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ABSTRACT

The distinct characteristics of oceanic islands—restricted geographic boundaries,
remoteness, lack of competitors and reduced habitat diversity—have made them
global hotspots of endemism. However, these factors also mean that many island
species have small populations, low genetic diversity and reduced competitive
abilities. The arrival of humans to these systems exposed their fragile vulnerability,
causing numerous species extinctions, many more so than on mainland

environments.

In addition to their inherent vulnerability, oceanic islands are especially susceptible
to environmental change due to their geographic isolation and limited physical
space. Unlike many continental species, island species, especially endemics, face
restricted opportunities to adapt through migration or by tracking suitable climatic
conditions, given their confined distribution and isolation by surrounding aquatic

barriers.

To better understand and predict species loss and range shifts in response to
global change, this thesis focuses on Species Distribution Models (SDMs). It
addresses the limitations of existing SDM frameworks, which are generally
designed for continental species with extensive occurrence data, by tailoring the

models to the unique conditions of island environments. The thesis focuses on



improving SDM applications through the use of high-resolution environmental
descriptors (<500m), given that traditional SDM approaches often rely on coarse
climatic variables, which have been shown to be inadequate predictors of island
species distributions in many cases. However, the use of high-resolution data raises
important questions about how such predictors interact with the often-limited

occurrence data available for island species.

To address these challenges, the thesis focused on the Revillagigedo Volcanic
Archipelago, using it as a 'model archipelago’ to provide insights relevant to a
wider range of islands. Plant species were chosen as the focal taxon due to their
critical ecological roles and usefulness as conservation indicators, with plant
presence/absence data collected through field sampling. The thesis had two main
objectives: to enhance SDM applications on islands through the use of high-
resolution environmental descriptors, and to assess the robustness of fine-scale
predictors, particularly in tropical island environments. The emphasis on tropical
island environments was due to both the location of the model archipelago and,
more broadly, the rich, yet understudied biodiversity of these regions. This research
highlighted the potential of SDMs to deepen our understanding of ecosystems
that, despite their global biodiversity significance, is often limited due to

insufficient data.



Key findings include the identification of (1) minimum data requirements at very
high resolutions (30m) for accurate presence-only species distribution modelling
on islands, and (2) strategies to balance data limitations with pseudo-absence data
to optimise predictability and accuracy. The research also investigates the impact of
spatial inaccuracies in occurrence records, finding that while these inaccuracies are
relatively less important for the SDMs of widespread species, they introduce
greater uncertainty for range-restricted species; however, these uncertainties were

found to be mitigated by the use of an adequate methodological framework.

The thesis further proposes methods for acquiring microclimatic descriptors that
remain useful even in regions with sparse meteorological data, and provides
strategies for validating these descriptors in future studies. The most informative
analytical scales for these microclimatic data, for both predicting and projecting
SDMs, and taking into consideration the spatial differences between training and

projection areas, are identified.

The final empirical chapter of the thesis applies the lessons learned from the
previous chapters in regard to the optimal implementation of SDMs in islands to
analyse the impacts of future climate change on island species using a

microclimatic approach. The results of this analysis confirm that endemic species

ranges are disproportionately threatened in most global biodiversity hotspots



analysed, and that the current instruments to categorise species risks (e.g., the
IUCN Red List) are not able to effectively identify the vulnerability of (island)
species to climate change. This research marks a significant advancement in our
understanding of island species' responses to climate change at microclimatic
scales and offers a crucial baseline for developing more targeted mitigation

strategies in different archipelagos around the world.
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"There must be a few experiences in the biologist's world to compare with
approaching a 'new' island by boat. The ingredients are adventure and suspense,
mystery, and perhaps even a little danger. There are feelings of discoveries to be
made, knowledge to be extended, curiosity to be both piqued and satisfied. Such
feelings are shared not only among natural historians but any adventurous and
curious traveller; the most difficult the island to reach, the keener the excitement of

the visit"

-Cody, Moran, & Thompson, /sland Biogeography in the Sea of Cortés I/
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1 . Introduction



1.1 Research background

1.1.1 Global environmental change impacts on islands

Islands are at the centre of the current extinction crisis. While the world's
approximately 179,000 marine islands account for only 5% of the planet's surface,
they contain 20% of all catalogued biodiversity, including disproportionately high
rates of endemism (Kier et al., 2009; Medina et al., 2011; Whittaker et al., 2017). The
unique and isolated nature of island ecosystems has led to the evolution of species
that are found nowhere else on Earth. However, this same isolation makes these
species particularly vulnerable to anthropogenic changes and disturbances

(Whittaker et al., 2023).

The fragile nature of island ecosystems is highlighted by the fact that over 60% of
documented terrestrial species extinctions since 1500 have been island endemics
(Whittaker et al., 2017). Currently, 39% of insular species face an imminent risk of
extinction (Ricketts et al., 2005), underscoring the urgent need for conservation

efforts.

Three of the primary drivers of biodiversity loss on islands are habitat destruction,
species introductions, and, more recently, climate change (Russell and Kueffer,
2019), with hunting also a driver of numerous island vertebrate extinctions

(Whittaker et al., 2023). Species introductions in particular pose a significant threat



to island biodiversity. Non-native species, whether plants, animals, or pathogens,
have severely disrupted island ecosystems (Aguirre-Mufoz et al., 2011; Samuel et
al., 2012; Wood et al., 2017; Cubas et al., 2018). This issue is particularly pronounced
on oceanic islands—those islands that were never connected to the mainland—
where many island species evolved without the competitive pressures faced by
mainland species, such as large predators and herbivores (Whittaker et al., 2023).
Consequently, these species often lack the behavioural and physiological
adaptations needed to cope with environmental changes introduced by humans
(Hanna & Cardillo, 2014; Whittaker et al., 2023). For example, introduced predators
have decimated the populations of many native insular bird species, resulting in
numerous extinctions (Matthews et al., 2022), and there are several examples of
invasive plants outcompeting, and introduced herbivores consuming, native
vegetation, altering habitats and reducing the availability of resources for native
species (Walter & Levin, 2008; Gizicki et al., 2018; Parada-Diaz et al., 2022). Diseases
brought by introduced species have often spread rapidly among the populations of
numerous native island species that have no immunity, with the classic example
being the impact of avian malaria on the Hawaiian honeycreepers (Samuel et al.,

2012; Hume, 2017; Whittaker et al., 2023).

Habitat destruction on islands has often been particularly devastating due to the

limited land area. Deforestation, urbanisation, and agricultural expansion have led



to the loss of critical habitats for many species (Ferrer-Sanchez & Rodriguez-
Estrella, 2015; Surasinghe et al., 2019; Connor et al., 2024). Unlike mainland
ecosystems, where species can often migrate to new areas, island endemic species

are trapped in their shrinking habitats.

Climate change adds an additional layer of threat. Rising sea levels, changing
weather patterns, and increased frequency of extreme weather events can have
catastrophic effects on island ecosystems (Veron et al., 2019; Macinnis et al., 2021).
Many islands are low-lying and susceptible to flooding and erosion (Saintilan et al.,
2023). Climate change also has a great potential to shrink or result in the complete

loss of island habitats (Taylor & Kumar. 2016).

Addressing the extinction crisis on islands is a focal point for global biodiversity
conservation efforts (Russell & Kueffer, 2019). However, precise ecological and
geographical data, which serve as the evidence base for effective mitigation,
remain sparse for the biota of most islands (Benavides et al., 2024). Tackling this
issue requires innovative approaches, such as maximising the utility of available
data through advanced analytical techniques and refining ecological modelling
methods to better predict current species distributions and their responses to

various global change scenarios.



1.1.2 Species Distribution Models: Linking Range Limits to Conservation
Understanding what governs species range limits is key to predict which species
will contract, maintain, or expand their distributions and where and when these
changes will occur within their geographical ranges (Bridle & Hoffman, 2022).
However, island ecosystems are typically characterised by a dearth of species
distributional data (Benavides et al., 2024), making it challenging to understand the

ecogeographical limits of insular biota.

One tool with the potential to fill this knowledge gap are ecological niche models,
also known as Species Distribution Models (SDMs). Over the past two decades,
SDMs have become widely used statistical tools to predict species distributions,
even for poorly known species with limited occurrence data (Radomski et al., 2022).
By applying the ecological niche concept (Soberén & Nakamura 2009), SDMs
describe species' environmental/climatic preferences across a geographical area by
analysing the relationship between known species occurrences and a set of
corresponding environmental variables (e.g., climate, topography, the presence of
interacting species). SDM outputs are then used to create species distribution
maps, which identify potentially suitable areas of occurrence and provide a
quantitative baseline for conservation assessment, planning, and decision-making
(Elith and Leathwick, 2009; Peterson and Soberoén, 2012; Guisan et al., 2017; Araujo

et al,, 2019).



One of the primary challenges in using SDMs is navigating the vast and ever-
expanding array of available methods, making it difficult for those unfamiliar with
the field to select the most appropriate approach for their specific needs (Elith et
al., 2006; Thuiller et al., 2009; Araujo et al., 2019). Additionally, significant
differences between various methods have been documented, further complicating
the selection process (Hao et al.,, 2019). Implementing these models is also
complex, as numerous decisions must be made at each stage of the modelling
process (Leroy, 2022). Although several guidelines are available (Elith et al., 2006;
Guisan et al.,, 2017; Phillips et al., 2006; Thuiller et al., 2009), a unified SDM
framework that can be generalised across all contexts is not stablished, and
probably not feasible. As a result, the field remains in a state of continuous

development, with approaches constantly being adapted to fit specific contexts.

In addition, the SDM field has largely focused on widespread species with
abundant occurrence data, a fact that has heavily influenced SDM guidelines and
"best practice" literature. However, rare species—those with small geographical
ranges—present unique challenges that require specialised modelling approaches
(Lomba et al,, 2010; Gabor et al., 2020). These species typically have limited
associated occurrence data, which restricts the number of predictor variables that
can be used in model development (Breiner et al.,, 2015). To address this, an

ensemble of small models—a method that combines weighted multiple models,



each using a small subset of the relevant predictors—has been proposed as a
strategy to reduce overfitting caused by using too many variables relative to the
limited number of occurrence points (Lomba et al.,, 2010; Breiner et al., 2015). This
technique offers a more effective way to model the distributions of range-restricted

species, opening new avenues for SDMs.

A significant challenge in SDM application for range-restricted species is the
effective use of presence-only data. Since direct absence data—which many SDM
methods rely on—are generally unavailable, researchers typically create pseudo-
absences. These are hypothetical locations where a species might actually occur
but where no actual observations have been recorded (Lobo et al., 2010; Barbet-

Massin et al., 2012; Morera-Pujol et al., 2020).

While pseudo-absences are crucial for accurate modelling, the best practices for
generating them are still debated (Descombes et al., 2022) and, like other existing
guidelines, are primarily tailored for species with broader ranges and larger study
areas (Phillips et al., 2006; Barbet-Massin et al., 2014; Whitford et al., 2024). This
focus makes them less effective for more localised contexts, such as island
environments. Therefore, developing and refining pseudo-absence strategies

specifically for island SDMs is an essential consideration (Benavides et al., 2024).



1.1.3 Scale-dependency in island SDMs

Despite advances in using SDMs to model range-restricted species (Breinner et al.,
2015), significant methodological uncertainties remain that need to be addressed
to ensure these models effectively contribute to island biogeography. A common
and problematic assumption in this context is that broad climatic factors serve as
informative and ecologically relevant predictors of species distributions (Pearson &
Dawson, 2003). This assumption prevails largely because most SDM evaluations
have traditionally been conducted at broad geographic scales (Thuiller et al., 2004;

Syphard & Franklin, 2009).

However, incorporating environmental variables at finer spatial scales—such as
microclimatic conditions, land cover, and terrain features—not only offers more
accurate representations of the environments of many islands, where ecological
processes often operate at finer scales (Whittaker et al., 2023), but also allows for
assessments in islands where only a limited number of climatic grids (of a given
resolution) are available. As such, several studies have demonstrated the value of
finer-scale predictor variables in SDMs employed in island contexts (Bellamy et al.,
2013; Heinanen et al., 2012; Lannuzel et al., 2021; Turvey et al., 2020; Segal et al.,

2021).

The overreliance on broad-scale climatic variables has resulted in significant gaps in

our understanding of the ecological validity of alternative environmental variables



in SDM development (Austin & Van Niel, 2011; Syphard & Franklin, 2009).
Additionally, there is uncertainty regarding the appropriate analytical scale needed
to accurately describe species-environment relationships (Tshwene-Mauchaza &
Aguirre-Gutiérrez, 2019; Tehrani et al., 2020; Ashrafzadeh et al., 2020). Addressing
these issues is essential for improving the selection of predictor variables in island

SDMs studies.

1.1.4 Coupling occurrence data with high-resolution predictors

The required shift to smaller analytical scales for studying island species-
environment relationships is complicated by the often-limited availability of species
observation records. While finer grid pixels in environmental data enable models to
capture landscape variation more accurately, this increased precision typically
requires a larger number of occurrence records to adequately represent a species'
environmental needs. Research on small-ranged continental species, suggests that
fewer occurrence records might be sufficient (van Proosdij et al., 2015). However, it
remains unclear whether these lower data requirements hold true when finer

predictor data and smaller spatial contexts are analysed.

Another critical challenge is that high-resolution environmental data demand
occurrence records with matching spatial precision (Moudry & Simova, 2012; Sillero
& Barbosa, 2020). However, spatial uncertainty (or coarse precision in accuracy) is a

common issue in species’ occurrence data (McPherson et al.,, 2006). This leads to a



difficult decision: whether to exclude imprecise records, which could reduce sample
size and potentially diminish model accuracy (Graham et al., 2008; Fernandez et al.,
2009; Naimi et al,, 2011), or to include them, weighing the risk of adding noise

against the potential benefit of increased sample size.

The low precision of occurrence records is particularly problematic in environments
with sharp environmental gradients (Gabor et al., 2023), and for highly specialised
species (Visscher et al., 2009; Gabor et al., 2020) —both common in island
ecosystems. Addressing this issue is necessary, given the significant risk of
including low-accuracy records in island SDMs, and the current lack of knowledge

to effectively guide these decisions.

Thus, two critical questions arise for the application of SDMs on islands at fine
scales in the face of data limitations: (1) how much data are needed to produce
reliable high resolution SDMs across different species range sizes? And (2) what
should be done with spatially uncertain occurrence information? Specifically, can
including less precise data enhance predictions by increasing sample size, or does

it introduce significant noise?

Given that different modelling methods vary in their sensitivity to factors such as
sample size (Valavi et al., 2022), and occurrence data spatial inaccuracies (Gabor, et

al., 2022, 2023) addressing these questions by identifying suitable methods could



significantly improve the effectiveness of SDMs in island environments. By selecting
modelling approaches that are more robust to limited data and spatial
uncertainties, researchers can optimise the use of available records while reducing

uncertainties in high-resolution SDM outputs.

1.1.5 Prioritising Among Priorities: Assessing threats on tropical insular
hotspots

Global biodiversity hotspots are recognised on the basis of their high levels of plant
endemism coupled with significant losses of vegetation cover (Myers et al., 2000;
Mittermeier et al., 2013). Almost half of all global hotspots are located on islands,
primarily in tropical developing countries. Despite being home to around a third of
the world's critically endangered plants (Tershy et al., 2015), these regions often
lack adequate funding for biodiversity research (Caujape-Castells et al., 2010; Habel

et al,, 2019).

While SDMs have been presented as a powerful tool for linking biogeographic
knowledge with species conservation, their implementation in tropical island
environments presents an additional layer of complexity. In addition to the
challenges posed by sparse occurrence data, there is the issue of limited availability
of environmental and climatic data at appropriate scales (Baker et al., 2017;

Lannuzel et al., 2021).



The emergence of open-access satellite imagery and global datasets (e.g., NASA
EOSDIS, 2024) offers promising solutions for modelling species distributions in
tropical islands at fine-scale resolution. These datasets provide static variables like
terrain and land cover, capturing crucial micro-environmental variation that
influences species distribution patterns (Gabor et al.,, 2022; Heindnen et al., 2012;
Lannuzel et al., 2021; Turvey et al.,, 2020; Segal et al., 2021). However, the use of
these variables has two main limitations. First, their static nature hinders the
tracking of species distribution changes over time. Second, they rely primarily on
topography-related proxies, which may actually represent actual climatic variation,
but could also be affected by factors like nutrient availability and soil properties
(Meier et al., 2010). This reliance can obscure the specific influences on species
distributions, which becomes problematic when ecological patterns beyond

distributional patterns are of interest.

To address these limitations, it is essential to explore methods that directly
incorporate climatic variables, enabling more precise assessments of species-
climate associations in island ecosystems. Many frequently used databases (e.g.,
WorldClim: Fick & Hijmans, 2017), derived from interpolations of on-site
meteorological data, have been useful for building SDMs (Vega et al., 2017).
However, the resolution of these data (typically =1km) may not capture the scale at

which island plants respond Chauvier et al., 2022), requiring the use of downscaling



methods to better represent climatic variations in tropical island regions (Flint and

Flint, 2012; Franklin et al., 2013; Khosravi et al., 2016).

Concerns exist about the accuracy of global databases in capturing local-scale
climate variations in data-scarce regions like tropical environments (Soria-Auza et
al., 2010; Bedia et al,, 2013; Fernandez et al., 2013). These databases typically
originate from global climate models, reanalysis products, or other coarse-
resolution climate data sources, which may not adequately reflect local variations.
This can introduce significant biases in downscaled estimates, compromising the
reliability of modelling outputs. Therefore, there is a need to (i) investigate the
reliability of downscaled high-resolution climatic estimates in regions with limited
meteorological data and, (ii) assess the reliability and uncertainty of SDM

predictions using global downscaled climate datasets in tropical environments.

The effectiveness of SDMs is typically measured by their ability to generate
accurate predictions in static scenarios (spatially or temporally) and their capacity
for projection into novel conditions (Araujo et al., 2019). A critical factor influencing
both prediction accuracy and model transferability is the selection of predictor
variable type. Existing research highlights limited understanding of how the choice
of climatic or terrain variables impacts SDM outcomes (Bobrowski et al., 2017;

Karger et al., 2017; Petitpierre et al., 2017). Moreover, studies examining these



impacts at fine-grained scales are rare, contributing to further gaps in our

knowledge (Austin & Van Niel, 2011; Stanton et al., 2012).

There is also a recognised risk that highly specific models, tailored to narrow study
areas with high-resolution predictors, may suffer from overfitting (Manzoor et al,,
2018). This overfitting can compromise the applicability of models when they are

projected into new environmental contexts or different temporal scales.

In summary, achieving the right balance between accuracy and generalisability in
high-resolution tropical island SDMs requires: 1) creating alternatives for finer-
resolution predictors, 2) ensuring these predictors are statistically validated given
the limited environmental and climatic data in tropical regions, and 3) identifying
which types and resolutions maximise both accuracy and transferability. The end
result is a model that can be reliably applied across different spatial and temporal
scales, contributing to global change research and supporting conservation and

management efforts in tropical island hotspots.



1.2 This study

1.2.1 Aims and scope

In light of the research gaps identified above, this study aims to (1) identify
fundamental considerations related to the application of SDMs in island
environments, considering occurrence data limitations and the restricted spatial
context of island environments, (2) Investigate relevant data sources to address gaps
in occurrence data for island species across various taxa, (3) enhance SDM
implementation in island environments at fine-grained scales, (4) investigate the
uncertainty associated with the use of environmental and climatic predictors in data-
scarce island regions at fine analytical scales, and (5) assess how the predicted
responses of insular plant species to climate change are related to factors such as

species conservation status and degree of endemism.

Based on the aims outlined above, and focusing specifically on island plants, the

thesis looks to address several research questions:

e Using previous research as a baseline, what are the challenges of SDM
implementation in island environments, and how can we improve them?

(Chapter 2)



e What sample size of occurrence data is needed to accurately predict the
distributions of island species using high-resolution predictors, while

accounting for varying specialisation levels? (Chapter 3)

e How does the spatial precision of occurrence data affect the accuracy of

island SDM predictions at high resolutions? (Chapter 3)

e How does the choice of pseudo-absence data impact the accuracy of
predicted island species distributions? (Chapter 3)

e Are downscaled predictors a reliable baseline to model island plant species
distributions in tropical latitudes? (Chapter 4)

e Does the grain size of downscaled climatic estimates impact the accuracy and
transferability of island SDMs to novel environments? (Chapter 4)

e Does the choice of predictor variable type (Bioclimatic vs. Terrain variables)
impact the accuracy of SDMs on islands, as well as their transferability to novel
environments? (Chapter 4)

e Are the predicted responses of species to future climate change related to

their endemism and/or conservation status? (Chapter 5)

This thesis utilises two separate datasets to answer these questions. The first dataset
comprises plant species presence/absence records from the Revillagigedo

Archipelago, Mexico, obtained through my own field work, involving sampling using



vegetation transects of varying length (100m-1km) depending on island size and
habitat variability. The second dataset was curated from the global database GBIF
(GBIF.org, 2024), covering several volcanic archipelagos within the (sub)tropics.
Detailed descriptions of the datasets are provided in Section 1.3 and the relevant

chapters where they are utilised.

1.2.2 Overview of chapters

The chapters are presented as standalone papers, with references included for each.
Chapters 3-4 share portions of the Revillagigedo Archipelago dataset, and chapters
3-5 use similar methodologies and metrics; thus, there is some repetition of the

methods and background in these chapters.

« Chapter 2 is a systematic review of the island SDM literature (224 published studies)
to assess the appropriate use of SDMs in island biogeography, specifically focusing
on marine islands (i.e., islands in the sea). Species were divided into different insular
distribution categories (i.e., chorotypes: single island/archipelago endemics, non-
endemic natives, and non-natives) in order to provide chorotype-specific SDM
recommendations. The paper highlights how to navigate two fundamental
considerations related to the application of SDMs in island environments. 1)
Response variables, specifically the issue of small sample sizes for many island
species. 2) Predictor variables, including (i) the selection of relevant environmental

predictors at appropriate spatial grains, and (ii) addressing the truncation of



environmental extent across the entire species range, especially for non-endemic
species. This work has been published in Global Ecology and Conservation (DOI:

https://doi.org/10.1016/j.gecco.2024.e02943).

« Chapter 3 utilises a portion of the Revillagigedo Archipelago dataset, along with
simulated virtual species, the distributions of which resemble known species
distribution patterns within the study area. This approach allows for the evaluation
of methodological considerations necessary to produce accurate Presence-only
Species Distribution Models (SDMs) at high resolutions, addressing the primary data

challenges found in many published island SDM studies.

 Chapter 4 uses the Revillagigedo Archipelago dataset to investigate the use of
downscaled global databases at a range of high resolutions (30, 100, and 500m) with
species distribution models, contrasting the predicted distributions with those
generated by a model of random species occupancy. Additionally, the accuracy and
transferability of these models are tested to explore the potential of such datasets in
studies that require model projections, such as those focused on climate change and

invasive species.

« Chapter 5 utilises a dataset curated from the global GBIF database to examine the

potential future effects of climate change on plant species distributions in three



island biodiversity hotspots located within the tropics. The role of species endemism

and conservation status on predicted responses is assessed.

1.3 Datasets and study locations

As outlined above, two primary datasets are used within this work: a plant species
presence/absence records dataset from the Revillagigedo Archipelago, Mexico,
obtained through field sampling, and a dataset compiled from the global database
GBIF, comprising plant distribution data for several volcanic archipelagos within the

(sub)tropics.

1.3.1 Plant occurrence database from Revillagigedo Archipelago, Mexico

The Revillagigedo plant dataset comprises occurrence (presence/absence) points
obtained through field sampling from vegetation transects conducted between 2018
and 2022. The sampling efforts focused on the two largest islands in the archipelago,
Socorro (132 km?) and Clarion (19.8 km?), chosen for their ecological significance as

hosts to the majority of species in the archipelago (Figure 1.1).

During the first sampling period, plant records were collected in both the dry (May
2018) and wet (November 2018) seasons on Clarion Island, the least studied of the
two (Benavides et al., 2019). In 2022, data were collected from Socorro Island at the
beginning of the wet season (November 2022) to capture the largest possible range

of both perennial and non-perennial species.



Depending on the island size and habitat variability, vegetation transects of varying
lengths were implemented: 100m transects on Clarion and 500m to 1km transects

on Socorro. These transects were systematically selected to capture environmental



heterogeneity. To counteract potential sampling bias, | also ensured a widespread

distribution of transects across the islands.
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Figure 1.1 The two main islands of the Revillagigedo Archipelago,
Mexico, with a selection of their biodiversity



1.3.2 GBIF island data: tropical volcanic archipelagos

The Global Biodiversity Information Facility (GBIF) is an extensive dataset resulting
from collaborative efforts between data providers and taxonomists from numerous

institutions, making it a valuable resource for biodiversity research and

conservation (Beck et al., 2013). This database offers free access to digitised
biological data from various sources, including museum collections and survey
programs on a global scale. Here, we use a subset of the data extracted with the
"Rgbif" R package (Chamberlain et al., 2024) within global island polygons (sourced
from: Geodata R package; Hijmans et al., 2024). The informativeness of these data
is discussed in more detail within Chapter 2, where we analysed which islands
provide sufficient information to fit SDMs in islands across diverse taxa at the
global scale. Subsequently, we selected volcanic archipelagos in (sub)tropical
biodiversity hotspots (Myers et al., 2000; Mittermeier et al., 2013) that had sufficient
plant occurrence data to analyse the effects of climate change at a macroecological

scale in Chapter 5.

1.4 Summary and synthesis

The rapid alteration of species' geographic ranges due to human activities poses a
significant threat to biodiversity, especially on islands where extinction rates are

higher than in other terrestrial environments (Whittaker et al., 2017). Effective



conservation strategies require a thorough understanding of the geographic and

environmental limits of island biodiversity.

Given that the full distributions of many island species are unknown, species
distribution models (SDMs) are essential tools for filling ecological knowledge gaps.
They enable data-informed conservation and management decisions for these highly
threatened components of global biodiversity. However, most SDM research has
focused on species with broad ranges and ample occurrence data, typically focussing

on continental species (Hickisch et al., 2019; Leroy, 2022).

Islands differ significantly from continental systems in many ways. Modelling island
species distributions thus requires specific guidelines which consider the specific
data limitations and characteristics of (oceanic) islands. Islands are often remote
and challenging to access, with many species found in low abundance due to
natural factors or human influences. Consequently, obtaining comprehensive and
representative datasets of species occurrences in these environments is
challenging. This is compounded by the small, bounded study areas that often
exhibit considerable topographic and environmental variation. This situation raises
several concerns: 1) the appropriate scale of predictors needed to capture local-
scale environmental variations; 2) the quality and quantity of data required to
describe species' habitat requirements considering island spatial idiosyncrasies; and

3) the reliability of predictors derived from high-resolution data products in



accurately describing island environments despite the scarcity of environmental

data on most islands.

The main objective of the thesis is to improve the accuracy and reliability of SDMs in
island environments, while applying the insights gained from analyses of optimal
island SDM implementation to better understand island plant distributions on
(sub)tropical islands. Ultimately, it is hoped that the information generated from the
analyses presented in this thesis will enhance conservation and management

strategies for insular biodiversity going forward.
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Abstract

Species distribution models (SDMs) are the primary tools used to model and
predict changes to species’' ranges, and are often used to provide a quantitative
baseline for conservation measures. However, most SDM methods and frameworks
have been primarily designed for use with species with relatively large amounts of
occurrence data and covering broad continental ranges.

Here, we undertake a systematic review of the literature (224 published studies) to
assess the appropriate use of SDMs in island biogeography, specifically focusing on
marine islands. We divide species into different insular distribution categories (i.e.,
chorotypes: single island/archipelago endemics, non-endemic natives, and non-
natives) in order to provide chorotype-specific SDM recommendations. We
highlight how to navigate three fundamental considerations related to the
application of SDMs in island environments. 1) Response variables, specifically the
issue of small sample sizes for many island species. 2) Predictor variables, including
(i) the selection of relevant environmental predictors at appropriate spatial grains,
and (ii) addressing the truncation of environmental extent across the entire species
range, especially for non-endemic species. 3) Model building, particularly, in the
context of limited occurrence data for many island species, how to (i) approach the

uncertainty related to the choice of modelling method, and (ii) avoid overfitting.



We also examine the data sources used in island SDM studies, finding that there
are strong geographical biases in study location. Alongside this, we evaluate the
potential of the GBIF database — a comprehensive global database of species
occurrences — in island SDM research. We find that GBIF has been potentially
underutilised in island SDM studies so far, and represents a useful resource for

filling island distribution data gaps for several taxa going forward.

Based on the insights we obtained from our systematic review, we propose a set of

SDM recommendations tailored to insular species and environments.



2.1 Introduction

As anthropogenic global environmental change progresses, suitable habitats for
many species are shrinking, becoming fragmented, or being lost entirely (Kerr et al.,
2007; Thurman et al., 2020), resulting in the loss of biodiversity at multiple spatial
scales (Cardinale et al., 2012). Nowhere is this loss more apparent than on islands,
systems that have suffered large numbers of recorded extinctions (Whittaker et al,,
2017, 2023; Russell & Kueffer, 2019; Matthews & Triantis, 2021). Species persistence
often depends on keeping pace with environmental change, primarily through
dispersal and range-shifts (Bulgarella et al., 2014). As such, self-contained
environments such as islands, which provide limited opportunities for species
(especially endemics) to shift their range, are particularly vulnerable. Therefore,
accurately mapping island species distributions is crucial for anticipating the impact
of environmental change on insular environments (Porfirio et al., 2016; Ellis-Soto et

al., 2017; Matthews & Triantis, 2021).

Ecological niche models, also termed species distribution models (hereafter SDMs),
have become a widely used methodological tool for providing this information
(Elith & Leathwick, 2009). SDMs use species occurrence data in combination with
corresponding environmental covariates to identify potentially suitable sites for
species in both native and novel ranges and across different temporal scales

(Franklin, 2013; Guisan et al., 2013; Robinson et al., 2017). The flexibility of SDM



approaches allows for a wide range of applications, including assessments of the
ecological impacts of climate and land-use changes, and biological invasions
(Parmesan & Yohe, 2003; Guisan & Thuiller, 2005; Faleiro et al., 2013): all important
drivers of extinction on islands (Veitch & Clout, 2002; Ricketts et al., 2005; Russell &

Kueffer, 2019; Whittaker et al., 2023).

Even though conservation efforts focused on island biodiversity may greatly benefit
from the ecological information generated by SDMs, research to-date on SDMs has
tended to focus on species with broad ranges and for which there is a large
amount of occurrence information, corresponding typically to continental species
(Hickisch et al., 2019, Leroy, 2022). Historically, there have been fewer applications
of SDMs in island environments and for island species, although recently this
situation has started to change (e.g., Price et al., 2012; Vergilio et al., 2016; Spiers et
al., 2019; Goedecke et al., 2020; Barlow et al., 2021). The increasing implementation
of SDMs in island studies provides an opportunity for evaluating how two key
considerations for developing robust models for islands species have been
handled: data limitations (Pearson et al., 2007; Lannuzel et al., 2021) and the
restricted spatial context of island environments (Kier et al., 2009; Whittaker et al,,

2023).

Data limitations in the study of island species arise i) due to the inherent small

ranges of many insular species, particularly single island endemics (Fernandez-



Mazuecos et al., 2014; Chiatante, 2022); ii) as a consequence of numerous
anthropogenic disturbances that have severely reduced already small island
populations (Helmstetter et al., 2021; Matthews et al.,, 2022; Nogué et al.,, 2021);
and/or iii) simply because many islands are remote and inaccessible, hampering
detailed biological surveys (i.e., a lack of extensive sample data; Ando, 2019).
Regardless of the origin (incomplete sampling or naturally restricted distributions),
these distribution data limitations increase model uncertainties in SDM
applications, a particularly problematic issue given that many SDM modelling
techniques are known to be sensitive to small sample sizes (Stockwell & Peterson,
2002; Hernadez et al., 2006; Wisz et al., 2008) and the issue of class imbalance (i.e.,
a disproportionate number of absences/pseudoabsences in the data; Longadge et
al., 2013; Robinson et al., 2017). In addition, small sample sizes may lead to
statistical overfitting, especially when used in combination with a
disproportionately large number of predictors in relation to sample size (Breiner et
al., 2015), compromising the transferability of model predictions in space and time,

a key aspect in many SDM studies (Heinanen, et al., 2012).

Additional important considerations regarding the application of SDMs in an island
context are that study areas i) are spatially distinct units surrounded by a non-
permeable matrix for many organisms (i.e., water; Matthews, 2021), and ii) often

contain high environmental heterogeneity across a relatively small area (Barajas-



Barbosa et al., 2020). Consequently, the ecological processes that underpin island
species distributions typically operate at relatively smaller scales, for which finer
scale habitat descriptors such as topoclimatic, land cover and terrain variables are
needed to increase the accuracy of predictions (Meyer & Thuiller, 2006; Lanuzel et
al., 2021). However, SDM studies frequently rely purely on broad-scale climatic
variables. These macroclimatic variables are unlikely to be able to explain the fine-
scale variation in island species distributions, particularly for small-ranged species
such as insular endemics (Heinanen et al., 2012; Turvey et al., 2020; Segal et al.,
2021). The increasing availability of fine-grained predictors such as remotely sensed
environmental data, landcover, and topographically derived variables, particularly
for certain well studied archipelagos, present a means to increase the utility of
SDMs for island species (Longcore et al.,, 2018; Hansen et al.,, 2019; Lannuzel et al,,

2021; Hanz et al., 2023).

Another potential issue related to studying relatively small and bounded areas is
the exacerbated risk of environmental space truncation, whereby studies only
include occurrence and environmental data from the insular space in the models,
even though the target species may be also found outside of the focal islands (i.e.,
non-endemic native and non-native species), increasing the uncertainty of
predictions relating to species’ responses to drivers of change (Bush et al., 2018;

Rosenblad et al., 2019).



In the context of the issues discussed above, in this study we review the
implementation of SDMs on islands, with a particular focus on analysing data
limitations, with the aim of identifying key methodological considerations to deal
with data constraints and the distinctive features of island environments/species.
Given the data limitations in island SDM research, we explore whether the Global
Biodiversity Information Facility database (GBIF, 2022) — a primary data source in
SDM studies more broadly but less utilised in island studies — provides adequate
data at the island level to address knowledge gaps and minimise geographical and

taxonomical biases in island SDM studies.

2.2 Materials and Methods

2.2.1 Literature search

To obtain a general overview of SDM implementation on island systems, we
conducted a comprehensive literature search for studies published over the last
two decades. The bibliographic search was performed using the Scopus
(https://www.scopus.com) and Google Scholar (https://scholar.google.com)
databases. Papers published between 1999 (first SDM publication recorded
fulfilling the selection criteria) and the cut-off date 30 September 2021 with the
terms ["SDM" OR “Species Distribution Model*"] AND ["island"] in the title,
keywords or throughout the paper were included. To be included in our review, a

paper needed to focus exclusively on true marine islands (i.e., islands of land in the



sea; Matthews, 2021). We considered both methodological and empirical studies if
SDMs were employed as part of the methodological framework. Studies focused on
microorganisms (e.g., parasitic/pathogenic fungi, protozoa, etc.) were excluded
from the analysis as they tend to involve different types of predictor variables
compared to analyses of macroorganisms. We systematically assessed studies for
relevant aspects of SDM fitting, including sample size, data sources, study bias,
model building, model overfitting, and environmental space truncation.
Additionally, we evaluated the GBIF database — including the spatial distribution of
island data in GBIF for different taxa — to assess its suitability for filling knowledge
gaps in island SDM research. Geographic data were mapped using QGIS (version

3.22.10; QGIS Development Team, 2022).

2.2.2 Response variable related considerations in island SDMs

Sample size

A frequently considered minimum threshold for SDM analyses is >20 records per
species prediction (Santini et al., 2021; van Proosdij et al., 2015; Wisz et al., 2008),
although this number is also a function of the number of predictors (discussed
below). Based on this threshold, we categorised the sample size of the modelled
species in the sourced papers as follows: species datasets with <5 records were
defined as ‘very small’, datasets with [6-20] records were defined as ‘small’, those

with [21-100] were defined as ‘'moderate’, and those with >100 records were



classified as ‘large’. In addition, to analyse data availability per species distribution
range type (‘chorotype’), we categorised the modelled island species as endemic
(endemic to the specific island / archipelago being studied), non-endemic native
(i.e., naturally present on an archipelago but also the mainland), or non-native (i.e.,
introduced to an archipelago by humans). This categorisation was undertaken

based on information provided in the reviewed papers.

2.2.3 Predictor variable related considerations in island SDMs

Study grain

To evaluate if the choice of study grain was related to the (1) analysed predictor
variable type, (2) study aim, or (3) taxonomic group, we recorded the study grain of
the predictors in the sourced studies and assessed its association with the

previously mentioned factors.

We identified 5 types of predictor variable used in SDM analyses: 1) bioclimatic
variables from global datasets (Globclim); 2) bioclimatic variables from regional
climate models (Regclim); 3) topography-related variables (DEM); 4) land cover
variables (LC; including soils/geology and vegetation cover); and 5) biotic
interaction information (Biotic). For studies with multiple variable types, all

corresponding categories were assigned.



We assigned to each analysed study one of the 10 categories of study aim
identified: 1) method testing = MT,; 2) species geographical distribution = SGR; 3)
evaluation of richness patterns = RP; 4) protected area management = PAM; 5)
applied restoration efforts = RST; 6) phylogeography = PHY; and assessing the
impact of anthropogenic drivers of environmental change, including, 7) climate
change = CC, 8) invasive non-native species = IAS, 9) land use change = LUC; and

10) the synergistic interactions between any of the previous three = SYN.

For each study, we classified the modelled taxon as one of the following: 1)
anurans, 2) arthropods, 3) birds, 4) fungi, 5) mammals, 6) non-arthropod
invertebrates (i.e., snails and land worms), 7) reptiles 8), vascular plants and 9) non-
vascular plants. Studies analysing more than one taxon were assigned multiple

taxonomic categories accordingly.

Environmental space truncation

To identify potential cases of environmental space truncation (i.e., where an island
species distribution model did not utilise mainland occurrence data, where
available), we analysed the geographic extent of the occurrence points used to fit
the SDM by species’ chorotype (i.e., endemic, non-endemic native, or non-native).
That is, we distinguished between studies where (i) the occurrence data points were
obtained exclusively from the island study area, which were categorised as

localised, and hence no strategy was implemented to handle environmental space



truncation; and ii) additional occurrence points to the island study area were
obtained, which were categorised as widespread (e.g., a non-endemic native to an
island modelled with data from both the insular and non-insular ranges). This
categorisation was undertaken solely using information provided in the reviewed
papers (i.e., we did not independently assess species distributions to determine the
geographic extent of the occurrence points). For certain studies, particularly those
that analysed large numbers of species and islands, this information was not always
clear, and in these cases, we made an informed judgement as to the correct

category.

2.2.4 Model building considerations in island SDM studies

To assess the implications of model choice in relation to sample size, we noted, for
each paper where data existed, sample size, the type of occurrence data used
(presence, absences or pseudo-absences), the modelling method employed (e.g.,
Generalised linear models, Maxent, etc.), and the type of approach selected for

modelling (single vs ensemble).

Modelling technigue uncertainty
To assess the implications of model choice in relation to sample size, we noted, for
each paper where data existed, sample size, the type of occurrence data used

(presence, absences or pseudo-absences), the modelling method employed (e.g.,



Generalised linear models, Maxent, etc.), and the type of approach selected for

modelling (single vs ensemble).

Model complexity: overfitting

We used the general rule of thumb regarding SDM overfitting: the number of
presences should be 10 times larger than the number of predictors used for
modelling (Franklin, 2013; Vaughan & Ormerod, 2003). For each study and model
fit, we noted all studies that were potentially affected by overfitting, by calculating
the ratio of the number of records per modelled species to the number of
predictors. For cases which were potentially affected by overfitting (i.e., those where
the ratio was < 10), we recorded whether or not any approaches had been applied
to mitigate this issue. Such approaches can include varying the level of
regularization, which controls model complexity (Radosavljevic &Anderson 2013),
modification of beta multipliers (in the context of maxent; Elith et al., 2010), or
post-modelling variable removal based on their contribution (e.g., Jacknife-

partition; Girini et al.,, 2017).

2.2.5 Assessing the potential of GBIF for filling island SDM knowledge gaps

Data Sources and Geographic Coverage
To identify the geographical coverage of island distribution data, and thus identify
potential knowledge gaps, for each study, we categorised their corresponding

occurrence data sources as: (1) citizen science, (2) directly from GBIF, (3) herbaria,



(4) museum, (5) previously published literature, (6) primary field data collection (i.e.,
field data collected as part of a study), (7) regional occurrence databases (e.g.,
ATLANTIS from the Azores), (8) remote sensing (i.e., satellite and aerial imagery
data), and (9) specialised datasets (e.g., focusing on a specific group of species,

such as economically important species, non-natives, etc.).

To analyse the geographic coverage of studies, study regions were categorised
based on the bioregionalization of coastal and shelf areas by Spalding et al. (2007)
that comprises: (1) Arctic, (2) Temperate Northern Atlantic, (3) Temperate Northern
Pacific, (4) Tropical Atlantic, (5) Western Indo-Pacific, (6) Central Indo-Pacific, (7)
Eastern Indo-Pacific, (8) Tropical Eastern-Pacific, (9) Temperate South America, (10)

Temperate Southern Africa, (11) Temperate Australasia, and (12) Southern Ocean.

Assessing the extent to which GBIF data can fill island SDM data gaps

We used the "Rgbif" R package (Chamberlain et al., 2022) to extract species
occurrences from the GBIF database within global island polygons (sourced from:
Geodata R package; Hijmans et al,, 2023). The assessment included islands ranging
in size from 0.1 to 786,000 km? (threshold reference: Weigelt et al., 2013;
Fernandez-Palacios et al., 2021). We selected all taxa at the species level under the
"accepted name" category and assigned each species to one of the nine taxonomic
categories listed above. Subsequently, we quantified the number of records per

species within each island polygon. We preferred the use of polygons over



counting points within a grid to avoid making assumptions about the optimal

spatial resolution to use.

To evaluate the appropriateness of GBIF data for fitting island SDMs, we developed
two metrics. First, the "island modellability index" (M index) was calculated as the
ratio between the number of species with at least 20 records (i.e., occurrence
points) of a given taxon and the total number of species recorded in that
taxonomic group within an island. The M index ranges from O (all recorded species
of a taxon on an island have <20 records) to 1 (all recorded species of a taxon on
an island have > 20 records). This index provides a measure of data availability for

a taxon as a whole, regardless of taxon richness.

The second metric is the absolute number of species (within a given taxon) with at
least 20 records per island; the number of species that meet the minimum sample
size threshold commonly reported in the SDM literature (Santini et al., 2021; Wisz

et al,, 2008).



2.3 Results

2.3.1 Literature search
Through the literature search, we sourced 224 island SDM studies that passed our

search criteria. Details of the sourced studies are provided in Appendix S2.1.

2.3.2 Response variable related considerations in island SDMs

Sample size

Across the 224 reviewed studies, we obtained 3043 species-occurrence datasets,
corresponding to 2787 species (endemics=1327; non-endemic natives=1480, and
non-natives=236; note these numbers do not sum to 2787 as some species were
included in more than one dataset). Of these, roughly half of the occurrence
datasets were classified as ‘very small’ (<5 records: n=650/3088; 21%) or 'small’
(from 6 to 20 records: n=964/3088; 31%), with relatively fewer classified as
‘moderate’ (21-100 records: n=887/3088; 29%), or large (>100 records:
n=587/3088; 19%). Most of the 'very small’ to ‘small’ occurrence datasets (i.e.,
occurrence data for a single species) corresponded to endemic species
(n=934/1614; 58%), followed by non-endemic native species (n=666/1614; 41%)
and non-native species (n=14/1614; 1%). Conversely, large’ datasets rarely related
to endemic species (n=126/1327; 9%) and were most common for non-native

species (n=176/236; 75%).



2.3.3 Predictor variable considerations in island SDM studies

Study Grain

Predictor Type — Across the sourced studies, the grain size of the predictor
variables used in SDMs varied from 1.5 m to 10 km. The majority of studies that
reported grain size data (n=101/216; 47%) were developed at a 1 km grid scale
(Fig. 2.1a). This preference can be attributed to the predominant use of 'Globclim'
predictors, particularly the WorldClim global dataset, the finest resolution of which
is 1 km (Fig. 2.1a -b), accounting for 92% of studies using 'Globclim' predictors.
Finer scale resolutions (i.e., between 1.5 m and 500 m) were utilised in 30% of
studies (n=65/216), with DEM variables being most commonly employed as
predictors (n=40/65; 61%,; Fig. 2.1a). These DEM variables were generally combined
with fine-grained 'Regclim’ predictors (n=34/40; Fig. 2.1a-b), rather than 'Globclim'
(downscaled) variables, which were rarely used at finer resolutions (n=10/65; 15%;
Fig. 2.1a-b). Landcover predictors (n=29/65; 45%) were also frequently used at
resolutions below 500 m (Fig. 2.1b). Studies that used a combination of coarse
climatic and fine non-climatic predictors resampled the predictors to a 1 km grain

size (Fig. 2.1b).

Coarser predictor grain sizes of 2-5 km were less common, with only 36 studies
(n=36/216; 17%) reporting their use. Among these studies, 'Globclim' predictors

alone were predominantly utilised (n=27/36; 75%; Fig. 2.1a). The coarsest



resolution of 10 km was employed in 13 studies (n=13/216; 5%), with 'Globclim'
predictors commonly used (n=10/13; 78%), often in combination with non-climatic

predictors (n=8/10). For further details, please refer to Appendix S2.2.

Study Aim and Grain Size — We found that most island SDM studies were
conducted to assess climate change impacts (n = 41/224; 18%), followed by species
geographical distributions (n = 35/224; 16%), phylogeography (n=35/224; 16%),
invasive species (n=28/224; 13%) and the synergistic effects of environmental
drivers (n=27/224; 12%). Nineteen papers (8%) evaluated methodological
considerations of SDM applications on islands, with few studies in the remaining
categories: richness patterns (n=13/224; 6%), protected area management
(N=9/224; 4%), restoration (n=8/224; 3.5%), and assessing the impact of land use
change (n=8/224; 3.5%) (Fig 2.1¢c). For those studies with study grain data available,
we identified that finer predictor grain sizes (<500m) were generally used in island
SDM studies focused on land use change (n=6/7; 85%), restoration (n=5/6; 83%)
and method testing (n=14/17; 82%) (Fig. 2.1d). In contrast, studies that were more
commonly associated with predictors measured at the Tkm grain size were those
focused on phylogeography (n=32/35; 91%), the synergistic effects of global
environmental change drivers, (n=21/25; 84%), protected area management

(n=7/9; 78%), invasive species (n=19/27; 70%), climate change impacts (n=28/41;



68%), and species geographical distributions (n=14/35; 60%) (Fig 2.1d). Further

details are provided in Appendix S2.2

Taxa and Grain Size — Vascular plants were the most studied taxon in island SDM
analyses (n=116/224; 52%), followed by mammals (n=31/224; 14%), and reptiles,
arthropods and birds (n=26/224; each representing 12%). Anurans (n=8/224; 4%),
non-vascular plants (n=7/224; 3%), non-arthropod invertebrates (n=5/224; 2%) and
fungi (n=2/224; 0.9%) were all studied to a lesser degree (Fig. 2.1e). We could not
identify clear patterns regarding predictor variable resolution selection by taxa (Fig.

2.1f). Further details are provided in Appendix S2.2
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Figure 2. 1 Predictor variable resolution within published island SDM studies. The
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(RST), and species geographical distributions (SHR). Finer resolutions (i.e., predictor
variable grain size) are represented in shades of red, while coarser resolutions are

depicted in shades of blue.



Environmental space truncation

Regarding the area of a species’ distribution for which occurrence points were
obtained, among the models of the 1480 non-endemic native species models, 90%
exclusively utilized data from the insular part of the range (i.e., localised data;
n=1327/1480), with the remaining 10% using widespread occurrence and
environmental data both from the insular and the non-insular parts of the
distribution (i.e., here insular and non-insular refers to the focal island(s) being
studied, the 'non-insular’ parts of the distribution could also be on other islands
that were not studied, for example, in a different archipelago). A considerable
proportion of the 236 non-native species models were fitted only using data from
the insular environmental space (n=101/236; 43%); one study relied on
complementary physiological tolerance experiments to contrast the results of

SDMs fitted with data from the insular environmental space.

While endemic species are not expected to have occurrence data from areas
outside of the insular range, we found one study using additional information from
the environmental space of the introduced range of natural island endemics (i.e.,

island endemics prior to anthropogenic introductions).



2.3.4 Model building considerations in island SDM studies

Modelling technigue uncertainty

Both sample size and the nature of the input data (Presence only / Presence—
absence) influenced algorithm selection in the sourced island SDM studies. Overall,
a low proportion of studies included information on true species absences
(n=36/224; 16%), and the use of true absence data increased with the number of
occurrence points analysed (supplementary S2). The use of a single-modelling
technique was the most common approach selected for modelling (n = 176/224;
79%). Of which, a marked preference for Maxent as a stand-alone method was
observed (n=135/176; 77%). As datasets became smaller, Maxent was more
frequently used as the sole analytical method. It was used in 83% (n=539/650) of
model fits based on ‘very small’ datasets, but only 45% (n= 264/587) of those
based on ‘large’ datasets. The use of multiple modelling techniques (model
ensembles) was less common than single model applications, being used in 21% of
papers (n=48/224). The methods most frequently used in ensembles were
Generalised Linear Models (GLM; n=38/48; 79%), Random Forest (RF; n= 37/48;
77%), Boosted Regression Trees (BRT; n=31/48; 64%) and Maxent (n=30/48; 62%).
It is noteworthy that all studies with ‘very small’ to ‘moderate’ sample sizes
included in their ensembles at least one data hungry modelling method (i.e., those

that perform better with >200 samples; van der Ploeg et al., 2014) such as RF,



Artificial Neural Networks (ANN), multivariate adaptive regression splines (MARS)
and Support Vector Machines (SVM). More detail on all the algorithms used in each

study is provided in Appendix S2.2.

Model complexity: overfitting

We found 161 (n=161/224; 72%) papers with sufficient information for an
assessment of model overfitting (number occurrence points and predictors
utilised). For modelled species with low numbers of observations, we observed a
general and concerning pattern: the smaller the sample sizes used for modelling
species distributions, the less attention was seemingly paid to overfitting. For
example, none of the four studies that used the smallest number of occurrence
records for modelling (n=3) reported the use of a method for addressing
overfitting, and all used a relatively large number of predictors (8- 24). 53%
(n=47/89) of the studies that analysed between 4-100 occurrence records per
modelled species did not report the use of any form of overfitting reduction
technique, and used two to three times more predictors than the recommended
ratio; only 24% (n=21/89) used the recommended ratio of predictors in relation to
the sample size. The most common method for reducing overfitting was the
reduction of the number of variables through Jack-knife partitioning that allowed
for the identification of variables with higher contribution to the models (n = 17/89,

19%). The other two methods applied in the reviewed literature were ensembles of



small models (n = 2/89; 2%) and modification of beta/regularization multipliers (in
the context of Maxent) during model calibration (n = 2/89; 2%). For all the
modelled species with >100 records (n=69), the number of variables was
appropriate in relation to the number of observations. Further information relating

to model overfitting is provided in Appendix S2.2

2.3.5 Assessing the potential of GBIF for filling island SDM knowledge gaps

Data sources and geographical coverage

By analysing the origin of data used for fitting SDMs on islands, we identified that a
large proportion of the studies were developed with data newly collected from the
field (n=102/224; 46%), both when used as a single source of data (n=53/102; 52%)
and combined with other datasets (n=49/102; 48%). This was followed by
information sourced from literature (n=68/224; 30.3%), regional databases
(n=61/224; 27.2%), and the GBIF dataset (n=48/224; 21.4%). Other sources included
herbaria (n=26/224; 11.6%) and museum collections (n=17/224; 7.6%), remote
sensing imagery (n=16/224; 7.1%), specialised databases (n=12/224; 5.3%) and

citizen science (n=8/224; 3.6%).

We identified geographical bias in published SDM studies using data from the field,
literature and regional datasets (Fig. 2.2a). SDM studies using these data sources

are concentrated in temperate islands regions in the Northern Atlantic, Northern



Pacific and Australasia, with fewer examples from islands with tropical affinities
from the Central and Western Indo Pacific (e.g., Madagascar, New Guinea, and Sri
Lanka). (Fig. 2.2a). The remaining tropical island regions were poorly represented
(Fig. 2.2a). GBIF, which ranked as the fourth most utilised data source, is a more
commonly used data source in certain tropical islands (e.g., New Guinea,
Philippines, several islands from Eastern Indo Pacific and the tropical Atlantic;

Fig.2.2b).
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Figure 2. 2 Spatial distribution of the data sources of island SDM studies. In (a) dotted rings
(N field) indicate the number of studies using primary fieldwork data, and solid rings show
the total number of studies. Black dots indicate the use of regional databases with species
occurrences; coloured dots indicate the number of studies using published data from the
literature. In (b) coloured dots indicate the number of studies analysing GBIF data. Islands
points in the eastern Pacific reporting one study with GBIF belong to a single multi-island
assessment. Note that a number of studies did not identify the specific island(s) studied
(simply the insular region) — in these cases we used the centroids of the study area.



Assessing the extent to which GBIF data can fill island SDM data gaps

The final analysed GBIF island occurrence database comprised 12,557,748
occurrences across multiple species (n=106,858) from 4060 islands. In this section,
for ease we focus on islands falling within the top 10th percentile (M > 0.09) of the
M Index (i.e., for a given taxon, the number of species with =20 records divided by
the total number of species recorded on the island), and within the top 10th
percentile (> 5 species) in relation to the number of species with at least 20
occurrence records per island. However, the full range of these metrics is displayed
in Fig. 2.3. Table 1 summarises the results of our two metrics, which were calculated
at the island level and for each taxon individually: the M index and the absolute

number of species with >20 records.

Overall, our analysis revealed that birds were the best represented taxon in the
GBIF island data, as indicated by both of our metrics (Table 2.1, Fig. 2.3e-f). Island
anurans and mammals also showed significant availability of data per species, with
numerous islands across all regions showing M index values > 0.09 (Table 1, Fig.
2.3a-b & g-h). Reptiles exhibited islands with M index values >0.09 primarily in
tropical regions, while representation in temperate regions was relatively low, which

is to be expected given the ecology of this taxon (Fig. 2.30-p).

On the other hand, insular arthropods, fungi, non-arthropod invertebrates, non-

vascular plants, and vascular plants were poorly represented in the GBIF dataset at



a global scale (Table 2.1 Fig. 2.3). However, there were numerous islands for non-
vascular and vascular plants with representative occurrence data (=20 records per

species) concentrated in understudied temperate regions (Fig. 2.3k-1 & g-r).

It is worth noting that the number of species with =20 records per island was a
particularly informative metric for birds. For vascular plants and arthropods, which
ranked second and third for this metric, the high number of species with relatively
large occurrence record datasets can be attributed to their overall higher species
richness. A higher number of species per island, for a given taxon, increases the
likelihood of there being a larger number of species with numerous occurrence
records, all else being equal. For more detailed information on the results related to

this metric, see Appendix S2.2.



Table 2.1 Summary of M Index Values [number of spp. with =20 records / total
number of spp. recorded at the island level] and Total Number of spp. with =20
records across taxonomic groups in GBIF Island Data.

Mean
number
of Total number Number Percentage Number of Percentage of
Taxonomic records of islands of islands  of islands islands with islands with =5
Group per spp. with GBI with with >5 spp. with spp. with at
in Data M Index M Index at least 20 least 20
GBIF >0.09* >0.09* records records
island
data
Birds 33 2452 639 26% 677 27.6%
Anurans 9 929 138 14.8% 20 2.1%
Mammals 15 1571 249 15.8% 50 3.2%
Reptiles 9 549 57 10.4% 5 0.9%
Arthropods 8 1817 20 1.1% 138 7.5%
Non-
arthropod 4 1136 33 3% 14 1.2%
invertebrates
Non-vascular 7 1069 33 39% 43 4%
plants
V;f::t's"’" 5 2275 132 5.8% 266 11.7%
) 0.5%
Fungi 4 1171 75 6.4% 35 ?

The three highest-ranked percentages for each metric are marked in bold. *10t™
percentile value of the M index
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Figure 2. 3 Spatial distribution of the island modellability Index (M index, as derived from GBIF data) divided by taxa: Anurans (a-b), Arthropods (c-
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2.4 Discussion

Species distribution models (SDMs) can serve as a valuable methodological tool,
offering insights into the distribution patterns of island species. This information is
crucial for designing effective conservation strategies for this unique yet highly
threatened segment of global biodiversity (Kier et al., 2009; Whittaker et al., 2017).
Despite the distinct features of island environments and species, and the associated
considerations for modelling the distributions of the latter, there has been a
notable absence of reviews of island SDMs, particularly those focused on
identifying potential sources of uncertainty and examples of best practice.

In light of this gap, and drawing from the results of our literature review, in this
section we first present a set of recommendations that future island SDM studies
should consider. We conclude by discussing future prospects for island SDM
studies, emphasising the potential of the Global Biodiversity Information Facility

(GBIF) database in advancing island SDM research.

2.4.1 The selection of relevant predictors at an appropriate analytical scale
maximises the utility of limited occurrence data

It has been consistently suggested in the SDM literature that an occurrence dataset
should have a minimum of 20 records per species, ideally exceeding 50, for robust

model predictions (Santini et al., 2021; Wisz et al., 2008). However, our findings
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indicate that more than half of the analysed island SDM datasets fall below this
recommended threshold (i.e., n < 20). Small sample sizes in island analyses may
result from incomplete sampling due to the inherent inaccessibility of islands, or
the presence of species occurring in low numbers, including endemics with
naturally narrow ranges and island species whose populations have been reduced
by human activities (Fernandez-Palacios et al.,, 2021; Helmstetter et al., 2021;
Matthews et al., 2022; Nogué et al., 2021). This limitation is arguably the most

significant factor hindering the proper implementation of island SDMs.

Compounding this issue, the use of coarse-grained predictors may further diminish
sample sizes, especially for species with narrow and clustered distribution patterns.
For example, at the extreme, if very coarse-grained predictors are used to model a
species with a very narrow and clumped distribution, the species may only occur in
a single grid cell. In cases such as this, the predictors will be unlikely to adequately
capture the environmental variation at a relevant scale for meaningful SDMs. In
addition, this results in the loss of occurrence information, data that are often

already scarce.

Our review identifies a prevalent overreliance on coarse climatic variables in island
SDMs, possibly influenced by the current SDM guidelines, which emphasise the
importance of climate as a strong predictor of species distributions at continental

scales (Pearson & Dawson, 2003; Gardner et al., 2019). However, islands typically
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exhibit distinct environmental conditions, such as limited land area, high isolation,
and significant topographical variation over relatively small areas, especially for
volcanic oceanic islands (Barajas-Barbosa et al., 2020). As a result, island species,
particularly from certain taxa, often have highly specific habitat requirements
(Whittaker et al., 2017, 2023). For example, evidence suggests that the interaction
between island plants and their environment primarily occurs at fine scales
(Bellamy et al., 2013; Fernandez-Palacios et al., 2021; Whittaker & Fernandez-
Palacios., 2007). Therefore, it is crucial that researchers select predictors (and
predictor variable grain sizes) that reflect these highly specific microenvironmental
variations to accurately represent island species distributions. This ensures that
occurrence points within the ranges of highly specialised or restricted species cover
a broad a range of environmental conditions as possible. Consequently, it enhances
the environmental data available for constructing SDMs and potentially optimises

the utilisation of (often limited) occurrence information.

2.4.2 Island SDM analyses should avoid the default use of coarse-scale climatic
predictor variables

Recent advancements in downscaling climatic variables (Khosravi et al., 2016) offer
a potential solution for incorporating high-resolution environmental descriptors
into island SDMs. However, these methods are not widely adopted in this field,

likely due to their demand for precise remotely sensed and topographic data, along



63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

with regional climatic models, to make reliable predictions (e.g., the CIELO model
for the Azores archipelago: Azevedo, 1996; Baker et al., 2017). While high-
resolution remotely sensed and topographic data are increasingly accessible (e.g.,
ASTER DEM, Abrams et al., 2020), high-quality open-access regional climate data
remain unavailable for most island systems. Consequently, island studies must
choose between using either a) climatic proxies derived from topographic, land
cover, or remotely sensed information (e.g., Lannuzel et al., 2022); or b) downscaled
global climate data, even though the latter approach comes with higher uncertainty
(Bazzicheto et al., 2021; Hanz et al., 2023). Both of these approaches hold promise
for islands lacking regional climate datasets, but additional research is required to
assess the associated uncertainty and relevance of downscaled variables for
studying species distributions in island environments, given the novelty of this

approach.

Acknowledging the challenges associated with obtaining accurate environmental
datasets describing microhabitats (Fitzpatrick & Ellison, 2018), future island SDM
studies should refrain from the default use of coarse-grained climatic predictors.
Instead, a comprehensive search for finer-resolution variables tailored to the study
area should be undertaken. Importantly, the use of high-resolution predictor
variables will require corresponding occurrence data at a closely aligned resolution

(Moudry & Simova, 2012).
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The use of coarse-scale occurrence data can also influence SDMs by linking species
with unsuitable environmental conditions. In island environments, two key factors
can significantly worsen SDM performance due to inaccuracies resulting from
occurrence points being sampled outside of a species’ preferred environments
(Gabor et al., 2023): 1) oceanic islands frequently exhibit diverse and highly variable
terrain within small areas, resulting in sharp variations in environmental conditions
over short distances (Hanz et al.,, 2023); and 2) many species inhabiting islands,
particularly in certain taxa (e.g., plants), have very narrow niches (Rosenblad et al.,

2019).

As a final consideration, once the set of potential variables is obtained, and is then
paired with a sufficient sample size of species occurrence data, the final selection of
predictor variables should be informed by existing knowledge or at least theoretical
justification (Araujo et al., 2019). By considering factors like species ecology and the
specific scientific question, researchers can make informed decisions about the

most suitable predictors and their grain of analysis.

2.4.3 Selection of an appropriate extent to capture the entire environmental
range of island species: a crucial consideration for model projections

Training a SDM on only a portion of a species' ecological niche can lead to
problems when predicting into new climates or geographical areas (Guillera-Arroita

et al., 2015; Peterson et al,, 2011). By not encompassing the entire environmental
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range of a species, valuable information may be overlooked, and the model may
make inaccurate extrapolations into environmental spaces where data are lacking.
We discovered that a majority of studies of non-endemic native species, and a
significant portion of assessments of non-native species, only used data from the
focal-insular environmental space. However, these species, by definition, have
larger distributions than the focal island(s) they inhabit. Consequently, by solely
utilising data from the limited island environment, the SDMs may be unable to
accurately predict potential range expansions, contractions, or shifts that could
occur in new locations or under different climatic scenarios (Thuiller et al., 2004;

Pang et al,, 2022).

Considering our finding that the impacts of climate change and invasive species
have been two of the most extensively explored topics in the island SDM literature,
more focus on this issue is required in future island SDM applications that involve

the spatial of temporal projection of models.

2.4.4 Mitigating model uncertainty by selecting appropriate methods for small
sample sizes and presence-only data

In line with the recommendations of Araujo et al. (2019) for the optimal
implementation of Species Distribution Models (SDMs), addressing uncertainty
related to the choice of modelling technique is an essential consideration. While

using an ensemble of diverse methods has been proposed to reduce uncertainty
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(Aradjo & New, 2007; Dormann et al., 2018; Araujo et al., 2019), recent evidence
suggests that including inappropriate models in an ensemble can compromise
performance, potentially being less effective than employing a single technique
(Valavi et al., 2021). Notably, our literature review revealed that model ensembles
fitted with small occurrence datasets often included at least one data-hungry
method (e.g., ANN, RF, MARS, SVM) known to perform poorly with sample sizes
fewer than 200 (Wisz et al., 2008; Mateo et al.,, 2010). Furthermore, our findings
indicate that most published island SDM analyses lack empirical absence data, with
researchers opting for background or pseudo-absence points (PA) as substitutes.
This practice is known to further reduce the performance of data-hungry modelling
approaches (Akbani et al., 2004; Robinson et al., 2018), raising concerns about the

reliability of model ensembles that use such methods in island SDM analyses.

Most of the reviewed studies that employed only one modelling approach
exhibited a clear preference for Maxent, a presence-only method widely recognised
for its high performance with small sample sizes (van Proosdij et al., 2016). Whether
implemented individually or as part of an ensemble, traditional statistical methods
like Maxent, GLM, or GAM (as per Valavi et al.,, 2021) consistently demonstrated
superior performance compared to machine learning or tree-based techniques in
the context of small sample sizes (Breiner et al., 2015; Valavi et al., 2021), making

them safer choices for modelling island species distributions.
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Given that the effect of small sample sizes on the performance of many different
modelling techniques is relatively well understood (Wisz et al., 2008; van Proosdj et
al., 2015; Gaul et al., 2020), prioritising research on how this aspect interacts with
pseudo-absence sampling strategies is essential for island studies. This is because
true absence data are generally lacking, and modelling methods have different
sensitivities to unbalanced occurrence data (a largely disproportionate ratio of
pseudo-absences to presence data; Benkendorf et al.,, 2023). Understanding how
pseudo-absence data sampling influences model predictions across diverse
modelling techniques, particularly in the context of limited occurrence data, is
necessary for enhancing island SDM implementation. Additionally, current pseudo-
absence sampling-strategy guidelines (which focus on sampling strategies),
primarily designed for large continental study areas (e.g., Descombes et al., 2022),

may not directly translate to SDM implementation on islands.

2.4.5 Minimise model building uncertainty by managing complexity

Our review indicated that models fitted with a high number of predictors in relation
to the (small) sample size is a prevalent issue in island SDM studies, with studies
frequently using two or three times more predictors than the recommended ratio

based on available occurrence points during model calibration (Vaughan &
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Ormerod, 2003). This problem may result in overfitted models, which compromises
their transferability into novel spatial or temporal scenarios (Manzoor et al., 2018).
Alternative approaches to modelling species distributions with small datasets have
been proposed. One such approach is the use of ‘ensembles of small models’
(Lomba et al.,, 2010; Breiner et al., 2015). This methodology involves fitting specific
bivariate models and then averaging them as an ensemble, weighted by model
performance (Breiner et al.,, 2015). Studies have shown that this approach
significantly improves predictive power for range-restricted or data-limited species
compared to standard modelling techniques used for widespread species (Breiner
et al., 2015; Fitzpatrick & Ellison, 2018). Despite its potential to overcome the
commonly detected issue of overfitted SDMs for island species, this strategy has
rarely been implemented in island studies, with only two studies in our dataset

exploring this approach.

Another possible alternative to mitigate overfitting in small occurrence datasets are
joint-SDMs. This is an approach that has been argued to increase the effective
sample size of species occurrence records by leveraging the power from species
with more occurrences in the data, and their co-occurrence probabilities (Warton et
al., 2015; Pichler & Hartig, 2021). However, implementing this method in many
island environments may be less feasible due to its dependency on community-

level occurrence knowledge, which is often limited, given the low number of
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archipelagos and islands extensively studied (Borges et al., 2018). Additionally,
joint-SDMs have not consistently demonstrated increased performance relative to
standard SDM techniques (Tikhonov et al., 2017; Zhang et al., 2020); therefore,

caution is advised when considering this alternative.

2.4.6 GBIF data may hold potential for closing knowledge gaps in island SDM
studies

By exploring the origins of data used for modelling island species distributions, we
identified a geographical bias in the location of island SDM studies: a concentration
of island SDM studies on temperate islands in the Pacific and Atlantic regions (e.g.,
Canaries, Azores and Mediterranean islands), with a smaller number of studies
focused on tropical islands. This bias is likely a result of a range of historical,
logistical (e.g., limited infrastructure, difficulties with undertaking field work in
remote locations), and funding factors (Sutton et al., 2021). The publication of
regional / archipelago-specific databases from well-studied island groups, while
obviously providing useful resources, likely propagates this bias as they represent
an easy-to-use data source for island SDM studies. The open access GBIF database
has seemingly been used to fill the data gaps in several otherwise
underrepresented regions, as most of the tropical island studies used this data
source to develop SDMs (e.g., Indonesian, Caribbean and Eastern pacific islands).

Thus, exploring the potential of GBIF data to fill the remaining gaps in knowledge



205  of tropical island species distributions more broadly is a pressing concern, given
206  that many tropical insular territories are amongst the most biodiverse and
207  threatened regions globally, while at the same time being some of the least studied

208  (Cayuela et al., 2009; Myers et al., 2000).

209  We identified high availability of data on GBIF for a range of taxa and island

210 regions (e.g., tropical regions from the Atlantic and Pacific Ocean) that are

211  underrepresented in the island SDM literature, suggesting that this database may
212 have the potential to reduce knowledge gaps. In addition, numerous species of
213 vertebrate taxa (e.g., anurans, birds [likely due to the link between GBIF and eBird],
214  mammals, reptiles), showed good levels of representation across most island

215  regions at the global-scale, enabling future larger-scale comparative studies to be
216  developed. On the other hand, for plant species (both vascular and non-vascular),
217  sufficient occurrence data (=20 occurrences) are only concentrated in the island
218 regions that have already been relatively well studied. For the remaining studied
219  taxa, GBIF data does not appear to currently represent a useful source of island

220 occurrence information.

221  We acknowledge that our metric (M-Index) sets a conservative threshold (=20n),
222 given that SDM predictions can potentially remain informative at smaller sample
223 sizes (Pearson et al.,, 2007). In addition, our metric assesses the quantity of data and

224  does not explicitly account for data quality. Global databases often come with



225 inherent biases, including species misidentification, low spatial precision, and

226  uneven sampling effort (Hortal et al., 2007; Beck et al., 2014). However, a growing
227  set of statistical methods, such as ROBITT (Representativeness and Bias

228 Identification Tool for Tabular Data; Boyd et al., 2022), are increasingly available to
229  address these data limitations. ROBITT was specifically developed to identify and
230  manage issues of representativeness and potential biases in datasets, particularly
231  those compiled from diverse sources with differing aims, scopes, and

232 methodologies. By focusing on improving data quality across several critical

233 domains—geographic, temporal, environmental, and taxonomic—each of which
234  can introduce unique biases that affect study outcomes, ROBITT facilitates the
235 homogenisation and appropriate curation of GBIF data, enhancing its utility for
236  island studies.

237 2.5 Conclusion

238  Given that the full distributions of many island species are unknown, species

239  distribution models (SDM) represent a vitally important tool for island biologists,
240 and are essential for enabling data-informed conservation and management

241  decisions related to this highly threatened component of global biodiversity.

242 However, most SDM frameworks and recommendations relate to species with
243 relatively wide ranges, and are generally not appropriate for insular species and

244  environments, which have several unique features (Whittaker et al., 2023). The
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results of the present review (i) indicate that there are a number of areas related to
the application of SDMs in an island context that require careful consideration and
future research, and (ii) provide the foundation for the development of an explicit

island SDM framework going forward.
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Abstract

Applying Species Distribution Models (SDM) in island environments presents
unique challenges due to spatial constraints, the high habitat specialisation of
many island species, and limited occurrence data. This study focuses on optimising
presence-only SDMs for island ecosystems, using empirical plant species data and
simulated distributions as case studies. A key emphasis is placed on the use of
high-resolution environmental predictors, while addressing complications posed by
scarce and often imprecise occurrence data, which can hinder the understanding of

insular species distributions at appropriate analytical scales.

To optimise high-resolution SDMs in island systems, the study highlights the
importance of balancing presence data with pseudo-absence/background data to
enhance model accuracy and validation metrics, particularly when considering
species’ range size (i.e., wide vs. narrow-range species). It also assesses how these
factors interact with different modelling methods. Additionally, the study explores
the potential benefits of including records with positional inaccuracies to increase
sample size. With appropriate methodological frameworks, such as Bayesian
Additive Regression Trees (BART) and generalised Linear Models GLM, the negative
impact of analysing coarse-precision occurrence data can be mitigated. These

methods proved especially beneficial for narrow-ranged species, which require

108



larger sample sizes and are more sensitive to spatial inaccuracies. In contrast, wide-
ranging species are less affected by coarse-precision occurrence data and can often

be modelled with fewer, more precise data points.

In scenarios where the spatial data precision aligns with the spatial analytic
resolution, findings highlight that Generalised Additive Models (GAMs) achieve the
highest accuracy in an island context. Notably, these models also require smaller
sample sizes, regardless of range size. Contrary to expectations, Maxent ranked
second, and was found to have difficulties in modelling wide-ranging species,
requiring relatively large sample sizes. By selecting the appropriate algorithm based
on species prevalence and data availability, the study provides practical
recommendations to improve SDM performance in island environments, enhancing
model reliability to better support conservation efforts, even when working with

Sparse or uncertain data.
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3.1 Introduction

The rapid alteration of the Earth system, driven by human activities, has led to
large-scale distributional changes in biodiversity (Araujo et al., 2019). This issue is
particularly acute on islands, where species are often more vulnerable due to a
range of factors, including small population sizes, limited habitat availability, and
unique ecological and evolutionary dynamics (Whittaker et al., 2017; Fernandez-
Palacios et al.,, 2021; Matthews et al., 2022). A comprehensive understanding of the
geographic and environmental drivers of island biodiversity is essential for

developing effective conservation strategies for these environments.

Islands are known centres of plant endemism, and island plants have been shown
to face disproportionate risks relative to their continental relatives (Kier et al., 2009;
Caujape-Castells et al., 2010). As with all ecosystems, plants are a key component of
island systems, as they provide a variety of crucial ecosystem services, including
water regulation, erosion control, and food provision (Borges et al., 2018).

However, for many archipelagos we still lack accurate data on the distributions of
plant species, information that is needed for informed conservation planning and
management decisions (Cursach et al., 2020). Species Distribution Models (SDMs)
have emerged as a valuable tool in this regard (Benavides Rios et al., 2024). SDMs
relate species occurrence data, typically in the form of presence and absence

records, with environmental predictors to generate predictions of species
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distributions across space and time (Guisan et al.,, 2017; Franklin, 2010; Araujo et al.,

2019).

Effective use of SDMs is context dependent and thus the use of this
methodological tool in a given study requires careful decision-making throughout
the modelling process (Ferrier et al., 2022). Although several studies have proposed
guidelines to facilitate SDM fitting (e.g., Guillera-Arroita et al., 2015; Guisan et al,,
2017; Araujo et al,, 2019), they have focused primarily on species in continental
environments, limiting their applicability to island environments (Leroy, 2022; but

see Benavides Rios et al., 2024).

Islands—particularly volcanic oceanic islands, which are the focus of this study—
differ from continental systems in several key ways, requiring tailored guidelines for
effective SDMs (Leroy, 2022; Benavides Rios et al., 2024). The limited spatial context
of islands, characterised by relatively small size and greater isolation, combined
with significant topographic and environmental variation over small areas (Barajas-
Barbosa et al.,, 2020), means that we need to develop a deeper understanding of
how island species respond to environmental gradients and change at fine spatial
scales (Patifio et al., 2023; Benavides Rios et al., 2024). This approach contrasts with
the common use of large-scale bioclimatic variables in modelling species
distributions at continental scales (Pearson & Dawson, 2003; Gardner et al., 2019).

Therefore, it is crucial to examine island species' distributions using high-resolution
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environmental data that capture microhabitat variation (Segal et al., 2021; Patifio et
al., 2023), which is a key factor influencing the distribution of many island plants (Irl

et al.,, 2020; Hanz et al., 2023; Lannuzel et al., 2022).

Another issue with using SDMs in an island plant context is that, for many
archipelagos, occurrence data are often limited. This is due to small sample sizes
resulting from natural factors (e.g., the presence of highly specialised insular
endemics with small ranges; Chiatante, 2022), anthropogenic factors (e.g., the
reduced population sizes of many island species: Nogué et al., 2021; Matthews et
al., 2022), and/or the remoteness and limited accessibility of many islands (Borges
et al., 2018). Small amounts of occurrence data can present significant challenges
for fine-resolution SDMs. This is because finer-grained grids divide environmental
variability into smaller, more specific segments, making it less likely that small
samples will capture the full range of suitable environmental conditions for a
species. In contrast, coarser grids encompass broader environmental information
within fewer grid cells, which may allow small samples to more easily represent a
wider range of the species' habitat requirements, though this comes with a higher
risk of overestimation (Patifio et al., 2023). As a result, while fine-scale predictors
are typically a better choice in the context of islands, their use may require larger
sample sizes to ensure adequate coverage of the species' habitat requirements.

However, previous studies suggest that for species with smaller ranges, such as
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many island endemics, fewer occurrence records may still be sufficient to accurately
predict their distributions (Pearson et al., 2007; van Proosdij et al., 2015). Thus,
further research is needed to understand how a species' range size influences data

requirements for robust SDMs at fine spatial scales on islands.

To effectively use high-resolution environmental predictors in SDMs, the precision
of the occurrence data must match the resolution of the predictors (Moudry &
Simova, 2012). For many island species, limited and sparse occurrence data often
result in large geographic uncertainties (i.e., occurrence coordinates frequently
cover broad areas). Excluding such records can negatively impact predictions
(Fernandez et al., 2009; Naimi et al., 2014), as reducing sample size increases model
uncertainty (Gaul et al., 2020; Graham et al., 2008; Hernandez et al., 2006; Soultan &
Safi, 2017). Conversely, retaining these uncertain records just to increase sample
size can be especially problematic for islands with steep environmental gradients—
such as those on topographically diverse volcanic islands—or for highly specialised
insular endemic species. In these cases, the uncertainty in the occurrence data can
significantly affect SDM predictions, particularly when fine-scale predictors are used
(Visscher, 2006; Gabor et al., 2020, 2023). Therefore, it is crucial to evaluate whether
uncertainty in occurrence data can be tolerated and how best, given the limited

data availability in island contexts, to optimise the use of occurrence data in SDMs.
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A final challenge related to the application of SDMs, in both continental and island
settings, is that occurrence datasets often contain only opportunistic observations
and are thus limited to species presence data (Fourcade et al.,, 2014). However,
many modelling algorithms require absence data which, if not available, are
generated using pseudo-absence/background (Psa/BG) points. There are three
issues with this approach in the context of islands. First, determining the number of
Psa/BG points and the accompanying selection strategy lacks a clear consensus
(Grimmet et al., 2020; Descombes et al., 2023). Second, existing guidelines for
PsA/BG sampling are typically tailored for species with extensive ranges (e.g., areas
>10,000 km?, based on the standardised number of Psa/BG points recommended,
assuming a typical 1 km grid resolution in environmental descriptors; Barbet-
Massin et al., 2012; Descombes et al., 2023), making these recommendations
incompatible in the context of small island regions. Finally, model validation metrics
evaluated with Psa/BG data are affected by sample size, imbalance in occurrence
datasets (i.e., a large ratio of Psa/BG points compared to a small sample of
presence points), and species specialisation (Lobo et al., 2008; Santika, 2011). Thus,
research is needed to determine the ideal ratio of Psa/BG sampling for different
modelling methods, considering data availability, study area characteristics,

specialisation levels (or species prevalence), and modelling technique requirements.
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Based on the above, it is evident that effective SDM implementation on islands
requires selecting suitable modelling strategies for use with limited occurrence and
environmental data. To this end, our study aims to improve the effectiveness of
SDM use in island systems by examining how the quantity and quality of
occurrence data affect model predictions at fine analytical scales. We will evaluate
whether certain methods improve SDM predictions with 1) varying ratios of
presence to PsA/BG data, as modelling methods can have varying sensitivities to
unbalanced datasets (Barbet-Massin et al., 2012; Hertzog et al.,, 2014; Wisz &
Guisan, 2009); and 2) varying levels of occurrence data inaccuracies. We then
investigate if these results differ based on i) the quantity of occurrence data

available (sample size), and ii) species range size.

To address these research objectives, we will use a dataset of plant occurrence data
(with detailed presence and absence data) from the volcanic Revillagigedo
Archipelago (Mexico), and simulated virtual species that mimic known species
distribution patterns in the study area. We seek to provide practical
recommendations drawn from our findings, particularly for island endemic plant

species with limited occurrence data.
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3.2 Materials and Methods

3.2.1 Study area

Our study focuses on the two largest islands in the Revillagigedo archipelago,
Socorro (132 km?) and Clarién (19.8 km?), chosen due to (i) an in-depth
understanding of species distribution patterns acquired from extensive fieldwork
expeditions led by one of the authors (e.g., Benavides et al., 2019), (ii) the availability
of high-resolution environmental data, and (iii) the sizes of the islands, representing

a relatively smaller and larger island.

3.2.2 Virtual species

To ensure robust conclusions, it was necessary to include a relatively large number
of species in the analyses, including large (=50n), unclustered, and unbiased island
species distribution datasets exhibiting varied distribution patterns and levels of
species specialisation (Boria et al., 2014; Fourcade et al., 2014; Araujo et al., 2019).
However, challenges in extensively sampling certain parts of the selected islands in
the Revillagigedo archipelago were encountered, and despite best efforts, sample
sizes rarely exceeded 30 records per species. Consequently, detailed data on the
distributions of plant species in the Revillagigedo Archipelago (e.g., Benavides et
al., 2019) were utilised to create virtual species closely resembling natural spatial
distribution patterns (see Supplementary Figure S3.1.1 in Appendix S.3.1). This

approach avoids unrealistic species distributions (i.e., ensuring realistic responses to
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environmental gradients: Miller, 2014) and facilitates robust testing of model

conceptualisation and implementation (Meynar et al., 2019).

Environmental descriptors for calibrating virtual species were derived from a 30m
resolution digital elevation model (ASTER Global Digital Elevation Map v3: NASA &
METI, 2018). These descriptors, including elevation, slope, aspect, and distance to
the coast, served as proxies for microclimatic variation, and are considered
important drivers of island plant species distributions (Irl et al., 2020; Lannuzel et al.,
2021); they were generated using the ‘Terra’ R package (Hijmans, 2022). Climatic
variables were excluded as only coarse resolution (1 km) data were available; such
data are known to increase model uncertainty, particularly in tropical regions

(Deblawue et al., 2016; Benavides et al., 2024).

Using the 'Virtualspecies' R package (Leroy et al., 2016), four virtual species were
created for each island using the 'niche.breadth’ function and applying the Principal
Component Analysis (PCA) method. This function generated species with realistic
responses to environmental gradients (Soultan & Safi, 2017) and allowed for
control over range sizes by selecting the extent of the PCA (environmental) space
occupied by the species. This was managed with the ‘niche.breadth’ parameter,
which could be set to either ‘Narrow’ or ‘Wide’ (see S3.1.1). Each island had two
virtual species with wide distributions and two with narrow distributions. Selecting

four virtual species per island (eight in total) was deemed adequate due to the
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relatively small study areas, computational demands (e.g., the total number of core
hours used in the analyses was 420 core hours per species), and an experimental

design that required numerous replicates.

3.2.3 Real species data

To address the potential limitation of limited transferability inherent in conclusions
derived solely from virtual species data, we conducted complementary analyses
using models fitted to real species presence-absence data, essentially providing a
"true species distribution" equivalent for the virtual species. Our baseline models
were constructed using occurrence data collected during previous field excursions
to both islands (see Appendix S3.2 Method to obtain presence/absence plant data from
the Revillagigedo Archipelago, Mexico.for detailed information). From this dataset, we
selected four species from each island with sufficient presence/absence data (=10
presences/ =15 absences). Based on data availability and species range sizes, we
chose two species with widespread distributions and two species with relatively
narrow distributions. Based on field observations, widespread species were
classified as inhabiting numerous habitats across the islands, while narrow-range
species were exclusive to either coastal environments or a narrow elevation band. A
summary of the selected species and their corresponding records is provided in

Table 3.1.
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Table 3.1 Analysed plant species list with range sizes and the number (N) of
presence and absence records used for fitting SDMs. + Single island endemics

Island Species Range sizes N N
P 9 Presence Absence
Euphorbia anthonyi+ Wide 15 15
) Tribulus cistoides Wide 14 25
Clarion
Karwinskia Narrow 11 25
humboldtiana (Elevation band)
Teucrium townsend|+ Narrow 10 53
(Coastal)
Croton masonii+ Wide 17 60
Psidium socorrense+ Wide 25 54
Socorro . Narrow 94
Bursera epinnata (Elevation band) 69
Narrow
1 19
Conocarpus erectus (Coastal) 0

3.24 Modelling methods

Due to the small sample sizes for most analysed species (n<30), the ‘ensemble of

small models’ (ESM) approach was selected for modelling species distributions, a

method that has been shown to be suitable for narrow-ranged species with limited

occurrence data (Lomba et al., 2010; Breiner et al., 2015). All potential combinations

of bivariate models are fitted, and their performance is evaluated based on AUC
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scores. Then, a final averaged model is created, incorporating all informative small

models (AUC>0.5; Lomba et al., 2010; Breiner et al., 2015).

The ESM analyses used three regression-based modelling methods that have
shown satisfactory results in the ESM approach (Breiner et al., 2015, 2018):
generalized linear models (GLM; binomial family), General Additive Models (GAM,;
Hastie & Tibshirani, 1986), and Maxent (Phillips et al., 2006). Additionally, a tree-
based method, Bayesian Additive Regression Trees (BART) was included, a relatively
new approach in ecological studies (Carlson, 2020). The applicability of BART within
the ESM framework has not yet been tested. However, exploring this approach is
valuable, as previous studies have shown it to be informative for island SDM

studies, often generating satisfactory predictions (Hanz et al., 2023).

To avoid adding unnecessary complexity in the modelling process, it was chosen to
maintain the default settings of the respective SDM algorithms. This decision was
also based on work that suggests that parameter tuning has a lower impact on
predictive capability for the selected modelling methods when sample sizes are

small (<30 records: Valavi et al., 2022; Radomski et al., 2022).
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3.2.5 Presence and Pseudo-Absence Ratios across Modelling Methods: Impact
on Model Accuracy and Validation

Virtual species

The total number of grids at the selected resolution (30 m) for each island was
quantified, and 5%, 10%, 20%, and 40% of pseudo-absence/background (Psa/BG)
points were randomly sampled in cells without presence records. This method was
chosen for its transparency, fewer assumptions, and proven accuracy (Stokland et
al., 2011; Descombes et al., 2023). It was examined how different occurrence data
availability levels affected model accuracy across varied presence to Psa/BG data

ratios.

For each virtual species, 20 replicates of randomly sampled presence points at four
sample sizes (5, 10, 20, and 50) were generated, totalling 80 replicates. Each
replicate was paired with one of 10 random samples of Psa/BG for each of the four
percentages, resulting in 800 combinations. Bivariate models were fitted for all
possible combinations of 1 out of 5 bivariate predictor combinations, 1 out of 20
sample size replicates, 1 out of 10 Psa/BG point percentage replicates, and 1 out of
4 modelling methods (Fig. 3.1). In each run, 5-fold cross-validation was performed,
using 20% of occurrence points for evaluation and the remaining 80% for training.
Subsequently, the five bivariate combinations of small models were combined into
an ESM by selecting all small models with AUC > 0.5. Thus, 64,000 small models

were generated for each species, combining 80 sample size replicates, 4 Psa/BG
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percentages, 10 Psa/BG replicates per percentage, 5 bivariate combinations, and 4

modelling methods (Fig. 3.1).

The differences in predicted probability outputs calibrated with diverse modelling
methods can make them incomparable or incompatible for combination. To
address this, the probability outputs were converted into favourability measures
using the "Fav" function from the Fuzzysim R package. This function calculates a
prevalence-independent favourability measure for species presence, based on a
model object calibrated with presence-Psa/BG data and the proportion of
binarized occurrence values (i.e., model prevalence, where presence = 1 and Psa/BG
= 0). The resulting output is a favourability layer ranging from 0 to 1, distinguishing
between conditions that support species presence (F > 0.5) and those that are
unfavorable (F < 0.5) (Acevedo & Real, 2012; Real et al., 2006), and standardising
values across distribution models to enable comparisons.

To avoid the binarization of modelling outputs, the overlap between predicted and
actual virtual species distributions was assessed using Schoener’s D-index, a metric
well-suited for evaluating SDM outputs (Rédder & Engler, 2011). This index
measures how the predicted favourability of each grid cell compares with the
actual favourability of the corresponding grid cell in the virtual species distribution,

resulting in a final value ranging from 0 (no overlap) to 1 (complete agreement).
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Figure 3.1 Modelling Workflow for the Analysis of Virtual Species. The final step
(bottom row) displays, on the left, a probability distribution map for a narrow virtual
species on Socorro Island (the largest island). The distribution is shaded in green,
with increasing colour intensity representing higher occurrence probabilities. Brown
shading depicts the island’s topography, with hue intensity reflecting elevation. To
the right of the virtual species map are examples of the four final outputs (one per
method) for each species, along with their D-values, which compare the virtual “real”
and predicted species distributions. The sample size for these final models was set to
10n.
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To investigate the effects of different modelling conditions on model accuracy, a
standard multiple linear regression was performed with model accuracy (measured
by the D-index) as the response variable. The analysis included interaction terms for

'Sample Size," 'Pseudo-absence/Background %,' 'Method,' and 'Range Size.'

Model accuracy was also evaluated using two common metrics: AUC and the Boyce
index, both calculated with the 'modEVA' R package (Barbosa et al., 2013). In SDMs,
AUC (Area Under the Curve) measures how well the model distinguishes between
presence and absence locations, with values ranging from 0.5 (random) to 1
(perfect performance; Raes & ter Steege,2007). The Boyce index assesses the
correlation between model predictions and the observed versus expected
occurrence frequencies across prediction classes. It ranges from -1 to 1, where
positive values indicate that presences are more frequent in areas with higher
predicted suitability. Values near zero mean predictions are no better than random,
while negative values suggest that presences occur more often in areas with lower
predicted suitability (Boyce et al., 2002).

The purpose of assessing these validation metrics was to determine how accurately
they measure actual model performance, as measured by the D-index (i.e., the
overlap between real and predicted species distributions). A stratified Pearson'’s
correlation analysis was conducted between the D-index and the validation metrics

(AUC and Boyce index). Instead of calculating a single correlation for the entire
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dataset, stratified correlation analysis divides the data into distinct groups based on
relevant factors, and then calculates the correlation within each subgroup. The
analysis was stratified according to subgroups defined by 'Method,' 'Sample Size,’
and 'Pseudo-absence/Background %," allowing for the assessment of how well
these metrics reflect prediction accuracy across varying modelling conditions. This
approach aimed to improve understanding of how changes in these variables
influence the relationship between model accuracy and validation metrics, thus

bridging the gap between predictive accuracy and validation reliability.

Real species analyses

For the real species data, a similar methodology and set of variables were used as
in the virtual species regression models. Overlap (D-index) was assessed between
SDMs fitted with presence-absence (PA) data, which serve as a proxy for the "real
species distribution," and those using various pseudo-absence/background
(Psa/BG) percentages. This evaluation aimed to understand how different
modelling conditions affect model accuracy. Similar to the virtual species analysis, a
standard multiple linear regression was performed, using model accuracy
(measured by the D-index) as the response variable. The analysis included
interaction terms for 'Pseudo-absence/Background %,' 'Method," and 'Range Size.'

However, in contrast to the virtual species linear regression, the 'Sample Size'
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interaction was excluded due to limited variation in sample sizes among the real

species.

The impact of different modelling conditions on the reliability of validation metrics
(AUC and Boyce) in real species SDMs was also assessed. Using the same approach
as for virtual species, a stratified correlation analysis was conducted between the D-
index and the validation metrics. This analysis was stratified by 'Pseudo-
absence/Background %,' 'Range Size," and 'Method.'

3.2.6 Interaction between sample size and range size for high-resolution
predictors

As the real species occurrence datasets were fairly uniform in size, this analysis was
conducted using only the virtual species data. First, the Psa/BG percentage that
produced the highest SDM accuracy for each modelling method was identified,
thereby removing the Psa/BG factor from further analysis (see section 3.2.5). Next,
it was investigated whether the minimum required sample size varied across

different methods and range sizes.

Following van Proosdij et al. (2015), the top 95% of Schoener's D values from the
ESM replicates were extracted, excluding the lowest-performing 5%. Then two
decision thresholds were applied to determine the minimum sample size required
to achieve high overlap (Schoener's D >0.6) and very high overlap (>0.7) between

real and predicted values. This approach aligns with the common practice of
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considering D index values >0.5 as indicative of better-than-random fits (Pirie et al.,

2019; Plts et al., 2020).

Finally, the minimum sample size for each range size category (Narrow and Wide)
was determined by identifying the sample size at which the lower bound of the

95th percentile of D-index values exceeded the thresholds of 0.6 and 0.7.

3.2.7 Impact of data precision on island SDM predictions at high resolutions

Virtual species

For this analysis, we resampled our virtual species presence/absence maps,
obtained using the PA function from the 'Virtualspecies' R package in combination
with our 30m resolution maps, to coarser resolutions: 90 metres, 500 metres, and 1
kilometre. We randomly sampled 20 replicates from each of the "small” occurrence

datasets and "large” occurrence datasets from each resampled map.

As increasing resolution reduces the number of grids where a species is recorded
as present, our "large" datasets contain either 50 occurrence points or, for species
present in <50 grids, 80% of the resampled area where the species is present. For
"small" datasets, we ensured a minimum of either 10 occurrence points or, for
species present in <10 grids, 60% of the resampled area where the species is

present (ensuring =5 occurrence points, our minimum sample size).
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Unlike studies using random point displacements to simulate data uncertainty (e.g.,
Graham et al., 2008; Gabor et al., 2023), our method aligns with the spatial gridded
organisation of occurrence points sourced from certain biodiversity databases (e.g.,
GBIF). In such cases, a species was recorded somewhere within the grid of a given
extent, but the exact location is unknown. See Figure 3.2 for an illustration of the

uncertainty simulation method.

Real species

The positioning of spatial inaccuracies for the real species presence records
followed the same procedure used for the virtual species. Since the spatial accuracy
of these records aligns with the study grain (with a margin of error of 25 metres

from the GPS device), uncertainty was introduced by resampling the occurrence

Figure 3. 2 Simulation of precision uncertainty in a gridded format at three resolutions
on Clarion Island (full extent in top left corner). Brown shading represent the island's
land. Species presence at 30m resolution is shown in green. Squares depict a
progressively larger grid when the species presence/absence map is resampled at
90m, 500m, and 1km. The white dot represents the original presence point (at the
centre of the 30m grid), while black points indicate increased uncertainty levels.
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points to the centroids of raster cells at resolutions of 90 metres, 500 metres, and 1

kilometre.

3.3 Results

3.3.1 Presence and Pseudo-Absence Ratios across Modelling Methods: Impact
on Model Accuracy and Validation

Model accuracy: virtual species

The hierarchical partitioning of explained variance of the predictors in our linear
regressions showed that range size explained the majority of the variance in the D-
index (overall model R?=0.52; Variance explained: Range size = 95.15%, Sample size
= 3.17%, Psa/BG percentage = 0.36%, method = 1.33%), therefore masking any
effect of the variables of interest (Psa/BG ratio and its interactions with sample size
and SDM method). As such, we partitioned the data into two datasets based on
range size for the subsequent analysis. On the whole, accuracy was better for

species with a wide range size (Intercept_wide = 0.85, intercept_narrow = 0.60).

For species with a narrow range, the full model containing Psa/BG ratio, sample
size, SDM method and all interactions explained 13% of the variance in the D Index
(R? = 0.13). There was a positive effect Psa/BG ratio and SDM method. Specifically,
increasing the ratio of background points improves accuracy for all modelling

approaches except for BART (Fig 3.3a). For GAM, this effect is not present for small
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sample sizes (n = 5). For GLM and Maxent, the effect is more pronounced (Fig. 3.3a,

numerical results in Supplementary table 3.1.2).

For species with a wide range, the full model containing Psa/BG ratio, sample size,
SDM method and all interactions explained 35% of the variance in the D Index (R®
= 0.35). Here, increasing the number of background points had little effect on the
accuracy of the models, with this being largely driven by sample size, particularly

within the GAM approach (Fig. 3.3¢, numerical results in Supplementary table 3.1.3).

Model accuracy: real species

The hierarchical partitioning results for the predictors from the real species
regression model also showed that range size explained the majority of the
variance in the D-index (overall model R? = 0.07; Range size = 44.35%, Psa/BG
percentage= 27.97%, method = 28.26%); thus, we again partitioned the data into
two datasets based on range size for the subsequent analysis. On the whole,
accuracy was similar for species with both range sizes (Intercept_wide = 0.94,

intercept_narrow = 0.90).

For species with a narrow range, the full model containing Psa/BG ratio, SDM
method and their interaction explained 29% of the variance in the D Index (R? =
0.29). Increasing the percentage of background points did not improve predictive

ability: most modelling approaches showed improved accuracy between 10-20% of
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Psa/BG, except for GAM that showed clear improvements specifically at 10% of

Psa/BG (Fig 3.3b, numerical results in Supplementary table 3.1.4).

For species with a wide range, the full model containing Psa/BG ratio, sample size,
SDM method and all interactions explained 7% of the variance in the D Index (R? =
0.07). Here, background points at 20% Psa/BG resulted in lower accuracy, with
minimal variation across the other percentages, except for BART, which showed
clear improvements specifically at 20% Psa/BG (Fig. 3.3d; numerical results in

Supplementary table 3.1.5).
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Figure 3. 3 Impact of Pseudo-Absence/Background (Psa/BG) percentage of the study
area sampled on model accuracy (measured using the D-index), across different
modeling methods. Figures 3a and 3c show the results of the virtual species analysis
considering the ratio of sample sizes to Psa/BG percentage sampled. Figures 3b and
3d show the results of the real species analysis considering the Psa/BG percentage
sampled (mean sample size of real species = 21). The circles represent regression
model coefficient values, with the bars representing the standard error.
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Model validation: virtual species

The correlation analysis between validation metrics (AUC and Boyce index) and
model accuracy (D-index) reveals distinct patterns for wide-ranged and narrow-
ranged species. Full results are shown in Figure 3.4a & 3.4b and Supplementary
Table S3.1.6 &. S3.1.7. For wide-ranged species, the correlation between AUC and
model accuracy (D-index) shows low variation across different Psa/BG percentages,
with a consistently negative mean correlation (mean AUCcor = -0.67). The Boyce
index correlation was also near zero (mean Boycecor = -0.09), though it tends to

improve (i.e., shift from negative toward zero) as PsA/BG percentages increase.

For narrow-ranged species, the AUC correlation (mean AUCcor = 0.34) was generally
positive and consistent across all methods, except for BART, which showed no
correlation (mean BARTcor = 0.004). In BART, increasing PsA/BG percentages further
reduced the correlations (mean BARTcor with PsA/BG 5% = 0.23; mean BARTcor with
PsA/BG 40% = -0.28). For the other methods, the correlations changed only slightly
across different Psa/BG percentages (Fig. 3.4a). The Boyce index correlations
followed a similar pattern, with generally positive and consistent correlations across
methods (mean Boycecor = 0.47). Excluding BART, both AUC and the Boyce index
have positive correlations with the D-index, indicating better predictability for

narrow-ranged species.
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Model validation: real species

Full details of the described correlations are presented in Figure 3.4 b& d, and
Supplementary Table S3.1.8 &. S3.1.9. The correlation analysis between validation
metrics and species accuracy shows that for wide-ranged species, the correlation
between the AUC from a pseudoabsence/background model and model accuracy
(as measured by the D-index) remains consistently high across all methods, with
only a slightly increased correlation as Psa/BG percentage increases. The mean AUC
correlation across all scenarios is positive (mean AUCcor=0.86). For the Boyce
index, correlations are positive (mean Boycecor=0.89), and tend to increase with
higher Psa/BG percentages, with the highest correlation typically observed at 20%
and 40%, particularly with GAM and BART. However, Maxent correlation values

remain relatively low (mean MXTcor=0.40), regardless of Psa/BG percentage.

For narrow-ranged species, the AUC metric correlation increases with Psa/BG
percentage across all methods, except at the 20% Psa/BG, which had the lowest
correlation for BART, GLM, and MXT. Overall, the mean AUC correlation across all
scenarios is positive (Mean AUCcor=0.86). The Boyce metric displays a similar

pattern (Mean Boyceor=0.83).
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Figure 3.4 Results of the correlations between the AUC and Boyce index validation metrics
and the actual accuracy, as measured by the D-index (i.e., real vs. predicted species
distribution accuracy). This analysis assesses the reliability of validation metrics in reflecting
actual model performance and explores whether this reliability varies across different Psa/BG
percentages (x-axis) and modelling methods. Panels a and c depict the correlation between
the D-index and validation metrics for virtual species; data points represent the correlation
estimate, with error bars.
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3.3.2 Minimum Sample Size Requirements Across Range Sizes for High-
Resolution Predictors

Findings indicate that increasing the proportion of pseudo-absence/background

(Psa/BG) area sampled generally improves prediction accuracy (D-index) for most
species and methods (Fig 3.3). However, for models with small sample sizes fitted
with GAM and GLM, this increase reduces accuracy (Fig 3.3a & c). Thus, we found
20% Psa/BG to be a good balance for exploring the minimum sample size needed

for robust predictions across various range sizes and methods.

Two decision thresholds were set: one for high overlap (>0.6) between real vs.
predicted species distribution and another for very high distribution overlap (>0.7).
For virtual species with wide ranges, models consistently achieved D-index values
exceeding 0.6 and 0.7 with a minimum sample size of 5, indicating that a significant
portion of the distributional range can be predicted even with limited data. For
narrow-ranged species, the required minimum sample size required to achieve a D-
index > 0.6 varies by method: 20 for BART and GLM, 10 for Maxent, and 5 for GAM.
Only GLM, with a sample size of 50, achieved a D-index > 0.7. For narrow-ranged
island species, GAM and Maxent are thus the most suitable methods at small
sample sizes, though larger datasets generally yield more robust predictions. See

Figure 3.5 and Supplementary Table S3.1.10 for more detailed information.
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Figure 3.5 Minimum sample size needed for robust species predictions using the D
index, and split by method and range size. Points represent the mean D index value,
and error bars indicate the standard error. The red dotted line is the threshold for
'high niche overlap’ (D-index>0.60), and the dark red dashed line for ‘very high niche
overlap’ (D-index >0.70).

3.3.3 Impact of data precision on island SDM predictions at high resolutions

Virtual Species

As in the previous analysis, the focus was on models where 20% of the study area
was sampled using the Psa/BG ratio, as this proportion provides a better balance in
accuracy across all scenarios. The next step involved exploring the relationship

between the predictor variables 'Method," 'Range size,' 'Sample size,' and various
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levels of simulated gridded 'Uncertainty’ (i.e. occurrence point displacement to the
centroid of higher resolution grids: 90, 500 and 1000m), and the response variable
of model accuracy, measured by the D-index. Similarly to the results presented
above, hierarchical partitioning of explained variance showed that 'Range size' was
the most important variable driving the predictability of the model (Model R? =
0.50; Range size' =96.68 %; Uncertainty 2.61%; Sample_size=0.29%; Method=

0.36%). Thus, the data was partitioned into narrow and wide-ranged species.

For species with narrow ranges, 'Method,' followed by 'Uncertainty’ showed similar
contribution to the variability in the D-index (Model R? = 0.1%; Method= 51.12%;
Uncertainty 48.36%; Sample_size=0.34%). For species with wide ranges, the D-index
is primarily explained by 'Method," with ‘Uncertainty’ explaining only minimal
variation (Model R? = 0.11; Method= 80.33%; Uncertainty 7.89%;
Sample_size=11.95%). Specifically, the GAM and Maxent methods showed
important declines in accuracy when sample sizes are small and the uncertainty is
high (1000m) for both range sizes (figure 3.6 and Supplementary Table S3.1.11&

S3.1.12 for numerical results).

Real Species analysis
In contrast to the virtual species results, 'Uncertainty’ was the most significant
variable explaining variation in model predictability (Model R? = 0.43; Uncertainty:

57.38%; Method: 21.89%; Range size: 20.75%) (see figure 3.6 and Supplementary
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Table S3.1.13& S3.1.14 for numerical results). For narrow-ranged species, all

methods showed large declines in accuracy with increasing uncertainty, particularly

at 500-1000m. For wide-ranged species, the GAM method in particular showed

declines in accuracy with increasing uncertainty, especially at 500-1000m.
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Figure 3.6 Impact of uncertainty in occurrence data on SDM accuracy (D-index).
Panels 6a and 6c illustrate the effects of increasing gridded uncertainty levels (no
uncertainty = 0; uncertainty = 90, 500, 1000 m) on wide and narrow ranged virtual
species, considering large (50n or 80% of the species range) and small sample sizes
(10n or 69% of the species range). Points represent the mean, and error bars indicate
the standard error. Panels 6b and 6d present the corresponding results for real

species (mean sample size = 21).

139



3.4 Discussion

This study explores the complexities of SDM application in island environments
using plants as the focal taxon. The analyses presented highlight how challenges
such as high habitat specialisation, spatial constraints, and sparse occurrence data
hinder the understanding of island distribution patterns. The discussion addresses
the suitability of different modelling techniques for islands, the optimal selection of
pseudo-absence points, and the impact of positional uncertainty in occurrence
data. Practical recommendations are provided to enhance the effectiveness of
SDMs, even when working with limited and sparse data, to support conservation

efforts on islands.

3.4.1 Data limitations and specialisation levels in island species: Optimising
presence-only models and their validation

Several studies have investigated how species range size (i.e., prevalence in the
study area) and sample size affect model accuracy (Stockwell & Peterson, 2002;
Seoane et al,, 2005; Hernandez et al., 2006; McPherson and Jetz, 2007; van Proosdij
et al., 2016). However, the typical focus of such studies on continental areas,
alongside their use of coarse-scale environmental/climatic predictors, means that
their results are not necessarily generalisable to species from more restricted

environments like islands.
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The findings of this research partially support previous evidence (e.g., Hernandez et
al., 2006; van Proosdij et al., 2016), confirming that sample size and range size
influence prediction accuracy. However, a notable deviation was observed from the
expected pattern that species with wide ranges require larger sample sizes and
tend to be associated with less accurate predictions (see van Proosdij et al., 2016).
Specifically, in the context of islands, species with wide ranges showed better
predictability even with smaller sample sizes. This may be because larger study
areas with more environmental variability require more data to accurately model
widely distributed species, whereas smaller study areas with more constrained
environmental variation, such as on many islands, allow for more accurate
predictions of wide-ranged species using fewer data points. These results also
provide new evidence on the challenges of modelling narrow-ranged species
distributions. Narrow-ranged species often have limited data, complicating the use
of SDMs (Lomba et al.,, 2010; Breiner et al., 2015). This task becomes even more
difficult in island settings, as this study suggests that narrow-ranged species on
islands may require relatively more data for accurate predictions than their

continental counterparts (van Proosdij et al., 2016).

The validation metrics analysed (AUC and Boyce index) also proved highly sensitive
to species’ range size, often overestimating accuracy for narrow-range species and

underestimating it for wide-range species. While It was found that increasing the
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proportion of Psa/BG often improve prediction accuracy and reduce uncertainty
(Descombes et al., 2022; Valavi et al., 2022), analysis of both virtual and real species
indicates that, depending on data availability and species’ range sizes, a trade-off
may be required to bridge the gap between model validation and accuracy. In
instances where the accuracy of spatial predictions is crucial (such as in
conservation planning, where over- or under-predictions of species' ranges should
be avoided), compromising some accuracy may be necessary to achieve realistic
model validation by reducing the proportion of Psa/BG (see further details in

Section 3.4.3).

Finally, the significant influence of range size on model performance emphasises
the risk of using arbitrary thresholds to differentiate between high- and low-
performance models (e.g., >0.7 for AUC and >0.4 for Boyce) in multi-species
studies with varying range sizes (Raes & ter Steege,2007). To complement
traditional validation techniques, testing SDM fits against null models is
recommended to distinguish meaningful results from random outcomes, rather
than subjectively interpreting them as a continuum of 'high' and 'low"' performance

(Hu & Liu, 2014; Osborne et al., 2022; see also Chapter 4).
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3.4.2 The impact of low occurrence data precision on the accuracy of island
SDM predictions at high-resolutions

Previous studies have shown that positional error can significantly reduce the
predictive performance of species distribution models (SDMs) (Hefley et al.,, 2014;
Tulowiecki et al., 2015; Mitchel et al., 2017; Soultan & Safi, 2017; Fernandes et al,,
2019; Gabor et al,, 2022). This effect is particularly strong for specialist species
(Visscher, 2006; Gabor et al., 2020) and species in environmentally heterogeneous
regions (Gabor et al., 2023). These factors are especially relevant for island
environments because: 1) island terrain, especially on oceanic islands, can vary
significantly over small areas, creating sharp environmental gradients (Hanz et al.,
2023), and 2) islands floras often comprise a high proportion of narrow-ranged
specialist species (Kreft et al., 2008). Based on these points, SDM performance was
expected to decline with positional inaccuracies, particularly for species in
topographically diverse areas and those with narrow ranges. In this study, species
with broader ranges typically inhabit more diverse topographies on islands, while
narrow-ranged species are often confined to less variable environments (e.g.,
coastal zones or specific elevation bands). The results suggest that widespread
species are less affected by occupancy point positional errors, likely because these
errors often fall within their suitable habitat range. In contrast, highly specialised
species, even in less heterogeneous environments, are more vulnerable to

positional errors when they occur in rare or restricted habitat patches, as a large
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uncertainty (e.g., =1km) can place occurrence points far outside of suitable

habitats.

Our results suggest that, to mitigate the impact of positional error in SDMs in
island environments, it is essential to consider species' range size. Furthermore, as
we observed little difference in prediction accuracy between large and small sample
sizes, data quality (i.e., uncertainty) seems to be more important than data quantity
(in accordance with Engler at al., 2004). Therefore, the removal of highly uncertain
records —based on the previously defined data requirements for each species'

range sizes— is justified on the basis of these analyses.

3.4.3 Optimal methods for island SDMs considering data availability and
uncertainty

The analyses identify effective methods for future island SDM studies. GAMs stand
out as the most effective modelling approach, on analyses of both virtual and real
species, showing lower sensitivity to range size, strong coherence with validation
metrics (the Boyce index and AUC), and relatively low data requirements (=10
records for narrow range species resulted in high model accuracy). However, this
method is highly sensitive to occurrence records with spatial imprecision.
Interestingly, Maxent, often considered the strong alternative for occurrence data
and range-restricted scenarios in both island and continental studies (Pearson et

al., 2007; Valavi et al., 2021), was found to have limitations in our study, with wide-
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ranged species consistently having low prediction accuracy. Paradoxically, it was
also found that Maxent tolerates occurrence records with spatial imprecision, at
least for this group of species. The BART approach generated satisfactory results
overall, requiring moderately large datasets for robust predictions (=20 occurrence
records), but tolerating occurrence records with spatial imprecision to a greater
degree, and providing robust SDM fits in island environments under appropriate
pseudoabsence sampling conditions (Table 3.2). GLMs demonstrated high accuracy
(under appropriate modelling conditions: Table 3.2) and tolerance to uncertainty,
yet also required moderately large datasets (=20 occurrence records) to provide

satisfactory fits and predictions.

Table 3.2 Summary of the minimum sample sizes, background/pseudo-absence
(Psa/BG) percentages, and the effect of spatial uncertainty (i.e., geographical
occurrence inaccuracies) on model accuracy for island species with narrow and
wide ranges across the four modelling methods: BART, GAM, GLM, and Maxent
(MXT). (*) recommended percentage for multi-method or multi-species studies.

Narrow-ranged Wide-ranged
SDM SDM
Minimum Accuracy Minimum Accuracy
Sample Psa/BG With Sample Psa/BG With
. % . %
size Occurrence size Occurrence
Uncertainty Uncertainty
Affected by Low
BART 20 0 e 10 1020 ~ Negatve
inaccuracies impact from
>1000m inaccuracies
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Affected by

Affected by

GAM 10 10 | large. 10 10 _ large.
inaccuracies inaccuracies
>1000m >1000m
Affected by Low
GLM 20 10 . large 10 10 _ negative
inaccuracies impact from
>1000m inaccuracies
Affclected by Low
arge negative
MXT 10 10*/40 inaccuracies 10 10*/40 impact from
>1000m

inaccuracies

146



3.5 Conclusion

This study has illustrated the importance of spatial context and data availability in
Species Distribution Modelling (SDM), offering valuable guidance for researchers
aiming to enhance predictive accuracy for species in island environments. Given
that island species often have narrow ranges, high specialisation, and limited
occurrence data, particularly in the form of presence-only records, selecting
appropriate modelling techniques and pseudoabsence sampling strategies while
accounting for range size and sample size is crucial for robust island SDM
implementation.
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4 . Assessing the ability of gridded
microclimatic data to improve species
distribution model applications in
tropical island regions
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Abstract

Biodiversity hotspots, areas of key focus for global conservation, are characterised
by high levels of plant endemism and significant vegetation loss. Nearly half of
these hotspots are mainly comprised of islands, most of which are in tropical
regions, making the understanding of island plant species distributions in the
tropics crucial for conservation. However, knowledge gaps persist, particularly in
tropical islands, where Species Distribution Models (SDMs) can play a crucial role in
predicting species' habitat requirements and potential range shifts in response to
global change. Applying SDMs in tropical island environments presents challenges,

mainly due to the uncertainty associated with global climatic datasets.

To overcome these challenges, this study evaluates the effectiveness of two
downscaled global climatic datasets (WorldClim and CHELSA) and a non-climatic
alternative—terrain-derived variables that may serve as a climatic proxy—in
predicting plant species distributions in the Revillagigedo Archipelago, a tropical
island biodiversity hotspot. Model accuracy and transferability were tested across
various environmental baselines and spatial resolutions (30, 90, and 500 m) to

examine their impact on predictive performance.

The contrasting size and topographic complexity of the two islands studied—

Clarion (smaller island) and Socorro (larger island)—provided valuable insights for
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improving the accuracy and transferability of SDMs across varied island landscapes.
Results indicate that models utilising downscaled climatic data at finer resolutions
(<90 m) significantly enhance predictive accuracy for smaller islands, as evidenced
by the results from Clarion Island. The Worldclim dataset consistently achieved
both high accuracy and transferability across a wide range of contexts. Notably,
model performance varied across species, with three species consistently yielding

poor predictions under all tested conditions.

The analysed approaches represent promising alternatives to coarse-scale climate
data for use in tropical island SDMs, and a method is presented to evaluate the
informativeness of high-resolution environmental data for SDMs in these settings.
The results of the study also provide practical guidance to enhance SDM accuracy
and transferability, ultimately supporting more effective conservation efforts in

tropical island ecosystems.
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4.1 Introduction

Biodiversity hotspots, globally recognised as crucial for conservation efforts, are
characterised by high levels of plant endemism and significant vegetation losses
(Myers et al., 2000; Mittermeier et al., 2011). The use of plants as the basis of the
biodiversity hotspots scheme underscores the essential contribution of plants to
maintaining the health and resilience of ecosystems and their role as indicators for

biodiversity conservation (Stork & Habel, 2014).

Notably, nearly a half of the recognised 36 hotspots are comprised primarily of
islands, with a large majority (10/15= 67%) located at tropical latitudes (Myers et
al., 2000; Mittermeier et al., 2011). Understanding the distribution of plant species
in these tropical insular regions and the impact of environmental changes on their
distributions is vital for broader conservation efforts. Despite increased global
investment in biodiversity research, knowledge gaps persist, particularly in tropical
island regions (Whittaker et al., 2005; Benavides et al., 2024). Species Distribution
Models (SDMs) serve as valuable tools for filling these knowledge gaps, as well as
predicting range shifts in response to global change (Guisan et al., 2013; Sofaer et
al, 2019). In island plant conservation for example, SDMs are crucial for predicting
climate change impacts, understanding habitat modification, managing invasive
species, and designing effective conservation plans (Vieilledent et al., 2013;

Rodriguez-Rodriguez et al., 2018; Patifio et al., 2023).
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While SDMs are useful tools, their application in islands faces challenges because of
limitations associated with commonly used environmental descriptors that are
derived from global climatic datasets (Benavides et al., 2024). This issue is especially
pronounced in tropical island environments, where the precision of global climate
datasets is often questioned due to the sparse distribution of meteorological
stations in tropical latitudes, which can lead to potential biases from statistical

interpolation methods (Soria-Auza et al., 2010; Deblauwe et al., 2016).

Moreover, the most widely used global climatic datasets (e.g., WorldClim) are only
available at resolutions that may inadequately capture the fine scale distributions of
island plants (=1km). For many such species, information on fine scale
microclimatic variations is essential for understanding their distribution patterns
(Lannuzel et al., 2021; Whittaker et al., 2023), and neglecting these factors can lead
to misinterpretations of climatic niche requirements, potentially resulting in

misleading spatial predictions (Patifio et al., 2023).

To address these challenges, researchers have explored alternatives to global
climatic datasets for use with SDMs, such as using high-resolution land cover and
surface variables as proxies for microclimatic variation (Heinanen et al,, 2012;
Turvey et al., 2020; Lannuzel et al., 2021; Segal et al., 2021; Gabor et al,, 2023), and
downscaling coarse-resolution global climatic datasets through statistical

computation to obtain high-resolution climatic grids (Bazzichetto et al., 2021;
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Patifio et al., 2023). However, research is needed to evaluate the effectiveness of
available approaches for obtaining meaningful microclimatic/environmental data to

improve SDM implementation in tropical island environments.

The effectiveness of different SDM approaches can be assessed by both model
accuracy and transferability. The former relates to the ability of a given model to fit
the data at hand (i.e., training data). Transferability in contrast relates to the ability
of a model developed in one set of conditions to accurately predict species
distributions in different, novel environments, and is a critical but often overlooked
consideration in island SDM research. Transferability is influenced by both the
choice of predictor variables (Goedecke et al., 2020; Datta et al., 2020) and the
study grain (Manzoor et al., 2018). However, there is a recognised gap in our
understanding regarding how the choice of environmental data source affects
model transferability (Austin & Van Niel, 2011a, 2011b; Stanton et al., 2012, Datta

et al,, 2020).

Different predictor variable types can affect model accuracy and transferability in
different ways. For example, while SDMs fitted using terrain variables (i.e., those
derived from elevation models) are known to effectively model the current
distribution of species, they show reduced transferability to new environments

(Rosseau & Betts, 2022). On the other hand, the use of climatic variables derived
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from global datasets often enhances model extrapolation across space and time
due to the availability of (i) data at global scales, and (ii) a range of temporal
climatic scenarios (Petitpierre et al., 2017). However, their use may lead to higher
uncertainty in predictions in tropical environments due to the previously
mentioned issues related to the sparseness of meteorological data in these regions
(Soria-Auza et al.,, 2010; Deblauwe et al., 2016), and the issue may be exacerbated
when interpolated to finer scales. Regarding the study grain, past studies have
shown that, as the analysed grid size decreases, models may face challenges such
as overfitting, diminishing their transferability to new environmental contexts

(Manzoor et al., 2018).

In this study, we investigate the effectiveness of two high-resolution downscaled
bioclimatic global baselines for predicting species distributions in a tropical insular
hotspot (Revillagigedo Archipelago) lacking regional climatic data. We use an
interpolation approach that considers topographic and elevational effects on
climate (Flint & Flint, 2012) and is known to be useful in characterising
microclimatic conditions (Franklin et al., 2012; Khosravi et al., 2016). The selected
global climatic baselines are WorldClim, widely used in SDM studies, and CHELSA
(Karger et al., 2017), which has been shown to generate useful outcomes in
applications focused on remote islands (Bazzichetto et al., 2021; Hanz et al,, 2023).

Additionally, we examine models built with terrain variables derived from a global
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digital elevation model, a widely implemented alternative to climatic descriptors in
island SDM studies (Heinanen et al., 2012; Turvey et al,, 2020; Lannuzel et al., 2021).
We assess the performance of SDMs calibrated with the three aforementioned
distinct environmental/climatic baselines (Downscaled-WorldClim, Downscaled-
CHELSA, Terrain-derived) across a range of high-resolution study grains (30, 90,
and 500 m). As outlined above, we measure effectiveness by focusing on both

model accuracy and transferability.

Our study addresses three key questions:

) How does the prediction accuracy of SDMs differ when using various high-
resolution environmental data sources (Downscaled Bioclimatic and Terrain

variables) to predict island plant species distributions at tropical latitudes?

Il) Does the grain size of downscaled climatic estimates impact the transferability of

island SDMs to new environments?

l11) Does the choice of variable type (Downscaled Bioclimatic vs. Terrain variables)

influence the transferability of island SDMs to novel environments?

By addressing these questions, our study aims to investigate the predictive
accuracy related to the use of environmental and climatic predictors relevant to

island floras, with the goal of improving our understanding of species distributions
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in understudied island regions. Understanding and addressing uncertainty in
environmental descriptors in regions with limited data availability is crucial for
advancing knowledge of species' responses to global change. Thus, the insights
gained from our analyses will enhance the applicability and transferability of SDMs
in island environments, a critical endeavour for strengthening conservation efforts
in these unique and vulnerable ecosystems (Benavides et al., 2024). This is
especially crucial in addressing major threats to islands such as climate change
mitigation and invasive species management (Whittaker et al., 2023), which require

both accurate and transferable SDMs.

4.2 Materials and Methods

4.2.1 Study area

The Tropical Eastern Pacific harbours numerous islands that form part of the
Mesoamerica biodiversity hotspot (Myers et al., 2000). Among these, the
Revillagigedo Archipelago (RA) stands out for its unique flora. Despite its relatively
low species richness, attributed to its remote location (approximately 600km from
the continent), one-third (39 species) of the plant species on these volcanic islands
are endemic to the archipelago (Levin & Moran, 1989; Rzedowski, 1991; Benavides

et al,, 2019).

The study focuses on the two largest islands in the archipelago, Socorro (132 km?)

and Clarion (19.8 km?), selected for their ecological significance as they host the
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majority of species in the archipelago. Despite their considerable conservation
value, there has been a notable lack of comprehensive assessments regarding
species distribution patterns across all taxa in the archipelago (Brattstrom, 1990;
Flores-Palacios et al., 2009; Wanless et al., 2009). Addressing this knowledge gap
can be effectively achieved through the optimal use of SDM methods (Benavides et
al., 2024), supported by in-depth understanding of empirical species distribution
patterns acquired from extensive fieldwork expeditions led by one of the authors
(e.g., Benavides et al., 2019). This knowledge facilitates a robust assessment of the
relevance of the tested approaches, even in the absence of a regional climate

model for this area.

4.2.2 Species data

Occurrence data for both vascular and non-vascular plants were collected for
model calibration and validation directly from the field. Vegetation transects of
varying lengths were implemented; 10 transects of 100m on Clarion, the smallest
island, and 15 transects of 500m-1km on the larger island Socorro. These transects
were systematically located to capture diverse vegetation units and habitats. During
the first sampling period, plant records were collected in both the dry (May 2018)
and wet (November 2018) seasons on Clarion Island in quadrats of 5x5 meters that
were located along the sides of the vegetation transects, to both characterise the

vegetation and to record plant diversity, as this island was lacking such information
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(Benavides et al., 2019). Dry season transects in Socorro Island were not required as
the vegetation units have already been characterised (de la Luz et al., 1996; Flores-
Palacios, 2009). Thus, data collection was conducted continuously along the
transects at the beginning of the wet season (November 2022) to capture the
largest possible range of both perennial and non-perennial species. To mitigate
potential sampling biases, transects were widely distributed across both islands. In
addition, in order to increase species occurrence sample sizes, incidental records
were collected across both islands during other sampling events with different
objectives within the sampling seasons. To homogenise sampling strategies across
islands and to address the potential biases associated with the difficulties of
sampling in hard-to-access areas, we filtered clusters of occurrence points (i.e.,
where plant data collection was more accessible, for example, due to the presence
of roads or easily accessible patches of vegetation) using the ‘Thin’ function in the
"spThin" R package (Aiello-Lammens et al., 2015). Prior to applying the filter, we
conducted an analysis of the extent of occurrence for each species, calculating the
minimum convex polygon around all occurrence points using the “adehabitatHR” R
package (Calenge, 2011). The objective of the latter analysis was to confirm that
clusters of points did not correspond to species with very small ranges (i.e.,
clustered distributions), considering the common occurrence of small range sizes in

island species (Gaston & Fuller, 2009; Rosenblad et al., 2019).
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To undertake the filtering, for both islands, criteria were established to define
distribution ranges based on field observations of species’ distributional ranges.
Very small-ranged species were defined as those with an extent of occurrence of
<5km?, and thus, no filtering approach was applied to these species. Due to the
larger area of Socorro Island (132km?), for species with an extent of occurrence
ranging from 5-30km?, we implemented a filter requiring pairs of points to be at
least 250m apart. For species with an extent of occurrence exceeding 30km?, a
more relaxed filter of 500m between pairs of points was used. Considering the
smaller area of Clarion Island (19km?), for species with an extent of occurrence
>5km?, a spatial filtering approach was applied to keep a 250m distance between

pairs of points.

Using all available information per species after filtering, a dataset of native species
specific to the archipelago with at least 10 occurrence records was compiled (Table
4.1). To increase the number of species analysed and those shared between islands
for the transferability analysis, non-endemic natives were included, although their

models were exclusively trained and projected within the archipelago.

4.2.3 Environmental data

Data from global climatic sources were downscaled, incorporating the effects of

topography in the study area using the methodology of Flint & Flint (2012). This
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interpolation method combines a spatial gradient and inverse-distance-squared

(GIDS) weighting to a global dataset through multiple linear regression.

To apply this methodology, bioclimatic variables for the study area were initially
obtained from the global WorldClim and CHELSA databases at the smallest
available resolution of 1 km/30 arc-sec. Subsequently, the original 1-km resolution
WorldClim/CHELSA data were downscaled to three finer resolutions: 500, 90, and
30 m. In this downscaling approach, the location and elevation (obtained from a
digital elevation model at the target resolution) of the new finer-resolution grid cell
relative to a coarse-resolution grid cell are utilized to weight the parameters based

on the following equation:

N

Zi+ X =X)xCe+ (Y =Y Cy+ (E—E)+C] [xo 1
) DX

d?
i=1 t

where Zis the estimated climatic variable at the specific location defined by easting

(X) and northing (¥) coordinates and elevation (£); Z;is the climatic variable from
the 1-km grid cell ; Xj ¥; and £;are easting and northing coordinates and

elevation of the 1-km grid cell j respectively; NVis the number of 1-km grid cells in

a specified search radius; Cy, Cy, and Ce are regression coefficients for easting,
northing, and elevation, respectively; and d/is the distance from the 500m, 90m or

30m site to the 1-km grid cell /depending on the downscaled resolution target

(Flint & Flint, 2012).
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The topographic information for downscaling was obtained from a digital elevation
model at a 30m resolution (ASTER Global Digital Elevation Map v3: NASA & MET],
2018), which was later resampled to 90m and 500m resolutions with the ‘resample’
function from the 'Terra' R package (Hijmans, 2022). The elevation information from
the digital elevation model was also utilised to create the terrain variable dataset.
As well as elevation (ELEV), the terrain-derived dataset contained slope steepness
(SLOPE) and slope exposure (ASPECT), which were derived from the elevation data
using the 'Terra' R package. The topographic wetness index (TWI), a proxy for water
availability, was calculated with the function ‘upslope.area’ from the
‘dynatopmodel’ R package (Smith & Lancaster, 2022). Finally, the distance to the
coast (DTC) was computed as the Euclidean distance from the centre of each grid
to the closest point on the coastline. All these layers were also converted to 90 m
and 500 m resolutions. These variables were selected because they are known to be
informative in capturing island plant species-habitat relationships, serving as useful

proxies for microclimatic variation (Irl et al., 2020; Lannuzel et al., 2021).

For the two climate datasets (Downscaled-WorldClim and Downscaled-CHELSA),
the multicollinearity of the 19 bioclimatic variables was analysed using the
‘corSelect’ function from the "fuzzySim" R package (Barbosa & Barbosa, 2020). This
function calculates the pairwise Pearson’s correlations between variables, and if the

correlation threshold (r > 0.7) is exceeded, one variable from the pair is excluded by
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selecting the variable with the highest variance inflation factor (VIF) in a linear
regression model. A common final set of variables was selected for both islands
(bio1 [Annual Mean Temperature], bio3 [Isothermality], bio5 [Max Temperature of
Warmest Month], bio16[ Precipitation of Wettest Quarter], bio18[Precipitation of
Warmest Quarter]) using this approach, ensuring reasonable multicollinearity levels

(all VIFs were < 5) (Abdelaal et al., 2019).

4.2.4 Modelling framework

SDMs were fitted using the ensemble of small models (ESM) approach (Lomba et
al., 2010; Breiner et al., 2015). In this approach, all potential combinations of
bivariate models are fitted, and their performance is evaluated based on their Area
Under the Curve (AUC) scores. Subsequently, a final averaged model is created,

which includes all informative small models (AUC >0.5).

The choice of this approach over more traditional modelling frameworks, which
include all variables in model fitting, stems from the fact that all our species’
occurrence datasets have <30 occurrence points (with the exception of one
species). The implementation of ESM is therefore preferred because it reduces the
risk of overfitting by adhering to a standard rule of including at least 10 records per
predictor variable, effectively controlling for model complexity (Lomba et al., 2010;

Breiner et al., 2015).
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To reduce uncertainty arising from model selection (Araujo et al., 2019), a decision
was made to fit SDMs using a single method that has demonstrated high
performance for modelling island species distributions in the study area in
combination with the ESM approach: GAMs (see Chapter 3). This fitting procedure
resulted in one averaged model from all bivariate predictor combinations per

species across three different baselines.

Although method-specific parameter tuning is sometimes recommended, the
default settings of the respective SDM fitting algorithm were maintained, as
evidence suggests that tuning features have a lower impact on predictive capability
for the selected modelling method when sample sizes are small (<30 records:
Valavi et al.,, 2022; Radomski et al., 2022). A presence-pseudoabsence approach was
used to fit the models. In this method, pseudo-absence/background points were
simulated by first quantifying the number of grids within the study area and then
randomly sampling 10% of that area. This random sampling approach relies on
fewer assumptions than other methods and has been shown in prior research to
yield highly accurate predictions (Stokland et al., 2011; Descombes et al,, 2023). The
10% sampling rate was selected because it provides a good balance between

model performance and validation metrics (Chapter 3).

To validate model performance, two metrics were used: AUC and the continuous

Boyce index. While an AUC >0.70 is conventionally accepted as the minimum
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threshold for adequate model performance (van Proosdij et al., 2015), AUC is
known to be highly sensitive to sample prevalence and may struggle to accurately
validate SDMs performance for widespread species (Lobo et al., 2008; Chapter 3). In
the context of the study area, previous evidence suggests that AUC values >0.65
indicate adequate model performance (Chapter 3). Therefore, this slightly lower
threshold was used to differentiate between informative and non-informative

models.

The described modelling procedure was repeated for each of the three primary
predictor datasets (Downscaled-WorldClim, Downscaled-CHELSA, Terrain-derived),

and the three different resolutions: 500, 90 and 30m.

4.2.5 Statistical association of species’ occurrence and the environmental/
climatic variables

The assumption that SDMs can provide useful predictions when predictor variables
show statistical associations with species occurrence data was tested, following the
approach outlined by Deblawe et al. (2016). For each species, a gridded sample of
random (null) occurrence points was generated to replicate many properties of the
observed species’ geographic distribution. This sample had the same resolution,
geographical extent, number of occupied cells, and spatial dependence (clustering
or dispersion) as the actual observations, but the points were distributed randomly

in space. Spatial dependence was summarised over a range of distances using the
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variance-stabilised Ripley K-function, also known as the L-function (Ripley, 1976). A
detailed description of the procedure is available in Goreaud et al. (2004).

To assess the significance of each of the three environmental/climatic datasets for
each species model, across the three resolutions analysed, the likelihood of obtaining
an area under the receiver operating characteristic curve (AUC) equal to or greater
than the AUC under the null hypothesis (that associated with the random null
distribution points outlined above) was evaluated. Put simply, the P-value of a one-
tailed test was calculated as the frequency at which AUC null = AUC obs, drawn from
a sample of 200 different null distributions in total per species (an alpha value of 0.05
was used to determine significance). It is important to note that this test only allows
determination of whether a modelled distribution is ‘random’ (i.e., not different from
that expected under the null distribution) relative to the environmental predictors

included in the model.

Subsequently, a Chi-Square Test of Independence was conducted to determine if a
modelled distribution being classified as 'random’' or 'non-random’ is related to
different model properties. Specifically, the analysis focused on whether 'Model
Randomness' (i.e., the result of the aforementioned null distribution comparison;
levels = 'random’' and 'non-random’) is dependent on 'Resolution’ (levels: '30', '90',
and '500) and/or 'Environmental Baseline' (levels: 'WC', 'CH', and 'DEM’) and the

island analysed (levels: 'Socorro' and 'Clarion’).
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Finally, how accuracy (in terms of AUC) varied among the different model fits was
assessed. For this, a (Gaussian) linear mixed effects model was fitted. The predictor
variables of interest were 'Resolution,' 'Environmental Baseline," and 'Island,’ with all
two-way interaction terms included. Marked species-specific differences in model
performance were expected, so species identity ('Species’) was incorporated as a
random effect (random intercept): AUC ~ (Baseline + grain + Island)~2 + (1|

Species). The model was fitted using the ‘Ime4’ R package (Bates et al., 2015).

4.2.6 Model transferability

For this analysis, species (n = 7) were selected based on their common occurrence
across both islands within the archipelago. The goal was to investigate how grain
size and the choice of predictor variables affect model transferability. Since all the
selected species are more common on one island (resulting in more presence data
points) than the other, presence/pseudoabsence models were trained using data
from the island with the larger occurrence dataset. These models were
subsequently projected to the island where the species are less common. The
metric selected for model validation was the Area Under the Curve (AUC),

calculated with the presence and absence data from the target projection island.

This validation approach enabled assessment of both the accuracy and
transferability of the model in its projected areas. Evaluations were conducted

across three analytical resolutions (30 m, 90 m, 500 m) and the three environmental
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datasets selected for this study (Terrain-derived, CHELSA, Worldclim). The linear
mixed-effects model outlined above, specified as AUC ~ (Baseline + grain +
Island)”2 + (1 | Species), was also applied to assess model transferability. This
approach allowed analysis of whether the outcomes were consistent in terms of

both accuracy and transferability.

4.3 Results

4.3.1 Species data

The final dataset comprises a total of 20 species, categorised into three chorotypes:
single island endemics (n = 8), species endemic to the archipelago (n = 1), and
non-endemic natives (n = 11). From the full dataset, 7 species were selected for the
transferability assessment on the basis that they occurred on both islands, with 4
species being more common on Socorro Island and 3 species being more common
on Clarion Island. Table 4.1 summarises the species list, the number of records
obtained, and the species selected for transferability, detailing where the models

were fitted and where they were projected.
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Table 4.1 Species list and number of occurrence points (post filtering) per island. Island
datasets selected as training areas for the transferability test (*) are highlighted in bold.
This indicates that the model was trained in the island with the larger sample size and
projected to the one with fewer occurrence records. (+) Non-endemic native species.

N. records Clarion N. records Socorro  Transferability

Taxon
test

Brickellia peninsularis
Brandegee

Bursera epinnata+
(Rose) Engl.
Caesalpinia bonducella+
(L.) Fleming
Conocarpus erectus+
L

Croton masonii

[.M. Johnst.

Dodonaea viscosa+
(L.) Jacq.

Euphorbia anthonyi
Brandegee

Euphorbia californica+
Benth.

Ficus cotinifolia+
Kunth

Guettarda insularis Brandegee - 24 .
llex socorroensis
Brandegee

Karwinskia humboltiana +
(Schult.) Zucc.
Nicotiana stocktonii
Brandegee

Sideroxylon socorrense
(Brandegee) T.D. Penn.
Perityle socorrosensis
Rose

Psidium socorrense

[.M. Johnst.

Teucrium townsendif
Vasey & Rose

Tribulus cistoides+

L.

Waltheria indica+

L.

Zanthoxylum fagara+
(L.) Sarg.

27 27 *

- 69 -

10 317 *

75 6 *

13 - -

10 13 *

74 10 *

19 27 *
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4.3.2 Model accuracy

Model performance was analysed using two metrics: AUC and the continuous
Boyce index. A significant positive correlation between these metrics was observed
(Pearson’s r = 0.61, P <0.01), indicating correlated patterns of high and low-
performing models across metrics. Thus, only the AUC results are discussed in the
main text, with detailed information for both metrics available in Supplementary

Table S.4.1.1.

The output of the model AUC~(Baseline + grain + Island)”2 +

(1] Species) revealed that most of the explained variation was attributable to the
species-level random effect (Marginal R?= 20%; Conditional R?= 77%). The
predictor "Resolution” had no significant effect on model performance (coefficient
= 0; SE = 0; p = 0.17). Similarly, the "Island" variable did not significantly influence
the AUC (coefficient = 0; SE = 0.02; p = 0.57). The environmental baselines had a
significant impact on AUC. Specifically, the WorldClim (WC) baseline positively
affected model performance (coefficient = 0.05; SE = 0.02; p < 0.01) relative to
CHELSA, while the Terrain-derived (DEM) baseline had a negative effect (coefficient
= -0.04; SE = 0.02; p = 0.02) relative to CHELSA. Overall, models using downscaled
baselines produced higher AUC values across both islands, with resolutions of

<90m proving particularly beneficial for SDM predictions on Clarion Island.
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Some interactions between “Environmental Baseline,” “Resolution,” and “Island”
were significant in the regression model. There was a negative interaction between
the DEM baseline and Clarion Island (coefficient = -0.06; SE = 0.02; p < 0.01), and
between the WC baseline and Clarion Island (coefficient = -0.08; SE = 0.02; p <
0.01). Additionally, there was a significant positive interaction between the DEM
baseline and resolution (coefficient = 0.001; SE = 0.0005; p < 0.01), where coarser
resolutions increased the AUC scores of models fitted with DEM variables. Figure

4.1 shows the AUC differences across islands, environmental baselines, and

resolutions.

Regardless of the selected analytical resolution or type of environmental baseline,
two species consistently had AUC values below the 0.65 threshold, which is
considered the minimum acceptable for model performance in the study area.
Specifically, B. peninsularis (mean AUC = 0.57) and £ anthonyi (mean AUC = 0.59)

exhibited poor model performance across all tested scenarios (Fig. 4.2).
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Figure 4.1 AUC results from SDMs fitted to 20 species across Environmental Baselines
(WC= downscaled Worldclim; CH= downscaled CHELSA; DEM=Topographically
derived), and Resolution. Red circles show mean AUC and the lines show the 95% Cl.
Gray points indicate the AUC values of each of the 20 species analysed. Gray dashed
line marks the AUC threshold considered acceptable for model performance (0.65).
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Figure 4.2 AUC values from fitted models by species and across different resolutions
and environmental baselines (WC= downscaled Worldclim; CH= downscaled
CHELSA; DEM=Topographically derived). Downscaled environmental (bioclimatic)
baselines are represented in blue shades, while the terrain-derived baseline is shown
in red. Gray dashed line marks the AUC threshold considered acceptable for model
performance (0.65).

4.3.3 Statistical association between species’ occurrence and the
environmental/climatic variables

The Chi-Square test of independence revealed no significant association between
'Environmental Baseline' or 'Resolution' and 'Model Randomness' (Resolution: x3(2)
= 2.98, p = 0.23; Environmental Baseline: x*(2) = 1.89, p = 0.38). This suggests that
neither the choice of baseline nor resolution significantly impacts whether a model
fit is worse than random. However, 'Model Randomness' was significantly
associated with both 'Species' (x*(19) = 144.6, p < 0.01) and 'Island' (x*(1) = 28.87, p

< 0.001), indicating species-specific relationships with the different environmental
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baselines and resolutions, and that there are significant differences in the

proportion of random models observed between islands (discussed below).

On Clarion Island, all SDMs for three species—B. peninsularis, D. viscosa, and E.
anthonyi—resulted in random fits, meaning that the modelled fits were no better
than a randomly generated distribution. These species also exhibited low model
performance (AUC < 0.65), suggesting that their distributions could not be reliably

predicted by any of the environmental baselines used, regardless of resolution.

For Clarion SDMs, non-random model fits were more common at finer spatial
resolutions (30m and 90m). Notably, 27% (n=3) of the species displayed non-
random fits, which were evenly distributed across all resolutions and baselines. In
contrast, 45% (n=5) of the species showed non-random fits in specific scenarios,
particularly when using downscaled CHELSA (CH) data (Fig. 4.3). Overall,
downscaled CH data contributed to non-random fits in 7 of the 8 species, followed
by DEM and downscaled Worldclim (WC), which contributed to non-random fits in

5 and 4 species, respectively.

For the Socorro Island SDM fits, only one species, £. cotinifolia, had a random SDM
fit, and this model also had poor performance (AUC < 0.65). In contrast to the
Clarion Island models, where non-random SDM fits were mostly specific to a

particular baseline and generally associated with smaller resolutions, on Socorro
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Island, non-random SDM fits were more consistent across different resolutions and
baselines (Fig. 4.3). Specifically, 58% of the species (n=7) had consistent non-
random fits across most scenarios of environmental baselines and resolutions.
Whereas 33% of the species (n=4) showed non-random fits in specific scenarios
based on WC and DEM datasets. Figure 4.3 summarises the distribution of random

and non-random SDM fits across the variables analysed.
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Figure 4.3 Distribution of random (lower section) versus non-random (upper section)
model fits across different environmental baselines and resolutions for both Clarion
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and Socorro islands. The X-axis represents three resolutions (30m, 90m, 500m) and
three environmental baselines (CH: downscaled CHELSA, DEM: Terrain-derived, and
WC: WorldClim). a - Clarion Island: a higher number of SDMs resulted in random fits,
with non-random fits occurring primarily in scenarios using downscaled CHELSA
data. b - Socorro Island: shows a more balanced distribution of random and non-
random fits across all resolutions and baselines. (*) Species that exhibited all-random
SDM fits.

4.3.4 Model transferability

Model transferability, defined as the ability of a model fitted using presence-
absence data from one island to accurately predict the species’ distribution on a
second island, was assessed for seven species. This assessment was conducted
using empirical presence-absence data from the island to which models were
projected, and evaluated with the AUC (Area Under the Curve) metric. Figure 4.4
summarises the AUC-transferability results, with detailed information provided in

Supplementary Table S.4.1.2.

A mixed-effect model, with AUC_transferability as the response, species as a
random effect, and environmental baseline, study grain and island as fixed effects,
revealed that the fixed effects explained a relatively large proportion of the
variability in the AUC_transferability metric (Marginal R* = 62%; Conditional R? =
11%). Unlike model performance, whereby the species-level random effect
explained most of the variation in AUC, the variation in model transferability was
better explained by the environmental baseline used in the SDM fit. Specifically, the

Terrain-derived (DEM) baseline had a positive impact on model performance
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(coefficient = 0.16; SE = 0.04; p = 0.01) relative to CHELSA, while the Downscaled
WorldClim (WC) baseline also had a positive effect (coefficient = 0.09; SE = 0.04; p
= 0.02) relative to CHELSA. The predictor ‘Resolution’ did not have a significant
effect on model performance (coefficient = 0; SE = 0; p =0.34). Similarly, the ‘Island’
variable did not significantly influence the AUC_transferability (coefficient = -0.07;

SE = 0.05; p = 0.35).

A marked difference was observed in transferability between islands. Species
distribution models fitted using data from the largest island (Socorro) and
projected onto the smallest island (Clarion) showed poor transferability
(AUC_transferability < 0.65) for all species. For species projected into Socorro
Island, the Terrain (DEM) environmental baseline generally provided the highest
mean AUC_transferability across all resolutions (DEM AUC = 0.76; DEM-Res30 =
0.79; DEM-Res90 = 0.77; DEM-Res500 = 0.72). Model transferability for WorldClim
(WCQ) also showed high average AUC_transferability scores (WC AUC = 0.71; WC-
Res30 = 0.72; WC-Res90 = 0.74; WC-Res500 = 0.70). In contrast, CHELSA (CH)
showed lower average AUC_transferability scores (CH AUC = 0.65; CH-Res30 =
0.60; CH-Res90 = 0.64; CH-Res500 = 0.65). Differences in model transferability
across resolutions were minimal for both islands, with only slight improvements

observed at the finest (30m) resolution (Figure 4.4).
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Figure 4.4 AUC-transferability results by species across different resolutions and
Environmental baselines (WC= downscaled wordlclim; CH= dowscaled Chelsa;
DEM=Topographically derived). Gray points are AUC_transferability values per
species across diverse scenarios of resolution and baselines. Red circles are average
AUC_transferability scores and the lines extend to the 95% Cl. Gray dashed lines mark
the AUC threshold used in the study area

4.4 Discussion

Species Distribution Models (SDMs) are essential tools for understanding the rich
yet understudied biodiversity of tropical regions (Poteau et al., 2019), particularly
on islands. However, their effectiveness is often hindered by uncertainties in
climatic estimates (Deblauwe et al., 2016) and the inability of these estimates to

capture the variability of small or topographically complex islands (Benavides et al.,
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2024). As a result, there is a reliance on proxies, such as topography and remotely

sensed vegetation data, to fill these gaps.

This study aimed to address these environmental data limitations while focusing on
a selection of ecologically relevant variables for SDMs at appropriate scales—an
aspect that has been relatively understudied (Austin & Van Niel, 2011; Syphard &
Franklin, 2009; Tulloch et al., 2016). Advances in data availability and computational
power have made it increasingly feasible to develop detailed microclimatic
descriptors by downscaling global climate data. However, generating downscaled
climate data is only part of the challenge; it is also necessary to ensure that these
variables, in the context of SDMs, are ecologically valid and accurately reflect
species-environment relationships. To this end, plant species distributions were
analysed on islands, which are often particularly sensitive to fine-scale climatic and
topographic gradients (Lannuzel et al.,, 2021). The downscaling methods explored
in this study have been shown to be effective in describing microclimatic variability,
thus leading to accurate plant SDMs in many contexts (Flint & Flint, 2012; Franklin
et al., 2013). However, the uncertainty associated with global climatic estimates in
tropical islands (Deblauwe et al., 2016) means that the reliability of these

approaches in tropical island environments remains uncertain.

It was initially expected that terrain-derived predictors would result in more

accurate and informative distribution models, as local topography is known to be
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an important driver of microclimatic habitats relevant for plant species through
factors such as slope, exposure, water availability, and temperature (Franklin et al,,
2013; Chauvier et al., 2021). Contrary to expectations, the analysis revealed that,
when spatial context and species properties were considered, downscaled climatic
predictors provided more accurate SDMs. This suggests that such variables may
capture habitat preferences not reflected by DEM-based predictors. This finding
indicates a need to reconsider the reliance on terrain-derived data in high-

resolution island SDM studies (e.g., Poteau et al,, 2019; Lannuzel et al., 2021).

The remainder of the discussion outlines and contextualises scenarios where each
type of predictor (and the corresponding analytical resolutions) is relevant for (1)
predicting species distributions and (2) extrapolating models to novel conditions

(i.e., model projections).

4.4.1 Model Accuracy and Species—Climate Associations Using High-Resolution
Environmental/Climatic Data

The analysis of two islands with differing sizes and levels of topographic complexity
provided valuable insights into how spatial context influences species associations
with environmental descriptors across various analytical resolutions. Socorro, the
larger island (132 km?) with complex topography and higher elevation (1000m),
presented contrasting results to Clarion, a much smaller island (19 km?) with

relatively simpler topography and lower elevation (300m).
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In the case of Socorro, SDMs generally showed higher accuracy (relative to Clarion)
and produced consistent species-climate associations across different
environmental baselines (CH, DEM, WC) and resolutions (30m, 90m, 500m). The
consistent effectiveness of microclimatic variables (WC/CH), as predictor variables
in SDMs based on species data from Socorro, can be attributed to the island’s
larger area, which provided more data for downscaling (in the form of 1km gridded
climate data), thereby reducing model uncertainty. Additionally, the island’s size
resulted in broader resolution predictors more effectively capturing environmental
variability, leading to more stable results in terms of predictive accuracy (Austin &

Van Niel, 2011).

In contrast, SDM fits based on data from the smaller island of Clarion exhibited
greater uncertainty, with models showing high accuracy and generating better-
than-random fits only in specific scenarios regarding resolution and variable choice.
The most accurate models for Clarion were based on very fine-resolution
environmental descriptors (30m), a logical outcome as finer resolution data provide
a better representation of environmental variability in small study areas. Notably,
the relative performance of the CH dataset was greater on Clarion Island, and was
the only case where this environmental baseline outperformed WC and DEM

(further explanation in the impacts of transferability section).
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The models based on DEM descriptors performed relatively poorly for Clarion,
likely due to its lower topographic diversity. On this smaller and less orographically
diverse island, the relationship between topography and microclimate may be
weaker, obscuring the role of environmental factors that influence species
distributions on larger, more topographically varied islands (Mclnerny et al., 2011;

Lembrechts et al., 2019).

4.4.2 Balancing model accuracy and transferability in regards to variable
selection and analytical resolution

Evidence suggests that even if a model performs well in terms of its fit to a given
training dataset, it may not necessarily exhibit high transferability (Huang et al.,
2016). This is particularly important in island studies, where it is often crucial to
undertake such a complementary approach to model evaluation, for two main

reasons:

1) Resolution and Transferability: Previous research has indicated that SDMs fitted
with fine-scale resolution data often exhibit lower spatial transferability (Manzoor
et al., 2018). However, this study contradicted this expectation, revealing that
transferability improved when models were fitted with finer resolution data. This
discrepancy may be attributed to the significant size differences between the
islands involved in the transferability analysis. For Socorro, the larger island,

resolution was less critical for accurate modelling, whereas for Clarion, the smaller
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island, a finer resolution was necessary. Therefore, when transferring models
between these islands, it is crucial to match the resolution appropriately to ensure

that the model performs well in both environments.

2) Type of Predictor Variables: Transferability is closely linked to the type of
predictor variables used in SDMs, with studies showing differences in results
depending on the utilised climatic datasets (Petitpierre et al., 2017; Manzoor et al,
2018; Goedecke et al., 2020; Datta et al., 2020). Additionally, the choice of global
climatic baselines is sensitive to the amount of meteorological data available in the
study area (Karger et al., 2017). Previous studies have shown that plant SDMs in
regions with sparse meteorological stations performed better when calibrated with
the CHELSA (1.1) dataset compared to WorldClim (Bobrowski & Schickhoff, 2017;
Karger et al., 2017). Based on this, downscaled CHELSA data were initially expected
to outperform WorldClim in this study. However, our findings revealed that models
fitted with WorldClim generally performed better and exhibited greater
transferability than those using CHELSA. This contrasting result, which is consistent
with Datta et al. (2020), may be due to the aforementioned previous studies using
the first version of WorldClim (version 1), whereas the present analyses were based
on the latest version of WorldClim (version 2). The relative improvement of
WorldClim2 could be due to enhancements in data quality, including the

incorporation of remotely sensed variables like land surface temperature and cloud
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cover. The latest version of CHELSA (1.2) has also made corrections to account for
orographic effects, particularly concerning precipitation (Karger et al., 2017).
However, these corrections in CHELSA 1.2 may compromise the transferability of
climatic models when projecting to new regions if the local correlation structure
among variables changes (Mesgaran et al., 2016). This issue is relevant in the
present study, as Clarion Island—the smaller of the two studied islands—has less
topographic variability compared to Socorro, the largest island in the archipelago.
This difference in topographic variability may explain why models fitted with
CHELSA data showed poor transferability in general. Nonetheless, CHELSA data
were useful in modelling species distributions in some cases, even with very limited

gridded data on the smaller island.

4.4.3 Study Limitations

Beyond spatial context, species identity significantly influenced model accuracy,
with the species-level random effect explaining most of the variation in the mixed-
effects model of SDM accuracy. Certain characteristics of the study species were
associated with poor model fit and transferability. In particular, species with
uninformative model fits—indicated by low AUC scores or fits no better than
random—and poor transferability shared a common trait: high prevalence in the
study area (i.e., widespread species). This characteristic has been identified as a

challenge for SDM fitting, both in the study area (Chapter 3) and more broadly (van
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Proosdij et al., 2015). Additionally, with the exception of one island endemic species
(E. anthonyii), all the relatively poor SDM fits were associated with non-endemic
native species. This is likely due to the models only capturing a truncated realised
niche, which is known to negatively affect SDM fit and transferability (Suarez-

Seoane et al., 2014; Benavides et al., 2024).

Although the potential issue of niche truncation for non-endemic species was
recognised during the method design and species selection phases of the study,
these species were included in the analyses because field observations indicated
that they are dominant elements in the vegetation structure of the analysed islands.
Mapping their distributions is, therefore, important for fully understanding the
community assembly of island floras. There was also a practical necessity to their
inclusion given that some of these species are shared between the islands, thus
increasing the species pool for the transferability tests. Overall, the poor SDM fits,
rather than reducing the validity of the selected predictors / baselines, confirm the
previously identified challenges of SDM implementation on islands (Benavides et
al., 2024), and highlight potential sources of noise that should be considered in

future island SDM studies.

4.5 Conclusion

In this study, the reliability of SDMs was evaluated in a tropical insular hotspot

where the availability of fine-scale climatic data is limited, and strategies to

193



enhance their application in such challenging contexts were explored. The findings
broaden the range of potential options for using high-resolution environmental
baselines in SDMs for tropical island plants. It was demonstrated that selecting
appropriate downscaled fine-scale predictors, guided by the spatial context of the
study islands, can significantly improve the informativeness of SDMs. This finding
calls into question the common reliance on topographically derived data
(Benavides et al., 2024), which may not always be the most reliable or ecologically

robust choice in island SDM studies.

While downscaled microclimatic predictors were found to be effective in many
contexts, this result may not universally apply to other tropical islands. However,
the null-hypothesis testing approach utilised here is likely to be beneficial in island
SDM studies more broadly and should guide the selection of informative predictor
variables in future studies. By implementing this approach in SDM studies of
regions with environmental data limitations, researchers can better assess the
reliability of their models. Additionally, valuable insights were gained into
improving the transferability of SDMs—in an insular context—by selecting relevant
variables at appropriate resolutions, which has been shown to also depend on
spatial context. These findings support approaches that involve model
extrapolation across different islands, such as in invasive species management and

conservation translocations.
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5 . Predicting Microclimatic-driven Shifts
in the Distribution of Conservation
Priority Plant Species in Oceanic Island
Biodiversity Hotspots
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Abstract

Island endemic species are often endangered due to their small ranges and limited
migration options in response to climate change and other anthropogenic
pressures. Understanding insular species distributions is essential for addressing
anthropogenic threats on islands, and Species Distribution Models (SDMs) have
become valuable tools in this regard. In this study, SDMs were used to assess the
impact of climate change on a group of indicator plant species—those that are
vulnerable and/or have recognised ecosystem functions—across four archipelagos:
the Canary Islands, Galapagos, Hawaiian Islands, and the Revillagigedo archipelago.
By incorporating microclimatic data into the SDMs, findings show that most species
are projected to experience significant reductions in their distributions, with an
average range reduction of 27-37%. Spatial patterns of distribution decline varied,
with some regions showing concentrated losses, while others exhibited more
dispersed patterns. The analysis also revealed that species categorised as "Least
Concern" or not evaluated by the IUCN were more vulnerable to climate-driven
range loss than species already listed as threatened. Additionally, by analysing
species chorotypes, it was confirmed that endemic species are disproportionately
more at risk compared to their non-endemic native counterparts. These findings
highlight gaps in current conservation assessments and provide critical insights for
developing targeted strategies to protect biodiversity and ecosystem functionality

in island ecosystems under climate change.
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5.1 Introduction

Despite comprising only 6.7% of the Earth's surface, islands support approximately
20% of global biodiversity (Whittaker et al., 2023). However, human activities—
including habitat destruction, the introduction of invasive species, overexploitation
of resources, and the accelerating impacts of climate change—pose significant
threats to island ecosystems, placing many species at risk of extinction (Matthews
et al,, 2022; Whittaker et al., 2023). Oceanic islands, in particular, face even greater
vulnerability due to their geographic isolation and unique geological histories,
which have resulted in high levels of species endemism (Whittaker et al., 2023). As a
result, islands account for roughly 75% of recorded extinctions and support a
disproportionate number of the world’'s endangered species (Fernandez-Palacios et

al., 2021).

To address the alarming decline in island biodiversity driven by anthropogenic
pressures, it is first necessary to understand where species occur on islands. Species
Distribution Models (SDMs) have become widely used tools in this regard, aiding in
increasing our understanding of anthropogenic impacts on biodiversity (Frans &
Liu, 2024). SDMs predict species' habitat suitability by analysing the association
between species occurrence and various environmental variables, allowing for the

identification of suitable habitats both in the present and under future
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environmental change scenarios (Franklin, 2010; Guisan et al., 2013; Fourcade et al.,

2014; Araujo et al., 2019).

Island endemic species are at particular risk of future climate change. The limited
space available on islands provides few opportunities for species to shift their
ranges to track changing climate, thereby increasing their vulnerability (Cox &
Moore, 2010; Pimm, 2002; Taylor & Kumar, 2016). This threat spans various taxa
and island environments. For instance, cold-adapted island endemic plants, as well
as tropical insular reptiles, amphibians, and birds, are all expected to experience
significant declines (up to 90-100%) in climate suitability, potentially leading to
local and global extinctions even under optimistic predicted future scenarios

(Dubos et al., 2022; Edwards et al., 2022; Fortini et al,, 2015; Upson et al., 2016).

As primary producers and, in many cases, ecosystem engineers, plants play a crucial
role in sustaining island biodiversity by providing essential services such as water
regulation, erosion control, habitat, and food supply (Gravel et al., 2011; Borges et
al., 2018). For instance, while certain areas on a given island may remain climatically
suitable for some island birds, the loss of critical nesting habitat provided by plants
could significantly reduce their chances of survival (Porfirio et al., 2016; Amin et al,,

2021).
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Given the importance of plants in sustaining island biodiversity, it is crucial to
accurately determine their habitat suitability on islands in the face of climate
change (Caujape-Castells et al., 2010; Patifio et al., 2023). This requires considering
small-scale climatic variation, as oceanic islands often exhibit high environmental
heterogeneity over relatively small areas, leading to diverse micro-habitats (Irl &
Beierkuhnlein, 2011; Barajas-Barbosa et al., 2020; Whittaker et al., 2023; Chapter 2,
Chapter 4). Consequently, the distributions of island endemic plant species are
often closely related microclimatic variations, and such species often have narrow,
clustered distributions (Nyakatya & McGeoch, 2008; Patifio et al., 2023) Therefore,
coarse-grained environmental / climatic predictors are typically insufficient for
capturing the necessary environmental variation required for effective SDMs
(Benavides et al., 2024). Given the difficulties in sourcing fine-scale environmental
data on islands (see Chapter 4), we still lack a comprehensive understanding of how
island plant species distributions will respond to future climate change on different
archipelagos. This understanding is essential if we are to effectively conserve island

plant species going forward.

This study builds on the methodological foundations of the preceding three
chapters to evaluate the potential impacts of future climate change on plants of
high ecological and conservation value found in various (sub)tropical oceanic

archipelagos, all of which are global biodiversity hotspots (Mittermeier et al., 2004).
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To generate relevant information to support management decisions, this analysis
aims to (1) examine how predicted distribution changes in response to future
climate change vary across species chorotypes (i.e., non-endemic natives vs.
archipelago endemic species) to identify whether local or global species losses will
be more prevalent in the analysed areas; (2) assess how these predicted
distribution changes vary across different species extinction risk categories (as
recognised by global authorities such as the IUCN, and national authorities) to
determine whether climate change poses an additional threat—or confirms an
existing one—for species already under threat; and (3) determine whether the
modelled changes in plant species distribution patterns result in significant losses
or gains in specific island regions, in order to identify zones of loss or stability. By
using microclimatic data in the SDMs, the aim is to improve predictions of species
distributions under scenarios of future environmental change and, in doing so,

inform conservation efforts in these vulnerable environments.
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5.2 Materials and methods

5.2.1 Study area

This study focuses on four archipelagos of volcanic origin located in biodiversity
hotspots in the tropics and sub-tropics: the Canary Islands, located in the
Mediterranean Basin hotspot; the Galapagos archipelago, located in the Choco-
Darien/Western Ecuador hotspot; the Hawaiian Islands, located in the
Polynesia/Micronesia hotspot; and the Revillagigedo archipelago, located in the
Mesoamerica hotspot. These archipelagos were selected based on their
(sub)tropical affinities, volcanic origin, recognised categorisation within the
biodiversity hotspot framework, and the availability of ample and high-quality
occurrence data in global biodiversity datasets (e.g., GBIF: Benavides et al.,, 2024).
5.2.2 Current Climatic Data

Global climatic data were downscaled following the approach outlined in Chapter
4, which incorporates the effects of topography in the study area using the
methodology of Flint & Flint (2012). This interpolation method combines a spatial
gradient and inverse-distance-squared (GIDS) weighting to the global dataset

through multiple regression.

To apply this methodology, bioclimatic variables for the study area were initially
obtained from the CHELSA database at the highest resolution available, 1-km/30

arc-sec (Karger et al,, 2017). This global dataset was selected because it offers the
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finest resolution currently available for climate change scenarios, enabling more
robust interpolation of finer grids (Flint & Flint, 2012). Additionally, it has proven
effective in developing SDMs for plants in island regions with sparse and limited
meteorological data (Chapter 4). Topographic information for downscaling was
obtained from a digital elevation model at a 30m resolution (ASTER Global Digital
Elevation Map v3: NASA & METI, 2018), which was later resampled to 500m
resolution. The original 1-km resolution CHELSA data were subsequently
downscaled to 500m. A resolution of 500 metres was chosen because most of the
islands under analysis are relatively large, making this resolution informative (as
demonstrated in Chapter 4), while striking an effective balance between maximising
model informativeness and minimising computation time for both the downscaling

process and the development of SDMs.

The downscaling methodology involves using gridded climatic data, initially at a
coarse resolution, which are transferred to a finer-resolution grid using
corresponding fine-resolution elevation data. To adjust the parameters for this finer

resolution, the following equation is applied to weight the parameters

d:

L

CZiA X —X) G+ (Y —Y)xCy+ (E—E)+C] [xo 1
) z X
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209



where Zis the estimated climatic variable at the specific location defined by easting

(X) and northing (¥) coordinates and elevation (£); Z;is the climatic variable from
the 1-km grid cell ; Xj ¥; and £;are easting and northing coordinates and

elevation of the 1-km grid cell j respectively; NVis the number of 1-km grid cells in

a specified search radius; Cy, Cy, and Ce are regression coefficients for easting,
northing, and elevation, respectively; and d/is the distance from the 500m to 1-km

grid cell /7 (Flint & Flint, 2012).

As a final step, the multicollinearity of the 19 CHELSA downscaled bioclimatic
variables was analysed using the 'corSelect’ function from the "fuzzySim" R package
(Barbosa & Barbosa, 2020). This function calculates the pairwise Pearson’s correlation
between variables, and if the correlation threshold (r > 0.7) is exceeded, one variable
from the pair is excluded by selecting the variable with the highest variance inflation
factor (VIF) in a linear regression model. A final set of variables for each group of
islands was selected using this approach, ensuring reasonable multicollinearity levels
(all VIFs were < 5) (Abdelaal et al., 2019). The lists of variables selected per

archipelago are presented in the results section.

5.2.3 Future climatic data

To project future climate scenarios for the period 2041-2070, two climate models

with different levels of climatic sensitivity were selected from the CHELSA dataset.
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Climatic sensitivity refers to the degree to which Earth's temperature responds to
rising greenhouse gas levels. The models chosen were UKESM1-0-LL (UK-mod) and
IPSL-CM6A-LR (IP-mod). The UK-mod model is particularly important in the context
of the present analyses as it detects substantial changes in the tropics
(Swaminathan et al,, 2022), making it a "worst-case scenario” for the study areas.
This model was contrasted with the IP-mod model, which reflects less pronounced

changes, allowing for a balanced depiction of potential future climates.

The period 2041-2070 was chosen because it represents a future timeframe that is
far enough ahead to reflect significant changes yet not so distant as to be less
relevant for current policy planning. The available alternatives, 2011-2040 and
2070-2100, were less suitable: the former includes past, present, and imminent
future conditions, which offer limited new insights, while the latter extends too far
into the future for practical application in present-day decision-making. The
selected period strikes a balance, providing a forward-looking but still actionable
timeframe for climate projection. Each model was associated with three shared
socio-economic pathways (hereafter termed ‘SSP’): SSP1-2.6, SSP 3-7.0 and SSP 5-
8.5. These three Shared Socioeconomic Pathways (SSPs) provide varying
projections of global socio-economic changes and mitigation measures for the
near future, with global mean temperature increases expected to range from up to

2.4°Cin SSP1-2.6 to 5.7°C in SSP5-8.5 (where CO, emissions reach zero by 2050 in
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the best-case scenario and triple by 2070 in the worst-case scenario) by 2100,
depending on the mitigation measures implemented (O'Neill et al., 2016). We
applied the same downscaling methodology used for present-day grids to these
future climate scenarios. This equated to six future outputs per archipelago: two
climatic models for each of the three concentration pathways, selecting only the
non-collinear group of predictor variables resulting from the current climatic
scenarios (i.e., all models for a given archipelago [i.e., current and future] are using

the same predictor variables).

5.24 Species data

Using literature and regional databases for each archipelago, a list of priority
species—those of high ecological value and/or classified under a recognised
category of threat—was compiled to assess their vulnerability to climate change. To
be included in the list, a species had to meet at least one of the following criteria:
1) Be categorised as threatened by either global biodiversity authorities (e.g., IUCN)
or local authorities (e.g., government threat/vulnerability assessments). In regard to
the IUCN Red List, threatened species were those classified as Vulnerable,
Endangered or Critically Endangered (Matthews et al., 2022).

2) Be currently recognised as being under pressure from anthropogenic drivers of
environmental change (e.g., habitat modification, disease, invasive species,

wildfires). This category applies to species that are (i) not currently classified as
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threatened but have been in the past and are still being monitored, and (ii) not yet
classified as threatened but are experiencing a decline or fragmentation in their
populations and/or habitats.

3) Have an identified specific important ecosystem function (e.g., providing nesting
habitat, pollination resources, or edible fruits, or playing a dominant role in habitat

stabilisation).

For the identified species, occurrence data were extracted from the GBIF database
using the "rgbif" R package (Chamberlain et al., 2022), focusing on the selected
archipelagos. Island polygons were obtained from the "Geodata" R package
(Hijmans et al., 2023), covering islands ranging in size from 19 to 28,311 km?. All
taxa identified at the species level were included by searching with the 'Genus' and
'Specific epithet' functions. These functions retrieve all records associated with the
genus and specific epithet categories within the specified polygon, ensuring that
synonyms with corresponding occurrence data were included. The final database
for each species was then curated by the "Accepted name” category within GBIF to
unify species identity across synonyms. Finally, we filtered the data to retain only

records with a location uncertainty of 500 meters or less.

To mitigate potential sampling bias, a widespread distribution of occurrence points

was ensured by filtering clustered sampling localities using the "spThin" R package
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(Aiello-Lammens et al., 2015). Prior to applying the filter, an analysis of the extent
of occurrence for each species was conducted by calculating the minimum convex
polygon around all occurrence points using the “adehabitatHR" R package. This
was done to confirm that clustered localities did not correspond to species with
very small ranges, which is common in island species. A very small range was
defined as any extent of occurrence less than 10 km?. For these species, occurrence
points were not filtered. For species with ranges greater than 10 km?, a filter of 500
m (matching the predictor variable resolution) was selected as the minimum
distance to maintain between pairs of occurrence points. For more detailed

information on this approach, see Chapter 3.

5.2.5 Modelling framework

Considering the availability of occurrence data and the number of variables per
archipelago, models were fitted using two different approaches. Firstly, if the
number of records resulted in a ratio of 10 points per variable (as recommended by
Franklin, 2013: e.g., =50 occurrence points for 5 variables in the study area), a
traditional model approach was applied, involving the inclusion of all variables to fit
a single model. Conversely, if the recommended ratio of ten records per predictor
variable was not met (e.g., 30 occurrence points for 5 variables in the study area),
the ensemble of small models (ESM) approach was used (Lomba et al.,, 2010;

Breiner et al., 2015). In this approach, all potential combinations of bivariate models
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are fitted, and their performance is evaluated based on their Area Under the Curve
(AUC) scores. Subsequently, a final weighted averaged model is created, which

includes all informative small models (AUC >0.5).

The implementation of ESM in these cases is preferred because it reduces the risk
of overfitting and effectively controls model complexity. For both approaches, 5-
fold cross-validation was performed, using 20% of occurrence points for evaluation
and the remaining 80% for training. To validate model performance, both the AUC
and the Boyce index were calculated using the ‘'modEVA' R package (Barbosa et al.,

2013).

To minimise the uncertainty associated with model selection (Araujo et al., 2019),
four different methodologies that have demonstrated reliable results for studying
island species were applied, along with the ESM approach: GLM, GAM, Maxent, and
BART (Chapter 3). Each ESM was individually fitted using each method, and the
resulting models were then weighted by their AUC scores. Only models with an
AUC >0.6 were included in the final ensemble. Modelling features were set to
default, as evidence suggests that parameter tuning has little effect on predictive
performance when sample sizes are small (Valavi et al., 2022). This is particularly
relevant since the majority of our species have fewer than 30 records (Valavi et al.,

2022; Radomski et al., 2022).
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Since presence-only data were available for the analysed species, we simulated
pseudo-absence/background (Psa/BG) data by quantifying the number of grids
available within the study area and subsequently randomly sampling 10% of the
study area (where presence points are not recorded). This random sampling
approach relies on fewer assumptions and has been shown to yield highly accurate
predictions based on prior research (Stokland et al., 2011; Descombes et al., 2023;
Chapter 3). Additionally, the selected percentage has been shown to strike a good
balance between real model performance and validation metrics in island SDMs

(Chapter 3).

The differences in predicted probability outputs calibrated with diverse modelling
methods can make them incomparable or incompatible for combination. Therefore,
probability outputs were converted into favourability measures using the
“Fuzzysim” R package. Favourability, which ranges from 0 to 1, distinguishes
conditions supporting species presence (F > 0.5) from those detrimental to the
species (F < 0.5), thereby standardising values across distribution models to enable

comparisons (Acevedo & Real, 2012; Real et al., 2006).

5.2.6 Predicted climatic-driven range changes

To assess potential future distribution changes in response to climate change,

maps of the current distribution were first created, focusing exclusively on suitable
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areas containing actual occurrence points. Only suitable patches with at least one
recorded presence were retained. Even though this approach may exclude some
suitable areas patches lacking presence data due to a lack of sampling, this trade-
off was deemed acceptable to reduce overprediction and account for dispersal
limitations and historical factors that may have prevented the species from

occupying those areas (Anadon et al., 2015).

For future scenarios, a migration rate of 200 meters per year was incorporated, as
suggested by Liao et al. (2020). To depict future climatic suitability, current suitable
habitat patches were first identified, and a 10 km buffer was applied around these
areas. If any future suitable patches overlapped with current patches within this
buffer, they were retained as potential future habitat. This buffer accounts for the
species' potential dispersal into areas projected to become climatically suitable,
based on future climate models. While some unconnected areas beyond the buffer
may also become suitable, it is unlikely that species will disperse to all such areas

within the timeframe, given their dispersal limits (Burns, 2018).

By excluding unconnected patches, the aim was to avoid overestimating the
species' realised distribution in present and future scenarios, as including such
distant patches could result in unrealistic projections of range expansion or

dispersal in future scenarios (Benavides et al., 2020).
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Finally, differences between present and future suitability scenarios, were
calculated using a Net Range Change Evaluation approach. For this, the threshold
of >0.5 from the favourability (F) outputs was utilised to identify zones with suitable

conditions for the species (without binarising the outputs).

The differences between present and future distributions were quantified,
identifying (i) new areas with F > 0.5, defined as habitat gain, (ii) areas suitable in
the present scenario (F > 0.5) but unsuitable in the future (F < 0.5), defined as
habitat loss, and (iii) areas whose suitability remained within the threshold (0.5 - 1),
defined as stable habitat. As a final step the relative change in the distribution area

was calculated, using the following formula:

Climatically suitable area — suitable area loss + suitable area gain .
Climatically suitable area B

This formula calculates the net future distribution area by subtracting the original
area loss from the original distribution area and adding the new area gain. The
result is then divided by the original distribution area to provide a relative measure
of change, with the final subtraction of 1 adjusting the result to reflect net change.
A positive value indicates an overall gain in suitable area, a negative value indicates

a loss, and a value of 0 indicates no net change.
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A linear model was constructed for each metric to analyse the impact of three
factors—Archipelago (Canaries, Hawaii, Galapagos, and Revillagigedo), future
climate model (Fut_Model: UK and IP), and SSP (SSP1-2.6, SSP3-7.0, and SSP5-
8.5)—on Net Range Change. The model included the main effects and all possible
interactions among the three factors. An ANOVA was conducted on this model to

assess the significance of each factor and their interactions. The formula used was:

Net Range Change ~ Archipelago * Fut_Model * SSP

Finally, in line with previous studies (Beaumont et al., 2016; Rose et al., 2024),
species distributional changes were categorised based on the global range of Net
Range Change values (converted to percentages). Total Loss (TL: -100%), Extreme
Loss (EL: >-80% and <-100%), Severe Loss (SVL: -80% to -50%), Moderate Loss (ML:
-50% to 0%), and Gain (G: >0% to 19%, our highest value of habitat gain globally).
These categories were analysed by archipelago, and their distribution was assessed
across (a) three threat classifications: species of Least Concern (LC), species
currently not assessed (NE), and species under some category of threat (THR),
which included species categorised as Vulnerable, Endangered or Critically
Endangered by IUCN (or its equivalent on a national risk categorisation); and (b)

two species chorotypes: Endemic (EN) and Non-Endemic Natives (NEN).
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5.2.7 Spatial patterns of species loss

The loss of habitat suitability for various species under future scenarios was
assessed by comparing suitability maps for the present and future timeframes,
focusing on identifying grid cells that exhibited a loss in suitability. Loss of
suitability was defined based on the criteria used in the Net Range Change analysis.
A grid cell was considered to have lost suitability if its favourability value (F) in the
present was greater than 0.5 (indicating suitability) but dropped below 0.5 in the

future (indicating loss of suitability).

To summarise the loss of suitability across multiple species, the 'mosaic’ function
from the "terra" R package was utilised. This function enabled the merging of
individual species maps into a single ensemble map, indicating how many species
experienced a loss of suitability in each grid cell. The final output of this process is a
map that highlights the regions where habitat suitability has declined for a given

number species.

5.3 Results

5.3.1 Bioclimatic datasets

The multicollinearity analysis of predictor variables revealed differences in the
amount of multicollinearity between predictors, among the studied island groups.

The Galapagos Islands had the highest number of non-collinear variables, with ten
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identified and thus selected for analysis. This was followed by the Canaries with
seven non-collinear variables. Both the Revillagigedo and Hawaii island groups
each had five non-collinear variables. The final set of variables used across all
models comprised bio1 (mean annual air temperature), bio3 (isothermality), bio4
(temperature seasonality), bio5 (mean daily maximum air temperature of the
warmest month), bio 6 (mean daily minimum air temperature of the coldest
month), bio7 (annual range of air temperature), bio9 (mean daily mean air
temperatures of the driest quarter), bio14 (precipitation amount of the driest
month), bio15 (precipitation seasonality), bio16 (mean monthly precipitation
amount of the wettest quarter), bio18 (mean monthly precipitation amount of the
warmest quarter), and bio19 (mean monthly precipitation amount of the coldest
quarter). Table 5.1 shows the variables selected to fit the SDMs for each
archipelago.

Table 5.1 The bioclimatic predictor variables selected per archipelago based on a
multicollinearity analysis.

Bio Bio Bio Bio Bio Bio Bio Bio Bio Bio Bio Bio

7 3 4 5 6 /7 9 4 15 16 18 19

Canaries X X X X X X
Galdpagos X X X X X X X X X X
Hawaii X X X X X
Revillagigedo X X X X X
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5.3.2 Species data

A total of 135 species across the study areas were identified as fulfilling the criteria
for being considered priority species in their respective archipelagos. These species
were assigned a distribution chorotype based on whether they are native or
endemic to the island group. Of these, 100 had sufficient occurrence data for
species distribution model (SDM) fitting (>6 records post-thinning). Specifically, in
Hawaii, 32 priority species were identified, with 24 (Endemics=18; Natives=6)
having sufficient information for SDM fitting. In the Galapagos, 34 priority species
were identified, with 22 (Endemics=17; Natives=5) having adequate data. The
Canaries had 47 priority species, of which 32 (Endemics=23; Natives=9) had
sufficient information for SDM fitting. In Revillagigedo, all 22 priority species
(Endemics=10; Natives=12) had sufficient data for SDM fitting. Supplementary
Table S.5.1.1 presents the information used to select the species as indicators, the

number of records before and after thinning, and their distribution chorotypes.

5.3.3 Species distribution models
A significant positive correlation was found between AUC and Boyce metrics
(Pearson'sr = 0.5, P < 0.01). Given this correlation, the AUC results are discussed

from herein.

The model fitting results, as indicated by the Area Under the Curve (AUC), show

that the classification performance was better than random for most species across
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the islands. Overall, while the models generally provided relatively good fits, some
species posed classification challenges, reflected in their lower AUC values. In the
Galapagos, three species—Calandrinia galapagosa, Scalesia villosa,

and Trigonopterum laricifolium—were excluded from further analysis due to
consistently low AUC values (below 0.6) in all scenarios. Similarly, in Revillagigedo,
models for Ficus cotinifolia and Guettarda insularis consistently had low AUC values
(<0.6), and these two species were thus excluded. In the Canary Islands, Sa/ix
canariensis was also removed for the same reason. Notably, the models for all

species in Hawaii had AUC values above 0.6 across all scenarios.

After removing the aforementioned species from the analysis, the global mean AUC
was 0.77, indicating relatively strong model performance overall. AUC values
ranged from 0.6 to 0.95, with an interquartile range (IQR) showing consistency—

25th percentile at 0.720, the median at 0.761, and the 75th percentile at 0.820.

When comparing individual islands, the Canary Islands showed the highest mean
AUC of 0.797, with values ranging from 0.683 to 0.953 and an IQR of 0.741 to 0.850,
reflecting robust model predictions. Hawaii followed with a mean AUC of 0.77,
displaying a wider range of 0.60 to 0.93 and an IQR from 0.72 to 0.82. In the

Galapagos, the mean AUC was 0.75, with values spanning 0.69 to 0.92 and an IQR
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from 0.71 to 0.75. Revillagigedo had the lowest mean AUC at 0.75, with a range of

0.62 to 0.92 and an IQR of 0.65 to 0.80.

5.3.4 Predicted climatic-driven range changes

Overall, climate change projections indicate a general pattern of negative Net
Range Change across all analysed archipelagos (global results in Net Range
Change are presented in Supplementary Table 5.1.2). The mean Net Range Change
was slightly lower for the Galapagos and Revillagigedo Island groups compared to
the others (Canaries: -37%; Hawaii: -35%; Galapagos: -27.1%; Revillagigedo: -
27.5%). The results of the linear models assessing the effects of Archipelago,
Climatic Model, SSP, and their interactions on Net Range Change are presented in
Supplementary Table 5.1.3. The main effect of archipelago was statistically
significant (F= 6.75, df=3, p<0.001), indicating that Net Range Change varied
significantly across different archipelagos. The main effect of SSP was also
significant (F= 3.46, df=32, p=0.03), suggesting that different trajectories of climate
change mitigation influenced Net Range Change. However, neither the main effect
of Future Model (F= 0.14, df=1, p=0.71) nor any of the interaction terms were
statistically significant, indicating no strong evidence for interaction effects
between these factors. Numerical results of the ANOVA are provided in

Supplementary Table 5.14.
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Additionally, the trends of impact of SSPs remained consistent across all
archipelagos. There was a gradual increase in the negative Net Range Change
corresponding to the impact of the SSPs for all archipelagos, except Revillagigedo
where variation between SSPs was minimal. The variation across the selected
climatic models (IP_mod, UK_mod) was also small, with the UK model showing
slightly higher negative Net Range Change. Figure 5.1 summarises the results of

Net Range Change across archipelagos, climatic models and SSP.
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Figure 5.1 Projected Range Change Across Four Archipelagos Under Different
Climate Scenarios. The figure shows the mean projected Net Range Change
(converted to percentage; + standard error) for species across four archipelagos:
Canaries, Galapagos, Hawaii, and Revillagigedo. The projections are based on two
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future climate models (IP and UK) and three SSP trajectories (SSP1-2.6, SSP3-7.0, and
SSP5-8.5), represented by green, orange, and red points.

To analyse the frequency distribution of Net Range Change values, five categories
were defined: Total Loss (TL= -100%), Extreme Loss (-100% < EL < -80%), Severe
Loss (-80% < SL < -50%), Moderate Loss (-50% < ML < 0%), and Gain (0% < G <
19%, the highest value across all archipelagos). Since trends in Net Range Change
vary across different archipelagos, the results are aggregated and presented at the

archipelago level.

Overall, species with Moderate Loss is the predominant category across all
archipelagos (Canaries: 55.7% of evaluated species in the archipelago were in this
category, n=16; Galapagos: 55.5%, n=10; Hawaii: 50%, n=24; Revillagigedo: 26.3%,
n=6). Species with Severe Loss are also particularly common in the Galapagos
(33.4%, n=6) and Canaries (24.1%, n=7). The Canary Islands are the only
archipelago with species that are classified as being threatened on the basis of
climate change, specifically Echium wildpreti; Heberdenia excelsa, and Sideroxylon
canariense. Of these, only £ wildpretii has predicted Extreme Loss due to climate
change (Net Range Change: -84.5%), while the latter two species exhibit Moderate

Loss (H. excelsa. -1.4%, S. canariense. -13.2%).
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Notably, a higher number of species reporting Gains (G) are observed in
Revillagigedo (35%, n=6) and Hawaii (25%, n=6), suggesting that some species in
these regions may be resilient to future climate change. In contrast, Revillagigedo is
the only archipelago reporting Total Losses (17% of species, n=3). Detailed
information of the number of species per each category is available in Fig. 5.2 and

in Supplementary table S5.1.2.
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Figure 5.2 Frequency distribution of Net Range Change categories across the four
archipelagos analysed. Categories are defined as Total Loss (TL: -100%), Extreme Loss
(EL: >-80% and <-100%), Severe Loss (SVL: -80% to -50%), Moderate Loss (ML: -50%
to 0%), and Gain (G: >0% to +19%).
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The distribution of Net Range Change categories across three threat classifications
was also assessed: species of Least Concern (LC), species not currently assessed
(NE), and species under some category of threat (THR). Figure 5.3 illustrates the
number of species in each threat group within each Net Range Change category.
This section highlights species with higher proportions of Severe Loss (SVL) or
worse. Overall, LC and NE species exhibit a greater proportion of SVL or worse

compared to THR species.

In the LC category, a relatively high proportion of species with SVL or worse was
observed, particularly in the Galapagos (33%, n=6), the Canaries (17%, n=4), and
Revillagigedo (17%, n=3). For the NE category, the proportions were 23.5% (n=4) in
Revillagigedo, 16% (n=4) in Hawaii, and 13% (n=4) in the Canaries. In contrast, the
THR category had much lower proportions of species experiencing SVL or worse:
10.3% (n=3) in the Canaries, 5.5% (n=1) in the Galapagos, 8.3% (n=2) in Hawaii, and

none in Revillagigedo.
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Figure 5.3 Frequency Distribution of Net Range Change Categories Across Three Risk
Levels (LC: least concern, NE: Not evaluated, and THR: threatened) in the four
Archipelagos analysed. Categories are defined as Total Loss (TL: -100%), Extreme
Loss (EL: >-80% and <-100%), Severe Loss (SVL: -80% to -50%), Moderate Loss (ML:
-50% to 0%), and Gain (G: >0% to +19%).

An analysis of Net Range Change categories was also conducted for two species
chorotypes: Endemic (EN) and Non-Endemic Natives (NEN). The number of species
in each range change category is illustrated in Figure 5.4. This section highlights
species with higher proportions of Severe Loss (SVL) or worse. The results indicate
that NEN species are generally predicted to experience higher proportions of SVL
or worse compared to EN species in the Revillagigedo archipelago. However, the

trend is reversed in the Canaries, Hawaii, and the Galapagos.
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In the Canaries, 20.7% (n=6) of EN species are expected to experience SVL or
worse, while 17.2% (n=5) of NEN species are predicted to exhibit similarly high
losses. A similar pattern is observed in the Galapagos, where 27% (n=5) of EN
species are expected to face SVL or worse, compared to 11% (n=2) of NEN species.
In Hawaii, 21% (n=5) of EN species are predicted to experience SVL or worse,
compared to only 4% (n=1) of NEN species showing significant range loss.
However, Hawaii also exhibits distributional gains, particularly among EN species,
with 17% (n=4) experiencing range expansion, compared to 8% (n=2) of NEN

species.

Conversely, in Revillagigedo, 23% (n=4) of NEN species are projected to undergo
SVL or worse, compared to 11.7% (n=2) of EN species. Notably, complete losses are
reported only in Revillagigedo, all of which correspond to NEN species (n=3, 18%),
suggesting these losses are local rather than global. Conversely, EN species show

the highest proportion of range gains in this archipelago (29.4%, n=5).
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Figure 5.4 Frequency distribution of Net Range Change Categories across two
distributional categories (EN: Endemic, and NEN: Non-Endemic Natives) in the four
Archipelagos analysed. Categories are defined as Total Loss (TL: -100%), Extreme
Loss (EL: >-80% and <-100%), Severe Loss (SVL: -80% to -50%), Moderate Loss (ML:

-50% to 0%), and Gain (G: >0% to +19%).
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5.3.5 Climatic-driven spatial patterns of species loss

Spatial assessment of the projected impacts of climate change on species
distributions, averaged across the IP and UK models, reveals that patterns of
species loss (i.e., loss of favourability on a given square) vary across archipelagos,
with greater predicted loss in certain regions. Spatial patterns of species loss for the
intermediate scenario of concentration pathway (SSP 370) are presented in Figure
5.5, while the detailed patterns for the other scenarios (SSP 126 & 585) are

depicted in supplementary Figure S.51.5 and discussed in detail in Appendix S5.2.1.

In the Canaries we see, for the SSP370 trajectory, 24.96% of the grid squares remain
unaffected, with 21.17% losing at least one species, and 12.99% losing >3 species
(Fig 5.5). With the exception of Lanzarote and Fuerteventura (2 spp.), the rest of the
islands in the archipelago show similar numbers of species losses (2-8 spp.; Fig.
5.5). The SSP126 and SSP585 scenarios show less and more severe effects,
respectively, with species loss being more widespread under SSP585 (details in

Appendix S5.2.1).

In the Galapagos, for the SSP370 trajectory, 35.65% of grid squares experience no
species loss. In contrast, 31.88% lose at least one species, and 15.89% >2 species
(Fig 5.5). Within the archipelago, Santa Cruz Island has the highest number of

species losses (2-4 spp.), followed by Isabela and San Cristobal, both of which also
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show significant proportions of grids with notable species loss (1-4 spp.). The rest
of the archipelago has lower (1 sp.) to no losses (Fig 5.5). As with the Canaries, the
SSP126 shows lower impacts and the SSP585 more severe effects (see Appendix

S5.2.1 for details).

In Hawaii, under the SSP370 trajectory, 17.51% of grid squares remain unaffected,
with 27.91% losing at least one species, and 24.10% losing two or more species (Fig
5.5). Within the archipelago, Oahu has the highest number of grid squares with
significant species losses (6-8 spp.), followed by Hawaii and Kauai, which also have
high losses but in fewer grids. The rest of the islands are predicted to experience
lower losses (1 spp.) or no losses at all (Fig 5.5). Less severe species loss is seen
under SSP126, while SSP585 shows increased losses, with up to 13.52% of the area

losing three or more species (see Appendix S5.2.1 for details).

Compared to the other three archipelagos, plant species on Revillagigedo appear
to be more resilient to future climate change. For the SSP370 trajectory, this
remains relatively stable, with 97.08% of the area unaffected. Unlike the other
archipelagos analysed, species loss on Revillagigedo is not concentrated in specific
zones; instead, it occurs across different regions of the islands (Fig 5.5). Species loss
under SSP126 is minimal, while the SSP585 scenario shows a slight increase in

species loss, affecting 19.42% of the grid squares (see Appendix S5.2.1 for details).
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Figure 5.5 Spatial patterns of species loss by archipelago for the SSP 370 scenario
(intermediate scenario) for: Hawaii (Top left), Canaries (Top Right), Galapagos
(Bottom left) and Revillagigedo (Bottom Right). For Revillagigedo, the top section
shows the actual distance and size of the islands, while the bottom section provides
a magnified view. Increased colour intensity represents a higher number of species
lost, measured as switching favourability within grid (500 m?) squares.

5.4 Discussion

Reducing the impact of climate change on biodiversity is a key conservation goal,
with efforts often focused on the most vulnerable species and ecosystems (Conradi
et al., 2024). In this study, species distribution models (SDMs) were applied to
insular plant species of high ecological and conservation value, using them as

indicators of potential exposure to climate change in island biodiversity hotspots.
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This approach provides valuable insights into how climate-driven species loss could

affect distributions in these regions.

Although island ecosystems are vital to global biodiversity conservation efforts, the
impacts of climate change on insular species are only beginning to be explored in
depth (Veron et al,, 2019; Benavides et al., 2024). This study significantly advances
understanding of the vulnerability of island plant biodiversity. A key finding is that,
despite variations across archipelagos, a concerning trend of range loss emerges.
Species in all regions are projected to lose, on average, about one-third of their
range, mirroring trends seen in other island hotspots (Pouteau & Birnbaum, 2016;
Tagliari et al., 2021). Unlike most climate change studies on islands that use
macroscale climate data (Benavides et al., 2024), this study is one of the first to
incorporate high-resolution microclimatic variation, providing more accurate

estimates of species' responses to climate change (see also Patifio et al,, 2023).

Additionally, areas where multiple species experience overlapping range loss were
identified, offering insights into spatial patterns that can inform more targeted and
effective conservation strategies. Given the critical roles many of the studied
species play within their ecosystems, these findings are especially important for

maintaining both biodiversity and ecosystem functionality.
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5.4.1 Impact of climate change varies across species’ conservation status

The IUCN criteria, while widely recognised for offering a comprehensive system for
classifying species facing various threats, were not specifically designed to evaluate
the impacts of climate change (Akgakaya et al., 2006; Keith et al., 2014). This study
found that, although the IUCN framework effectively identifies species already at
risk—making them ideal candidates for analysing climate change impacts—it has
notable limitations in this regard. Many species, particularly those not yet evaluated
or currently classified as of least concern, are expected to face severe climate-
induced impacts, including the loss of more than half of their suitable ranges. This
highlights the inadequacy of relying solely on the IUCN criteria to assess

biodiversity risks from long-term threats like climate change.

In the analyses, only one out of three species (Echium wildpretii from Canary
Islands) identified by the IUCN as threatened by climate change was predicted to
lose the majority of its range (approximately 80%). This finding aligns with previous
studies suggesting that the IUCN criteria need updating to better reflect the
impacts of climate change in species assessments (Akcakaya et al., 2006; Keith et
al.,, 2014). In accordance with Trull et al. (2018), it is emphasised that the IUCN
requires a more integrated approach, incorporating specific traits that may increase
species' vulnerability to climate change, as current guidelines lack these crucial

considerations. Alternatively, as Akgakaya et al. (2006) suggest, existing criteria

236



could be reassessed through the lens of climate change implications and applied to

threats within this context to enhance the overall framework.

5.4.2 Impact of climate change varies across species’ chorotype

Analysing the impacts of climate change on island endemic species is particularly
crucial, as these species have global conservation significance. The loss of an insular
endemic is permanent and represents a reduction in global biodiversity. Moreover,
range restriction is a strong predictor of species extinction risk (Broennimann et al.,
2006; Gaston & Fuller, 2009), making it unsurprising that insular species are
especially vulnerable to climate change (Harter et al,, 2015). In our study, endemic
species exhibited relatively higher proportions of Severe to Extreme losses in
suitable ranges (>50% suitability loss) across most of the archipelagos analysed,
compared to their non-endemic counterparts, with the exception of the
Revillagigedo Archipelago. This suggests a future dramatic decline in species with
already small ranges, leading to heightened vulnerability from a global

conservation perspective.

Conversely, while the Revillagigedo archipelago is predicted to experience greater
losses among non-endemic species, and in some cases complete extirpations, it is
essential to note that the species studied provide critical ecological functions in

these islands. Although the extinction of these species may not represent a global

loss, their disappearance could severely disrupt local ecosystems (Hautier et al.,
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2018), potentially destabilising ecological balance at the island level. This highlights
the importance of directing conservation efforts at the local scale and developing
strategies to prevent the extinction of vulnerable species. Additionally, it is crucial
to note that, with the exception of the Revillagigedo Archipelago, all the
archipelagos studied have human settlements. This makes it essential to consider
not only the impacts of climate change but also the synergistic effects of
anthropogenic threats to biodiversity (Benning et al., 2002; Ellis-Soto et al., 2017).
Even for taxa not considered highly vulnerable to climate change, other factors—
particularly habitat destruction caused by human activity and the introduction of
invasive species—may pose immediate risks to their survival. Future island SDM
research should examine the wide range of threats affecting island ecosystems,
focusing on specific anthropogenic pressures and how they interact with climate
change, to more effectively inform conservation strategies (Veron et al., 2019;

Whittaker et al.,, 2023; Frans & Liu, 2024).

5.4.3 Spatial patterns of species loss

To ensure the long-term survival of biodiversity, conservation strategies must
account for the spatial variability of climate change impacts (Jones et al., 2016). This
approach enables the targeted prioritisation of mitigation efforts in areas where
these impacts are most severe. In this study, a general trend of species loss was

identified, driving the focus on pinpointing hotspots of this loss. Although the
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analysis did not systematically quantify the extent of these hotspots or their overlap
with existing protected areas, a visual assessment indicates that most of these
hotspots of species loss are roughly situated within protected natural areas in all
the analysed archipelagos (Carralero, 2011; DPNG, 2014; CONANP, 2019; NARS,
2024). This suggests that while current conservation measures may help mitigate
other anthropogenic threats, additional actions are likely needed to protect
vulnerable species from the impacts of climate change. Future research could focus
on gathering data to support the redefinition of protected area boundaries,
ensuring the inclusion of climate refugia (Graham et al., 2019). Additionally, it is
crucial to deepen our understanding of how the loss of these plant species may
affect higher trophic levels, which could inform strategies such as relocating species

to more favourable environments (Barlow et al., 2021).

5.4.4 Sources of uncertainty

Species distribution models are widely used to predict future species distributions,
but they are not without limitations (Pearson & Dawson, 2003; Aradjo & Luoto,
2007; Elith & Leathwick, 2009; Gotelli & Stanton-Geddes, 2015). For one, the
reliability of SDM outputs is heavily influenced by the accuracy of climate
projections and the choice of model, both of which are associated with

considerable uncertainty.
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To address and mitigate the uncertainties inherent in SDMs, several measures were
implemented in the analyses tailored to the specific context of island environments.
First, the impact of island topography on microclimatic variability was considered
by employing a downscaling approach for both present and future bioclimatic
variables. This adjustment helps account for the environmental variation that is
known to drive island plant distributions (Chauvier et al., 2021; Patifio et al., 2024).
Second, in depicting future scenarios, a diverse range of climatic models and
projections was utilised. This approach reduces uncertainty by incorporating
multiple potential climate trajectories, thereby providing a more comprehensive
view of possible future conditions (Rose et al., 2024). Given these constraints of
uncertainty in future projections, the need for caution in interpreting the results of
future range changes is emphasised. Nonetheless, the consistency observed across
various climatic models lends some robustness to the trends identified in this

study.

Third, an ensemble of methods previously identified as effective for the specific
ecological context of islands was employed (Chapter 3). By integrating different
modelling approaches, the aim was to counteract potential biases that could arise
from reliance on a single method (Rose et al., 2024). Fourth, for species with limited
sample sizes, model complexity was reduced through a weighted ensemble of

small models designed for small data sets (Lomba et al., 2010; Breiner et al., 2015;
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Chapters 2 & 3). This strategy enhances model reliability despite the constraints of
limited occurrence data. Finally, a sampling strategy of background/pseudo-
absence points was selected that has previously demonstrated high prediction
accuracy in island SDMs using presence-only data and specific to the selected SDM

methods, further supporting the robustness of the model predictions (Chapter 3).

Through these measures, the aim was to minimise the uncertainties associated with
SDMs and improve the reliability of predictions, providing more accurate insights
into future species distributions in island ecosystems. However, as with all SDMs,
the results should be interpreted as reflecting the species' suitable climate space
within the analysed areas, rather than their full fundamental niches. This means
some species' potential resilience to climate change may not be fully captured due
to this limitation. Nonetheless, evidence from endemic island plants, where
fundamental niche data are available (such as from populations outside their
natural insular habitats), suggests that SDMs offer a close approximation of
predicted impacts, even when based solely on insular occurrence data (Rosenblad

et al,, 2019).

5.5 Conclusions

This study enhances our understanding of the vulnerability of island plant

biodiversity to climate change by incorporating microclimatic variation, resulting in
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more accurate predictions of species' responses compared to earlier macroscale
models. The findings show a projected loss of suitable range area for plant species
across various tropical island biodiversity hotspots, aligning with the findings of
previous studies (Pouteau & Birnbaum, 2016; Tagliari et al., 2021). Additionally, the
identification of hotspots of species' range loss provides critical insights that can
inform the updating of protected area boundaries to incorporate climate change
mitigation. Collectively, these results establish a valuable foundation for developing
targeted conservation strategies on islands, which are crucial for maintaining
biodiversity and ecosystem functionality in these fragile environments.
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6.1 Research summary

This thesis aimed to deepen our understanding of Species Distribution Modelling
(SDM), with a particular focus on the unique spatial and ecological complexities of
island environments. Recognising the underutilised potential of SDMs in island
studies, this research highlights their value as a tool for understanding
biogeographical patterns on islands and linking this knowledge to effective

conservation management.

Drawing on the existing literature on SDMs in an island context, this research
identified the need for a tailored approach to SDM implementation for islands
(Chapter 2). One of the primary findings relates to the importance of adjusting the
resolution of predictor variables to effectively capture fine-scale environmental
variation, which is crucial for accurate species distribution predictions in island
settings. The shift from using coarse climate variables to fine-scale microclimatic
factors raised important questions about how these detailed predictors interact
with limited species’ occurrence data—another significant challenge identified in

island occurrence datasets (Chapter 2).

The thesis explored a range of strategies aimed at improving the implementation
of Species Distribution Models (SDMs) in island environments, focusing on the
Revillagigedo Volcanic Archipelago in Mexico, referred to as the 'model

archipelago' hereafter (Chapters 3 and 4). The goal was to generalise findings from
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this regional case study to other global island groups, using plant species

presence/absence data collected through field sampling.

Plant species were chosen as the focal taxon due to their critical ecological roles,
including the provision of essential services, such as habitat stabilisation and
trophic resources for other organisms (Borges et al., 2018). The effort to improve
SDM implementation in island ecosystems had two primary objectives: (1) to
enhance the application of SDMs by incorporating high-resolution environmental
descriptors, addressing data limitations and the challenges of small study areas
(Chapter 3); and (2) after optimising SDM fitting at high resolutions in island
environments, assessing the robustness of fine-scale predictor variables,

particularly their wider relevance to tropical island ecosystems (Chapter 4).

Chapter 4 focused on the model archipelago's plant diversity. The chapter
identified the scarcity of geographical species data, coupled with high uncertainty
in environmental data due to a limited number of meteorological stations
(Deblauwe et al., 2016; Benavides et al., 2024), which complicates the use of SDMs
in these regions. To address this, the thesis explored methods to generate new
high-resolution estimates (c.f. Flint & Flint, 2012) and assess their usefulness,
thereby enhancing the availability of detailed data. These efforts confirmed the
utility of such data for advancing scientific understanding and supporting more

effective, data-driven conservation strategies in tropical island ecosystems.

254



After optimising SDM fitting for island environments and confirming the reliability
of microclimatic estimates, the thesis focused on the practical application of the
science to conservation (Chapter 5). The fifth chapter highlighted the potential of
well-designed SDMs in island ecosystems, particularly in the context of climate
change—a predicted driver of future species extinctions in these regions (Taylor &
Kumar, 2016; Veron et al.,, 2019). The chapter pursued three main objectives: (1) to
examine species distributional changes in relation to their current vulnerability
status, assessing whether climate change exacerbates the risk for already
threatened species; (2) to evaluate whether endemic species are more severely
affected by range losses due to climate change, reflecting broader global trends;
and (3) to identify hotspots of species loss to inform spatially-targeted mitigation
strategies. This research represents a significant advancement in understanding
how species may respond to climate change on islands at microclimatic scales,
offering a critical baseline for developing more precise mitigation strategies for

tropical island biodiversity hotspots.

6.2 Synthesis

Eight questions related to the implementation of SDMs focusing on the unique
spatial and ecological complexities of island environments were addressed in this
thesis. | return to each in turn to evaluate the findings and implications of the

research:
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6.2.1 Using previous research as a baseline, what are the challenges of SDM
implementation in island environments, and how can we improve them?

While the potential of SDMs for informing data-driven conservation and
management decisions, especially in relation to highly threatened island biodiversity
has been noted previously (Fois et al., 2018; Mousikos et al., 2021), most SDM
frameworks and recommendations have been developed for species with relatively
wide ranges and are unsuitable for many insular species and environments, which

often possess distinct characteristics (Leroy, 2022; Whittaker et al., 2023).

A review of 224 papers that implemented SDMs in island environments highlighted
the absence of an appropriate SDM framework for island studies (Benavides et al.,
2024). This gap has led to sub-optimal methodological decisions, particularly in the
SDM fitting process. Due to the limited occurrence data often available for island
species—whether due to their naturally small populations, anthropogenic-driven
population declines, or difficulties in accessing remote islands—these models
frequently rely on small sample sizes. This, in turn, requires the careful selection of
algorithms and a reduction in model complexity, especially regarding the choice of
environmental variables. Including too many variables relative to occurrence points
increases the risk of overfitting, a problem that has been well documented in the
island SDM literature (Dormann et al., 2012; Radomski et al., 2022; Rousseau &

Betts, 2022).
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Additionally, most environmental variables used in island SDMs are bioclimatic or
macroclimatic, leading to a two-fold problem: 1) the number of islands that can be
analysed is limited to those with sufficient macroclimatic grid data, and 2) such
variables are often poor descriptors of the distributions of island species, which are
often (i) dependent on microhabitat-level conditions (Patifio et al., 2023; Benavides
et al., 2024) and (ii) characterised by highly specialised ecological requirements
(Whittaker et al., 2023). This reliance on macroclimatic variables likely arises from
the mainstreaming of continental models, where macroclimate plays a significant

role in species distributions (Booth, 2022).

To improve SDM implementation in island studies, this thesis proposes careful
consideration when working with small sample sizes. First, it is crucial to select
appropriate modelling methods that account for limited data. Also, rather than
relying on traditional models that input all variables into a single model, an
ensemble of small models should be implemented to reduce the predictor-to-
occurrence data ratio, helping to manage model complexity (Lomba et al., 2010;
Beriner et al., 2015). Additionally, it is important to carefully select the extent of
occurrence data. Non-endemic island species are often modelled using only insular
data, which can truncate their ecological niche, undermining scientific questions

that require an understanding beyond the realised niche (Chapter 4).
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6.2.2 What sample size of occurrence (presence) data is needed to accurately
predict the distributions of island species using high-resolution
predictors, while accounting for varying specialisation levels?

This thesis proposes shifting to smaller analytical scales to better capture the
relationships between island species and their environments. While these finer
spatial resolutions provide a more detailed and accurate reflection of island
environmental variation, they also present a challenge given the limited availability
of species observation data. Smaller grid cells enhance model precision, but the
combination of high specificity per grid and limited data points makes it more
difficult to fully capture a species' environmental requirements, potentially reducing

the effectiveness of this approach.

Previous research at continental scales (van Proosdij et al., 2016) has demonstrated
that range-restricted species, such as those found on islands, generally require
smaller sample sizes. However, it was essential to explore whether this relationship
held at finer spatial resolutions. Contrary to the results of previous work on
continents, the analyses in Chapter 3 revealed that range-restricted species in the
model archipelago require larger sample sizes in smaller study areas with high-
resolution predictors, while wide-ranging species maintained high predictability
even with minimal data. These conflicting results may be because larger continental
study areas, with greater environmental gradients, require more data to accurately

model widely distributed species (van Proosdij et al., 2016). Conversely, in smaller
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insular areas with relatively flatter environmental gradients, species with broader
ecological tolerances can be predicted accurately with fewer data points. This
suggests that current modelling methods tend to overgeneralise, and overpredict
SDMs for narrow-ranged species. As a result, more data are needed to confirm

their specialised habitat requirements (Collins et al., 2017; Mendes et al., 2020).

Evaluating the performance of different SDM algorithms was also a critical focus of
the thesis, given that evidence suggests that certain methods are better suited for
studying range-restricted species (Breiner et al., 2015). However, modelling such
species remains problematic due to their inherent rarity. This challenge, referred to
as the rare-species modelling paradox (Lomba et al., 2010), highlights the difficulty
of applying SDMs to species with scarce data. At the same time, it underscores the
need for accurate distribution assessments, as rarity often signals a higher risk of
extinction (Jeliazkov et al., 2020). While these challenges have been confirmed for
insular species, this thesis improved our ability to assess and predict the
distribution of range-restricted (insular) species by identifying the data

requirements for more effective modelling at representative scales.

6.2.3 How does the choice of pseudo-absence data impact the accuracy of
predicted island species distributions?

Most occurrence datasets, whether from islands or other environments, typically

contain only presence data, requiring the creation of pseudo-absences to simulate
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species absences (i.e., locations where the species might have been present but
were not observed; Lobo et al., 2010; Barbet-Massin et al., 2012; Morera-Pujol et al.,
2020). However, there is no consensus on best practices for generating pseudo-
absence data, and existing guidelines are often designed for larger study areas
(Lobo et al.,, 2008; Barbet-Massin et al., 2012; Whitford et al., 2024), highlighting the

need for strategies specific to islands (Benavides et al., 2024).

Building on previous research (Acevedo et al,, 2012; Jiménez-Valverde et al., 2013;
Grimmett et al., 2020; Descombes et al., 2022), the results of Chapter 3 add to the
growing evidence that adjustments to pseudo-absence data—considering factors
such as modelling method, spatial context, data availability, and species range—
significantly affect model performance. By testing these factors using the 'model
archipelago’, this research offers a straightforward framework for optimising
pseudo-absence data selection during model fitting. Specifically, random sampling
of the study area, based on a percentage of total grids and refined according to
species range sizes and data availability, led to highly accurate SDM predictions.
This approach effectively addressed the problem while accommodating the needs

of various modelling methods.

Despite identifying optimal pseudo-absence sampling strategies for island
environments, standard metrics (e.g., AUC and the Boyce Index) still present

significant limitations for evaluating model performance. In certain instances, these
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validation metrics did not adequately reflect the improvements achieved through
optimised pseudo-absence strategies. Trade-offs exist where one might need to
accept a reduction in predictive accuracy to reconcile differences between
validation and performance. Moreover, as Warren et al. (2020) noted, these metrics,
while effective at measuring classification accuracy (such as distinguishing between
areas of high suitability for species presence from those with pseudo-absences),
often fail to provide meaningful insights into habitat suitability across the
landscape. This disconnect means that models may meet conventional
performance standards but still struggle to predict species distributions accurately

on a smaller spatial scale.

This issue persists because much of the SDM literature focuses on improving
predictions through classification metrics (e.g., Guisan et al., 2007; Boria et al., 2014;
Wisz et al., 2008; Kuebler et al., 2016), rather than evaluating the ability of models
to capture true habitat suitability. To address this gap, species simulations were
incorporated into the methodology to enhance pseudo-absence sampling in an
island context, ensuring that true habitat suitability was also accurately represented

(Warren et al., 2020).

The strength of the proposed guidelines relied on two key elements: (1) a thorough
understanding of species distribution patterns in the model archipelago, informed

by field observations, which allowed the simulation of species resembling real
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species distributions and ensured alignment between true model performance,
validation metrics, and spatial predictions; and (2) the availability of directly
collected presence-absence data, which served as a benchmark for comparing
models using presence/pseudo-absence data. This approach offered valuable
insights from both real and simulated species data, with the goal of improving the

accuracy of presence-only models through effective pseudo-absence sampling.

Despite the advances of this thesis in improving presence-only SDMs for island
contexts, the common practice of using arbitrary thresholds to differentiate
between "high" and "low" performing models remains due to a lack of a solid
theoretical foundation (Olden et al., 2002). Specifically, for the AUC, the most
commonly used validation metric, Raes & ter Steege (2007) highlighted that for
presence-only models, the maximum achievable AUC for a perfect fit never reaches
1 but is instead 1 minus half the proportion of the area occupied by the species'
true distribution—a value rarely available for real species SDMs. Nonetheless, SDMs
still use a baseline where an AUC of 1 indicates perfect agreement, and 0.5
suggests the model is no better than random. However, AUC primarily measures
whether a model outperforms randomness rather than assessing its true predictive

accuracy.

In the case study of the model archipelago, AUC values rarely exceeded 0.65 for

widespread species, even when predictions closely matched actual species ranges.
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This highlights three issues: (1) wide-ranging species or those with high prevalence
in the study area naturally have lower validation scores, as pseudo-absence data
are more likely to fall within suitable patches, making AUC prevalence-dependent
(Lobo et al., 2008); (2) using AUC thresholds to classify model performance is
inherently context-dependent (Lawson et al., 2014); and (3) the variation between a
random AUC of 0.5 and the maximum achievable value complicates establishing a
universal standard for distinguishing high- and low-performing models. This
highlights the limitations of relying on arbitrary thresholds (e.g., AUC > 0.7), which

often fail to capture true predictive accuracy across different species ranges.

AUC primarily focuses on classification rather than evaluating the model's ability to
accurately assess habitat suitability within a given grid cell. In contrast, the Boyce
Index is considered a better indicator of reliability for presence-only data (Boyce et
al., 2002; Di Cola et al., 2016; Hirzel et al., 2002; Li & Guo, 2013). Thus, employing
both metrics provides a more comprehensive evaluation of model performance,
covering both classification accuracy and reliability. However, it is important to note
that the Boyce Index is highly sensitive to small sample sizes (fewer than 30
occurrence records; Liu et al,, in press), which is a common issue in island datasets

and should be considered when interpreting results.

While validation metrics have limitations, they remain useful as informative

guidelines. However, their methodological shortcomings should be acknowledged,
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and complementary approaches—such as null-model comparisons—should be

integrated as standard practice within the SDM framework (Osborne et al., 2022).

6.2.4 How does the spatial precision of occurrence data affect the accuracy of
island SDM predictions at high resolutions?

In island environments, where species occurrence data are often limited, using
high-resolution predictors can further restrict the number of occurrences that meet
specific spatial criteria. The pixel size of environmental variables should correspond
to the spatial resolution of species records (Sillero & Barbosa, 2021); however,
available data are often too coarse in spatial resolution (McPherson et al., 2006).
While incorporating records with coarse spatial precision might seem like a
practical way to increase the sample size, it risks introducing errors that could
undermine the model's accuracy (Gabor et al,, 2023). On the other hand, excluding
such data further reduces the dataset, potentially diminishing the model’s
predictive power (Moudry et al., 2023). Addressing this trade-off required
systematic testing to optimise occurrence data, ensuring that the information used

enhances rather than detracts from the model's performance.

Previous evidence showed that even minor spatial inaccuracies in occurrence data
can lead to significant errors in predicting species distributions in topographically
heterogeneous areas (Gabor et al., 2023). Given that islands often feature highly

heterogeneous environments compressed into relatively small areas, these
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inaccuracies are likely to be especially problematic (Barbosa et al., 2020). This issue
is more frequently observed on islands of volcanic origin, which exhibit steep

gradients and diverse habitats within limited space.

The model archipelago is of volcanic origin so it provided a compelling opportunity
to explore the impact of low spatial accuracy records on model performance, a
highly relevant issue for island SDMs that had not been systematically explored
before. By comparing datasets with varying levels of spatial uncertainty (resampled
to 90, 500, and 1000m resolutions), it was found that while models generally
perform better with more accurate data, the effects of spatial inaccuracies can be
mitigated by selecting modelling methods that are less sensitive to this uncertainty
(e.g., GLM and BART). Additionally, the impact of these inaccuracies was found to

vary depending on the range size of the species.

Interestingly, contrary to expectations, species in topographically diverse habitats
were less affected by spatial inaccuracies, likely because their wider ranges increase
the chances that imprecise occurrence points still fall within suitable areas. In
contrast, species with narrow distributions, even in topographically homogeneous
regions (e.g., restricted to specific elevation bands), were more vulnerable to spatial
errors due to their limited habitat requirements, making spatially imprecise records

more likely to fall outside suitable areas of habitat.
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The findings from this and previous analyses (questions 2 & 3 above) help guide
decisions on when it may be appropriate to include records with geographical
uncertainty and how to mitigate any negative effects using suitable methodological
approaches. For wide-ranging island species, which require fewer data points,
stricter thresholds on data accuracy can be applied without significantly affecting
model performance. In contrast, narrow-range island species, which need larger
datasets, benefit from retaining slightly inaccurate records to increase sample size.
In such cases, it is important to choose modelling methods that can tolerate
inaccuracies, such as GLM and BART. These methods also perform best with
moderate-sized datasets (around 20 records), making this strategy of increasing
sample size particularly effective in addressing the limitations of SDMs for narrow-

range island species.

Notably, this analysis used a fine resolution of 30 meters, which is rarely applied in
SDMs (Benavides et al, 2024). This further supports the argument that increasing
the resolution of predictors does not necessarily resolve issues caused by spatially
inaccurate records (Moudry & Simova, 2012; Gabor et al.,, 2022). As shown in
Chapter 4, using coarse analytical scales leads to uninformative SDMs for small
island study areas (e.g., Clarion Island). In summary, selecting appropriate

modelling methods and considering data needs across species ranges provides a
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better approach for addressing the challenge of low spatial precision in occurrence

data for high-resolution island SDMs.

6.2.5 Are downscaled predictors a reliable baseline to model island plant
species distributions in tropical latitudes?

Chapter 4 addressed the critical consideration of incorporating micro-
environmental data into SDMs for islands, a challenge constrained by the limited
availability of such predictors (Fitzpatrick & Ellison, 2018; Benavides et al., 2024).
This chapter developed a methodology focused on a set of ecologically relevant
variables for island SDMs, specifically tailored to scales appropriate for these
environments—a consideration that has been relatively understudied (Austin & Van

Niel, 2011; Syphard & Franklin, 2009; Tulloch et al., 2016).

With recent advancements in data availability and computational power, it is now
possible to create detailed microclimatic descriptors by downscaling global climate
data and evaluating whether these variables are ecologically significant and can
accurately predict species distributions. This thesis identified a downscaling method
that could be useful to describe microclimate in island environments, as this
method accounts for orographic effects to derive microclimatic variables (Flint &
Flint, 2012). This approach aligns well with the climatic dynamics specific to islands

and is based on global bioclimatic grids, making it applicable to islands worldwide.
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With recent advancements in data availability and computational power, it is now
possible to create detailed microclimatic descriptors by downscaling global climate
data and assess whether these variables are ecologically significant and accurately
predict species distributions. This thesis identified a downscaling method that
could be particularly useful for describing microclimate in island environments, as it
accounts for orographic effects to derive microclimatic variables (Flint & Flint,
2012). This approach aligns well with the climatic dynamics specific to islands and is
based on global bioclimatic grids (e.g., Worldclim; Fick & Hijmans, 2017; CHELSA:

Karger et al., 2017), making it applicable to islands worldwide.

The most significant finding was that a null-model testing approach, introduced to
evaluate the informativeness of microclimatic estimates, helped determine whether
species show a statistically significant association with a diverse set of potentially
informative microclimatic predictors (Deblauwe et al., 2016). This approach
confirmed that downscaled microclimatic data often provided more informative
spatial predictions than terrain-derived data in high-resolution island plant SDM
studies (e.g., Heindnen et al., 2012; Turvey et al., 2020; Lannuzel et al., 2021; Segal et
al., 2021), challenging the view that terrain-derived data are the best alternative for
island studies with limited environmental data (Poteau et al., 2015). The results
suggested that incorporating fine-scale microclimatic variables into SDMs is

particularly important when the relationship between microclimate and topography
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is weaker, such as on low-elevation islands with minimal topographic variation
(Mclnerny et al., 2011; Lembrechts et al., 2019). In such cases, relying solely on

topography as a climate proxy may reduce the accuracy of model predictions.

These strategies and methodological considerations were developed to test the
effectiveness, and improve the reliability, of microclimatic descriptors. While the
main focus is on tropical regions, future approaches could be adapted for other

island areas and tested across different taxa.

6.2.6 Does the grain size of downscaled climatic estimates impact the accuracy
and transferability of island SDMs to novel environments?

While a model may show high predictive accuracy in a specific context, this does
not guarantee the same level of accuracy when projected to different spatial or
temporal settings (Yates et al., 2018; Rousseau & Betts, 2022). This issue arises due
to factors such as local species adaptations (niche plasticity), variations in limiting
factors across regions, and changes in the correlation structure of environmental
variables (Dormann et al., 2012; Radomski et al., 2022). Additionally, biotic
interactions add further complexity to the transferability of SDMs (Fitzpatrick et al,,
2007). Despite these challenges, improving SDM transferability is crucial for two key
conservation objectives in island studies: (1) assessing and mitigating ecological
invasions, a major driver of species extinctions in island ecosystems, which requires

spatially transferable models (Goedecke et al., 2020); and (2) improving the
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accuracy of predictions of species distribution responses to global environmental

change, which demands temporally transferable models (Rapacciuolo et al., 2012).

Enhancing SDM transferability is a complex task requiring careful consideration of
multiple factors. This thesis highlights the impact of using finer spatial scales in
SDM transferability and calls for further research in this area (Petitpierre et al., 2017;
Manzoor et al., 2018). One of the study's strengths is the use of independent
presence-absence datasets for each island, providing a robust framework for
testing transferability. Although such datasets are rare, they are vital for thoroughly
assessing SDM transferability under comparable environmental conditions
(Petitpierre et al., 2017). The contrasting sizes and topographical complexities of
the two islands studied—one large and topographically complex, the other smaller
and less topographically complex—also provided valuable insights to enhance

island SDM transferability.

While the findings of this thesis align with previous research (Dormann et al., 2012;
Radomski et al., 2022; Rousseau & Betts, 2022) and emphasise the critical role of
scale in influencing SDM transferability, it offers two novel contributions: (1) it
challenges earlier assumptions that finer analytical grains negatively impact species
transferability (Manzoor et al., 2018). In fact, a high resolution of 30 metres was

found to be essential for improving transferability, as the small size of one of the
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study islands required a much finer resolution to produce informative model
projections. (2) Measuring environmental similarity between training and
calibration regions is crucial for assessing uncertainty in model transferability, as
changes in the correlation structure of environmental variables, caused by varying
levels of topographical complexity among islands, were shown to compromise
transferability (Dormann et al., 2012; Qiao et al., 2019). These two insights support
the enhancement of transferability in island SDMs for future research. A key
takeaway is that even at the smallest resolution tested, transferability was
maintained and, in some cases, represented the only informative analytical scale
(Chapter 4). This finding highlights the need for further studies using very fine
resolutions, particularly for small islands. For future research on ecological
invasions, the thesis highlights that poor model transferability can arise from
mismatches in analytical granularity between training and transfer areas, as well as
from overlooking changes in the relationships among environmental variables
across these areas. This issue will be particularly important when predicting
invasions from large continental areas to smaller island environments. In the
context of climate change studies, the findings suggest that adjusting the scale for
small islands to fine analytical resolutions can improve accuracy without

compromising SDM transferability.
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6.2.7 Does the choice of variable type (Bioclimatic vs. Terrain variables) impact
the accuracy and transferability of island SDMs to novel environments?

In addition to the analytical scale, the choice of predictors has been identified as
significantly influencing the transferability of SDMs (Datta et al., 2020; Goedecke et
al., 2020). Building on existing research, this thesis examined how different climatic
baselines, downscaled to fine resolutions, affect model transferability. Specifically, it
compared a dataset derived from topography with downscaled versions of two
widely used bioclimatic datasets: WorldClim (Fick & Hijmans, 2017) and CHELSA

(Karger et al., 2017).

Testing these baselines was considered relevant due to concerns about the
reliability of climatic descriptors for islands (Poteau et al., 2015). Consequently,
island SDMs have often relied on topographically derived and remotely sensed
environmental descriptors (e.g., Heindnen et al,, 2012; Turvey et al.,, 2020; Lannuzel
et al,, 2021; Segal et al.,, 2021). However, as demonstrated in earlier sections of this
thesis, downscaled microclimatic predictors significantly improve model accuracy,

making a detailed analysis of their transferability a logical next step.

Given the methodological differences between these climatic baselines, it was
hypothesised that CHELSA would outperform WorldClim. CHELSA is recognised for
its relative effectiveness in areas with sparse meteorological data and high

topographic complexity (Datta et al., 2020), both of which are characteristics of the
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study archipelago. However, despite expectations, WorldClim exhibited superior
spatial transferability. This discrepancy highlighted CHELSA's sensitivity to changes
in correlations between predictor variables across regions, exacerbated by the
significant variation in size and topographical complexity among the islands
(Mesgaran et al.,, 2016). For the same spatial differences, using topography-derived
predictors for fitting SDMs reduced their transferability, revealing the limitations of

these baselines in such contexts.

These findings suggest that the latest version of WorldClim provides a stronger
foundation for transferring spatial models across regions. In contrast, CHELSA
proves particularly useful when models are applied within the same region,
especially in areas with limited meteorological data. The combined insights from
the two transferability-related questions in this thesis offer valuable guidance for
selecting environmental predictors and determining the appropriate analytical
scale, whether models are applied locally or projected across regions in the context

of island SDMs.

It is important to emphasise that these recommendations are guidelines for future
research rather than definitive conclusions. Further investigation is needed to
deepen our understanding of how island species distributions change over time

and space and to refine SDM methodologies to better address the challenges of
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model transferability, given this aspect of the general SDM framework remains

poorly understood (Sequeira, et al., 2018; Yates et al., 2018).

6.2.8 Are the patterns of distributional shifts in insular species due to climate
change related to their chorotypes and/or conservation status?

Although climate change studies on plant species are a common focus in the island
SDM literature (Benavides et al., 2024), they have mostly been conducted at
macroclimatic scales. It is only recently that the importance of shifting to
microclimatic scales has been recognised as essential for understanding island
plant responses to global environmental change (Patifio et al., 2023). A series of
methodological challenges, previously identified and discussed in the earlier thesis
chapters, have hampered this transition. However, the methodological groundwork
laid out in this thesis has made it possible to assess the potential impacts of future
climate change on plant species of high ecological and conservation significance,

located in subtropical and tropical oceanic archipelagos.

The findings of Chapter 5 provide new evidence of the heightened risk of losing
globally significant endemic species (Fordham et al., 2010; Harter et al.,, 2015;
Manes et al., 2021) given that endemic species generally exhibit greater
vulnerability to climate change, with suitability declines exceeding 50% across most
archipelagos. This aligns with trends observed in other tropical island hotspots

(Pouteau & Birnbaum, 2016; Tagliari et al., 2021). An exception to this was the

274



Revillagigedo Archipelago, where non-endemic species suffered higher losses, with

some of these species disappearing entirely.

The spatial analysis of species loss further revealed the localised loss of both
endemic and non-endemic species that play important ecological roles within these
archipelagos, potentially destabilising ecosystems. These findings underscore the
importance of using indicator species to assess climate change impacts (e.g., Bombi
et al,, 2021; Dickson et al,, 2019), and they highlight the urgent need for targeted

conservation efforts in insular biodiversity hotspots (Ghiloufi et al., 2020).

Interestingly, the analyses showed that climate change does not consistently
exacerbate existing threats to vulnerable species. A notable disconnect was
observed between species classified as "Least Concern” by the IUCN and their high
vulnerability to climate change. Moreover, some species identified as threatened by
climate change did not face imminent habitat loss in this assessment. This suggests
that current IUCN criteria may not fully capture traits that increase vulnerability to
climate change, emphasising the need to revise these criteria to better reflect

climate-related risks (Akgakaya et al., 2006; Keith et al., 2014).

6.3 Limitations

There are several limitations associated with the research presented in the thesis.

SDMs are often criticised for their correlative nature, as they rely on statistical
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associations between species occurrences and environmental variables without
considering causal mechanisms, or other factors that influence species distributions
(Wagner et al., 2023; Tourinho & Vale, 2023). In response to this limitation,
researchers are exploring methods that integrate mechanistic models (see hybrid
models: Dorman et al., 2012; Tourinho & Vale, 2023), that incorporate biotic
interactions (Cabral, et al., 2017; Zurell, 2017) and consider evolutionary processes
(Liu et al,, 2022). These approaches complement traditional SDMs but they often
require more detailed and extensive data (abiotic, biotic, and dispersal,
microclimate), which can make their broader application challenging (Tourinho &
Vale, 2023). Given the data challenges associated with these complementary
approaches, SDMs remain a valuable tool for addressing ecological and

biogeographical questions.

Recognising the relevance of SDMs but also the complexity of both selecting
appropriate methods among numerous options and their implementation, due to
the many decisions involved in the fitting process (Leroy, 2022), this thesis aimed to
provide guidelines to simplify decision-making and enhance SDM predictions,
tailored specifically to island environments. Default parameters were used for the
tested methods, despite the potential benefits of parameter tuning in many
scenarios (Valavi et al.,, 2021). This choice reflects the understanding that presence-

only models generally benefit less from parameter tuning (Valavi et al., 2021),
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particularly when dealing with small occurrence datasets—a common issue in this
study and in island studies more broadly (Benavides et al., 2024). Furthermore,
while parameter tuning often aims to control model complexity and prevent
overfitting, this study addressed these concerns by employing the Ensemble of
Small Models (ESM) approach (Lomba et al., 2010; Breiner et al., 2015). The default
ESM approach not only strengthens the guidelines but also makes them relatively

simple and accessible, even for researchers who are not experts in SDMs.

In a more specific context, the model archipelago offered valuable insights but
differs from other, more extensively studied volcanic archipelagos, which typically
feature a larger number of islands and, consequently, more sampling opportunities.
While increased replication can improve the robustness of findings, it also
complicates the collection of high-quality data. Moreover, the relatively smaller
number of islands and their limited area restricted the range of species that could
be analysed. Despite these limitations, the study prioritised data quality over
quantity to address targeted scientific questions effectively. This focus on high-
quality data, particularly independent presence-absence data—rarely available but
crucial to the research questions explored—ensured that the findings were robust.
Although the scope was narrower, this emphasis on data quality strengthened the

overall conclusions.
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6.4 Conservation and management implications

The primary conservation goal of this thesis was to utilise SDMs to deepen our
understanding of the unique and rich plant biodiversity found on tropical islands
(Cayuela et al., 2009). Despite hosting a significant portion of global biodiversity,
these regions are often underrepresented in both occurrence (Benavides et al,,

2024) and environmental datasets (Deblauwe et al., 2016).

Improving SDM practices within the Revillagigedo Archipelago lays a strong
foundation for informed conservation decision-making, significantly enhancing
biodiversity management in the region. Currently, detailed geographical
knowledge of species distribution patterns remains limited (Benavides et al., 2019)
and, in some instances, outdated (Brattstrom, 1990; Arnaud et al., 1993; Rodriguez-
Estrella et al.,, 1996). This is partly due to earlier studies being conducted prior to
the successful eradication of two large introduced mammals: Sus scrofa on Clarion
Island (Wanless et al., 2009) and Ovis aries on Socorro Island (Aguirre-Muioz et al.,
2011). Evidence suggests significant vegetation recovery following these
eradications, and it is expected that associated taxa have reorganised in response
to habitat restoration (Ortiz-Alcaraz et al., 2019). This presents a compelling
opportunity to apply the insights from this thesis across a broader range of
taxonomic groups, thereby increasing biogeographical knowledge of the

archipelago through the use of SDMs.
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Additionally, two medium-sized introduced mammals, Oryctolagus cuniculus on
Clarion Island and Felis catus on Socorro Island, remain present in the archipelago.
SDMs have proven valuable in assessing habitat use by invasive species in island
ecosystems (Recio et al., 2015). Therefore, applying SDMs can support ongoing
eradication efforts and facilitate post-eradication restoration by identifying suitable
areas for the reintroduction of species that have been locally extirpated (Lentini et
al., 2018). Furthermore, this thesis has expanded our understanding of plant
species’ habitat requirements in the archipelago, enabling SDMs to be used to help
mitigate the impacts of climate change through predicting shifts in species

distributions (Chapter 4).

The aim of applying these insights to local conservation efforts is particularly
achievable due to existing partnerships with the NGO leading invasive species
eradication and the management team of the Revillagigedo Archipelago National
Park. Both parties are fully informed of the thesis objectives, and the findings will
be shared to aid in shaping effective conservation strategies. Additionally, there are
short-term plans to further collaborate with these organisations to develop SDMs

for the identified management applications.

On a global scale, this thesis also provides valuable insights into the impacts of

climate change on volcanic archipelagos in the tropical Pacific and Atlantic. Large-
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scale assessments are essential for understanding the broader effects of climate
change on these vulnerable island environments (many of which are biodiversity
hotspots) and for determining whether predicted species responses follow
common patterns. Both local and macroecological patterns of response to global
change are crucial for guiding conservation efforts (Rodriguez et al., 2007; Kueffer

& Kinney, 2017).

6.5 Future Directions

Potential future directions for research on improving SDM practices in island

environments include:

e Geographical and Taxonomical Extension: While this study offers significant
insights into SDM practices for island environments, future research could
explore whether the data requirements and proposed methodologies for
obtaining fine-grained data are consistent across diverse spatial and
taxonomical contexts. A more holistic approach might involve integrating
multiple interacting taxonomic levels (e.g., plants and pollinators; nesting
plants and birds; invasive herbivores and the plants they consume).

e Dissemination of Microclimatic Predictors: The development of microclimatic
and environmental grids in this study was highly computationally
demanding. Therefore, it was not feasible within the timeframe of this thesis

to cover finer scales (<500m) in the other tropical archipelagos tested or to

280



encompass a broader range of islands. Future research should focus on
continuing the development and testing of these datasets, with the support
of experts in the biodiversity of the island study areas. Making these
microclimatic grids more accessible to a larger number of researchers would
significantly enhance the capacity to conduct high-resolution SDM studies.
Linking Methodological Considerations with Applied Knowledge: Although
SDMs will continue to require ongoing refinement, the guidelines provided
in this thesis offer a solid foundation for applying the lessons learned to
address specific scientific questions. During the field collection phase of this
research, additional types of data were gathered to tackle future questions,
such as the synergistic effects of invasive species and climate change,
improving the detection of rare and endangered island species, and
enhancing strategies for invasive species management to support
conservation efforts. Additionally, collaborative opportunities that arose
during this PhD project with other researchers could greatly benefit from the
appropriate implementation of these tools, leveraging the expertise gained

to advance the field further.

6.6 Concluding Remark

In summary, while this study has made significant advances in tailoring and

enhancing SDM practices for island environments, the outlined future directions
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underscore the need for continued research and collaboration. Expanding the
geographical and taxonomic scope, improving the accessibility of microclimatic
predictors, and linking methodological advancements with practical applications
will not only refine SDM methodologies but also strengthen their role in
conservation efforts globally. By addressing these areas, future work can build on
the foundation laid by this research, ultimately contributing to the development
and implementation of more effective and informed environmental management

strategies in island environments.
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Appendix S2.2 Supplementary tables and figures

Supplementary table S2.2.2 Key SDM implementation parameters form the reviewed literature

Number

of Env Recor Manx Min Predi
) Niche Data Modelling Modeling Number Number
Study Area Year  Species Taxa . . d ctor
Truncation Resoluti method approach of of
Per Mean N
on Records Records
Taxa
Alexander NA .
archipelago 2018 3 MM e 4.5km Maxent Single PHP 144 149 137 4
Antarctica and N
the Southern 2019 1 ART ) 10km DB Single IAS 15 15 15 5
. (Widespread)
Ocean islands
ANN / CTA /
Antarctica and 3/24/ Q‘II'\}/BAR FDA /GAM/
3/3/ IN 27.75k  GBM / GKM
the Southern 2017 D/FG/ : Ensemble SYN 25050 217124 13 5
. 14/2/ (Widespread) m / MARS /
Ocean islands MM/R
47 PT/VP Maxent / RF
/ SER
Antarctica and
the Southern 2017 2 VP ) N 10km DB / ENFA Single [AS 35000 35000 35000 7
. (Widespread) / Maxent
Ocean islands
Azores Islands 2016 67 VP NT (Local) 100m Maxent Single SHR 17 51 6 5
EN-4/IN- .
Azores Islands 2017 45 ART 7/NA-35 100m Maxent Single LUC 11 37 3 11
ENFA / .
Azores Islands 2015 1 VP EN (Local) 100m Single MT 7 7 7 6
Maxent
51/82 BRY/ NA .
Azores Islands 2016 /57 Mollu  (Widespread) 500m Maxent Single PAM 229 548 20
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11
12

GBM / GLM

/ MARS /
Maxent / RF
/ SER
Tasmania 2021 1 MM EN (Local) 250m Maxent Single CC 254 254 254
. NA GAM / GBM
Tasmania 2020 1 MM (Widespread) Tkm / GLM / RF Ensemble  RST 996 996 996
Tasmania 2015 1 MM NA (Local) S5km Maxent Single CC 1590 1590 1590
Tasmania/Aust ¢ 3 VP NA 45km  BIOCLIM Single  SHR 1131 2454 87
ralia (Widespread)
Tasmania/Aust 5445 1 mm o NA . Maxent ~  Single  RST 1469 1469 1469
ralia (Widespread)
Tasmania/Aust GAM / GBM
ralia 2021 1 VP EN (Local) Tkm /GLM / RF Ensemble CcC 4114 4114 4114
Tasmania/Aust IN .
ralia 2012 72 VP e 10km Maxent Single IAS
Tiwi Islands 2019 7 MM NA (Local) 25m GBM / GLM Single MT 175 327 24
Trinidad and
Tobago 2018 27 VP EN (Local) Tkm Maxent Single RP 12 37 5
Islands

w o0 M o0

Taxa: AN-Anurans, ART-arthropods, BRD- birds, FNG- fungi, MAM- Mammals, NVP- non-vascular plants, NAl-non-arthropod
invertebrates, RPT- reptiles and VP- vascular plants

Niche truncation (chorotypes): EN-Endemic, NA- Non-endemic Native, IN- Non-Native

Study aims: CC-climate change, IAS-invasive alien species, LUC-land use change, SYN- synergy of extinction drivers, MT-Method testing,
PAM-protected areas management, PHY- phylogeographic, RP- Richness patterns, RST-restoration, SHR- species habitat requirements.
Environmental data resolution: * are inferred resolutions based on predictors utilised

Modelling methods: ANN- Artificial Neural Networks, DB- Distance based, CTA - Classification tree analysis, FDA-Flexible Discriminant
Analysis, GAM- Generalised additive model, GBM- Generalised Boosted Regression Model, GLM- Generalised Linear Models, MARS-
multivariate adaptive regression splines, RF- Random forest, SVM- Support Vector Machines
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13 Supplementary table S2.2 Summary of the number of records and modellability
14  index (M index) per taxa for each island analysed, as obtained from the GBFI

15 database.

Mean N
Total N lsland islands N islands N islands N islands N islands
Taxa global Record < with with no M index M index M index M index
records s per GBIF modella  [0.01-25] [0.26- [0.51-0.75] [0.76-100]
GBIF spp ble (%) 0.50] (%) (%) (%)
GBIF data species
Birds 6,069,1 33 2462 893 444 477 531 117
46 (36.3%) (18%) (19.4%) (21.6%) (4.7%)
Vascular  3,991,6 9 2275 1073 796 266 128 15
66 (47.2%) (35%) (11.6%) (5.6%) (0.6%)
Mammalia 185,402 15 1605 822 253 336 122 72
(51.2%) (15.8%) (21%) (7.6%) (4.4%)
Anura 42,402 9 948 469 85 150 107 137
(49.5%) (9%) (15.8%) (11.3%) (4.4%)
Reptilia 16,381 8 572 361 36 109 32 34
(63.1%) (6.3%) (19.1%) (5.6%) (5.9%)
Non- 56,079 4 1205 771 283 110 27 14
Arthropod (64%) (23.5%) (9.1%) (2.2%) (1.2%)
invertebrat
es
Non- 748916 7 1098 687 311 72 23 5
Vascular (62.6%) (28.3%) (6.5%) (2.1%) (0.5%)
Arthropod 1,085,6 5 1872 1051 697 106 12 6
a 62 (56.1%) (37.2%) (5.8%) (0.6%) (0.3%)
Fungi 362,324 4 1214 768 378 62 3 3
(63.3%) (31.1%) (5.1%) (0.25%) (0.25%)
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Supplementary figure S.2.2.3 Spatial distribution of the total number of species witn modelling potential (=20 occurrence records,
as derived from GBIF data) divided by taxa: a-b: Anurans, c-d; Arthropods, e-f; Birds, g-h; Mammals, i-j; Fungi, k-I; Non-
Vascular plants, m-n; Non-Arthropod invertebrates, o-p; Reptiles, and g-r; Vascular Plants. Blue shades in boxplots indicate
temperate environments, yellow to red shades indicate tropical environments.
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Chapter 3

Appendix S3.1 Supplementary tables and figures

Axis2

Supplementary figure S.3.1.1

PCA of environmental condition
Axes 1 & 2 (2 axes included in total)
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-111.05 - -110.95

Distribution of a plant species present in the

Revillagigedo Archipelago (Conocarpus erectus, bottom right) used as a baseline for
generating virtual species (bottom left) that closely mimic natural spatial distribution
patterns using the PCA method (upper left) from the "virtualspecies" R package.
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Supplementary Table S.3.1.2 Numerical results of the model:
D.index_Narrow ~ Psa/BG * Sample_size * Method

(analysing model accuracy across various modelling conditions for narrow-ranged
virtual species).

Term Estimate Std.error Statistic p.value
(Intercept) 0.602 0.011 53.095 0.000
Psa/BG _per10 0.006 0.016  0.402 0.687
Psa/BG _per20 0.012 0.016 0770 0.441
Psa/BG _per40 0.020 0.016 1.259 0.208
Sample_sizel0 0.018 0.016 1.120 0.263
Sample_size20 0.033 0.016 2.009 0.045
Sample_size50 0.058 0.017 3.376 0.001
MethodGAM 0.046 0.016 2.873  0.004
MethodGLM 0.032 0.016 2.002 0.045
MethodMXT 0.016 0.016 0.976 0.329
Psa/BG _per10: Sample_sizel0 -0.001 0.023 -0.029 0.977
Psa/BG _per20:Sample_size10 -0.007 0.023 -0.313  0.754
Psa/BG _perd0: Sample_sizel0 -0.014 0.023 -0.623  0.533
Psa/BG _per10: Sample_size20 0.000 0.023 0.008  0.994
Psa/BG _per20: Sample_size20 -0.006 0.023 -0.244  0.807
Psa/BG _per40: Sample_size20 -0.026 0.023 -1.107  0.268
Psa/BG _per10: Sample_size50 0.006 0.024 0.257 0.797
Psa/BG _per20: Sample_size50 0.001 0.024 0.023 0.982
Psa/BG _per40: Sample_size50 -0.015 0.024 -0.609  0.543
Psa/BG _per10: MethodGAM -0.008  0.023 -0.361 0.718
Psa/BG _per20: MethodGAM -0.014 0.023 -0.628 0.530
Psa/BG _perd0: MethodGAM 0.030  0.023  -1.320 0.187
Psa/BG _per10: MethodGLM 0.015 0.023 0.656 0.512
Psa/BG _per20: MethodGLM 0.030 0.023 1.329 0.184
Psa/BG _per40: MethodGLM 0.038 0.023 1.678 0.093
Psa/BG _per10: MethodMXT 0.017 0.023 0.760 0.447
Psa/BG _per20: MethodMXT 0.035 0.023 1.532 0.126
Psa/BG _per40: MethodMXT 0.044 0.023 1.938  0.053
Sample_sizel0: MethodGAM 0.016 0.023 0.694 0.488
Sample_size20: MethodGAM 0.018 0.023 0.778 0.437
Sample_size50: MethodGAM -0.002 0.024 -0.082 0.935
Sample_sizel10: MethodGLM -0.039 0.023 -1.741 0.082
Sample_size20: MethodGLM -0.073 0.023 -3.196 0.001
Sample_size50: MethodGLM -0.127 0.024 -5.282  1.34e-07
Sample_sizel0: MethodMXT -0.035 0.023 -1.541 0.123
Sample_size20: MethodMXT 0.036 0.023 1.559 0.119
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Sample_size50: MethodMXT

Psa/BG10:
Psa/BG20:
Psa/BG40:
Psa/BG10:
Psa/BG20:
Psa/BGA40:
Psa/BG10:
Psa/BG20:
Psa/BGA40:
Psa/BG10:
Psa/BG20:
Psa/BGA40:
Psa/BG10:
Psa/BG20:
Psa/BG40:
Psa/BG10:
Psa/BG20:
Psa/BG40:
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Psa/BG20:
Psa/BG40:
Psa/BG10:
Psa/BG20:
Psa/BGA40:
Psa/BG10:
Psa/BG20:
Psa/BGA40:

Sample_sizel0:
Sample_sizel0:
Sample_sizel0:
Sample_size20:
Sample_size20:
Sample_size20:
Sample_size50:
Sample_size50:
Sample_size50:
Sample_sizel0:
Sample_sizel0:
Sample_sizel0:
Sample_size20:
Sample_size20:
Sample_size20:
Sample_size50:
Sample_size50:
Sample_size50:
Sample_sizel0:
Sample_sizel0:
Sample_sizel0:
Sample_size20:
Sample_size20:
Sample_size20:
Sample_size50:
Sample_size50:
Sample_size50:

MethodGAM
MethodGAM
MethodGAM
MethodGAM
MethodGAM
MethodGAM
MethodGAM
MethodGAM
MethodGAM
MethodGLM
MethodGLM
MethodGLM
MethodGLM
MethodGLM
MethodGLM
MethodGLM
MethodGLM
MethodGLM
MethodMXT
MethodMXT
MethodMXT
MethodMXT
MethodMXT
MethodMXT
MethodMXT
MethodMXT
MethodMXT

0.015
0.015
0.025
0.041
0.009
0.021
0.048
0.015
0.029
0.056
0.004
0.009
0.022
0.002
0.010
0.023
0.002
0.012
0.034
0.001
0.005
0.013
-0.012
-0.019
-0.013
-0.015
-0.026
-0.023

0.024
0.032
0.032
0.032
0.032
0.032
0.033
0.034
0.034
0.034
0.032
0.032
0.032
0.032
0.032
0.033
0.034
0.034
0.034
0.032
0.032
0.032
0.032
0.032
0.033
0.034
0.034
0.034

0.623
0.455
0.774
1.279
0.264
0.662
1.483
0.427
0.858
1.635
0.114
0.287
0.685
0.061
0.309
0.704
0.062
0.349
1.010
0.040
0.146
0.393
-0.367
-0.596
-0.394
-0.440
-0.748
-0.666

0.533
0.649
0.439
0.201
0.792
0.508
0.138
0.670
0.391
0.102
0.909
0.774
0.494
0.952
0.758
0.482
0.951
0.727
0.313
0.968
0.884
0.694
0.714
0.551
0.693
0.660
0.454
0.505
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Supplementary Table S.3.1.3 Numerical results of the model:
D.index_Wide ~ Psa/BG * Sample_size * Method
(analysing model accuracy across various modelling conditions for wide-ranged

virtual species).

Term Estimate Std.error Statistic p.value
(Intercept) 0.847 0.008 105.028 0.000
Psa/BG_per10 0.004 0.011 0.375 0.707
BG_per20 0.018 0.011 1.557 0.119
BG_per4d0 0.042 0.011 3.719 0.000
Sample_sizel0 0.007 0.011 0.576  0.565
Sample_size20 0.015 0.011 1.311 0.190
Sample_size50 0.025 0.012 2.130 0.033
MethodGAM -0.149 0.012 -12.890 0.000
MethodGLM 0.015 0.011 1.328 0.184
MethodMXT 0.036 0.012 3.080 0.002
Psa/BG_per10:Sample_sizel0 -0.003 0.016 -0.158 0.874
Psa/BG_per20:Sample_sizel0 -0.014 0.016 -0.847  0.397
Psa/BG_per40:Sample_sizel0 -0.022 0.016 -1.377 0.169
Psa/BG_per10:Sample_size20 -0.010 0.016 -0.597  0.550
Psa/BG_per20:Sample_size20 -0.022 0.016 -1.372 0.170
Psa/BG_per40:Sample_size20 -0.038 0.016 -2.363 0.018
Psa/BG_per10:Sample_size50 -0.005 0.016 -0.309 0.757
Psa/BG_per20:Sample_size50 -0.024 0.016 -1.460 0.144
Psa/BG_per40:Sample_size50 -0.052 0.016 -3.169  0.002
Psa/BG_per10:MethodGAM -0.010 0.016 -0.644 0.520
Psa/BG_per20:MethodGAM -0.036 0.016 -2.232 0.026
Psa/BG_per40:MethodGAM -0.078 0.016 -4.783 0.000
Psa/BG_per10:MethodGLM -0.003 0.016 -0.178 0.859
Psa/BG_per20:MethodGLM -0.020 0.016 -1.211 0.226
Psa/BG_per40:MethodGLM -0.049 0.016 -3.061 0.002
Psa/BG_per10:MethodMXT -0.008 0.017 -0.463 0.643
Psa/BG_per20:MethodMXT -0.026 0.017 -1.556 0.120
Psa/BG_per40:MethodMXT -0.052 0.017 -3.108 0.002
Sample_sizel0:MethodGAM 0.090 0.016 5.497 0.000
Sample_size20:MethodGAM 0.127 0.016 7.852  0.000
Sample_size50:MethodGAM 0.150 0.016 9.170 0.000
Sample_size10:MethodGLM 0.010 0.016 0.607 0.544
Sample_size20:MethodGLM 0.004 0.016 0.239 0.811
Sample_size50:MethodGLM -0.014 0.016 -0.833  0.405
Sample_sizel0:MethodMXT 0.009 0.017 0.549 0.583
Sample_size20:MethodMXT -0.036 0.016 -2.201 0.028
Sample_size50:MethodMXT -0.039 0.017 -2.333  0.020

343



38
39

Psa/BG_per10:Sample_size10:MethodGAM
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Psa/BG_per20:Sample_size10:MethodGLM
Psa/BG_per40:Sample_size10:MethodGLM
Psa/BG_per10:Sample_size20:MethodGLM
Psa/BG_per20:Sample_size20:MethodGLM
Psa/BG_per40:Sample_size20:MethodGLM
Psa/BG_per10:Sample_size50:MethodGLM
Psa/BG_per20:Sample_size50:MethodGLM
Psa/BG_per40:Sample_size50:MethodGLM
Psa/BG_per10:Sample_size10:MethodMXT
Psa/BG_per20:Sample_size10:MethodMXT
Psa/BG_per40:Sample_size10:MethodMXT
Psa/BG_per10:Sample_size20:MethodMXT
Psa/BG_per20:Sample_size20:MethodMXT
Psa/BG_per40:Sample_size20:MethodMXT
Psa/BG_per10:Sample_size50:MethodMXT
Psa/BG_per20:Sample_size50:MethodMXT
Psa/BG_per40:Sample_size50:MethodMXT

0.007
0.019
0.038
0.011
0.030
0.061
0.011
0.040
0.079
0.006
0.022
0.032
0.015
0.032
0.064
0.016
0.045
0.085
0.009
0.030
0.032
0.013
0.023
0.045
0.009
0.029
0.052

0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.024
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023

0.313
0.821
1.661
0.491
1.332
2.667
0.466
1.733
3.428
0.281
0.949
1.409
0.662
1.417
2.812
0.697
1.955
3.703
0.366
1.284
1.386
0.573
0.998
1.908
0.383
1.221
2.224

0.754
0.412
0.097
0.624
0.183
0.008
0.641
0.083
0.001
0.779
0.343
0.159
0.508
0.156
0.005
0.486
0.051
0.000
0.715
0.199
0.166
0.567
0.318
0.056
0.701
0.222
0.026
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40
41
42
43

44
45
46
47
48

Supplementary Table S.3.1.4 Numerical results of the model:

D.index_Narrow ~ Psa/BG_per * Sample_size * Method

(analysing model accuracy across various modelling conditions for narrow-ranged

real species).

Term Estimate Std.error Statistic p.value
(Intercept) 0.90 0.02 41.37 0.00
Psa/BG_per10 0.04 0.03 1.36 0.18
Psa/BG_per20 0.06 0.03 1.80 0.08
Psa/BG_per40 0.05 0.03 1.59 0.12
MethodGAM -0.03 0.03 -0.85 0.40
MethodGLM 0.00 0.03 -0.07 0.95
MethodMXT 0.07 0.03 2.18 0.03
Psa/BG_per10:MethodGAM 0.04 0.04 1.01 0.32
Psa/BG_per20:MethodGAM -0.05 0.04 -1.10 0.28
Psa/BG_per40:MethodGAM -0.04 0.04 -0.95 0.34
Psa/BG_per10:MethodGLM 0.03 0.04 0.70 0.49
Psa/BG_per20:MethodGLM 0.00 0.04 -0.07 0.94
Psa/BG_per40:MethodGLM -0.04 0.04 -0.82 0.41
Psa/BG_per10:MethodMXT -0.05 0.04 -1.05 0.30
Psa/BG_per20:MethodMXT -0.07 0.04 -1.58 0.12
Psa/BG_per40:MethodMXT -0.05 0.04 -1.26 0.21

Supplementary Table S.3.1.5 Numerical results of the model:
D.index_Wide ~ Psa/BG_per * Sample_size * Method
(analysing model accuracy across various modelling conditions for wide-ranged real

species).
Term Estimate Std.error Statistic p.value
(Intercept) 0.94 0.01 107.45 0.00
Psa/BG_per10 0.00 0.01 -0.25 0.80
Psa/BG_per20 0.03 0.01 2.77 0.01
Psa/BG_per40 0.00 0.01 0.31 0.75
MethodGAM 0.03 0.01 2.10 0.04
MethodGLM 0.02 0.01 1.28 0.20
MethodMXT 0.02 0.01 1.23 0.22
Psa/BG_per10:MethodGAM 0.00 0.02 0.15 0.88
Psa/BG_per20:MethodGAM -0.04 0.02 -2.36 0.02
Psa/BG_per40:MethodGAM 0.00 0.02 0.19 0.85
Psa/BG_per10:MethodGLM 0.01 0.02 0.34 0.73
Psa/BG_per20:MethodGLM -0.04 0.02 -242 0.02
Psa/BG_per40:MethodGLM 0.00 0.02 -0.21 0.83
Psa/BG_per10:MethodMXT 0.01 0.02 0.52 0.61
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Psa/BG_per20:MethodMXT -0.05 0.02 -2.60 0.01
Psa/BG_per40:MethodMXT 0.00 0.02 0.13 0.90

49  Supplementary Table S.3.1.6 Stratified Pearson correlation between model accuracy (D-
50  index) and AUC validation metric for Virtual Species SDMs

51
Range Size Method Sample size PsA/BG percentage  Correlation
Narrow BART 5n 5 -0.09
Narrow BART 5n 10 -0.33
Narrow BART 5n 20 -0.40
Narrow BART 5n 40 -0.54
Wide BART 5n 5 -0.59
Wide BART 5n 10 -0.41
Wide BART 5n 20 -0.36
Wide BART 5n 40 -042
Narrow BART 10n 5 0.16
Narrow BART 10n 10 0.04
Narrow BART 10n 20 -0.22
Narrow BART 10n 40 -0.50
Wide BART 10n 5 -0.57
Wide BART 10n 10 -0.58
Wide BART 10n 20 -0.63
Wide BART 10n 40 -0.70
Narrow BART 20n 5 0.41
Narrow BART 20n 10 0.28
Narrow BART 20n 20 0.16
Narrow BART 20n 40 -0.13
Wide BART 20n 5 -0.80
Wide BART 20n 10 -0.63
Wide BART 20n 20 -0.72
Wide BART 20n 40 -0.85
Narrow BART 50n 5 048
Narrow BART 50n 10 042
Narrow BART 50n 20 0.31
Narrow BART 50n 40 0.03
Wide BART 50n 5 -0.83
Wide BART 50n 10 -0.83
Wide BART 50n 20 -0.86
Wide BART 50n 40 -0.96
Narrow GAM 5n 5 0.24
Narrow GAM 5n 10 0.18
Narrow GAM 5n 20 0.12
Narrow GAM 5n 40 -0.34
Wide GAM 5n 5 -0.36
Wide GAM 5n 10 -0.33
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Wide MXT 50n 20 -0.89
Wide MXT 50n 40 -0.96
52  Supplementary Table S.3.1.7 Stratified Pearson correlation between model accuracy (D-
53 index) and Boyce validation metric for Virtual Species SDMs

54
Range Size Method Sample size PsA/BG percentage Correlation
Narrow BART 5n 5 0.54
Narrow BART 5n 10 0.49
Narrow BART 5n 20 0.51
Narrow BART 5n 40 0.03
Wide BART 5n 5 -0.34
Wide BART 5n 10 0.00
Wide BART 5n 20 0.22
Wide BART 5n 40 0.01
Narrow BART 10n 5 0.63
Narrow BART 10n 10 0.53
Narrow BART 10n 20 0.40
Narrow BART 10n 40 -0.09
Wide BART 10n 5 -043
Wide BART 10n 10 -0.27
Wide BART 10n 20 -0.01
Wide BART 10n 40 0.10
Narrow BART 20n 5 0.76
Narrow BART 20n 10 0.69
Narrow BART 20n 20 0.52
Narrow BART 20n 40 -0.07
Wide BART 20n 5 -0.71
Wide BART 20n 10 -0.54
Wide BART 20n 20 -0.31
Wide BART 20n 40 0.11
Narrow BART 50n 5 0.82
Narrow BART 50n 10 0.81
Narrow BART 50n 20 0.75
Narrow BART 50n 40 -0.47
Wide BART 50n 5 -0.69
Wide BART 50n 10 -0.70
Wide BART 50n 20 -0.68
Wide BART 50n 40 -0.02
Narrow GAM 5n 5 0.06
Narrow GAM 5n 10 0.15
Narrow GAM 5n 20 0.07
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57  Supplementary Table S.3.1.8 Stratified Pearson correlation between model accuracy (D-
58 index) and AUC validation metric for Real Species SDMs

Range Size Method PsA/BG percentage  Correlation
Narrow BART 5 0.62
Narrow BART 10 0.86
Narrow BART 20 0.63
Narrow BART 40 0.93

Wide BART 5 0.74
Wide BART 10 0.81
Wide BART 20 0.95
Wide BART 40 0.90
Narrow GAM 5 0.72
Narrow GAM 10 1.00
Narrow GAM 20 1.00
Narrow GAM 40 0.96
Wide GAM 5 0.83
Wide GAM 10 0.85
Wide GAM 20 0.90
Wide GAM 40 0.92
Narrow GLM 5 0.71
Narrow GLM 10 0.98
Narrow GLM 20 0.66
Narrow GLM 40 0.98
Wide GLM 5 0.98
Wide GLM 10 0.78
Wide GLM 20 0.98
Wide GLM 40 0.94
Narrow MXT 5 0.79
Narrow MXT 10 0.94
Narrow MXT 20 0.7
Narrow MXT 40 0.95
Wide MXT 5 0.91
Wide MXT 10 0.85
Wide MXT 20 0.94
Wide MXT 40 0.95
59
60
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61 Supplementary Table S.3.1.9 Stratified Pearson correlation between model accuracy (D-
62  index) and Boyce validation metric for Real Species SDMs

Range Size Method PsA/BG percentage Correlation
Narrow BART 5 0.60
Narrow BART 10 0.78
Narrow BART 20 0.69
Narrow BART 40 0.86

Wide BART 5 -0.87
Wide BART 10 -0.21
Wide BART 20 0.77
Wide BART 40 0.29
Narrow GAM 5 0.74
Narrow GAM 10 0.96
Narrow GAM 20 0.84
Narrow GAM 40 0.86
Wide GAM 5 0.61
Wide GAM 10 0.68
Wide GAM 20 0.83
Wide GAM 40 0.96
Narrow GLM 5 0.70
Narrow GLM 10 0.89
Narrow GLM 20 -0.52
Narrow GLM 40 0.78
Wide GLM 5 0.79
Wide GLM 10 0.62
Wide GLM 20 0.09
Wide GLM 40 0.79
Narrow MXT 5 0.22
Narrow MXT 10 0.31
Narrow MXT 20 0.27
Narrow MXT 40 0.79
Wide MXT 5 -0.58
Wide MXT 10 -0.56
Wide MXT 20 -0.69
Wide MXT 40 -0.60
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65
66

67
68

Supplementary Table S.3.1.10 Summary of 95th Percentile D-Index Ranges Across
Methods by Niche Breadth (*Minimum Sample Sizes for Achieving Moderate >0.60
and High >0.70 Prediction overlap)

Niche Breadth  Method  Sample size Mean Ymin Ymax >0.60 >0.70
Narrow BART 5n 0.59 0.57 0.72 - -
Narrow BART 10n 0.6 0.58 0.7 - -
Narrow BART 20n 0.61 0.6 0.76 * -
Narrow BART 50n 0.65 0.62 0.79 * -
Narrow GAM 5n 0.66 0.63 0.69 * -
Narrow GAM 10n 0.71 0.67 0.73 * -
Narrow GAM 20n 0.73 0.65 0.77 * -
Narrow GAM 50n 0.79 0.66 0.8 * -
Narrow GLM 5n 0.66 0.6 0.8 - -
Narrow GLM 10n 0.67 0.57 0.81 - -
Narrow GLM 20n 0.83 0.65 0.84 * -
Narrow GLM 50n 0.83 0.72 0.83 * *
Narrow MXT 5n 0.64 0.59 0.81 - -
Narrow MXT 10n 0.67 0.64 0.82 * -
Narrow MXT 20n 0.75 0.64 0.78 * =
Narrow MXT 50n 0.75 0.65 0.78 * =

Wide BART 5n 0.89 0.87 0.96 * *
Wide BART 10n 0.89 0.86 0.94 * *
Wide BART 20n 0.88 0.84 0.91 * *
Wide BART 50n 0.89 0.79 0.91 * *
Wide GAM 5n 0.78 0.77 0.78 * *
Wide GAM 10n 0.81 0.8 0.84 * *
Wide GAM 20n 0.86 0.8 0.88 * *
Wide GAM 50n 0.88 0.83 0.92 * *
Wide GLM 5n 0.87 0.82 0.91 * *
Wide GLM 10n 0.9 0.82 0.93 * *
Wide GLM 20n 0.92 0.89 0.94 * *
Wide GLM 50n 0.94 0.92 0.95 * *
Wide MXT 5n 0.9 0.79 0.94 * *
Wide MXT 10n 0.94 0.82 0.97 * *
Wide MXT 20n 0.89 0.83 0.91 * *
Wide MXT 50n 0.9 0.85 0.92 * *
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71
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73

74

Supplementary table 3.1.11 Numerical results of the models:
D.index_Narrow ~ Uncertainty * Sample_size * Method

(analysing the the impact of varying levels of gridded uncertainty on model

accuracy across different modelling conditions for narrow-ranged virtual species.

Term Estimate Std.error Statistic p.value
(Intercept) 0.67 0.01 92.9 0
Uncert90 -0.04 0.01 -3.7 0
Uncert500 -0.05 0.01 -4.74 0
Uncert1000 -0.11 0.01 -10.98 0
Sample_sizeSmall -0.04 0.01 -4.5 0
MethodGAM 0.06 0.01 5.5 0
MethodGLM -0.06 0.01 -6.13 0
MethodMXT 0.04 0.01 3.83 0
Uncert90:Sample_sizeSmall 0.04 0.01 2.74 0.01
Uncert500:Sample_sizeSmall 0.04 0.01 2.78 0.01
Uncert1000:Sample_sizeSmall 0.05 0.01 3.68 0
Uncert90:MethodGAM -0.01 0.01 -0.41 0.69
Uncert500:MethodGAM 0 0.01 -0.13 0.9
Uncert1000:MethodGAM -0.01 0.01 -0.49 0.63
Uncert90:MethodGLM -0.01 0.01 -0.44 0.66
Uncert500:MethodGLM 0.03 0.01 2.29 0.02
Uncert1000:MethodGLM 0.04 0.01 2.62 0.01
Uncert90:MethodMXT 0 0.01 -0.06 0.95
Uncert500:MethodMXT 0 0.01 -0.09 0.93
Uncert1000:MethodMXT -0.01 0.01 -0.35 0.72
Sample_sizeSmall:MethodGAM 0.01 0.01 0.94 0.35
Sample_sizeSmall:MethodGLM 0.08 0.01 6.24 0
Sample_sizeSmall:MethodMXT -0.03 0.01 -2.17 0.03
Uncert90:Sample_sizeSmall:MethodGAM 0.01 0.02 0.63 0.53
Uncert500:Sample_sizeSmall:MethodGAM 0.03 0.02 1.42 0.16
Uncert1000:Sample_sizeSmall:MethodGAM 0.02 0.02 1.14 0.26
Uncert90:Sample_sizeSmall:MethodGLM 0 0.02 0.08 0.94
Uncert500:Sample_sizeSmall:MethodGLM -0.03 0.02 -1.69 0.09
Uncert1000:Sample_sizeSmall:MethodGLM -0.04 0.02 -2 0.05
Uncert90:Sample_sizeSmall:MethodMXT 0 0.02 -0.1 0.92
Uncert500:Sample_sizeSmall:MethodMXT 0.01 0.02 0.29 0.77
Uncert1000:Sample_sizeSmall:MethodMXT 0 0.02 0 1
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Supplementary table 3.1.12 Numerical results of the models:
D.index_Wide ~ Uncertainty * Sample_size * Method

(analysing the impact of varying levels of gridded uncertainty on model accuracy
across different modelling conditions for wide-ranged virtual species.

Term Estimate Std.error Statistic p.value
(Intercept) 0.87 0 199.21 0
Uncert90 0 0.01 -0.44 0.66
Uncert500 -0.02 0.01 -3.77 0
Uncert1000 0 0.01 -0.23 0.82
Sample_sizeSmall -0.01 0.01 -1.19 0.23
MethodGAM 0 0.01 0.44 0.66
MethodGLM 0.02 0.01 3.29 0
MethodMXT 0 0.01 -0.23 0.82
Uncert90:Sample_sizeSmall 0 0.01 -0.29 0.77
Uncert500:Sample_sizeSmall 0.01 0.01 1.48 0.14
Uncert1000:Sample_sizeSmall 0 0.01 -0.14 0.89
Uncert90:MethodGAM 0 0.01 0.53 0.6
Uncert500:MethodGAM 0 0.01 -0.37 0.71
Uncert1000:MethodGAM -0.05 0.01 -5.66 0
Uncert90:MethodGLM 0 0.01 -0.03 0.97
Uncert500:MethodGLM 0 0.01 -0.28 0.78
Uncert1000:MethodGLM 0 0.01 -0.23 0.82
Uncert90:MethodMXT 0 0.01 0.36 0.72
Uncert500:MethodMXT 0 0.01 0.51 0.61
Uncert1000:MethodMXT 0.03 0.01 2.99 0
Sample_sizeSmall:MethodGAM -0.08 0.01 -8.96 0
Sample_sizeSmall:MethodGLM 0 0.01 0.21 0.83
Sample_sizeSmall:MethodMXT 0.04 0.01 4.94 0
Uncert90:Sample_sizeSmall:MethodGAM 0 0.01 -0.31 0.76
Uncert500:Sample_sizeSmall:MethodGAM 0 0.01 0.24 0.81
Uncert1000:Sample_sizeSmall:MethodGAM 0.01 0.01 0.92 0.36
Uncert90:Sample_sizeSmall:MethodGLM 0 0.01 -0.16 0.87
Uncert500:Sample_sizeSmall:MethodGLM 0 0.01 0.38 0.7
Uncert1000:Sample_sizeSmall:MethodGLM -0.02 0.01 -1.95 0.05
Uncert90:Sample_sizeSmall:MethodMXT 0 0.01 -0.35 0.72
Uncert500:Sample_sizeSmall:MethodMXT 0 0.01 -0.25 0.8
Uncert1000:Sample_sizeSmall:MethodMXT -0.09 0.01 -7.07 1'?25
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Supplementary table 3.1.13 Numerical results of the models:

D.index_Narrow ~ Uncertainty * Sample_size * Method

(analysing the the impact of varying levels of gridded uncertainty on model accuracy

across different modelling conditions for narrow-ranged real species).

Term Estimate Std.error Statistic p.value
(Intercept) 0.95 0.03 30.73 0.00
Uncert90 -0.04 0.05 -0.79 043
Uncert500 -0.08 0.05 -1.65 0.10
Uncert1000 -0.10 0.05 -1.97 0.05
MethodGAM -0.07 0.04 -1.55 0.13
MethodGLM -0.04 0.04 -0.87 0.39
MethodMXT 0.01 0.04 0.29 0.78
Uncert90:MethodGAM 0.01 0.07 0.15 0.88
Uncert500:MethodGAM -0.05 0.07 -0.70 0.49
Uncert1000:MethodGAM -0.11 0.07 -1.49 0.14
Uncert90:MethodGLM 0.07 0.07 0.91 0.37
Uncert500:MethodGLM 0.03 0.07 0.37 0.72
Uncert1000:MethodGLM 0.04 0.08 0.53 0.60
Uncert90:MethodMXT 0.01 0.07 0.13 0.90
Uncert500:MethodMXT -0.06 0.08 -0.66 0.51
Uncert1000:MethodMXT -0.09 0.08 -1.23 0.23

Supplementary table 3.1.14 Numerical results of the models:

D.index_Wide ~ Uncertainty * Sample_size * Method

(analysing the impact of varying levels of gridded uncertainty on model accuracy

across different modelling conditions for wide-ranged real species.

Term Estimate Std.error Statistic p.value
(Intercept) 0.94 0.01 83.08 0.00
Uncert90 -0.02 0.02 -0.94 0.35
Uncert500 -0.04 0.02 -2.15 0.04
Uncert1000 -0.04 0.02 -2.27 0.03
MethodGAM 0.03 0.02 1.82 0.07
MethodGLM 0.01 0.02 0.76 0.45
MethodMXT 0.02 0.02 1.09 0.28
Uncert90:MethodGAM -0.04 0.03 -1.41 0.16
Uncert500:MethodGAM -0.08 0.03 -3.06 0.00
Uncert1000:MethodGAM -0.10 0.03 -3.73 0.00
Uncert90:MethodGLM 0.01 0.03 0.26 0.80
Uncert500:MethodGLM 0.03 0.03 0.92 0.36
Uncert1000:MethodGLM 0.02 0.03 0.68 0.50
Uncert90:MethodMXT 0.00 0.03 0.02 0.98
Uncert500:MethodMXT 0.01 0.03 0.21 0.83
Uncert1000:MethodMXT 0.01 0.03 0.36 0.72
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Appendix S3.2 Method to obtain presence/absence plant data from the
Revillagigedo Archipelago, Mexico.

For this study presence/absence points from vegetation transects conducted
between 2018 and 2022 were used. Sampling focused on Socorro (132 km?) and
Clarion (19.8 km?), the two largest islands in the archipelago, due to their ecological

importance, being the hosts for most species in the archipelago.

In 2018, plant records were collected on Clarion Island during both the dry (May)
and wet (November) seasons, given its limited prior study (Benavides et al., 2019).
In 2022, data collection on Socorro Island took place at the start of the wet season

(November) to cover a broad range of perennial and non-perennial species.

Transect lengths varied based on island size and habitat diversity, with 100m
transects on Clarion and 500m to 1km transects on Socorro. The transects were
selected systematically to reflect environmental heterogeneity, with efforts to avoid

sampling bias through widespread distribution across the islands.
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Chapter 4

Appendix S4.1 Supplementary tables and figures

Supplementary table 4.1.1 Model accuracy results for the AUC and Boyce Metrics

Island Res Species Baseline AUC Boyce
Clarion 30 Dodonaea_viscosa DEM 0.60 -0.10
Clarion 30 Brickellia_peninsularis DEM 0.59 -0.17
Clarion 30 Caesalpinia_bonduc DEM 0.80 0.24
Clarion 30 Euphorbia_anthonyi DEM 0.61 0.30
Clarion 30 Euphorbia_californica DEM 0.68 0.22
Clarion 30 Karwinskia_humboldtiana DEM 0.72 0.24
Clarion 30 Tribulus_cistoides DEM 0.56 0.13
Clarion 30 Waltheria_indica DEM 0.61 0.08
Clarion 30 Zanthoxylum_fagara DEM 0.58 0.15
Clarion 30 Nicotiana_stocktonii DEM 0.72 0.05
Clarion 30 Teucrium_townsendii DEM 0.60 -0.01
Clarion 30 Dodonaea_viscosa CH 0.72 0.25
Clarion 30 Brickellia_peninsularis CH 0.51 -0.03
Clarion 30 Caesalpinia_bonduc CH 0.84 0.18
Clarion 30 Euphorbia_anthonyi CH 0.56 0.24
Clarion 30 Euphorbia_californica CH 0.65 0.10
Clarion 30 Karwinskia_humboldtiana CH 0.57 0.10
Clarion 30 Tribulus_cistoides CH 0.70 0.13
Clarion 30 Waltheria_indica CH 0.59 0.14
Clarion 30 Zanthoxylum_fagara CH 0.75 0.18
Clarion 30 Teucrium_townsendii CH 0.82 0.11
Clarion 30 Dodonaea_viscosa WC 0.62 0.04
Clarion 30 Brickellia_peninsularis wC 0.58 0.26
Clarion 30 Caesalpinia_bonduc wWC 0.78 0.13
Clarion 30 Euphorbia_anthonyi wC 0.54 0.20
Clarion 30 Euphorbia_californica wWC 0.64 0.14
Clarion 30 Karwinskia_humboldtiana wC 0.58 0.13
Clarion 30 Tribulus_cistoides wWC 0.69 0.20
Clarion 30 Waltheria_indica wWC 0.70 0.26
Clarion 30 Zanthoxylum_fagara wWC 0.68 0.24
Clarion 30 Nicotiana_stocktonii WC 0.96 0.33
Clarion 30 Teucrium_townsendii wWC 0.79 0.15
Clarion 90 Dodonaea_viscosa DEM 0.54 -0.01
Clarion 90 Brickellia_peninsularis DEM 0.58 -0.16
Clarion 90 Caesalpinia_bonduc DEM 0.64 -0.08
Clarion 90 Euphorbia_anthonyi DEM 0.58 0.22
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0.09
0.16
-0.10
0.17
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0.14
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0.13
0.06
0.03
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-0.11
-0.01
-0.09
0.14
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-0.18
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0.09
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0.19
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0.24
0.13
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Supplementary table 4.1.1 Model transferability results for the AUC Transferability

Metric.

Island Res Species Baseline Method AUC
Clarion 30 Brickellia_peninsularis DEM GAM 0.63
Clarion 30 Brickellia_peninsularis CH GAM 0.58
Clarion 30 Brickellia_peninsularis wWC GAM 0.54
Clarion 30 Dodonaea_viscosa DEM GAM 0.55
Clarion 30 Dodonaea_viscosa CH GAM 0.56
Clarion 30 Dodonaea_viscosa WC GAM 0.58
Clarion 30 Perityle_socorrosensis DEM GAM 0.54
Clarion 30 Perityle_socorrosensis CH GAM 0.54
Clarion 30 Perityle_socorrosensis WC GAM 0.56
Clarion 30 Waltheria_indica DEM GAM 0.63
Clarion 30 Waltheria_indica CH GAM 0.55
Clarion 30 Waltheria_indica wWC GAM 0.6

Clarion 90 Brickellia_peninsularis DEM GAM 0.54
Clarion 90 Brickellia_peninsularis CH GAM 0.54
Clarion 90 Brickellia_peninsularis wWC GAM 0.53
Clarion 90 Dodonaea_viscosa DEM GAM 0.56
Clarion 90 Dodonaea_viscosa CH GAM 0.6

Clarion 90 Dodonaea_viscosa wWC GAM 0.58
Clarion 90 Perityle_socorrosensis DEM GAM 0.6

Clarion 90 Perityle_socorrosensis CH GAM 0.53
Clarion 90 Perityle_socorrosensis WC GAM 0.56
Clarion 90 Waltheria_indica DEM GAM 0.56
Clarion 90 Waltheria_indica CH GAM 0.53
Clarion 90 Waltheria_indica wWC GAM 0.64
Clarion 500 Brickellia_peninsularis DEM GAM NA

Clarion 500 Brickellia_peninsularis CH GAM 0.56
Clarion 500 Brickellia_peninsularis wWC GAM 0.55
Clarion 500 Dodonaea_viscosa DEM GAM NA

Clarion 500 Dodonaea_viscosa CH GAM 0.58
Clarion 500 Dodonaea_viscosa WC GAM 0.6

Clarion 500 Perityle_socorrosensis DEM GAM NA

Clarion 500 Perityle_socorrosensis CH GAM 0.52
Clarion 500 Perityle_socorrosensis WC GAM 0.56
Clarion 500 Waltheria_indica DEM GAM 0.53
Clarion 500 Waltheria_indica CH GAM 0.51
Clarion 500 Waltheria_indica wWC GAM 0.64
Socorro 30 Euphorbia_anthonyi DEM GAM 0.84
Socorro 30 Euphorbia_anthonyi CH GAM 0.62
Socorro 30 Euphorbia_anthonyi wcC GAM 0.74
Socorro 30 Tribulus_cistoides DEM GAM 0.63
Socorro 30 Tribulus_cistoides CH GAM 0.59
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GAM
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0.6
0.92
NA
0.81
0.67
0.64
0.7
0.7
0.58
0.67
0.95
0.71
0.85
0.74
0.84
0.7
0.62
0.66
0.65
0.8
0.54
0.75
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Chapter 5

Appendix S5.1.1 Supplementary tables and figures

Table S5.1.1 Species list and their criteria for inclusion in the climate change analysis,
organized by archipelago. Categories include: Chr (Chorotype: END = Endemic, NE
= Non-endemic native), IUCN (Conservation status: CR = Critically Endangered, EN
= Endangered, VU= Vulnerable, LC = Least Concern, NA=Non assessed),
Threats (Key threats to the species), Importance (Ecological or cultural
significance), N (Initial sample size), N Thin (Sample size after thinning),
and *Ref (References).

Island Species Chr | Threats Importance N N Ref*
U Thin
C
N
Canaries Echium EN C Land use Vegetation/ 22 14 1,2,3
acanthocarpum D R change Rarity
Canaries Ceropegia EN E Invasives/ Vegetation/ 124 64 1,2,3
dichotoma D N Bottleneck Habitat
stabilisation
Canaries Sideroxylon EN E Invasives/ Vegetation/ 21 20 1,2,3
canariense D N Climate Edible fruits
change
Canaries Aeonium EN E Land use Rarity/ 32 13 1,2,3
gomerense D N change/ Declining
Invasives/
Diseases
Canaries Dracaena NE E Land use Vegetation/ 465 199 1,2,3
draco N  change/ Habitat
Invasives/ stabilisation/
Wildfires/ Edible fruits
Diseases/
Wood
Canaries Pistacia NE L Land use Vegetation/ 32 20 1,2,3
lentiscus C change Edible fruits
Canaries Kleinia EN L Land use Vegetation/ 2267 1120 1,2,3
neriifolia D C change Habitat
stabilisation
Canaries Tamarix EN L Land use Vegetation/ 192 105 1,2,3
canariensis D C change Habitat
stabilisation
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Idfires/
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Land use
change /
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Idfires/
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Land use
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Invasives/Wi
Idfires/
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Bottleneck/C
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change
Land use
change

Vegetation/ 107
Habitat

stabilisation/

Floral visitors

Vegetation/ 717

Edible fruits

Vegetation/ 326

Habitat
stabilisation
Vegetation/ 569
Edible fruits

Vegetation/ 488
Habitat
stabilisation

Vegetation/ 825
Habitat
stabilisation/
Declining

Vegetation/ 88
Habitat
stabilisation

Vegetation/ 90
Habitat

stabilisation/

Edible fruits

Rarity/ 454

Floral visitors

Vegetation/ 22
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174
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404

57

30
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Canaries Periploca NE N Landuse Vegetation/ 569 318 2,3

laevigata A change Habitat
stabilisation
Canaries Bystropogon NE N Landuse Vegetation/ 99 64 2,3
canariensis A  change/ Habitat
Invasives stabilisation
Canaries Descurainia EN N Undetermin Vegetation/ 95 44 2,3
bourgaeana D A ed Habitat
stabilisation/
Edible fruits
Canaries Euphorbia NE N Undetermin Vegetation/ 1232 415 2,3
balsamifera A ed Habitat

stabilisation/
Edible fruits/

Declining
Canaries Launaea NE N Undetermin Vegetation/ 1478 713 2,3
arborescens A ed Habitat
stabilisation
Canaries Arbutus EN N Invasives/Wi Vegetation/ 255 108 2,3
canariensis D T Idfires Edible fruits
Canaries Salix canariensis EN N Land use Vegetation/ 93 64 2,3
D T change/ Habitat
Invasives stabilisation
Canaries Limonium EN N Land use Vegetation/Rar 34 14 2,3
arborescens D T change/ ity
Invasives/
Diseases
Canaries Maytenus EN N Undertermin Vegetation/ 61 58 2,3
canariensis D T ed Habitat
stabilisation
Canaries Euphorbia EN V Landuse Rarity/ 39 13 2,3
handiensis D U change/ Declining
Invasives
Canaries Asparagus EN V  Landuse Vegetation/ 46 44 2,3
arborescens D U change/ Habitat
Invasives stabilisation
Canaries Heberdenia NE V Landuse Vegetation/ 26 24 2,3
excelsa U change/ Declining
Invasives/Wi
Idfires/
Diseases/Cli
mate change
Galapagos Calandrinia EN C Hervibores Rarity/ 71 17 1,4,5
galapagosa D D Declining
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Edible fruits
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Edible fruits
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Hawaii

Hawaii

Hawaii

Hawaii

Hawaii

Hawaii

Hawaii

Hawaii

Hawaii

Hawaii

Hawaii
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Colubrina
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Hibiscus
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martii
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es/Hervibory

Global
rarity/Invasiv
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Edible fruits
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Edible fruits
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oral visitors
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esting material
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31

14

103

26

36

95
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38
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130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152

Revillagige Teucrium EN N Global Rarity/Floral 31 15
do townsendii D A rarity/Undet visitors
ermined
Revillagige Euphorbia NE N Undetermin Vegetation/ 22 9
do californica A ed Habitat
stabilisation
Revillagige Brickellia NE N Undetermin Vegetation/ 256 60
do peninsularis A ed Habitat
stabilisation
Revillagige Tribulus NE N Undetermin Vegetation/ 70 27
do cistoides A ed Habitat
stabilisation/Fl
oral visitors
Revillagige Sideroxylon EN V Global Rarity/ 118 27
do socorrense D U rarity/Volcan  Vegetation/
ic activity Habitat
stabilisation/
Edible fruits

8,9

8,9

8,9

8,9

1,8,9
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154
155
156
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159
160

Table S5.12. Summary of species analysed for microclimatic-driven shifts in their
distribution in the context of climate change across archipelagos. The table
includes the following categories: Chr (Chorotype: END = Endemic, NE = Non-
endemic native), SSP (Climate change tranjectory), Range change (Percentage
change in distribution range), AUC (Area Under the Curve, indicating model
performance), Loss Rank (Rank of predicted range loss: TL=Total loss,EL=Extreme
loss, SVL = Severe Loss, ML = Moderate Loss, G = Gain), and Threat Rank (THR =
Threatened, LC = Least Concern, NE=Non-assessed)

Island Species Chr SSP Range AUC Loss Threat
change Rank Rank
Canaries Aeonium gomerense END ssp126 -181 087 ML THR
Canaries Aeonium gomerense END ssp370 0.6 087 G THR
Canaries Aeonium gomerense END ssp585  -4.7 087 ML THR
Canaries Apollonias barbujana NE ssp126 -471 071 ML LC
Canaries Apollonias barbujana NE ssp370 -582 0.71 SVL LC
Canaries Apollonias barbujana NE ssp585 -728 0.71 SVL LC
Canaries Arbutus canariensis END ssp126 -955 079 EL THR
Canaries Arbutus canariensis END ssp370 -955 079 EL THR
Canaries Arbutus canariensis END ssp585 -989 079 EL THR
Canaries Argyranthemum NE ssp126 118 095 G THR
maderense
Canaries Argyranthemum NE ssp370 -234 095 ML THR
maderense
Canaries Argyranthemum NE ssp585 -148 095 ML THR
maderense
Canaries Asparagus arborescens END ssp126 -11.0 0.75 ML THR
Canaries Asparagus arborescens END ssp370 -288 0.75 ML THR
Canaries Asparagus arborescens END ssp585 -364 0.75 ML THR
Canaries Bystropogon NE ssp126 -56.2 0.72 SVL THR
canariensis
Canaries Bystropogon NE ssp370 -61.8 0.72 SVL THR
canariensis
Canaries Bystropogon NE ssp585 -66.5 0.72 SVL THR
canariensis
Canaries Ceropegia dichotoma END ssp126 0.5 075 G THR
Canaries Ceropegia dichotoma END ssp370 -2.8 075 ML THR
Canaries Ceropegia dichotoma END ssp585 -2.0 0.75 ML THR
Canaries Cneorum END ssp126 -85 075 ML LC

pulverulentum
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Echium acanthocarpum
Echium acanthocarpum
Echium wildpretii
Echium wildpretii
Echium wildpretii
Euphorbia balsamifera
Euphorbia balsamifera
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END
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-37.8

-335
-36.8
-61.2
-40.0
-49.6
-61.1
-53.9
-49.6
-61.2
-47.2
-24.1
-25.3
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-35.9
-20.2
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-38.8
-38.8
-23.6
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-0.9
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-36.7
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Revillagigedo Perityle socorrosensis NE ssp585 -66.4 0.62 SVL THR
Revillagigedo Psidium socorrense NE ssp126 174 076 G THR
Revillagigedo Psidium socorrense NE ssp370 174 076 G THR
Revillagigedo Psidium socorrense NE ssp585 174 076 G THR
Revillagigedo Sideroxylon socorrense END ssp126  17.1 092 G THR
Revillagigedo Sideroxylon socorrense END ssp370  17.1 092 G THR
Revillagigedo Sideroxylon socorrense END ssp585  17.1 092 G THR
Revillagigedo Teucrium townsENDii NE ssp126 -873 063 EL THR
Revillagigedo Teucrium townsENDii NE ssp370 -100.0 063 TL THR
Revillagigedo Teucrium townsENDii NE ssp585 -100.0 063 TL THR
Revillagigedo Tribulus cistoides NE ssp126 -100.0 080 TL THR
Revillagigedo Tribulus cistoides NE ssp370 -100.0 080 TL THR
Revillagigedo Tribulus cistoides NE ssp585 -100.0 080 TL THR
Revillagigedo Zanthoxylum fagara NE ssp126 -73.6 0.78 SVL LC
Revillagigedo Zanthoxylum fagara NE ssp370 -73.6 078 SVL LC
Revillagigedo Zanthoxylum fagara NE ssp585 -73.6 0.78 SVL LC
Revillagigedo llex socorroensis END ssp126 183 080 G THR
Revillagigedo llex socorroensis END ssp370 153 080 G THR
Revillagigedo llex socorroensis END ssp585 4.2 080 G THR
Table S5.13. Model results for the linear model:
Net Range Change ~ Archipelago * Fut Model * SSP
Term Estimate Std.error Statistic p.value
(Intercept) -32.524 4.065 -8.001 2.098e-
15
Island_Galapagos 3.786 6.675 0.567 0.571
Island_Hawaii 15.754 6.109 2.579 0.010
Island_Revillagigedo -3.836 7.103 -0.540 0.589
Fut Model_UK -3.349 5.762 -0.581 0.561
Trajectory_ssp370 -8.950 5.762 -1.553 0.120
Trajectory_ssp585 -15.552 5.762 -2.699 0.007
islandGalapagos:Fut Model_UK -5.088 9.447 -0.539 0.590
islandHawaii:Fut Model_UK -8.553 8.647 -0.989 0.323
islandRevillagigedo:Fut Model_UK 8.535 10.052 0.849 0.396
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islandGalapagos:Trajectory_ssp370 1.717 9.447 0.182 0.856
islandHawaii:Trajectory_ssp370 -3.376 8.647 -0.390 0.696
islandRevillagigedo:Trajectory_ssp370 12.573 10.052 1.251 0.211
islandGalapagos:Trajectory_ssp585 9.788 9.447 1.036 0.300
islandHawaii:Trajectory_ssp585 3.742 8.647 0.433 0.665
islandRevillagigedo:Trajectory_ssp585 19.404 10.052 1.930 0.054
Fut ModelUK:Trajectory_ssp370 11.796 8.157 1.446 0.148
Fut ModelUK:Trajectory_ssp585 12.283 8.157 1.506 0.132
islandGalapagos:Fut -3.756 13.365 -0.281 0.779
Model_UK:Trajectory_ssp370
islandHawaii:Fut -0.439 12.235 -0.036 0.971
Model_UK:Trajectory_ssp370
islandRevillagigedo:Fut -17.710 14.221 -1.245 0.213
ModelUK:Trajectory_ssp370
islandGalapagos:Fut -12.233 13.913 -0.879 0.379
ModelUK:Trajectory_ssp585
islandHawaii:Fut -2.810 12.235 -0.230 0.818
ModelUK:Trajectory_ssp585
Table S5.1.4. ANOVA results for the linear model:
Net Range Change ~ Archipelago * Fut Model * SSP
Df Sum Sq Mean Sq  F value Pr(>F)
Island 3 39142.53  13047.51 6.75 0.00
Fut Model 1 262.86 262.86 0.14 0.71
Trajectory 2 13371.63 6685.82 3.46 0.03
Island:Fut Model 3 9966.97 3322.32 1.72 0.16
Island:Trajectory 6 4806.95 801.16 0.41 0.87
Fut Model:Trajectory 2 5511.53 2755.76 143 0.24
Island:Fut 6 6122.47 1020.41 0.53 0.79
Model:Trajectory
Residuals 1963 3795673.51 1933.61 - -
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Supplementary Figure S5.1.5 Spatial patterns of species loss by archipelago for the
a) SSP 126 (optimistic scenario) and b)SSP 585 scenarios (pessimistic scenario) for:
Hawaii (Top left), Canaries (Top Right), Galapagos (Bottom left) and Revillagigedo
(Bottom Right). For Revillagigedo, the top section shows the actual distance and
size of the islands, while the bottom section provides a magnified view. Increased
colour intensity represents a higher number of species lost measured as switching
favourability within grid squares (500m?).
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Appendix S.5.2.1 Climatic-driven spatial patterns of species loss

In the Canaries we see, under the SSP126 trajectory, an average (i.e., the average
across the IP and UK models) of 26.67% of grid squares experiences no species
loss, while 18.50% lose at least one species, and 16.46% with >3 species loss per
grid affecting only 0.09%. The negative effect increases progressively in the other
two SSP scenarios, Under the SSP585 trajectory, a further reduction on average in
the grid squares experiencing no species loss with 22.16%, while 17.91% lose at
least one species, and 11.26% lose >3 species, with species losses up to 12 species

affecting about 0.01% of the total grid squares.

In the Galapagos, under the SSP126 trajectory, an average of 40.90% of the grid
squares experience no species loss, while 28.80% lose at least one species, and
12.96% >2 species. Under the SSP585 trajectory, 41.92% of grid squares experience

no species loss, while 37.24% lose at least one species, and 8.30% lose >2 species.

In Hawaii, for the SSP126 trajectory, an average of 21.73% of grid squares
experience no species loss, while 35.10% lose at least one species, and 0.11% lose
>1, up to seven species. Under the SSP585 trajectory, 15.89% of the area
experiences no species loss, while 28.94% lose at least one species, and 13.52%

lose >3 species.
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The Revillagigedo archipelago, under the SSP126 trajectory, an average of 98.54%

of the area experiences no species loss. Under the SSP585 trajectory, the
percentage drops slightly, with 80.58% of the area experiencing no species loss,

while 19.42% lose at least one species.
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