 + y*2 + 23, although we omit details
here. The exceptional divisor F in this case is again a copy of P!. There is no intersection

of E with the blow up in the chart with s = 1; for £ = 1 we find

s+ yu +yu = 0.

This is an A; singularity. For the chart where u = 1 we have

24224+ 2=0.

This has two singular points, s = 0,¢ = £, 2 = 0 which are both A; type.

M
~

Figure 3.1: The intersection graph for both (Wp,)rermat = 2?4+ 9y3 + 23 and (Wb, )Chain =
2%+ y?z + 2%, The middle vertex corresponds to the line Ey. This intersects three copies
of the line E; corresponding to the three edges in the above Dynkin diagram.

One may repeat this procedure for each case and show that each intersection graph
coincides with the corresponding Dynkin diagram. This procedure can be extended to
simple elliptic singularities. We refer the reader to [Rei97, Chapter 4] and [Dim92, Ap-

pendix A].
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3.1.2 The Local Algebra

Classifying generic singularities using Dynkin diagrams is in general a rather difficult
problem. Thus, we return to Definition where the chiral ring for the A-model of a

singularity W was given as

%W,G = @ (HN’Y (FIX(’)/), <W|Fix(7))oo; (C))G

yeG

Currently, the full B-model of enumerative Saito-Givental theory is defined only for the

trivial group G = {1}. Consequently, we make the following definition.

Definition 3.1.3. The B-model chiral ring is defined as
Hiy = HY (CN, W™ C).

This defines the B-model chiral ring as a vector space. The main goal of this subsection

is to endow 7 with the structure of a Frobenius algebra. We start by defining a pairing.

Lemma 3.1.4. There is a well defined perfect pairing
n: Iy @ Iy — C.
Proof. We first observe that there is a pairing
Hy(CN, W=>=;,C)® Hy(CY,W>:C) — C (3.1.1)

given by the usual intersection pairing of cycles in homology. Here, we set W™= =
(ReW)~!(—o00, —R) with R > 0. We explicitly describe this pairing on basis elements.
Such homology groups have a basis of Lefschetz thimbles A € Hy(CN, W+, C). These
cycles are constructed by deforming W to a holomorphic Morse function W and taking
preimages of non-intersecting paths in C which start at critical values of Ws. Furthermore,

we assume these paths are open and horizontal in the direction Re W, = 4+o00. The
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Lefschetz thimbles satisfy

Hence this pairing is perfect. We now show that

Hy(CN, W™, C) = Hy(CN, W=, C). (3.1.2)

Indeed, if W has degree d and weights ci,...,cy, choose any ¢ € C such that ¢4 =
—1. Multiplication by the diagonal matrix diag(£<, ..., &) defines a map CV — CV
sending W to W~=>°. This map induces the required isomorphism on the relative
homology.

Thus, from (3.1.1) we obtain a pairing

Hy(CN, W>;C) @ Hy(CYN,W>;C) — C.

Poincaré duality on Chen-Ruan cohomology [CR04, Propsoition 3.3.1] implies that the
relative cohomology group HY (CN,W°;C) is dual to Hy(CY,W=°;C). Thus, by dual-

ising, we obtain a perfect pairing as required. O

Although we have defined a pairing, we also require H™ (CY, W= C) to have a ring

structure. We do this by giving a different presentation of the chiral ring.

Proposition 3.1.5. Let W be a Landau-Ginzburg model. Then the B-model state space

Ay is isomorphic to the local algebra Dy

Here dNx =dxy A -+ Ndxy.

Proof. Consider the long exact sequence of relative homology of the pair (CV,CN) where

we define CY := CN NnW~1(t) as the Milnor fibre. Since C¥ is contractible, we have that
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Hyn.1(CN;Z) = Hy 1(CN;Z) = 0. In particular, we see that the connecting morphism
Hy(CYN,CN;Z) — Hyx_1(CV;Z) in the long exact sequence for relative homology is
an isomorphism. Furthermore, the rescaling (x1,...,xy) — (A%xy, ..., A\¥xy) induces
the isomorphism Hy(CVN,W™>;Z) = Hy(CN CN;Z). Then tensoring with C and using

Poincaré duality on Chen-Ruan cohomology gives
HY(CY, w™;C) = HY(CY, C}Y; €) = HY 1T} C).
Now, a theorem of Wall [Wal80a; Wal80b| shows that in fact,

N
HYIC)i0)

CN

Here, we implicitly use the analytic topology so that Qfy is the sheaf of differential p-

forms on CV. Observe that the above map given in the cokernel above is described in

local coordinates (x1,...,2zy) by
— ow
day Avos Ndai Ao Aday = S—day A+ Aday.
i
Thus, we find that the state space is given as
Clay, ...
HN((CN’WOO’C)g [mla ,1’]\[] _le,
<aw 8W>
Oxr1’" " ") dzn
as desired. O

The following result describing the perfect pairing 1 on the local algebra is originally

due to Cecotti [Cec91] and is stated precisely in Proposition 2.12 of [F'S13].

Lemma 3.1.6. Define a pairing

.@W(X).@vv—)(c,
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given by the residue map

. N . N L N = 1 fg -dN
a0 o B el G ) = g e

where C' is the boundary of a polydisc containing the origin in CV. This pairing is induced
by the intersection pairing n : Jfy ® 4y — C via the isomorphism JGy = Py .
The following result is then well-known. See [Dub96; Dub99| for example.

Proposition 3.1.7. The local algebra %y, with usual ring structure and residue pairing

1 is a Frobenius algebra.

3.1.3 Families of Frobenius Algebras

We start by using a deformation of quasi-homogeneous superpotentials.

Definition 3.1.8. Let W be a Fermat, chain or loop polynomial. Suppose B is an index
set such that {z"},cp is a basis of the local algebra. For s = (s,).ep € CZ, where

|B| = dim 9w, a versal deformation of such a polynomial is

We=W + Z s,

neB

Remark 3.1.9. A priori, there are of course many different choices for the basis of
the local algebra. Later, we will choose a specific basis according to [HLSW22] that is

canonical for our purpose of mirror symmetry.

Example 3.1.10. Consider the potential W = z"*!. The local algebra is

C
(z)
One choice of basis is {1, z,...,2" '} with corresponding versal deformation

Ws=a""+so+s124+-+s_12" L.
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Proposition 3.1.11. There is an isomorphism of C[s]-modules

- 0 Clsllz1,...,x
PDCls],— — sl v,
= 0s; <aws aws>
Oxr1 """ Oxzn
Proof. The required isomorphism is defined on generators as % — {%VZS} O]

The above map is called the Kodaira-Spencer isomorphism. One may define an anal-

ogous residue pairing

Cls][z1, ..., zn]* 1 fg N
: — Cls], ,g) = : / -dw
Nws <8Ws 8W3> 8], nw,(f.9) 2mi)N Je 1IN, oW,
Ox1 """ dxpn

where C' is the boundary of a polydisc containing all the critical points {z € CV : % =
0 for each i}.

In [Sai93|, Saito found special parameters ti,...,t,. such that the following result
holds.
Theorem 3.1.12. There exists a change of coordinates s — t such that

3Ws(t) 3Ws(t)
Nw, ) e C.
(e 5
Via the Kodaira-Spencer isomorphism, we move this flat pairing to @', (C[s]a%. In

this way, we obtain a flat family of Frobenius algebras parameterised by s. The aim
of the rest of section 3.1 is to more precisely interpret the t, as flat coordinates for
a certain Frobenius manifold. Moreover, this Frobenius structure is conformal: in the
case of Landau-Ginzburg models this means there is a grading induced by the quasi-

homogeneous W which we explain in the following definition.

Definition 3.1.13. Let W be a quasi-homogeneous polynomial of degree 1 where z;

has degree ¢; for ¢ = 1,...,N. Let {2*},cp be a basis of the local algebra with versal
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deformation Wy. We define a grading on Clzy, ..., xn]|[{s,}.eB] given by deg x; := ¢; and

N
degs, :=1—dega” =1— Zuidegxi
i=1

so that Wy is also quasi-homogeneous of degree one. The vector field given by
5'—23 deg s i+§:x de xi
neb H i=1

we call a grading operator. We may restrict £ to C[{s, },cp] giving the Euler vector field,

0
E = Z s, deg s, ——

B Os,

3.1.4 Hypercohomology and The Brieskorn Lattice.

There is another useful description of the state space that is given by hypercohomology. A
standard introduction to hypercohomology and spectral sequences in terms of homological

algebra is given in Chapters 15 and 17 of [CE99].

Proposition 3.1.14. We have the following isomorphism

HI (CV, (Q, dWA) ) =
0, i#N.

Proof. We use the hypercohomology spectral sequence where one can show that
E5T = HY(CN, H(Qtn, dWA)) = HH(CY, (Qt, dWA))

where 19 is the cohomology of (2%.,dWA) and H? is sheaf cohomology. One can induc-
tively show that HP(Qcw~, dWA) =0 for p < N. See Example 2.32 of |Grol0]. For p = N
we have already seen that

HY (Qen, dWA) = Dy
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Since W has isolated critical points, the sheaf H™(Qcn,dWA) is supported on a zero
dimensional space. Given that HP(Qcn~, dWA) is only non-trivial for p = N on which its
support is zero dimensional, the hypercohomology spectral sequence degenerates at Ej.
In other words, E¥? = 0 for all ¢ > 0. Thus, by Theorem 5.12 |[CE99, Chapter 15], we
have that HY (CN (e, dW/\)) ~ pN0 This isomorphism reads

HY (CV, (Qt, dWA)) = H(C", 1Y (Qen, dWA)) 2 T(CV, coker(Qy " 5% Q)

while the other hypercohomologies H? (CN (2w, dW/\)) vanish for p # N. ]

To obtain the full cohomological field theory, the Frobenius algebra pairing on the
B-model chiral ring is not sufficient. Hence, by modifying the above hypercohomology

group, we define a new pairing using the twisted de Rham complex (Qf.x, hd + dIWA).

Definition 3.1.15. Let & € C*. The Brieskorn lattice as a C[h]-module is defined as the
hypercohomology group H* (CN ,(Qn, hd + dW/\)) .

Lemma 3.1.16. The Brieskorn lattice is only non-trivial for ¢ = N in which case we

have the following isomorphism:
HY (CV, (Qt, hd + dWA)) 2 HYN(D(CN, Q2w ), hd + dWA).
Proof. We use another hypercohomology sequence
EPT = HP(HY(CY,Qx), hd + dWA) = HPYI(CN, (Qex, hd + dWA)).

Now, CV is affine and Qf.y is a coherent sheaf. Therefore, by Serre’s vanishing theorem,
we have that H4(CY, &) = 0 for ¢ > 0. Thus, the spectral sequence degenerates at the
E; term and so we have that EP° = HP ((CN, (Qn, hd + dW/\)). This is only non-trivial

in the case p = N. O]
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Corollary 3.1.17. The Brieskorn lattice is isomorphic to

0 _ Qfx[[7]]
Sy = (hd + dW N) QA 1]

By setting h = 0, we see that
Dy = AV InAY.

The above corollary shows that, as sets, we may consider %y, C %”VE/O ). Later on,

Lemma 3.2.2 shows that this containment holds as C[A]-modules.

Remark 3.1.18. Since the complexes (Qy, id + dWA) and (Qon,d + A~ 'dWA) are

quasi-isomorphic, we have that

OFw[[A]
(d+ h=tdW AN)QETH[R])

HY (CV, (Qtw, hd + dWA)) 2 HN (CV, (Qtn, d + hHdWA) ) =

Example 3.1.19. It is instructive to illustrate these ideas with the example of the sin-
gularity W = 2". From the above corollary and remark, it is enough to compute the

cohomology of the complex
0 — Q[[A]] S5 QL{[]) 0

so that
Qe[[A]]
(d+ h=1dW N)QL[[R]]

H'(C, (Q%, d+ h'dWA)) =

We note that

(d+h1dW) -1 =h"tra" da.

We also observe that

(d+ R 'dW) -2 = (az® ' + A ra® Y de
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for a > 0. Thus, we find the relations

2" tdr =0,

_ a
2 dy = —h—2% .
r

The first of these is the usual relation arising in the local algebra for W = 2" whilst the

second is an ‘integration by parts’ formula.

Remark 3.1.20. The local algebra is invariant up to isomorphism if one rescales the
holomorphic volume form w = d¥z + Cw for C € C*. Thus the pairing defined above is

also invariant if one changes the cycles accordingly.

3.1.5 The Gauss-Manin Vector Bundle

In this section, we define the Gauss-Manin vector bundle and equip it with a connection.
We furthermore define higher residue pairings as this will be essential to be able to define

a primitive form. We mostly follow the material presented in [LLS14].

Definition 3.1.21. Let W be a Landau-Ginzburg model with W a versal deformation
and index set B. Suppose M is a small ball in C®. The Gauss-Manin vector bundle is
given by the sheaf of Oy[h]-modules

) . QngM/MHhH
e (d o+ AW NQEN g

where QgNX MM is a sheaf of relative differential N-forms.

One can show that ‘%ﬂVI(/Z) is a locally free sheaf of rank n on M x D* where D* is a
punctured disk in C with coordinate h. More precisely, for an open U C M x D* we

have an isomorphism

%[/g:”U = @ OMXD*

HEB

v - otdV . (3.1.4)
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On this bundle we have the Gauss-Manin connection, V : T'(M x D*) x ,%”VE,Z) — ,%”m(g )
where T'(M x D*) is the holomorphic tangent bundle of M x D*. For ( a section of e%”m(/z),

the connection V is defined via

¢ 10w, ¢ 1

Vol = o T has, O Y T e

WiC.

Higher Residues. @ We present a simplified theory of the higher residue pairing
originally considered in [Sai83c].
Let

nw : iy @c Sy — C

be the classical residue pairing. There is a pairing (—, —) : Q¥y [[#]] x Q¥x[[h]] = C given
by
(f(R)x1, g(R)x2) = gifg(f(h)g(—ﬁ)dh)nw([xl], [x2])

where [x] is the class of x in Py .

Lemma 3.1.22. For a € QgN’ ! the following equation holds

(hdoe +dW N, —) = 0.

Proof. One can work in local coordinates to use the residue pairing and Cauchy’s theorem

to show explicitly that the above equation is true. O

As an alternative, simpler proof, see Lemma [3.2.11, From the above lemma, the
pairing (—, —) descends to %ﬂvy ), Moreover, ny, is symmetric and non-degenerate, while

the residue in A provides skew-symmetry. Hence, we have in fact a symplectic pairing
(—, =) : ) x A — C.

In a similar way, one may define higher residues.
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Definition 3.1.23. The higher residue is the map Ky : %”m(,o) X %m(/o) — WV C[[A]] defined

via the following formula,

Kw (f(h)x1, g(h)xa) = BN F(R)g(=h)mw (D), [xa)).

This is indeed well defined via the same argument in Lemma |3.1.22]

Remark 3.1.24. Observe that Ky and the symplectic pairing (—, —) are related via
_ —-N _

One may extend the higher residue to the versal deformation W,. This is the map

Ky, : %”M(Z) X ifv(v? — WY Oy[[h]] given by
Fow, (FB)xas g0 xa) = B F(B)g(~ R, (B el

Here, ny, is the classical residue pairing with respect to W.

Remark 3.1.25. In [LLS14], the triple (%Vgg),KWS,V) is called a variation of semi-
infinite Hodge structure. This was originally studied in the case of Calabi-Yau varieties

by Barannikov |[Bar(1].

3.1.6 Primitive Forms

In this subsection we define a primitive form. This is the crucial step in endowing the

ball M C C® with the structure of a Frobenius manifold.
Definition 3.1.26. A primitive form is a section ¢ of %VEZ ) such that

1. (Primitivity) The element ¢ induces an Op-module isomorphism
¢:TM — A [, V= AV (.
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2. (Homogeneity) For the Euler vector field

E = Z sy deg sy, ds,

HEB

the following equation is satisfied

(Vﬁah + VE)C = (édeg $i)§

where V is the Gauss-Manin connection.

3. (Orthogonality) For any two vector fields Vi, V, on M we have

Kw, (Vi Vis() € BV 20y

4. (Holonomicity) For any three vector fields Vi, V5, V3 on M, we have

Kw, (Vvlvng} VV3C) € NP0y & V20

Ky, (VhahvvlC, VV3C) € W30y @ AV 20y

The isomorphism ¢, called the period mapping, in the primitivity condition is critical
for the following reason. Roughly speaking, one may construct and solve a Riemann-
Hilbert-Birkhoff problem on the bundle e%”vg,os ) / hc%”m(,z). Via ¢!, one may carry over this
structure to T'M, thus endowing M with a Frobenius manifold structure. This is the
content of Saito’s original paper [Sai83a]. We refer the reader interested in the Frobenius

structure of M to [Sab07].
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3.2 Saito Theory as Oscillatory Integrals

The previous definition of a primitive form is slightly unwieldy. Indeed, it is not clear
how to calculate them from the data (%VE,Z ), Kw,, V), even for simple singularities. We
therefore review a useful characterisation of primitive forms in terms of oscillatory inte-
grals. Subsequently, we use this to calculate the flat Frobenius structure for the ADE

and simple elliptic singularities.

3.2.1 Primitive Forms Via Oscillatory Integrals

Work of Barannikov [Bar01] established the use of oscillatory integrals in the B-model,
thereby avoiding the technical details of variations of semi-infinite Hodge structure. This
was then later fully developed by Li, Li, Saito and Shen [LLS14; LLSS17], the contents
of which we partially summarise here.

We first extend the definition of the Brieskorn lattice %”m(,o ). Define

Qv ((h))
(hd 4+ dWN)QETH(R)

Ay (W) =
The higher residue pairing extends to a pairing
Ky A () @ A7 (B) = C((h)).

Recall that we have a symplectic pairing (—, —) on %ﬂm(/o). This can naturally be
extended to ,%”m(,o )((h)) via

(= =) A (M) © A" (M) - C, (=, =) = Res(h VK (—, ~)dh).

Definition 3.2.1. Let £ be a splitting of S£\ ((h)) with S ((h)) = A ® £. 1f £
satisfies 'L C L and is also an isotropic subspace with respect to (—, —), then L is

called an opposite filtration.
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As the next lemma shows, the choice of an opposite filtration is equivalent to the

choice of a basis of the local algebra %y .

Lemma 3.2.2. Let A := %”VE,O) N AL. Then A = Py and we can identify
Ay = Al AP () = A((R),  £=n"t A,

Proof. Introduce the semi-infinite Hodge filtration on %VE,O )((h)) by ,%”m(fk) = h’i%”é,o ) for

k € Zy. Since L is a splitting such that A~1L C £, we find
A (h) = WA () = A4 @ L.
This implies
AL = AT @ (AT R,

In particular, we have

A 1A >~ 5O N e = A
But
A0 ) ALY = A0 10D = Dy
The identifications then follow. O

To define the notion of a good opposite filtration, we introduce a Q-grading on

%”M(/O )((h)) with grading operator

N

i=1

Definition 3.2.3. An opposite filtration £ of %”m(,o '((R)) is called good if it preserves the
Q-grading or more precisely, if EL C L. Thus, given a good opposite filtration £, we call
the corresponding basis a good basis of the local algebra %y .

Remark 3.2.4. It is shown in Proposition 5.11 of [LLS14] that the condition EL C L is
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equivalent to Vs, £ C £ where V is the Gauss-Manin connection of ([3.1.4)).

The following theorem, proven by Li, Li and Saito [LLS14], characterises primitive

forms in terms of good opposite filtrations.

Proposition 3.2.5. Given a good opposite filtration £, there is a unique section ( of

%ﬂu(/?, ) up to scalar multiplication, such that

Ws—W

e " (] el -w+ L][[s]] (3.2.1)

as elements in %”VE,O )((h)) Any ¢ such that the above holds is a primitive form. Further-
more, let

M := {primitive forms}/~

where (; ~ (y if and only if (; = k(; for some &k € C*. Then there is a well defined

bijection of sets
{good opposite filtrations of %Vy)((h))} - M, L—C.

Hence, to describe primitive forms, we need only describe the set of good opposite

filtrations, or equivalently, the set of good bases of Zy,. We do this in the next section.

3.2.2 Oscillatory Integrals

Based on the previous section, we now reformulate Saito theory that is more transparent
in its use of integration. We first give the definition of the standard good basis for the
local algebra associated to a general invertible polynomial. In particular, we review the

definitions and results in section 2.2 of [HLSW22].

Definition 3.2.6. Let W be a Fermat, chain or loop polynomial as in Theorem [2.1.6]

N Hj

In multi-index notation, z* := J[;L; 277,

for

the standard good bases indexed by a set B is

nweB } where B is given by the following.
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i. If W is a Fermat polynomial, then B = Bremas = {0,1,...,7 — 2}.

ii. If W is a chain polynomial, then B = Bcypain consists of those (pq,...,un) € Zgo
such that p; < r; — 1 and (uq1,...,puy) is not of the form (x,*,... % k ry_o —

1,0,7“N,21+2—1,...,0,7"]\7,2—1,0,7”]\7—1) Wlthkz 1.

iii. If T is a loop polynomial, then B = Broop = {(pt1, ..., ) € Z5,

That this standard basis is indeed good in the sense of Definition [3.2.3|is the content
of Theorem 2.10 of [HLSW22].

Remark 3.2.7. A priori, have simply chosen a basis of the local algebra. We have
seen that a good basis corresponds to different good splittings of the Hodge filtration
associated to the singularity. Among these good splittings, or equivalently good bases,
He, Li Shen and Webb in [HLSW22] then make a further unique choice of good basis that
they call standard which is Definition [3.2.0] presented here. In that paper, this choice is
necessary in order to identify the A and B model Frobenius cohomological field theories.

From a physical perspective, this choice is related to the holomorphic anomaly equation

[BCOV4).

Example 3.2.8. Let us consider the chain polynomial W = z? + z123. This is the F;

singularity. The standard good basis of %y is given by

2 2 2
{1, 21, 29, 7, 129, T3, T]T2} - dx1dXs.

Concerning the grading, we observe that degx; = 1/3 and degzy, = 2/9. Hence, using

Definition [3.1.13| we find the grading on the vesral deformation parameters s as

deg sgp = degsor = —, degsio= 7,

degsyy = -, degsy =

Wl — O
O — Wl N

L,
5 4

de =—, de = —
£ 502 9’ g S11 9’
Consider also the chain polynomial W = a1+ x,23 that represents the elliptic singularity,
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Eél’l). The standard basis is now given by
{1,201, 09, 23, 2120, T3, 2209, 75, 2325} - dw1dTs.
Concerning the grading, we first observe that degx; = degzy = 1/4. Hence we find

degsgo = 1, degsio=degsp = —, degsy = degsi; = degspr = B

deg s91 = deg s3g = —, degss, = 0.

s

In this example, for E§1’1) we observe that there is a unique parameter with degs = 0,

or equivalently, a unique standard basis element z* with degx* = 1. This is in fact a

characteristic trait of all simple elliptic singularities.

Definition 3.2.9. Let W be a simple elliptic singularity. The basis element of the local
algebra with degree one is denoted z#<. The corresponding parameter s := s, of degree

zero we call the marginal parameter.

Remark 3.2.10. For a generic invertible singularity W, the central charge defined in

Section 3.1.1,
N

cw = Z(l — 2degx;)
i=1
is in fact also equal to

cw = rggg{{deg zh}.

By definition, we immediately see that simple elliptic singularities have a central charge

of one.

Having now given a concrete basis of volume forms for the local algebra %y, we now
proceed to integrate them.

We recall from Section 3.1.2 that in the relative homology group Hy(CY,W=>;C)
we allow cycles which are unbounded in the direction Re W — —oo. Integrating over

elements in this group, as opposed to Hy(CY, W®°; C), leads to much better convergence
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properties. Hence, we have a pairing with the Brieskorn lattice defined by oscillatory

integrals
Hy(C¥,W=%C) @ BY (C¥, (v, d + F'dWA)) = C, (5% l—>/eW/hX (3.2.2)

where y is a representative of an element in HY ((CN, (Qen, d + h_ldW/\)).
Lemma 3.2.11. The pairing above is well-defined.

Proof. We show that this pairing does not depend on the choice of representative. Indeed,

observe that for « an N — 1 form on CV we have
d(e"a) = VM da 4+ KW A ).
Using Stokes’ theorem, we find

/_eW/h’X = /HeW/f”X +d("'a) = / eV (x + da + BHW A a). (3.2.3)

Consequently, we indeed find the integral does not depend on the choice of rep-
resentative in the hypercohomology H™ ((CN Q8 d + h_ldW/\)). Furthermore, we
were able to apply Stokes’ theorem to set the boundary terms to zero precisely because

=€ Hy(CN, W= C). 0

Given the standard good basis {z*},cp of 2w, we denote the corresponding dual
basis of cycles by {Z,},e5. By considering Yy as contained in the Brieskorn lattice, this

dual basis has the defining property

/H dNx eV = dur

Zp

under the pairing (3.2.2]).
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Definition 3.2.12. Let W be an invertible, non-degenerate quasi-homogeneous poly-
nomial and let W, be its versal deformation with respect to the standard good ba-
sis {z#},ep. Denote =y to be the basis element that is dual to 1-dVz € Zy. Let

f € Cll(sp)uen, (z:)X]]. Consider the oscillatory integral,

/: M AN g =37 0 (s)h. (3.2.4)

1EL

where the above series is considered formally. If ju(i)(s) =0forallz <0 and ju(o)(s) =

8,0, then fd¥x is called a primitive form. In this case, we define the flat coordinates as

That these are, in fact, the same flat coordinates of Saito’s Frobenius manifold is
proven in |[LLSS17]. Using this definition, one may show that for any Fermat, chain or

loop polynomial,

t, = s, + O(s2). (3.2.5)

The flat coordinates further satisfy
Et,(s) = (degt,)t,
where deg?, = degs,. Hence, the Euler vector field can be written as

E = Z t,degt

/"Li.
B ot,

o8



3.2.3 Summary of Saito Theory for Landau-Ginzburg Models
Let us summarise the important notions in Saito theory that we have discussed.

o For the purposes of the B-models in this thesis, a Landau-Ginzburg model is a quasi-
homogeneous polynomial W : C¥ — C where a polynomial W € Clzy,...,zy] is

called quasi-homogenous of rank N if there exist qq,...,qny € Q such that
W(/\qll'l, ceey /\QNJZN) = /\W(l’l, ce ,[EN)

for all A € C. The rational numbers ¢; are called the charges of W.

o A quasi-homogeneous polynomial W is called non-degenerate if W has precisely
one singularity that is isolated at the origin. A non-degenerate polynomial is called

invertible if the number of variables equals the number of monomials.

« A non-degenerate, quasi-homogeneous polynomial W is invertible if and only if it
can be written, up to a rescaling and relabelling, as a Sebastiani-Thom sum of the

following Fermat, loop and chain polynomials

. )
WFermat =, (1)
r o

Wehain = 7' %2 + 25223 + - - - + T3, (ii)
.,

Whoop = 7' 2 + 23 + -+ - + TN 271. (iii)

e The B-model chiral ring is given as the local algebra

Dy — C[SL’l,...,wN] ) ng QgN
v <aw aW> dW A QY
Oz’ Day

o« There is a relative homology group Hy(CY,Re W/h < 0;C) where h € C* is
an auxiliary parameter and we allow cycles which are unbounded in the direction

Re W/h — —oc.
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« We consider the twisted de Rham complex (¢.v, id+dW A). There is a well-defined

perfect pairing defined by oscillatory integrals

W/h

Hn(CN Re W/h < 0; C)@HN (ch, (v, hd+dW0/\)) — C, Y,

o
=
1

where HY (CN (Qn, hd + dW/\)) is a hypercohomology group.

e There is an isomorphism between this hypercohomology group and the Brieskorn

lattice
Qg [[1]]
(hd + dW N QNGB

HY (CV, (O, hd + dWA) ) =

By setting h = 0, we may consider %y as contained in this hypercohomology group.

More precisely, there is an isomorphism
HY (CN, Qb hd + dWo) ) = KHY (CV, Qe , hd + dWoN) ) @ P,

so that we may consider %y, as contained in this hypercohomology group.

o In multi-index notation, x* := Hévzl a:?j , the standard good bases indexed by a set

B is {x“

nweB } where B is given by the following.

i. If W is a Fermat polynomial, then B = Brermar = {0, 1,...,7 — 2},

ii. If W is a chain polynomial, then B = Bgpai consists of those (pq, ..., uy) €
ZJZVO such that p; < r;—1and (uq, ..., uy) is not of the form (x, %, ... % k ry_o—

1,O,TN,21+2—1,...,0,7"]\/,2—1,0,7"]\/—1) Wlth]{]Z 1.

iii. If W is a loop polynomial, then B = Broop = {(pt1, - - ., i) € Z8|ps < ri—1}.

 Given the standard good basis {z#},cp of Zw together with the perfect pairing,
we denote the corresponding dual basis of cycles by {Z,},ep. This has the defining

duality property

/_ VBN = 5o
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where 0,5 is 1 if @ = 8 and 0 otherwise.

+ Fix a versal deformation of W parameterised by coordinates (s,),cn,

Wy =W + Z st

neB

We define a grading on C[z1,...,xn]|[{s,}.es] given by degz; := ¢; and

N
degs, :=1—dega” =1— Zuidegxi
i=1

so that Wy is also quasi-homogeneous of degree one.

o The vector field given by

0 N 0
E:=) sudeg Supe +> degxig
poi= i

neB

we call a grading operator.

» For simple elliptic singularities with standard good basis fixed, there is a unique
highest degree basis element. We write this element as x*¢ and it satisfies deg 2/ =

1. The corresponding parameter s, has degree zero and is called marginal.

« Denote by Z, the basis element that is dual to 1-dVz € Zyy. Let f: C*xCN — C

be a polynomial function. Consider the oscillatory integral,

/_ Vel p N — Zj'u(i)(s)h—i

€7

where the above series is considered formally. If jéi)(s) =0 forall ¢ < 0 and

ju(o)(s) = 0,0, then fdVz is called a primitive form.

o In this case, we define the flat coordinates as



» Using this definition, one may show that for any Fermat, chain or loop polynomial,
t, = s, + O(s2).
o The flat coordinates satisfy
Et,(s) = (degt,)t,

where degt, = degs,. Hence, the grading operator can be written as

5—21& degt ing:x»de xi
— 2 8 g, PGB TG

neEB =1

3.2.4 Flat Coordinates of Simple and Elliptic Singularities

In practice, how one calculates primitive forms and flat coordinates is to expand the
integral [z, eWs/hdN g perturbatively. One can then read off what the primitive form
fdV¥z is. In the case of ADE and simple elliptic singularities, one may obtain closed

expressions for primitive forms. To this end, we define the following quantity.

Definition 3.2.13. Let W be an ADE or simple elliptic singularity. Write W for the
versal deformation with respect to the standard good basis. Define the deformed flat

coordinates

i, = L Wall gN g (3.2.6)

1%

with 2, € Hy(CY,Re W/h < 0;C) for each u € B.

Remark 3.2.14. The deformed flat coordinates have geometric significance as the flat
coordinates of a deformation of the Levi-Civita connection for the corresponding Frobe-
nius manifold. See Lecture 2 of [Dub99] for more details. Here, however, we simply view

the fu as a useful computational tool.
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Proposition 3.2.15. Let W be a Fermat, chain or loop polynomial that is either ADE

or simple elliptic type. For k € ZZ; denote

:Zka~a€NN, degsk::Zka‘degsaEQN

a€eB aEB

where B is the index set for the standard good basis. The deformed flat coordinates are

. T (s)
#:Z Hhi ’
i€EZ
where
(i) s*
AUOEED SRA(() e
kezB
degsk:degsu—1+i
and

1
cu(I(k)) = T /_ W/h (k) gN
Here, q(k, 1) is defined in equation (3.2.9).

Proof. To prove this, we write the deformed flat coordinates as

f#:/ W/hehZchBSaxa de:/ W/hz h '<Zsax )mdN.T
= = mm,

=K =K aEB

where we have expanded the exponential. We now further expand the multinomial to

obtain

z :/ ! Z 2 1 </€1 m k|B|> I sorated?a.

k
m=0 ki ,....k 5 >0 hzﬁ m! acB

> kg=m

Employing multi-index notation and cancelling the m! in the multinomial coefficient, we

find
1 sk

i = / NS 54l gN g,
m= Okl, k}‘B‘>O thkB k‘
Zkﬁ m
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Since we consider this as a formal series, we formally interchange the sum with the integral

to obtain

~ Sk
tﬂ = Z m /EM €W/h$l(k) dNI' (327)

B
kez,

Let us now organise the terms so that

th=>_ ‘7“(;(8) (3.2.8)

1€Z

where 7 (s) € C[[s]] does not depend on h. For each k € ZZ, and i € Z, define the

integer q(k, i) by
|B]

Z_j ko —q(k,i) = i. (3.2.9)

Comparing (3.2.8)) to (3.2.7)), we find

i s* W/h, I(k) N
TO(s) = > k'hq(k)/:e /hh(k) gN 5. (3.2.10)

kezB,

The integer ¢(k,7) is the total number of times integration by parts is used to reduce
2'®) to an element of the standard good basis of the local algebra.

We now prove that a necessary condition for a summand of ju(i)(s) to be non-zero is
deg s¥ = deg s, —1+i. We use a grading where deg i = 1. Since W/h has degree zero, the

W/h also has a well-defined degree of zero. Moreover, under such a grading, the

element e
‘integration by parts’ map hd + dW A : Q2x[[h]] = Q2x[[R]] is a homogeneous morphism
of graded vector spaces. Combining these two observations, we find that the deformed
flat coordinates also have a well defined degree. This implies deg?, = degs, — 1 since

t, contains the term £ via equation (3.2.5). Matching degrees on both sides of (3.2.8)

implies that J M(i)(s) are also quasi-homogeneous with degree

deg Jlfi)(s) =degs, —1+1.
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On the other hand, since \7‘5") does not depend on A, we observe that
deg jp (8) = deg s*

via equation ([3.2.10)). Equating the two above equations gives the desired result. O

Remark 3.2.16. In the proof we assigned h a degree of 1. It is perhaps also natural,
nonetheless, to define deg i = 2. Indeed, this degree is chosen by Costello [Cos09] and
Caldararu-Costello-Tu [CCT20| using topological conformal field theory, as well as in the
description of Airy structures by Kontsevich-Soibelman [KS18§|. If we assign degh = 2
instead, the proof of Proposition is readily modified. For example, we may shift
indices in the expansion of fu to write

Ty ()
hits

N

EM = Z
i€2Z+

1
2

In this case we have

degfu = degs, — 2

since 7, contains the term . This now implies that

. ) 1
deg 7, :degs#—2+2(;+ 2) =degs, — 1+

as before. Furthermore, to ensure that W /h has degree zero, we may modify the values of
deg x; so that W is quasi-homogeneous of degree two. Since the exact value for degh # 0

is unimportant for our purposes, we keep degh = 1.

Corollary 3.2.17. The flat coordinates of a simple singularity are given by
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The flat coordinates for an elliptic singularity with marginal parameter s are given by

Proof. Case I: ADFE Singularities. One may prove this by numerically expanding out the

relevant integral for each simple singularity to show that

/H VoM Ny = §, o+l () + O(h2) (3.2.11)

“w

where = is the cycle that is dual to the element d™z in the local algebra. Alternatively,

one may use the following degree counting argument. Recall from Proposition [3.2.15|that

- (i) (g
i, = / We/ligN . — ) Ty l( )
S i€Z h
where
k
i s
YRIOE > k) (3.2.12)
kezB
degsk:degs#fl+i
However, we observe that for an ADE polynomial,
degs, >0 (3.2.13)

for all 1 € B. Since degs® > 0 for k € ZZ,, we find that jlfi)(s) = 0 for all ¢ < 0. This
implies that £, contains no positive powers of . For similar reasons, fixing i = 0 implies
that the only contributing term is when 1 = 0 and k = 0. From the definition of c,, we
find that the coefficient is indeed 1.

Case II: Elliptic Singularities. The marginal parameter s satisfies degs = 0. In the
expansion (3.2.12)) we find ju(i)(s) =0 for all p € B and i < 0. However, for i = 0 we

find that there are non-trivial contributions, but for ;4 = 0 only. Since degs,—y = 1, we

66



observe that .70(0) is a function of s only. Hence, we find the expansion
/ GWS/thI — ‘_70(0)(8)(5%0 + h*lj}fl)(s) + 0(772)

One choice of a primitive form is therefore ;(OL)?) implying that the flat coordinates are
0 S

as desired. O

3.2.5 Period Integrals in Rank Two and Formulas for Flat Co-
ordinates

Throughout the thesis, we need explicit formulas for oscillatory integrals. To calculate

such integrals, we use the following lemmas.

Lemma 3.2.18. For W = 2", we have

o4 +m)
Lxew/hdx— —h)™ > — <Ok rmtp

ic

for some m € Zxy.

Proof. We use integration by parts to find

kareW/h dr

r(s)
/ 2KeWhdr = _h(k +1 _ 1) / 2T W g — —hi/

=M

where we used functional equation I'(z+ 1) = 2I'(z). Repeated application of integration
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by parts m times yields cancellation of I' functions. Hence,

/ $k—mr6W/ﬁ dr = (_h)m
= 1“(““

as desired. O

Corollary 3.2.19. For W = 27" + x> we have

(s m) ()
/ k2 eV dp day = (—R)™ ™2

En F<M+1> F(M“)
T1 72

it k; = rym; + p; for some m; € Z>o and the integral is zero otherwise.

Proof. For the Fermat singularity in rank 2, W = x7* + x5, the z; and x variables
decouple and integration by parts can be used independently on each variable. Therefore,

we need only apply the previous lemma to each variable in this case. O

Lemma 3.2.20. For the rank 2 chain W = z7' + z125* we have

F<M2r:—1 + m2> F(,ulr—l&—l o ;2-:21 + ml)
ﬁ eVihghighs doyday = (—R)™m:

1 2
n I g2tl I #atl _ potl
T2 T1 rir2

if k1 = rimq + 1 + mo and kg = romg + po for some m; € Z>o and the integral is zero

otherwise.

Proof. Performing integration by parts on the x5 variable we find

ko 41
/eW/hxlflx;“"’ dridre = —h( 2: — 1) /ew/hxlfl’lx’;r” dzydxs
2

()
o)

/ eVihgki=lypka=r2 qo day
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Similarly, for the x; variable,

k 1 k 1
/eW/hxlf1$§2 dridzre = —h( St 1> /ew/%]fl_rlwgz dxdxs

1 rre

F<k‘1+1 _ k2+1>
T1 r1iTr2
h

F(kl+1 ko1 1)
1 172

/eW/hx'fr”xgz dzydxs.

Hence, repeated application of integration by parts yields the desired formulas. O]

Lemma 3.2.21. For the rank 2 loop singularity W = z]'xs + z125?, we have

rirg—1 riro—1

roki+ro—ka—1 +m1> F(mkzmlﬂl +m2)

al
/ eWhghighe do dey = (—h)™tme
Ep F(T2#1+T2—#2—1) F(T1#2+T1—#1—1>

riro—1 rirg—1

it k1 = rymy + 1 + me and ky = romgy + pe + my for some m; € Z>o and the integral is

zero otherwise.

Proof. Performing integration by parts on the x; variable we find

7“2]€1+7"2—k2—7’17”2/

eW/h’:L‘lfl_”xl;Tl dx1dxy
rirg — 1 E,

/_ eW/hxlflm';? dxidry = (—h)

I

so that

F(T2k1+7‘2—k2—1)

rirg—1 _ -

/ eVihghigke deydey = (—H) / eVIhghi=ri ka1 qo dacy
By F(rzkﬁ-rz—kz—l _ 1) =

riro—1

For the x5 variable we have

rika + 11— ki —1riro 1 ke
/ eVihgkighe doyday = (—h) eVihghi=1gke=r2 qo dac,

Eu rrqo — 1 Zu
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so that

F<T1k2+7‘1—k1—1)
rirg—1 _ .
eVihghi=1gke=r2 qo dac,

/ eVihgki gk doydey = (—h)

i

= 1"(7“1k2+7“1—k1—1 _ 1) 3
riro—1
Repeated application of integration by parts gives the desired result. O

It is a straightforward exercise to generalise this to rank 3. We will, however, omit

these calculations as they are largely irrelevant for our purposes.

Example 3.2.22. Let us now apply these formulas to the simple elliptic singularity
W = a2} + 223, The basis element of highest degree is x3z5. The marginal parameter
is s31. Remarkably, jo(o)(s) and jg(ll )(s) can be identified with a certain hypergeometric

function. Recall that the hypergeometric functions are defined through

where (-),, is the Pochhammer symbol. The identifications are

1 7 2 483\ & (1/12),(7/12),, (—1)mamgsm

(0) :F(. ) 2.14
‘70 (S) 2471 12712a3a Tnzzo 2/3) 27mm' (3 . )
and
) 5 11 4 453>
It ()_32F1<12 123 27 )

We will only give explicit details for \70(0) as \73(11 ) is similar. By definition of jo(o) we have

k
s
A= 2 allk)
keZ?
deg(skszo
As we have discussed before, we have k = (0,0,...,0,7) for i € Z>. For such a k, we
have by definition of [(k)
l(k) = (3i,1).
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Thus we have
g

T (s) = 3 eo(3i1)) -

iEZzO

To calculate co((Si, z)) we use Proposition |3.2.20] In that notation we find \; = Ay = 0.

Hence, we obtain the equations
3i:4m1—|—m2, z:3m2
This implies that m; = 2my. Relabelling my = m we have

)= 1r(),(4),

Thus,

3m

0= 2 0°(5),, (), oo

m=0

However, we observe that

- 2 2 1
| = (33 — )5 =Z)=2ryp!l( = -
(Bm)t = (3) 1;[ ¢ >(J 3) =27 m'(3>m(3)m'
Hence to complete the identification given in (3.2.14)), we must show that
(1), (), = ().,
12/ \12/ 1, 6/ 2m

One may proceed by induction. Indeed, this equation is trivially true for m = 0. Assum-

ing that it is true for some m, observe that

(= GG+ 20 5),, =45 ) () 5),,.

Hence, with the induction hypothesis we have

Cs)gmg - 4(112 - m) (172 ) 4m(112) (172>m - (112)m+1 (172>m+1
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as claimed. Consequently, the primitive form we have found may be written as

Az

107 2. 48
2F1(12=1273’ 27)

This agrees with the original computation in [Sai81] and generalises the calculation of
Noumi and Yamada [NY98]. Thus, the expression for the marginal flat coordinate ¢t := ¢3

of W =t + 123 is
5 11 4. _4s

s 2Py 15 3~ 57)

)

t= 5
2F1(12>7 130

3.3 Mirror Symmetry

In previous sections we have alluded to the existence of mirror relations between FJRW
theory and Saito theory. In this section, we review how to precisely construct the mirror
Landau-Ginzburg model W7 given a Landau-Ginzburg model W. This construction was
first proposed by Berglund, Henningson and Hiibsch [BH93} BH95| and Krawitz |[Kral0]
subsequently provided the explicit mirror map as a Frobenius algebra isomorphism for

the chiral rings.

3.3.1 A Review of the Krawitz Mirror Map

We first recall the definition of the state space of the orbifolded Landau-Ginzburg model
given in section 2.3. To this end, let Zy be the local algebra. We choose a subgroup
G < Gy, Recall that for the full A-model to be defined, FJRW theory requires that
G be admissible. Similarly, the full B-model is currently only defined for the choice
G = {1}. Here, however, the orbifolded A and B-model chiral rings can in principle be
defined for any admissible subgroup G.

For g € G, denote W, := W/|pix() and let e, be the standard volume form on Fix(g).
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Then the state space of the Landau-Ginzburg model (CY, W, G) is

G
@W,G = @ (@Wg -6g>

where Yy, is the local algebra of the restriction 1,. We write the elements of Zyg as
p(x1,...,TN)e, where eg is the standard volume form on Fix(g). For example if g = id,
then Fix(g) = CV and e, = dx; A ---dxy. If Fix(g) = {0}, we put ¢, = 1.

Roughly speaking, the Krawitz mirror map interchanges elements of the local algebra
with elements of the symmetry group.

More precisely, for a superpotential W, let Ey be the exponent matrix. Recall that

the mirror polynomial W7 is defined via the exponent matrix Eyr := Ej,. Denote

k
o

EV*Vl = (/h""\ﬂN)a where Pr =

k
oA

We recall from Section 2.1.2 that the group Gy#* is generated by the p;. These act on

the variables as

PrTj = exp (27Tig0§-k))xj

and acts trivially on constants. On the other hand, letting

we observe that the group G is generated by the p,. We recall that there exists a dual
group GT < G2 such that (GT)T = G and (G3**)T = {1}. See section 2.7 of [Kral(]
for details of this construction.

For g € GG, denote the set of fixed indices by F,. That is to say, g can be written in

the form g = (e*™ ... e*™) with 6, € [0,1) and so we put F, = {j|6; = 0}. The
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following proposition will allow us to define the Krawitz mirror map.

Proposition 3.3.1. Let h € Gj}**. Write
H= 1] «f
JEFy

so that

H-ehe.@Wh~€h.

Denote vg = [ljep, ﬁ;-” e Gy Then if W is of Fermat or chain type, there is a unique
element
Fh = H ZL‘;j
JEF,
with

Uh-eyy € Dwr ey

such that h = [];¢ Py, p;j T Wis a loop potential, there is a unique choice of I'y, as

above, unless vy = 1.

In the above notation, if W is a loop potential with vz = 1, Krawitz gives a prescrip-
tion for choosing 7;. For details and a proof of the above proposition more generally, see

Lemma 2.2 of [Kral0].

Definition 3.3.2. The unprojected mirror map

D Zw.-en = D Dwr, ey
heG ~eGT
is defined on generators as

H-ehHFh-evH.

Given this definition, we have the following two results due to Krawitz [Kral0O, The-

orem 2.3, Theorem 2.4]

Theorem 3.3.3. The unprojected mirror map is a vector space isomorphism.
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Corollary 3.3.4. There is a vector space isomorphism

@W,G = @I/VT?GT.

The proof Theorem 3.3.3 is to simply replace G with GT and recall that (GT)T = G.
The proof of Corollary 3.3.4 is to restrict to the G-invariant part of the unprojected mirror
map. The dual group G7 is defined so that the projected mirror map is well defined. The

vector space isomorphism given in the above corollary is called the Krawitz mirror map.

Remark 3.3.5. An alternative shorthand notation that Krawitz introduces is to write
£ = mlg) € Pwe for a monomial m € Py,. Here the volume form is omitted in
the notation as it is fixed once the element ¢ is prescribed. The Krawitz mirror map

U : Yyr = Yw can then be written as

x; |1) if x; is a loop variable with a; = N = 2
U(z;) =

1

Di ijzl pj> otherwise

and furthermore,

N N
\If( 11 x?”) € Dw,, where g =[] pjofj“. (3.3.1)
j=1

j=1
Example 3.3.6. Let us first consider the case of the ungauged Landau Ginzburg model
(W,G) = (3 + z123, {1}) corresponding to the E; singularity. Denote the chiral ring as

Dw1 = Pw whereby the mirror is

Gmax
_ . wT
-@IVT,G;%’S = @ (9‘1797“ €g) .

geGmax

Since G is the trivial group we take h = id. Note that Fj, = {1,2}. For the first basis

element of Py, we take H = 1 = 2929 i.e. py = pg = 0. We have

L
-1 _ 3
EW =
1 1
9 3



Thus, we have p; = (ezm/?’, 1) and p, = (6*27”'/9, 62”i/3). Define vy = pips = (64’”/9, 62’”/3).

Notice that F,,, = @. Hence, under the mirror map we find
1-eq+— €plp1-
Similarly,
L1 Cid 77 g,
T2+ €id = €152,
2 . . |_>
Ly - €id 77 €535l
2 3
T1T2 * €iq 65%55,

2
XTiTo -+ €iq — eﬁ?ﬁ%‘

We note that for each good basis element except z3, the set F., was empty. Only
for 22 did we have Fix(vy) = Fix(p1'p2®) = Fix(id) = C? # {0}. This is related to the

notion of concavity that we shall explain in Chapter 6.

3.3.2 Closed Landau-Ginzburg Mirror Symmetry

The main result of [Kral0] is that, if all charges ¢; < %, it is possible to upgrade the vector
space isomorphism of state spaces to a Frobenius algebra isomorphism. The condition
g < % ensures that all algebra generators are narrow; this is a mild assumption that only
excludes the A; singularity and chain polynomials with ay = 2. The Frobenius algebra
isomorphism can be further upgraded to an isomorphism of Frobenius manifolds as done

in [HLSW22].

Theorem 3.3.7. Let W : C¥ — C be an invertible polynomial where no variable has

charge ¢; = 1/2. Then the Frobenius manifold from FJRW theory of W and G = G},
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and the Frobenius manifold from Saito theory of W7, are isomorphic.

The strategy for the proof of the above theorem is as follows. One computes the three
point correlation functions and a subset of four point correlators. These are matched with
the mirror FJRW invariants. Then in [LLSS17; HLSW22|, the authors use the WDVV
equations and topological recursion relations to match both A and B-model invariants.

The three and four point correlation functions of the B-model are computed via the
method developed in [LLSS17|. For a simple singularity, it is possible to uniquely rewrite
s, in terms of the flat coordinates ¢,. Under this change of variables, we can rewrite
I € Cls] as J{" € C[t]. The polynomials J{? € Clt] in fact give rise to genus zero
enumerative invariants in the following way. On the state space %y, recall that we have
a pairing 7. We let 7,, denote the matrix of n with respect to the standard basis. It
can be calculated that 7, , is the anti-diagonal matrix with 1’s along the anti-diagonal.
From Saito’s Frobenius manifold, we have a Frobenius potential F' satisfying the WDVV

equations. It is shown further in [LLSS17] that F' satisfies

O, F(t) = > nuTP(t).

veB
One then integrates these equations to obtain F. From the Frobenius potential F', we
define the B-model correlation functions,

okF

Taps " 5T = .
<al ak) atal "'atak =0

This gives a concrete method of calculating the Frobenius potential F.

Example 3.3.8. Consider the E; singularity W = a2 + z;23. The h™? terms of the J

function, up to quadratic order in s, are given by

1 3
24,2 2 2
(S00S02 + 5801)331 + (S00S21 + So1520 + S10511 — 5802)351372 + (S00S11 + S01510)T1%2

1 1
2 2 2
+ S005011 + (800820 + 5810 — 3801802>ZE2 + S00510T2 + 5800.
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For the cubic terms, we may simply replace ¢, = s, as all other terms will be of higher
order. After tedious calculations we find that the cubic part of the Frobenius potential is

. B L, o 1y, 35, 3,
F|cubic terms = to1taotoo + tiot11too + 215211500 + 2t10t01 2t02t00 275017502-

To obtain the full semi-simple cohomological field theory, one may use Givental’s
formula in |Giv96; |Giv0l] for the higher genus theory with descendants. Hence, the
Frobenius manifold isomorphism of the Theorem is enough to imply the mirror

symmetry for the full cohomological field theory.

3.3.3 Using Mirror Symmetry to Calculate FJRW Phases

Recall Definition where we defined the FJRW phases 0 < ©] < 1 for an internal
marked point with decoration v € G3**. Let us now calculate the FJRW phases of

internal marked points for any Fermat, chain or loop polynomial in rank N.

Definition 3.3.9. Let W be a Fermat, chain or loop polynomial in rank N. Let W7 be
the BHK mirror polynomial with charges ¢f , ..., ¢} and exponent matrix Eyr = (r;;).

Given a W7-spin curve, the FJRW phase ©* of a marked point with twist p is given by

H1 i
O =En | |+ ] (3.3.2)
KN an

where z# is the unique standard basis element of the B-model local algebra such that

U(zt) € Dwr with g = e?mio"

Remark 3.3.10. The significance of this definition is that the good basis elements on
the B-model in fact determine the FJRW phases and twists of the A-model. Indeed, we

first observe that g = €2™®" with ©# given by (3.3.2)), is the group element sector that
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is the image of x* under the Krawitz mirror map W. Recalling that

a 1
EwT =
aN 1
we find that (3.3.2) is equivalent to
H Sly 1
KN O 1

or equivalently

N
pi =y r;0f =1
=

in agreement with the twist in Proposition [2.2.7 Thus if we assume that the index p of
the standard good basis element is equal to the FJRW twist of a marked point, we find
that ©# given in (3.3.2)) coincides with the FJRW phase.

For convenience, we present two corollaries which give the explicit expressions for

FJRW phases in the case of a chain and loop polynomial in generic rank.

Corollary 3.3.11. Let W be a chain polynomial of rank N. Then the ;' entry of the
phase ©" is
oF

S=
I
—~
—_
e

+
<
—
F
_|._
—_
~
\

J<I<N j<i<i Tl

Corollary 3.3.12. Let W be a loop polynomial of rank N. Then the j' entry of the

phase ©" is
s = b 1 =
0f = X (—1)N++jT II et > (_1)+jT IT reIT7s
1<i<j k=i+1 J<i<N k=i+1 =1

Both corollaries follow from Definition [3.3.9] and Proposition [2.1.9
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CHAPTER 4

OPEN SAITO-GIVENTAL THEORY

In this section, we review and extend the work of Gross-Kelly-Tessler [GKT22a; |(GKT22b)|
by defining open Saito potentials for any chain or loop polynomial. To be able to handle
any chain and loop polynomial of rank two, we define B-model selection rules that are
expected from the mirror open FJRW theory. We then give examples of primary open

potentials for ADE and simple elliptic singularities. These are new examples of open

potentials and are constructed in Examples [4.2.2] [4.2.4] and [4.2.9) using results from

Chapter 3. In the case of simple elliptic singularities, we further explore the modularity

properties. Finally, we present a perturbative algorithm for the computation of open

Saito potentials. To this end, Theorems [4.3.4] and [4.3.9] and their corollaries are the

important results used in Chapter 5.

4.1 Open Saito-Givental Potentials

In this section, we review and extend the open Landau-Ginzburg B-model of Gross,
Kelly, and Tessler [GKT22a; |GKT22b|. We change notation slightly and denote an
invertible polynomial by Wy rather than W. For the following definition, recall that for
Wo =N, Hj»v:l 93;] , the exponent matriz is Ew, = (r;;). We also recall that the mirror

polynomial W is defined by the transposed exponent matrix Eyr := (Ew,)”.

Definition 4.1.1. Let W be an invertible polynomial with exponent matrix Ey, = (7;;).
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Let W{ be the mirror polynomial with charges ¢, ..., ¢k. For each pp = (py,...,pun) €

B C Z%,, define the internal phase

@lf M1 CI{
O = [=(Ey) " [+]:|eQ (4.1.1)
Oy U C]%

Define the boundary phase ©% € Q" as the vector with components

and the root phase as

Ot :=1—gq/. (4.1.3)

Let I be a multiset containing elements y € B. Let d € ZIZO. We say that (ki,...,ky) €

25, is balanced with respect to I and d if the following conditions hold:

N N
@ U+ ki—1)=2> 0 => k6] -0 = —1—¢; € Z, (4.1.4)
j=1 pel J=1
e; =k; mod 2, (4.1.5)
] N N
do2di+ Y e =21+ > k;—2. (4.1.6)
i=1 i=1 j=1
Taken together, we refer to these three conditions as selection rules. We write (ky,...,ky) €

Q-Bal(1,d) to denote (kq,...,ky) that is balanced with respect to I and d.

Remark 4.1.2. For the case of the rank two Fermat polynomial, the conditions (4.1.4))-
(4.1.6) provide enumerative constraints for the mirror FJRW theory. See Proposition
2.30 of [GKT22D).

To illustrate the selection rules, we write them out explicitly for chain and loop poly-
nomials in rank two in the following examples. These will be important examples for the

rest of the paper.
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Example 4.1.3. Let Wy = 27" + xy25? which implies W = z}'xy + 252, To write the

selection rules, we first calculate the phases and twists of each marked point. The charges

of W[ are
T To — 1 T 1
o 1y 2y 2
Fix a multiset I whose elements are p, = (a,,b,) and we denote the corresponding

internal phases by ©#7. Via equation (4.1.1)) we have

@#n_<7"2an—bn_|_7"2—1 bn+1>

rrs 7”17“27 T2

The root and boundary phases are

@root — (1_T2 - 17 1_1)7 o — <1+’l“2 _ 1_3 1>, O%2 — <T2 _ 1+i 1_1>

rira T2 rire 7‘177"2 rire 7"17“27 T2

The integral degree constraint (4.1.4)) now gives

1|
@ QU+ ki +ky—1) = O — kO] —ky©]? =2 0" = -1 —¢; € L.
n=1

For j = 1, this simplifies to

2(ky — 1ok + Zlnl‘zl oGy, — by)
riro

61:]€1+ GZ.

The graded condition (4.1.5)) is
€1 = ]{1 mod 2.
By combining the above two equations and setting

] ]

r(l):= Zlan, ro(I) := > by,

n=1

we find
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T’le — ]{72 = 7’27’1([) — 7”2([) mod rro.

Similarly, for the second integral degree constraint where we take j = 2, we ultimately
find

ko =ro(I) mod 7s.

The dimension condition, given as equation (4.1.6)), reads

2(1{32 — 7’2]{?1 + 7’27"1(]) - 7"2(])) 4 2(7’2([) — ]{52)

> 2d; 4 ki + ko + =2|I| + kg + ko — 2.

iel rire T2
To simplify notation, we set
m(I,d) = riry + rori (1) + rira(I) — ro(1) + > rira(d; — 1). (4.1.7)
i€l

Hence, for Wy = 27" + x125?, we have found that (ki, ko) € Q-Bal(I, d) if and only if
roki—ko = rori(I)—ro(I) mod riry, ko =1o(I) mod 1o,  roki+rike—ke = m(1,d).

Example 4.1.4. Let Wy = x}'x9 + x125*. The charges of Wg = W, are

T2—1 7‘1—1

ql—TlTQ—l’ q2_7”17"2—1'

Fix a multiset I whose elements are p,, = (ay, b,). The corresponding internal phases are

O — <(r2 —D(ap,+1)=b, (rn1—1(b,+1)— an)

7‘17‘2—1 ’ 7"1’/‘2—1

The root and boundary phases are

@root:(l_ Tz—l 1 7"1—1)

’1“17”2—17 7”17"2—1
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7’2—1 T2 T1+1)’ @w2:<7"2+1’1 7"1—1 9 T1 >7
7"17'2—1 7’17"2—1 7’17"2—1

" = (1+ —2

7"17’2—1 7’17’2—1’7’17’2—1
One may perform similar calculations to the previous example to find the integral degree

constraints as
rok1—ry = rori(I)—ro(l) mod (rire—1), 1iko—r1 =rire(l)—ri(I) mod (rire—1).
Furthermore, the dimension condition gives
r1ke 4+ roky — k1 — ko = m(1, d).
where

m(I,d) = riro(I) + rori(1) — ri(I) = ro(I) + (rire — 1) + > _(rira — 1)(d; — 1) (4.1.8)

iel
In order to define open Saito potentials, we show that Q-Bal(7, d) is not always empty.

Proposition 4.1.5. For each ¢ = 1,..., N, denote by é,, as the vector with one in the

i™™ place and zeroes otherwise. For I; = {é,,}, we have (d;1,...,8; y) € Q-Bal(f;,d = 0).

Proof. Fix i =1,..., N. We show that these sets satisfy the 3 conditions (4.1.4)), (4.1.5)
and (4.1.6). Indeed, the left hand side of the integral degree condition reads

T root x; N:ézi
27 — O — % — 20"

for each j = 1,..., N. After substituting the phases, we find that the above expression
is equal to —1 — d;; which is certainly an integer. Furthermore, the grading condition is
immediately satisfied.

Finally, for the left hand side of the dimension condition with d = 0, we have

> by =1

Jj=1
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On the other hand, since |I;| = 1, the right hand side becomes

N
24> 6 —2=1
J=1

as desired.

Corollary 4.1.6. The set Q-Bal(/, d) is non-empty for some I # & and d = 0.

With this corollary, we now make the following definition which extends Definitions

4.10 and 4.12 in [GKT22b| to the case of a rank N polynomial.

Definition 4.1.7. Let Z be a multiset containing elements p € B. Given Wy, let Ideal(Z)
be an ideal of Q[t,q|pn € B,d € Zxo| that is generated by monomials of the form
I, thid so that > ng is greater than the multiplicity of the element p© € Z. Consider

the ring Az gm = Q[t alpn € B,d € Z>o)/Ideal(Z). Given vy, jy.1.a € Q such that

.....

(k1,...,kyn) € Q-Bal(I,d), we define an open ancestor Saito-Givental potential

Wvsym . Z Z Z ( 1)l 1Vkl """ kNIdHtM Hff eAIsym xl?"'axNH

1>0 A=(I,d)e A, k1,..., kN>o,

where A; denotes the set whose elements are cardinality [ multisets of tuples I = {(u;)}._;,
together with the descendant vector d and Aut(A) is the automorphism group of the

multiset A. Moreover, we require that W™ is quasi-homogeneous of degree one:
EWrsym _ J/vsym

Abusing terminology, we also say that vy, r.a is balanced if (ky, ..., ky) € Q-Bal(1,d).

7777 kN7

We will comment on the finiteness of this sum in Remark 4.3.2].
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4.2 Primary Open Saito Potentials

An important special case of open Saito potentials are primary open Saito potentials
where the descendant vector d = 0. Given Wy, one may calculate the flat coordinates
and change variable in the versal deformation W, to write the s, parameters in terms of

the flat coordinates t,,. We identify the formal parameters ¢, o of the open Saito potential

with the flat coordinates ¢, via t,o = t,. In Corollaries 4.3.7] and |4.3.12 we provide

justification for this identification in rank two. We write

1% 1yeen : N ;
Wt = Z Z Z (—1>l_lmntui,onxfl € AI,sym[[xla"'axNH‘

120 ki, ok >0 A=(p5,0)EA, i=1 i=1

Using Proposition and equation ({3.2.5)), the first order terms in Wy are balanced.
Moreover, we note that since W is quasi-homogeneous of degree one with respect to the
grading operator &, primary open Saito potentials W) must also be quasi-homogeneous

of degree one by equation (3.2.5)).

Observation 4.2.1. The rational coefficients v, xy.r0 for small [ are given by the

kN
following reasoning. In a primary open Saito potential Wy, for [ = 0 we must have A = &
and |Aut(A)| = 1. Since there are no t variables in these terms, this must agree with W

and hence v = —1. Similarly, for [ = 1, we must have v = 1 via equation (|3.2.5]).

We note that the change of variables s, to t, cannot necessarily be done uniquely.
This means that primary open Saito potentials W are not unique in general. In other
words, the coefficients vy, .70 are not uniquely defined. We say that they exhibit a
wall-crossing structure. This is the key point of the paper that is discussed in this chapter
and the next.

To illustrate the non-uniqueness issue, we perform concrete calculations of primary

open Saito potentials and chamber indices for certain simple and elliptic singularities.
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4.2.1 ADE Singularities

In this subsection, we give explicit formulas for the open Saito potentials in the case of
D, and E; singularities. These are less well studied in the literature as these are chain

polynomials.

Example 4.2.2. Using Corollary [3.2.17], we see that dxi A dxs is a primitive form for the
Dy singularity (Wy)p, = 3 + z123. Explicitly writing out the T' functions using Lemma

3.2.20 we find the flat coordinates are

tog = S20
to1 = So1
L,
t10 = S10 — ESQO
t + [
= S99 — = 5108 —— s,
00 00 — 5510520 T 57552
These may be uniquely inverted to give
S20 = tao
So1 = to1
L
too + =tiot L t3
Sog = - — —t5,.
00 00 + gtiotoo = 7o

We thus find
3 2 2 1 2 1 1 3
Wt = I + T1Ty + tgg[)’}l + t()ll'g + (tIO + ﬁt20)x1 + too + *tlotg() - ftQO. (421)

6 o4

Example 4.2.3. The D, singularity is also given by (Wy)p, = 2% + 3. We find the flat
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coordinates for (Wp)p, are

t11 = s11

to1 = So1

t10 = S10

t + L

00 = S00 T =,511-
5151

Therefore, the open Saito generating potential is

1
Wt — WO = tlll'% + toll'z + twl’l + too — 5*415?1 (422)

We will later define a notion of equivalence of open Saito theories that will clarify

these calculations.

Example 4.2.4. For the E; singularity Wy = 23 + 2,23, the open Saito potential is given
by
Atoitao 5,

9 243)951@ + t02x§

4¢3
Wt — WO = tgll’?ZEQ + (tg() — 8?)1‘% + (tn +

toator  Dtits;  Blay  Hloots, t5, )
¢ _ _
* ( 10+ 3 54 + 18 243 19683 1
n (t n tiota1 n tutao t1t3, n t3ot21 B t20t§1)
) 9 486 54 4374)77
n (too B toit3, n toal11 n Atoataotar B toats, n 2t10t20 B 2t B t11ta0ts,
27 3 27 729 9 27 81
A5y ol | taothy 1y )
243 729 118098 28697814/

Remark 4.2.5. It is not obvious how to identify the open Saito potential for (Wy)p, =
x} + x123 found in this thesis with the open Saito potential Ff,, found in Example 5.5 of

[BB21]). We will comment on this discrepancy in Appendix B.
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4.2.2 Modularity and Elliptic Singularities

In this subsection, we present computations of open Saito potentials for some elliptic
singularities.
The following result characterises the primitive forms for elliptic singularities given

originally in [Sai83a].

Proposition 4.2.6. Let W be an elliptic singularity of rank 3, using Morse stabilisation if

necessary. Let s the marginal versal deformation parameter corresponding to the standard

good basis element x#<. That is, deg 2 = 1 and deg s = 0. Consider the family of elliptic

curves B, = {Wy + szt =0} C P2 Let
d*m

d(1-2) 5+ (v= (1 +a+p)z)5- —abr = (4.2.3)

be the corresponding Picard-Fuchs equation for the periods of E, with «, 3,7 € C and
2 = CsT5 for a constant C given in Lemma 2.1 of [MS16]. Then a primitive form for

W() is
B

¢= 2 Fi(a, B, y;2)

For a proof, see Lemma 2.1 of [MS16]. The following proposition is then proven in

NY9S].

Proposition 4.2.7. Let W, be an elliptic singularity of Fermat type. In the notation of

Proposition [4.2.6| for an elliptic singularity Wy the marginal flat coordinate is

saFila—y+1,8—v+1,2—7Cs7)

t = =
2Fi(a, B,7;CsT7)

(4.2.4)

for the same parameters «, 3, and variables z,s given in the Picard-Fuchs equation

[@23)for B,

Using the formulas presented in the previous chapter, one may check case-by-case

that the above proposition extends to any invertible simple elliptic singularity. This
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proposition now has important consequences for the corresponding primary open Saito

potentials.

Proposition 4.2.8. Consider the primary open Saito potentials W; for an elliptic sin-
gularity Wy of Fermat type. Suppose all non-marginal flat coordinates are set to zero.
There exists a primary open Saito potential W; that is a (meromorphic) modular function

of weight zero.

Proof. We note that the marginal flat coordinate ¢ given in (4.2.4)) is a ratio of hyperge-
ometric functions. This has an inverse given by a Schwarz triangle function s(t). This

implies that a primary open Saito potential is

Wi = Wy + s(t)xt.

Modularity then immediately follows from the fact s(¢) is modular invariant and Wy is

constant in . O

See Chapter VI of [Neh75] for an expansive survey of the theory of Schwarz triangle
functions.

In light of equation , the above two propositions extend to the chain poly-
nomial Wy = z] + x123. It is natural to expect that these results extend to any simple
elliptic singularity; one may check this by exhaustive direct calculation of flat coordinates
for such singularities. However, we postpone a discussion until Chapter 5.

(1,1)

We now focus on the Fg ' singularity since this is of geometric interest as the cubic

elliptic curve in P2,

Example 4.2.9. Consider the elliptic singularity Wy = z3 + 23 + x3. The versal defor-

mation is

W = Wy + sz122x3 + S110T102 + S$1012123 + S0112223 + S100%1 + So1022 + S00123 + S000
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The marginal flat coordinate is

(4.2.5)

We expand this around s = 0 and use series reversion (see Appendix A) to find one
possible s(t). Furthermore, we consider the pencil of elliptic curves Wy + s(t)xizoz3 = 0
by setting all non-marginal variables to zero. In this case, we find that an open Saito

potential is

1 37 47 50233
W — W — (t o 7 410 413
t 0= T1ZaTs{ + 162 * 918540 * 223205220 * 51707721265200

50131 ” 207140851 »
+ 6 + t
11727311182947360 11505811592979441738000
. 376053259 , 2977848681889 .
5219036138575474772356800 10695370758782720450990790240000

n 59515502138947 128 O(t31)>
56761616061350951359862242698508800 '

We note that series reversion only provides one possible inverse to (4.2.5) and so s(t) is
not uniquely defined. Thus, the open Saito potential is also not unique.
To see modularity, we change variable s = —3w'/? in (4.2.5) where we choose the

branch of the cube root such that w!'/? € R if w € Rsg. Thus we find

tHw) = =3f(w)

where
2

4

0’373
2.
W

I

w1/3 . 2F1

2F1(%a

~—~
W

;W)
)

defines a mapping f : H — A. Here, we denote the upper half plane as H and A is the

f(w) =

)

Wl

hyperbolic triangle enclosed by three circular arcs with angles {%,0,0} at the respective
vertices {f(0), f(o0), f(1)}. We denote by I' C SLo(R) the group generated by pairs of

reflections across the sides of A. One may analytically continue f through the real axis:
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we obtain in this way a map from P! with a branch cut to the set AU g- A where g € T.
[terating, we obtain an infinitely many-valued function on P\ {0, 1, 00}. It is well known
that the inverse w(t) is a single-valued meromorphic function that is modular invariant
and also automorphic with respect to I'. In particular, s(¢) is also modular invariant; this

is stated in Lemma 9 of [Str12]. For a discussion of triangle groups, see Appendix A.

Remark 4.2.10. Due to modularity, one may calculate the g-series expansion. Indeed,
following Lehner |Lehb4] details of which are in Appendix A, we calculate the g-expansion:

> 5 2 76 , 1 4, 44, 1384 . 4

t) = =g ' g - — -
wt) n;1 ¢ T or To6s37 2187 531441 3874204307 143489077

°+0(q")

2mit

where ¢ = 73 . Furthermore, in section 3 of |Leh54], the asymptotics are extracted as

> 27 4t/n
) = nq", n ™’ J ( >7 -
w(t) ngla ", a N A n — oo

where J; is the Bessel function of the first kind [[] As expected from above, this is
meromorphic: there is a simple pole at the ‘large volume limit’ ¢ = 0, or equivalently
t = i00. The resulting Fourier coefficients in the above expansion, and in the expansion
of s(t) = —3w'/3(t), may be of interest in open orbifold Gromov-Witten theory of [X/G]
where X = V(W) C P? and G = Z3/Z3. In particular, it would be interesting to
compare these results to that of [LZ15] and also [AL23; PSWO0S|. It is currently an open
problem to find an analogue of the Landau-Ginzburg / Calabi-Yau correspondence for
open FJRW and Gromov-Witten theory. See |CIR14; |CR10; PS16; Wit93b] for more

details of this correspondence in the closed case.

Explicitly, the full set of the versal deformation parameters are given by

s(t) = =323 (1)

"'We have successfully run a machine learning program, the LSTM recurrent neural net, to learn the
Fourier coefficients which would suggest the existence of a recursion relation or closed form expression
as presented here for these coefficients.
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and

s110(t) = (1 — 2)§2F1<;, ;, ;; Z)tno,
s11(t) = (1 — Z)§2F1<;, ;, ;; Z)tlol
son(t) = (1 — 2)§2F1<:1)), :_15, ;; Z)ton
sn(t) = (1= 2)%F (5,3 532 Jtom + O,
so10(t) = (1 — z)ilng1<;, ;), ?); Z)t010 + O(t%),
s100(t) = (1 — 2)é2F1<?1), ;, ;;Z)tloo +O(t%),

GV )

/
; Z>) (too1t110 + torot101 + t1ootor1) + O(t)

where O(t?) and O(t?) are quadratic and cubic in the non-marginal variables. This

computation can be found in [NY9§]. It is an interesting question as to whether one may

consider this full set of parameters and still have modularity. In the case of the cubic

in P2 the answer is affirmative as found by Verlinde and Warner [VW91]. In particular,

the full open primary Saito potential W, — Wy is modular invariant. The corresponding

transformations are

at+b a

€ SL(2;Z),

—_—
ct+d ¢ d
t
t, — —H 1,1,1).(0,0,0
pr i (1,1,1),(0,0,0)
c
to00 — tooo + = ———
000 000+20t+d

(too1t110 + totot101 + t100to11)-

This is fully explained in terms of modular Frobenius manifolds in [MS11; MS12].
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4.3 Flat Coordinates and Primitive Forms for Chains
and Loops of Rank Two

For the remainder of this chapter, we specialise to the N = 2 case.

Definition 4.3.1. Fix a finite multiset I C N. Define
A[ = Q[{ui,d ’Z < [, de Zzo}]/({uidui’d/ ‘Z < [, d, dl € Zzo}>.
Let (ki, k2) € Q-Bal(I,d). Then the potential associated to v is

WY .= > (=D, gy gz @ T] wia € Az, 22]).

JCI,deZ, ieJ
(k1,k2)€Q-Bal(J,d)

Remark 4.3.2. In the case of rank two Fermat, chain or loop polynomials, we observe
that for a fixed k; and ko, there are only a finite number of J C [ and d € Zéo such that

(k1, k) € Q-Bal(J,d). Therefore, the coefficient of z3'25* is indeed polynomial.

We recall Definition 4.13, Lemma 4.14 and Corollary 4.15 of [GKT22b]. We define

the map

w[ : Al,sym — A], t(a,ﬁ),d — Z Us,d-
i€l:(ai,bi)=(ci,B:)

This induces a map ¥y : A gym|[21, Z2]] = Ar[[x1, 22]]. Furthermore, this map is a well-
defined and injective homomorphism such that for A € A;,
[Ty tonsn |
%( mue(a)] ) = o e

JCI jeJ
des

and where S C Zéo is the set for which there exists a bijection ¢ : J — {1,2,...,{} such
that (a;,bi) = (), Bei)) and dj = dy(;). For balanced v with respect to I, this now
implies that

V(W) =W, (4.3.1)
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We perform calculations using W in the variables u; 4 thereby obtaining corollaries for
p g , Y

W™ in the variables t,, 4. We treat the chain and loop cases separately.

Chain Potentials.

Lemma 4.3.3. Define

T17‘2(J) + Tng(J) — TQ(J) - m(J, d)

rire

d(J,d) = ~1.

If vk, ky.5a4 is balanced then d(J,d) < 0. Conversely, if d(J,d) < 0 then there exists a

(k1, ko) € Z2, such that vy, g, sq is balanced.

Proof. Suppose that vy, 1, 74 is balanced. Recall from Example that Ve, ky {(a;.01))e0.d

is balanced if and only if
ko =ro(J) mod re, 1oki—ko =1rori(J)—1o(J) mod rire,  roki+rike—ke = m(J,d).
Since kq, ko > 0 we find

ko = 1ro(J) + para, 1ok — ky =ro - 11(J) — 1ra2(J) + prrira (4.3.2)
for some pq, ps € Z>o. Substituting this into the third balancing condition yields

rira(J) 4+ rari(J) = r2(J) 4 (pr + p2)rire = m(J, d).
For p1, ps > 0, this is equivalent to
d(J,d) =—p1 —ps—1<0 (4.3.3)

as desired. For the converse direction, since d(J,d) < 0, we define py, py via (4.3.3) and
thus define the desired k; and &y via (4.3.2)). O]
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Theorem 4.3.4. If W := a7' + z125> mod ({w;q|i € I, d € Z>o}) then

/_ eV = G000+ D > (=D (=R) D2 A(T v, d)ory (.0 [ Wids
=(a,b)

JCI dez? e
Jto 20
(4.3.4)
where
|/ 1 h
AlJvd) =) 4 > Ltk kot 11 Voot -
h=1""" Jiu--Udp=J 7=1
{klﬁ?iﬂﬁﬂ}?zle@-BaKdekg)
with .
F<1+z;1kzm) F(uzjl M) 1+2§‘1k2m>
F ' ' . _ T2 T1 172
{k1(5)5k2(5), 530, F(H_TQ(J)) F<1+T1(J) o 1+r2(J)>
and where {k1(j), k2(j)}/_, € Q-Bal(J;,d|;,) means
k’z(]) :TQ(J]‘) mod T2, Tgl{?l(j) —kg(]) :7“27“1(Jj) _TQ(JJ’) IIlOd T1T2
and
r1ika(j) + roki(j) — ke(j) = m(J;, d| ;). (4.3.5)

Proof. Fix J C I. The case J = @ follows from the definition of a good basis and gives
the contribution d,,0050. Thus, consider J # &. Recall that vk, k, {(a;5,)},cs.d 1 balanced

if and only if

ko =1ra(J) mod ry,  1oki—ko = rori(J)—ro(J) mod rire, rokytrike—ke = m(J, d).

By definition of r1(J) and ro(J), there exist non-negative integers l;(J) and l(J) such

that

Zaj:rl(J)—i-ll(J)rl, ij:TQ(J)+lg(J)T2.

j€J JjeJ
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We may write

/ 6W”/?’igz _ / (Z (WV - $11 — xlw;))e(m;l—&—xlx?)/ﬁg‘
= =z hlhh
=(a,b) =(a;b) \ h=0

Noting that W" — z1* — zyzy? = 0 mod ({w;quia | € I, d,d € Zso}) we expand the

summation. If J # & then the coeflicient u; = [[;c; wiq, is

|| , A h
Yok Y ke (), |- M xzn?
Ay :/= Z =D (xl C R [T DY T v ) )y, [ TR
= J

(a, JiUe- U= j=1

{kl(j),kg(j)}?:l

For convenience, we simplify the notation {k;(j), k2(j)}i_, € Q-Bal(J;, d|;,) by assuming
that all sums over {k;(j), k2(j)}s_, are of balanced indices. We recall from Lemma 3.2.20

that for the rank 2 chain Wy = x}* 4+ x125? we have

72 T1 T17r2

po+1 +m > F(ulJrl po+1 +m >

al
/ Wo/hxk1x2 dridry = (—h)™ 172
=M F(#2+1) F<u1+1 . M2+1)
2 T1 172
it by = rimy + p1 + mo and ky = 7r9me + po for some m; € Zso and the integral is

zero otherwise. Thus, performing integration by parts on A; we see that the integral is

k1(4) Zkz

zero unless (a,b) = (r1(J),r2(J)). Integrating the monomial z77’ produces
a factor A™*"2 where
Z k?l —|— niry + N9, Z ]{ZQ —f- NaTa. (436)
jed jeJ
Again using Lemma [3.2.20] we find
1 ||~ L1 g s +ng—h -
Ar=> 5 2 (=D R N O PO RATIN | L OO R A ST
=1 pueOn=J j=1

{R1 () k2() Y,

Using the definition of m(.J, d) in (4.1.7), we obtain 3>; m(J;,d|s,) = (h—1)rire+m(J, d).
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Combining with (4.3.5)) and (4.3.6) thus gives,

X ka(j) — ra(J) n Yiki(h) — () X ke(d) —ra(J)

Ng + Ny =
T9 1 179
X m(Jy,dly,) = rira(J) = rery(J) + 1a(J)
B 172
_(h=1)riry +m(J,d) — riro(J) — rori(J) + 12(J)
T2

Hence,
(n1 +ne —h+ V)rire = m(J,d) — rira(J) — rori(J) + ro(J) = (=d(J, d) — 1)ryrs.

Thus, we find
AJ = (_1)‘JI(_h)7d(J7d)i2A(J7 v, d)arl(J),aérg(J),b

as desired. O

Corollary 4.3.5. For
W = gt + x128? mod ({tasal)

we have

v,sym /f — — H’ZL: tOéh 7,07
/— VG = 600000t DL (=D =R) DA v, d) Sy, (1).a0ra() (M '
=(a,b) 1>1 {(0,B:,di) YA,

Proof. This follows from the previous theorem and equation (4.3.1]). [

Corollary 4.3.6. For a rank two chain polynomial, there exists (vk, . xy.7a) € Q such

that, if d(J,d) < 0 and |J| > 2, then

A(J,v,d) =0.
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Proof. Recall that

7] 1 h
A(Jv,d) =3 Al > 2 Twowanys, Hvworeo.s.a,
h=1""" Jil--UJn=J {k1(5),k2(5) ?:1 =
(k1(5),k2(5))
where , h '
r ( 4D i ke (j)> r ( ) k@) kQ(j))
79 T1 r1r2
{k1 () k2 (), Yoy F<1+(J)) T (1+r1(J) _ 1+7"2(J)>
72 1 r17T2

We proceed by induction. For the base case, fix J = {ji,72}. We split A(J,v,d) into
h =1and h = 2 terms. For h = 2 terms, partition J into J; = {j1} and Jy = {j»}, or
Jl = {]2} and Jg = {]1} Thus

A(J,v,d) = > |
k1,k2€Q-Bal(J,d)

1
+ 2( Z Fkl(j)7k2(j)v{jl}v{j2}Vkl(l)vk‘?(l)v{jl}vdjl Vk1(2)k2(2),{j2}.dj,
k1(1),k2(1)€Q-Bal({j1}.dl ;)
k1(2),k2(2)€Q-Bal({ja}.dl,})

+ Z Fkl(j)vkz(j),{ﬁ},{jz}ykl(1),k2(1)7{j2},dj2 Vk1(2)7k2(2),{j1}7dj1)'
k1(1),k2(1)€Q-Bal({j2},dl;,)
kfl (2)7k2(2)eQ'Bal({j1}7d|j1 )

We now choose a collection (v, k,.7.4) such that only one vy, j, jq is non-zero in the first
summation. Since d(J,d) < 0, using Lemma we are able to find such a non-vanishing
Vky ko, Jid- HHENCE, ZIVEN Vi) (m) ko (m),{jm}.d;,, O the singletons {j,,} for m = 1,2 we see that

the choice of

—1
Vk17k27‘]7d :21" ( Z Fkl(j)ka(j)v{jl}v{jQ}Vkl(1)7k2(1)7{j1}7dj1 Vk1(2)7k2(2)7{j2}7dj2
k2T \ ki (1) k2 (1) €Q-Bal({j1}.dl )

k1(2),k2(2)€Q-Bal({j2}.d[(;,})

+ Z Fk’l(j)yk2(j)7{j1}7{j2}Vkl(l)ka(1)7{j2}7dj2 Vk1(2)7k2(2)7{j1}7dj1)
k1 (1),k2(1)€Q-Bal({j2}.dl;,))
k1(2),k2(2)€Q-Bal({j1}.dl;;)

forces A(J,v,d) = 0.
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Assume the result is true for all J' C J with 2 < |J'| < |J|. For such a J with |J| > 2,

A(J, v, d) reads

A(J,v,d) = > Dk ko, J Vs ko, d
k1,k2€Q-Bal(J,d)
1 q h
T2 > > Uha () 20,1 II Vit (5) k2 (5) 7.4 1,
h=2 """ JiU-UJp=J {k1(5),k2 ()} Jj=1

(k1(4),k2(4))€Q-Bal(J;.dl 1)

We again choose (v) such that only one vy, j, jq is non-zero in the first summation. The
v terms in the h > 2 summation are defined on proper subsets of J and so are chosen in

the inductive step. Thus, we choose

h

1 Y
Vs ko Jd =~ > > IEYSE AT | RO YN w
ke =2 T U= k() ke ()Y i=1
(k1(4),k2(4))€Q-Bal(J;,d] 1)
which forces A(J,v,d) = 0. O

Corollary 4.3.7. There exists (v, ky.2a) € Q such that Q = dzy A dzy is a primitive

form and ¢, g are flat coordinates.

Proof. From Observation [£.2.1] we see that W"*™ satisfies the hypothesis of Theorem
. Moreover, since vy, gy.sa = 0 1if (k1,.... ky) ¢ Q-Bal(J,d), there is no contri-
bution of the form (—h)~*4)=2A(J v, d) with d(J,d) < 0 and |J| > 2. However, for
J ={(a,b)} and d = 0 so that d(J,d) = —1, we indeed find the stated formula for the
coefficient of A~ using Observation and equation (4.3.4)). O

In Section 5.1 we give an example of how to calculate flat coordinates for W, =

x] + z123 using this method.
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Loop Potentials.

Lemma 4.3.8. Define

TlTQ(J) + T‘QTl(J) — Tl(J) — TQ(J) — m(J, d)

7"17”2—1

d(J,d) := -1

If vy, k,.0a is balanced then d(J,d) < 0. Conversely, if d(J,d) < 0 then there exists a

(k1, ko) € Z2, such that vy, g, sq is balanced.

Proof. Suppose that v, k, 74 is balanced. Recall from Example@that Vki ko, {(a; b))} ses.d

is balanced if and only if
rike — ko = rira(J) — 11 (J) mod rro—1, roky —ky =ro-r(J)—1r2(J) mod ryre —1

and

Tgkil + le’g — k’l — ]{72 = m(J, d)

Upon calculating d(J, d), we find that for some p;, py > 0, we have
d(J,d)=—p —p2—1<0

as desired. The converse direction is proven similarly to Lemma [4.3.3] O]

Theorem 4.3.9. If W" := a7'xy + 2125 mod ({u;qu; |t € I,d,d € Zsp}) then

/* eV = 0a,005,0 + Z Z (_1)|J|<_h)7d(J’d)72A<Ja v, d)0r, (),a0r5(1) b H Ui
Z(a.b)

JCI dezd ieJ
J#2 =
(4.3.7)
where
[J] 1 h
A(J v, d) = hl Z L1 () o (9,75 ya H Vi1 (5) k2(5), 754l 3
h=1"" Jil--UJp=J j=1

{k1(5)k2(5)}Y}_, €Q-Bal(J;.d| s;)
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with

r (7‘2 S k() +r2 =3 kQ(j>—1> r (7’1 S ko ()41 -3 ]fl(j)_1>

F L rirog—1 rirg—1
{kl(j)vk2(j)’Jf}?:1 T F<r2r1(J)+r2r2(J)1) F<T1T2(J)+T1T1(J)1>
riro—1 rirg—1

and where {k1(j), k2(j)}/_, € Q-Bal(J;,d|;,) means
riko(j)—k1(3) = rire(J;)—r1(J) mod mre—1, 1ok (j)—ko(j) = rori(J;)—r2(J;) mod ryre—1
and

roki(j) +rika(j) — k1(j) — k2(5) = m(J;,dl ). (4.3.8)

Proof. Fix J C I. The case J = @ follows from the definition of a good basis and gives
the contribution d4,0050. Thus, consider J # &. Recall that vk, k, {(a;5)},cs.d 1 balanced

if and only if

lez—klzrl‘TQ(J)—Tl(J) mod (7’17"2—1), Tgkl—kgzrg"l"l(ej)—rg(:]) mod (7“17’2—1),

7’2/€1 + 7”1]4]2 - ]i]l — ]{72 = m(J, d)
By definition of 1 (J) and ro(J), there exist integers {1(J) and l3(.J) such that

Zaj:Tl(J>+l1(J>7’1, ij:TQ(J)+lg(J)T2.

j€J JjeJ

We may write

T T
/ W Ihy — / (i (WY — af'ay — x1x22)>€(m;1m2+w1x;2)/h9‘
E(a,b) E(a,b) h=—0 h'hh

Noting that W" — z}'zy — 2125 = 0 mod ({u?|i € I}) we expand the summation. If
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J # @ then the coefficient u; = [[;c;u; is

‘J‘ 1 171‘122-‘-211;2
|

S kiG) Y ke() -
AJZ/ > X (Il S R T DY Gy, e

E(ab) p=1 hl JiU--UJp=J Jj=1
{k1(5):k2(5)}_,
For convenience, we simplify the notation {k;(j), k2(j)}r_, € Q-Bal(J;, d|;,) by assuming
that all sums over {k;(j), k2(j)}?_, are of balanced indices. We recall from Lemma (3.2.21

J=1

that for the rank 2 loop singularity Wy = x'xs + x125%, we have

riro—1 rirog—1

roki+ra—ko—1 +m1> F<T1k2+r1—kl—1 —|—m2>

al
/ eWolhghighs o day = (—R)™tme
Eu 1"(7”2#1+1“2M21> F<T1M2+r1u11>
riro—1 riro—1
it k1 = rimy + 1 + mg and kg = remy + pe + my for some m; € Z>, and the integral is

zero otherwise. Thus performing integration by parts on A;, we see that the integral is
k) Y, k()
Lo

zero unless (a,b) = (r1(J),r2(J)). Integrating the monomial z77’ produces
a factor A" 12 where
Zkl(j):ﬁ(J)+n1r1+n2, Zk’g(]) :TQ(J)+7L2T2+H1. (439)
jeJ jeJ
Again using Lemma we find
A ||~ 14n1+ +na—h &
LVED LD DR G Vi A T PA TN | O RO R PR RS R
h=1""" nu-Ug=J j=1

(k1 () k2 ()},

From the definition of m(J,d) in (4.1.8) we find >°; m(J;,d|;,) = (h — 1)(rir2 — 1) +
m(J,d). Combining with (4.3.8) and (4.3.9) we obtain

r1 2 ke(d) — X ka(g) — rire(J) +ri(J) n 7o 2 k1(j) — X ka(j) — rari(J) +ra(J)

ny +ng =
rire — 1 rirg — 1
. Zj m(Jj,d|J].) — 7‘17’2(J) — 7’2T1<J> +7’2(J>
N rirg — 1
(h=1)(rre = 1) +m(J,d) = r1ro(J) = rori(J) +r1(J) 4+ 12(J)
179 —1
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Hence,
(n1+no—h+1)(rira—1) = m(J, d)—riro(J)—rori(J)+r1(J)+ra(J) = (—d(J,d)—1)(r1r2—1).
Thus, we find
AJ = (_]'>‘J| (_h’)id(J’d)72A(‘]v v, d)6T1(J),a57‘2(J),b
as desired. O

Corollary 4.3.10. For
WS = g xg + 2125 mod ({tasal})

we have

v,sym — — Hi: tai7 7,04
L[ e =00ty S (DR O RA, v ) b (M’ :
Z(a,b) 121 {(ai,Bi,di) }EA

Proof. This follows from the Theorem and equation (4.3.1)). O
Corollary 4.3.11. For a rank two loop polynomial, there exists (v, . ky.sa) € Q such
that, if d(J,d) < 0 and |J| > 2, then

A(J,v,d) = 0.

Proof. This is proved in exactly the same way as Corollary [1.3.6] except now we use

Lemma [4.3.8 and a different set of I' functions given by

r ( S k()= kz(j)l) r ( S ka() =3 m)l)

r L rirg—1 rirg—1
{k‘l(])7k2(])v‘]j ?:1 T F(T’QT1(J)-{~T2-’I‘2(J)-1) F<T1T2(J)+T1—T1(J)—1)
rire—1 rire—1
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Corollary 4.3.12. There exists (Vk,, . ky,s.a) € Q such that, Q = dx; Adxs is a primitive

form and ¢, g are flat coordinates for a rank two loop polynomial.

Proof. This is proved in the same way as the chain case in Corollary [4.3.7] O

This method of calculating flat coordinates could be extended to Fermat, chain and
loop polynomials in rank N > 2, although the details are tedious to write down.
In the rest of this thesis, we assume that any collection (vg, g, r14) in rank two is

suitably chosen such that dz; A dzy is a primitive form and ¢, g are flat coordinates.
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CHAPTER 5

WALL-CROSSING

In the previous chapter we defined a primary open Saito potential as the versal defor-
mation written in terms of the flat coordinates ¢,(s). However, we have already noted
that the change of variables s +— t cannot necessarily be done uniquely. In this chapter,
we start by giving an example of Corollary in the case that Wy = a1 + 123 by
explicitly constructing an open Saito potential given that dx; A dxs is a primitive form.
We then describe the set of possible open ancestor Saito-Givental potentials by defining
a Lie group of wall-crossing transformations. We conclude by proving that this group
acts faithfully and transitively on such potentials, whereby the main results of the thesis

are Theorems [5.3.3]and [5.3.4] Corollary is a direct consequence of these results and

explains the computational result given for Wy = z} + z,23 in Section 5.1.

5.1 Motivation

To motivate this section, we consider the example of the elliptic singularity Wy = x} +
x125. In Chapter 3, we have seen that dz;dr, is not a primitive form. In particular, for

the expression

/ Vel dx, das

contains A terms of the form 1+ O(s3;) when integrated over a cycle 2y and where s3;

is the marginal parameter.
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To overcome this issue, we consider an open Saito potential W € Alzy, xs] where
A= C{{tij}(i’j)eB} /Z with Z an ideal in A and B is the index set for the standard good

basis which in this case reads,

B ={(0,0),(0,1),(1,0),(2,0),(1,1),(0,2),(2,1),(3,0), (3,1)}.

Suppose we choose the ideal Z that is generated by (¢;;) for (i,5) € B\ {(3,1)}. One

open Saito potential at first order in t3; is
W =z} + 5175 + t3 2570,
Now suppose we consider higher order terms and define
WO = 2t wyad + tg ot + Mth ade, 4+ nts o). (5.1.1)

One may view the addition of the terms \;£3, 23z and pt3,27 as a scaling of the original
potential. Another reason for perturbing by these terms is that, viewed as sections of the

Gauss-Manin vector bundle, we have

[21] = =[], [za3] = -

: .

h
3
Hence, the addition of these terms corresponds to a point in the moduli space of primitive
forms for E71’1) defined in Section 5.4 of Li, Li and Saito |LLS14].

The factor of t3; in the perturbation is a judicious choice for the following reason.
Suppose we chose the ideal Z to be the generated by the same parameters but with ¢3;

as an additional generator. Then working over this ring we have

) 3 3.3 3, 4\k
W /h B / W/h (312217 + Mit3, 2571 + fit3 77)
e drdzy = e
/Eoo 182 Z AT

=00 k=0
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where we have expanded the exponential. Modulo ¢4, we find that this is equal to

3 3
oWo/h 31 ﬂ 3 31, 4
/: 0 <1+3'h3 8] + MRt + >

There are no 3, terms since these vanish using integration by parts. To calculate the

other terms, we use the by parts formula in Lemma [3.2.20]

(3 ma) DG+ m)
/ dxidx, x2xleW°/h (—h)m2tm
00

which is valid for ¢ = 3mgy and 7 = 4my + my. This yields the expression

3
VO iy = 1 — ti”l(? 2+ i ) + 0L
/Eoo T1dre = 6 108+ 1+ p1 +O( 31).
Choosing A\; and p; such that
7

108

then ensures that the appropriate h° terms vanish at O(£3;). One may repeat this proce-

dure perturbatively to all orders to give a primitive form.

Remark 5.1.1. This matches the spirit of the Gross-Siebert program [GPS10; GS11b]
whereby degenerations are constructed order by order using scattering diagrams and
interpreted as instanton corrections. See |Aur09; GSlla; GOR15] for an exposition.
Despite this similarity, it is not obvious how to incorporate Landau-Ginzburg mirror
symmetry into the Gross-Siebert program: there is no target space for a Landau-Ginzburg
model and hence no corresponding SYZ fibration. Therefore, the combinatorial machinery

of the Gross-Siebert program is currently out of reach for us.

Rather than calculate these linear constraints directly, we will describe a wall-crossing

group for Landau-Ginzburg potentials. This is analogous to the construction of the wall-
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crossing group of Gross-Kelly-Tessler. The wall crossing does in fact contain information
on these relations.

More precisely, consider again Wy = a1 + z123. Let V be the vector field defined by
V = C . tgl(ZElal — .17282)

where C' is a constant. The wall crossing group is then generated by ¢" and where the
group multiplication is given by the Baker-Campbell-Hausdorff formula.

The action is given by the following lemma.

Lemma 5.1.2. With V' as above, we have

k _ k
11— eVry =eBxy,  xe > eV ay = e g, (5.1.3)

Proof. By virtue that x10,, and z20,, commute, we observe that

oV — oCthimde, | —Cth220s,

Hence, since az0, is the generator of multiplication by e®, we find

k k ok ‘ Ok
evl,l — ect31$18x1x1 _ GCt?’ll'l, €V.Q72 —e Ct31x2812x2 —e Ct31.’L'2

as desired. O

Thus, taking W as in equation (5.1.1)), we find that, modulo ¢, terms, W) trans-

forms as

W s WO = 2} + 2125 4+ taymead + 3,225\ — 20) + £35(11 + 4C) ]
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Comparing to (5.1.1), the wall crossing relations on \; and pu; are therefore

AL = A — 20, U1 =+ 4C. (514)

We note that this transformation leaves the linear relation (5.1.2)) invariant.
To further emphasise this point, we repeat this procedure up to t$; terms. We choose
the maximal ideal Z to be generated by (t;;) for (i,7) € B\ {(3,1)} and additionally ¢Z,.

The potential is now

WO =2t 4 2123 + tgy 2003 + AMita oy + pats xt + Ytg mowd + MotS 2571 + piot S w1

Acting via " yields the wall crossing formulas

/\2>—>)\2—20>\1+202, ,UJQ’—>,LL2+40,U1+802, ’7'—)’}/—}—20 (515)

with A; and p; transforming the same way as before. It can also be calculated that at

O(t5,) the integral we have is

)\21.61;2 21,8 )\ :L,le(] 1,31.13 $3x9 3761'18
/( 122 1+M12 L \ade +ppri+ 2 62 1 H 62 1 +>\1u1x§x?+722 Lt ,;28 )tgleWO/hdxldxz.

Repeated application of the by parts formula yields the linear relation

7 1 1 7 91 1 7 1729
2+ : Ay — —pig + ——A1 + 1+ M — =Y+ 5o = 0.

2
N2 2o —
/"3 6 486 3888 18 216 2916

9

Again, we find that this relation is invariant under the wall crossing transformations in

equations (5.1.4) and (5.1.5).
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5.2 The Wall-Crossing Group

We now define the Landau-Ginzburg wall-crossing G 4w, group for a general Landau-
Ginzburg model Wy. To define G4 w,, we construct a larger group G4 considered in

Section 4.3 of |[GKT22b| of which G 4w, is a subgroup.

Proposition 5.2.1. Let A = Az, Fix a maximal ideal m C A. Then the vector space

A K = @ Zm . <$‘111 A x‘]IVN ((al + 1)$1a;,;1 — (Cll + 1).%1811)) (521)

can be endowed with the structure of a graded nilpotent Lie algebra. Furthermore, denote

Ga = limexp(ga k).

Then ¢ € G4 < Auta(A[[xy,. .., xn]]) satisfies the following properties:

1. 9 has the form
Y =1id mod ({t,q}|p € B,d € Z>y) .

2. 1 preserves the volume form dzq A -+ A dxy.
3. 1) preserves the ideal generated by [[Y, z;.

Proof. Define

RK = A[:Cla s wrN]/(:Cl? s 7‘TN)K+1
so that the power series ring A[[x1,...,zy]] is the inverse limit of Rx. Let
N
Dg = P Rk,

i=1

be the A-module of derivations of Rx equipped with the usual commutator as the Lie

bracket. The vector space g k is a subspace of Dy and we claim that it is closed under
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the commutator. Indeed, set

Vo= g <x‘1‘1 ey ((ai +1)210,, — (a1 + 1):1ci8$i)>

and

Zga (e (65 4+ D, = (b1 + D204,

for some g¢;,g; € m with 7,5 =1,..., N. We calculate

[Va, Vil = Z 9i9j ( II x‘”“”) (( a; +b¢+1)a+(aj+bj+1)5)x16x1—(a1+b1+1)(oz:cz-c‘?xﬁrﬁxj@xj))
i,j=1
(5.2.2)
with
—(b] -+ 1)(@1 + 1)@1 + <b1 + 1)(&1 + 1)0,

J
o = , —
G1+b1+1 5

a; + bl +1

which implies closure under the Lie bracket. We define a grading on g4 x as the one
induced by the grading on A[zy, ..., zy]. In order for to be a decomposition into
homogeneous pieces, we require that each g; € m in the summation is homogeneous and
of the same degree. Compatibility of the Lie bracket and the grading then follows from
equation . As g4k is nilpotent, we form the Lie group Gk := exp(ga k) upon
which we take the inverse limit. As sets, we identify G4 with the inverse limit of g4 g,

which we write as g4. We note that for V' € g4, the group element exp(V') acts via

n

f=> (5.2.3)
n=0

The exponential ensures that elements of G 4 i are the identity modulo the ideal linear in

t,q.- Thus property 1 is satisfied. Property 3 can be seen by acting elements of ga x on

[TV, z;. Finally, we show that elements of G 4 preserve the volume form. This is equivalent

to showing that Ly (dzy A---Adzy) =0 for V =z - - 23 ((ai +1)210,, — (a1 + 1)%0%.)

and where Ly is the Lie derivative. Applying the homotopy formula for the Lie derivative,
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we find

Ly(dzy A -+ Nday) =d((V)dxy A -+ - ANdxy)

since dxy A - -+ Adxy is closed. The right hand side of the above equation reads

d(m(fl cexl ((ai + Daydoy A---doey — (=1)"Hay + 1)dzy A - cdzy Ao A de)>
= a9 2 (e + D@+ 1) = (@i + 1)(ay + 1) )day A Aday

=0

as desired. O

Remark 5.2.2. We remark that the vector fields in g4 are not the only ones that preserve
the volume form. Indeed, vector fields of the form f(zy,...,7;, ..., xN)0,, also preserve
dzy A --- AN dzry. However, these vector fields are irrelevant for our purposes in relation

to enumerative theories. See Definition 3.18 of strongly positive in |[GKT22b].

Definition 5.2.3. For a Landau-Ginzburg model Wy, the Landau-Ginzburg wall-crossing
group G 4w, < G 4 is the group of elements 1) such that ¢ is still an open Saito potential

i.e. each monomial in YW with non-zero coefficient vy, . .7,.a must satisfy (ky,...,ky) €

Sk
Q-Bal(1,d). The primary Landau-Ginzburg wall-crossing group is defined by restricting
G aw, to d = 0 with the additional quasi-homogeneity condition: ) commutes with the

grading operator &£.

In the rest of this section, we use Definition to obtain necessary conditions so

that the exponential of V' € g4 is an element of G 4 w,.

5.2.1 Quasi-Homogeneity

The quasi-homogeneity condition is necessary since it implies that i) preserves the quasi-

homogeneity of primary open Saito potentials W. Indeed, assuming that £y = & on
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primary open Saito potentials, we observe
Le(WW) =EWW) =0(EW) = ¢(LeW) =W

since W is quasi-homogeneous of degree one.

Lemma 5.2.4. Fix V,, ., € g4 where

N
Va1,...,a1\1 = Zgl . <x‘111 - q]‘]lVN ((az + 1):1018“ — (a1 + 1):1018351))
i=1

for some choice of homogeneous elements g; € m with degree degg; = c € Q for each .
Then

[67 ‘/al,...,aN] = (deg ‘/ah...,aN) : ‘/al,...,aN

where

N
deg ‘/(11,...,(11\7 =c+ Za/i deg Z;.

i=1
Proof. One may see this via a direct calculation. As an alternative proof, one recalls the

Lie derivative on vector fields,
LeVayoan =€, Vay
Since deg g; = c is the same for each ¢, we have
Legi = - gi.

This is sufficient to imply Vj,, . ., is homogeneous. More precisely, there is a well-defined

degV, € Q such that

1@ N

1111

Indeed, to calculate degV,, . we treat 0,, as having degree —degx; since Lg0,, =

LAN Y
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[€,0,,] = —degx;0,,. Noting that x40 thus has degree 0 for each k, we find using the

Leibniz rule for the Lie derivative

N

LoV = 3 (Legiaft - afl + gile(at -+ 3)) - ((as-+ Vardh, — fas + Vi, )

=1

N
— <C+Zajdeng) Vi an
7j=1

as desired. O

Proposition 5.2.5. Fix V,, an) € G4 is a correspond-

..........

ing element of the primary wall-crossing group. Then the quasi-homogeneity condition

S =€

is equivalent to

Proof. We first observe that the quasi-homogeneity condition is equivalent to [£, 1] = 0.

Assuming that this holds, we now show that [£,V,,

tator [£,1]. By (5.2.3)), we have

an] = 0 by calculating the commu-

.....

1 1 k B .,
[87¢] = [g7exp(va1 77777 CLN)] = Z E{g"/aki ..... aN:| = Z E ‘/arl,..l.,a]\][g?‘/;ll ----- GN]VCL]? ..... an"*
k=0 """ k=0 """ r=1

77777

.....

duced from equation (}5.2.4)). O
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Corollary 5.2.6. The primary wall-crossing group is trivial if and only if W, is an ADE

singularity.

Proof. Let Wy be an ADE singularity. For a contradiction, assume that the primary

wall-crossing group is non-trivial. Hence, V' € g4 is of the form

N
Zgi S ERRRY Ao ((ai + 1210, — (a1 + 1)951-8%).
i—1

where there is at least one ¢ = 2, ..., N such that g; # 0. From the previous proposition,

we have the condition

N
degV =degg; + > a;degz; =0 (5.2.5)

j=1
for each ¢ = 2,..., N. The a; are non-negative and the degx; are positive. Thus, for

equation (5.2.5)) to hold, we must have deg g; = 0 and a; = 0 for each 7. This provides the
contradiction: simple singularities are characterised by their flat coordinates all having
strictly positive degree so that degg; > 0 if g; # 0. Thus, g; = 0 for each ¢ and the

wall-crossing group is trivial. The converse is proven similarly. O

Corollary 5.2.7. For simple elliptic singularities with unique marginal flat coordinate ¢
of degree zero, the primary Landau-Ginzburg wall-crossing group is generated, as a Lie

group, by vector fields of the form

V = g: Citki (l’lal — xz@)

i=1
where C; € C and for some k; € Z~.

Proof. Denote a generator of the primary Landau-Ginzburg wall-crossing group by V €
g4. Due to the additive structure of ga, without loss of generality, we assume that the
g;’s are monomials. Applying the same reasoning as before, we find that degg; = 0 for
each © = 2,..., N. Simple elliptic singularities, however, are characterised by the fact

that all such g; have non-negative degrees and the unique flat coordinate with vanishing
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degree is the marginal coordinate ¢. Thus, we must have g; = C;t* implying that V is of

the required form. O

Remark 5.2.8. For generic singularities, one may have degg < 0 and the previous

reasoning fails.

The final step for the primary wall-crossing group of elliptic singularities is thus to

determine ;. To do this, we return to Definition [5.2.3]

5.2.2 Wall-Crossing for Elliptic Singularities

In Definition [5.2.3] we enforce the condition of ¥)W is an open Saito potential as a
necessary condition for the existence of a mirror to an expected open FJRW theory.
For simple elliptic singularities, this is sufficient to completely describe the primary wall-
crossing group. The algorithm that we propose for finding V" applies to any simple elliptic
singularity in Fermat, chain or loop form in either rank two or three.

Firstly, the following lemma is useful.

Lemma 5.2.9. Let W, be an elliptic singularity in rank three. Fix

V.= th (1181 - 17262), V/ = tk3 (17161 - ZE383)

as two elements of g4. If ¢” and e are both elements of the wall-crossing group G AW

then k9 and k3 are not coprime.

Proof. Let z7"x5”x5® be a monomial in an open Saito potential of a simple elliptic

singularity Wy. Under V' the monomial transforms as

V_mi,..mo, .m3 __ (ml—mg)t’@ mi ..M, . m3
e’ Myt =e xah? g, (5.2.6)

Similarly, we observe that

V! _mi,ma.m3 _ _(m1—m3)tk3 _mi_ma _ms3
e’ xMtxlrlt =e x M ay s, (5.2.7)
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After expanding the exponentials in ((5.2.6) and ([5.2.7]), the transformed open Saito po-
tentials contain terms proportional to t*22 7" 25?25 and tF 2" 20225 respectively. Ap-
plying Definition [5.2.3] we find the same form of balancing conditions that constrain ks

also constrain k3. Although the k; are not necessarily uniquely determined from these

conditions, we deduce that ks and k3 must have a common factor greater than one. [

Proposition 5.2.10. Fix W, an elliptic singularity in rank N = 2 or N = 3. Denote
by t the marginal parameter corresponding to the standard good basis element xz#<. If

g = €V is an element of the primary Landau-Ginzburg wall-crossing group then V is of

the form
N
i=1
with each k; satisfying
-1
ki(Bly,)  pe € 2. (5.2.8)

Proof. In the following we consider the wall-crossing in three cases: the Fermat term z;,
the chain term x;_qx;* and the loop term x.'z;.; for fixed i in the open Saito potential.
Without loss of generality, we assume that k; = k for each ¢ and for some k. Indeed, we
choose k as the smallest among the set {k;},; since k and each k; have a common factor
greater than one via Lemma [5.2.9, any selection rule which is true for £ is also true for

V' on each term and expand

k;. The strategy for each term is then the same: we act via e
the exponential. To first order, this has the effect of adding t*z* to the Fermat, t*z;_; 2}’
to the chain, and t*2"z;,; to the loop terms in the open Saito potential. Each of these
terms must be balanced according to Definition [5.2.3] We thus write down the selection
rules for each of these terms which will constrain the values of k.

Case (i): Terms of the Form t*z}". The Fermat term t*z] in the open Saito potential
must satisfy the integral degree condition (4.1.4]). The left hand side of this condition

reads

" (2k 47— 1) — O — 1, 0% — 2kO
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for each j. The integral degree condition is that this expression must be an integer.
Substituting the values of the phases, we find that the above selection rule becomes the

following constraint on k,
W,

(T’i — 2)52] + 2]{'(E_2T/Lc)j €7 (529)

for each 1 < 5 < N. Although the first term appears to be redundant as it is an integer
already, we temporarily keep this term. We may further strengthen constraint ((5.2.9) by
imposing the grading condition of Definition [4.1.1] Indeed, we find that (4.1.5) reads

(7’@' — 2)(51] + 2]€(EI;/1T,U,C)J = 7’@'51'3' mod 2
0
for each j. Hence, we indeed find

kEyrpc € 2.

Case (ii): Terms of the Form t*x;_12]". Consider the chain term t*z["x; ;. The

integral degree condition for this term is

qu(2/~€ + 1) — @;‘)Ot — 1,07 — @fi’l — 2kO) € Z.
Substituting the values of the twists we find
(7”1' — 2)5,” — 6i*1,j — Qk(EI;/(le,LLC)J cZ

similar to (5.2.9)). As before, we impose the grading condition which yields

(TZ' — 2)51] + 51'_1,]' + 2/{3(EI;%T/JJC)] = riézj + (51_173' mod 2.
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Hence

]{Z(EI;%T/JJC)J € 7.

Case (iii): Terms of the Form t*z[ x;y,. This is essentially the same as Case (ii). The

integral degree condition for this loop term is
q (2k + ;) — O — ;0% — O] — 20/ € Z.
for each j. Substituting the values of the phases gives the constraint
(r;: — 2)0ij + i1 + 2k(E;V2T/,LC)j € Z.
as desired. Imposing the grading condition,

(TZ' — 2)51] + 51'4_1,1' + Zk(EI;%T/JJC)] = riéij + (51'_:,_173' mod 2,

one finds the same desired result as above.

]

Remark 5.2.11. The above proposition shows that the wall-crossing group is not always

the trivial group. Furthermore, equation ((5.2.8) is identical to equation (15) of [MS16]

which arises in the related context of Picard-Fuchs equations for elliptic curves. The

tuple (p., k) satisfying (5.2.8]) is known as the charge vector.

Example 5.2.12. Consider the singularity Wy = 29 + x5 4+ 23. Consider the vector field

V' given by
V= tk(l'lal — $282) + tk(asl(?l — $383).

In the case of 3, this can be used to find conditions for k given that i = 3 and r3 = 3,
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together with p. = (1,1,1) and

1

5 0 0
=103 o

0 0 3

Thus the equation ([5.2.8)) of the above proposition yields

kE;V(le e =

W=

W=

Hence, k must be divisible by 3. This agrees with the primitive form calculation in section

6 of [LLS14]. Therefore, the action of the wall-crossing group is given by €' - W where
vzﬁgm@—@@yum@—@ao.
Using equation ([5.2.6)) we calculate that
eV 11075 = 112923,

As in Proposition [£.2.8 we restrict W so that all non-marginal parameters vanish. We
choose s(t) to be the inverse of the Schwarz triangle function. We refer the reader to

Appendix A.1 for details of these functions. Thus, we have
W(t) — Wo = S(t)l'll'gxg

we find that W (t) is a fixed point of the wall-crossing group action. Thus, since s(t)

is modular, modularity is preserved by the action of ¢V for the cubic in P2. However,
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this will fail for generic simple elliptic singularities. For example, consider the singularity
W = a2} + x123. The versal deformation is given by W (t) — Wy = s(t)x3z,. Under the

wall crossing group generated by
V = t3(210) — 2205)
this transforms as
eV (W(t) — Wg) =e’ (3(25)35:1)’:62) = 2 s(t) 2.

3 . . .
However, €?*"s(t) is not modular invariant.

Example 5.2.13. Consider Wy = 2] + z3. We find

1
= 0
Ejr=1"
0 1
0 3
Thus we find
k
-1 2 2
2

Thus, k£ must be divisible by 2.

Remark 5.2.14. We remark that the open Saito theory of a singularity W, is equivalent
to the open Saito theory of its Morse stabilisation W,. This can be seen for an elliptic
singularity from the viewpoint of wall-crossing. Indeed, for an elliptic singularity W

consider the vector field
V= Cgtk<l'181 - .Z'Q(?Q) + Cgtk<$1al — 1'383).

We have that

Wo = Wo(z1, 22) + x5+ e Wolwy, 2) + 6_2038k$§.
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However, the presence of the term t*22 places no extra constraint on k. Indeed, we have

that

)
*

* *
kEgrpe=k|x « 0] |x
0 0

N[ —=

Thus, the third component of kEv’VlT 1t vanishes and so is automatically an integer.
0

5.3 Properties of the Landau-Ginzburg Wall-Crossing
Group

To show that we have made the correct choices when constructing the Landau-Ginzburg
wall-crossing group, in this section we prove that the corresponding group action of G 4 w,

is faithful and transitive on open ancestor Saito potentials.

5.3.1 Faithfulness

The main result in this subsection is the following.

Proposition 5.3.1. Let W, be a chain or loop polynomial in rank two and let A = A; or
Apsym. Suppose G 4, is the Landau-Ginzburg wall-crossing group. The action of G 4w,

on the open ancestor Saito potential is faithful.

Proof. Let €V € G 4w, so that V' is contained in the Lie algebra gaw, x. Let K > 2 be
the smallest integer such that V' = 0 mod m¥ but V # 0 mod m®*!. Then working
modulo m* ! we find

Wi "W =W +V(W).

Hence, to show that this action is faithful it suffices to check that VW = 0 modulo m#+!
implies V = 0.
The element V' is a linear combination of vector fields given in gaw, x. Choose a

minimal a; so that V' has a non-zero summand in the (a;,as) sector of the direct sum
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(5.2.1) for some ay. Choose as such that it is minimal among choices that fix a;. In

K+1

particular, we consider the minimal pair (a;, ag) occurring in V' mod m with respect

to the lexicographic ordering so that V' is a summand of V. Thus we may write V' as
Vi=C-2{'ad? <(a2 + 1)210,, — (ag + 1).:1:28:,;2).
Here, C' € m® /m®&*!. Now, for the chain polynomial W = z|* + x125* we find
VIV =C- <r1 (ag + D)aP ™™ as? + (ag + 1 — ayre — 7"2)3:‘1”“3532*”2)

Note that the first term is always non-zero. However, by minimality of (a;, as), there is
no cancellation of such terms in VW = 0. This implies C' = 0 so that V = 0 mod m**!
contradicting the definition of k. Thus V' = 0.

For the loop polynomial W = z]'xy + x125* a similar calculation yields
V’W =C . ((CLQ’I’l +r—a; — 1>$C1l1+r1x€212+1 + (a2 41— aire — 7’2)1'(111—’_11'(212—“?)-

It suffices to show that at least one of these terms is always non-zero, since the same

reasoning as the chain polynomial will then apply. Hence, assume that
asr1+ri—a;—1=ay+1—ayrs —ry =0.
Solving for ay and substituting yields the equation
(ay + 1)(rire — 1) = 0.

This cannot be true since 71,y > 1 by assumption that Wy is non-degenerate and a; > 0
by definition of the wall-crossing group. This completes the proof for loop polynomials.
O

Remark 5.3.2. The proof of faithfulness of the wall-crossing group action for rank 3

124



elliptic singularities is immediate. Indeed, the action is given by multiplication which is

certainly faithful.

5.3.2 Transitivity

The main result of the paper consists of the following two theorems. Via Corollaries

14.3.7 and [4.3.12 we assume that any collection (v, s, 1.4) in rank two is chosen such that

dxi A dzy is a primitive form and ¢, g, are flat coordinates.

Theorem 5.3.3. The Landau-Ginzburg wall-crossing group G 4w, acts transitively on

open Saito potentials for Wy = x}' + x125?.

Proof. We first consider the non-symmetric case and work with the ring A;. Let vy, k,.1.4
and vy, 4, 7.4 be two coefficients of open Saito potentials. We use induction and prove
that for any positive integer k, there exists g € G'aw, such that g(ve, ky.1.d) = Vi, g, .1.a for
any (ki,ks) € Q-Bal(I,d) with roky + r1ks — ko < k. The base case k = 0 is immediate
since we take g = id. Define an ideal T, = (¥ 252 € A;[[zy, za]] | roky + m1ko — ko > K.
For the induction hypothesis, assume that there is a g which for a given k satisfies the
transitivity property. By replacing vk, x, r.a With ¢(v, k,.1.4), We assume that W = W
mod Zy. Now let J C I be a set with (ki, ks) € Q-Bal(J,d) and roky + r1ko — ko = k.

Consider the coefficient of u; in W* — W¥,

(_1)“]'71 Z (Vl/cl,kz,J,d — Uky o d) TS TR
(k1,k2)€Q-Bal(J,d)

Recall that we have a complete classification of balanced conditions for rank 2 chain

polynomials in Example Namely, we must have

roky — ko = rory(J) —ra(J) mod rire, ke =1ro(J) mod .
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Equivalently, k; and ks can be written in terms of an integer

dieg i — r1(J) i >ies bi — 7°2(J>
1 T2

p=0,....N—1,N =

—|J]+1

with

ki(p) =rm(J)+pri+ N —p, ka(p) =re(J)+ (N —p)ra.

Note that rok; + r1ky — ks is independent of p and hence is always k.

. . /
Thus, we write the coefficient u; of W* — W" as
- (I pr1+N—p_ra(J)+(N—p)
J|—1 / r1(J)+pri+N—p _r2(J)+(N—=p)r2
(_1)| | Z(Vkl,kz,J,d — Vky ky,J.d) 1 o) :
p=0

Let p’ > 0 be the smallest p such that vy .. ;4 7 Vky ky.7a- Consider the vector field

v, = Vky ko, J,d k1(p)—1 ko(p'+1)
V= (=) Lt L (k "+1)+1)z10,— k /x8>.
(=1) JkQ(p/+1>+1_T2k1(p,) ! 2 (k2 (p' +1) +1) 2101 — k1 (p') 2202

Observe that this is an element of g4,. Modulo Zy4,, we observe that eV WV differs from
@) k2 ) and 21 @ pR2 0D Thig implies that eV

is indeed an element of the wall-crossing group. Moreover, the coefficient of u J:L‘]fl(p /)ZL‘SZ @)

W only in the coefficients of uz"'

in eVW" coincides with the coefficient of the same monomial in W*'. Hence, by replacing
WY with eV W?" and repeating inductively on p’, we assume that the coefficient of u; in
WY — W is

<_1)k(yllcl,k2,J,d - ’/kl,kz,J,d)iC?(JHeriC;Z(J)-

Therefore, there is at most one element (ki, ky) € Q-Bal(J, d) with vy, k,.5d 7 Vi, gyt
Furthermore, we inductively assumed vy 1 a4 = 1/,’41 k.0, When J" C J. From the

selection rules, we calculate

m(J, d) = T2k1+7‘1]€2—k’2 = T‘QTl(J)+T1T2(J)—T‘Q(J)+N’I"1T2 Z T‘Q’T‘l(J)+’T‘1T2(J)—T'2(J).
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Hence, if |J| > 2, by definition of v and the balancing conditions, we have A(J,d,v) =
A(J, V', d) = 0. For |J| = 1, we also have the same equality. Unravelling these equations,
we observe that they coincide apart from the contributions from the terms vy, x, 74 and
Vi koosa- Hence, these two terms must be equal.

The symmetric case A = Ajgym is similar. O

Theorem 5.3.4. The Landau-Ginzburg wall-crossing group G 4w, acts transitively on

open Saito potentials for Wy = z7'xs + 1257,

Proof. We first consider the non-symmetric case and work with the ring A;. Let vy, k,.7.4
and vy, 4, 1 4 be two coefficients of open Saito potentials. We use induction and prove that
for any positive integer k, there exists g € Ga,w, such that g(vk, x, 1.d) = Vi, g,.1.4 fOr any
(k1, ko) € Q-Bal(I,d) with roky + r1ky — k1 — ko < k. The base case k = 0 is immediate
since we take g = id. Define an ideal T, = (z¥' 252 € Aj[[x1, 23]] | roky +r1ko —k1—ky > k).

For the induction hypothesis, assume that there is a g which for a given k satisfies the
transitivity property. By replacing vk, k, r.a With g(v, k,.1.4), We assume that W = wY

mod Zy. Now let J C I be a set with (ki, ko) € Bal(J, d) with roky + ke — k1 — ke = k.

Consider the coefficient of w; in W* — W¥. That is to say,

(—1pli > (Viy koosd — Vin ko, g.d)T1 252
(k1,ko)E€Bal(J,d)

Recall that we have a complete classification of balanced conditions for rank 2 loop

polynomials in Example Namely, we must have
roky — ko = ror1(J) —ro(J) mod ryra — 1, riky —ky =1e(J) mod ryiry — 1

Equivalently, ki, ks can be written in terms of an integer

Yies @i —11(J) i Yies bi —1ra(J)

1 T2

p=0,....N—1,N =

—|J]+1
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so that

ki(p) =ri(J)+pri+ N —p, ka(p)=r2(J)+ (N —p)ra+p

Observe that roky + r1ky — k1 — ko is independent of p and hence is always k. Thus, we

. - !
write the coefficient u; of W¥ — WV as
- () +pri+N=p_ra(J)+(N—p)
_1\\J|-1 / _ ri(J)+pri+N—p ra(J)+(N—p)ra+p
(—1) Z(Vkl,kg,J,d Vky ko J.d) 1 Lg .
p=0

Let p' > 0 be the smallest p such that vy . ;4 7 Vk, ky.5a- Consider the vector field

v T VkikoJd ki (p)—1 ko(p'+1)—1
V e _1 |J| k1,k2,J,d 1,2, 1(17) 2(P (k / 1 8 - k / a >
M ) k)™ DO s

Observe that this is an element in g4,. Modulo Z,4, we note that eV W differs from W"

ki(p'), k2(p kl(p’+1)xk2(p’+1)
2

only in the coefficients of ujzy"™" x5 ) and u JT . This implies that €' is

indeed an element of the wall-crossing group. Moreover, the coefficient of u J:Elfl(p /)ISQ(p )
coincides with the coefficient of the same monomial in W*'. Hence, by replacing W" with
e”W" and repeating inductively on p’, we assume that the coefficient of u; in W — W¥
is

ki, ri(J)+Nr1 _ro(J)+N
(=1) (szl,kg,J,d — Vky ko, dd) T1 Lo .

Therefore, there is at most one element (ki, ky) € Q-Bal(J, d) with vy, k,.5d 7 Vi, ky.sd-
Furthermore, we inductively assumed vy k0 = Vg s o When J' C J. From the

selection rules, we calculate

m(J,d) :7“2]{71 —f—?"lk’g —]{?1 —k’g :TQ’I“l(J) +T17"2(J) —Tl(J) —’I“Q(J) +NT1T2

Z 7“27"1(J) +T1’I"Q<J) — Tl(J) — TQ(J).

Hence, if |J| > 2, by the definition of v and the balancing conditions, we find A(J, d,v) =
A(J, v, d) = 0. For |J| = 1, we also have the same equality. Unravelling these equations,

we notice that they coincide apart from the contribution from the terms v and v/. Hence,
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these two terms must be equal.

The symmetric case A = Ajgym is similar. O

Using these results we now clarify the computational result from the motivation sec-

tion at the start of this chapter.

Corollary 5.3.5. Let Wy be a chain or loop polynomial in rank two. Let [ be a finite

marking set. Suppose that v and v are balanced chamber indices with respect to I. Then
A(J,d,v) = A(J,d,V)

Proof. By the previous theorems on transitivity, there exists a g € Gaw, such that
gv = V. Viewing g as a map on the coordinates x1,...,zy, we find via the projection
formula,

g (eWV/hdxl JARERWAY de>.

/_ewu/h’dxl/\n-/\dxjv:/i

97 (8)
However, from the definition of the wall crossing group, we know that ¢ is identity modulo
an ideal linear in the t variables. Thus, the integral is unchanged if we integrate over
g1 (2) or Z. Again by the definition of the wall crossing group, we know that g preserves

the volume form; for g = €" this implies

Since g acts on W via g - W» = W9 = W', putting this all together we find

T

ewy/hdzl/\---/\dx]v:/eWUl/ﬁda:l/\---/\de.

Comparing coefficients using Corollaries [4.3.7] and [4.3.12] we find the desired result.
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CHAPTER 6

TOWARDS OPEN FJRW THEORY

In Chapter 2 we began by reviewing closed FJRW theory as the geometric motivation
for the study of Landau-Ginzburg models. In subsequent chapters, we then reviewed
and extended open Saito theory. The advantage of this approach is that we can make
predictions about enumerative open FJRW theory, whilst bypassing the technicalities of
such a theory. This allows for the prediction of the existence of modular FJRW generating
functions in the elliptic case. This is stated more precisely in Conjecture Given
the results of Chapters 4 and 5, we predict, moreover, the definitions of balanced W-
spin disks so that the open Landau-Ginzburg mirror conjecture holds. This is stated in

Conjecture [6.1.14]

6.1 W-Spin Structures

6.1.1 Open r-Spin Disks

To motivate the main definitions, we review some constructions of open r-spin theory
given in [BCT22a].

We recall that an r-spin disk is defined, roughly, by the data of an orbicurve C' together
with an involution ¢ : C' — C' so that the coarse underlying curve |C] is given by gluing

two curves ¥ and X along the common boundary 9% and where X is obtained by reversing
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the complex structure. In particular, if z;,...,2 € ¥\ 9% are internal marked points,
then the conjugates Z; = ¢(2;) are internal marked points in ¥ \ 9% for some internal
marking set [ with [ = |I|. We also let wy, ..., w; € 0¥ be boundary marked points for
some boundary marking set B with k = |B|.

The r-spin structure also contains the data of a spin bundle S which is an orbifold

line bundle over C' together with an isomorphism of orbifold line bundles

] ] |B|

Yol + L[]+ mZZI[wm])) (6.1.1)

n=1

© S®T — W(Clog ‘= p*W|C\,log - p* <W|C| ® O(

where [2,], [Z,], [w,] are the corresponding divisors on C' and p : C' — |C| is defined by
forgetting the orbifold structure on C. It can be shown that the underlying coarse bundle

|S| = p.S satisfies

1] 7] |B]
SIS we ® (9( Y ] = Sz - bm[wm]) (6.1.2)
n=1 n=1 m=1
for some choice of twists a,, and b,),,
a, € {0,1,...,7 =2}, by =1r—2. (6.1.3)

These twists correspond to the standard good basis elements of %y, for Wy = 2" and in
Example [6.1.10| we shall, explain, via mirror symmetry, the origin of the twist r — 2 for

each boundary point.

Remark 6.1.1. Based on work of Chiodo |ChiO8] and Norbury [Nor23|, the authors of
[CGG23| establish a version of r-spin theory where one considers instead the log anti-
canonical bundle w\\él‘ The authors subsequently show that, for r = 2 and » = 3, a
generating function for this enumerative theory is the so-called Brézin-Gross-Witten 7-
function [BG80; (GWS80| of the r-KdV hierarchy. By computing W-algebra constraints
as evidence, it is conjectured that this also holds for all . This 7-function is a continu-

ation of Kontsevich’s matrix model [Kon92] to negative values of r. For further details,
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see [MMS96]. It may be interesting to construct an analogous ‘open negative r-spin’
theory, with corresponding structures of topological recursion relations and integrable

hierarchies.

6.1.2 Open W-Spin Disks

The case of r-spin disks is a specific case of W-spin disks for the choice the A,_; singular-
ity. For a proof of this fact, see [AJ03; [FJR11a|. Here, we generalise this to any Sebastiani-
Thom sums of Fermat, chain or loop polynomial following [FJR13| and [GKT22b]. We
denote such a polynomial by W whose exponent matrix is Ey = (). The following
is a simplification of the usual notion of marked W-spin disk but it is sufficient for our

purposes. We say that a marked W-spin disk is a genus zero W-spin curve with boundary,

(C> {wm}ﬁzzlv {Zn}iz:h {Zn}fzzlv ¢> {Si}i]\;h {901' fil)

where
1. C is an orbicurve

2. ¢ : C'— C is an anti-holomorphic involution that realises |C| as a union of curves

¥ and Y with conjugate complex structures and common boundary 0% = 3 which

is the fixed locus of |¢|.
3. zn,Zn are internal marked points such that ¢(z,) = Z,,
4. w; are marked points on the boundary of C' so that ¢(w,,) = W,

5. S; are orbifold line bundles over C' such that the maps

N
Tij
()01' . ®S] ! — w07]0g
j=1

are isomorphisms.
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To introduce the twists, recall that the spin bundles S; induce a representation II,
G, — (GE*)N of the local group G, at each orbifold point z. For each orbifold marked

point, x, we denote
S Hx<1) _ (627ri®'1m’ o 6271'2'@7\?3) e (G%ax)N

We recall that such group elements are called decorations at x and the associated @7 =

(@F, e ,@17\9,”) are called FJRW phases. Given (6.1.1)) in the r-spin case, we expect that

there is an isomorphism,

N

® 15517 = e @ O = 3 3150} = () + ) = 3

j=1 n=1j=1 m=1 j=1

(ri;©]" — wm])

(6.1.4)

It will therefore be important to calculate and give explicit expressions for the phases of
the corresponding internal and boundary marked points as this allows one to deduce the
twists in . The main tool we use here are selection rules that arise from integral
degree constraints of spin bundles and the dimension axiom for non-vanishing FJRW

invariants.

6.1.3 Selection Rules for Open FJRW Theory.

In this section, with the absence of an open FJRW theory for general potentials, we define
balanced W-spin disks as those disks which satisfy certain numerical conditions: these
conditions are precisely the selection rules for the non-vanishing of invariants that would
be expected from such an enumerative theory. This is already well-known for r-spin disks

as described in [BCT22a], although it is instructive to review this here to set up notation.

Example 6.1.2. Let us consider these consider these integrality and balancing calcula-

tions from the point of view of open r-spin theory. Suppose that C' is an orbicurve with

P az—i—l

|7| internal marked points of phases ©" = and |B| boundary marked points of phases
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e/ = bJTH Here we take a;,b; € Z, and we include the root marked point in the set B of
boundary marked points. Given the antiholomorphic involution, we consider that there
are 2|I| + |B| marked points. Hence, given a r-spin disk with spin bundle S, the degree

of |S] is given by

1 g, +1 Elb,+1
deg|S| = —(2/I| +[J] —2) =2 -2 :
r n=1 r m=1 r
This simplifies to
] B

1
deg |S| = —r(2+22an+ > bm>.
n=1 m=1

This quantity must be an integer and we will impose this selection rule in a moment.
Since deg|S| < 0, there cannot be any non-trivial global sections of |S|. This implies

H°(C,|S|) = 0. By definition of the Witten bundle, we have
2 —r 4+ QZyz‘lai + Z'fil b;
r

rk W = dim¢ H'(C, |S]) = —deg|S] — 1 =

where in the second equality we have used the Riemann-Roch theorem. Thus to have
non-vanishing FJRW invariants we must have that this rank is an integer. Hence, we

recover equation (2.8) of [BCT22a].

We will now generalise the above example for any quasi-homogeneous superpotential

w.

Definition 6.1.3. Let Cj; be a genus zero W-spin disk with & boundary points and {
internal points and where W is an invertible polynomial with charges q1, ..., qn. We say

that Cyx,; is balanced if the following two conditions hold.

1. Foreachi=1,..., N,

l k
G(2l+k—2)—2> 0" = > Ol"=—-1—¢ €L (6.1.5)

n=1 m=1

where ©]%,©]% are the i'" components of the phases of internal and boundary

134



marked points respectively.

2. Furthermore, we have

l N
> 2d, 4+ e =20+k—3. (6.1.6)

n=1 =1

The conditions (6.1.5) and (6.1.6) coincide with (4.1.4) and (4.1.6). The following

observation reveals the geometric origins of these conditions.

Observation 6.1.4. The anti-holomorphic involution contained in the data of a W-spin

disk doubles the number of internal marked points. Hence the degree of .5; is

l k
degS;i=qi(2l+k—2)—2> 0" = > O]
m=1

n=1

Thus, equation (6.1.5)) is obtained by requiring deg S; € Z for each i. For simplicity we
now define

degS; = —-1—¢;

for some e; € Z. Supposing that the i** Witten bundle W, has been constructed over
the open W-spin disk C' in an analogous way to Section 2.4.2, the e; will play the role of
the degree of the Euler class of ;. We also note that since deg.S; < 0, we must have
H°(C,S;) = 0. This observation will be useful for Riemann-Roch calculations.

To obtain , we first suppose that the analogous Witten bundle together with

the tautological line bundles L%, as defined in Chapter 2, has been constructed over a

W-spin disk. We then match the rank of the Witten bundle and the dimension of the
moduli space of genus zero disks with £ boundary marked points and [ boundary marked

points. We denote such a moduli soace as Mg ;. For more details, see for example

[PST22]. Indeed, we have that
rk W; = h'(S;) = h'(|Si)).

Assuming |Cp x| is smooth, h*(]S;|) can be calculated via the Riemann-Roch theorem.
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Indeed, as before we have h°(]S;]) = 0 for reasons of degree. Thus, we find
rk Wy = h'(|S]) = —degSi| — 1 = es.

Thus,
N N
rk W= Zrk W, = Zei.

i=1 i=1
We note that the degree of e(W) is 2 rk WW. We now suppose there exists a moduli space,
ﬂg’/ k1> of W-spin disks with k& boundary marked points and [ internal marked points.
This moduli space has been constructed for W = 2" and W = 2" + y® in [BCT22a;
GKT22b|. To calculate dimg ﬂg‘f k, We consider M 1, the moduli space of disks with k
boundary points and [ internal marked points. Suppose further that there is an quasi-
finite and flat morphism st: W&J — M, defined by forgetting the W-spin structure.
We conjecture that such a morphism exists in the case of disks as it already exists in the
case of closed curves as explained in Theorem and Theorem 2.2.6 of [FJR13|. By

pushing forward through st we have
dimR M(Ii/k,l = dimR qu,l = 2dim@ MOJ@J = 2(2l + k — 3)

The first equality holds via the fact that st is assumed quasi-finite and flat. Consequently,

to define a non-vanishing FJRW invariant, we must have that

I
rk W+ Y 2d, = dime Moy

n=1
from dimension considerations when integrating. Hence, we find

N l
e+ > 2d, =214+k—3

=1 n=1

as desired.
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6.1.4 Concavity

Recall that we already defined a narrow and broad insertion in the framework of FJRW
theory of Chapter 2. However, we now recast this definition into the B-model using

Krawitz mirror symmetry in order to predict the concavity of boundary marked points.

Closed Invariants.

Definition 6.1.5. Consider a term in the closed Saito potential of the form JT._, ¢,, for
a potential Wy. We say that the insertion ¢,, is narrow if the corresponding phase ©"

given in (4.1.1)) has no integer components. Otherwise, the insertion is called broad.

The following lemmas are proven in Lemmas 2.1 and 2.2 of [Kral0, section 2.8],

although we provide more explicit detail here.

Lemma 6.1.6. For the rank N chain polynomial W = z}' 4+ - - - + zx_12}Y, the variable
t, in a Saito potential is a broad insertion if and only if the components of p satisfy

p; = 0N (r; — 1) where s < j < N for some s.

Proof. For an insertion ¢, to be non-concave, we must have that the associated phase
OF contains identity elements in some components. By permuting indices if necessary,
assume that these components are {s,s+1,..., N}. In other words, 7, = €*™®" fixes the
variables xg, xsy1,...,2y. Using the explicit expression for the phases ©# in Corollary

[3.3.11], for the component j = N we find the equation

pny +1

N

€ 2.

O =

This integer must be 1 since 0 < uy < ry — 1. Thus we find uy = ry — 1. We can then

solve the other equations iteratively. Indeed, for the j = N — 1 component, we find

_ 1 1
@,L]({_lIMN 1+ _,uN+ GZ

'N-1 'N—1TN
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again via Corollary [3.3.11] For uy = ry — 1 we thus have

HN—1 c7.

N-1

Since 0 < puny_1 < ry-1 — 1 we find uy_; = 0. One may repeat this procedure to find

that if the insertion 7,, is non-concave then p has components y; = d§/<%(r; — 1) for some

s < 7 < N. Conversely, such a p gives a non-concave insertion by definition. O

Lemma 6.1.7. Suppose the loop potential W = z'xe + x52x3 + -+ + 221 satisfies
r; > 2 for each 7. If N is even, then there are exactly two broad insertions corresponding

to pu; = 09%(r; — 1) and p; = 65V (r; — 1). If N is odd, all insertions are narrow.

Proof. Suppose that t, is a non-concave insertion. The only symmetry with non-trivial
fixed locus is the identity. Thus for a broad insertion, the group element that x* maps
to is the identity. However, by Lemma 1.2 of [Kral0], this can only happen for N even.
Therefore, all insertions for loops of odd rank are concave.

For N even, we claim that ¢, is broad if and only if u; = 5;?dd(rj — 1) or pj =
65v"(ry — 1). Indeed, for an insertion ¢, to be broad, we must have that the associated
phase ©* contains identity elements in some components. However, when solving © € Z
for some j™ component, the equations are identical modulo some permutation of the
indices. Hence it is sufficient to consider the j = N component which is given in Corollary

3.3.12, For N odd, we note that this component satisfies,

1
0<5 ((ul +1) = (2 +Dri+ -+ (v + 1)y - -rN_l) <1 (6.1.7)

since 0 < p; < r; —1 and where D = det Eyy,. Hence, a non-concave invariant must

satisfy
(,Ul‘f‘l)—(M2+1)T1+"'+<MN+1)T’1"'TN_1:D:T’l"'TN—l—l. (618)

Since p; < r; — 1 and r; > 2 we compare the coefficients of r;---ry and 1 to find
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uny =1y — 1 and py; = 0 respectively. However, since N is assumed odd, there is at least
one equation that cannot be satisfied if u; < r; — 1. Hence for loops of odd rank, all
invariants are concave, as already proven above. For N even, a similar analysis shows
that there are two non-concave insertions when p = (0,79 —1,0,74—1,...,0,ry —1) and

w=(ry —1,0,r3 —1,...,7rn_1 — 1,0). ]

Open Invariants.

Analogously to the closed case, we define narrow and broad insertions for boundary

marked points.

Definition 6.1.8. Consider a term of the open Saito potential of the form [T'_; ¢,,, [T, x}*
for an invertible Landau-Ginzburg model W. We say that the boundary insertion z; is
narrow if the corresponding phase ©% has no integer components. Otherwise, the inser-

tion is called broad.

Observation 6.1.9. Via Definition [3.3.9, we see that © having no integer components

is equivalent to the corresponding twist p in equation ([3.3.2)) being a narrow insertion.

To illustrate the main ideas in calculating the FJRW phases of boundary marked

points and whether they are narrow, we first discuss the open r-spin case.

Example 6.1.10. In |[GKT22a], the primary open Saito potential for W = z" is given

by fixing the versal deformation
r—2 )
Wy —Wo = sz’ (6.1.9)
j=0
with an appropriate change of coordinates
Sj = tj + O(tQ)

There are two types of boundary marked point to consider: the boundary z-points and

the root. To calculate the phase of the root, we consider the term sy ~ ¢y in (6.1.9). At
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leading order, this corresponds to an r-spin disk with one root boundary point and two

internal marked points. Thus, the selection rule (6.1.5)) reads

1
- 20" -0 =meZ

r

where OV is the phase of the two internal marked points. The value of @° is given in
(4.1.1) with = 0. The integer m is chosen such that 0 < ©™°" < 1. In this case, we
choose m = —1 yielding

@root =1 _}
-

To calculate the phase ©% of the z-boundary point, we consider the term syx ~ ¢tz in the
open Saito potential. This corresponds to a count over r-spin disks with one x-boundary

point, two internal marked points of phase ©!, and the root point. The selection rule is

2
=20 -0 -0t cZ.
r

Proceeding similar to the above, we solve for © to find

1
" =1--.
T

Thus, we have that the twist for the x boundary point and root are
rO* —1=r—2=r0"" -1

in agreement with the expression for b, in (6.1.3). Since the twist r —2 corresponds to the
standard good basis element 2"~2 which is a narrow insertion, the root and z boundary
marked points are also narrow via observation [6.1.9. In other words, ©% and ©*°' are

never integers for integer r > 2.

The above example is perhaps convoluted since we already stated in Chapter 2 that all

insertions are in fact narrow for W = z". Nevertheless, we can now extend this argument
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to the case of a general Sebastiani-Thom sum of Fermat, chain and loop polynomials.

Proposition 6.1.11. Let W be a Sebastiani-Thom sum of Fermat, chain and loop poly-

nomials. A boundary insertion of any W-spin disk is narrow.

Proof. Let W be any invertible polynomial with exponent matrix Ey, = (r;;). Let W7
be the BHK mirror polynomial with charges ¢f,...,¢%. Let ©%° 6% € QY be the
phases of the root and x; boundary point respectively. We first calculate the phases of
root and x; boundary points. Indeed, recall that the we denote the phases of internal
marked points are given by ©".

The standard good basis of the local algebra for any W always contains the element
i = 0. Hence, there is always the term t; in the open Saito potential since sy ~ ty to
leading order. This corresponds to a W-spin disk, with two internal marked points of
phase ©#= and a root boundary point. Hence the phase of the root is given by the

selection rule (6.1.5)),
g — 67" —20"" € Z.

As in the previous example, ©#=Y is given in (4.1.1)) which implies
root __ T
@j =1-gq;

since ©5°°" € [0,1).

Similarly, the standard good basis contains the element ;1 = é,, for any W where é,,
is the vector whose only non-vanishing component is unity in the i*" place. Thus, the
open Saito potential always contains the term tézixéli. The two internal marked points
corresponding to e, each have phase ©#=¢z;  The selection rules therefore read

2¢7 — 0 — Q% 20/ = 1 ¢l ez
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(@)

for each j =1,..., N. The integers e;” are chosen so that 0 < ©7* < 1. This implies

6 = o)+ of — 2Bghin) = &+ 2B

(@)

To determine e;

, we use the balancing condition (6.1.6]) for the term t,2* in the versal

deformation. This corresponds to a W-spin disk with total number of marked points

34+ SN | pi. The selection rule is

N N
g (14> ) — > w05 — 0 — 20" € Z.
i=1 i=1

Writing p = Zévzl 1€y, we find the left hand side becomes

N .
1= pel? (6.1.10)
=1

which is an indeed an integer. The dimension condition (|6.1.6)) reads

N N 4
> mey) = (6.1.11)

Since (6.1.11)) must hold for each p, we find egi) = 0;5. In summary, we have calculated

(__);oot -1 q]T’ @;ﬁz — 51']' 4 q]T . Q(E‘;})” (6112)

We now substitute both these phases into (3.3.9) to find that the j' component of the

twist of the root boundary point is
N
= Tij =2
i=1
and the j*" component of the twist of the z; boundary point is
[sz =Ty — 2513
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Via lemmas (6.1.6]) and (6.1.7]), these correspond to narrow insertions. This completes

the proof. n

Remark 6.1.12. We remark that equation (6.1.10) can be interpreted as degree of a
certain spin bundle Sj; that the degree is also negative implies that h°(S;) = 0 and

therefore, the balancing condition (|6.1.6)) is expected to hold in such a theory.

6.1.5 Grading of W-Spin Disks.

Now that we have calculated the twists of the root and z; boundary points, we may

impose a grading on the boundary points following |[GKT22b.

Definition 6.1.13. Let W be an invertible polynomial with charges ¢y, ..., gy and whose
exponent matrix has diagonal elements (rj)jyzl. For a boundary marking w on a W-spin
disk, define

1 ifp=r—2orr—1

0 otherwise.

Denote alt(w) := (alt;(w))Y,. Then a graded, balanced W-spin disk is a genus zero

=1

W-spin disk Cj, such that the following two conditions hold.

1. Foreachi=1,..., N,

l k
G(2l+k—2)-2) 0" => O"=-1-¢ €L

n=1 m=1

where ©]",©)™ are the i'" components of the phases of internal and boundary

marked points respectively.

2. If all insertions are narrow,

k
ei=—1+ Y alt;(w,) mod 2. (6.1.13)

m=1
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3. We have
N
i=1

We observe that for an z; boundary point we have alt;(z;) = 0,;, while for a root

iJ9

boundary point we have alt;(root) = 1. Hence, equations (4.1.5) and (6.1.13) coincide.

6.1.6 Open Mirror Symmetry

We start this subsection with the open Landau-Ginzburg mirror conjecture.

Conjecture 6.1.14. Given any quasi-homogeneous invertible and non-degenerate poly-
nomial Wy, there exists an open FJRW theory for W{', such that the open Saito-Givental

theory of Wy computes the open FJRW theory of W{.

Work of Buryak-Clader-Tessler [BCT22a; BCT22b| establishes an open FJRW theory
for Wy = 2" whilst the same is done in [GKT22b| for Wy = z}* + z52. In both of these
cases, Conjecture has been proven by Gross-Kelly-Tessler. In this thesis we have
not attempted to develop a open FJRW theory for more general superpotentials; instead
we produced results on explicit computations of potentials wall-crossing from the open
B-model. Any such open FJRW theory should match with our results.

The major difficulty with the open FJRW theory considered in [GKT22b| is the con-
struction of an orientable moduli space, together with a universal curve, of open W-spin
disks that one may integrate over. Indeed, these moduli spaces are typically real orbifolds

with corners. An example is shown below.

Remark 6.1.15. These moduli spaces have an intersting connection to A..-structures:
the original definition of A.-spaces given by Stasheff in [Sta63] involves associahedra.
These associahedra correspond precisely to moduli spaces of disks with no internal marked

points.
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Figure 6.1: The moduli space of stable disks with 5 boundary marked points.

6.2 Equivalences in Landau-Ginzburg Theories

The main question we wish to tackle in this section concerns defining when two FJRW
theories, or two Saito theories, are equivalent. We also discuss how one may practically
determine equivalence. This turns out to be a slightly easier problem for open Saito
theories than FJRW theories. Under the common theme in the thesis of using Saito
theory to avoid open FJRW theory, we discuss equivalences in open Saito theories. For
simplicity, we restrict attention to simple singularities, given typically by the following

_ o+l
Wy, =277, r>1,

r

-1 2
Wp, =27 +xz23, 1 >4,
_ .3
WEG =2 —|—CE2,

3 3
Wg, = x| + 1125,

WES - .731 + :l':2,
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and the simple elliptic singularities given typically as the Fermat polynomials

3, .3, .3
WEél,l) =] + T, + 5,

4 4
WE§1,1) =T + Lo,

_ .6 3
WE‘él’l) = T4 + Z5.

6.2.1 Equivalences in FJRW Theory

This subsection is entirely taken from section 2 of [FHS23|.

Definition 6.2.1. We say that two closed FJRW theories are equivalent if there is a
Frobenius algebra isomorphism of the chiral rings that induces a coordinate transforma-

tion between ancestor FJRW generating functions.

Since the mirror to an FJRW theory with maximal admissible group is the semi-simple
Saito theory of the mirror polynomial, via Givental’s formula it suffices to consider the

primary theories. We have the following theorem proven in [FHS23, Theorem 2.8].

Theorem 6.2.2. Let W be a quasi-homogeneous invertible polynomial in two variables
with central charge strictly less than one. Then the closed FJRW theory of any admissible
pair (W, @) is equivalent to either (z2 + y2,(J)) or (W,G12*) where W is an ADE
polynomial given as above.

It is hoped that one may prove similar results in the case of open FJRW theory, if one

defines such a theory correctly. In light of the open Landau-Ginzburg mirror symmetry

conjecture, equivalences in open Saito theory may be a tool for such results.

6.2.2 Equivalences in Primary Saito Theories

Definition 6.2.3. Let W and W be two simple singularities. We say that two primary
Saito theories of W and W are equivalent if there is a Frobenius algebra isomorphism of

the chiral rings that induces a coordinate transformation between Saito potentials.
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Remark 6.2.4. We restrict to primary theories of ADE polynomials for simplicity; the
Saito potentials are uniquely defined in this case and so there is no added technicality of

wall-crossing.

Example 6.2.5. It is straightforward to see that the open Saito theory of a Morse
stabilisation of a singularity W is equivalent to the original open Saito theory of W.
Indeed, the local algebras are certainly isomorphic, via a direct calculation of partial
derivatives. On the other hand, the standard good bases of W and a Morse stabilisation
of W are also identical. Consequently, the flat coordinates and open Saito potentials are

identical.

Right Equivalence

It is a classical problem to find the right notion of isomorphism of singularities in order
to have a classification of ADE and simple elliptic singularities. For example, recall that

the D, singularity may be obtained by either of the following two singularities

(WD4)Chain = LL’? + 5’311’37 (WD4)Fermat = LE? + 'Tg (621)

Similarly, a full list of presentations for the elliptic singularities are given in Table 1 of
[MS16].
This classification problem was solved Benson, Mather and Yau [MY82; BY90], which

we briefly review.

Definition 6.2.6. Two singularities are called right equivalent if they are equal up to a
biholomorphic change of variables. Furthermore, two singularities are called Z-equivalent

if the corresponding local algebras are isomorphic.
Theorem 6.2.7. Two singularities are right equivalent if and only if they are Z-equivalent.

A proof of this theorem is the main result of [MY82]. See also Theorem 3.3 of [BY90].
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Thus, to show that the local algebras are isomorphic, we need only find a transforma-
tion between the singularities themselves. Moreover, we have the following theorem due

to Saito |Sai87, Theorem 2.

Theorem 6.2.8. If a non-degenerate, invertible, quasi-homogeneous polynomial W has
a central charge strictly less than one. Then W is right equivalent to a simple singularity.
If a non-degenerate, invertible, quasi-homogeneous polynomial W has a central charge

equal to one, then W is equivalent to a simple elliptic singularity.

Orbit Spaces of Coxeter Groups

The second part of Definition is to find a transformation of Saito potentials. This
means finding an isomorphism of Frobenius manifold that induces a transformation on
the flat coordinates. For this identification, we use the theory of reflection groups and

invariant polynomials. We briefly review this here and we follow the exposition of [Her02].

Definition 6.2.9. Suppose V is a real dimensional vector space with an inner product

(+,+). For u,a € V| a reflection is a linear operator r, : V' — V given by

Definition 6.2.10. A finite set R of non-zero vectors is called a root system if r,R C R

for every @ € R and the only vectors colinear to o € R are +a.

Definition 6.2.11. Given a root system R, we say it is crystallographic if

(o, B)
(8, 8)

2 €L

for all o, 5 € R. The corresponding group W := (r, : @ € R) is then called the Weyl
group.

It is well-known that W is a finite group. Indeed, letting Sz be the symmetric group
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on R, we define the injective group homomorphism ¢ : W — Sx by sending r € W to

the element of Sk that permutes the roots in the identical way to r.

Theorem 6.2.12. There exists a set A C R such that the Weyl group is generated by

the set S = {r, : « € A} with relations

(rarﬁ)maﬁ =1

for o, B € A, mqapg € Z>p and my o = 1.

See [Cox34, Theorem 8] for a proof, or see [Her02, Section 5.3] for a summary. The pair
(W, S) is called a Coxeter system and the collection m,, 3 determine W up to isomorphism.
The Coxeter diagram is constructed by assigning a vertex to each element @ € A and
an edge is drawn between o, 8 € A if m, 3 > 3. The edge acquires a label if m, 5 > 4,

although for our purpose we content ourselves with the unlabelled case where m, s < 3.

Definition 6.2.13. A Coxeter system (W,S) is said to be drreducible if the Coxeter

diagram is connected.

An equivalent way of saying this is that the generating S cannot be partitioned into
two commuting subsets. This means that the root system R cannot be decomposed as
R = Ry URy such that (Rq,R2) = 0. Irreducible Coxeter systems have been classified;
in the ADE case they coincide with the simply laced Dynkin diagrams.

Let us now discuss the associated Frobenius structure. Denote S(V*)®C = Clsy, ..., s,
as the complexified symmetric algebra of the dual space. This has a natural graded ring

structure. We define an action of W on S(V*) by

(w+ f)(u) = flwu)

forweW,feV*andueV.
The following two theorems are then results of Dubrovin, Saito, Sekiguchi and Yano

[Dub98: [SSY80} Said3)].
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Theorem 6.2.14. Let My, denote the orbit space (V @ C)/W. Suppose D is the
collection of irregular orbits. That is to say, orbits whose cardinality is different from

|[W|. Then My, \ D can be endowed with the structure of a Frobenius manifold.

Theorem 6.2.15. Consider the ring of invariants S(V @ C) where W is a Weyl group
W and V is a vector space. Then there exists a basis of homogeneous polynomials

{t1,...,tn} € S(V)W such that
SVeCW 2Clty,..., t)

and the ¢; are flat coordinates of the Frobenius manifold My, \ D.

The existence of such homogeneous polynomials inducing the isomorphism above is
sometimes called Chevalley’s Theorem.

A result of Hertling [Her02] then says the following.

Theorem 6.2.16. Any Frobenius manifold that has a polynomial solution to the WDVV
equations is isomorphic to a Frobenius manifold induced by the above construction from

Coxeter groups.
Let us illustrate Hertling’s theorem using the example of the A, singularity.

Example 6.2.17. For W = z"+! we write the versal deformation as

r+1
1 ~1
Wey=a""+sg+s124+- +s_127 = H(x—ai)
i=1

"a; = 0. In other words, the s, are elementary symmetric

for some a; such that >’

polynomials of degree r+1—p in the a; variables. We observe that the space of parameters
a;,
r+1
b = {(a17 s 7a7"+1) S CT+1‘ Zai = 0}

i=1

is a Cartan subalgebra of type A,. Moreover, Chevalley’s theorem gives an isomorphism
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of complex manifolds

C= h/SrJrl-

Here, S, is the symmetric group but can also be considered as the Weyl group of SL(r+
1;C). In fact, the Frobenius structure arising from deformation theory are isomorphic
to those arising from invariant polynomials. Indeed, let D C C" be the discriminant
locus; that is to say, where Wy = 0 has multiple roots. Then for s € C" \ D, the lattice
H(C,W;1(0);Z) is isomorphic to the root lattice with type A,. By taking the covering

—_—

space C"\ D and a primitive form dz, the period mapping is given by

—_——

¢:Cr\D— h=Homg(L,C),
a;(s)

where 7;; € Hi(C,W;1(0);Z) is a path from a; to a;.

Elliptic Root Systems

One may generalise the above discussion to elliptic root systems. These were first intro-
duced by Saito [Sai85; [Sai90; ST97; SYO00| to describe the versal deformation of simple
elliptic singularities. Work of Bertola [Ber0Oa; Ber0Ob] and Satake [Sat10] has shown
that, in certain ‘codimension one cases’, the quotient space can again be given the struc-
ture of a Frobenius manifold. Here, ‘codimension one’ means that there is a unique flat
coordinate of highest degree. For our purpose, this is the marginal coordinate for the
singularities Eél’l), Eél’l) and Eél’l). In such cases, the ring of invariants is no longer a
polynomial ring, but a ring of modular functions instead. It is currently an open prob-

lem to classify these modular solutions to the WDVV equations, in analogy to Hertling’s

theorem for Coxeter groups.

Remark 6.2.18. There are other generalisations in addition to elliptic Weyl groups. For

example, one may consider extended affine Weyl groups where solutions to the WDVV
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equations are trigonometric. See [DZ98; BG22| for example.

Equivalences in Open Saito Theories

Let us comment on the two open Saito potentials we have calculated for Djy.

Example 6.2.19. Recall that we have calculated the open Saito potentials for the
presentations of the D, singularity given in equation (6.2.1]). Firstly, the singularities
(Wp,)chain = 0 and (Wp, )Fermat = 0 are a union of 3 lines intersecting at the origin.
Thus, there must be a linear transformation between them, proving that they are right
equivalent. This implies that their local algebras are isomorphic using Theorem [6.2.7] To
show that there is an isomorphism of Frobenius manifolds, we know that the flat coordi-
nates of both are polynomials. Hertling’s theorem then implies the Frobenius manifolds
of these du Val singularities arise as Frobenius manifolds from the Coxeter group Dj.
Hence, there must be a coordinate transformation between the flat coordinates. Since we
have shown in Chapter 5 that the primary wall crossing group is trivial for the primary
theory of simple singularities, this is enough to imply equivalence of the primary open

Saito theory.

It is hoped that the above example may be straightforwardly generalised to the open
Saito theory of any simple singularity. In light of the open Landau-Ginzburg mirror
conjecture, one may hope to prove a result analogous to Theorem [6.2.2 once open FJRW

has been fully defined.

One may try, furthermore, to extend the above reasoning to elliptic singularities.

Example 6.2.20. Consider the example

4 3 4 4
(WE$171))Chain =T + XT1Tq, (WE§171)>Fermat =4 + Zo

Similar to before, the vanishing of these polynomials both define a union of 4 lines inter-

secting at the origin, thus proving Z-equivalence. It is known that they both correspond
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to the Dynkin diagram of Eél’l) and from Section 4.2.2 we know that both admit open

primary Saito potentials which are modular.

Generalising the above example and combining with the open Landau-Ginzburg mir-
ror conjecture, we obtain the following conjecture. This is a generalisation of Proposition

to all simple elliptic singularities of either Fermat, chain or loop type.

Conjecture 6.2.21. Consider the primary open Saito potentials W for a simple elliptic
singularity W,. Suppose all non-marginal flat coordinates are set to zero. Then there
exists a primary open Saito potential such that W (t) is a meromorphic modular function
of weight zero. Furthermore, there is a transformation involving all flat coordinates that
leaves the primary open Saito potential invariant. Combining this with the open Landau-
Ginzburg mirror symmetry conjecture, the corresponding mirror open FJRW potential

should exhibit the same modularity properties.

Although one could prove the modularity parts of conjecture via exhaustive calculation
of open Saito potentials, a slicker proof may result from understanding the equivalences

between Saito theories of simple elliptic singularities.
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APPENDIX A

THE HYPERGEOMETRIC EQUATION FOR THE
CUBIC ELLIPTIC CURVE

A.1 Triangle Functions

In this appendix we follow [Neh75, Section 5, Chapter 6]. Consider a conformal map
from the upper half complex plane to a curvilinear triangle. By the Riemann mapping

theorem, such a mapping exists. The following result is then well known.

Theorem A.1l.1. Suppose that z = f(w) is a map from {w € C : Im w > 0} to the

interior of curvilinear triangle /A with angles 76, m¢, w1 corresponding to the vertices

f(0), f(co) and f(1). Then f is of the form

where y; and ys are linearly independent solutions to the following hypergeometric equa-
tion:
dy

w(l—w)7+[7—(OH—ﬁ—l—l)w]%—aﬁy:O

with

0= (lt6—6-1v), f= 1-0-6-v) 7=1-6

For details of this result, we refer the reader to [Neh75, Section 7, Chapter 5]. However,
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what we are most interested in is the determination of existence of an inverse function,
which we denote by w = S(z). We call such a function a Schwarz triangle function.

To fix the position of the curvilinear triangle in the z plane, we fix the vertex at the
angle w6 so that it is at the origin and the two edges of the triangle are linear. We claim
that this is always possible if 8 # 0 using a Mobius transformation. Indeed, suppose C}
and Cy are the two circles of the triangle /A that meet at z = A for the angle 7. Since
0 # 0, there exists another intersection point, z = B say, of C; and C5. The desired

Mobius transformation is then
z—A

Z — .
z— B

This transformation maps C; and C5 to linear segments through the origin, while the

third edge forms an arc of a circle. We denote this circle by I'.

Definition A.1.2. An orthogonal circle C' to the curvilinear triangle A is a circle that
perpendicularly intersects I' (that is, the tangent lines of C' and I' at their points of

intersection are perpendicular).
Lemma A.1.3. Orthogonal circles exist for 8 + ¢ + ¢ < 1.

Proof. We use the above transformation to bring the vertex with angle w6 to be positioned
at the origin. We use an additional rotation so that the vertex with angle 71 lies on the
positive real axis. Then any circle centred at the origin is orthogonal to the linear sides.
Let T" be the circle for the third side. If 8 + ¢+ < 1, then the origin is outside I'. Thus,
we draw a tangent line from the origin to a point P on I'. The circle C centred at the

origin passing through P is then the desired orthogonal circle. O

The following result is not new and can be found in [Neh75| Section 5, Chapter 6],

but we reproduce it here for completeness.

Theorem A.1.4. The Schwarz triangle function w = S(z) for the triangle A with angles

w0, m¢ and m with 6 + ¢ + 1 < 1 is single valued in the interior of the orthogonal circle
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C if and only if
0:77 ¢:77 ,l/}: - (All)
n

where m,n,p € Z~o. Furthermore, it is not possible to continue S beyond the boundary

of C.

Proof. For the first direction, suppose that the angles satisfy equation (A.1.1)). Since the

map w maps two lines with angle 76 onto the real axis, w = S(z) must have the form

S(z) = 2954(2)

where S is single-valued around z = 0. Since # = 1, we must have that

S(z) = 2"51(z)

is also single-valued around z = 0. By transforming the angles w¢ or 7 to the origin,
the same reasoning applies to ¢ = % and ¢ = %.

Conversely, suppose that w = S(z) is single valued in the orthogonal circle C of A. We
claim that S(z) in its domain of definition has no singularities other than poles of order
n. Indeed, all analytic continuations of the original domain A of S(z) can be obtained by
iterative reflections through the sides of A in the z-plane. Such a transformation maps
circles to circles, hence preserving the magnitude of the angles while reversing orientation.
The corresponding reflections in the upper half w-plane are reflections through the real
axis. Thus, the boundaries of the triangles in the z plane are mapped to segments of
the real axis. From the reasoning above, S(z) is single valued near the vertices of the
reflected triangles if 6, ¢, 1) satisfy condition . Moreover, such vertices are the only
possible singularities of S and, again due to the form of S, can only be singular at the
vertices corresponding to the angle m¢. This proves the claim.

To prove the theorem, we will show that the domain of existence coincides with the

orthogonal circle C'. In particular, this domain is simply connected and the result in the
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theorem will follow from the monodromy theorem. To show that the domain coincides
with C', we first observe that any inverted triangle lies within C'. Indeed, any reflected
triangle is still orthogonal to the image of C' under this reflection, since the reflection
preserves angles. However, this image is precisely C. Thus, all inverted triangles lie
within the same orthogonal circle as the original domain A.

Conversely, for the reverse inclusion, we show that any point in C' can be obtained
by reflections. Indeed, suppose that all reflections have been performed to reach a point
in C'. At the domain boundary, there are no circles whose radii are positive as one could
then carry out another reflection; this would be in contradiction to maximality of the
domain. All such circular arcs of radius tending to zero must be orthogonal to C'. This
implies that they also intersect C'. Due to the vanishing of the radii, the points of the
circular arcs must therefore also be contained in C'. This shows that the domain coincides

with C' and completes the proof. n

Corollary A.1.5. If the conditions of the above theorem are satisfied, then S(z) is an

automorphic function in the domain |z| < 1.

Proof. From the proof of the above theorem, we know that an even number of reflec-
tions preserves both magnitude and orientation of the angles. This induces a conformal
map. Since reflections preserve circles, this reflection must be equivalent to a Mdobius

transformation «(z) in the z-plane where 7 is the map

az+b
cz+d

V2=

fora,b,c,d € C. However, in the w-plane, an the corresponding even number of reflections

in the real axis returns the original point. Thus, we find that

We now describe the automorphy group which we call the triangle group. It is well
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known that the set of such + form a group which can be generated by three elements
corresponding to an even number of reflections across the sides of the original triangle A.
Moreover, reflections, and thus actions of the triangle group, leave the orthogonal circle
invariant. However, normalising S with the requirement that C' mist have radius 1, we

know that any such action of the triangle group must be of the form

zr—>5(a_z> (A.1.2)
—az

for [ = 1 and |a|] < 1. Thus, S(z) must be a single valued automorphic form with
respect to the triangle group action given by (A.1.2)). O

A.2 Solving Hypergeometric Equations Near Infin-
ity

We note that the normalisation of S in the above proof is not the one we use for the

hypergeometric equation. Indeed, the solution we use is

y(w) = w' R (a=y+1, f—y+1,2=vw), ya(w) =2F1 (o, B, vw), f(w) = yl(w)'

This is a solution around w = 0.

For the case of WEél,l) = 23 + 13 + 23 + sw1wox3, the marginal flat coordinate ¢ is

where w = —2%33 . That is to say, t is proportional to the a ratio of linearly independent

solutions around to the hypergeometric equation,

d?y 2 5
1l—w) 2 (22 _ 2o A2.1
w(l —w) g 5+ (3 3“’) dw 97 (A-2.1)
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The resulting open Saito potentials are expansions around ¢ = 0.

However, we may also solve the above equation as w or equivalently ¢ become large.
This will allow us to deduce ¢ expansions of Saito potentials in the next subsection.

To study the solution to equation as w — 0o, we use the substitution w = z7!.

Thus we obtain the differential equation

d*y 4 1 \dy 1
3.2 F2 2 _Zy=0. A22
(@ =) e (3m 3x> dr 97 (A.2.2)

It can be checked that the point x = 0 is a regular singular point and thus we use the
method of Frobenius to solve (A.2.2]).

We use the ansatz

y=> ax""* (A.2.3)
r=0
with ag # 0. Substituting (A.2.3)) into (A.2.2)) we find

(2® —2*)> a(r+c)(r+c—1)z" 7+ (3:(:2 — Sx) > ap(r+ )t — Z a,x" "¢ = 0.
r=0 r=0

Expanding the terms and changing indices in the sums, the above equation becomes

o0 [e.e] 4 [e.e]
Y ara(r+e—1)(r+c—2)2""=> a(r+c)(r+c—1)a""+ 3 > ari(r+c—1) 2"t
r=1 r=0 r=1

—gz%arr—i—c - ZCLT =

Employing linear independence, we equate coefficients of 2* to zero for all k. For ¢, we

find

c 1
ao(—c(c—l)—g—g)zo.

Since ag # 0, we find ¢ as the double root ¢ = é From the other terms, we ultimately
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obtain the recursion relation

(r—l—c—l) (r—f—c—g)arl _ (c)r<c+é)r
(rre=3) (o+3), (o+3),

Thus, our general solution has the form

A, =

(c), (c + é)
= ag Z r gt
ISPR )

It is only the ratio of y; and ¥y, that we are interested in. Thus, without loss of generality,

we set ap = 1. Our two linearly independent solutions are given by

dy
Joc

v = Z/\c:1/3, Yo =
c—1/3

With z = w™!, we observe that
1 2 12
n /2F1(3 371;~’U> :w1/32F1(3,3,1;w1>.

To calculate the derivative in yo, we have the following lemma.

Lemma A.2.1. Define

Then

oM, i( 1 B 2 >
dc c+k c+§+k ct+3+k/)

Proof. Observe that

r—1

1 2
bgM}:}:bﬂC+k%+ngr%3+k)—2bg0&k3+k>
k=0
The result now follows from differentiating with respect to c. O]
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Thus, we find that

9] SN = A | 1 2 .
80( ZMx)-x(longMx +ZMZ<0+I€ c+3 Ltk c+ —|—k> )

r=0 r=0
Evaluating at ¢ = % and noting that = w™! we find

RN O10)

1 1 2
wem, e Nl
T:o(l)r-(l)r<ogw +Z +k:+k:+§+k: k+1))"

Thus we find that two linearly independent solutions are

12
_ -1/3 F < 21 —1)
Y1 w 2471 3737 Y

1 2 1 2
Yo = w3 [F(37 3 1;71)1) —logw - o Fy (37 3 l;wl)]

where

T

1 2
2y B0 ¢ L2y
<3’3 > ; 1), - (1), Z( +k k+§+k_k+1>w '

A.3 Series Reversion and Modular Expansions

As an aside, we review the series reversion technique to obtain the open Saito potential
for Eél’l) in section 4.1.2.

For a power series with no constant term
t=a;s+axs®+--- (A.3.1)
we wish to find an expansion of an inverse
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This can be done simply by substituting (A.3.2)) into (A.3.1]) so that
t=ay (At + Agt?> + -+ ) +ag(Art + Agt? +--- ) 4 - -

This allows us to determine A; recursively.
We now use this series reversion technique to find a Fourier series for the Schwarz
triangle functions. Recall that we have two linearly independent solutions to the hyper-

geometric equation at infinity, we may calculate the Fourier series of the triangle function

[e.e]

w=25(z)= > cq" (A.3.3)
27riz.

where ¢, are to be determined and g = e

To do this, we follow the algorithm proposed by Lehner [Leh54]. Indeed, recall

1 2
Y= w_l/32F1< L w_1>

3’3
12 12
Yo = w3 {F(B, 3 1;w1> —logw - 2F1<3, 3 1;w1>].
We take
12 1.,,—
e A
—2miz = —=— =logw —

Y1 2F1<:137§a1;w_1>

One may calculate a series expansion of the above expression so that
—2m’z:10gw+—1+%+~'
woow

where A, € Q. Exponentiating gives another series expansion

A A

q_lze_%iz:w-exp<+2+~--):w-(1—|—++---> (A.3.4)
woow w

where B, € Q.
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Thus, in equation (A.3.3) we must have ¢, = 0 for n < —1 and ¢_; = 1. To find the
higher order terms in

w=q ' (1+cqg+cig®>+---) (A.3.5)

we set

where the d;, are calculated in terms of the ¢; via the binomial theorem. This can also

be done for w™". Then substituting |A.3.5| and |A.3.6| into [A.3.4] we find

¢ =g (I+eogteg’+ - )<1+B1C](1+doq+d1q2+- )+ Bog? (1 +dpg+di g+ - )+ - >

The above equation then allows us to determine ¢ recursively.
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APPENDIX B

A REMARK ON OPEN WDVV EQUATIONS FOR
SIMPLE SINGULARITIES

As an aside, we return to Remark where there is disagreement on the open Saito
potentials for Wp, = 3 + 2,23 in the Gross-Kelly-Tessler construction and in the paper
of Basalaev-Buryak. Worse still, it may seem that our results for Wp, = z} + 123
contradicts Theorem 6.1 of [BB21]. Let us briefly comment on the discrepancy. In that
paper, the authors take a different approach where they consider solutions to open WDVV
equations with an extra parameter which we call o here. Their approach comes with a
significant advantage: much like solutions of the closed WDVV equations inducing a
Frobenius manifold, solutions of open WDVV equations give a flat F manifold structure.
However, the potential that is found for Wp, = x? + z,2% contains a pole along o = 0.
Whilst an analogue of open WDVV equations are unknown in approach of [GKT22b],
the advantage of the Gross-Kelly-Tessler method is that the generating potential is a
homogeneous polynomial and there is a proven corresponding mirror theorem in some
cases.

To illustrate why the results of [BB21] do not contradict our expressions for the open
Saito potential for Wg, = 23+x,22, we give a brief survey of the Basalaev-Buryak method
and consider homogeneous, polynomial solutions to the open WDVV equations for F;.
In doing so, we give a small correction to the proof of Theorem 6.1 of Basalaev-Buryak

by using the correct good basis for Wg, = z3 + z 3.
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Throughout this section we employ Einstein summation convention.

Let W be a simple singularity. Let {t*},cp be a system of flat coordinates for the
Saito-Frobenius manifold. Recall that, locally, this Frobenius manifold is described by a
solution of the WDVV equations. Let F'(t°,... ") be a solution of this system of PDE’s.
There is another system of PDE’s for a function F°(t°,... " o) with o an additional
parameter that describes the corresponding open geometry. These equations are given as

OFF _, 0°F° | O°F° PF°_ 0°F° O°F°
ot 0o g | 010t do® | 0t°0o iPdo”

(B.0.1)

In open Gromov-Witten theory and in open r-spin theory in [PST22; BCT22a], solutions
of the open WDV'V equations are considered subject to the condition

O?F°

We will impose the same condition here. Recall that the coordinate t° plays a special

role, since the vector field e = % is the unit of the corresponding Frobenius algebra.

Recall for a general simple singularity W, the Euler vector field E' is given by

0
E=> (degsu)su=—

ey 0s,

The Euler field £ may also be written in terms of the flat coordinates

0
FE = Z (deg tu)tug
m

p=1

This may be extended to the open case by declaring that the degree of o is 1%5. Here, we
recall that ¢ is the conformal dimension of the Frobenius manifold. It is defined through

the conformal Killing equation,

Lgn=(2—0)n.
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Equivalently, 0 is given by
2
0=1——
h

where h is the Coxeter number of the corresponding Lie algebra for a simple singularity.

Definition B.0.1. A polynomial F°(t, o) is called homogeneous if there exists deg F° € Q

such that
1—96 OF°

g

2 Oo

LpF°+ = (deg F°)F°. (B.0.3)

In the works of [PST22; BCT22a], homogeneous solutions of the WDVV equations
were considered where deg F'° is necessarily given by 3%‘5. Henceforth, we shall only

consider such solutions.

The main result of this section is the following proposition, due to Basalaev-Buryak.

Proposition B.0.2. Consider the Frobenius manifold associated to the F; singularity
W = a3 + z125. Let F be the corresponding Frobenius potential. Then there are no
homogeneous polynomial solutions F° to the open WDVV equations subject to
(B.0.2).

Before we can prove this result, we need a technical lemma.

Lemma B.0.3. We have

oF°
0s,

O*F°

Y
370':() 80-2

=0.

s,0=0

Proof. For E; we find § = 8/9. If gf:

did not vanish, this would imply that F*

s,0=0

contains a linear term in v. However, given that degs, # 3%‘5 for all p, this linear term

does not obey the homogeneity condition (B.0.3). Hence we must have % = 0.
" ls,0=0
Similarly, if we assume that 8;520 did not vanish then F° would contain a o2 term.
s,0=0

1—
2

However, we have that 3—;5 > 2122 and so F° would not be homogeneous. [

Proof of Proposition[B.0.9 Recall that the structure constants (¢;) of the Frobenius al-

185



gebra are defined by
0 0 0

I no
gie © g8 — (Wap g

They are related to the Frobenius potential via

5 5 O3F
(Ct)ag = (Ct)apun"’ = mn

"z

Thus we rewrite the open WDVV equations (B.0.1)) as

02F°  9%F° 92°F°  O9?F° O2°F°
5 _ . B.0.4
(Ct)ozﬁ Moo + ataatfj Oo? oteOo atﬁag ( 0 )

We wish now to change variables from the flat coordinates ¢ to the versal deformation
parameters s. Recall that the structure constants (c;), 5 obey the following tensor trans-

formation law
, Ot 95 9P
(0)as = (a5 g o0

It is also useful to recall that
otY Ost s
Js? Ot¥ v

After some manipulation, one may rewrite (B.0.4) as

B2F°  9PF° 9PF° Ot 9t° 9%s, OF°OF°  92F° OPF°

o =
(€)os gsnds * B50057 07 T D5 B57 Braond Bs, Bo? D500 D5

We now differentiate this equation with respect to s, and set s,0 = 0.

From the previous lemma, we calculate that

=0.

s,0=0

Kkl (81&@ ot %s, OF° 8F°)
Ds, \ s> 0sP otaoth ds, Oo?
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Thus, we obtain the following equation

0s520sP Do?

0 ( O*F° 82F0>
0s20o 0sPOo

0 (82F° 62F">

o [ . 0°F°
8787 <(CS)OCB 08“80) S,O’ZO.

s,0=0 88’)/ s,0=0 887

(B.0.5)
To prove the proposition, it is now sufficient to find indices «, 3,y such that
8(65)56 0 *
(Cs)gﬂszo =0, TSV = A", AeC (B.0.6)
and
2 0 2 fro 2 fro
054055 Ds, \0s*0o 0sP 0o

hold. This is because equation (B.0.5) would then imply

O?F°

85080' n

After changing variables back to the flat coordinates, this in turn implies

aQFo B
8t080 N

0.

This contradicts the constraint (B.0.2)).
We claim that a = (1,0),8 = (0,2) and v = (0,1) suffices. Indeed, the structure

constants (¢,) are defined through the Frobenius algebra multiplication,

D0 D

However, we may also define an equivalent algebra multiplication via the following con-

struction. Let Wy be the versal deformation. Explicitly,

3 3 2 2 2
Ws = Tol1 + Xy + Sg + Sp1X2 + S190T1 + 50229 + S11T1T2 + S20T1 + 521X2T 7.
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In [BB21], the good basis that is required to define the Landau-Ginzburg B-model was
not used. We therefore modify their calculation slightly. Let M be the Saito-Frobenius
manifold for E; and let Ty, be its tangent sheaf. Recall that 73,(C") is the C[s]-module
freely generated by {afu} . We identify 7T3,(C") as an algebra via the Kodaira-Spencer
isomorphism '

T (C) 5 Clay, a0l (8, Wa, 02, WV,), xp(af) )
m

Thus, T3 (C™) inherits an algebra structure via W. We now calculate that

0 0
V(o) = [z2a1].
(8810 ° 8802) [$2x1]

Observe that
oW
8:{;2

2 2
= 32571 + So1 + 25022 + S1171 + S2177.

Therefore, as an element in C|xy, 22, 8|/ (&EIWS, 8x2WS) we have
2 1 2
[IQLUI] = —5(501 -+ 2802$2 “+ S1111 + 821.1’1).
Under the isomorphism W1, this element maps to

(B.0.9)

1 0 0 0 0
- = (5017 + 2802 “+ S11 9 + S91 )
1 S10

3 05 05 0520

Comparing equations (B.0.9) and (B.0.8)) we find that equation (B.0.6) is satisfied with
A = —1/3. To show that is true, one can argue in a similar way to Lemma m

The details here are the same whether one uses the standard good basis or the basis

chosen by Basalaev-Buryak. See [BB21] for the explicit calculation. ]

A similar conclusion can be found for Dy, and Dy more generally as in [BB21|, The-

orem 6.1].
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