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Abstract 

 

Since the publication of research in the mid-1980s describing the formation of freeform graphene there 

has been an enormous growth in interest in the material. Graphene is of interest to the semiconductor 

industry because of the high electron mobility exhibited by the material and, as it is planar, it is 

compatible with silicon technology. When patterned into nanoribbons graphene can be made into 

regions that are semiconducting or conducting and even into entire circuits. Graphene nanoribbons can 

also be used to form the channel of a MOSFET. This thesis describes numerical simulations undertaken 

on devices formed from graphene. The energy band structure of graphene and graphene nanoribbons is 

obtained using nearest-neighbour and third nearest-neighbour interactions within a tight binding model. 

A comparison of the current-voltage characteristics of MOS structures formed on graphene nanoribbons 

and carbon nanotubes suggests that the nanoribbon devices may be better for switching applications. 

Conductivities of graphene nanoribbons and junctions formed from them were obtained using a 

nonequilibrium Green’s function formulation. The effects of defects and strain on these systems were 

also studied using this technique.  Advancements were made when the self-energies used within the 

nonequilibrium Green’s function were obtained from an iterative scheme including third nearest-

neighbour interactions. An important result of this work is that accurate simulations of graphene based 

devices should include third nearest-neighbour interactions within the tight binding model of the energy 

band structure.   
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Chapter 1 Introduction 

1.1 Significance of Graphene 

Graphene is the name given to a flat monolayer of carbon atoms tightly packed into a two-dimensional 

honeycomb lattice, and is a basic building block for graphitic materials of all the other dimensionalities.  

It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite (Shown in 

Figure 1.1). Although it has been theoretically studied for sixty years [1], graphene was presumed not to 

exist in free state until Novoselov et.al in 2005 reported its formation and the anomalous features it 

exhibited [2, 3].  This experimental breakthrough has generated much excitement within the physics 

community. This can be clearly seen by studying the number of papers appearing in the search result on 

Web of Science containing the word “graphene” in the abstract shown in Figure 1.2.  

 

Figure 1.1 Graphene is a 2D building material for carbon materials of all other dimensionalities. [3] 
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Figure 1.2  Number of Papers published during 2004-2009 containing the word “graphene” in the  

title. The result is obtained using Web of Science search engine. 

Before the discovery of graphene, carbon nanotubes  (CNTs) had attracted great interest in recent years 

because of their extraordinary mechanical and electrical properties. For electronic circuit applications it 

is the observed high electron mobility that makes CNT based devices attractive. The high mobility results 

from the energy band structure of the graphene coupled with quantization when the graphene sheet is 

rolled up to form a CNT. Simulations [4-9] of the electronic properties of metal-oxide-semiconductor 

(MOS) transistors based on CNTs suggest that they have great potential in future high speed electronic 

systems. However, in practice, it is difficult to control the chirality of carbon nanotubes and the 

structures cannot readily be integrated into an electronic system. The chirality is important because the 

energy bandgap of a semiconducting CNT is a function of it [10]. 

The advantage of graphene is that it is compatible with the planar technology employed within the 

semiconductor industry. Like CNTs graphene exhibits high electron mobilities [2, 11, 12], μ, in excess of  

15,000cm2/Vs and it can be metallic or semiconducting. When tailored to less than 100nm wide 

graphene nanoribbons may open a band gap due to the electron confinement. Electronic states of 

graphene largely depend on the edge structures and the width of the graphene nanoribbon [11]. One of 

the most important potential applications of graphene is as the channel for electron transport in a MOS 

structure. Structures of this kind have been demonstrated experimentally [13] using epitaxially 

synthesized graphene on silicon carbide substrates. 
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1.2 Energy Bandstructure of Graphene 

Graphene has a honeycomb lattice structure of carbon atoms in the sp2 hybridization state. Every unit 

cell of graphene lattice contains two carbon atoms and each atom contributes a free electron.  

The bandstructure of graphene is unusual with the valence and the conduction bands meeting at a point 

at the six corners of the Brillouin zone (shown in Figure 1.3). Near these crossing points (named as Dirac 

points[3, 14, 15]), the electron energy is linearly dependent on the wave vector. 

E


k

||
k

 

Figure 1.3 The valence and the conduction band of Graphene meet at a point at the six corners of the Brillouin zone 

As a result of the linear energy-momentum dispersion relation, at the Dirac points an electron has an 

effective mass of zero and behaves more like a photon than a conventional massive particle whose 

energy-momentum dispersion is parabolic. The tight-binding calculation of the band structure of 

graphene is based on Schrödinger equation. At low energy levels, however, charge carrier transport can 

be described in a more natural way by using the Dirac equation. 

1.3 Graphene Nanoribbons 

As mentioned in section 1.1 when tailored to less than 100nm wide nanoribbons, graphene may open a 

band gap due to the electron confinement. This bandgap can be altered by simply changing the edge 

types or width, which makes it possible to use graphene as the channel of metal-oxide-semiconductor 

field-effect transistors (MOSFETs). 

There are multiple types of Graphene nanoribbons (also called carbon nanoribbons, CNR). Like CNTs 

CNRs can be classified by the shape of their edges. Figures 1.4 (a) (b) [6], respectively, show  armchair 

and  zigzag nanoribbons  N atoms  wide.   Figure 1.4 (c) shows a number of CNRs having more general 

edge forms. 
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Figure 1.4  Different types of graphene nanoribbons[16]. 

Tight-binding calculations show that the conductivity of CNRs is highly dependent on their width and 

edge types. For armchair CNRs when N=3M-1 where M is an integer the CNRs will be metallic, otherwise 

they are semiconducting, and the energy band gap decreases as N increases.  Unlike armchair CNRs, 

zigzag CNRs are all metallic; this is mainly because additional energy states appear on their edges[16].   

1.4 Graphene Based Electronics Devices 

By connecting graphene nanoribbons of different widths, graphene PN junctions or quantum dots can 

be formed. Figure 1.5 shows a graphene FET based on two armchair graphene nanoribbon junctions, the 

widths of the nanoribbons are carefully chosen so that the device has a semiconducting channel and 

conducting source and drain. The semiconducting channel is double gated in order to control the electric 

potential.  

 

Figure 1.5 Graphene FET 
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Apart from changing the width, patterning graphene nanoribbons with different edge types is another 

way to form graphene electronic devices. Figure 1.6 illustrates an inverter circuit built from by 

patterning a structure containing conducting regions, semiconducting regions and junctions. 

 

Figure 1.6 An inverter circuit built from Graphene Nanoribbons 

1.5 Levels of Device Simulation 

Simulation is an important tool for studying existing and future semiconductor devices. Devices can be 

simulated at different scale levels. Traditionally, the current-voltage characteristic of semiconductor 

devices has been obtained by a self consistent solution of Poisson’s equation and the drift-diffusion 

equation. The latter has been used with various degrees of approximation.  This classic approach to 

device simulation is computationally efficient and has been widely used within the semiconductor 

industry.  More detailed solutions of the Boltzmann transport equation are usually obtained using the 

Monte Carlo method.  This is computationally inefficient and is more likely to be used within academic 

institutions.  As the physical dimensions of semiconductor devices decrease different modelling 

techniques have evolved.  For instance, where quantum mechanical effects are deemed to be important 

Poisson’s equation is solved self consistently with the Schrödinger equation. When device dimensions 

become comparable to the coherence length for charge carrier scattering the Landauer and Greens 

functions methods have come to the fore. It is these methods coupled with ab initio and atomic level 

calculations that are the focus for the research reported in this thesis. 
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This thesis reports simulations of the current-voltage characteristic of graphene based devices. 

1.6 Thesis outline 

Chapter 2 describes calculations of the energy band structure of graphene and graphene nanoribbons.  

The basis of the analysis is the tight binding method and different levels of approximation reported in 

this work.  Initially, a nearest-neighbour approximation is used but it is found that the third nearest-

neighbour approximation gives better agreement with ab initio calculations of the energy band 

structure.  Numerical calculations of the band structure of armchair and zigzag nanoribbons reveal a 

strong dependence of the energy band gap on the width of the carbon nanoribbon.  To increase 

computational efficiency a quasi-one dimensional model is developed resulting in energy band 

structures almost identical to those obtained using the more detailed simulation.  The effects of edge 

distortion and strain are also considered and the chapter is concluded with an effective mass 

approximation suitable for use in the Poisson-Schrödinger solver developed in chapter 3. Within this 

chapter a description of the finite difference method employed to solve Poisson’s equation is presented. 

Schrödinger’s equation is solved using the scattering matrix method and the current-voltage 

characteristics subsequently obtained.  The results are compared with those obtained from carbon 

nanotube structures and differences in the characteristics are attributed to the different forms of 

transmission coefficient. In chapter 4 the conductance and local density of states of graphene 

nanoribbons are obtained using a Green’s function analysis.  One of the key achievements reported in 

this thesis is the inclusion of third nearest-neighbour interactions within the Sancho-Rubio iterative 

scheme used to obtain the self energies.  A key conclusion of this work is that third nearest-neighbour 

interactions must be included within simulations of the conductance of graphene nanoribbons.  This 

chapter also describes the effects of defects and strain on the conductance of graphene nanoribbons. 

Finally, chapter 5 outlines the conclusions of this work and suggestions for future work.  A natural 

development of the research reported here is a self-consistent solution of the charge transport problem 

within graphene nanoribbons.  This work has been undertaken but it has not been possible to include it 

within this thesis. The research reported in this thesis has led to two journal publications. The first 

entitled ‘Modeling charge transport in graphene nanoribbons and carbon nontubes using a Schrödinger-

Poisson solver’, was published in the Journal of Applied Physics [42] and the second entitled 

‘Conductance of graphene nanoribbon junctions and the tight binding model’, was published in 

Nanoscale Research Letters [43].  
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Chapter 2 Bandstructure of Graphene and Graphene Nanoribbons 

In this chapter the energy bandstructures of graphene and graphene nanoribbons are calculated using 

the tight-binding method. Both analytical and numerical results are obtained.  

2.1 The Secular Equation 

We start from the time independent Schrodinger’s equation 

                              (2.1)  

where     is the Hamiltonian operator,        and            are the eigen energy and eigenfunctions in a 

graphene lattice and      and      represent the wave vector and position, respectivey. The j-th eigenvalue 

        as a function of     is given by 

         
           

       
 

   
        

   
     

 (2.2)  

Because of the translational symmetry of the carbon atoms in a graphene lattice, the eigenfunctions,   

                      , where n is the number of Bloch wavefunctions can be written as a linear 

combination of Bloch orbital basis functions        [datta]. 
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where           are coefficients to be determined, and             satisfy  
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Here the integrals over the Bloch orbitals,           and           are called the transfer integral matrix and 

overlap integral matrix, respectively, which are defined by [10] 

                       ,                                    (2.6)  

          and           have fixed values, for a given value of    , and the coefficient    
  is optimized so as 

to minimize        . Taking a partial derivative with respect to    
  to obtain the local minimum condition 

gives, 
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Multiplying both sides of (2.7) by *
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( )
n
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j j

S k  


 and substituting (2.5) into the second term of (2.7) 

we obtain 
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' 1 ' 1
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   (2.8)  

(2.8) can be written into matrix form such that 

                (2.9)  

where    is a column vector defined by 

             
  (2.10)  

(2.9) only has a non zero solution when 

                    (2.11)  

(2.11) is called the secular equation, whose solution gives all n eignvalues of                  for a 

given wave vector    . 
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2.2 Analytical solution of the Secular Equation for Graphene 
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Figure 2.1  Graphene lattice. Carbon atoms are located at the crossings and the chemical bonds represented by the lines are 

derived from the Pz orbitals. The primitive lattice vectors are         and the unit-cell is the shaded region. There are two 

carbon atoms per unit-cell, represented by A and B. The concentric circles of increasing radius show first, second and third 

nearest neighbours of atom A0 respectively. 

Consider the graphene lattice structure shown in figure 2.1. Because there are two carbon atoms per 

unit cell at A and B, two Bloch functions            and            can be used as the basis functions for 

graphene. 
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where N is the number of unit cells in the crystal,    and    are 2pz atomic orbitals and rA and rB are the 

positions of A and B type atoms, respectively. Using these basis functions and (2.3), the eigenfunctions 

can be written as 

                                                  (2.13)  

Thus the transfer integral matrix H and overlap integral matrix S in (2.11) become 2x2 matrices.  

    
      

      
     

      

      
  (2.14)  

Matrix elements                         are determined using (2.6) 

                       ,                                  (2.15)  

Since the two carbon atoms in a graphene unit cell are equivalent, HAA = HBB and SAA = SBB, also , 

       
   and        

  in which * donates the complex conjugate. Substituting (2.12) into (2.15) we 

have 

 

   
      

   
    

     
      

   
    

  

         
 

 
       

 
          

   

                             

         
 

 
                  

  

                            

         
 

 
                   

   

                         

         
 

 
                  

  

                        

(2.16)  

2.2.1 Nearest neighbour approximation 

When only the first nearest neighbour carbon atoms are considered, the summation in (2.16) to obtain 

HAA will only contain one term, 
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     (2.17)  

Similarly,        because            is assumed to be normalized,                             

    is simply a summation of three terms of the B type nearest neighbours shown by B11 B12 B13 in 

Figure 2.1 
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From Figure 2.1 we have       
     

     ,      
     

  
 

 
     

  

 
     , and      

     
  

 

 
     

  

 
     . Substituting into (2.18) and defining   as the hopping integral energy (eV) 
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we obtain 
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Similarly defining S0 as the overlap integral 

                           
   (2.21)  

we have 

                   (2.22)  

So that the explicit forms for H and S can be written as 

    
           

        
 

   

     
        

        
 

 
  (2.23)  

Solving the secular equation (2.11) and using H and S given in (2.23), the eigen energies are obtained as 

a function of wave vector. 
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2.2.2 Third nearest neighbour approximation 

The nearest neighbour tight-binding approximation is only valid at low energy[17]. in order to match 

with experiment and first principle calculations the model needs to be extended to consider up to third 

nearest neighbour carbon atoms. 

We start the calculation from the summation of HAA in (2.16). Consider a type A atom (shown as A0 in 

figure 2.2). As we now need to include six second nearest neighbour type A atoms (shown as A21 to A26 

in figure 2.2) of A0 an additional term is added in to (2.17) giving 
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where                               
   is the hopping integral energy for second nearest carbon 

atoms, and        is defined by 

 

         
    

 
      

     
 

 

   

 

                                  

    

 
  

(2.26)  

Similarly, defining                           
    as the overlap integral for second neighbour we have 

                     (2.27)  

For the summation of HAB in (2.17), an additional term is added to include the three third nearest B type 

carbon atoms (shown as B31 B32 B33) of A0 
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where                               
   is the hopping integral energy for third nearest carbon 

atoms, and        is defined by 
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SAB can be obtained in the same way 
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with                           
  . 

Overall, the matrices H and S extended to include third nearest neighbours can be written as  
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The solution of the secular equation (2.11) is given by 
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where 
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2.2.3 Results 

In the paper by Reich [18] tight binding parameters were obtained by fitting the band structure to that 

obtained by ab initio calculations. Recently, Kundo [19] has reported a set of tight biding parameters 

based on fitting to a first principle calculation but more directly related to the physical quantities of 

interest. These parameters have been utilised in our calculation and are presented in table 2.1. Using 

these parameters the energy dispersion relationship is obtained and shown in Figure 2.2. 

Table 2.1  Tight-binding parameters 

Neighbours Esp(eV) 0(eV) 1(eV) 2(eV) s0 s1 s2 

1st-nearest 0 -2.74   0.065   

3rd-nearest -0.45 -2.78 -0.15 -0.095 0.117 0.004 0.002 
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(a)                                                                                        (b) 

Figure 2.2 Energy dispersion relationship obtained based on (a) first nearest neighbour and (b) third nearest neighbour tight 

binding method 

2.3 Numerical solution for the  bandstructure of Graphene nanoribbons 

When tailored into an armchair or zigzag nanoribbon of finite width, the translational symmetry only 

exists in x direction in graphene as shown in Figure 2.3. As a result a unit cell covering the whole width 

of the nanoribbon is chosen for tight-binding bandstructure calculation. The unit cell contains 2N0 (N0 is 

the graphene nanoribbon index number defined in 1.3) carbon atoms which leads to a  2N0x2N0 integral 

matrix H and overlap integral matrix S. In the literature most authors report matrices developed for this 

unit cell based on the first nearest neighbour assumption [17, 20-23]. However, in this section we 

extend the calculation to include up to third-nearest neighbours. An equivalent but computationally less 

expensive method is also developed. 

2.3.1 Armchair nanoribbons 

Consider an N0=5 armchair graphene nanoribbon shown in Figure 2.3 as an example. The wavefunction 

can be written as a linear combination of 2N0 π orbital functions contributed by the carbon atoms in the 

unit cell (we assume the carbon atoms on the edge are hydrogen-terminated so all σ bonds are filled). 
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Using (2.6) and (2.34) the 2N0x2N0 elements in the matrix integral H and overlap matrix integral S can be 

calculated. Here we derive the non-zero elements in the first row H1,1 ,H1,2 , H1,3  , H1,6  , H1,7  and H1,8 , all 

other none zero elements can be derived in the same manner.  
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Figure 2.3 An N0=5 armchair graphene nanoribbon. By choosing the unit cell shown as the rectangular box the nanoribbon 

can be treated as a 1D quantum wire. The red lines indicate edge bonding. 
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The non-zero elements of the 10x10 integral matrix H can be written as 
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(2.36)  

Similarly the overlap matrix S can be written as 

 



24 

 

 

*

0 1 0 2 2

* * *

0 0 1 0 2 2

* *

1 0 0 1 2 0 2 2

* * * *

1 0 0 2 0 2

* *

1 0 2 0 2

* * *

0 2 2 0 1

* *

0 2 2 0 0 1

* *

2 0 2

1

1 1

1 1

1 1

1

1

1 1

1 1

1

1

1

1

1

1

1

as s bs c s ds bs

a s a s s ds b s cs ds bs

s as as s b s ds bs c s ds bs

s a s a s b s ds b s cs ds

s as b s ds bs c s

b s cs ds b s a s s

ds bs c s ds b s as as s

bs ds b s s d b

S

c s



















* *

2 1 0 0 1

*

2 0 2 1 0 0

* *

2 0 2 0

1 1

1 1

1

1

1

s s a s a s s

bs ds bs c s ds s as as

bs ds b s cs s a s

 
 
 
 
 
 
 
 
 
 
 







 
 
  

 

(2.37)  

The energy dispersion relationship is then obtained by solving the secular equation (2.11). By using the 

same Tight-binding parameters as in Table 2.1, the energy dispersion relations for armchair graphene 

nanoribbons with N0=5,6,7 are calculated under first-nearest as well as third-nearest assumption. The 

results are summarized in Figure 2.4. 

 

Figure 2.4 Energy dispersion relationship of armchair graphene nanoribbons with N0=5,6,7 under nn (nearest-neighbour) and 

3nn(3
rd

-nearest-neighbour) assumptions 

2.3.2 Energy band gap of armchair graphene nanoribbons 
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corresponding to the armchair orientation [3].  Both numerical calculation and analytical results[23, 24] 

based on the first-nearest tight-binding assumption give the relationship of band gap δ as a function of 

the width of GNRs. The ribbon is metallic if N0=3m+2 where m is an integer number and semiconducting 

in other cases. In particular we have  

 

 
 
 

 
              

  

    
   

               
  

    
   

       

  (2.38)  

with                . However our numerical result under the  assumption of third-nearest 

interactions points out that even for         the nanoribbon still opens a small band gap and this 

result is also confirmed by a number of first principle calculations[12, 25-28]. 

Figure 2.5 shows a graph of the band gaps in armchair GNRs as a function of width index ranging from 

N0=5 to N0=34 under both first-nearest and third-nearest assumptions. It should be noted that (a) third-

nearest interaction opens a small bad gap when        ; (b) When                  

third-nearest interactions show a slightly decrease in the band gap and; (c) the band gap generally 

decreases as 1/N0 under both assumptions. This is similar to the case of zigzag carbon nanotubes in 

which the band gap decreases as 1/d, where d is the diameter of the tube. 

 

Figure 2.5  Energy band gap of armchair graphene nanoribbons as a function of their width index N0 under first and third 

nearest neighbour tight-binding assumption.  
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Figure 2.6 compares first-nearest with third-nearest neighbour results and gives a clearer view of the 

increasing/decreasing bandgap. 

 

Figure 2.6 Energy band gap difference of first and third nearest neighbour tight-binding assumptions in the armchair 

graphene nanoribbon as a function of width index. The lines are also fitted to α/N0 ,where α is a fitting parameter. 

 

2.3.3 Zigzag nanoribbons 

For the zigzag graphene nanoribbon with index N0 shown in Figure 2.7, H and S can be obtained using 

the same method as we developed in 2.3.2. Here we show the derivation of the non-zero elements in 
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Figure 2.7  An N0=4 zigzag graphene nanoribbon. By choosing the unit cell shown as the rectangular box, the nanoribbon can 

be treated as a 1D quantum wire.  
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(2.39)  

The 8x8 matrices H and S are given below 
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 (2.41)  

Substituting (2.40) and (2.41) into secular equation (2.11) and using the parameters in Table 2.1 the 

energy band can be found numerically. As an example the energy dispersion relationship of a zigzag 

graphene nanoribbon with N0=20 is shown in Figure 2.6. 

 

Figure 2.8 Energy dispersion relationship of an armchair graphene nanoribbon with N0=20 under nn (nearest-neighbour) and 

3nn(3
rd

-nearest-neighbour) assumptions 

The energy bands present some typical features: (a) the Dirac points of the 2D graphene are mapped 

into             , (b) there are two partially flat degenerate bands with zero energy between the 

Dirac points and the border of the Brillouin zone; the corresponding states are mainly located at the 

edges. 
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2.3.4 Quasi one-dimensional model 

The integral matrix H and overlap matrix S used in the previous calculation are functions of the Bloch 

wave vector kx. As a result, H and S need to be rebuilt for each solution of the secular equation which 

takes a lot of computational time for a graphene nanoribbon with a large index number. However if we 

treat the nanoribbon as a quasi-one dimensional structure as shown in figure 2.5 and 2.7, H and S only 

contain constant matrix elements. 

We start by writing the time-independent Schrodinger equation in block matrix form. 

0,0 0,1 0,0 0,10 0

, 1 , , 1 , 1 , , 1

, 1 , , 1 ,

n n n n n n n n n n n nn n

N N N N N N N NN N

S S H H

S S S H H HE

S S H H

 

 

 

   

 

      
      
      
      
      
      
            

 
(2.42)  

Where    is the 2N0-dimensional vector representing the wave function at the nth unit cell.  Taking the 

nth row of (2.42) we have 

                                                               (2.43)  

The Hamiltonians       ,       ,       and overlap matrices,                    are all 2N0x2N0  

constant matrices. Due to the periodicity of the structure we can also obtain:                      

         ,                              . 

Because of the property of the Bloch function we have               /d) where d is the distance 

between two neighbouring unit cells. For armchair GNRs,        , and in the case of zigzag GNRs, 

       . Substituting     into (2.43) we have 

        
          

        
          

       (2.44)  

(2.44) gives 2N0 solutions for E(k) corresponding to N0 subbands of the dispersion relation. In the case of 

first nearest approximation without orbital overlap,    ,     are empty matrices and    becomes an 

identity matrix. 

        
          

         (2.45)  

As an example,   ,   ,    of the N0=5 armchair shown in Figure 2.3 are given by 
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Using this model the energy dispersion relationship of armchair graphene nanoribbons with N0=5 is 

obtained and shown in Figure 2.9. The result agree extremely well with those in Figure 2.4 within a 

round off error less than      . 

 

Figure 2.9  Energy dispersion relationship of armchair graphene nanoribbons with N0=5 obtained by the quasi-one 

dimensional model 

2.4 Edge distortion in armchair graphene nanoribbons 

In the previous calculation of the band structure of an armchair graphene nanoribbon we use the same 

tight-binding parameters at the edge of the nanoribbon as in the centre. However, this assumption has 

been shown to be inaccurate in most cases by a number of first-principle calculations [11, 25-28]. In the 

paper by White  et al. [17] an edge distortion parameter            is introduced in to the tight-

binding model. By simply adding the distortion parameter to the first-nearest neighbour hopping 

parameter at the armchair nanoribbon edges (shown by the red lines in figure 2.3) the Hamiltonian Ha in 

(2.46) can be rewritten as 
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(2.48)  

 

Figure 2.10 compares the bandstructure result obtained using the edge distortion model with the one 

obtained from a normal third-nearest neighbour tight-binding model. It can be clearly seen that with 

edge distortion a larger bandgap opens in the armchair nanoribbon.   
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2.10 Energy bandstructure of an N0=5 armchair nanoribbon obtained by the normal third-nearest tight-binding 

approximation (left) and third-nearest tight-binding approximation with an additional edge distortion parameter. 

2.5 Bandstructure of strained graphene nanoribbons 

Strain could have a significant effect on the electronic properties of a material and is used in the silicon 

electronics industry to boost device performance.  The mobility of Si, SiGe and Ge has been successfully 

improved by the effects of strain[29]. For carbon nanotubes both experiments and simulations have 

confirmed that the band structure can be dramatically altered by strain[30]. Because of the close 

relation between graphene and carbon nanotubes, researchers have naturally explored the effects of 

strain in graphene. 

As discussed previously, graphene, being an atomically thin 2-dimensional material does not have a 

bandgap. A bandgap might be introduced by patterning the 2-D graphene into nanoribbons. Density 

functional theory (DFT) calculations show that strain can be a useful way to further tailor the 

bandstructure of graphene nanoribbons [31].  In this section we study the effects of uniaxial strain in 

graphene using the tight-binding model described in [32]. The tight-binding Hamiltonian obtained and 

the  band structure will be used to study the other electronic properties of graphene nanoribbons in 

Chapter 4. 

-1 0 1
-10

-8

-6

-4

-2

0

2

4

6

8

10
N=5 3nn

K
x
/3a

0

E
n

e
rg

y
 E

 (
e

V
)

N=5 3nn-edge



34 

 

Consider the graphene nanoribbon shown in figure 2.11.   

 

y
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2.11  Graphene nanoribbon built up from bond vectors 1a 2a 3a
 

The unstrained bond vectors are given by 

 

         

     
 

 
     

  

 
     

     
 

 
     

  

 
     

(2.49)  

If we set    to be the transport direction then the application of a uniaxial strain causes the following 

change of the bond vectors, 

 

               

                
(2.50)  

where i=1,2,3 and      ,      are the x and y component of     respectively.   is defined as the uniaxial 

strain along x direction where         is the Poisson ratio[32]. We use the same tight-binding 

Hamiltonian parameters as in 2.4, which includes the effects of edge bond relaxation and the third 

nearest neighbor coupling. When the nanoribbon is under uniaxial strain, each tight-binding parameter 

is scaled by a dimensionless factor    
  

 
 
 

, where    is the unstrained bond length shown in Figure 

2.11. 
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Using this simple tight-binding model, the bandstructure of the graphene nanoribbons under different 

strain strength can be calculated. As an example, the first two subbands of a N0=13 armchair graphene 

nanoribbon without and with 0.03 uniaxial strain are plotted in Figure 2.12. The calculation shows that 

this specific strain length (0.03) will decrease the bandgap of the first subband but increase the bandgap 

of the second subband. 

 

2.12 Energy dispersion relation of the first two subbands of an N0=13 armchair graphene nanoribbon. Black lines correspond 

to an unstrained nanoribbon, red lines correspond to a nanoribbon under        uniaxial strain. 

2.6 Effective mass of armchair graphene nanoribbons 

In the field of semiconductor simulation the effective mass is often introduced to describe the 

movement of electrons obeying Newton's law. For a simple parabolic E-k relationship, the effetive mass  

   of the electrons in a certain conduction  band  E can be found by fitting the following equation. 

       
  

 

 
  

    

   
  (2.51)  

where   
    

    
  is the bandgap of the subband, b, and    is the instrinsic energy level. Usually     is 

set to be zero. 
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However in the case of graphene, the parabolic relationship only exsists at low energies in armchair 

graphene nanoribbons with the index number N0≠3m+2 (otherwise we have a linear dispersion 

relationship). As a result the following nonparabolic fitting equation is introduced [33]. 

    
  

 

 
  

 

 
 

 

  
   

    

   
  (2.52)  

Figure 2.13 shows the lowest two subbands of a N0=13 armchair graphene nanoribbon. Both parabolic 

and nonparabolic models are plotted on the same graph. The parabolic model only fits the results from 

the tight-binding model in the low energy range (in the example       
  

   
     ) while the 

nonparabolic model gives excellent agreement with the tight-binding model over a extended energy 

range. 

 

2.13  Energy dispersion relations for the two lowest conduction/valence pairs of subbands of an N0=13 GNR calculated using 

the Tight-binding (TB) model and Nonparabolic and parabolic models 

Figure 2.14 compares the two models in an N0=14 armchair nanoribbon where the tight-binding model 

shows a liner dispersion relationship in the lowest subband.  
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2.14 Energy dispersion relations for the two lowest conduction/valence pairs of subbands of an N0=14 GNR calculated using 

the Tight-binding (TB) model and the  Nonparabolic and parabolic models 

 

In chapter 3 nonparabolic and parabolic fitting parameters are used to obtain an effective mass for use 

in a Poisson-Schrödinger solver applied to a  graphene field effect transistor. 

2.7 Conclusions 

In this chapter the energy band structures of graphene and graphene nanoribbons are obtained using 

the tight binding model.  Initially, only first nearest-neighbour interactions are considered but it is found 

that third nearest-neighbour interactions must be taken into account to achieve an accurate 

bandstructure.  The method is used to determine the bandstructure and energy bandgap in armchair 

and zigzag graphene nanoribbons.  In order to improve computational efficiency a quasi-one 

dimensional model of graphene nanoribbons is developed to obtain the energy bandstructures with no 

loss of accuracy.  The effect of edge distortion and strain on the energy bandstructures of graphene 

nanoribbons are also considered.  Finally, parabolic and non-parabolic expressions are used to fit to the 

energy bandstructures to obtain an effective mass for use in a Poisson-Schrödinger solver developed in 

chapter 3 to simulate charge transport in a graphene field effect transistor. 
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Chapter 3 Simulation of charge transport in a graphene nanoribbon 

transistor using a Schrödinger-Poisson solver in the effective mass 

approximation 

3.1  Introduction 

In this chapter we model a graphene based field effect transistor as shown in Figure 3.1. This device 

consists of a semiconducting graphene nanoribbon with a wrap around gate at four faces of the cuboid 

geometry. An insulator with relative permittivity εox=11.7 separates the semiconductor region of the 

device from the surrounding gate contact. The ends of the device are terminated by the metal source 

and drain contacts. Device parameters include the length=20nm (along x-direction) of the nanoribbon, 

its width=4nm (along z-direction) and the thickness of the insulator tox =2.5nm separating the graphene 

from the gate contact. 

 

Figure 3.1 Cubical geometry of Graphene FET 

The graphene used as the channel material in the model device is an armchair nanoribbon with the 

width of the graphene sheet defined by N0=19. The bandstructure is obtained using the tight-binding 

Hamiltonian of the armchair nanoribbon that includes the first nearest neighbour (1NN), third nearest 

neighbour (3NN) and the 1NN edge distortion Hamiltonians. Details of the bandstructure calculation 

were given in chapter 2. 
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In the simulation, the charge transport in graphene is investigated through the self-consistent solution 

of the charge and local electrostatic potential. The quantum mechanical treatment of electron transport 

is included by solving a 1D Schrödinger’s equation where the evanescent wavefunction from the metallic 

graphene to the semiconducting region is considered. Although this procedure has already been used in 

the simulation of a silicon quantum wire [34] and carbon nanotube field effect transistor [4], here it is 

applied to a graphene nanoribbon transistor with improvements to the Poisson-Schrodinger solver for 3-

D structures. 

The potential profile in the entire model is obtained from the solution to a three-dimensional Poisson 

equation for a cuboid system given by: 

  
  

   
 

  

   
 

  

              
        

 
 (3.1)  

Here          and          are, respectively, the potential and charge density in the device at position 

       .  

The nanoribbon is divided into unit cells which allow us to treat the graphene as a quasi-one-

dimensional conductor and the charge distribution on the surface of the material is obtained by solving 

the time-independent Schrödinger equation given by: 

 
   

   
  

   

  
            (3.2)  

Here        is the wavefunction of the charge carrier having an Energy E, m* the effective mass 

obtained from the bandstructure of the nanoribbon and U is the local effective potential seen by the 

carrier: 

                       (3.3)  

Here Xcn is the electron affinity of graphene,                is the potential on the graphene sheet at 

position      . Iteration starts by guessing the initial charge density on every point of the grid inside the 

device (usually zero). Next, by solving the Poisson equation we can know the electron potential of every 

point inside the device. Using the scattering matrix method we can then get obtain a new charge density 

distribution in the device from the Schrodinger equation. Using this new charge density to solve the 

Poisson equation again and repeating these steps many times until a new value of the charge density 
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matches the older one, we can get a final solution of the charge density by iteration. Hence, 

transmission probability, current and other characteristics of the device can be found. A flow chart of 

this method is shown below. 

 

Figure 3.2 Flow Chart showing the self-consistent solution of the Poisson-Schrödinger problem 

 

3.2 Solution of Poisson’s Equation 

In the field of device simulation Poisson’s equation is often used to describe the potential in the device 

region. In this section Poisson’s equation is solved using the finite difference method.  

3.2.1  Finite difference method 

Given a function f(x) shown in the figure below, one can approximate its derivative, slope of the tangent 

at P,  by the slope of arc PB, giving the forward-difference formula, 

 

Figure 3.3 Estimates for the derivative of f(x) at P using forward, backward, and central differences 
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or the slope of the arc AP, yielding the backward-difference formula as; 
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or the slope of the arc AB, resulting in the central-difference formula; 
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Also, the second derivative of )(xf  at P can be estimated as; 
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  (3.7)  

(3.4),(3.5) and (3.6) are named as forward, backward and central difference respectively. In general, any 

approximation of a derivative in terms of values at a discrete set of points is called finite difference 

approximation. 

3.2.2 3-D discretization 

From the Poisson equation (1) Let       represent an approximation to          . In order to discretize 

(3.1) we replace both the x and y derivatives with centered finite differences which gives: 

 

     
                            

 

     
                           

 
 

     
                             

      

 
 

(3.8)  

Consider special case where            we can rewrite (2) as 

 

                                                                   
      

 
 (3.9)  

Dividing the 3-D box into       grids and numbering each grid by an index α, where 
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                       (3.10)  

 

3.10 is transformed into 

                                        
    

 
 (3.11)  

In matrix form this equation can be written as 

     
  

 
  (3.12)  

Where,                         
  ,                         

  and A is an          

sparse matrix with                  on its diagonal as shown in Figure 3.4. 

 

Figure 3.4  A sparse matrix obtained when solving 3-D Poisson equation. The non-zero elements are shown in black. 

Once the vector   containing charge density on every grid point is given, we can calculate the potential 

by simply inversing the A matrix. 

       
  

 
  (3.13)  
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3.2.3 Boundary conditions 

Equation (3.11) is the general form for all the grids inside the cuboid. Assume the grid with index j is on 

the boundary, when the calculation comes to the jth row of matrix A, (3.11) is no longer useful because 

it requires knowledge the potential outside the box. To avoid this, we need to modify the matrix A and 

also the jth element of  . 

An easy implementation is setting  
  

 
   to be the value of the potential of grid index j which is defined 

by the source, drain and gate voltage of the graphene transistor. 
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 (3.14)  

where   is the work function. As a result, the jth row of modified A matrix will become         and 

   is now related to the voltage by the constant  
  

 
. 

3.3 Solution of the Schrodinger equation 

The charge distribution on the graphene surface is obtained by solving the Schrödinger equation using 

the scattering matrix method thereby providing a numerical solution at a given energy, E. Although the 

graphene sheet is two-dimensional, in order to use the one-dimensional energy dispersion relation and 

effective mass (same for electrons and holes due to symmetry), we treat it as a one-dimensional system. 

The charge density in the model device is given by:  

      
             

  
  (1)  

where q is the electron charge,   is the length of a single interval on the grid, and n(x) and p(x) are the 

number of electrons and holes in the graphene as a function of position.  
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3.3.1 Scattering matrix method 

 

The scattering matrix theory is derived in terms of carrier fluxes and their backscattering probabilities 

[35]. Consider a semiconductor slab with a finite thickness   , as shown in Fig 3.5. Assuming steady 

state conditions,      and      are the position-dependent, steady state, right- and left-directed fluxes. 

There is a right-directed flux incident on the left face of the slab and a left-directed flux incident on the 

right face.  

a(z)

b(z)

a(z+∆z)

b(z+∆z)

 

Figure 3.5 Fluxes of charge carriers incident upon and reflected from a slab of finite thickness. 

In this example, fluxes      and         that emerge from the slab are to be determined. These 

fluxes can be expressed in scattering matrix form, which relates both fluxes emerging from the slab to 

the two incident fluxes on the slab: 

  
       

    
   

     

       
    

       
  (3.15)  

 

where   and    denote the fraction of the steady-state right- and left-directed fluxes transmitted across 

the slab.  

The device under consideration can be divided into a set of thin slabs connected so that the output 

fluxes from one slab provide the input fluxes to its neighbouring slabs. The two fluxes injected from the 

left and right contacts are used as the boundary conditions. Fig. 3.6 shows two interconnected 

scattering matrices.  
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Figure 3.6 Two scattering matrices cascaded to produce a single, composite scattering matrix. 

Taking only the fluxes emerging from the set of two scattering matrices,    and    into account, the two 

scattering matrices can be replaced by a single scattering matrix. Assuming that the two scattering 

matrices have transmission elements    ,   
 ,     and   

  then the elements of the composite scattering 

matrix are: 

 

           
    

     

         
        

    
     

   
    

         
    

    
   

  

   
    

      
    

    
  

(3.16)  

where        , etc. Eq. 3.16 describes the multiple reflection processes that occur when a flux 

entering from the left or right, transmits across the first slab then backscatters and reflects from the 

interiors of the two slabs.  

 

In real applications, the device is divided into a finite number of scattering matrices. These matrices are 

then cascaded two at a time until the entire device is described by a single scattering matrix. Once this 

matrix is computed, the current through the device is determined by subtracting the right- and left-

directed fluxes. In the next section, this modelling technique is applied to a MOS device based on 

graphene.  

3.3.2 Discretisation of the quantum mechanical problem 

The entire system is divided into   grids and for each grid the electron wavefunction   is expressed as: 
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      (3.17)  

 

where   is the wavevector,   and   are the amplitudes of the wavefunctions. The wavefunction and its 

derivative are matched on the boundary between intervals   and     using the relations:  

 

        

   

  
 

     

  
 

(3.18)  

The relationship between        
  and            

  is obtained using: 

  
  

  
     

    

    
  (3.19)  

where        
  is the transpose of the matrix        ,    is the scattering coefficient, and     and    

are the wavefunctions in the source and drain contacts, respectively. When computing the 

wavefunctions for the source injection, the amplitude of the wavefunction at the drain end is set to 

zero. An analogous calculation is performed when considering the drain injection.  

The Landauer equation is expected to hold for the flux and the probability current    equated to the 

Landauer current    [4]: 

 

      
  

  
   

  

  
 
 

     
  

  
   

       
 

  
           

  

  
      

  

  
         

(3.20)  

 

where    is the Fermi-Dirac carrier distribution in the source and T is the transmission probability, 

specified by:    
       

      
 

                                                       

 



47 

 

The normalization condition is: 

      
    
     

 (3.21)  

 

The total carrier density in the system is computed from the normalized wavefunctions. In order to 

obtain the carrier distribution along the surface of graphene,   is integrated over all possible energy 

levels.  

 

             
 
       

 
   

    

    

 

             
 
       

 
   

    

    

 

(3.22)  

 

where      is the bottom of the energy band,      is the vacuum energy level.      and      are 

wavefunctions, respectively, corresponding to electron and hole injection from the source, and       

and       are the equivalent wavefunctions corresponding to injection from the drain. Eq. 3.22 can be 

solved using the adaptive Simpson’s method [36].   

The integrations were performed using the adaptive Simpson’s method which can be expressed as: 

 

      
 

 

     
 

 
                  

      
 

 

        
 

 

     

                           
 

  
                             

(3.23)  

 

where   
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If             , where   is a predefined tolerance, the algorithm calls for further division of the 

integration interval into two, and the adaptive Simpson's method is applied to each subinterval in a 

recursive manner. In this approach, the points in the integration intervals are non-equidistant, so there 

are many points around the resonances while there are only few points in other regions. 

Using a numerical damping factor, the coupled Schrödinger-Poisson equation model was solved 

iteratively. An initial assumption of zero charge    distribution on the graphene surface was made and 

the electrostatic potential    was computed from the Poisson program. The new charge density     
    is 

computed using the electrostatic potential   . This new charge density is used for the calculation of the 

new potential     
    and finally the new potential      is calculated as: 

           
            (3.24)  

where      . The convergence of the system is achieved when the defined criterion is met. 

 

3.3.3 Simulation Procedure 

To start the simulation, a guess of the initial charge density inside the device is made, usually zero. The 

next step is to compute the electron potential inside the device by solving Poisson’s equation. The new 

charge density in the device is computed by using the scattering matrix method to solve the Schrodinger 

equation. This new charge density is then used to solve the Poisson equation again and these steps are 

repeated a number of times until the new value of the charge density match the older one. At this point, 

the criterion for convergence of the system is achieved and other properties of the device are observed 

via numerical integrations. 

3.4  Results 

The graphene nanoribbon used in this study has dimensions           . Results are compared with 

those obtained from a similar study on carbon nanotubes conducted by Odili [41]. The carbon 

nanotubes are formed by rolling the nanoribbon resulting in tubes of radius       . For both structures 

the work-functions of the source and drain regions were taken to be       and the conduction band 

edge in the channel in equilibrium is        above the Fermi energy level. The work function is chosen 

to be consistent with the value for silver      used in the experimental work reported in ref [6]. Only 

the first subband was considered as the energies of the upper subbands exceed the drain voltage in the 

structures used in this simulation. A single effective mass was used in the model devices to allow 
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comparison of their output characteristics. The effective mass was          for both electrons and 

holes, where,    is the free electron mass [17].  

 

Fig. 3.7a shows a three-dimensional (3D) plot of the electron potential energy within the graphene sheet 

with     = 0V and     = 0.5V. The electron potential energy, represented by the conduction band edge, 

is lower at the edges of the sheet due to the wrap around gate. Increasing     lowers the conduction 

band edge in the central region as shown in Fig. 3.7b. Cross-sections of the electron energy profiles 

along the edge of the sheet and in the centre of the channel, giving a clearer picture of the effect of 

drain voltage on electron energy, are shown in Figs. 3.7c and 3.7d respectively. 
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                                (a)                                                                              (b) 

 

                 

                                (c)                                                                              (d) 

Figure 3.7 Simulation of the potential energy seen by the electrons at            (a) 3D view of the conduction band edge 

at          (b) 3D view of the conduction band edge at           (c) Conduction band edge along the length of the 

device for different     at the edge of the graphene sheet (d) Conduction band edge along the length of the device for 

different     at the centre of the graphene sheet. 

 

Figures 3.8a and 3.8b show the electron density throughout the graphene sheet resulting from tunneling 

through the potential barrier at the contact. When the       , the electron density is higher at the 

edges than in the centre, a result consistent with the variation of the conduction band edge. As the 

drain voltage is increased to      , the electron density falls within the centre and at the edges. Again, 
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this can be seen more clearly from the cross-sections of the energy density profile through the centre of 

the device and at the edges. 

               

                                (a)                                                                              (b) 

                  

                                (c)                                                                              (d) 

Figure 3.8 Simulation of the carrier density at         . (a) 3D view of the net carrier density as a function of position at 

        . (b) 3D view of the net carrier density as a function of position at         . (c) Cross-section of carrier density 

for different     at the centre of graphene sheet (d) Cross-section of carrier density for different     at the edge of the 

graphene sheet.   

Figures 3.9 (a) and (b), respectively, show the output characteristics of MOSFETs based on a graphene 

ribbon and a carbon nanotube. The width of the graphene nanoribbon equals the circumference of CNT. 

Comparing the I-V characteristics of these devices it is observed that for graphene the maximum current 

drive is achieved at a much lower drain bias. This result suggests that circuits based on graphene 

MOSFETs may have a superior switching performance than those based on CNTs. The saturation 
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currents for the graphene and CNT devices are       and      , respectively. The low bias conductance 

of the devices can be approximated from the slope of the I-V characteristics. Based on this 

approximation, the maximum conductance for the graphene and CNT devices are       and     , 

respectively. 

 

                  

                                (a)                                                                              (b) 

Figure 3.9 I-V characteristics of Graphene (a) and CNT (b) 

The physical origin of the difference in the output characteristics can be understood by considering the 

relationship between the drain current,    , the transmission probability,    and Fermi Dirac function 

    : 

     
  

 
             (3.25)  

Figures 3.10 (a) – (f) show plots of   ,       and           for the graphene and CNT based MOSFETs 

at three drain-source voltages,                and     . Figures 3.10 (a), (c) & (e) are the results for 

the graphene-based device while figures 3.10 (b), (d), & (f) are the corresponding results for the CNT-

based device. The drain current is represented by the area under the graph of           versus 

energy. The physical difference in the output characteristics of the two devices stems from differences 

in transmission probabilities. For the graphene based device the transmission probability rises rapidly 

but oscillates between     and     . However, in the CNT based device, transmission probability 

rises slowly with energy and exhibits oscillations between    and     where       is significant.  



53 

 

         

                        

                                (a)                                                                              (b) 

          

                        

                                (c)                                                                              (d) 

         

                        

                                (e)                                                                              (f) 

Figure 3.10 Transmission Probability and Fermi Dirac Distribution for different    . Carbon nanotubes – (a), (c), (e) and 

graphene – (b), (d), (f) 
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As shown in Fig. 3.9, the current increases until the maximum value of         is unity. Beyond that 

point, the current is mainly determined by    while the change in         has no effect on the net 

current. The      plot shows that above the conduction band edge all the energy states in graphene 

make a contribution to the current where the transmission probabilities are well above zero. For a CNT, 

the transmission probabilities for electrons at some states are close to zero thereby making little 

contribution to the current and increasing the magnitude of     required to obtain maximum current. 

 

3.5 Conclusions 

In this work charge transport in MOS systems based on graphene nanoribbons and carbon nanotubes 

has been modeled and compared. Poisson’s equation is discretized in three-dimensions and solved self-

consistently with Schrödinger’s equation with the latter solved using the scattering matrix method. The 

band structure of graphene is obtained through a tight-binding Hamiltonian of the armchair-edge 

nanoribbon. To improve immunity to short channel effects, a fully wrapped gate is assumed for both 

devices [37].  

In the graphene-based FET edge effects influence the energy band structure and charge density. 

Differences are observed in the output characteristics of the two devices that stem from differences in 

transmission probabilities. For CNFET’s the transmission probability is the same at all points on the 

circumference of the nanotube. However, the structure chosen for the graphene FET results in potential 

differences between the edges and the centre of the graphene sheet leading to differences in the 

amplitudes of the electron wavefunction. The total transmission probability for the graphene FET is, 

therefore, a summation of transmission probabilities over the width of the graphene nanoribbon. As 

each element of the summation has the characteristic form exhibited by the CNT structure the total 

transmission probability for the nanoribbon displays smaller oscillations and a more rapid rise in average 

value with increasing energy. Comparing the I-V characteristics of these devices it is observed that for 

graphene the maximum current drive is achieved at a much lower drain bias. This result suggests that 

circuits based on graphene MOSFETs may have a superior switching performance than those based on 

CNTs. 
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Chapter 4 Conductance of Graphene nanoribbons 

4.1 Landauer formalism 

In chapter 3 we treated Graphene nanoribbon as a quasi-1D conductor. For such a nanoscale system the 

Landauer Formula is widely used in the calculation of current. 

   
  

 
                        

  

  

 (4.1)  

Here T(E) is the transmission coefficient , f(E) is the Fermi-Dirac distribution function and     and    are 

the Fermi  energies of the left and right contact of the conductor. The coefficient 2 is to take account of 

electron spin. 

Applying a small bias voltage δµ, and writing the Fermi function as                     results 

in a first order Taylor expansion 

                       
        

  
 (4.2)  

The change in current can therefore be written as 

    
  

 
        

        

  
  

  

  

 (4.3)  

and the conductance at the applied source potential,     , is given by 

 

      
  

    
 

   

 
      

        

  
  

  

  

 

 
   

 
   

(4.4)  

Where                 
  

  
,     

        

  
 

 

    
       

 

    
  is called the thermal broadening 

function. 

Figure 4.1 is a sketch of the thermal broadening function at different temperatures. Its maximum value 

is 
 

    
 while its width is proportional to    . The area obtained by integrating    is equal to one. 
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Considering the simplest case where the temperature is 0 K, the thermal broadening function becomes a 

standard Dirac delta function with area equal to one. As a result (4.4) becomes (   is changed to E in the 

expression) 

       
   

 
     (4.5)  

(4.4) and (4.5) are called Landauer formulae and will be used in the following calculation of conductance 

in graphene nanoribbons. 

 

Figure 4.1 Plot of thermal broadening function at different temperatures. At T=0 K the broadening function is a Dirac delta 

function with area equal to one. 

In the Landauer formalism, the nanoscale conductor is assumed to be connected to the contacts by two 

uniform leads that can be viewed as quantum wires with multiple subbands. If the energy-dispersion 

relation (E-k relation) is known, a t-matrix similar to a microwave waveguide can be formulated using 

the scattering matrix method. This original method of calculating the transmission in (4.5) is given by [38] 

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

E (eV)

F
T
(E

)

 

 

T=100K

T=150K

T=200K

T=250K

T=300K

T=0k



57 

 

              

  

         
(4.6)  

Here t is the t-matrix whose element tnm gives the amplitude for an electron incident in mode m in lead 1 

transmitting to a mode n in lead 2. 

4.2 Green’s function model 

The Nonequilibrium Green’s Function (NEGF) is a convenient method for calculating the transmission 

coefficient. Consider a graphene nanoribbon with 2 semi-infinite contacts shown in Figure 4.2. 

 

Figure 4.2 quasi-1D model of graphene nanoribbon having infinite contact length 

The matrix representation of the Schrodinger equation including the overlap integrals is given by 

           (4.7)  

Where H and S are block matrices defined in (2.42).  Define             and       . We have 

      (4.8)  

  is a small positive energy value (10-5eV in this simulation) which circumvents the singular point of the 

matrix inversion . Matrix A is an infinite large tri-diagonal block matrix whose none zero elements in the 

qth row are 

 

 

                     

                                 
  

                                 
  

(4.9)  
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4.2.1 Green’s function in the device region 

Matrix G is called the Green’s function of the system. If we divide the graphene nanoribbon into a left 

contact region (unit cells0,-1,-2 …), a device region (unit cells 1,2 … M-1,M) and a right contact region 

(unit cells M+1,M+2,…) as shown in Figure 4.2, matrices A and G can also be divided into corresponding  

block matrices, and (4.8) can then be written as 

  

LL LD LL LD LR

DL DD DR DL DD DR

RD RR RL RD RR

A A O G G G I O O

A A A G G G O I O

O A A G G G O O I

     
     


     
          

  (4.10)  

where  O represent zero matrices and 

 2, 3 2, 2 2, 1

1, 2 1, 1 1,0

0, 1 0,0

LL
A A AA

A A A

A A

     

    



   
 

  
 
 
 
 
 
 

 (4.11)  

corresponds to the left semi-infinite contact, while 

 

1, 1 1, 2

2, 1 2, 2 2, 3

3, 2 3, 3 3, 4

M M M M

M M M M M M

RR M M M M M M

A A

A A A

A A A A

   

     

     

 
 
 
 
 

   
    

 (4.12)  

corresponds to the right semi-infinite contact, and 

 

1,1 1,2

2,1 2,2 2,3

1, 2 1, 1 1,

1, ,

DD

M M M M M M

M M M M

A A

A A A

A

A A A

A A

    



 
 
 
   
 

    
   
 
 
 
 

 (4.13)  
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corresponds to the device region. 

 

0,1

T

LD DL

O O O O

O O O O

O O O OA A

O O O O

A O O O

  
 

 
 
   
 

  
   

 (4.14)  

corresponds to the coupling between left contact and the device region and 

 

, 1M M

T

RD DL

O O O A

O O O O

A AO O O O

O O O O

O O O O

  
 

 
 
   
 

  
   

 (4.15)  

corresponds to the coupling between right contact and the device region 

From (4.10) we have 

 

0

0

DL LD DD DD DR RD

RD DD RR RD

LL LD LD DD

A G A G A G I

A G A

A G A G

G

  



 



 (4.16)  

Simple manipulation of (4.16) yields 

 
1 1 ][ D LL LD RR RDD DL DR DDA A A GA A IA A     (4.17)  

(4.17) reduced the infinite Green’s function to a finite device Green’s function GDD coupling to the right 

and left contacts. 1

LL DDL LL A A A   and 1

RR DDR RR A A A  are referred to as the self energies of the left 

and right contacts respectively. Note that because ADL ALD ADR and ARD only contain one block matrix 

element we only need to seek the last diagonal block in 1

LLA and the first diagonal block in 1

RRA  in order 

to calculate self energies. 
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4.2.2 Surface Green’s function 

Define 1L

LLg A  and 1R

RRg A  as the Green’s functions of the isolated semi-infinite contacts. The 

surface Green’s functions 0,0

Lg  and 1, 1

R

M Mg    (also called the left and right connected Green’s functions) 

of the Left and Right contacts are the Green’s function elements corresponding to the boundary unit cell 

0 and M + 1 respectively, 

 
0,0

1

0,0

L

LLg A  and 
1, 1

1

1, 1 M M

R

M M LLg A
 



    (4.18)  

(4.17) can be rewritten as 

 
1][DD DD L RG A     (4.19)  

where 

 
1,1 1,0 0,0 0,1

L

L A g A   and 
, , 1 1, 1 1,M M

L

R M M M M M MA g A      (4.20)  

All other elements in L and R are zero. The surface green’s functions 0,0

Lg and 1, 1

L

M Mg   are the main 

elements required to solve (4.19). The method to obtain these surface green’s functions will be 

discussed in 4.3.  

4.2.3 Simple model 

 

Figure 4.3 quais-1D model of infinite length graphene nanoribbon with only one unit cell in the device region 

When only the conductance of the graphene nanoribbon is of interest, the potential on the entire 

nanoribbon is constant and we can divide the unit cells 2 to M so that the Green’s function in the device 



61 

 

only corresponds to the remaining unit cell 1. Figure 4.3 shows a Schematic diagram of this model. As in 

4.19 the Green’s function of the first unit cell is given by 

 1

11 1

11

1

11 1][( ) L RE i S G IH     (4.21)  

where 

 

   10

11

10 0, 01 00 1[][ ]L

L E i S H g E i S H        

   12

11

12 2, 212 21[][ ]L

R E i S H g E i S H        

(4.22)  

The transmission is then given by 

 

                  
   

with            
       

      
(4.23)  

The local density of states on the site j in unit cell 1 is given by [38] 

     
 

 
             (4.24)  

where          is the matix element of Green’s function at site j. 

The advantage of this simple model is that it avoids the inversion of the large matrix 1[ ]DD L RA  

so that no matrix larger than 2N0X2N0 is involved.  

4.3 Iterative scheme for the surface Green’s function 

4.3.1 Matrix quadratic equations 

The semi-infinite matrix ALL can be divided into 

      
         

       
  (4.25)  

where 
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2, 3 2, 2 2, 1

1, 2 1,

' '

1

L L A

A

A
A A

A

     

   

   
 

  
 
 
 
 

 

00 ,' 1L O O AA 
      

0 ''0

†

LL AA   

(4.26)  

As in (4.17) we have 

 
    

                 
        

                  
  

       
(4.27)  

Note that the potential through the entire left contact is constant; the coupling Hamiltonian matrix and 

overlap matrix between nearest unit cells do not change for the unit cell index. 

 

0,0 0,0 0,0 1, 1 2, 2

1,0 1,0 1,0 2, 1 3, 2

0, 1 0, 1 0, 1 1, 2 2, 3

†

0, 1 1,0

...

...

...

ES H A A A

ES H A A A

ES H A A A

A A

   

      

      

 

    

    

    



 (4.28)  

Furthermore because both       and     are semi-infinite with the same block elements we have 

            and      
        

  
 (4.29)  

Combining (4.29) with (4.27) we obtain the matrix quadratic equation for     
  

     
                 

        (4.30)  

The matrix quadratic equation for         
  can be obtained in a similar manner 

         
                     

        (4.31)  

Given an initial guess of     
  and         

  the updated value of     
  and         

  can be calculated 

from (4.30) and (4.31). Repeating this process until the new values change very little, the final value of 

the surface green’s functions are obtained. 
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4.3.2 Sancho-Rubio iterative scheme 

The matrix quadratic equation gives a simple iterative scheme for calculating surface green’s functions. 

However, they must be calculated by iterating until self-consistency is achieved. This usually involves 

more than 50 iterations. Especially, when     
  or         

  is in the neighbourhood of singularities when 

several hundred iterations may be needed to get an accurate result [39]. 

Sancho et.al. developed an iterative scheme which converges much faster. After n iterations 2n unit cells 

instead of n unit cells are taken into account. The original Sancho-Rubio iterative scheme only included 

the Hamiltonian matrix H while the overlap matrix S is assumed to be an identity matrix. Here we extend 

this method using a more general expression so that S is also taken into account. 

Starting from the definition of the Green’s function of left semi-infinite contact, L

LLA g I , we have 

2, 3 2, 2 2, 1 2, 1 2,0

1, 2 1, 1 1,0 1, 2 1, 1 1,0

0, 1 0,0 0, 2 0, 1 0,0

L L

L L L

L L L

A A A g g I

A A A g g g

A A g g g

        

         

  

           
   

        
   
       
   

     
        

 (4.32)  

Taking the block matrix multiplication of ALL and the last column of gL we obtain 

 2, 3 2, 2 2, 1 2,0

1, 2 1, 1 1,0 1,0

0, 1 0,0 0,0

L

L

L

A A A g O

A A A g O

A A g I

      

     



         
              
     
     
     
         

 (4.33)  

(4.33) is equivalent to a series of matrix equations as shown below 
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0,0 0,0 0, 1 1,0

1, 1 1,0 1,0 0,0 1, 2 2,0

2, 2 2,0 2, 1 1,0 2, 3 3,0

L L

L L L

L L L

A g I A g

A g A g A g

A g A g A g

 

      

        

 

  

  

 

…. 

(4.34)  

Using the relation in (4.28) again, the general term of (4.34) can be written as 

 

     
      

         
        

              
   

          
            

  

with          
       

   and           
        

(4.35)  

Applying (4.35) to        
  and        

  we have 

 

     
              

          
              

            
   

     
           

            
  

where  

                  
    

  

                   
     

 
 

(4.36)  

Equation (4.36) is isomorphic to equation (4.35) and the process can be repeated iteratively. After i 

iterations we have 

 

     
            

             
  

where 

                          
      

  

                           
       

  

(4.37)  

Using (4.37) the following chain of equation is obtained 

 

     
        

          
  

     
        

          
  

(4.38)  
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… 

      
        

             
  

where 

 

     
        

          
  

               
          

  

                        
          

  

                               
             

  

(4.39)  

The process is repeated until         with   arbitrarily small.          
   . (4.39) then gives  

      
       

    with                                      (4.40)  

Substituting (4.40) into the first equation in (4.34) the surface Green’s function of the left contact can be 

obtained from 

 
    

                
  

 

                                
(4.41)  

Similarly defining 

                                   (4.42)  

the surface Green’s function of the left contact can be obtained from 

         
                                 (4.43)  
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4.4 Results 

In this section we simulate the conductance of different types of graphene nanoribbon and nanoribbon 

junctions including the effects of defects. 

4.4.1 Quantization of conductance 

Armchair nanoribbon 

We look firstly at the N0=13 armchair graphene nanoribbon shown in Figure 4.4. 

Unit Cell

 

Figure 4.4 N0=13 armchair graphene nanoribbon. The rectangle shows the unit cell and the triangle and square, edge and 

centre defects, respectively. 

Defining the carbon atoms in the rectangle as a unit cell and using a first-nearest neighbour tight-binding 

Hamiltonian with the parameter γ0=-2.66eV, the bandstructure of the nanoribbon is obtained and 

plotted in figure 4.5.  

 

Figure 4.5  Energy bandstructure of an N0=13  armchair graphene nanoribbon 
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Using the simple Green’s function model described in section 4.3 the transmission probability T(E) is 

calculated in the energy range [0 - 2eV].  The conductance      is then obtained using (4.5) and (4.4) at 

temperatures, T=0K and T=300K respectively.  Figure 4.6 shows these results. 

 

Figure 4.6 Calculated conductance of a N0=13 armchair graphene nanoribbon at different temperature. 

It can be clearly observed that the conductance of the nanoribbon is quantized at both low temperature 

and room temperature, although the step-like conductance is smoothed by the thermal broadening 

function in the latter case. 

The quantization of the conductance can be explained by reference to the bandstructure of the 

nanoribbon. In figure 4.5 the 4 conduction bands in the range [0 - 2eV] are plotted. Within this energy 

range electrons can only be transported in the 4 conduction bands. Each of the conduction bands 

contributes one unit of the fundamental ballistic conductance  
   

 
.  

Steps in conductance occur at T=0K at energies corresponding to conduction band edges at 0.35eV, 

0.66eV, 1.48eV and 1.51eV. 
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Zigzag nanoribbon 

Figure 4.7 shows an N0=8 zigzag nanoribbon with a unit defined by the rectangle. 

6

Unit Cell

6

6 6

6 6

6 6

 

Figure 4.7 N0=8 zigzag graphene nanoribbon. The rectangle shows the unit cell and the triangle and square, edge and centre 

defects, respectively. 

The conductance of the nanoribbon is calculated using same method used for the armchair nanoribbon. 

Figure 4.8 shows the calculation result. Note that because all zigzag nanoribbons are metallic there is no 

bandgap and the nanoribbon has a minimum conductance of 
   

 
 even when E=0 eV. 

 

Figure 4.8 Calculated conductance of a N0=8 zigzag graphene nanoribbon at different temperatures. 
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4.4.2 Effects of defects 

The triangles and squares in figures 4.4 and 4.7 correspond, respectively, to edge and centre defects 

(vacancies). Figure 4.9 shows the conductance and local density of states of an N0=13 armchair the GNR 

shown in figure 4.4.  

 

Fig 4.9 Conductance and local density of states of the N0=13 armchair GNR shown in figure 4.4. Blues line are for GNRs 

without defects, while green lines are for a GNRs with an edge defect ( triangle in figure 4.4) and red lines are for the GNRs 

with a centre defect (rectangle in figure 4.4). 

Clearly even minor defects have a significant effect on the conductance of graphene nanoribbons, an 

effect that can be potentially be exploited in device applications. The defects are also observed to have 

a strong effect on the local density of states. 

Figure 4.10 shows the conductance and local density of states of the N0=8 zigzag GNR shown in figure 

4.7.  
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Figure 4.10 Conductance and local density of states of the N0=8 zigzag GNR shown in figure 4.7. Blues lines are for GNRs 

without defects, while green lines are for a GNRs with an edge defect (triangle in figure 4.7), and red lines are for the GNRs 

with a centre defect (rectangle in figure 4.7). 

As expected the energy band gap expected for a GNR ribbon with N0=8 is larger than for the N0=13 GNR.  

The conductance and local density of states are again affected by the presence of defects but in this 

case the changes are different.  

4.4.3 Conductance of graphene junctions 

 

Figure 4.9 shows two types of graphene junctions containing defects. Single vacancy defects indicated 

by a triangle and a rectangle are referred to as type A and type B. 
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Unit Cell 

      

Unit Cell 

  

(a)                                                                                            (b) 

Figure 4.9 two types of metal-semiconductor junctions: (a) A GNR with index N0=23 connected to a GNR with index N0=13 in 

the centre; (b) The same type of GNRs as in (a) but connected at the edge. Single defects of type A are indicated by a triangle 

while type B defects are represented by rectangles. 

Figure 4 10 (a) and (b) compares the conductance of a graphene armchair-edge nanoribbon of index 

N=13 and metal/semiconductor junction formed with the nanoribbon when defects are absent and 

when they are present.   

  

Figure 4.10(a) Conductance vs Energy for the junction shown in Figure 4.9, (a) using first nearest-neighbour parameters. 
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Figure 4.10(b) Conductance vs Energy for the junction shown in Figure 4.9, (b) using first nearest-neighbour parameters. 

Significant differences in conductivity are observed suggesting the possibility of engineering structures 

using vacancies. 

4.4.4 Effects of third-nearest neighbour interactions 

 

Figures 4.11(a) and (b) compare the conductance of a graphene armchair-edge nanoribbon of index 

N=13 and metal/semiconductor junction formed with the nanoribbon assuming first and third nearest-

neighbour interactions respectively.  For graphene nanoribbons differences are observed in the step-like 

structure, reflecting differences in the calculated band structure. When only first nearest-neighbour 

interactions are considered the conductance of the conduction and valence bands is always symmetric 

as determined by the formulation of the energy dispersion relation. 
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Figure 4.11 (a) Conductance vs Energy for the junction shown in Figure 4.9, (a) using third nearest-neighbour parameters 

 

Figure 4.11 (b) Conductance vs Energy for the junction shown in Figure 4.9, (b) using third nearest-neighbour parameters 

In the case of graphene nanoribbons the conductance within a few electronvolts of the Fermi energy is 

symmetrical for both first and third nearest-neighbour interactions. However, it is notable that at higher 

energies (not shown in the figure) overlap integrals introduced by third nearest neighbour interactions 

result in asymmetry between the conductance in the conduction and valence bands. For 

metal/semiconductor junctions significant differences in conductivity occur even at low energies due to 

mismatches of the subbands. Asymmetry in the conduction and valence band conductance (absent for 

first nearest neighbour interactions) are also apparent when third nearest neighbours interactions are 

included in the Green’s function. Differences are also seen when defects are incorporated within a 
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metal/semiconductor junction, an interesting system explored by Hong et.al. [40]. In this work vacancies 

are introduced in the lattice at the positions marked by the solid rectangle and triangle in figure 4.9 and 

the conductance obtained in each case. Hong et. al derive a coupling term associated with associated 

with differences in band structure. For third nearest-neighbour the solution to the coupling strength 

must be derived numerically. 

4.4.5 Strained graphene nanoribbons 

In chapter 2 it was shown that strain can modify the energy band structure of graphene nanoribbons. 

Figure 4.11 shows the effects of uniaxial strain on the conductance and local density of states graphene 

nanoribibbons of width N0=13.  Strain has been used to improve the performance of silicon MOSFETs 

and the results below suggest that strain can be used to engineer the current-voltage characteristics of 

devices formed on graphene nanoribbons. 

 

Figure 4.12 Conductance and local density of states of an N0=13 armchair GNR (blue lines). Red lines show the conductance 

and LDOS under a uniaxial strain of 0.1. 
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4.5 Conclusions 

 

In this chapter we have determined the conductance of nanoribbons and graphene 

metal/semiconductor junctions using a NEGF formalism based on the tight binding method 

approximated to first nearest-neighbour and third nearest-neighbour including the effects of defects. 

We observe that defects play a significant role in determining the conductance and local density of 

states of nanoribbons and junctions formed with them when first nearest neighbour interactions are 

considered. The position of the defect also affects the observed conductivity. However, few studies 

report the effect of third nearest neighbour interactions on conductivity. In this work we find significant 

differences are observed suggesting the commonly used first nearest-neighbour approximation may not 

be sufficiently accurate in some circumstances. The most notable differences are observed when defects 

are introduced in the metal/semiconductor junctions. Finally, we find that strain can be used to 

engineer  the conductance and local density of states of graphene nanoribbons. 
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Chapter 5 Conclusions and further work 

Since the invention of the transistor in 1947 the rapid and continuous growth of the semiconductor 

industry has been based on one material, silicon. Other materials such as gallium arsenide have found 

uses in specialised applications but the market for semiconductor devices has been dominated by those 

based on silicon. Although this dominance is expected to continue into the foreseeable future the 

formation of freeform graphene in the mid-1980s has revolutionised semiconductor device research. As 

described in the introduction to this thesis the number of research publications has risen exponentially 

since the mid-1980s. Although the development of this material provides excellent opportunities for 

research, the large number of researchers studying graphene has led to strong competition within the 

area. Prior to the fabrication of graphene devices carbon nanotubes were being considered as the basis 

for electronic devices in a post-silicon era. However, carbon nanotubes are not compatible with silicon 

technology whereas graphene is as it is planar. One of the main attractions of graphene is the very high 

electron mobility is observed within the material.  However, graphene has demonstrated other 

surprising properties including unusual magnetic effects. This thesis reports research on charge 

transport within graphene devices. A comparison is made or charged transport within carbon nanotubes 

and graphene nanoribbons.  Different techniques are explored for modelling charge transport within 

graphene-based devices. In particular, a self consistent solution of Schrödinger and Poisson’s equations 

is developed. Charge transport within graphene nanoribbons is studied using the nonequilibrium 

Green’s function. 

 

In order to obtain the current and voltage characteristics of a semiconductor device the energy 

dispersion relation of the material on which it is based must first be obtained. The energy band structure 

of graphene has been known for long time and had been determined using the tight binding model. 

However, the energy dispersion relations of structures formed with graphene can depend on geometry, 

edge effects and the model parameters used in the simulation. The second chapter of this thesis was 

therefore devoted to the determination of the energy band structures of graphene and graphene 

nanoribbons using different tight binding models. Initially, only first nearest-neighbour interactions were 

considered but it was found that third nearest-neighbour interactions must be taken into account to 

achieve an accurate bandstructure.  The method was used to determine the bandstructure and energy 

bandgap in armchair and zigzag graphene nanoribbons.  It was observed that the computational 

efficiency could be improved using a quasi-one dimensional model of graphene nanoribbons to obtain 
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the energy bandstructures with no loss of accuracy.  The effect of edge distortion and strain on the 

energy bandstructures of graphene nanoribbons were also considered.  Parabolic and non-parabolic 

expressions were used to fit to the energy bandstructures in order to obtain an effective mass for use in 

a Poisson-Schrödinger solver developed in chapter 3 to simulate charge transport in a graphene field 

effect transistor. 

In Chapter 3 charge transport in MOS systems based on graphene nanoribbons and carbon nanotubes 

were modeled and compared. Poisson’s equation was discretized in three-dimensions and solved self-

consistently in conjunction with Schrödinger’s equation, with the latter solved using the scattering 

matrix method. For the MOSFET a wrap-around gate structure was used. In the graphene-based FETs 

edge effects influence the energy band structure and charge density. Differences were observed in the 

output characteristics of the two devices which were ascribed to differences in transmission 

probabilities. By symmetry the transmission probability was the same at all points on the circumference 

of the carbon nanotube nanotube. Whereas for graphene nanoribbons potential differences between 

the edges and the centre of the graphene resulted in differences in transmission probabilities, 

Integrated across the width of the nanoribbon these differences caused disparities in the I-V 

characteristics of the two devices. The maximum current drive of the graphene device was observed to 

occur at a much lower drain bias than for the CNT device. This result suggests that circuits based on 

graphene MOSFETs may have a superior switching performance than those based on CNTs. 

In chapter 4 of the thesis the conductance of graphene nanoribbons and graphene metal/semiconductor 

junctions were obtained using a NEGF formalism based on the tight binding method approximated to 

first nearest-neighbour and third nearest-neighbour including the effects of defects. It was observed 

that defects play a significant role in determining the conductance and local density of states of 

nanoribbons and junctions formed with them when first nearest neighbour interactions are considered. 

The position of the defect was also observed to affect the observed conductivity. An important result of 

this work is the observation that the there are significant differences in the conductivities obtained using 

the first nearest-neighbour approximation commonly made in the literature and the third nearest 

neighbour approximation employed here. More notable differences are observed when defects are 

introduced in the metal/semiconductor junctions. The effect of strain on graphene devices strain was 

also analysed and we conclude that it can be employed to engineer the conductance and local density of 

states of graphene nanoribbons. 
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A natural extension of this research is the formulation of a self consistent analysis coupling Poisson’s 

equation with the nonequilibrium Green’s function formalism. This has been developed but insufficient 

results were obtained to include within the thesis. From a theoretical point of view future work could 

examine the effects of defects and strain within the self consistent device model. Ideally the analysis 

presented in this work should be compared with experimental results.  The very rapid progress made by 

experimentalists should ensure that results become available in the near future.   
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Modeling charge transport in graphene nanoribbons and carbon nanotubes
using a Schrödinger-Poisson solver
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Interest in carbon-based electronics has been stimulated in recent years, initially through the
discovery of carbon nanotubes, but recently with the formation of graphene layers. In this paper
metal-oxide-semiconductor �MOS� systems based on these carbon structures are used to model and
compare charge transport within them. Schrödinger’s equation is solved self-consistently with
Poisson’s equation, using the scattering matrix method. A tight-binding model is used to determine
the energy band structure in graphene. The current-voltage characteristics of MOS devices based on
graphene and those based on carbon nanotubes demonstrate significant differences associated with
their respective transmission probabilities. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3174430�

I. INTRODUCTION

Carbon nanotubes1 �CNTs� have attracted great interest
in recent years because of their extraordinary mechanical and
electrical properties. For electronic circuit applications, it is
the observed high electron mobility that makes CNT based
devices attractive. The high mobility results from the energy
band structure of the graphene coupled with quantization
when the graphene sheet is rolled up to form a CNT.
Simulations2,3 of the electronic properties of metal-oxide-
semiconductor �MOS� transistors based on CNTs suggest
that they have great potential in future high speed electronic
systems. However, in practice, it is difficult to control the
chirality of CNTs and the structures cannot readily be inte-
grated into an electronic system. The chirality is important
because the energy band gap of a semiconducting CNT is a
function of it.4

Recently, graphene,5 which is a single sheet of graphite,
has been created in the laboratory for the first time. Although
graphene has been studied theoretically for many years, it
was thought to be too unstable to exist in its basic form. The
discovery of stable graphene at the University of Manchester
in 2004 has led to the realistic prospect of its utilization
within electronic devices. The advantage of graphene is that
it is compatible with the planar technology employed within
the semiconductor industry. Like CNTs graphene exhibits
high electron mobilities,5 �, in excess of 15 000 cm2 /V s,
and it can be metallic or semiconducting. When tailored to
less than 100 nm wide graphene nanoribbons may open a
band gap due to the electron confinement. Electronic states
of the graphene largely depend on the edge structures and the
width of the graphene nanoribbon.6 There are two main types
of nanoribbon, known as armchair edge and zigzag edge,
depending on the arrangements of carbon atoms along the
nanoribbon edges. One of the most important potential ap-
plications of graphene is as the channel for electron transport
in a MOS structure. Structures of this kind have been dem-
onstrated experimentally7 using epitaxially synthesized

graphene on silicon carbide substrates. This paper describes
the simulation of an armchair-edge graphene-based MOS
transistor using a coupled Schrödinger–Poisson solver and
compares the result with the characteristics of CNT based
MOS field-effect transistors �MOSFETs�.

II. THE MODEL

A semiconducting armchair-edge graphene nanoribbon is
used as the channel of the device to be modeled. The band
structure is obtained through a tight-binding Hamiltonian of
the armchair-edge nanoribbon that includes the summation
of the first-nearest-neighbor �1NN� Hamiltonian, third-
nearest-neighbour �3NN� Hamiltonian, 3NN truncation
Hamiltonian, and the 1NN edge distortion Hamiltonian.8

Charge transport in graphene is investigated through the self-
consistent solution of the charge and local electrostatic po-
tential. The quantum mechanical treatment of electron trans-
port is included by solving a one-dimensional Schrödinger’s
equation.

We model a graphene FET based on the structure shown
in the Fig. 1. This device consists of a semiconducting nan-
oribbon with a wrap around gate at four faces of the rectan-
gular geometry. An insulator with relative permittivity �ox

separates the semiconductor region of the device from the
surrounding gate contact. The ends of the device are termi-
nated by the source and drain contacts. Device parameters
include the length �along x-direction� of the nanoribbon, its
width �along z-direction�, and the thickness of the insulator

a�Electronic mail: p.a.childs@bham.ac.uk. FIG. 1. Cubical geometry of graphene FET.
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Conductance of Graphene Nanoribbon Junctions
and the Tight Binding Model
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Abstract

Planar carbon-based electronic devices, including metal/semiconductor junctions, transistors and interconnects, can
now be formed from patterned sheets of graphene. Most simulations of charge transport within graphene-based
electronic devices assume an energy band structure based on a nearest-neighbour tight binding analysis. In this
paper, the energy band structure and conductance of graphene nanoribbons and metal/semiconductor junctions
are obtained using a third nearest-neighbour tight binding analysis in conjunction with an efficient nonequilibrium
Green’s function formalism. We find significant differences in both the energy band structure and conductance
obtained with the two approximations.

Introduction
Since the report of the preparation of graphene by
Novoselov et al. [1] in 2004, there has been an enormous
and rapid growth in interest in the material. Of all the
allotropes of carbon, graphene is of particular interest to
the semiconductor industry as it is compatible with pla-
nar technology. Although graphene is metallic, it can be
tailored to form semiconducting nanoribbons, junctions
and circuits by lithographic techniques. Simulations of
charge transport within devices based on this new tech-
nology exploit established techniques for low dimen-
sional structures [2,3]. The current flowing through a
semiconducting nanoribbon formed between two metal-
lic contacts has been established using a nonequilibrium
Green’s Function (NEGF) formalism based coupled with
an energy band structure derived using a tight binding
Hamiltonian [4-7]. To minimise computation time, the
nearest-neighbour tight binding approximation is com-
monly used to determine the energy states and overlap is
ignored. This assumption has also been used for calculat-
ing the energy states of other carbon-based materials
such as carbon nanotubes [8] and carbon nanocones [9].
Recently, Reich et al. [10] have demonstrated that this
approximation is only valid close to the K points, and a
tight binding approach including up to third nearest-
neighbours gives a better approximation to the energy
dispersion over the entire Brillouin zone.

In this paper, we simulate charge transport in a gra-
phene nanoribbon and a nanoribbon junction using a
NEGF based on a third nearest-neighbour tight binding
energy dispersion. For transport studies in nanoribbons
and junctions, the formulation of the problem differs
from that required for bulk graphene. Third nearest-
neighbour interactions introduce additional exchange
and overlap integrals significantly modifying the Green’s
function. Calculation of device characteristics is facili-
tated by the inclusion of a Sancho-Rubio [11] iterative
scheme, modified by the inclusion of third nearest-
neighbour interactions, for the calculation of the self-
energies. We find that the conductance is significantly
altered compared with that obtained based on the
nearest-neighbour tight binding dispersion even in an
isolated nanoribbon. Hong et al. [12] observed that the
conductance is modified (increased as well as decreased)
by the presence of defects within the lattice. Our results
show that details of the band structure can significantly
modify the observed conductivities when defects are
included in the structure.

Theory
The basis for our analysis is the hexagonal graphene lat-
tice shown in Figure 1. a1 and b1 are the principal vec-
tors of the unit cell containing two carbon atoms
belonging to the two sub-lattices. Atoms on the con-
centric circles of increasing radius correspond to the
nearest-neighbours, second nearest-neighbours and third
nearest-neighbours, respectively.
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Saito et al. [8] derived the dispersion relation below
using a nearest-neighbour tight binding analysis includ-
ing the overlap integral s0.
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Here, f(k) = 3 + 2 cos k · a1 +2 cos k · b1 + 2 cos k ·
(a1 - b1) and the parameters, ε2p, g0 and s0 are obtained
by fitting to experimental results or ab initio calculations.
Most analyses of charge transport in graphene-based

structures simplify the result further by ignoring s0. Reich
et al. [10] derived the dispersion relation for graphene
based on third nearest-neighbours. In this work, the
energy band structure of a graphene nanoribbon includ-
ing third nearest-neighbour interactions is obtained from
the block Hamiltonian and overlap matrices given below
for the unit cell defined by the rectangle in Figure 1.
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For the nth row of the above equation, we have
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Considering the energy dispersion in the direction of
charge transport, the Bloch form of the wavefunction
ensures that �n~e

ikn. Substitution of �n into the above
equation yields the secular equation
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In the case of first nearest approximation without
orbital overlap, Sn,n-1 and Sn,n+1 are empty matrices. To
facilitate comparison with published results, we use an
armchair-edge with index [13] N = 13 as our model
nanoribbon. In the paper by Reich, tight binding para-
meters were obtained by fitting the band structure to
that obtained by ab initio calculations. Recently, Kundo
[14] has reported a set of tight biding parameters based
on fitting to a first principle calculation but more
directly related to the physical quantities of interest.
These parameters have been utilised in our calculation
and are presented below for third nearest-neighbour
interactions (Table 1).
Figure 2 compares the energy band structure of the

modelled armchair-edge graphene nanoribbon obtained
from the first nearest-neighbour tight binding method
with that obtained by including up to third nearest-
neighbours. Agreement is reasonable close to the K point
but significant discrepancies occur at higher energies.

Conductance of Graphene Nanoribbons and
Junctions
Conductance in graphene nanoribbons and metal/semi-
conductor junctions is determined using an efficient
nonequilibrium Green’s function formalism described
by Li and Lu [15]. The retarded Green’s function is
given by

G E S H L R= − − −+ −[ ]Σ Σ 1 (5)

Here, E+ = E + ih and h is a small positive energy
value (10-5 eV in this simulation) which circumvents the
singular point of the matrix inversion [16]. H is a tight
binding Hamiltonian matrix including up to third near-
est-neighbours, and S is the overlap matrix. Open

Figure 1 Armchair-edge graphene metal (index N = 23)/
semiconductor (index N = 13) junction. The rectangle shows the
semiconductor unit cell, and the concentric circles of increasing
radius show first, second and third nearest-neighbours, respectively.

Table 1 Tight binding parameters [14]

Neighbours E2p(eV) g0(eV) g1(eV) g2(eV) s0 s1 s2

3rd-nearest -0.45 -2.78 -0.15 -0.095 0.117 0.004 0.002
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boundary conditions are included through the left and
right self-energy matrix elements, ΣL.R. The self-energies
are independently evaluated through an iterative scheme
described by Sancho et al. [11], modified to include
third nearest-neighbour interactions. Determination of
the retarded Green’s function through equation 5 is
facilitated by the inclusion of the body of the device in
the right-hand contact through the recursive scheme
described in ref. [15]. We will now outline the numeri-
cal procedure for deriving the conductance with third
nearest-neighbour interactions included. Figure 3 shows
a schematic of the unit cell labelling used to formulate
the Green’s function.
We calculate the surface retarded Green’s functions of

the left and right leads by

g E S H E S HL
0 0 0 0 0 0 0 1 0 1

1
, , , , ,[ ( ) ]= − − −+ +

− −
− (6)
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where θ and  are the appropriate transfer matrices

calculated from the following iterative procedure.
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The process is repeated until t t0 0
 <  with δ arbitra-

rily small. The nonzero elements of the self-energies

Σ1 1,
L and Σ M M

R
, can be then obtained by
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The conductance is obtained from the relation

G E
e

h
T E( ) ( )= 2 2

(16)

where the transmission coefficient is obtained from

T E Tr G GL R( ) = [ ],Γ Γ † (17)

with ΓL,R = i[ΣL,R - (ΣL,R)†].
Figure 4a, b compares the conductance of a graphene

armchair-edge nanoribbon of index N = 13 and metal/
semiconductor junction formed with the nanoribbon
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Figure 2 Energy band structure of an N = 13 armchair graphene nanoribbon, a obtained from the first nearest-neighbour
tight binding method and b including third nearest-neighbours.

Figure 3 Schematic showing the unit cell labelling used to
formulate the Green’s function.
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assuming first and third nearest-neighbour interactions,
respectively. For graphene nanoribbons, differences are
observed in the step-like structure, reflecting differences
in the calculated band structure. When only first
nearest-neighbour interactions are considered, the con-
ductance of the conduction and valence bands is always
symmetrical as determined by the formulation of the
energy dispersion relation, equation 1. In the case of
graphene nanoribbons, the conductance within a few
electron volts of the Fermi energy is symmetrical for
both first and third nearest-neighbour interactions.
However, it is notable that at higher energies, overlap
integrals introduced by third nearest-neighbour interac-
tions result in asymmetry between the conductance in
the conduction and valence bands. For metal/semicon-
ductor junctions, significant differences in conductivity
occur even at low energies due to mismatches of the
sub-bands. Asymmetry in the conduction and valence
band conductance (absent for first nearest-neighbour
interactions) is also apparent when third nearest-
neighbour interactions are included in the Green’s
function. Differences are also seen when defects are
incorporated within a metal/semiconductor junction, an
interesting system explored by Hong et.al. [12]. In this
work, vacancies are introduced in the lattice at the posi-
tions marked by the solid rectangle and triangle in
Figure 1 and the conductance obtained in each case.
Hong et al. derive a coupling term associated with dif-
ferences in band structure. For third nearest-neighbour,
the solution to the coupling strength must be derived
numerically.

Conclusions
In this paper, we have determined the energy band
structure of graphene nanoribbons and conductance of
nanoribbons and graphene metal/semiconductor

junctions using a NEGF formalism based on the tight
binding method approximated to first nearest-neighbour
and third nearest-neighbour. Significant differences are
observed, suggesting the commonly used first nearest-
neighbour approximation may not be sufficiently
accurate in some circumstances. The most notable dif-
ferences are observed when defects are introduced in
the metal/semiconductor junctions.
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