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ABSTRACT 
The distinct characteristics of oceanic islands—restricted geographic boundaries, 

remoteness, lack of competitors and reduced habitat diversity—have made them 

global hotspots of endemism. However, these factors also mean that many island 

species have small populations, low genetic diversity and reduced competitive 

abilities. The arrival of humans to these systems exposed their fragile vulnerability, 

causing numerous species extinctions, many more so than on mainland 

environments. 

In addition to their inherent vulnerability, oceanic islands are especially susceptible 

to environmental change due to their geographic isolation and limited physical 

space. Unlike many continental species, island species, especially endemics, face 

restricted opportunities to adapt through migration or by tracking suitable climatic 

conditions, given their confined distribution and isolation by surrounding aquatic 

barriers. 

To better understand and predict species loss and range shifts in response to 

global change, this thesis focuses on Species Distribution Models (SDMs). It 

addresses the limitations of existing SDM frameworks, which are generally 

designed for continental species with extensive occurrence data, by tailoring the 

models to the unique conditions of island environments. The thesis focuses on 



 
 

improving SDM applications through the use of high-resolution environmental 

descriptors (≤500m), given that traditional SDM approaches often rely on coarse 

climatic variables, which have been shown to be inadequate predictors of island 

species distributions in many cases. However, the use of high-resolution data raises 

important questions about how such predictors interact with the often-limited 

occurrence data available for island species. 

To address these challenges, the thesis focused on the Revillagigedo Volcanic 

Archipelago, using it as a 'model archipelago' to provide insights relevant to a 

wider range of islands. Plant species were chosen as the focal taxon due to their 

critical ecological roles and usefulness as conservation indicators, with plant 

presence/absence data collected through field sampling. The thesis had two main 

objectives: to enhance SDM applications on islands through the use of high-

resolution environmental descriptors, and to assess the robustness of fine-scale 

predictors, particularly in tropical island environments. The emphasis on tropical 

island environments was due to both the location of the model archipelago and, 

more broadly, the rich, yet understudied biodiversity of these regions. This research 

highlighted the potential of SDMs to deepen our understanding of ecosystems 

that, despite their global biodiversity significance, is often limited due to 

insufficient data. 



 
 

Key findings include the identification of (1) minimum data requirements at very 

high resolutions (30m) for accurate presence-only species distribution modelling 

on islands, and (2) strategies to balance data limitations with pseudo-absence data 

to optimise predictability and accuracy. The research also investigates the impact of 

spatial inaccuracies in occurrence records, finding that while these inaccuracies are 

relatively less important for the SDMs of widespread species, they introduce 

greater uncertainty for range-restricted species; however, these uncertainties were 

found to be mitigated by the use of an adequate methodological framework. 

The thesis further proposes methods for acquiring microclimatic descriptors that 

remain useful even in regions with sparse meteorological data, and provides 

strategies for validating these descriptors in future studies. The most informative 

analytical scales for these microclimatic data, for both predicting and projecting 

SDMs, and taking into consideration the spatial differences between training and 

projection areas, are identified. 

The final empirical chapter of the thesis applies the lessons learned from the 

previous chapters in regard to the optimal implementation of SDMs in islands to 

analyse the impacts of future climate change on island species using a 

microclimatic approach. The results of this analysis confirm that endemic species' 

ranges are disproportionately threatened in most global biodiversity hotspots 



 
 

analysed, and that the current instruments to categorise species risks (e.g., the 

IUCN Red List) are not able to effectively identify the vulnerability of (island) 

species to climate change. This research marks a significant advancement in our 

understanding of island species' responses to climate change at microclimatic 

scales and offers a crucial baseline for developing more targeted mitigation 

strategies in different archipelagos around the world. 
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"There must be a few experiences in the biologist’s world to compare with 
approaching a 'new' island by boat. The ingredients are adventure and suspense, 
mystery, and perhaps even a little danger. There are feelings of discoveries to be 
made, knowledge to be extended, curiosity to be both piqued and satisfied. Such 
feelings are shared not only among natural historians but any adventurous and 
curious traveller; the most difficult the island to reach, the keener the excitement of 
the visit"  

-Cody, Moran, & Thompson, Island Biogeography in the Sea of Cortés II 
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1.1 Research background 

1.1.1 Global environmental change impacts on islands 

Islands are at the centre of the current extinction crisis. While the world’s 

approximately 179,000 marine islands account for only 5% of the planet's surface, 

they contain 20% of all catalogued biodiversity, including disproportionately high 

rates of endemism (Kier et al., 2009; Medina et al., 2011; Whittaker et al., 2017). The 

unique and isolated nature of island ecosystems has led to the evolution of species 

that are found nowhere else on Earth. However, this same isolation makes these 

species particularly vulnerable to anthropogenic changes and disturbances 

(Whittaker et al., 2023). 

The fragile nature of island ecosystems is highlighted by the fact that over 60% of 

documented terrestrial species extinctions since 1500 have been island endemics 

(Whittaker et al., 2017). Currently, 39% of insular species face an imminent risk of 

extinction (Ricketts et al., 2005), underscoring the urgent need for conservation 

efforts. 

Three of the primary drivers of biodiversity loss on islands are habitat destruction, 

species introductions, and, more recently, climate change (Russell and Kueffer, 

2019), with hunting also a driver of numerous island vertebrate extinctions 

(Whittaker et al., 2023). Species introductions in particular pose a significant threat 



 
 

to island biodiversity. Non-native species, whether plants, animals, or pathogens, 

have severely disrupted island ecosystems (Aguirre-Muñoz et al., 2011; Samuel et 

al., 2012; Wood et al., 2017; Cubas et al., 2018). This issue is particularly pronounced 

on oceanic islands—those islands that were never connected to the mainland—

where many island species evolved without the competitive pressures faced by 

mainland species, such as large predators and herbivores (Whittaker et al., 2023). 

Consequently, these species often lack the behavioural and physiological 

adaptations needed to cope with environmental changes introduced by humans 

(Hanna & Cardillo, 2014; Whittaker et al., 2023). For example, introduced predators 

have decimated the populations of many native insular bird species, resulting in 

numerous extinctions (Matthews et al., 2022), and there are several examples of 

invasive plants outcompeting, and introduced herbivores consuming, native 

vegetation, altering habitats and reducing the availability of resources for native 

species (Walter & Levin, 2008; Gizicki et al., 2018; Parada-Díaz et al., 2022). Diseases 

brought by introduced species have often spread rapidly among the populations of 

numerous native island species that have no immunity, with the classic example 

being the impact of avian malaria on the Hawaiian honeycreepers (Samuel et al., 

2012; Hume, 2017; Whittaker et al., 2023). 

Habitat destruction on islands has often been particularly devastating due to the 

limited land area. Deforestation, urbanisation, and agricultural expansion have led 



 
 

to the loss of critical habitats for many species (Ferrer-Sánchez & Rodríguez-

Estrella, 2015; Surasinghe et al., 2019; Connor et al., 2024). Unlike mainland 

ecosystems, where species can often migrate to new areas, island endemic species 

are trapped in their shrinking habitats. 

Climate change adds an additional layer of threat. Rising sea levels, changing 

weather patterns, and increased frequency of extreme weather events can have 

catastrophic effects on island ecosystems (Veron et al., 2019; Macinnis et al., 2021). 

Many islands are low-lying and susceptible to flooding and erosion (Saintilan et al., 

2023). Climate change also has a great potential to shrink or result in the complete 

loss of island habitats (Taylor & Kumar. 2016). 

Addressing the extinction crisis on islands is a focal point for global biodiversity 

conservation efforts (Russell & Kueffer, 2019). However, precise ecological and 

geographical data, which serve as the evidence base for effective mitigation, 

remain sparse for the biota of most islands (Benavides et al., 2024). Tackling this 

issue requires innovative approaches, such as maximising the utility of available 

data through advanced analytical techniques and refining ecological modelling 

methods to better predict current species distributions and their responses to 

various global change scenarios. 

  



 
 

1.1.2 Species Distribution Models: Linking Range Limits to Conservation 

Understanding what governs species range limits is key to predict which species 

will contract, maintain, or expand their distributions and where and when these 

changes will occur within their geographical ranges (Bridle & Hoffman, 2022). 

However, island ecosystems are typically characterised by a dearth of species 

distributional data (Benavides et al., 2024), making it challenging to understand the 

ecogeographical limits of insular biota.  

One tool with the potential to fill this knowledge gap are ecological niche models, 

also known as Species Distribution Models (SDMs). Over the past two decades, 

SDMs have become widely used statistical tools to predict species distributions, 

even for poorly known species with limited occurrence data (Radomski et al., 2022). 

By applying the ecological niche concept (Soberón & Nakamura 2009), SDMs 

describe species' environmental/climatic preferences across a geographical area by 

analysing the relationship between known species occurrences and a set of 

corresponding environmental variables (e.g., climate, topography, the presence of 

interacting species). SDM outputs are then used to create species distribution 

maps, which identify potentially suitable areas of occurrence and provide a 

quantitative baseline for conservation assessment, planning, and decision-making 

(Elith and Leathwick, 2009; Peterson and Soberón, 2012; Guisan et al., 2017; Araújo 

et al., 2019).  



 
 

One of the primary challenges in using SDMs is navigating the vast and ever-

expanding array of available methods, making it difficult for those unfamiliar with 

the field to select the most appropriate approach for their specific needs (Elith et 

al., 2006; Thuiller et al., 2009; Araújo et al., 2019). Additionally, significant 

differences between various methods have been documented, further complicating 

the selection process (Hao et al., 2019). Implementing these models is also 

complex, as numerous decisions must be made at each stage of the modelling 

process (Leroy, 2022). Although several guidelines are available (Elith et al., 2006; 

Guisan et al., 2017; Phillips et al., 2006; Thuiller et al., 2009), a unified SDM 

framework that can be generalised across all contexts is not stablished, and 

probably not feasible. As a result, the field remains in a state of continuous 

development, with approaches constantly being adapted to fit specific contexts. 

In addition, the SDM field has largely focused on widespread species with 

abundant occurrence data, a fact that has heavily influenced SDM guidelines and 

"best practice" literature. However, rare species—those with small geographical 

ranges—present unique challenges that require specialised modelling approaches 

(Lomba et al., 2010; Gabor et al., 2020). These species typically have limited 

associated occurrence data, which restricts the number of predictor variables that 

can be used in model development (Breiner et al., 2015). To address this, an 

ensemble of small models—a method that combines weighted multiple models, 



 
 

each using a small subset of the relevant predictors—has been proposed as a 

strategy to reduce overfitting caused by using too many variables relative to the 

limited number of occurrence points (Lomba et al., 2010; Breiner et al., 2015). This 

technique offers a more effective way to model the distributions of range-restricted 

species, opening new avenues for SDMs. 

A significant challenge in SDM application for range-restricted species is the 

effective use of presence-only data. Since direct absence data—which many SDM 

methods rely on—are generally unavailable, researchers typically create pseudo-

absences. These are hypothetical locations where a species might actually occur 

but where no actual observations have been recorded (Lobo et al., 2010; Barbet-

Massin et al., 2012; Morera-Pujol et al., 2020). 

While pseudo-absences are crucial for accurate modelling, the best practices for 

generating them are still debated (Descombes et al., 2022) and, like other existing 

guidelines, are primarily tailored for species with broader ranges and larger study 

areas (Phillips et al., 2006; Barbet-Massin et al., 2014; Whitford et al., 2024). This 

focus makes them less effective for more localised contexts, such as island 

environments. Therefore, developing and refining pseudo-absence strategies 

specifically for island SDMs is an essential consideration (Benavides et al., 2024). 

  



 
 

1.1.3 Scale-dependency in island SDMs 

Despite advances in using SDMs to model range-restricted species (Breinner et al., 

2015), significant methodological uncertainties remain that need to be addressed 

to ensure these models effectively contribute to island biogeography. A common 

and problematic assumption in this context is that broad climatic factors serve as 

informative and ecologically relevant predictors of species distributions (Pearson & 

Dawson, 2003). This assumption prevails largely because most SDM evaluations 

have traditionally been conducted at broad geographic scales (Thuiller et al., 2004; 

Syphard & Franklin, 2009). 

However, incorporating environmental variables at finer spatial scales—such as 

microclimatic conditions, land cover, and terrain features—not only offers more 

accurate representations of the environments of many islands, where ecological 

processes often operate at finer scales (Whittaker et al., 2023), but also allows for 

assessments in islands where only a limited number of climatic grids (of a given 

resolution) are available. As such, several studies have demonstrated the value of 

finer-scale predictor variables in SDMs employed in island contexts (Bellamy et al., 

2013; Heinänen et al., 2012; Lannuzel et al., 2021; Turvey et al., 2020; Segal et al., 

2021). 

The overreliance on broad-scale climatic variables has resulted in significant gaps in 

our understanding of the ecological validity of alternative environmental variables 



 
 

in SDM development (Austin & Van Niel, 2011; Syphard & Franklin, 2009). 

Additionally, there is uncertainty regarding the appropriate analytical scale needed 

to accurately describe species-environment relationships (Tshwene-Mauchaza & 

Aguirre-Gutiérrez, 2019; Tehrani et al., 2020; Ashrafzadeh et al., 2020). Addressing 

these issues is essential for improving the selection of predictor variables in island 

SDMs studies. 

1.1.4 Coupling occurrence data with high-resolution predictors 

The required shift to smaller analytical scales for studying island species-

environment relationships is complicated by the often-limited availability of species 

observation records. While finer grid pixels in environmental data enable models to 

capture landscape variation more accurately, this increased precision typically 

requires a larger number of occurrence records to adequately represent a species' 

environmental needs. Research on small-ranged continental species, suggests that 

fewer occurrence records might be sufficient (van Proosdij et al., 2015). However, it 

remains unclear whether these lower data requirements hold true when finer 

predictor data and smaller spatial contexts are analysed. 

Another critical challenge is that high-resolution environmental data demand 

occurrence records with matching spatial precision (Moudrý & Šímová, 2012; Sillero 

& Barbosa, 2020). However, spatial uncertainty (or coarse precision in accuracy) is a 

common issue in species’ occurrence data (McPherson et al., 2006). This leads to a 



 
 

difficult decision: whether to exclude imprecise records, which could reduce sample 

size and potentially diminish model accuracy (Graham et al., 2008; Fernandez et al., 

2009; Naimi et al., 2011), or to include them, weighing the risk of adding noise 

against the potential benefit of increased sample size. 

The low precision of occurrence records is particularly problematic in environments 

with sharp environmental gradients (Gábor et al., 2023), and for highly specialised 

species (Visscher et al., 2009; Gábor et al., 2020) —both common in island 

ecosystems. Addressing this issue is necessary, given the significant risk of 

including low-accuracy records in island SDMs, and the current lack of knowledge 

to effectively guide these decisions. 

Thus, two critical questions arise for the application of SDMs on islands at fine 

scales in the face of data limitations: (1) how much data are needed to produce 

reliable high resolution SDMs across different species range sizes? And (2) what 

should be done with spatially uncertain occurrence information? Specifically, can 

including less precise data enhance predictions by increasing sample size, or does 

it introduce significant noise?  

Given that different modelling methods vary in their sensitivity to factors such as 

sample size (Valavi et al., 2022), and occurrence data spatial inaccuracies (Gábor, et 

al., 2022, 2023) addressing these questions by identifying suitable methods could 



 
 

significantly improve the effectiveness of SDMs in island environments. By selecting 

modelling approaches that are more robust to limited data and spatial 

uncertainties, researchers can optimise the use of available records while reducing 

uncertainties in high-resolution SDM outputs. 

1.1.5 Prioritising Among Priorities: Assessing threats on tropical insular 
hotspots  

Global biodiversity hotspots are recognised on the basis of their high levels of plant 

endemism coupled with significant losses of vegetation cover (Myers et al., 2000; 

Mittermeier et al., 2013). Almost half of all global hotspots are located on islands, 

primarily in tropical developing countries. Despite being home to around a third of 

the world's critically endangered plants (Tershy et al., 2015), these regions often 

lack adequate funding for biodiversity research (Caujape-Castells et al., 2010; Habel 

et al., 2019). 

While SDMs have been presented as a powerful tool for linking biogeographic 

knowledge with species conservation, their implementation in tropical island 

environments presents an additional layer of complexity. In addition to the 

challenges posed by sparse occurrence data, there is the issue of limited availability 

of environmental and climatic data at appropriate scales (Baker et al., 2017; 

Lannuzel et al., 2021). 



 
 

The emergence of open-access satellite imagery and global datasets (e.g., NASA 

EOSDIS, 2024) offers promising solutions for modelling species distributions in 

tropical islands at fine-scale resolution. These datasets provide static variables like 

terrain and land cover, capturing crucial micro-environmental variation that 

influences species distribution patterns (Gabor et al., 2022; Heinänen et al., 2012; 

Lannuzel et al., 2021; Turvey et al., 2020; Segal et al., 2021). However, the use of 

these variables has two main limitations. First, their static nature hinders the 

tracking of species distribution changes over time. Second, they rely primarily on 

topography-related proxies, which may actually represent actual climatic variation, 

but could also be affected by factors like nutrient availability and soil properties 

(Meier et al., 2010). This reliance can obscure the specific influences on species 

distributions, which becomes problematic when ecological patterns beyond 

distributional patterns are of interest. 

To address these limitations, it is essential to explore methods that directly 

incorporate climatic variables, enabling more precise assessments of species-

climate associations in island ecosystems. Many frequently used databases (e.g., 

WorldClim: Fick & Hijmans, 2017), derived from interpolations of on-site 

meteorological data, have been useful for building SDMs (Vega et al., 2017). 

However, the resolution of these data (typically ≥1km) may not capture the scale at 

which island plants respond Chauvier et al., 2022), requiring the use of downscaling 



 
 

methods to better represent climatic variations in tropical island regions (Flint and 

Flint, 2012; Franklin et al., 2013; Khosravi et al., 2016). 

Concerns exist about the accuracy of global databases in capturing local-scale 

climate variations in data-scarce regions like tropical environments (Soria-Auza et 

al., 2010; Bedia et al., 2013; Fernandez et al., 2013). These databases typically 

originate from global climate models, reanalysis products, or other coarse-

resolution climate data sources, which may not adequately reflect local variations. 

This can introduce significant biases in downscaled estimates, compromising the 

reliability of modelling outputs. Therefore, there is a need to (i) investigate the 

reliability of downscaled high-resolution climatic estimates in regions with limited 

meteorological data and, (ii) assess the reliability and uncertainty of SDM 

predictions using global downscaled climate datasets in tropical environments. 

The effectiveness of SDMs is typically measured by their ability to generate 

accurate predictions in static scenarios (spatially or temporally) and their capacity 

for projection into novel conditions (Araujo et al., 2019). A critical factor influencing 

both prediction accuracy and model transferability is the selection of predictor 

variable type. Existing research highlights limited understanding of how the choice 

of climatic or terrain variables impacts SDM outcomes (Bobrowski et al., 2017; 

Karger et al., 2017; Petitpierre et al., 2017). Moreover, studies examining these 



 
 

impacts at fine-grained scales are rare, contributing to further gaps in our 

knowledge (Austin & Van Niel, 2011; Stanton et al., 2012). 

There is also a recognised risk that highly specific models, tailored to narrow study 

areas with high-resolution predictors, may suffer from overfitting (Manzoor et al., 

2018). This overfitting can compromise the applicability of models when they are 

projected into new environmental contexts or different temporal scales.  

In summary, achieving the right balance between accuracy and generalisability in 

high-resolution tropical island SDMs requires: 1) creating alternatives for finer-

resolution predictors, 2) ensuring these predictors are statistically validated given 

the limited environmental and climatic data in tropical regions, and 3) identifying 

which types and resolutions maximise both accuracy and transferability. The end 

result is a model that can be reliably applied across different spatial and temporal 

scales, contributing to global change research and supporting conservation and 

management efforts in tropical island hotspots. 

  



 
 

1.2 This study 

1.2.1  Aims and scope 

In light of the research gaps identified above, this study aims to (1) identify 

fundamental considerations related to the application of SDMs in island 

environments, considering occurrence data limitations and the restricted spatial 

context of island environments, (2) Investigate relevant data sources to address gaps 

in occurrence data for island species across various taxa, (3) enhance SDM 

implementation in island environments at fine-grained scales, (4) investigate the 

uncertainty associated with the use of environmental and climatic predictors in data-

scarce island regions at fine analytical scales, and (5) assess how the predicted 

responses of insular plant species to climate change are related to factors such as 

species conservation status and degree of endemism.  

Based on the aims outlined above, and focusing specifically on island plants, the 

thesis looks to address several research questions: 

• Using previous research as a baseline, what are the challenges of SDM 

implementation in island environments, and how can we improve them? 

(Chapter 2) 



 
 

• What sample size of occurrence data is needed to accurately predict the 

distributions of island species using high-resolution predictors, while 

accounting for varying specialisation levels? (Chapter 3) 

• How does the spatial precision of occurrence data affect the accuracy of 

island SDM predictions at high resolutions? (Chapter 3) 

• How does the choice of pseudo-absence data impact the accuracy of 

predicted island species distributions? (Chapter 3) 

• Are downscaled predictors a reliable baseline to model island plant species 

distributions in tropical latitudes? (Chapter 4) 

• Does the grain size of downscaled climatic estimates impact the accuracy and 

transferability of island SDMs to novel environments? (Chapter 4) 

• Does the choice of predictor variable type (Bioclimatic vs. Terrain variables) 

impact the accuracy of SDMs on islands, as well as their transferability to novel 

environments? (Chapter 4) 

• Are the predicted responses of species to future climate change related to 

their endemism and/or conservation status? (Chapter 5) 

This thesis utilises two separate datasets to answer these questions. The first dataset 

comprises plant species presence/absence records from the Revillagigedo 

Archipelago, Mexico, obtained through my own field work, involving sampling using 



 
 

vegetation transects of varying length (100m-1km) depending on island size and 

habitat variability. The second dataset was curated from the global database GBIF 

(GBIF.org, 2024), covering several volcanic archipelagos within the (sub)tropics. 

Detailed descriptions of the datasets are provided in Section 1.3 and the relevant 

chapters where they are utilised. 

1.2.2 Overview of chapters 

The chapters are presented as standalone papers, with references included for each. 

Chapters 3-4 share portions of the Revillagigedo Archipelago dataset, and chapters 

3-5 use similar methodologies and metrics; thus, there is some repetition of the 

methods and background in these chapters. 

• Chapter 2 is a systematic review of the island SDM literature (224 published studies) 

to assess the appropriate use of SDMs in island biogeography, specifically focusing 

on marine islands (i.e., islands in the sea). Species were divided into different insular 

distribution categories (i.e., chorotypes: single island/archipelago endemics, non-

endemic natives, and non-natives) in order to provide chorotype-specific SDM 

recommendations. The paper highlights how to navigate two fundamental 

considerations related to the application of SDMs in island environments. 1) 

Response variables, specifically the issue of small sample sizes for many island 

species. 2) Predictor variables, including (i) the selection of relevant environmental 

predictors at appropriate spatial grains, and (ii) addressing the truncation of 



 
 

environmental extent across the entire species range, especially for non-endemic 

species. This work has been published in Global Ecology and Conservation (DOI: 

https://doi.org/10.1016/j.gecco.2024.e02943). 

• Chapter 3 utilises a portion of the Revillagigedo Archipelago dataset, along with 

simulated virtual species, the distributions of which resemble known species 

distribution patterns within the study area. This approach allows for the evaluation 

of methodological considerations necessary to produce accurate Presence-only 

Species Distribution Models (SDMs) at high resolutions, addressing the primary data 

challenges found in many published island SDM studies. 

• Chapter 4 uses the Revillagigedo Archipelago dataset to investigate the use of 

downscaled global databases at a range of high resolutions (30, 100, and 500m) with 

species distribution models, contrasting the predicted distributions with those 

generated by a model of random species occupancy. Additionally, the accuracy and 

transferability of these models are tested to explore the potential of such datasets in 

studies that require model projections, such as those focused on climate change and 

invasive species. 

• Chapter 5 utilises a dataset curated from the global GBIF database to examine the 

potential future effects of climate change on plant species distributions in three 



 
 

island biodiversity hotspots located within the tropics. The role of species endemism 

and conservation status on predicted responses is assessed. 

1.3 Datasets and study locations 

As outlined above, two primary datasets are used within this work: a plant species 

presence/absence records dataset from the Revillagigedo Archipelago, Mexico, 

obtained through field sampling, and a dataset compiled from the global database 

GBIF, comprising plant distribution data for several volcanic archipelagos within the 

(sub)tropics. 

1.3.1 Plant occurrence database from Revillagigedo Archipelago, Mexico 

The Revillagigedo plant dataset comprises occurrence (presence/absence) points 

obtained through field sampling from vegetation transects conducted between 2018 

and 2022. The sampling efforts focused on the two largest islands in the archipelago, 

Socorro (132 km²) and Clarion (19.8 km²), chosen for their ecological significance as 

hosts to the majority of species in the archipelago (Figure 1.1). 

During the first sampling period, plant records were collected in both the dry (May 

2018) and wet (November 2018) seasons on Clarion Island, the least studied of the 

two (Benavides et al., 2019). In 2022, data were collected from Socorro Island at the 

beginning of the wet season (November 2022) to capture the largest possible range 

of both perennial and non-perennial species. 



 
 

Depending on the island size and habitat variability, vegetation transects of varying 

lengths were implemented: 100m transects on Clarion and 500m to 1km transects 

on Socorro. These transects were systematically selected to capture environmental 



 
 

heterogeneity. To counteract potential sampling bias, I also ensured a widespread 

distribution of transects across the islands. 

Figure 1.1 The two main islands of the Revillagigedo Archipelago, 
Mexico, with a selection of their biodiversity  

 

Socorro 
Clarion 



 
 

1.3.2 GBIF island data: tropical volcanic archipelagos 

The Global Biodiversity Information Facility (GBIF) is an extensive dataset resulting 

from collaborative efforts between data providers and taxonomists from numerous 

institutions, making it a valuable resource for biodiversity research and    

conservation (Beck et al., 2013). This database offers free access to digitised 

biological data from various sources, including museum collections and survey 

programs on a global scale. Here, we use a subset of the data extracted with the 

"Rgbif" R package (Chamberlain et al., 2024) within global island polygons (sourced 

from: Geodata R package; Hijmans et al., 2024). The informativeness of these data 

is discussed in more detail within Chapter 2, where we analysed which islands 

provide sufficient information to fit SDMs in islands across diverse taxa at the 

global scale. Subsequently, we selected volcanic archipelagos in (sub)tropical 

biodiversity hotspots (Myers et al., 2000; Mittermeier et al., 2013) that had sufficient 

plant occurrence data to analyse the effects of climate change at a macroecological 

scale in Chapter 5. 

1.4 Summary and synthesis 

The rapid alteration of species' geographic ranges due to human activities poses a 

significant threat to biodiversity, especially on islands where extinction rates are 

higher than in other terrestrial environments (Whittaker et al., 2017). Effective 



 
 

conservation strategies require a thorough understanding of the geographic and 

environmental limits of island biodiversity. 

Given that the full distributions of many island species are unknown, species 

distribution models (SDMs) are essential tools for filling ecological knowledge gaps. 

They enable data-informed conservation and management decisions for these highly 

threatened components of global biodiversity. However, most SDM research has 

focused on species with broad ranges and ample occurrence data, typically focussing 

on continental species (Hickisch et al., 2019; Leroy, 2022). 

Islands differ significantly from continental systems in many ways. Modelling island 

species distributions thus requires specific guidelines which consider the specific 

data limitations and characteristics of (oceanic) islands. Islands are often remote 

and challenging to access, with many species found in low abundance due to 

natural factors or human influences. Consequently, obtaining comprehensive and 

representative datasets of species occurrences in these environments is 

challenging. This is compounded by the small, bounded study areas that often 

exhibit considerable topographic and environmental variation. This situation raises 

several concerns: 1) the appropriate scale of predictors needed to capture local-

scale environmental variations; 2) the quality and quantity of data required to 

describe species' habitat requirements considering island spatial idiosyncrasies; and 

3) the reliability of predictors derived from high-resolution data products in 



 
 

accurately describing island environments despite the scarcity of environmental 

data on most islands. 

The main objective of the thesis is to improve the accuracy and reliability of SDMs in 

island environments, while applying the insights gained from analyses of optimal 

island SDM implementation to better understand island plant distributions on 

(sub)tropical islands. Ultimately, it is hoped that the information generated from the 

analyses presented in this thesis will enhance conservation and management 

strategies for insular biodiversity going forward. 
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Abstract 

Species distribution models (SDMs) are the primary tools used to model and 

predict changes to species’ ranges, and are often used to provide a quantitative 

baseline for conservation measures. However, most SDM methods and frameworks 

have been primarily designed for use with species with relatively large amounts of 

occurrence data and covering broad continental ranges.  

Here, we undertake a systematic review of the literature (224 published studies) to 

assess the appropriate use of SDMs in island biogeography, specifically focusing on 

marine islands. We divide species into different insular distribution categories (i.e., 

chorotypes: single island/archipelago endemics, non-endemic natives, and non-

natives) in order to provide chorotype-specific SDM recommendations. We 

highlight how to navigate three fundamental considerations related to the 

application of SDMs in island environments. 1) Response variables, specifically the 

issue of small sample sizes for many island species. 2) Predictor variables, including 

(i) the selection of relevant environmental predictors at appropriate spatial grains, 

and (ii) addressing the truncation of environmental extent across the entire species 

range, especially for non-endemic species. 3) Model building, particularly, in the 

context of limited occurrence data for many island species, how to (i) approach the 

uncertainty related to the choice of modelling method, and (ii) avoid overfitting. 

 



 
 

We also examine the data sources used in island SDM studies, finding that there 

are strong geographical biases in study location. Alongside this, we evaluate the 

potential of the GBIF database – a comprehensive global database of species 

occurrences – in island SDM research. We find that GBIF has been potentially 

underutilised in island SDM studies so far, and represents a useful resource for 

filling island distribution data gaps for several taxa going forward.  

Based on the insights we obtained from our systematic review, we propose a set of 

SDM recommendations tailored to insular species and environments.  

  



 
 

2.1 Introduction 

As anthropogenic global environmental change progresses, suitable habitats for 

many species are shrinking, becoming fragmented, or being lost entirely (Kerr et al., 

2007; Thurman et al., 2020), resulting in the loss of biodiversity at multiple spatial 

scales (Cardinale et al., 2012). Nowhere is this loss more apparent than on islands, 

systems that have suffered large numbers of recorded extinctions (Whittaker et al., 

2017, 2023; Russell & Kueffer, 2019; Matthews & Triantis, 2021). Species persistence 

often depends on keeping pace with environmental change, primarily through 

dispersal and range-shifts (Bulgarella et al., 2014). As such, self-contained 

environments such as islands, which provide limited opportunities for species 

(especially endemics) to shift their range, are particularly vulnerable. Therefore, 

accurately mapping island species distributions is crucial for anticipating the impact 

of environmental change on insular environments (Porfirio et al., 2016; Ellis-Soto et 

al., 2017; Matthews & Triantis, 2021). 

Ecological niche models, also termed species distribution models (hereafter SDMs), 

have become a widely used methodological tool for providing this information 

(Elith & Leathwick, 2009). SDMs use species occurrence data in combination with 

corresponding environmental covariates to identify potentially suitable sites for 

species in both native and novel ranges and across different temporal scales 

(Franklin, 2013; Guisan et al., 2013; Robinson et al., 2017). The flexibility of SDM 



 
 

approaches allows for a wide range of applications, including assessments of the 

ecological impacts of climate and land-use changes, and biological invasions 

(Parmesan & Yohe, 2003; Guisan & Thuiller, 2005; Faleiro et al., 2013): all important 

drivers of extinction on islands (Veitch & Clout, 2002; Ricketts et al., 2005; Russell & 

Kueffer, 2019; Whittaker et al., 2023). 

Even though conservation efforts focused on island biodiversity may greatly benefit 

from the ecological information generated by SDMs, research to-date on SDMs has 

tended to focus on species with broad ranges and for which there is a large 

amount of occurrence information, corresponding typically to continental species 

(Hickisch et al., 2019, Leroy, 2022). Historically, there have been fewer applications 

of SDMs in island environments and for island species, although recently this 

situation has started to change (e.g., Price et al., 2012; Vergilio et al., 2016; Spiers et 

al., 2019; Goedecke et al., 2020; Barlow et al., 2021). The increasing implementation 

of SDMs in island studies provides an opportunity for evaluating how two key 

considerations for developing robust models for islands species have been 

handled: data limitations (Pearson et al., 2007; Lannuzel et al., 2021) and the 

restricted spatial context of island environments (Kier et al., 2009; Whittaker et al., 

2023). 

Data limitations in the study of island species arise i) due to the inherent small 

ranges of many insular species, particularly single island endemics (Fernández-



 
 

Mazuecos et al., 2014; Chiatante, 2022); ii) as a consequence of numerous 

anthropogenic disturbances that have severely reduced already small island 

populations (Helmstetter et al., 2021; Matthews et al., 2022; Nogué et al., 2021); 

and/or iii) simply because many islands are remote and inaccessible, hampering 

detailed biological surveys (i.e., a lack of extensive sample data; Ando, 2019). 

Regardless of the origin (incomplete sampling or naturally restricted distributions), 

these distribution data limitations increase model uncertainties in SDM 

applications, a particularly problematic issue given that many SDM modelling 

techniques are known to be sensitive to small sample sizes (Stockwell & Peterson, 

2002; Hernadez et al., 2006; Wisz et al., 2008) and the issue of class imbalance (i.e., 

a disproportionate number of absences/pseudoabsences in the data; Longadge et 

al., 2013; Robinson et al., 2017). In addition, small sample sizes may lead to 

statistical overfitting, especially when used in combination with a 

disproportionately large number of predictors in relation to sample size (Breiner et 

al., 2015), compromising the transferability of model predictions in space and time, 

a key aspect in many SDM studies (Heinänen, et al., 2012). 

Additional important considerations regarding the application of SDMs in an island 

context are that study areas i) are spatially distinct units surrounded by a non-

permeable matrix for many organisms (i.e., water; Matthews, 2021), and ii) often 

contain high environmental heterogeneity across a relatively small area (Barajas-



 
 

Barbosa et al., 2020). Consequently, the ecological processes that underpin island 

species distributions typically operate at relatively smaller scales, for which finer 

scale habitat descriptors such as topoclimatic, land cover and terrain variables are 

needed to increase the accuracy of predictions (Meyer & Thuiller, 2006; Lanuzel et 

al., 2021). However, SDM studies frequently rely purely on broad-scale climatic 

variables. These macroclimatic variables are unlikely to be able to explain the fine-

scale variation in island species distributions, particularly for small-ranged species 

such as insular endemics (Heinänen et al., 2012; Turvey et al., 2020; Segal et al., 

2021). The increasing availability of fine-grained predictors such as remotely sensed 

environmental data, landcover, and topographically derived variables, particularly 

for certain well studied archipelagos, present a means to increase the utility of 

SDMs for island species (Longcore et al., 2018; Hansen et al., 2019; Lannuzel et al., 

2021; Hanz et al., 2023). 

Another potential issue related to studying relatively small and bounded areas is 

the exacerbated risk of environmental space truncation, whereby studies only 

include occurrence and environmental data from the insular space in the models, 

even though the target species may be also found outside of the focal islands (i.e., 

non-endemic native and non-native species), increasing the uncertainty of 

predictions relating to species’ responses to drivers of change (Bush et al., 2018; 

Rosenblad et al., 2019).  



 
 

In the context of the issues discussed above, in this study we review the 

implementation of SDMs on islands, with a particular focus on analysing data 

limitations, with the aim of identifying key methodological considerations to deal 

with data constraints and the distinctive features of island environments/species. 

Given the data limitations in island SDM research, we explore whether the Global 

Biodiversity Information Facility database (GBIF, 2022) – a primary data source in 

SDM studies more broadly but less utilised in island studies – provides adequate 

data at the island level to address knowledge gaps and minimise geographical and 

taxonomical biases in island SDM studies. 

2.2 Materials and Methods 

2.2.1 Literature search 

To obtain a general overview of SDM implementation on island systems, we 

conducted a comprehensive literature search for studies published over the last 

two decades. The bibliographic search was performed using the Scopus 

(https://www.scopus.com) and Google Scholar (https://scholar.google.com) 

databases. Papers published between 1999 (first SDM publication recorded 

fulfilling the selection criteria) and the cut-off date 30 September 2021 with the 

terms [“SDM” OR “Species Distribution Model*”] AND [“island”] in the title, 

keywords or throughout the paper were included. To be included in our review, a 

paper needed to focus exclusively on true marine islands (i.e., islands of land in the 



 
 

sea; Matthews, 2021). We considered both methodological and empirical studies if 

SDMs were employed as part of the methodological framework. Studies focused on 

microorganisms (e.g., parasitic/pathogenic fungi, protozoa, etc.) were excluded 

from the analysis as they tend to involve different types of predictor variables 

compared to analyses of macroorganisms. We systematically assessed studies for 

relevant aspects of SDM fitting, including sample size, data sources, study bias, 

model building, model overfitting, and environmental space truncation. 

Additionally, we evaluated the GBIF database – including the spatial distribution of 

island data in GBIF for different taxa – to assess its suitability for filling knowledge 

gaps in island SDM research. Geographic data were mapped using QGIS (version 

3.22.10; QGIS Development Team, 2022). 

2.2.2 Response variable related considerations in island SDMs 

Sample size 

A frequently considered minimum threshold for SDM analyses is ≥20 records per 

species prediction (Santini et al., 2021; van Proosdij et al., 2015; Wisz et al., 2008), 

although this number is also a function of the number of predictors (discussed 

below). Based on this threshold, we categorised the sample size of the modelled 

species in the sourced papers as follows: species datasets with ≤5 records were 

defined as ‘very small’, datasets with [6-20] records were defined as ‘small’, those 

with [21-100] were defined as ‘moderate’, and those with >100 records were 



 
 

classified as ‘large’. In addition, to analyse data availability per species distribution 

range type (‘chorotype’), we categorised the modelled island species as endemic 

(endemic to the specific island / archipelago being studied), non-endemic native 

(i.e., naturally present on an archipelago but also the mainland), or non-native (i.e., 

introduced to an archipelago by humans). This categorisation was undertaken 

based on information provided in the reviewed papers. 

2.2.3 Predictor variable related considerations in island SDMs  

Study grain 

To evaluate if the choice of study grain was related to the (1) analysed predictor 

variable type, (2) study aim, or (3) taxonomic group, we recorded the study grain of 

the predictors in the sourced studies and assessed its association with the 

previously mentioned factors. 

We identified 5 types of predictor variable used in SDM analyses: 1) bioclimatic 

variables from global datasets (Globclim); 2) bioclimatic variables from regional 

climate models (Regclim); 3) topography-related variables (DEM); 4) land cover 

variables (LC; including soils/geology and vegetation cover); and 5) biotic 

interaction information (Biotic). For studies with multiple variable types, all 

corresponding categories were assigned. 



 
 

We assigned to each analysed study one of the 10 categories of study aim 

identified: 1) method testing = MT; 2) species geographical distribution = SGR; 3) 

evaluation of richness patterns = RP; 4) protected area management = PAM; 5) 

applied restoration efforts = RST; 6) phylogeography = PHY; and assessing the 

impact of anthropogenic drivers of environmental change, including, 7) climate 

change = CC, 8) invasive non-native species = IAS, 9) land use change = LUC; and 

10) the synergistic interactions between any of the previous three = SYN. 

For each study, we classified the modelled taxon as one of the following: 1) 

anurans, 2) arthropods, 3) birds, 4) fungi, 5) mammals, 6) non-arthropod 

invertebrates (i.e., snails and land worms), 7) reptiles 8), vascular plants and 9) non-

vascular plants. Studies analysing more than one taxon were assigned multiple 

taxonomic categories accordingly. 

Environmental space truncation 

To identify potential cases of environmental space truncation (i.e., where an island 

species distribution model did not utilise mainland occurrence data, where 

available), we analysed the geographic extent of the occurrence points used to fit 

the SDM by species’ chorotype (i.e., endemic, non-endemic native, or non-native). 

That is, we distinguished between studies where (i) the occurrence data points were 

obtained exclusively from the island study area, which were categorised as 

localised, and hence no strategy was implemented to handle environmental space 



 
 

truncation; and ii) additional occurrence points to the island study area were 

obtained, which were categorised as widespread (e.g., a non-endemic native to an 

island modelled with data from both the insular and non-insular ranges). This 

categorisation was undertaken solely using information provided in the reviewed 

papers (i.e., we did not independently assess species distributions to determine the 

geographic extent of the occurrence points). For certain studies, particularly those 

that analysed large numbers of species and islands, this information was not always 

clear, and in these cases, we made an informed judgement as to the correct 

category. 

2.2.4 Model building considerations in island SDM studies 

To assess the implications of model choice in relation to sample size, we noted, for 

each paper where data existed, sample size, the type of occurrence data used 

(presence, absences or pseudo-absences), the modelling method employed (e.g., 

Generalised linear models, Maxent, etc.), and the type of approach selected for 

modelling (single vs ensemble). 

Modelling technique uncertainty 

To assess the implications of model choice in relation to sample size, we noted, for 

each paper where data existed, sample size, the type of occurrence data used 

(presence, absences or pseudo-absences), the modelling method employed (e.g., 



 
 

Generalised linear models, Maxent, etc.), and the type of approach selected for 

modelling (single vs ensemble). 

Model complexity: overfitting 

We used the general rule of thumb regarding SDM overfitting: the number of 

presences should be 10 times larger than the number of predictors used for 

modelling (Franklin, 2013; Vaughan & Ormerod, 2003). For each study and model 

fit, we noted all studies that were potentially affected by overfitting, by calculating 

the ratio of the number of records per modelled species to the number of 

predictors. For cases which were potentially affected by overfitting (i.e., those where 

the ratio was < 10), we recorded whether or not any approaches had been applied 

to mitigate this issue. Such approaches can include varying the level of 

regularization, which controls model complexity (Radosavljevic &Anderson 2013), 

modification of beta multipliers (in the context of maxent; Elith et al., 2010), or 

post-modelling variable removal based on their contribution (e.g., Jacknife-

partition; Girini et al., 2017). 

2.2.5 Assessing the potential of GBIF for filling island SDM knowledge gaps 

Data Sources and Geographic Coverage 

To identify the geographical coverage of island distribution data, and thus identify 

potential knowledge gaps, for each study, we categorised their corresponding 

occurrence data sources as: (1) citizen science, (2) directly from GBIF, (3) herbaria, 



 
 

(4) museum, (5) previously published literature, (6) primary field data collection (i.e., 

field data collected as part of a study), (7) regional occurrence databases (e.g., 

ATLANTIS from the Azores), (8) remote sensing (i.e., satellite and aerial imagery 

data), and (9) specialised datasets (e.g., focusing on a specific group of species, 

such as economically important species, non-natives, etc.).  

To analyse the geographic coverage of studies, study regions were categorised 

based on the bioregionalization of coastal and shelf areas by Spalding et al. (2007) 

that comprises: (1) Arctic, (2) Temperate Northern Atlantic, (3) Temperate Northern 

Pacific, (4) Tropical Atlantic, (5) Western Indo-Pacific, (6) Central Indo-Pacific, (7) 

Eastern Indo-Pacific, (8) Tropical Eastern-Pacific, (9) Temperate South America, (10) 

Temperate Southern Africa, (11) Temperate Australasia, and (12) Southern Ocean. 

Assessing the extent to which GBIF data can fill island SDM data gaps 

We used the "Rgbif" R package (Chamberlain et al., 2022) to extract species 

occurrences from the GBIF database within global island polygons (sourced from: 

Geodata R package; Hijmans et al., 2023). The assessment included islands ranging 

in size from 0.1 to 786,000 km² (threshold reference: Weigelt et al., 2013; 

Fernandez-Palacios et al., 2021). We selected all taxa at the species level under the 

"accepted name" category and assigned each species to one of the nine taxonomic 

categories listed above. Subsequently, we quantified the number of records per 

species within each island polygon. We preferred the use of polygons over 



 
 

counting points within a grid to avoid making assumptions about the optimal 

spatial resolution to use.  

To evaluate the appropriateness of GBIF data for fitting island SDMs, we developed 

two metrics. First, the "island modellability index" (M index) was calculated as the 

ratio between the number of species with at least 20 records (i.e., occurrence 

points) of a given taxon and the total number of species recorded in that 

taxonomic group within an island. The M index ranges from 0 (all recorded species 

of a taxon on an island have <20 records) to 1 (all recorded species of a taxon on 

an island have ≥ 20 records). This index provides a measure of data availability for 

a taxon as a whole, regardless of taxon richness. 

The second metric is the absolute number of species (within a given taxon) with at 

least 20 records per island; the number of species that meet the minimum sample 

size threshold commonly reported in the SDM literature (Santini et al., 2021; Wisz 

et al., 2008). 

  



 
 

2.3 Results  

2.3.1 Literature search 

Through the literature search, we sourced 224 island SDM studies that passed our 

search criteria. Details of the sourced studies are provided in Appendix S2.1. 

2.3.2 Response variable related considerations in island SDMs 

Sample size  

Across the 224 reviewed studies, we obtained 3043 species-occurrence datasets, 

corresponding to 2787 species (endemics=1327; non-endemic natives=1480, and 

non-natives=236; note these numbers do not sum to 2787 as some species were 

included in more than one dataset). Of these, roughly half of the occurrence 

datasets were classified as ‘very small’ (<5 records: n=650/3088; 21%) or ‘small’ 

(from 6 to 20 records: n=964/3088; 31%), with relatively fewer classified as 

‘moderate’ (21-100 records: n=887/3088; 29%), or large (>100 records: 

n=587/3088; 19%). Most of the ‘very small’ to ‘small’ occurrence datasets (i.e., 

occurrence data for a single species) corresponded to endemic species 

(n=934/1614; 58%), followed by non-endemic native species (n=666/1614; 41%) 

and non-native species (n=14/1614; 1%). Conversely, ‘large’ datasets rarely related 

to endemic species (n=126/1327; 9%) and were most common for non-native 

species (n=176/236; 75%). 



 
 

2.3.3 Predictor variable considerations in island SDM studies 

Study Grain 

Predictor Type – Across the sourced studies, the grain size of the predictor 

variables used in SDMs varied from 1.5 m to 10 km. The majority of studies that 

reported grain size data (n=101/216; 47%) were developed at a 1 km grid scale 

(Fig. 2.1a). This preference can be attributed to the predominant use of 'Globclim' 

predictors, particularly the WorldClim global dataset, the finest resolution of which 

is 1 km (Fig. 2.1a -b), accounting for 92% of studies using 'Globclim' predictors. 

Finer scale resolutions (i.e., between 1.5 m and 500 m) were utilised in 30% of 

studies (n=65/216), with DEM variables being most commonly employed as 

predictors (n=40/65; 61%; Fig. 2.1a). These DEM variables were generally combined 

with fine-grained 'Regclim' predictors (n=34/40; Fig. 2.1a-b), rather than 'Globclim' 

(downscaled) variables, which were rarely used at finer resolutions (n=10/65; 15%; 

Fig. 2.1a-b). Landcover predictors (n=29/65; 45%) were also frequently used at 

resolutions below 500 m (Fig. 2.1b). Studies that used a combination of coarse 

climatic and fine non-climatic predictors resampled the predictors to a 1 km grain 

size (Fig. 2.1b). 

Coarser predictor grain sizes of 2-5 km were less common, with only 36 studies 

(n=36/216; 17%) reporting their use. Among these studies, 'Globclim' predictors 

alone were predominantly utilised (n=27/36; 75%; Fig. 2.1a). The coarsest 



 
 

resolution of 10 km was employed in 13 studies (n=13/216; 5%), with 'Globclim' 

predictors commonly used (n=10/13; 78%), often in combination with non-climatic 

predictors (n=8/10). For further details, please refer to Appendix S2.2. 

Study Aim and Grain Size – We found that most island SDM studies were 

conducted to assess climate change impacts (n = 41/224; 18%), followed by species 

geographical distributions (n = 35/224; 16%), phylogeography (n=35/224; 16%), 

invasive species (n=28/224; 13%) and the synergistic effects of environmental 

drivers (n=27/224; 12%). Nineteen papers (8%) evaluated methodological 

considerations of SDM applications on islands, with few studies in the remaining 

categories: richness patterns (n=13/224; 6%), protected area management 

(n=9/224; 4%), restoration (n=8/224; 3.5%), and assessing the impact of land use 

change (n=8/224; 3.5%) (Fig 2.1c). For those studies with study grain data available, 

we identified that finer predictor grain sizes (<500m) were generally used in island 

SDM studies focused on land use change (n=6/7; 85%), restoration (n=5/6; 83%) 

and method testing (n=14/17; 82%) (Fig. 2.1d). In contrast, studies that were more 

commonly associated with predictors measured at the 1km grain size were those 

focused on phylogeography (n=32/35; 91%), the synergistic effects of global 

environmental change drivers, (n=21/25; 84%), protected area management 

(n=7/9; 78%), invasive species (n=19/27; 70%), climate change impacts (n=28/41; 



 
 

68%), and species geographical distributions (n=14/35; 60%) (Fig 2.1d). Further 

details are provided in Appendix S2.2 

Taxa and Grain Size – Vascular plants were the most studied taxon in island SDM 

analyses (n=116/224; 52%), followed by mammals (n=31/224; 14%), and reptiles, 

arthropods and birds (n=26/224; each representing 12%). Anurans (n=8/224; 4%), 

non-vascular plants (n=7/224; 3%), non-arthropod invertebrates (n=5/224; 2%) and 

fungi (n=2/224; 0.9%) were all studied to a lesser degree (Fig. 2.1e). We could not 

identify clear patterns regarding predictor variable resolution selection by taxa (Fig. 

2.1f). Further details are provided in Appendix S2.2 



 
 

 

Figure 2. 1 Predictor variable resolution within published island SDM studies. The 
left column shows the absolute number of studies by each category analysed at 
each recorded resolution, while the right column shows the percentage of studies. 
Study aims cover climate change (CC), invasive alien species (IAS), land use change 
(LUC), synergy of extinction drivers (SYN), method testing (MT), protected areas 
management (PAM), phylogeographic (PHY), richness patterns (RP), restoration 
(RST), and species geographical distributions (SHR). Finer resolutions (i.e., predictor 
variable grain size) are represented in shades of red, while coarser resolutions are 
depicted in shades of blue. 
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Environmental space truncation 

Regarding the area of a species' distribution for which occurrence points were 

obtained, among the models of the 1480 non-endemic native species models, 90% 

exclusively utilized data from the insular part of the range (i.e., localised data; 

n=1327/1480), with the remaining 10% using widespread occurrence and 

environmental data both from the insular and the non-insular parts of the 

distribution (i.e., here insular and non-insular refers to the focal island(s) being 

studied, the ‘non-insular’ parts of the distribution could also be on other islands 

that were not studied, for example, in a different archipelago). A considerable 

proportion of the 236 non-native species models were fitted only using data from 

the insular environmental space (n=101/236; 43%); one study relied on 

complementary physiological tolerance experiments to contrast the results of 

SDMs fitted with data from the insular environmental space.  

 

While endemic species are not expected to have occurrence data from areas 

outside of the insular range, we found one study using additional information from 

the environmental space of the introduced range of natural island endemics (i.e., 

island endemics prior to anthropogenic introductions). 

  



 
 

2.3.4 Model building considerations in island SDM studies 

Modelling technique uncertainty 

Both sample size and the nature of the input data (Presence only / Presence–

absence) influenced algorithm selection in the sourced island SDM studies. Overall, 

a low proportion of studies included information on true species absences 

(n=36/224; 16%), and the use of true absence data increased with the number of 

occurrence points analysed (supplementary S2). The use of a single-modelling 

technique was the most common approach selected for modelling (n = 176/224; 

79%). Of which, a marked preference for Maxent as a stand-alone method was 

observed (n=135/176; 77%). As datasets became smaller, Maxent was more 

frequently used as the sole analytical method. It was used in 83% (n=539/650) of 

model fits based on ‘very small’ datasets, but only 45% (n= 264/587) of those 

based on ‘large’ datasets. The use of multiple modelling techniques (model 

ensembles) was less common than single model applications, being used in 21% of 

papers (n=48/224). The methods most frequently used in ensembles were 

Generalised Linear Models (GLM; n=38/48; 79%), Random Forest (RF; n= 37/48; 

77%), Boosted Regression Trees (BRT; n=31/48; 64%) and Maxent (n=30/48; 62%). 

It is noteworthy that all studies with ‘very small’ to ‘moderate’ sample sizes 

included in their ensembles at least one data hungry modelling method (i.e., those 

that perform better with >200 samples; van der Ploeg et al., 2014) such as RF, 



 
 

Artificial Neural Networks (ANN), multivariate adaptive regression splines (MARS) 

and Support Vector Machines (SVM). More detail on all the algorithms used in each 

study is provided in Appendix S2.2. 

Model complexity: overfitting  

We found 161 (n=161/224; 72%) papers with sufficient information for an 

assessment of model overfitting (number occurrence points and predictors 

utilised). For modelled species with low numbers of observations, we observed a 

general and concerning pattern: the smaller the sample sizes used for modelling 

species distributions, the less attention was seemingly paid to overfitting. For 

example, none of the four studies that used the smallest number of occurrence 

records for modelling (n=3) reported the use of a method for addressing 

overfitting, and all used a relatively large number of predictors (8– 24). 53% 

(n=47/89) of the studies that analysed between 4-100 occurrence records per 

modelled species did not report the use of any form of overfitting reduction 

technique, and used two to three times more predictors than the recommended 

ratio; only 24% (n=21/89) used the recommended ratio of predictors in relation to 

the sample size. The most common method for reducing overfitting was the 

reduction of the number of variables through Jack-knife partitioning that allowed 

for the identification of variables with higher contribution to the models (n = 17/89, 

19%). The other two methods applied in the reviewed literature were ensembles of 



 
 

small models (n = 2/89; 2%) and modification of beta/regularization multipliers (in 

the context of Maxent) during model calibration (n = 2/89; 2%). For all the 

modelled species with >100 records (n=69), the number of variables was 

appropriate in relation to the number of observations. Further information relating 

to model overfitting is provided in Appendix S2.2 

2.3.5 Assessing the potential of GBIF for filling island SDM knowledge gaps 

Data sources and geographical coverage 

By analysing the origin of data used for fitting SDMs on islands, we identified that a 

large proportion of the studies were developed with data newly collected from the 

field (n=102/224; 46%), both when used as a single source of data (n=53/102; 52%) 

and combined with other datasets (n=49/102; 48%). This was followed by 

information sourced from literature (n=68/224; 30.3%), regional databases 

(n=61/224; 27.2%), and the GBIF dataset (n=48/224; 21.4%). Other sources included 

herbaria (n=26/224; 11.6%) and museum collections (n=17/224; 7.6%), remote 

sensing imagery (n=16/224; 7.1%), specialised databases (n=12/224; 5.3%) and 

citizen science (n=8/224; 3.6%).   

We identified geographical bias in published SDM studies using data from the field, 

literature and regional datasets (Fig. 2.2a). SDM studies using these data sources 

are concentrated in temperate islands regions in the Northern Atlantic, Northern 



 
 

Pacific and Australasia, with fewer examples from islands with tropical affinities 

from the Central and Western Indo Pacific (e.g., Madagascar, New Guinea, and Sri 

Lanka). (Fig. 2.2a).  The remaining tropical island regions were poorly represented 

(Fig. 2.2a). GBIF, which ranked as the fourth most utilised data source, is a more 

commonly used data source in certain tropical islands (e.g., New Guinea, 

Philippines, several islands from Eastern Indo Pacific and the tropical Atlantic; 

Fig.2.2b). 

  



 
 

 

  

Figure 2. 2 Spatial distribution of the data sources of island SDM studies. In (a) dotted rings 
(N field) indicate the number of studies using primary fieldwork data, and solid rings show 
the total number of studies. Black dots indicate the use of regional databases with species 
occurrences; coloured dots indicate the number of studies using published data from the 
literature. In (b) coloured dots indicate the number of studies analysing GBIF data. Islands 
points in the eastern Pacific reporting one study with GBIF belong to a single multi-island 
assessment. Note that a number of studies did not identify the specific island(s) studied 
(simply the insular region) – in these cases we used the centroids of the study area. 



 
 

Assessing the extent to which GBIF data can fill island SDM data gaps 

The final analysed GBIF island occurrence database comprised 12,557,748 

occurrences across multiple species (n=106,858) from 4060 islands. In this section, 

for ease we focus on islands falling within the top 10th percentile (M > 0.09) of the 

M Index (i.e., for a given taxon, the number of species with ≥20 records divided by 

the total number of species recorded on the island), and within the top 10th 

percentile (> 5 species) in relation to the number of species with at least 20 

occurrence records per island. However, the full range of these metrics is displayed 

in Fig. 2.3. Table 1 summarises the results of our two metrics, which were calculated 

at the island level and for each taxon individually: the M index and the absolute 

number of species with ≥20 records. 

Overall, our analysis revealed that birds were the best represented taxon in the 

GBIF island data, as indicated by both of our metrics (Table 2.1, Fig. 2.3e-f). Island 

anurans and mammals also showed significant availability of data per species, with 

numerous islands across all regions showing M index values > 0.09 (Table 1, Fig. 

2.3a-b & g-h). Reptiles exhibited islands with M index values >0.09 primarily in 

tropical regions, while representation in temperate regions was relatively low, which 

is to be expected given the ecology of this taxon (Fig. 2.3o-p). 

On the other hand, insular arthropods, fungi, non-arthropod invertebrates, non-

vascular plants, and vascular plants were poorly represented in the GBIF dataset at 



 
 

a global scale (Table 2.1 Fig. 2.3). However, there were numerous islands for non-

vascular and vascular plants with representative occurrence data (≥20 records per 

species) concentrated in understudied temperate regions (Fig. 2.3k-l & q-r). 

It is worth noting that the number of species with ≥20 records per island was a 

particularly informative metric for birds. For vascular plants and arthropods, which 

ranked second and third for this metric, the high number of species with relatively 

large occurrence record datasets can be attributed to their overall higher species 

richness. A higher number of species per island, for a given taxon, increases the 

likelihood of there being a larger number of species with numerous occurrence 

records, all else being equal. For more detailed information on the results related to 

this metric, see Appendix S2.2. 

  



 
 

Table 2.1 Summary of M Index Values [number of spp. with ≥20 records / total 
number of spp. recorded at the island level] and Total Number of spp. with ≥20 
records across taxonomic groups in GBIF Island Data. 

The three highest-ranked percentages for each metric are marked in bold. *10th 
percentile value of the M index 
 

Taxonomic 
Group 

Mean 
number 

of 
records 
per spp. 

in 
GBIF 

island 
data 

Total number 
of islands 
with GBIF 

Data 

Number 
of islands 

with 
M Index 
>0.09* 

Percentage 
of islands 

with 
M Index 
>0.09* 

Number of 
islands with 
≥5 spp. with 
at least 20 

records 

Percentage of 
islands with ≥5 

spp. with at 
least 20 
records 

Birds 33 2452 639 26% 677 27.6% 

Anurans 9 929 138 14.8% 20 2.1% 

Mammals 15 1571 249 15.8% 50 3.2% 

Reptiles 9 549 57 10.4% 5 0.9% 
Arthropods 8 1817 20 1.1% 138 7.5% 

Non-
arthropod 

invertebrates 
4 1136 33 3% 14 1.2% 

Non-vascular 
plants 7 1069 33 3% 43 

 4% 

Vascular 
plants 5 2275 132 5.8% 266 11.7% 

Fungi 4 1171 75 6.4% 35 0.5% 
 



 
 

1 

Figure 2. 3 Spatial distribution of the island modellability Index (M index, as derived from GBIF data) divided by taxa: Anurans (a-b), Arthropods (c-
d), Birds (e-f), Mammals (g-h), Fungi (i-j), Non-Vascular Plants (k-l), Non-Arthropod Invertebrates (m-n), Reptiles (o-p), and Vascular Plants (q-r). Blue 
shades in boxplots indicate temperate environments, yellow to red shades indicate tropical environments. In the boxplots, the dashed line represents 
the 25th percentile of the M index, and the dotted lines represent the 10th percentile. 



 
 

2.4 Discussion 2 

Species distribution models (SDMs) can serve as a valuable methodological tool, 3 

offering insights into the distribution patterns of island species. This information is 4 

crucial for designing effective conservation strategies for this unique yet highly 5 

threatened segment of global biodiversity (Kier et al., 2009; Whittaker et al., 2017). 6 

Despite the distinct features of island environments and species, and the associated 7 

considerations for modelling the distributions of the latter, there has been a 8 

notable absence of reviews of island SDMs, particularly those focused on 9 

identifying potential sources of uncertainty and examples of best practice. 10 

In light of this gap, and drawing from the results of our literature review, in this 11 

section we first present a set of recommendations that future island SDM studies 12 

should consider. We conclude by discussing future prospects for island SDM 13 

studies, emphasising the potential of the Global Biodiversity Information Facility 14 

(GBIF) database in advancing island SDM research. 15 

 16 

2.4.1 The selection of relevant predictors at an appropriate analytical scale 17 
maximises the utility of limited occurrence data 18 

It has been consistently suggested in the SDM literature that an occurrence dataset 19 

should have a minimum of 20 records per species, ideally exceeding 50, for robust 20 

model predictions (Santini et al., 2021; Wisz et al., 2008). However, our findings 21 



 
 

indicate that more than half of the analysed island SDM datasets fall below this 22 

recommended threshold (i.e., n < 20). Small sample sizes in island analyses may 23 

result from incomplete sampling due to the inherent inaccessibility of islands, or 24 

the presence of species occurring in low numbers, including endemics with 25 

naturally narrow ranges and island species whose populations have been reduced 26 

by human activities (Fernandez-Palacios et al., 2021; Helmstetter et al., 2021; 27 

Matthews et al., 2022; Nogué et al., 2021). This limitation is arguably the most 28 

significant factor hindering the proper implementation of island SDMs. 29 

Compounding this issue, the use of coarse-grained predictors may further diminish 30 

sample sizes, especially for species with narrow and clustered distribution patterns. 31 

For example, at the extreme, if very coarse-grained predictors are used to model a 32 

species with a very narrow and clumped distribution, the species may only occur in 33 

a single grid cell. In cases such as this, the predictors will be unlikely to adequately 34 

capture the environmental variation at a relevant scale for meaningful SDMs. In 35 

addition, this results in the loss of occurrence information, data that are often 36 

already scarce.  37 

Our review identifies a prevalent overreliance on coarse climatic variables in island 38 

SDMs, possibly influenced by the current SDM guidelines, which emphasise the 39 

importance of climate as a strong predictor of species distributions at continental 40 

scales (Pearson & Dawson, 2003; Gardner et al., 2019). However, islands typically 41 



 
 

exhibit distinct environmental conditions, such as limited land area, high isolation, 42 

and significant topographical variation over relatively small areas, especially for 43 

volcanic oceanic islands (Barajas-Barbosa et al., 2020). As a result, island species, 44 

particularly from certain taxa, often have highly specific habitat requirements 45 

(Whittaker et al., 2017, 2023). For example, evidence suggests that the interaction 46 

between island plants and their environment primarily occurs at fine scales 47 

(Bellamy et al., 2013; Fernandez-Palacios et al., 2021; Whittaker & Fernandez-48 

Palacios., 2007). Therefore, it is crucial that researchers select predictors (and 49 

predictor variable grain sizes) that reflect these highly specific microenvironmental 50 

variations to accurately represent island species distributions. This ensures that 51 

occurrence points within the ranges of highly specialised or restricted species cover 52 

a broad a range of environmental conditions as possible. Consequently, it enhances 53 

the environmental data available for constructing SDMs and potentially optimises 54 

the utilisation of (often limited) occurrence information. 55 

 56 

2.4.2 Island SDM analyses should avoid the default use of coarse-scale climatic 57 
predictor variables 58 

 Recent advancements in downscaling climatic variables (Khosravi et al., 2016) offer 59 

a potential solution for incorporating high-resolution environmental descriptors 60 

into island SDMs. However, these methods are not widely adopted in this field, 61 

likely due to their demand for precise remotely sensed and topographic data, along 62 



 
 

with regional climatic models, to make reliable predictions (e.g., the CIELO model 63 

for the Azores archipelago: Azevedo, 1996; Baker et al., 2017). While high-64 

resolution remotely sensed and topographic data are increasingly accessible (e.g., 65 

ASTER DEM, Abrams et al., 2020), high-quality open-access regional climate data 66 

remain unavailable for most island systems. Consequently, island studies must 67 

choose between using either a) climatic proxies derived from topographic, land 68 

cover, or remotely sensed information (e.g., Lannuzel et al., 2022); or b) downscaled 69 

global climate data, even though the latter approach comes with higher uncertainty 70 

(Bazzicheto et al., 2021; Hanz et al., 2023). Both of these approaches hold promise 71 

for islands lacking regional climate datasets, but additional research is required to 72 

assess the associated uncertainty and relevance of downscaled variables for 73 

studying species distributions in island environments, given the novelty of this 74 

approach.  75 

Acknowledging the challenges associated with obtaining accurate environmental 76 

datasets describing microhabitats (Fitzpatrick & Ellison, 2018), future island SDM 77 

studies should refrain from the default use of coarse-grained climatic predictors. 78 

Instead, a comprehensive search for finer-resolution variables tailored to the study 79 

area should be undertaken. Importantly, the use of high-resolution predictor 80 

variables will require corresponding occurrence data at a closely aligned resolution 81 

(Moudrý & Šímová, 2012).  82 



 
 

The use of coarse-scale occurrence data can also influence SDMs by linking species 83 

with unsuitable environmental conditions. In island environments, two key factors 84 

can significantly worsen SDM performance due to inaccuracies resulting from 85 

occurrence points being sampled outside of a species’ preferred environments 86 

(Gabor et al., 2023): 1) oceanic islands frequently exhibit diverse and highly variable 87 

terrain within small areas, resulting in sharp variations in environmental conditions 88 

over short distances (Hanz et al., 2023); and 2) many species inhabiting islands, 89 

particularly in certain taxa (e.g., plants), have very narrow niches (Rosenblad et al., 90 

2019). 91 

As a final consideration, once the set of potential variables is obtained, and is then 92 

paired with a sufficient sample size of species occurrence data, the final selection of 93 

predictor variables should be informed by existing knowledge or at least theoretical 94 

justification (Araujo et al., 2019). By considering factors like species ecology and the 95 

specific scientific question, researchers can make informed decisions about the 96 

most suitable predictors and their grain of analysis. 97 

 98 

2.4.3 Selection of an appropriate extent to capture the entire environmental 99 
range of island species: a crucial consideration for model projections 100 

Training a SDM on only a portion of a species' ecological niche can lead to 101 

problems when predicting into new climates or geographical areas (Guillera-Arroita 102 

et al., 2015; Peterson et al., 2011). By not encompassing the entire environmental 103 



 
 

range of a species, valuable information may be overlooked, and the model may 104 

make inaccurate extrapolations into environmental spaces where data are lacking. 105 

We discovered that a majority of studies of non-endemic native species, and a 106 

significant portion of assessments of non-native species, only used data from the 107 

focal-insular environmental space. However, these species, by definition, have 108 

larger distributions than the focal island(s) they inhabit. Consequently, by solely 109 

utilising data from the limited island environment, the SDMs may be unable to 110 

accurately predict potential range expansions, contractions, or shifts that could 111 

occur in new locations or under different climatic scenarios (Thuiller et al., 2004; 112 

Pang et al., 2022).  113 

Considering our finding that the impacts of climate change and invasive species 114 

have been two of the most extensively explored topics in the island SDM literature, 115 

more focus on this issue is required in future island SDM applications that involve 116 

the spatial of temporal projection of models. 117 

 118 

2.4.4 Mitigating model uncertainty by selecting appropriate methods for small 119 
sample sizes and presence-only data  120 

In line with the recommendations of Araujo et al. (2019) for the optimal 121 

implementation of Species Distribution Models (SDMs), addressing uncertainty 122 

related to the choice of modelling technique is an essential consideration. While 123 

using an ensemble of diverse methods has been proposed to reduce uncertainty 124 



 
 

(Araújo & New, 2007; Dormann et al., 2018; Araujo et al., 2019), recent evidence 125 

suggests that including inappropriate models in an ensemble can compromise 126 

performance, potentially being less effective than employing a single technique 127 

(Valavi et al., 2021). Notably, our literature review revealed that model ensembles 128 

fitted with small occurrence datasets often included at least one data-hungry 129 

method (e.g., ANN, RF, MARS, SVM) known to perform poorly with sample sizes 130 

fewer than 200 (Wisz et al., 2008; Mateo et al., 2010). Furthermore, our findings 131 

indicate that most published island SDM analyses lack empirical absence data, with 132 

researchers opting for background or pseudo-absence points (PA) as substitutes. 133 

This practice is known to further reduce the performance of data-hungry modelling 134 

approaches (Akbani et al., 2004; Robinson et al., 2018), raising concerns about the 135 

reliability of model ensembles that use such methods in island SDM analyses. 136 

Most of the reviewed studies that employed only one modelling approach 137 

exhibited a clear preference for Maxent, a presence-only method widely recognised 138 

for its high performance with small sample sizes (van Proosdij et al., 2016). Whether 139 

implemented individually or as part of an ensemble, traditional statistical methods 140 

like Maxent, GLM, or GAM (as per Valavi et al., 2021) consistently demonstrated 141 

superior performance compared to machine learning or tree-based techniques in 142 

the context of small sample sizes (Breiner et al., 2015; Valavi et al., 2021), making 143 

them safer choices for modelling island species distributions. 144 



 
 

Given that the effect of small sample sizes on the performance of many different 145 

modelling techniques is relatively well understood (Wisz et al., 2008; van Proosdj et 146 

al., 2015; Gaul et al., 2020), prioritising research on how this aspect interacts with 147 

pseudo-absence sampling strategies is essential for island studies. This is because 148 

true absence data are generally lacking, and modelling methods have different 149 

sensitivities to unbalanced occurrence data (a largely disproportionate ratio of 150 

pseudo-absences to presence data; Benkendorf et al., 2023). Understanding how 151 

pseudo-absence data sampling influences model predictions across diverse 152 

modelling techniques, particularly in the context of limited occurrence data, is 153 

necessary for enhancing island SDM implementation. Additionally, current pseudo-154 

absence sampling-strategy guidelines (which focus on sampling strategies), 155 

primarily designed for large continental study areas (e.g., Descombes et al., 2022), 156 

may not directly translate to SDM implementation on islands. 157 

 158 

2.4.5 Minimise model building uncertainty by managing complexity  159 

Our review indicated that models fitted with a high number of predictors in relation 160 

to the (small) sample size is a prevalent issue in island SDM studies, with studies 161 

frequently using two or three times more predictors than the recommended ratio 162 

based on available occurrence points during model calibration (Vaughan & 163 



 
 

Ormerod, 2003). This problem may result in overfitted models, which compromises 164 

their transferability into novel spatial or temporal scenarios (Manzoor et al., 2018).  165 

Alternative approaches to modelling species distributions with small datasets have 166 

been proposed. One such approach is the use of ‘ensembles of small models’ 167 

(Lomba et al., 2010; Breiner et al., 2015). This methodology involves fitting specific 168 

bivariate models and then averaging them as an ensemble, weighted by model 169 

performance (Breiner et al., 2015). Studies have shown that this approach 170 

significantly improves predictive power for range-restricted or data-limited species 171 

compared to standard modelling techniques used for widespread species (Breiner 172 

et al., 2015; Fitzpatrick & Ellison, 2018). Despite its potential to overcome the 173 

commonly detected issue of overfitted SDMs for island species, this strategy has 174 

rarely been implemented in island studies, with only two studies in our dataset 175 

exploring this approach.  176 

Another possible alternative to mitigate overfitting in small occurrence datasets are 177 

joint-SDMs. This is an approach that has been argued to increase the effective 178 

sample size of species occurrence records by leveraging the power from species 179 

with more occurrences in the data, and their co-occurrence probabilities (Warton et 180 

al., 2015; Pichler & Hartig, 2021). However, implementing this method in many 181 

island environments may be less feasible due to its dependency on community-182 

level occurrence knowledge, which is often limited, given the low number of 183 



 
 

archipelagos and islands extensively studied (Borges et al., 2018). Additionally, 184 

joint-SDMs have not consistently demonstrated increased performance relative to 185 

standard SDM techniques (Tikhonov et al., 2017; Zhang et al., 2020); therefore, 186 

caution is advised when considering this alternative. 187 

 188 

2.4.6 GBIF data may hold potential for closing knowledge gaps in island SDM 189 
studies 190 

By exploring the origins of data used for modelling island species distributions, we 191 

identified a geographical bias in the location of island SDM studies: a concentration 192 

of island SDM studies on temperate islands in the Pacific and Atlantic regions (e.g., 193 

Canaries, Azores and Mediterranean islands), with a smaller number of studies 194 

focused on tropical islands. This bias is likely a result of a range of historical, 195 

logistical (e.g., limited infrastructure, difficulties with undertaking field work in 196 

remote locations), and funding factors (Sutton et al., 2021). The publication of 197 

regional / archipelago-specific databases from well-studied island groups, while 198 

obviously providing useful resources, likely propagates this bias as they represent 199 

an easy-to-use data source for island SDM studies. The open access GBIF database 200 

has seemingly been used to fill the data gaps in several otherwise 201 

underrepresented regions, as most of the tropical island studies used this data 202 

source to develop SDMs (e.g., Indonesian, Caribbean and Eastern pacific islands). 203 

Thus, exploring the potential of GBIF data to fill the remaining gaps in knowledge 204 



 
 

of tropical island species distributions more broadly is a pressing concern, given 205 

that many tropical insular territories are amongst the most biodiverse and 206 

threatened regions globally, while at the same time being some of the least studied 207 

(Cayuela et al., 2009; Myers et al., 2000).  208 

We identified high availability of data on GBIF for a range of taxa and island 209 

regions (e.g., tropical regions from the Atlantic and Pacific Ocean) that are 210 

underrepresented in the island SDM literature, suggesting that this database may 211 

have the potential to reduce knowledge gaps. In addition, numerous species of 212 

vertebrate taxa (e.g., anurans, birds [likely due to the link between GBIF and eBird], 213 

mammals, reptiles), showed good levels of representation across most island 214 

regions at the global-scale, enabling future larger-scale comparative studies to be 215 

developed. On the other hand, for plant species (both vascular and non-vascular), 216 

sufficient occurrence data (≥20 occurrences) are only concentrated in the island 217 

regions that have already been relatively well studied. For the remaining studied 218 

taxa, GBIF data does not appear to currently represent a useful source of island 219 

occurrence information. 220 

We acknowledge that our metric (M-Index) sets a conservative threshold (≥20n), 221 

given that SDM predictions can potentially remain informative at smaller sample 222 

sizes (Pearson et al., 2007). In addition, our metric assesses the quantity of data and 223 

does not explicitly account for data quality. Global databases often come with 224 



 
 

inherent biases, including species misidentification, low spatial precision, and 225 

uneven sampling effort (Hortal et al., 2007; Beck et al., 2014). However, a growing 226 

set of statistical methods, such as ROBITT (Representativeness and Bias 227 

Identification Tool for Tabular Data; Boyd et al., 2022), are increasingly available to 228 

address these data limitations. ROBITT was specifically developed to identify and 229 

manage issues of representativeness and potential biases in datasets, particularly 230 

those compiled from diverse sources with differing aims, scopes, and 231 

methodologies. By focusing on improving data quality across several critical 232 

domains—geographic, temporal, environmental, and taxonomic—each of which 233 

can introduce unique biases that affect study outcomes, ROBITT facilitates the 234 

homogenisation and appropriate curation of GBIF data, enhancing its utility for 235 

island studies. 236 

2.5 Conclusion 237 

Given that the full distributions of many island species are unknown, species 238 

distribution models (SDM) represent a vitally important tool for island biologists, 239 

and are essential for enabling data-informed conservation and management 240 

decisions related to this highly threatened component of global biodiversity. 241 

However, most SDM frameworks and recommendations relate to species with 242 

relatively wide ranges, and are generally not appropriate for insular species and 243 

environments, which have several unique features (Whittaker et al., 2023). The 244 



 
 

results of the present review (i) indicate that there are a number of areas related to 245 

the application of SDMs in an island context that require careful consideration and 246 

future research, and (ii) provide the foundation for the development of an explicit 247 

island SDM framework going forward.248 
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Abstract 

Applying Species Distribution Models (SDM) in island environments presents 

unique challenges due to spatial constraints, the high habitat specialisation of 

many island species, and limited occurrence data. This study focuses on optimising 

presence-only SDMs for island ecosystems, using empirical plant species data and 

simulated distributions as case studies. A key emphasis is placed on the use of 

high-resolution environmental predictors, while addressing complications posed by 

scarce and often imprecise occurrence data, which can hinder the understanding of 

insular species distributions at appropriate analytical scales. 

To optimise high-resolution SDMs in island systems, the study highlights the 

importance of balancing presence data with pseudo-absence/background data to 

enhance model accuracy and validation metrics, particularly when considering 

species’ range size (i.e., wide vs. narrow-range species). It also assesses how these 

factors interact with different modelling methods. Additionally, the study explores 

the potential benefits of including records with positional inaccuracies to increase 

sample size. With appropriate methodological frameworks, such as Bayesian 

Additive Regression Trees (BART) and generalised Linear Models GLM, the negative 

impact of analysing coarse-precision occurrence data can be mitigated. These 

methods proved especially beneficial for narrow-ranged species, which require 
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larger sample sizes and are more sensitive to spatial inaccuracies. In contrast, wide-

ranging species are less affected by coarse-precision occurrence data and can often 

be modelled with fewer, more precise data points. 

In scenarios where the spatial data precision aligns with the spatial analytic 

resolution, findings highlight that Generalised Additive Models (GAMs) achieve the 

highest accuracy in an island context. Notably, these models also require smaller 

sample sizes, regardless of range size. Contrary to expectations, Maxent ranked 

second, and was found to have difficulties in modelling wide-ranging species, 

requiring relatively large sample sizes. By selecting the appropriate algorithm based 

on species prevalence and data availability, the study provides practical 

recommendations to improve SDM performance in island environments, enhancing 

model reliability to better support conservation efforts, even when working with 

sparse or uncertain data. 
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3.1 Introduction  

The rapid alteration of the Earth system, driven by human activities, has led to 

large-scale distributional changes in biodiversity (Araujo et al., 2019). This issue is 

particularly acute on islands, where species are often more vulnerable due to a 

range of factors, including small population sizes, limited habitat availability, and 

unique ecological and evolutionary dynamics (Whittaker et al., 2017; Fernández-

Palacios et al., 2021; Matthews et al., 2022). A comprehensive understanding of the 

geographic and environmental drivers of island biodiversity is essential for 

developing effective conservation strategies for these environments.  

Islands are known centres of plant endemism, and island plants have been shown 

to face disproportionate risks relative to their continental relatives (Kier et al., 2009; 

Caujape-Castells et al., 2010). As with all ecosystems, plants are a key component of 

island systems, as they provide a variety of crucial ecosystem services, including 

water regulation, erosion control, and food provision (Borges et al., 2018).  

However, for many archipelagos we still lack accurate data on the distributions of 

plant species, information that is needed for informed conservation planning and 

management decisions (Cursach et al., 2020). Species Distribution Models (SDMs) 

have emerged as a valuable tool in this regard (Benavides Rios et al., 2024). SDMs 

relate species occurrence data, typically in the form of presence and absence 

records, with environmental predictors to generate predictions of species 
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distributions across space and time (Guisan et al., 2017; Franklin, 2010; Araujo et al., 

2019). 

Effective use of SDMs is context dependent and thus the use of this 

methodological tool in a given study requires careful decision-making throughout 

the modelling process (Ferrier et al., 2022). Although several studies have proposed 

guidelines to facilitate SDM fitting (e.g., Guillera-Arroita et al., 2015; Guisan et al., 

2017; Araujo et al., 2019), they have focused primarily on species in continental 

environments, limiting their applicability to island environments (Leroy, 2022; but 

see Benavides Rios et al., 2024). 

Islands—particularly volcanic oceanic islands, which are the focus of this study—

differ from continental systems in several key ways, requiring tailored guidelines for 

effective SDMs (Leroy, 2022; Benavides Rios et al., 2024). The limited spatial context 

of islands, characterised by relatively small size and greater isolation, combined 

with significant topographic and environmental variation over small areas (Barajas-

Barbosa et al., 2020), means that we need to develop a deeper understanding of 

how island species respond to environmental gradients and change at fine spatial 

scales (Patiño et al., 2023; Benavides Rios et al., 2024). This approach contrasts with 

the common use of large-scale bioclimatic variables in modelling species 

distributions at continental scales (Pearson & Dawson, 2003; Gardner et al., 2019). 

Therefore, it is crucial to examine island species' distributions using high-resolution 
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environmental data that capture microhabitat variation (Segal et al., 2021; Patiño et 

al., 2023), which is a key factor influencing the distribution of many island plants (Irl 

et al., 2020; Hanz et al., 2023; Lannuzel et al., 2022). 

Another issue with using SDMs in an island plant context is that, for many 

archipelagos, occurrence data are often limited. This is due to small sample sizes 

resulting from natural factors (e.g., the presence of highly specialised insular 

endemics with small ranges; Chiatante, 2022), anthropogenic factors (e.g., the 

reduced population sizes of many island species: Nogué et al., 2021; Matthews et 

al., 2022), and/or the remoteness and limited accessibility of many islands (Borges 

et al., 2018). Small amounts of occurrence data can present significant challenges 

for fine-resolution SDMs. This is because finer-grained grids divide environmental 

variability into smaller, more specific segments, making it less likely that small 

samples will capture the full range of suitable environmental conditions for a 

species. In contrast, coarser grids encompass broader environmental information 

within fewer grid cells, which may allow small samples to more easily represent a 

wider range of the species' habitat requirements, though this comes with a higher 

risk of overestimation (Patiño et al., 2023). As a result, while fine-scale predictors 

are typically a better choice in the context of islands, their use may require larger 

sample sizes to ensure adequate coverage of the species' habitat requirements. 

However, previous studies suggest that for species with smaller ranges, such as 
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many island endemics, fewer occurrence records may still be sufficient to accurately 

predict their distributions (Pearson et al., 2007; van Proosdij et al., 2015). Thus, 

further research is needed to understand how a species' range size influences data 

requirements for robust SDMs at fine spatial scales on islands. 

To effectively use high-resolution environmental predictors in SDMs, the precision 

of the occurrence data must match the resolution of the predictors (Moudrý & 

Šímová, 2012). For many island species, limited and sparse occurrence data often 

result in large geographic uncertainties (i.e., occurrence coordinates frequently 

cover broad areas). Excluding such records can negatively impact predictions 

(Fernandez et al., 2009; Naimi et al., 2014), as reducing sample size increases model 

uncertainty (Gaul et al., 2020; Graham et al., 2008; Hernández et al., 2006; Soultan & 

Safi, 2017). Conversely, retaining these uncertain records just to increase sample 

size can be especially problematic for islands with steep environmental gradients—

such as those on topographically diverse volcanic islands—or for highly specialised 

insular endemic species. In these cases, the uncertainty in the occurrence data can 

significantly affect SDM predictions, particularly when fine-scale predictors are used 

(Visscher, 2006; Gábor et al., 2020, 2023). Therefore, it is crucial to evaluate whether 

uncertainty in occurrence data can be tolerated and how best, given the limited 

data availability in island contexts, to optimise the use of occurrence data in SDMs. 
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A final challenge related to the application of SDMs, in both continental and island 

settings, is that occurrence datasets often contain only opportunistic observations 

and are thus limited to species presence data (Fourcade et al., 2014). However, 

many modelling algorithms require absence data which, if not available, are 

generated using pseudo-absence/background (Psa/BG) points. There are three 

issues with this approach in the context of islands. First, determining the number of 

Psa/BG points and the accompanying selection strategy lacks a clear consensus 

(Grimmet et al., 2020; Descombes et al., 2023). Second, existing guidelines for 

PsA/BG sampling are typically tailored for species with extensive ranges (e.g., areas 

>10,000 km2, based on the standardised number of Psa/BG points recommended, 

assuming a typical 1 km grid resolution in environmental descriptors; Barbet-

Massin et al., 2012; Descombes et al., 2023), making these recommendations 

incompatible in the context of small island regions. Finally, model validation metrics 

evaluated with Psa/BG data are affected by sample size, imbalance in occurrence 

datasets (i.e., a large ratio of Psa/BG points compared to a small sample of 

presence points), and species specialisation (Lobo et al., 2008; Santika, 2011). Thus, 

research is needed to determine the ideal ratio of Psa/BG sampling for different 

modelling methods, considering data availability, study area characteristics, 

specialisation levels (or species prevalence), and modelling technique requirements. 
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Based on the above, it is evident that effective SDM implementation on islands 

requires selecting suitable modelling strategies for use with limited occurrence and 

environmental data. To this end, our study aims to improve the effectiveness of 

SDM use in island systems by examining how the quantity and quality of 

occurrence data affect model predictions at fine analytical scales. We will evaluate 

whether certain methods improve SDM predictions with 1) varying ratios of 

presence to PsA/BG data, as modelling methods can have varying sensitivities to 

unbalanced datasets (Barbet-Massin et al., 2012; Hertzog et al., 2014; Wisz & 

Guisan, 2009); and 2) varying levels of occurrence data inaccuracies. We then 

investigate if these results differ based on i) the quantity of occurrence data 

available (sample size), and ii) species range size. 

To address these research objectives, we will use a dataset of plant occurrence data 

(with detailed presence and absence data) from the volcanic Revillagigedo 

Archipelago (Mexico), and simulated virtual species that mimic known species 

distribution patterns in the study area. We seek to provide practical 

recommendations drawn from our findings, particularly for island endemic plant 

species with limited occurrence data. 
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3.2 Materials and Methods 

3.2.1 Study area 

Our study focuses on the two largest islands in the Revillagigedo archipelago, 

Socorro (132 km2) and Clarión (19.8 km2), chosen due to (i) an in-depth 

understanding of species distribution patterns acquired from extensive fieldwork 

expeditions led by one of the authors (e.g., Benavides et al., 2019), (ii) the availability 

of high-resolution environmental data, and (iii) the sizes of the islands, representing 

a relatively smaller and larger island.  

3.2.2 Virtual species 

To ensure robust conclusions, it was necessary to include a relatively large number 

of species in the analyses, including large (≥50n), unclustered, and unbiased island 

species distribution datasets exhibiting varied distribution patterns and levels of 

species specialisation (Boria et al., 2014; Fourcade et al., 2014; Araujo et al., 2019). 

However, challenges in extensively sampling certain parts of the selected islands in 

the Revillagigedo archipelago were encountered, and despite best efforts, sample 

sizes rarely exceeded 30 records per species. Consequently, detailed data on the 

distributions of plant species in the Revillagigedo Archipelago (e.g., Benavides et 

al., 2019) were utilised to create virtual species closely resembling natural spatial 

distribution patterns (see Supplementary Figure S3.1.1 in Appendix S.3.1). This 

approach avoids unrealistic species distributions (i.e., ensuring realistic responses to 



 117 

environmental gradients: Miller, 2014) and facilitates robust testing of model 

conceptualisation and implementation (Meynar et al., 2019). 

Environmental descriptors for calibrating virtual species were derived from a 30m 

resolution digital elevation model (ASTER Global Digital Elevation Map v3: NASA & 

METI, 2018). These descriptors, including elevation, slope, aspect, and distance to 

the coast, served as proxies for microclimatic variation, and are considered 

important drivers of island plant species distributions (Irl et al., 2020; Lannuzel et al., 

2021); they were generated using the ‘Terra’ R package (Hijmans, 2022). Climatic 

variables were excluded as only coarse resolution (1 km) data were available; such 

data are known to increase model uncertainty, particularly in tropical regions 

(Deblawue et al., 2016; Benavides et al., 2024). 

Using the 'Virtualspecies' R package (Leroy et al., 2016), four virtual species were 

created for each island using the ‘niche.breadth’ function and applying the Principal 

Component Analysis (PCA) method. This function generated species with realistic 

responses to environmental gradients (Soultan & Safi, 2017) and allowed for 

control over range sizes by selecting the extent of the PCA (environmental) space 

occupied by the species. This was managed with the ‘niche.breadth’ parameter, 

which could be set to either ‘Narrow’ or ‘Wide’ (see S3.1.1). Each island had two 

virtual species with wide distributions and two with narrow distributions. Selecting 

four virtual species per island (eight in total) was deemed adequate due to the 



 118 

relatively small study areas, computational demands (e.g., the total number of core 

hours used in the analyses was 420 core hours per species), and an experimental 

design that required numerous replicates. 

3.2.3 Real species data 

To address the potential limitation of limited transferability inherent in conclusions 

derived solely from virtual species data, we conducted complementary analyses 

using models fitted to real species presence-absence data, essentially providing a 

"true species distribution" equivalent for the virtual species. Our baseline models 

were constructed using occurrence data collected during previous field excursions 

to both islands (see Appendix S3.2 Method to obtain presence/absence plant data from 

the Revillagigedo Archipelago, Mexico.for detailed information). From this dataset, we 

selected four species from each island with sufficient presence/absence data (≥10 

presences/ ≥15 absences). Based on data availability and species range sizes, we 

chose two species with widespread distributions and two species with relatively 

narrow distributions. Based on field observations, widespread species were 

classified as inhabiting numerous habitats across the islands, while narrow-range 

species were exclusive to either coastal environments or a narrow elevation band. A 

summary of the selected species and their corresponding records is provided in 

Table 3.1. 
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 Table 3.1 Analysed plant species list with range sizes and the number (N) of 
presence and absence records used for fitting SDMs. + Single island endemics 

3.2.4  Modelling methods  

Due to the small sample sizes for most analysed species (n<30), the ‘ensemble of 

small models’ (ESM) approach was selected for modelling species distributions, a 

method that has been shown to be suitable for narrow-ranged species with limited 

occurrence data (Lomba et al., 2010; Breiner et al., 2015). All potential combinations 

of bivariate models are fitted, and their performance is evaluated based on AUC 

Island Species Range sizes N 
Presence 

N 
Absence 

Clarion 

 

Euphorbia anthonyi+ Wide 15 15 

Tribulus cistoides Wide 14 25 

Karwinskia 
humboldtiana 

Narrow 
(Elevation band) 11 25 

Teucrium townsendi+ Narrow  
(Coastal) 

10 53 

Socorro  

Croton masonii+ Wide 17 60 

Psidium socorrense+ Wide 25 54 

Bursera epinnata Narrow 
(Elevation band) 69 94 

Conocarpus erectus Narrow 
(Coastal) 10 19 
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scores. Then, a final averaged model is created, incorporating all informative small 

models (AUC>0.5; Lomba et al., 2010; Breiner et al., 2015). 

The ESM analyses used three regression-based modelling methods that have 

shown satisfactory results in the ESM approach (Breiner et al., 2015, 2018): 

generalized linear models (GLM; binomial family), General Additive Models (GAM; 

Hastie & Tibshirani, 1986), and Maxent (Phillips et al., 2006). Additionally, a tree-

based method, Bayesian Additive Regression Trees (BART) was included, a relatively 

new approach in ecological studies (Carlson, 2020). The applicability of BART within 

the ESM framework has not yet been tested. However, exploring this approach is 

valuable, as previous studies have shown it to be informative for island SDM 

studies, often generating satisfactory predictions (Hanz et al., 2023). 

To avoid adding unnecessary complexity in the modelling process, it was chosen to 

maintain the default settings of the respective SDM algorithms. This decision was 

also based on work that suggests that parameter tuning has a lower impact on 

predictive capability for the selected modelling methods when sample sizes are 

small (<30 records: Valavi et al., 2022; Radomski et al., 2022). 
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3.2.5 Presence and Pseudo-Absence Ratios across Modelling Methods: Impact 
on Model Accuracy and Validation 

Virtual species  

The total number of grids at the selected resolution (30 m) for each island was 

quantified, and 5%, 10%, 20%, and 40% of pseudo-absence/background (Psa/BG) 

points were randomly sampled in cells without presence records. This method was 

chosen for its transparency, fewer assumptions, and proven accuracy (Stokland et 

al., 2011; Descombes et al., 2023). It was examined how different occurrence data 

availability levels affected model accuracy across varied presence to Psa/BG data 

ratios. 

For each virtual species, 20 replicates of randomly sampled presence points at four 

sample sizes (5, 10, 20, and 50) were generated, totalling 80 replicates. Each 

replicate was paired with one of 10 random samples of Psa/BG for each of the four 

percentages, resulting in 800 combinations. Bivariate models were fitted for all 

possible combinations of 1 out of 5 bivariate predictor combinations, 1 out of 20 

sample size replicates, 1 out of 10 Psa/BG point percentage replicates, and 1 out of 

4 modelling methods (Fig. 3.1). In each run, 5-fold cross-validation was performed, 

using 20% of occurrence points for evaluation and the remaining 80% for training. 

Subsequently, the five bivariate combinations of small models were combined into 

an ESM by selecting all small models with AUC > 0.5. Thus, 64,000 small models 

were generated for each species, combining 80 sample size replicates, 4 Psa/BG 
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percentages, 10 Psa/BG replicates per percentage, 5 bivariate combinations, and 4 

modelling methods (Fig. 3.1). 

The differences in predicted probability outputs calibrated with diverse modelling 

methods can make them incomparable or incompatible for combination. To 

address this, the probability outputs were converted into favourability measures 

using the "Fav" function from the Fuzzysim R package. This function calculates a 

prevalence-independent favourability measure for species presence, based on a 

model object calibrated with presence–Psa/BG data and the proportion of 

binarized occurrence values (i.e., model prevalence, where presence = 1 and Psa/BG 

= 0). The resulting output is a favourability layer ranging from 0 to 1, distinguishing 

between conditions that support species presence (F > 0.5) and those that are 

unfavorable (F < 0.5) (Acevedo & Real, 2012; Real et al., 2006), and standardising 

values across distribution models to enable comparisons. 

To avoid the binarization of modelling outputs, the overlap between predicted and 

actual virtual species distributions was assessed using Schoener’s D-index, a metric 

well-suited for evaluating SDM outputs (Rödder & Engler, 2011). This index 

measures how the predicted favourability of each grid cell compares with the 

actual favourability of the corresponding grid cell in the virtual species distribution, 

resulting in a final value ranging from 0 (no overlap) to 1 (complete agreement). 
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Figure 3.1 Modelling Workflow for the Analysis of Virtual Species. The final step 
(bottom row) displays, on the left, a probability distribution map for a narrow virtual 
species on Socorro Island (the largest island). The distribution is shaded in green, 
with increasing colour intensity representing higher occurrence probabilities. Brown 
shading depicts the island’s topography, with hue intensity reflecting elevation. To 
the right of the virtual species map are examples of the four final outputs (one per 
method) for each species, along with their D-values, which compare the virtual “real” 
and predicted species distributions. The sample size for these final models was set to 
10n.  
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To investigate the effects of different modelling conditions on model accuracy, a 

standard multiple linear regression was performed with model accuracy (measured 

by the D-index) as the response variable. The analysis included interaction terms for 

'Sample Size,' 'Pseudo-absence/Background %,' 'Method,' and 'Range Size.' 

Model accuracy was also evaluated using two common metrics: AUC and the Boyce 

index, both calculated with the 'modEVA' R package (Barbosa et al., 2013). In SDMs, 

AUC (Area Under the Curve) measures how well the model distinguishes between 

presence and absence locations, with values ranging from 0.5 (random) to 1 

(perfect performance; Raes & ter Steege,2007). The Boyce index assesses the 

correlation between model predictions and the observed versus expected 

occurrence frequencies across prediction classes. It ranges from -1 to 1, where 

positive values indicate that presences are more frequent in areas with higher 

predicted suitability. Values near zero mean predictions are no better than random, 

while negative values suggest that presences occur more often in areas with lower 

predicted suitability (Boyce et al., 2002). 

The purpose of assessing these validation metrics was to determine how accurately 

they measure actual model performance, as measured by the D-index (i.e., the 

overlap between real and predicted species distributions). A stratified Pearson’s 

correlation analysis was conducted between the D-index and the validation metrics 

(AUC and Boyce index). Instead of calculating a single correlation for the entire 
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dataset, stratified correlation analysis divides the data into distinct groups based on 

relevant factors, and then calculates the correlation within each subgroup. The 

analysis was stratified according to subgroups defined by 'Method,' 'Sample Size,' 

and 'Pseudo-absence/Background %,' allowing for the assessment of how well 

these metrics reflect prediction accuracy across varying modelling conditions. This 

approach aimed to improve understanding of how changes in these variables 

influence the relationship between model accuracy and validation metrics, thus 

bridging the gap between predictive accuracy and validation reliability. 

 Real species analyses  

For the real species data, a similar methodology and set of variables were used as 

in the virtual species regression models. Overlap (D-index) was assessed between 

SDMs fitted with presence-absence (PA) data, which serve as a proxy for the "real 

species distribution," and those using various pseudo-absence/background 

(Psa/BG) percentages. This evaluation aimed to understand how different 

modelling conditions affect model accuracy. Similar to the virtual species analysis, a 

standard multiple linear regression was performed, using model accuracy 

(measured by the D-index) as the response variable. The analysis included 

interaction terms for 'Pseudo-absence/Background %,' 'Method,' and 'Range Size.' 

However, in contrast to the virtual species linear regression, the 'Sample Size' 
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interaction was excluded due to limited variation in sample sizes among the real 

species. 

The impact of different modelling conditions on the reliability of validation metrics 

(AUC and Boyce) in real species SDMs was also assessed. Using the same approach 

as for virtual species, a stratified correlation analysis was conducted between the D-

index and the validation metrics. This analysis was stratified by 'Pseudo-

absence/Background %,' 'Range Size,' and 'Method.' 

 
3.2.6 Interaction between sample size and range size for high-resolution 

predictors 

As the real species occurrence datasets were fairly uniform in size, this analysis was 

conducted using only the virtual species data. First, the Psa/BG percentage that 

produced the highest SDM accuracy for each modelling method was identified, 

thereby removing the Psa/BG factor from further analysis (see section 3.2.5). Next, 

it was investigated whether the minimum required sample size varied across 

different methods and range sizes. 

Following van Proosdij et al. (2015), the top 95% of Schoener's D values from the 

ESM replicates were extracted, excluding the lowest-performing 5%. Then two 

decision thresholds were applied to determine the minimum sample size required 

to achieve high overlap (Schoener's D >0.6) and very high overlap (>0.7) between 

real and predicted values. This approach aligns with the common practice of 
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considering D index values >0.5 as indicative of better-than-random fits (Pirie et al., 

2019; Püts et al., 2020). 

Finally, the minimum sample size for each range size category (Narrow and Wide) 

was determined by identifying the sample size at which the lower bound of the 

95th percentile of D-index values exceeded the thresholds of 0.6 and 0.7. 

3.2.7 Impact of data precision on island SDM predictions at high resolutions 

Virtual species 

For this analysis, we resampled our virtual species presence/absence maps, 

obtained using the PA function from the 'Virtualspecies' R package in combination 

with our 30m resolution maps, to coarser resolutions: 90 metres, 500 metres, and 1 

kilometre. We randomly sampled 20 replicates from each of the "small” occurrence 

datasets and "large” occurrence datasets from each resampled map. 

As increasing resolution reduces the number of grids where a species is recorded 

as present, our "large" datasets contain either 50 occurrence points or, for species 

present in <50 grids, 80% of the resampled area where the species is present. For 

"small" datasets, we ensured a minimum of either 10 occurrence points or, for 

species present in <10 grids, 60% of the resampled area where the species is 

present (ensuring ≥5 occurrence points, our minimum sample size). 
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Unlike studies using random point displacements to simulate data uncertainty (e.g., 

Graham et al., 2008; Gabor et al., 2023), our method aligns with the spatial gridded 

organisation of occurrence points sourced from certain biodiversity databases (e.g., 

GBIF). In such cases, a species was recorded somewhere within the grid of a given 

extent, but the exact location is unknown. See Figure 3.2 for an illustration of the 

uncertainty simulation method. 

Real species 

The positioning of spatial inaccuracies for the real species presence records 

followed the same procedure used for the virtual species. Since the spatial accuracy 

of these records aligns with the study grain (with a margin of error of 25 metres 

from the GPS device), uncertainty was introduced by resampling the occurrence 

Figure 3. 2 Simulation of precision uncertainty in a gridded format at three resolutions 
on Clarion Island (full extent in top left corner). Brown shading represent the island's 
land. Species presence at 30m resolution is shown in green. Squares depict a 
progressively larger grid when the species presence/absence map is resampled at 
90m, 500m, and 1km. The white dot represents the original presence point (at the 
centre of the 30m grid), while black points indicate increased uncertainty levels. 
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points to the centroids of raster cells at resolutions of 90 metres, 500 metres, and 1 

kilometre. 

3.3 Results 

3.3.1 Presence and Pseudo-Absence Ratios across Modelling Methods: Impact 
on Model Accuracy and Validation 

 
Model accuracy: virtual species  

The hierarchical partitioning of explained variance of the predictors in our linear 

regressions showed that range size explained the majority of the variance in the D-

index (overall model R2=0.52; Variance explained: Range size = 95.15%, Sample size 

= 3.17%, Psa/BG percentage = 0.36%, method = 1.33%), therefore masking any 

effect of the variables of interest (Psa/BG ratio and its interactions with sample size 

and SDM method). As such, we partitioned the data into two datasets based on 

range size for the subsequent analysis. On the whole, accuracy was better for 

species with a wide range size (Intercept_wide = 0.85, intercept_narrow = 0.60). 

For species with a narrow range, the full model containing Psa/BG ratio, sample 

size, SDM method and all interactions explained 13% of the variance in the D Index 

(R2 = 0.13). There was a positive effect Psa/BG ratio and SDM method. Specifically, 

increasing the ratio of background points improves accuracy for all modelling 

approaches except for BART (Fig 3.3a). For GAM, this effect is not present for small 
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sample sizes (n = 5). For GLM and Maxent, the effect is more pronounced (Fig. 3.3a, 

numerical results in Supplementary table 3.1.2).  

For species with a wide range, the full model containing Psa/BG ratio, sample size, 

SDM method and all interactions explained 35% of the variance in the D Index (R2 

= 0.35). Here, increasing the number of background points had little effect on the 

accuracy of the models, with this being largely driven by sample size, particularly 

within the GAM approach (Fig. 3.3c, numerical results in Supplementary table 3.1.3). 

Model accuracy: real species  

The hierarchical partitioning results for the predictors from the real species 

regression model also showed that range size explained the majority of the 

variance in the D-index (overall model R2 = 0.07; Range size = 44.35%, Psa/BG 

percentage= 27.97%, method = 28.26%); thus, we again partitioned the data into 

two datasets based on range size for the subsequent analysis. On the whole, 

accuracy was similar for species with both range sizes (Intercept_wide = 0.94, 

intercept_narrow = 0.90). 

 

For species with a narrow range, the full model containing Psa/BG ratio, SDM 

method and their interaction explained 29% of the variance in the D Index (R2 = 

0.29). Increasing the percentage of background points did not improve predictive 

ability: most modelling approaches showed improved accuracy between 10-20% of 
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Psa/BG, except for GAM that showed clear improvements specifically at 10% of 

Psa/BG (Fig 3.3b, numerical results in Supplementary table 3.1.4).  

For species with a wide range, the full model containing Psa/BG ratio, sample size, 

SDM method and all interactions explained 7% of the variance in the D Index (R2 = 

0.07). Here, background points at 20% Psa/BG resulted in lower accuracy, with 

minimal variation across the other percentages, except for BART, which showed 

clear improvements specifically at 20% Psa/BG (Fig. 3.3d; numerical results in 

Supplementary table 3.1.5). 
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Figure 3. 3 Impact of Pseudo-Absence/Background (Psa/BG) percentage of the study 
area sampled on model accuracy (measured using the D-index), across different 
modeling methods. Figures 3a and 3c show the results of the virtual species analysis 
considering the ratio of sample sizes to Psa/BG percentage sampled. Figures 3b and 
3d show the results of the real species analysis considering the Psa/BG percentage 
sampled (mean sample size of real species = 21). The circles represent regression 
model coefficient values, with the bars representing the standard error. 
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Model validation: virtual species  

The correlation analysis between validation metrics (AUC and Boyce index) and 

model accuracy (D-index) reveals distinct patterns for wide-ranged and narrow-

ranged species. Full results are shown in Figure 3.4a & 3.4b and Supplementary 

Table S3.1.6 &. S3.1.7. For wide-ranged species, the correlation between AUC and 

model accuracy (D-index) shows low variation across different Psa/BG percentages, 

with a consistently negative mean correlation (mean AUCcor = -0.67). The Boyce 

index correlation was also near zero (mean Boycecor = -0.09), though it tends to 

improve (i.e., shift from negative toward zero) as PsA/BG percentages increase. 

For narrow-ranged species, the AUC correlation (mean AUCcor = 0.34) was generally 

positive and consistent across all methods, except for BART, which showed no 

correlation (mean BARTcor = 0.004). In BART, increasing PsA/BG percentages further 

reduced the correlations (mean BARTcor with PsA/BG 5% = 0.23; mean BARTcor with 

PsA/BG 40% = -0.28). For the other methods, the correlations changed only slightly 

across different Psa/BG percentages (Fig. 3.4a). The Boyce index correlations 

followed a similar pattern, with generally positive and consistent correlations across 

methods (mean Boycecor = 0.47). Excluding BART, both AUC and the Boyce index 

have positive correlations with the D-index, indicating better predictability for 

narrow-ranged species.  
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Model validation: real species  

Full details of the described correlations are presented in Figure 3.4 b& d, and 

Supplementary Table S3.1.8 &. S3.1.9. The correlation analysis between validation 

metrics and species accuracy shows that for wide-ranged species, the correlation 

between the AUC from a pseudoabsence/background model and model accuracy 

(as measured by the D-index) remains consistently high across all methods, with 

only a slightly increased correlation as Psa/BG percentage increases. The mean AUC 

correlation across all scenarios is positive (mean AUCcor=0.86). For the Boyce 

index, correlations are positive (mean Boycecor=0.89), and tend to increase with 

higher Psa/BG percentages, with the highest correlation typically observed at 20% 

and 40%, particularly with GAM and BART. However, Maxent correlation values 

remain relatively low (mean MXTcor=0.40), regardless of Psa/BG percentage. 

For narrow-ranged species, the AUC metric correlation increases with Psa/BG 

percentage across all methods, except at the 20% Psa/BG, which had the lowest 

correlation for BART, GLM, and MXT. Overall, the mean AUC correlation across all 

scenarios is positive (Mean AUCcor=0.86). The Boyce metric displays a similar 

pattern (Mean Boyceor=0.83).  
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Figure 3.4 Results of the correlations between the AUC and Boyce index validation metrics 
and the actual accuracy, as measured by the D-index (i.e., real vs. predicted species 
distribution accuracy). This analysis assesses the reliability of validation metrics in reflecting 
actual model performance and explores whether this reliability varies across different Psa/BG 
percentages (x-axis) and modelling methods. Panels a and c depict the correlation between 
the D-index and validation metrics for virtual species; data points represent the correlation 
estimate, with error bars. 
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3.3.2 Minimum Sample Size Requirements Across Range Sizes for High-
Resolution Predictors 

Findings indicate that increasing the proportion of pseudo-absence/background 

(Psa/BG) area sampled generally improves prediction accuracy (D-index) for most 

species and methods (Fig 3.3). However, for models with small sample sizes fitted 

with GAM and GLM, this increase reduces accuracy (Fig 3.3a & c). Thus, we found 

20% Psa/BG to be a good balance for exploring the minimum sample size needed 

for robust predictions across various range sizes and methods.  

Two decision thresholds were set: one for high overlap (>0.6) between real vs. 

predicted species distribution and another for very high distribution overlap (>0.7). 

For virtual species with wide ranges, models consistently achieved D-index values 

exceeding 0.6 and 0.7 with a minimum sample size of 5, indicating that a significant 

portion of the distributional range can be predicted even with limited data. For 

narrow-ranged species, the required minimum sample size required to achieve a D-

index > 0.6 varies by method: 20 for BART and GLM, 10 for Maxent, and 5 for GAM. 

Only GLM, with a sample size of 50, achieved a D-index > 0.7. For narrow-ranged 

island species, GAM and Maxent are thus the most suitable methods at small 

sample sizes, though larger datasets generally yield more robust predictions. See 

Figure 3.5 and Supplementary Table S3.1.10 for more detailed information. 
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Figure 3.5 Minimum sample size needed for robust species predictions using the D 
index, and split by method and range size. Points represent the mean D index value, 
and error bars indicate the standard error. The red dotted line is the threshold for 
‘high niche overlap’ (D-index>0.60), and the dark red dashed line for ‘very high niche 
overlap’ (D-index >0.70). 
 

3.3.3 Impact of data precision on island SDM predictions at high resolutions 

Virtual Species 

As in the previous analysis, the focus was on models where 20% of the study area 

was sampled using the Psa/BG ratio, as this proportion provides a better balance in 

accuracy across all scenarios. The next step involved exploring the relationship 

between the predictor variables 'Method,' 'Range size,' 'Sample size,' and various 
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levels of simulated gridded 'Uncertainty' (i.e. occurrence point displacement to the 

centroid of higher resolution grids: 90, 500 and 1000m), and the response variable 

of model accuracy, measured by the D-index. Similarly to the results presented 

above, hierarchical partitioning of explained variance showed that 'Range size' was 

the most important variable driving the predictability of the model (Model R2 = 

0.50; Range size' =96.68 %; Uncertainty 2.61%; Sample_size=0.29%; Method= 

0.36%). Thus, the data was partitioned into narrow and wide-ranged species.   

For species with narrow ranges, 'Method,' followed by 'Uncertainty' showed similar 

contribution to the variability in the D-index (Model R2 = 0.1%; Method= 51.12%; 

Uncertainty 48.36%; Sample_size=0.34%). For species with wide ranges, the D-index 

is primarily explained by 'Method,' with ‘Uncertainty’ explaining only minimal 

variation (Model R2 = 0.11; Method= 80.33%; Uncertainty 7.89%; 

Sample_size=11.95%). Specifically, the GAM and Maxent methods showed 

important declines in accuracy when sample sizes are small and the uncertainty is 

high (1000m) for both range sizes (figure 3.6 and Supplementary Table S3.1.11& 

S3.1.12 for numerical results). 

Real Species analysis 

In contrast to the virtual species results, 'Uncertainty' was the most significant 

variable explaining variation in model predictability (Model R2 = 0.43; Uncertainty: 

57.38%; Method: 21.89%; Range size: 20.75%) (see figure 3.6 and Supplementary 
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Table S3.1.13& S3.1.14 for numerical results). For narrow-ranged species, all 

methods showed large declines in accuracy with increasing uncertainty, particularly 

at 500-1000m. For wide-ranged species, the GAM method in particular showed 

declines in accuracy with increasing uncertainty, especially at 500-1000m. 

 
Figure 3.6 Impact of uncertainty in occurrence data on SDM accuracy (D-index). 
Panels 6a and 6c illustrate the effects of increasing gridded uncertainty levels (no 
uncertainty = 0; uncertainty = 90, 500, 1000 m) on wide and narrow ranged virtual 
species, considering large (50n or 80% of the species range) and small sample sizes 
(10n or 69% of the species range). Points represent the mean, and error bars indicate 
the standard error. Panels 6b and 6d present the corresponding results for real 
species (mean sample size = 21). 
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3.4 Discussion 

This study explores the complexities of SDM application in island environments 

using plants as the focal taxon. The analyses presented highlight how challenges 

such as high habitat specialisation, spatial constraints, and sparse occurrence data 

hinder the understanding of island distribution patterns. The discussion addresses 

the suitability of different modelling techniques for islands, the optimal selection of 

pseudo-absence points, and the impact of positional uncertainty in occurrence 

data. Practical recommendations are provided to enhance the effectiveness of 

SDMs, even when working with limited and sparse data, to support conservation 

efforts on islands. 

3.4.1 Data limitations and specialisation levels in island species: Optimising 
presence-only models and their validation 

Several studies have investigated how species range size (i.e., prevalence in the 

study area) and sample size affect model accuracy (Stockwell & Peterson, 2002; 

Seoane et al., 2005; Hernandez et al., 2006; McPherson and Jetz, 2007; van Proosdij 

et al., 2016). However, the typical focus of such studies on continental areas, 

alongside their use of coarse-scale environmental/climatic predictors, means that 

their results are not necessarily generalisable to species from more restricted 

environments like islands. 
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The findings of this research partially support previous evidence (e.g., Hernandez et 

al., 2006; van Proosdij et al., 2016), confirming that sample size and range size 

influence prediction accuracy. However, a notable deviation was observed from the 

expected pattern that species with wide ranges require larger sample sizes and 

tend to be associated with less accurate predictions (see van Proosdij et al., 2016). 

Specifically, in the context of islands, species with wide ranges showed better 

predictability even with smaller sample sizes. This may be because larger study 

areas with more environmental variability require more data to accurately model 

widely distributed species, whereas smaller study areas with more constrained 

environmental variation, such as on many islands, allow for more accurate 

predictions of wide-ranged species using fewer data points. These results also 

provide new evidence on the challenges of modelling narrow-ranged species 

distributions. Narrow-ranged species often have limited data, complicating the use 

of SDMs (Lomba et al., 2010; Breiner et al., 2015). This task becomes even more 

difficult in island settings, as this study suggests that narrow-ranged species on 

islands may require relatively more data for accurate predictions than their 

continental counterparts (van Proosdij et al., 2016). 

The validation metrics analysed (AUC and Boyce index) also proved highly sensitive 

to species’ range size, often overestimating accuracy for narrow-range species and 

underestimating it for wide-range species. While It was found that increasing the 
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proportion of Psa/BG often improve prediction accuracy and reduce uncertainty 

(Descombes et al., 2022; Valavi et al., 2022), analysis of both virtual and real species 

indicates that, depending on data availability and species’ range sizes, a trade-off 

may be required to bridge the gap between model validation and accuracy. In 

instances where the accuracy of spatial predictions is crucial (such as in 

conservation planning, where over- or under-predictions of species' ranges should 

be avoided), compromising some accuracy may be necessary to achieve realistic 

model validation by reducing the proportion of Psa/BG (see further details in 

Section 3.4.3). 

Finally, the significant influence of range size on model performance emphasises 

the risk of using arbitrary thresholds to differentiate between high- and low-

performance models (e.g., >0.7 for AUC and >0.4 for Boyce) in multi-species 

studies with varying range sizes (Raes & ter Steege,2007). To complement 

traditional validation techniques, testing SDM fits against null models is 

recommended to distinguish meaningful results from random outcomes, rather 

than subjectively interpreting them as a continuum of 'high' and 'low' performance 

(Hu & Liu, 2014; Osborne et al., 2022; see also Chapter 4). 
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3.4.2 The impact of low occurrence data precision on the accuracy of island 
SDM predictions at high-resolutions 

Previous studies have shown that positional error can significantly reduce the 

predictive performance of species distribution models (SDMs) (Hefley et al., 2014; 

Tulowiecki et al., 2015; Mitchel et al., 2017; Soultan & Safi, 2017; Fernandes et al., 

2019; Gábor et al., 2022). This effect is particularly strong for specialist species 

(Visscher, 2006; Gábor et al., 2020) and species in environmentally heterogeneous 

regions (Gábor et al., 2023). These factors are especially relevant for island 

environments because: 1) island terrain, especially on oceanic islands, can vary 

significantly over small areas, creating sharp environmental gradients (Hanz et al., 

2023), and 2) islands floras often comprise a high proportion of narrow-ranged 

specialist species (Kreft et al., 2008). Based on these points, SDM performance was 

expected  to decline with positional inaccuracies, particularly for species in 

topographically diverse areas and those with narrow ranges. In this study, species 

with broader ranges typically inhabit more diverse topographies on islands, while 

narrow-ranged species are often confined to less variable environments (e.g., 

coastal zones or specific elevation bands). The results suggest that widespread 

species are less affected by occupancy point positional errors, likely because these 

errors often fall within their suitable habitat range. In contrast, highly specialised 

species, even in less heterogeneous environments, are more vulnerable to 

positional errors when they occur in rare or restricted habitat patches, as a large 
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uncertainty (e.g., ≥1km) can place occurrence points far outside of suitable 

habitats. 

Our results suggest that, to mitigate the impact of positional error in SDMs in 

island environments, it is essential to consider species' range size. Furthermore, as 

we observed little difference in prediction accuracy between large and small sample 

sizes, data quality (i.e., uncertainty) seems to be more important than data quantity 

(in accordance with Engler at al., 2004). Therefore, the removal of highly uncertain 

records —based on the previously defined data requirements for each species' 

range sizes— is justified on the basis of these analyses. 

3.4.3 Optimal methods for island SDMs considering data availability and 
uncertainty 

The analyses identify effective methods for future island SDM studies.	GAMs stand 

out as the most effective modelling approach, on analyses of both virtual and real 

species, showing lower sensitivity to range size, strong coherence with validation 

metrics (the Boyce index and AUC), and relatively low data requirements (≥10 

records for narrow range species resulted in high model accuracy). However, this 

method is highly sensitive to occurrence records with spatial imprecision. 

Interestingly, Maxent, often considered the strong alternative for occurrence data 

and range-restricted scenarios in both island and continental studies (Pearson et 

al., 2007; Valavi et al., 2021), was found to have limitations in our study, with wide-
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ranged species consistently having low prediction accuracy. Paradoxically, it was 

also found that Maxent tolerates occurrence records with spatial imprecision, at 

least for this group of species. The BART approach generated satisfactory results 

overall, requiring moderately large datasets for robust predictions (≥20 occurrence 

records), but tolerating occurrence records with spatial imprecision to a greater 

degree, and providing robust SDM fits in island environments under appropriate 

pseudoabsence sampling conditions (Table 3.2). GLMs demonstrated high accuracy 

(under appropriate modelling conditions: Table 3.2) and tolerance to uncertainty, 

yet also required moderately large datasets (≥20 occurrence records) to provide 

satisfactory fits and predictions. 

Table 3.2 Summary of the minimum sample sizes, background/pseudo-absence 
(Psa/BG) percentages, and the effect of spatial uncertainty (i.e., geographical 
occurrence inaccuracies) on model accuracy for island species with narrow and 
wide ranges across the four modelling methods: BART, GAM, GLM, and Maxent 
(MXT). (*) recommended percentage for multi-method or multi-species studies. 
  

 

Narrow-ranged Wide-ranged 

Minimum 
Sample 

size 

Psa/BG  
% 

SDM 
Accuracy 

With 
Occurrence 
Uncertainty 

Minimum 
Sample 

size 

Psa/BG  
% 

SDM  
Accuracy 

With 
Occurrence 
Uncertainty 

BART 20 10 

Affected by 
large 

inaccuracies 
>1000m 

10 10*/20 

Low 
negative 

impact from 
inaccuracies 
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GAM 10 10 

Affected by 
large 

inaccuracies 
>1000m 

10 10 

Affected by 
large 

inaccuracies 
>1000m 

GLM 20 10 

Affected by 
large 

inaccuracies 
>1000m 

10 10 

Low 
negative 

impact from 
inaccuracies 

MXT 10 10*/40 

Affected by 
large 

inaccuracies 
>1000m 

10 10*/40 

Low 
negative 

impact from 
inaccuracies 
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3.5 Conclusion 

This study has illustrated the importance of spatial context and data availability in 

Species Distribution Modelling (SDM), offering valuable guidance for researchers 

aiming to enhance predictive accuracy for species in island environments. Given 

that island species often have narrow ranges, high specialisation, and limited 

occurrence data, particularly in the form of presence-only records, selecting 

appropriate modelling techniques and pseudoabsence sampling strategies while 

accounting for range size and sample size is crucial for robust island SDM 

implementation.  
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Abstract 

Biodiversity hotspots, areas of key focus for global conservation, are characterised 

by high levels of plant endemism and significant vegetation loss. Nearly half of 

these hotspots are mainly comprised of islands, most of which are in tropical 

regions, making the understanding of island plant species distributions in the 

tropics crucial for conservation. However, knowledge gaps persist, particularly in 

tropical islands, where Species Distribution Models (SDMs) can play a crucial role in 

predicting species' habitat requirements and potential range shifts in response to 

global change. Applying SDMs in tropical island environments presents challenges, 

mainly due to the uncertainty associated with global climatic datasets. 

To overcome these challenges, this study evaluates the effectiveness of two 

downscaled global climatic datasets (WorldClim and CHELSA) and a non-climatic 

alternative—terrain-derived variables that may serve as a climatic proxy—in 

predicting plant species distributions in the Revillagigedo Archipelago, a tropical 

island biodiversity hotspot. Model accuracy and transferability were tested across 

various environmental baselines and spatial resolutions (30, 90, and 500 m) to 

examine their impact on predictive performance. 

 

The contrasting size and topographic complexity of the two islands studied—

Clarion (smaller island) and Socorro (larger island)—provided valuable insights for 
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improving the accuracy and transferability of SDMs across varied island landscapes. 

Results indicate that models utilising downscaled climatic data at finer resolutions 

(≤90 m) significantly enhance predictive accuracy for smaller islands, as evidenced 

by the results from Clarion Island. The Worldclim dataset consistently achieved 

both high accuracy and transferability across a wide range of contexts. Notably, 

model performance varied across species, with three species consistently yielding 

poor predictions under all tested conditions. 

The analysed approaches represent promising alternatives to coarse-scale climate 

data for use in tropical island SDMs, and a method is presented to evaluate the 

informativeness of high-resolution environmental data for SDMs in these settings. 

The results of the study also provide practical guidance to enhance SDM accuracy 

and transferability, ultimately supporting more effective conservation efforts in 

tropical island ecosystems.  
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4.1 Introduction 

Biodiversity hotspots, globally recognised as crucial for conservation efforts, are 

characterised by high levels of plant endemism and significant vegetation losses 

(Myers et al., 2000; Mittermeier et al., 2011). The use of plants as the basis of the 

biodiversity hotspots scheme underscores the essential contribution of plants to 

maintaining the health and resilience of ecosystems and their role as indicators for 

biodiversity conservation (Stork & Habel, 2014).  

Notably, nearly a half of the recognised 36 hotspots are comprised primarily of 

islands, with a large majority (10/15= 67%) located at tropical latitudes (Myers et 

al., 2000; Mittermeier et al., 2011). Understanding the distribution of plant species 

in these tropical insular regions and the impact of environmental changes on their 

distributions is vital for broader conservation efforts. Despite increased global 

investment in biodiversity research, knowledge gaps persist, particularly in tropical 

island regions (Whittaker et al., 2005; Benavides et al., 2024). Species Distribution 

Models (SDMs) serve as valuable tools for filling these knowledge gaps, as well as 

predicting range shifts in response to global change (Guisan et al., 2013; Sofaer et 

al., 2019). In island plant conservation for example, SDMs are crucial for predicting 

climate change impacts, understanding habitat modification, managing invasive 

species, and designing effective conservation plans (Vieilledent et al., 2013; 

Rodríguez-Rodríguez et al., 2018; Patiño et al., 2023).  
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While SDMs are useful tools, their application in islands faces challenges because of 

limitations associated with commonly used environmental descriptors that are 

derived from global climatic datasets (Benavides et al., 2024). This issue is especially 

pronounced in tropical island environments, where the precision of global climate 

datasets is often questioned due to the sparse distribution of meteorological 

stations in tropical latitudes, which can lead to potential biases from statistical 

interpolation methods (Soria-Auza et al., 2010; Deblauwe et al., 2016). 

Moreover, the most widely used global climatic datasets (e.g., WorldClim) are only 

available at resolutions that may inadequately capture the fine scale distributions of 

island plants (≥1km). For many such species, information on fine scale 

microclimatic variations is essential for understanding their distribution patterns 

(Lannuzel et al., 2021; Whittaker et al., 2023), and neglecting these factors can lead 

to misinterpretations of climatic niche requirements, potentially resulting in 

misleading spatial predictions (Patiño et al., 2023).  

To address these challenges, researchers have explored alternatives to global 

climatic datasets for use with SDMs, such as using high-resolution land cover and 

surface variables as proxies for microclimatic variation (Heinänen et al., 2012; 

Turvey et al., 2020; Lannuzel et al., 2021; Segal et al., 2021; Gabor et al., 2023), and 

downscaling coarse-resolution global climatic datasets through statistical 

computation to obtain high-resolution climatic grids (Bazzichetto et al., 2021; 
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Patiño et al., 2023). However, research is needed to evaluate the effectiveness of 

available approaches for obtaining meaningful microclimatic/environmental data to 

improve SDM implementation in tropical island environments. 

The effectiveness of different SDM approaches can be assessed by both model 

accuracy and transferability. The former relates to the ability of a given model to fit 

the data at hand (i.e., training data). Transferability in contrast relates to the ability 

of a model developed in one set of conditions to accurately predict species 

distributions in different, novel environments, and is a critical but often overlooked 

consideration in island SDM research. Transferability is influenced by both the 

choice of predictor variables (Goedecke et al., 2020; Datta et al., 2020) and the 

study grain (Manzoor et al., 2018). However, there is a recognised gap in our 

understanding regarding how the choice of environmental data source affects 

model transferability (Austin & Van Niel, 2011a, 2011b; Stanton et al., 2012, Datta 

et al., 2020). 

Different predictor variable types can affect model accuracy and transferability in 

different ways. For example, while SDMs fitted using terrain variables (i.e., those 

derived from elevation models) are known to effectively model the current 

distribution of species, they show reduced transferability to new environments 

(Rosseau & Betts, 2022). On the other hand, the use of climatic variables derived 



 163 

from global datasets often enhances model extrapolation across space and time 

due to the availability of (i) data at global scales, and (ii) a range of temporal 

climatic scenarios (Petitpierre et al., 2017). However, their use may lead to higher 

uncertainty in predictions in tropical environments due to the previously 

mentioned issues related to the sparseness of meteorological data in these regions 

(Soria-Auza et al., 2010; Deblauwe et al., 2016), and the issue may be exacerbated 

when interpolated to finer scales. Regarding the study grain, past studies have 

shown that, as the analysed grid size decreases, models may face challenges such 

as overfitting, diminishing their transferability to new environmental contexts 

(Manzoor et al., 2018). 

In this study, we investigate the effectiveness of two high-resolution downscaled 

bioclimatic global baselines for predicting species distributions in a tropical insular 

hotspot (Revillagigedo Archipelago) lacking regional climatic data. We use an 

interpolation approach that considers topographic and elevational effects on 

climate (Flint & Flint, 2012) and is known to be useful in characterising 

microclimatic conditions (Franklin et al., 2012; Khosravi et al., 2016). The selected 

global climatic baselines are WorldClim, widely used in SDM studies, and CHELSA 

(Karger et al., 2017), which has been shown to generate useful outcomes in 

applications focused on remote islands (Bazzichetto et al., 2021; Hanz et al., 2023). 

Additionally, we examine models built with terrain variables derived from a global 
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digital elevation model, a widely implemented alternative to climatic descriptors in 

island SDM studies (Heinänen et al., 2012; Turvey et al., 2020; Lannuzel et al., 2021). 

We assess the performance of SDMs calibrated with the three aforementioned 

distinct environmental/climatic baselines (Downscaled-WorldClim, Downscaled-

CHELSA, Terrain-derived) across a range of high-resolution study grains (30, 90, 

and 500 m). As outlined above, we measure effectiveness by focusing on both 

model accuracy and transferability.  

Our study addresses three key questions: 

 

I) How does the prediction accuracy of SDMs differ when using various high-

resolution environmental data sources (Downscaled Bioclimatic and Terrain 

variables) to predict island plant species distributions at tropical latitudes? 

II) Does the grain size of downscaled climatic estimates impact the transferability of 

island SDMs to new environments? 

III) Does the choice of variable type (Downscaled Bioclimatic vs. Terrain variables) 

influence the transferability of island SDMs to novel environments? 

By addressing these questions, our study aims to investigate the predictive 

accuracy related to the use of environmental and climatic predictors relevant to 

island floras, with the goal of improving our understanding of species distributions 
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in understudied island regions. Understanding and addressing uncertainty in 

environmental descriptors in regions with limited data availability is crucial for 

advancing knowledge of species' responses to global change. Thus, the insights 

gained from our analyses will enhance the applicability and transferability of SDMs 

in island environments, a critical endeavour for strengthening conservation efforts 

in these unique and vulnerable ecosystems (Benavides et al., 2024). This is 

especially crucial in addressing major threats to islands such as climate change 

mitigation and invasive species management (Whittaker et al., 2023), which require 

both accurate and transferable SDMs.  

4.2 Materials and Methods 

4.2.1 Study area 

The Tropical Eastern Pacific harbours numerous islands that form part of the 

Mesoamerica biodiversity hotspot (Myers et al., 2000). Among these, the 

Revillagigedo Archipelago (RA) stands out for its unique flora. Despite its relatively 

low species richness, attributed to its remote location (approximately 600km from 

the continent), one-third (39 species) of the plant species on these volcanic islands 

are endemic to the archipelago (Levin & Moran, 1989; Rzedowski, 1991; Benavides 

et al., 2019).  

The study focuses on the two largest islands in the archipelago, Socorro (132 km2) 

and Clarión (19.8 km2), selected for their ecological significance as they host the 
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majority of species in the archipelago. Despite their considerable conservation 

value, there has been a notable lack of comprehensive assessments regarding 

species distribution patterns across all taxa in the archipelago (Brattstrom, 1990; 

Flores-Palacios et al., 2009; Wanless et al., 2009). Addressing this knowledge gap 

can be effectively achieved through the optimal use of SDM methods (Benavides et 

al., 2024), supported by in-depth understanding of empirical species distribution 

patterns acquired from extensive fieldwork expeditions led by one of the authors 

(e.g., Benavides et al., 2019). This knowledge facilitates a robust assessment of the 

relevance of the tested approaches, even in the absence of a regional climate 

model for this area. 

4.2.2 Species data 

Occurrence data for both vascular and non-vascular plants were collected for 

model calibration and validation directly from the field. Vegetation transects of 

varying lengths were implemented; 10 transects of 100m on Clarion, the smallest 

island, and 15 transects of 500m-1km on the larger island Socorro. These transects 

were systematically located to capture diverse vegetation units and habitats. During 

the first sampling period, plant records were collected in both the dry (May 2018) 

and wet (November 2018) seasons on Clarion Island in quadrats of 5x5 meters that 

were located along the sides of the vegetation transects, to both characterise the 

vegetation and to record plant diversity, as this island was lacking such information 



 167 

(Benavides et al., 2019). Dry season transects in Socorro Island were not required as 

the vegetation units have already been characterised (de la Luz et al., 1996; Flores-

Palacios, 2009). Thus, data collection was conducted continuously along the 

transects at the beginning of the wet season (November 2022) to capture the 

largest possible range of both perennial and non-perennial species. To mitigate 

potential sampling biases, transects were widely distributed across both islands. In 

addition, in order to increase species occurrence sample sizes, incidental records 

were collected across both islands during other sampling events with different 

objectives within the sampling seasons. To homogenise sampling strategies across 

islands and to address the potential biases associated with the difficulties of 

sampling in hard-to-access areas, we filtered clusters of occurrence points (i.e., 

where plant data collection was more accessible, for example, due to the presence 

of roads or easily accessible patches of vegetation) using the ‘Thin’ function in the 

"spThin" R package (Aiello-Lammens et al., 2015). Prior to applying the filter, we 

conducted an analysis of the extent of occurrence for each species, calculating the 

minimum convex polygon around all occurrence points using the “adehabitatHR” R 

package (Calenge, 2011). The objective of the latter analysis was to confirm that 

clusters of points did not correspond to species with very small ranges (i.e., 

clustered distributions), considering the common occurrence of small range sizes in 

island species (Gaston & Fuller, 2009; Rosenblad et al., 2019). 
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To undertake the filtering, for both islands, criteria were established to define 

distribution ranges based on field observations of species’ distributional ranges. 

Very small-ranged species were defined as those with an extent of occurrence of 

<5km2, and thus, no filtering approach was applied to these species. Due to the 

larger area of Socorro Island (132km2), for species with an extent of occurrence 

ranging from 5-30km2, we implemented a filter requiring pairs of points to be at 

least 250m apart. For species with an extent of occurrence exceeding 30km2, a 

more relaxed filter of 500m between pairs of points was used. Considering the 

smaller area of Clarion Island (19km2), for species with an extent of occurrence 

>5km2, a spatial filtering approach was applied to keep a 250m distance between 

pairs of points. 

Using all available information per species after filtering, a dataset of native species 

specific to the archipelago with at least 10 occurrence records was compiled (Table 

4.1). To increase the number of species analysed and those shared between islands 

for the transferability analysis, non-endemic natives were included, although their 

models were exclusively trained and projected within the archipelago.  

4.2.3 Environmental data 

Data from global climatic sources were downscaled, incorporating the effects of 

topography in the study area using the methodology of Flint & Flint (2012). This 
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interpolation method combines a spatial gradient and inverse-distance-squared 

(GIDS) weighting to a global dataset through multiple linear regression. 

To apply this methodology, bioclimatic variables for the study area were initially 

obtained from the global WorldClim and CHELSA databases at the smallest 

available resolution of 1 km/30 arc-sec. Subsequently, the original 1-km resolution 

WorldClim/CHELSA data were downscaled to three finer resolutions: 500, 90, and 

30 m. In this downscaling approach, the location and elevation (obtained from a 

digital elevation model at the target resolution) of the new finer-resolution grid cell 

relative to a coarse-resolution grid cell are utilized to weight the parameters based 

on the following equation: 

𝑍 = &'
𝑍! + (𝑋 − 𝑋!) ∗ 𝐶" + (𝑌 − 𝑌!) ∗ 𝐶# + (𝐸 − 𝐸!) ∗ 𝐶$

𝑑!%

&

!'(

2 / &'
1
𝑑!%

&

!'(

2 

where Z is the estimated climatic variable at the specific location defined by easting 

(X) and northing (Y) coordinates and elevation (E); Zi is the climatic variable from 

the 1-km grid cell i; Xi, Yi, and Ei are easting and northing coordinates and 

elevation of the 1-km grid cell i, respectively; N is the number of 1-km grid cells in 

a specified search radius; Cx, Cy, and Ce are regression coefficients for easting, 

northing, and elevation, respectively; and di is the distance from the 500m, 90m or 

30m site to the 1-km grid cell i depending on the downscaled resolution target 

(Flint & Flint, 2012).   
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The topographic information for downscaling was obtained from a digital elevation 

model at a 30m resolution (ASTER Global Digital Elevation Map v3: NASA & METI, 

2018), which was later resampled to 90m and 500m resolutions with the ‘resample’ 

function from the 'Terra' R package (Hijmans, 2022). The elevation information from 

the digital elevation model was also utilised to create the terrain variable dataset. 

As well as elevation (ELEV), the terrain-derived dataset contained slope steepness 

(SLOPE) and slope exposure (ASPECT), which were derived from the elevation data 

using the 'Terra' R package. The topographic wetness index (TWI), a proxy for water 

availability, was calculated with the function ‘upslope.area’ from the 

'dynatopmodel' R package (Smith & Lancaster, 2022). Finally, the distance to the 

coast (DTC) was computed as the Euclidean distance from the centre of each grid 

to the closest point on the coastline. All these layers were also converted to 90 m 

and 500 m resolutions. These variables were selected because they are known to be 

informative in capturing island plant species-habitat relationships, serving as useful 

proxies for microclimatic variation (Irl et al., 2020; Lannuzel et al., 2021). 

For the two climate datasets (Downscaled-WorldClim and Downscaled-CHELSA), 

the multicollinearity of the 19 bioclimatic variables was analysed using the 

'corSelect' function from the "fuzzySim" R package (Barbosa & Barbosa, 2020). This 

function calculates the pairwise Pearson’s correlations between variables, and if the 

correlation threshold (r > 0.7) is exceeded, one variable from the pair is excluded by 
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selecting the variable with the highest variance inflation factor (VIF) in a linear 

regression model. A common final set of variables was selected for both islands 

(bio1 [Annual Mean Temperature], bio3 [Isothermality], bio5 [Max Temperature of 

Warmest Month], bio16[ Precipitation of Wettest Quarter], bio18[Precipitation of 

Warmest Quarter]) using this approach, ensuring reasonable multicollinearity levels 

(all VIFs were < 5) (Abdelaal et al., 2019).  

4.2.4 Modelling framework 

SDMs were fitted using the ensemble of small models (ESM) approach (Lomba et 

al., 2010; Breiner et al., 2015). In this approach, all potential combinations of 

bivariate models are fitted, and their performance is evaluated based on their Area 

Under the Curve (AUC) scores. Subsequently, a final averaged model is created, 

which includes all informative small models (AUC >0.5). 

The choice of this approach over more traditional modelling frameworks, which 

include all variables in model fitting, stems from the fact that all our species’ 

occurrence datasets have ≤30 occurrence points (with the exception of one 

species). The implementation of ESM is therefore preferred because it reduces the 

risk of overfitting by adhering to a standard rule of including at least 10 records per 

predictor variable, effectively controlling for model complexity (Lomba et al., 2010; 

Breiner et al., 2015). 
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To reduce uncertainty arising from model selection (Araujo et al., 2019), a decision 

was made to fit SDMs using a single method that has demonstrated high 

performance for modelling island species distributions in the study area in 

combination with the ESM approach: GAMs (see Chapter 3). This fitting procedure 

resulted in one averaged model from all bivariate predictor combinations per 

species across three different baselines. 

Although method-specific parameter tuning is sometimes recommended, the 

default settings of the respective SDM fitting algorithm were maintained, as 

evidence suggests that tuning features have a lower impact on predictive capability 

for the selected modelling method when sample sizes are small (<30 records: 

Valavi et al., 2022; Radomski et al., 2022). A presence-pseudoabsence approach was 

used to fit the models. In this method, pseudo-absence/background points were 

simulated by first quantifying the number of grids within the study area and then 

randomly sampling 10% of that area. This random sampling approach relies on 

fewer assumptions than other methods and has been shown in prior research to 

yield highly accurate predictions (Stokland et al., 2011; Descombes et al., 2023). The 

10% sampling rate was selected because it provides a good balance between 

model performance and validation metrics (Chapter 3). 

To validate model performance, two metrics were used: AUC and the continuous 

Boyce index. While an AUC >0.70 is conventionally accepted as the minimum 
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threshold for adequate model performance (van Proosdij et al., 2015), AUC is 

known to be highly sensitive to sample prevalence and may struggle to accurately 

validate SDMs performance for widespread species (Lobo et al., 2008; Chapter 3). In 

the context of the study area, previous evidence suggests that AUC values >0.65 

indicate adequate model performance (Chapter 3). Therefore, this slightly lower 

threshold was used to differentiate between informative and non-informative 

models. 

The described modelling procedure was repeated for each of the three primary 

predictor datasets (Downscaled-WorldClim, Downscaled-CHELSA, Terrain-derived), 

and the three different resolutions: 500, 90 and 30m. 

4.2.5 Statistical association of species’ occurrence and the environmental/ 
climatic variables 

The assumption that SDMs can provide useful predictions when predictor variables 

show statistical associations with species occurrence data was tested, following the 

approach outlined by Deblawe et al. (2016). For each species, a gridded sample of 

random (null) occurrence points was generated to replicate many properties of the 

observed species’ geographic distribution. This sample had the same resolution, 

geographical extent, number of occupied cells, and spatial dependence (clustering 

or dispersion) as the actual observations, but the points were distributed randomly 

in space. Spatial dependence was summarised over a range of distances using the 
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variance-stabilised Ripley K-function, also known as the L-function (Ripley, 1976). A 

detailed description of the procedure is available in Goreaud et al. (2004). 

To assess the significance of each of the three environmental/climatic datasets for 

each species model, across the three resolutions analysed, the likelihood of obtaining 

an area under the receiver operating characteristic curve (AUC) equal to or greater 

than the AUC under the null hypothesis (that associated with the random null 

distribution points outlined above) was evaluated. Put simply, the P-value of a one-

tailed test was calculated as the frequency at which AUC null ≥ AUC obs, drawn from 

a sample of 200 different null distributions in total per species (an alpha value of 0.05 

was used to determine significance). It is important to note that this test only allows 

determination of whether a modelled distribution is ‘random’ (i.e., not different from 

that expected under the null distribution) relative to the environmental predictors 

included in the model. 

Subsequently, a Chi-Square Test of Independence was conducted to determine if a 

modelled distribution being classified as 'random' or 'non-random' is related to 

different model properties. Specifically, the analysis focused on whether 'Model 

Randomness' (i.e., the result of the aforementioned null distribution comparison; 

levels = 'random' and 'non-random') is dependent on 'Resolution' (levels: '30', '90', 

and '500’) and/or 'Environmental Baseline' (levels: 'WC', 'CH', and 'DEM') and the 

island analysed (levels: 'Socorro' and 'Clarion'). 
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Finally, how accuracy (in terms of AUC) varied among the different model fits was 

assessed. For this, a (Gaussian) linear mixed effects model was fitted. The predictor 

variables of interest were 'Resolution,' 'Environmental Baseline,' and 'Island,' with all 

two-way interaction terms included. Marked species-specific differences in model 

performance were expected, so species identity ('Species') was incorporated as a 

random effect (random intercept): AUC ~ (Baseline + grain + Island)^2 + (1 | 

Species). The model was fitted using the ‘lme4’ R package (Bates et al., 2015). 

4.2.6 Model transferability 

For this analysis, species (n = 7) were selected based on their common occurrence 

across both islands within the archipelago. The goal was to investigate how grain 

size and the choice of predictor variables affect model transferability. Since all the 

selected species are more common on one island (resulting in more presence data 

points) than the other, presence/pseudoabsence models were trained using data 

from the island with the larger occurrence dataset. These models were 

subsequently projected to the island where the species are less common. The 

metric selected for model validation was the Area Under the Curve (AUC), 

calculated with the presence and absence data from the target projection island. 

This validation approach enabled assessment of both the accuracy and 

transferability of the model in its projected areas. Evaluations were conducted 

across three analytical resolutions (30 m, 90 m, 500 m) and the three environmental 
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datasets selected for this study (Terrain-derived, CHELSA, Worldclim). The linear 

mixed-effects model outlined above, specified as AUC ~ (Baseline + grain + 

Island)^2 + (1 | Species), was also applied to assess model transferability. This 

approach allowed analysis of whether the outcomes were consistent in terms of 

both accuracy and transferability. 

4.3 Results 

4.3.1 Species data 

The final dataset comprises a total of 20 species, categorised into three chorotypes: 

single island endemics (n = 8), species endemic to the archipelago (n = 1), and 

non-endemic natives (n = 11). From the full dataset, 7 species were selected for the 

transferability assessment on the basis that they occurred on both islands, with 4 

species being more common on Socorro Island and 3 species being more common 

on Clarion Island. Table 4.1 summarises the species list, the number of records 

obtained, and the species selected for transferability, detailing where the models 

were fitted and where they were projected.  
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Table 4.1 Species list and number of occurrence points (post filtering) per island. Island 
datasets selected as training areas for the transferability test (*) are highlighted in bold. 
This indicates that the model was trained in the island with the larger sample size and 
projected to the one with fewer occurrence records. (+) Non-endemic native species. 

Taxon N. records Clarion 
 

N. records Socorro 
 

Transferability 
test 

Brickellia peninsularis 
Brandegee 21 27 * 

Bursera epinnata+  
(Rose) Engl. - 69 - 

Caesalpinia bonducella+  
(L.) Fleming 10 - - 

Conocarpus erectus+  
L. - 10 - 

  Croton masonii  
  I.M. Johnst. - 17 - 

Dodonaea viscosa+ 
(L.) Jacq. 10 31 * 

Euphorbia anthonyi 
Brandegee 15 6 * 

Euphorbia californica+ 
Benth. 13 - - 

Ficus cotinifolia+  
Kunth - 15 - 

Guettarda insularis Brandegee - 24 - 
Ilex socorroensis  
Brandegee - 16 - 

Karwinskia humboltiana+ 
(Schult.) Zucc. 11 - - 

Nicotiana stocktonii 
Brandegee 8 2 * 

Sideroxylon socorrense 
(Brandegee) T.D. Penn. - 19 - 

Perityle socorrosensis 
Rose 10 13 * 

Psidium socorrense 
I.M. Johnst. - 25 - 

Teucrium townsendii 
Vasey & Rose 7 - - 

Tribulus cistoides+  
L. 14 10 * 

Waltheria indica+  
.L.  19 27 * 

Zanthoxylum fagara+ 
(L.) Sarg. 13 - - 
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4.3.2 Model accuracy 

Model performance was analysed using two metrics: AUC and the continuous 

Boyce index. A significant positive correlation between these metrics was observed 

(Pearson’s r = 0.61, P <0.01), indicating correlated patterns of high and low-

performing models across metrics. Thus, only the AUC results are discussed in the 

main text, with detailed information for both metrics available in Supplementary 

Table S.4.1.1. 

The output of the model 𝐴𝑈𝐶~(Baseline	 + 	grain	 + 	Island)^2 +

(	1	|	𝑆𝑝𝑒𝑐𝑖𝑒𝑠)	revealed that most of the explained variation was attributable to the 

species-level random effect (Marginal R2= 20%; Conditional R2= 77%). The 

predictor "Resolution" had no significant effect on model performance (coefficient 

= 0; SE = 0; p = 0.17). Similarly, the "Island" variable did not significantly influence 

the AUC (coefficient = 0; SE = 0.02; p = 0.57). The environmental baselines had a 

significant impact on AUC. Specifically, the WorldClim (WC) baseline positively 

affected model performance (coefficient = 0.05; SE = 0.02; p < 0.01) relative to 

CHELSA, while the Terrain-derived (DEM) baseline had a negative effect (coefficient 

= -0.04; SE = 0.02; p = 0.02) relative to CHELSA. Overall, models using downscaled 

baselines produced higher AUC values across both islands, with resolutions of 

≤90m proving particularly beneficial for SDM predictions on Clarion Island. 



 179 

Some interactions between “Environmental Baseline,” “Resolution,” and “Island” 

were significant in the regression model. There was a negative interaction between 

the DEM baseline and Clarion Island (coefficient = -0.06; SE = 0.02; p < 0.01), and 

between the WC baseline and Clarion Island (coefficient = -0.08; SE = 0.02; p < 

0.01). Additionally, there was a significant positive interaction between the DEM 

baseline and resolution (coefficient = 0.001; SE = 0.0005; p < 0.01), where coarser 

resolutions increased the AUC scores of models fitted with DEM variables. Figure 

4.1 shows the AUC differences across islands, environmental baselines, and 

resolutions. 

Regardless of the selected analytical resolution or type of environmental baseline, 

two species consistently had AUC values below the 0.65 threshold, which is 

considered the minimum acceptable for model performance in the study area. 

Specifically, B. peninsularis (mean AUC = 0.57) and E. anthonyi (mean AUC = 0.59) 

exhibited poor model performance across all tested scenarios (Fig. 4.2).  
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Figure 4.1 AUC results from SDMs fitted to 20 species across Environmental Baselines 
(WC= downscaled Worldclim; CH= downscaled CHELSA; DEM=Topographically 
derived), and Resolution. Red circles show mean AUC and the lines show the 95% CI. 
Gray points indicate the AUC values of each of the 20 species analysed. Gray dashed 
line marks the AUC threshold considered acceptable for model performance (0.65). 
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Figure 4.2 AUC values from fitted models by species and across different resolutions 
and environmental baselines (WC= downscaled Worldclim; CH= downscaled 
CHELSA; DEM=Topographically derived). Downscaled environmental (bioclimatic) 
baselines are represented in blue shades, while the terrain-derived baseline is shown 
in red. Gray dashed line marks the AUC threshold considered acceptable for model 
performance (0.65). 

 
4.3.3 Statistical association between species’ occurrence and the 

environmental/climatic variables 

The Chi-Square test of independence revealed no significant association between 

'Environmental Baseline' or 'Resolution' and 'Model Randomness' (Resolution: χ²(2) 

= 2.98, p = 0.23; Environmental Baseline: χ²(2) = 1.89, p = 0.38). This suggests that 

neither the choice of baseline nor resolution significantly impacts whether a model 

fit is worse than random. However, 'Model Randomness' was significantly 

associated with both 'Species' (χ²(19) = 144.6, p < 0.01) and 'Island' (χ²(1) = 28.87, p 

< 0.001), indicating species-specific relationships with the different environmental 
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baselines and resolutions, and that there are significant differences in the 

proportion of random models observed between islands (discussed below). 

On Clarion Island, all SDMs for three species—B. peninsularis, D. viscosa, and E. 

anthonyi—resulted in random fits, meaning that the modelled fits were no better 

than a randomly generated distribution. These species also exhibited low model 

performance (AUC < 0.65), suggesting that their distributions could not be reliably 

predicted by any of the environmental baselines used, regardless of resolution. 

For Clarion SDMs, non-random model fits were more common at finer spatial 

resolutions (30m and 90m). Notably, 27% (n=3) of the species displayed non-

random fits, which were evenly distributed across all resolutions and baselines. In 

contrast, 45% (n=5) of the species showed non-random fits in specific scenarios, 

particularly when using downscaled CHELSA (CH) data (Fig. 4.3). Overall, 

downscaled CH data contributed to non-random fits in 7 of the 8 species, followed 

by DEM and downscaled Worldclim (WC), which contributed to non-random fits in 

5 and 4 species, respectively. 

For the Socorro Island SDM fits, only one species, F. cotinifolia, had a random SDM 

fit, and this model also had poor performance (AUC < 0.65). In contrast to the 

Clarion Island models, where non-random SDM fits were mostly specific to a 

particular baseline and generally associated with smaller resolutions, on Socorro 
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Island, non-random SDM fits were more consistent across different resolutions and 

baselines (Fig. 4.3). Specifically, 58% of the species (n=7) had consistent non-

random fits across most scenarios of environmental baselines and resolutions. 

Whereas 33% of the species (n=4)  showed non-random fits in specific scenarios 

based on WC and DEM datasets. Figure 4.3 summarises the distribution of random 

and non-random SDM fits across the variables analysed. 

b 

Figure 4.3 Distribution of random (lower section) versus non-random (upper section) 
model fits across different environmental baselines and resolutions for both Clarion 
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and Socorro islands. The X-axis represents three resolutions (30m, 90m, 500m) and 
three environmental baselines (CH: downscaled CHELSA, DEM: Terrain-derived, and 
WC: WorldClim). a - Clarion Island: a higher number of SDMs resulted in random fits, 
with non-random fits occurring primarily in scenarios using downscaled CHELSA 
data. b - Socorro Island: shows a more balanced distribution of random and non-
random fits across all resolutions and baselines. (*) Species that exhibited all-random 
SDM fits. 
 

4.3.4 Model transferability 

Model transferability, defined as the ability of a model fitted using presence-

absence data from one island to accurately predict the species’ distribution on a 

second island, was assessed for seven species. This assessment was conducted 

using empirical presence-absence data from the island to which models were 

projected, and evaluated with the AUC (Area Under the Curve) metric. Figure 4.4 

summarises the AUC-transferability results, with detailed information provided in 

Supplementary Table S.4.1.2. 

A mixed-effect model, with AUC_transferability as the response, species as a 

random effect, and environmental baseline, study grain and island as fixed effects, 

revealed that the fixed effects explained a relatively large proportion of the 

variability in the AUC_transferability metric (Marginal R² = 62%; Conditional R² = 

11%). Unlike model performance, whereby the species-level random effect 

explained most of the variation in AUC, the variation in model transferability was 

better explained by the environmental baseline used in the SDM fit. Specifically, the 

Terrain-derived (DEM) baseline had a positive impact on model performance 
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(coefficient = 0.16; SE = 0.04; p = 0.01) relative to CHELSA, while the Downscaled 

WorldClim (WC) baseline also had a positive effect (coefficient = 0.09; SE = 0.04; p 

= 0.02) relative to CHELSA. The predictor ‘Resolution’ did not have a significant 

effect on model performance (coefficient = 0; SE = 0; p =0.34). Similarly, the ‘Island’ 

variable did not significantly influence the AUC_transferability (coefficient = -0.07; 

SE = 0.05; p = 0.35). 

A marked difference was observed in transferability between islands. Species 

distribution models fitted using data from the largest island (Socorro) and 

projected onto the smallest island (Clarion) showed poor transferability 

(AUC_transferability < 0.65) for all species. For species projected into Socorro 

Island, the Terrain (DEM) environmental baseline generally provided the highest 

mean AUC_transferability across all resolutions (DEM AUC = 0.76; DEM-Res30 = 

0.79; DEM-Res90 = 0.77; DEM-Res500 = 0.72). Model transferability for WorldClim 

(WC) also showed high average AUC_transferability scores (WC AUC = 0.71; WC-

Res30 = 0.72; WC-Res90 = 0.74; WC-Res500 = 0.70). In contrast, CHELSA (CH) 

showed lower average AUC_transferability scores (CH AUC = 0.65; CH-Res30 = 

0.60; CH-Res90 = 0.64; CH-Res500 = 0.65). Differences in model transferability 

across resolutions were minimal for both islands, with only slight improvements 

observed at the finest (30m) resolution (Figure 4.4). 
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Figure 4.4 AUC-transferability results by species across different resolutions and 
Environmental baselines (WC= downscaled wordlclim; CH= dowscaled Chelsa; 
DEM=Topographically derived). Gray points are AUC_transferability values per 
species across diverse scenarios of resolution and baselines. Red circles are average 
AUC_transferability scores and the lines extend to the 95% CI. Gray dashed lines mark 
the AUC threshold used in the study area 

 
4.4 Discussion 

Species Distribution Models (SDMs) are essential tools for understanding the rich 

yet understudied biodiversity of tropical regions (Poteau et al., 2019), particularly 

on islands. However, their effectiveness is often hindered by uncertainties in 

climatic estimates (Deblauwe et al., 2016) and the inability of these estimates to 

capture the variability of small or topographically complex islands (Benavides et al., 
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2024). As a result, there is a reliance on proxies, such as topography and remotely 

sensed vegetation data, to fill these gaps. 

This study aimed to address these environmental data limitations while focusing on 

a selection of ecologically relevant variables for SDMs at appropriate scales—an 

aspect that has been relatively understudied (Austin & Van Niel, 2011; Syphard & 

Franklin, 2009; Tulloch et al., 2016). Advances in data availability and computational 

power have made it increasingly feasible to develop detailed microclimatic 

descriptors by downscaling global climate data. However, generating downscaled 

climate data is only part of the challenge; it is also necessary to ensure that these 

variables, in the context of SDMs, are ecologically valid and accurately reflect 

species-environment relationships. To this end, plant species distributions were 

analysed on islands, which are often particularly sensitive to fine-scale climatic and 

topographic gradients (Lannuzel et al., 2021). The downscaling methods explored 

in this study have been shown to be effective in describing microclimatic variability, 

thus leading to accurate plant SDMs in many contexts (Flint & Flint, 2012; Franklin 

et al., 2013). However, the uncertainty associated with global climatic estimates in 

tropical islands (Deblauwe et al., 2016) means that the reliability of these 

approaches in tropical island environments remains uncertain. 

It was initially expected that terrain-derived predictors would result in more 

accurate and informative distribution models, as local topography is known to be 
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an important driver of microclimatic habitats relevant for plant species through 

factors such as slope, exposure, water availability, and temperature (Franklin et al., 

2013; Chauvier et al., 2021). Contrary to expectations, the analysis revealed that, 

when spatial context and species properties were considered, downscaled climatic 

predictors provided more accurate SDMs. This suggests that such variables may 

capture habitat preferences not reflected by DEM-based predictors. This finding 

indicates a need to reconsider the reliance on terrain-derived data in high-

resolution island SDM studies (e.g., Poteau et al., 2019; Lannuzel et al., 2021). 

The remainder of the discussion outlines and contextualises scenarios where each 

type of predictor (and the corresponding analytical resolutions) is relevant for (1) 

predicting species distributions and (2) extrapolating models to novel conditions 

(i.e., model projections). 

4.4.1 Model Accuracy and Species–Climate Associations Using High-Resolution 
Environmental/Climatic Data 

The analysis of two islands with differing sizes and levels of topographic complexity 

provided valuable insights into how spatial context influences species associations 

with environmental descriptors across various analytical resolutions. Socorro, the 

larger island (132 km²) with complex topography and higher elevation (1000m), 

presented contrasting results to Clarion, a much smaller island (19 km²) with 

relatively simpler topography and lower elevation (300m). 
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In the case of Socorro, SDMs generally showed higher accuracy (relative to Clarion) 

and produced consistent species-climate associations across different 

environmental baselines (CH, DEM, WC) and resolutions (30m, 90m, 500m). The 

consistent effectiveness of microclimatic variables (WC/CH), as predictor variables 

in SDMs based on species data from Socorro, can be attributed to the island’s 

larger area, which provided more data for downscaling (in the form of 1km gridded 

climate data), thereby reducing model uncertainty. Additionally, the island’s size 

resulted in broader resolution predictors more effectively capturing environmental 

variability, leading to more stable results in terms of predictive accuracy (Austin & 

Van Niel, 2011). 

In contrast, SDM fits based on data from the smaller island of Clarion exhibited 

greater uncertainty, with models showing high accuracy and generating better-

than-random fits only in specific scenarios regarding resolution and variable choice. 

The most accurate models for Clarion were based on very fine-resolution 

environmental descriptors (30m), a logical outcome as finer resolution data provide 

a better representation of environmental variability in small study areas. Notably, 

the relative performance of the CH dataset was greater on Clarion Island, and was 

the only case where this environmental baseline outperformed WC and DEM 

(further explanation in the impacts of transferability section). 
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The models based on DEM descriptors performed relatively poorly for Clarion, 

likely due to its lower topographic diversity. On this smaller and less orographically 

diverse island, the relationship between topography and microclimate may be 

weaker, obscuring the role of environmental factors that influence species 

distributions on larger, more topographically varied islands (McInerny et al., 2011; 

Lembrechts et al., 2019). 

4.4.2 Balancing model accuracy and transferability in regards to variable 
selection and analytical resolution 

Evidence suggests that even if a model performs well in terms of its fit to a given 

training dataset, it may not necessarily exhibit high transferability (Huang et al., 

2016). This is particularly important in island studies, where it is often crucial to 

undertake such a complementary approach to model evaluation, for two main 

reasons: 

1) Resolution and Transferability: Previous research has indicated that SDMs fitted 

with fine-scale resolution data often exhibit lower spatial transferability (Manzoor 

et al., 2018). However, this study contradicted this expectation, revealing that 

transferability improved when models were fitted with finer resolution data. This 

discrepancy may be attributed to the significant size differences between the 

islands involved in the transferability analysis. For Socorro, the larger island, 

resolution was less critical for accurate modelling, whereas for Clarion, the smaller 
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island, a finer resolution was necessary. Therefore, when transferring models 

between these islands, it is crucial to match the resolution appropriately to ensure 

that the model performs well in both environments. 

2) Type of Predictor Variables: Transferability is closely linked to the type of 

predictor variables used in SDMs, with studies showing differences in results 

depending on the utilised climatic datasets (Petitpierre et al., 2017; Manzoor et al., 

2018; Goedecke et al., 2020; Datta et al., 2020). Additionally, the choice of global 

climatic baselines is sensitive to the amount of meteorological data available in the 

study area (Karger et al., 2017). Previous studies have shown that plant SDMs in 

regions with sparse meteorological stations performed better when calibrated with 

the CHELSA (1.1) dataset compared to WorldClim (Bobrowski & Schickhoff, 2017; 

Karger et al., 2017). Based on this, downscaled CHELSA data were initially expected 

to outperform WorldClim in this study. However, our findings revealed that models 

fitted with WorldClim generally performed better and exhibited greater 

transferability than those using CHELSA. This contrasting result, which is consistent 

with Datta et al. (2020), may be due to the aforementioned previous studies using 

the first version of WorldClim (version 1), whereas the present analyses were based 

on the latest version of WorldClim (version 2). The relative improvement of 

WorldClim2 could be due to enhancements in data quality, including the 

incorporation of remotely sensed variables like land surface temperature and cloud 
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cover. The latest version of CHELSA (1.2) has also made corrections to account for 

orographic effects, particularly concerning precipitation (Karger et al., 2017). 

However, these corrections in CHELSA 1.2 may compromise the transferability of 

climatic models when projecting to new regions if the local correlation structure 

among variables changes (Mesgaran et al., 2016). This issue is relevant in the 

present study, as Clarion Island—the smaller of the two studied islands—has less 

topographic variability compared to Socorro, the largest island in the archipelago. 

This difference in topographic variability may explain why models fitted with 

CHELSA data showed poor transferability in general. Nonetheless, CHELSA data 

were useful in modelling species distributions in some cases, even with very limited 

gridded data on the smaller island. 

4.4.3 Study Limitations 

Beyond spatial context, species identity significantly influenced model accuracy, 

with the species-level random effect explaining most of the variation in the mixed-

effects model of SDM accuracy. Certain characteristics of the study species were 

associated with poor model fit and transferability. In particular, species with 

uninformative model fits—indicated by low AUC scores or fits no better than 

random—and poor transferability shared a common trait: high prevalence in the 

study area (i.e., widespread species). This characteristic has been identified as a 

challenge for SDM fitting, both in the study area (Chapter 3) and more broadly (van 
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Proosdij et al., 2015). Additionally, with the exception of one island endemic species 

(E. anthonyii), all the relatively poor SDM fits were associated with non-endemic 

native species. This is likely due to the models only capturing a truncated realised 

niche, which is known to negatively affect SDM fit and transferability (Suárez-

Seoane et al., 2014; Benavides et al., 2024). 

Although the potential issue of niche truncation for non-endemic species was 

recognised during the method design and species selection phases of the study, 

these species were included in the analyses because field observations indicated 

that they are dominant elements in the vegetation structure of the analysed islands. 

Mapping their distributions is, therefore, important for fully understanding the 

community assembly of island floras. There was also a practical necessity to their 

inclusion given that some of these species are shared between the islands, thus 

increasing the species pool for the transferability tests. Overall, the poor SDM fits, 

rather than reducing the validity of the selected predictors / baselines, confirm the 

previously identified challenges of SDM implementation on islands (Benavides et 

al., 2024), and highlight potential sources of noise that should be considered in 

future island SDM studies. 

4.5 Conclusion 

In this study, the reliability of SDMs was evaluated in a tropical insular hotspot 

where the availability of fine-scale climatic data is limited, and strategies to 
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enhance their application in such challenging contexts were explored. The findings 

broaden the range of potential options for using high-resolution environmental 

baselines in SDMs for tropical island plants. It was demonstrated that selecting 

appropriate downscaled fine-scale predictors, guided by the spatial context of the 

study islands, can significantly improve the informativeness of SDMs. This finding 

calls into question the common reliance on topographically derived data 

(Benavides et al., 2024), which may not always be the most reliable or ecologically 

robust choice in island SDM studies. 

While downscaled microclimatic predictors were found to be effective in many 

contexts, this result may not universally apply to other tropical islands. However, 

the null-hypothesis testing approach utilised here is likely to be beneficial in island 

SDM studies more broadly and should guide the selection of informative predictor 

variables in future studies. By implementing this approach in SDM studies of 

regions with environmental data limitations, researchers can better assess the 

reliability of their models. Additionally, valuable insights were gained into 

improving the transferability of SDMs—in an insular context—by selecting relevant 

variables at appropriate resolutions, which has been shown to also depend on 

spatial context. These findings support approaches that involve model 

extrapolation across different islands, such as in invasive species management and 

conservation translocations. 
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Abstract 

Island endemic species are often endangered due to their small ranges and limited 

migration options in response to climate change and other anthropogenic 

pressures. Understanding insular species distributions is essential for addressing 

anthropogenic threats on islands, and Species Distribution Models (SDMs) have 

become valuable tools in this regard. In this study, SDMs were used to assess the 

impact of climate change on a group of indicator plant species—those that are 

vulnerable and/or have recognised ecosystem functions—across four archipelagos: 

the Canary Islands, Galápagos, Hawaiian Islands, and the Revillagigedo archipelago. 

By incorporating microclimatic data into the SDMs, findings show that most species 

are projected to experience significant reductions in their distributions, with an 

average range reduction of 27-37%. Spatial patterns of distribution decline varied, 

with some regions showing concentrated losses, while others exhibited more 

dispersed patterns. The analysis also revealed that species categorised as "Least 

Concern" or not evaluated by the IUCN were more vulnerable to climate-driven 

range loss than species already listed as threatened. Additionally, by analysing 

species chorotypes, it was confirmed that endemic species are disproportionately 

more at risk compared to their non-endemic native counterparts. These findings 

highlight gaps in current conservation assessments and provide critical insights for 

developing targeted strategies to protect biodiversity and ecosystem functionality 

in island ecosystems under climate change. 
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5.1 Introduction 

Despite comprising only 6.7% of the Earth's surface, islands support approximately 

20% of global biodiversity (Whittaker et al., 2023). However, human activities—

including habitat destruction, the introduction of invasive species, overexploitation 

of resources, and the accelerating impacts of climate change—pose significant 

threats to island ecosystems, placing many species at risk of extinction (Matthews 

et al., 2022; Whittaker et al., 2023). Oceanic islands, in particular, face even greater 

vulnerability due to their geographic isolation and unique geological histories, 

which have resulted in high levels of species endemism (Whittaker et al., 2023). As a 

result, islands account for roughly 75% of recorded extinctions and support a 

disproportionate number of the world’s endangered species (Fernández-Palacios et 

al., 2021). 

To address the alarming decline in island biodiversity driven by anthropogenic 

pressures, it is first necessary to understand where species occur on islands. Species 

Distribution Models (SDMs) have become widely used tools in this regard, aiding in 

increasing our understanding of anthropogenic impacts on biodiversity (Frans & 

Liu, 2024). SDMs predict species' habitat suitability by analysing the association 

between species occurrence and various environmental variables, allowing for the 

identification of suitable habitats both in the present and under future 



 205 

environmental change scenarios (Franklin, 2010; Guisan et al., 2013; Fourcade et al., 

2014; Araujo et al., 2019). 

Island endemic species are at particular risk of future climate change. The limited 

space available on islands provides few opportunities for species to shift their 

ranges to track changing climate, thereby increasing their vulnerability (Cox & 

Moore, 2010; Pimm, 2002; Taylor & Kumar, 2016). This threat spans various taxa 

and island environments. For instance, cold-adapted island endemic plants, as well 

as tropical insular reptiles, amphibians, and birds, are all expected to experience 

significant declines (up to 90-100%) in climate suitability, potentially leading to 

local and global extinctions even under optimistic predicted future scenarios 

(Dubos et al., 2022; Edwards et al., 2022; Fortini et al., 2015; Upson et al., 2016). 

As primary producers and, in many cases, ecosystem engineers, plants play a crucial 

role in sustaining island biodiversity by providing essential services such as water 

regulation, erosion control, habitat, and food supply (Gravel et al., 2011; Borges et 

al., 2018). For instance, while certain areas on a given island may remain climatically 

suitable for some island birds, the loss of critical nesting habitat provided by plants 

could significantly reduce their chances of survival (Porfirio et al., 2016; Amin et al., 

2021). 
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Given the importance of plants in sustaining island biodiversity, it is crucial to 

accurately determine their habitat suitability on islands in the face of climate 

change (Caujape-Castells et al., 2010; Patiño et al., 2023). This requires considering 

small-scale climatic variation, as oceanic islands often exhibit high environmental 

heterogeneity over relatively small areas, leading to diverse micro-habitats (Irl & 

Beierkuhnlein, 2011; Barajas-Barbosa et al., 2020; Whittaker et al., 2023; Chapter 2, 

Chapter 4). Consequently, the distributions of island endemic plant species are 

often closely related microclimatic variations, and such species often have narrow, 

clustered distributions (Nyakatya & McGeoch, 2008; Patiño et al., 2023) Therefore, 

coarse-grained environmental / climatic predictors are typically insufficient for 

capturing the necessary environmental variation required for effective SDMs 

(Benavides et al., 2024). Given the difficulties in sourcing fine-scale environmental 

data on islands (see Chapter 4), we still lack a comprehensive understanding of how 

island plant species distributions will respond to future climate change on different 

archipelagos. This understanding is essential if we are to effectively conserve island 

plant species going forward. 

This study builds on the methodological foundations of the preceding three 

chapters to evaluate the potential impacts of future climate change on plants of 

high ecological and conservation value found in various (sub)tropical oceanic 

archipelagos, all of which are global biodiversity hotspots (Mittermeier et al., 2004). 
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To generate relevant information to support management decisions, this analysis 

aims to (1) examine how predicted distribution changes in response to future 

climate change vary across species chorotypes (i.e., non-endemic natives vs. 

archipelago endemic species) to identify whether local or global species losses will 

be more prevalent in the analysed areas; (2) assess how these predicted 

distribution changes vary across different species extinction risk categories (as 

recognised by global authorities such as the IUCN, and national authorities) to 

determine whether climate change poses an additional threat—or confirms an 

existing one—for species already under threat; and (3) determine whether the 

modelled changes in plant species distribution patterns result in significant losses 

or gains in specific island regions, in order to identify zones of loss or stability. By 

using microclimatic data in the SDMs, the aim is to improve predictions of species 

distributions under scenarios of future environmental change and, in doing so, 

inform conservation efforts in these vulnerable environments.  
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5.2 Materials and methods 

5.2.1 Study area 

This study focuses on four archipelagos of volcanic origin located in biodiversity 

hotspots in the tropics and sub-tropics: the Canary Islands, located in the 

Mediterranean Basin hotspot; the Galápagos archipelago, located in the Chocó-

Darien/Western Ecuador hotspot; the Hawaiian Islands, located in the 

Polynesia/Micronesia hotspot; and the Revillagigedo archipelago, located in the 

Mesoamerica hotspot. These archipelagos were selected based on their 

(sub)tropical affinities, volcanic origin, recognised categorisation within the 

biodiversity hotspot framework, and the availability of ample and high-quality 

occurrence data in global biodiversity datasets (e.g., GBIF: Benavides et al., 2024). 

5.2.2 Current Climatic Data 

Global climatic data were downscaled following the approach outlined in Chapter 

4, which incorporates the effects of topography in the study area using the 

methodology of Flint & Flint (2012). This interpolation method combines a spatial 

gradient and inverse-distance-squared (GIDS) weighting to the global dataset 

through multiple regression. 

To apply this methodology, bioclimatic variables for the study area were initially 

obtained from the CHELSA database at the highest resolution available, 1-km/30 

arc-sec (Karger et al., 2017). This global dataset was selected because it offers the 
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finest resolution currently available for climate change scenarios, enabling more 

robust interpolation of finer grids (Flint & Flint, 2012). Additionally, it has proven 

effective in developing SDMs for plants in island regions with sparse and limited 

meteorological data (Chapter 4). Topographic information for downscaling was 

obtained from a digital elevation model at a 30m resolution (ASTER Global Digital 

Elevation Map v3: NASA & METI, 2018), which was later resampled to 500m 

resolution. The original 1-km resolution CHELSA data were subsequently 

downscaled to 500m. A resolution of 500 metres was chosen because most of the 

islands under analysis are relatively large, making this resolution informative (as 

demonstrated in Chapter 4), while striking an effective balance between maximising 

model informativeness and minimising computation time for both the downscaling 

process and the development of SDMs. 

The downscaling methodology involves using gridded climatic data, initially at a 

coarse resolution, which are transferred to a finer-resolution grid using 

corresponding fine-resolution elevation data. To adjust the parameters for this finer 

resolution, the following equation is applied to weight the parameters 
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where Z is the estimated climatic variable at the specific location defined by easting 

(X) and northing (Y) coordinates and elevation (E); Zi is the climatic variable from 

the 1-km grid cell i; Xi, Yi, and Ei are easting and northing coordinates and 

elevation of the 1-km grid cell i, respectively; N is the number of 1-km grid cells in 

a specified search radius; Cx, Cy, and Ce are regression coefficients for easting, 

northing, and elevation, respectively; and di is the distance from the 500m to 1-km 

grid cell i (Flint & Flint, 2012).  

As a final step, the multicollinearity of the 19 CHELSA downscaled bioclimatic 

variables was analysed using the 'corSelect' function from the "fuzzySim" R package 

(Barbosa & Barbosa, 2020). This function calculates the pairwise Pearson’s correlation 

between variables, and if the correlation threshold (r > 0.7) is exceeded, one variable 

from the pair is excluded by selecting the variable with the highest variance inflation 

factor (VIF) in a linear regression model. A final set of variables for each group of 

islands was selected using this approach, ensuring reasonable multicollinearity levels 

(all VIFs were < 5) (Abdelaal et al., 2019). The lists of variables selected per 

archipelago are presented in the results section. 

5.2.3 Future climatic data 

To project future climate scenarios for the period 2041-2070, two climate models 

with different levels of climatic sensitivity were selected from the CHELSA dataset. 
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Climatic sensitivity refers to the degree to which Earth's temperature responds to 

rising greenhouse gas levels. The models chosen were UKESM1-0-LL (UK-mod) and 

IPSL-CM6A-LR (IP-mod). The UK-mod model is particularly important in the context 

of the present analyses as it detects substantial changes in the tropics 

(Swaminathan et al., 2022), making it a "worst-case scenario" for the study areas. 

This model was contrasted with the IP-mod model, which reflects less pronounced 

changes, allowing for a balanced depiction of potential future climates. 

The period 2041-2070 was chosen because it represents a future timeframe that is 

far enough ahead to reflect significant changes yet not so distant as to be less 

relevant for current policy planning. The available alternatives, 2011-2040 and 

2070-2100, were less suitable: the former includes past, present, and imminent 

future conditions, which offer limited new insights, while the latter extends too far 

into the future for practical application in present-day decision-making. The 

selected period strikes a balance, providing a forward-looking but still actionable 

timeframe for climate projection. Each model was associated with three shared 

socio-economic pathways (hereafter termed ‘SSP’): SSP1-2.6, SSP 3–7.0 and SSP 5–

8.5. These three Shared Socioeconomic Pathways (SSPs) provide varying 

projections of global socio-economic changes and mitigation measures for the 

near future, with global mean temperature increases expected to range from up to 

2.4°C in SSP1-2.6 to 5.7°C in SSP5-8.5 (where CO₂ emissions reach zero by 2050 in 
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the best-case scenario and triple by 2070 in the worst-case scenario) by 2100, 

depending on the mitigation measures implemented (O'Neill et al., 2016). We 

applied the same downscaling methodology used for present-day grids to these 

future climate scenarios. This equated to six future outputs per archipelago: two 

climatic models for each of the three concentration pathways, selecting only the 

non-collinear group of predictor variables resulting from the current climatic 

scenarios (i.e., all models for a given archipelago [i.e., current and future] are using 

the same predictor variables). 

5.2.4 Species data 

Using literature and regional databases for each archipelago, a list of priority 

species—those of high ecological value and/or classified under a recognised 

category of threat—was compiled to assess their vulnerability to climate change. To 

be included in the list, a species had to meet at least one of the following criteria: 

1) Be categorised as threatened by either global biodiversity authorities (e.g., IUCN) 

or local authorities (e.g., government threat/vulnerability assessments). In regard to 

the IUCN Red List, threatened species were those classified as Vulnerable, 

Endangered or Critically Endangered (Matthews et al., 2022). 

2) Be currently recognised as being under pressure from anthropogenic drivers of 

environmental change (e.g., habitat modification, disease, invasive species, 

wildfires). This category applies to species that are (i) not currently classified as 
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threatened but have been in the past and are still being monitored, and (ii) not yet 

classified as threatened but are experiencing a decline or fragmentation in their 

populations and/or habitats. 

3) Have an identified specific important ecosystem function (e.g., providing nesting 

habitat, pollination resources, or edible fruits, or playing a dominant role in habitat 

stabilisation). 

For the identified species, occurrence data were extracted from the GBIF database 

using the "rgbif" R package (Chamberlain et al., 2022), focusing on the selected 

archipelagos. Island polygons were obtained from the "Geodata" R package 

(Hijmans et al., 2023), covering islands ranging in size from 19 to 28,311 km². All 

taxa identified at the species level were included by searching with the 'Genus' and 

'Specific epithet' functions. These functions retrieve all records associated with the 

genus and specific epithet categories within the specified polygon, ensuring that 

synonyms with corresponding occurrence data were included. The final database 

for each species was then curated by the "Accepted name” category within GBIF to 

unify species identity across synonyms. Finally, we filtered the data to retain only 

records with a location uncertainty of 500 meters or less. 

To mitigate potential sampling bias, a widespread distribution of occurrence points 

was ensured by filtering clustered sampling localities using the "spThin" R package 
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(Aiello-Lammens et al., 2015). Prior to applying the filter, an analysis of the extent 

of occurrence for each species was conducted by calculating the minimum convex 

polygon around all occurrence points using the “adehabitatHR” R package. This 

was done to confirm that clustered localities did not correspond to species with 

very small ranges, which is common in island species. A very small range was 

defined as any extent of occurrence less than 10 km2. For these species, occurrence 

points were not filtered. For species with ranges greater than 10 km2, a filter of 500 

m (matching the predictor variable resolution) was selected as the minimum 

distance to maintain between pairs of occurrence points. For more detailed 

information on this approach, see Chapter 3. 

5.2.5 Modelling framework 

Considering the availability of occurrence data and the number of variables per 

archipelago, models were fitted using two different approaches. Firstly, if the 

number of records resulted in a ratio of 10 points per variable (as recommended by 

Franklin, 2013: e.g., ≥50 occurrence points for 5 variables in the study area), a 

traditional model approach was applied, involving the inclusion of all variables to fit 

a single model. Conversely, if the recommended ratio of ten records per predictor 

variable was not met (e.g., 30 occurrence points for 5 variables in the study area), 

the ensemble of small models (ESM) approach was used (Lomba et al., 2010; 

Breiner et al., 2015). In this approach, all potential combinations of bivariate models 
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are fitted, and their performance is evaluated based on their Area Under the Curve 

(AUC) scores. Subsequently, a final weighted averaged model is created, which 

includes all informative small models (AUC >0.5). 

The implementation of ESM in these cases is preferred because it reduces the risk 

of overfitting and effectively controls model complexity. For both approaches, 5-

fold cross-validation was performed, using 20% of occurrence points for evaluation 

and the remaining 80% for training. To validate model performance, both the AUC 

and the Boyce index were calculated using the ‘modEVA’ R package (Barbosa et al., 

2013). 

To minimise the uncertainty associated with model selection (Araújo et al., 2019), 

four different methodologies that have demonstrated reliable results for studying 

island species were applied, along with the ESM approach: GLM, GAM, Maxent, and 

BART (Chapter 3). Each ESM was individually fitted using each method, and the 

resulting models were then weighted by their AUC scores. Only models with an 

AUC >0.6 were included in the final ensemble. Modelling features were set to 

default, as evidence suggests that parameter tuning has little effect on predictive 

performance when sample sizes are small (Valavi et al., 2022). This is particularly 

relevant since the majority of our species have fewer than 30 records (Valavi et al., 

2022; Radomski et al., 2022). 
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Since presence-only data were available for the analysed species, we simulated 

pseudo-absence/background (Psa/BG) data by quantifying the number of grids 

available within the study area and subsequently randomly sampling 10% of the 

study area (where presence points are not recorded). This random sampling 

approach relies on fewer assumptions and has been shown to yield highly accurate 

predictions based on prior research (Stokland et al., 2011; Descombes et al., 2023; 

Chapter 3). Additionally, the selected percentage has been shown to strike a good 

balance between real model performance and validation metrics in island SDMs 

(Chapter 3). 

The differences in predicted probability outputs calibrated with diverse modelling 

methods can make them incomparable or incompatible for combination. Therefore, 

probability outputs were converted into favourability measures using the 

“Fuzzysim” R package. Favourability, which ranges from 0 to 1, distinguishes 

conditions supporting species presence (F > 0.5) from those detrimental to the 

species (F < 0.5), thereby standardising values across distribution models to enable 

comparisons (Acevedo & Real, 2012; Real et al., 2006). 

5.2.6 Predicted climatic-driven range changes  

To assess potential future distribution changes in response to climate change, 

maps of the current distribution were first created, focusing exclusively on suitable 
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areas containing actual occurrence points. Only suitable patches with at least one 

recorded presence were retained. Even though this approach may exclude some 

suitable areas patches lacking presence data due to a lack of sampling, this trade-

off was deemed acceptable to reduce overprediction and account for dispersal 

limitations and historical factors that may have prevented the species from 

occupying those areas (Anadón et al., 2015). 

For future scenarios, a migration rate of 200 meters per year was incorporated, as 

suggested by Liao et al. (2020). To depict future climatic suitability, current suitable 

habitat patches were first identified, and a 10 km buffer was applied around these 

areas. If any future suitable patches overlapped with current patches within this 

buffer, they were retained as potential future habitat. This buffer accounts for the 

species' potential dispersal into areas projected to become climatically suitable, 

based on future climate models. While some unconnected areas beyond the buffer 

may also become suitable, it is unlikely that species will disperse to all such areas 

within the timeframe, given their dispersal limits (Burns, 2018). 

By excluding unconnected patches, the aim was to avoid overestimating the 

species' realised distribution in present and future scenarios, as including such 

distant patches could result in unrealistic projections of range expansion or 

dispersal in future scenarios (Benavides et al., 2020). 
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 Finally, differences between present and future suitability scenarios, were 

calculated using a Net Range Change Evaluation approach. For this, the threshold 

of >0.5 from the favourability (F) outputs was utilised to identify zones with suitable 

conditions for the species (without binarising the outputs).  

The differences between present and future distributions were quantified, 

identifying (i) new areas with F > 0.5, defined as habitat gain, (ii) areas suitable in 

the present scenario (F > 0.5) but unsuitable in the future (F < 0.5), defined as 

habitat loss, and (iii) areas whose suitability remained within the threshold (0.5 - 1), 

defined as stable habitat. As a final step the relative change in the distribution area 

was calculated, using the following formula: 

N
Climatically	suitable	area − suitable	area	loss + suitable	area	gain

Climatically	suitable	area O − 1. 

This formula calculates the net future distribution area by subtracting the original 

area loss from the original distribution area and adding the new area gain. The 

result is then divided by the original distribution area to provide a relative measure 

of change, with the final subtraction of 1 adjusting the result to reflect net change. 

A positive value indicates an overall gain in suitable area, a negative value indicates 

a loss, and a value of 0 indicates no net change. 
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A linear model was constructed for each metric to analyse the impact of three 

factors—Archipelago (Canaries, Hawaii, Galápagos, and Revillagigedo), future 

climate model (Fut_Model: UK and IP), and SSP (SSP1-2.6, SSP3-7.0, and SSP5-

8.5)—on Net Range Change. The model included the main effects and all possible 

interactions among the three factors. An ANOVA was conducted on this model to 

assess the significance of each factor and their interactions. The formula used was: 

Net	Range	Change ∼ 𝐴𝑟𝑐ℎ𝑖𝑝𝑒𝑙𝑎𝑔𝑜	 ∗ 	𝐹𝑢𝑡_𝑀𝑜𝑑𝑒𝑙	 ∗ 	𝑆𝑆𝑃 

Finally, in line with previous studies (Beaumont et al., 2016; Rose et al., 2024), 

species distributional changes were categorised based on the global range of Net 

Range Change values (converted to percentages). Total Loss (TL: -100%), Extreme 

Loss (EL: >-80% and <-100%), Severe Loss (SVL: -80% to -50%), Moderate Loss (ML: 

-50% to 0%), and Gain (G: >0% to 19%, our highest value of habitat gain globally). 

These categories were analysed by archipelago, and their distribution was assessed 

across (a) three threat classifications: species of Least Concern (LC), species 

currently not assessed (NE), and species under some category of threat (THR), 

which included species categorised as Vulnerable, Endangered or Critically 

Endangered by IUCN (or its equivalent on a national risk categorisation); and (b) 

two species chorotypes: Endemic (EN) and Non-Endemic Natives (NEN). 
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5.2.7 Spatial patterns of species loss  

The loss of habitat suitability for various species under future scenarios was 

assessed by comparing suitability maps for the present and future timeframes, 

focusing on identifying grid cells that exhibited a loss in suitability. Loss of 

suitability was defined based on the criteria used in the Net Range Change analysis. 

A grid cell was considered to have lost suitability if its favourability value (F) in the 

present was greater than 0.5 (indicating suitability) but dropped below 0.5 in the 

future (indicating loss of suitability). 

To summarise the loss of suitability across multiple species, the 'mosaic' function 

from the "terra" R package was utilised. This function enabled the merging of 

individual species maps into a single ensemble map, indicating how many species 

experienced a loss of suitability in each grid cell. The final output of this process is a 

map that highlights the regions where habitat suitability has declined for a given 

number species. 

5.3 Results 

5.3.1 Bioclimatic datasets 

The multicollinearity analysis of predictor variables revealed differences in the 

amount of multicollinearity between predictors, among the studied island groups. 

The Galápagos Islands had the highest number of non-collinear variables, with ten 
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identified and thus selected for analysis. This was followed by the Canaries with 

seven non-collinear variables. Both the Revillagigedo and Hawaii island groups 

each had five non-collinear variables. The final set of variables used across all 

models comprised bio1 (mean annual air temperature), bio3 (isothermality), bio4 

(temperature seasonality), bio5 (mean daily maximum air temperature of the 

warmest month), bio 6 (mean daily minimum air temperature of the coldest 

month), bio7 (annual range of air temperature), bio9 (mean daily mean air 

temperatures of the driest quarter), bio14 (precipitation amount of the driest 

month), bio15 (precipitation seasonality), bio16 (mean monthly precipitation 

amount of the wettest quarter), bio18 (mean monthly precipitation amount of the 

warmest quarter), and bio19 (mean monthly precipitation amount of the coldest 

quarter). Table 5.1 shows the variables selected to fit the SDMs for each 

archipelago. 

Table 5.1 The bioclimatic predictor variables selected per archipelago based on a 
multicollinearity analysis.   

 Bio

1 

Bio

3 

Bio 

 4 

Bio 

5 

Bio 

6 

Bio 

7 

Bio

9 

Bio

14 

Bio

15 

Bio

16 

Bio

18 

Bio 

19 

Canaries X     X X  X  X X 

Galápagos X X X  X X X X X  X X 

Hawaii X  X X     X   X 

Revillagigedo X X  X      X X  
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5.3.2 Species data 

A total of 135 species across the study areas were identified as fulfilling the criteria 

for being considered priority species in their respective archipelagos. These species 

were assigned a distribution chorotype based on whether they are native or 

endemic to the island group. Of these, 100 had sufficient occurrence data for 

species distribution model (SDM) fitting (>6 records post-thinning). Specifically, in 

Hawaii, 32 priority species were identified, with 24 (Endemics=18; Natives=6) 

having sufficient information for SDM fitting. In the Galápagos, 34 priority species 

were identified, with 22 (Endemics=17; Natives=5) having adequate data. The 

Canaries had 47 priority species, of which 32 (Endemics=23; Natives=9) had 

sufficient information for SDM fitting. In Revillagigedo, all 22 priority species 

(Endemics=10; Natives=12) had sufficient data for SDM fitting. Supplementary 

Table S.5.1.1 presents the information used to select the species as indicators, the 

number of records before and after thinning, and their distribution chorotypes. 

5.3.3 Species distribution models 

A significant positive correlation was found between AUC and Boyce metrics 

(Pearson's r = 0.5, P < 0.01). Given this correlation, the AUC results are discussed 

from herein. 

The model fitting results, as indicated by the Area Under the Curve (AUC), show 

that the classification performance was better than random for most species across 
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the islands. Overall, while the models generally provided relatively good fits, some 

species posed classification challenges, reflected in their lower AUC values. In the 

Galápagos, three species—Calandrinia galapagosa, Scalesia villosa, 

and Trigonopterum laricifolium—were excluded from further analysis due to 

consistently low AUC values (below 0.6) in all scenarios. Similarly, in Revillagigedo, 

models for Ficus cotinifolia and Guettarda insularis consistently had low AUC values 

(<0.6), and these two species were thus excluded. In the Canary Islands, Salix 

canariensis was also removed for the same reason. Notably, the models for all 

species in Hawaii had AUC values above 0.6 across all scenarios. 

After removing the aforementioned species from the analysis, the global mean AUC 

was 0.77, indicating relatively strong model performance overall. AUC values 

ranged from 0.6 to 0.95, with an interquartile range (IQR) showing consistency—

25th percentile at 0.720, the median at 0.761, and the 75th percentile at 0.820. 

When comparing individual islands, the Canary Islands showed the highest mean 

AUC of 0.797, with values ranging from 0.683 to 0.953 and an IQR of 0.741 to 0.850, 

reflecting robust model predictions. Hawaii followed with a mean AUC of 0.77, 

displaying a wider range of 0.60 to 0.93 and an IQR from 0.72 to 0.82. In the 

Galápagos, the mean AUC was 0.75, with values spanning 0.69 to 0.92 and an IQR 
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from 0.71 to 0.75. Revillagigedo had the lowest mean AUC at 0.75, with a range of 

0.62 to 0.92 and an IQR of 0.65 to 0.80. 

5.3.4 Predicted climatic-driven range changes 

Overall, climate change projections indicate a general pattern of negative Net 

Range Change across all analysed archipelagos (global results in Net Range 

Change are presented in Supplementary Table 5.1.2). The mean Net Range Change 

was slightly lower for the Galápagos and Revillagigedo Island groups compared to 

the others (Canaries: -37%; Hawaii: -35%; Galápagos: -27.1%; Revillagigedo: -

27.5%). The results of the linear models assessing the effects of Archipelago, 

Climatic Model, SSP, and their interactions on Net Range Change are presented in 

Supplementary Table 5.1.3. The main effect of archipelago was statistically 

significant (F= 6.75, df=3, p<0.001), indicating that Net Range Change varied 

significantly across different archipelagos. The main effect of SSP was also 

significant (F= 3.46, df=32, p=0.03), suggesting that different trajectories of climate 

change mitigation influenced Net Range Change. However, neither the main effect 

of Future Model (F= 0.14, df=1, p=0.71) nor any of the interaction terms were 

statistically significant, indicating no strong evidence for interaction effects 

between these factors. Numerical results of the ANOVA are provided in 

Supplementary Table 5.14. 
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Additionally, the trends of impact of SSPs remained consistent across all 

archipelagos. There was a gradual increase in the negative Net Range Change 

corresponding to the impact of the SSPs for all archipelagos, except Revillagigedo 

where variation between SSPs was minimal. The variation across the selected 

climatic models (IP_mod, UK_mod) was also small, with the UK model showing 

slightly higher negative Net Range Change. Figure 5.1 summarises the results of 

Net Range Change across archipelagos, climatic models and SSP. 

 

Figure 5.1 Projected Range Change Across Four Archipelagos Under Different 
Climate Scenarios. The figure shows the mean projected Net Range Change 
(converted to percentage; ± standard error) for species across four archipelagos: 
Canaries, Galápagos, Hawaii, and Revillagigedo. The projections are based on two 
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future climate models (IP and UK) and three SSP trajectories (SSP1-2.6, SSP3-7.0, and 
SSP5-8.5), represented by green, orange, and red points. 

 

To analyse the frequency distribution of Net Range Change values, five categories 

were defined: Total Loss (TL= -100%), Extreme Loss (-100% < EL ≤ -80%), Severe 

Loss (-80% < SL ≤ -50%), Moderate Loss (-50% < ML ≤ 0%), and Gain (0% < G ≤ 

19%, the highest value across all archipelagos). Since trends in Net Range Change 

vary across different archipelagos, the results are aggregated and presented at the 

archipelago level. 

Overall, species with Moderate Loss is the predominant category across all 

archipelagos (Canaries: 55.7% of evaluated species in the archipelago were in this 

category, n=16; Galápagos: 55.5%, n=10; Hawaii: 50%, n=24; Revillagigedo: 26.3%, 

n=6). Species with Severe Loss are also particularly common in the Galápagos 

(33.4%, n=6) and Canaries (24.1%, n=7). The Canary Islands are the only 

archipelago with species that are classified as being threatened on the basis of 

climate change, specifically Echium wildpretii, Heberdenia excelsa, and Sideroxylon 

canariense. Of these, only E. wildpretii has predicted Extreme Loss due to climate 

change (Net Range Change: -84.5%), while the latter two species exhibit Moderate 

Loss (H. excelsa: -1.4%, S. canariense: -13.2%). 
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Notably, a higher number of species reporting Gains (G) are observed in 

Revillagigedo (35%, n=6) and Hawaii (25%, n=6), suggesting that some species in 

these regions may be resilient to future climate change. In contrast, Revillagigedo is 

the only archipelago reporting Total Losses (17% of species, n=3). Detailed 

information of the number of species per each category is available in Fig. 5.2 and 

in Supplementary table S5.1.2. 

 

Figure 5.2 Frequency distribution of Net Range Change categories across the four 
archipelagos analysed. Categories are defined as Total Loss (TL: -100%), Extreme Loss 
(EL: >-80% and <-100%), Severe Loss (SVL: -80% to -50%), Moderate Loss (ML: -50% 
to 0%), and Gain (G: >0% to +19%). 

 



 228 

The distribution of Net Range Change categories across three threat classifications 

was also assessed: species of Least Concern (LC), species not currently assessed 

(NE), and species under some category of threat (THR). Figure 5.3 illustrates the 

number of species in each threat group within each Net Range Change category. 

This section highlights species with higher proportions of Severe Loss (SVL) or 

worse. Overall, LC and NE species exhibit a greater proportion of SVL or worse 

compared to THR species. 

In the LC category, a relatively high proportion of species with SVL or worse was 

observed, particularly in the Galápagos (33%, n=6), the Canaries (17%, n=4), and 

Revillagigedo (17%, n=3). For the NE category, the proportions were 23.5% (n=4) in 

Revillagigedo, 16% (n=4) in Hawaii, and 13% (n=4) in the Canaries. In contrast, the 

THR category had much lower proportions of species experiencing SVL or worse: 

10.3% (n=3) in the Canaries, 5.5% (n=1) in the Galápagos, 8.3% (n=2) in Hawaii, and 

none in Revillagigedo. 
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Figure 5.3 Frequency Distribution of Net Range Change Categories Across Three Risk 
Levels (LC: least concern, NE: Not evaluated, and THR: threatened) in the four 
Archipelagos analysed. Categories are defined as Total Loss (TL: -100%), Extreme 
Loss (EL: >-80% and <-100%), Severe Loss (SVL: -80% to -50%), Moderate Loss (ML: 
-50% to 0%), and Gain (G: >0% to +19%). 

An analysis of Net Range Change categories was also conducted for two species 

chorotypes: Endemic (EN) and Non-Endemic Natives (NEN). The number of species 

in each range change category is illustrated in Figure 5.4. This section highlights 

species with higher proportions of Severe Loss (SVL) or worse. The results indicate 

that NEN species are generally predicted to experience higher proportions of SVL 

or worse compared to EN species in the Revillagigedo archipelago. However, the 

trend is reversed in the Canaries, Hawaii, and the Galápagos. 
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In the Canaries, 20.7% (n=6) of EN species are expected to experience SVL or 

worse, while 17.2% (n=5) of NEN species are predicted to exhibit similarly high 

losses. A similar pattern is observed in the Galápagos, where 27% (n=5) of EN 

species are expected to face SVL or worse, compared to 11% (n=2) of NEN species. 

In Hawaii, 21% (n=5) of EN species are predicted to experience SVL or worse, 

compared to only 4% (n=1) of NEN species showing significant range loss. 

However, Hawaii also exhibits distributional gains, particularly among EN species, 

with 17% (n=4) experiencing range expansion, compared to 8% (n=2) of NEN 

species. 

Conversely, in Revillagigedo, 23% (n=4) of NEN species are projected to undergo 

SVL or worse, compared to 11.7% (n=2) of EN species. Notably, complete losses are 

reported only in Revillagigedo, all of which correspond to NEN species (n=3, 18%), 

suggesting these losses are local rather than global. Conversely, EN species show 

the highest proportion of range gains in this archipelago (29.4%, n=5). 
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Figure 5.4 Frequency distribution of Net Range Change Categories across two 
distributional categories (EN: Endemic, and NEN: Non-Endemic Natives) in the four 
Archipelagos analysed. Categories are defined as Total Loss (TL: -100%), Extreme 
Loss (EL: >-80% and <-100%), Severe Loss (SVL: -80% to -50%), Moderate Loss (ML: 
-50% to 0%), and Gain (G: >0% to +19%). 
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5.3.5 Climatic-driven spatial patterns of species loss 

Spatial assessment of the projected impacts of climate change on species 

distributions, averaged across the IP and UK models, reveals that patterns of 

species loss (i.e., loss of favourability on a given square) vary across archipelagos, 

with greater predicted loss in certain regions. Spatial patterns of species loss for the 

intermediate scenario of concentration pathway (SSP 370) are presented in Figure 

5.5, while the detailed patterns for the other scenarios (SSP 126 & 585) are 

depicted in supplementary Figure S.51.5 and discussed in detail in Appendix S5.2.1. 

In the Canaries we see, for the SSP370 trajectory, 24.96% of the grid squares remain 

unaffected, with 21.17% losing at least one species, and 12.99% losing ≥3 species 

(Fig 5.5). With the exception of Lanzarote and Fuerteventura (2 spp.), the rest of the 

islands in the archipelago show similar numbers of species losses (2-8 spp.; Fig. 

5.5). The SSP126 and SSP585 scenarios show less and more severe effects, 

respectively, with species loss being more widespread under SSP585 (details in 

Appendix S5.2.1). 

In the Galápagos, for the SSP370 trajectory, 35.65% of grid squares experience no 

species loss. In contrast, 31.88% lose at least one species, and 15.89% ≥2 species 

(Fig 5.5). Within the archipelago, Santa Cruz Island has the highest number of 

species losses (2-4 spp.), followed by Isabela and San Cristobal, both of which also 



 233 

show significant proportions of grids with notable species loss (1-4 spp.). The rest 

of the archipelago has lower (1 sp.) to no losses (Fig 5.5). As with the Canaries, the 

SSP126 shows lower impacts and the SSP585 more severe effects (see Appendix 

S5.2.1 for details). 

In Hawaii, under the SSP370 trajectory, 17.51% of grid squares remain unaffected, 

with 27.91% losing at least one species, and 24.10% losing two or more species (Fig 

5.5). Within the archipelago, Oahu has the highest number of grid squares with 

significant species losses (6-8 spp.), followed by Hawaii and Kauai, which also have 

high losses but in fewer grids. The rest of the islands are predicted to experience 

lower losses (1 spp.) or no losses at all (Fig 5.5). Less severe species loss is seen 

under SSP126, while SSP585 shows increased losses, with up to 13.52% of the area 

losing three or more species (see Appendix S5.2.1 for details). 

Compared to the other three archipelagos, plant species on Revillagigedo appear 

to be more resilient to future climate change. For the SSP370 trajectory, this 

remains relatively stable, with 97.08% of the area unaffected. Unlike the other 

archipelagos analysed, species loss on Revillagigedo is not concentrated in specific 

zones; instead, it occurs across different regions of the islands (Fig 5.5). Species loss 

under SSP126 is minimal, while the SSP585 scenario shows a slight increase in 

species loss, affecting 19.42% of the grid squares (see Appendix S5.2.1 for details). 
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Figure 5.5 Spatial patterns of species loss by archipelago for the SSP 370 scenario 
(intermediate scenario) for: Hawaii (Top left), Canaries (Top Right), Galápagos 
(Bottom left) and Revillagigedo (Bottom Right). For Revillagigedo, the top section 
shows the actual distance and size of the islands, while the bottom section provides 
a magnified view. Increased colour intensity represents a higher number of species 
lost, measured as switching favourability within grid (500 m2) squares. 

 
5.4 Discussion 

Reducing the impact of climate change on biodiversity is a key conservation goal, 

with efforts often focused on the most vulnerable species and ecosystems (Conradi 

et al., 2024). In this study, species distribution models (SDMs) were applied to 

insular plant species of high ecological and conservation value, using them as 

indicators of potential exposure to climate change in island biodiversity hotspots. 
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This approach provides valuable insights into how climate-driven species loss could 

affect distributions in these regions. 

Although island ecosystems are vital to global biodiversity conservation efforts, the 

impacts of climate change on insular species are only beginning to be explored in 

depth (Veron et al., 2019; Benavides et al., 2024). This study significantly advances 

understanding of the vulnerability of island plant biodiversity. A key finding is that, 

despite variations across archipelagos, a concerning trend of range loss emerges. 

Species in all regions are projected to lose, on average, about one-third of their 

range, mirroring trends seen in other island hotspots (Pouteau & Birnbaum, 2016; 

Tagliari et al., 2021). Unlike most climate change studies on islands that use 

macroscale climate data (Benavides et al., 2024), this study is one of the first to 

incorporate high-resolution microclimatic variation, providing more accurate 

estimates of species' responses to climate change (see also Patiño et al., 2023). 

Additionally, areas where multiple species experience overlapping range loss were 

identified, offering insights into spatial patterns that can inform more targeted and 

effective conservation strategies. Given the critical roles many of the studied 

species play within their ecosystems, these findings are especially important for 

maintaining both biodiversity and ecosystem functionality. 
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5.4.1 Impact of climate change varies across species’ conservation status 

The IUCN criteria, while widely recognised for offering a comprehensive system for 

classifying species facing various threats, were not specifically designed to evaluate 

the impacts of climate change (Akçakaya et al., 2006; Keith et al., 2014). This study 

found that, although the IUCN framework effectively identifies species already at 

risk—making them ideal candidates for analysing climate change impacts—it has 

notable limitations in this regard. Many species, particularly those not yet evaluated 

or currently classified as of least concern, are expected to face severe climate-

induced impacts, including the loss of more than half of their suitable ranges. This 

highlights the inadequacy of relying solely on the IUCN criteria to assess 

biodiversity risks from long-term threats like climate change. 

In the analyses, only one out of three species (Echium wildpretii from Canary 

Islands) identified by the IUCN as threatened by climate change was predicted to 

lose the majority of its range (approximately 80%). This finding aligns with previous 

studies suggesting that the IUCN criteria need updating to better reflect the 

impacts of climate change in species assessments (Akçakaya et al., 2006; Keith et 

al., 2014). In accordance with Trull et al. (2018), it is emphasised that the IUCN 

requires a more integrated approach, incorporating specific traits that may increase 

species' vulnerability to climate change, as current guidelines lack these crucial 

considerations. Alternatively, as Akçakaya et al. (2006) suggest, existing criteria 
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could be reassessed through the lens of climate change implications and applied to 

threats within this context to enhance the overall framework. 

5.4.2 Impact of climate change varies across species’ chorotype 

Analysing the impacts of climate change on island endemic species is particularly 

crucial, as these species have global conservation significance. The loss of an insular 

endemic is permanent and represents a reduction in global biodiversity. Moreover, 

range restriction is a strong predictor of species extinction risk (Broennimann et al., 

2006; Gaston & Fuller, 2009), making it unsurprising that insular species are 

especially vulnerable to climate change (Harter et al., 2015). In our study, endemic 

species exhibited relatively higher proportions of Severe to Extreme losses in 

suitable ranges (>50% suitability loss) across most of the archipelagos analysed, 

compared to their non-endemic counterparts, with the exception of the 

Revillagigedo Archipelago. This suggests a future dramatic decline in species with 

already small ranges, leading to heightened vulnerability from a global 

conservation perspective. 

Conversely, while the Revillagigedo archipelago is predicted to experience greater 

losses among non-endemic species, and in some cases complete extirpations, it is 

essential to note that the species studied provide critical ecological functions in 

these islands. Although the extinction of these species may not represent a global 

loss, their disappearance could severely disrupt local ecosystems (Hautier et al., 
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2018), potentially destabilising ecological balance at the island level. This highlights 

the importance of directing conservation efforts at the local scale and developing 

strategies to prevent the extinction of vulnerable species. Additionally, it is crucial 

to note that, with the exception of the Revillagigedo Archipelago, all the 

archipelagos studied have human settlements. This makes it essential to consider 

not only the impacts of climate change but also the synergistic effects of 

anthropogenic threats to biodiversity (Benning et al., 2002; Ellis-Soto et al., 2017). 

Even for taxa not considered highly vulnerable to climate change, other factors—

particularly habitat destruction caused by human activity and the introduction of 

invasive species—may pose immediate risks to their survival. Future island SDM 

research should examine the wide range of threats affecting island ecosystems, 

focusing on specific anthropogenic pressures and how they interact with climate 

change, to more effectively inform conservation strategies (Veron et al., 2019; 

Whittaker et al., 2023; Frans & Liu, 2024). 

5.4.3 Spatial patterns of species loss 

To ensure the long-term survival of biodiversity, conservation strategies must 

account for the spatial variability of climate change impacts (Jones et al., 2016). This 

approach enables the targeted prioritisation of mitigation efforts in areas where 

these impacts are most severe. In this study, a general trend of species loss was 

identified, driving the focus on pinpointing hotspots of this loss. Although the 
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analysis did not systematically quantify the extent of these hotspots or their overlap 

with existing protected areas, a visual assessment indicates that most of these 

hotspots of species loss are roughly situated within protected natural areas in all 

the analysed archipelagos (Carralero, 2011; DPNG, 2014; CONANP, 2019; NARS, 

2024). This suggests that while current conservation measures may help mitigate 

other anthropogenic threats, additional actions are likely needed to protect 

vulnerable species from the impacts of climate change. Future research could focus 

on gathering data to support the redefinition of protected area boundaries, 

ensuring the inclusion of climate refugia (Graham et al., 2019). Additionally, it is 

crucial to deepen our understanding of how the loss of these plant species may 

affect higher trophic levels, which could inform strategies such as relocating species 

to more favourable environments (Barlow et al., 2021). 

5.4.4 Sources of uncertainty 

Species distribution models are widely used to predict future species distributions, 

but they are not without limitations (Pearson & Dawson, 2003; Araújo & Luoto, 

2007; Elith & Leathwick, 2009; Gotelli & Stanton-Geddes, 2015). For one, the 

reliability of SDM outputs is heavily influenced by the accuracy of climate 

projections and the choice of model, both of which are associated with 

considerable uncertainty.  
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To address and mitigate the uncertainties inherent in SDMs, several measures were 

implemented in the analyses tailored to the specific context of island environments. 

First, the impact of island topography on microclimatic variability was considered 

by employing a downscaling approach for both present and future bioclimatic 

variables. This adjustment helps account for the environmental variation that is 

known to drive island plant distributions (Chauvier et al., 2021; Patiño et al., 2024). 

Second, in depicting future scenarios, a diverse range of climatic models and 

projections was utilised. This approach reduces uncertainty by incorporating 

multiple potential climate trajectories, thereby providing a more comprehensive 

view of possible future conditions (Rose et al., 2024). Given these constraints of 

uncertainty in future projections, the need for caution in interpreting the results of 

future range changes is emphasised. Nonetheless, the consistency observed across 

various climatic models lends some robustness to the trends identified in this 

study. 

Third, an ensemble of methods previously identified as effective for the specific 

ecological context of islands was employed (Chapter 3). By integrating different 

modelling approaches, the aim was to counteract potential biases that could arise 

from reliance on a single method (Rose et al., 2024). Fourth, for species with limited 

sample sizes, model complexity was reduced through a weighted ensemble of 

small models designed for small data sets (Lomba et al., 2010; Breiner et al., 2015; 



 241 

Chapters 2 & 3). This strategy enhances model reliability despite the constraints of 

limited occurrence data. Finally, a sampling strategy of background/pseudo-

absence points was selected that has previously demonstrated high prediction 

accuracy in island SDMs using presence-only data and specific to the selected SDM 

methods, further supporting the robustness of the model predictions (Chapter 3). 

Through these measures, the aim was to minimise the uncertainties associated with 

SDMs and improve the reliability of predictions, providing more accurate insights 

into future species distributions in island ecosystems. However, as with all SDMs, 

the results should be interpreted as reflecting the species' suitable climate space 

within the analysed areas, rather than their full fundamental niches. This means 

some species' potential resilience to climate change may not be fully captured due 

to this limitation. Nonetheless, evidence from endemic island plants, where 

fundamental niche data are available (such as from populations outside their 

natural insular habitats), suggests that SDMs offer a close approximation of 

predicted impacts, even when based solely on insular occurrence data (Rosenblad 

et al., 2019). 

5.5 Conclusions 

This study enhances our understanding of the vulnerability of island plant 

biodiversity to climate change by incorporating microclimatic variation, resulting in 
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more accurate predictions of species' responses compared to earlier macroscale 

models. The findings show a projected loss of suitable range area for plant species 

across various tropical island biodiversity hotspots, aligning with the findings of 

previous studies (Pouteau & Birnbaum, 2016; Tagliari et al., 2021). Additionally, the 

identification of hotspots of species' range loss provides critical insights that can 

inform the updating of protected area boundaries to incorporate climate change 

mitigation. Collectively, these results establish a valuable foundation for developing 

targeted conservation strategies on islands, which are crucial for maintaining 

biodiversity and ecosystem functionality in these fragile environments. 
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6.1 Research summary 

This thesis aimed to deepen our understanding of Species Distribution Modelling 

(SDM), with a particular focus on the unique spatial and ecological complexities of 

island environments. Recognising the underutilised potential of SDMs in island 

studies, this research highlights their value as a tool for understanding 

biogeographical patterns on islands and linking this knowledge to effective 

conservation management. 

Drawing on the existing literature on SDMs in an island context, this research 

identified the need for a tailored approach to SDM implementation for islands 

(Chapter 2). One of the primary findings relates to the importance of adjusting the 

resolution of predictor variables to effectively capture fine-scale environmental 

variation, which is crucial for accurate species distribution predictions in island 

settings. The shift from using coarse climate variables to fine-scale microclimatic 

factors raised important questions about how these detailed predictors interact 

with limited species’ occurrence data—another significant challenge identified in 

island occurrence datasets (Chapter 2). 

The thesis explored a range of strategies aimed at improving the implementation 

of Species Distribution Models (SDMs) in island environments, focusing on the 

Revillagigedo Volcanic Archipelago in Mexico, referred to as the 'model 

archipelago' hereafter (Chapters 3 and 4). The goal was to generalise findings from 



 254 

this regional case study to other global island groups, using plant species 

presence/absence data collected through field sampling. 

Plant species were chosen as the focal taxon due to their critical ecological roles, 

including the provision of essential services, such as habitat stabilisation and 

trophic resources for other organisms (Borges et al., 2018). The effort to improve 

SDM implementation in island ecosystems had two primary objectives: (1) to 

enhance the application of SDMs by incorporating high-resolution environmental 

descriptors, addressing data limitations and the challenges of small study areas 

(Chapter 3); and (2) after optimising SDM fitting at high resolutions in island 

environments, assessing the robustness of fine-scale predictor variables, 

particularly their wider relevance to tropical island ecosystems (Chapter 4). 

Chapter 4 focused on the model archipelago's plant diversity. The chapter 

identified the scarcity of geographical species data, coupled with high uncertainty 

in environmental data due to a limited number of meteorological stations 

(Deblauwe et al., 2016; Benavides et al., 2024), which complicates the use of SDMs 

in these regions. To address this, the thesis explored methods to generate new 

high-resolution estimates (c.f. Flint & Flint, 2012) and assess their usefulness, 

thereby enhancing the availability of detailed data. These efforts confirmed the 

utility of such data for advancing scientific understanding and supporting more 

effective, data-driven conservation strategies in tropical island ecosystems. 
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After optimising SDM fitting for island environments and confirming the reliability 

of microclimatic estimates, the thesis focused on the practical application of the 

science to conservation (Chapter 5). The fifth chapter highlighted the potential of 

well-designed SDMs in island ecosystems, particularly in the context of climate 

change—a predicted driver of future species extinctions in these regions (Taylor & 

Kumar, 2016; Veron et al., 2019). The chapter pursued three main objectives: (1) to 

examine species distributional changes in relation to their current vulnerability 

status, assessing whether climate change exacerbates the risk for already 

threatened species; (2) to evaluate whether endemic species are more severely 

affected by range losses due to climate change, reflecting broader global trends; 

and (3) to identify hotspots of species loss to inform spatially-targeted mitigation 

strategies. This research represents a significant advancement in understanding 

how species may respond to climate change on islands at microclimatic scales, 

offering a critical baseline for developing more precise mitigation strategies for 

tropical island biodiversity hotspots. 

6.2 Synthesis  

Eight questions related to the implementation of SDMs focusing on the unique 

spatial and ecological complexities of island environments were addressed in this 

thesis. I return to each in turn to evaluate the findings and implications of the 

research:   
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6.2.1  Using previous research as a baseline, what are the challenges of SDM 
implementation in island environments, and how can we improve them?  

While the potential of SDMs for informing data-driven conservation and 

management decisions, especially in relation to highly threatened island biodiversity 

has been noted previously (Fois et al., 2018; Mousikos et al., 2021), most SDM 

frameworks and recommendations have been developed for species with relatively 

wide ranges and are unsuitable for many insular species and environments, which 

often possess distinct characteristics (Leroy, 2022; Whittaker et al., 2023). 

A review of 224 papers that implemented SDMs in island environments highlighted 

the absence of an appropriate SDM framework for island studies (Benavides et al., 

2024). This gap has led to sub-optimal methodological decisions, particularly in the 

SDM fitting process. Due to the limited occurrence data often available for island 

species—whether due to their naturally small populations, anthropogenic-driven 

population declines, or difficulties in accessing remote islands—these models 

frequently rely on small sample sizes. This, in turn, requires the careful selection of 

algorithms and a reduction in model complexity, especially regarding the choice of 

environmental variables. Including too many variables relative to occurrence points 

increases the risk of overfitting, a problem that has been well documented in the 

island SDM literature (Dormann et al., 2012; Radomski et al., 2022; Rousseau & 

Betts, 2022). 
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Additionally, most environmental variables used in island SDMs are bioclimatic or 

macroclimatic, leading to a two-fold problem: 1) the number of islands that can be 

analysed is limited to those with sufficient macroclimatic grid data, and 2) such 

variables are often poor descriptors of the distributions of island species, which are 

often (i) dependent on microhabitat-level conditions (Patiño et al., 2023; Benavides 

et al., 2024) and (ii) characterised by highly specialised ecological requirements 

(Whittaker et al., 2023). This reliance on macroclimatic variables likely arises from 

the mainstreaming of continental models, where macroclimate plays a significant 

role in species distributions (Booth, 2022).  

To improve SDM implementation in island studies, this thesis proposes careful 

consideration when working with small sample sizes. First, it is crucial to select 

appropriate modelling methods that account for limited data. Also, rather than 

relying on traditional models that input all variables into a single model, an 

ensemble of small models should be implemented to reduce the predictor-to-

occurrence data ratio, helping to manage model complexity (Lomba et al., 2010; 

Beriner et al., 2015). Additionally, it is important to carefully select the extent of 

occurrence data. Non-endemic island species are often modelled using only insular 

data, which can truncate their ecological niche, undermining scientific questions 

that require an understanding beyond the realised niche (Chapter 4).  
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6.2.2 What sample size of occurrence (presence) data is needed to accurately 
predict the distributions of island species using high-resolution 
predictors, while accounting for varying specialisation levels?  

This thesis proposes shifting to smaller analytical scales to better capture the 

relationships between island species and their environments. While these finer 

spatial resolutions provide a more detailed and accurate reflection of island 

environmental variation, they also present a challenge given the limited availability 

of species observation data. Smaller grid cells enhance model precision, but the 

combination of high specificity per grid and limited data points makes it more 

difficult to fully capture a species' environmental requirements, potentially reducing 

the effectiveness of this approach.  

Previous research at continental scales (van Proosdij et al., 2016) has demonstrated 

that range-restricted species, such as those found on islands, generally require 

smaller sample sizes. However, it was essential to explore whether this relationship 

held at finer spatial resolutions. Contrary to the results of previous work on 

continents, the analyses in Chapter 3 revealed that range-restricted species in the 

model archipelago require larger sample sizes in smaller study areas with high-

resolution predictors, while wide-ranging species maintained high predictability 

even with minimal data. These conflicting results may be because larger continental 

study areas, with greater environmental gradients, require more data to accurately 

model widely distributed species (van Proosdij et al., 2016). Conversely, in smaller 
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insular areas with relatively flatter environmental gradients, species with broader 

ecological tolerances can be predicted accurately with fewer data points. This 

suggests that current modelling methods tend to overgeneralise, and overpredict 

SDMs for narrow-ranged species. As a result, more data are needed to confirm 

their specialised habitat requirements (Collins et al., 2017; Mendes et al., 2020). 

Evaluating the performance of different SDM algorithms was also a critical focus of 

the thesis, given that evidence suggests that certain methods are better suited for 

studying range-restricted species (Breiner et al., 2015). However, modelling such 

species remains problematic due to their inherent rarity. This challenge, referred to 

as the rare-species modelling paradox (Lomba et al., 2010), highlights the difficulty 

of applying SDMs to species with scarce data. At the same time, it underscores the 

need for accurate distribution assessments, as rarity often signals a higher risk of 

extinction (Jeliazkov et al., 2020). While these challenges have been confirmed for 

insular species, this thesis improved our ability to assess and predict the 

distribution of range-restricted (insular) species by identifying the data 

requirements for more effective modelling at representative scales. 

6.2.3 How does the choice of pseudo-absence data impact the accuracy of 
predicted island species distributions? 

Most occurrence datasets, whether from islands or other environments, typically 

contain only presence data, requiring the creation of pseudo-absences to simulate 
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species absences (i.e., locations where the species might have been present but 

were not observed; Lobo et al., 2010; Barbet-Massin et al., 2012; Morera-Pujol et al., 

2020). However, there is no consensus on best practices for generating pseudo-

absence data, and existing guidelines are often designed for larger study areas 

(Lobo et al., 2008; Barbet-Massin et al., 2012; Whitford et al., 2024), highlighting the 

need for strategies specific to islands (Benavides et al., 2024). 

Building on previous research (Acevedo et al., 2012; Jiménez-Valverde et al., 2013; 

Grimmett et al., 2020; Descombes et al., 2022), the results of Chapter 3 add to the 

growing evidence that adjustments to pseudo-absence data—considering factors 

such as modelling method, spatial context, data availability, and species range—

significantly affect model performance. By testing these factors using the 'model 

archipelago', this research offers a straightforward framework for optimising 

pseudo-absence data selection during model fitting. Specifically, random sampling 

of the study area, based on a percentage of total grids and refined according to 

species range sizes and data availability, led to highly accurate SDM predictions. 

This approach effectively addressed the problem while accommodating the needs 

of various modelling methods. 

Despite identifying optimal pseudo-absence sampling strategies for island 

environments, standard metrics (e.g., AUC and the Boyce Index) still present 

significant limitations for evaluating model performance. In certain instances, these 
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validation metrics did not adequately reflect the improvements achieved through 

optimised pseudo-absence strategies. Trade-offs exist where one might need to 

accept a reduction in predictive accuracy to reconcile differences between 

validation and performance. Moreover, as Warren et al. (2020) noted, these metrics, 

while effective at measuring classification accuracy (such as distinguishing between 

areas of high suitability for species presence from those with pseudo-absences), 

often fail to provide meaningful insights into habitat suitability across the 

landscape. This disconnect means that models may meet conventional 

performance standards but still struggle to predict species distributions accurately 

on a smaller spatial scale. 

This issue persists because much of the SDM literature focuses on improving 

predictions through classification metrics (e.g., Guisan et al., 2007; Boria et al., 2014; 

Wisz et al., 2008; Kuebler et al., 2016), rather than evaluating the ability of models 

to capture true habitat suitability. To address this gap, species simulations were 

incorporated into the methodology to enhance pseudo-absence sampling in an 

island context, ensuring that true habitat suitability was also accurately represented 

(Warren et al., 2020).  

The strength of the proposed guidelines relied on two key elements: (1) a thorough 

understanding of species distribution patterns in the model archipelago, informed 

by field observations, which allowed the simulation of species resembling real 
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species distributions and ensured alignment between true model performance, 

validation metrics, and spatial predictions; and (2) the availability of directly 

collected presence-absence data, which served as a benchmark for comparing 

models using presence/pseudo-absence data. This approach offered valuable 

insights from both real and simulated species data, with the goal of improving the 

accuracy of presence-only models through effective pseudo-absence sampling. 

Despite the advances of this thesis in improving presence-only SDMs for island 

contexts, the common practice of using arbitrary thresholds to differentiate 

between "high" and "low" performing models remains due to a lack of a solid 

theoretical foundation (Olden et al., 2002). Specifically, for the AUC, the most 

commonly used validation metric, Raes & ter Steege (2007) highlighted that for 

presence-only models, the maximum achievable AUC for a perfect fit never reaches 

1 but is instead 1 minus half the proportion of the area occupied by the species' 

true distribution—a value rarely available for real species SDMs. Nonetheless, SDMs 

still use a baseline where an AUC of 1 indicates perfect agreement, and 0.5 

suggests the model is no better than random. However, AUC primarily measures 

whether a model outperforms randomness rather than assessing its true predictive 

accuracy. 

In the case study of the model archipelago, AUC values rarely exceeded 0.65 for 

widespread species, even when predictions closely matched actual species ranges. 
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This highlights three issues: (1) wide-ranging species or those with high prevalence 

in the study area naturally have lower validation scores, as pseudo-absence data 

are more likely to fall within suitable patches, making AUC prevalence-dependent 

(Lobo et al., 2008); (2) using AUC thresholds to classify model performance is 

inherently context-dependent (Lawson et al., 2014); and (3) the variation between a 

random AUC of 0.5 and the maximum achievable value complicates establishing a 

universal standard for distinguishing high- and low-performing models. This 

highlights the limitations of relying on arbitrary thresholds (e.g., AUC > 0.7), which 

often fail to capture true predictive accuracy across different species ranges. 

AUC primarily focuses on classification rather than evaluating the model's ability to 

accurately assess habitat suitability within a given grid cell. In contrast, the Boyce 

Index is considered a better indicator of reliability for presence-only data (Boyce et 

al., 2002; Di Cola et al., 2016; Hirzel et al., 2002; Li & Guo, 2013). Thus, employing 

both metrics provides a more comprehensive evaluation of model performance, 

covering both classification accuracy and reliability. However, it is important to note 

that the Boyce Index is highly sensitive to small sample sizes (fewer than 30 

occurrence records; Liu et al., in press), which is a common issue in island datasets 

and should be considered when interpreting results. 

While validation metrics have limitations, they remain useful as informative 

guidelines. However, their methodological shortcomings should be acknowledged, 
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and complementary approaches—such as null-model comparisons—should be 

integrated as standard practice within the SDM framework (Osborne et al., 2022).  

6.2.4 How does the spatial precision of occurrence data affect the accuracy of 
island SDM predictions at high resolutions?  

In island environments, where species occurrence data are often limited, using 

high-resolution predictors can further restrict the number of occurrences that meet 

specific spatial criteria. The pixel size of environmental variables should correspond 

to the spatial resolution of species records (Sillero & Barbosa, 2021); however, 

available data are often too coarse in spatial resolution (McPherson et al., 2006). 

While incorporating records with coarse spatial precision might seem like a 

practical way to increase the sample size, it risks introducing errors that could 

undermine the model's accuracy (Gabor et al., 2023). On the other hand, excluding 

such data further reduces the dataset, potentially diminishing the model’s 

predictive power (Moudrý et al., 2023). Addressing this trade-off required 

systematic testing to optimise occurrence data, ensuring that the information used 

enhances rather than detracts from the model's performance. 

Previous evidence showed that even minor spatial inaccuracies in occurrence data 

can lead to significant errors in predicting species distributions in topographically 

heterogeneous areas (Gábor et al., 2023). Given that islands often feature highly 

heterogeneous environments compressed into relatively small areas, these 
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inaccuracies are likely to be especially problematic (Barbosa et al., 2020). This issue 

is more frequently observed on islands of volcanic origin, which exhibit steep 

gradients and diverse habitats within limited space. 

The model archipelago is of volcanic origin so it provided a compelling opportunity 

to explore the impact of low spatial accuracy records on model performance, a 

highly relevant issue for island SDMs that had not been systematically explored 

before. By comparing datasets with varying levels of spatial uncertainty (resampled 

to 90, 500, and 1000m resolutions), it was found that while models generally 

perform better with more accurate data, the effects of spatial inaccuracies can be 

mitigated by selecting modelling methods that are less sensitive to this uncertainty 

(e.g., GLM and BART). Additionally, the impact of these inaccuracies was found to 

vary depending on the range size of the species. 

Interestingly, contrary to expectations, species in topographically diverse habitats 

were less affected by spatial inaccuracies, likely because their wider ranges increase 

the chances that imprecise occurrence points still fall within suitable areas. In 

contrast, species with narrow distributions, even in topographically homogeneous 

regions (e.g., restricted to specific elevation bands), were more vulnerable to spatial 

errors due to their limited habitat requirements, making spatially imprecise records 

more likely to fall outside suitable areas of habitat. 
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The findings from this and previous analyses (questions 2 & 3 above) help guide 

decisions on when it may be appropriate to include records with geographical 

uncertainty and how to mitigate any negative effects using suitable methodological 

approaches. For wide-ranging island species, which require fewer data points, 

stricter thresholds on data accuracy can be applied without significantly affecting 

model performance. In contrast, narrow-range island species, which need larger 

datasets, benefit from retaining slightly inaccurate records to increase sample size. 

In such cases, it is important to choose modelling methods that can tolerate 

inaccuracies, such as GLM and BART. These methods also perform best with 

moderate-sized datasets (around 20 records), making this strategy of increasing 

sample size particularly effective in addressing the limitations of SDMs for narrow-

range island species. 

Notably, this analysis used a fine resolution of 30 meters, which is rarely applied in 

SDMs (Benavides et al, 2024). This further supports the argument that increasing 

the resolution of predictors does not necessarily resolve issues caused by spatially 

inaccurate records (Moudrý & Šímová, 2012; Gábor et al., 2022). As shown in 

Chapter 4, using coarse analytical scales leads to uninformative SDMs for small 

island study areas (e.g., Clarion Island). In summary, selecting appropriate 

modelling methods and considering data needs across species ranges provides a 
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better approach for addressing the challenge of low spatial precision in occurrence 

data for high-resolution island SDMs. 

6.2.5 Are downscaled predictors a reliable baseline to model island plant 
species distributions in tropical latitudes?  

Chapter 4 addressed the critical consideration of incorporating micro-

environmental data into SDMs for islands, a challenge constrained by the limited 

availability of such predictors (Fitzpatrick & Ellison, 2018; Benavides et al., 2024). 

This chapter developed a methodology focused on a set of ecologically relevant 

variables for island SDMs, specifically tailored to scales appropriate for these 

environments—a consideration that has been relatively understudied (Austin & Van 

Niel, 2011; Syphard & Franklin, 2009; Tulloch et al., 2016). 

With recent advancements in data availability and computational power, it is now 

possible to create detailed microclimatic descriptors by downscaling global climate 

data and evaluating whether these variables are ecologically significant and can 

accurately predict species distributions. This thesis identified a downscaling method 

that could be useful to describe microclimate in island environments, as this 

method accounts for orographic effects to derive microclimatic variables (Flint & 

Flint, 2012). This approach aligns well with the climatic dynamics specific to islands 

and is based on global bioclimatic grids, making it applicable to islands worldwide.  
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With recent advancements in data availability and computational power, it is now 

possible to create detailed microclimatic descriptors by downscaling global climate 

data and assess whether these variables are ecologically significant and accurately 

predict species distributions. This thesis identified a downscaling method that 

could be particularly useful for describing microclimate in island environments, as it 

accounts for orographic effects to derive microclimatic variables (Flint & Flint, 

2012). This approach aligns well with the climatic dynamics specific to islands and is 

based on global bioclimatic grids (e.g., Worldclim; Fick & Hijmans, 2017; CHELSA: 

Karger et al., 2017), making it applicable to islands worldwide. 

The most significant finding was that a null-model testing approach, introduced to 

evaluate the informativeness of microclimatic estimates, helped determine whether 

species show a statistically significant association with a diverse set of potentially 

informative microclimatic predictors (Deblauwe et al., 2016). This approach 

confirmed that downscaled microclimatic data often provided more informative 

spatial predictions than terrain-derived data in high-resolution island plant SDM 

studies (e.g., Heinänen et al., 2012; Turvey et al., 2020; Lannuzel et al., 2021; Segal et 

al., 2021), challenging the view that terrain-derived data are the best alternative for 

island studies with limited environmental data (Poteau et al., 2015). The results 

suggested that incorporating fine-scale microclimatic variables into SDMs is 

particularly important when the relationship between microclimate and topography 
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is weaker, such as on low-elevation islands with minimal topographic variation 

(McInerny et al., 2011; Lembrechts et al., 2019). In such cases, relying solely on 

topography as a climate proxy may reduce the accuracy of model predictions. 

These strategies and methodological considerations were developed to test the 

effectiveness, and improve the reliability, of microclimatic descriptors. While the 

main focus is on tropical regions, future approaches could be adapted for other 

island areas and tested across different taxa. 

6.2.6 Does the grain size of downscaled climatic estimates impact the accuracy 
and transferability of island SDMs to novel environments?  

While a model may show high predictive accuracy in a specific context, this does 

not guarantee the same level of accuracy when projected to different spatial or 

temporal settings (Yates et al., 2018; Rousseau & Betts, 2022). This issue arises due 

to factors such as local species adaptations (niche plasticity), variations in limiting 

factors across regions, and changes in the correlation structure of environmental 

variables (Dormann et al., 2012; Radomski et al., 2022). Additionally, biotic 

interactions add further complexity to the transferability of SDMs (Fitzpatrick et al., 

2007). Despite these challenges, improving SDM transferability is crucial for two key 

conservation objectives in island studies: (1) assessing and mitigating ecological 

invasions, a major driver of species extinctions in island ecosystems, which requires 

spatially transferable models (Goedecke et al., 2020); and (2) improving the 



 270 

accuracy of predictions of species distribution responses to global environmental 

change, which demands temporally transferable models (Rapacciuolo et al., 2012). 

Enhancing SDM transferability is a complex task requiring careful consideration of 

multiple factors. This thesis highlights the impact of using finer spatial scales in 

SDM transferability and calls for further research in this area (Petitpierre et al., 2017; 

Manzoor et al., 2018). One of the study's strengths is the use of independent 

presence-absence datasets for each island, providing a robust framework for 

testing transferability. Although such datasets are rare, they are vital for thoroughly 

assessing SDM transferability under comparable environmental conditions 

(Petitpierre et al., 2017). The contrasting sizes and topographical complexities of 

the two islands studied—one large and topographically complex, the other smaller 

and less topographically complex—also provided valuable insights to enhance 

island SDM transferability. 

While the findings of this thesis align with previous research (Dormann et al., 2012; 

Radomski et al., 2022; Rousseau & Betts, 2022) and emphasise the critical role of 

scale in influencing SDM transferability, it offers two novel contributions: (1) it 

challenges earlier assumptions that finer analytical grains negatively impact species 

transferability (Manzoor et al., 2018). In fact, a high resolution of 30 metres was 

found to be essential for improving transferability, as the small size of one of the 
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study islands required a much finer resolution to produce informative model 

projections. (2) Measuring environmental similarity between training and 

calibration regions is crucial for assessing uncertainty in model transferability, as 

changes in the correlation structure of environmental variables, caused by varying 

levels of topographical complexity among islands, were shown to compromise 

transferability (Dormann et al., 2012; Qiao et al., 2019). These two insights support 

the enhancement of transferability in island SDMs for future research. A key 

takeaway is that even at the smallest resolution tested, transferability was 

maintained and, in some cases, represented the only informative analytical scale 

(Chapter 4). This finding highlights the need for further studies using very fine 

resolutions, particularly for small islands. For future research on ecological 

invasions, the thesis highlights that poor model transferability can arise from 

mismatches in analytical granularity between training and transfer areas, as well as 

from overlooking changes in the relationships among environmental variables 

across these areas. This issue will be particularly important when predicting 

invasions from large continental areas to smaller island environments. In the 

context of climate change studies, the findings suggest that adjusting the scale for 

small islands to fine analytical resolutions can improve accuracy without 

compromising SDM transferability. 
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6.2.7 Does the choice of variable type (Bioclimatic vs. Terrain variables) impact 
the accuracy and transferability of island SDMs to novel environments?  

In addition to the analytical scale, the choice of predictors has been identified as 

significantly influencing the transferability of SDMs (Datta et al., 2020; Goedecke et 

al., 2020). Building on existing research, this thesis examined how different climatic 

baselines, downscaled to fine resolutions, affect model transferability. Specifically, it 

compared a dataset derived from topography with downscaled versions of two 

widely used bioclimatic datasets: WorldClim (Fick & Hijmans, 2017) and CHELSA 

(Karger et al., 2017). 

Testing these baselines was considered relevant due to concerns about the 

reliability of climatic descriptors for islands (Poteau et al., 2015). Consequently, 

island SDMs have often relied on topographically derived and remotely sensed 

environmental descriptors (e.g., Heinänen et al., 2012; Turvey et al., 2020; Lannuzel 

et al., 2021; Segal et al., 2021). However, as demonstrated in earlier sections of this 

thesis, downscaled microclimatic predictors significantly improve model accuracy, 

making a detailed analysis of their transferability a logical next step. 

Given the methodological differences between these climatic baselines, it was 

hypothesised that CHELSA would outperform WorldClim. CHELSA is recognised for 

its relative effectiveness in areas with sparse meteorological data and high 

topographic complexity (Datta et al., 2020), both of which are characteristics of the 
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study archipelago. However, despite expectations, WorldClim exhibited superior 

spatial transferability. This discrepancy highlighted CHELSA’s sensitivity to changes 

in correlations between predictor variables across regions, exacerbated by the 

significant variation in size and topographical complexity among the islands 

(Mesgaran et al., 2016). For the same spatial differences, using topography-derived 

predictors for fitting SDMs reduced their transferability, revealing the limitations of 

these baselines in such contexts. 

These findings suggest that the latest version of WorldClim provides a stronger 

foundation for transferring spatial models across regions. In contrast, CHELSA 

proves particularly useful when models are applied within the same region, 

especially in areas with limited meteorological data. The combined insights from 

the two transferability-related questions in this thesis offer valuable guidance for 

selecting environmental predictors and determining the appropriate analytical 

scale, whether models are applied locally or projected across regions in the context 

of island SDMs. 

It is important to emphasise that these recommendations are guidelines for future 

research rather than definitive conclusions. Further investigation is needed to 

deepen our understanding of how island species distributions change over time 

and space and to refine SDM methodologies to better address the challenges of 
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model transferability, given this aspect of the general SDM framework remains 

poorly understood (Sequeira, et al., 2018; Yates et al., 2018). 

6.2.8 Are the patterns of distributional shifts in insular species due to climate 
change related to their chorotypes and/or conservation status?  

Although climate change studies on plant species are a common focus in the island 

SDM literature (Benavides et al., 2024), they have mostly been conducted at 

macroclimatic scales. It is only recently that the importance of shifting to 

microclimatic scales has been recognised as essential for understanding island 

plant responses to global environmental change (Patiño et al., 2023). A series of 

methodological challenges, previously identified and discussed in the earlier thesis 

chapters, have hampered this transition. However, the methodological groundwork 

laid out in this thesis has made it possible to assess the potential impacts of future 

climate change on plant species of high ecological and conservation significance, 

located in subtropical and tropical oceanic archipelagos.  

The findings of Chapter 5 provide new evidence of the heightened risk of losing 

globally significant endemic species (Fordham et al., 2010; Harter et al., 2015; 

Manes et al., 2021) given that endemic species generally exhibit greater 

vulnerability to climate change, with suitability declines exceeding 50% across most 

archipelagos. This aligns with trends observed in other tropical island hotspots 

(Pouteau & Birnbaum, 2016; Tagliari et al., 2021). An exception to this was the 
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Revillagigedo Archipelago, where non-endemic species suffered higher losses, with 

some of these species disappearing entirely. 

The spatial analysis of species loss further revealed the localised loss of both 

endemic and non-endemic species that play important ecological roles within these 

archipelagos, potentially destabilising ecosystems. These findings underscore the 

importance of using indicator species to assess climate change impacts (e.g., Bombi 

et al., 2021; Dickson et al., 2019), and they highlight the urgent need for targeted 

conservation efforts in insular biodiversity hotspots (Ghiloufi et al., 2020). 

Interestingly, the analyses showed that climate change does not consistently 

exacerbate existing threats to vulnerable species. A notable disconnect was 

observed between species classified as "Least Concern" by the IUCN and their high 

vulnerability to climate change. Moreover, some species identified as threatened by 

climate change did not face imminent habitat loss in this assessment. This suggests 

that current IUCN criteria may not fully capture traits that increase vulnerability to 

climate change, emphasising the need to revise these criteria to better reflect 

climate-related risks (Akçakaya et al., 2006; Keith et al., 2014). 

6.3 Limitations 

There are several limitations associated with the research presented in the thesis. 

SDMs are often criticised for their correlative nature, as they rely on statistical 
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associations between species occurrences and environmental variables without 

considering causal mechanisms, or other factors that influence species distributions 

(Wagner et al., 2023; Tourinho & Vale, 2023). In response to this limitation, 

researchers are exploring methods that integrate mechanistic models (see hybrid 

models: Dorman et al., 2012; Tourinho & Vale, 2023), that incorporate biotic 

interactions (Cabral, et al., 2017; Zurell, 2017) and consider evolutionary processes 

(Liu et al., 2022). These approaches complement traditional SDMs but they often 

require more detailed and extensive data (abiotic, biotic, and dispersal, 

microclimate), which can make their broader application challenging (Tourinho & 

Vale, 2023). Given the data challenges associated with these complementary 

approaches, SDMs remain a valuable tool for addressing ecological and 

biogeographical questions.  

Recognising the relevance of SDMs but also the complexity of both selecting 

appropriate methods among numerous options and their implementation, due to 

the many decisions involved in the fitting process (Leroy, 2022), this thesis aimed to 

provide guidelines to simplify decision-making and enhance SDM predictions, 

tailored specifically to island environments. Default parameters were used for the 

tested methods, despite the potential benefits of parameter tuning in many 

scenarios (Valavi et al., 2021). This choice reflects the understanding that presence-

only models generally benefit less from parameter tuning (Valavi et al., 2021), 
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particularly when dealing with small occurrence datasets—a common issue in this 

study and in island studies more broadly (Benavides et al., 2024). Furthermore, 

while parameter tuning often aims to control model complexity and prevent 

overfitting, this study addressed these concerns by employing the Ensemble of 

Small Models (ESM) approach (Lomba et al., 2010; Breiner et al., 2015). The default 

ESM approach not only strengthens the guidelines but also makes them relatively 

simple and accessible, even for researchers who are not experts in SDMs. 

In a more specific context, the model archipelago offered valuable insights but 

differs from other, more extensively studied volcanic archipelagos, which typically 

feature a larger number of islands and, consequently, more sampling opportunities. 

While increased replication can improve the robustness of findings, it also 

complicates the collection of high-quality data. Moreover, the relatively smaller 

number of islands and their limited area restricted the range of species that could 

be analysed. Despite these limitations, the study prioritised data quality over 

quantity to address targeted scientific questions effectively. This focus on high-

quality data, particularly independent presence-absence data—rarely available but 

crucial to the research questions explored—ensured that the findings were robust. 

Although the scope was narrower, this emphasis on data quality strengthened the 

overall conclusions. 
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6.4 Conservation and management implications 

The primary conservation goal of this thesis was to utilise SDMs to deepen our 

understanding of the unique and rich plant biodiversity found on tropical islands 

(Cayuela et al., 2009). Despite hosting a significant portion of global biodiversity, 

these regions are often underrepresented in both occurrence (Benavides et al., 

2024) and environmental datasets (Deblauwe et al., 2016). 

Improving SDM practices within the Revillagigedo Archipelago lays a strong 

foundation for informed conservation decision-making, significantly enhancing 

biodiversity management in the region. Currently, detailed geographical 

knowledge of species distribution patterns remains limited (Benavides et al., 2019) 

and, in some instances, outdated (Brattstrom, 1990; Arnaud et al., 1993; Rodriguez-

Estrella et al., 1996). This is partly due to earlier studies being conducted prior to 

the successful eradication of two large introduced mammals: Sus scrofa on Clarion 

Island (Wanless et al., 2009) and Ovis aries on Socorro Island (Aguirre-Muñoz et al., 

2011). Evidence suggests significant vegetation recovery following these 

eradications, and it is expected that associated taxa have reorganised in response 

to habitat restoration (Ortiz-Alcaraz et al., 2019). This presents a compelling 

opportunity to apply the insights from this thesis across a broader range of 

taxonomic groups, thereby increasing biogeographical knowledge of the 

archipelago through the use of SDMs. 
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Additionally, two medium-sized introduced mammals, Oryctolagus cuniculus on 

Clarion Island and Felis catus on Socorro Island, remain present in the archipelago. 

SDMs have proven valuable in assessing habitat use by invasive species in island 

ecosystems (Recio et al., 2015). Therefore, applying SDMs can support ongoing 

eradication efforts and facilitate post-eradication restoration by identifying suitable 

areas for the reintroduction of species that have been locally extirpated (Lentini et 

al., 2018). Furthermore, this thesis has expanded our understanding of plant 

species’ habitat requirements in the archipelago, enabling SDMs to be used to help 

mitigate the impacts of climate change through predicting shifts in species 

distributions (Chapter 4). 

The aim of applying these insights to local conservation efforts is particularly 

achievable due to existing partnerships with the NGO leading invasive species 

eradication and the management team of the Revillagigedo Archipelago National 

Park. Both parties are fully informed of the thesis objectives, and the findings will 

be shared to aid in shaping effective conservation strategies. Additionally, there are 

short-term plans to further collaborate with these organisations to develop SDMs 

for the identified management applications. 

On a global scale, this thesis also provides valuable insights into the impacts of 

climate change on volcanic archipelagos in the tropical Pacific and Atlantic. Large-



 280 

scale assessments are essential for understanding the broader effects of climate 

change on these vulnerable island environments (many of which are biodiversity 

hotspots) and for determining whether predicted species responses follow 

common patterns. Both local and macroecological patterns of response to global 

change are crucial for guiding conservation efforts (Rodríguez et al., 2007; Kueffer 

& Kinney, 2017). 

6.5 Future Directions 

Potential future directions for research on improving SDM practices in island 

environments include: 

• Geographical and Taxonomical Extension: While this study offers significant 

insights into SDM practices for island environments, future research could 

explore whether the data requirements and proposed methodologies for 

obtaining fine-grained data are consistent across diverse spatial and 

taxonomical contexts. 	A more holistic approach might involve integrating 

multiple interacting taxonomic levels (e.g., plants and pollinators; nesting 

plants and birds; invasive herbivores and the plants they consume). 

• Dissemination of Microclimatic Predictors: The development of microclimatic 

and environmental grids in this study was highly computationally 

demanding. Therefore, it was not feasible within the timeframe of this thesis 

to cover finer scales (<500m) in the other tropical archipelagos tested or to 
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encompass a broader range of islands. Future research should focus on 

continuing the development and testing of these datasets, with the support 

of experts in the biodiversity of the island study areas. Making these 

microclimatic grids more accessible to a larger number of researchers would 

significantly enhance the capacity to conduct high-resolution SDM studies. 

• Linking Methodological Considerations with Applied Knowledge: Although 

SDMs will continue to require ongoing refinement, the guidelines provided 

in this thesis offer a solid foundation for applying the lessons learned to 

address specific scientific questions. During the field collection phase of this 

research, additional types of data were gathered to tackle future questions, 

such as the synergistic effects of invasive species and climate change, 

improving the detection of rare and endangered island species, and 

enhancing strategies for invasive species management to support 

conservation efforts. Additionally, collaborative opportunities that arose 

during this PhD project with other researchers could greatly benefit from the 

appropriate implementation of these tools, leveraging the expertise gained 

to advance the field further. 

6.6 Concluding Remark 

In summary, while this study has made significant advances in tailoring and 

enhancing SDM practices for island environments, the outlined future directions 
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underscore the need for continued research and collaboration. Expanding the 

geographical and taxonomic scope, improving the accessibility of microclimatic 

predictors, and linking methodological advancements with practical applications 

will not only refine SDM methodologies but also strengthen their role in 

conservation efforts globally. By addressing these areas, future work can build on 

the foundation laid by this research, ultimately contributing to the development 

and implementation of more effective and informed environmental management 

strategies in island environments.  
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Appendix S2.2 Supplementary tables and figures 1 
 2 
Supplementary table S2.2.2 Key SDM implementation parameters form the reviewed literature 3 

Study Area Year 

Number 
of 

Species 
Per 

Taxa 

Taxa Niche 
Truncation 

Env 
Data 

Resoluti
on 

Modelling 
method 

Modeling 
approach Aim 

Recor
d 

Mean 

Max 
Number 

of 
Records 

Min 
Number 

of 
Records 

Predi
ctor 
N 

Alexander 
archipelago 2018 3 MM NA 

(Widespread) 4.5km Maxent Single PHP 144 149 137 4 

Antarctica and 
the Southern 
Ocean islands 

2019 1 ART IN 
(Widespread) 10km DB Single IAS 15 15 15 5 

Antarctica and 
the Southern 
Ocean islands 

2017 

3 / 24 / 
3 / 3 / 
14 / 2 / 

47 

AN/A
RT/BR
D/FG/
MM/R
PT/VP 

IN 
(Widespread) 

27.75k
m 

ANN / CTA / 
FDA / GAM / 
GBM / GKM 

/ MARS / 
Maxent / RF 

/ SER 

Ensemble SYN 25050 217124 13 5 

Antarctica and 
the Southern 
Ocean islands 

2017 2 VP IN 
(Widespread) 10km DB / ENFA 

/  Maxent Single IAS 35000 35000 35000 7 

Azores Islands 2016 67 VP NT (Local) 100m Maxent Single SHR 17 51 6 5 

Azores Islands 2017 45 ART EN-4/IN-
7/NA-35 100m Maxent Single LUC 11 37 3 11 

Azores Islands 2015 1 VP EN (Local) 100m ENFA / 
Maxent Single MT 7 7 7 6 

Azores Islands 2016 51 / 82 
/ 57 

BRY/
Mollu

NA 
(Widespread) 500m Maxent Single PAM 229 548 20 - 
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sca/V
P 

Azores Islands 2019 2 MM IN 
(Widespread) 1km Maxent Single IAS 1226 3,396 24 12 

Azores Islands 2015 1 VP IN (Local) 100m Maxent Single MT 530 530 530 11 
Azores Islands 2009 48 ART NA-43/IN-5 500m ANN Single MT 240 590 69 5 

Azores Islands 2021 1 ART IN 
(Widespread) 100m Maxent Single IAS 1260 2635 884 5 

Azores Islands 2017 2 VP IN (Local) 500m ENFA / 
Maxent Single SHR 3885 12922 402 28 

Azores Islands 2019 122 / 7 
/ 50 

ART/B
RY/VP EN (Local) 100m 

ANN / CTA / 
FDA / GAM / 
GBM / GLM 

/ MARS / 
Maxent / RF 

/ SER 

Ensemble PAM
/CC - - - 3 

Azores Islands 2016 128/ 
19/ 59 

ART 
/BRY  
/VP 

- 500m 
BIOCLIM / 

GAM / GLM 
/ RF 

Ensemble CC - - - - 

Balearic 
Islands 2014 1 VP EN (Local) 1km* Maxent Single PHP 5 5 5 7 

Balearic 
Islands 2015 1 ART EN (Local) 1km 

CTA / FDA / 
GAM / GBM 

/ GLM / 
MARS / 

Maxent / RF 

Ensemble CC 139 139 139 5 

Balearic 
Islands 2015 2 VP EN (Local) 1km Maxent Single SHR 255 478 32 11 

Balearic 
Islands 2019 1 VP EN (Local) 2m Maxent Single SHR 1603 1603 1603 6 

Bioko island 1999 45 BRD EN (Local) 500m PREDICT Single MT - - - - 
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Borneo 2020 17 NAI EN (Local) 1km Maxent Single PHP 42 187 4 7 

Borneo 2020 2 ART NA 
(Widespread) 1km* Maxent Single SHR 40 42 38 14 

Borneo 2020 47 VP EN (Local) 200m Maxent Single SHR 9 21 5 6 

Borneo 2020 77 ART EN (Local) 1km GLM/Maxen
t/RF Ensemble PAM - - - 5 

Borneo 2009 2273 VP NA/EN (Local) 4.5km Maxent Single RP - - - 14 
Canadian High 

Arctic 
Archipalgo 

2020 2 MM NA 
(Widespread) 

1km 
(577m 
final) 

Maxent Single SHR 1027 1519 535 15 

Canary Islands 2019 1 VP EN (Local) 50m 
ANN / GBM 

/ GLM / 
MARS / RF 

Ensemble PHP 34 34 34 7 

Canary Islands 2014 1 RPT EN (Local) 1km Maxent Single PHP 46 46 46 6 

Canary Islands 2018 1 VP EN (Local) 50m 

ANN / GAM 
/ GBM / 

GLM / MARS 
/ RF 

Ensemble RST 331 441 56 5 

Canary Islands 2020 1 VP IN (Local) 500m Maxent Single SYN 65 65 65 3 

Canary Islands 2021 1 RPT NT&IN 1km 
BIOCLIM / 

DB / ENFA / 
Maxent 

Ensemble SYN 80 80 80 7 

Canary Islands 2020 1 VP IN (Local) 100m GAM / 
Maxent / RF Ensemble IAS 207 241 172 10 

Canary Islands 2011 401 BRY NA (Local) 
200m 

elevatio
n bands 

Net 
Diference Single CC - - - 3 

Canary Islands 2016 1 BRD - 30m DM Single LUC - - - - 
Canary Islands 2011 841 VP NA (Local) 500m Maxent Single MT - - - 7 
Canary Islands 2020 NA NA NA (Local) 500m GLM Single RP 976 - - 12 
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Canary Islands 2020 1 VP NA 
(Widespread) 

1km 
&4.5Km
(past) 

Maxent Single PHP 60 60 60 7 

Chagos 
Archipelago 2020 4 BRD WD (Local) 4km GBM Single SYN 173 255 113 - 

Corsica–
Sardinia island 

system 
2013 1 AN EN (Local) 1km Maxent Single PHP 15 15 15 6 

Corsica–
Sardinia island 

system 
2014 23 VP NA (Local) 1km Maxent Single CC 31 15 48 6 

Corsica–
Sardinia island 

system 
2011 1 AN EN (Local) 

1km 
&4.5Km
(past) 

Maxent Single PHP 190 190 190 7/19 

Corsica–
Sardinia island 

system 
2017 1 RPT EN (Local) 

1km 
&4.5Km
(past) 

Maxent Single PHP 480 480 480 5 

Crete and 
Sicily 2020 12 VP NT (Local) 1km Maxent Single MT 180 452 20 10 

Crete Island 2020 172 VP EN (Local) 1km CTA / MARS 
/ RF Ensemble PAM 120 1792 4 7 

Crete Island 2020 183 VP EN (Local) 1km CTA / MARS 
/ RF Ensemble PAM - - - 7 

Cyprus Island 2018 1 VP NA (Local) 1km Maxent Single PHP 27 27 27 19 

Cyprus Island 2015 2 VP EN (Local) 1km/25
0m CTA Single SYN 109 117 102 3_5 

Elba Island 2017 6 VP IN (Local) 250m 

ANN / CTA / 
FDA / GAM / 
GBM / GLM 

/ MARS / 

Ensemble IAS 122 150 95 8 
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Maxent / RF 
/ SER 

English 
Company 

Islands 
2016 32 RPT NA (Local) 1km Maxent Single PHP 242 996 24 15 

Falkland 
Islands 2016 8 VP EN-3/NT-5 

(Local) 100m 
GAM / GBM 

/ GLM / 
Maxent / RF 

Ensemble CC 32 58 20 1_5 

Falkland 
Islands 2015 1 MM IN (Local) NE GLM Single IAS 158 158 158 4 

Fiji Islands 2014 1 VP IN 
(Widespread) 18.5 km CLIMEX Single SYN 1740 1740 1740 5 

Finnish 
archipelago 2012 2 BRD NA (Local) 10m Maxent Single MT 722 1185 234 7 

French sub-
Antarctic 
islands 

(Possession 
Island, Crozet 
archipelago) 

2021 6 VP IN (Local) 30m GLM Single SYN 427 439 79 2 

Galapagos 
(Pinta island) 2013 2 RPT IN 

(Widespread) 90m Maxent Single RST 9 12 7 3 

Galapagos 
(Santa Cruz 

Island) 
2017 2 VP IN (Local) 1km Maxent Single SYN 1528 1621 1435 5 

Galapagos 
archipelago 2009 1 ART IN 

(Widespread) 1km Maxent Single IAS 4 4 4 19 

Global Islands 2019 55 VP EN 
(Widespread) 1km Maxent Single CC 40 140 5 4 

Grande 
Comore 2017 2 MM EN (Local) 25m GLM Single SHR 42 53 33 2 
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Grande 
Comore 2019 1 BRD EN (Local) 200m DSM Single SHR 254 254 254 - 

Grande 
Comore/Mada

gascar 
2021 1 BRD NA (Local) 1km ENFA/GLM Single SHR 194 194 194 6 

Great Britain 2013 8 MM NA (Local) 50m & 
100m Maxent Single MT 254 769 44 13 

Great Britain 2013 28 ART NA (Local) 1km Maxent Single  867 4254 12 19 
Great Britain 2019 6 MM NA (Local) 1km* BAYES Single MT 1411 4690 114 - 

Great Britain 2012 53 / 183 
/ 1587 

ART/B
RD/V

P 

NA 
(Widespread) - 

ANN / 
BIOCLIM / 

CTA / GAM / 
GBM / GLM 

/ MARS / 
Maxent / RF 

Ensemble MT - - - 6 

Haida Gwaii 
islands 2017 1 BRD NA (Local) 100m GBM Single SHR 166 166 166 8 

Hawaii  archip
elago 2002 1 PRT EN (Local) 30m Net 

Diference Single SYN - - - 2 

Hawaii  archip
elago 2021 8 ART IN 

(Widespread) 1km 

ANN / CTA / 
FDA / GAM / 
GARP / GBM 

/ GLM / 
MARS / 

Maxent / RF 

Ensemble SYN 5,709 50,640 28 7 

Hawaii  archip
elago 2017 2 BRD EN (Local) 500m GBM / 

Maxent Ensemble RST 175 239 111 4 

Hawaii  archip
elago 2017 1 BRD IN 

(Widespread) 10km Maxent Single IAS 2,329 2,329 2,329 21 

Hawaii  archip
elago 2015 20 BRD EN (Local) 1km/3k

m 
GBM / 
Maxent Ensemble CC - - - 4 
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Hispaniola 
island 2019 1 MM EN (Local) 1km Maxent Single LUC 233 447 19 8 

Hispaniola 
island 2013 26 RPT NA (Local) 1km MARS Single SHR - - - - 

Hispaniola 
island 

(Dominican 
republic) 

2019 2 MM EN (Local) 30m Maxent Single SHR 91 135 48 5 

Iceland 2018 1 VP IN (Local) 1km Maxent Single SYN 98 98 98 11 
Indonesia 

Archipelago 2021 51 MM NA 
(Widespread) 1km Maxent Single PAM 48 417 10 6 

Indonesia 
Archipelago 2019 1 VP NA 

(Widespread) - 

BIOCLIM / 
DOMAIN / 

GLM / 
Maxent / RF 

/ SVM 

Ensemble MT 98 98 98 8 

Indonesia 
Archipelago 2017 2 VP NA (Local) 1km Maxent Single CC 563 935 192 7 

Indonesia 
Archipelago 2020 1 VP IN (Local) 1km Maxent / RF Single SYN 507 507 507 13 

Indonesia 
Archipelago 2017 1 VP IN 

(Widespread) 4.5km GLM Single SYN 232 232 232 7 

Indonesia 
Archipelago 2021 1 VP IN (Local) - Maxent Single SYN 5,389 5,389 5,389 19 

Indonesia 
Archipelago 2013 1720 VP NA 

(Widespread) 10km Maxent Single RP - - - 16 

Indonesia 
Archipelago 2017 348 VP NA 

(Widespread) 10km Maxent Single RP 23 112 5 12 

Indonesia 
Archipelago 2021 139 VP NA (Local) 10km Maxent Single CC 33 152 10 19 
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Indonesia 
Archipelago 2020 1 MM EN (Local) 30m Maxent Single SHR 36 36 36 8 

Indonesia 
Archipelago 2018 1 BRD EN (Local) 1km Maxent Single SHR 48 48 48 16 

Indonesia 
Archipelago 2013 1 BRD EN (Local) 1km Maxent Single SHR 60 60 60 21 

Indonesia 
Archipelago 2019 1 MM NA (Local) 15m Maxent Single SHR 70 70 70 11 

Indonesia 
Archipelago 2021 1 RPT EN (Local) NE DB Single LUC 87 87 87 11 

Indonesia 
Archipelago 2020 2 VP NA (Local) 1km Maxent Single CC 153 156 151 12 

Indonesia 
Archipelago 2020 1 RPT EN (Local) 1km 

GAM / GBM 
/ GLM / 
Maxent 

Ensemble CC 4,028 4,028 4,028 3 

Indonesia 
Archipelago 2014 317 RPT NA 

(Widespread) 10km Maxent Single RP - - - 8 

Indonesia 
Archipelago 2020 4 VP NA (Local) 1km Maxent Single CC - - - 12 

Indonesia 
Archipelago 2020 1 VP IN (Local) 5km Maxent Single CC - - - 22 

Ireland 2014 14 / 16 BRY 
/  VP 

NA 
(Widespread) 10km 

ANN / FDA / 
GAM / GBM 
/ GLM / RF 

Ensemble PAM - - - - 

Japan 
Archipelago 2015 1 ART IN (Local) 1km Maxent Single IAS 12 12 12 10 

Japan 
Archipelago 2013 1 VP EN (Local) 

1km 
&4.5Km
(past) 

CTA / GAM Ensemble CC 339 1210 12 4 

Japan 
Archipelago 2021 10 ART EN (Local) 4.5km Maxent Single CC 44 156 12 9 
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Japan 
Archipelago 2013 1 RPT IN (Local) 1km Maxent Single IAS 13 13 13 8 

Japan 
Archipelago 2014 2 VP NA-1/EN-1 

1km 
&4.5Km
(past) 

CTA / GAM / 
GLM / GBM 

/ MARS / 
Maxent / RF 

Ensemble PHP 224 436 13 6 

Japan 
Archipelago 2010 25 VP NA (Local) 1km ANN / GAM 

/ GBM / RF Ensemble CC 207 711 17 - 

Japan 
Archipelago 2016 1 VP EN (Local) 1km GLM Single CC 1091 1983 200 - 

Japan 
Archipelago 2017 1 RPT IN 

(Widespread) 10km Maxent Single IAS 824 824 824 21 

Japan 
Archipelago 2014 1 VP EN (Local) 4.5km GAM Single PHP 761 761 761 4 

Japan 
Archipelago 2019 1 VP NA (Local) 4.5km GAM Single PHP 3937 3937 3937 4 

Japan 
Archipelago 2015 1 VP EN (Local) 4.5km RF Single PHP 4387 4387 4387 4 

Japan 
Archipelago 2019 1 VP NA (Local) 1km CTA Single CC 9132 9,132 9132 - 

Japan 
Archipelago 2011 1 VP NA (Local) 1km CTA Single CC 15,809 15,809 15,809 - 

Japan 
Archipelago 2003 28 VP NA (Local) 5m GLM Single SHR - - - 2 

Japan 
Archipelago 2014 5 MM NA-3/EN-

2(Local) 100m GLM Single LUC - - - 7 

Japan 
Archipelago 2011 1 VP EN (Local) 50m CTA Single CC - - - - 

Japan 
Archipelago 2020 1 BRD NA 

(Widespread) 4.5km Maxent Single PHP - - - 7 

Jeju Island 2019 1 LCH NA (Local) 1km Maxent Single PHP 12 12 12 3 
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Jeju Island 2017 1 VP NA 
(Widespread) 30m GLM / MARS 

/ RF Ensemble CC 420 420 420 5 

Lampi island 
(Myanmar) 2019 19 MM NA (Local) 1km Maxent Single LUC 91 541 9 9 

Lord Howe 
Island 2021 1 BRD EN (Local) 10m Maxent Single SHR 73 73 73 6 

Lord Howe 
Island 2013 4 VP NA (Local) 10m Maxent Single PHP 288 150 404 8 

Macaronesia 
(Azores, 

Canarias, Cabo 
verde) 

2015 12 BRY NA 
(Widespread) 5km 

GBM / GLM 
/ Maxent / 

RF 
Ensemble PHP 65 95 38 5 

Macquarie 
Island 2019 1 VP EN (Local) 5m GLM Single MT 90 90 90 6 

Macquarie 
Island 2015 2 VP IN 

(Widespread) 1km Maxent Single IAS 40122 80000 245 15 

Macquarie 
Island 1999 1 / 9 / .2 

AN/A
RT/M

LC 
NA (Local) - GLM Single SYN - - - - 

Madagascar 2015 325. / 
420 

AN/R
PT EN (Local) 1km Maxent Single SHR 8 100 3 24 

Madagascar 2015 57 MM EN (Local) 1km 

ANN / CTA / 
FDA / GAM / 
GBM / GLM 

/ MARS / 
Maxent / RF 

/ SER 

Ensemble CC 64 988 6 - 

Madagascar 2021 9 BRD EN (Local) 1km Maxent Single SHR 13.44 33 6 15 

Madagascar 2018 19 / .11 MM/V
P 

EN-19/NA-
11(Local) 1km Maxent Single SHR 39 72 8 22 

Madagascar 2021 6 VP EN (Local) 4.5km Maxent Single CC 41 108 9 7 
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Madagascar 2020 1 MM EN (Local) 30m Maxent Single SHR 12 12 12 10 

Madagascar 2015 273 VP EN (Local) 10km 

GAM / GLM 
/ MARS / 

Maxent / RF 
/ SER 

Ensemble PHP - - - 

1  
per 
20 

recor
ds 

Madagascar 2017 1 AN IN 
(Widespread) 1km Maxent Single IAS 207 324 90 19 

Madagascar 2021 1 AN EN (Local) 250m Maxent Single CC 98 98 98 8 

Madagascar 2013 3 VP EN (Local) 2km GAM / GLM 
/ Maxent Ensemble PAM 7549 15000 99 4 

Madagascar 2017 1 BRD NA 
(Widespread) 1km Maxent Single SHR 5000 5000 5000 8 

Madagascar/M
ascarene 

archipelago ( 
Reunion 
Island) 

2021 1 RPT EN (Local) 

1km/ 
15&30 
m for 

landcov
er 

ANN / CTA / 
FDA / GAM / 
GBM / GLM 

/ MARS / 
Maxent / RF 

/ SER 

Ensemble CC 57 101 14 4 

Marquesas 
islands 2019 1 VP IN 

(Widespread) 

1km/10
m 

(Nuku 
Hiva/Fat
u Hiva) 

Maxent Single IAS 3000 3000 3000 9 

Mascarene 
archipelago 
(Mauritius) 

2014 5 RPT IN-1/EN-
4(Local) 900m 

GARP / GLM 
/ Maxent / 

RF 
Ensemble IAS 44650 89175 126 9 

Mediterranean 
islands 

(Balearic 
2019 1 ART IN (Local) 1km 

GBM / GLM 
/ MARS / 
Maxent 

Ensemble IAS 20 20 20 2 
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islands, Malta, 
Sardinia) 

New Caledonia 
archipelago 2015 60 VP NA (Local) 

1km 
&4.5Km
(past) 

BIOCLIM / 
DOMAIN / 

SVM 
Ensemble RP 31 138 10 4 

New Caledonia 
archipelago 2015 562 VP NA (Local) 100m Maxent Single RP 16 90 4 - 

New Caledonia 
archipelago 2016 469 VP NA (Local) 1km Maxent Single CC - - - 5 

New Caledonia 
archipelago 2021 23 VP EN (Local) 10m/ 

30m Maxent Single LUC 64 511 4 5 

New Caledonia 
archipelago 2008 1 ART EN (Local) 1km Maxent Single RP 11 11 11 8 

New Caledonia 
archipelago 2013 150 VP EN (Local) 1km Maxent Single SHR 297 516 86 6 

New Caledonia 
archipelago 2017 1 VP EN (Local) 4.5km Maxent Single PHP 99 99 99 17_2

4 

New Caledonia 
archipelago 2019 678 VP EN-

644/NA(33) 100m 

ANN / GAM 
/ GBM / 

GLM / MARS 
/ Maxent / 
RF / SVM 

Ensemble RP - - - 6 

New guinea 2017 3000 VP NA (Local) 1km Maxent Single RP - - - 10 
New Guinea, 
the Bismarck 
Archipelago 

and 
surrounding 

islands. 

2016 532 VP NA (Local) 9.3km Maxent Single RP - - - 16 
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New 
guinea/Austral

ia 
2019 1 BRD NA 

(Widespread) 4.5km 
ANN / CTA / 
GLM / MARS 

/ 
Ensemble PHP 18,092 18,092 18,092 12 

New Zealand 2015 1 MM IN (Local) 1km Maxent Single SYN 827 5888 3 - 

New Zealand 2013 3 VP IN 
(Widespread) 4.5km Maxent Single SYN 658 1741 81 6 

New Zealand 2015 1 MM IN (Local) 1km/20
0m Maxent Single IAS 21 21 21 6 

New Zealand 2015 1 BRD EN (Local) - Maxent Single RST 34 34 34 5 

New Zealand 2012 3 VP IN 
(Widespread) 4.5km Maxent Single MT 658 1741 81 6 

New Zealand 2018 3 ART EN (Local) 5km 

ANN / CTA / 
FDA / GAM / 
GBM / GLM 
/ MARS / RF 

Ensemble PHP 127 174 84 5 

New Zealand 2017 1 VP IN 
(Widespread) 1km 

GLM / 
Maxent / RF 

/ SVM 
Ensemble SYN 106 106 106 5 

New Zealand 2015 1 ART IN 
(Widespread) 4.5km Maxent Single SYN - - - 5 

New Zealand 2018 1 BRD EN (Local) 90m Maxent Single RST 313 603 120 - 
New Zealand 2014 1 ART EN (Local) 25m Maxent Single CC 458 458 458 5 
New Zealand 2015 97 VP NA-33/IN-64 10m SVM Single IAS - - - 11 

New Zealand 2019 1 VP IN 
(Widespread) 1km Maxent Single SYN 680 1232 127 17 

New Zealand 2014 3 VP IN 
(Widespread) 4.5km Maxent Single SYN - - - 7 

New Zealand 2021 1 RPT EN(Widesprea
d) 4.5km Maxent Single CC - - - 4 

North islands 
of Australia 2017 4 RPT NA 

(Widespread) 4.5km Maxent Single PHP 110 199 37 10 
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Panama 
isthmus 
islands 

2012 1 AN NA (Local) 1km Maxent Single PHP 38 38 38 19 

Pantropical 
islands 2020 1 RPT IN 

(Widespread) 4.5km BIOCLIM Single IAS 1106 1106 1106 8 

Philipines 2021 26 VP NA 
(Widespread) 1km Maxent Single SYN 47 111 12 11 

Philipines 2018 2 VP NA-1/EN-
1(Local) 4.5km Maxent Single SHR 73 78 69 7 

Philipines 2020 1 ART NA (Local) 1km Maxent Single IAS 16 19 13 19 

Philipines 2019 1. / 1 BRD/R
PT EN (Local) 4.5km Maxent Single MT 392 771 14 19 

Philipines 2020 1 VP NA (Local) 1km 
GBM / 
MARS / 

Maxent / RF 
Single PHP 93 93 93 6 

Philipines 2018 1 FG NA (Local) 4.5km Maxent Single CC 46 46 46 19 
Philipines 2014 1 VP NA (Local) 1km DOMAIN Single SHR 557 557 557 19 

Puerto rico 2019 200 VP NA (Local) 450m 

ANN / CTA / 
FDA / GBM / 
GLM / MARS 

/ RF / SER 

Ensemble CC 57 340 30 15 

Puerto rico 2021 2 VP IN (Local) 1km GLM Single SYN 66 140 28 5 
Santa Catalina 

Island 2018 11 VP NT (Local) 1.5m Maxent Single RST 704 2418 10 7 

Sao Tomé 2017 3 BRD EN (Local) 1km Maxent Single SHR 117 363 13 2_12 

Sardinia Island 2017 62 VP EN-26/NA 
(Local) 1km GLM / RF Ensemble SYN 198 31 3 8 

Sardinia Island 2017 4 VP EN-3/NA-
1(Local) 1km Maxent Single PAM 91 305 5 5 

Sardinia Island 2015 1 VP NA (Local) 250m Maxent Single MT 30 8 58 7 
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Sardinia Island 2013 2 RPT IN-1/EN-
1(Local) 100m Maxent Single LUC 323 355 291 7 

Sardinia Island 2020 1 VP IN (Local) 10m GLM Single IAS 432 432 432 - 
Sardinia Island 2017 1 MM NA (Local) 40 m Maxent Single MT 471 471 471 8 

Sicily Channel 
Islands 2019 1 MM NA 

(Widespread) 1km 
GAM / GBM 

/ GLM / 
Maxent / RF 

Ensemble PHP 25 25 25 21 

Sicily Channel 
Islands 2018 1 RPT EN (Local) 1km 

GAM / GBM 
/ GLM / 
Maxent 

Ensemble PHP 90 90 90 9 

Sidney Island 
(Canada) 2020 1 NAI IN (Local) 2m 

BAYES / 
GBM / 

Maxent / RF 
Ensemble IAS 300 300 300 - 

Sjælland 
(Denmark) 2011 1 BRD NA (Local) 5km GLM Single SHR 703 703 703 7 

Socotra Island 2018 20 RPT EN-17/NA-3 
(Local) 100m Maxent Single PHP 33 97 7 8 

Socotra Island 2019 2 RPT EN (Local) 100m Maxent Single PHP 34 40 29 9 
Socotra Island 2012 4 VP IN (Local) 100m RF Single IAS 90 153 30 9 

Sri Lanka 2018 2 VP NA (Local) 4.5km* Maxent Single PHP 72 107 38 19 
Sri Lanka 2020 4 VP NA-2/IN-2 1km Maxent Single CC 101 272 10 7 
Sri Lanka 2019 14 VP IN (Local) 1km Maxent Single SYN 103 69 15 7 
Sri Lanka 2018 1 MM EN (Local) 100m Maxent Single SHR 492 492 492 - 
Sri Lanka 2021 14 VP IN (Local) 1km Maxent Single SYN - - - 7 

Sri 
Lanka/Australi

a 
2019 1 VP IN (Local) 1km 

BIOCLIM / 
DOMAIN / 

GLM / 
Maxent 

Single IAS 154 154 154 6 

Sumatra 2021 1 VP EN (Local) 1km Maxent Single CC 34 34 34 23 
Sumatra 2020 1 VP IN (Local) 1km Maxent Single SHR 63 63 63 23 
Sumatra 2020 1 VP NA (Local) 1km Maxent Single SHR 77 77 77 12 
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Taiwan Island 2021 1 VP NA (Local) 50m RF Single MT 90 160 20 14 
Taiwan Island 2013 237 VP NA (Local) 1km Maxent Single CC 544 1083 5 21 
Taiwan Island 2015 7 ART NAT(Local) 90m Maxent Single MT 28 39 21 18 

Taiwan Island 2021 6 ART IN 
(Widespread) 1km Maxent Single IAS 72 136 25 7 

Taiwan Island 2017 2 VP EN (Local) 1km Maxent Single PHP 76 78 75 5 
Taiwan Island 2014 2 VP EN (Local) 3km Maxent Single CC - - - 4 
Taiwan Island 2014 4 MM EN (Local) 4.5km Maxent Single PHP 267 652 108 8 

Taiwan Island 2012 1 VP NA (Local) 5m 
DB / GARP / 

GLM / 
Maxent 

Ensemble SHR 221 221 221 - 

Taiwan Island 2018 1 VP NA (Local) 1km* 

ANN / CTA / 
FDA / GAM / 
GBM / GLM 

/ MARS / 
Maxent / RF 

/ SER 

Ensemble CC 3032 3032 3032 19 

Taiwan Island 2014 156 VP NA (Local) 1km Maxent Single SHR - - - 10 
Taiwan Island 2014 156 VP NA (Local) 1km Maxent Single RP - - - 5 
Taiwan Island 2011 237 VP NA (Local) 1km Maxent Single CC 85 1083 5 16 
Taiwan Island 2018 156 VP NA (Local) 1km Maxent Single CC - - - 19 

Taiwan 
Island/Japanes
e Archipelago 

2020 1 ART NA (Local) 4.5km Maxent Single PHP 87 130 39 6 

Taiwan 
Island/Japanes
e Archipelago 

2014 10 VP NA 
(Widespread) 1km GAM Single CC 29 567 29 567 29 567 4 

Tasmania 2021 1 MM IN 
(Widespread) 4.5km GBM / GLM 

/ RF Ensemble IAS 3975 4,726 3,225 - 

Tasmania 2016 01./01/.
2 

BRD/
VP NA-3/IN-1 10km ANN / CTA / 

FDA / GAM / Ensemble SYN 1874 3634 68 3_ 5 
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GBM / GLM 
/ MARS / 

Maxent / RF 
/ SER 

Tasmania 2021 1 MM EN (Local) 250m Maxent Single CC 254 254 254 8 

Tasmania 2020 1 MM NA 
(Widespread) 1km GAM / GBM 

/ GLM / RF Ensemble RST 996 996 996 4 

Tasmania 2015 1 MM NA (Local) 5km Maxent Single CC 1590 1590 1590 8 
Tasmania/Aust

ralia 2016 3 VP NA 
(Widespread) 4.5km BIOCLIM Single SHR 1131 2454 87 3 

Tasmania/Aust
ralia 2015 1 MM NA 

(Widespread) - Maxent Single RST 1469 1469 1469 1 

Tasmania/Aust
ralia 2021 1 VP EN (Local) 1km GAM / GBM 

/ GLM / RF Ensemble CC 4114 4114 4114 7 

Tasmania/Aust
ralia 2012 72 VP IN 

(Widespread) 10km Maxent Single IAS - - - 7 

Tiwi Islands 2019 7 MM NA (Local) 25m GBM / GLM Single MT 175 327 24 15 
Trinidad and 

Tobago 
Islands 

2018 27 VP EN (Local) 1km Maxent Single RP 12 37 5 9 

Taxa: AN-Anurans, ART-arthropods, BRD- birds, FNG- fungi, MAM- Mammals, NVP- non-vascular plants, NAI-non-arthropod 4 
invertebrates, RPT- reptiles and VP- vascular plants         5 
Niche truncation (chorotypes): EN-Endemic, NA- Non-endemic Native, IN- Non-Native     6 
Study aims: CC-climate change, IAS-invasive alien species, LUC-land use change, SYN- synergy of extinction drivers, MT-Method testing, 7 
PAM-protected areas management, PHY- phylogeographic, RP- Richness patterns, RST-restoration, SHR- species habitat requirements. 8 
Environmental data resolution: * are inferred resolutions based on predictors utilised     9 
Modelling methods: ANN- Artificial Neural Networks, DB- Distance based, CTA - Classification tree analysis, FDA-Flexible Discriminant 10 
Analysis, GAM- Generalised additive model, GBM- Generalised Boosted Regression Model, GLM- Generalised Linear Models, MARS- 11 
multivariate adaptive regression splines,  RF- Random forest, SVM- Support Vector Machines 12 
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Supplementary table S2.2 Summary of the number of records and modellability 13 
index (M index) per taxa for each island analysed, as obtained from the GBFI 14 
database. 15 

Taxa 

Total 
global 
records 

GBIF 

Mean 
N 

Record
s per 
spp 
GBIF 

N    
Island
s with  
GBIF 
data 

N 
islands 
with no 
modella

ble 
species 

N islands 
 M index  
[0.01-25] 

 (%)  

N islands  
M index 
 [0.26-

0.50] (%)  

N islands  
M index  

[0.51-0.75]  
(%)  

N islands  
M index  

[0.76-100]  
(%)  

Birds 6,069,1
46 

33 2462 893 
 (36.3%) 

444 
(18%) 

477   
(19.4%) 

531 
(21.6%) 

117      
 (4.7%) 

Vascular 3,991,6
66 

9 2275 1073 
(47.2%) 

796 
(35%) 

266  
(11.6%) 

128 
 (5.6%) 

15        
(0.6%) 

Mammalia 185,402 15 1605 822  
(51.2%) 

253  
(15.8%) 

336       
(21%) 

122 
(7.6%) 

72        
(4.4%) 

Anura 42,402 9 948 469 
 (49.5%) 

85  
(9%) 

150  
(15.8%) 

107 
(11.3%) 

137   
 (4.4%) 

Reptilia 16,381 8 572 361 
 (63.1%) 

36 
(6.3%) 

109   
(19.1%) 

32  
(5.6%) 

34        
(5.9%) 

Non- 
Arthropod 
invertebrat

es 

56,079 4 1205 771 
(64%) 

283 
(23.5%) 

110 
(9.1%) 

27  
 (2.2%) 

14        
(1.2%) 

Non-
Vascular 

748,916 7 1098 687 
 (62.6%) 

311 
(28.3%) 

72  
(6.5%) 

23 
(2.1%) 

5         
 (0.5%) 

Arthropod
a 

1,085,6
62 

5 1872 1051 
(56.1%) 

697 
(37.2%) 

106 
(5.8%) 

12  
 (0.6%) 

6         
 (0.3%) 

Fungi 362,324 4 1214 768 
(63.3%) 

378 
(31.1%) 

62  
(5.1%) 

3  
(0.25%) 

3  
(0.25%) 

16 



 339 

Supplementary figure S.2.2.3 Spatial distribution of the total number of species witn modelling potential (≥20 occurrence records, 17 
as derived from GBIF data) divided by taxa: a-b: Anurans, c-d; Arthropods, e-f; Birds, g-h; Mammals, i-j; Fungi, k-l; Non-18 
Vascular plants, m-n; Non-Arthropod invertebrates, o-p; Reptiles, and q-r; Vascular Plants. Blue shades in boxplots indicate 19 
temperate environments, yellow to red shades indicate tropical environments. 20 
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Chapter 3 21 

Appendix S3.1 Supplementary tables and figures 22 
 23 

Supplementary figure S.3.1.1  Distribution of a plant species present in the 24 
Revillagigedo Archipelago (Conocarpus erectus, bottom right) used as a baseline for 25 
generating virtual species (bottom left) that closely mimic natural spatial distribution 26 
patterns using the PCA method (upper left) from the "virtualspecies" R package. 27 
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Supplementary Table S.3.1.2 Numerical results of the model:                                              29 
D. index_Narrow	~	Psa/BG	 ∗ 	Sample_size	 ∗ 	Method 30 
(analysing model accuracy across various modelling conditions for narrow-ranged 31 
virtual species). 32 

Term Estimate Std.error Statistic p.value 
(Intercept) 0.602 0.011 53.095 0.000 
Psa/BG _per10 0.006 0.016 0.402 0.687 
Psa/BG _per20 0.012 0.016 0.770 0.441 
Psa/BG _per40 0.020 0.016 1.259 0.208 
Sample_size10 0.018 0.016 1.120 0.263 
Sample_size20 0.033 0.016 2.009 0.045 
Sample_size50 0.058 0.017 3.376 0.001 
MethodGAM 0.046 0.016 2.873 0.004 
MethodGLM 0.032 0.016 2.002 0.045 
MethodMXT 0.016 0.016 0.976 0.329 
Psa/BG _per10: Sample_size10 -0.001 0.023 -0.029 0.977 
Psa/BG _per20:Sample_size10 -0.007 0.023 -0.313 0.754 
Psa/BG _per40: Sample_size10 -0.014 0.023 -0.623 0.533 
Psa/BG _per10: Sample_size20 0.000 0.023 0.008 0.994 
Psa/BG _per20: Sample_size20 -0.006 0.023 -0.244 0.807 
Psa/BG _per40: Sample_size20 -0.026 0.023 -1.107 0.268 
Psa/BG _per10: Sample_size50 0.006 0.024 0.257 0.797 
Psa/BG _per20: Sample_size50 0.001 0.024 0.023 0.982 
Psa/BG _per40: Sample_size50 -0.015 0.024 -0.609 0.543 
Psa/BG _per10: MethodGAM -0.008 0.023 -0.361 0.718 
Psa/BG _per20: MethodGAM -0.014 0.023 -0.628 0.530 
Psa/BG _per40: MethodGAM -0.030 0.023 -1.320 0.187 
Psa/BG _per10: MethodGLM 0.015 0.023 0.656 0.512 
Psa/BG _per20: MethodGLM 0.030 0.023 1.329 0.184 
Psa/BG _per40: MethodGLM 0.038 0.023 1.678 0.093 
Psa/BG _per10: MethodMXT 0.017 0.023 0.760 0.447 
Psa/BG _per20: MethodMXT 0.035 0.023 1.532 0.126 
Psa/BG _per40: MethodMXT 0.044 0.023 1.938 0.053 
Sample_size10: MethodGAM 0.016 0.023 0.694 0.488 
Sample_size20: MethodGAM 0.018 0.023 0.778 0.437 
Sample_size50: MethodGAM -0.002 0.024 -0.082 0.935 
Sample_size10: MethodGLM -0.039 0.023 -1.741 0.082 
Sample_size20: MethodGLM -0.073 0.023 -3.196 0.001 
Sample_size50: MethodGLM -0.127 0.024 -5.282 1.34e-07 
Sample_size10: MethodMXT -0.035 0.023 -1.541 0.123 
Sample_size20: MethodMXT 0.036 0.023 1.559 0.119 
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Sample_size50: MethodMXT 0.015 0.024 0.623 0.533 
Psa/BG10: Sample_size10: MethodGAM 0.015 0.032 0.455 0.649 
Psa/BG20: Sample_size10: MethodGAM 0.025 0.032 0.774 0.439 
Psa/BG40: Sample_size10: MethodGAM 0.041 0.032 1.279 0.201 
Psa/BG10: Sample_size20: MethodGAM 0.009 0.032 0.264 0.792 
Psa/BG20: Sample_size20: MethodGAM 0.021 0.032 0.662 0.508 
Psa/BG40: Sample_size20: MethodGAM 0.048 0.033 1.483 0.138 
Psa/BG10: Sample_size50: MethodGAM 0.015 0.034 0.427 0.670 
Psa/BG20: Sample_size50: MethodGAM 0.029 0.034 0.858 0.391 
Psa/BG40: Sample_size50: MethodGAM 0.056 0.034 1.635 0.102 
Psa/BG10: Sample_size10: MethodGLM 0.004 0.032 0.114 0.909 
Psa/BG20: Sample_size10: MethodGLM 0.009 0.032 0.287 0.774 
Psa/BG40: Sample_size10: MethodGLM 0.022 0.032 0.685 0.494 
Psa/BG10: Sample_size20: MethodGLM 0.002 0.032 0.061 0.952 
Psa/BG20: Sample_size20: MethodGLM 0.010 0.032 0.309 0.758 
Psa/BG40: Sample_size20: MethodGLM 0.023 0.033 0.704 0.482 
Psa/BG10: Sample_size50: MethodGLM 0.002 0.034 0.062 0.951 
Psa/BG20: Sample_size50: MethodGLM 0.012 0.034 0.349 0.727 
Psa/BG40: Sample_size50: MethodGLM 0.034 0.034 1.010 0.313 
Psa/BG10: Sample_size10: MethodMXT 0.001 0.032 0.040 0.968 
Psa/BG20: Sample_size10: MethodMXT 0.005 0.032 0.146 0.884 
Psa/BG40: Sample_size10: MethodMXT 0.013 0.032 0.393 0.694 
Psa/BG10: Sample_size20: MethodMXT -0.012 0.032 -0.367 0.714 
Psa/BG20: Sample_size20: MethodMXT -0.019 0.032 -0.596 0.551 
Psa/BG40: Sample_size20: MethodMXT -0.013 0.033 -0.394 0.693 
Psa/BG10: Sample_size50: MethodMXT -0.015 0.034 -0.440 0.660 
Psa/BG20: Sample_size50: MethodMXT -0.026 0.034 -0.748 0.454 
Psa/BG40: Sample_size50: MethodMXT -0.023 0.034 -0.666 0.505 

   33 
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Supplementary Table S.3.1.3 Numerical results of the model: 34 
 D. index_Wide	~	Psa/BG ∗ 	Sample_size	 ∗ 	Method	  35 
(analysing model accuracy across various modelling conditions for wide-ranged 36 
virtual species). 37 

Term Estimate Std.error Statistic p.value 
(Intercept) 0.847 0.008 105.028 0.000 
Psa/BG_per10 0.004 0.011 0.375 0.707 
BG_per20 0.018 0.011 1.557 0.119 
BG_per40 0.042 0.011 3.719 0.000 
Sample_size10 0.007 0.011 0.576 0.565 
Sample_size20 0.015 0.011 1.311 0.190 
Sample_size50 0.025 0.012 2.130 0.033 
MethodGAM -0.149 0.012 -12.890 0.000 
MethodGLM 0.015 0.011 1.328 0.184 
MethodMXT 0.036 0.012 3.080 0.002 
Psa/BG_per10:Sample_size10 -0.003 0.016 -0.158 0.874 
Psa/BG_per20:Sample_size10 -0.014 0.016 -0.847 0.397 
Psa/BG_per40:Sample_size10 -0.022 0.016 -1.377 0.169 
Psa/BG_per10:Sample_size20 -0.010 0.016 -0.597 0.550 
Psa/BG_per20:Sample_size20 -0.022 0.016 -1.372 0.170 
Psa/BG_per40:Sample_size20 -0.038 0.016 -2.363 0.018 
Psa/BG_per10:Sample_size50 -0.005 0.016 -0.309 0.757 
Psa/BG_per20:Sample_size50 -0.024 0.016 -1.460 0.144 
Psa/BG_per40:Sample_size50 -0.052 0.016 -3.169 0.002 
Psa/BG_per10:MethodGAM -0.010 0.016 -0.644 0.520 
Psa/BG_per20:MethodGAM -0.036 0.016 -2.232 0.026 
Psa/BG_per40:MethodGAM -0.078 0.016 -4.783 0.000 
Psa/BG_per10:MethodGLM -0.003 0.016 -0.178 0.859 
Psa/BG_per20:MethodGLM -0.020 0.016 -1.211 0.226 
Psa/BG_per40:MethodGLM -0.049 0.016 -3.061 0.002 
Psa/BG_per10:MethodMXT -0.008 0.017 -0.463 0.643 
Psa/BG_per20:MethodMXT -0.026 0.017 -1.556 0.120 
Psa/BG_per40:MethodMXT -0.052 0.017 -3.108 0.002 
Sample_size10:MethodGAM 0.090 0.016 5.497 0.000 
Sample_size20:MethodGAM 0.127 0.016 7.852 0.000 
Sample_size50:MethodGAM 0.150 0.016 9.170 0.000 
Sample_size10:MethodGLM 0.010 0.016 0.607 0.544 
Sample_size20:MethodGLM 0.004 0.016 0.239 0.811 
Sample_size50:MethodGLM -0.014 0.016 -0.833 0.405 
Sample_size10:MethodMXT 0.009 0.017 0.549 0.583 
Sample_size20:MethodMXT -0.036 0.016 -2.201 0.028 
Sample_size50:MethodMXT -0.039 0.017 -2.333 0.020 
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Psa/BG_per10:Sample_size10:MethodGAM 0.007 0.023 0.313 0.754 
Psa/BG_per20:Sample_size10:MethodGAM 0.019 0.023 0.821 0.412 
Psa/BG_per40:Sample_size10:MethodGAM 0.038 0.023 1.661 0.097 
Psa/BG_per10:Sample_size20:MethodGAM 0.011 0.023 0.491 0.624 
Psa/BG_per20:Sample_size20:MethodGAM 0.030 0.023 1.332 0.183 
Psa/BG_per40:Sample_size20:MethodGAM 0.061 0.023 2.667 0.008 
Psa/BG_per10:Sample_size50:MethodGAM 0.011 0.023 0.466 0.641 
Psa/BG_per20:Sample_size50:MethodGAM 0.040 0.023 1.733 0.083 
Psa/BG_per40:Sample_size50:MethodGAM 0.079 0.023 3.428 0.001 
Psa/BG_per10:Sample_size10:MethodGLM 0.006 0.023 0.281 0.779 
Psa/BG_per20:Sample_size10:MethodGLM 0.022 0.023 0.949 0.343 
Psa/BG_per40:Sample_size10:MethodGLM 0.032 0.023 1.409 0.159 
Psa/BG_per10:Sample_size20:MethodGLM 0.015 0.023 0.662 0.508 
Psa/BG_per20:Sample_size20:MethodGLM 0.032 0.023 1.417 0.156 
Psa/BG_per40:Sample_size20:MethodGLM 0.064 0.023 2.812 0.005 
Psa/BG_per10:Sample_size50:MethodGLM 0.016 0.023 0.697 0.486 
Psa/BG_per20:Sample_size50:MethodGLM 0.045 0.023 1.955 0.051 
Psa/BG_per40:Sample_size50:MethodGLM 0.085 0.023 3.703 0.000 
Psa/BG_per10:Sample_size10:MethodMXT 0.009 0.024 0.366 0.715 
Psa/BG_per20:Sample_size10:MethodMXT 0.030 0.023 1.284 0.199 
Psa/BG_per40:Sample_size10:MethodMXT 0.032 0.023 1.386 0.166 
Psa/BG_per10:Sample_size20:MethodMXT 0.013 0.023 0.573 0.567 
Psa/BG_per20:Sample_size20:MethodMXT 0.023 0.023 0.998 0.318 
Psa/BG_per40:Sample_size20:MethodMXT 0.045 0.023 1.908 0.056 
Psa/BG_per10:Sample_size50:MethodMXT 0.009 0.023 0.383 0.701 
Psa/BG_per20:Sample_size50:MethodMXT 0.029 0.023 1.221 0.222 
Psa/BG_per40:Sample_size50:MethodMXT 0.052 0.023 2.224 0.026 

 38 
  39 
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Supplementary Table S.3.1.4 Numerical results of the model:                                              40 
D. index_Narrow	~	Psa/BG_per	 ∗ 	Sample_size	 ∗ 	Method 41 
(analysing model accuracy across various modelling conditions for narrow-ranged 42 
real species). 43 
Term Estimate Std.error Statistic p.value 
(Intercept) 0.90 0.02 41.37 0.00 
Psa/BG_per10 0.04 0.03 1.36 0.18 
Psa/BG_per20 0.06 0.03 1.80 0.08 
Psa/BG_per40 0.05 0.03 1.59 0.12 
MethodGAM -0.03 0.03 -0.85 0.40 
MethodGLM 0.00 0.03 -0.07 0.95 
MethodMXT 0.07 0.03 2.18 0.03 
Psa/BG_per10:MethodGAM 0.04 0.04 1.01 0.32 
Psa/BG_per20:MethodGAM -0.05 0.04 -1.10 0.28 
Psa/BG_per40:MethodGAM -0.04 0.04 -0.95 0.34 
Psa/BG_per10:MethodGLM 0.03 0.04 0.70 0.49 
Psa/BG_per20:MethodGLM 0.00 0.04 -0.07 0.94 
Psa/BG_per40:MethodGLM -0.04 0.04 -0.82 0.41 
Psa/BG_per10:MethodMXT -0.05 0.04 -1.05 0.30 
Psa/BG_per20:MethodMXT -0.07 0.04 -1.58 0.12 
Psa/BG_per40:MethodMXT -0.05 0.04 -1.26 0.21 

 44 
Supplementary Table S.3.1.5 Numerical results of the model:                                              45 
D. index_Wide	~	Psa/BG_per	 ∗ 	Sample_size	 ∗ 	Method 46 
(analysing model accuracy across various modelling conditions for wide-ranged real 47 
species). 48 
Term Estimate Std.error Statistic p.value 
(Intercept) 0.94 0.01 107.45 0.00 
Psa/BG_per10 0.00 0.01 -0.25 0.80 
Psa/BG_per20 0.03 0.01 2.77 0.01 
Psa/BG_per40 0.00 0.01 0.31 0.75 
MethodGAM 0.03 0.01 2.10 0.04 
MethodGLM 0.02 0.01 1.28 0.20 
MethodMXT 0.02 0.01 1.23 0.22 
Psa/BG_per10:MethodGAM 0.00 0.02 0.15 0.88 
Psa/BG_per20:MethodGAM -0.04 0.02 -2.36 0.02 
Psa/BG_per40:MethodGAM 0.00 0.02 0.19 0.85 
Psa/BG_per10:MethodGLM 0.01 0.02 0.34 0.73 
Psa/BG_per20:MethodGLM -0.04 0.02 -2.42 0.02 
Psa/BG_per40:MethodGLM 0.00 0.02 -0.21 0.83 
Psa/BG_per10:MethodMXT 0.01 0.02 0.52 0.61 
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Psa/BG_per20:MethodMXT -0.05 0.02 -2.60 0.01 
Psa/BG_per40:MethodMXT 0.00 0.02 0.13 0.90 

Supplementary Table S.3.1.6 Stratified Pearson correlation between model accuracy (D-49 
index) and AUC validation metric for Virtual Species SDMs 50 
 51 

Range Size Method Sample size PsA/BG percentage Correlation 
Narrow BART 5n 5 -0.09 
Narrow BART 5n 10 -0.33 
Narrow BART 5n 20 -0.40 
Narrow BART 5n 40 -0.54 
Wide BART 5n 5 -0.59 
Wide BART 5n 10 -0.41 
Wide BART 5n 20 -0.36 
Wide BART 5n 40 -0.42 

Narrow BART 10n 5 0.16 
Narrow BART 10n 10 0.04 
Narrow BART 10n 20 -0.22 
Narrow BART 10n 40 -0.50 
Wide BART 10n 5 -0.57 
Wide BART 10n 10 -0.58 
Wide BART 10n 20 -0.63 
Wide BART 10n 40 -0.70 

Narrow BART 20n 5 0.41 
Narrow BART 20n 10 0.28 
Narrow BART 20n 20 0.16 
Narrow BART 20n 40 -0.13 
Wide BART 20n 5 -0.80 
Wide BART 20n 10 -0.63 
Wide BART 20n 20 -0.72 
Wide BART 20n 40 -0.85 

Narrow BART 50n 5 0.48 
Narrow BART 50n 10 0.42 
Narrow BART 50n 20 0.31 
Narrow BART 50n 40 0.03 
Wide BART 50n 5 -0.83 
Wide BART 50n 10 -0.83 
Wide BART 50n 20 -0.86 
Wide BART 50n 40 -0.96 

Narrow GAM 5n 5 0.24 
Narrow GAM 5n 10 0.18 
Narrow GAM 5n 20 0.12 
Narrow GAM 5n 40 -0.34 
Wide GAM 5n 5 -0.36 
Wide GAM 5n 10 -0.33 
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Wide GAM 5n 20 -0.27 
Wide GAM 5n 40 -0.40 

Narrow GAM 10n 5 0.60 
Narrow GAM 10n 10 0.40 
Narrow GAM 10n 20 0.37 
Narrow GAM 10n 40 0.14 
Wide GAM 10n 5 -0.27 
Wide GAM 10n 10 -0.31 
Wide GAM 10n 20 -0.36 
Wide GAM 10n 40 -0.68 

Narrow GAM 20n 5 0.76 
Narrow GAM 20n 10 0.73 
Narrow GAM 20n 20 0.78 
Narrow GAM 20n 40 0.73 
Wide GAM 20n 5 -0.66 
Wide GAM 20n 10 -0.64 
Wide GAM 20n 20 -0.70 
Wide GAM 20n 40 -0.75 

Narrow GAM 50n 5 0.62 
Narrow GAM 50n 10 0.70 
Narrow GAM 50n 20 0.68 
Narrow GAM 50n 40 0.69 
Wide GAM 50n 5 -0.78 
Wide GAM 50n 10 -0.86 
Wide GAM 50n 20 -0.88 
Wide GAM 50n 40 -0.94 

Narrow GLM 5n 5 0.33 
Narrow GLM 5n 10 0.33 
Narrow GLM 5n 20 0.30 
Narrow GLM 5n 40 0.28 
Wide GLM 5n 5 -0.48 
Wide GLM 5n 10 -0.56 
Wide GLM 5n 20 -0.30 
Wide GLM 5n 40 -0.47 

Narrow GLM 10n 5 0.36 
Narrow GLM 10n 10 0.48 
Narrow GLM 10n 20 0.46 
Narrow GLM 10n 40 0.46 
Wide GLM 10n 5 -0.66 
Wide GLM 10n 10 -0.68 
Wide GLM 10n 20 -0.72 
Wide GLM 10n 40 -0.79 

Narrow GLM 20n 5 0.39 
Narrow GLM 20n 10 0.37 
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Narrow GLM 20n 20 0.44 
Narrow GLM 20n 40 0.48 
Wide GLM 20n 5 -0.81 
Wide GLM 20n 10 -0.77 
Wide GLM 20n 20 -0.81 
Wide GLM 20n 40 -0.94 

Narrow GLM 50n 5 0.34 
Narrow GLM 50n 10 0.39 
Narrow GLM 50n 20 0.36 
Narrow GLM 50n 40 0.38 
Wide GLM 50n 5 -0.87 
Wide GLM 50n 10 -0.90 
Wide GLM 50n 20 -0.94 
Wide GLM 50n 40 -0.98 

Narrow MXT 5n 5 0.33 
Narrow MXT 5n 10 0.32 
Narrow MXT 5n 20 0.35 
Narrow MXT 5n 40 0.32 
Wide MXT 5n 5 -0.53 
Wide MXT 5n 10 -0.68 
Wide MXT 5n 20 -0.39 
Wide MXT 5n 40 -0.64 

Narrow MXT 10n 5 0.40 
Narrow MXT 10n 10 0.50 
Narrow MXT 10n 20 0.49 
Narrow MXT 10n 40 0.50 
Wide MXT 10n 5 -0.62 
Wide MXT 10n 10 -0.66 
Wide MXT 10n 20 -0.62 
Wide MXT 10n 40 -0.85 

Narrow MXT 20n 5 0.69 
Narrow MXT 20n 10 0.72 
Narrow MXT 20n 20 0.73 
Narrow MXT 20n 40 0.76 
Wide MXT 20n 5 -0.55 
Wide MXT 20n 10 -0.66 
Wide MXT 20n 20 -0.64 
Wide MXT 20n 40 -0.83 

Narrow MXT 50n 5 0.63 
Narrow MXT 50n 10 0.61 
Narrow MXT 50n 20 0.54 
Narrow MXT 50n 40 0.58 
Wide MXT 50n 5 -0.74 
Wide MXT 50n 10 -0.89 
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Wide MXT 50n 20 -0.89 
Wide MXT 50n 40 -0.96 

Supplementary Table S.3.1.7 Stratified Pearson correlation between model accuracy (D-52 
index) and Boyce validation metric for Virtual Species SDMs 53 
 54 

Range Size Method Sample size PsA/BG percentage Correlation 
Narrow BART 5n 5 0.54 
Narrow BART 5n 10 0.49 
Narrow BART 5n 20 0.51 
Narrow BART 5n 40 0.03 
Wide BART 5n 5 -0.34 
Wide BART 5n 10 0.00 
Wide BART 5n 20 0.22 
Wide BART 5n 40 0.01 

Narrow BART 10n 5 0.63 
Narrow BART 10n 10 0.53 
Narrow BART 10n 20 0.40 
Narrow BART 10n 40 -0.09 
Wide BART 10n 5 -0.43 
Wide BART 10n 10 -0.27 
Wide BART 10n 20 -0.01 
Wide BART 10n 40 0.10 

Narrow BART 20n 5 0.76 
Narrow BART 20n 10 0.69 
Narrow BART 20n 20 0.52 
Narrow BART 20n 40 -0.07 
Wide BART 20n 5 -0.71 
Wide BART 20n 10 -0.54 
Wide BART 20n 20 -0.31 
Wide BART 20n 40 0.11 

Narrow BART 50n 5 0.82 
Narrow BART 50n 10 0.81 
Narrow BART 50n 20 0.75 
Narrow BART 50n 40 -0.47 
Wide BART 50n 5 -0.69 
Wide BART 50n 10 -0.70 
Wide BART 50n 20 -0.68 
Wide BART 50n 40 -0.02 

Narrow GAM 5n 5 0.06 
Narrow GAM 5n 10 0.15 
Narrow GAM 5n 20 0.07 
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Narrow GAM 5n 40 -0.23 
Wide GAM 5n 5 0.24 
Wide GAM 5n 10 0.33 
Wide GAM 5n 20 0.27 
Wide GAM 5n 40 0.03 

Narrow GAM 10n 5 0.76 
Narrow GAM 10n 10 0.59 
Narrow GAM 10n 20 0.47 
Narrow GAM 10n 40 -0.01 
Wide GAM 10n 5 0.19 
Wide GAM 10n 10 -0.03 
Wide GAM 10n 20 0.04 
Wide GAM 10n 40 -0.22 

Narrow GAM 20n 5 0.90 
Narrow GAM 20n 10 0.86 
Narrow GAM 20n 20 0.78 
Narrow GAM 20n 40 0.37 
Wide GAM 20n 5 0.00 
Wide GAM 20n 10 -0.02 
Wide GAM 20n 20 0.03 
Wide GAM 20n 40 -0.11 

Narrow GAM 50n 5 0.89 
Narrow GAM 50n 10 0.92 
Narrow GAM 50n 20 0.91 
Narrow GAM 50n 40 0.37 
Wide GAM 50n 5 -0.20 
Wide GAM 50n 10 -0.13 
Wide GAM 50n 20 -0.13 
Wide GAM 50n 40 0.07 

Narrow GLM 5n 5 0.53 
Narrow GLM 5n 10 0.51 
Narrow GLM 5n 20 0.46 
Narrow GLM 5n 40 0.40 
Wide GLM 5n 5 -0.13 
Wide GLM 5n 10 -0.23 
Wide GLM 5n 20 -0.15 
Wide GLM 5n 40 0.19 

Narrow GLM 10n 5 0.53 
Narrow GLM 10n 10 0.57 
Narrow GLM 10n 20 0.53 



 351 

Narrow GLM 10n 40 0.49 
Wide GLM 10n 5 -0.24 
Wide GLM 10n 10 -0.29 
Wide GLM 10n 20 -0.05 
Wide GLM 10n 40 0.66 

Narrow GLM 20n 5 0.53 
Narrow GLM 20n 10 0.52 
Narrow GLM 20n 20 0.51 
Narrow GLM 20n 40 0.69 
Wide GLM 20n 5 -0.37 
Wide GLM 20n 10 -0.33 
Wide GLM 20n 20 -0.27 
Wide GLM 20n 40 0.62 

Narrow GLM 50n 5 0.52 
Narrow GLM 50n 10 0.55 
Narrow GLM 50n 20 0.55 
Narrow GLM 50n 40 0.74 
Wide GLM 50n 5 -0.35 
Wide GLM 50n 10 -0.33 
Wide GLM 50n 20 -0.21 
Wide GLM 50n 40 0.79 

Narrow MXT 5n 5 0.01 
Narrow MXT 5n 10 -0.02 
Narrow MXT 5n 20 0.39 
Narrow MXT 5n 40 0.40 
Wide MXT 5n 5 0.45 
Wide MXT 5n 10 0.36 
Wide MXT 5n 20 0.16 
Wide MXT 5n 40 0.07 

Narrow MXT 10n 5 0.56 
Narrow MXT 10n 10 0.57 
Narrow MXT 10n 20 0.63 
Narrow MXT 10n 40 0.66 
Wide MXT 10n 5 -0.09 
Wide MXT 10n 10 -0.01 
Wide MXT 10n 20 -0.06 
Wide MXT 10n 40 -0.08 

Narrow MXT 20n 5 0.57 
Narrow MXT 20n 10 0.59 
Narrow MXT 20n 20 0.52 
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Narrow MXT 20n 40 0.64 
Wide MXT 20n 5 -0.09 
Wide MXT 20n 10 -0.15 
Wide MXT 20n 20 -0.14 
Wide MXT 20n 40 -0.19 

Narrow MXT 50n 5 0.51 
Narrow MXT 50n 10 0.38 
Narrow MXT 50n 20 0.14 
Narrow MXT 50n 40 0.08 
Wide MXT 50n 5 -0.19 
Wide MXT 50n 10 -0.37 
Wide MXT 50n 20 -0.46 
Wide MXT 50n 40 -0.58 

 55 
  56 
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Supplementary Table S.3.1.8 Stratified Pearson correlation between model accuracy (D-57 
index) and AUC validation metric for Real Species SDMs 58 

Range Size Method PsA/BG percentage Correlation 
Narrow BART 5 0.62 
Narrow BART 10 0.86 
Narrow BART 20 0.63 
Narrow BART 40 0.93 
Wide BART 5 0.74 
Wide BART 10 0.81 
Wide BART 20 0.95 
Wide BART 40 0.90 

Narrow GAM 5 0.72 
Narrow GAM 10 1.00 
Narrow GAM 20 1.00 
Narrow GAM 40 0.96 
Wide GAM 5 0.83 
Wide GAM 10 0.85 
Wide GAM 20 0.90 
Wide GAM 40 0.92 

Narrow GLM 5 0.71 
Narrow GLM 10 0.98 
Narrow GLM 20 0.66 
Narrow GLM 40 0.98 
Wide GLM 5 0.98 
Wide GLM 10 0.78 
Wide GLM 20 0.98 
Wide GLM 40 0.94 

Narrow MXT 5 0.79 
Narrow MXT 10 0.94 
Narrow MXT 20 0.7 
Narrow MXT 40 0.95 
Wide MXT 5 0.91 
Wide MXT 10 0.85 
Wide MXT 20 0.94 
Wide MXT 40 0.95 

 59 
  60 
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Supplementary Table S.3.1.9 Stratified Pearson correlation between model accuracy (D-61 
index) and Boyce validation metric for Real Species SDMs 62 

Range Size Method PsA/BG percentage Correlation 
Narrow BART 5 0.60 
Narrow BART 10 0.78 
Narrow BART 20 0.69 
Narrow BART 40 0.86 

Wide BART 5 -0.87 
Wide BART 10 -0.21 
Wide BART 20 0.77 
Wide BART 40 0.29 

Narrow GAM 5 0.74 
Narrow GAM 10 0.96 
Narrow GAM 20 0.84 
Narrow GAM 40 0.86 

Wide GAM 5 0.61 
Wide GAM 10 0.68 
Wide GAM 20 0.83 
Wide GAM 40 0.96 

Narrow GLM 5 0.70 
Narrow GLM 10 0.89 
Narrow GLM 20 -0.52 
Narrow GLM 40 0.78 

Wide GLM 5 0.79 
Wide GLM 10 0.62 
Wide GLM 20 0.09 
Wide GLM 40 0.79 

Narrow MXT 5 0.22 
Narrow MXT 10 0.31 
Narrow MXT 20 0.27 
Narrow MXT 40 0.79 

Wide MXT 5 -0.58 
Wide MXT 10 -0.56 
Wide MXT 20 -0.69 
Wide MXT 40 -0.60 

  63 
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Supplementary Table S.3.1.10 Summary of 95th Percentile D-Index Ranges Across 64 
Methods by Niche Breadth (*Minimum Sample Sizes for Achieving Moderate >0.60 65 
and High >0.70 Prediction overlap) 66 
Niche Breadth Method Sample size Mean Y min Y max >0.60 >0.70 

Narrow BART 5n 0.59 0.57 0.72 - - 
Narrow BART 10n 0.6 0.58 0.7 - - 
Narrow BART 20n 0.61 0.6 0.76 * - 
Narrow BART 50n 0.65 0.62 0.79 * - 
Narrow GAM 5n 0.66 0.63 0.69 * - 
Narrow GAM 10n 0.71 0.67 0.73 * - 
Narrow GAM 20n 0.73 0.65 0.77 * - 
Narrow GAM 50n 0.79 0.66 0.8 * - 
Narrow GLM 5n 0.66 0.6 0.8 - - 
Narrow GLM 10n 0.67 0.57 0.81 - - 
Narrow GLM 20n 0.83 0.65 0.84 * - 
Narrow GLM 50n 0.83 0.72 0.83 * * 
Narrow MXT 5n 0.64 0.59 0.81 - - 
Narrow MXT 10n 0.67 0.64 0.82 * - 
Narrow MXT 20n 0.75 0.64 0.78 * - 
Narrow MXT 50n 0.75 0.65 0.78 * - 
Wide BART 5n 0.89 0.87 0.96 * * 
Wide BART 10n 0.89 0.86 0.94 * * 
Wide BART 20n 0.88 0.84 0.91 * * 
Wide BART 50n 0.89 0.79 0.91 * * 
Wide GAM 5n 0.78 0.77 0.78 * * 
Wide GAM 10n 0.81 0.8 0.84 * * 
Wide GAM 20n 0.86 0.8 0.88 * * 
Wide GAM 50n 0.88 0.83 0.92 * * 
Wide GLM 5n 0.87 0.82 0.91 * * 
Wide GLM 10n 0.9 0.82 0.93 * * 
Wide GLM 20n 0.92 0.89 0.94 * * 
Wide GLM 50n 0.94 0.92 0.95 * * 
Wide MXT 5n 0.9 0.79 0.94 * * 
Wide MXT 10n 0.94 0.82 0.97 * * 
Wide MXT 20n 0.89 0.83 0.91 * * 
Wide MXT 50n 0.9 0.85 0.92 * * 

 67 
  68 
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Supplementary table 3.1.11 Numerical results of the models:                                              69 
D. index_Narrow	~	Uncertainty	 ∗ 	Sample_size	 ∗ 	Method 70 
(analysing the the impact of varying levels of gridded uncertainty on model 71 
accuracy across different modelling conditions for narrow-ranged virtual species. 72 
 73 
Term Estimate Std.error Statistic p.value 
(Intercept) 0.67 0.01 92.9 0 
Uncert90 -0.04 0.01 -3.7 0 
Uncert500 -0.05 0.01 -4.74 0 
Uncert1000 -0.11 0.01 -10.98 0 
Sample_sizeSmall -0.04 0.01 -4.5 0 
MethodGAM 0.06 0.01 5.5 0 
MethodGLM -0.06 0.01 -6.13 0 
MethodMXT 0.04 0.01 3.83 0 
Uncert90:Sample_sizeSmall 0.04 0.01 2.74 0.01 
Uncert500:Sample_sizeSmall 0.04 0.01 2.78 0.01 
Uncert1000:Sample_sizeSmall 0.05 0.01 3.68 0 
Uncert90:MethodGAM -0.01 0.01 -0.41 0.69 
Uncert500:MethodGAM 0 0.01 -0.13 0.9 
Uncert1000:MethodGAM -0.01 0.01 -0.49 0.63 
Uncert90:MethodGLM -0.01 0.01 -0.44 0.66 
Uncert500:MethodGLM 0.03 0.01 2.29 0.02 
Uncert1000:MethodGLM 0.04 0.01 2.62 0.01 
Uncert90:MethodMXT 0 0.01 -0.06 0.95 
Uncert500:MethodMXT 0 0.01 -0.09 0.93 
Uncert1000:MethodMXT -0.01 0.01 -0.35 0.72 
Sample_sizeSmall:MethodGAM 0.01 0.01 0.94 0.35 
Sample_sizeSmall:MethodGLM 0.08 0.01 6.24 0 
Sample_sizeSmall:MethodMXT -0.03 0.01 -2.17 0.03 
Uncert90:Sample_sizeSmall:MethodGAM 0.01 0.02 0.63 0.53 
Uncert500:Sample_sizeSmall:MethodGAM 0.03 0.02 1.42 0.16 
Uncert1000:Sample_sizeSmall:MethodGAM 0.02 0.02 1.14 0.26 
Uncert90:Sample_sizeSmall:MethodGLM 0 0.02 0.08 0.94 
Uncert500:Sample_sizeSmall:MethodGLM -0.03 0.02 -1.69 0.09 
Uncert1000:Sample_sizeSmall:MethodGLM -0.04 0.02 -2 0.05 
Uncert90:Sample_sizeSmall:MethodMXT 0 0.02 -0.1 0.92 
Uncert500:Sample_sizeSmall:MethodMXT 0.01 0.02 0.29 0.77 
Uncert1000:Sample_sizeSmall:MethodMXT 0 0.02 0 1 
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 75 
Supplementary table 3.1.12 Numerical results of the models:                                               76 
D. index_Wide	~	Uncertainty	 ∗ 	Sample_size	 ∗ 	Method 77 
(analysing the impact of varying levels of gridded uncertainty on model accuracy 78 
across different modelling conditions for wide-ranged virtual species. 79 
 80 
Term Estimate Std.error Statistic p.value 
(Intercept) 0.87 0 199.21 0 
Uncert90 0 0.01 -0.44 0.66 
Uncert500 -0.02 0.01 -3.77 0 
Uncert1000 0 0.01 -0.23 0.82 
Sample_sizeSmall -0.01 0.01 -1.19 0.23 
MethodGAM 0 0.01 0.44 0.66 
MethodGLM 0.02 0.01 3.29 0 
MethodMXT 0 0.01 -0.23 0.82 
Uncert90:Sample_sizeSmall 0 0.01 -0.29 0.77 
Uncert500:Sample_sizeSmall 0.01 0.01 1.48 0.14 
Uncert1000:Sample_sizeSmall 0 0.01 -0.14 0.89 
Uncert90:MethodGAM 0 0.01 0.53 0.6 
Uncert500:MethodGAM 0 0.01 -0.37 0.71 
Uncert1000:MethodGAM -0.05 0.01 -5.66 0 
Uncert90:MethodGLM 0 0.01 -0.03 0.97 
Uncert500:MethodGLM 0 0.01 -0.28 0.78 
Uncert1000:MethodGLM 0 0.01 -0.23 0.82 
Uncert90:MethodMXT 0 0.01 0.36 0.72 
Uncert500:MethodMXT 0 0.01 0.51 0.61 
Uncert1000:MethodMXT 0.03 0.01 2.99 0 
Sample_sizeSmall:MethodGAM -0.08 0.01 -8.96 0 
Sample_sizeSmall:MethodGLM 0 0.01 0.21 0.83 
Sample_sizeSmall:MethodMXT 0.04 0.01 4.94 0 
Uncert90:Sample_sizeSmall:MethodGAM 0 0.01 -0.31 0.76 
Uncert500:Sample_sizeSmall:MethodGAM 0 0.01 0.24 0.81 
Uncert1000:Sample_sizeSmall:MethodGAM 0.01 0.01 0.92 0.36 
Uncert90:Sample_sizeSmall:MethodGLM 0 0.01 -0.16 0.87 
Uncert500:Sample_sizeSmall:MethodGLM 0 0.01 0.38 0.7 
Uncert1000:Sample_sizeSmall:MethodGLM -0.02 0.01 -1.95 0.05 
Uncert90:Sample_sizeSmall:MethodMXT 0 0.01 -0.35 0.72 
Uncert500:Sample_sizeSmall:MethodMXT 0 0.01 -0.25 0.8 

Uncert1000:Sample_sizeSmall:MethodMXT -0.09 0.01 -7.07 1.62E-
12 

 81 
 82 
 83 
 84 
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Supplementary table 3.1.13 Numerical results of the models:                                              85 
D. index_Narrow	~	Uncertainty	 ∗ 	Sample_size	 ∗ 	Method 86 
(analysing the the impact of varying levels of gridded uncertainty on model accuracy 87 
across different modelling conditions for narrow-ranged real species). 88 
Term Estimate Std.error Statistic p.value 
(Intercept) 0.95 0.03 30.73 0.00 
Uncert90 -0.04 0.05 -0.79 0.43 
Uncert500 -0.08 0.05 -1.65 0.10 
Uncert1000 -0.10 0.05 -1.97 0.05 
MethodGAM -0.07 0.04 -1.55 0.13 
MethodGLM -0.04 0.04 -0.87 0.39 
MethodMXT 0.01 0.04 0.29 0.78 
Uncert90:MethodGAM 0.01 0.07 0.15 0.88 
Uncert500:MethodGAM -0.05 0.07 -0.70 0.49 
Uncert1000:MethodGAM -0.11 0.07 -1.49 0.14 
Uncert90:MethodGLM 0.07 0.07 0.91 0.37 
Uncert500:MethodGLM 0.03 0.07 0.37 0.72 
Uncert1000:MethodGLM 0.04 0.08 0.53 0.60 
Uncert90:MethodMXT 0.01 0.07 0.13 0.90 
Uncert500:MethodMXT -0.06 0.08 -0.66 0.51 
Uncert1000:MethodMXT -0.09 0.08 -1.23 0.23 

 89 
Supplementary table 3.1.14 Numerical results of the models:                                               90 
D. index_Wide	~	Uncertainty	 ∗ 	Sample_size	 ∗ 	Method 91 
(analysing the impact of varying levels of gridded uncertainty on model accuracy 92 
across different modelling conditions for wide-ranged real species. 93 

Term Estimate Std.error Statistic p.value 
(Intercept) 0.94 0.01 83.08 0.00 
Uncert90 -0.02 0.02 -0.94 0.35 
Uncert500 -0.04 0.02 -2.15 0.04 
Uncert1000 -0.04 0.02 -2.27 0.03 
MethodGAM 0.03 0.02 1.82 0.07 
MethodGLM 0.01 0.02 0.76 0.45 
MethodMXT 0.02 0.02 1.09 0.28 
Uncert90:MethodGAM -0.04 0.03 -1.41 0.16 
Uncert500:MethodGAM -0.08 0.03 -3.06 0.00 
Uncert1000:MethodGAM -0.10 0.03 -3.73 0.00 
Uncert90:MethodGLM 0.01 0.03 0.26 0.80 
Uncert500:MethodGLM 0.03 0.03 0.92 0.36 
Uncert1000:MethodGLM 0.02 0.03 0.68 0.50 
Uncert90:MethodMXT 0.00 0.03 0.02 0.98 
Uncert500:MethodMXT 0.01 0.03 0.21 0.83 
Uncert1000:MethodMXT 0.01 0.03 0.36 0.72 
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 94 
 95 
 96 
 97 
 98 
Appendix S3.2 Method to obtain presence/absence plant data from the 99 

Revillagigedo Archipelago, Mexico. 100 

For this study presence/absence points from vegetation transects conducted 101 

between 2018 and 2022 were used. Sampling focused on Socorro (132 km²) and 102 

Clarion (19.8 km²), the two largest islands in the archipelago, due to their ecological 103 

importance, being the hosts for most species in the archipelago. 104 

In 2018, plant records were collected on Clarion Island during both the dry (May) 105 

and wet (November) seasons, given its limited prior study (Benavides et al., 2019). 106 

In 2022, data collection on Socorro Island took place at the start of the wet season 107 

(November) to cover a broad range of perennial and non-perennial species. 108 

Transect lengths varied based on island size and habitat diversity, with 100m 109 

transects on Clarion and 500m to 1km transects on Socorro. The transects were 110 

selected systematically to reflect environmental heterogeneity, with efforts to avoid 111 

sampling bias through widespread distribution across the islands.  112 



 360 

Chapter 4 113 

Appendix S4.1 Supplementary tables and figures 114 

Supplementary table 4.1.1 Model accuracy results for the AUC and Boyce Metrics 115 

Island Res Species Baseline AUC Boyce 
Clarion 30 Dodonaea_viscosa DEM 0.60 -0.10 
Clarion 30 Brickellia_peninsularis DEM 0.59 -0.17 
Clarion 30 Caesalpinia_bonduc DEM 0.80 0.24 
Clarion 30 Euphorbia_anthonyi DEM 0.61 0.30 
Clarion 30 Euphorbia_californica DEM 0.68 0.22 
Clarion 30 Karwinskia_humboldtiana DEM 0.72 0.24 
Clarion 30 Tribulus_cistoides DEM 0.56 0.13 
Clarion 30 Waltheria_indica DEM 0.61 0.08 
Clarion 30 Zanthoxylum_fagara DEM 0.58 0.15 
Clarion 30 Nicotiana_stocktonii DEM 0.72 0.05 
Clarion 30 Teucrium_townsendii DEM 0.60 -0.01 
Clarion 30 Dodonaea_viscosa CH 0.72 0.25 
Clarion 30 Brickellia_peninsularis CH 0.51 -0.03 
Clarion 30 Caesalpinia_bonduc CH 0.84 0.18 
Clarion 30 Euphorbia_anthonyi CH 0.56 0.24 
Clarion 30 Euphorbia_californica CH 0.65 0.10 
Clarion 30 Karwinskia_humboldtiana CH 0.57 0.10 
Clarion 30 Tribulus_cistoides CH 0.70 0.13 
Clarion 30 Waltheria_indica CH 0.59 0.14 
Clarion 30 Zanthoxylum_fagara CH 0.75 0.18 
Clarion 30 Teucrium_townsendii CH 0.82 0.11 
Clarion 30 Dodonaea_viscosa WC 0.62 0.04 
Clarion 30 Brickellia_peninsularis WC 0.58 0.26 
Clarion 30 Caesalpinia_bonduc WC 0.78 0.13 
Clarion 30 Euphorbia_anthonyi WC 0.54 0.20 
Clarion 30 Euphorbia_californica WC 0.64 0.14 
Clarion 30 Karwinskia_humboldtiana WC 0.58 0.13 
Clarion 30 Tribulus_cistoides WC 0.69 0.20 
Clarion 30 Waltheria_indica WC 0.70 0.26 
Clarion 30 Zanthoxylum_fagara WC 0.68 0.24 
Clarion 30 Nicotiana_stocktonii WC 0.96 0.33 
Clarion 30 Teucrium_townsendii WC 0.79 0.15 
Clarion 90 Dodonaea_viscosa DEM 0.54 -0.01 
Clarion 90 Brickellia_peninsularis DEM 0.58 -0.16 
Clarion 90 Caesalpinia_bonduc DEM 0.64 -0.08 
Clarion 90 Euphorbia_anthonyi DEM 0.58 0.22 



 361 

Clarion 90 Euphorbia_californica DEM 0.50 -0.01 
Clarion 90 Karwinskia_humboldtiana DEM 0.61 0.09 
Clarion 90 Tribulus_cistoides DEM 0.61 0.16 
Clarion 90 Waltheria_indica DEM 0.57 -0.10 
Clarion 90 Zanthoxylum_fagara DEM 0.65 0.17 
Clarion 90 Nicotiana_stocktonii DEM 0.64 0.11 
Clarion 90 Teucrium_townsendii DEM 0.63 0.04 
Clarion 90 Dodonaea_viscosa CH 0.65 0.15 
Clarion 90 Brickellia_peninsularis CH 0.54 0.01 
Clarion 90 Caesalpinia_bonduc CH 0.87 0.25 
Clarion 90 Euphorbia_anthonyi CH 0.64 0.30 
Clarion 90 Euphorbia_californica CH 0.69 0.17 
Clarion 90 Karwinskia_humboldtiana CH 0.71 0.17 
Clarion 90 Tribulus_cistoides CH 0.69 0.20 
Clarion 90 Waltheria_indica CH 0.64 0.29 
Clarion 90 Zanthoxylum_fagara CH 0.63 0.12 
Clarion 90 Teucrium_townsendii CH 0.88 0.22 
Clarion 90 Dodonaea_viscosa WC 0.54 -0.02 
Clarion 90 Brickellia_peninsularis WC 0.58 0.21 
Clarion 90 Caesalpinia_bonduc WC 0.80 0.14 
Clarion 90 Euphorbia_anthonyi WC 0.61 0.33 
Clarion 90 Euphorbia_californica WC 0.65 0.23 
Clarion 90 Karwinskia_humboldtiana WC 0.56 -0.01 
Clarion 90 Tribulus_cistoides WC 0.69 0.23 
Clarion 90 Waltheria_indica WC 0.65 0.22 
Clarion 90 Zanthoxylum_fagara WC 0.54 0.00 
Clarion 90 Nicotiana_stocktonii WC 0.84 0.22 
Clarion 90 Teucrium_townsendii WC 0.88 0.13 
Clarion 500 Dodonaea_viscosa DEM 0.56 0.06 
Clarion 500 Brickellia_peninsularis DEM 0.62 0.03 
Clarion 500 Caesalpinia_bonduc DEM 0.68 0.09 
Clarion 500 Euphorbia_anthonyi DEM 0.53 -0.11 
Clarion 500 Euphorbia_californica DEM 0.62 -0.01 
Clarion 500 Karwinskia_humboldtiana DEM 0.59 -0.09 
Clarion 500 Tribulus_cistoides DEM 0.74 0.14 
Clarion 500 Waltheria_indica DEM 0.64 0.01 
Clarion 500 Zanthoxylum_fagara DEM 0.63 -0.18 
Clarion 500 Teucrium_townsendii DEM 0.75 -0.04 
Clarion 500 Dodonaea_viscosa CH 0.64 0.09 
Clarion 500 Brickellia_peninsularis CH 0.54 -0.02 
Clarion 500 Caesalpinia_bonduc CH 0.80 0.19 
Clarion 500 Euphorbia_anthonyi CH 0.63 0.21 
Clarion 500 Euphorbia_californica CH 0.62 0.24 
Clarion 500 Karwinskia_humboldtiana CH 0.65 0.13 
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Clarion 500 Tribulus_cistoides CH 0.71 0.26 
Clarion 500 Waltheria_indica CH 0.59 0.29 
Clarion 500 Zanthoxylum_fagara CH 0.89 0.51 
Clarion 500 Nicotiana_stocktonii CH 0.75 0.07 
Clarion 500 Dodonaea_viscosa WC 0.58 -0.05 
Clarion 500 Brickellia_peninsularis WC 0.60 0.23 
Clarion 500 Euphorbia_anthonyi WC 0.60 0.16 
Clarion 500 Euphorbia_californica WC 0.68 0.06 
Clarion 500 Karwinskia_humboldtiana WC 0.62 0.02 
Clarion 500 Tribulus_cistoides WC 0.68 0.22 
Clarion 500 Waltheria_indica WC 0.60 0.19 
Clarion 500 Zanthoxylum_fagara WC 0.66 -0.09 
Clarion 500 Nicotiana_stocktonii WC 0.60 -0.11 
Socorro 30 Croton_masonii DEM 0.69 0.24 
Socorro 30 Conocarpus_erectus DEM 0.86 0.27 
Socorro 30 Bursera_epinnata DEM 0.88 0.51 
Socorro 30 Dodonaea_viscosa DEM 0.66 0.30 
Socorro 30 Ficus_cotinifolia DEM 0.53 0.25 
Socorro 30 Brickellia_peninsularis DEM 0.59 0.08 
Socorro 30 Guettarda_insularis DEM 0.67 0.15 
Socorro 30 Ilex_socorroensis DEM 0.78 0.32 
Socorro 30 Perityle_socorrosensis DEM 0.76 0.39 
Socorro 30 Psidium_socorrense DEM 0.69 0.25 
Socorro 30 Sideroxylon_socorrense DEM 0.82 0.39 
Socorro 30 Waltheria_indica DEM 0.56 0.07 
Socorro 30 Croton_masonii CH 0.68 0.08 
Socorro 30 Conocarpus_erectus CH 0.86 0.18 
Socorro 30 Bursera_epinnata CH 0.96 0.45 
Socorro 30 Dodonaea_viscosa CH 0.61 0.19 
Socorro 30 Ficus_cotinifolia CH 0.62 0.11 
Socorro 30 Brickellia_peninsularis CH 0.60 0.24 
Socorro 30 Guettarda_insularis CH 0.63 0.07 
Socorro 30 Ilex_socorroensis CH 0.93 0.42 
Socorro 30 Perityle_socorrosensis CH 0.74 0.18 
Socorro 30 Psidium_socorrense CH 0.73 0.24 
Socorro 30 Sideroxylon_socorrense CH 0.90 0.57 
Socorro 30 Waltheria_indica CH 0.64 0.32 
Socorro 30 Croton_masonii WC 0.86 0.40 
Socorro 30 Conocarpus_erectus WC 0.87 0.25 
Socorro 30 Bursera_epinnata WC 0.97 0.31 
Socorro 30 Dodonaea_viscosa WC 0.70 0.31 
Socorro 30 Ficus_cotinifolia WC 0.67 0.29 
Socorro 30 Brickellia_peninsularis WC 0.69 0.46 
Socorro 30 Guettarda_insularis WC 0.75 0.32 
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Socorro 30 Ilex_socorroensis WC 0.89 0.41 
Socorro 30 Perityle_socorrosensis WC 0.78 0.20 
Socorro 30 Psidium_socorrense WC 0.82 0.52 
Socorro 30 Sideroxylon_socorrense WC 0.89 0.44 
Socorro 30 Waltheria_indica WC 0.69 0.41 
Socorro 90 Croton_masonii DEM 0.66 0.26 
Socorro 90 Conocarpus_erectus DEM 0.87 0.35 
Socorro 90 Bursera_epinnata DEM 0.87 0.48 
Socorro 90 Dodonaea_viscosa DEM 0.66 0.26 
Socorro 90 Ficus_cotinifolia DEM 0.66 0.27 
Socorro 90 Brickellia_peninsularis DEM 0.66 0.32 
Socorro 90 Guettarda_insularis DEM 0.71 0.28 
Socorro 90 Ilex_socorroensis DEM 0.86 0.41 
Socorro 90 Perityle_socorrosensis DEM 0.73 0.31 
Socorro 90 Psidium_socorrense DEM 0.67 0.20 
Socorro 90 Sideroxylon_socorrense DEM 0.80 0.34 
Socorro 90 Waltheria_indica DEM 0.56 0.06 
Socorro 90 Croton_masonii CH 0.74 0.31 
Socorro 90 Bursera_epinnata CH 0.93 0.54 
Socorro 90 Dodonaea_viscosa CH 0.67 0.31 
Socorro 90 Ficus_cotinifolia CH 0.59 0.26 
Socorro 90 Brickellia_peninsularis CH 0.62 0.24 
Socorro 90 Guettarda_insularis CH 0.69 0.11 
Socorro 90 Ilex_socorroensis CH 0.90 0.24 
Socorro 90 Perityle_socorrosensis CH 0.76 0.16 
Socorro 90 Psidium_socorrense CH 0.82 0.47 
Socorro 90 Sideroxylon_socorrense CH 0.92 0.59 
Socorro 90 Waltheria_indica CH 0.69 0.40 
Socorro 90 Croton_masonii WC 0.83 0.39 
Socorro 90 Conocarpus_erectus WC 0.92 0.38 
Socorro 90 Bursera_epinnata WC 0.97 0.45 
Socorro 90 Dodonaea_viscosa WC 0.68 0.28 
Socorro 90 Ficus_cotinifolia WC 0.67 0.20 
Socorro 90 Brickellia_peninsularis WC 0.70 0.49 
Socorro 90 Guettarda_insularis WC 0.81 0.47 
Socorro 90 Ilex_socorroensis WC 0.93 0.57 
Socorro 90 Perityle_socorrosensis WC 0.85 0.45 
Socorro 90 Psidium_socorrense WC 0.82 0.50 
Socorro 90 Sideroxylon_socorrense WC 0.92 0.54 
Socorro 90 Waltheria_indica WC 0.69 0.46 
Socorro 500 Croton_masonii DEM 0.86 0.30 
Socorro 500 Conocarpus_erectus DEM 0.90 -0.05 
Socorro 500 Bursera_epinnata DEM 0.88 0.22 
Socorro 500 Dodonaea_viscosa DEM 0.75 0.42 
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Socorro 500 Ficus_cotinifolia DEM 0.64 0.16 
Socorro 500 Brickellia_peninsularis DEM 0.71 0.30 
Socorro 500 Guettarda_insularis DEM 0.80 0.35 
Socorro 500 Ilex_socorroensis DEM 0.88 0.23 
Socorro 500 Perityle_socorrosensis DEM 0.82 0.13 
Socorro 500 Psidium_socorrense DEM 0.82 0.51 
Socorro 500 Sideroxylon_socorrense DEM 0.90 0.34 
Socorro 500 Waltheria_indica DEM 0.78 0.48 
Socorro 500 Croton_masonii CH 0.73 0.26 
Socorro 500 Conocarpus_erectus CH 0.88 0.13 
Socorro 500 Bursera_epinnata CH 0.91 0.31 
Socorro 500 Dodonaea_viscosa CH 0.74 0.30 
Socorro 500 Ficus_cotinifolia CH 0.63 0.01 
Socorro 500 Brickellia_peninsularis CH 0.69 0.30 
Socorro 500 Guettarda_insularis CH 0.66 0.05 
Socorro 500 Ilex_socorroensis CH 0.91 0.18 
Socorro 500 Perityle_socorrosensis CH 0.73 0.22 
Socorro 500 Psidium_socorrense CH 0.76 0.09 
Socorro 500 Sideroxylon_socorrense CH 0.90 0.42 
Socorro 500 Waltheria_indica CH 0.69 0.30 
Socorro 500 Croton_masonii WC 0.87 0.50 
Socorro 500 Conocarpus_erectus WC 0.94 0.31 
Socorro 500 Dodonaea_viscosa WC 0.71 0.40 
Socorro 500 Ficus_cotinifolia WC 0.58 -0.02 
Socorro 500 Brickellia_peninsularis WC 0.73 0.47 
Socorro 500 Guettarda_insularis WC 0.73 0.32 
Socorro 500 Ilex_socorroensis WC 0.92 0.25 
Socorro 500 Perityle_socorrosensis WC 0.74 0.21 
Socorro 500 Psidium_socorrense WC 0.83 0.32 
Socorro 500 Sideroxylon_socorrense WC 0.86 0.38 
Socorro 500 Waltheria_indica WC 0.76 0.52 
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Supplementary table 4.1.1 Model transferability results for the AUC Transferability 118 
Metric. 119 

Island Res Species Baseline Method AUC 
Clarion 30 Brickellia_peninsularis DEM GAM 0.63 
Clarion 30 Brickellia_peninsularis CH GAM 0.58 
Clarion 30 Brickellia_peninsularis WC GAM 0.54 
Clarion 30 Dodonaea_viscosa DEM GAM 0.55 
Clarion 30 Dodonaea_viscosa CH GAM 0.56 
Clarion 30 Dodonaea_viscosa WC GAM 0.58 
Clarion 30 Perityle_socorrosensis DEM GAM 0.54 
Clarion 30 Perityle_socorrosensis CH GAM 0.54 
Clarion 30 Perityle_socorrosensis WC GAM 0.56 
Clarion 30 Waltheria_indica DEM GAM 0.63 
Clarion 30 Waltheria_indica CH GAM 0.55 
Clarion 30 Waltheria_indica WC GAM 0.6 
Clarion 90 Brickellia_peninsularis DEM GAM 0.54 
Clarion 90 Brickellia_peninsularis CH GAM 0.54 
Clarion 90 Brickellia_peninsularis WC GAM 0.53 
Clarion 90 Dodonaea_viscosa DEM GAM 0.56 
Clarion 90 Dodonaea_viscosa CH GAM 0.6 
Clarion 90 Dodonaea_viscosa WC GAM 0.58 
Clarion 90 Perityle_socorrosensis DEM GAM 0.6 
Clarion 90 Perityle_socorrosensis CH GAM 0.53 
Clarion 90 Perityle_socorrosensis WC GAM 0.56 
Clarion 90 Waltheria_indica DEM GAM 0.56 
Clarion 90 Waltheria_indica CH GAM 0.53 
Clarion 90 Waltheria_indica WC GAM 0.64 
Clarion 500 Brickellia_peninsularis DEM GAM NA 
Clarion 500 Brickellia_peninsularis CH GAM 0.56 
Clarion 500 Brickellia_peninsularis WC GAM 0.55 
Clarion 500 Dodonaea_viscosa DEM GAM NA 
Clarion 500 Dodonaea_viscosa CH GAM 0.58 
Clarion 500 Dodonaea_viscosa WC GAM 0.6 
Clarion 500 Perityle_socorrosensis DEM GAM NA 
Clarion 500 Perityle_socorrosensis CH GAM 0.52 
Clarion 500 Perityle_socorrosensis WC GAM 0.56 
Clarion 500 Waltheria_indica DEM GAM 0.53 
Clarion 500 Waltheria_indica CH GAM 0.51 
Clarion 500 Waltheria_indica WC GAM 0.64 
Socorro 30 Euphorbia_anthonyi DEM GAM 0.84 
Socorro 30 Euphorbia_anthonyi CH GAM 0.62 
Socorro 30 Euphorbia_anthonyi WC GAM 0.74 
Socorro 30 Tribulus_cistoides DEM GAM 0.63 
Socorro 30 Tribulus_cistoides CH GAM 0.59 
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Socorro 30 Tribulus_cistoides WC GAM 0.6 
Socorro 30 Nicotiana_stocktonii DEM GAM 0.92 
Socorro 30 Nicotiana_stocktonii CH GAM NA 
Socorro 30 Nicotiana_stocktonii WC GAM 0.81 
Socorro 90 Euphorbia_anthonyi DEM GAM 0.67 
Socorro 90 Euphorbia_anthonyi CH GAM 0.64 
Socorro 90 Euphorbia_anthonyi WC GAM 0.7 
Socorro 90 Tribulus_cistoides DEM GAM 0.7 
Socorro 90 Tribulus_cistoides CH GAM 0.58 
Socorro 90 Tribulus_cistoides WC GAM 0.67 
Socorro 90 Nicotiana_stocktonii DEM GAM 0.95 
Socorro 90 Nicotiana_stocktonii CH GAM 0.71 
Socorro 90 Nicotiana_stocktonii WC GAM 0.85 
Socorro 500 Euphorbia_anthonyi DEM GAM 0.74 
Socorro 500 Euphorbia_anthonyi CH GAM 0.84 
Socorro 500 Euphorbia_anthonyi WC GAM 0.7 
Socorro 500 Tribulus_cistoides DEM GAM 0.62 
Socorro 500 Tribulus_cistoides CH GAM 0.66 
Socorro 500 Tribulus_cistoides WC GAM 0.65 
Socorro 500 Nicotiana_stocktonii DEM GAM 0.8 
Socorro 500 Nicotiana_stocktonii CH GAM 0.54 
Socorro 500 Nicotiana_stocktonii WC GAM 0.75 
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Chapter 5 121 

Appendix S5.1.1 Supplementary tables and figures 122 

Table S5.1.1 Species list and their criteria for inclusion in the climate change analysis, 123 
organized by archipelago. Categories include: Chr (Chorotype: END = Endemic, NE 124 
= Non-endemic native), IUCN (Conservation status: CR = Critically Endangered, EN 125 
= Endangered, VU= Vulnerable, LC = Least Concern, NA=Non assessed), 126 
Threats (Key threats to the species), Importance (Ecological or cultural 127 
significance), N (Initial sample size), N Thin (Sample size after thinning), 128 
and *Ref (References). 129 

Island Species Chr I 
U 
C 
N 

Threats Importance N N 
Thin 

Ref* 

Canaries Echium 
acanthocarpum 

EN
D 

C
R 

Land use 
change 

Vegetation/ 
Rarity 

22 14 1,2,3 

Canaries Ceropegia 
dichotoma 

EN
D 

E
N 

Invasives/ 
Bottleneck 

Vegetation/ 
 Habitat 

stabilisation 

124 64 1,2,3 

Canaries Sideroxylon 
canariense 

EN
D 

E
N 

Invasives/ 
Climate 
change 

Vegetation/ 
Edible fruits 

21 20 1,2,3 

Canaries Aeonium 
gomerense 

EN
D 

E
N 

Land use 
change / 

Invasives/ 
Diseases 

Rarity/ 
Declining 

32 13 1,2,3 

Canaries Dracaena 
draco 

NE E
N 

Land use 
change / 

Invasives/ 
Wildfires/ 
Diseases/ 

Wood 

Vegetation/ 
 Habitat 

stabilisation/ 
Edible fruits 

465 199 1,2,3 

Canaries Pistacia 
lentiscus 

NE L
C 

Land use 
change 

Vegetation/ 
Edible fruits 

32 20 1,2,3 

Canaries Kleinia 
neriifolia 

EN
D 

L
C 

Land use 
change 

Vegetation/ 
 Habitat 

stabilisation 

2267 1120 1,2,3 

Canaries Tamarix 
canariensis 

EN
D 

L
C 

Land use 
change 

Vegetation/ 
 Habitat 

stabilisation 

192 105 1,2,3 



 368 

Canaries Cneorum 
pulverulentum 

EN
D 

L
C 

Land use 
change 

Vegetation/ 
 Habitat 

stabilisation/ 
Floral visitors 

107 67 1,2,3 

Canaries Morella faya NE L
C 

Land use 
change / 
Invasives 

Vegetation/ 
Edible fruits 

717 492 1,2,3 

Canaries Convolvulus 
floridus 

EN
D 

L
C 

Land use 
change / 
Invasives 

Vegetation/ 
 Habitat 

stabilisation 

326 174 1,2,3 

Canaries Phoenix 
canariensis 

EN
D 

L
C 

Land use 
change / 

Invasives/ 
Wildfires 

Vegetation/ 
Edible fruits 

569 286 1,2,3 

Canaries Hypericum 
canariense 

EN
D 

L
C 

Land use 
change / 

Invasives/ 
Wildfires/ 
Diseases 

Vegetation/ 
 Habitat 

stabilisation 

488 298 1,2,3 

Canaries Euphorbia 
canariensis 

EN
D 

L
C 

Land use 
change / 

Invasives/Wi
ldfires/ 

Diseases 

Vegetation/ 
 Habitat 

stabilisation/ 
Declining 

825 404 1,2,3 

Canaries Apollonias 
barbujana 

NE L
C 

Land use 
change / 

Invasives/Wi
ldfires/ 

Diseases/Wo
od 

Vegetation/ 
 Habitat 

stabilisation 

88 57 1,2,3 

Canaries Ocotea foetens NE L
C 

Land use 
change / 

Invasives/Wi
ldfires/ 

Diseases/Wo
od 

Vegetation/ 
 Habitat 

stabilisation/ 
Edible fruits 

90 30 1,2,3 

Canaries Echium 
wildpretii 

EN
D 

N
A 

Bottleneck/C
limate 
change 

Rarity/ 
Floral visitors 

454 81 2,3 

Canaries Argyranthemum 
maderense 

EN
D 

N
A 

Land use 
change 

Vegetation/ 
Habitat 

stabilisation 

22 11 2,3 
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Canaries Periploca 
laevigata 

NE N
A 

Land use 
change 

Vegetation/ 
Habitat 

stabilisation 

569 318 2,3 

Canaries Bystropogon 
canariensis 

NE N
A 

Land use 
change / 
Invasives 

Vegetation/ 
Habitat 

stabilisation 

99 64 2,3 

Canaries Descurainia 
bourgaeana 

EN
D 

N
A 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation/ 
Edible fruits 

95 44 2,3 

Canaries Euphorbia 
balsamifera 

NE N
A 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation/ 
Edible fruits/ 

Declining 

1232 415 2,3 

Canaries Launaea 
arborescens 

NE N
A 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation 

1478 713 2,3 

Canaries Arbutus 
canariensis 

EN
D 

N
T 

Invasives/Wi
ldfires 

Vegetation/ 
Edible fruits 

255 108 2,3 

Canaries Salix canariensis EN
D 

N
T 

Land use 
change / 
Invasives 

Vegetation/ 
Habitat 

stabilisation 

93 64 2,3 

Canaries Limonium 
arborescens 

EN
D 

N
T 

Land use 
change / 

Invasives/ 
Diseases 

Vegetation/Rar
ity 

34 14 2,3 

Canaries Maytenus 
canariensis 

EN
D 

N
T 

Undertermin
ed 

Vegetation/ 
Habitat 

stabilisation 

61 58 2,3 

Canaries Euphorbia 
handiensis 

EN
D 

V
U 

Land use 
change / 
Invasives 

Rarity/ 
Declining 

39 13 2,3 

Canaries Asparagus 
arborescens 

EN
D 

V
U 

Land use 
change / 
Invasives 

Vegetation/ 
Habitat 

stabilisation 

46 44 2,3 

Canaries Heberdenia 
excelsa 

NE V
U 

Land use 
change / 

Invasives/Wi
ldfires/ 

Diseases/Cli
mate change 

Vegetation/ 
Declining 

26 24 2,3 

Galapagos Calandrinia 
galapagosa 

EN
D 

C
D 

Hervibores Rarity/ 
Declining 

71 17 1,4,5 
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Galapagos Gossypium 
darwinii 

EN
D 

L
C 

Hervibores Nesting 
material/ 

Vegetation 

230 54 1,4,5 

Galapagos Scalesia affinis EN
D 

L
C 

Land use 
change / 
Invasives 

Declining/ 
Vegetation 

73 26 1,4,5,
6 

Galapagos Jasminocereus 
thouarsii 

EN
D 

L
C 

Land use 
change / 
Invasives 

Vegetation/ 
Edible fruits 

269 64 1,4,5 

Galapagos Opuntia 
galapageia 

EN
D 

L
C 

Land use 
change / 
Invasives 

Vegetation/ 
Edible fruits 

307 68 1,4,5 

Galapagos Laguncularia 
racemosa 

NE L
C 

Restricted 
range locally 

Vegetation/ 
Habitat 

stabilisation 

105 27 1,4,5 

Galapagos Avicennia 
germinans 

NE L
C 

Restricted 
range locally 

Vegetation/ 
Habitat 

stabilisation 

70 18 1,4,5 

Galapagos Rhizophora 
mangle 

NE L
C 

Restricted 
range locally 

Vegetation/ 
Habitat 

stabilisation 

169 40 1,4,5 

Galapagos Piscidia 
carthagenensis 

EN
D 

L
C 

Wood Declining/ 
Vegetation 

104 19 1,4,5 

Galapagos Lecocarpus 
pinnatifidus 

EN
D 

N
A 

Hervibores Declining/ 
Vegetation/Rar

ity 

26 6 4,5 

Galapagos Miconia 
robinsoniana 

EN
D 

N
A 

Land use 
change / 
Invasives 

Declining/ 
Vegetation 

77 13 4,5 

Galapagos Galvezia 
leucantha 

EN
D 

N
A 

Land use 
change / 
Invasives 

Rarity 
/Declining 

48 14 4,5 

Galapagos Trigonopterum 
laricifolium 

EN
D 

N
A 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation 

25 14 4,5 

Galapagos Lippia 
rosmarinifolia 

EN
D 

N
A 

Wood Rarity / 
Declining 

90 25 4,5 

Galapagos Darwiniothamn
us tenuifolius 

EN
D 

N
T 

Cascading 
effects 

Rarity / 
Declining 

207 136 1,4,5,
6 

Galapagos Lecocarpus 
darwinii 

EN
D 

N
T 

Hervibores Rarity/ 
Declining 

63 40 1,4,5,
6 

Galapagos Scalesia villosa EN
D 

V
U 

Land use 
change / 
Invasives 

Declining/ 
Vegetation 

23 13 1,4,5,
7 
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Galapagos Pleuropetalum 
darwinii 

EN
D 

V
U 

Restricted 
range 

Rarity / 
Declining 

38 21 1,4,5,
8 

Galapagos Scalesia 
pedunculata 

EN
D 

V
U 

Wood Declining/ 
Vegetation 

161 124 1,4,5,
9 

Hawaii Colubrina 
oppositifolia 

EN
D 

C
R 

Herbivores/
Alien 

plants/Wildfi
res 

Rarity/ 
Declining 

16 16 1,7 

Hawaii Hibiscus 
brackenridgei 

EN
D 

C
R 

Invasives/Wi
ldfires 

Rarity/ 
Declining 

48 44 1,7 

Hawaii Abutilon 
menziesii 

EN
D 

C
R 

Land use 
change / 

Invasives/Wi
ldfires/ 

Diseases 

Rarity/ 
Declining 

17 15 1,7 

Hawaii Pritchardia 
martii 

EN
D 

E
N 

Invasives/Wi
ldfires 

Vegetation/ 
Habitat 

stabilisation/ 
Cultural 

58 54 1,7 

Hawaii Dicranopteris 
linearis 

NE L
C 

Invasives/Wi
ldfires 

Vegetation/ 
Habitat 

stabilisation 

306 108 1,7 

Hawaii Dodonaea 
viscosa 

NE L
C 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation 

286 129 1,7 

Hawaii Machaerina 
angustifolia 

EN
D 

N
A 

Alien plants Vegetation/ 
Habitat 

stabilisation 

100 45 7 

Hawaii Scaevola 
taccada 

NE N
A 

Alien plants Vegetation/ 
Habitat 

stabilisation/ 
Cultural 

1235 412 7 

Hawaii Pipturus 
albidus 

EN
D 

N
A 

Diseases Vegetation/ 
Habitat 

stabilisation/ 
Cultural 

396 338 7 

Hawaii Syzygium 
sandwicense 

EN
D 

N
A 

Herbivores/
Alien plants 

Vegetation/ 
Edible fruits/ 

Cultural 

119 109 7 

Hawaii Melicope 
clusiifolia 

EN
D 

N
A 

Herbivores/
Alien plants 

Vegetation/ 
Cultural 

138 128 7 

Hawaii Sadleria 
pallida 

EN
D 

N
A 

Herbivores/
Alien plants 

Vegetation/ 
Habitat 

stabilisation 

106 73 7 
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Hawaii Freycinetia 
arborea 

NE N
A 

Herbivores/
Alien plants 

Vegetation/ 
Habitat 

stabilisation 

193 74 7 

Hawaii Microlepia 
strigosa 

NE N
A 

Herbivores/
Alien plants 

Vegetation/ 
Habitat 

stabilisation/ 
Cultural 

62 35 7 

Hawaii Vaccinium 
calycinum 

EN
D 

N
A 

Invasives Vegetation/ 
Edible fruits 

127 47 7 

Hawaii Rubus 
hawaiensis 

EN
D 

N
A 

Invasives Vegetation/ 
Edible fruits 

241 220 7 

Hawaii Sophora 
chrysophylla 

EN
D 

N
A 

Invasives Vegetation/ 
Edible fruits/ 

Cultural 

336 76 7 

Hawaii Cibotium 
menziesii 

EN
D 

N
A 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation 

31 19 7 

Hawaii Myoporum 
sandwicense 

NE N
A 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation/ 
Cultural 

237 83 7 

Hawaii Metrosideros 
polymorpha 

EN
D 

V
U 

Cascading 
effects/Herbi
vores/Alien 

plants 

Nesting 
material/ 

Vegetation 

314 129 1,7 

Hawaii Touchardia 
latifolia 

EN
D 

V
U 

Herbivores/
Alien plants 

Vegetation/ 
Edible fruits/ 

Floral visitors/ 
Declining 

45 35 1,7 

Hawaii Acacia koa EN
D 

V
U 

Invasives/Dis
eases 

Vegetation/ 
Habitat 

stabilisation/ 
Declining 

294 110 1,7 

Hawaii Diospyros 
sandwicensis 

EN
D 

V
U 

Invasives/Wi
ldfires 

Vegetation/ 
Edible fruits 

79 77 1,7 

Hawaii Hibiscus kokio EN
D 

V
U 

Invasives/Wi
ldfires 

Vegetation/ 
Edible fruits 

34 30 1,7 

Revillagige
do 

Guettarda 
insularis 

EN
D 

C
R 

Global rarity Vegetation/ 
Habitat 

stabilisation/ 
Edible fruits 

298 43 1,8,9 

Revillagige
do 

llex socorroensis EN
D 

C
R 

Global 
rarity/Diseas

Rarity/ 
Declining/ 

0 0 1,8,9 
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es/Volcanic 
activity 

Vegetation/ 
Edible fruits 

Revillagige
do 

Zanthoxylum 
fagara 

NE L
C 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation 

31 15 1,8,9 

Revillagige
do 

Oreopanax 
xalapensis 

NE L
C 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation 

14 9 1,8,9 

Revillagige
do 

Ficus 
cotinifolia 

NE L
C 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation/ 
Edible fruits 

103 35 1,8,9 

Revillagige
do 

Bursera 
epinnata 

NE L
C 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation/Fl
oral visitors 

82 15 1,8,9 

Revillagige
do 

Karwinskia 
humboldtiana 

NE L
C 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation/N
esting material 

26 15 1,8,9 

Revillagige
do 

Hippomane 
mancinella 

NE L
C 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation/N
esting material 

36 15 1,8,9 

Revillagige
do 

Conocarpus 
erectus 

NE L
C 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation/N
esting material 

95 15 1,8,9 

Revillagige
do 

Nicotiana 
stocktonii 

EN
D 

N
A 

Global rarity Rarity/Floral 
visitors 

55 32 8,9 

Revillagige
do 

Perityle 
socorrosensis 

EN
D 

N
A 

Global rarity Vegetation/ 
Habitat 

stabilisation 

101 47 8,9 

Revillagige
do 

Croton 
masonii 

EN
D 

N
A 

Global rarity Vegetation/ 
Habitat 

stabilisation 

277 37 8,9 

Revillagige
do 

Opuntia 
sp 

EN
D 

N
A 

Global 
rarity/Diseas
es/Hervibory 

Vegetation/ 
Habitat 

stabilisation/ 
Edible fruits 

38 10 8,9 

Revillagige
do 

Psidium 
socorrense 

EN
D 

N
A 

Global 
rarity/Invasiv

es 

Vegetation/ 
Habitat 

stabilisation/ 
Edible fruits 

114 16 8,9 
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Revillagige
do 

Teucrium 
townsendii 

EN
D 

N
A 

Global 
rarity/Undet

ermined 

Rarity/Floral 
visitors 

31 15 8,9 

Revillagige
do 

Euphorbia 
californica 

NE N
A 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation 

22 9 8,9 

Revillagige
do 

Brickellia 
peninsularis 

NE N
A 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation 

256 60 8,9 

Revillagige
do 

Tribulus 
cistoides 

NE N
A 

Undetermin
ed 

Vegetation/ 
Habitat 

stabilisation/Fl
oral visitors 

70 27 8,9 

Revillagige
do 

Sideroxylon 
socorrense 

EN
D 

V
U 

Global 
rarity/Volcan

ic activity 

Rarity/ 
Vegetation/ 

Habitat 
stabilisation/ 
Edible fruits 

118 27 1,8,9 
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Table S5.12. Summary of species analysed for microclimatic-driven shifts in their 153 
distribution in the context of climate change across archipelagos. The table 154 
includes the following categories: Chr (Chorotype: END = Endemic, NE = Non-155 
endemic native), SSP (Climate change tranjectory), Range change (Percentage 156 
change in distribution range), AUC (Area Under the Curve, indicating model 157 
performance), Loss Rank (Rank of predicted range loss: TL=Total loss,EL=Extreme 158 
loss, SVL = Severe Loss, ML = Moderate Loss, G = Gain), and Threat Rank (THR = 159 
Threatened, LC = Least Concern, NE=Non-assessed) 160 

Island Species Chr SSP Range 
change 

AUC Loss 
Rank 

Threat 
Rank 

Canaries Aeonium gomerense END ssp126 -18.1 0.87 ML THR 
Canaries Aeonium gomerense END ssp370 0.6 0.87 G THR 
Canaries Aeonium gomerense END ssp585 -4.7 0.87 ML THR 
Canaries Apollonias barbujana NE ssp126 -47.1 0.71 ML LC 
Canaries Apollonias barbujana NE ssp370 -58.2 0.71 SVL LC 
Canaries Apollonias barbujana NE ssp585 -72.8 0.71 SVL LC 
Canaries Arbutus canariensis END ssp126 -95.5 0.79 EL THR 
Canaries Arbutus canariensis END ssp370 -95.5 0.79 EL THR 
Canaries Arbutus canariensis END ssp585 -98.9 0.79 EL THR 
Canaries Argyranthemum 

maderense 
NE ssp126 11.8 0.95 G THR 

Canaries Argyranthemum 
maderense 

NE ssp370 -23.4 0.95 ML THR 

Canaries Argyranthemum 
maderense 

NE ssp585 -14.8 0.95 ML THR 

Canaries Asparagus arborescens END ssp126 -11.0 0.75 ML THR 
Canaries Asparagus arborescens END ssp370 -28.8 0.75 ML THR 
Canaries Asparagus arborescens END ssp585 -36.4 0.75 ML THR 
Canaries Bystropogon 

canariensis 
NE ssp126 -56.2 0.72 SVL THR 

Canaries Bystropogon 
canariensis 

NE ssp370 -61.8 0.72 SVL THR 

Canaries Bystropogon 
canariensis 

NE ssp585 -66.5 0.72 SVL THR 

Canaries Ceropegia dichotoma END ssp126 0.5 0.75 G THR 
Canaries Ceropegia dichotoma END ssp370 -2.8 0.75 ML THR 
Canaries Ceropegia dichotoma END ssp585 -2.0 0.75 ML THR 
Canaries Cneorum 

pulverulentum 
END ssp126 -8.5 0.75 ML LC 
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Canaries Cneorum 
pulverulentum 

END ssp370 -21.4 0.75 ML LC 

Canaries Cneorum 
pulverulentum 

END ssp585 -37.8 0.75 ML LC 

Canaries Convolvulus floridus END ssp126 -33.5 0.78 ML LC 
Canaries Convolvulus floridus END ssp370 -36.8 0.78 ML LC 
Canaries Convolvulus floridus END ssp585 -61.2 0.78 SVL LC 
Canaries Descurainia bourgaeana NE ssp126 -40.0 0.93 ML THR 
Canaries Descurainia bourgaeana NE ssp370 -49.6 0.93 ML THR 
Canaries Descurainia bourgaeana NE ssp585 -61.1 0.93 SVL THR 
Canaries Dracaena draco NE ssp126 -53.9 0.80 SVL THR 
Canaries Dracaena draco NE ssp370 -49.6 0.80 ML THR 
Canaries Dracaena draco NE ssp585 -61.2 0.80 SVL THR 
Canaries Echium acanthocarpum END ssp126 -47.2 0.93 ML THR 
Canaries Echium acanthocarpum END ssp370 -24.1 0.93 ML THR 
Canaries Echium acanthocarpum END ssp585 -25.3 0.93 ML THR 
Canaries Echium wildpretii NE ssp126 -77.0 0.89 SVL THR 
Canaries Echium wildpretii NE ssp370 -86.5 0.89 EL THR 
Canaries Echium wildpretii NE ssp585 -90.0 0.89 EL THR 
Canaries Euphorbia balsamifera NE ssp126 -42.5 0.82 ML THR 
Canaries Euphorbia balsamifera NE ssp370 -38.8 0.82 ML THR 
Canaries Euphorbia balsamifera NE ssp585 -35.9 0.82 ML THR 
Canaries Euphorbia canariensis END ssp126 -20.2 0.85 ML LC 
Canaries Euphorbia canariensis END ssp126 -20.2 0.85 ML LC 
Canaries Euphorbia canariensis END ssp370 -36.1 0.85 ML LC 
Canaries Euphorbia canariensis END ssp370 -36.1 0.85 ML LC 
Canaries Euphorbia canariensis END ssp585 -38.8 0.85 ML LC 
Canaries Euphorbia canariensis END ssp585 -38.8 0.85 ML LC 
Canaries Euphorbia handiensis END ssp126 -23.6 0.80 ML THR 
Canaries Euphorbia handiensis END ssp370 -37.0 0.80 ML THR 
Canaries Euphorbia handiensis END ssp585 -39.2 0.80 ML THR 
Canaries Heberdenia excelsa NE ssp126 -1.9 0.82 ML THR 
Canaries Heberdenia excelsa NE ssp370 -1.4 0.82 ML THR 
Canaries Heberdenia excelsa NE ssp585 -0.9 0.82 ML THR 
Canaries Hypericum canariense END ssp126 -90.2 0.74 EL LC 
Canaries Hypericum canariense END ssp370 -78.1 0.74 SVL LC 
Canaries Hypericum canariense END ssp585 -83.3 0.74 EL LC 
Canaries Kleinia neriifolia END ssp126 -21.7 0.68 ML LC 
Canaries Kleinia neriifolia END ssp370 -25.1 0.68 ML LC 
Canaries Kleinia neriifolia END ssp585 -36.7 0.68 ML LC 
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Canaries Launaea arborescens NE ssp126 2.2 0.76 G THR 
Canaries Launaea arborescens NE ssp370 -0.7 0.76 ML THR 
Canaries Launaea arborescens NE ssp585 -0.4 0.76 ML THR 
Canaries Limonium arborescens END ssp126 -56.7 0.74 SVL THR 
Canaries Limonium arborescens END ssp370 -59.4 0.74 SVL THR 
Canaries Limonium arborescens END ssp585 -79.3 0.74 SVL THR 
Canaries Maytenus canariensis END ssp126 -5.9 0.73 ML THR 
Canaries Maytenus canariensis END ssp370 -3.6 0.73 ML THR 
Canaries Maytenus canariensis END ssp585 -7.7 0.73 ML THR 
Canaries Morella faya NE ssp126 -87.6 0.87 EL LC 
Canaries Morella faya NE ssp370 -84.3 0.87 EL LC 
Canaries Morella faya NE ssp585 -84.5 0.87 EL LC 
Canaries Ocotea foetens NE ssp126 -29.2 0.73 ML LC 
Canaries Ocotea foetens NE ssp370 -37.5 0.73 ML LC 
Canaries Ocotea foetens NE ssp585 -39.0 0.73 ML LC 
Canaries Periploca laevigata NE ssp126 -56.7 0.82 SVL THR 
Canaries Periploca laevigata NE ssp370 -60.7 0.82 SVL THR 
Canaries Periploca laevigata NE ssp585 -77.3 0.82 SVL THR 
Canaries Phoenix canariensis END ssp126 -63.1 0.74 SVL LC 
Canaries Phoenix canariensis END ssp370 -44.4 0.74 ML LC 
Canaries Phoenix canariensis END ssp585 -70.3 0.74 SVL LC 
Canaries Pistacia lentiscus NE ssp126 -31.7 0.72 ML LC 
Canaries Pistacia lentiscus NE ssp370 -47.5 0.72 ML LC 
Canaries Pistacia lentiscus NE ssp585 -53.9 0.72 SVL LC 
Canaries Sideroxylon canariense END ssp126 -15.3 0.82 ML THR 
Canaries Sideroxylon canariense END ssp370 -11.9 0.82 ML THR 
Canaries Sideroxylon canariense END ssp585 -12.5 0.82 ML THR 
Canaries Tamarix canariensis END ssp126 10.1 0.83 G LC 
Canaries Tamarix canariensis END ssp370 8.9 0.83 G LC 
Canaries Tamarix canariensis END ssp585 8.5 0.83 G LC 
Galapagos Avicennia germinans NE ssp126 -23.5 0.73 ML LC 
Galapagos Avicennia germinans NE ssp370 -24.0 0.73 ML LC 
Galapagos Avicennia germinans NE ssp585 -23.6 0.73 ML LC 
Galapagos Conocarpus erectus NE ssp126 -54.6 0.72 SVL LC 
Galapagos Conocarpus erectus NE ssp370 -51.4 0.72 SVL LC 
Galapagos Conocarpus erectus NE ssp585 -52.8 0.72 SVL LC 
Galapagos Darwiniothamnus 

tenuifolius 
END ssp126 -4.1 0.69 ML THR 

Galapagos Darwiniothamnus 
tenuifolius 

END ssp370 -11.9 0.69 ML THR 
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Galapagos Darwiniothamnus 
tenuifolius 

END ssp585 -14.6 0.69 ML THR 

Galapagos Galvezia leucantha NE ssp126 -25.6 0.73 ML THR 
Galapagos Galvezia leucantha NE ssp370 -25.8 0.73 ML THR 
Galapagos Galvezia leucantha NE ssp585 -26.6 0.73 ML THR 
Galapagos Gossypium darwinii END ssp126 -53.8 0.73 SVL LC 
Galapagos Gossypium darwinii END ssp370 -53.8 0.73 SVL LC 
Galapagos Gossypium darwinii END ssp585 -53.6 0.73 SVL LC 
Galapagos Jasminocereus thouarsii END ssp126 -66.1 0.75 SVL LC 
Galapagos Jasminocereus thouarsii END ssp370 -58.5 0.75 SVL LC 
Galapagos Jasminocereus thouarsii END ssp585 -59.3 0.75 SVL LC 
Galapagos Laguncularia racemosa NE ssp126 -52.8 0.81 SVL LC 
Galapagos Laguncularia racemosa NE ssp370 -49.6 0.81 ML LC 
Galapagos Laguncularia racemosa NE ssp585 -51.7 0.81 SVL LC 
Galapagos Lecocarpus darwinii END ssp126 -66.4 0.83 SVL THR 
Galapagos Lecocarpus darwinii END ssp370 -100.0 0.83 TL THR 
Galapagos Lecocarpus darwinii END ssp585 -100.0 0.83 TL THR 
Galapagos Lecocarpus pinnatifidus NE ssp126 -25.6 0.71 ML THR 
Galapagos Lecocarpus pinnatifidus NE ssp370 -7.3 0.71 ML THR 
Galapagos Lecocarpus pinnatifidus NE ssp585 -8.0 0.71 ML THR 
Galapagos Lippia rosmarinifolia NE ssp126 -19.7 0.84 ML THR 
Galapagos Lippia rosmarinifolia NE ssp370 -31.8 0.84 ML THR 
Galapagos Lippia rosmarinifolia NE ssp585 -39.0 0.84 ML THR 
Galapagos Miconia robinsoniana NE ssp126 -25.9 0.75 ML THR 
Galapagos Miconia robinsoniana NE ssp370 -48.1 0.75 ML THR 
Galapagos Miconia robinsoniana NE ssp585 -51.7 0.75 SVL THR 
Galapagos Opuntia galapageia END ssp126 0.1 0.71 G LC 
Galapagos Opuntia galapageia END ssp370 -8.0 0.71 ML LC 
Galapagos Opuntia galapageia END ssp585 -9.4 0.71 ML LC 
Galapagos Piscidia carthagenensis END ssp126 -55.1 0.71 SVL LC 
Galapagos Piscidia carthagenensis END ssp370 -49.1 0.71 ML LC 
Galapagos Piscidia carthagenensis END ssp585 -49.5 0.71 ML LC 
Galapagos Pleuropetalum darwinii END ssp126 -11.2 0.72 ML THR 
Galapagos Pleuropetalum darwinii END ssp370 -24.1 0.72 ML THR 
Galapagos Pleuropetalum darwinii END ssp585 -11.7 0.72 ML THR 
Galapagos Rhizophora mangle NE ssp126 -36.5 0.74 ML LC 
Galapagos Rhizophora mangle NE ssp370 -41.0 0.74 ML LC 
Galapagos Rhizophora mangle NE ssp585 -38.4 0.74 ML LC 
Galapagos Scalesia affinis END ssp126 -68.6 0.69 SVL LC 
Galapagos Scalesia affinis END ssp370 -63.0 0.69 SVL LC 
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Galapagos Scalesia affinis END ssp585 -65.0 0.69 SVL LC 
Galapagos Scalesia pedunculata END ssp126 1.4 0.92 G THR 
Galapagos Scalesia pedunculata END ssp370 -0.4 0.92 ML THR 
Galapagos Scalesia pedunculata END ssp585 0.0 0.92 G THR 
Galapagos Zanthoxylum fagara END ssp126 -20.3 0.69 ML LC 
Galapagos Zanthoxylum fagara END ssp370 -28.1 0.69 ML LC 
Galapagos Zanthoxylum fagara END ssp585 -25.4 0.69 ML LC 
Hawaii Abutilon menziesii END ssp126 2.0 0.61 G THR 
Hawaii Abutilon menziesii END ssp370 2.1 0.61 G THR 
Hawaii Abutilon menziesii END ssp585 2.1 0.61 G THR 
Hawaii Acacia koa END ssp126 -13.6 0.78 ML THR 
Hawaii Acacia koa END ssp370 -24.4 0.78 ML THR 
Hawaii Acacia koa END ssp585 -21.1 0.78 ML THR 
Hawaii Cibotium menziesii NE ssp126 -14.4 0.78 ML THR 
Hawaii Cibotium menziesii NE ssp370 -22.2 0.78 ML THR 
Hawaii Cibotium menziesii NE ssp585 -23.5 0.78 ML THR 
Hawaii Colubrina oppositifolia END ssp126 -69.8 0.69 SVL THR 
Hawaii Colubrina oppositifolia END ssp370 -81.1 0.69 EL THR 
Hawaii Colubrina oppositifolia END ssp585 -95.9 0.69 EL THR 
Hawaii Dicranopteris linearis NE ssp126 -28.0 0.77 ML LC 
Hawaii Dicranopteris linearis NE ssp370 -36.1 0.77 ML LC 
Hawaii Dicranopteris linearis NE ssp585 -26.3 0.77 ML LC 
Hawaii Diospyros sandwicensis END ssp126 -23.8 0.78 ML THR 
Hawaii Diospyros sandwicensis END ssp370 -28.7 0.78 ML THR 
Hawaii Diospyros sandwicensis END ssp585 -28.3 0.78 ML THR 
Hawaii Dodonaea viscosa NE ssp126 -5.4 0.71 ML LC 
Hawaii Dodonaea viscosa NE ssp370 -10.4 0.71 ML LC 
Hawaii Dodonaea viscosa NE ssp585 -5.2 0.71 ML LC 
Hawaii Freycinetia arborea NE ssp126 -57.3 0.83 SVL THR 
Hawaii Freycinetia arborea NE ssp370 -57.9 0.83 SVL THR 
Hawaii Freycinetia arborea NE ssp585 -60.7 0.83 SVL THR 
Hawaii Hibiscus brackenridgei END ssp126 -79.1 0.60 SVL THR 
Hawaii Hibiscus brackenridgei END ssp370 -86.5 0.60 EL THR 
Hawaii Hibiscus brackenridgei END ssp585 -99.4 0.60 EL THR 
Hawaii Hibiscus kokio END ssp126 -4.4 0.75 ML THR 
Hawaii Hibiscus kokio END ssp370 -8.7 0.75 ML THR 
Hawaii Hibiscus kokio END ssp585 -11.3 0.75 ML THR 
Hawaii Machaerina angustifolia NE ssp126 -27.5 0.80 ML THR 
Hawaii Machaerina angustifolia NE ssp370 -40.1 0.80 ML THR 
Hawaii Machaerina angustifolia NE ssp585 -52.3 0.80 SVL THR 
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Hawaii Melicope clusiifolia NE ssp126 -1.3 0.85 ML THR 
Hawaii Melicope clusiifolia NE ssp370 -0.2 0.85 ML THR 
Hawaii Melicope clusiifolia NE ssp585 5.2 0.85 G THR 
Hawaii Metrosideros 

polymorpha 
END ssp126 -34.6 0.81 ML THR 

Hawaii Metrosideros 
polymorpha 

END ssp370 -54.3 0.81 SVL THR 

Hawaii Metrosideros 
polymorpha 

END ssp585 -58.4 0.81 SVL THR 

Hawaii Microlepia strigosa NE ssp126 -1.9 0.62 ML THR 
Hawaii Microlepia strigosa NE ssp370 -0.9 0.62 ML THR 
Hawaii Microlepia strigosa NE ssp585 2.2 0.62 G THR 
Hawaii Myoporum 

sandwicense 
NE ssp126 2.8 0.82 G THR 

Hawaii Myoporum 
sandwicense 

NE ssp370 -0.4 0.82 ML THR 

Hawaii Myoporum 
sandwicense 

NE ssp585 -0.7 0.82 ML THR 

Hawaii Pipturus albidus NE ssp126 -39.0 0.73 ML THR 
Hawaii Pipturus albidus NE ssp370 -63.3 0.73 SVL THR 
Hawaii Pipturus albidus NE ssp585 -59.6 0.73 SVL THR 
Hawaii Pritchardia martii END ssp126 0.8 0.93 G THR 
Hawaii Pritchardia martii END ssp370 0.8 0.93 G THR 
Hawaii Pritchardia martii END ssp585 0.9 0.93 G THR 
Hawaii Rubus hawaiensis NE ssp126 -24.6 0.84 ML THR 
Hawaii Rubus hawaiensis NE ssp370 -30.6 0.84 ML THR 
Hawaii Rubus hawaiensis NE ssp585 -27.3 0.84 ML THR 
Hawaii Sadleria pallida NE ssp126 -4.4 0.76 ML THR 
Hawaii Sadleria pallida NE ssp370 -4.2 0.76 ML THR 
Hawaii Sadleria pallida NE ssp585 0.8 0.76 G THR 
Hawaii Scaevola taccada NE ssp126 6.5 0.92 G THR 
Hawaii Scaevola taccada NE ssp370 6.1 0.92 G THR 
Hawaii Scaevola taccada NE ssp585 6.5 0.92 G THR 
Hawaii Sophora chrysophylla NE ssp126 -53.9 0.81 SVL THR 
Hawaii Sophora chrysophylla NE ssp370 -62.6 0.81 SVL THR 
Hawaii Sophora chrysophylla NE ssp585 -67.1 0.81 SVL THR 
Hawaii Syzygium sandwicense NE ssp126 -40.0 0.74 ML THR 
Hawaii Syzygium sandwicense NE ssp370 -43.4 0.74 ML THR 
Hawaii Syzygium sandwicense NE ssp585 -39.6 0.74 ML THR 
Hawaii Touchardia latifolia END ssp126 1.4 0.70 G THR 
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Hawaii Touchardia latifolia END ssp370 1.2 0.70 G THR 
Hawaii Touchardia latifolia END ssp585 1.3 0.70 G THR 
Hawaii Vaccinium calycinum NE ssp126 -46.8 0.85 ML THR 
Hawaii Vaccinium calycinum NE ssp370 -71.9 0.85 SVL THR 
Hawaii Vaccinium calycinum NE ssp585 -73.8 0.85 SVL THR 
Revillagigedo Brickellia peninsularis NE ssp126 -44.8 0.70 ML THR 
Revillagigedo Brickellia peninsularis NE ssp370 -48.6 0.70 ML THR 
Revillagigedo Brickellia peninsularis NE ssp585 -56.2 0.70 SVL THR 
Revillagigedo Bursera epinnata NE ssp126 -45.9 0.76 ML LC 
Revillagigedo Bursera epinnata NE ssp370 -20.1 0.76 ML LC 
Revillagigedo Bursera epinnata NE ssp585 -18.4 0.76 ML LC 
Revillagigedo Conocarpus erectus NE ssp126 -42.3 0.76 ML LC 
Revillagigedo Conocarpus erectus NE ssp370 -42.3 0.76 ML LC 
Revillagigedo Conocarpus erectus NE ssp585 -42.3 0.76 ML LC 
Revillagigedo Croton masonii NE ssp126 -16.7 0.65 ML THR 
Revillagigedo Croton masonii NE ssp370 -16.7 0.65 ML THR 
Revillagigedo Croton masonii NE ssp585 -16.7 0.65 ML THR 
Revillagigedo Euphorbia californica NE ssp126 -100.0 0.72 TL THR 
Revillagigedo Euphorbia californica NE ssp370 -100.0 0.72 TL THR 
Revillagigedo Euphorbia californica NE ssp585 -100.0 0.72 TL THR 
Revillagigedo Hippomane mancinella NE ssp126 -15.6 0.79 ML LC 
Revillagigedo Hippomane mancinella NE ssp370 -15.6 0.79 ML LC 
Revillagigedo Hippomane mancinella NE ssp585 -15.6 0.79 ML LC 
Revillagigedo Karwinskia 

humboldtiana 
NE ssp126 -100.0 0.89 TL LC 

Revillagigedo Karwinskia 
humboldtiana 

NE ssp370 -100.0 0.89 TL LC 

Revillagigedo Karwinskia 
humboldtiana 

NE ssp585 -100.0 0.89 TL LC 

Revillagigedo Nicotiana stocktonii NE ssp126 7.1 0.63 G THR 
Revillagigedo Nicotiana stocktonii NE ssp370 7.1 0.63 G THR 
Revillagigedo Nicotiana stocktonii NE ssp585 7.1 0.63 G THR 
Revillagigedo Opuntia sp NE ssp126 8.8 0.62 G THR 
Revillagigedo Opuntia sp NE ssp370 8.8 0.62 G THR 
Revillagigedo Opuntia sp NE ssp585 8.8 0.62 G THR 
Revillagigedo Oreopanax xalapensis NE ssp126 14.5 0.87 G LC 
Revillagigedo Oreopanax xalapensis NE ssp370 14.5 0.87 G LC 
Revillagigedo Oreopanax xalapensis NE ssp585 14.5 0.87 G LC 
Revillagigedo Perityle socorrosensis NE ssp126 -66.4 0.62 SVL THR 
Revillagigedo Perityle socorrosensis NE ssp370 -66.4 0.62 SVL THR 
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 161 

Table S5.13. Model results for the linear model: 162 

𝑁𝑒𝑡	𝑅𝑎𝑛𝑔𝑒	𝐶ℎ𝑎𝑛𝑔𝑒 ∼ 𝐴𝑟𝑐ℎ𝑖𝑝𝑒𝑙𝑎𝑔𝑜	 ∗ 	𝐹𝑢𝑡	𝑀𝑜𝑑𝑒𝑙	 ∗ 	𝑆𝑆𝑃	 163 

Term Estimate Std.error Statistic p.value 
(Intercept) -32.524 4.065 -8.001 2.098e-

15 
Island_Galapagos 3.786 6.675 0.567 0.571 
Island_Hawaii 15.754 6.109 2.579 0.010 
Island_Revillagigedo -3.836 7.103 -0.540 0.589 
Fut Model_UK -3.349 5.762 -0.581 0.561 
Trajectory_ssp370 -8.950 5.762 -1.553 0.120 
Trajectory_ssp585 -15.552 5.762 -2.699 0.007 
islandGalapagos:Fut Model_UK -5.088 9.447 -0.539 0.590 
islandHawaii:Fut Model_UK -8.553 8.647 -0.989 0.323 
islandRevillagigedo:Fut Model_UK 8.535 10.052 0.849 0.396 

Revillagigedo Perityle socorrosensis NE ssp585 -66.4 0.62 SVL THR 
Revillagigedo Psidium socorrense NE ssp126 17.4 0.76 G THR 
Revillagigedo Psidium socorrense NE ssp370 17.4 0.76 G THR 
Revillagigedo Psidium socorrense NE ssp585 17.4 0.76 G THR 
Revillagigedo Sideroxylon socorrense END ssp126 17.1 0.92 G THR 
Revillagigedo Sideroxylon socorrense END ssp370 17.1 0.92 G THR 
Revillagigedo Sideroxylon socorrense END ssp585 17.1 0.92 G THR 
Revillagigedo Teucrium townsENDii NE ssp126 -87.3 0.63 EL THR 
Revillagigedo Teucrium townsENDii NE ssp370 -100.0 0.63 TL THR 
Revillagigedo Teucrium townsENDii NE ssp585 -100.0 0.63 TL THR 
Revillagigedo Tribulus cistoides NE ssp126 -100.0 0.80 TL THR 
Revillagigedo Tribulus cistoides NE ssp370 -100.0 0.80 TL THR 
Revillagigedo Tribulus cistoides NE ssp585 -100.0 0.80 TL THR 
Revillagigedo Zanthoxylum fagara NE ssp126 -73.6 0.78 SVL LC 
Revillagigedo Zanthoxylum fagara NE ssp370 -73.6 0.78 SVL LC 
Revillagigedo Zanthoxylum fagara NE ssp585 -73.6 0.78 SVL LC 
Revillagigedo llex socorroensis END ssp126 18.3 0.80 G THR 
Revillagigedo llex socorroensis END ssp370 15.3 0.80 G THR 
Revillagigedo llex socorroensis END ssp585 4.2 0.80 G THR 
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islandGalapagos:Trajectory_ssp370 1.717 9.447 0.182 0.856 
islandHawaii:Trajectory_ssp370 -3.376 8.647 -0.390 0.696 
islandRevillagigedo:Trajectory_ssp370 12.573 10.052 1.251 0.211 
islandGalapagos:Trajectory_ssp585 9.788 9.447 1.036 0.300 
islandHawaii:Trajectory_ssp585 3.742 8.647 0.433 0.665 
islandRevillagigedo:Trajectory_ssp585 19.404 10.052 1.930 0.054 
Fut ModelUK:Trajectory_ssp370 11.796 8.157 1.446 0.148 
Fut ModelUK:Trajectory_ssp585 12.283 8.157 1.506 0.132 
islandGalapagos:Fut 
Model_UK:Trajectory_ssp370 

-3.756 13.365 -0.281 0.779 

islandHawaii:Fut 
Model_UK:Trajectory_ssp370 

-0.439 12.235 -0.036 0.971 

islandRevillagigedo:Fut 
ModelUK:Trajectory_ssp370 

-17.710 14.221 -1.245 0.213 

islandGalapagos:Fut 
ModelUK:Trajectory_ssp585 

-12.233 13.913 -0.879 0.379 

islandHawaii:Fut 
ModelUK:Trajectory_ssp585 

-2.810 12.235 -0.230 0.818 

 164 
Table S5.1.4. ANOVA results for the linear model: 165 
 166 

𝑁𝑒𝑡	𝑅𝑎𝑛𝑔𝑒	𝐶ℎ𝑎𝑛𝑔𝑒 ∼ 𝐴𝑟𝑐ℎ𝑖𝑝𝑒𝑙𝑎𝑔𝑜	 ∗ 	𝐹𝑢𝑡	𝑀𝑜𝑑𝑒𝑙	 ∗ 	𝑆𝑆𝑃	 167 
 168 
 Df Sum Sq Mean Sq F value Pr(>F) 
Island 3 39142.53 13047.51 6.75 0.00 
Fut Model 1 262.86 262.86 0.14 0.71 
Trajectory 2 13371.63 6685.82 3.46 0.03 
Island:Fut Model 3 9966.97 3322.32 1.72 0.16 
Island:Trajectory 6 4806.95 801.16 0.41 0.87 
Fut Model:Trajectory 2 5511.53 2755.76 1.43 0.24 
Island:Fut 
Model:Trajectory 

6 6122.47 1020.41 0.53 0.79 

Residuals 1963 3795673.51 1933.61 - - 
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Supplementary Figure S5.1.5 Spatial patterns of species loss by archipelago for the 169 
a) SSP 126  (optimistic scenario)  and b)SSP 585 scenarios (pessimistic scenario) for: 170 
Hawaii (Top left), Canaries (Top Right), Galapagos (Bottom left) and Revillagigedo 171 
(Bottom Right). For Revillagigedo, the top section shows the actual distance and 172 
size of the islands, while the bottom section provides a magnified view. Increased 173 
colour intensity represents a higher number of species lost measured as switching 174 
favourability within grid squares (500m2). 175 
 176 

a 

b 
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Appendix S.5.2.1 Climatic-driven spatial patterns of species loss 177 

In the Canaries we see,  under the SSP126 trajectory, an average (i.e., the average 178 

across the IP and UK models) of 26.67% of grid squares experiences no species 179 

loss, while 18.50% lose at least one species, and 16.46% with ≥3 species loss per 180 

grid affecting only 0.09%. The negative effect increases progressively in the other 181 

two SSP scenarios, Under the SSP585 trajectory, a further reduction on average in 182 

the grid squares experiencing no species loss with 22.16%, while 17.91% lose at 183 

least one species, and 11.26% lose ≥3 species, with species losses up to 12 species 184 

affecting about 0.01% of the total grid squares. 185 

In the Galápagos, under the SSP126 trajectory, an average of 40.90% of the grid 186 

squares experience no species loss, while 28.80% lose at least one species, and 187 

12.96% ≥2 species. Under the SSP585 trajectory, 41.92% of grid squares experience 188 

no species loss, while 37.24% lose at least one species, and 8.30% lose ≥2 species.  189 

In Hawaii, for the SSP126 trajectory, an average of 21.73% of grid squares 190 

experience no species loss, while 35.10% lose at least one species, and 0.11% lose 191 

>1, up to seven species. Under the SSP585 trajectory, 15.89% of the area 192 

experiences no species loss, while 28.94% lose at least one species, and 13.52% 193 

lose ≥3 species. 194 
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The Revillagigedo archipelago, under the SSP126 trajectory, an average of 98.54% 195 

of the area experiences no species loss. Under the SSP585 trajectory, the 196 

percentage drops slightly, with 80.58% of the area experiencing no species loss, 197 

while 19.42% lose at least one species. 198 

 199 
 200 


