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Abstract 

The objective of the present thesis was to estimate the genetic parameters 

associated with growth traits, specifically birth weight (BW), weaning weight (WW), six-

month weight (W6), and yearling weight (W12), among Jebel Akhdar (JA) goats, 

Batinah (BA) goats, and Omani sheep (OS) in Oman. In addition, the level of 

inbreeding and its trend over 13 years were investigated for the three breeds. Finally, 

a simulation study was carried out to examine the feasibility of implementing genomic 

selection (GS) in OS sheep with the aim of enhancing the genetic improvement of 

these traits. The analysis utilised data obtained from the Wadi Qurayyat Livestock 

Research Station (WQLRS) in Oman over the years 2008 to 2020. The dataset 

comprises 2,826 records of JA goats, 2,609 records of BA goats, and 3,530 records of 

OS sheep.  

The heritability estimates for BW, WW, W6, and W12 in JA goats were 0.13 ± 

0.04, 0.11 ± 0.04, 0.19 ± 0.05, and 0.21 ± 0.06, respectively. In comparison, the values 

for BW, WW, W6, and W2 were found to be 0.17 ± 0.04, 0.16 ± 0.04, 0.16 ± 0.04, and 

0.24 ± 0.04, respectively, in BA goats. In Omani sheep, the observed values for BW, 

WW, W6, and W12 were 0.16 ± 0.03, 0.15 ± 0.03, 0.28 ± 0.05, and 0.48 ± 0.05, 

respectively. The three breeds showed a positive genetic trend for all growth traits, 

although the phenotypic trend was only significant for the W12 phenotype. The annual 

genetic gain for BW, WW, W6, and W12 in JA goats was measured as 0.01 kg, 0.09 

kg, 0.13 kg, and 0.20 kg, respectively. The BA goats exhibited an annual increase in 

genetic gain of 0.01 kg, 0.08 kg, 0.10 kg, and 0.18 kg for BW, WW, W6, and W12, 

respectively. The genetic gain for BW, WW, W6, and W12 in OS sheep exhibited 

annual increments of 0.01 kg, 0.13 kg, 0.22 kg, and 0.39 kg, respectively. The genetic 
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correlations between the different traits in the three breeds were found to be positive 

and strong, except for the correlations with the BW trait, which had low correlations. 

The results of this study highlight the potential for significant genetic improvement in 

the growth traits associated with the investigated Omani breeds, considering their 

sufficient genetic variability and the favourable genetic correlations seen between 

them, particularly with respect to post-weaning traits.  

The inbreeding levels within the three breeds were found to be very low, with 

estimations of 0.67% in JA goats, 0.65% in BA goats, and 1.52% in OS sheep on 

average. The observed levels of inbreeding among the inbred animals were 3.88%, 

3.39%, and 6.49% for the respective breeds. However, there has been a notable 

increase in inbreeding rates, especially in recent years, necessitating the need for 

continuous monitoring and the implementation of measures to control it. 

The simulation study has indicated that the ssGBLUP method demonstrated 

superior performance on prediction accuracy of breeding values averaging (0.64) 

across the traits of BW, W6, and W12 in OS sheep compared to the methods of BLUP 

(0.56) and GBLUP (0.47). The precision of the three methods was enhanced with an 

increase in heritability. The genomic prediction accuracy of GBLUP and ssGBLUP was 

enhanced by increasing the reference size. The average improvements were 0.43, 

0.48, and 0.50 for GBLUP, and 0.61, 0.64, and 0.67 for ssGBLUP. These 

improvements were observed at reference sizes of 500, 1000, and 2000 animals, 

respectively. For traits with low heritability in particular, ssGBLUP may be a useful 

method for increasing prediction accuracy when compared to BLUP and GBLUP. The 

outcomes provide a theoretical framework for implementing GS in OS sheep. 
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1.1 Introduction 

Goats and sheep play an important part in Oman's domestic livestock sector, 

contributing to both social and economic aspects. The importance of small ruminants 

(SR), namely sheep and goats, in Oman is clearly demonstrated by their population, 

which accounts for 81.38% of the overall livestock population. According to the 

National Centre for Statistics and Information (NCSI (2021), the livestock population in 

Oman totalled 3,791,000 animals. Out of these, goats comprised 64.44% of the total, 

while sheep accounted for 16.94% (Figure 1). Small ruminants (SR) are known to 

require minimum labour, and are easy to manage, so supporting sustainable business-

related livestock (Bosso et al., 2007). 

 Due to the fact that SR are in abundant numbers in Oman compared to other 

livestock and have the ability to thrive in the challenging, mountainous environments 

that define many regions of Oman, goats and sheep may present significant 

contributions to the production of red meat (Mahgoub et al., 2010). Based on the data 

from the Ministry of Agriculture and Fisheries in Oman (MAF (2019), Oman accounts 

for producing 50% of the nation's domestic consumption of red meat. Therefore, the 

Omani government prioritises efforts to narrow the gap between the consumption and 

production of red meat. A potential strategy to achieve this objective involves improving 

the growth traits of the domesticated farm animals by subjecting them to breeding 

programmes, i.e., genetic improvement via within-population selection.  
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of goats, which are Jebel Akhdar and Batinah, as well as a local breed of sheep known 

as Omani sheep. 

To successfully carry out genetic improvement schemes, it is essential to 

accurately estimate a number of significant genetic parameters that define the 

population, including the heritability of the desired traits and the genetic correlations 

among those traits. The heritability of a trait provides information about how it will 

respond to selection, whereas genetic correlations reveal the direction and magnitude 

of the impact that the selected trait has on other traits being investigated (Singh et al., 

2022). Also, it is imperative to evaluate these programmes by looking at the genetic 

trend, which involves monitoring changes in the genetic merit of the animals over a 

specific period of time. It serves as an indicator of the success and effectiveness of 

existing breeding strategies (Wilson et al., 2010) . 

Genetic improvement projects, especially those that apply selection within a 

population, tend to give rise to increased rates of inbreeding. This is because the 

population is closed by nature, and individuals are under selection pressure. 

Progressive inbreeding can result in a reduction in genetic variation within a population, 

which is an essential aspect of animal breeding programmes. Consequently, this 

hinders the ability of individuals to respond appropriately to future selection and adapt 

to environmental changes (Ceyhan et al., 2011; Mandal et al., 2020). Furthermore, 

research studies have demonstrated that excessive inbreeding commonly results in 

negative effects, known as inbreeding depression, on the productivity, health, and 

reproductive capacities of animals (Falconer, 1996). Thus, it is critical to prioritise the 

estimation and control of inbreeding levels in the population undergoing genetic 

improvement while ensuring that genetic improvement is both efficient and sustainable. 
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The present chapter focuses on the following: 

1. Factors of the environment and genetics that impact growth traits. 

2. Partitioned components of the phenotypic variance, which are then used to 

estimate genetic parameters, viz., heritability and genetic correlation, the 

importance of the genetic parameters in selection programmes, and various 

methods used to estimate them: 

 Analysis of variance (ANOVA). 

 Maximum likelihood estimation (MLE). 

 Restricted maximum likelihood estimation (REML). 

3. The genetic merit, also known as breeding value (BV) of animals and the 

common traditional methods used to estimate it: 

 Selection index and BLUP. 

4. Utilising molecular markers to precisely estimate breeding values: 

 Quantitative trail loci (QTL). 

 Molecular markers : 

o Microsatellites. 

o Single nucleotide polymorphism (SNP). 

 Genomic approaches to predicting breeding values: 

o SNP-BLUP. 

o GBLUP. 
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o ssGBLUP. 

 Challenges to implementing genomic selection in sheep and goats. 

5. Inbreeding: the concept, the effects, control measures, and its quantifying 

methods. 
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1.2 Environmental and genetic factors influencing growth traits 

Growth traits are a subset of quantitative traits that are influenced by a 

combination of genetic and environmental influences, as well as their interactions. The 

environmental factors influencing growth traits might be random or fixed. Several 

environmental fixed factors can impact the growth of animals (Bahreini Behzadi et al., 

2007). Significant factors can include the animal's sex, type of birth, age of dam, herd, 

and year of birth (Baneh et al., 2012). The influence of these variables may differ 

depending on the particular trait and the population being studied. Accurately adjusting 

observations for fixed effects must be done in order to obtain unbiased estimates of 

the genetic parameters (Chauhan et al., 2021; Singh et al., 2022). 

 Baneh et al. (2012) found that traits of birth weight (BW), and weaning weight 

(WW) have been significantly influenced by herd, birth year, type of birth, sex, and dam 

age in Naeini goats. Likewise, the fixed effects of birth year, sex, birth type, and age of 

doe were significant in all the studied traits of growth in Markhoz goats (Shirzeyli et al., 

2023). In their research on Dorper A indigenous sheep, Tesema et al. (2022) observed 

that the live body weights at different ages were influenced by factors such as the type 

of birth, sex, year, and season. Another study found that the growth traits were 

influenced only by year, sex, and birth type (Areb et al., 2021). Year, dam age, and sex 

factors have been found to influence the growth traits in Kermani sheep, while birth 

type was only significant with the WW trait (Bahreini Behzadi et al., 2007).  

The variability observed among the levels of environmental fixed components, 

which contributes to the phenotypic expression, is typically attributed to variations in 

biological systems, climatic fluctuations, and the availability of feed resources. For 

instance, the impact of dam age may be attributed to the maturation of the uterus and 
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mammary glands, resulting in an increment in milk production as age progresses. The 

impact of birth type can be explained by the intrauterine competition between twins for 

limited uterine space and resources, such as milk, which is comparable to that of single 

offspring (Baneh et al., 2012). While the impact of sex on growth traits can be attributed 

to the influence of certain sex hormones on muscle and skeleton development 

(Tesema et al., 2022).  

The expression of an individual's phenotype is determined not only by the direct 

effects of its direct additive genetic and environmental factors but also by the presence 

of maternal effects, particularly in early life traits (Tesema et al., 2022). The maternal 

influences may include factors such as mothering ability, milk production, and the 

uterine environment. They can be partially ascribed to the genetic influence of the dam 

or can be influenced by the environment given by the dam, in which they all influence 

maternal ability (Baneh et al., 2012; Mrode, 2014). Thus, by investigating these factors 

and incorporating them into the models used to estimate genetic parameters, more 

accurate estimations can be obtained, leading to the optimisation of genetic 

improvement. However, it is not always feasible to analytically separate the maternal 

components into additive genetics and a permanent environment due to the structure 

of the data (Meyer, 1992). For instance, Bangar et al. (2020) observed in their study 

on Jakhrana goats that the analytical model used was unable to separate between the 

various components of maternal effects because of the small sample size. 
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1.3 Partitioning the phenotypic variance (𝑽𝑷) 

According to Falconer (1996), the phenotypic value of an individual (𝑃) is 

determined by its genetic effects (𝐺), and environmental deviation (𝐸). The 𝐸 value 

here includes all non-genetic influences. Mathematically, it can be expressed as: 

𝑃 =  𝐺 +  𝐸                                                                         (1) 

 

Yet, animal breeders have to deal with a value that can be transmitted from 

parents to offspring, a mean that cannot be accomplished solely through the 𝐺 value, 

because the 𝐺 value is not transmitted as it is but is formed in the progeny afresh from 

the parents. So, the animal breeder is interested in a value, which can be assigned to 

the individual genes rather than the genotype as a whole, that can be partitioned from 

the genetic value, and transferred to the offspring. This value is referred to as the 

average effect value (𝐴). The mean deviation of offspring from the population average 

when one parent passes on a certain allele to their offspring and the other allele is 

inherited randomly from the population is known as the additive effect (A) of a gene.  

Accordingly, the mean genetic value of offspring is determined by the overall 

effects of parental genes. The total summation of these average effects of genes 

exhibited by an individual is commonly referred to as the estimated breeding value 

(EBV), also known as the additive effect (𝐴). In addition to the 𝐴 values of the genes , 

the genotypic value of an individual is influenced by the interactions within a locus, 

namely the dominance effects (𝐷), and the interactions between loci (𝐼). Hence, 

equation (1) can be extended to become as (Bourdon & Bourbon, 2000; Falconer, 

1996) : 
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𝑃 =  𝐴 +  𝐷 +  𝐼 +  𝐸                                                                 (2) 

 

The basis for understanding the genetic structure of a quantitative trait is in its 

variability, which involves splitting the variance in phenotypic expression into different 

components associated with a range of factors. The genetic properties of a population 

are determined by the relative contribution of these components to the phenotypic 

variance (Falconer, 1996). The progress of a genetic improvement programme 

principally relies on the existence of  the genetic variation among the individuals, so 

that they can respond effectively to selection (Singh et al., 2022). From equation (2), 

the variance in the phenotypic values (𝑉𝑃) can be attributed to variances in genotypic 

effects or its components, as well as environmental effects, which can be expressed 

mathematically as follows:  

𝑉𝑃 = 𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼 + 𝑉𝐸                                        (3) 

 

However, as previously stated, animal breeders are primarily concerned with 

the portion of variance that may be attributed to the additive effects of the genes, which 

refers to the variances between the breeding values of the animals, assuming that the 

dominance and epistasis effects are negligible. Consequently, equation (3) can be 

shortened to:                                                              

𝑉𝑃 = 𝑉𝐴 + 𝑉𝐸                                                           (4) 
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The additive genetic variance (𝑉𝐴) is of the utmost importance in genetic 

improvement programmes as it primarily is responsible for the resemblance between 

relatives, thereby it influences the observable genetic properties within a population 

and serves a key role in determining the population's response to selection. 

Additionally, it is the only genetic component among other sources of genetic variation 

that can practically be calculated from observations that differ from the population 

average(Oldenbroek and van der Waaij, 2014). The relative contribution of the 𝑉𝐴 to 

the 𝑉𝑃 is one of the fundamental genetic parameters that needs to be estimated in 

genetic breeding programmes, which is known as the heritability (ℎ2). It quantifies the 

proportion of the phenotypic variance of a trait that can be attributed to the variance 

caused by the additive effects of genes, which can be modelled as:   

 

ℎ2 =  
𝑉𝐴
𝑉𝑃
⁄                                                                 (5) 

 

Another genetic parameter that can be estimated from partitioning the 

phenotypic variance is the genetic correlation (𝑟𝑔), which quantifies the association 

among various traits caused by the additive genetic effects. It is calculated as: 

𝑟𝑔 = 
𝐶𝑜𝑣(𝑡𝑟𝑎𝑖𝑡1, 𝑡𝑟𝑎𝑖𝑡2)

√𝑉𝐴1𝑉𝐴2
⁄                                 (6) 
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1.4 Genetic parameters (heritability and genetic correlation) 

Animal breeding programmes rely on the estimation of heritability for the 

targeted trait, which evaluates the proportionate influence of the additive genetic 

effects on the overall variability of measurable traits within a population. It explains the 

extent to which the trait can be improved by genetic selection. So, it’s estimation is 

involved in predicting the response to selection and estimating the EBVs of individuals 

(Getabalew et al., 2019).  

There are two distinct themes of heritability, namely broad sense-heritability (𝐻2) 

and narrow sense-heritability (ℎ2), which are differentiated based on the specific 

portion of the genetic variance (𝑉𝐺) used in the estimation process. The calculation of 

H2 involves determining the ratio between the total genetic variation 𝑉𝐺 and the 

phenotypic variance 𝑉𝑃. This ratio quantifies the extent to which the overall genotypic 

variance contributes to the entire phenotypic variance of a given trait. While the 

estimation of ℎ2 , is determined by the ratio of the additive genetic variance 𝑉𝐴 to the 

total phenotypic variance 𝑉𝑃, which provides an estimate of the phenotypic variance 

that can be attributed only to the additive genetic variance (Falconer & Mackay, 1996). 

The transmission of the genetic material from parents to offspring, as explained in the 

part of variance partitioning above, occurs through the passing on of genes rather than 

genotypes. Consequently, the narrow sense heritability (h2) emerges as a crucial 

parameter for animal breeders seeking to enhance the traits of successive generations 

of animals. 
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The heritability (ℎ2) of a trait can range from 0 to 1. A characteristic with a ℎ2 

value of one indicates that all of the phenotypic variances can be attributed solely to 

additive genetic influences. Conversely, a ℎ2value of zero suggests that the phenotypic 

differences of a trait are not driven by additive genetic factors. Accordingly, traits can 

be categorised as having low heritability (ℎ2 < 0.20), moderate heritability (ℎ2 = 0.20 – 

0.39), or high heritability (ℎ2 ≥ 0.40). It has been suggested that when the value of ℎ2 

is smaller than 0.15, the efficacy of selecting animals based on their performance may 

be ineffective. In such cases, it may be more advantageous to rely on their EBVs 

instead (Faid-Allah et al., 2017). 

For a given trait, different populations may have varying ℎ2 estimates, because 

the ℎ2 value is specific to the trait, population, and time period in which it was 

evaluated. This occurs due to the possible changes in the 𝑉𝐴 over a time, which is 

influenced by the changes in allelic frequency resulting from various factors such as 

selection, genetic drift, and other mechanisms (John-Jaja et al., 2018). Also, the model 

used to estimate the 𝑉𝐴 may give different results according to the fitted factors. 

Different breeds, and different environmental effects can result in varied ℎ2 estimates 

too (Singh et al., 2022).  

As it was stated ahead that the trait expression may be influenced collectively 

by the animal’s own genetic merit and its dam’s genetic effects. This means that the 

ℎ2 might be expressed as direct heritability ℎ𝑎
2 which is due directly to the influence of 

animal’s additive genetic effects, and as ℎ𝑚
2  which is attributed to the influence of dam’s 

additive genetic effects (Sharif et al., 2022; Singh et al., 2016; Singh et al., 2022). 

Ignoring the influence of maternal effects in the estimation of genetic parameters, 
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particularly in the early traits can result in biased estimations (i.e., overestimated ℎ𝑎
2). 

Consequently, this may impact on the selection accuracy, and ultimately the 

effectiveness of the genetic improvement scheme (Chauhan et al., 2021; Singh et al., 

2010). Several studies have shown that, models excluding maternal effects (i.e., 

environmental, or genetic) may overestimate direct heritabilities (Bahreini Behzadi et 

al., 2007; Baneh et al., 2012; Tesema et al., 2022). 

Another important parameter whose computation contributes to selective 

breeding programmes is the genetic correlations (𝑟𝑔) between traits. It quantifies the 

association between traits in terms of its direction and strength. Thus, it indicates how 

an improved trait would impact other correlated traits, either in a positive or negative 

direction. Also, a correlated trait can serve as an indicator for improving a trait that is 

costly or challenging to measure (Rae, 1952). If two traits display a positive correlation, 

selecting for one trait will result in a comparable enhancement in the other trait. When 

two traits display a negative correlation, it indicates that the selection for one trait will 

result in the shift of the other trait in the opposite direction. Genetic correlations 

(𝑟𝑔) span from -1 to +1, with a positive sign indicating positive correlation and a 

negative sign indicating negative correlation (Oldenbroek & van der Waaij, 2014). 

Robertson (1959) suggested that a minimum genetic correlation threshold of 0.80 

between traits is recommended to minimise the influence of genotypes x 

environmental interactions, which may compromise the success of breeding 

programme. As an illustration, when 𝑟𝑔 ≥ 0.80 between two traits, selecting animals 

based on a certain trait would not lead to reranking of the same animals for the second 

trait. 
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1.4.1 Review of some studies on estimating genetic parameters of growth traits in 

sheep and goats 

Numerous studies have been conducted regarding the estimation of genetic 

parameters of growth traits in various populations of sheep and goats (Table 1). The 

estimates of the heritability (ℎ𝑎
2) for the various growth traits including BW, WW, W6, 

and W12 varied between 0.07 and 0.56, whereas the estimations of the maternal 

heritability (ℎ𝑚
2 ) ranged from 0.03 to 0.34. Growth traits often exhibit moderate to high 

heritability, particularly those expressed throughout later stages of development. 

Most of these studies found that the general pattern of the direct heritability (ℎ𝑎
2) 

tends to increase with age, while the maternal heritability (ℎ𝑚
2 ) tends to diminish 

gradually. This can be explained by recognising that as an animal grows up, its relying 

on its genetic merit for growing independently increases, while its dependence on the 

dam diminishes (Tesema et al., 2022). However, this might not always be the case 

according to studies such as Baneh et al. (2012) who found that the ℎ𝑎
2 for the WW 

was lower than for the BW,  Areb et al. (2021) who observed a decreasing trend of ℎ𝑎
2, 

as the animal matures, and Dhakad et al. (2022) who found inconsistent trend for the 

ℎ𝑎
2 . Though the maternal effects have commonly an influence only on early growth 

traits, they may influence also during later stages at W6 and W12, as noticed by 

Bahreini Behzadi et al. (2007) in Kermani sheep who justified that to the carry over 

influence of dam genetics from before the weaning (Bangar et al., 2020).  
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Table 1. Review of estimates of direct and maternal heritabilities of some growth 
traits in various breeds of sheep and goats. 

BW (birth weight), WW (weaning weight), W6 (six-months weight), W12 (yearling 
weight). 

Breed Growth trait Direct heritability Maternal heritability Reference 

Naeini goat 
BW 
WW 

0.25 
0.07 

- 
- 

(Baneh et al., 
2012) 

 

Dorper X 
indigenous 

sheep 

BW 
WW 

0.003 
0.14 

0.20 
- 

(Tesema et al., 
2022) 

 
 

West African 
Dwarf goat 

BW 
W6 
W12 

 
0.50 
0.43 
0.30 

 

- 
- 
- 

(Bosso et al., 
2007) 

 
 
 

Djallonke sheep 
BW 
W6 
W12 

0.39 
0.54 
0.21 

- 
- 
- 

(Bosso et al., 
2007) 

 
 

Nellore sheep 

BW 
WW 
W6 
W12 

0.08 
0.03 
0.12 
0.10 

0.07 
- 
- 

0.11 

(I et al., 2017) 
 
 
 
 

Bonga sheep 

BW 
WW 
W6 
W12 

0.56 
0.36 
0.22 
0.13 

0.34 
0.20 
0.15 
0.39 

(Areb et al., 
2021) 

 
 
 

Malpura sheep 

BW 
WW 
W6 
W12 

0.15 
0.13 
0.18 
0.16 

0.11 
0.03 
0.05 
0.06 

(Dhakad et al., 
2022) 

 
 
 

Harnali sheep 

BW 
WW 
W6 
W12 

0.23 
0.10 
0.18 
0.11 

0.08 
0.08 

- 
- 

(Chauhan et 
al., 2021) 

 
 
 

Jakhrana goat 

BW 
WW 
W6 
W12 

0.09 
0.21 
0.53 
0.16 

- 
- 
- 
- 

(Bangar et al., 
2020) 

 
 
 

Barbari goat 

 
BW 
WW 
W6 
W12 

 

0.31 
0.23 
0.18 
0.21 

0.15 
0.10 
0.10 
0.09 

(Singh et al., 
2022) 
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The genetic correlations (𝑟𝑔) between growth traits at various stages in sheep 

and goats, on the other hand, have been found to be positive, based on the 

aforementioned studies (Table 2). The correlations between the different traits ranged 

from moderate to high, with the observation that the traits that are close to one another 

have usually a higher correlation than the traits that are not. The correlations ranged 

from 0.04 (BW-W12 in Harnali sheep) to 0.99 (W6-W12 in Jakhrana goat). 
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Table 2. Review of estimates of genetic and phenotypic correlations among growth 
traits in some breeds of sheep and goats. 

BW (birth weight), WW (weaning weight), W6 (six-months weight), W12 (yearling 
weight). 

Breed Correlated 
traits 

Direct genetic 
correlation 

Phenotypic 
correlation 

Reference 
 

West African 
Dwarf goat 

 
BW-W6 

BW-W12 
W6-W12 

 

 
0.74 
0.73 

- 

 
0.30 
0.19 
0.74 

 
(Bosso et al., 2007) 

 
 
 

Djallonke 
sheep 

BW-W6 
BW-12 

W6-W12 

0.47 
- 
- 

0.40 
0.23 
0.65 

(Bosso et al., 2007) 
 
 
 

Nellore 
sheep 

BW-WW 
BW-W6 

BW-W12 
WW-W6 
WW-W12 
W6-W12 

0.44 
0.62 
0.68 
0.94 
0.79 
0.85 

0.36 
0.27 
0.24 
0.76 
0.59 
0.64 

(I et al., 2017) 
 
 
 
 
 
 

Bonga sheep 

BW-WW 
BW-W6 
BW-W12 
WW-W6 

WW-W12 
W6-W12 

0.20 
0.23 
0.11 
0.61 
0.19 
0.46 

0.002 
0.01 
0.02 
0.52 
0.31 
0.49 

(Areb et al., 2021) 
 
 
 
 
 
 

Malpura 
sheep 

BW-WW 
BW-W6 
BW-W12 
WW-W6 

WW-W12 
W6-W12 

0.27 
0.18 
0.21 
0.80 
0.54 
0.68 

0.39 
0.28 
0.24 
0.76 
0.53 
0.70 

(Dhakad et al., 2022) 
 
 
 
 
 

Harnali 
sheep 

BW-WW 
 

BW-W6 
BW-W12 
WW-W6 

WW-W12 
W6-W12 

0.46 
 

0.16 
0.04 
0.47 
0.20 
0.33 

0.23 
 

0.10 
0.07 
0.41 
0.22 
0.55 

(Chauhan et al., 2021) 
 
 
 
 
 

Jakhrana 
goat 

BW-WW 
BW-W6 
BW-W12 
WW-W6 

WW-W12 
W6-W12 

0.91 
0.90 
0.78 
0.78 
0.14 
0.99 

0.34 
0.34 
0.12 
0.66 
0.41 
0.77 

(Bangar et al., 2020) 
 
 
 
 
 
 

Barbari goat 

BW-WW 
BW-W6 
BW-W12 
WW-W6 

WW-W12 
W6-W12 

0.33 
0.26 
0.26 
0.76 
0.39 
0.85 

0.40 
0.25 
0.21 
0.68 
0.46 
0.67 

(Singh et al., 2022) 
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1.5 Methods to estimate variance components 

1.5.1 Analysis of variance (ANOVA) estimator 

The historical progress in variance estimation has mainly relied on the 

application of the analysis of variance (ANOVA) technique. This technique involves 

estimating the error variance (𝜎𝑒
2) in its most basic fixed model, as shown in equation 

(7), by equating the mean square for the error (MSE) to its expected value E(MSE). 

This indicates that the expected value of the mean squared error (E(MSE)) is equal to 

the variance of the error term (𝜎𝑒
2), which leads to an estimated variance of the error 

term (𝜎̂𝑒
2) being equal to the mean squared error (MSE). Subsequently, the extension 

was wider to include models that incorporate random variables. Initially, focus was on 

balanced data, and later on, the issue of unbalanced data was addressed (Searle, 

1995). 

𝑦𝑖= µ+ 𝑒𝑖 ,                                         (7) 

where: 

The variable 𝒚𝒊 represents the phenotypic record of the 𝑖th individual, µ is the 
population mean, and 𝒆𝒊 represents the error term of the 𝑖th individual. 

 

 

The extension of the simple fixed model (7) means fitting more random variables 

that contribute to the overall phenotypic variance rather than solely the error variance. 

It is known as linear mixed model when it includes fixed and random factors. For 

illustration, let us consider in a dairy farm that the random variable of 𝒊th sire effect (𝑎𝑖) 

for the observation of 𝒋th daughter in milk production. The model now compared to 

equation (7) includes two variance components (equation 8), which are the sire effect 
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variance, and error variance. Both of which contribute to the overall phenotypic 

variance. 

𝑦𝑖𝑗= µ+ 𝑎𝑖 + 𝑒𝑖𝑗                                                      (8) 

 

In order to calculate the estimated variance of the random components in 

equation (8), it needs to extend the same principles used in the fixed model (7), which 

involves equating the mean squared error (MSE) and mean squared between groups 

of 𝑎 (MSA) (Sires’ groups) to their respective expected values as follows: 

E(MSE) = 𝜎𝑒
2, which means that 𝜎̂𝑒

2 = MSE,  for the estimation of error variance. 

While E(MSA) = 𝜎𝑒
2 + n 𝜎𝑎

2, which means that MSA = 𝜎̂𝑒
2+n 𝜎̂𝑎

2 , so the estimated value 

of the sire variance 𝜎̂𝑎
2 = MSA - 𝜎̂𝑒

2/n.  

 

 

Though the ANOVA method is simple and straightforward, it may give a 

negative estimate for the variance, which is not the case in the parameter space of 

variance estimations. In addition, data collected from animal breeding programmes is 

usually not balanced, which was the interest of Henderson (1953) who developed three 

different methods of estimating variance components from an unbalanced design. 

These methods are based on selecting a subset of the sum squares and then applying 

the same logarithms used for the balanced ANOVA (Searle, 1995). Yet,  indicated that 

these methods are not free from disadvantages, such as the fact that method 1 cannot 

be used for a mixed model and method 2 is not suitable when there is an interaction 

among fixed and random effects. 
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1.5.2 Maximum likelihood estimation method (MLE)                                           

The maximum likelihood estimation (MLE) method is considered to be more 

efficient and flexible than the analysis of variance (ANOVA) in estimating variance 

components. For instance, it can utilize all available information, such as the 

covariances between parents and offspring and among full siblings. The ANOVA 

approach relies on the assumption of randomization in sample data, which may not 

hold true in animal genetics programmes that involve selection. The process of 

selection may introduce a potential bias in the estimated variance by ANOVA, whereas 

MLE takes into account selection (Meyer, 1989).  

The MLE approach assumes a multivariate normal distribution for the 

observations. It calculates the likelihood of certain assumed parameters values that 

underline the distribution of observed data. So, it is the other direction of probability 

which is the probability of observing certain values in a given parameters (Meyer, 1989; 

Searle, 1995). The MLE maximizes the likelihood of the values of variance components 

in the positive space of the population parameters, given the data (Corbeil & Searle, 

1976). If we consider that the observed variable (𝑦) follows a normal distribution (𝑁) 

with mean (µ) and a variance (𝜎2), which is presented by 𝑦 = N (µ, 𝜎2). Then, the 

probability density function 𝑓(𝑦) is calculated as: 

𝑓(𝑦) =  1
𝜎√2𝜋
⁄  𝑒

−1

2
 
(𝑦−µ)2

𝜎2                                             (9) 

 

In a more general manner, such as in the linear mixed model, 𝑦 = N (Xb, 𝑉), 

where Xb and 𝑉 are the parameters denoting the means of the fixed effects and the 
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variances of the random variables, respectively. The density function can be then 

represented as: 

𝑓(𝑦) =  
1

2𝜋
1
2
𝑁|𝑉|

1
2

𝑒−0.5(𝑦−𝑋𝑏)
′𝑉−1(𝑦−𝑋𝑏)                                    (10) 

Where: 

𝑵 is the length of 𝒚 records, |𝑽| is the determinant of 𝑽 (the variance). 

 

 

When the variable y is given, the function f(y) becomes the likelihood, which can 

be maximized with respect to the parameters. The objective is to identify the 

parameters that yield the maximum value for f(y). Practically, the log likelihood is used 

to be maximized instead of the likelihood function for its convenience mathematically 

(Shaw, 1987). The equation of  calculating the log of likelihood for parameters (𝑏) (i.e., 

the fixed means) and (𝑉) (i.e., the variance) given that 𝑋 (i.e., design matrix of fixed 

means) and (𝑦) (i.e., observations) becomes as: 

L (b, 𝑉 |𝑋, 𝑦) =  
−1

2
𝑁 log (2π) – 

1

2
 log (𝑉) - 

1

2
 (𝑦 − 𝑋𝑏)′𝑉−1(𝑌 − 𝑋𝑏)  ,       (11) 

 

A major drawback associated with the use of the maximum likelihood estimation 

(MLE) technique for estimating variance components in linear mixed models is its 

failure to account for the loss in degrees of freedom that arises from fitting the fixed 

effects. This might potentially result in biased estimates for the variances, in particular 

the residual variance. This rise in biasedness can be considerable when more fixed 

effects are fitted in the statistical model, which is the case in analyses of animal 

genetics (Meyer, 1989), or when the sample size is insufficient (Hofer, 1998). 
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1.5.3 Restricted Maximum likelihood method (REML)          

A modified version of the MLE method, which is the so-called restricted 

maximum likelihood (REML) suggested by Patterson and Thompson (1971) came to 

overcome the issues associated with the MLE method and became widely used by 

animal breeders to estimate genetic parameters. It is an iterative process to find the 

maximum of the likelihood function component that is not influenced by fixed factors. 

It involves replacing the original data with error contrasts, which refer to observations 

that have been adjusted for the fixed effects (Meyer, 1989). So, the maximization in 

the density function happens after correcting the observations for the fixed effects. 

Despite the assumption of a multivariate normal distribution for the variable of 

observations (y) in REML, it remains a favourable choice even if normality is not met 

(Meyer, 1990). 

A number of algorithms have been proposed for the implementation of the 

REML technique. These algorithms could use derivatives of the likelihood function to 

find the maximum value, such as the expectation-maximization algorithm (EM 

algorithm) and the average information algorithm (AI algorithm) or they can be 

classified as derivative-free algorithms. The EM algorithm is not difficult to program 

because it just needs the solutions that can be obtained by solving mixed model 

equations (MME), and the trace of the inverse of the random effect of the coefficient 

matrix in an iteration process. It implies starting with an initial guess for the variance 

estimate and then calculating the solutions of the additive genetic effects that can be 

obtained by the method of best linear unbiased prediction (BLUP) using MME 

equations. In each iteration, new values of estimated variances and solutions are 
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obtained, and convergence is achieved when the difference is very small between the 

old and new values.  

However, the EM algorithm necessitates the computation of the inverse of a 

matrix with dimensions equivalent to the number of levels of the random effects at each 

iteration, which might be restricted in multivariate (more than one trait) analysis. The 

AI-REML is now considered more robust and efficient for estimating variance 

components in animal breeding programmes. Various methods have been introduced 

to solve AI-REML estimates, including the Netwon-Rhapson method and Fisher’s 

scoring method . 
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1.6 Breeding value 

The breeding value (BV) of an animal measures the cumulative average additive 

effects (𝑎) associated with the individual's genes, which can be inherited by their 

offspring. Thus, it is the genetic value that an individual carries through to their progeny, 

whereas the genotypic value (G) refers to the genetic merit of the animal itself. The 

animal breeder is interested, and able to estimate the BV rather than the G,  since the 

BV represents the value attributed to genes that are passed on to the next generation. 

For a good response to selection, the main goal of selection programmes is to select 

animals and rank them according to their BVs (Falconer, 1996).  

To understand how the animal's BV is estimated, the observation of an 

individual can be modelled in its simplest form as a result of the fixed mean effect, the 

genetic merit that it has, and the random environment, as explained by Mrode (2014) 

following the equation (12): 

𝑦𝑖𝑗= µ+ 𝑔𝑖 + 𝑒𝑖𝑗 ,                               (12) 

where: 

𝒚𝒊𝒋 is the observaion 𝑗 of 𝑖th animal, µ is the overall population’s mean which may 

include the means of the fixed effects, 𝒈𝒊 is the genetic effect of 𝑖th animal, 𝒆𝒊𝒋 is the 

residual terms. 

 

 However, as it has been explained previously, that of the genetic component, 

the additive genetic effects (𝑎) of individuals that passed on to offspring (summation of 

them is the BV), the model (12) can be fitted as: 

𝑦𝑖𝑗= µ+ 𝑎𝑖 + 𝑒𝑖𝑗  ,                                 (13) 

where: 
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𝒂𝒊 is the influence of the additive genetic effects only. 

 

 

Given that the additive genetic values of genes are transmitted to offspring, it is 

essential to prioritise this component during the selection process. Breeding value (bv) 

is the average additive genetic effects that an animal inherits from both of its parents 

(Falconer, 1996). Other genetic influences, including dominance and epistasis, are 

assumed to have negligible significance on the phenotype, and they are included in 

the residual terms. Accurate prediction of animals' BVs plays an essential role in the 

effectiveness of genetic improvement schemes, as the level of precision serves as a 

primary factor in determining the expected response to selection according to the 

following equation (Falconer, 1996; Kennedy, 1981): 

𝑅 = 𝑖𝑟2𝜎𝑦, 

where: 

𝑹 is the response to selection, 𝒊 is the selection intensity, 𝒓 is the accuracy of prediction, 
and 𝝈𝒚 is the standard deviation of variable 𝒚 (phenotypic values). 

 

 

The assessment of prediction accuracy is determined by the degree of 

correlation between the estimated breeding value (EBV) and the true breeding value 

(TBV). The values span a range from 0 to 1 (Oldenbroek & van der Waaij, 2014) . The 

selection of an appropriate approach and statistical model for estimating EBVs is a 

pivotal factor in enhancing the precision and reliability of the estimation process 

(Duchemin et al., 2012; Ferreira et al., 1999; Lodhi et al., 2016). Numerous 

methodologies and frameworks have been developed for the purpose of estimating 

EBVs, which vary depending on the amount and type of information available. 
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1.6.1 Selection index 

The selection index incorporates all available information about the animal and 

its relatives to calculate an index (𝐼) that reflects the EBV of the individual, as 

thoroughly illustrated by Mrode (2014). For example: if we have three records are 

available for the animal 𝑖, and its parents’ sire (𝑠) and dam (𝑑) as (𝑦𝑖, 𝑦𝑠, 𝑦𝑑),  then the 

selection index (𝐼𝑖) can be calculated as follows: 

𝐼𝑖 = 𝑏𝑖(𝑦𝑖 − 𝑢𝑖) + 𝑏𝑠(𝑦𝑠 − 𝑢𝑠) + 𝑏𝑑(𝑦𝑑 − 𝑢𝑑)   ,               (14) 

where: 

𝒃𝒊, 𝒃𝒔 and 𝒃𝒅 represent the regression coefficients of TBV on phenotype and mean for 
each record of 𝑖th animal, sire (𝑠), and dam (𝑑), respectively.  

 

 

The coefficient of regression (𝑏) can be then computed in the form of matrix as 

follows: 

𝑏 =  𝑃−1𝐺      ,                              (15) 

where: 

𝑷 is the phenotypic (Co)Variance matrix, and 𝑮 is the (Co)Variance matrix between 
phenotypes and breeding value.  

 

 

 

So, the equations for solving 𝒃 and then the index (𝐼) would be as follows: 

(

𝑏𝑖
𝑏𝑠
𝑏𝑑

) = (

𝑝𝑖𝑖 𝑝𝑖𝑠 𝑝𝑖𝑑
𝑝𝑠𝑖 𝑝𝑠𝑠 𝑝𝑠𝑑
𝑝𝑑𝑖 𝑝𝑑𝑠 𝑝𝑑𝑑

)

−1

(

𝑔𝑖𝑖
𝑔𝑠𝑖
𝑔𝑑𝑖
) 
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 Selection index has the following properties: It reduces the average of all (𝑎𝑖 - 

𝑎̂𝑖)
2 by minimising the average square prediction error. The correlation between the 

EBV and the TBV is maximised. However, the necessity to a prior adjustments for the 

environmental fixed factors, and the inversion requirement of the phenotypic coefficient 

matrix for obtaining the solutions of (b) may not be feasible computationally particularly 

with large data. 

 

1.6.2 Best linear unbiased prediction (BLUP) 

The best linear unbiased prediction (BLUP) approach which presented by 

Henderson (1949) is widely used in estimating EBVs due to its statistical properties 

and application with many models, including sire, repeatability, and animal models 

(Mrode, 2014). According to Ambhore et al. (2018), the BLUP approach has been 

extensively employed for the estimation of animal’s EBV. The efficacy of this procedure 

stems from its capacity to adjust phenotypic records by accounting for fixed effects, 

while also utilising the additive genetic relationship (𝐴) between individuals to estimate 

EBVs. Therefore, fixed effects and EBVs can be estimated simultaneously by this 

method. Regard to its name, best because it minimizes the error variance and 

maximizes the correlation between estimated and true breeding value. Unbiased, 

because the estimation of random and fixed effects is unbiased (Mrode, 2014). This 

approach accounts for changes in genetic variance that may result from selection or 

inbreeding by incorporating the additive genetic relationships (𝐴) between individuals 

into the BLUB calculation (Henderson, 1976). 

If we consider the following animal linear mixed model: 
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𝑦 = 𝑋𝑏 + 𝑍𝑎 + 𝑒 ,                                 (16) 

where:  

𝒚, 𝒃, 𝒂, and 𝒆 are vectors of observations (i.e., records), environmental fixed effects, 
random animal additive genetic effect (i.e., breeding value), and residual terms, 

respectively. 𝑿 and 𝒁 are design matrices which associate the records to the fixed 
effects, and, to random animal genetic effects, respectively.  

 

 

The assumed (Co)variance structure of the variables 𝑎 and 𝑒 of the model (16) 

is defined as: 

Var (
𝑎
𝑒
) =  (

𝐴𝜎𝑎
2 0

0 𝐼𝜎𝑒
2), 

Where:  

𝑨 is the additive numerator (genetic) relationship matrix among individuals, and 𝑰 is an 
identity matrix (i.e., diagonal elements are one and off-diagonals are zeroes). 

 

Also, it is assumed that: 

The expectations (E) of 𝑦, 𝑎, and 𝑒 equals 𝑋𝑏, 0, 0, respectively. 

The Cov(𝑎, 𝑒) = 0, so the var(𝑦) 𝑉 = 𝑍𝐴𝜎𝑎
2 .  

The genetic (co)Variance G = 𝐴𝜎𝑎
2  , so  𝑉= 𝑍𝐺. 

Cov(𝑦, 𝑒) = Z Cov(𝑎, 𝑒) + Cov(𝑒, 𝑒), and because it is assumed that Cov(𝑎, 𝑒) = 0, So 

Cov(𝑦, 𝑒)  = 𝑅 = 𝐼𝜎𝑒
2. 

 

The mixed model equations (MME) set to give the solutions for the fixed effects 

(𝑏) and additive genetic effect (𝑎) is as follow: 
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(𝑋
′𝑅−1𝑋 𝑋′𝑅−1𝑍
𝑍′𝑅−1𝑋 𝑍′𝑅−1𝑍 + 𝐴−1𝛼

) (𝑏̂
𝑎̂
) = (

𝑋′𝑅−1𝑦

𝑍′𝑅−1𝑦
) ,                           (17) 

where: 

A is the numerator additive genetic relationship between the animals, and 𝜶 is the ratio 

of residual variance to the additive genetic variance (
𝜎𝑒
2

𝜎𝑎
2), R = I𝜎𝑒

2.  

 

The 𝝈𝒂
𝟐 and 𝝈𝒆

𝟐 of the population that used in (17) can be estimated by various 

methods as mentioned before including REML estimates. 

Due to the assumption that 𝑹 is an identity matrix, 𝑹−𝟏 can be factored from both 

sides, and the MME in (17) is shorten to: 

(
𝑋′𝑋 𝑋′𝑍
𝑍′𝑋 𝑍′𝑍 + 𝐴−1𝛼

) (𝑏̂
𝑎̂
) = (

𝑋′𝑦

𝑍′𝑦
)                                   (18) 
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1.7 Genomic selection 

1.7.1 Quantitative trait locus (QTL) 

Most traits of economic importance in farm animals, including growth traits, are 

quantitative traits, which means they exhibit continuous variation and show a normal 

distribution. Partially, this variation is attributed to the genetic component of individuals 

(i.e., genetic variation), and is driven by several major genes with significant effects 

plus the majority of polygenes with minor effects (Falconer, 1996; Gootwine, 2020). 

The polymorphic chromosomal site that harbours a gene or a group of genes that might 

contribute to this variation is called the quantitative trait locus (QTL) (Akond et al., 2019; 

Dhingani et al., 2015). Therefore, identification and detection of these molecular loci 

are important for animal breeders, who rely mainly on exploiting genetic variation to 

implement genetic improvement programmes. 

With the advent of breakthrough advances in molecular technology, it has been 

possible to employ molecular markers to map significant QTLs (Zeng, 1994). Most 

traditional QTL mapping experiments in farm animals, including sheep and goat 

populations, have used microsatellite markers across the resource mapping population 

(Weber & May, 1989). The optimal spacing between markers involved in QTL detection 

and genome scans has been estimated to be between 10 and 30 cM (Maddox et al., 

2001). The justification for QTL mapping in domestic animals comes from the biological 

essentials for understanding the complex genetic structure of the trait as well as the 

utilisation of genomic data in practical breeding strategies to improve selection 

(Andersson, 2001; Dekkers & Hospital, 2002). 
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According to Gholizadeh et al. (2008), identifying an animal's genetic makeup 

and predicting its trait phenotype with the help of molecular markers is an effective 

approach in animal breeding. The ultimate purpose of utilizing molecular markers is to 

detect the quantitative trait loci (QTLs), that influence the phenotype and accordingly 

enhance genetic improvement via marker-assisted selection (MAS) or genomic 

selection (GS). 

 

1.7.2 Molecular markers 

Molecular markers are the most useful genetic markers for analysing genetic 

variability, which might include microsatellite markers or single sequence repeats 

(SSR), mitochondrial markers, Y-chromosomal markers, copy number variations 

(CNV), and single-nucleotide polymorphisms (SNPs) (Saravanan et al., 2022). A 

molecular marker can be defined as a genetic locus that shows a polymorphism in the 

DNA sequence among individuals, which can be detected by molecular tools. Point 

mutations, duplication, translocation, insertion, and deletion are the sources of these 

polymorphisms (Nadeem et al., 2018). 

The efficiency of utilizing molecular markers in animal and plant breeding 

programs has been demonstrated to be preferable to other genetic markers such as 

morphological, chromosomal, and biochemical markers. In general, morphological and 

chromosomal markers reveal a limited degree of variability and are therefore not 

helpful as genetic markers. The use of biochemical markers has led to suboptimal 

results as a result of their inherent dependency on factors such as sex, age, and 

vulnerability to environmental effects. Fortunately, the majority of these limitations have 
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been effectively solved by molecular markers. They are abundant and widely spread 

across the genome, unaffected by the environment. Most importantly, they are neutral 

to any phenotypic effect, as they are usually located in the non-coding regions (Collard 

et al., 2005; Ebegbulem & Ozung, 2013).  

 

1.7.2.1 Microsatellites 

Microsatellite markers are tandemly repeated sequences (usually 1 to 10 

nucleotides)  distributed abundantly across the genome. They are sometimes called 

simple sequence repeat (SSR) loci or simple sequence length polymorphisms 

(SSLPs). They are co-dominant markers (i.e., the heterozygous can be distinguished 

of either homozygous), and very short, which makes their amplification easier. The 

tandem usually repeats 5-20 times in the genome (Al-Samarai & Al-Kazaz, 2015; Kalia 

et al., 2011; Vajed Ebrahimi et al., 2017), or the repeats can sometimes reach 40 times 

(Selkoe & Toonen, 2006). The common dinucleotide motif found in microsatellites in 

mammals is (CA)n, where n represents the number of repetitions (Beuzen et al., 2000).  

Microsatellite DNA markers have been extensively used to investigate genetic 

diversity among livestock breeds (Behl et al., 2007; Pandey et al., 2006; Penedo et al., 

1999; Sollero et al., 2009). They have initially emerged as the preferred molecular 

markers for various applications in livestock species, such as genome mapping and 

marker-assisted selection (MAS) (Alberts, 2017; Bishop et al., 1995; Smith, 1993). 

Their preference over other DNA-based markers comes from their inheritance pattern 

as co-dominant, highly polymorphic (multiple alleles within a population), and 

abundantly distributed across the genome (Sheriff & Alemayehu, 2018). The 
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polymorphism helps researchers analyse and compare genetic variations in a 

population effectively. The downsides to adopting microsatellite-based approaches are 

relatively expensive development costs and technical challenges in manufacturing the 

species-specific primers (Miah et al., 2013).     

 

1.7.2.2 Single nucleotide polymorphism (SNP) 

SNP markers, as their name suggests, refer to single nucleotide polymorphisms 

in a DNA sequence, typically involving the substitution of two nucleotides at a specific 

locus within a population. They are co-dominant markers; however, unlike 

microsatellites, they are mostly bi-allelic (Vignal et al., 2002). In theory, four alleles can 

exist at each nucleotide site due to the four existing nucleotide types. However, in 

practice, only two variants occur. In other words, SNP markers are bi-allelic, as 

evidenced by the bias occurrence towards transitions, i.e., purine-purine (A G, T C) 

more than transversions (A C, A T, G C, G T) (Khlestkina & Salina, 2006). They are 

the most abundant in the genome among the other molecular markers. According to 

Koopaee and Koshkoiyeh (2014), SNPs account for approximately 90% of all genetic 

variations in any population, making them the best choice for population studies and 

genome mapping. They were detected for the first time on a genome-wide scale in the 

human genome (Mammadov et al., 2012). 
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 As stated by Koopaee and Koshkoiyeh (2014), SNPs have the following 

advantages: 

1. Most SNP markers are in DNA's non-coding region; therefore, they have no effect 

on the phenotype. 

2. SNPs are considered to be a more suitable choice for high-throughput genetic 

study in comparison to microsatellites. 

3. Compared to other DNA markers, they are more stably inherited and provide a 

greater number of potential markers in the vicinity of the locus of interest. 

4. are devoid of phenotype effects. 

The only limitation with SNP markers is that they are bi-allelic, meaning within a 

population there are only two alleles of each SNP. Consequently, they provide less 

information than multiallelic markers. 

SNPs are the most commonly utilised DNA markers in animal genetics studies 

due to their suitability for high-throughput platforms and abundance throughout the 

genome (Vignal et al., 2002). The advancement of genomic technology and molecular 

information in recent years has made it possible to develop high-density SNP chips for 

livestock. The use of high-density SNP panels in farm animals has opened up the 

possibility of implementing genomic selection (Bertolini et al., 2017b; Rupp et al., 

2016). The development of the 50K ovine SNP chip in 2009 made genomic selection 

possible in small ruminants for the first time (Rupp et al., 2016). According to (Auvray 

et al., 2014); Nicolazzi et al. (2015), Illumina developed the Ovine 50K SNP chip, 

containing 54,241 SNPs, and the Goat SNP50 BeadChip, containing 53,347 SNPs.  
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1.7.3 Use of molecular markers in the prediction of breeding value  

Even though traditional genetic evaluation methods have made some progress, 

the recent development of genomic research and technologies has led to the 

successful use of new tools and methods in the livestock industry. Marker-assisted 

selection (MAS) is one of these techniques, which depends on utilizing genetic markers 

to investigate any QTL associations with these markers. MAS refers to the use of 

breeding values in conjunction with genetic marker information in the selection of 

animals in a breeding programme on the basis of linkage analysis (Mrode, 2014; Simm 

et al., 2020). The utilisation of marker loci that are linked to QTLs has the potential to 

enhance genetic progress through the increase of selection accuracy and the 

minimization of generation intervals (Fernando & Grossman, 1989). However, because 

many genes usually influence quantitative characteristics, the expected gain from MAS 

is limited by the fraction of genetic variance of the target trait, which may be explained 

by the segregation of marker alleles (Ibtisham et al., 2017; Mrode, 2014). In addition, 

the linkage between the interested marker and the QTL is probably not close enough 

to sustain across the population, which involves structuring a linkage phase within each 

family (Mrode, 2014). 

As a typical form of MAS evaluation of quantitative genetic variation, Meuwissen 

et al. (2001) developed genome-wide selection, usually known as genomic selection 

(GS). They theoretically demonstrated a possible accuracy in selection of up to 80%. 

This approach selects animals by combining pedigree and phenotypic data with all 

possible genomic information from the whole genome. Genomic selection is 

advantageous when traits, such as carcass quality, can be phenotyped in late life or 

are very difficult or expensive to phenotype. It enables breeders to select animals early 
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in life, thus reducing the generation interval (Oldenbroek & van der Waaij, 2014). In 

addition, animal breeders can potentially predict breeding values with higher accuracy 

than classical methods (Blasco & Toro, 2014). In dairy cattle, for instance, the 

prediction accuracy for production traits exceeds 0.80 (Weigel et al., 2012). 

Consequently, GS can substantially improve genetic gain with a much shorter time 

span and lower effective labour costs. 

Genomic selection involves the use of all available genomic markers, i.e., SNPs, 

which are scattered across the genome. Potentially, they explain the total additive 

genetic variance caused by QTLs. So that all QTLs are assumed to be in linkage 

disequilibrium with at least one marker (Goddard & Hayes, 2007). Since all QTLs must 

be in linkage disequilibrium with at least one marker, the marker density must be high 

enough to achieve this (Mrode, 2014). To determine each animal's genomic estimated 

breeding value (GEBV), the effects explained by all markers throughout the entire 

genome associated with the trait variation are used. GS involves estimating the 

markers’ effects in a reference population whose individuals are genotyped and 

phenotyped for the trait. Afterwards, selected candidates only need to be genotyped, 

and GEBV for them is computed by associating their genotypes of the markers with 

their predicted effects (Meuwissen et al., 2016; Mrode et al., 2018). 

 

 

 



 

38 

 

1.7.4 Methods of predicting genomic breeding values 

Recently, the advancement in SNP typing and the huge amount of SNP chips 

produced for livestock have helped animal breeders utilize markers’ information to 

estimate the genetic merit of animals. By this, it is expected that the genetic 

improvement will be enhanced through a more accurate estimation and a decrease in 

the generation interval. Utilizing the information of SNP markers in the prediction of 

genomic estimated breeding value (GEBV) is called genomic prediction, and the 

selection of candidates by this method is called genomic selection. Genomic selection 

(GS) basically involves the estimation of SNP effects by solving linear equations in a 

group of animals, i.e., the reference population in which the animals have genotypes 

for these SNPs and phenotypes. Then, these SNP estimates are used to predict GEBV 

when selecting candidates. The estimation of the accuracy of the prediction might be 

conducted by correlating the predicted EGBV and the true breeding value (TBV) in the 

validation set (Simm et al., 2020). 

 

1.7.4.1 SNP-BLUP 

This methodology relies on the utilisation of the same principles used by the 

BLUP estimator approach to estimate the effects of all SNPs throughout the entire 

genome in a reference population, typically consisting of several thousand individuals 

who have undergone phenotyping and genotyping. It has been shown that in the 

setting of classic BLUP, the number of equations formed for obtaining the solutions for 

the random additive effects is equivalent to the number of animals for which breeding 

values are being estimated. In the context of SNP-BLUP, equations are constructed 

for each of the SNPs, taking into account the genotypes of these SNPs across all 
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genotyped animals. Consequently, the solutions obtained correspond to the SNPs 

themselves rather than the animals (Meuwissen et al., 2016).  

This method assumes that the effects of all SNPs are normally distributed and 

that they have common genetic variance. The typical general linear model, which 

explains the phenotypes of individuals, can be formulated as follows:            

y = Xb + Zg + e,                                 (19) 

where: 

𝒚 is the vector of phenotypic records ; 𝒃 and g are environmental fixed effects, and the 

additive genetic effect for each 𝑖th SNP genotype, respectively; 𝑿 and Z are design 
matrices relating records to fixed effects and additive genetic effects of SNPs , 
respectively 𝒆 is the error. 

 

 

The Z matrix in (19) is a scaled matrix that was generated from a matrix called 

the M matrix. The M matrix includes the genotype of each genotyped SNP for each 

individual (It may be coded as  2, 0, and 1 for the homozygous, alternative 

homozygous, and heterozygous individuals for the SNP, respectively). Then, the Z 

matrix can be obtained by subtracting the P matrix from M, as follows: 

𝑍 = 𝑀 − 𝑃 ,                          (20) 

where: 

The matrix 𝑷 consists of 2𝑝𝑗 elements, where 𝒑𝒋 represents the frequency of the 

alternative allele of the SNP at locus 𝑗.  
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According to Mrode (2014), scaling the M matrix into a Z matrix is suggested to account 

for possible differences between various allelic frequencies of SNP and to set the allelic 

SNP effects of an average equal to zero.  

The solutions of 𝑏 (fixed effects) and 𝑔 (random SNP effects) in (19) can be 

obtained by the MME equations as same as happened with BLUP  in (18)  as follows : 

(
𝑋′𝑋 𝑋′𝑍
𝑍′𝑋 𝑍′𝑍 +  𝐼𝛼

) (
𝑏̂
𝑔̂
) = (

𝑋′𝑦

𝑍′𝑦
),                                (21) 

where: 

𝛼 = 
𝜎𝑒
2

𝜎𝑔
2 .  

 

 

However, because the genetic variance 𝜎𝑔
2 practically is unknown, 𝜎𝑔

2 can be estimated 

approximately from 𝜎𝑎
2 by the following equation: 

𝜎𝑎
2 / 2∑𝑝𝑗(1 − 𝑝𝑗) ,                                       (22) 

where: 

𝒑𝒋 is the allelic frequency of 𝑗th SNP. 

 

After obtaining the additive genetic effects of SNPs by solving for 𝑔 , the genomic 

estimated breeding value (GEBV) for all individuals in the reference and validating 

animals can be estimated by multiplying Z matrix (Fixed matrix of SNPs genotypes of 

all individuals) by g (the estimated genetic effects of SNPs) as follow :  

GEBV = Zg                                            (23) 
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1.7.4.2 Genomic best linear unbiased prediction (GBLUP) 

The genomic best linear unbiased prediction (GBLUP) has been developed by 

the use of constructing the 𝐺 matrix which defines the genomic relationships between 

the individuals (Habier et al., 2007; VanRaden, 2008). This technique is comparable to 

Henderson (1976) with MME (BLUP). Nevertheless, rather than using the additive 

numerator relationship (𝐴), it makes use of the genomic relationship (𝐺) matrix, which 

is derived from the SNPs marker information (Prince & Gowane, 2017).  

The conventional BLUP approach involved the utilisation of the 𝐴 matrix inside 

the Mixed Model Equations (MME) framework to solve the equations and obtain 

estimates for the breeding values (𝑎). Given that parents pass on half of their genes 

exactly to all of their offspring, it defines a predicted percentage of shared genes 

between a pair of individuals. This implies that siblings who share both parents inherit 

precisely 50% of their genetic material from each parent, but this may not always hold 

true in practise due to the inherent variability in Mendelian sampling. In contrast, the 𝐺 

matrix serves to distinguish the observable genetic relationships among individuals via 

the utilisation of genotyped markers (Simm et al., 2020). As a result, it may be inferred 

that it offers a higher degree of accuracy compared to matrix 𝐴. However, this needs 

the utilisation of an extensive amount of markers in order to adequately represent the 

relationships between individuals, hence enhancing its accuracy precision. 

Let us consider the following general model: 

y = Xb + 𝐵a + e,                          (24) 

where: 

y is the vector of phenotypic records; 𝒃 and 𝒂 are vectors of fixed effects and genomic 
additive effects, respectively; 𝑿 and 𝑩 are the incidence matrices which relate records 
to 𝒃 and 𝒂 vectors, respectively; and 𝒆 is the random residuals.  
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The genomic breeding values (𝐺𝐵𝑉) of the animals which are equivalent to the 

additive genomic effects (𝑎) are computed directly via the MME equations, wherein 

𝑎 = 𝑍𝑔 as we saw that in the SNP-BLUP method. This means that: 

var (𝑎) = ZZ′𝜎𝑔
2, 

 

and given that the  𝜎𝑔
2 =  𝜎𝑎

2 / 2∑𝑝𝑗(1 − 𝑝𝑗) as in equation (22), then the scaled matrix 

of 𝐺 can be obtained as follows: 

𝐺 =  
𝑍 𝑍′

2∑𝑝𝑗(1−𝑝𝑗)
 ,                                       (25) 

which means that the Var(𝑎) = 𝐺𝜎𝑎
2. 

 

Then, the predicted genomic breed value (GEBV) can be obtained by the MME 

procedure using for example the animal model, by replacing the 𝑨 matrix with the 

matrix G as illustrated in (26):  

(
𝑋′𝑋 𝑋′𝐵
𝐵′𝑋 𝐵′𝐵 + 𝐺−1𝛼

) (𝑏̂
𝑎̂
) = (

𝑋′𝑦

𝐵′𝑦
)  ,                   (26) 

where 𝛼 equals  
𝜎𝑒
2

𝜎𝑎
2. 

 

 

 

 

The GBLUP approach offers advantages in terms of utilising the same software 

used for standard BLUP, with the key modification of substituting the 𝐴 matrix with the 

𝐺 matrix. Additionally, the utilisation of molecular information enables the capture of 
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variations among similar individuals which rise as a result of Mendelian sampling 

variance. An accurate estimation of the relationships among individuals can be 

obtained even in a population with a poor pedigree (Mrode, 2014). However, the 

inversion of the 𝐺 matrix could not be feasible as the population gets larger. In addition, 

the above genomic assessment approaches, i.e., SNP-BLUP and GBLUP could only 

evaluate the genotyped animals (Weigel, 2017), and they are not straightforward to 

evaluate the ungenotyped animals.  

Due to the cost of genotyping or the unavailability of DNA samples for some 

animals, especially the older animals, the GEBVs of the younger animals may not 

contain information from their parents. In order to overcome this issue, a two-step 

procedure for selecting candidates can be implemented. Initially, BLUP estimation is 

done for all the animals with the help of phenotypes and pedigrees. Then, GEBVs 

estimated by the mentioned genomic methods for genotyped animals can be combined 

with the averaged-BLUP of their parents to obtain EBVs (Simm et al., 2020). 

 

1.7.4.3  The single-step GBLUP (ssGBLUP) 

Misztal et al. (2010) proposed a technique that estimates GEBVs for genotyped 

animals and EBVs for ungenotyped animals by integrating EBV and GEBVs in a single 

step. The underlying basis for employing this approach lies in the utilisation of genomic 

data from genotyped animals to make inferences about the possible genomic 

information of non-genotyped animals, exploiting the pedigree relationships that exist 

between the two groups. The integration of genomic (𝐺) and pedigree (𝐴) relationships 

among individuals into a single matrix, referred to as (𝐻), is a fundamental aspect of 
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this approach. Therefore, the single-step genomic best linear unbiased prediction 

(ssGBLUP) method has the capability to calculate breeding values for both genotyped 

animals, known as genomic estimated breeding values (GEBVs), and non-genotyped 

animals, referred to as estimated breeding values (EBVs) (Bermann et al., 2022; 

Lourenco et al., 2020).  

The utilisation of ssGBLUP is recommended, especially in cases where the 

reference population size is limited, referring to individuals that have been both 

genotyped and phenotyped. The utilisation of this approach has the potential to 

minimise bias in the estimation of GEBV, as demonstrated by Rupp et al. (2016). 

Additionally, it has been shown to enhance the accuracy of predicting candidates, as 

evidenced by the findings of Carillier et al. (2013). The following linear mixed model 

can explain the quantitative trait: 

𝑦 = 𝑋𝑏 + 𝐵𝑎 + 𝑒   ,                     (27) 

where: 

The breeding value of the animals (𝒂) here is assumed to be partitioned into (𝒂𝟏) for 
ungenotyped individuals, and (𝒂𝟐) for genotyped one. 

 

 So, the assumed variances for both breeding values would be as follows: 

Var (
𝑎1
𝑎2
) = (

𝐴11 𝐴12
𝐴21 𝐺

)⊗ 𝜎𝑎
2, 

or  by taking A as a common factor,  Var (
𝑎1
𝑎2
) = 𝐴 + (

0 0
0 𝐺 − 𝐴22

) ⊗ 𝜎𝑎
2 

where: 

 𝑨𝟐𝟐 is the pedigree relationship of the genotyped animals; 𝑮 is the genomic 
relationships between genotyped animals. 
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Because of that 𝑎2 = 𝑍𝑔 (23) , and the Var (𝑎2) = 𝐺𝜎𝑎
2 (25), so 𝑎1 can be estimated from 

the genotyped animals by the following equation: 

𝑎1 = 𝐴12𝐴22
−1𝑍𝑔 + 𝑒                      (28) 

 

So that: 

Var (𝑎1) = 𝐴12𝐴22
−1G𝐴22

−1𝐴21 + 𝐴11 - 𝐴12𝐴22
−1𝐴21 

 

It can be shortened to:       

Var (𝑎1) = 𝐴11 + 𝐴12𝐴22
−1( 𝐺 − A22)𝐴22

−1𝐴21, 

and Cov (𝑎1, 𝑎2) = 𝐴12𝐴22
−1𝐺 

 

The (Co)variance matrix of both genotyped and non-genotyped animals is combined 

together in one matrix called (𝐻): 

𝐻 = (
𝐻11 𝐻12
𝐻21 𝐻22

) 

H = (
𝐴11 + 𝐴12𝐴22

−1(𝐺 − 𝐴22)𝐴22
−1𝐴21 𝐴12𝐴22

−1𝐺

𝐺𝐴22
−1𝐴21 𝐺

) 

 

Because the inverse of H matrix is involved in the MME equations, The inverse of 𝐻 

can be constructed as proposed by (Aguilar et al., 2010; Christensen & Lund, 2010) 

by following: 

𝐻−1 = 𝐴−1 + (
0 0
0 𝐺−1 − 𝐴22

−1) 

Then, the solutions of 𝑎 values can be estimated by the MME as follows: 

(
𝑋′𝑋 𝑋′𝐵
𝐵′𝑋 𝐵′𝐵 + 𝐻−1𝛼

) (𝑏̂
𝑎̂
) = (

𝑋′𝑦

𝐵′𝑦
) 
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1.7.5 Challenges to implement genomic selection in small ruminants 

Potential advantages of implementing genomic selection (GS) instead of 

traditional selection methods in small ruminants (namely sheep and goats) may arise 

from the potential increase in the accuracy of predictions. Nevertheless, the expense 

associated with SNP genotyping may exceed the economic worth of the animals, 

posing a significant challenge. Multiple factors play a significant role in the precise 

estimation of genomic breeding values in small ruminants (SR). These factors mostly 

include the size of reference populations, the heritability of the trait, the density of 

markers, the linkage disequilibrium (LD) existing between markers and quantitative 

trait loci (QTLs), and the specific method employed for genomic prediction (Goddard & 

Hayes, 2007; Hayes & Goddard, 2010; Yan et al., 2022). Thus, the expected 

advantages of genomic selection (GS) in SR may be comparatively lower than those 

observed in the field of cow breeding. As an illustration, it is commonly observed that 

the generation interval in SR is typically short, with economic traits being manifested 

in both sexes prior to reaching maturity. Additionally, an important number of 

production traits exhibit moderate to high heritability. This means that we can expect 

superiority of genomic selection over traditional selection in terms of prediction 

accuracy, particularly with low heritable traits. 

One of the most critical limitations to implementing GS is the reference 

population's size, particularly in SR. As mentioned in the literature, genomic selection 

relies on linkage disequilibria between markers and QTLs (i.e., the non-random 

association). The accuracy of marker-assisted evaluation of breeding values is largely 

affected by the number of genotyped animals and by the genomic relationships of the 

animals between the training and reference populations (Oldenbroek & van der Waaij, 
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2014). Besides, if the heritability of the trait is low, it needs a large number of genotyped 

animals and recorded phenotypes to obtain acceptable accuracy. Daetwyler et al. 

(2012) showed that the accuracy of GEBV is well correlated with the size of the 

reference population and the trait’s heritability. However, Blasco and Toro (2014) 

stated that this issue might be minimized by using information from multiple breeds 

whose individuals are genetically related or by using information from several 

generations. 

The method used for estimating GEBVs is another factor that can impact the 

accuracy of the estimation (Legarra et al., 2009; Misztal et al., 2013). In such a small 

reference population, the ssGBLUP method is preferable over other genomic methods 

because it integrates all available information from phenotypes, pedigrees, and 

genomic relationships in a single step. 

Marker density and linkage disequilibrium (LD) between markers and QTLs are 

essential determinants of GEBV accuracy. A low level of LD involves high-density 

markers to capture most of the genetic variation in the population. With high LD, the 

marker effects are more precisely estimated, resulting in a more accurate estimation 

(Sadan & Valsalan). Rupp et al. (2016) discussed another issue: the higher cost of 

genotyping relative to the animal production value is still an economic barrier to 

implementing genomic selection in sheep and goat breeding schemes. Further, many 

economic traits, like growth traits, are feasible to record before the reproductive stage. 
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1.8 Inbreeding 

1.8.1 Introduction 

Adopting BLUP and advanced GBLUP approaches to estimate animals' 

EBVs and subsequently rank them upon their EBVs would usually favour related 

animals for selection (Mrode, 2014). The implementation of intensive selection, which 

means using a limited number of sires and dams for breeding, along with the closed 

nature of populations in breeding programmes, can result in a rise in inbreeding and a 

decline in genetic variation (Venkataramanan et al., 2016). 

Animal breeding programmes are expected to be coupled with the development 

of inbreeding. Evaluation of inbreeding's level within animal populations, particularly in 

the context of a closed breeding programme, is crucial due to its potential impact on 

reducing genetic variation and inducing inbreeding depression. In practice, the 

avoidance of inbreeding is unattainable due to the inherent impossibility of preventing 

mating among closely related individuals within a finite population. However, the level 

of inbreeding can be appropriately controlled and managed through the 

implementation of a well-designed breeding programme that takes into account a 

number of factors that have the potential to limit the degree of inbreeding (Kristensen 

& Sørensen, 2005). In order for animals to respond to future selection and to reduce 

the detrimental effects of inbreeding depression, inbreeding levels should be kept to a 

minimum in order to retain appropriate levels of genetic variability. 

The amount of inbreeding is typically expressed through the calculation of the 

inbreeding coefficient 𝐹. This coefficient represents the probability of an individual 

has two identical alleles by descent (IBD) at any locus, in relation to a base population 
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(Falconer, 1996; Mrode, 2005). The two alleles are called IBD when they originate from 

a single replicated allele inherited from a shared ancestor. We refer to the locus that 

have IBD alleles as autozygous genotype. In contrast, a pair of alleles in any locus that 

share the same DNA nucleotide sequence but are not descended from a common 

ancestor is referred to as identical by state (IBS), and the genotype is known as 

allozygous(Hartl, 2020). 

The assessment of inbreeding level may be better indicated by the computation 

of Inbreeding rate (𝛥𝐹) rather than relying just on the F value. According to Falconer 

(1996), the F value is influenced by the pedigree depth which may be overestimated 

or underestimated. The increase in inbreeding 𝛥𝐹 can consider the variation in 

pedigree information. Inbreeding depression and genetic variation can be effectively 

monitored using this indicator. Using this indication, one may determine how long can 

keep the flock until critical levels of inbreeding occur (Ceyhan et al., 2009). The rate 

can be regarded as the difference between the mean inbreeding coefficients of animals 

on an annual basis or generation interval (Oldenbroek & van der Waaij, 2014) . 

According to Falconer (1996), levels of inbreeding can be considered 

acceptable and non-detrimental if they remain below 10%. In the context of inbreeding 

rate, Nicholas et al. (1989), proposed that a yearly inbreeding rate of no more than 

0.5% would be considered acceptable. As per Tahmoorespur and Sheikhloo (2011), 

the FAO recommends that the rate of inbreeding should not surpass 1% every 

generation in order to prevent or mitigate the severe effects of inbreeding depression. 

As a result, it is of the utmost significance to closely monitor the level of inbreeding 

within a population and implement strategies to control it, as this is essential for the 

development and maintenance of an efficient selection programme. 
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1.8.2 Consequences of inbreeding 

The ongoing maintenance of adequate levels of genetic variability is necessary 

in order to maintain an effective response to selection within breeding programmes 

(Howard et al., 2017). Inbreeding is a determinant factor in the reduction of genetic 

variability within a population, because it increases the frequency of homozygotes 

relative to the frequency of heterozygotes. Hence, it is emerging as an essential 

consideration in genetic improvement projects. According to the review of Kristensen 

and Sørensen (2005), an increase in the average inbreeding coefficient within a 

population has been demonstrated to result in a subsequent decrease in the additive 

genetic variance (𝑉𝐴). This decrease in 𝑉𝐴 is a matter of great concern for animal 

breeders because it limits the response to selection of a trait under selection. 

Generally, it is expected that the genetic variance decreases in the long term, while the 

additive genetic variance may increase in the short term due to the conversion of 

nonadditive effects to additive effects (Howard et al., 2017). 

Within a population, inbreeding tends to increase the homozygosity status of 

genotypes, allowing an equal chance for either recessive or dominant alleles to set in 

a paired form. This implies that the originally concealed alleles in the heterozygous 

state are now exposed and capable of being expressed. The manifestation of 

recessive alleles usually leads to a range of detrimental outcomes in animals, including 

weakened or nonviable offspring, reduced animal performance, and reduced fertility. 

Conversely, inbreeding results in a decrease in heterozygosity within the population, 

which in turn reduces genetic variation (Howard et al., 2017). 

 Inbreeding depression is another detrimental outcome characterised by a 

decrease in the average phenotypic value of a characteristic as a result of inbreeding. 
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Many economic traits in farm animals exhibit significant susceptibility to the influence 

of inbreeding, including but not limited to milk production, growth characteristics, 

survival rates, reproductive success, onset of sexual maturity, and sperm quality. 

Research findings indicate that reproductive traits might be more susceptible to 

influence compared to production characteristics, but meat quality traits are minimally 

or not impacted at all (Mandal et al., 2004; Wakchaure & Ganguly, 2015). Table 3 

shows numerous studies investigating the effect of inbreeding on some growth traits 

in sheep and goats. 

The extent of inbreeding depression can vary throughout populations, as it is 

conditional upon the frequency of alleles, which is influenced by both genetic drift and 

the intensity of selection (Howard et al., 2017). It is also influenced by the degree of 

dominance. According to Crow (2017), the change in the mean phenotypic value of a 

trait due to inbreeding is expected by the formula: 

2𝐹 ∑ 𝑝𝑖𝑞𝑖𝑑𝑖
𝑛
𝑖=1 ,                (29) 

where: 

𝑭 is the coefficient of inbreeding, 𝒑𝒊, 𝒒𝒊, and 𝒅𝒊, are dominant and recessive allele 
frequencies, and degree of dominance, respectively for the 𝑖th locus. 
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Table 3. Estimates of inbreeding depression on some growth traits in various breeds 
of sheep and goats.  

BW (birth weight), WW (weaning weight), W6 (six-months weight), W12 (yearling 
weight). 

Name of 
breed 

Growth 
trait 

% of inbreeding 
depression per 1% 
increased inbreeding 

Reference 

Iran-Black 
sheep 

BW 
WW 
W6 

W12 

 
-3.4 (g) 

-32.1 (g) 
-14.4 (g) 
-23.7 (g) 

 

(Baneh et al., 2019) 

Sakiz 
sheep 

BW 
WW 

-0.02 (kg) 
Not significant 

(Ceyhan et al., 2011) 
 
 

Kenya 
goats 

BW 
WW 
W12 

-0.04 (kg) 
Not significant 

-0.22 (kg) 

(Muasya et al., 2006) 
 
 
 

Baluchi 
sheep 

BW 
WW 
W6 

W12 

Not significant 
Not significant 

-0.02 (kg) 
-0.13 (kg) 

(Gholizadeh & Ghafouri-
Kesbi, 2016) 

 
 
 

Nilagiri 
sheep 

BW 
WW 
W6 

W12 

Not significant 
-0.05 (kg) 

Not significant 
-0.07 (kg) 

(Venkataramanan et al., 
2016) 

 
 
 

Thalli 
sheep 

BW 
WW 

-0.05 (kg) 
-0.05 (kg) 

(Hussain et al., 2006) 
 
 
 

Iranian 
Moghani 

sheep 

BW 
WW 
W6 

W12 

-0.01 (kg) 
-0.29 (kg) 
-0.03 (kg) 
-0.04 (kg) 

(Dorostkar et al., 2012) 
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1.8.3 Control of inbreeding level 

The level of inbreeding can be influenced by the practice of breeding strategies 

like artificial insemination and the application of high selection intensity (Mandal et al., 

2004). Additionally, the level of inbreeding in a population is influenced by factors such 

as the mating system, population size, reproductive efficiency, and the ratio of sex to 

females (Ceyhan et al., 2011). According to Pedrosa et al. (2010), a reduction in the 

number of animals utilised in breeding programmes leads to a higher intensity of 

selection, resulting in a rise in inbreeding. Therefore, increasing the number of males 

accessible to mating can be considered an effective strategy for reducing the level of 

inbreeding.  

There are a number of actions that animal breeders can take to avoid inbreeding 

or at least maintain it below the threshold. According to Wakchaure and Ganguly 

(2015), several strategies can be employed to minimise inbreeding or reduce its rate. 

These include the avoidance of mating between closely related animals, the utilisation 

of computer programmes specifically designed for mating purposes, the introduction 

of new genetic material through the purchase of new animals, and an increase in 

population size. When the population effective size is less than fifty, the inbreeding 

curve increases rapidly (Oldenbroek & van der Waaij, 2014). 
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1.8.4 Methods of estimating inbreeding coefficient (𝑭) 

In order to calculate the coefficient of inbreeding (𝐹) using a pedigree, it is 

necessary to first identify a common ancestor between the parents of individual 𝑖. This 

is because the only way for individual 𝑖 to receive alleles that are identical by descent 

(IBD) is if its parents had a common ancestor. Afterwards, every path originating from 

the individual 𝑖 are followed in an upward direction towards the shared ancestor and 

then downwards towards the same individual, as depicted in Figure 2. Next, the 

probability of passing on an allele to the offspring is determined, which is 50% as 

dictated by Mendel's law of gamete segregation. Nevertheless, the probability of the 

common ancestor transmitting an allele (IBD) is 0.5(1 + 𝐹), where 𝐹 represents the 

inbreeding coefficient of the common ancestor.  

 

 

Figure 2. Calculation of the inbreeding coefficient through the ancestral path. 
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Mathematically, the 𝐹𝑖 value of individual 𝑖 can be calculated as proposed by  Hartl 

(2020) by the following: 

𝐹𝑖 = (0.5)
𝑛(1 + 𝐹𝐶𝐴),                                 (30) 

where: 

𝒏 is the number of 𝑖th ancestors leading to the common ancestor, 𝑭𝑪𝑨 is the inbreeding 
coefficient of the common ancestor 𝑪𝑨. 

 

If there are more than one common ancestor, then the 𝐹𝑖 equals: 

∑ (0.5)𝑛(1 + 𝐹𝐶𝐴),𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠                               (31) 

 

The utilisation of the pathways approach for computing the inbreeding 

coefficient may become unfeasible and complex when dealing with a larger number of 

population, resulting in the challenge of tracing all paths for every ancestor. Henderson 

(1976) established a recursive method for computerization compatibility whereby 

builds additive genetic relationships among individuals in a matrix known as the 

numerator relationship matrix (𝐴). The matrix is symmetrical, with the diagonal 

elements (𝑎𝑖𝑖) equal to 1 + 𝐹𝑖, where 𝐹𝑖 represents the inbreeding coefficient of 

individual 𝑖. The off-diagonal elements (𝑎𝑖𝑗) reflect the additive genetic relationship 

between individuals 𝑖 and 𝑗. Estimation of variance components and breeding values 

is utilising the 𝐴 matrix, as it is assumed that the variance of the additive genetic effects 

𝑉𝑎 = 𝐴𝜎𝑎
2. 

The above  approach of computing F values involves assigning numerical codes 

to the animals, ranging from 1 to 𝑛, in a particular order where the parents come before 

their offspring. It has the following rules to estimates the elements of 𝐴 matrix: 
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1. If both parents the sire and the dam of animal 𝑖 are known, then the additive 
genetic relationship between animal 𝑖 and animal 𝑗 is calculated as: 

           (𝑎𝑗𝑖 = 𝑎𝑖𝑗) = 0.5(𝑎𝑗,𝑠𝑖𝑟𝑒 𝑜𝑓 𝑖 + 𝑎𝑗,𝑑𝑎𝑚 𝑜𝑓 𝑖), and 𝑎𝑖𝑖 = 1 + 0.5(𝑎𝑠𝑖𝑟𝑒,𝑑𝑎𝑚).  

 

2. If only one parent is known, then: 

           (𝑎𝑗𝑖 = 𝑎𝑖𝑗) = 0.5(𝑎𝑗,𝑠𝑖𝑟𝑒 𝑜𝑓 𝑖), and 𝑎𝑖𝑖 = 1.  

 

3. If both parents are unknown, then: 

           (𝑎𝑗𝑖 = 𝑎𝑖𝑗) = 0, and 𝑎𝑖𝑖 = 1. 

 

Several algorithms have been developed to calculate the 𝐹 value with greater 

computation efficiency, especially for large populations. The techniques primarily relied 

on adaptations to the tabular method or Henderson (1976) findings, who demonstrated 

that the 𝐴 matrix may be decomposed into three matrices as following: 

𝐴 = 𝐿𝐷𝐿′ ,                                   (32) 

where: 

The 𝑳 matrix is a lower triangular matrix that represents the genetic contribution of 
parents to offspring; the 𝑫 matrix, on the other hand, is a diagonal matrix that 
represents the variance in Mendelian sampling.  

 

This method involves the calculation of 𝐿 matrix column by column at a time, and then 

accumulates the summation of 𝐿 elements for each row of 𝑖th animal, wherein the 

diagonal elements of 𝐴 matrix which equals 1 + 𝐹 can be expressed as: 

𝑎𝑖𝑖 = ∑ 𝑙𝑖𝑗
2 𝑑𝑗𝑗

𝑖
𝑗 ,                                     (33) 

A comparison study conducted by (Sargolzaei & Iwaisaki, 2005)  using 

simulated data compared between four common algorithms to compute inbreeding 

coefficient (𝐹). They compared Tier (1990), Meuwissen and Luo (1992), Quaas (1995), 
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and Sargolzaei and Iwaisaki (2004). The algorithm used by Tier (1990) is an adaptation 

for the tabular method. The numerator relationship 𝐴 is only used partially. This method 

utilises a recursive process to identify and mark only what is needed for calculating the 

diagonal elements of matrix A. Subsequently, the flagged elements are computed 

using the tabular method. 

The algorithm used by Meuwissen and Luo (1992) was faster and superior 

computationally to that used by Tier (1990), when the average number of generations 

is not too large, and when a new patch of animals added to be estimated. They 

proposed a method that computes the elements of the lower triangular matrix 𝐿  row 

by row at a time, rather than by columns, using the principles of Henderson's (1976) 

decomposition of matrix A in equations 41 and 42. This feature allows to use previously 

calculated inbreeding coefficients, for the estimation of newly added animals. It entails 

creating of ancestral list for every animal. The 𝐿 elements are calculated as follows: 

𝑙𝑖𝑗 = ∑ 0.5𝑙𝑖𝑘𝑘𝜖𝐴𝑁𝐶𝑖∩𝑃𝑗
,                                  (34) 

where: 

𝑨𝑵𝑪𝒊 is the ancestors list of animal 𝑖 including the 𝑖th itself, and 𝑷𝒋 includes the progeny 

of ancestor 𝑗. 

 

 

However, this approach requires tracing the complete pedigree of the animal 

being estimated, including all ancestors, regardless of whether they are common or 

not, which involves summing all the diagonal elements of that animal row of matrix 𝐴, 

which can be a time-consuming process (Mrode, 2014). What is really needed is just 

the common ancestors, considering that the 𝐹 value of animal 𝑖 equals 1 2⁄ 𝑎𝑆𝑖𝑟𝑒𝑖𝑑𝑎𝑚𝑖 .  

Accordingly, in 1995, Quaas developed modifications to the Meuwissen and Luo 
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algorithm, requiring the creation of two lists of ancestors for sire and dam of the animal, 

which involves the simultaneous developing of two rows of matrix L. Which means only 

computing the non-zero elements of the two rows of the sire and dam. 
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1.9 Objectives of the thesis  

Genetic improvement programmes serve as an important tool to improve animals’ 

performance, including growth traits. These programs rely on the accurate estimation 

of key genetic parameters that define the population, such as the heritability of the trait 

and the genetic correlations between traits. WQLRS is a station in Oman that keeps 

local sheep and goats for breeding brogramme, i.e., genetic improvement through 

within-breed selection, with the goal of improving the animals' performance and 

focusing on their growth potential to enhance meat output. 

 Thus, the chief objective of this thesis (Chapter 4) was to estimate genetic 

parameters that include heritability of growth traits and the genetic correlations, as well 

as the genetic trend for each trait from 2008 to 2020, focusing on the most common 

goat and sheep breeds exist in Oman: Omani sheep (OS), Jebel Akhdar (JA), and 

Batinah (BA) goats. The weights at birth (BW), weaning (WW), six months (W6), and 

yearling (W12) were the targeted traits. 

The efficiency of breeding programmes can be impacted by inbreeding level 

within population since it reduces genetic variability (Ceyhan et al., 2011; Mandal et 

al., 2020) and can cause inbreeding depression (Falconer, 1996). Increased levels of 

inbreeding are typically associated with genetic improvement programmes, particularly 

in closed-population programmes that prioritise within-breed selection. The 

investigation of the level of inbreeding in the three populations, tracking how it changed 

from 2008 to 2020, and suggesting a number of strategies to control it was the second 

goal of this thesis (Chapter 3).  
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In chapter 5, I conducted a simulation study using Omani sheep as a case study 

in order to investigate if genomic methods that include Genomic Best Linear Unbiased 

Prediction (GBLUP) and Single Step Genomic Best Linear Unbiased Prediction 

(ssGBLUP) could be used to predict breeding values of selected animals more 

accurately than the traditional BLUP approach. The simulation used the real pedigree 

and heritability level described in Chapter 4. As a result, theoretical guidelines have 

been proposed for the possibility of implementing genomic selection in Omani 

populations of sheep and goats. 
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CHAPTER TWO 

MATERIALS AND METHODS 
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2.1 The study populations  

Three populations were considered for the research of this thesis, including two 

indigenous breeds of Omani goats, namely Jebel Akhdar (JA) and Batinah (BA), as 

well as one breed of sheep called Omani sheep (OS). They are primarily used for the 

production of meat (Shaat and Al-Habsi, 2016). Although raw goat milk is infrequently 

consumed, it could be used to make byproducts like butter and cheese for household 

consumption only. Sheep milk is rarely used, and the fibre may be used by Bedouins 

to make rugs and household artifacts (Mahgoub et al., 2010).  

The choice of these particular breeds for the study was primarily based on three 

factors. Firstly, they are relatively more productive than other small ruminants available 

in the country. Secondly, they are common and widely raised by farmers in Oman. 

Thirdly, they have been housed and subjected to breeding programs for genetic 

improvement at the Wadi Qurayyat livestock research station (WQLRS), where I am 

employed. 

The investigated flocks were managed in a semi-intensive production system at the 

WQLRS. The animals were fed with a concentrated feed ration that contained a 

minimum of 14% crude protein, along with dry Rhodes grass hay. The amount of 

concentrate feed varied depending on the age and physiological state of the animals, 

from 250 g/head to a maximum of 700g/head. The growing animals were gradually fed 

concentrate until they reached a maximum of 600 g per head at approximately six 

months of age, and this amount continued until they reached maturity. The adult 

females were provided with the highest possible quantity of concentrate during the final 

trimester of pregnancy and for flushing during the early stage of lambing/kidding. The 
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dry grasses were frequently provided ad libitum, with occasional restricted amounts 

based on resource availability from year to year. 

 

2.1.1 Jebel Akhdar (JA) goats 

The breed is typically medium-sized and brown in colour (Shaat & Al-Habsi, 

2016) as shown in Figure 3 and Figure 4 It is characterised by its considerable size 

and weight, making it one of the largest and heaviest breeds among the various 

indigenous goat breeds found in the country. Its distribution is extensive, primarily 

concentrated in the interior regions of Oman, particularly in the Jebel Akhdar mountain 

area. Animals of this breed usually have twisted horns and pendulous ears (Mahgoub 

et al., 2005).  

According to the recent findings published by the Ministry of Agriculture and 

Fisheries in Oman ( MAF (2019), it was observed that JA goats, which underwent 

genetic improvement at the research station of WQLRS, exhibited an excellent fertility 

rate of 94%. The average litter size (LS) was recorded as 1.47, meaning that for every 

100 mated female goats, almost 147 kids were produced. 

 

2.1.2 Batinah (BA) goats 

The animals belonging to this particular breed possess a coat containing hair 

that ranges in colour from dark brown to black. Notably, these animals also possess 

distinct white markings on their face, abdomen, and lower legs, as depicted in Figure 

5. They are reared mainly for meat production (Shaat & Al-Habsi, 2016). The breed 
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under consideration has an excellent fertility rate of 94% and a LS rate of 1.43, which 

is comparable to the JA goat breed (MAF, 2019). 

 

 

Figure 3. An adult male of Omani Jebel Akhdar goat. 

 

 

Figure 4. An adult female of Omani Jebel Akhdar goat. 
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Figure 5.  Adult female of Omani Batinah goat. 

 

 

 

Figure 6. Ewe dam of Omani sheep raising its offspring. 
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2.1.3 Omani sheep (OS) 

This particular breed is well recognised as one of the foremost indigenous sheep 

breeds in Oman. They are primarily found in the north, and producing meat is the 

primary objective of their breeding. The dominant colour exhibited by this breed is 

black, with a relatively small proportion displaying white or brown coloration, potentially 

attributable to the presence of recessive genetic segregations. The fleece of these 

animals exhibits a short and coarse nature. The individuals feature a cranial structure 

that exhibits elongation, accompanied by a nasal region that is characterised by a 

curved shape (al-Subeihi et al., 2018). Figure 6 illustrates an Omani ewe nursing its 

lambs. The fertility rate stands at around 90%. The breed is characterised by a 

comparatively greater rate of LS (1.70) compared to goat breeds, following the 

implementation of breeding improvements (MAF, 2019).         
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2.2 The breeding programme at WQLRS station 

The station is staffed with technical and veterinary specialists. The technicians 

are responsible for supervising feed management, collecting and recording data, and 

shearing animals. All the animals at the station undergo the process of dipping and 

shearing during the late summer season. They get regular vaccinations based on 

governmental recommendations and deworming treatments administered by the 

veterinary staff. 

 Without the use of a selection index, the breeding program at WQLRS was 

developed using a multiple trait selection strategy. It was suggested that birth type  

(BT) and weight at six months (W6) would be the selection criteria for replacement 

males. The male twins with good W6 were kept as future sires, and the other males 

were either sold or given to the local farmers. One main purpose of the breeding 

program was to increase the litter size of the breeds under investigation, which is why 

BT was prioritised. While the selection of the W6 trait was based on literature that 

shows that it usually is moderate to high heritable and it has a strong correlation with 

other growth traits, particularly with W12. Therefore, enhancing W6 would enhance 

other growth traits. To maintain as many of the replacement females as possible for 

breeding, the selection process for them was less intensive than that for the males. 

Priorities for selecting females were set by the following: mothering ability, BT, W6, 

yearling weight (W12), and weight at 18 months.  

The rams and bucks (adult males of sheep and goat, respectively) were usually 

retained in service for a maximum of two years during a one-year mating season, while 

the female was kept in service until it reached eight years old, unless it was culled. 

Generally, the flocks were in a closed breeding program, except that three bucks of JA 
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were introduced from outside the station in 2011 and 2014, one buck of BA in 2010, 

and three OS rams in 2014. 

 The goats went into their mating season in mid-September, following the 

summer season, while the sheep's mating season occurred in October. The females 

chosen for breeding should have a minimum weight of 30 kg. The selected rams/bucks 

were distributed at random to different pens, which included randomly assigned 

females. The males were kept with the females for a duration of 45 days for goats and 

30 days for sheep. This is because ewes have a shorter oestrous period compared to 

does. Most of the animals’ pens were located in a separate barn with one animal 

keeper for each breed, with the exception of one barn that included pens for the three 

different breeds.  

To ensure optimal management, the kidding season for goats was scheduled to 

commence in February and end in March, while the lambing season for sheep was set 

to begin in March and end in April. Both kids and lambs were kept with their dams until 

they were weaned. Because the animals were born on various dates, weaning took 

place at two different intervals to ensure that they roughly reached three months of age 

at weaning. The majority of the kids were weaned in early June, while the others were 

weaned in July. The majority of lambs were weaned in late June, with the remaining 

lambs being weaned in July. At birth, the animal was immediately weighed and ear-

tagged with its unique identification number. The data recording covered the animal's 

identification, paternal and maternal identities, sex, date of birth, type of birth, pen, and 

measurements of weight at birth (BW), two months (WW), 6 months (W6), and 12 

months (W12) as illustrated by Figures 7 and 8. Afterwards, kids/lambs were 
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separated and distributed into different groups according to their sex, body weights, 

and type of birth.  

 

 

Figure 7. Recording book of the newly born animals for each breed at WQLRS.  

It contains, starting from the left side, Dam ID, Progeny ID, Sex, Birth weight, Date 
of birth, Type of birth, and Remarks. 
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Figure 8. A database of the live body weights of lambs belonging to the OS breed at 
WQLRS.  

This example illustrates how animal weights are digitally recorded in an Excel 
spreadsheet. From left to right, the sheet provides information on serial numbers, 
animal IDs, sire IDs, dam IDs, breeds, pen numbers, birth dates, animal sex, birth 
year, birth type, BW, WW, date of WW recording, W6, date of W6 recording, W12, 
and date of W12 recording. 
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2.3 Collected data 

Records of pedigreed animals made up of 2,826 records, 2,609 records, and 

3,530 records for JA goats, BA goats, and OS sheep, respectively, were included in 

the data collection. The total number of individuals in the pedigree for the JA, BA, and 

OS breeds was 3,128, 2,947, and 3,931, respectively. Tables 4 and 5 summarize the 

data structure for each recorded trait of the three breeds and the pedigree structure, 

respectively.  Data was collected from the WQLRS station over a 13-year period, from 

2008 to 2020. The data used for analysis comprised the live body weights of animals 

at birth (BW), weaning (WW), six months (W6), and one year (W12). Besides, it 

included the animal's identification, paternal and maternal information, date of birth, 

age of the dam, sex, type of birth (BT), year of birth, pen, and the dates when weights 

were recorded. 

 

Table 4. Number of records for each growth trait in JA goats, BA goats, and OS 
sheep. 

 BW (birth weight), WW (weaning weight), W6 (six-months weight), and W12 (yearling 
weight). 

Trait JA goats BA goats OS sheep 

BW 2,826 2,609 3,530 

WW 2,342 2,186 3,120 

W6 1,706 1,689 2,374 

W12 1,265 1,208 1,745 
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Table 5. Pedigree structure of the three breeds of JA goats, BA goats, and OS 
sheep. 

Item JA 

 

BA goats OS sheep 

No. of animals without offspring 2,231 2,091 2,782 

No. of animals with offspring 897 791 1,149 

No. of animals with unknown sire 235 273 401 

No. of animals with unknown dam 299 338 401 

No. of animals with both parents’ known 2,826 2,610 3,530 

No. of sires with progeny 129 116 134 

No. of dams with progeny 768 675 1,015 
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2.4 Statistical analysis  

2.4.1 Estimating inbreeding levels in the three breeds (Chapter 3) 

Initially, all existing relationships between individuals were reviewed and 

checked. The checking process included the following considerations: 

 There are no duplicate numbers in the column of animal IDs. 

 The animal's date of birth is more recent than that of its parents. 

 The identification number of the offspring is greater than the numbers of its 

father and mother. 

 Matching the animal to its sex is necessary in order to prevent the female 

animal from being listed as the sire and vice versa. 

 Reviewing that the sire number is not found in the dams’ column, and vice 

versa. 

To facilitate the analysis computationally, all animals were initially assigned new 

numerical identifiers in ascending order, commencing from 1 to 𝑛 animals (𝑛 is the 

overall animals in the pedigree). The renumbering process was undertaken to be 

formatted for the subsequent analysis involved by the analysis algorithm. The 

calculation of inbreeding coefficients (F) for each animal was performed using Fortran 

source code, following the algorithm proposed by Meuwissen and Luo (1992). The 

algorithm utilises the decomposition principles of the additive genetic relationship 

matrix (i.e., numerator relationship matrix (A)) as described by Henderson (1976). The 

A matrix can be expressed as a result of three main matrices as follow:  

𝐴 = 𝐿𝐷𝐿𝑇,                                                  (35) 
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Where:  

L is a triangular matrix that contains 𝒍 elements which explains the proportion of the 
genes contributed by the ancestors for a given animal considering that half of the genes 
are passed to offspring; D is a diagonal matrix which explains the within-family variance 
(i.e., Mendelian sampling variance), which is calculated by the following equation: 

 

𝐷𝑖𝑖 = 0.5 − 0.25(𝐹𝑆𝑖𝑟𝑒_𝑖 − 𝐹𝐷𝑎𝑚_𝑖),                      (36) 

where: 

𝑫𝒊𝒊 is the diagonal element of ith animal; 𝑭𝑺𝒊𝒓𝒆_𝒊 and 𝑭𝑫𝒂𝒎_𝒊 are the inbreeding 

coefficients of ith sire and dam, respectively. 

 

Quaas (1976) has shown that from the A decomposition as in equation (35) that: 

(𝑎𝑖𝑖) = ∑ 𝑙𝑖𝑗𝑙𝑖𝑗
𝑖
𝑗=1 𝑑𝑗𝑗  ,                                           (37) 

where: 

 𝒂𝒊𝒊 is the diagonal elements of the A matrix that equals 1+F, where F is the animal's       
inbreeding coefficient.  

The algorithm suggested  by Meuwissen and Luo (1992) for the calculation of F 

is considered a fast method, and more adaptable to be updated when new group of 

animals are added, because of that it calculates the elements of L matrix row by row 

at a time instead of column by column as previous algorithm presented by Tier (1990). 

This enabled it to get benefits of the utilisation of previous computed F values 

(Sargolzaei & Iwaisaki, 2005). It entails creating of ancestral list for every animal. The 

𝐿 elements are calculated as follows: 

𝑙𝑖𝑗 = ∑ 0.5𝑙𝑖𝑘𝑘𝜖𝐴𝑁𝐶𝑖∩𝑃𝑗 ,                                  (38) 

where: 

𝑨𝑵𝑪𝒊 is the ancestors list of animal 𝑖 including the 𝑖th itself, and 𝑷𝒋 includes the progeny 

of ancestor 𝑗. 
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The overall mean inbreeding level (𝐹̅) of the population was determined by averaging 

the F values of all individuals in the study course. The trend of inbreeding over the 

course of 13 years (2008-2020) was determined by conducting a regression analysis, 

where 𝐹̅ of each year was regressed against the corresponding year of production.  

Pedigree quality was assessed using two measurements: the proportion of 

animals having known parents for both sire and dam, and the number of 

equivalent complete generations (Mandal et al., 2020; Rashidi et al., 2015). Number of 

equivalent complete generations for each ith individual(𝐸𝑞𝐺𝑖) were computed following 

Maignel et al. (1996) as follows: 

𝐸𝑞𝐺𝑖 = ∑(
1
2⁄ )
𝑛
,                                            (39) 

Where: 

 𝒏 is the number of generations which separate the individual 𝒊 from each known 
ancestor.  

Then, 𝐸𝑞𝐺𝑖 of all animals were averaged 𝐸𝑞𝐺𝑖 ̅̅ ̅̅ ̅̅ ̅ to be used in the quality assessment. 

 

2.4.2 Estimation of genetic parameters of the growth traits in the three breeds (Chapter 

4) 
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2.4.2.1 Records adjustment 

The data underwent a preliminary inspection and adjustment to avoid any 

potential biases. Initially, outliers were removed from the analysis. Outliers were 

defined as values that exceeded the mean by three times the standard deviation. In 

addition, the weights corresponded to the WW, W6, and W12 traits were adjusted to 

90, 180, and 360 days, respectively. This adjustment was implemented to decrease 

the variation in results from weighing animals at different ages, as there were 

differences in age at the time of weighing. The adjustment of weights was based on 

the following equation, as suggested by Inyangala et al. (1992) as follows: 

[(
𝑎𝑛𝑖𝑚𝑎𝑙′𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡 − 𝑎𝑛𝑖𝑚𝑎𝑙′𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑏𝑖𝑟𝑡ℎ

𝐷𝑎𝑡𝑒 𝑜𝑓 𝑎𝑛𝑖𝑚𝑎𝑙′𝑠 𝑤𝑒𝑖𝑔ℎ𝑖𝑛𝑔 − 𝐷𝑎𝑡𝑒 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ
𝑥 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑎𝑦𝑠) + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐵𝑊]  (40) 

 

2.4.2.2 Significance of fixed effects 

Initially, the significance of environmental fixed factors was assessed using 

ANOVA by fitting a general linear model in the Minitab software (Minitab, 2021). This 

was done to determine which fixed components should be included in the final animal 

model, which was used to estimate the genetic parameters. The factors considered in 

the analysis were year of birth (categorised into 13 levels), pen (categorized into 18 

levels), sex (categorized into two levels: male and female), type of birth (categorized 

into three levels: single, twin, and multiple), and age of the dam, which was included 

as a covariate equation (41). All possible two-way interactions were examined, and 

only the interaction with a P-value less than 0.05 was retained in the model. The Tukey-

Kramer method was employed to examine differences among pairs of levels of the 

fixed variables. Only the components with a significance level (P-value) of less than 
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0.05 were selected to be included in the animal model for the estimation of the genetic 

parameters. 

   𝑌𝑎𝑏𝑐𝑑 =  µ + 𝑌𝑒𝑎𝑟𝑎 + 𝑆𝑒𝑥𝑏 + 𝑇𝑦𝑝𝑒 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ𝑐 + 𝑪𝒐𝒗𝐴𝑔𝑒 𝑜𝑓 𝑑𝑎𝑚𝑑 + 𝑒𝑎𝑏𝑐𝑑      , (41) 

where: 

𝒀𝒂𝒃𝒄𝒅 is the animal’s observation in 𝑎th year, bth sex, cth type of birth, dth age of dam; µ 
is the population’s mean; 𝒆𝒂𝒃𝒄𝒅 is the random error associated with 𝑎𝑏𝑐𝑑th observation. 

2.4.2.3 Estimating (Co)variance components and corresponded genetic parameters 

The (Co)variance components and their corresponding genetic parameters 

were estimated by the restricted maximum likelihood estimator REML by fitting six 

various univariate animal models with the WOMBAT software (Meyer, 2012). All 

models fit the animal’s additive genetic effect, while they differ in including or excluding 

maternal genetic and environmental effects. Then, the best model will only be 

determined for the estimations. The six animal models were as follows: 

(1)          𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑒                                                             

           (2)         𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 + 𝑒, 𝐶𝑜𝑣 (𝑎,𝑚) = 0                            

           (3)         𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 + 𝑒, 𝐶𝑜𝑣(𝑎,𝑚) = 𝐴𝜎𝑎,𝑚                        

           (4)         𝑦 = 𝑋𝑏 + 𝛽𝑎 +𝑊𝑐 + 𝑒                                                   

           (5)           𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 +𝑊𝑐 + 𝑒, 𝐶𝑜𝑣(𝑎,𝑚) = 0            

           (6)            𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 +𝑊𝑐 + 𝑒, 𝐶𝑜𝑣(𝑎,𝑚) = 𝐴𝜎𝑎,𝑚        

Where: 

 𝒚 is a vector of records; b is a vector of the fixed effects; 𝒂, 𝒎, 𝒄 and 𝒆 are vectors of 
animal’s additive genetic effect, maternal additive genetic effect, maternal permanent 

environmental effect and residual effect, respectively; 𝑿, 𝜷, 𝒁 and 𝑾 are design 

matrices relating records to the effects of b, 𝒂, 𝒎 and 𝒄, respectively; A is the 
numerator genetic relationship matrix. 
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It was assumed that all the effects of the random factors follow the normal distribution 

and that the mean equals zero, with variances equal to:  

𝑉(𝑎) = 𝐴𝜎𝑎
2, 

𝑉(𝑚) = 𝐴𝜎𝑚
2 , 

𝑉(𝑐) = 𝐼𝜎𝑐
2, 

𝑉(𝑒) = 𝐼𝜎𝑒
2, 

Where: 

𝑨 and 𝑰 are the numerator relationship matrix and identity matrix (order equal to the 

number of dams and number of records), respectively; 𝝈𝒂
𝟐 , 𝝈𝒎

𝟐  , 𝝈𝒄
𝟐, and 𝝈𝒆

𝟐 are animals' 
additive genetic variance, maternal genetic variance, maternal permanent 
environmental variance, and residual variance, respectively. 

 

Choosing the best-fitted model was based on both the likelihood ratio test LRT 

(Wilson et al., 2010) and the Akaike information criterion AIC (Akaike, 1974). The LRT 

estimates the goodness of fit, and it can compare the models that differ by at least one 

parameter. While the AIC method was used, it estimates the prediction error and can 

compare models with the same or different number of parameters. The LRT tests the 

significance of the random effect by comparing the loglikelihoods (LogL) between the 

model that fitted the random effect and the model that ignored it. It is assumed that the 

twice-difference of these loglikelihoods between the models follows a chi-square (χ2) 

distribution with one degree of freedom, so it is calculated as follows: 

LRT = 2(𝐿𝑜𝑔𝐿(𝐹𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙) − 𝐿𝑜𝑔𝐿(𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)) 

The effect was considered significant if the value of χ2 corresponded to P < 0.05.  

The AIC was calculated as: 
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𝐴𝐼𝐶 = 2(𝐿𝑜𝑔𝐿) + 2𝐾, 

Where: 

𝑲 represents the number of fitted parameters, and 𝑳𝒐𝒈𝑳 represents the maximum 
loglikelihood of the model.  

 

Estimates of direct heritability ℎ𝑎
2 , maternal heritability ℎ𝑚

2 , and proportional 

maternal permanent environmental effects 𝑐2 were calculated as follows: 

ℎ𝑎
2 =

𝜎𝑎
2

𝜎𝑃
2, 

ℎ𝑚
2 =

𝜎𝑚
2

𝜎𝑃
2 , 

𝑐2 =
𝜎𝑐
2

𝜎𝑃
2, 

Where: 

𝝈𝒂
𝟐, 𝝈𝒎

𝟐 , 𝝈𝒄
𝟐 and 𝝈𝑷

𝟐  are the variances of animal’s additive genetic effects, maternal 
additive genetic effects, maternal permanent environmental effects and phenotypic 
values, respectively. 

 

The genetic 𝑟𝑎 and phenotypic 𝑟𝑃  correlations were estimated using four trait 

multi-variate animal model as explained in equation (42), by fitting the most appropriate 

model specified in the univariate analysis for each trait. The fixed effects fitted in the 

multi-trait animal models were the same as those in the single-trait analysis for each 

trait. 

(

𝑦1
𝑦2
𝑦3
𝑦4

) = (

𝑋1 0 0 0
0 𝑋2 0 0
0 0 𝑋3 0
0 0 0 𝑋4

)(

𝑏1
𝑏2
𝑏3
𝑏4

)+ (

𝛽1 0 0 0
0 𝛽2 0 0
0 0 𝛽 0
0 0 0 𝛽4

)(

𝑎1
𝑎2
𝑎3
𝑎4

) + 
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                                  (

𝑍1 0 0 0
0 𝑍2 0 0
0 0 𝑍3 0
0 0 0 𝑍4

)(

𝑚1
𝑚2
𝑚3
𝑚4

) + (

𝑊1 0 0 0
0 𝑊2 0 0
0 0 𝑊3 0
0 0 0 𝑊4

)(

𝑐1
𝑐2
𝑐3
𝑐4

) + (

𝑒1
𝑒2
𝑒3
𝑒4

), (42) 

Where: 

𝒚𝟏, 𝒚𝟐, 𝒚𝟑 and 𝒚𝟒 are vectors of records for the traits of BW, WW, W6 and W12, 

respectively; 𝒃𝟏, 𝒃𝟐, 𝒃𝟑 and 𝒃𝟒 are vectors of the fixed effects for the traits of BW, WW, 
W6 and W12, respectively; 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 and 𝒂𝟒 are vectors of animals’ additive genetic 
effects for the traits of BW, WW, W6 and W12, respectively; 𝒎𝟏, 𝒎𝟐, 𝒎𝟑 and 𝒎𝟒 are 
vectors of maternal additive genetic effects for the traits of BW, WW, W6 and W12, 

respectively; 𝒄𝟏, 𝒄𝟐, 𝒄𝟑 and 𝒄𝟒 are vectors of maternal permanent environmental effects 
for the traits of BW, WW, W6 and W12, respectively.  

𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝜷𝟏, 𝜷𝟐, 𝜷𝟑, 𝜷𝟒, 𝒁𝟏, 𝒁𝟐, 𝒁𝟑, 𝒁𝟒, 𝑾𝟏, 𝑾𝟐, 𝑾𝟑 and 𝑾𝟒 are the incidence 
matrices which relates the records to the fixed effects, animal’s additive genetic effect, 
maternal additive genetic effect and maternal permanent environmental effect for the 
traits of BW, WW, W6 and W12, respectively.  

 

It was assumed that all the effects of the random factors follow the normal distribution 

and that the mean equals zero, with (Co)variances structure as follows :  

Var(

𝑎1
𝑎2
𝑎3
𝑎4

) = 𝐴⊗

(

 
 

𝜎𝑎1
2 𝜎𝑎1𝑎2 𝜎𝑎1𝑎3 𝜎𝑎1𝑎4

𝜎𝑎1𝑎2 𝜎𝑎2
2 𝜎𝑎2𝑎3 𝜎𝑎2𝑎4

𝜎𝑎1𝑎3 𝜎𝑎2𝑎3 𝜎𝑎3
2 𝜎𝑎3𝑎4

𝜎𝑎1𝑎4 𝜎𝑎2𝑎4 𝜎𝑎3𝑎4 𝜎𝑎4
2
)

 
 

, 

Var(

𝑚1
𝑚2
𝑚3
𝑚4

) = 𝐴⊗

(

 
 

𝜎𝑚1
2 𝜎𝑚1𝑚2 𝜎𝑚1𝑚3 𝜎𝑚1𝑚4

𝜎𝑚1𝑚2 𝜎𝑚2
2 𝜎𝑚2𝑚3 𝜎𝑚2𝑚4

𝜎𝑚1𝑚3 𝜎𝑚2𝑚3 𝜎𝑚3
2 𝜎𝑚3𝑚4

𝜎𝑚1𝑚4 𝜎𝑚2𝑚4 𝜎𝑚3𝑚4 𝜎𝑚4
2

)

 
 

, 

Var(

𝑐1
𝑐2
𝑐3
𝑐4

) = 𝐼 ⊗

(

 
 

𝜎𝑐1
2 𝜎𝑐1𝑐2 𝜎𝑐1𝑐3 𝜎𝑐1𝑐4

𝜎𝑐1𝑐2 𝜎𝑐2
2 𝜎𝑐2𝑐3 𝜎𝑐2𝑐4

𝜎𝑐1𝑐3 𝜎𝑐2𝑐3 𝜎𝑐3
2 𝜎𝑐3𝑐4

𝜎𝑐1𝑐4 𝜎𝑐2𝑐4 𝜎𝑐3𝑐4 𝜎𝑐4
2
)

 
 

, and 



 

81 

 

Var(

𝑒1
𝑒2
𝑒3
𝑒4

) = 𝐼 ⊗

(

 
 

𝜎𝑒1
2 𝜎𝑒1𝑒2 𝜎𝑒1𝑒3 𝜎𝑒1𝑒4

𝜎𝑒1𝑒2 𝜎𝑒2
2 𝜎𝑒2𝑒3 𝜎𝑒2𝑒4

𝜎𝑒1𝑒3 𝜎𝑒2𝑒3 𝜎𝑒3
2 𝜎𝑒3𝑒4

𝜎𝑒1𝑒4 𝜎𝑒2𝑒4 𝜎𝑒3𝑒4 𝜎𝑒4
2
)

 
 

, 

Where: 

𝑨 is the numerator relationship matrix and 𝑰 is an identity matrix; 𝜎𝑎1
2 , 𝜎𝑎2

2 , 𝜎𝑎3
2 , 𝜎𝑎4

2 , 𝜎𝑚1
2 , 

𝜎𝑚2
2 , 𝜎𝑚3

2 , 𝜎𝑚4
2 , 𝜎𝑐1

2 , 𝜎𝑐2
2 , 𝜎𝑐3

2 , 𝜎𝑐4
2 , 𝜎𝑒1

2 , 𝜎𝑒2
2 , 𝜎𝑒3

2  and 𝜎𝑒4
2  are variances of the animal’s 

additive genetic effects, maternal additive genetic effects, maternal permanent 
environmental effects and residual effects for the traits of BW, WW, W6 and W12, 

respectively; 𝜎𝑎1𝑎2, 𝜎𝑎1𝑎3, 𝜎𝑎1𝑎4, 𝜎𝑎2𝑎3, 𝜎𝑎2𝑎4, 𝜎𝑎3𝑎4, 𝜎𝑚1𝑚2, 𝜎𝑚1𝑚3, 𝜎𝑚1𝑚4, 𝜎𝑚2𝑚3, 
𝜎𝑚2𝑚4, 𝜎𝑚3𝑚4, 𝜎𝑐1𝑐2, 𝜎𝑐1𝑐3, 𝜎𝑐1𝑐4, 𝜎𝑐2𝑐3, 𝜎𝑐2𝑐4, 𝜎𝑐3𝑐4, 𝜎𝑒1𝑒2, 𝜎𝑒1𝑒3, 𝜎𝑒1𝑒4, 𝜎𝑒2𝑒3, 𝜎𝑒2𝑒4 and 
𝜎𝑒3𝑒4 are the covariances of the animal’s additive genetic effects, maternal additive 
genetic effects, maternal permanent environmental effects and residual effects 
between the traits of BW, WW, W6 and W12, respectively. 

 

The genetic 𝑟𝑎 and phenotypic 𝑟𝑃 correlations between the four traits were calculated 

by following equations: 

𝑟𝑎= 
𝜎𝑎 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡 1,𝑎 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡 2

√𝜎2𝑎 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡 1 
𝑥 𝜎2𝑎 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡 2   

 

𝑟𝑃= 
𝜎𝑃 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡 1,𝑃 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡 2

√𝜎2𝑃 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡 1 
𝑥 𝜎2𝑃 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡 2 

  

 

 

In order to test the statistical significance of genetic correlations among traits, the LRT 

was employed to compare the model fitted with the covariance to a model with a 

covariance of zero (Wilson et al., 2010). The phenotypic correlations were tested by 

doing a hypothesis test to determine if the correlation coefficient differs from zero 

(Rajkumar et al., 2021). 
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The estimated breeding values EBVs of animals were calculated using the 

BLUP method, as described by Henderson (1973). They were generated by WOMBAT 

software by-product (solutions of animals’ effects a) from REML estimations of (Co) 

variance estimates via the multivariate analysis. Subsequently, the mean breeding 

values 𝐸𝐵𝑉𝑠̅̅ ̅̅ ̅̅ ̅ of the animals born in the same year were regressed to the year of birth 

in order to determine the genetic trend. Following the standardisation of the collected 

body weight data based on the fixed effects, the phenotypic trend was determined by 

calculating the linear regression of the adjusted means for a specific body weight in 

relation to the birth years (Elsayed, 2013). 

 

 

 

 

 

 

 

 

 



 

83 

 

2.5 The simulation study of implementing genomic selection in Omani sheep 

(Chapter 5) 

The Omani sheep breed was selected as a case study to investigate the 

potential benefits of using genomic selection compared to traditional selection. The 

study focused on three specific growth traits: BW, W6, and W12. These 

traits correspond to three different categories of heritability: low, moderate, and high, 

respectively. The simulated heritability estimates of the three traits were the same as 

those obtained in Chapter 4 (genetic parameter estimation) in order to represent the 

realized genetic characteristics of this population. The phenotypes of individuals were 

generated by simulating the sheep genome of pedigreed animals, which was the same 

real pedigree of this population used in Chapter 3. The EBVs of the animals were 

predicted using three methods: BLUP, GBLUP, and ssGBLUP. The correlation 

coefficient r was used to calculate the accuracy of the prediction by assessing the 

relationship between the true breeding value (TBV) and the EBV. 

2.5.1 Simulation of sheep genome 

Steps of the genome simulation involved setting up simulated genetic loci, including 

markers and QTLs, in simulated sheep individuals. The simulation was written in 

Fortran source code (Appendix A), and it has been verified by checking the output files 

of marker alleles and their corresponding genotypes (Appendix B), and the simulated 

heritability was verified by WOMBAT analysis (Appendix C). It was based on two 

sources of real datasets: the structure of the sheep genome and the real pedigree of 

the Omani sheep breeding cohorts under study. The genome was defined by species 

ploidy, the number of ovine chromosomes, the chromosomes’ length in cM units, the 
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number of total simulated loci (markers and QTLs), and the assignment of markers and 

QTL positions and their genetic effects.  

The sheep’s genome was simulated to have 5 pairs of chromosomes with a total 

length of about 400 cM.  Reducing the simulation from the real number of ovine 

chromosomes to only 5 chromosomes was because of computer efficiency limitations 

and the limitation of array dimension in the Fortran language. Each chromosome was 

evenly allocated 1,010 biallelic genetic loci (taking the codes of 1 for the dominant 

allele and 0 for the recessive allele) totalling 5,050 loci, of which 50 distributed QTLs 

and the rest were considered markers. Tables 6 and 7 illustrate the simulated genome 

structure and the genetic parameters of the simulated traits. 

Alleles of different loci on same chromosome may co-segregate more frequent 

than normal. The frequency of this association between alleles of different loci depends 

on the genetic distance between loci, which can be estimated by the recombinant 

gametes. Therefore, in the simulation process, the allele’s type at first locus of the 

formed gamete was determined to follow uniform distribution with frequency 𝑥 = 0.5, 

so that both alleles (1 and 0) have equal probability 50% of being picked. For the rest 

loci of the formed gamete, they were determined taking into account the recombination 

frequency among the adjacent loci, where 𝑥 here follow, the uniform distribution is 

adjusted to the recombination frequency as follow: 

𝑥 ≤ 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑜𝑐𝑖), 

So, the frequency of co-segregated alleles of the different loci would appear more 

frequent than normal. 
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Table 6. Lengths in centiMorgan (cM) of the simulated five ovine chromosomes 

Number of chromosome Length in cM 

1 80.72 

2 70.63 

3 100.90 

4 70.63 

5 70.63 

Total 393.51 

 

 

Table 7. Description of the simulated genome and genetic model of the ovine 
simulation study.  

BW = birth weight, W6 = six-months weight, and W12 = yearling weight. 

The genome The simulation 

No of chromosomes 5 

 Total of genome length ~400 cM 

 Number of markers 5,000 bi-allelic 

 Distribution of markers Evenly spaced 

 Number of QTLs 50 bi-allelic 

 QTL distribution User-specific allocations 

 QTL effects one with large effects (20% of total genetic variance) 

Two with medium effects (each with 10% of total genetic 
variance) 

Remaining 47 (1% or 2% of total genetic variance) 

The genetic model Parameters 

Genetic effects Additive genetic effects only 

 Heritability BW, W6 and W12 ( 0.16, 0.28, 0.48, respectively) 

   Population means BW, W6 and W12 ( 3.05 kg, 20.03 kg and 32.44 kg, 
respectively. 
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Genotypes of the founder animals for all loci were determined according to the 

distribution of allelic frequencies (0.50). While the genotypes of their progenies were 

generated from the union of the gametes randomly sampled from their parents 

specified in the pedigree. The gametes are always haploid (n chromosomes) created 

from a diploid parental cell. The two alleles (coded as 1 and 0) of each gene segregate 

randomly to form the gamete ( i.e., 50% probability ).  

 

2.5.2 The genetic model of the simulation 

The investigation of genetic variation (𝑉𝐺) among population’s individuals that 

associated with a particular quantitative trait can be studied with the help of 

formulating genetic models, the most common of which is the QTL model. The QTL 

model assumes that a limited number of genes exhibit major effects on the trait 

explaining significant part of the phenotypic variance (𝑉𝑃), whereas the remaining 𝑉𝑃 is 

explained by remaining numerous genes, of each have a minor impact (Clark et al., 

2011). The suggested genetic model for this simulation assumed that QTLs have only 

the additive genetic effects (𝑎), ignoring dominance (d) and epistasis (I) effects. The 

additive genetic effect (𝑎) of a certain QTL was computed based on the relationship 

between the QTL allelic frequency (p) and its variance (𝑉𝑄𝑇𝐿) as explained by Falconer 

(1996) following the steps 1 and 2: 

𝑉𝑄𝑇𝐿 = 2𝑝(1 − 𝑝)𝑎
2                         (1) 

 

If the allelic frequency p of a QTL is 0.50, then (1) can be reduced to become: 
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𝑉𝑄𝑇𝐿 = 
1
2⁄ . 𝑎2                                   (2) 

 

So, in order to calculate the additive genetic effect (𝑎) of that QTL, from  (2): 

𝑎 = √2. 𝑉𝑄𝑇𝐿                                             (3) 

 

The value of an individual’s phenotype was calculated according to the basic 

quantitative additive genetic model as follows: 

𝑦𝑖  =  µ + 𝐺𝑖 + 𝑒𝑖    ,                           (4) 

where: 

 𝒚𝒊 is the phenotypic value of individual 𝒊, µ is the population’s mean, 𝑮𝒊 is the genotypic 

value for individual 𝑖, and 𝒆𝒊 is a normally distributed error terms with mean = 0 and 
variance (𝜎𝑒

2).     

   

The environmental variance 𝜎𝑒
2  was estimated based on the relationship of it with the 

heritability as in (5), considering that the phenotypic variance of the trait equals 1: 

𝜎𝑒
2 = 

𝜎𝐺
2(1−ℎ2)

ℎ2
        ,                       (5) 

where: 

 𝝈𝑮
𝟐  is the genetic variance and 𝒉𝟐 is the trait’s heritability.            

                      

The true genetic value (G) of individual 𝒊 was calculated by summing all the effects of 

their genotype on every QTL as following: 

𝐺𝑖 = ∑ 𝑥𝑖𝑗𝑎𝑗
𝑛
𝑗=1           ,                       (6) 

where: 



 

88 

 

 𝒙𝒊𝒋  is the genotype of individual 𝒊 at locus 𝒋 coded as (0, 1, or 2 ) for QTL genotypes 

of (homozygous, heterozygous and alternate homozygous, respectively) ; 𝒂𝒋 is the 

additive genetic effect of QTL 𝒋 ; and 𝒏  is the number of all QTL loci. 

 

 

2.5.3 Example for illustration ( How to calculate the additive genetic effects) 

If we simulate a trait of heritability ℎ2 = 0.16, and the phenotypic variance 𝑉𝑃 =

1. The defined quantitative genetic model for a putative QTL would be as follows: QTL 

genotypes at locus Q are QQ, Qq and qq, which have genotypic values of 𝑎 − 𝑑/2, 

𝑑/2 and −𝑎 − 𝑑/2, respectively. The 𝑉𝑄𝑇𝐿 at this QTL is 𝜎𝑄𝑇𝐿
2  =  1 2⁄ 𝑎2 as illustrated in 

(2), with the assumption of 𝑑 = 0, (i.e., the additive genic model). If this QTL explains 

10% of total 𝑉𝐺, it means that the heritability of it equals 10% 𝑥 ℎ2 (0.10 𝑥 0.17 = 0.017). 

Thus, the additive genic effect (𝑎) at the QTL is calculated based on (3) as follow: 

𝑎 = √(2𝑥𝜎𝑄𝑇𝐿
2  ) 

𝑎 = √(2𝑥0.017 ) 

 

Following the same principles, we can calculate the (𝑎) value for each assumed QTL, 

while the trait’s heritability and proportion of variance explained by the QTL are known.     

Let us assume that a given trait is influenced by 13 QTLs, of which three have 

major effects and ten had minor effects. The three major QTLs (𝑄𝑇𝐿𝑀), which all 

together explain 40% of the total genetic variance (𝑉𝑄𝑇𝐿𝑠), of which two QTLs 

(𝑄𝑇𝐿𝑀01and 𝑄𝑇𝐿𝑀02) explain 10% for each one, and one QTL (𝑄𝑇𝐿𝑀03) explains 20%. 
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According to the equation 11, the additive genetic effect a of each major QTL would be 

as follow:  

𝑎_𝑄𝑇𝐿𝑀01  =  √2(𝑉𝑄𝑇𝐿𝑀01)    = √2(0.10𝑥0.17)    = 0.18 

𝑎_𝑄𝑇𝐿𝑀02  =  √2(𝑉𝑄𝑇𝐿𝑀02)    = √2(0.10𝑥0.17)    = 0.18 

𝑎_𝑄𝑇𝐿𝑀03  =  √2(𝑉𝑄𝑇𝐿𝑀03)    = √2(0.20𝑥0.17)    = 0.26 

 

The remaining ten QTLs would explain the remaining 60% of 𝑉𝑄𝑇𝐿𝑠, each with 6% 

equally. Therefore, each one would explain 0.06 𝑥 0.17 = 0.01 of 𝑉𝑄𝑇𝐿𝑠. Accordingly, 

The additive genetic effect (𝑎) for each minor 𝑄𝑇𝐿𝑚 would be: 

𝑎_𝑄𝑇𝐿𝑚  =  √2(𝑉𝑄𝑇𝐿𝑚) = √2(0.01) = 0.14 

 

 

 

 

 

 

 

 

 



 

90 

 

2.5.4 Statistical analysis of predicting animals’ breeding values 

Three approaches were used to estimate the estimated EBVs of the animals, 

including BULP, GBLUP, and ssGBLUP. The BLUP method, which was developed by 

Henderson (1949), is a conventional estimator that integrates pedigree genetic 

relationships between individuals in the mixed model equation MME. The other two 

methods benefit from the information provided by the molecular markers. The GBLUP 

technique utilises the molecular’ genotypes across the genome to construct genomic 

relationships between individuals instead of pedigree information, as outlined by 

(Habier et al., 2007; VanRaden, 2008). While the ssGBLUP method utilizes data from 

both molecular markers and pedigree information to build a single matrix for estimating 

the genetic relationships between animals, as outlined by Misztal et al. (2010). Chapter 

1 reviewed comprehensive details about the statistical basics of these methodologies. 

The BLUP approach utilised the pedigree records of all available animals in the 

whole population, as well as the records of all animals except those in the validation 

group. The GBLUP approach utilised both phenotypic records and genomic 

information from genotyped reference animals. The ssGBLUP method incorporates 

the pedigree information of all animals in the population, as well as the records of all 

animals except for those used for validation, and the genomic information of the 

reference animals that have been genotyped. 

The three methods were compared for accurately predicting EBVs under three 

different scenarios, and they varied in the population’s size used as a reference (The 

population whose animals have phenotypic records and marker genotypes). The 

reference population was used to estimate the effects of SNP markers, and their 

estimates are subsequently used to predict the breeding values of the validation 
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population. The validation population included only genotyped animals without 

phenotypic records. These animals were born in the last generation, whereas the 

reference animals were ones that were born in the years before that.  

The reference population consisted of 500, 1000, and 2000 animals for the three 

varied scenarios. The prediction accuracy of breeding values was determined by the 

correlation coefficient r between TBV and the predicted EBV of the validation 

population. Each scenario has been replicated 10 times, and the value of r of these 10 

times was averaged to be considered the final accuracy.  
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CHAPTER THREE 

ESTIMATION OF INBREEDING LEVEL IN JEBEL AKHDAR 

AND BATINAH GOATS, AND OMANI SHEEP 
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3.1 Abstract 

    The main objective of this research was to determine the level of inbreeding 

and its trend across three distinct breeds of livestock in Oman, namely Jebel Akhdar 

(JA) goats, Batinah (BA) goats, and Omani sheep (OS). The pedigree analysis in this 

study utilised records of pedigreed animals obtained from the Wadi Qurayyat livestock 

research station (WQLRS) in Oman, spanning the period from 2008 to 2020. The 

dataset included records of 2,826, 2,610, and 3,530 animals belonging to the three 

breeds JA, BA, and OS, respectively. The findings of the study revealed that the 

average levels of inbreeding within the overall population were observed to be within 

acceptable levels, with percentages of 0.67%, 0.65%, and 1.52% for the JA, BA, and 

OS breeds, respectively. While it was 3.88%, 3.39% and 6.49% within inbred animals 

of the corresponding breeds,. The distribution of inbred animals was 17.34% for JA, 

19.31% for BA, and 23.48% for OS. The breeds JA, BA, and OS have annual rates of 

inbreeding of 0.12%, 0.13%, and 0.27%, respectively. The most frequently found 

inbred animals among the others were those with an inbreeding level below 6.25%, 

accounting for 13.45% for JA, 14.98% for BA, and 12.63% for OS of the entire 

population. Conversely, the animals with higher levels of inbreeding were the least 

common among the three categories. The low levels of inbreeding observed in the 

three breeds do not raise any concerns regarding inbreeding depression and the loss 

of genetic variation. Yet, the apparent rise in levels of inbreeding within the examined 

breeds, particularly in recent years, necessitates the monitoring of inbreeding levels as 

a means of controlling and reducing the potential negative effects of inbreeding 

depression while also ensuring the maintenance of adequate genetic variability. 
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3.2 Introduction    

     Animal breeding programmes rely on exploiting the genetic variation present within 

a population, as animals can respond to selection effectively. Hence, the ongoing 

maintenance of sufficient levels of genetic variation is a pivotal concern for animal 

breeders in the development of genetic improvement strategies (de Oliveira et al., 

2023; Fernández et al., 2005). Accordingly, successful implementation of an effective 

and sustainable genetic improvement programme requires maintaining adequate 

levels of genetic variability (Pedrosa et al., 2010). Genetic improvement programmes, 

particularly those carried out by within-population selection of superior animals, often 

end in a reduction in genetic variability and an increase in rates of inbreeding (Ceyhan 

et al., 2011; Mandal et al., 2020). Hence, the main objective in the management of 

animal populations is to maintain a high degree of genetic variability while 

simultaneously reducing rates of inbreeding.   

The level of inbreeding can influence the extent of genetic variability within a 

population by increasing the frequency of homozygous genotypes and decreasing the 

frequency of heterozygous genotypes (Hartl, 2020). Ultimately, it may lead to complete 

homozygosity if it is not controlled (Kristensen & Sørensen, 2005). Moreover, it is 

commonly known that excessive inbreeding usually has a negative impact on the 

animal's productivity, health, and ability to reproduce. This is explained by a 

phenomenon called inbreeding depression, which is the term for the decline in a trait's 

average value driven by inbreeding (Ceyhan et al., 2011; Falconer, 1996; Rashidi et 

al., 2015; Weigel, 2001). Many characteristics, including growth traits, pregnancy, 

puberty, and milk production, are susceptible to the effects of inbreeding (Wakchaure 

& Ganguly, 2015). Thus, it is important to continually monitor and control the rate of 
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inbreeding in a population to maintain it at acceptable levels. Managing inbreeding is 

a vital strategy for mitigating the reduction of genetic variability and the associated 

detrimental consequences. Multiple factors, including the mating system, sex ratio, 

reproductive ability, and population size, can have a significant impact on the level of 

inbreeding (Ceyhan et al., 2011). 

Pedigree analysis is a straightforward and economical approach for evaluating 

genetic variation and inbreeding within a population (Mandal et al., 2020). The 

estimation of inbreeding level within a population involves calculating the inbreeding 

coefficients (F) for each individual of the population, where F represents the probability 

of an individual possessing two identical alleles descended from a common ancestor 

(i.e., IBD) at any randomly selected locus (Ceyhan et al., 2011; Hartl, 2020; Kristensen 

& Sørensen, 2005). It is the outcome of breeding between pairs of individuals who are 

closely related and have one or more common ancestors. An inbred animal is the 

offspring that arises from a union between closely related parents. The amount of the 

F value is dependent on the coefficient of the relationship between the mated parents. 

The objective of this study was to use pedigree analysis of three Omani breeds, 

including Jebel Akhdar (JA) and Batinah (BA) goats, as well as Omani sheep (OS) to 

investigate the level of inbreeding and its trend over a span of 13 years (2008-2020). 

These breeds have been subjected to a close selective breeding program at Wadi 

Qurayyat Livestock Research Station (WQLRS) to enhance their productive and 

reproductive performance. Therefore, the estimation of inbreeding levels among these 

populations is important to assess the success of the breeding program in terms of 

inbreeding accumulation and genetic variability maintenance. 
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3.3 Results 

3.3.1 The pedigree structure of the studied populations 

     Table 8 presents a summary of the main characteristics related to the 

pedigree structure of the three analyzed breeds, namely Jebel Akhdar (JA) goat, 

Batinah (BA) goat, and Omani (OS) sheep. The proportion of animals in the overall 

populations of the JA, BA, and OS breeds that had both known parents was 90.35%, 

88.53%, and 89.80%, respectively (Figures 9, 10 and 11). In succeeding generations, 

the proportions of known ancestors progressively decreased from 64%, 59%, and 63% 

in the second generations of JA, BA, and OS, respectively, to 19%, 17%, and 20%, 

respectively, for the corresponding breeds. 

The percentage of animals that had offspring in the populations of JA, BA, and 

OS were 28.67%, 27.45%, and 29.23% correspondingly. Among these populations, 

the proportions of sires and dams were 14.38% and 85.62% for JA, 14.66% and 

85.34% for BA, and 11.66% and 88.34% for OS. The average number of complete 

generations (𝐸𝑞𝐺𝑖) for the entire populations JA, BA, and OS were 2.14, 2.03, and 

2.17, respectively. 
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Table 8. Pedigree structure of Jebel Akhdar (JA) goats, Batinah (BA) goats and 
Omani sheep (OS). 

Item JA  BA OS 

No. of total animals in the pedigree 3,128 2,948 3,931 

 
No. of animals with records 2,826 2,610 3,530 

 
No. of animals without offspring 2,231  2,091 2,782 

 
No. of animals with offspring 897  791 1,149 

 
No. of sires with progeny 129  116 134 

 
No. of dams with progeny 768  675 1,015 

 
No. of animals with both known parents 2,826  2,610 3,530 

 
Mean maximum generations 2.84 2.89 3.00 

Mean complete generations 1.68 1.55 1.58 

 
Average of equivalent complete 
generations 

2.14 2.03 2.17 
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3.3.2 Average inbreeding coefficient (𝑭̅)  

A summary of the descriptive statistics for the average inbreeding level (𝐹̅) of 

the three breeds, as well as the proportions of inbred animals is presented in Table 9. 

The findings derived from the pedigree analysis conducted between 2008 and 2020 

revealed that 17.34%, 19.31%, and 23.48% of the overall population of animals were 

identified as inbred individuals within the respective breeds of JA goats, BA goats, and 

OS sheep. In contrast, the percentage of individuals that were not inbred among JA 

goats, BA goats, and OS sheep was 82.66%, 80.69%, and 76.52%, respectively. The 

mean values of the inbreeding coefficient (𝐹̅) for the three breeds, namely JA goats, 

BA sheep, and OS sheep, were 0.67%, 0.65% and 1.52%, respectively, when 

considering the entire population. While it was 3.88%, 3.39% and 6.49% within inbred 

individuals for the breeds of JA, BA, and OS, respectively. The highest F values were 

observed in 2017 for OS sheep, reaching 32.03%, while it was 31.25% in JA in the 

years of 2017 and 2019, and it was 26.56% in BA breed in 2019. 

 

3.3.3 Categorization of animal distribution based on different ranges of F (%) levels. 

        The inbreeding coefficient of F = 0% was observed in most animals across 

all three breeds. Among these breeds, the JA breed showed the highest percentage 

(82.66%), BA (80.69), while the OS breed indicated the lowest percentage (76.52%), 

as indicated in Table 10. The second largest proportion of animals within the three 

populations had an inbreeding coefficient F value below 6.25%. More specifically, 

across the entire population, the proportions of animals with F values below 6.25% 

were 13.45% in JA, 14.98% in BA, and 12.63% in OS. Less than 1% of the total 
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Figure 12. Trend of averaged inbreeding coefficient (%) of the three breeds (2008 
- 2020) 

 

 

Figure 13. Proportions of inbred animals of the three breeds (2008-2020). 



 

105 

 

In Figure 13, the frequencies (%) of inbred animals for each of the three 

populations are displayed every year. The proportions exhibited a range of 0% to 

77.36%, 0% to 79.62%, and 0% to 69.62% for the JA, BA, and OS, respectively. The 

trend of inbred individuals across the various breeds had a slightly increasing slope 

over the initial years. However, in subsequent years, the increase was substantially 

more significant and progressive, particularly during the final four-year period (2017-

2020). 

Trends of animal frequencies of the six classes of inbreeding coefficient (𝐹 = 0, 

0 < 𝐹 < 6.25, 6.25 ≤ 𝐹 < 12.5, 12.5 ≤ 𝐹 < 18.75, 18.75 ≤ 𝐹 < 25 and 𝐹 ≥ 25) of the 

breeds of JA, BA and OS across the 13 years are illustrated by Figures 14, 15, and 

16, respectively. The frequency of non-inbred animals (𝐹 = 0) decreased from being 

100% at the base years to become 22.64%, 20.38% and 30.68% for the corresponding 

JA, BA, and OS breeds. The animals classified in category of 0 < 𝐹 < 6.25 were most 

frequent among the inbred individuals in other categories. Its trend increased 

dramatically over the last five years for the three breeds reaching its highest 

frequencies in 2020 at 74.53%, 72.61% and 44.37% for the corresponding breeds of 

JA, BA, and OS. The remaining categories of moderate to                                                                             

highly inbred individuals were the least frequent across all years, reaching its highest 

frequency in 2017 (~5%) for JA, in 2019 (~6%) for BA and in 2019 (~14%) for OS. 
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Figure 14. Proportions of animals (%) per category of inbreeding level (F) in Jebel 
Akhdar Omani goats (2008-2020) 

 

 

Figure 15. Proportions of animals (%) per category of inbreeding level (F) in Batinah 
Omani goats (2008-2020) 
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Figure 16. Proportions of animals (%) per category of inbreeding level (F) in Omani 
sheep (2008-2020). 
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3.4 Discussion 

Inbreeding occurs in any small, closed population, with an increasing rate 

across subsequent generations. The extent of inbreeding is influenced by the mating 

strategy and selection methods used (Chaudhari et al., 2023). Monitoring changes in 

inbreeding levels within a population is an essential step in breeding programmes, as 

it leads to increased homozygosity and therefore reduced genetic variability (Rafter et 

al., 2022).  

The estimation of the inbreeding coefficient (F) by pedigree analysis can be 

subject to the influence of pedigree completeness, as highlighted by Mandal et al. 

(2020). Hence, the depth to which the pedigree of ancestors is complete serves as a 

measure for the precision in evaluating inbreeding (Jonkus et al., 2023). Pedigree 

completeness can be assessed by determining the percentage of animals within the 

entire population that have information on both parents, as well as the equivalent 

complete generations (𝐸𝑞𝐺𝑖). This makes sense because any increase in the 𝐸𝑞𝐺𝑖 

corresponds to a greater probability of finding common ancestors among the paired 

individuals, and accordingly tracing descended identical alleles as far the common 

ancestors as possible. 

The percentages of animals with known parents which found to be 90.35% in 

JA, 88.53% in BA, and 89.80% in OS, were consistent with previous studies conducted 

such as on Markhoz goats (Rashidi et al., 2015), Lori-Bakhtiari sheep (Vatankhah et 

al., 2019), and Marwari sheep (Vyas et al., 2022). While, they were relatively higher 

compared to the findings of Mandal et al. (2020) in Muzaffarnagari sheep, Pedrosa et 

al. (2010) in Santa Ines sheep, and Paiva et al. (2020) in Saanen goats. At first appear, 

the comparative figures presented with respect to previous studies suggest a good 



 

109 

 

quality of pedigree. Nevertheless, with respect to the mean 𝐸𝑞𝐺𝑖, it was lower than 

other studies reviewed in the literature including Rashidi et al. (2015) in Markhoz goats, 

Mandal et al. (2020) in Muzaffarnagari sheep, Pedrosa et al. (2010) in Santa Ines 

sheep, and  Vatankhah et al. (2019) in Lori-Bakhtiari sheep. They have reported higher 

𝐸𝑞𝐺𝑖 than our analysis values which were 2.14 in JA, 2.03 in BA, and 2.17 in OS. It is 

recommended that the value of 𝐸𝑞𝐺𝑖 should be at least 3 in order to obtain 

informative results (Gutiérrez et al., 2009). These lower 𝐸𝑞𝐺𝑖 values may have 

underestimated the F values (Nyman et al., 2022), and ultimately contributed to the 

low levels of the averaged inbreeding levels of the three populations. In addition, the 

low rates of inbreeding accumulation might be attributed to little selection and slow 

genetic gain (Woolliams et al., 2015). 

   Inbreeding is usually associated with decreased genetic variability within 

populations, an increase in homozygosity, and the possibility of inbreeding depression 

(Vyas et al., 2022). The average levels of inbreeding observed in the populations of 

Omani JA, BA goats, and OS were 0.67%, 0.65%, and 1.52%, respectively. These 

values are quite low when compared to the findings of Norberg and Sørensen (2007) 

in three breeds of sheep (6% - 10%) and Mokhtari et al. (2014) in Iran-Black sheep 

(8.08%). The present results line up with the findings published by Barczak et al. (2009) 

in a multi-breed sheep population (0.30%), Ajoy et al. (2006)  in Muzaffarnagari sheep 

(3.13%), Paiva et al. (2020) in Saanen goats (1.48%), and Rashidi et al. (2015) in 

Markhoz goats (2.73%). The average levels of inbreeding reported in this study for the 

investigated breeds can be considered acceptable and not detrimental, according to 

Falconer (1996). The author pointed out that inbreeding may become risky if its level 
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exceeds 10%. Furthermore, the mean inbreeding levels of the inbred animals were 

below 10%, specifically 3.88% for JA, 3.39% for BA, and 6.49% for OS. 

Some strategies that might have helped to keep inbreeding levels low in these 

populations included maintaining an average good population size, having an 

appropriate ratio of sires to dams that were 17% in JA and BA goat breeds, and 13% 

in OS sheep. Besides, avoiding the use of bucks or rams for more than two mating 

seasons may keep the inbreeding level minimized (Wakchaure & Ganguly, 2015), 

which might be the most important factor in maintaining and increasing genetic 

variability within a population, as stated by Vatankhah et al. (2019). Furthermore, 

during the initial years of the study, specifically (2011-2014), a number of sire 

individuals (ranging from 2 to 4) were brought into the overall population. This 

introduction could potentially result in a decline in close relationships within the 

population. In addition, it should be highlighted that the pedigree completeness may 

underestimate the estimates of the F values, particularly in the earliest years when 

there was no pedigree information available for the mates, which results in a 0% mean 

inbreeding level in those years. This is because as the index of pedigree completeness 

drops, the probability of finding common ancestors also lowers (Rashidi et al., 2015). 

Yet when evaluating genetic variability, the annual rate of inbreeding may be 

considered more effective than the mean inbreeding coefficient (F) itself. This is due 

to the fact that the calculation of F is relative and can be influenced by the depth and 

completeness of the pedigree (Falconer, 1996; González-Recio et al., 2007; Paiva et 

al., 2020).  

The three populations showed positive annual rates of inbreeding, with annual 

rates of 0.12%, 0.13%, and 0.26% for the JA, BA, and OS breeds, respectively. Though 
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the rates were increasing, they remained below the critical increment. Nicholas et al. 

(1989) proposed that an annual inbreeding rate of up to 0.5% would be acceptable 

within the context of animal breeding. The observed trend of gradually increasing levels 

of inbreeding over time can be explained by the gradual rise in relationships within the 

population, as mating between related animals gets difficult to avoid over time (Nyman 

et al., 2022). As generations proceed, the likelihood of identifying common ancestors 

also increases, which leads to a rise in inbred individuals in the estimation of 

inbreeding. This could have been another factor in the yearly rise in the level of 

inbreeding.  

It is observed that, despite a rise in the percentage of inbred animals, the mean 

inbreeding for goat breeds decreased significantly in 2018. This may be because the 

percentage of inbred animals with high levels of inbreeding has decreased. In JA goats, 

the proportions of animals with F ≥ 25 decreased from 2.40% (2017) to 0% (2018), 

those with 6.25 ≤ F <12.5 decreased from 5.60% (2017) to 0% (2018), and those with 

12.5 ≤ F < 18.7 decreased from 2% (2017) to 1.59% (2018). While in BA goats, the 

proportions of animals with 6.25 ≤ F < 12.5 decreased from 4.70% (2017) to 4.35% 

(2018), and those with 12.5 ≤ F < 18.7 decreased from 2.56% (2017) to 0% (2018). 

The significant rise in inbreeding observed over the last few years may be 

attributed to the decrease in population size resulting from the culling of more animals 

due to financial constraints. In addition, the observed increase in twinning rates over 

these years may have potentially led to an increase in inbreeding. This occurs because 

as twinning rates rise, the number of offspring per sire also increases, resulting in a 

greater likelihood of selecting genetically related animals. 
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The numbers of inbred animals within the overall populations of the three 

examined breeds were quite modest, with percentages of 17.34%, 19.31%, and 

23.48% for JA goats, BA goats, and OS sheep, respectively. These findings could 

potentially explain the low mean levels of inbreeding observed across the entire three 

populations. Besides, it is worth noting that a significant proportion of these inbred 

animals exhibited low inbreeding levels, which were below 6.25%. The relatively low 

level of inbreeding may not result in detrimental effects on production performance. 

However, there has been a significant and rapid increase in the number of inbred 

animals, particularly in the last four years. More specifically, the proportions of inbred 

animals for JA, BA, and OS have reached 77.36%, 79.62%, and 69.62% respectively, 

in few years. This entails paying attention to closely monitoring the inbreeding levels, 

and implementing practices such as avoiding mating between closely related 

individuals to limit its increase. 

The proportions of inbred animals with a coefficient of inbreeding (F) greater 

than or equal to 25% were found to be extremely low: 0.60% in JA, 0.34% in BA, and 

0.96% in OS. The higher value of F indicates that mating could occur between 

very closely related individuals, such as a sire mating with its daughter or a son mating 

with its dam. While the presence of individuals with a range of 18.75 ≤ F <25 might 

have been attributed to mating between full or half siblings, such instances were 

infrequent, which may not be a concern.  

Despite the low levels of inbreeding in the three populations, it remains crucial 

to consistently monitor and control the accumulation of inbreeding within these 

populations, as there has been a noticeable increase in the degree of inbreeding and 

the proportion of inbred animals in recent years. Accumulation of inbreeding has 
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negative consequences for animals’ performance, and it can lead to a reduction in 

genetic variability, which is very important for animal breeding programs (Curik et al., 

2014). The introduction of new animals, avoiding interbreeding among closely related 

mates, and increasing population size are fundamental strategies that can effectively 

limit the rapid rate of inbreeding (Wakchaure & Ganguly, 2015). It is recommended to 

maintain the effective population size at levels above 50 so that acceptable levels of 

genetic variability are maintained, and the trend of inbreeding is limited.  When the 

effective population size drops below 50, the inbreeding curve increases quickly (de 

Oliveira et al., 2023; Oldenbroek & van der Waaij, 2014). 
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3.5 Conclusion 

The pedigree analysis conducted on three Omani breeds, including Jebel 

Akhdar (JA) goats, Batinah (BA) goats, and Omani sheep (OS), demonstrated that the 

amount of inbreeding within these breeds is considerably low, being within acceptable 

levels. Likewise, the proportions of the inbred animals are at a moderate level. This 

observation suggests that the mating system implemented for these populations is 

reasonably well-designed. However, it is possible that the inbreeding levels may have 

been underestimated due to the small number of equivalent complete generations in 

the pedigree. Thus, to precisely estimate the amount of inbreeding in the future, 

genomic data may be used in conjunction with pedigree data. Although the levels of 

inbreeding in this study are at present low, there has been a notable and significant 

increase in the rate of inbreeding for all three breeds over time. Additionally, there is 

an observed rise in the frequency of inbred animals, particularly in the latest years. As 

a result, it will be important to monitor the level of inbreeding in the forthcoming years 

as well as take measures to keep it at acceptable levels. In this way, inbreeding 

depression can be avoided, and genetic variability is maintained for a sustainable 

genetic improvement programme. 
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CHAPTER FOUR 

ESTIMATION OF GENETIC PARAMETERS OF GROWTH 

TRAITS IN JEBEL AKHDAR AND BATINAH GOATS, AND 

OMANI SHEEP 
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4.1 Abstract 

Environmental and genetic factors both contribute to the expression of growth 

traits. Investigating the impact of these factors is crucial for improving breeding 

schemes. The objective of this study was to estimate the genetic parameters of growth 

traits, specifically birth weight (BW), weaning weight (WW), six-month weight (W6), 

and twelve-month weight (W12), for Jebel Akhdar (JA) and Batinah (BA) goats, as well 

as Omani (OS) sheep in Oman. The data collected from Wadi Qurayyat Livestock 

Research Station (WQLRS) between 2008 and 2020 was used for the analysis. 

Records of 2,826 animals for BW, 2,342 for WW, 1,706 for W6, and 1,265 for W12 

were used in JA goats. A total of 2,609 records of animals with BW, 2,186 records with 

WW, 1,689 records with W6, and 1,208 records with W12 were utilised in the study of 

BA goats. A total of 3,530 records of animals were used in the OS sheep study for BW, 

3,120 animals for WW, 2,374 animals for W6, and 1,745 animals for W12.  

Sex, birth type, and year were shown to have a high level of statistical 

significance (P < 0.001) for all growth traits in the three breeds. However, the variable 

of pen was only found to be significant for BW and WW in goat breeds and only for 

WW in sheep. The age of the dam (mother), which was included as a covariate, was 

found to have a significant effect on BW and WW in all breeds, as well as on W6 in 

Batinah goats. Hence, all significant fixed factors were taken into account in the 

estimation of genetic parameters for the growth traits. The Restricted Maximum 

Likelihood (REML) method of fitting the animal model in WOMBAT software was used 

for estimating the (Co) variance components and corresponding genetic parameters 

and breeding values. The direct heritability estimates for BW, WW, W6, and W12 in JA 

goats were 0.13 ± 0.04, 0.11 ± 0.04, 0.19 ± 0.05, and 0.21 ± 0.06, respectively. 
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Compared to that, the estimates for BW, WW, W6, and W2 were 0.17 ± 0.04, 0.16 ± 

0.04, 0.16 ± 0.04, and 0.24 ± 0.04, respectively. The results for BW, WW, W6, and 

W12 in Omani sheep were 0.16 ± 0.03, 0.15 ± 0.03, 0.28 ± 0.05, and 0.48 ± 0.05, 

respectively. Significant maternal effects were observed in the traits of BW, WW, and 

W6 in all three breeds. Furthermore, maternal effects were significant in W12 in JA 

goats. The genetic correlations among the various traits across the three breeds were 

significantly positive and strong, with the exception of correlations with the BW trait, 

which exhibited modest correlations. These findings highlight the potential for 

significant genetic improvement in the growth traits of Omani breeds, given their 

adequate additive genetic variability and the positive genetic correlations that exist 

between them, especially with regard to the post-weaning traits.  

The genetic trend was estimated by conducting a regression analysis of the 

average breeding values against the birth year. Similarly, the phenotypic trend was 

determined by conducting a regression analysis of the adjusted means against the 

birth year. The genetic trend revealed a significant and positive pattern for all growth 

traits in the three breeds, although the phenotypic trend was only significant for the 

W12 phenotype. In JA goats, the yearly increase in genetic gain for BW, WW, W6, and 

W12 was 0.01 kg, 0.09 kg, 0.13 kg, and 0.20 kg, respectively. In BA goats, the annual 

increase in genetic gain for BW, WW, W6, and W12 was 0.01 kg, 0.08 kg, 0.10 kg, and 

0.18 kg, respectively. In OS sheep, the annual increase in genetic gain for BW, WW, 

W6, and W12 was 0.01 kg, 0.13 kg, 0.22 kg, and 0.39 kg, respectively. The positive 

genetic trend observed indicates that there was an effective implementation of a 

breeding effort aimed at enhancing the growth traits of these breeds. 
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4.2 Introduction 

 Small ruminants, including goats and sheep, are significant to farmers, 

especially small-scale producers, since they have an affordable production cost, can 

adapt to scarce resources, have good reproductive efficiency, provide meat and milk, 

and have a short production cycle for marketing (Pond & Pond, 2000). The population 

size of goats in Oman is estimated to be 2.4 million, while the population size of sheep 

is estimated to be 642 thousand. Both of them collectively account for around 81% of 

the country's overall livestock population (NCSI, 2021). 

 In Oman, there are several recognised and distinguished breeds of sheep and 

goats, including Jebel Akhdar and Batinah goats and Omani sheep. These breeds are 

widely used and significant in terms of their productivity and reproductive capacities in 

comparison to other breeds. They are primarily raised for meat production (Shaat & Al-

Habsi, 2016).  The Ministry of Agriculture (MAF) of Oman has developed breeding 

stations with the objective of improving the performance of indigenous livestock. One 

of these stations is the Wadi Qurayyat Livestock Research Station (WQLRS). It 

accommodates the aforementioned breeds of goats and sheep.   

Genetic improvement can increase the productivity of animals by estimating the 

genetic parameters of specific populations' underlying traits and subsequently 

selecting genetically superior animals for breeding (Oyieng et al., 2022).  It is of the 

utmost importance for animal breeders to assess the genetic variability of the desired 

trait and how it correlates to other traits in order to carry out an effective selective 

genetic improvement (Singh et al., 2022). One important parameter that must be 

accurately estimated is the trait's heritability, which indicates the extent of available 

genetic variability and explains the relative influence of additive genetic effects on a 



 

119 

 

trait (Getabalew et al., 2019). Another significant parameter is genetic correlation, 

which estimates the genetic correlation between traits and, as a result, shows the 

strength and direction of the correlation between them (Rae, 1952).  

The growth potential of an animal is indicative of its ability to produce meat 

(Bangar et al., 2020). Growth traits are influenced by environmental and genetic 

effects, so their estimation is important for animal improvement (Zhang et al., 2009).  

In addition to the direct additive genetic influences of the individual, the dam (mother) 

may also have an impact on the phenotype of its progeny, particularly with early growth 

traits (Mrode, 2014). Therefore, examining the significance of these effects in the 

statistical models used to estimate the genetic parameters is important in order to 

minimise a possible bias. 

The primary objective of the current study was to estimate the heritability of 

growth traits: birth weight (BW), weaning weight (WW), weight at 6 months (W6), and 

weight at 12 months (W12), and the genetic and phenotypic correlations among these 

traits in Omani Jebel Akhdar (JA) goats, Omani Batinah (BA) goats, and Omani sheep 

(OS). Additionally, the study aimed to evaluate the three breeds' genetic and 

phenotypic trends for the investigated traits between 2008 and 2020. 
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4.3 Results 

4.3.1 Significance of fixed effects  

The importance of environmental fixed effects affecting various growth traits for 

the breeds of Omani Jebel Akhdar goat (JA), Omani Batinah goat (BA), and Omani 

sheep (OS) is diagrammatically illustrated in Figures 17, 18, and 19, respectively. 

While the importance of these factors in details along with least square means are 

presented in Tables 12, 13, and 14 attached in appendix (D).The growth traits at all 

age stages for the three breeds were significantly influenced by variables of sex, year, 

and type of birth, with a high level of significance (P < 0.001). The variable pen only 

influenced early growth traits; in JA and BA goats, BW and WW were influenced, but 

in OS sheep, it was only WW. The age of the dam had a significant impact (P < 0.01) 

on the variability in BW and WW in JA goat and in BW, WW, and W6 in BA goat. While 

in the OS sheep, it was only significant for the trait of BW.  It did not have a significant 

impact on post-weaning traits (P > 0.05) for all breeds except for W6 in BA goats (P < 

0.01).  

Male animals exhibited heavier weight than females at all stages across all three 

breeds. The difference between the means of the two sexes increased as animals 

grew. The birth year (2008-2020) displayed a changing growth pattern at different 

ages, except for W12. Single-born animals exhibited more body weight than twin-born 

animals across all three breeds. The lowest difference between the two groups was 

reported in terms of BW, but the most significant difference was observed at WW. The 

greatest effect of dam’s age was observed on WW in JA (0.19) and BA (0.18) goats, 

but it was 0.07, 0.06, and 0.04 on BW for the corresponding breeds of OS, BA, and 

JA. 
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Figure 17. Influencing of non-genetic factors on growth traits of Omani Jebel 
Akhdar goats.  

The diagram presents the significant impact of fixed effects (Pen, Year, Sex, 
Birth type, and Dam age) on growth variability in Omani Jebel Akhdar goats 
at BW, WW, W6, and W12. The effect was considered significant at P < 0.05. 
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Figure 18. Influencing of non-genetic factors on growth traits of Omani 
Batinah goats.  

The diagram presents the significant impact of fixed effects (Pen, Year, Sex, 
Birth type, and Dam age) on growth variability in Omani Batinah goats at BW, 
WW, W6, and W12. The effect was considered significant at P < 0.05. 
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Figure 19. Influencing of non-genetic factors on growth traits of Omani sheep.   

The diagram presents the significant impact of fixed effects (Pen, Year, Sex, 
Birth type, and Dam age) on growth variability in Omani Batinah goats at BW, 
WW, W6, and W12. The effect was considered significant at P < 0.05. 
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4.3.2 Estimates of (Co)variance components 

4.3.2.1 Models’ comparison 

Six various animal mixed models (including or excluding maternal influences) 

were utilised to fit the data for the traits of BW, WW, W6, and W12 in JA and BA goats, 

as well as OS sheep. The output of these models with the values of LRT and AIC is 

shown in tables 12, 13, and 14, with the most suitable model highlighted in bold.  

Model (1), which solely accounted for direct additive genetic effects, adequately 

explained the variation of the W12 trait in BA goats and OS sheep. The remaining 

models did not increase the likelihood significantly. However, in JA goats, model (2) 

was found to be the most appropriate for this trait, as confirmed by the likelihood ratio 

test and lowest AIC value. Model (2) accounted for both direct and maternal additive 

genetic effects. It was also suitable for evaluating BW in both goats’ breeds. This 

model significantly enhanced the likelihood of predicting BW weight in both goats’ 

breeds. Nevertheless, the addition of maternal permanent environmental influences 

together with maternal genetic effects, as in model (5) did not result in significant gains 

compared to model (2). 

Model (4), which considered both direct additive genetic effects and maternal 

permanent environmental influences, was the most appropriate for assessing the traits 

of WW and W6 in all studied breeds, as well as the trait of BW in OS sheep. It yielded 

better results for the WW and W6 traits across all three breeds. This finding was 

supported by both the increase in log likelihoods and the lowest AIC values.      
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Table 12. Log Likelihood (Log L) and Akaike information criterion (AIC) of the six animal models for the growth traits in Omani Jebel 
Akhdar goats.  

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight); the best-fit model is in bold. 

(No) Models BW WW W6 W12 

  Log L        AIC Log L          AIC Log L         AIC Log L           AIC 

(1) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑒                                                             580.404 -1,156.81 
 

-3,476.647 6,957.294 
 

-2,542.829 5,085.658 
 

-2,287.773 4,579.546 
 

(2) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 + 𝑒,

𝐶𝑜𝑣 (𝑎,𝑚) = 0                     

615.355 -1,224.71 
 

-3,464.407 6,934.814 
 

-2,538.572 5,083.144 
 

-2,285.418 4,576.836 
 

(3) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 + 𝑒,

𝐶𝑜𝑣(𝑎,𝑚) = 𝐴𝜎𝑎,𝑚                         

616.887 -1,225.77 
 

-3,463.003 6,934.006 
 

-2,538.572 5,085.144 
 

-2,285.340 4,578.680 
 

(4) 𝑦 = 𝑋𝑏 + 𝛽𝑎 +𝑊𝑐 + 𝑒                                                   608.342 -1,210.68 
 

-3,461.692 6,929.384 
 

-2,537.187 5,080.374 
 

-2,286.370 4,579.500 

(5) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 +𝑊𝑐 + 𝑒,

𝐶𝑜𝑣(𝑎,𝑚) = 0            

616.896 -1,225.79 
 

-3,460.914 6,929.828 
 

-2,536.957 5,081.914 
 

-2,285.400 4,578.800 
 

(6) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 +𝑊𝑐 + 𝑒,

𝐶𝑜𝑣(𝑎,𝑚) = 𝐴𝜎𝑎,𝑚         

618.247 -1,226.49 
 

-3,459.810 6,929.620 
 

-2,536.956 5,083.912 
 

-2,285.321 4,580.642 
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Table 13.  Log Likelihood (Log L) and Akaike information criterion (AIC) of the six animal models for the growth traits in Omani 
Batinah goats. 

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight); the best-fit model is in bold. 

(No) Models BW WW W6 W12 

  Log L        AIC Log L          AIC Log L         AIC Log L          AIC 

(1) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑒                                                             572.307 -1,140.61 -3,300.792 6,605.584 
 

-2,471.265 4,946.530 
 
 

-2,137.370 4,278.74 
 
 

(2) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 + 𝑒,

𝐶𝑜𝑣 (𝑎,𝑚) = 0                     

591.850 -1,177.70 
 

-3,282.573 6,571.146 
 
 

-2,461.733 4,929.466 
 
 

-2,137.312 4,280.624 
 
 

(3) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 + 𝑒,

𝐶𝑜𝑣(𝑎,𝑚) = 𝐴𝜎𝑎,𝑚                         

592.507 -1,177.01 
 
 

-3,281.400 6,570.800 
 
 

-2,461.495 4,930.990 
 
 

-2,137.295 4,282.590 
 
 

(4) 𝑦 = 𝑋𝑏 + 𝛽𝑎 +𝑊𝑐 + 𝑒                                                   587.562 -1,169.12 
 
 

-3,272.303 6,550.606 
 
 

-2,461.609 4,929.218 
 
 

-2,137.219 4,280.438 
 

(5) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 +𝑊𝑐 + 𝑒,

𝐶𝑜𝑣(𝑎,𝑚) = 0            

592.374 -1,176.75 
 
 

-3272.303 6,552.606 
 
 

-2,460.682 4,929.364 
 
 

-2,137.219 4,282.438 
 
 

(6) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 +𝑊𝑐 + 𝑒,

𝐶𝑜𝑣(𝑎,𝑚) = 𝐴𝜎𝑎,𝑚         

592.963 -1,175.93 
 
 

-3,271.458 6,552.916 
 
 

-2,460.259 4,930.518 
 
 

-2,137.212 4,284.424 
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Table 14.  Log Likelihood (Log L) and Akaike Information Criterion (AIC) of the six animal models for the growth traits in Omani 
sheep. 

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight); the best-fit model is in bold. 

(No) Models BW WW W6 W12 

  Log L        AIC Log L           AIC Log L        AIC Log L          AIC 

(1) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑒                                                             331.124 -658.248 
 

-5,179.624 10,363.25 
 

-4,105.778 8,215.556 
 

-3,476.77 6,957.55 

(2) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 + 𝑒,

𝐶𝑜𝑣 (𝑎,𝑚) = 0                     

383.031 -760.062 
 

-5,140.160 10,286.32 
 

-4,099.191 8,204.382 
 

-3,476.61 6,959.22 

(3) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 + 𝑒,

𝐶𝑜𝑣(𝑎,𝑚) = 𝐴𝜎𝑎,𝑚                         

384.676 -761.352 
 

-5,139.955 10,287.91 
 

-4,098.805 8,205.61 
 

-3,475.14 6,958.27 

(4) 𝑦 = 𝑋𝑏 + 𝛽𝑎 +𝑊𝑐 + 𝑒                                                   393.583 -781.166 
 

-5,132.203 10,270.41 
 

-4,099.095 8,204.19 
 

-3,474.91 6,955.82 

(5) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 +𝑊𝑐 + 𝑒,

𝐶𝑜𝑣(𝑎,𝑚) = 0            

394.759 -781.518 
 

-5,130.302 10,268.6 
 

-4,097.999 8,203.998 
 

-3,474.88 6,957.75 

(6) 𝑦 = 𝑋𝑏 + 𝛽𝑎 + 𝑍𝑚 +𝑊𝑐 + 𝑒,

𝐶𝑜𝑣(𝑎,𝑚) = 𝐴𝜎𝑎,𝑚         

395.867 -781.734 
 

-5,130.285 10,270.57 
 

-4,097.597 8,205.194 
 

-3,474.21 6,958.43 
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4.3.2.2 Heritability estimates 

Tables 15, 16, and 17 present the heritability estimates obtained by the six 

animal models for the studied growth traits in Jebel Akhdar (JA) and Batinah (BA) goats 

and Omani sheep (OS), respectively. The summary of results and discussion will focus 

on the results from the best appropriate model (highlighted in bold). Model 1, which 

just accounted for direct additive genetic effects, gave the highest estimates of direct 

heritability for all studied traits across the three breeds. The estimates for BW, WW, 

W6, and W12 were as follows: for JA goats, the estimates were 0.29 ± 0.04, 0.19 ± 

0.04, 0.24 ± 0.05, and 0.29 ± 0.06; for BA goats, the estimates were 0.29 ± 0.04, 0.26 

± 0.04, 0.23 ± 0.05, and 0.24 ± 0.04; and for OS sheep, the estimates were 0.26 ± 

0.03, 0.28 ± 0.04, 0.35 ± 0.04, and 0.48 ± 0.05. Incorporating maternal effects, either 

genetic, environmental, or both, as in the remaining models resulted in a substantial 

reduction in the estimates of direct heritability.  

The best appropriate model revealed that pre-weaning traits (BW and WW) had 

lower estimates of direct heritability than post-weaning traits (W6 and W12). In JA 

goats, the estimates were 0.13 ± 0.04 for BW and 0.11 ± 0.04 for WW. In BA goats, 

they were relatively higher, with 0.17 ± 0.04 for BW and 0.16 ± 0.04 for WW. In OS 

sheep, the estimates were 0.16 ± 0.03 for BW and 0.15 ± 0.03 for WW. On the other 

hand, post-weaning traits showed higher heritability estimates, except for the trait of 

W6 in BA goats (constant with pre weaning traits). The direct heritability estimates for 

W6 and W12 were 0.19 ± 0.05 and 0.21 ± 0.06 in JA goats, 0.16 ± 0.04 and 0.24 ± 

0.04 in BA goats, and 0.28 ± 0.05 and 0.48 ± 0.05 in OS sheep.  

With regards to maternal effects, the expression of body weight at BW in goats 

was substantially influenced by maternal genetic effects (17% in JA and 13% in BA), 
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whereas in OS sheep, it was primarily influenced by maternal permanent 

environmental influences (19%), with no significant contribution from maternal genetic 

effects (𝑃 > 0.05). Maternal permanent environmental influences exerted an impact on 

the traits of both WW and W6 across all breeds (10% and 8% in JA, 16% and 11% in 

BA, and 19% and 8% in OS). The yearling weight (W12) was primarily controlled by 

only the direct additive genetic effects, with the exception in JA goats, where maternal 

genetic influences made some significant contribution (𝑃 < 0.05) to approximately 6% 

of the total phenotypic variance. 
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Table 15.  Heritability estimates ± SE of growth traits in Omani Jebel Akhdar goats estimated from all six animal models, with best 
model in bold. 

𝝈𝒂
𝟐, 𝝈𝒎

𝟐 , 𝝈𝒄
𝟐, 𝝈𝑷

𝟐 , σ2
e, and σam are animal additive genetic variance, maternal additive genetic variance, maternal permanent 

environmental variance, phenotypic variance, error variance, and covariance of animal and maternal additive genetic effects, 
respectively; h2

d (direct heritability),  h2
m (maternal heritability), pe2 (Proportion of phenotypic variance explained by maternal 

permanent environmental effects), ram (genetic correlation between animal and maternal additive genetic effects). 

Trait σ2
a σ2

m σam σ2
c σ2

e σ2
p h2

d ± SE h2
m ± SE 

 
pe2 ± SE 
 

e2 ± SE 
 

ram 
 

BW            

1 0.07 - - - 0.17 0.24 0.29 ± 0.04 - - 0.71 ± 0.04 - 

2 0.03 0.04 - - 0.17 0.24 0.13 ± 0.04 0.17 ± 0.02 - 0.71 ± 0.04 - 

3 0.04 0.05 -0.02 - 0.17 0.26 0.15 ± 0.05 0.19 ± 0.04 - 0.65 ± 0.04 -0.35 ± 0.16 

4 0.04 - - 0.03 0.17 0.24 0.17 ± 0.04 - 0.13 ± 0.02 0.71 ± 0.04 - 

5 0.03 0.03 - 0.01 0.17 0.24 0.13 ± 0.04 0.13 ± 0.03 0.04 ± 0.03 0.71 ± 0.03 - 

6 0.04 0.04 -0.01 0.01 0.17 0.26 0.15 ± 0.05 0.15 ± 0.05 0.04 ± 0.03 0.65 ± 0.04 -0.36 ± 0.18 

WW            

1 1.35 - - - 5.86 7.21 0.19 ± 0.04 - - 0.81 ± 0.04 - 

2 0.67 0.71 - - 5.82 7.2 0.09 ± 0.04 0.10 ± 0.02 - 0.81 ± 0.04 - 

3 0.93 1.06 -0.45 - 5.64 7.63 0.12 ± 0.05 0.14 ± 0.04 - 0.74 ± 0.04 -0.46 ± 0.20 

4 0.81 - - 0.74 5.6 7.15 0.11 ± 0.04 - 0.10 ± 0.02 0.78 ± 0.04 - 

5 0.71 0.23 - 0.55 5.65 7.14 0.10 ± 0.04 0.03 ± 0.03 0.08 ± 0.03 0.79 ± 0.04 - 

6 0.97 0.5 -0.36 0.54 5.49 7.5 0.13 ± 0.05 0.07 ± 0.04 0.07 ± 0.03 0.73 ± 0.04 -0.51 ± 0.23 

W6            

1 1.82 - - - 5.67 7.49 0.24 ± 0.05 - - 0.76 ± 0.05 - 

2 1.14 0.55 - - 5.74 7.43 0.15 ± 0.05 0.07 ± 0.03 - 0.77 ± 0.05 - 

3 1.13 0.55 0.01 - 5.74 7.42 0.15 ± 0.06 0.07 ± 0.04 - 0.77 ± 0.05 0.01 ± 0.039 

4 1.43 - - 0.62 5.41 7.46 0.19 ± 0.05 - 0.08 ± 0.03 0.73 ± 0.05 - 

5 1.30 0.17 - 0.48 5.50 7.45 0.17 ± 0.05 0.02 ± 0.04 0.06 ± 0.04 0.74 ± 0.05 - 

6 1.28 0.16 0.02 0.48 5.51 7.43 0.17 ± 0.06 0.02 ± 0.04 0.06 ± 0.04 0.74 ± 0.05 0.03 ± 0.66 
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W12            

1 4.23 - - - 10.18 14.41 0.29 ± 0.06 - - 0.71 ± 0.06 - 

2 2.95 0.91 - - 10.38 14.24 0.21 ± 0.06 0.06 ± 0.03 - 0.73 ± 0.06 - 

3 2.64 0.76 0.28 - 10.56 13.96 0.19 ± 0.07 0.05 ± 0.04 - 0.76 ± 0.06 0.20 ± 0.52 

4 3.71 - - 0.69 9.94 14.34 0.26 ± 0.06 - 0.05 ± 0.03 0.69 ± 0.06 - 

5 2.98 0.83 - 0.11 10.33 14.25 0.21 ± 0.06 0.06 ± 0.05 0.01 ± 0.04 0.72 ± 0.06 - 

6 2.67 0.67 0.28 0.11 10.51 13.96 0.19 ± 0.08 0.05 ± 0.05 0.01 ± 0.04 0.75 ± 0.06 0.21 ± 0.56 

 

 

Table 16.  Heritability estimates ± SE of growth traits in Omani Batinah goats estimated from all six animal models, with best model 
in bold. 

𝝈𝒂
𝟐, 𝝈𝒎

𝟐 , 𝝈𝒄
𝟐, 𝝈𝑷

𝟐 , σ2
e, and σam are animal additive genetic variance, maternal additive genetic variance, maternal permanent 

environmental variance, phenotypic variance, error variance, and covariance of animal and maternal additive genetic effects, 
respectively; h2

d (direct heritability),  h2
m (maternal heritability), pe2 (Proportion of phenotypic variance explained by maternal 

permanent environmental effects), ram (genetic correlation between animal and maternal additive genetic effects). 

Trait σ2
a σ2

m σam σ2
c σ2

e σ2
p h2

d ± SE h2
m ± SE 

 
pe2 ± SE 
 

e2 ± SE 
 

ram 
 

BW            

1 0.07 - - - 0.17 0.24 0.29 ± 0.04 - - 0.71 ± 0.04 - 

2 0.04 0.03 - - 0.17 0.24 0.17 ± 0.04 0.13 ± 0.02 - 0.71 ± 0.04 - 

3 0.05 0.04 -0.01 - 0.17 0.26 0.19 ± 0.05 0.15 ± 0.04 - 0.65 ± 0.04 -0.23 ± 0.18 

4 0.05 - - 0.02 0.17 0.24 0.21 ± 0.04 - 0.08 ± 0.02 0.71 ± 0.04 - 

5 0.03 0.03 - 0.01 0.18 0.25 0.12 ± 0.04 0.12 ± 0.03 0.04 ± 0.03 0.72 ± 0.03 - 

6 0.04 0.04 -0.01 0.01 0.17 0.26 0.15 ± 0.05 0.15 ±  0.05 0.04 ± 0.03 0.65 ± 0.04 -0.36 ± 0.18 

WW            

1 2.01 - - - 5.82 7.83 0.26 ± 0.04 - - 0.74 ± 0.04 - 

2 1.17 1.16 - - 5.58 7.91 0.15 ± 0.04 0.15 ± 0.03 - 0.71 ± 0.04 - 

3 1.46 1.6 -0.55 - 5.39 8.45 0.17 ± 0.05 0.19 ± 0.05 - 0.64 ± 0.04 -0.36 ± 0.18 
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4 1.21 - - 1.26 5.31 7.78 0.16 ± 0.04 - 0.16 ± 0.03 0.68 ± 0.04 - 

5 1.21 0.01 - 1.25 5.31 7.78 0.16 ± 0.04 0.00 ± 0.03 0.16 ± 0.04 0.68 ± 0.04 - 

6 1.45 0.24 -0.36 1.29 5.17 8.15 0.18 ± 0.05 0.03 ± 0.05 0.16 ± 0.04 0.63 ± 0.04 -0.61 ± 0.37 

W6            

1 1.58 - - - 5.41 6.99 0.23 ± 0.05 - - 0.77 ± 0.05 - 

2 0.94 0.82 - - 5.24 7 0.13 ± 0.04 0.12 ± 0.03 - 0.75 ± 0.04 - 

3 0.84 0.66 0.2 - 5.31 6.81 0.12 ± 0.05 0.10 ± 0.04 - 0.78 ± 0.04 0.27 ± 0.42 

4 1.10 - - 0.79 5.08 6.97 0.16 ± 0.04 - 0.11 ± 0.03 0.73 ± 0.04 - 

5 0.99 0.42 - 0.44 5.13 6.98 0.14 ± 0.05 0.06 ± 0.04 0.06 ± 0.04 0.73 ± 0.04 - 

6 0.84 0.18 0.25 0.48 5.22 6.72 0.13 ± 0.05 0.03 ± 0.05 0.07 ± 0.04 0.78 ± 0.04 0.64 ± 0.40 

W12            

1 3.16 - - - 9.92 13.08 0.24 ± 0.04 - - 0.76 ± 0.05 - 

2 3.04 0.13 - - 9.9 13.07 0.23 ± 0.06 0.01 ± 0.03 - 0.76 ± 0.05 - 

3 2.92 0.05 0.12 0 9.98 12.95 0.23 ± 0.08 0.00 ± 0.04 0 0.77 ± 0.06 0.33 ± 0.40 

4 3.06 - - 0.2 9.81 13.07 0.23 ± 0.06 - 0.02 ± 0.03 0.75 ± 0.06 - 

5 3.06 0 - 0.2 9.81 13.07 0.23 ± 0.06 0.00 ± 0.04 0.02 ± 0.04 0.75 ± 0.06 - 

6 2.98 0 0.06 0.18 9.85 13.01 0.23 ± 0.08 0.00 ± 0.06 0.01 ± 0.04 0.76 ± 0.06 0.72 ± 0.52 

 

 

Table 17. Heritability estimates ± SE of growth traits in Omani sheep estimated from all six animal models, with best model in bold. 

𝝈𝒂
𝟐, 𝝈𝒎

𝟐 , 𝝈𝒄
𝟐, 𝝈𝑷

𝟐 , σ2
e, and σam are animal additive genetic variance, maternal additive genetic variance, maternal permanent 

environmental variance, phenotypic variance, error variance, and covariance of animal and maternal additive genetic effects, 
respectively; h2

d (direct heritability),  h2
m (maternal heritability), pe2 (Proportion of phenotypic variance explained by maternal 

permanent environmental effects), ram (genetic correlation between animal and maternal additive genetic effects). 

 σ2
a σ2

m σam 𝝈𝒄
𝟐 σ2

e σ2
p h2

d ± SE h2
m ± SE 

 
pe2 ± SE 
 

e2 ± SE 
 

ram 
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BW            

1 0.08 - - - 0.23 0.31 0.26 ± 0.03 - - 0.74 ± 0.03 - 

2 0.04 0.07 - - 0.22 0.33 0.12 ± 0.03 0.21 ± 0.02 - 0.67 ± 0.03 - 

3 0.05 0.08 -0.02 - 0.21 0.34 0.15 ± 0.04 0.24 ± 0.04 - 0.62 ± 0.03 -0.30 ± 0.14 

4 0.05 - - 0.06 0.21 0.32 0.16 ± 0.03 - 0.19 ± 0.02 0.66 ± 0.03 - 

5 0.04 0.01 - 0.05 0.21 0.31 0.13 ± 0.03 0.03 ± 0.03 0.16 ± 0.03 0.68 ± 0.03 - 

6 0.05 0.02 -0.01 0.05 0.2 0.32 0.16 ± 0.04 0.06 ± 0.04 0.16 ± 0.03 0.63 ± 0.03 -0.39 ± 0.21 

WW            

1 3.00 - - - 7.73 10.73 0.28 ± 0.04 - - 0.72 ± 0.04 - 

2 1.35 2.13 - - 7.41 10.89 0.12 ± 0.03 0.20 ± 0.03 - 0.68 ± 0.03 - 

3 1.46 2.31 -0.24 - 7.35 11.12 0.13 ± 0.04 0.21 ± 0.04 - 0.66 ± 0.03 -0.13 ± 0.19 

4 1.56 - - 2.00 7.06 10.62 0.15 ± 0.03 - 0.19 ± 0.02 0.66 ± 0.03 - 

5 1.42 0.62 - 1.48 7.13 10.65 0.13 ± 0.03 0.06 ± 0.03 0.14 ± 0.03 0.67 ± 0.03 - 

6 1.45 0.66 -0.06 1.48 7.11 10.70 0.14 ± 0.04 0.06 ± 0.04 0.14 ± 0.03 0.66 ± 0.03 -0.06 ± 0.30 

W6            

1 4.39 - - - 8.27 12.66 0.35 ± 0.04 - - 0.65 ± 0.04 - 

2 2.97 1.06 - - 8.46 12.49 0.24 ± 0.05 0.08 ± 0.03 - 0.68 ± 0.04 - 

3 2.68 0.83 0.40 - 8.61 12.12 0.22 ± 0.05 0.07 ± 0.03 - 0.71 ± 0.04 0.27 ± 0.32 

4 3.44 - - 0.98 8.07 12.49 0.28 ± 0.05 - 0.08 ± 0.02 0.65 ± 0.04 - 

5 3.05 0.57 - 0.58 8.26 12.46 0.24 ± 0.05 0.05 ± 0.03 0.05 ± 0.03 0.66 ± 0.04 - 

6 2.73 0.37 0.38 0.57 8.42 12.09 0.23 ± 0.05 0.03 ± 0.04 0.05 ± 0.03 0.70 ± 0.04 0.38 ± 0.53 

W12            

1 10.80 - - - 11.81 22.61 0.48 ± 0.05 - - 0.52 ± 0.04 - 

2 10.76 0.27 - - 11.74 22.76 0.47 ± 0.05 0.01 ± 0.02 - 0.52 ± 0.07 - 

3 12.36 1.18 -1.95 - 10.80 22.39 0.55 ± 0.07 0.05 ± 0.03 - 0.48 ± 0.05 -0.51 ± 0.17 

4 10.08 - - 1.01 11.40 22.49 0.45 ± 0.05 - 0.05 ± 0.02 0.51 ± 0.05 - 

5 10.05 0.13 - 0.99 11.38 22.55 0.45 ± 0.05 0.02 ± 0.02 0.04 ± 0.02 0.50 ± 0.05 - 

6 11.48 0.86 -1.43 0.75 10.71 22.37 0.51 ± 0.08 0.04 ± 0.03 0.03 ± 0.03 0.48 ± 0.06 -0.46 ± 0.22 

 



 

134 

 

4.3.2.3 Genotypic and phenotypic correlations among growth traits 

The direct genetic correlations among the four growth traits across the three 

breeds typically exhibited positive direction and moderate to strong correlations, as 

illustrated in Table 18. The post-weaning trait (W6) demonstrated the highest paired 

genetic correlations, with values exceeding 0.90 with W12 and at least 0.85 with WW 

across all breeds. 

The coefficients between BW and other traits were 0.77 ± 0.11 (BW-WW), 0.55 

± 0.13 (BW-W6), and 0.54 ± 0.13 (BW-W12) in JA goats, 0.62 ± 0.12 (BW-WW), 0.47 

± 0.14 (BW-W6), and 0.53 ± 0.13 (BW-W12) in BA goats, and 0.56 ± 0.11 (BW-WW), 

0.52 ± 0.10 (BW-W6), and 0.47 ± 0.10 (BW-W12) in OS sheep. While it was 0.85 ± 

0.06 (WW-W6), 0.80 ± 0.06 (WW-W12), and 0.98 ± 0.03 (W6-W12) in JA goats, 0.91 

± 0.05 (WW-W6), 0.85 ± 0.08 (WW-W12), and 0.98 ± 0.05 (W6-W12) in BA goats, and 

0.89 ± 0.03 (WW-W6), 0.76 ± 0.06 (WW-W12), and 0.92 ± 0.02 (W6-W12) in OS sheep. 

 The phenotypic correlations between traits were predominantly positive and 

relatively strong, with at least a 0.45 coefficient, except for the correlations with BW, 

which exhibited smaller magnitudes ranging from 0.15 to 0.25. The remaining 

correlations ranged from 0.45 to 0.74. The phenotypic correlation between W6 and 

W12 had the greatest magnitude (≥ 0.70) across all breeds. The coefficients for the 

several comparisons in JA goats were as follows: 0.24 ± 0.02 (BW-WW), 0.20 ± 0.02 

(BW-W6), 0.15 ± 0.03 (BW-W12), 0.66 ± 0.01 (WW-W6), 0.45 ± 0.02 (WW-W12), and 

0.71 ± 0.02 (W6-W12). The coefficients in BA goats were as follows: 0.25 ± 0.02 (BW-

WW), 0.20 ± 0.20 (BW-W6), 0.19 ± 0.03 (BW-W12), 0.67 ± 0.01 (WW-W6), 0.50 ± 0.02 

(WW-W12), and 0.70 ± 0.02 (W6-W12). The coefficients for OS sheep were as follows: 
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0.21 ± 0.02 (BW-WW), 0.20 ± 0.02 (BW-W6), 0.21 ± 0.02 (BW-W12), 0.70 ± 0.01 (WW-

W6), 0.54 ± 0.02 (WW-W12), and 0.74 ± 0.01 (W6-W12). 

 

Table 18.  Genetic correlations ± SE in (bold), and phenotypic correlations ± SE in 
(parenthesis) of growth traits in Jebel Akhdar and Batinah goats and Omani sheep. 

Trait BW WW W6 W12 

Jebel Akhdar goats     

BW  0.77 ± 0.11 0.55 ± 0.13 0.54 ± 0.13 
(0.08±0.80) 

WW (0.24 ± 0.02)  0.85 ± 0.06 0.80 ± 0.06 

W6 (0.20 ± 0.02) (0.66 ± 0.01)  0.98 ± 0.03 

W12 (0.15 ± 0.03) (0.45 ± 0.02) (0.71 ± 0.02)  

Batinah goats BW WW W6 W12 

     

BW  0.62 ± 0.12 0.47 ± 0.14 0.53 ± 0.13 

WW (0.25 ± 0.02)  0.91 ± 0.05 0.85 ± 0.08 

W6 (0.20 ± 0.02) (0.67 ± 0.01)  0.98 ± 0.05 

W12 (0.19 ± 0.03) (0.50 ± 0.02) (0.70 ± 0.02)  

Omani sheep BW WW W6 W12 

     

BW  0.56 ± 0.11 0.52 ± 0.10 0.47 ± 0.10 

WW (0.21 ± 0.02)  0.89 ± 0.03 0.76 ± 0.06 

W6 (0.20 ± 0.02) (0.70 ± 0.01)  0.92 ± 0.02 

W12 (0.21 ± 0.02) (0.54 ± 0.02) (0.74 ± 0.01)  

 

 

 

 

 

 



 

136 

 

4.3.3 Genetic and phenotypic trends of the growth traits 

 Starting from 2010 to 2020, there was a fluctuating rise in genetic change 

across the traits of WW, W6, and W12 in the three different breeds of JA goats, BA 

goats, and OS sheep (Figures 20, 21, and 22, respectively). However, the trait of BW 

showed almost a constant trend in all three breeds. Table 19 showed that the average 

estimated breeding values for the traits of BW, WW, W6, and W12 increased annually 

by 0.01 kg, 0.09 kg, 0.13 kg, and 0.20 kg in JA goats, respectively. In BA goats, the 

values increased by 0.01 kg, 0.08 kg, 0.10 kg, and 0.18 kg, respectively. In OS sheep, 

the values increased by 0.01 kg, 0.13 kg, 0.22 kg, and 0.39 kg, respectively.  

Although genetic changes occurred across the investigated years in all traits of 

the three breeds, there were no significant changes in the traits’ phenotypes, except 

for the trait of W12, which displayed an annual phenotypic change of 0.93 kg, 0.69 kg, 

and 0.66 kg in JA, BA, and OS, respectively (Table 20). All other traits displayed 

oscillating patterns of growth and decline throughout the 13-year period (Figures 23, 

24, and 25). 
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Figure 20. Genetic trend (2008-2020) of various growth traits in Omani JA goats. 
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Figure 21. Genetic trend (2008-2020) of various growth traits in Omani BA goats. 
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Figure 22. Genetic trend (2008-2020) of various growth traits in Omani OS sheep. 
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Figure 23. Phenotypic trend (2008-2020) of various growth traits in Omani JA goats. 
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Figure 24. Phenotypic trend (2008-2020) of various growth traits in Omani BA goats. 
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Figure 25. Phenotypic trend (2008-2020) of various growth traits in Omani OS sheep. 
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4.4 Discussion 

4.4.1 Importance of environmental fixed factors on growth traits 

Investigating the environmental fixed factors is important in livestock production 

systems as they can impact the estimation of genetic parameters. The impact of these 

factors varies depending on the specific traits and breeds being examined. Hence, it is 

essential to look at the significance of these factors and correct the data for these 

factors to avoid any bias in the estimation of variances (Chauhan et al., 2021; Singh et 

al., 2022).  

The sex of the animal, type of birth, and year of birth had a highly significant 

impact (𝑃 < 0.001) on the variation observed in each stage of growth in the three 

breeds: Jebel Akhdar (JA) and Batinah (BA) goats, and Omani (OS) sheep. These 

findings are supported by other studies conducted by several researchers including Al-

Shorepy et al. (2002), Baneh et al. (2012), Bedhane et al. (2013), Mahala et al. (2019), 

Oyieng et al. (2022), Tesema et al. (2022), and Zhang et al. (2009).  

Males’ animals exhibited heavier weight in comparison to females across the 

four growth traits in the three breeds. The weight difference between the two sexes 

continuously increased with age, attaining 0.36 kg, 1.44 kg, 1.68 kg, and 4.31 kg for 

BW, WW, W6, and W12, respectively, in JA goats, and 0.71 kg, 1.86 kg, 1.66 kg, and 

4.6 kg for BW, WW, W6, and W12, respectively, in BA goats. The weight differences 

for BW, WW, W6, and W12 in OS sheep were 0.44 kg, 1.86 kg, 1.66 kg, and 4.6 kg, 

respectively. The observed increases suggest that males may exhibit greater efficacy 

than females in their response to environmental improvements (Al-Shorepy et al., 

2002; Zhang et al., 2009). Hormonal and genetic differences between males and 
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females may be the cause of the variations caused by sex (Bedhane et al., 2013). 

Androgens, which are sex hormones, have a greater influence on muscle development 

in males compared to females, whereas estrogen limits skeletal growth in females. 

Furthermore, it has been reported that dams carrying a male fetus have a greater 

number of cotyledons and possess placentas with higher weight compared to those 

carrying a female fetus, perhaps influencing this variability (Tesema et al., 2022). 

Type of birth was another important source of variation associated with all 

studied traits across the three breeds. The primary factor contributing to this difference 

may be the competition among multiple-born animals for uterine space and milk 

consumption until weaning (Baneh et al., 2012). Consequently, the amount of nutrition 

provided during the prenatal stage is lower for twins compared to single births, and the 

amount of milk consumed by twins is also reduced. The difference typically decreases 

following the weaning stage, thus indicating the animals' decreased dependence on 

milk during this period, and the growth potential for twins begins catching up (Bedhane 

et al., 2013; Zhang et al., 2009). 

The significance of the year can be attributed to climate change, food 

availability, and the spread of potential diseases (Mahala et al., 2019; Tesema et al., 

2022). The apparently upward trend observed in weight at W12 compared to other 

traits over the last four years suggests that this particular trait may possess a higher 

level of heritability and that animals respond more effectively to selective breeding.  

Dam's age has been included as a covariate or as a fixed effect with many levels 

in linear mixed models according to the literature. It has been considered as a fixed 

effect in studies like Baneh et al. (2012), Bahreini Behzadi et al. (2007) and Al-Shorepy 



 

147 

 

et al. (2002). However, other research, including those of Hızlı et al. (2022) and 

Erdoğan Ataç et al. (2023), included the age of the dam as a covariate. In the current 

study, it has been fitted as a covariate because the age of dam is a continuous variable 

with so many levels and that it has a linear relationship with body weights. 

 

4.4.2 Importance of maternal effects on growth traits 

The dam can affect the performance of its offspring by passing on its direct 

additive genetic effects during fertilization and by providing a suitable environment, 

including nourishment and maternal care. The ability of a dam to create an appropriate 

environment is determined by both genetic factors, referred to as maternal genetic 

effects, and environmental factors, referred to as maternal environmental influences. 

Maternal effects exert a more significant influence on early growth characteristics, such 

as birth weight (BW) and weaning weight (WW), in comparison to other later traits. 

(Mrode, 2014). Their impact is expected to diminish from birth to yearling age; as the 

animal develops, its need for its dam reduces (Bahreini Behzadi et al., 2007). However, 

they may also have an impact later on traits such as W6 and W12, as noticed by 

Bahreini Behzadi et al. (2007) in Kermani sheep, Areb et al. (2021) in Bonga sheep, 

and Singh et al. (2022) in Barbari goats. Due to carryover from the before-weaning 

stage, certain traits may still exhibit maternal influences in adulthood (Bangar et al., 

2020).  

The present study found that when maternal effects were excluded, the direct 

heritability of all traits in the three breeds was overestimated. This conclusion is 

consistent with the results reported by Meyer (1992). Meyer observed that the 
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estimation of additive genetic variance is higher when maternal effects are excluded. 

This study revealed that maternal effects had a noteworthy influence on the traits of 

BW, WW, and W6 in all breeds. Unexpectedly, maternal influences had a significant 

effect on the weight of JA goats at 12 months. This was unexpected, as animals at this 

stage should not depend on their dams for any sort of support. Hence, it is important 

to consider maternal effects when estimating the genetic parameters of these traits to 

avoid inflated parameters and ensure that the genetic potential of animals is not 

masked by maternal effects. This matters because it could have an impact on the 

selection of superior animals (Oyieng et al., 2022).  

The inclusion of maternal genetic effects, as implemented in model 2, was 

appropriate for analysing the BW trait among goats' breeds as well as the W12 trait in 

JA goats. This is in agreement with the results reported by Tesema et al. (2020) and 

Singh et al. (2022). Nevertheless, numerous studies have demonstrated that maternal 

permanent environmental effects, either alone or together with maternal genetic 

effects, play a substantial influence on the determination of these traits, surpassing the 

impact of maternal genetic effects alone (Bangar et al., 2020; Singh et al., 2022; Zhang 

et al., 2009). The study found that maternal genetic effects were as important as direct 

additive genetic effects in determining body weight at birth in both breeds of goats. In 

particular, this factor explained 17% of the total variation in observable traits in the JA 

breed and 13% in the BA breed. In W12, it made up 6% of the variation in JA goat 

phenotypes. 

Across the three breeds, Model 4 presented the most appropriate 

representation of WW and W6 traits, plus BW in OS sheep. This model takes into 

account the influence of maternal permanent environmental effects. A number of 
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investigations have arrived at the same conclusion (Baneh et al., 2012; I et al., 2017; 

Tesema et al., 2022). These maternal influences may be reflected by the environment 

and capacity of the uterus, as well as by the mothering ability and milk production, all 

of which influence the phenotypic differences in these specific traits. For the breeds of 

OS sheep, JA goats, and BA goats, they provide an explanation for 10% and 8%, 16% 

and 11%, and 19% and 8% of the variability of WW and W6. They were responsible 

for 19% of the variation in BW of OS sheep. The significance of maternal influences in 

these breeds, in relation to the variability observed in these specific traits, must be 

taken into account when estimating genetic parameters and breeding values. 

Consequently, the selection programme becomes more effective. 

 

4.4.3 Heritability estimation of growth traits 

The estimation of heritability for the desired trait, which measures the 

proportionate influence of additive genetic effects on the total variability of observable 

traits within a population, is the foundation of animal breeding programmes. It explains 

the extent to which the trait can be improved by genetic selection. Therefore, estimating 

it is required for predicting how individuals will respond to selection and to calculate 

their specific EBVs (Getabalew et al., 2019). The heritability estimation should not be 

affected by feed differences, even though the examined breeds were fed concentrate 

according to the age and physiological stage of the animals. This is a result of the 

animals being grouped and fed similar quantities for every trait that was being studied. 

Furthermore, the factors of pens and dam’s age may took account for any variability 

resulting from the feeding of the dams. 
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In this study, pre-weaning traits exhibited lower direct heritability in comparison 

to post-weaning traits. These findings indicate that the way animals are managed 

before they are weaned significantly affects how their genetic potential is expressed 

(Bedhane et al., 2013). The study found that the direct heritabilities for BW and 

WW were 0.13 and 0.11 in JA goats, 0.17 and 0.16 in BA goats, and 0.16 and 0.15 in 

OS sheep. In contrast, for W6 and W12 in JA goats, the direct heritabilities were 0.19 

and 0.21, for BA goats, they were 0.16 and 0.24, and for OS sheep, they were 0.28 

and 0.48. The presence of these heritability estimates suggests that genetic selection 

can be implemented to improve these growth traits in the Omani breeds, and the rate 

of improvement is determined by their magnitude. 

 reported low direct heritability values for BW and WW in Nellore sheep (0.08 

and 0.03, respectively). Dhakad et al. (2022) found similar results in Malpura sheep, 

with heritability values of 0.15 for BW and 0.13 for WW. Chauhan et al. (2021) observed 

a heritability value of 0.10 for WW in Harnali sheep. Bangar et al. (2020) reported a 

heritability value of 0.09 for BW in Jakhrana goats. However, several studies have 

reported higher estimates for these traits. For instance, Baneh et al. (2012) found in 

Naeini goats value of 0.25 for BW, Bosso et al. (2007) reported in West African dwarf 

goat  a value of 0.50 for BW, Areb et al. (2021) observed in Bonga sheep values of 

0.56 and 0.36 for BW and WW, respectively, and Singh et al. (2022) recorded in Barbari 

goats 0.31 and 0.23 for BW and WW, respectively. 

According to Olayemi et al. (1997), the low estimates of direct heritability for pre-

weaning traits suggest that these traits are mostly impacted by environmental factors 
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rather than genetics. The inadequate nutrition management of dams may be a 

contributing factor to the low estimates of the direct heritability for traits before weaning 

in this study, resulting in a significant variation in the environment. In addition, the 

inclusion of maternal effects may have contributed to the low estimates of direct 

heritability. Tesema et al. (2022) reported that animal selection based on performance 

is ineffective when heritability is less than 0.15. Instead, it is recommended to select 

animals based on breeding values that are estimated from multiple sources, including 

sires, offspring, and their own performance records. Selecting animals based on lowly 

heritable traits is expected to result in a slow improvement in genetic merit (Mandal et 

al., 2015). 

 

The heritability of the W6 trait was relatively moderate in JA goats (0.19), but a 

bit lower in BA goats (0.16). The heritability of this trait had a higher magnitude in OS 

sheep, with a value of 0.28. Sharif et al. (2022) reported a heritability of 0.20 in Lohi 

sheep; Singh et al. (2016) revealed a heritability of 0.28 in Marwari sheep 0.28, 

Chauhan et al. (2021) found a heritability of 0.18 in Harnali sheep; Singh et al. (2022) 

observed a heritability of 0.18 in Barbari goats; and Areb et al. (2021) found a 

heritability of 0.22 in Bonga sheep. Higher estimates than the current study have been 

reported by Bangar et al. (2020) in Jakhrana goat (0.53), and Hassan et al. (2013) in 

exotic goat (0.45).  

The W12 trait demonstrated the highest estimates of direct heritability in 

comparison to other growth traits across all the breeds that were examined. This 

indicates that animals at one year of age possess more ability to manifest their genetic 
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potential. The OS sheep exhibited the highest estimations, with a value of 0.48, while 

the BA and JA goats showed moderate values of 0.24 and 0.21, respectively. The size 

of the flock, the twinning rate, and the implementation of a proper culling strategy at 

six months of age may have contributed to the less genetic variability in goat breeds 

compared to sheep. Estimates of direct heritability, which vary from moderate to high, 

suggest the existence of considerable additive genetic variance. This enables 

successful selection for additional genetic improvement. Moderate estimates of 

heritability for this trait in JA and BA goats were reported by Bedhane et al. (2013) in 

Arsi-Bale Ethiopian goats (0.23) and Singh et al. (2022) in Barbari goats (0.21). Koçak 

et al. (2023) have found a high estimate of direct heritability in Daglic sheep (0.47), 

which is in agreement with the current estimate for OS sheep. Lower estimates were 

found in Jakhrana goats (0.16) (Bangar et al., 2020), in Harnali sheep (0.11) (Chauhan 

et al., 2021), in Malpura sheep (0.16) (Dhakad et al., 2022) and in Bonga sheep (0.15) 

(Areb et al., 2021). 

 

4.4.4 Genetic and phenotypic correlations among growth traits 

The growth traits of the Omani goats and sheep breeds showed, in 

general, positive and strong genetic correlations among them, indicating that they are 

primarily governed by similar genes or genes that are closely linked (Sharif et al., 

2022). The correlations ranged from 0.47 for the correlation between BW and W6 in 

BA goats and between BW and W12 in OS sheep to 0.98 and 0.92 for the correlation 

between W6 and W12 in JA and BA goats and OS sheep, respectively. This positive 

correlation implies that improving any trait would enhance the performance of other 

correlated traits, according to the high estimates of genetic correlations between the 
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traits (Bangar et al., 2020; Tesema et al., 2022). Robertson (1959) proposed that in 

order to mitigate the impact of genotypes and environmental interactions, it is 

recommended that there be a minimum genetic correlation threshold of 0.80 between 

phenotypes. This suggests that the ranking of animals would be similar across various 

traits. The present genetic correlations fell within the range reported in other research, 

including (Singh et al., 2022) (0.26-0.85), (Dhakad et al., 2022) (0.18-0.80), and 

(Bangar et al., 2020) (0.14-0.99). 

Except for the correlations with BW, which showed lower magnitudes ranging 

from 0.15 to 0.25, the phenotypic correlations between growth traits across all breeds 

were positive and relatively high. The phenotypic correlations observed in JA goats 

ranged from 0.20 to 0.71, in BA goats from 0.19 to 0.70, and in OS sheep from 0.20 to 

0.74. The phenotypic correlations between W6 and W12 were the largest in magnitude 

compared to the other correlations between traits (0.71, 0.70, and 0.74 in JA, BA, and 

OS, respectively). The second-strongest correlations were seen between W6 and WW 

(0.66, 0.67, and 0.70 in JA, BA, and OS, respectively). The phenotypic correlations 

between traits may arise from the common environment exposed to the animals at 

different stages of life (Sharif et al., 2022). 
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4.4.5 Genetic and phenotypic trends of growth traits 

Between 2008 and 2020, the genetic trend in BW traits across all breeds 

showed a constant pattern of change, indicating that genetic selection was not 

effective in achieving the desired results. The yearly genetic increment associated 

with this trait for all breeds was 0.01 kg. The low genetic change might be because 

of the low heritability of this trait (0.13, 0.17, and 0.16 in OS sheep, BA goats, and 

JA goats, respectively), as well as its exclusion from being a targeted trait. The same 

pattern was observed by Bosso et al. (2007) in their research on sheep and goat 

breeds. However, Gizaw et al. (2007) reported a greater increase in Menz sheep 

compared to the present investigation, with a value of 0.04 kg/year. Lower estimates 

have been reported by Shirzeyli et al. (2023) in Markhoz goats (0.001 kg), Areb et 

al. (2021) in Bonga sheep (0.002 kg), and Esrafili and Behmaram (2023) in Moghani 

sheep (0.008 kg). A negative genetic trend of -0.02 kg for this trait was reported in 

Ettawa-grade goats by Hasan and Gunawan (2014). The differences in the 

published findings might be ascribed to changes in breeds, data structure, utilised 

statistical methods, and selection criteria. 

The remainder of growth traits (WW, W6, and W12) in all three breeds 

exhibited a fluctuating and increasing trend in genetic changes starting in 2010. 

More consistent trend has been noticed since 2015, notably in the later growth trait 

W12. The first two years of the project (2008-2009) exhibited a declining pattern, 

possibly due to it being the starting year and the introduction of new strategies and 

management methods. The average breeding value for the traits WW and W6 

increased annually by 0.09 kg and 0.13 kg, 0.08 kg and 0.10 kg, and 0.13 kg and 

0.22 kg for JA goats, BA goats, and OS sheep, respectively. This indicates that 
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these traits demonstrated an effective response in comparison to BW, suggesting 

that animals at a more mature stage are more responsive to selection. The higher 

heritability estimates of the trait W6 in OS sheep compared to goats can explain the 

increased value of genetic change at W6. The heritability estimates for W6 were 

0.28 in OS sheep, 0.19 in JA goats, and 0.16 in BA goats. 

The breeds under investigation showed a more significant genetic change 

compared to what has been reported in the literature. This could be attributed to the 

selection of sires with higher breeding values and a potentially larger selection 

differential. Lower trends for the WW and W6 have been reported by Shirzeyli et al. 

(2023) in Markhoz goats (0.03 kg and 0.04 kg, respectively), Areb et al. (2021) in 

Moghani sheep (0.03 kg and 0.06 kg, respectively) and Hasan and Gunawan (2014) 

in Ettawa Grade goats (-0.02 kg and 0.003 kg, respectively). Nevertheless, higher 

estimates have been reported by Esrafili and Behmaram (2023) in Menz sheep 

(0.27 kg and 0.39 kg for WW and W6, respectively), and Gholizadeh and Ghafouri-

Kesbi (2015) in Baluchi sheep (0.19 kg for WW). Later, they observed lower 

estimates for the W6 traits in the same breed (0.08 kg).  

The weight at 12 months (W12) displayed the most substantial genetic 

change across the three breeds, which corresponds to the highest heritability 

estimate seen across all breeds. The OS sheep displayed the most significant 

change in this trait, with a growth rate of 0.39 kg per year, in contrast to rates of 0.20 

kg and 0.18 kg in JA and BA goats, respectively. OS sheep exhibited significantly 

higher heritability estimates (0.48) in comparison to goat breeds, which might 

be responsible for their substantially greater genetic gain. Present genetic changes 

of the investigated breeds for this trait were much higher than many other breeds, 
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including West African dwarf goats (0.08kg) and Djallonk´e sheep (0.09 kg) (Bosso 

et al., 2007), Markhoz goats (0.08 kg) (Gholizadeh & Ghafouri-Kesbi, 2015), Bonga 

sheep (0.02 kg) (Areb et al., 2021), and Moghani sheep (0.15 kg) (Esrafili & 

Behmaram, 2023). High genetic changes have been reported by Gholizadeh and 

Ghafouri-Kesbi (2015) in Baluchi sheep (0.46 kg). 

With the exception of the W12 trait, phenotypic changes in growth traits were 

not statistically significant across the three breeds. For the trait of W12, the JA 

goats, BA goats, and OS sheep breeds experienced an important weight rise, with 

annual increases of 0.93 kg, 0.69 kg, and 0.66 kg, respectively. Baba et al. (2020) 

did not observe any phenotypic gain in all the studied growth traits in Corriedale 

sheep. Mohammadi and Abdollahi-Arpanahi (2015) have only observed significant 

phenotypic change with WW and W6 (0.13 kg/year and 0.24 kg/year) in Zandi 

sheep. Enhancing phenotypic performance can be achieved by implementing 

different management strategies and improving nutrition (Hasan & Gunawan, 2014). 

It appears that environmental changes had a greater effect on these breeds' animals 

at BW, WW, and W6 than they did at W12. Inadequate nutrition, management 

problems, adverse weather conditions, and poor health can hinder animals from 

fully manifesting their genetic potential (Esrafili & Behmaram, 2023). 
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4.5 Conclusion 

The growth traits of the studied breeds were significantly influenced by 

environmental fixed effects such as sex, year, and birth type. However, the age of the 

dam only had an effect on early growth traits of all breeds, including W6 in Batinah 

goats. The present study demonstrates that maternal effects played a significant role 

in accounting for the phenotypic variability of all growth traits in Jebel Akhdar goats. 

However, in the case of Batinah goats and Omani sheep, maternal influences were 

shown to be important for all growth traits except for W12. Considering these effects 

in the statistical models is crucial for an accurate estimation of genetic parameters and, 

consequently, breeding values. The moderate heritability of W6 and W12 traits in goat 

breeds and W6 in Omani sheep and the high heritability of W12 in Omani sheep 

suggest the possibility of further genetic improvement for these traits by selection. All 

the examined breeds exhibit strong positive genetic and phenotypic correlations 

between growth traits, except for the trait of BW. This suggests that selecting for an 

improvement of any given trait would also result in the improvement of other correlated 

traits. The strongest genetic correlations were seen between W6 and W12, followed 

by the correlation between W6 and WW. Therefore, selecting W6 would be desirable 

due to its substantial correlation with other growth traits, resulting in time and labour 

savings. The positive genetic trend over the course of 13 years indicates that the 

breeding programme set up to improve the growth traits of the three breeds was 

successful. Yet, it is important to emphasise the improvement of the animals' 

environment in order to improve their overall phenotype. 
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CHAPTER FIVE 

OPPORTUNITIES OF IMPLEMENTING GENOMIC 

SELECTION IN OMANI SHEEP: A SIMULATION STUDY 
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5.1 Abstract 

Genomic selection (GS) is a promising strategy for enhancing genetic 

improvement by increasing selection accuracy and decreasing the generation interval. 

It has been commonly adopted in dairy cattle and, to a lesser extent, in small 

ruminants. The primary advantage of introducing GS in sheep breeding is its potential 

to improve the accuracy of candidates’ selection. Traditionally, individuals are selected 

based on predicting their estimated breeding values (EBVs) using the pedigree-best 

linear unbiased prediction (BLUP) approach. Genomic Best Linear Unbiased 

Prediction (GBLUP) and Single Step-Genomic Best Linear Unbiased Prediction 

(ssGBLUP) are two prevalent genomic methods used to predict Genomic Estimated 

Breeding Values (GEBVs) for implementing GS. These two methods employ molecular 

information throughout the genome to estimate genomic relationships and marker 

effects, which are then used to predict the GEBVs of animals.  

This study aims to explore the possibility of applying GS to Omani sheep by 

comparing the predictive accuracy of the BLUP, GBLUP, and ssGBLUP methods. The 

study simulated the genome structure by using 5000 markers and 50 QTLs (with only 

additive genetic effects). The simulation employed the estimated genetic parameters 

of growth traits birth weight (BW), six-months weight (W6), and yearling weight (W12) 

that were obtained from Chapter 4 to represent three distinct levels of heritability: low, 

moderate, and high. Three varying sizes of reference animals were examined for every 

trait to evaluate the impact of the reference size on the prediction.  
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With an average accuracy of 0.64, ssGBLUP has outperformed BLUP (0.56) 

and GBLUP (0.47) in terms of prediction accuracy across all three traits. The accuracy 

of the three approaches improved as the heritability level increased. Increasing the 

reference size improved the genomic prediction accuracy of GBLUP and ssGBLUP by 

an average of 0.43, 0.48, and 0.50, and 0.61, 0.64, and 0.67 for the two methods, 

respectively, at reference sizes of 500, 1000, and 2000 animals, respectively. The 

largest increase in accuracy achieved by ssGBLUP was observed in the low heritable 

trait (BW), averaging 20% across the three reference sizes. However, the gain 

difference was minimal (<2%) while transitioning from 1000 to 2000 animals. Thereby, 

ssGBLUP could be a valuable technique for improving prediction accuracy in 

comparison to BLUP and GBLUP, especially for traits with low heritability. The results 

can be used as a theoretical framework for promoting the adoption of genomic 

selection in Omani sheep. 
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5.2 Introduction 

Recent advancements in DNA sequencing and molecular information enabled 

the development of high-density SNP chips for livestock and consequently utilised 

them in genomic selection (GS) (Bertolini et al., 2017a; Rupp et al., 2016). Genomic 

selection is the process by which genomic estimated breeding values (GEBV) of 

genotyped candidates are predicted without the use of their phenotypic data, using a 

reference group of individuals that are both genotyped and phenotyped (Dekkers et 

al., 2021; Meuwissen et al., 2016). It entails evaluating the effects of SNP-markers in 

a reference population where individuals have been genotyped and phenotyped for a 

certain trait. Following that, selected candidates are only required to be genotyped in 

order to estimate their GEBVs (Meuwissen et al., 2016; Mrode, 2014). 

Genomic selection offers potential for maximising genetic improvement by 

reducing the length of the generation interval (Karimi et al., 2019) and by accurately 

estimating breeding values at an early stage of an animal's life (Dekkers et al., 2021). 

It proved its effectiveness in dairy cattle by accurately estimating breeding values early 

in life and by reducing the generation interval. One key aspect contributing to this 

success was the high number of offspring produced by every male due to artificial 

insemination techniques, which results in a small effective population size in the 

reference group, leading to more accurate estimations of markers’ effects. However, 

in sheep breeds, the issue may be more challenging due to the larger variability that 

exists among and within sheep breeds, requiring a large number of reference animals 

(Van der Werf et al., 2014). 

Implementing GS in small ruminants, including sheep and goats, can be 

advantageous for improving prediction accuracy more than reducing the generation 
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interval. This is especially true for growth traits, as the generation interval is typically 

shorter in these animals, and most growth traits can be measured early in life. Accurate 

prediction is essential for the successful implementation of GS. The accuracy is 

influenced by several factors, such as the size of the reference population, the effective 

size of the reference set (Lee et al., 2017), the heritability of the trait, the number of 

QTLs affecting the trait (Dekkers et al., 2021), marker density, and the statistical 

method of prediction (Karimi et al., 2019). The level of trait’s heritability and number of 

animals in the reference population can improve the accurate estimation of markers’ 

genetic effects. Several studies have demonstrated that the accuracy of genomic 

prediction improves as heritability level and reference size rise (Karimi et al., 2019; 

Shumbusho et al., 2013; Song et al., 2019). While the markers' density and the 

effective population size have a role in increasing accuracy by capturing more additive 

genetic variation that is caused by QTLs (Pszczola et al., 2012).  

The accuracy is determined by the amount of QTL-caused additive genetic 

variance that markers can explain, as well as the accurate estimation of markers' 

effects (Lee et al., 2017). As the number of QTLs rises, the genetic variance proportion 

at each QTL decreases, making it difficult to accurately estimate the effect of markers 

surrounding that QTL (Yan et al., 2022). The extent of additive genetic variance at a 

QTL that markers capture corresponds with the degree of linkage disequilibrium 

between the markers and the QTL; therefore, the number of molecular markers is 

critical for accuracy (Dekkers et al., 2021; Lee et al., 2017). 

This study aimed to investigate the possibility of adopting GS in Omani sheep, 

along with offering an initial theoretical basis for this endeavour. The study evaluated 

the accuracy of BLUP, GBLUP, and ssGBLUP in predicting the breeding values of 
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animals for the growth traits of birth weight (BW), six-month weight (W6), and yearling 

weight (W12). These specific traits were chosen to represent the level of heritability as 

low, moderate, and high, respectively. The investigation was conducted using a 

simulation technique that properly mimics the real pedigree and genetic parameters of 

the target population.  
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5.3 Results 

5.3.1 Population’s structure of reference and validation animals 

Basic statistics of the populations of the reference animals (phenotyped and 

genotyped) and validation animals (only genotyped) are summarized in Table 21. 

Across the three various sizes of the reference group, the average relationship among 

the reference animals was 0.04, literally unrelated individuals. The direct relatives, i.e., 

sires and dams, that existed in the reference group for the animals in the validation 

group increased as the reference size increased because more parents were found in 

subsequent years. The number of sires and dams in the reference groups was 4 and 

60 for a reference size of 500, 9 and 117 for a reference size of 1000, and 13 and 179 

for a reference size of 2000. 

Table 21.  Statistics of populations utilised as reference animals and validating 
animals of the Omani sheep. 

Item Reference size 

 500 
animals 

1000 
animals 

2000 
animals 

Year of birth 2019-2018 2019-2016 2019-2013 

Average relationships among animals 0.04 0.04 0.03 

Total animals in the validation group 293 293 293 

Year of birth 2020 2020 2020 

No. of validating animals with known sires 89 200 292 

No. of sires of validating animals 4 9 13 

No. of offspring/sire in the validation group 22.25 22.22 22.46 

No. of validating animals with known dams 85 181 284 

No. of dams of validating animals 60 117 179 

No. of offspring/dam in the validation group 1.41 1.54 1.60 
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5.3.2 Accuracy of prediction 

The prediction accuracy was determined by calculating the correlation 

coefficient between the estimated breeding values and the simulated true breeding 

values of the validation animals. Overall, the ssGBLUP approach outperformed the 

BLUP and GBLUP methods in predicting animals’ breeding values across the three 

studied growth traits. The accuracies were on average 0.64, 0.56, and 0.47, for 

ssGBLUP, BLUP, and GBLUP, respectively. Accuracy improved as the number of 

animals in the reference population increased, regardless of growth traits. GBLUP 

achieved accuracies of 0.43, 0.48, and 0.50, whereas ssGBLUP achieved accuracies 

of 0.61, 0.64, and 0.67 for sample sizes of 500, 1000, and 2000 animals. 

 

5.3.2.1 Accuracy at trait of birth weight (BW) 

At the BW trait, the mean accuracy of BLUP, GBLUP, and ssGBLUP were 0.44, 

0.40, and 0.53 respectively. The accuracy of genomic prediction using ssGBLUP and 

GBLUP continuously improves as the number of genotyped animals in the reference 

population increases (Figure 26). GBLUP achieved accuracy values of 0.35, 0.41, and 

0.45, whereas ssGBLUP achieved higher accuracies with 0.49, 0.54, and 0.55 at 

sample sizes of 500, 1000, and 2000 animals, respectively. 
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Figure 26. Prediction’s accuracy of estimated breeding values of Omani sheep 

animals for the trait of birth weight (BW) with heritability (ℎ2 = 0.16) by three methods 
of BLUP, GBLUP, and ssGBLUP under three different reference sizes (500, 100, and 
2000 animals). 

 

5.3.2.2 Accuracy at trait of six-month weight (W6) 

ssGBLUP demonstrated the highest prediction accuracy across the three sizes 

of reference population, averaging 0.65 accuracy. Then it was followed by BLUP, with 

an average accuracy of 0.59, and GBLUP had an average accuracy of 0.50 (Figure 

27). As the reference size increases, the accuracy of prediction by genomic 

approaches also increases in a linear way. At sample sizes of 500, 1000, and 2000, 

the accuracy of ssGBLUP was 0.63, 0.65, and 0.68, respectively, compared to 0.46, 

0.50, and 0.53 for GBLUP. 
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Figure 27. Prediction’s accuracy of estimated breeding values of Omani sheep 

animals for the trait of six-month weight (W6) with heritability (ℎ2 = 0.28) by three 
methods of BLUP, GBLUP, and ssGBLUP under three different reference sizes (500, 
100, and 2000 animals). 

 

5.3.2.3 Accuracy at trait of yearling weight (W12) 

Figure 28 shows the trend of prediction’s accuracy for the three investigated 

methods for the trait of W12 across the three sizes of reference populations. ssGBLUP 

showed the highest prediction accuracy, averaging 0.74 across the three reference 

population sizes. BLUP achieved an average accuracy of 0.64, whereas GBLUP had 

an average accuracy of 0.51. The predictive performance of ssGBLUP improved with 

sample sizes of 500 (0.71), 1000 (0.74), and 2000 (0.77), whereas GBLUP achieved 

accuracies of 0.49, 0.52, and 0.52 for the same sample size. 
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Figure 28. Prediction accuracy of estimated breeding values of Omani sheep animals 

for the trait of yearling weight (W12) with heritability (ℎ2 = 0.48) by three methods of 
BLUP, GBLUP, and ssGBLUP under three different reference sizes (500, 100, and 
2000 animals). 
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5.4 Discussion 

Rather than utilising a specialised simulation software, the study’s simulation 

was suggested to be based on self-written Fortran code. This suggestion was taken to 

improve my knowledge of simulation methodologies and how they are implemented by 

specialised software. The Fortran-based simulation used for this study had some 

limitations that might be a potential pitfalls.  For example, the array size was limited to 

6,000, the thing that prevented simulating larger number of markers, the actual number 

of chromosomes, and distribution of markers and QTL effects. Furthermore, some 

parameters like linkage disequilibrium, mutation rate and crossover interference were 

not simulated. Some specialized simulators such as GPOPSIM  (Zhang et al., 2015) 

and QMSim (Sargolzaei & Schenkel, 2009) have much flexibility in terms of QTL 

numbers, sampling distribution of QTL effects, chromosome numbers and length, and 

mutation rate. For this reason, it would be suggested to validate this simulation using 

specialised tools to make it more realistic. 

 The accuracy of genomic prediction of individuals' breeding values relies on 

key factors such as the fraction of additive genetic variance at a QTL that can be 

captured by the markers. The extent of the explained variance is affected by the level 

of linkage disequilibrium between the QTL and the markers. The accuracy also relies 

on the precise estimation of the markers' genetic effects (Lee et al., 2017). So, 

increasing the marker density may enhance genomic prediction’s accuracy by 

increasing the degree of linkage disequilibrium between QTLs and markers (Karimi et 

al., 2019), and by capturing more of the genomic relationships among animals (Mrode, 

2014). Habier et al. (2007) showed that the number of genetic relationships captured 

by the genetic markers is associated with the accuracy of genomic predictions.  
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5.4.1 Overall accuracy of predictions 

The current simulation study used the real pedigree of the Omani sheep 

population and the genetic parameters for the growth traits (BW, W6, and W12) that 

were estimated in Chapter 4. The study showed that the ssGBLUP method performed 

better than classical BLUP and genomic GBLUP methods in accurately predicting the 

breeding values of selection candidates for the three growth traits and across the 

different sizes of reference populations. It yielded an average 14% increase in 

prediction accuracy compared to BLUP (0.64 vs. 0.56) and a 36% increase compared 

to GBLUP (0.47). These results aligned with the findings reported by Karimi et al. 

(2019) who found that ssGBLUP outperformed alternative methods, especially in 

cases of low heritability traits and low marker density. Also, Song et al. (2019) have 

reported that ssGBLUP outperformed GBLUP and BLUP in predicting breeding values 

for seven body measurements in a pig population. Yet, the same study reported that 

accuracy improvement over the BLUP method was low, averaging only 1%, possibly 

due to the limited number of genotyped individuals (400 animals).  

ssGBLUP's superiority over other methods may be due to its combined use of 

pedigree and genomic relationships. Additionally, ssGBLUP utilises both genotyped 

and non-genotyped animal phenotypes, while GBLUP only uses genotyped animal 

phenotypes (Valerio-Hernández et al., 2023). In addition, the effective population size 

of the reference population might be small. A smaller effective population size will be 

expected to result in fewer independent chromosomal segments, leading to a lower 

number of markers and phenotypes that are involved in tracking genetic variability and 

estimating SNP effects properly (Pszczola et al., 2012). 
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Despite having a reference size of 2,000 genotyped animals, GBLUP predicted 

less accurately than traditional BLUP. This could be because the size of the genotyped 

animals used for GBLUP estimate differs much from that of the ungenotyped animals 

used for BLUP estimation. The reference size should be greater than 2,000 animals 

for GBLUP to outperform BLUP, according to Karimi et al. (2019) research. Further, 

the animals in the reference set and the validation set may not have close enough 

genetic relationships, which may have contributed to GBLUP's inability to correctly 

predict breeding values (Fraslin et al., 2022; Lee et al., 2017). Some studies have also 

shown that GBLUP was less effective than BLUP in terms of prediction accuracy (Song 

et al., 2019; Valerio-Hernández et al., 2023). 

 

5.4.2 Influence of heritability and reference size on prediction 

The accuracy of the prediction improved steadily as the heritability of the trait 

increased across all three methods. The accuracy of ssGBLUP was 0.53 for BW, 0.65 

for W6, and 0.74 for W12. BLUP obtained values of 0.44, 0.59, and 0.64 for the 

respective traits. GBLUP accuracies for the three traits, respectively, were lower with 

values of 0.40, 0.50, and 0.51. Further, the accuracy of the genomic prediction by the 

ssGBLUP and GBLUP methods improved as the reference size increased. Across the 

three traits, the gain in accuracy for ssGBLUP and GBLUP was ~16% and ~12% (from 

500 to 1000), and ~5% and ~4% (from 1000 to 2000). The accuracy of genomic 

prediction is expected to decrease with smaller reference sizes and lower heritability 

and to improve with higher heritability and larger reference populations (Prince & 

Gowane, 2017; Pszczola et al., 2012). The reason for this might be that for low 

heritable traits, the proportion of the additive genetic variance caused by QTLs would 
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be very small compared to high heritable traits. This means that more markers and 

individuals’ phenotypes are needed in order to capture a greater proportion of the 

additive genetic variance and, consequently, effectively estimate the additive genetic 

effects of the markers surrounding the QTLs. Additionally, in our study, we found that 

when the size of the reference population increased, there was a higher probability of 

identifying closer relatives for the selection candidates, potentially leading to improved 

accuracy. A number of studies revealed that the accuracy of predicting genomic 

breeding values is highest when the target animals are closely related to the reference 

animals (Fraslin et al., 2022; Gowane et al., 2018; Pszczola et al., 2012) , and the 

relationships among reference animals are minimised (Pszczola et al., 2012), as it is 

the case in our study that the average relationships among reference animals were 

0.04 (unrelated animals).  

By considering the low heritable trait (BW), when comparing ssGBLUP to BLUP, 

the increase in accuracy was 11% for a reference size of 500, 23% for a reference size 

of 1000, and 25% for a reference size of 2000. The accuracy improvement for the 

moderately heritable trait (W6) was 7% with a reference size of 500, 10% with a 

reference size of 1000, and 15% with a reference size of 2000. The gain for the high 

heritable trait (W12) was 11% (reference size = 500), 16% (reference size = 1000), 

and 20% (reference size = 2000). Across every case of reference size and heritability 

level, there was an increase in accuracy observed among comparable methods. 

However, the comparable gain in accuracy among the genomic methods is higher for 

the traits with low heritability, especially when sample sizes are 1000 and 2000. 

ssGBLUP appears to be an effective approach for improving prediction accuracy and 

enhancing genetic gain, particularly for traits with low heritability, when both BLUP and 
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GBLUP had accuracies below 0.50. Using a sample size of 1000 animals may be 

sufficient to substantially enhance accuracy, as the increase in accuracy from 1000 to 

2000 animals was not large. Practically applying genomic selection to Omani sheep 

can be supported theoretically by adopting an appropriate reference population design 

that maximises the number of sires, unrelated individuals, and population size.
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5.5 Conclusion 

Genomic selection is a promising tool for breeding projects in livestock, 

including small ruminants. Genomic selection is expected to improve the 

accuracy of predicting breeding values, hence improving genetic progress. 

Simulation can be used to theoretically test and assess methodologies, providing 

practical guidance for choosing a specific method. The current simulation study 

has shown that the ssGBLUP approach outperforms BLUP and GBLUP methods 

in reliably estimating breeding values by exploiting both pedigree and genomic 

relationships across individuals. The ssGBLUP approach exceeded accuracy 

across reference populations of varying sizes and different levels of heritability. 

Its greatest improvement was seen with the low heritability trait (BW), attaining a 

20% increase over BLUP and around 33% over GBLUP. Genomic predictions 

using the ssGBLUP and GBLUP methods improved in accuracy as the reference 

size and heritability increased. This could be attributed to the fact that low 

heritable traits involve more phenotypes and genotypes to capture a larger 

genetic variance. The greater number of direct relatives available for animals in 

the validation group might enable the genetic markers to capture more genomic 

relationships and consequently improve their accuracy. We can conclude that 

ssGBLUP can provide an efficient method for accurately estimating the breeding 

values of Omani sheep population animals, especially those with low heritable 

traits. A reference size of 1000 animals can also be considered appropriate, as 

the difference between 1000 and 2000 animals was not substantial. 
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CHAPTER SIX 

GENERAL DISCUSSION AND CONCLUSION 
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6.1 Genetic improvement of growth traits in goats and sheep in Oman 

The economic value of an animal is largely determined by its growth traits, 

which can be improved to develop more efficient production systems (Mahala et 

al., 2019). The animal's growth potential is indicative of its ability to produce meat 

(Bangar et al., 2020). Thus, the production of meat can be increased by improving 

growth traits.  

Sheep and goats make up almost 81% of the overall livestock population 

in Oman, with populations of 642,000 and 2,443,000, respectively (NCSI, 2021). 

They are known for their capacity to thrive in arid and hilly regions, where they 

can efficiently convert scarce vegetation into nutrients (Mahgoub et al., 2010) and 

have a short production cycle for red meat production (Pond & Pond, 2000). 

Sheep and goats in Oman are mostly bred for meat (Shaat & Al-Habsi, 2016). 

They could therefore be used to contribute significantly to the production of meat 

in the country and to food security.  

Improving growth traits implies understanding and analysing the factors 

that impact them. These traits are quantitative in nature and are impacted by a 

combination of environmental and genetic factors, as well as their interactions 

(Bahreini Behzadi et al., 2007; Falconer, 1996). Genetic improvement is a viable 

and sustainable approach that can be employed to enhance these traits by 

selecting animals with superior genetic merit for a certain trait. In order to 

effectively implement genetic improvement programmes, it is essential to 

accurately estimate some important genetic parameters that characterise the 

population, such as the heritability of the desired traits and the genetic 

correlations between those traits. The heritability of a characteristic indicates its 
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susceptibility to respond to selection, while genetic correlations reflect the extent 

and direction of the influence that the selected trait has on other traits under 

investigation (Singh et al., 2022; Zishiri et al., 2014). Therefore, the primary 

objective of this thesis was to estimate the heritability and genetic correlations of 

growth traits, as well as to look into the genetic trend for each trait from 2008 to 

2020, targeting the most popular breeds of goats and sheep in Oman: Jebel 

Akhdar (JA) and Batinah (BA) goats, and Omani sheep (OS). The growth traits 

comprised birth weight (BW), weaning weight (WW), six-month weight (W6), and 

yearling weight (W12).  

Genetic improvement projects are commonly associated with a rise in 

inbreeding levels, especially in closed-population schemes that focus on 

selecting within the breed. Inbreeding has adverse effects on genetic variability 

(Ceyhan et al., 2011; Mandal et al., 2020) and can lead to inbreeding depression 

(Falconer, 1996), both of which can impact the success of a breeding programme. 

The second objective of this thesis was to assess the level of inbreeding in the 

three populations and monitor its trend from 2008 to 2020. 

Genetic improvement efforts in animal breeding rely on the selection of 

individuals with higher estimated breeding values (EBVs) for specific traits, which 

can be passed on to their offspring. The Best Linear Unbiased Prediction (BLUP) 

is the classical method that is frequently used to predict EBVs by utilising the 

pedigree-based relationships between animals, their phenotypes, and the ratio of 

environmental variance to the additive genetic variance, denoted as alpha (α) 

(Mrode, 2014). Since 2001, research has started to look into the possibility of 

using genomic selection (GS) to enhance genetic improvement through 



 

178 

 

improving the prediction accuracy of breeding values and reducing generation 

intervals, benefiting from the advancements in molecular genomics and the 

development of single nucleotide polymorphism (SNPs) chips for the majority of 

livestock (Meuwissen et al., 2001). The final chapter of results in the present 

study has conducted a comparison between the conventional BLUP approach 

and the genomic techniques of Genomic Best Linear Unbiased Prediction 

(GBLUP) and Single Step Genomic Best Linear Unbiased Prediction (ssGBLUP) 

in terms of their ability to reliably predict breeding values. It was based on a 

simulation of five chromosomes of the sheep’s genome, which had 5000 markers 

and 50 QTLs (with solely additive genetic effects). The simulation used the actual 

pedigree and heritability level of growth traits that were obtained in Chapter 4. 

Consequently, theoretical guidelines were developed for implementing genomic 

selection in sheep and goat populations in Oman. 
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6.2 Estimation of genetic parameters of growth traits 

Animals’ predicted response to selection and the eventual genetic 

improvement of a trait can be inferred from the heritability level of that trait in that 

population (Getabalew et al., 2019). As a result, the progress of improving that 

trait genetically would be determined by the extent of its heritability within the 

specific population. 

 

6.2.1 Heritability of pre-weaning growth traits 

In general, the heritability of pre-weaning growth traits in the three breeds 

studied was relatively low, measuring less than 0.20. The values for the trait of 

BW were 0.13 ± 0.04, 0.17 ± 0.04, and 0.16 ± 0.03 in JA goats, BA goats, and 

OS sheep, respectively. Similarly, the values for the trait of WW were 0.11 ± 0.04, 

0.16 ± 0.04, and 0.15 ± 0.03 in JA goats, BA goats, and OS sheep, respectively. 

The heritability estimates suggest that there is a level of genetic variability in pre-

weaning growth traits that can be used for genetic improvement. However, the 

rate of improvement is expected to be minimal. Tesema et al. (2022) have 

suggested that when the heritability is below 0.15, it is essential to use animals’ 

EBVs rather than phenotypic selection for the purpose of selection.  

The low heritability levels are indicative of the animals' additive genetic 

effects contributing less to the variance compared to the increased variance 

caused by environmental variables. Pre-weaning improper management such as 

dam’s nutrition (Olayemi et al., 1997) and including maternal effects in the models 

used to estimate the heritability (Meyer, 1992) may have contributed to the low 

levels of heritability for these traits. The importance of maternal effects on these 
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particular traits must be taken into account when estimating genetic parameters 

and breeding values in order to avoid any bias or inaccurate estimation (Meyer, 

1992; Oyieng et al., 2022). 

 

6.2.2 Heritability of post-weaning growth traits 

The growth traits W6 and W12 had higher heritability levels than the earlier 

growth traits, with values for the corresponding breeds of JA goats, BA goats, 

and OS sheep reaching 0.19 ± 0.05 and 0.21 ± 0.06, 0.16 ± 0.04 and 0.24 ± 0.04, 

and 0.28 ± 0.05 and 0.48 ± 0.05, respectively. These values could indicate the 

ability of animals in later stages of life to express their genetic potential and be 

more adaptable to environmental changes. Thus, the selection of these traits, 

especially the W12 trait, is expected to enhance genetic improvement effectively. 

It has been observed that OS sheep have higher heritability than JA and BA 

goats. This may be due to a number of factors, including a higher twinning rate 

and a larger flock size than in goat breeds. In addition, sheep breeds may exhibit 

greater genetic diversity compared to goats (Van der Werf et al., 2014). 

Usually, the impact of the dam on the animal’s phenotype diminishes as it 

grows older, as its dependence on the dam decreases (Bahreini Behzadi et al., 

2007). Nevertheless, our research revealed that maternal influences were 

significant for W6 in goats and sheep and W12 in JA goats, but to a lesser extent 

compared to early growth traits. The contribution of maternal additive genetic 

effects to the phenotypic variance in JA goats was around 6% for W12, whereas 

maternal permanent environmental influences accounted for 8% for W6. Maternal 

permanent environmental influences accounted for 11% and 8% of the overall 
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phenotypic variance of the W6 trait in BA goats and OS sheep, respectively. The 

presence of maternal influences in later stages may be attributed to carryover 

maternal effects from the pre-weaning stage (Bangar et al., 2020). The absence 

of maternal effects on W12 in OS sheep and BA goats may have contributed to 

the higher estimates of heritability (0.24 and 0.48, respectively) compared to JA 

goats (0.21). 

 

6.2.3 Genetic and phenotypic correlations between growth traits 

Strong and positive genetic correlations ranged from 0.47 to 0.98 between 

the various growth traits. Among the three breeds, the strongest correlations were 

found between W6 and W12 and between W6 and WW. The genetic correlation 

between W6 and W12 was 0.98 ± 0.03, 0.98 ± 0.05, and 0.92 ± 0.02 for the JA 

goat, BA goat, and OS sheep breeds, respectively. The genetic correlation 

between W6 and WW for the corresponding breeds was 0.85 ± 0.06, 0.91 ± 0.05, 

and 0.89 ± 0.03. The findings suggest that these traits may be regulated by the 

same genes or by genes that are linked closely (Sharif et al., 2022). 

Consequently, improving any of these traits would result in the enhancement of 

the other growth traits in the same way (Bangar et al., 2020; Tesema et al., 2022). 

The phenotypic correlations between the growth traits were also strong 

and positive, except for the correlations with BW (≤ 0.25) in all breeds. Other 

correlations ranged from 0.45 to 0.74. Again, the trait of W6 was common, with 

the strongest phenotypic correlations across the three breeds. The correlations 

between W6 and W12 were 0.71 ± 0.02, 0.70 ± 0.02, and 0.74 ± 0.01 for JA 
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goats, BA goats, and OS sheep. The values for the comparable breeds between 

W6 and WW were 0.66 ± 0.01, 0.67 ± 0.01, and 0.70 ± 0.01. 

 Robertson (1959) recommends a minimum threshold of 0.80 for genetic 

correlations between traits in order to minimise the influence of genotype-

environment interactions on these traits. This ensures that the ranking of animals 

remains consistent across the correlated traits. Given that the trait of W6 has the 

strongest genetic and phenotypic correlations with WW and W12, it may therefore 

be the best selection criterion for enhancing the growth traits in the examined 

breeds. Additionally, because it is recorded earlier than the W12 trait, 

management costs can be reduced in terms of manpower, nutrition, and time. 

Yet, we suggest that the selection of animals should be based on animals’ EBVs 

rather than phenotypic selection, especially when it comes to goat breeds. This 

is because the heritability of W6 in goat breeds is lower (0.19 for JA goats and 

0.16 for BA goats) compared to OS sheep (0.28). 

 

6.2.4 Genetic and phenotypic trends of growth traits 

All three breeds' growth traits exhibited a positive genetic trend, though to 

varying extents; W12 exhibited the greatest change and BW the least. In general, 

the BW trait exhibited an almost constant pattern of genetic change, with an 

increase of 0.01 kg per year observed across the three breeds. The slow progress 

of this trait was expected given its lower correlations with other traits in 

comparison to the correlations among the remaining various traits, as well as a 

low level of heritability for this trait. Despite having a low heritability similar to that 

of BW, WW's trait had stronger genetic correlations than BW's, especially with 
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W6, which could explain why this trait responded better to selection. The annual 

genetic gain for this trait was 0.09 kg, 0.08 kg, and 0.13 kg in the JA goat, BA 

goat, and OS sheep breeds, respectively.  

Compared to pre-weaning traits, post-weaning traits displayed a stronger 

tendency for genetic change across the three breeds, indicating greater 

responsiveness to improvement. The highly strong genetic correlations, above 

0.90, between post-weaning traits may have played a crucial role in the large 

increase, especially considering the higher heritability estimates seen for the W12 

trait. The OS sheep breed exhibited the most significant increase in genetic merit, 

with a rate of 0.22 kg/year for the W6 trait and 0.39 kg/year for the W12 trait. This 

could be due to the traits' higher heritability values when compared to goats. The 

annual genetic change for the JA and BA goat breeds was 0.13 kg and 0.10 kg, 

respectively, for W6, and 0.20 kg and 0.18 kg, respectively, for W12. 

Phenotypically, the growth traits showed a significant performance trend 

(P < 0.05) only for the W12 trait. The yearly weight gain for JA goats, BA goats, 

and OS sheep was 0.93 kg, 0.69 kg, and 0.66 kg, respectively. No significant 

changes were observed in the other traits during the course of the 13-year period. 

Even though the genetic merit of animals for these traits changed significantly, 

phenotypic improvement was not achievable. It appears that these traits were 

more affected by environmental variations, which might be generated by factors 

such as nutrition, weather, diseases, and management, compared to the trait of 

W12. These effects can restrict the manifestation of animals' genetic capacity 

(Esrafili & Behmaram, 2023; Hasan & Gunawan, 2014). In light of this, phenotypic 

improvement in tandem with genetic improvement may be achieved by 
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enhancing management practices and offering sufficient and consistent nutrition 

throughout time. 
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6.3 Considerations for improving growth traits  

In small ruminants’ production, the live bodyweights, growth rate, and 

reproductive efficiency are all economically significant traits (Baneh et al., 2012). 

For example, the fast growth rate before weaning may result in heavier animals 

at weaning, which would enhance the farmer's daily revenues by producing more 

meat (Al-Shorepy et al., 2002). A higher average daily gain (ADG) causes market 

weight to be reached more quickly (Mahala et al., 2019). Therefore, ADG can be 

added as a target trait in addition to the other traits that have been examined in 

this study in order to determine whether it can be used as a selection criterion to 

improve growth performance. 

When animals are selected based on their live body weights and growth 

rates, they may end up having a higher rate of fat deposition, which can cause 

problems with lambing and fertility. Additionally, feed intake would go up, which 

would be challenging for farmers, especially in dry or semi-arid areas 

(Mohammadi et al., 2014). As an alternative to bodyweights, feed conversion 

efficiency might be a better selection criteria to enhance animals' growth and 

meat production (Arthur et al., 2001). However, the absence of feed intake data 

may make it challenging to select animals based on feed conversion efficiency. 

Yet, the Kleiber ratio has been utilised as an indicator of feed conversion 

efficiency (Arthur et al., 2001; Tesema et al., 2022). The Kleiber ratio enables for 

the classification of animals with high growth efficiency relative to body size, and 

is defined as growth rate divided by body mass 0.75 (Kleiber, 1947). 

Because growth traits and reproductive traits are often correlated, it is also 

important to take into account the genetic and phenotypic correlations between 
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them. This is because enhancing traits of growth may affect an animal's 

reproductive traits, and ultimately would influence the farm productivity and 

profitability (Mohammadi et al., 2014; Safari et al., 2007). Accordingly, breeding 

programs should aim for a comprehensive selection approach that considers 

growth traits and  reproductive traits to minimise any possibility for adverse 

impacts. Sheep and goat farming may remain sustainable and productive by 

using a balanced strategy that makes gains in one area don't come at the 

expense of another. 
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6.4 Inbreeding level in Jebel Akhdar and Batinah goats, and Omani sheep 

Genetic variability has been observed to be in sufficient amount according 

to the heritability estimates, especially in post-weaning growth traits, among the 

investigated breeds of goats and sheep in Oman. Moreover, the assessments of 

inbreeding level were found to be very low across the three examined breeds, 

which may suggest the presence of adequate genetic variability among the 

animals. The degree of inbreeding can decrease the level of genetic variability by 

increasing the occurrence of homozygous genotypes and diminishing the 

occurrence of heterozygous genotypes (Hartl, 2020). Excessive inbreeding is 

known to have detrimental effects on an animal's productivity, health, and 

reproductive capacity via what is termed inbreeding depression (Ceyhan et al., 

2011; Falconer & Mackay, 1996; Weigel, 2001). 

 

6.4.1 Estimation of inbreeding level 

The study measured the level of inbreeding by calculating the average 

inbreeding coefficients (F) of all individuals over a 13-year period (2008-2020). 

Inbreeding levels were found to be 0.67%, 0.65%, and 1.52% in JA goats, BA 

goats, and OS sheep, respectively. According to DS Falconer and Mackay 

(1996), inbreeding levels below 10% are regarded as acceptable and are not 

likely to have harmful impacts. Factors such as the ratio of sires to dams, 

population size, and the limitation of males to only two mating seasons may have 

contributed to the observed low levels of inbreeding in these breeds (Wakchaure 

& Ganguly, 2015).  
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The proportions of inbred individuals within the respective breeds of JA 

goats, BA goats, and OS sheep were 17.34%, 19.31%, and 23.48% of the entire 

population of animals. The level of inbreeding within the inbred groups for the 

respective breeds was 3.88%, 3.39%, and 6.49%. The majority of these animals 

had an F value below 6.25%. The findings about the inbred animals assist in 

clarifying the lower levels that have been estimated for the average inbreeding 

level. 

 

6.4.2 Trend of inbreeding level 

Across the three populations studied, the levels of inbreeding generally 

exhibited an upward trend from 2008 to 2020. The annual increases were 0.12%, 

0.13%, and 0.27% for the JA goat, BA goat, and OS sheep breeds, respectively. 

According to Nicholas et al. (1989), animal breeding may accept an annual 

inbreeding rate of up to 0.5%. The increment in inbreeding level was associated 

with the increased proportions of inbred animals across the years. The number 

of inbred animals began to slowly increase in 2010, but in the last three years, 

the rate of increase has become more rapid. Yet, the majority of the increases 

occurred in animals with a frequency of F < 6.25%, which could contribute to 

maintaining a low overall level of inbreeding. 

Despite the low levels of inbreeding in these populations, there has been 

a noticeable increase, particularly in recent years. This highlights the need to 

monitor inbreeding levels and implement efforts to prevent them from reaching 

unacceptable levels. Introducing new sires, preventing mating between closely 

related individuals, and increasing the population size are key methods that can 
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efficiently reduce the accelerated rate of inbreeding (Wakchaure & Ganguly, 

2015). Further, it is important to maintain an effective population size of 50 or 

more in order to minimise the rate of inbreeding and ensure an adequate level of 

genetic variability (de Oliveira et al., 2023; Oldenbroek & van der Waaij, 2014). 
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6.5 Potential of implementing genomic selection in Omani sheep 

6.5.1  Challenges to implement genomic selection in small ruminants 

Practicing genomic selection (GS) in small ruminants is encountered with 

several factors, such as genotypic cost, size of the reference population, and 

accuracy of prediction. The implementation of GS in small ruminants may be 

constrained by the financial aspect, as the expense of single nucleotide 

polymorphism (SNP) chips can exceed the cost of the animals themselves. 

Utilizing low-density marker chips could serve as a viable option for GS in small 

ruminants, as it offers a more cost-effective solution (Habier et al., 2009). 

However, they may not be efficient enough to accurately estimate markers’ 

effects.  

Several factors can contribute to determining the accuracy of genomic 

prediction, such as the heritability of the trait, the size of the reference population 

in terms of the number of genotyped animals, the genomic relationships among 

these animals, as well as their relationships with the validating animals, and the 

specific statistical method employed. Multiple studies have demonstrated that the 

accuracy of predictions improves as the trait’s heritability level and reference size 

increase. (Daetwyler et al., 2012; Prince & Gowane, 2017; Pszczola et al., 2012). 

According to this, more genotyped animals and phenotypic data are required for 

accurate estimations when heritability is low. The accuracy of prediction is 

expected to improve when the genetic relationships among the reference animals 

are minimized and their relationships with the validation population are 

maximised (Pszczola et al., 2012). 
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The density of markers plays a crucial role in enhancing genomic 

prediction by efficiently explaining a greater proportion of the additive genetic 

variance caused by QTLs. Increasing the number of markers increases the 

degree of linkage disequilibrium between markers and QTLs, resulting in a 

greater capture of variance by these markers (Karimi et al., 2019; Lee et al., 

2017). Consequently, precise estimations would be obtained for the additive 

genetic effects. In addition, the higher the number of markers, the greater the 

level of captured genomic relationships (Mrode, 2014).  

 

6.5.2  Comparison of prediction accuracy between BLUP, GBLUP, and ssGBLUP 

One of the goals of this thesis was to explore the possibility of using GS 

on Omani sheep. This was done by simulating five chromosomes of the ovine 

genome, employing the real pedigree of the targeted sheep population, and using 

the estimated heritability levels for the growth traits mentioned in Chapter 4. The 

study conducted a comparison of the accuracy of predictions for breeding values 

of animals using three different approaches: BLUP, GBLUP, and ssGBLUP. This 

comparison was done across three levels of heritability (low, moderate, and high) 

and three different sizes of reference population (500, 1000, and 2000 animals). 

In this investigation, ssGBLUP demonstrated a 14% improvement in 

prediction accuracy compared to BLUP, and a 36% improvement compared to 

GBLUP. The superiority of ssGBLUP may be attributed to its utilisation of both 

pedigree and genomic relationships, as well as being able to take into account all 

available phenotypic data from both genotyped and non-genotyped animals 

(Valerio-Hernández et al., 2023). The average accuracies for ssGBLUP, BLUP, 
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and GBLUP were 0.64, 0.56, and 0.47, respectively. Yet it is important to note 

that the marker density was rather high, around 12.5 per 1 cM ( 

5000 𝑚𝑎𝑟𝑘𝑒𝑟𝑠
400 𝑐𝑀⁄  ). This high marker density may have also had an impact 

on the accuracies (Karimi et al., 2019; Mrode, 2014; Sadan & Valsalan). 

The accuracy of prediction increased as the heritability level increased 

across the three methods. One possible explanation is that for traits with low 

heritability, the contribution of each QTL to the total additive genetic variance is 

very minimal compared to traits with high heritability. Therefore, in order to 

accurately assess the additive genetic effects of the markers surrounding the 

QTLs, it is necessary to have a larger number of markers and individuals' 

phenotypes to capture a higher proportion of the additive genetic variance. 

The accuracy values for the traits BW (low heritability), W6 (moderate 

heritability), and W12 (Yearling weight) in the ssGBLUP method were 0.53, 0.65, 

and 0.74, respectively. The accuracy values for the traits BW (low heritability), 

W6 (moderate heritability), and W12 (Yearling weight) in the BLUP method were 

0.44, 0.59, and 0.64, respectively. The accuracy values for the traits BW (low 

heritability), W6 (moderate heritability), and W12 (Yearling weight) in the GBLUP 

method were 0.40, 0.50, and 0.51, respectively. The increase in accuracy 

achieved by ssGBLUP compared to BLUP is greater for traits with low heritability 

(20%). This suggests that ssGBLUP, when compared to classic BLUP, has 

potential as a method for enhancing prediction accuracy. As a result, it can lead 

to greater improvement gains, particularly for traits with low heritability. 
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It was observed that as the number of animals in the reference population 

increased, so did the accuracy of the genomic predictions made by ssGBLUP 

and GBLUP. However, the increase in accuracy achieved by ssGBLUP, 

especially for traits with low heritability, was negligible (1%) when the number of 

animals changed from 1000 to 2000. A reference population consisting of 1000 

animals may be adequate for genome prediction when using a high marker 

density. Our analysis revealed that when the size of the reference population 

increased, the probability of identifying closer relatives for the selection 

candidates increased, which might potentially result in enhanced accuracy. 

Several studies have demonstrated that the precision of predicting genomic 

breeding values is greatest when the target animals share close genetic 

relationships with the reference animals (Fraslin et al., 2022; Gowane et al., 2018; 

Pszczola et al., 2012). 

 

6.5.3  Logistical and economic feasibility of introducing genomic selection in the 

local breeding programme 

There are economic and logistical challenges when implementing genomic 

selection (GS) in the local sheep breeding program, particularly for smaller 

populations like Omani sheep. Size of reference population is a major 

challenging, because it is essential to have a large size of reference animals for 

attaining accurate genomic prediction, and capturing more genetic relationships.  

According to the simulation study, the reference size needs to be at minimum 

1,000 animals. The study indicated that ssGBLUP yielded considerable accuracy 

increases over standard BLUP method, particularly with low heritable traits. 
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However, when the heritability of the trait is low, it needs a large number of 

genotyped animals and recorded phenotypes to obtain acceptable accuracy 

(Daetwyler et al., 2012).  

A major obstacle in GS for small ruminants is the cost of genotyping, 

particularly SNP chips, which can be more expensive than the animals 

themselves. Although it is more cost-effective, using lower-density SNP chips 

may result in less accurate predictions (Habier et al., 2009). Low-density marker 

chips might offer a more affordable option, but doing so would necessitate 

establishing a balance between price and prediction accuracy. 

In conclusion, although GS may increase breeding efficiency through 

increasing the prediction’s accuracy, its feasibility depends on controlling the high 

costs associated with genotyping, and providing a sizable and accurately defined 

reference population. Whether GS is a viable long-term investment will depend 

on the scale of the breeding program and the traits being targeted (high vs. low 

heritability). 
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6.6 Implementation of the main findings from the thesis 

The findings of the thesis can be exploited for a better breeding strategy 

and genetic improvement of growth traits in Omani Jebel Akhdar (JA) and Batinah 

(BA) goats, as well as Omani sheep (OS) populations at Wadi Qurayyat Livestock 

Research Station (WQLRS) in Oman. This can be achieved using the following: 

1. The three breeds' growth traits—BW, WW, W6, and W12—exhibited 

different levels of heritability that can be exploited for an effective genetic 

improvement programme. 

2. Post-weaning growth traits should be given priority as selection criteria for 

enhancing growth traits, since they have higher heritability levels 

compared to pre-weaning traits. 

3. The trait of W12 across the three breeds is expected to show a higher 

improvement due to its higher level of heritability compared to other traits. 

4. Improving one growth trait would simultaneously improve other growth 

traits, due to the strong and positive genetic correlations among the traits. 

5. The trait of W6 can be used as a selection criterion due to the very strong 

genetic correlations observed between W6 and both W12 and WW. As a 

result, both time and management costs are reduced since this trait is 

measured before the W12 by about six months. 

6. Selecting animals based on the trait of W6 is recommended to be based 

on estimated breeding values (EBVs) instead of phenotypic selection, 

particularly with goats’ breeds. 
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7. When estimating the breeding values of animals for all growth traits except 

W12, it is important to take into account the influence of maternal effects. 

This is necessary to prevent any overestimation of estimates or biassed 

EBVs. 

8. The breeding strategy at WQLRS has successfully achieved genetic 

improvement in growth traits, as evidenced by the positive trend in the 

average breeding values of the animals from 2008 to 2020, particularly in 

post-weaning growth traits. 

9. Efforts must be undertaken to improve animals’ environments, such as 

feeding and management practices, as there has been no significant 

change in phenotypes across the growth traits, with the exception of W12. 

10.  The inbreeding level among the three breeds appeared to be at its lowest 

level, suggesting effective control measures. However, there has been a 

persistent increase in the inbreeding level over the past few years, 

necessitating ongoing monitoring. 

11.  Introducing new male animals for breeding, limiting mating between 

closely related individuals, and expanding the size of the population are 

key factors that can limit the rate of inbreeding.  

12.  The simulation study in Chapter 5 has provided a theoretical basis for the 

potential implementation of genomic selection in the examined breeds in 

the near future. 

13.  When exploring the actual implementation of genomic selection (GS), it is 

important to take into account marker density, a reference size of 1000 
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animals, the use of the ssGBLUP approach, the focus on low heritable 

traits, and the consideration of relationships between animals in the 

reference and with selection candidates. 

 

1.7 Possible future work    

1. ADG and feed conversion efficiency for the investigated breeds should be 

examined too for its possibility to be a better selection criterion for 

enhancing growth. 

2. Investigating the correlations between growth traits and reproductive traits 

is key to look at the influence of improving growth on reproductivity 

performance. 

3.  Estimating the genetic parameters and genetic trend of reproductive 

traits. 

4. Employing molecular markers to evaluate genomic inbreeding level may 

offer a more accurate measure compared to pedigree-based inbreeding 

level. 

5. Utilising specialised software like QMSim for simulation purposes to 

validate the current simulation in this study. 

6.  Working on a second simulation study to evaluate GS in multibreed goats 

(JA and BA goats) at varying marker density levels. 

7. Conducting genetic parameter estimation and assessing the genetic trend 

and the extent of inbreeding levels for different breeds housed at several 

breeding stations in Oman. 
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APPENDIX 

 

Appendix (A)  

Fortran source code for simulating sheep genome, and individuals’ genotypes 

and phenotypes 

 

implicit double precision (a-h,o-z) ! Accuracy up to 16 digits. 

parameter (mxind=5000,mxloci=6000,mxQTL=5000) ! Constant values for 
maximum individuals, maximum loci, and maximum QTLs, respectively.  

 

! dimensions of arrays : recombination frequency, loci genotypes, QTL 
locations, individuals’ markers alleles, individuals’ phenotypes, error 
terms, true breeding values of individuals, and markers genotypes, 
respectively.  

dimension freq(mxloci), npgt(mxind,2,mxloci), iqtl(mxQTL) 

dimension mkind(mxind,2,mxloci),ptind(mxind),err(mxind),tbv(mxind) 

dimension izygoute(mxind,mxloci) 

 

 common /seed/ idum 

 common /simmodel/ iped(mxind,2),mkqtl(mxind,2,mxloci) 

 

 ! Opening the parameter and output files 

 open(3,file='par.txt',status='old')           !The genetic parameters file. 

 open(4,file='out.txt',status='old')           !The output file of individuals markers 
allels. 

 open(7,file='ped.txt', status='old')         ! The pedigree file. 

 open(12,file='npgt_f.txt', status='old')   ! The loci alleles of founder animals. 

 open(13,file='zygout.txt', status='old')   !The marker genotypes and phenotypes. 

 open(9,file='error.txt',status='old')        ! Error terms 

 open(10,file='t_breeding.txt',status='old')  ! True breeding values 

 open(14,file='mkqtl.txt',status='old')  ! Markers and QTLs  

 open (20,file='qtl_v.txt', status='old')  ! variance caused by each QTL. 
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 open (21,file='additive.txt', status='old') ! additive genetic effects of QTLs. 

 

! Reading the requested parameters for the simulation process 

   read(3,*) n,nchr,nqtl,nloci  ! animals, chromosomes, QTLs, and loci, 
respectively. 

   read(3,*) (iqtl(i),i=1,nqtl)     ! QTLs loci. 

   read(3,*) (freq(i),i=1,nloci-1)  ! recombination frequency between loci. 

   read(7,*)n 

   do i=1,n 

   read(7,*) (iped(i,j),j=1,2)     ! Reading the pedigree file 

       end do 

          

! Calling the subroutines for the output results in the form of genotypes of 
markers and phenotypes. 

       call iseed()         ! random seed. 

       call popgen(n,nloci,nqtl,iqtl,freq,mkind,err,tbv,ptind) ! population generation. 

       call zygoute(n,nloci,mkind,izygoute)                         ! Marker genotypes. 

         do i=1,n-359 

          write(4,'(5000i2)') (mkind(i,1,j),j=1,5000)       

          write(4,'(5000i2)') (mkind(i,2,j),j=1,5000) 

          write(13,'(5000i2,2x,f8.4)') (izygoute(i,j),j=1,5000),ptind(i) 

          write(9,'(f8.4)') err(i) 

          write(10,'(f8.4)') tbv(i) 

          end do 

          call iexit() 

          pause 

          stop 

          end 

! Writing subroutine for generating alleles for the founders’ genetic loci. 

subroutine founder_gntp(nloci,freq,npgt)  !To create the genotypes of all loci in 
the founders’ animals. 

implicit double precision (a-h,o-z) 

parameter (mxind=5000,mxloci=6000) 
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dimension npgt(mxind,2,mxloci),freq(mxloci) !All founder animals, diploid, all 
genetic loci. 

common /seed/ idum 

common /simmodel/ iped(mxind,2),mkqtl(mxind,2,mxloci) 

 npgt=0 

do i=1,359    

do k=1,nloci 

            x=unif() 

      if (x.le.0.5d0) then 

        npgt(i,1,k)=1 

      else 

        npgt(i,1,k)=0   

        end if 

        end do 

         

        do k=1,nloci 

           x=unif() 

        if (x.le.0.5d0) then 

        npgt(i,2,k)=1 

      else 

        npgt(i,2,k)=0 

        end if 

        end do 

        end do 

       return 

       end 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Writing a subroutine for generating the formed zygoute from the two 
alleles of each marker. 

Subroutine zygoute(n,nloci,mkind,izygoute) !To create the zygoute (genotype) of 
the two alleles. 

implicit double precision (a-h,o-z) 

parameter (mxind=5000,mxloci=6000) 
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dimension mkind(mxind,2,mxloci), izygoute(mxind,mxloci) 

common /simmodel/ iped(mxind,2), mkqtl(mxind,2,mxloci) 

do i=1,n 

 do j=1,nloci 

    if(mkind(i,1,j).eq.mkind(i,2,j).and.mkind(i,1,j).eq.0)then 

      izygoute(i,j)=0                                          !homozygoute for the recessive. 

          elseif(mkind(i,1,j).eq.mkind(i,2,j).and.mkind(i,1,j).ne.0)then 

            izygoute(i,j)=2                                     !Homozygoyte is dominant. 

            else 

              izygoute(i,j)=1                                     !Heterozygoute. 

        end if 

       end do  

      end do 

      return 

      end 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

writing a subroutine for forming the individuals’ gametes. 

subroutine gametogenesis(nloci,ngt,freq,gamete) 

!     to generate simulated offspring population from two diploid parental genotypes 

!     at a defined number of linked loci with recombination frequencies freq(i) on  

!     a defined number of chromosomes.   

 

      implicit double precision (a-h,o-z) 

      parameter (mxind=5000,mxloci=6000,mxQTL=5000) 

      integer gamete(mxloci)       

      dimension freq(mxloci), ngt(2,mxloci) 

      common /seed/ idum 

      common /simmodel/ iped(mxind,2),mkqtl(mxind,2,mxloci) 

      gamete=0 

      x=unif() 

      if (x.le.0.5d0) then 
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        ic=1 

        gamete(1)=ngt(1,1) 

      else 

        ic=2 

        gamete(1)=ngt(2,1)       

      end if 

       

      do i=2,nloci 

        x=unif() 

        if (x.le.freq(i-1)) then 

          ic=2**(2-ic) 

          gamete(i)=ngt(ic,i) 

        else  

          gamete(i)=ngt(ic,i) 

        end if 

      end do 

             

      return 

      end 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! A subroutine to calculate the additive and dominance genetic effects of 
QTLs 

 subroutine effects(nqtl,v_qtl,h,a,d,se)     !nqtl=no.QTLs, v_qtl=contribution of 
each QTL to the total additive genetic variance, d_ratio=dminance degree, 
a=additive effect, d=dominance effect, h=d/2, se=environmental standard 
deviation. 

implicit double precision (a-h,o-z) 

parameter (mxind=5000,mxloci=6000,mxQTL=5000) 

dimension v_qtl(mxQTL),h(mxQTL),a(mxQTL),d(mxQTL),vg(mxQTL) 

read(20,*)(v_qtl(i),i=1,nqtl)   !reading the contributions of each QTL to the total 
additive variance. 

read(20,*)(h(i),i=1,nqtl)      !reading the degree of dominance at each QTL. 

h2=0.480d0                        ! heritability estimate. 
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vg_total=0.0d0               ! Set the total genetic variance to zero to initiate the 
summation of variances by all QTLs. 

do i=1,nqtl 

     a(i)=dsqrt(v_qtl(i)*h2/ ((1-(h(i)/2))**2/4+((h(i)/2)**2/2+(1+(h(i)/2))**2/4)))! to 
calculate the additive effect. 

     d(i)= a(i)*h(i)          ! to calculate the dominance effect. 

     vg(i)=a(i)**2* ((1-(h(i)/2))**2/4+((h(i)/2)**2/2+(1+(h(i)/2))**2/4))     ! for linear 
contrast.  

     vg(i)=(((a(i)-h(i))**2)/4)+((h(i)**2)/2) +(((a(i)+h(i))**2)/4)! to calculate the 
genetic variance for each QTL. 

      vg_total= vg_total+vg(i)   ! To sum up all the genetic variances of all the 
QTLs,. 

 end do 

ve=(1-h2)*vg_total/h2    !Environmental variance considering phenotypic 
variance = 1. 

 se=dsqrt(ve)                      ! The standard deviation of the environmental variance. 

       return 

         end 

      !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! A subroutine for generating the population’s animals. 

 subroutine popgen(n,nloci,nqtl,iqtl,freq,mkind,err,tbv,ptind) 

 implicit double precision (a-h,o-z) 

parameter (mxind=5000,mxloci=6000,mxQTL=5000) 

integer gamete(mxloci),offqtl(2,mxQTL)       

dimension freq(mxloci),npgt(mxind,2,mxloci),iqtl(mxQTL) 

dimension ngt1(2,mxloci),ngt2(2,mxloci) 

dimension mkind(mxind,2,mxloci),ptind(mxind),err(mxind),tbv(mxind) 

dimension(mxQTL),v_qtl(mxQTL),d_ratio(mxQTL),a(mxQTL),d(mxQTL) 
,h(mxQTL)                 

!a = the additive effect of all QTLs; vg = the genetic variance contributed by each 
QTL  

common /simmodel/ iped(mxind,2),mkqtl(mxind,2,mxloci) 

call founder_gntp(nloci,freq,npgt)      ! calling the alleles of each locus in the 
founder animals 

 U = 32.45d0 Population’s mean 
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 call effects(nqtl,v_qtl,h,a,d,se)  ! calling the genetic effects of QTLs. 

       mkqtl=0 

       mkqtl(:,:,:)=npgt(:,:,:) 

      DO i= 360,n    ! Start generating phenotypes from animal 360, because from 
1 to 359 are founder animals without phenotypes. 

          isir=iped(i,1)   ! Determine the animal’s sire. 

          idam=iped(i,2)   ! Determine the animal’s dam. 

          if(isir.ne.0.and.idam.ne.0)then 

          ngt1(:,:)=mkqtl(isir,:,:)   ! Pick first allele from sire. 

          ngt2(:,:)=mkqtl(idam,:,:)  ! Pick second allele from dam 

          else if(isir.eq.0 .and.idam.ne.0)then 

            ngt1(:,:)=npgt(1,:,:) 

            ngt2(:,:)=mkqtl(idam,:,:) ! Pick second allele from dam. 

          else if(isir.ne.0 .and.idam.eq.0)then 

              ngt1(:,:)=mkqtl(isir,:,:)      ! Pick the first allele from sire 

              ngt2(:,:)=npgt(1,:,:) 

            else 

                ngt1(:,:)=npgt(1,:,:) 

                ngt2(:,:)=npgt(2,:,:) 

                 

            end if      

call gametogenesis(nloci,ngt1,freq,gamete) ! calling the gametes of the sire to 
generate the zygoute of offspring. 

   mkqtl(i,1,:)=gamete(:) 

    ic=0 

    it=1 

   do j=1,nloci 

     if (j.ne.iqtl(it)) then 

       ic=ic+1     

      mkind(i-359,1,ic)=gamete(j) 

        else 

        offqtl(1,it)=gamete(j) 
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        it=it+1 

        end if   

     end do          

 

call gametogenesis(nloci,ngt2,freq,gamete)  ! calling the gametes of the dam to 
generate the zygoute of offspring. 

mkqtl(i,2,:)=gamete(:) 

 ic=0 

 it=1 

 do j=1,nloci 

     if (j.ne.iqtl(it)) then 

            ic=ic+1     

            mkind(i-359,2,ic)=gamete(j) 

          else 

            offqtl(2,it)=gamete(j) 

            it=it+1 

     end if   

  end do 

 

! Calculation of QTL effects and breeding values. 

eqtl=0.0d0 ! Set the initial value of QTL effects to zero for the summation process 
of all QTLs. 

bv=0.0d0 ! Set the initial  breeding value to zero for the summation process of all 
QTLs. 

 do j=1,nqtl                 ! Summation the effects of all 50 QTLs for all individuals 

      if(offqtl(1,j).eq.offqtl(2,j).and.offqtl(1,j).gt.0) then    !AA Homozygoute 

        eqtl=eqtl+a(j)-d(j)/2                ! QTL effect 

         bv=bv+a(j)                             ! Breeding value 

       else if(offqtl(1,j).eq.offqtl(2,j).and.offqtl(1,j).eq.0) then!aa  Homozygoute. 

            eqtl=eqtl-a(j)-d(j)/2             ! QTL effect 

            bv=bv-a(j)                           ! Breeding value 

            else 

            eqtl=eqtl                            ! QTL effect                     ! Heterozygoute. 
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            bv = bv                              ! Breeding value 

         end if 

  end do 

e=gauss(0.0d0,se)  !Error terms follow normal distribution with mean = 0 and 
variance. 

ptind(i-359)=u+eqtl+e  !Phenotype = population mean deviated by genetic merit 
(qtl) and environment. 

       

write(14,'(5050i2,2x,f8.4)')(mkqtl(i,2,j),j=1,nloci),ptind(i-359)    

 END DO 

 return 

 end 
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Appendix (B)  

Verification of marker alleles and their corresponding genotypes  

A screen shot of the simulation output for the marker alleles (0 for recessive and 

1 for dominant) for the first 5 animals (each with two rows for the marker alleles, 

and 10 columns for the last 10 markers of total 5,000 markers), for the trait of 

W12 in Omani sheep.  

 

 

A screen shot of the simulation output for the marker genotypes for the first 5 

animals, along with their simulated phenotypes (Last column) for the trait of W12 

in Omani sheep. It contains the last 10 marker genotypes of the total 5,000 

markers. Codes 0, 1, and 2 are for recessive homozygous, heterozygous, and 

dominant homozygous. 
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For example: for the first animal, the marker alleles from (1) are as follows: 

 

And the resulted markers genotypes would be as the first two of (2) 

 

The output file shows the proportionate variance contributed by each QTL of the 

simulated 50 QTLs to the total genetic variance. 

 

For example, for the trait of W12 (ℎ2 = 0.48), the additive genetic effects (𝑎) 

caused by the highlighted QTLs would be as follows: 

1. a_QTL0.01  =  √2(VQTL0.01)    = √2(0.01x0.48)    = 0.0980 

2. a_QTL0.20  =  √2(VQTL0.20)    = √2(0.20x0.48)    = 0.4382 

3. a_QTL0.10  =  √2(VQTL0.10)    = √2(0.10x0.48)    = 0.3098 

These effects match the output of the simulation, as shown in the following: 
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Appendix (C)  

Checking simulated heritability of W12 trait by WOMBAT analysis 

WOMBAT analysis, which illustrates that it got estimates almost as similar as 

those simulated for the trait of W12 by analysing the simulated phenotypes. It 

was simulated that heritability equals 0.48, and the WOMBAT estimate was 0.49. 
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Appendix (D)  

Importance of non-genetic factors along with least square means that influencing growth traits of Omani goats and sheep breeds. 

Table D. 1. Significance of non-genetic factors and least squares means (LSM) in kg of growth traits in Omani Jebel Akhdar goats. 

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight).  𝐑𝟐 (Coefficient of model),CV   (Coefficient 
of variation), Factors that its levels do not share a letter in Group column are significantly different.      

Trait BW WW W6 W12 

 N              LSM ± SE    Group N            LSM ± SE      Group N          LSM ± SE      Group N          LSM ± SE      Group 

Overall 2,826  3.16± 0.01  2,342 13.27 ± 0.07  1,706 16.30 ± 0.09  1,265 26.85 ± 0.17  

𝑅2 34.77% 39.94% 44.29% 63.83% 

CV 18.93% 25.65% 21.59% 21.99% 

Pen P-value = 0.000 P-value = 0.04 P-value = 0.09 P-value = 0.07 

1 208 3.06 ± 0.03  B 180 13.08 ± 0.20 AB 138 16.43 ± 0.23 A 98 27.05 ± 0.37 AB 

2 212 3.12 ± 0.03  AB 177 13.47 ± 0.20 AB 131 16.49 ± 0.24 A 100 27.56 ± 0.37 AB 

3 225 3.19 ± 0.03  AB 182 13.24 ± 0.20 AB 123 15.81 ± 0.25 A 89 27.76 ± 0.40 AB 

4 204 3.19 ± 0.03  AB 149 12.94 ± 0.22 AB 107 15.5 ± 0.26 A 62 27.35 ± 0.48 AB 

5 216 3.21 ± 0.03  AB 183 13.29 ± 0.20 AB 132 16.23 ± 0.24 A 99 27.17 ± 0.38 AB 

6 182 3.12 ± 0.04  AB 155 13.20 ± 0.22 AB 112 16.32 ± 0.26 A 89 27.47 ± 0.40 AB 

7 215 3.22 ± 0.03  AB 170 12.49 ± 0.21 B 116 16.36 ± 0.25 A 90 28.37 ± 0.40 A  

8 198 3.29 ± 0.04  A  154 13.63 ± 0.22 A  106 16.54 ± 0.27 A 71 27.63 ± 0.45 AB 

9 201 3.12 ± 0.03  B 173 13.33 ± 0.21 AB 135 15.64 ± 0.23 A 101 26.27 ± 0.37 B 

10 214 3.14 ± 0.03  AB 181 13.05 ± 0.20 AB 140 16.03 ± 0.23 A 106 27.21 ± 0.36 AB 

11 212 3.11 ± 0.03  B 180 13.05 ± 0.20 AB 119 16.15 ± 0.25 A 87 27.66 ± 0.40 AB 

12 198 3.22 ± 0.04  AB 173 13.01 ± 0.21 AB 126 16.31 ± 0.24 A 96 27.62 ± 0.38 AB 

13 115 3.13 ± 0.05  AB 97 13.40 ± 0.28 AB 76 16.42 ± 0.32 A 55 27.22 ± 0.51 AB 

14 92 3.01 ± 0.06  B 78 12.56 ± 0.31 AB 61 16.05 ± 0.35 A 52 26.35 ± 0.52 AB 

15 99 3.21 ± 0.05  AB 80 12.90 ± 0.31 AB 65 16.58 ± 0.34 A 56 27.43 ± 0.51 AB 

16 35 3.24 ± 0.09  AB 30 13.16 ± 0.51 AB 19 16.15 ± 0.65 A 14 27.79 ± 1.04 AB 
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Sex P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000 

Male 1,390 3.34 ± 0.01  A 1,142 13.83 ± 0.09 A 819 17.03 ± 0.11 A 578 29.52 ± 0.19 A 

Female 1,436 2.98 ± 0.01  B 1,200 12.39 ± 0.09 B 887 15.35 ± 0.11 B 687 25.21 ± 0.17 B 

Year P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000 

2008 270 3.24 ± 0.03  B     226 13.27 ± 0.20 BCD    129 19.53 ± 0.25 A      79 26.44 ± 0.56 EFG    

2009 183 3.21 ± 0.04  BC    177 14.13 ± 0.22 AB      173 17.51 ± 0.22 B     106 25.72 ± 0.41 FG    

2010 185 3.53 ± 0.04  A      180 13.46 ± 0.21 BCD    172 15.96 ± 0.21 C    105 23.62 ± 0.38 HI  

2011 216 3.08 ± 0.03  CDE  193 13.05 ± 0.20 CDE   170 13.35 ± 0.21 F 102 22.41 ± 0.38 IJ 

2012 188 3.02 ± 0.04  DE  163 12.72 ± 0.23 DEF  146 13.44 ± 0.25 F 107 20.99 ± 0.40 J 

2013 229 2.84 ± 0.04  F 181 11.99 ± 0.22 F  166 14.87 ± 0.24 D   165 27.66 ± 0.33 DE      

2014 244 3.28 ± 0.03  B     201 14.04 ± 0.20 AB      131 14.69 ± 0.26 DE  129 24.37 ± 0.35 GH   

2015 251 3.16 ± 0.03  BCD   219 13.76 ± 0.19 ABC     162 16.84 ± 0.22 BC    158 26.74 ± 0.31 EF     

2016 225 2.98 ± 0.03  EF 119 10.26 ± 0.26 G 54 13.21 ± 0.41 EF 52 29.14 ± 0.57 D       

2017 250 3.24 ± 0.03  B     190 12.59 ± 0.20 DEF  185 16.91 ± 0.21 BC    68 33.78 ± 0.58 B         

2018 189 3.23 ± 0.04  BC    179 14.50 ± 0.22 A       90 20.10 ± 0.29 A      89 36.10 ± 0.41 A          

2019 184 3.02 ± 0.04  DE  144 12.07 ± 0.23 EF  128 17.88 ± 0.24 B     105 31.44 ± 0.37 C        

2020 212 3.27 ± 0.04  B     170 14.61 ± 0.25 A             

Birth type P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000 

Single 1,446 3.38 ± 0.02  A 1,226 14.8 ± 0.09 A 985 17.17 ± 0.10 A 752 28.01 ± 0.18 A 

Twin 1,380 2.94 ± 0.02  B 1,116 11.43 ± 0.09 B 721 15.21 ± 0.12 B 513 26.73 ± 0.19 B 

Dam age P-value = 0.000    P-value = 0.000 P-value = 0.45 P-value = 0.16 

Regression 

coefficient 

0.07 ± 0.02 0.19 ± 0.03 0.03 ± 0.04 -0.09 ± 0.06 
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Table D. 2. Significance of non-genetic factors and least squares means (LSM) in kg of growth traits in Omani Batinah goats. 

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight).  𝑹𝟐 (Coefficient of model),CV (Coefficient 
of variation), Factors that its levels do not share a letter in Group column are significantly different.      

Trait BW WW W6 W12 

 N             LSM ± SE   Group N           LSM ± SE      Group N           LSM ± SE     Group N          LSM ± SE        Group 

Overall 2,609 3.20 ± 0.01  2,186 12.81 ± 0.07  1,689 15.88 ± 0.08  1,208 25.71 ± 0.15  

𝑅2 33.47% 37.79% 44.12% 59.05% 

CV 18.65% 27.12% 21.56% 20.80% 

Pen P-value = 0.04 P-value = 0.000 P-value = 0.19 P-value = 0.35 

1 186 3.09 ± 0.04 A 151 12.09 ± 0.23 AB 117 15.43 ± 0.26 A 81 25.71 ± 0.40 A 

2 202 3.12 ± 0.04 A 176 12.08 ± 0.22 AB 132 15.15 ± 0.24 A 79 26.19 ± 0.41 A 

3 188 3.12 ± 0.04 A 156 11.95 ± 0.24 AB 114 14.90 ± 0.28 A 73 26.76 ± 0.43 A 

4 190 3.07 ± 0.04 A 157 11.49 ± 0.24 B 111 15.20 ± 0.28 A 79 26.06 ± 0.41 A 

5 186 3.22 ± 0.04 A 163 12.81 ± 0.23 A  130 15.17 ± 0.25 A 89 25.98 ± 0.39 A 

6 191 3.18 ± 0.04 A 157 12.73 ± 0.23 A  120 15.71 ± 0.25 A 87 26.75 ± 0.40 A 

7 186 3.15 ± 0.04 A 150 12.01 ± 0.24 AB 112 15.46 ± 0.27 A 77 25.91 ± 0.41 A 

8 190 3.17 ± 0.04 A  145 12.33 ± 0.24 AB 114 15.04 ± 0.26 A 79 25.77 ± 0.41 A 

9 211 3.12 ± 0.03 A 172 12.18 ± 0.22 AB 121 15.58 ± 0.25 A 83 26.37 ± 0.40 A 

10 209 3.12 ± 0.03 A 184 12.60 ± 0.21 A  145 15.56 ± 0.23 A 112 25.68 ± 0.34 A 

11 189 3.14 ± 0.04 A 162 12.37 ± 0.24 AB 126 15.84 ± 0.26 A 99 26.11 ± 0.37 A 

12 192 3.19 ± 0.04 A 160 12.76 ± 0.23 A  133 15.68 ± 0.24 A 91 26.79 ± 0.38 A 

13 105 3.09 ± 0.05 A 93 12.69 ± 0.35 AB 81 15.58 ± 0.36 A 71 26.07 ± 0.44 A 

14 106 3.04 ± 0.05 A 96 12.75 ± 0.33 AB 83 15.33 ± 0.33 A 71 26.24 ± 0.43 A 

15 78 3.25 ± 0.06 A 64 13.48 ± 0.40 A  50 16.26 ± 0.45 A 37 27.16 ± 0.60 A 

Sex P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000 

Male 1,302 3.36 ± 0.02 A 1,092 13.35 ± 0.10 A 852 16.29 ± 0.11 A 559 28.54 ± 0.19 A 

Female 1,307 2.92 ± 0.02 B 1,094 11.49 ± 0.09 B 837 14.63 ± 0.11 B 649 23.94 ± 0.16 B 

Year P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000 

2008 270 3.19 ± 0.03 B    231 12.87 ± 0.19 B   133 19.23 ± 0.24 A      75 28.53 ± 0.45 BC     

2009 183 3.14 ± 0.04 BCD  204 11.80± 0.22 C  195 15.98 ± 0.22 C    114 24.23 ± 0.36 EF  
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2010 185 3.40 ± 0.04 A     180 12.08 ± 0.26 BC  174 14.93 ± 0.25 CDE  114 22.40 ± 0.58 FG 

2011 216 3.01 ± 0.04 CDE 172 12.04 ± 0.24 BC  151 13.29 ± 0.25 F 90 22.13 ± 0.45 G 

2012 188 3.04 ± 0.06 BCDE 69 11.71 ± 0.38 BC  59 13.26 ± 0.39 F 47 21.49 ± 0.58 G 

2013 229 2.97 ± 0.06 DE 175 11.75 ± 0.35 BC  149 14.34 ± 0.34 DEF 149 25.79 ± 0.46 DE   

2014 244 3.20 ± 0.03 B    177 12.52 ± 0.23 BC  146 13.31 ± 0.23 F 137 22.62 ± 0.32 G 

2015 251 3.18 ± 0.03 B    224 12.89 ± 0.19 B   175 15.52 ± 0.21 CD   174 24.57 ± 0.27 E   

2016 225 2.93 ± 0.04 E 112 9.84 ± 0.29 D 64 13.83 ± 0.46 EF 64 26.84 ± 0.61 CD    

2017 250 3.23 ± 0.03 AB    205 13.04 ± 0.20 B   205 17.77 ± 0.19 B     75 33.84 ± 0.54 A       

2018 189 3.22 ± 0.04 AB    158 14.50 ± 0.23 A    89 18.95 ± 0.30 A      88 32.85 ± 0.40 A       

2019 184 3.09 ± 0.04 BCDE 159 12.23 ± 0.23 BC  149 15.08 ± 0.23 CDE  81 29.55 ± 0.40 B      

2020 212 3.20 ± 0.04 ABC   120 14.20 ± 0.27 A          

Birth type P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000 

Single 1,543 3.37 ± 0.01 A 1,314 14.10 ± 0.09 A 1,084 16.58 ± 0.09 A 798 26.96 ± 0.16 A 

Twin 1,066 2.91 ± 0.02 B 872 10.75 ± 0.12 B 605 14.34 ± 0.14 B 410 25.51 ± 0.22 B 

Dam age P-value = 0.000 P-value = 0.000 P-value = 0.001 P-value = 0.63 

Regression 

coefficient 

0.06 ± 0.01 0.18 ± 0.03 0.11 ± 0.03 0.03 ± 0.06 
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Table D. 3. Significance of non-genetic factors and least squares means (LSM) in kg of growth traits in Omani sheep. 

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight).  𝑹𝟐 (Coefficient of model),CV (Coefficient 
of variation), Factors that its levels do not share a letter in Group column are significantly different.      

Trait BW WW W6 W12 

 N             LSM ± SE     Group N            LSM ± SE     Group N            LSM ± SE     Group N           LSM ± SE        Group 

Overall 3,530 3.04 ± 0.01  3,120 14.38 ± 0.07  2,374 20.03 ± 0.09  1,745 32.45 ± 0.14  

𝑅2 35.40% 33.91% 34.92% 45.56% 

CV 22.10% 27.22% 21.12% 18.46% 

Pen P-value = 0.13 P-value = 0.04 P-value = 0.46 P-value = 0.35 

1 240 2.84 ± 0.05 A 210 13.61 ± 0.24 A 145 20.02 ± 0.30 A 101 32.99 ± 0.49 A 

2 229 2.86 ± 0.05 A 203 13.71 ± 0.24 A 159 19.58 ± 0.29 A 104 33.14 ± 0.48 A 

3 235 2.94 ± 0.05 A 208 13.40 ± 0.24 A 143 19.21 ± 0.30 A 99 32.18 ± 0.49 A 

4 219 2.89 ± 0.06 A 199 13.26 ± 0.25 A 139 19.38 ± 0.31 A 98 32.88 ± 0.50 A 

5 220 2.81 ± 0.07 A 197 13.51 ± 0.25 A 136 19.70 ± 0.31 A 94 33.16 ± 0.51 A 

6 225 2.97 ± 0.06 A 200 13.47 ± 0.25 A 150 19.35 ± 0.30 A 116 32.85 ± 0.47 A 

7 229 2.86 ± 0.05 A 199 13.49 ± 0.25 A 153 19.27 ± 0.29 A 120 32.21 ± 0.46 A 

8 232 2.81 ± 0.06 A 206 13.04 ± 0.24 A 154 19.20 ± 0.29 A 109 33.13 ± 0.47 A 

9 231 2.89 ± 0.06 A 205 13.57 ± 0.24 A 149 19.40 ± 0.30 A 112 32.96 ± 0.46 A 

10 244 2.78 ± 0.06 A 222 13.69 ± 0.24 A 180 19.31 ± 0.27 A 139 32.68 ± 0.43 A 

11 234 2.88 ± 0.05 A 206 13.66 ± 0.24 A 164 18.96 ± 0.28 A 119 31.40 ± 0.46 A 

12 240 2.81 ± 0.06 A 208 13.61 ± 0.24 A 163 19.05 ± 0.28 A 118 32.06 ± 0.46 A 

13 245 2.88 ± 0.09 A 220 13.37 ± 0.24 A 164 19.09 ± 0.29 A 119 32.91 ± 0.46 A 

14 138 3.08 ± 0.07 A 122 13.32 ± 0.31 A 107 18.79 ± 0.35 A 79 31.62 ± 0.55 A 

15 154 3.02 ± 0.10 A 130 14.01 ± 0.31 A 116 19.15 ± 0.34 A 81 31.48 ± 0.55 A 

16 95 2.84 ± 0.12 A 86 14.29 ± 0.36 A 64 19.07 ± 0.44 A 52 31.43 ± 0.67 A 

17 67 2.87 ± 0.09 A 59 14.58 ± 0.44 A 52 18.87 ± 0.49 A 49 30.48 ± 0.70 A 

18 53 2.88 ± 0.10 A 40 14.98 ± 0.53 A 36 18.51 ± 0.60 A 36 31.69 ± 0.81 A 
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Sex P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000 

Male 1,845 2.99 ± 0.02 A 1,636 14.36 ± 0.14 A 1,232 20.25 ± 0.15 A 843 34.95 ± 0.28 A 

Female 1,685 2.78 ± 0.02 B 1,484 13.04 ± 0.14 B 1,142 18.19 ± 0.15 B 902 29.63 ± 0.27 B 

Year P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000 

2008 294 2.98 ± 0.06 ABCD   268 14.35 ± 0.33 ABCD  173 21.07 ± 0.28 B      120 32.30 ± 0.58 CD   

2009 261 3.11 ± 0.07 AB     253 13.40 ± 0.41 BCDE 242 19.00 ± 0.24 DE   121 30.82 ± 0.65 DE  

2010 219 3.23 ± 0.06 A      219 14.95 ± 0.32 AB    210 20.21 ± 0.26 BC     157 29.93 ± 0.54 DEF 

2011 152 2.62 ± 0.10 DEF 137 13.07 ± 0.38 CDE 133 15.96 ± 0.33 G 81 28.23 ± 0.79 EF 

2012 269 3.00 ± 0.07 ABCD   237 12.89 ± 0.35 DE 216 16.43 ± 0.25 G 161 26.98 ± 0.73 F 

2013 233 2.35 ± 0.09 F 184 12.54 ± 0.56 CDE 154 18.63 ± 0.31  DEF  152 30.98 ± 1.13 CDEF 

2014 327 3.11 ± 0.06 AB     301 13.83 ± 0.32 BCDE 267 18.17 ± 0.23 EF  261 30.65 ± 0.50 DE  

2015 351 3.00 ± 0.05 ABC    335 14.42 ± 0.26 ABC   223 20.73 ± 0.24 BC     219 31.96 ± 0.46 CD   

2016 259 2.75 ± 0.06 DE  149 13.37 ± 0.65 ABCDE 70 17.21 ± 0.42 FG 70 37.04 ± 1.16 AB     

2017 316 2.94 ± 0.04 BCD   292 14.34 ± 0.22 ABC   288 20.81 ± 0.22 B      86 37.04 ± 0.66 A      

2018 270 2.91 ± 0.05 BCD   253 15.41 ± 0.28 A     173 22.58 ± 0.28 A       171 37.34 ± 0.55 A      

2019 286 2.70 ± 0.05 E  244 12.61 ± 0.28 E 225 19.78 ± 0.25 CD    146 34.23 ± 0.57 BC    

2020 293 2.78 ± 0.05 CDE  248 12.92 ± 0.29 DE       

Birth type P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000 

Single 1,396 3.39 ± 0.02 A 1,245 16.57 ± 0.10 A 982 21.37 ± 0.12 A 732 34.27 ± 0.22 A 

Twin 1,867 2.87 ± 0.01 B 1,656 13.05 ± 0.09 B 1,224 18.76 ± 0.11 B 904 31.99 ± 0.17 B 

Multiple 267 2.40 ± 0.04 C 219 11.48 ± 0.28 C 168 17.52 ± 0.27 C 104 30.62 ± 0.55 C 

Dame age P-value = 0.000 P-value = 0.81 P-value = 0.34 P-value = 0.06 

Regression 

coefficient 

0.04 ± 0.01 -0.01 ± 0.03 -0.04 ± 0.04 -0.12 ± 0.06 

 

 




