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Abstract

The objective of the present thesis was to estimate the genetic parameters
associated with growth traits, specifically birth weight (BW), weaning weight (WW), six-
month weight (W6), and yearling weight (W12), among Jebel Akhdar (JA) goats,
Batinah (BA) goats, and Omani sheep (OS) in Oman. In addition, the level of
inbreeding and its trend over 13 years were investigated for the three breeds. Finally,
a simulation study was carried out to examine the feasibility of implementing genomic
selection (GS) in OS sheep with the aim of enhancing the genetic improvement of
these traits. The analysis utilised data obtained from the Wadi Qurayyat Livestock
Research Station (WQLRS) in Oman over the years 2008 to 2020. The dataset
comprises 2,826 records of JA goats, 2,609 records of BA goats, and 3,530 records of

OS sheep.

The heritability estimates for BW, WW, W6, and W12 in JA goats were 0.13
0.04,0.11 £0.04,0.19£ 0.05, and 0.21 £ 0.06, respectively. In comparison, the values
for BW, WW, W6, and W2 were found to be 0.17 £ 0.04, 0.16 + 0.04, 0.16 + 0.04, and
0.24 + 0.04, respectively, in BA goats. In Omani sheep, the observed values for BW,
WW, W6, and W12 were 0.16 + 0.03, 0.15 + 0.03, 0.28 + 0.05, and 0.48 + 0.05,
respectively. The three breeds showed a positive genetic trend for all growth traits,
although the phenotypic trend was only significant for the W12 phenotype. The annual
genetic gain for BW, WW, W6, and W12 in JA goats was measured as 0.01 kg, 0.09
kg, 0.13 kg, and 0.20 kg, respectively. The BA goats exhibited an annual increase in
genetic gain of 0.01 kg, 0.08 kg, 0.10 kg, and 0.18 kg for BW, WW, W6, and W12,
respectively. The genetic gain for BW, WW, W6, and W12 in OS sheep exhibited

annual increments of 0.01 kg, 0.13 kg, 0.22 kg, and 0.39 kg, respectively. The genetic



correlations between the different traits in the three breeds were found to be positive
and strong, except for the correlations with the BW trait, which had low correlations.
The results of this study highlight the potential for significant genetic improvement in
the growth traits associated with the investigated Omani breeds, considering their
sufficient genetic variability and the favourable genetic correlations seen between

them, particularly with respect to post-weaning traits.

The inbreeding levels within the three breeds were found to be very low, with
estimations of 0.67% in JA goats, 0.65% in BA goats, and 1.52% in OS sheep on
average. The observed levels of inbreeding among the inbred animals were 3.88%,
3.39%, and 6.49% for the respective breeds. However, there has been a notable
increase in inbreeding rates, especially in recent years, necessitating the need for

continuous monitoring and the implementation of measures to control it.

The simulation study has indicated that the ssGBLUP method demonstrated
superior performance on prediction accuracy of breeding values averaging (0.64)
across the traits of BW, W6, and W12 in OS sheep compared to the methods of BLUP
(0.56) and GBLUP (0.47). The precision of the three methods was enhanced with an
increase in heritability. The genomic prediction accuracy of GBLUP and ssGBLUP was
enhanced by increasing the reference size. The average improvements were 0.43,
0.48, and 0.50 for GBLUP, and 0.61, 0.64, and 0.67 for ssGBLUP. These
improvements were observed at reference sizes of 500, 1000, and 2000 animals,
respectively. For traits with low heritability in particular, ssGBLUP may be a useful
method for increasing prediction accuracy when compared to BLUP and GBLUP. The

outcomes provide a theoretical framework for implementing GS in OS sheep.
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CHAPTER ONE

INTRODUCTION



1.1 Introduction

Goats and sheep play an important part in Oman's domestic livestock sector,
contributing to both social and economic aspects. The importance of small ruminants
(SR), namely sheep and goats, in Oman is clearly demonstrated by their population,
which accounts for 81.38% of the overall livestock population. According to the
National Centre for Statistics and Information (NCSI (2021), the livestock population in
Oman totalled 3,791,000 animals. Out of these, goats comprised 64.44% of the total,
while sheep accounted for 16.94% (Figure 1). Small ruminants (SR) are known to
require minimum labour, and are easy to manage, so supporting sustainable business-

related livestock (Bosso et al., 2007).

Due to the fact that SR are in abundant numbers in Oman compared to other
livestock and have the ability to thrive in the challenging, mountainous environments
that define many regions of Oman, goats and sheep may present significant
contributions to the production of red meat (Mahgoub et al., 2010). Based on the data
from the Ministry of Agriculture and Fisheries in Oman (MAF (2019), Oman accounts
for producing 50% of the nation's domestic consumption of red meat. Therefore, the
Omani government prioritises efforts to narrow the gap between the consumption and
production of red meat. A potential strategy to achieve this objective involves improving
the growth traits of the domesticated farm animals by subjecting them to breeding

programmes, i.e., genetic improvement via within-population selection.



S

= COWS = camels = goats = sheep

Figure 1. Total numbers of farm animals in Oman in 2021. K: thousand. Data from
NCSI (2021).

Growth traits serve as an important component in livestock breeding, with a
specific emphasis on increasing meat production. They essentially reflect an animal's
potential to produce meat, and hence, enhancing these characteristics typically leads
to increased productivity and profitability in meat production enterprises (Eisen, 1976).
They are influenced by a combination of genetic and environmental factors, which
means that their improvement would lead to enhancing the traits themselves (Bahreini

Behzadi et al., 2007; Tesema et al., 2022).

To this end, the Ministry of Agriculture and Fisheries in Oman has set up a
number of livestock research stations in an effort to implement breeding programmes.
The Wadi Qurayyat livestock research station (WQLRS) is one of these
stations located in Bahla city. It serves a key role in conserving and enhancing the

genetic merit of nucleus herds/flocks of SR. The station houses two common breeds



of goats, which are Jebel Akhdar and Batinah, as well as a local breed of sheep known

as Omani sheep.

To successfully carry out genetic improvement schemes, it is essential to
accurately estimate a number of significant genetic parameters that define the
population, including the heritability of the desired traits and the genetic correlations
among those traits. The heritability of a trait provides information about how it will
respond to selection, whereas genetic correlations reveal the direction and magnitude
of the impact that the selected trait has on other traits being investigated (Singh et al.,
2022). Also, it is imperative to evaluate these programmes by looking at the genetic
trend, which involves monitoring changes in the genetic merit of the animals over a
specific period of time. It serves as an indicator of the success and effectiveness of

existing breeding strategies (Wilson et al., 2010) .

Genetic improvement projects, especially those that apply selection within a
population, tend to give rise to increased rates of inbreeding. This is because the
population is closed by nature, and individuals are under selection pressure.
Progressive inbreeding can result in a reduction in genetic variation within a population,
which is an essential aspect of animal breeding programmes. Consequently, this
hinders the ability of individuals to respond appropriately to future selection and adapt
to environmental changes (Ceyhan et al., 2011; Mandal et al., 2020). Furthermore,
research studies have demonstrated that excessive inbreeding commonly results in
negative effects, known as inbreeding depression, on the productivity, health, and
reproductive capacities of animals (Falconer, 1996). Thus, it is critical to prioritise the
estimation and control of inbreeding levels in the population undergoing genetic

improvement while ensuring that genetic improvement is both efficient and sustainable.



The present chapter focuses on the following:
1. Factors of the environment and genetics that impact growth traits.

2. Partitioned components of the phenotypic variance, which are then used to
estimate genetic parameters, viz., heritability and genetic correlation, the
importance of the genetic parameters in selection programmes, and various

methods used to estimate them:
e Analysis of variance (ANOVA).
o  Maximum likelihood estimation (MLE).
e Restricted maximum likelihood estimation (REML).

3. The genetic merit, also known as breeding value (BV) of animals and the

common traditional methods used to estimate it
e Selection index and BLUP.
4. Utilising molecular markers to precisely estimate breeding values:
e Quantitative trail loci (QTL).
e Molecular markers :
o Microsatellites.
o Single nucleotide polymorphism (SNP).
e Genomic approaches to predicting breeding values:
o SNP-BLUP.

o GBLUP.



o ssGBLUP.

e Challenges to implementing genomic selection in sheep and goats.

5. Inbreeding: the concept, the effects, control measures, and its quantifying

methods.



1.2 Environmental and genetic factors influencing growth traits

Growth traits are a subset of quantitative traits that are influenced by a
combination of genetic and environmental influences, as well as their interactions. The
environmental factors influencing growth traits might be random or fixed. Several
environmental fixed factors can impact the growth of animals (Bahreini Behzadi et al.,
2007). Significant factors can include the animal's sex, type of birth, age of dam, herd,
and year of birth (Baneh et al., 2012). The influence of these variables may differ
depending on the particular trait and the population being studied. Accurately adjusting
observations for fixed effects must be done in order to obtain unbiased estimates of

the genetic parameters (Chauhan et al., 2021; Singh et al., 2022).

Baneh et al. (2012) found that traits of birth weight (BW), and weaning weight
(WW) have been significantly influenced by herd, birth year, type of birth, sex, and dam
age in Naeini goats. Likewise, the fixed effects of birth year, sex, birth type, and age of
doe were significant in all the studied traits of growth in Markhoz goats (Shirzeyli et al.,
2023). In their research on Dorper A indigenous sheep, Tesema et al. (2022) observed
that the live body weights at different ages were influenced by factors such as the type
of birth, sex, year, and season. Another study found that the growth traits were
influenced only by year, sex, and birth type (Areb et al., 2021). Year, dam age, and sex
factors have been found to influence the growth traits in Kermani sheep, while birth

type was only significant with the WW trait (Bahreini Behzadi et al., 2007).

The variability observed among the levels of environmental fixed components,
which contributes to the phenotypic expression, is typically attributed to variations in
biological systems, climatic fluctuations, and the availability of feed resources. For

instance, the impact of dam age may be attributed to the maturation of the uterus and



mammary glands, resulting in an increment in milk production as age progresses. The
impact of birth type can be explained by the intrauterine competition between twins for
limited uterine space and resources, such as milk, which is comparable to that of single
offspring (Baneh et al., 2012). While the impact of sex on growth traits can be attributed
to the influence of certain sex hormones on muscle and skeleton development

(Tesema et al., 2022).

The expression of an individual's phenotype is determined not only by the direct
effects of its direct additive genetic and environmental factors but also by the presence
of maternal effects, particularly in early life traits (Tesema et al., 2022). The maternal
influences may include factors such as mothering ability, milk production, and the
uterine environment. They can be partially ascribed to the genetic influence of the dam
or can be influenced by the environment given by the dam, in which they all influence
maternal ability (Baneh et al., 2012; Mrode, 2014). Thus, by investigating these factors
and incorporating them into the models used to estimate genetic parameters, more
accurate estimations can be obtained, leading to the optimisation of genetic
improvement. However, it is not always feasible to analytically separate the maternal
components into additive genetics and a permanent environment due to the structure
of the data (Meyer, 1992). For instance, Bangar et al. (2020) observed in their study
on Jakhrana goats that the analytical model used was unable to separate between the

various components of maternal effects because of the small sample size.



1.3 Partitioning the phenotypic variance (Vp)

According to Falconer (1996), the phenotypic value of an individual (P) is
determined by its genetic effects (G), and environmental deviation (E). The E value

here includes all non-genetic influences. Mathematically, it can be expressed as:

P=G+E (1)

Yet, animal breeders have to deal with a value that can be transmitted from
parents to offspring, a mean that cannot be accomplished solely through the G value,
because the G value is not transmitted as it is but is formed in the progeny afresh from
the parents. So, the animal breeder is interested in a value, which can be assigned to
the individual genes rather than the genotype as a whole, that can be partitioned from
the genetic value, and transferred to the offspring. This value is referred to as the
average effect value (4). The mean deviation of offspring from the population average
when one parent passes on a certain allele to their offspring and the other allele is

inherited randomly from the population is known as the additive effect (A) of a gene.

Accordingly, the mean genetic value of offspring is determined by the overall
effects of parental genes. The total summation of these average effects of genes
exhibited by an individual is commonly referred to as the estimated breeding value
(EBV), also known as the additive effect (A4). In addition to the A values of the genes ,
the genotypic value of an individual is influenced by the interactions within a locus,
namely the dominance effects (D), and the interactions between loci (I). Hence,
equation (1) can be extended to become as (Bourdon & Bourbon, 2000; Falconer,

1996) :



P=A+D+1+E (2)

The basis for understanding the genetic structure of a quantitative trait is in its
variability, which involves splitting the variance in phenotypic expression into different
components associated with a range of factors. The genetic properties of a population
are determined by the relative contribution of these components to the phenotypic
variance (Falconer, 1996). The progress of a genetic improvement programme
principally relies on the existence of the genetic variation among the individuals, so
that they can respond effectively to selection (Singh et al., 2022). From equation (2),
the variance in the phenotypic values (V) can be attributed to variances in genotypic
effects or its components, as well as environmental effects, which can be expressed

mathematically as follows:

VP=VA+VD+VI+VE (3)

However, as previously stated, animal breeders are primarily concerned with
the portion of variance that may be attributed to the additive effects of the genes, which
refers to the variances between the breeding values of the animals, assuming that the
dominance and epistasis effects are negligible. Consequently, equation (3) can be

shortened to:

Vp = VA + VE (4)
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The additive genetic variance (V,) is of the utmost importance in genetic
improvement programmes as it primarily is responsible for the resemblance between
relatives, thereby it influences the observable genetic properties within a population
and serves a key role in determining the population's response to selection.
Additionally, it is the only genetic component among other sources of genetic variation
that can practically be calculated from observations that differ from the population
average(Oldenbroek and van der Waaij, 2014). The relative contribution of the V, to
the 1, is one of the fundamental genetic parameters that needs to be estimated in
genetic breeding programmes, which is known as the heritability (h?). It quantifies the
proportion of the phenotypic variance of a trait that can be attributed to the variance

caused by the additive effects of genes, which can be modelled as:

h? = Va /VP (5)

Another genetic parameter that can be estimated from partitioning the

phenotypic variance is the genetic correlation (r;), which quantifies the association

among various traits caused by the additive genetic effects. It is calculated as:

i Cov(traity, trait,)

g U (6)
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1.4 Genetic parameters (heritability and genetic correlation)

Animal breeding programmes rely on the estimation of heritability for the
targeted trait, which evaluates the proportionate influence of the additive genetic
effects on the overall variability of measurable traits within a population. It explains the
extent to which the trait can be improved by genetic selection. So, it’s estimation is
involved in predicting the response to selection and estimating the EBVs of individuals

(Getabalew et al., 2019).

There are two distinct themes of heritability, namely broad sense-heritability (H?)
and narrow sense-heritability (h?), which are differentiated based on the specific
portion of the genetic variance (V;) used in the estimation process. The calculation of
H? involves determining the ratio between the total genetic variation V,; and the
phenotypic variance V. This ratio quantifies the extent to which the overall genotypic
variance contributes to the entire phenotypic variance of a given trait. While the
estimation of h? , is determined by the ratio of the additive genetic variance V, to the
total phenotypic variance Vp, which provides an estimate of the phenotypic variance
that can be attributed only to the additive genetic variance (Falconer & Mackay, 1996).
The transmission of the genetic material from parents to offspring, as explained in the
part of variance partitioning above, occurs through the passing on of genes rather than
genotypes. Consequently, the narrow sense heritability (h?) emerges as a crucial
parameter for animal breeders seeking to enhance the traits of successive generations

of animals.
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The heritability (h?) of a trait can range from 0 to 1. A characteristic with a h?
value of one indicates that all of the phenotypic variances can be attributed solely to
additive genetic influences. Conversely, a h?value of zero suggests that the phenotypic
differences of a trait are not driven by additive genetic factors. Accordingly, traits can
be categorised as having low heritability (h? < 0.20), moderate heritability (h? = 0.20 —
0.39), or high heritability (h? 2 0.40). It has been suggested that when the value of h?
is smaller than 0.15, the efficacy of selecting animals based on their performance may
be ineffective. In such cases, it may be more advantageous to rely on their EBVs

instead (Faid-Allah et al., 2017).

For a given trait, different populations may have varying h? estimates, because
the h?value is specific to the trait, population, and time period in which it was
evaluated. This occurs due to the possible changes in the V, over a time, which is
influenced by the changes in allelic frequency resulting from various factors such as
selection, genetic drift, and other mechanisms (John-Jaja et al., 2018). Also, the model
used to estimate the V, may give different results according to the fitted factors.
Different breeds, and different environmental effects can result in varied h? estimates

too (Singh et al., 2022).

As it was stated ahead that the trait expression may be influenced collectively
by the animal’s own genetic merit and its dam’s genetic effects. This means that the
h? might be expressed as direct heritability h2 which is due directly to the influence of
animal’s additive genetic effects, and as hZ, which is attributed to the influence of dam’s
additive genetic effects (Sharif et al., 2022; Singh et al., 2016; Singh et al., 2022).

Ignoring the influence of maternal effects in the estimation of genetic parameters,
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particularly in the early traits can result in biased estimations (i.e., overestimated h2).
Consequently, this may impact on the selection accuracy, and ultimately the
effectiveness of the genetic improvement scheme (Chauhan et al., 2021; Singh et al.,
2010). Several studies have shown that, models excluding maternal effects (i.e.,
environmental, or genetic) may overestimate direct heritabilities (Bahreini Behzadi et

al., 2007; Baneh et al., 2012; Tesema et al., 2022).

Another important parameter whose computation contributes to selective
breeding programmes is the genetic correlations () between traits. It quantifies the
association between traits in terms of its direction and strength. Thus, it indicates how
an improved trait would impact other correlated traits, either in a positive or negative
direction. Also, a correlated trait can serve as an indicator for improving a trait that is
costly or challenging to measure (Rae, 1952). If two traits display a positive correlation,
selecting for one trait will result in a comparable enhancement in the other trait. When
two traits display a negative correlation, it indicates that the selection for one trait will
result in the shift of the other trait in the opposite direction. Genetic correlations
(ry) span from -1 to +1, with a positive sign indicating positive correlation and a
negative sign indicating negative correlation (Oldenbroek & van der Waaij, 2014).
Robertson (1959) suggested that a minimum genetic correlation threshold of 0.80
between traitsis recommended to minimise the influence of genotypes x
environmental interactions, which may compromise the success of breeding
programme. As an illustration, when 7, 2 0.80 between two traits, selecting animals
based on a certain trait would not lead to reranking of the same animals for the second

trait.
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1.4.1 Review of some studies on estimating genetic parameters of growth traits in

sheep and goats

Numerous studies have been conducted regarding the estimation of genetic
parameters of growth traits in various populations of sheep and goats (Table 1). The
estimates of the heritability (hZ) for the various growth traits including BW, WW, W6,
and W12 varied between 0.07 and 0.56, whereas the estimations of the maternal
heritability (h2,) ranged from 0.03 to 0.34. Growth traits often exhibit moderate to high

heritability, particularly those expressed throughout later stages of development.

Most of these studies found that the general pattern of the direct heritability (h2)
tends to increase with age, while the maternal heritability (h2,) tends to diminish
gradually. This can be explained by recognising that as an animal grows up, its relying
on its genetic merit for growing independently increases, while its dependence on the
dam diminishes (Tesema et al., 2022). However, this might not always be the case
according to studies such as Baneh et al. (2012) who found that the h2 for the WW
was lower than for the BW, Areb et al. (2021) who observed a decreasing trend of h2,
as the animal matures, and Dhakad et al. (2022) who found inconsistent trend for the
h2. Though the maternal effects have commonly an influence only on early growth
traits, they may influence also during later stages at W6 and W12, as noticed by
Bahreini Behzadi et al. (2007) in Kermani sheep who justified that to the carry over

influence of dam genetics from before the weaning (Bangar et al., 2020).
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Table 1. Review of estimates of direct and maternal heritabilities of some growth

traits in various breeds of sheep and goats.

BW (birth weight), WW (weaning weight), W6 (six-months weight), W12 (yearling

weight).
Breed Growth trait Direct heritability Maternal heritability Reference
) (Baneh et al.,
Naeini goat ‘BMWM 83? i 2012)
(Tesema et al.,
Dorper X BW 0.003 0.20 2022)
g ww 0.14 -
sheep
(Bosso et al.,
West African BW 0.50 B 2007)
Dwarf goat W6 0.43 B
9 w12 0.30 -
BW 0.39 ) (Bosso et al.,
Djallonke sheep W6 0.54 ; 2007)
w12 0.21 -
Nellore shee ww 0.03 B
P W6 0.12 ;
w12 0.10 0.11
BW 0.56 0.34 (Areb et al.
Bonga sheep WW 0.36 0.20 021)
weé 0.22 0.15
w12 0.13 0.39
BW 0.15 0.11 (Dhakad et al.,
Malpura shee ww 0.13 0.03 2022)
P P W6 0.18 0.05
w12 0.16 0.06
BW 0.23 0.08 (Chauhan et
. wWw 0.10 0.08 al., 2021)
Harnali sheep W6 018 )
w12 0.11 -
BW 0.09 ) (Bangar et al.,
WW 0.21 ] 2020)
Jakhrana goat W6 053 ]
w12 0.16 -
BW 0.31 0.15
. WwW 0.23 0.10 (Singh et al.,
Barbari goat W6 018 0.10 2022)
w12 0.21 0.09
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The genetic correlations (r;) between growth traits at various stages in sheep
and goats, on the other hand, have been found to be positive, based on the
aforementioned studies (Table 2). The correlations between the different traits ranged
from moderate to high, with the observation that the traits that are close to one another
have usually a higher correlation than the traits that are not. The correlations ranged

from 0.04 (BW-W12 in Harnali sheep) to 0.99 (W6-W12 in Jakhrana goat).
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Table 2. Review of estimates of genetic and phenotypic correlations among growth
traits in some breeds of sheep and goats.

BW (birth weight), WW (weaning weight), W6 (six-months weight), W12 (yearling
weight).

Breed Correlated Direct genetic  Phenotypic Reference
traits correlation correlation
West African | BW-W6 0.74 0.30 (Bosso et al., 2007)
Dwarfgoat | BW-W12 0.73 0.19
g W6-W12 . :
- 0.74
5 (Bosso et al., 2007)
Djallonke BW-W6 0.47 0.40
Shee BW-12 - 0.23
P W6-W12 - 0.65
BW-WW 0.44 0.36 (Ietal.,, 2017)
BW-W6 0.62 0.27
Nellore BW-W12 0.68 0.24
sheep WW-W6 0.94 0.76
WW-W12 0.79 0.59
W6-W12 0.85 0.64
BW-WW 0.20 0.002 (Areb et al., 2021)
BW-W6 0.23 0.01
Bonaa shee BW-W12 0.11 0.02
9 Pl ww-we 0.61 0.52
WW-W12 0.19 0.31
W6-W12 0.46 0.49
BW-WW 0.27 0.39 (Dhakad et al., 2022)
BW-W6 0.18 0.28
Malpura BW-W12 0.21 0.24
sheep WW-W6 0.80 0.76
WW-W12 0.54 0.53
W6-W12 0.68 0.70
BW-Ww 0.46 0.23 (Chauhan et al., 2021)
Harnali BW-W6 0.16 0.10
shee BW-W12 0.04 0.07
P WW-W6 0.47 0.41
WW-W12 0.20 0.22
W6-W12 0.33 0.55
BW-WW 0.91 0.34 (Bangar et al., 2020)
BW-W6 0.90 0.34
Jakhrana BW-W12 0.78 0.12
goat WW-W6 0.78 0.66
WW-W12 0.14 0.41
W6-W12 0.99 0.77
BW-WW 0.33 0.40
BW-W6 0.26 0.25
Barbari goat evv\\:\;\-,\\ll\;lg 8;2 82; (Singh et al., 2022)
WW-W12 0.39 0.46
W6-W12 0.85 0.67




1.5 Methods to estimate variance components

1.5.1 Analysis of variance (ANOVA) estimator

The historical progress in variance estimation has mainly relied on the
application of the analysis of variance (ANOVA) technique. This technique involves
estimating the error variance (¢?2) in its most basic fixed model, as shown in equation
(7), by equating the mean square for the error (MSE) to its expected value E(MSE).
This indicates that the expected value of the mean squared error (E(MSE)) is equal to
the variance of the error term (¢2), which leads to an estimated variance of the error
term (62) being equal to the mean squared error (MSE). Subsequently, the extension
was wider to include models that incorporate random variables. Initially, focus was on
balanced data, and later on, the issue of unbalanced data was addressed (Searle,

1995).

Yi= Ut e, (7)

where:

The variable y; represents the phenotypic record of the ith individual, g is the
population mean, and e; represents the error term of the ith individual.

The extension of the simple fixed model (7) means fitting more random variables
that contribute to the overall phenotypic variance rather than solely the error variance.
It is known as linear mixed model when it includes fixed and random factors. For
illustration, let us consider in a dairy farm that the random variable of ith sire effect (a;)
for the observation of jth daughter in milk production. The model now compared to

equation (7) includes two variance components (equation 8), which are the sire effect
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variance, and error variance. Both of which contribute to the overall phenotypic

variance.

Yij= Hta; +e (8)

In order to calculate the estimated variance of the random components in
equation (8), it needs to extend the same principles used in the fixed model (7), which
involves equating the mean squared error (MSE) and mean squared between groups

of a (MSA) (Sires’ groups) to their respective expected values as follows:
E(MSE) = 2, which means that 62 = MSE, for the estimation of error variance.

While E(MSA) = 62 + n 62, which means that MSA = 62+n 62 , so the estimated value
of the sire variance 62 = MSA - 62/n.

Though the ANOVA method is simple and straightforward, it may give a
negative estimate for the variance, which is not the case in the parameter space of
variance estimations. In addition, data collected from animal breeding programmes is
usually not balanced, which was the interest of Henderson (1953) who developed three
different methods of estimating variance components from an unbalanced design.
These methods are based on selecting a subset of the sum squares and then applying
the same logarithms used for the balanced ANOVA (Searle, 1995). Yet, indicated that
these methods are not free from disadvantages, such as the fact that method 1 cannot
be used for a mixed model and method 2 is not suitable when there is an interaction

among fixed and random effects.
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1.5.2 Maximum likelihood estimation method (MLE)

The maximum likelihood estimation (MLE) method is considered to be more
efficient and flexible than the analysis of variance (ANOVA) in estimating variance
components. For instance, it can utilize all available information, such as the
covariances between parents and offspring and among full siblings. The ANOVA
approach relies on the assumption of randomization in sample data, which may not
hold true in animal genetics programmes that involve selection. The process of
selection may introduce a potential bias in the estimated variance by ANOVA, whereas

MLE takes into account selection (Meyer, 1989).

The MLE approach assumes a multivariate normal distribution for the
observations. It calculates the likelihood of certain assumed parameters values that
underline the distribution of observed data. So, it is the other direction of probability
which is the probability of observing certain values in a given parameters (Meyer, 1989;
Searle, 1995). The MLE maximizes the likelihood of the values of variance components
in the positive space of the population parameters, given the data (Corbeil & Searle,
1976). If we consider that the observed variable (y) follows a normal distribution (N)
with mean (u) and a variance (¢2), which is presented by y = N (u, ¢?). Then, the

probability density function f(y) is calculated as:

-1 (y-w?

[ =1 poer (9

In a more general manner, such as in the linear mixed model, y = N (Xb, V),

where Xb and V are the parameters denoting the means of the fixed effects and the
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variances of the random variables, respectively. The density function can be then

represented as:

f(y) — 1 —-0.5(y=Xxb)'V-1(y-xb) (10)

Q

Where:

N is the length of y records, |V| is the determinant of V (the variance).

When the variable y is given, the function f(y) becomes the likelihood, which can
be maximized with respect to the parameters. The objective is to identify the
parameters that yield the maximum value for f(y). Practically, the log likelihood is used
to be maximized instead of the likelihood function for its convenience mathematically
(Shaw, 1987). The equation of calculating the log of likelihood for parameters (b) (i.e.,
the fixed means) and (V) (i.e., the variance) given that X (i.e., design matrix of fixed

means) and (y) (i.e., observations) becomes as:

L (b VIX,y)= =N log (2m)—>log (V) -5 (y = Xb)' VXY —=Xb) ,  (11)

A major drawback associated with the use of the maximum likelihood estimation
(MLE) technique for estimating variance components in linear mixed models is its
failure to account for the loss in degrees of freedom that arises from fitting the fixed
effects. This might potentially result in biased estimates for the variances, in particular
the residual variance. This rise in biasedness can be considerable when more fixed
effects are fitted in the statistical model, which is the case in analyses of animal

genetics (Meyer, 1989), or when the sample size is insufficient (Hofer, 1998).
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1.5.3 Restricted Maximum likelihood method (REML)

A modified version of the MLE method, which is the so-called restricted
maximum likelihood (REML) suggested by Patterson and Thompson (1971) came to
overcome the issues associated with the MLE method and became widely used by
animal breeders to estimate genetic parameters. It is an iterative process to find the
maximum of the likelihood function component that is not influenced by fixed factors.
It involves replacing the original data with error contrasts, which refer to observations
that have been adjusted for the fixed effects (Meyer, 1989). So, the maximization in
the density function happens after correcting the observations for the fixed effects.
Despite the assumption of a multivariate normal distribution for the variable of
observations (y) in REML, it remains a favourable choice even if normality is not met

(Meyer, 1990).

A number of algorithms have been proposed for the implementation of the
REML technique. These algorithms could use derivatives of the likelihood function to
find the maximum value, such as the expectation-maximization algorithm (EM
algorithm) and the average information algorithm (A/ algorithm) or they can be
classified as derivative-free algorithms. The EM algorithm is not difficult to program
because it just needs the solutions that can be obtained by solving mixed model
equations (MME), and the trace of the inverse of the random effect of the coefficient
matrix in an iteration process. It implies starting with an initial guess for the variance
estimate and then calculating the solutions of the additive genetic effects that can be
obtained by the method of best linear unbiased prediction (BLUP) using MME

equations. In each iteration, new values of estimated variances and solutions are
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obtained, and convergence is achieved when the difference is very small between the

old and new values.

However, the EM algorithm necessitates the computation of the inverse of a
matrix with dimensions equivalent to the number of levels of the random effects at each
iteration, which might be restricted in multivariate (more than one trait) analysis. The
AI-REML is now considered more robust and efficient for estimating variance
components in animal breeding programmes. Various methods have been introduced
to solve AI-REML estimates, including the Netwon-Rhapson method and Fisher’s

scoring method .
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1.6 Breeding value

The breeding value (BV) of an animal measures the cumulative average additive
effects (a) associated with the individual's genes, which can be inherited by their
offspring. Thus, it is the genetic value that an individual carries through to their progeny,
whereas the genotypic value (G) refers to the genetic merit of the animal itself. The
animal breeder is interested, and able to estimate the BV rather than the G, since the
BV represents the value attributed to genes that are passed on to the next generation.
For a good response to selection, the main goal of selection programmes is to select

animals and rank them according to their BV's (Falconer, 1996).

To understand how the animal's BV is estimated, the observation of an
individual can be modelled in its simplest form as a result of the fixed mean effect, the
genetic merit that it has, and the random environment, as explained by Mrode (2014)

following the equation (72):
Yij= Ht gi e, (12)

where:

yij is the observaion j of ith animal, p is the overall population’s mean which may
include the means of the fixed effects, g; is the genetic effect of ith animal, e;; is the
residual terms.

However, as it has been explained previously, that of the genetic component,
the additive genetic effects (a) of individuals that passed on to offspring (summation of

them is the BV), the model (72) can be fitted as:
Yij= Mt a; tej o, (13)

where:
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a; is the influence of the additive genetic effects only.

Given that the additive genetic values of genes are transmitted to offspring, it is
essential to prioritise this component during the selection process. Breeding value (bv)
is the average additive genetic effects that an animal inherits from both of its parents
(Falconer, 1996). Other genetic influences, including dominance and epistasis, are
assumed to have negligible significance on the phenotype, and they are included in
the residual terms. Accurate prediction of animals' BVs plays an essential role in the
effectiveness of genetic improvement schemes, as the level of precision serves as a
primary factor in determining the expected response to selection according to the

following equation (Falconer, 1996; Kennedy, 1981):
R = ir?oy,

where:

R is the response to selection, i is the selection intensity, r is the accuracy of prediction,
and a,, is the standard deviation of variable y (phenotypic values).

The assessment of prediction accuracy is determined by the degree of
correlation between the estimated breeding value (EBV) and the true breeding value
(TBV). The values span a range from 0 to 1 (Oldenbroek & van der Waaij, 2014) . The
selection of an appropriate approach and statistical model for estimating EBVs is a
pivotal factor in enhancing the precision and reliability of the estimation process
(Duchemin et al., 2012; Ferreira et al., 1999; Lodhi et al., 2016). Numerous
methodologies and frameworks have been developed for the purpose of estimating

EBVs, which vary depending on the amount and type of information available.
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1.6.1 Selection index

The selection index incorporates all available information about the animal and
its relatives to calculate an index (I) that reflects the EBV of the individual, as
thoroughly illustrated by Mrode (2014). For example: if we have three records are
available for the animal i, and its parents’ sire (s) and dam (d) as (y;, ys, ¥4), then the

selection index (I;) can be calculated as follows:

I; = bi(y; — w) + bs(ys — ug) + bg(yg — uq) , (14)
where:

b;, b; and b, represent the regression coefficients of TBV on phenotype and mean for
each record of ith animal, sire (s), and dam (d), respectively.

The coefficient of regression (b) can be then computed in the form of matrix as

follows:
b= P1G , (15)

where:

P is the phenotypic (Co)Variance matrix, and G is the (Co)Variance matrix between
phenotypes and breeding value.

So, the equations for solving b and then the index (I) would be as follows:

b; Dii Dis DPia\" ! /i
bs) = <psi Pss psd) <gsi
b, Pai Pdas DPda Yai
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Selection index has the following properties: It reduces the average of all (a; -
a;)? by minimising the average square prediction error. The correlation between the
EBV and the TBV is maximised. However, the necessity to a prior adjustments for the
environmental fixed factors, and the inversion requirement of the phenotypic coefficient
matrix for obtaining the solutions of (b) may not be feasible computationally particularly

with large data.

1.6.2 Best linear unbiased prediction (BLUP)

The best linear unbiased prediction (BLUP) approach which presented by
Henderson (1949) is widely used in estimating EBVs due to its statistical properties
and application with many models, including sire, repeatability, and animal models
(Mrode, 2014). According to Ambhore et al. (2018), the BLUP approach has been
extensively employed for the estimation of animal’s EBV. The efficacy of this procedure
stems from its capacity to adjust phenotypic records by accounting for fixed effects,
while also utilising the additive genetic relationship (4) between individuals to estimate
EBVs. Therefore, fixed effects and EBVs can be estimated simultaneously by this
method. Regard to its name, best because it minimizes the error variance and
maximizes the correlation between estimated and true breeding value. Unbiased,
because the estimation of random and fixed effects is unbiased (Mrode, 2014). This
approach accounts for changes in genetic variance that may result from selection or
inbreeding by incorporating the additive genetic relationships (4) between individuals

into the BLUB calculation (Henderson, 1976).

If we consider the following animal linear mixed model:
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y=Xb+Za+e, (16)
where:
y, b, a, and e are vectors of observations (i.e., records), environmental fixed effects,
random animal additive genetic effect (i.e., breeding value), and residual terms,

respectively. X and Z are design matrices which associate the records to the fixed
effects, and, to random animal genetic effects, respectively.

The assumed (Co)variance structure of the variables a and e of the model (16)

is defined as:

ver () = (A(()jg 123)’

Where:

A is the additive numerator (genetic) relationship matrix among individuals, and I is an
identity matrix (i.e., diagonal elements are one and off-diagonals are zeroes).

Also, it is assumed that:

The expectations (E) of y, a, and e equals Xb, 0, 0, respectively.
The Cov(a,e) =0, so the var(y) V = ZAc?.

The genetic (co)Variance G = Ag? , so V= ZG.

Cov(y,e) = Z Cov(a,e) + Cov(e, e), and because it is assumed that Cov(a,e) = 0, So

Cov(y,e) =R =Ic?2.

The mixed model equations (MME) set to give the solutions for the fixed effects

(b) and additive genetic effect (a) is as follow:

29



(X'R—lx X'R1Z )(13) =<X’R‘1y) (17)
Z’RX Z'R'Z+ A'a/\a)  \ZR"ly)’

where:

A is the numerator additive genetic relationship between the animals, and a is the ratio
2
of residual variance to the additive genetic variance (%), R =02

The 62 and a2 of the population that used in (17) can be estimated by various

methods as mentioned before including REML estimates.

Due to the assumption that R is an identity matrix, R~! can be factored from both

sides, and the MME in (17) is shorten to:

X'X X'z B) _ (X ’y)
(Z’X 7'7 + A—la) (a Z'y (18)
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1.7 Genomic selection

1.7.1 Quantitative trait locus (QTL)

Most traits of economic importance in farm animals, including growth traits, are
quantitative traits, which means they exhibit continuous variation and show a normal
distribution. Partially, this variation is attributed to the genetic component of individuals
(i.e., genetic variation), and is driven by several major genes with significant effects
plus the majority of polygenes with minor effects (Falconer, 1996; Gootwine, 2020).
The polymorphic chromosomal site that harbours a gene or a group of genes that might
contribute to this variation is called the quantitative trait locus (QTL) (Akond et al., 2019;
Dhingani et al., 2015). Therefore, identification and detection of these molecular loci
are important for animal breeders, who rely mainly on exploiting genetic variation to

implement genetic improvement programmes.

With the advent of breakthrough advances in molecular technology, it has been
possible to employ molecular markers to map significant QTLs (Zeng, 1994). Most
traditional QTL mapping experiments in farm animals, including sheep and goat
populations, have used microsatellite markers across the resource mapping population
(Weber & May, 1989). The optimal spacing between markers involved in QTL detection
and genome scans has been estimated to be between 10 and 30 cM (Maddox et al.,
2001). The justification for QTL mapping in domestic animals comes from the biological
essentials for understanding the complex genetic structure of the trait as well as the
utilisation of genomic data in practical breeding strategies to improve selection

(Andersson, 2001; Dekkers & Hospital, 2002).
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According to Gholizadeh et al. (2008), identifying an animal's genetic makeup
and predicting its trait phenotype with the help of molecular markers is an effective
approach in animal breeding. The ultimate purpose of utilizing molecular markers is to
detect the quantitative trait loci (QTLs), that influence the phenotype and accordingly
enhance genetic improvement via marker-assisted selection (MAS) or genomic

selection (GS).

1.7.2 Molecular markers

Molecular markers are the most useful genetic markers for analysing genetic
variability, which might include microsatellite markers or single sequence repeats
(SSR), mitochondrial markers, Y-chromosomal markers, copy number variations
(CNV), and single-nucleotide polymorphisms (SNPs) (Saravanan et al.,, 2022). A
molecular marker can be defined as a genetic locus that shows a polymorphism in the
DNA sequence among individuals, which can be detected by molecular tools. Point
mutations, duplication, translocation, insertion, and deletion are the sources of these

polymorphisms (Nadeem et al., 2018).

The efficiency of utilizing molecular markers in animal and plant breeding
programs has been demonstrated to be preferable to other genetic markers such as
morphological, chromosomal, and biochemical markers. In general, morphological and
chromosomal markers reveal a limited degree of variability and are therefore not
helpful as genetic markers. The use of biochemical markers has led to suboptimal
results as a result of their inherent dependency on factors such as sex, age, and

vulnerability to environmental effects. Fortunately, the majority of these limitations have
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been effectively solved by molecular markers. They are abundant and widely spread
across the genome, unaffected by the environment. Most importantly, they are neutral
to any phenotypic effect, as they are usually located in the non-coding regions (Collard

et al., 2005; Ebegbulem & Ozung, 2013).

1.7.2.1 Microsatellites

Microsatellite markers are tandemly repeated sequences (usually 1 to 10
nucleotides) distributed abundantly across the genome. They are sometimes called
simple sequence repeat (SSR) loci or simple sequence length polymorphisms
(SSLPs). They are co-dominant markers (i.e., the heterozygous can be distinguished
of either homozygous), and very short, which makes their amplification easier. The
tandem usually repeats 5-20 times in the genome (Al-Samarai & Al-Kazaz, 2015; Kalia
et al., 2011; Vajed Ebrahimi et al., 2017), or the repeats can sometimes reach 40 times
(Selkoe & Toonen, 2006). The common dinucleotide motif found in microsatellites in

mammals is (CA)n, where n represents the number of repetitions (Beuzen et al., 2000).

Microsatellite DNA markers have been extensively used to investigate genetic
diversity among livestock breeds (Behl et al., 2007; Pandey et al., 2006; Penedo et al.,
1999; Sollero et al., 2009). They have initially emerged as the preferred molecular
markers for various applications in livestock species, such as genome mapping and
marker-assisted selection (MAS) (Alberts, 2017; Bishop et al., 1995; Smith, 1993).
Their preference over other DNA-based markers comes from their inheritance pattern
as co-dominant, highly polymorphic (multiple alleles within a population), and

abundantly distributed across the genome (Sheriff & Alemayehu, 2018). The
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polymorphism helps researchers analyse and compare genetic variations in a
population effectively. The downsides to adopting microsatellite-based approaches are
relatively expensive development costs and technical challenges in manufacturing the

species-specific primers (Miah et al., 2013).

1.7.2.2 Single nucleotide polymorphism (SNP)

SNP markers, as their name suggests, refer to single nucleotide polymorphisms
in a DNA sequence, typically involving the substitution of two nucleotides at a specific
locus within a population. They are co-dominant markers; however, unlike
microsatellites, they are mostly bi-allelic (Vignal et al., 2002). In theory, four alleles can
exist at each nucleotide site due to the four existing nucleotide types. However, in
practice, only two variants occur. In other words, SNP markers are bi-allelic, as
evidenced by the bias occurrence towards transitions, i.e., purine-purine (A G, T C)
more than transversions (A C, AT, G C, G T) (Khlestkina & Salina, 2006). They are
the most abundant in the genome among the other molecular markers. According to
Koopaee and Koshkoiyeh (2014), SNPs account for approximately 90% of all genetic
variations in any population, making them the best choice for population studies and
genome mapping. They were detected for the first time on a genome-wide scale in the

human genome (Mammadov et al., 2012).
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As stated by Koopaee and Koshkoiyeh (2014), SNPs have the following

advantages:

1. Most SNP markers are in DNA's non-coding region; therefore, they have no effect

on the phenotype.

2. SNPs are considered to be a more suitable choice for high-throughput genetic

study in comparison to microsatellites.

3. Compared to other DNA markers, they are more stably inherited and provide a

greater number of potential markers in the vicinity of the locus of interest.

4. are devoid of phenotype effects.

The only limitation with SNP markers is that they are bi-allelic, meaning within a
population there are only two alleles of each SNP. Consequently, they provide less

information than multiallelic markers.

SNPs are the most commonly utilised DNA markers in animal genetics studies
due to their suitability for high-throughput platforms and abundance throughout the
genome (Vignal et al., 2002). The advancement of genomic technology and molecular
information in recent years has made it possible to develop high-density SNP chips for
livestock. The use of high-density SNP panels in farm animals has opened up the
possibility of implementing genomic selection (Bertolini et al., 2017b; Rupp et al.,
2016). The development of the 50K ovine SNP chip in 2009 made genomic selection
possible in small ruminants for the first time (Rupp et al., 2016). According to (Auvray
et al.,, 2014); Nicolazzi et al. (2015), lllumina developed the Ovine 50K SNP chip,

containing 54,241 SNPs, and the Goat SNP50 BeadChip, containing 53,347 SNPs.
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1.7.3 Use of molecular markers in the prediction of breeding value

Even though traditional genetic evaluation methods have made some progress,
the recent development of genomic research and technologies has led to the
successful use of new tools and methods in the livestock industry. Marker-assisted
selection (MAS) is one of these techniques, which depends on utilizing genetic markers
to investigate any QTL associations with these markers. MAS refers to the use of
breeding values in conjunction with genetic marker information in the selection of
animals in a breeding programme on the basis of linkage analysis (Mrode, 2014; Simm
et al., 2020). The utilisation of marker loci that are linked to QTLs has the potential to
enhance genetic progress through the increase of selection accuracy and the
minimization of generation intervals (Fernando & Grossman, 1989). However, because
many genes usually influence quantitative characteristics, the expected gain from MAS
is limited by the fraction of genetic variance of the target trait, which may be explained
by the segregation of marker alleles (Ibtisham et al., 2017; Mrode, 2014). In addition,
the linkage between the interested marker and the QTL is probably not close enough
to sustain across the population, which involves structuring a linkage phase within each

family (Mrode, 2014).

As a typical form of MAS evaluation of quantitative genetic variation, Meuwissen
et al. (2001) developed genome-wide selection, usually known as genomic selection
(GS). They theoretically demonstrated a possible accuracy in selection of up to 80%.
This approach selects animals by combining pedigree and phenotypic data with all
possible genomic information from the whole genome. Genomic selection is
advantageous when traits, such as carcass quality, can be phenotyped in late life or

are very difficult or expensive to phenotype. It enables breeders to select animals early
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in life, thus reducing the generation interval (Oldenbroek & van der Waaij, 2014). In
addition, animal breeders can potentially predict breeding values with higher accuracy
than classical methods (Blasco & Toro, 2014). In dairy cattle, for instance, the
prediction accuracy for production traits exceeds 0.80 (Weigel et al., 2012).
Consequently, GS can substantially improve genetic gain with a much shorter time

span and lower effective labour costs.

Genomic selection involves the use of all available genomic markers, i.e., SNPs,
which are scattered across the genome. Potentially, they explain the total additive
genetic variance caused by QTLs. So that all QTLs are assumed to be in linkage
disequilibrium with at least one marker (Goddard & Hayes, 2007). Since all QTLs must
be in linkage disequilibrium with at least one marker, the marker density must be high
enough to achieve this (Mrode, 2014). To determine each animal's genomic estimated
breeding value (GEBV), the effects explained by all markers throughout the entire
genome associated with the trait variation are used. GS involves estimating the
markers’ effects in a reference population whose individuals are genotyped and
phenotyped for the trait. Afterwards, selected candidates only need to be genotyped,
and GEBYV for them is computed by associating their genotypes of the markers with

their predicted effects (Meuwissen et al., 2016; Mrode et al., 2018).
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1.7.4 Methods of predicting genomic breeding values

Recently, the advancement in SNP typing and the huge amount of SNP chips
produced for livestock have helped animal breeders utilize markers’ information to
estimate the genetic merit of animals. By this, it is expected that the genetic
improvement will be enhanced through a more accurate estimation and a decrease in
the generation interval. Utilizing the information of SNP markers in the prediction of
genomic estimated breeding value (GEBV) is called genomic prediction, and the
selection of candidates by this method is called genomic selection. Genomic selection
(GS) basically involves the estimation of SNP effects by solving linear equations in a
group of animals, i.e., the reference population in which the animals have genotypes
for these SNPs and phenotypes. Then, these SNP estimates are used to predict GEBV
when selecting candidates. The estimation of the accuracy of the prediction might be
conducted by correlating the predicted EGBV and the true breeding value (TBV) in the

validation set (Simm et al., 2020).

1.7.4.1 SNP-BLUP

This methodology relies on the utilisation of the same principles used by the
BLUP estimator approach to estimate the effects of all SNPs throughout the entire
genome in a reference population, typically consisting of several thousand individuals
who have undergone phenotyping and genotyping. It has been shown that in the
setting of classic BLUP, the number of equations formed for obtaining the solutions for
the random additive effects is equivalent to the number of animals for which breeding
values are being estimated. In the context of SNP-BLUP, equations are constructed

for each of the SNPs, taking into account the genotypes of these SNPs across all
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genotyped animals. Consequently, the solutions obtained correspond to the SNPs

themselves rather than the animals (Meuwissen et al., 2016).

This method assumes that the effects of all SNPs are normally distributed and
that they have common genetic variance. The typical general linear model, which

explains the phenotypes of individuals, can be formulated as follows:
y=Xb+Zg+e, (19)

where:

y is the vector of phenotypic records ; b and g are environmental fixed effects, and the
additive genetic effect for each ith SNP genotype, respectively; X and Z are design
matrices relating records to fixed effects and additive genetic effects of SNPs ,
respectively e is the error.

The Z matrix in (19) is a scaled matrix that was generated from a matrix called
the M matrix. The M matrix includes the genotype of each genotyped SNP for each
individual (It may be coded as 2, 0, and 1 for the homozygous, alternative
homozygous, and heterozygous individuals for the SNP, respectively). Then, the Z

matrix can be obtained by subtracting the P matrix from M, as follows:
Z=M-P, (20)

where:

The matrix P consists of 2p; elements, where p; represents the frequency of the
alternative allele of the SNP at locus j.
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According to Mrode (2014), scaling the M matrix into a Z matrix is suggested to account
for possible differences between various allelic frequencies of SNP and to set the allelic

SNP effects of an average equal to zero.

The solutions of b (fixed effects) and g (random SNP effects) in (19) can be

obtained by the MME equations as same as happened with BLUP in (18) as follows :

X'X X'Z b\ _ X’y)
(Z’X Z'7 + Ia)(ﬁ) (Z’y’ (1)

However, because the genetic variance aj practically is unknown, aj can be estimated
approximately from 62 by the following equation:
oi/2¥pj(1-p)), (22)

where:

p;j is the allelic frequency of jth SNP.

After obtaining the additive genetic effects of SNPs by solving for g , the genomic
estimated breeding value (GEBYV) for all individuals in the reference and validating
animals can be estimated by multiplying Z matrix (Fixed matrix of SNPs genotypes of

all individuals) by g (the estimated genetic effects of SNPs) as follow :

GEBV = Zg (23)
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1.7.4.2 Genomic best linear unbiased prediction (GBLUP)

The genomic best linear unbiased prediction (GBLUP) has been developed by
the use of constructing the ¢ matrix which defines the genomic relationships between
the individuals (Habier et al., 2007; VanRaden, 2008). This technique is comparable to
Henderson (1976) with MME (BLUP). Nevertheless, rather than using the additive
numerator relationship (4), it makes use of the genomic relationship (G) matrix, which

is derived from the SNPs marker information (Prince & Gowane, 2017).

The conventional BLUP approach involved the utilisation of the A matrix inside
the Mixed Model Equations (MME) framework to solve the equations and obtain
estimates for the breeding values (a). Given that parents pass on half of their genes
exactly to all of their offspring, it defines a predicted percentage of shared genes
between a pair of individuals. This implies that siblings who share both parents inherit
precisely 50% of their genetic material from each parent, but this may not always hold
true in practise due to the inherent variability in Mendelian sampling. In contrast, the G
matrix serves to distinguish the observable genetic relationships among individuals via
the utilisation of genotyped markers (Simm et al., 2020). As a result, it may be inferred
that it offers a higher degree of accuracy compared to matrix A. However, this needs
the utilisation of an extensive amount of markers in order to adequately represent the

relationships between individuals, hence enhancing its accuracy precision.

Let us consider the following general model:

y=Xb + Ba + e, (24)
where:

y is the vector of phenotypic records; b and a are vectors of fixed effects and genomic
additive effects, respectively; X and B are the incidence matrices which relate records
to b and a vectors, respectively; and e is the random residuals.
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The genomic breeding values (GBV) of the animals which are equivalent to the
additive genomic effects (a) are computed directly via the MME equations, wherein

a = Zg as we saw that in the SNP-BLUP method. This means that:

var (a) = ZZ'o},

and given thatthe o = ¢/ 2Yp;(1 — p;) as in equation (22), then the scaled matrix
of G can be obtained as follows:

z7z'

= 25pa-p) (25)

which means that the Var(a) = Go2.

Then, the predicted genomic breed value (GEBV) can be obtained by the MME
procedure using for example the animal model, by replacing the A matrix with the

matrix G as illustrated in (26):

X'X X'B 13) _ (X ’y)
(B’X B'B + G-la) (a B'y) "’ (26)

aé
where «a equals —.
g

a

The GBLUP approach offers advantages in terms of utilising the same software
used for standard BLUP, with the key modification of substituting the A matrix with the

G matrix. Additionally, the utilisation of molecular information enables the capture of
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variations among similar individuals which rise as a result of Mendelian sampling
variance. An accurate estimation of the relationships among individuals can be
obtained even in a population with a poor pedigree (Mrode, 2014). However, the
inversion of the G matrix could not be feasible as the population gets larger. In addition,
the above genomic assessment approaches, i.e., SNP-BLUP and GBLUP could only
evaluate the genotyped animals (Weigel, 2017), and they are not straightforward to

evaluate the ungenotyped animals.

Due to the cost of genotyping or the unavailability of DNA samples for some
animals, especially the older animals, the GEBVs of the younger animals may not
contain information from their parents. In order to overcome this issue, a two-step
procedure for selecting candidates can be implemented. Initially, BLUP estimation is
done for all the animals with the help of phenotypes and pedigrees. Then, GEBVs
estimated by the mentioned genomic methods for genotyped animals can be combined

with the averaged-BLUP of their parents to obtain EBVs (Simm et al., 2020).

1.7.4.3 The single-step GBLUP (ssGBLUP)

Misztal et al. (2010) proposed a technique that estimates GEBVs for genotyped
animals and EBVs for ungenotyped animals by integrating EBV and GEBVs in a single
step. The underlying basis for employing this approach lies in the utilisation of genomic
data from genotyped animals to make inferences about the possible genomic
information of non-genotyped animals, exploiting the pedigree relationships that exist
between the two groups. The integration of genomic (G) and pedigree (A) relationships

among individuals into a single matrix, referred to as (H), is a fundamental aspect of

43



this approach. Therefore, the single-step genomic best linear unbiased prediction
(ssGBLUP) method has the capability to calculate breeding values for both genotyped
animals, known as genomic estimated breeding values (GEBVs), and non-genotyped
animals, referred to as estimated breeding values (EBVs) (Bermann et al., 2022;

Lourenco et al., 2020).

The utilisation of ssGBLUP is recommended, especially in cases where the
reference population size is limited, referring to individuals that have been both
genotyped and phenotyped. The utilisation of this approach has the potential to
minimise bias in the estimation of GEBV, as demonstrated by Rupp et al. (2016).
Additionally, it has been shown to enhance the accuracy of predicting candidates, as
evidenced by the findings of Carillier et al. (2013). The following linear mixed model

can explain the quantitative trait:
y=Xb+Ba+e |, (27)
where:

The breeding value of the animals (a) here is assumed to be partitioned into (a;) for
ungenotyped individuals, and (a,) for genotyped one.

So, the assumed variances for both breeding values would be as follows:
a1\ _ (A1 Az 2
Var(a2>_<A21 G >®0-a1

a
or by taking A as a common factor, Var (a;) =4 + (8 G _OA ) ®
22

where:

A,, is the pedigree relationship of the genotyped animals; G is the genomic
relationships between genotyped animals.
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Because of that a, = Zg (23) , and the Var (a,) = Go? (25), so a, can be estimated from

the genotyped animals by the following equation:

a, = A, A33Zg +e (28)

So that:
Var (a;) = A1457GAZ; Ay + Ayq - ApAZ3 Ay

It can be shortened to:
Var (ay) = Ay1 + A12455(G — Ay)AZ3 Ay,

and Cov (ay, a,) = A1,A55G

The (Co)variance matrix of both genotyped and non-genotyped animals is combined

together in one matrix called (H):

Hy, H
H = ( 11 12)
Hy1  Hyp

H = Ay + AAz (G — Ap)AZ3 Ay AAzlG
GA53 Ay, G

Because the inverse of H matrix is involved in the MME equations, The inverse of H
can be constructed as proposed by (Aguilar et al., 2010; Christensen & Lund, 2010)

by following:

0 0
-1 — -1
=4 +<o G‘l—Ag%)

Then, the solutions of a values can be estimated by the MME as follows:

(X’X X'B )(B) _ (X ’y)
B'’X B'B+ H'a/\a/ \B'y
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1.7.5 Challenges to implement genomic selection in small ruminants

Potential advantages of implementing genomic selection (GS) instead of
traditional selection methods in small ruminants (namely sheep and goats) may arise
from the potential increase in the accuracy of predictions. Nevertheless, the expense
associated with SNP genotyping may exceed the economic worth of the animals,
posing a significant challenge. Multiple factors play a significant role in the precise
estimation of genomic breeding values in small ruminants (SR). These factors mostly
include the size of reference populations, the heritability of the trait, the density of
markers, the linkage disequilibrium (LD) existing between markers and quantitative
trait loci (QTLs), and the specific method employed for genomic prediction (Goddard &
Hayes, 2007; Hayes & Goddard, 2010; Yan et al.,, 2022). Thus, the expected
advantages of genomic selection (GS) in SR may be comparatively lower than those
observed in the field of cow breeding. As an illustration, it is commonly observed that
the generation interval in SR is typically short, with economic traits being manifested
in both sexes prior to reaching maturity. Additionally, an important number of
production traits exhibit moderate to high heritability. This means that we can expect
superiority of genomic selection over traditional selection in terms of prediction

accuracy, particularly with low heritable traits.

One of the most critical limitations to implementing GS is the reference
population's size, particularly in SR. As mentioned in the literature, genomic selection
relies on linkage disequilibria between markers and QTLs (i.e., the non-random
association). The accuracy of marker-assisted evaluation of breeding values is largely
affected by the number of genotyped animals and by the genomic relationships of the

animals between the training and reference populations (Oldenbroek & van der Waaij,
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2014). Besides, if the heritability of the trait is low, it needs a large number of genotyped
animals and recorded phenotypes to obtain acceptable accuracy. Daetwyler et al.
(2012) showed that the accuracy of GEBV is well correlated with the size of the
reference population and the trait’s heritability. However, Blasco and Toro (2014)
stated that this issue might be minimized by using information from multiple breeds
whose individuals are genetically related or by using information from several

generations.

The method used for estimating GEBVs is another factor that can impact the
accuracy of the estimation (Legarra et al., 2009; Misztal et al., 2013). In such a small
reference population, the ssGBLUP method is preferable over other genomic methods
because it integrates all available information from phenotypes, pedigrees, and

genomic relationships in a single step.

Marker density and linkage disequilibrium (LD) between markers and QTLs are
essential determinants of GEBV accuracy. A low level of LD involves high-density
markers to capture most of the genetic variation in the population. With high LD, the
marker effects are more precisely estimated, resulting in a more accurate estimation
(Sadan & Valsalan). Rupp et al. (2016) discussed another issue: the higher cost of
genotyping relative to the animal production value is still an economic barrier to
implementing genomic selection in sheep and goat breeding schemes. Further, many

economic traits, like growth traits, are feasible to record before the reproductive stage.
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1.8 Inbreeding

1.8.1 Introduction

Adopting BLUP and advanced GBLUP approaches to estimate animals'
EBVs and subsequently rank them upon their EBVs would usually favour related
animals for selection (Mrode, 2014). The implementation of intensive selection, which
means using a limited number of sires and dams for breeding, along with the closed
nature of populations in breeding programmes, can result in a rise in inbreeding and a

decline in genetic variation (Venkataramanan et al., 2016).

Animal breeding programmes are expected to be coupled with the development
of inbreeding. Evaluation of inbreeding's level within animal populations, particularly in
the context of a closed breeding programme, is crucial due to its potential impact on
reducing genetic variation and inducing inbreeding depression. In practice, the
avoidance of inbreeding is unattainable due to the inherent impossibility of preventing
mating among closely related individuals within a finite population. However, the level
of inbreeding can be appropriately controlled and managed through the
implementation of a well-designed breeding programme that takes into account a
number of factors that have the potential to limit the degree of inbreeding (Kristensen
& Sgrensen, 2005). In order for animals to respond to future selection and to reduce
the detrimental effects of inbreeding depression, inbreeding levels should be kept to a

minimum in order to retain appropriate levels of genetic variability.

The amount of inbreeding is typically expressed through the calculation of the
inbreeding coefficient F. This coefficient represents the probability of an individual

has two identical alleles by descent (IBD) at any locus, in relation to a base population
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(Falconer, 1996; Mrode, 2005). The two alleles are called IBD when they originate from
a single replicated allele inherited from a shared ancestor. We refer to the locus that
have IBD alleles as autozygous genotype. In contrast, a pair of alleles in any locus that
share the same DNA nucleotide sequence but are not descended from a common
ancestor is referred to as identical by state (IBS), and the genotype is known as

allozygous(Hartl, 2020).

The assessment of inbreeding level may be better indicated by the computation
of Inbreeding rate (4F) rather than relying just on the F value. According to Falconer
(1996), the F value is influenced by the pedigree depth which may be overestimated
or underestimated. The increase in inbreeding AF can consider the variation in
pedigree information. Inbreeding depression and genetic variation can be effectively
monitored using this indicator. Using this indication, one may determine how long can
keep the flock until critical levels of inbreeding occur (Ceyhan et al., 2009). The rate
can be regarded as the difference between the mean inbreeding coefficients of animals

on an annual basis or generation interval (Oldenbroek & van der Waaij, 2014) .

According to Falconer (1996), levels of inbreeding can be considered
acceptable and non-detrimental if they remain below 10%. In the context of inbreeding
rate, Nicholas et al. (1989), proposed that a yearly inbreeding rate of no more than
0.5% would be considered acceptable. As per Tahmoorespur and Sheikhloo (2011),
the FAO recommends that the rate of inbreeding should not surpass 1% every
generation in order to prevent or mitigate the severe effects of inbreeding depression.
As a result, it is of the utmost significance to closely monitor the level of inbreeding
within a population and implement strategies to control it, as this is essential for the

development and maintenance of an efficient selection programme.
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1.8.2 Consequences of inbreeding

The ongoing maintenance of adequate levels of genetic variability is necessary
in order to maintain an effective response to selection within breeding programmes
(Howard et al., 2017). Inbreeding is a determinant factor in the reduction of genetic
variability within a population, because it increases the frequency of homozygotes
relative to the frequency of heterozygotes. Hence, it is emerging as an essential
consideration in genetic improvement projects. According to the review of Kristensen
and Sgrensen (2005), an increase in the average inbreeding coefficient within a
population has been demonstrated to result in a subsequent decrease in the additive
genetic variance (V,). This decrease in V, is a matter of great concern for animal
breeders because it limits the response to selection of a trait under selection.
Generally, it is expected that the genetic variance decreases in the long term, while the
additive genetic variance may increase in the short term due to the conversion of

nonadditive effects to additive effects (Howard et al., 2017).

Within a population, inbreeding tends to increase the homozygosity status of
genotypes, allowing an equal chance for either recessive or dominant alleles to set in
a paired form. This implies that the originally concealed alleles in the heterozygous
state are now exposed and capable of being expressed. The manifestation of
recessive alleles usually leads to a range of detrimental outcomes in animals, including
weakened or nonviable offspring, reduced animal performance, and reduced fertility.
Conversely, inbreeding results in a decrease in heterozygosity within the population,

which in turn reduces genetic variation (Howard et al., 2017).

Inbreeding depression is another detrimental outcome characterised by a

decrease in the average phenotypic value of a characteristic as a result of inbreeding.
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Many economic traits in farm animals exhibit significant susceptibility to the influence
of inbreeding, including but not limited to milk production, growth characteristics,
survival rates, reproductive success, onset of sexual maturity, and sperm quality.
Research findings indicate that reproductive traits might be more susceptible to
influence compared to production characteristics, but meat quality traits are minimally
or not impacted at all (Mandal et al., 2004; Wakchaure & Ganguly, 2015). Table 3
shows numerous studies investigating the effect of inbreeding on some growth traits

in sheep and goats.

The extent of inbreeding depression can vary throughout populations, as it is
conditional upon the frequency of alleles, which is influenced by both genetic drift and
the intensity of selection (Howard et al., 2017). It is also influenced by the degree of
dominance. According to Crow (2017), the change in the mean phenotypic value of a
trait due to inbreeding is expected by the formula:

2F ¥is1piqids, (29)

where:

F is the coefficient of inbreeding, p;, q;,and d;, are dominant and recessive allele
frequencies, and degree of dominance, respectively for the ith locus.
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Table 3. Estimates of inbreeding depression on some growth traits in various breeds
of sheep and goats.

BW (birth weight), WW (weaning weight), W6 (six-months weight), W12 (yearling

weight).
Name of Growth % of inbreeding Reference
breed trait depression per 1%
increased inbreeding
BW 3.4 (g)
Iran-Black WW -32.1
sheep W6 14.4 Eg; (Baneh et al., 2019)
W12 -23.7 (9)
Sakiz BW -0.02 (kg) (Ceyhan et al., 2011)
sheep ww Not significant
BW -0.04 (kg) (Muasya et al., 2006)
Kenya V4 (Kg
oats WW Not significant
J W12 -0.22 (kg)
BW Not significant (Gholizadeh & Ghafouri-
Baluchi  WW Not significant Kesbi, 2016)
sheep W6 -0.02 (kg)
W12 -0.13 (kg)
BW Not significant (Venkataramanan et al.,
Nilagiri ww -0.05 (kg) 2016)
sheep W6 Not significant
W12 -0.07 (kg)
(Hussain et al., 2006)
Thalli BW -0.05 (kg)
sheep wWw -0.05 (kg)
Iranian Bw -0.01 (kg)
Moghani W6 :8'(2)2 Etg; (Dorostkar et al., 2012)
sheep W12 -0.04 (kg)
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1.8.3 Control of inbreeding level

The level of inbreeding can be influenced by the practice of breeding strategies
like artificial insemination and the application of high selection intensity (Mandal et al.,
2004). Additionally, the level of inbreeding in a population is influenced by factors such
as the mating system, population size, reproductive efficiency, and the ratio of sex to
females (Ceyhan et al., 2011). According to Pedrosa et al. (2010), a reduction in the
number of animals utilised in breeding programmes leads to a higher intensity of
selection, resulting in a rise in inbreeding. Therefore, increasing the number of males
accessible to mating can be considered an effective strategy for reducing the level of

inbreeding.

There are a number of actions that animal breeders can take to avoid inbreeding
or at least maintain it below the threshold. According to Wakchaure and Ganguly
(2015), several strategies can be employed to minimise inbreeding or reduce its rate.
These include the avoidance of mating between closely related animals, the utilisation
of computer programmes specifically designed for mating purposes, the introduction
of new genetic material through the purchase of new animals, and an increase in
population size. When the population effective size is less than fifty, the inbreeding

curve increases rapidly (Oldenbroek & van der Waaij, 2014).
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1.8.4 Methods of estimating inbreeding coefficient (F)

In order to calculate the coefficient of inbreeding (F) using a pedigree, it is
necessary to first identify a common ancestor between the parents of individual i. This
is because the only way for individual i to receive alleles that are identical by descent
(IBD) is if its parents had a common ancestor. Afterwards, every path originating from
the individual i are followed in an upward direction towards the shared ancestor and
then downwards towards the same individual, as depicted in Figure 2. Next, the
probability of passing on an allele to the offspring is determined, which is 50% as
dictated by Mendel's law of gamete segregation. Nevertheless, the probability of the
common ancestor transmitting an allele (IBD) is 0.5(1 + F), where F represents the

inbreeding coefficient of the common ancestor.

Probability of transfer
allele IBD by descent is Common
0.5(1 + Fy) Ancestor X

I
| l
Probability of transfer
allele IBD is 0.5 for the Sire
sire and dam

Animal A

Figure 2. Calculation of the inbreeding coefficient through the ancestral path.
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Mathematically, the F; value of individual i can be calculated as proposed by Hartl
(2020) by the following:
F; = (0.5)™(1 + Fca), (30)

where:

n is the number of ith ancestors leading to the common ancestor, F4 is the inbreeding
coefficient of the common ancestor CA.

If there are more than one common ancestor, then the F; equals:

Zall paths(o-s)n(l + FCA)' (31)

The utilisation of the pathways approach for computing the inbreeding
coefficient may become unfeasible and complex when dealing with a larger number of
population, resulting in the challenge of tracing all paths for every ancestor. Henderson
(1976) established a recursive method for computerization compatibility whereby
builds additive genetic relationships among individuals in a matrix known as the
numerator relationship matrix (A). The matrix is symmetrical, with the diagonal
elements (a;;) equal to 1+ F;, where F; represents the inbreeding coefficient of
individual i. The off-diagonal elements (a;;) reflect the additive genetic relationship
between individuals i and j. Estimation of variance components and breeding values
is utilising the A matrix, as it is assumed that the variance of the additive genetic effects

V, = Ac?.

The above approach of computing F values involves assigning numerical codes
to the animals, ranging from 1 to n, in a particular order where the parents come before

their offspring. It has the following rules to estimates the elements of A matrix:
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1. If both parents the sire and the dam of animal i are known, then the additive
genetic relationship between animal i and animal j is calculated as:

(aj; = aij) = 0.5(Gjsire of i + Aaamori)s @Nd a;; = 1+ 0.5(Asire,aam)-

2. If only one parent is known, then:

(aj; = a;j) = 0.5(ajsire of i), @nd a;; = 1.

3. If both parents are unknown, then:

(ajl- = aij) =0, and aj; = 1.

Several algorithms have been developed to calculate the F value with greater
computation efficiency, especially for large populations. The techniques primarily relied
on adaptations to the tabular method or Henderson (1976) findings, who demonstrated
that the A matrix may be decomposed into three matrices as following:

A=LDL, (32)

where:

The L matrix is a lower triangular matrix that represents the genetic contribution of
parents to offspring; the D matrix, on the other hand, is a diagonal matrix that
represents the variance in Mendelian sampling.

This method involves the calculation of L matrix column by column at a time, and then

accumulates the summation of L elements for each row of ith animal, wherein the

diagonal elements of A matrix which equals 1 + F can be expressed as:
a;; = Z; lizjdjji (33)

A comparison study conducted by (Sargolzaei & Iwaisaki, 2005) using
simulated data compared between four common algorithms to compute inbreeding

coefficient (F). They compared Tier (1990), Meuwissen and Luo (1992), Quaas (1995),
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and Sargolzaei and lwaisaki (2004). The algorithm used by Tier (1990) is an adaptation
for the tabular method. The numerator relationship A is only used partially. This method
utilises a recursive process to identify and mark only what is needed for calculating the
diagonal elements of matrix A. Subsequently, the flagged elements are computed

using the tabular method.

The algorithm used by Meuwissen and Luo (1992) was faster and superior
computationally to that used by Tier (1990), when the average number of generations
is not too large, and when a new patch of animals added to be estimated. They
proposed a method that computes the elements of the lower triangular matrix L row
by row at a time, rather than by columns, using the principles of Henderson's (1976)
decomposition of matrix A in equations 41 and 42. This feature allows to use previously
calculated inbreeding coefficients, for the estimation of newly added animals. It entails

creating of ancestral list for every animal. The L elements are calculated as follows:
lij = ZkeANCinPj 0.50i, (34)

where:

ANC; is the ancestors list of animal i including the ith itself, and P; includes the progeny
of ancestor j.

However, this approach requires tracing the complete pedigree of the animal
being estimated, including all ancestors, regardless of whether they are common or
not, which involves summing all the diagonal elements of that animal row of matrix 4,

which can be a time-consuming process (Mrode, 2014). What is really needed is just
the common ancestors, considering that the F value of animal i equals 1/2 Asire;dam;-

Accordingly, in 1995, Quaas developed modifications to the Meuwissen and Luo
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algorithm, requiring the creation of two lists of ancestors for sire and dam of the animal,
which involves the simultaneous developing of two rows of matrix L. Which means only

computing the non-zero elements of the two rows of the sire and dam.
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1.9 Objectives of the thesis

Genetic improvement programmes serve as an important tool to improve animals’
performance, including growth traits. These programs rely on the accurate estimation
of key genetic parameters that define the population, such as the heritability of the trait
and the genetic correlations between traits. WQLRS is a station in Oman that keeps
local sheep and goats for breeding brogramme, i.e., genetic improvement through
within-breed selection, with the goal of improving the animals' performance and

focusing on their growth potential to enhance meat output.

Thus, the chief objective of this thesis (Chapter 4) was to estimate genetic
parameters that include heritability of growth traits and the genetic correlations, as well
as the genetic trend for each trait from 2008 to 2020, focusing on the most common
goat and sheep breeds exist in Oman: Omani sheep (OS), Jebel Akhdar (JA), and
Batinah (BA) goats. The weights at birth (BW), weaning (WW), six months (W6), and

yearling (W12) were the targeted traits.

The efficiency of breeding programmes can be impacted by inbreeding level
within population since it reduces genetic variability (Ceyhan et al., 2011; Mandal et
al., 2020) and can cause inbreeding depression (Falconer, 1996). Increased levels of
inbreeding are typically associated with genetic improvement programmes, particularly
in closed-population programmes that prioritise within-breed selection. The
investigation of the level of inbreeding in the three populations, tracking how it changed
from 2008 to 2020, and suggesting a number of strategies to control it was the second

goal of this thesis (Chapter 3).
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In chapter 5, | conducted a simulation study using Omani sheep as a case study
in order to investigate if genomic methods that include Genomic Best Linear Unbiased
Prediction (GBLUP) and Single Step Genomic Best Linear Unbiased Prediction
(ssGBLUP) could be used to predict breeding values of selected animals more
accurately than the traditional BLUP approach. The simulation used the real pedigree
and heritability level described in Chapter 4. As a result, theoretical guidelines have
been proposed for the possibility of implementing genomic selection in Omani

populations of sheep and goats.
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CHAPTER TWO

MATERIALS AND METHODS
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2.1 The study populations

Three populations were considered for the research of this thesis, including two
indigenous breeds of Omani goats, namely Jebel Akhdar (JA) and Batinah (BA), as
well as one breed of sheep called Omani sheep (OS). They are primarily used for the
production of meat (Shaat and Al-Habsi, 2016). Although raw goat milk is infrequently
consumed, it could be used to make byproducts like butter and cheese for household
consumption only. Sheep milk is rarely used, and the fibre may be used by Bedouins

to make rugs and household artifacts (Mahgoub et al., 2010).

The choice of these particular breeds for the study was primarily based on three
factors. Firstly, they are relatively more productive than other small ruminants available
in the country. Secondly, they are common and widely raised by farmers in Oman.
Thirdly, they have been housed and subjected to breeding programs for genetic
improvement at the Wadi Qurayyat livestock research station (WQLRS), where | am

employed.

The investigated flocks were managed in a semi-intensive production system at the
WQLRS. The animals were fed with a concentrated feed ration that contained a
minimum of 14% crude protein, along with dry Rhodes grass hay. The amount of
concentrate feed varied depending on the age and physiological state of the animals,
from 250 g/head to a maximum of 700g/head. The growing animals were gradually fed
concentrate until they reached a maximum of 600 g per head at approximately six
months of age, and this amount continued until they reached maturity. The adult
females were provided with the highest possible quantity of concentrate during the final

trimester of pregnancy and for flushing during the early stage of lambing/kidding. The
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dry grasses were frequently provided ad libitum, with occasional restricted amounts

based on resource availability from year to year.

2.1.1 Jebel Akhdar (JA) goats

The breed is typically medium-sized and brown in colour (Shaat & Al-Habsi,
2016) as shown in Figure 3 and Figure 4 It is characterised by its considerable size
and weight, making it one of the largest and heaviest breeds among the various
indigenous goat breeds found in the country. Its distribution is extensive, primarily
concentrated in the interior regions of Oman, particularly in the Jebel Akhdar mountain
area. Animals of this breed usually have twisted horns and pendulous ears (Mahgoub

et al., 2005).

According to the recent findings published by the Ministry of Agriculture and
Fisheries in Oman ( MAF (2019), it was observed that JA goats, which underwent
genetic improvement at the research station of WQLRS, exhibited an excellent fertility
rate of 94%. The average litter size (LS) was recorded as 1.47, meaning that for every

100 mated female goats, almost 147 kids were produced.

2.1.2 Batinah (BA) goats

The animals belonging to this particular breed possess a coat containing hair
that ranges in colour from dark brown to black. Notably, these animals also possess
distinct white markings on their face, abdomen, and lower legs, as depicted in Figure

5. They are reared mainly for meat production (Shaat & Al-Habsi, 2016). The breed
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under consideration has an excellent fertility rate of 94% and a LS rate of 1.43, which

is comparable to the JA goat breed (MAF, 2019).

fRgEe St

Figure 4. An adult female of Omani Jebel Akhdar goat.
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Figure 5. Adult female of Omani Batinah goat.

Figure 6. Ewe dam of Omani sheep raising its offspring.
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2.1.3 Omani sheep (OS)

This particular breed is well recognised as one of the foremost indigenous sheep
breeds in Oman. They are primarily found in the north, and producing meat is the
primary objective of their breeding. The dominant colour exhibited by this breed is
black, with a relatively small proportion displaying white or brown coloration, potentially
attributable to the presence of recessive genetic segregations. The fleece of these
animals exhibits a short and coarse nature. The individuals feature a cranial structure
that exhibits elongation, accompanied by a nasal region that is characterised by a
curved shape (al-Subeihi et al., 2018). Figure 6 illustrates an Omani ewe nursing its
lambs. The fertility rate stands at around 90%. The breed is characterised by a
comparatively greater rate of LS (1.70) compared to goat breeds, following the

implementation of breeding improvements (MAF, 2019).
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2.2 The breeding programme at WQLRS station

The station is staffed with technical and veterinary specialists. The technicians
are responsible for supervising feed management, collecting and recording data, and
shearing animals. All the animals at the station undergo the process of dipping and
shearing during the late summer season. They get regular vaccinations based on
governmental recommendations and deworming treatments administered by the

veterinary staff.

Without the use of a selection index, the breeding program at WQLRS was
developed using a multiple trait selection strategy. It was suggested that birth type
(BT) and weight at six months (W6) would be the selection criteria for replacement
males. The male twins with good W6 were kept as future sires, and the other males
were either sold or given to the local farmers. One main purpose of the breeding
program was to increase the litter size of the breeds under investigation, which is why
BT was prioritised. While the selection of the W6 trait was based on literature that
shows that it usually is moderate to high heritable and it has a strong correlation with
other growth traits, particularly with W12. Therefore, enhancing W6 would enhance
other growth traits. To maintain as many of the replacement females as possible for
breeding, the selection process for them was less intensive than that for the males.
Priorities for selecting females were set by the following: mothering ability, BT, W6,

yearling weight (W12), and weight at 18 months.

The rams and bucks (adult males of sheep and goat, respectively) were usually
retained in service for a maximum of two years during a one-year mating season, while
the female was kept in service until it reached eight years old, unless it was culled.

Generally, the flocks were in a closed breeding program, except that three bucks of JA
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were introduced from outside the station in 2011 and 2014, one buck of BA in 2010,

and three OS rams in 2014.

The goats went into their mating season in mid-September, following the
summer season, while the sheep's mating season occurred in October. The females
chosen for breeding should have a minimum weight of 30 kg. The selected rams/bucks
were distributed at random to different pens, which included randomly assigned
females. The males were kept with the females for a duration of 45 days for goats and
30 days for sheep. This is because ewes have a shorter oestrous period compared to
does. Most of the animals’ pens were located in a separate barn with one animal
keeper for each breed, with the exception of one barn that included pens for the three

different breeds.

To ensure optimal management, the kidding season for goats was scheduled to
commence in February and end in March, while the lambing season for sheep was set
to begin in March and end in April. Both kids and lambs were kept with their dams until
they were weaned. Because the animals were born on various dates, weaning took
place at two different intervals to ensure that they roughly reached three months of age
at weaning. The majority of the kids were weaned in early June, while the others were
weaned in July. The majority of lambs were weaned in late June, with the remaining
lambs being weaned in July. At birth, the animal was immediately weighed and ear-
tagged with its unique identification number. The data recording covered the animal's
identification, paternal and maternal identities, sex, date of birth, type of birth, pen, and
measurements of weight at birth (BW), two months (WW), 6 months (W6), and 12

months (W12) as illustrated by Figures 7 and 8. Afterwards, kids/lambs were
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separated and distributed into different groups according to their sex, body weights,

and type of birth.

Figure 7. Recording book of the newly born animals for each breed at WQLRS.

It contains, starting from the left side, Dam ID, Progeny ID, Sex, Birth weight, Date
of birth, Type of birth, and Remarks.

69



A

B ¢

R D SD

1
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3150 31763
32160 31763
30395 31763
32396 31763
3870 31763
3871 31763
30603 31763
30606 31763
32104 31763

10 32676 31763

Figure 8. A database of the live body weights of lambs belonging to the OS breed at
WQLRS.
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30429
30429
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30583
30613
30613
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30984
307
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Breed PenNo BDate Sex YRP Bthyp BW WW DWW

sheep
sheep
sheep
sheep
sheep
sheep
sheep
sheep
sheep
sheep

1

1
1
1
1
1
1
1
1
1

100372019
100032019
23/0212019
2300212019
26/03/2019
26/03/2019
0210312019
02032019
0710312019
031032019

!

!
1
!
!
!
1
1
1
!

2019
2019
2019
2019
2019
2019
2019
2019
2019
2019

2
2
2
!
2
2
!
2
1
2

M9

2845 131
2300 81
200

300 154
2500 62
2300 137
240 16
3200 138
300 121

2200712019
200612019
20712019

200612019
20712019
200612019
2200712019
200612019
200612019

N
W6

143
196

238

202
21
164
21

0 P[0
pws W12 DW12
0710972019

071092019 30 3110372020

071002019 37 3110372020
08/f0i2019 31 011042020
081012019 35 01/042020
0811012019
0710912019

This example illustrates how animal weights are digitally recorded in an Excel

spreadsheet. From left to right, the sheet provides information on serial numbers,
animal IDs, sire IDs, dam IDs, breeds, pen numbers, birth dates, animal sex, birth
year, birth type, BW, WW, date of WW recording, W6, date of W6 recording, W12,

and date of W12 recording.
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2.3 Collected data

Records of pedigreed animals made up of 2,826 records, 2,609 records, and
3,530 records for JA goats, BA goats, and OS sheep, respectively, were included in
the data collection. The total number of individuals in the pedigree for the JA, BA, and
OS breeds was 3,128, 2,947, and 3,931, respectively. Tables 4 and 5 summarize the
data structure for each recorded trait of the three breeds and the pedigree structure,
respectively. Data was collected from the WQLRS station over a 13-year period, from
2008 to 2020. The data used for analysis comprised the live body weights of animals
at birth (BW), weaning (WW), six months (W6), and one year (W12). Besides, it
included the animal's identification, paternal and maternal information, date of birth,
age of the dam, sex, type of birth (BT), year of birth, pen, and the dates when weights

were recorded.

Table 4. Number of records for each growth trait in JA goats, BA goats, and OS
sheep.

BW (birth weight), WW (weaning weight), W6 (six-months weight), and W12 (yearling
weight).

Trait JA goats BA goats OS sheep
BW 2,826 2,609 3,530
ww 2,342 2,186 3,120
W6 1,706 1,689 2,374
W12 1,265 1,208 1,745
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Table 5. Pedigree structure of the three breeds of JA goats, BA goats, and OS

sheep.

Item JA BA goats OS sheep
No. of animals without offspring 2,231 2,091 2,782

No. of animals with offspring 897 791 1,149

No. of animals with unknown sire 235 273 401

No. of animals with unknown dam 299 338 401

No. of animals with both parents’ known 2,826 2,610 3,530

No. of sires with progeny 129 116 134

No. of dams with progeny 768 675 1,015
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2.4 Statistical analysis

2.4 1 Estimating inbreeding levels in the three breeds (Chapter 3)

Initially, all existing relationships between individuals were reviewed and

checked. The checking process included the following considerations:
e There are no duplicate numbers in the column of animal IDs.
¢ The animal's date of birth is more recent than that of its parents.

e The identification number of the offspring is greater than the numbers of its

father and mother.

e Matching the animal to its sex is necessary in order to prevent the female

animal from being listed as the sire and vice versa.

e Reviewing that the sire number is not found in the dams’ column, and vice

versa.

To facilitate the analysis computationally, all animals were initially assigned new
numerical identifiers in ascending order, commencing from 1 to n animals (n is the
overall animals in the pedigree). The renumbering process was undertaken to be
formatted for the subsequent analysis involved by the analysis algorithm. The
calculation of inbreeding coefficients (F) for each animal was performed using Fortran
source code, following the algorithm proposed by Meuwissen and Luo (1992). The
algorithm utilises the decomposition principles of the additive genetic relationship
matrix (i.e., numerator relationship matrix (A)) as described by Henderson (1976). The

A matrix can be expressed as a result of three main matrices as follow:
A=LDIT, (35)

73



Where:

L is a triangular matrix that contains I elements which explains the proportion of the
genes contributed by the ancestors for a given animal considering that half of the genes
are passed to offspring; D is a diagonal matrix which explains the within-family variance
(i.e., Mendelian sampling variance), which is calculated by the following equation:

D;; =0.5— 0-25(F5ire_i - FDam_i), (36)
where:

D;; is the diagonal element of ith animal; Fg;..; and Fp,, ; are the inbreeding
coefficients of ith sire and dam, respectively.

Quaas (1976) has shown that from the A decomposition as in equation (35) that:

(ay) = 23‘:1 lijlij djj, (37)
where:

a;; is the diagonal elements of the A matrix that equals 1+F, where F is the animal's
inbreeding coefficient.

The algorithm suggested by Meuwissen and Luo (1992) for the calculation of F
is considered a fast method, and more adaptable to be updated when new group of
animals are added, because of that it calculates the elements of L matrix row by row
at a time instead of column by column as previous algorithm presented by Tier (1990).
This enabled it to get benefits of the utilisation of previous computed F values
(Sargolzaei & Iwaisaki, 2005). It entails creating of ancestral list for every animal. The

L elements are calculated as follows:

lij = ZkeANCinPj 0.5Li, (38)

where:

ANC; is the ancestors list of animal i including the ith itself, and P; includes the progeny
of ancestor j.
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The overall mean inbreeding level (F) of the population was determined by averaging
the F values of all individuals in the study course. The trend of inbreeding over the
course of 13 years (2008-2020) was determined by conducting a regression analysis,

where F of each year was regressed against the corresponding year of production.

Pedigree quality was assessed using two measurements: the proportion of
animals having known parents for both sire and dam, and the number of
equivalent complete generations (Mandal et al., 2020; Rashidi et al., 2015). Number of
equivalent complete generations for each ith individual(EqG;) were computed following

Maignel et al. (1996) as follows:

EqG; = %(Y/,)", (39)
Where:

n is the number of generations which separate the individual i from each known
ancestor.

Then, EqG; of all animals were averaged EqG, to be used in the quality assessment.

2.4.2 Estimation of genetic parameters of the growth traits in the three breeds (Chapter

4)
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2.4.2.1 Records adjustment

The data underwent a preliminary inspection and adjustment to avoid any
potential biases. Initially, outliers were removed from the analysis. Outliers were
defined as values that exceeded the mean by three times the standard deviation. In
addition, the weights corresponded to the WW, W6, and W12 traits were adjusted to
90, 180, and 360 days, respectively. This adjustment was implemented to decrease
the variation in results from weighing animals at different ages, as there were
differences in age at the time of weighing. The adjustment of weights was based on

the following equation, as suggested by Inyangala et al. (1992) as follows:

[(animal’s weight of trait — animal’s weight at birth
Date of animal’s weighing — Date of birth

x adjusted days) + weight of BW] (40)

2.4.2.2 Significance of fixed effects

Initially, the significance of environmental fixed factors was assessed using
ANOVA by fitting a general linear model in the Minitab software (Minitab, 2021). This
was done to determine which fixed components should be included in the final animal
model, which was used to estimate the genetic parameters. The factors considered in
the analysis were year of birth (categorised into 13 levels), pen (categorized into 18
levels), sex (categorized into two levels: male and female), type of birth (categorized
into three levels: single, twin, and multiple), and age of the dam, which was included
as a covariate equation (41). All possible two-way interactions were examined, and
only the interaction with a P-value less than 0.05 was retained in the model. The Tukey-
Kramer method was employed to examine differences among pairs of levels of the

fixed variables. Only the components with a significance level (P-value) of less than
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0.05 were selected to be included in the animal model for the estimation of the genetic
parameters.
Yobea = W+ Year, + Sex, + Type of birth, + CovAge of damy + ezpca » (41)

where:

Y .bca is the animal’s observation in at year, b sex, ¢t type of birth, d" age of dam; p
is the population’s mean; e,j.4 is the random error associated with abcd™" observation.

2.4.2.3 Estimating (Co)variance components and corresponded genetic parameters
The (Co)variance components and their corresponding genetic parameters
were estimated by the restricted maximum likelihood estimator REML by fitting six
various univariate animal models with the WOMBAT software (Meyer, 2012). All
models fit the animal’s additive genetic effect, while they differ in including or excluding
maternal genetic and environmental effects. Then, the best model will only be

determined for the estimations. The six animal models were as follows:

(1) y=Xb+pa+e

(2) y=Xb+pBa+Zm+e, Cov(am)=0

(3) y=Xb+fa+Zm+e, Cov(a,m)= Aoy,

(4) y=Xb+fa+Wc+e

5) y=Xb+Ba+Zm+Wc+e, Covi(a,m)=0

(6) y=Xb+pa+Zm+Wc+e, Covia,m) = Ao,
Where:
y is a vector of records; b is a vector of the fixed effects; a, m, ¢ and e are vectors of
animal’s additive genetic effect, maternal additive genetic effect, maternal permanent
environmental effect and residual effect, respectively; X, B, Z and W are design

matrices relating records to the effects of b, a, m and c, respectively; A is the
numerator genetic relationship matrix.
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It was assumed that all the effects of the random factors follow the normal distribution

and that the mean equals zero, with variances equal to:

Viay = Ad§,
Vimy = Ao,
Viey = I0¢,
Viey = 192,
Where:

A and I are the numerator relationship matrix and identity matrix (order equal to the
number of dams and number of records), respectively; a2 , a2, , 62, and ¢ are animals'
additive genetic variance, maternal genetic variance, maternal permanent
environmental variance, and residual variance, respectively.

Choosing the best-fitted model was based on both the likelihood ratio test LRT
(Wilson et al., 2010) and the Akaike information criterion A/C (Akaike, 1974). The LRT
estimates the goodness of fit, and it can compare the models that differ by at least one
parameter. While the AIC method was used, it estimates the prediction error and can
compare models with the same or different number of parameters. The LRT tests the
significance of the random effect by comparing the loglikelihoods (LogL) between the
model that fitted the random effect and the model that ignored it. It is assumed that the

twice-difference of these loglikelihoods between the models follows a chi-square (x2)

distribution with one degree of freedom, so it is calculated as follows:
LRT =2(LogL(Full model) — LogL(Reduced model))
The effect was considered significant if the value of x2 corresponded to P < 0.05.

The AIC was calculated as:
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AIC = 2(LogL) + 2K,
Where:

K represents the number of fitted parameters, and LogL represents the maximum
loglikelihood of the model.

Estimates of direct heritability h2 , maternal heritability h%,, and proportional

maternal permanent environmental effects ¢ were calculated as follows:

Where:

o2, 0%, 6% and o2 are the variances of animal’s additive genetic effects, maternal
additive genetic effects, maternal permanent environmental effects and phenotypic
values, respectively.

The genetic r, and phenotypic r, correlations were estimated using four trait
multi-variate animal model as explained in equation (42), by fitting the most appropriate
model specified in the univariate analysis for each trait. The fixed effects fitted in the
multi-trait animal models were the same as those in the single-trait analysis for each

trait.

Vi X, 0 0 0 0 0\ sa,
v\ [0 X, 0 0 \[b, L0 B 0 0 \[a, N
V3 0 0 X; 0 ||bs 0 0 B 0]\as
Va 0 0 0 X,/ \b, 0 0 0 B,/ \%
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Where:

Y1, ¥2, ¥3 and y, are vectors of records for the traits of BW, WW, W6 and W12,
respectively; b4, by, bz and b, are vectors of the fixed effects for the traits of BW, WW,
W6 and W12, respectively; a4, a,, az and a, are vectors of animals’ additive genetic
effects for the traits of BW, WW, W6 and W12, respectively; my, m,, mz and m, are
vectors of maternal additive genetic effects for the traits of BW, WW, W6 and W12,
respectively; ¢4, ¢;, c3 and ¢4 are vectors of maternal permanent environmental effects
for the traits of BW, WW, W6 and W12, respectively.

X1, X5, X3, X4, B1, B2, B3, B4, Z1, Z5, Z3, Z,, W{, W5, W3 and W, are the incidence
matrices which relates the records to the fixed effects, animal’s additive genetic effect,
maternal additive genetic effect and maternal permanent environmental effect for the
traits of BW, WW, W6 and W12, respectively.

It was assumed that all the effects of the random factors follow the normal distribution

and that the mean equals zero, with (Co)variances structure as follows :

2
aq Ogq1 Oq1a2 Oa1a3 Oala4
2
a, |\ _ Oa1a2 Oa2 O0a2a3 Oa2a4
Var as | A% o o 02, o© ’

a ala3 a2a3 a3 a3a4

4 2

Oag1a4 Oa2a4 Oa3as Oqa

my O-mlmz Omims3 Omima
Vi m, Umlmz Om2m3  Om2ma
ar m 2 ,
3 Omim3 Um2m3 Om3 Om3ma
my 2
Omim4 Om2ms Om3ma Oma4

Oc1 Uclcz Oc1c3 Ocica

C /O' (o) g,
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Where:

A is the numerator relationship matrix and I is an identity matrix; 62, 62, 6%, 624, 651,
02,, 023, 024,04, 04, 0%, 04,02, 02, d% and g2, are variances of the animal’s
additive genetic effects, maternal additive genetic effects, maternal permanent
environmental effects and residual effects for the traits of BW, WW, W6 and W12,

respectlvely; Og1a2: Oala3: Oala4: 9aza3: Oa2a4r 9a3a4r Omim2: Omim3> Omim4: Om2m3

Om2m4r Om3mas Ocic2r Ocic3s Ocicar Oc2c3r Oczcar Oc3car Oele2s Octe3s Oeledr Ocze3r Tezes @Nd
O.304 are the covariances of the animal’s additive genetic effects, maternal additive

genetic effects, maternal permanent environmental effects and residual effects
between the traits of BW, WW, W6 and W12, respectively.

The genetic r, and phenotypic 1, correlations between the four traits were calculated

by following equations:

Ta_ Oqof traiti,aof trait 2

2 . 2 .
\/0' aoftrait1 X 0 qof trait 2

Tp _ OP of trait 1,P of trait 2

2 . 2 .
\/0' Poftrait1X O°Pof trait 2

In order to test the statistical significance of genetic correlations among traits, the LRT
was employed to compare the model fitted with the covariance to a model with a
covariance of zero (Wilson et al., 2010). The phenotypic correlations were tested by
doing a hypothesis test to determine if the correlation coefficient differs from zero

(Rajkumar et al., 2021).
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The estimated breeding values EBVs of animals were calculated using the
BLUP method, as described by Henderson (1973). They were generated by WOMBAT
software by-product (solutions of animals’ effects a) from REML estimations of (Co)
variance estimates via the multivariate analysis. Subsequently, the mean breeding
values EBVs of the animals born in the same year were regressed to the year of birth
in order to determine the genetic trend. Following the standardisation of the collected
body weight data based on the fixed effects, the phenotypic trend was determined by
calculating the linear regression of the adjusted means for a specific body weight in

relation to the birth years (Elsayed, 2013).
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2.5 The simulation study of implementing genomic selection in Omani sheep

(Chapter 5)

The Omani sheep breed was selected as a case study to investigate the
potential benefits of using genomic selection compared to traditional selection. The
study focused on three specific growth traits: BW, W6, and W12. These
traits correspond to three different categories of heritability: low, moderate, and high,
respectively. The simulated heritability estimates of the three traits were the same as
those obtained in Chapter 4 (genetic parameter estimation) in order to represent the
realized genetic characteristics of this population. The phenotypes of individuals were
generated by simulating the sheep genome of pedigreed animals, which was the same
real pedigree of this population used in Chapter 3. The EBVs of the animals were
predicted using three methods: BLUP, GBLUP, and ssGBLUP. The correlation
coefficient r was used to calculate the accuracy of the prediction by assessing the

relationship between the true breeding value (TBV) and the EBV.

2.5.1 Simulation of sheep genome

Steps of the genome simulation involved setting up simulated genetic loci, including
markers and QTLs, in simulated sheep individuals. The simulation was written in
Fortran source code (Appendix A), and it has been verified by checking the output files
of marker alleles and their corresponding genotypes (Appendix B), and the simulated
heritability was verified by WOMBAT analysis (Appendix C). It was based on two
sources of real datasets: the structure of the sheep genome and the real pedigree of
the Omani sheep breeding cohorts under study. The genome was defined by species

ploidy, the number of ovine chromosomes, the chromosomes’ length in cM units, the
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number of total simulated loci (markers and QTLs), and the assignment of markers and

QTL positions and their genetic effects.

The sheep’s genome was simulated to have 5 pairs of chromosomes with a total
length of about 400 cM. Reducing the simulation from the real number of ovine
chromosomes to only 5 chromosomes was because of computer efficiency limitations
and the limitation of array dimension in the Fortran language. Each chromosome was
evenly allocated 1,010 biallelic genetic loci (taking the codes of 1 for the dominant
allele and 0 for the recessive allele) totalling 5,050 loci, of which 50 distributed QTLs
and the rest were considered markers. Tables 6 and 7 illustrate the simulated genome

structure and the genetic parameters of the simulated traits.

Alleles of different loci on same chromosome may co-segregate more frequent
than normal. The frequency of this association between alleles of different loci depends
on the genetic distance between loci, which can be estimated by the recombinant
gametes. Therefore, in the simulation process, the allele’s type at first locus of the
formed gamete was determined to follow uniform distribution with frequency x = 0.5,
so that both alleles (1 and 0) have equal probability 50% of being picked. For the rest
loci of the formed gamete, they were determined taking into account the recombination
frequency among the adjacent loci, where x here follow, the uniform distribution is

adjusted to the recombination frequency as follow:

x < recombination frequency (between the two adjacent loci),

So, the frequency of co-segregated alleles of the different loci would appear more

frequent than normal.
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Table 6. Lengths in centiMorgan (cM) of the simulated five ovine chromosomes

Number of chromosome

Length in cM

1

a b~ WO DN

Total

80.72
70.63
100.90
70.63
70.63
393.51

Table 7. Description of the simulated genome and genetic model of the ovine

simulation study.

BW = birth weight, W6 = six-months weight, and W12 = yearling weight.

The genome

The simulation

No of chromosomes
Total of genome length
Number of markers
Distribution of markers
Number of QTLs

QTL distribution

QTL effects

5

~400 cM

5,000 bi-allelic

Evenly spaced

50 bi-allelic

User-specific allocations

one with large effects (20% of total genetic variance)

Two with medium effects (each with 10% of total genetic
variance)

Remaining 47 (1% or 2% of total genetic variance)

The genetic model

Parameters

Genetic effects
Heritability

Population means

Additive genetic effects only
BW, W6 and W12 ( 0.16, 0.28, 0.48, respectively)

BW, W6 and W12 ( 3.05 kg, 20.03 kg and 32.44 kg,
respectively.
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Genotypes of the founder animals for all loci were determined according to the
distribution of allelic frequencies (0.50). While the genotypes of their progenies were
generated from the union of the gametes randomly sampled from their parents
specified in the pedigree. The gametes are always haploid (n chromosomes) created
from a diploid parental cell. The two alleles (coded as 1 and 0) of each gene segregate

randomly to form the gamete ( i.e., 50% probability ).

2.5.2 The genetic model of the simulation

The investigation of genetic variation (V;) among population’s individuals that
associated with a particular quantitative trait can be studied with the help of
formulating genetic models, the most common of which is the QTL model. The QTL
model assumes that a limited number of genes exhibit major effects on the trait
explaining significant part of the phenotypic variance (Vp), whereas the remaining Vj is
explained by remaining numerous genes, of each have a minor impact (Clark et al.,
2011). The suggested genetic model for this simulation assumed that QTLs have only
the additive genetic effects (a), ignoring dominance (d) and epistasis (/) effects. The
additive genetic effect (a) of a certain QTL was computed based on the relationship
between the QTL allelic frequency (p) and its variance (V,r,,) as explained by Falconer

(1996) following the steps 7 and 2:

Vort = 2p(1 - p)az (1)

If the allelic frequency p of a QTL is 0.50, then (1) can be reduced to become:
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VQTL = 1/2.612 (2)

So, in order to calculate the additive genetic effect (a) of that QTL, from (2):

A 3

The value of an individual’s phenotype was calculated according to the basic
quantitative additive genetic model as follows:
Yi = KU+ Gte 4)

where:

y; is the phenotypic value of individual i, u is the population’s mean, G; is the genotypic
value for individual i, and e; is a normally distributed error terms with mean = 0 and
variance (o?2).

The environmental variance ¢? was estimated based on the relationship of it with the

heritability as in (5), considering that the phenotypic variance of the trait equals 1:

o2(1-h?)
O'e2 = GT ; (5)

where:

a2 is the genetic variance and h? is the trait’s heritability.

The true genetic value (G) of individual i was calculated by summing all the effects of

their genotype on every QTL as following:

G = X1 X , (6)

where:
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x;j is the genotype of individual i at locus j coded as (0, 1, or 2 ) for QTL genotypes
of (homozygous, heterozygous and alternate homozygous, respectively) ; a; is the
additive genetic effect of QTL j ; and n is the number of all QTL loci.

2.5.3 Example for illustration ( How to calculate the additive genetic effects)

If we simulate a trait of heritability h? = 0.16, and the phenotypic variance V, =
1. The defined quantitative genetic model for a putative QTL would be as follows: QTL

genotypes at locus Q are QQ, Qq and qq, which have genotypic values of a — d/2,
d/2 and —a — d/2, respectively. The V,r;, at this QTL is a5y, = 1/2 a? as illustrated in

(2), with the assumption of d = 0, (i.e., the additive genic model). If this QTL explains
10% of total V;, it means that the heritability of it equals 10% x h? (0.10 x 0.17 = 0.017).

Thus, the additive genic effect (a) at the QTL is calculated based on (3) as follow:

a= |(2xdlr,)

a =/(2x0.017)

Following the same principles, we can calculate the (a) value for each assumed QTL,

while the trait’s heritability and proportion of variance explained by the QTL are known.

Let us assume that a given trait is influenced by 13 QTLs, of which three have
major effects and ten had minor effects. The three major QTLs (QTL,), which all

together explain 40% of the total genetic variance (V,r.s), of which two QTLs

(QTLyo1and QT Lyyg,) explain 10% for each one, and one QTL (QTL03) explains 20%.
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According to the equation 11, the additive genetic effect a of each major QTL would be

as follow:
a_QTLyor = 2Wory,,) =+/2(0.10x0.17) =0.18
a_QTLyoz = 2Wory,,) =+/2(0.10x0.17) =0.18
a_QTLyos = 2Worye,) =+/2(0.20x0.17) =0.26

The remaining ten QTLs would explain the remaining 60% of Vyr,s, €ach with 6%
equally. Therefore, each one would explain 0.06 x 0.17 = 0.01 of Vyr.s. Accordingly,

The additive genetic effect (a) for each minor QTL,, would be:

a_QTL,, = /2(VQTLm)= 2(0.01) = 0.14
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2.5.4 Statistical analysis of predicting animals’ breeding values

Three approaches were used to estimate the estimated EBVs of the animals,
including BULP, GBLUP, and ssGBLUP. The BLUP method, which was developed by
Henderson (1949), is a conventional estimator that integrates pedigree genetic
relationships between individuals in the mixed model equation MME. The other two
methods benefit from the information provided by the molecular markers. The GBLUP
technique utilises the molecular’ genotypes across the genome to construct genomic
relationships between individuals instead of pedigree information, as outlined by
(Habier et al., 2007; VanRaden, 2008). While the ssGBLUP method utilizes data from
both molecular markers and pedigree information to build a single matrix for estimating
the genetic relationships between animals, as outlined by Misztal et al. (2010). Chapter

1 reviewed comprehensive details about the statistical basics of these methodologies.

The BLUP approach utilised the pedigree records of all available animals in the
whole population, as well as the records of all animals except those in the validation
group. The GBLUP approach utilised both phenotypic records and genomic
information from genotyped reference animals. The ssGBLUP method incorporates
the pedigree information of all animals in the population, as well as the records of all
animals except for those used for validation, and the genomic information of the

reference animals that have been genotyped.

The three methods were compared for accurately predicting EBVs under three
different scenarios, and they varied in the population’s size used as a reference (The
population whose animals have phenotypic records and marker genotypes). The
reference population was used to estimate the effects of SNP markers, and their

estimates are subsequently used to predict the breeding values of the validation
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population. The validation population included only genotyped animals without
phenotypic records. These animals were born in the last generation, whereas the

reference animals were ones that were born in the years before that.

The reference population consisted of 500, 1000, and 2000 animals for the three
varied scenarios. The prediction accuracy of breeding values was determined by the
correlation coefficient r between TBV and the predicted EBV of the validation
population. Each scenario has been replicated 10 times, and the value of r of these 10

times was averaged to be considered the final accuracy.
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CHAPTER THREE

ESTIMATION OF INBREEDING LEVEL IN JEBEL AKHDAR

AND BATINAH GOATS, AND OMANI SHEEP
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3.1 Abstract

The main objective of this research was to determine the level of inbreeding
and its trend across three distinct breeds of livestock in Oman, namely Jebel Akhdar
(JA) goats, Batinah (BA) goats, and Omani sheep (OS). The pedigree analysis in this
study utilised records of pedigreed animals obtained from the Wadi Qurayyat livestock
research station (WQLRS) in Oman, spanning the period from 2008 to 2020. The
dataset included records of 2,826, 2,610, and 3,530 animals belonging to the three
breeds JA, BA, and OS, respectively. The findings of the study revealed that the
average levels of inbreeding within the overall population were observed to be within
acceptable levels, with percentages of 0.67%, 0.65%, and 1.52% for the JA, BA, and
OS breeds, respectively. While it was 3.88%, 3.39% and 6.49% within inbred animals
of the corresponding breeds,. The distribution of inbred animals was 17.34% for JA,
19.31% for BA, and 23.48% for OS. The breeds JA, BA, and OS have annual rates of
inbreeding of 0.12%, 0.13%, and 0.27%, respectively. The most frequently found
inbred animals among the others were those with an inbreeding level below 6.25%,
accounting for 13.45% for JA, 14.98% for BA, and 12.63% for OS of the entire
population. Conversely, the animals with higher levels of inbreeding were the least
common among the three categories. The low levels of inbreeding observed in the
three breeds do not raise any concerns regarding inbreeding depression and the loss
of genetic variation. Yet, the apparent rise in levels of inbreeding within the examined
breeds, particularly in recent years, necessitates the monitoring of inbreeding levels as
a means of controlling and reducing the potential negative effects of inbreeding

depression while also ensuring the maintenance of adequate genetic variability.
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3.2 Introduction

Animal breeding programmes rely on exploiting the genetic variation present within
a population, as animals can respond to selection effectively. Hence, the ongoing
maintenance of sufficient levels of genetic variation is a pivotal concern for animal
breeders in the development of genetic improvement strategies (de Oliveira et al.,
2023; Fernandez et al., 2005). Accordingly, successful implementation of an effective
and sustainable genetic improvement programme requires maintaining adequate
levels of genetic variability (Pedrosa et al., 2010). Genetic improvement programmes,
particularly those carried out by within-population selection of superior animals, often
end in a reduction in genetic variability and an increase in rates of inbreeding (Ceyhan
et al.,, 2011; Mandal et al., 2020). Hence, the main objective in the management of
animal populations is to maintain a high degree of genetic variability while

simultaneously reducing rates of inbreeding.

The level of inbreeding can influence the extent of genetic variability within a
population by increasing the frequency of homozygous genotypes and decreasing the
frequency of heterozygous genotypes (Hartl, 2020). Ultimately, it may lead to complete
homozygosity if it is not controlled (Kristensen & Sgrensen, 2005). Moreover, it is
commonly known that excessive inbreeding usually has a negative impact on the
animal's productivity, health, and ability to reproduce. This is explained by a
phenomenon called inbreeding depression, which is the term for the decline in a trait's
average value driven by inbreeding (Ceyhan et al., 2011; Falconer, 1996; Rashidi et
al., 2015; Weigel, 2001). Many characteristics, including growth traits, pregnancy,
puberty, and milk production, are susceptible to the effects of inbreeding (Wakchaure

& Ganguly, 2015). Thus, it is important to continually monitor and control the rate of
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inbreeding in a population to maintain it at acceptable levels. Managing inbreeding is
a vital strategy for mitigating the reduction of genetic variability and the associated
detrimental consequences. Multiple factors, including the mating system, sex ratio,
reproductive ability, and population size, can have a significant impact on the level of

inbreeding (Ceyhan et al., 2011).

Pedigree analysis is a straightforward and economical approach for evaluating
genetic variation and inbreeding within a population (Mandal et al., 2020). The
estimation of inbreeding level within a population involves calculating the inbreeding
coefficients (F) for each individual of the population, where F represents the probability
of an individual possessing two identical alleles descended from a common ancestor
(i.e., IBD) at any randomly selected locus (Ceyhan et al., 2011; Hartl, 2020; Kristensen
& Sarensen, 2005). It is the outcome of breeding between pairs of individuals who are
closely related and have one or more common ancestors. An inbred animal is the
offspring that arises from a union between closely related parents. The amount of the

F value is dependent on the coefficient of the relationship between the mated parents.

The objective of this study was to use pedigree analysis of three Omani breeds,
including Jebel Akhdar (JA) and Batinah (BA) goats, as well as Omani sheep (OS) to
investigate the level of inbreeding and its trend over a span of 13 years (2008-2020).
These breeds have been subjected to a close selective breeding program at Wadi
Qurayyat Livestock Research Station (WQLRS) to enhance their productive and
reproductive performance. Therefore, the estimation of inbreeding levels among these
populations is important to assess the success of the breeding program in terms of

inbreeding accumulation and genetic variability maintenance.
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3.3 Results

3.3.1 The pedigree structure of the studied populations

Table 8 presents a summary of the main characteristics related to the
pedigree structure of the three analyzed breeds, namely Jebel Akhdar (JA) goat,
Batinah (BA) goat, and Omani (OS) sheep. The proportion of animals in the overall
populations of the JA, BA, and OS breeds that had both known parents was 90.35%,
88.53%, and 89.80%, respectively (Figures 9, 10 and 11). In succeeding generations,
the proportions of known ancestors progressively decreased from 64%, 59%, and 63%
in the second generations of JA, BA, and OS, respectively, to 19%, 17%, and 20%,

respectively, for the corresponding breeds.

The percentage of animals that had offspring in the populations of JA, BA, and
OS were 28.67%, 27.45%, and 29.23% correspondingly. Among these populations,
the proportions of sires and dams were 14.38% and 85.62% for JA, 14.66% and
85.34% for BA, and 11.66% and 88.34% for OS. The average number of complete
generations (EqG;) for the entire populations JA, BA, and OS were 2.14, 2.03, and

2.17, respectively.
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Table 8. Pedigree structure of Jebel Akhdar (JA) goats, Batinah (BA) goats and
Omani sheep (OS).

Item JA BA oS
No. of total animals in the pedigree 3,128 2,948 3,931
No. of animals with records 2,826 2,610 3,530
No. of animals without offspring 2,231 2,091 2,782
No. of animals with offspring 897 791 1,149
No. of sires with progeny 129 116 134
No. of dams with progeny 768 675 1,015
No. of animals with both known parents 2,826 2,610 3,530
Mean maximum generations 2.84 2.89 3.00
Mean complete generations 1.68 1.55 1.58
Average of equivalent complete 2.14 2.03 217

generations
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3.3.2 Average inbreeding coefficient (F)

A summary of the descriptive statistics for the average inbreeding level (F) of
the three breeds, as well as the proportions of inbred animals is presented in Table 9.
The findings derived from the pedigree analysis conducted between 2008 and 2020
revealed that 17.34%, 19.31%, and 23.48% of the overall population of animals were
identified as inbred individuals within the respective breeds of JA goats, BA goats, and
OS sheep. In contrast, the percentage of individuals that were not inbred among JA
goats, BA goats, and OS sheep was 82.66%, 80.69%, and 76.52%, respectively. The
mean values of the inbreeding coefficient (F) for the three breeds, namely JA goats,
BA sheep, and OS sheep, were 0.67%, 0.65% and 1.52%, respectively, when
considering the entire population. While it was 3.88%, 3.39% and 6.49% within inbred
individuals for the breeds of JA, BA, and OS, respectively. The highest F values were
observed in 2017 for OS sheep, reaching 32.03%, while it was 31.25% in JA in the

years of 2017 and 2019, and it was 26.56% in BA breed in 2019.

3.3.3 Categorization of animal distribution based on different ranges of F (%) levels.

The inbreeding coefficient of F = 0% was observed in most animals across
all three breeds. Among these breeds, the JA breed showed the highest percentage
(82.66%), BA (80.69), while the OS breed indicated the lowest percentage (76.52%),
as indicated in Table 10. The second largest proportion of animals within the three
populations had an inbreeding coefficient F value below 6.25%. More specifically,
across the entire population, the proportions of animals with F values below 6.25%

were 13.45% in JA, 14.98% in BA, and 12.63% in OS. Less than 1% of the total
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population was found in the highest F values (F = 18.75), which had the lowest

frequencies of inbred animals among the three breeds.

Table 9. Summary statistics of inbreeding level from the pedigree analysis of JA, BA,
and OS Omani breeds.

(F) is inbreeding coefficient; (F) is average inbreeding coefficient.

Item JA BA 0S

F (%) + S.E. of the whole population 0.67+0.05 0.65+0.05 1.52 £ 0.07

F (%) = S.E. of the inbred animals 3.88+024 3.39+0.21 6.49 + 0.24
Standard deviation of F 2.67 242 4.30
Maximum F (%) 31.25 26.56 32.03
Proportion of inbred animals (%) 17.34 19.31 23.48
Proportion of non-inbred animals (%) 82.66 80.69 76.52

Table 10. Proportions (%) of animals categorized based on various F (%) ranges.

Breed F=0 O0<F<6.25 6.25<F<12.5 125<F<18.75 18.75<F <25 F =25

JA 82.66 13.45 1.88 1.42 0.00 0.60
BA 80.69 14.98 2.41 1.53 0.04 0.34
0S 76.52 12.63 5.35 3.97 0.57 0.96
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3.3.4 Trend of inbreeding levels (2008-2020)

Table 11 presents the annual rates of inbreeding for Omani JA goats, BA
goats, and OS sheep, which have been found to be 0.12%, 0.13%, and 0.27%,
respectively. Figure 12 illustrates the overall trend of inbreeding for the entire
populations of JA and BA goats, as well as OS sheep, in a 13-year interval. The
findings demonstrated a predominantly linear trend of annual inbreeding increase
during the whole duration of the study for all examined breeds. The level of inbreeding
seen in OS was consistently higher than that observed in the goat breeds across
the years. The mean level of inbreeding displayed variations ranging from zero to
1.6%, zero to 1.5%, and zero to 3.7% for the JA, BA, and OS, respectively, over the

course of the study period.

Table 11. Inbreeding trend in Omani JA goats, BA goats, and OS sheep.

Population Esgf:‘?:iseir?tn P-Value R?

JA 0.12 0.0001 78.24%
BA 0.13 0.0000 85.31%
os 0.27 0.0000 86.08%
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Figure 12. Trend of averaged inbreeding coefficient (%) of the three breeds (2008
- 2020)
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Figure 13. Proportions of inbred animals of the three breeds (2008-2020).
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In Figure 13, the frequencies (%) of inbred animals for each of the three
populations are displayed every year. The proportions exhibited a range of 0% to
77.36%, 0% to 79.62%, and 0% to 69.62% for the JA, BA, and OS, respectively. The
trend of inbred individuals across the various breeds had a slightly increasing slope
over the initial years. However, in subsequent years, the increase was substantially
more significant and progressive, particularly during the final four-year period (2017-

2020).

Trends of animal frequencies of the six classes of inbreeding coefficient (F = 0,
0<F<6.25625<F <125, 125 <F <18.75, 1875 < F < 25 and F = 25) of the
breeds of JA, BA and OS across the 13 years are illustrated by Figures 14, 15, and
16, respectively. The frequency of non-inbred animals (F = 0) decreased from being
100% at the base years to become 22.64%, 20.38% and 30.68% for the corresponding
JA, BA, and OS breeds. The animals classified in category of 0 < F < 6.25 were most
frequent among the inbred individuals in other categories. lts trend increased
dramatically over the last five years for the three breeds reaching its highest
frequencies in 2020 at 74.53%, 72.61% and 44.37% for the corresponding breeds of
JA, BA, and OS. The remaining categories of moderate to
highly inbred individuals were the least frequent across all years, reaching its highest

frequency in 2017 (~5%) for JA, in 2019 (~6%) for BA and in 2019 (~14%) for OS.
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Figure 14. Proportions of animals (%) per category of inbreeding level (F) in Jebel
Akhdar Omani goats (2008-2020)
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Figure 15. Proportions of animals (%) per category of inbreeding level (F) in Batinah
Omani goats (2008-2020)
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Figure 16. Proportions of animals (%) per category of inbreeding level (F) in Omani
sheep (2008-2020).
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3.4 Discussion

Inbreeding occurs in any small, closed population, with an increasing rate
across subsequent generations. The extent of inbreeding is influenced by the mating
strategy and selection methods used (Chaudhari et al., 2023). Monitoring changes in
inbreeding levels within a population is an essential step in breeding programmes, as
it leads to increased homozygosity and therefore reduced genetic variability (Rafter et

al., 2022).

The estimation of the inbreeding coefficient (F) by pedigree analysis can be
subject to the influence of pedigree completeness, as highlighted by Mandal et al.
(2020). Hence, the depth to which the pedigree of ancestors is complete serves as a
measure for the precision in evaluating inbreeding (Jonkus et al., 2023). Pedigree
completeness can be assessed by determining the percentage of animals within the
entire population that have information on both parents, as well as the equivalent
complete generations (EqG;). This makes sense because any increase in the EqG;
corresponds to a greater probability of finding common ancestors among the paired
individuals, and accordingly tracing descended identical alleles as far the common

ancestors as possible.

The percentages of animals with known parents which found to be 90.35% in
JA, 88.53% in BA, and 89.80% in OS, were consistent with previous studies conducted
such as on Markhoz goats (Rashidi et al., 2015), Lori-Bakhtiari sheep (Vatankhah et
al., 2019), and Marwari sheep (Vyas et al., 2022). While, they were relatively higher
compared to the findings of Mandal et al. (2020) in Muzaffarnagari sheep, Pedrosa et
al. (2010) in Santa Ines sheep, and Paiva et al. (2020) in Saanen goats. At first appear,

the comparative figures presented with respect to previous studies suggest a good
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quality of pedigree. Nevertheless, with respect to the mean EqG;, it was lower than
other studies reviewed in the literature including Rashidi et al. (2015) in Markhoz goats,
Mandal et al. (2020) in Muzaffarnagari sheep, Pedrosa et al. (2010) in Santa Ines
sheep, and Vatankhah et al. (2019) in Lori-Bakhtiari sheep. They have reported higher
EqG; than our analysis values which were 2.14 in JA, 2.03 in BA, and 2.17 in OS. It is
recommended that the value of EqG; should be at least 3 in order to obtain
informative results (Gutiérrez et al., 2009). These lower EqG; values may have
underestimated the F values (Nyman et al., 2022), and ultimately contributed to the
low levels of the averaged inbreeding levels of the three populations. In addition, the
low rates of inbreeding accumulation might be attributed to little selection and slow

genetic gain (Woolliams et al., 2015).

Inbreeding is usually associated with decreased genetic variability within
populations, an increase in homozygosity, and the possibility of inbreeding depression
(Vyas et al., 2022). The average levels of inbreeding observed in the populations of
Omani JA, BA goats, and OS were 0.67%, 0.65%, and 1.52%, respectively. These
values are quite low when compared to the findings of Norberg and Sarensen (2007)
in three breeds of sheep (6% - 10%) and Mokhtari et al. (2014) in Iran-Black sheep
(8.08%). The present results line up with the findings published by Barczak et al. (2009)
in a multi-breed sheep population (0.30%), Ajoy et al. (2006) in Muzaffarnagari sheep
(3.13%), Paiva et al. (2020) in Saanen goats (1.48%), and Rashidi et al. (2015) in
Markhoz goats (2.73%). The average levels of inbreeding reported in this study for the
investigated breeds can be considered acceptable and not detrimental, according to

Falconer (1996). The author pointed out that inbreeding may become risky if its level
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exceeds 10%. Furthermore, the mean inbreeding levels of the inbred animals were

below 10%, specifically 3.88% for JA, 3.39% for BA, and 6.49% for OS.

Some strategies that might have helped to keep inbreeding levels low in these
populations included maintaining an average good population size, having an
appropriate ratio of sires to dams that were 17% in JA and BA goat breeds, and 13%
in OS sheep. Besides, avoiding the use of bucks or rams for more than two mating
seasons may keep the inbreeding level minimized (Wakchaure & Ganguly, 2015),
which might be the most important factor in maintaining and increasing genetic
variability within a population, as stated by Vatankhah et al. (2019). Furthermore,
during the initial years of the study, specifically (2011-2014), a number of sire
individuals (ranging from 2 to 4) were brought into the overall population. This
introduction could potentially result in a decline in close relationships within the
population. In addition, it should be highlighted that the pedigree completeness may
underestimate the estimates of the F values, particularly in the earliest years when
there was no pedigree information available for the mates, which results in a 0% mean
inbreeding level in those years. This is because as the index of pedigree completeness
drops, the probability of finding common ancestors also lowers (Rashidi et al., 2015).
Yet when evaluating genetic variability, the annual rate of inbreeding may be
considered more effective than the mean inbreeding coefficient (F) itself. This is due
to the fact that the calculation of F is relative and can be influenced by the depth and
completeness of the pedigree (Falconer, 1996; Gonzalez-Recio et al., 2007; Paiva et

al., 2020).

The three populations showed positive annual rates of inbreeding, with annual

rates of 0.12%, 0.13%, and 0.26% for the JA, BA, and OS breeds, respectively. Though
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the rates were increasing, they remained below the critical increment. Nicholas et al.
(1989) proposed that an annual inbreeding rate of up to 0.5% would be acceptable
within the context of animal breeding. The observed trend of gradually increasing levels
of inbreeding over time can be explained by the gradual rise in relationships within the
population, as mating between related animals gets difficult to avoid over time (Nyman
et al., 2022). As generations proceed, the likelihood of identifying common ancestors
also increases, which leads to a rise in inbred individuals in the estimation of
inbreeding. This could have been another factor in the yearly rise in the level of

inbreeding.

It is observed that, despite a rise in the percentage of inbred animals, the mean
inbreeding for goat breeds decreased significantly in 2018. This may be because the
percentage of inbred animals with high levels of inbreeding has decreased. In JA goats,
the proportions of animals with F = 25 decreased from 2.40% (2017) to 0% (2018),
those with 6.25 < F <12.5 decreased from 5.60% (2017) to 0% (2018), and those with
12.5 < F < 18.7 decreased from 2% (2017) to 1.59% (2018). While in BA goats, the
proportions of animals with 6.25 < F < 12.5 decreased from 4.70% (2017) to 4.35%

(2018), and those with 12.5 < F < 18.7 decreased from 2.56% (2017) to 0% (2018).

The significant rise in inbreeding observed over the last few years may be
attributed to the decrease in population size resulting from the culling of more animals
due to financial constraints. In addition, the observed increase in twinning rates over
these years may have potentially led to an increase in inbreeding. This occurs because
as twinning rates rise, the number of offspring per sire also increases, resulting in a

greater likelihood of selecting genetically related animals.
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The numbers of inbred animals within the overall populations of the three
examined breeds were quite modest, with percentages of 17.34%, 19.31%, and
23.48% for JA goats, BA goats, and OS sheep, respectively. These findings could
potentially explain the low mean levels of inbreeding observed across the entire three
populations. Besides, it is worth noting that a significant proportion of these inbred
animals exhibited low inbreeding levels, which were below 6.25%. The relatively low
level of inbreeding may not result in detrimental effects on production performance.
However, there has been a significant and rapid increase in the number of inbred
animals, particularly in the last four years. More specifically, the proportions of inbred
animals for JA, BA, and OS have reached 77.36%, 79.62%, and 69.62% respectively,
in few years. This entails paying attention to closely monitoring the inbreeding levels,
and implementing practices such as avoiding mating between closely related

individuals to limit its increase.

The proportions of inbred animals with a coefficient of inbreeding (F) greater
than or equal to 25% were found to be extremely low: 0.60% in JA, 0.34% in BA, and
0.96% in OS. The higher value of F indicates that mating could occur between
very closely related individuals, such as a sire mating with its daughter or a son mating
with its dam. While the presence of individuals with a range of 18.75 < F <25 might
have been attributed to mating between full or half siblings, such instances were

infrequent, which may not be a concern.

Despite the low levels of inbreeding in the three populations, it remains crucial
to consistently monitor and control the accumulation of inbreeding within these
populations, as there has been a noticeable increase in the degree of inbreeding and

the proportion of inbred animals in recent years. Accumulation of inbreeding has
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negative consequences for animals’ performance, and it can lead to a reduction in
genetic variability, which is very important for animal breeding programs (Curik et al.,
2014). The introduction of new animals, avoiding interbreeding among closely related
mates, and increasing population size are fundamental strategies that can effectively
limit the rapid rate of inbreeding (Wakchaure & Ganguly, 2015). It is recommended to
maintain the effective population size at levels above 50 so that acceptable levels of
genetic variability are maintained, and the trend of inbreeding is limited. When the
effective population size drops below 50, the inbreeding curve increases quickly (de

Oliveira et al., 2023; Oldenbroek & van der Waaij, 2014).
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3.5 Conclusion

The pedigree analysis conducted on three Omani breeds, including Jebel
Akhdar (JA) goats, Batinah (BA) goats, and Omani sheep (OS), demonstrated that the
amount of inbreeding within these breeds is considerably low, being within acceptable
levels. Likewise, the proportions of the inbred animals are at a moderate level. This
observation suggests that the mating system implemented for these populations is
reasonably well-designed. Howevers, it is possible that the inbreeding levels may have
been underestimated due to the small number of equivalent complete generations in
the pedigree. Thus, to precisely estimate the amount of inbreeding in the future,
genomic data may be used in conjunction with pedigree data. Although the levels of
inbreeding in this study are at present low, there has been a notable and significant
increase in the rate of inbreeding for all three breeds over time. Additionally, there is
an observed rise in the frequency of inbred animals, particularly in the latest years. As
a result, it will be important to monitor the level of inbreeding in the forthcoming years
as well as take measures to keep it at acceptable levels. In this way, inbreeding
depression can be avoided, and genetic variability is maintained for a sustainable

genetic improvement programme.
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CHAPTER FOUR

ESTIMATION OF GENETIC PARAMETERS OF GROWTH
TRAITS IN JEBEL AKHDAR AND BATINAH GOATS, AND

OMANI SHEEP
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4.1 Abstract

Environmental and genetic factors both contribute to the expression of growth
traits. Investigating the impact of these factors is crucial for improving breeding
schemes. The objective of this study was to estimate the genetic parameters of growth
traits, specifically birth weight (BW), weaning weight (WW), six-month weight (W6),
and twelve-month weight (W12), for Jebel Akhdar (JA) and Batinah (BA) goats, as well
as Omani (OS) sheep in Oman. The data collected from Wadi Qurayyat Livestock
Research Station (WQLRS) between 2008 and 2020 was used for the analysis.
Records of 2,826 animals for BW, 2,342 for WW, 1,706 for W6, and 1,265 for W12
were used in JA goats. A total of 2,609 records of animals with BW, 2,186 records with
WW, 1,689 records with W6, and 1,208 records with W12 were utilised in the study of
BA goats. A total of 3,530 records of animals were used in the OS sheep study for BW,

3,120 animals for WW, 2,374 animals for W6, and 1,745 animals for W12.

Sex, birth type, and year were shown to have a high level of statistical
significance (P < 0.001) for all growth traits in the three breeds. However, the variable
of pen was only found to be significant for BW and WW in goat breeds and only for
WW in sheep. The age of the dam (mother), which was included as a covariate, was
found to have a significant effect on BW and WW in all breeds, as well as on W6 in
Batinah goats. Hence, all significant fixed factors were taken into account in the
estimation of genetic parameters for the growth traits. The Restricted Maximum
Likelihood (REML) method of fitting the animal model in WOMBAT software was used
for estimating the (Co) variance components and corresponding genetic parameters
and breeding values. The direct heritability estimates for BW, WW, W6, and W12 in JA

goats were 0.13 £ 0.04, 0.11 £ 0.04, 0.19 + 0.05, and 0.21 £ 0.06, respectively.
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Compared to that, the estimates for BW, WW, W6, and W2 were 0.17 £ 0.04, 0.16 +
0.04, 0.16 + 0.04, and 0.24 * 0.04, respectively. The results for BW, WW, W6, and
W12 in Omani sheep were 0.16 + 0.03, 0.15 + 0.03, 0.28 = 0.05, and 0.48 + 0.05,
respectively. Significant maternal effects were observed in the traits of BW, WW, and
W6 in all three breeds. Furthermore, maternal effects were significant in W12 in JA
goats. The genetic correlations among the various traits across the three breeds were
significantly positive and strong, with the exception of correlations with the BW ftrait,
which exhibited modest correlations. These findings highlight the potential for
significant genetic improvement in the growth traits of Omani breeds, given their
adequate additive genetic variability and the positive genetic correlations that exist

between them, especially with regard to the post-weaning traits.

The genetic trend was estimated by conducting a regression analysis of the
average breeding values against the birth year. Similarly, the phenotypic trend was
determined by conducting a regression analysis of the adjusted means against the
birth year. The genetic trend revealed a significant and positive pattern for all growth
traits in the three breeds, although the phenotypic trend was only significant for the
W12 phenotype. In JA goats, the yearly increase in genetic gain for BW, WW, W6, and
W12 was 0.01 kg, 0.09 kg, 0.13 kg, and 0.20 kg, respectively. In BA goats, the annual
increase in genetic gain for BW, WW, W6, and W12 was 0.01 kg, 0.08 kg, 0.10 kg, and
0.18 kg, respectively. In OS sheep, the annual increase in genetic gain for BW, WW,
W6, and W12 was 0.01 kg, 0.13 kg, 0.22 kg, and 0.39 kg, respectively. The positive
genetic trend observed indicates that there was an effective implementation of a

breeding effort aimed at enhancing the growth traits of these breeds.
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4.2 Introduction

Small ruminants, including goats and sheep, are significant to farmers,
especially small-scale producers, since they have an affordable production cost, can
adapt to scarce resources, have good reproductive efficiency, provide meat and milk,
and have a short production cycle for marketing (Pond & Pond, 2000). The population
size of goats in Oman is estimated to be 2.4 million, while the population size of sheep
is estimated to be 642 thousand. Both of them collectively account for around 81% of

the country's overall livestock population (NCSI, 2021).

In Oman, there are several recognised and distinguished breeds of sheep and
goats, including Jebel Akhdar and Batinah goats and Omani sheep. These breeds are
widely used and significant in terms of their productivity and reproductive capacities in
comparison to other breeds. They are primarily raised for meat production (Shaat & Al-
Habsi, 2016). The Ministry of Agriculture (MAF) of Oman has developed breeding
stations with the objective of improving the performance of indigenous livestock. One
of these stations is the Wadi Qurayyat Livestock Research Station (WQLRS). It

accommodates the aforementioned breeds of goats and sheep.

Genetic improvement can increase the productivity of animals by estimating the
genetic parameters of specific populations' underlying traits and subsequently
selecting genetically superior animals for breeding (Oyieng et al., 2022). It is of the
utmost importance for animal breeders to assess the genetic variability of the desired
trait and how it correlates to other traits in order to carry out an effective selective
genetic improvement (Singh et al., 2022). One important parameter that must be
accurately estimated is the trait's heritability, which indicates the extent of available

genetic variability and explains the relative influence of additive genetic effects on a
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trait (Getabalew et al., 2019). Another significant parameter is genetic correlation,
which estimates the genetic correlation between traits and, as a result, shows the

strength and direction of the correlation between them (Rae, 1952).

The growth potential of an animal is indicative of its ability to produce meat
(Bangar et al., 2020). Growth traits are influenced by environmental and genetic
effects, so their estimation is important for animal improvement (Zhang et al., 2009).
In addition to the direct additive genetic influences of the individual, the dam (mother)
may also have an impact on the phenotype of its progeny, particularly with early growth
traits (Mrode, 2014). Therefore, examining the significance of these effects in the
statistical models used to estimate the genetic parameters is important in order to

minimise a possible bias.

The primary objective of the current study was to estimate the heritability of
growth traits: birth weight (BW), weaning weight (WW), weight at 6 months (W6), and
weight at 12 months (W12), and the genetic and phenotypic correlations among these
traits in Omani Jebel Akhdar (JA) goats, Omani Batinah (BA) goats, and Omani sheep
(OS). Additionally, the study aimed to evaluate the three breeds' genetic and

phenotypic trends for the investigated traits between 2008 and 2020.
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4.3 Results

4.3.1 Significance of fixed effects

The importance of environmental fixed effects affecting various growth traits for
the breeds of Omani Jebel Akhdar goat (JA), Omani Batinah goat (BA), and Omani
sheep (OS) is diagrammatically illustrated in Figures 17, 18, and 19, respectively.
While the importance of these factors in details along with least square means are
presented in Tables 12, 13, and 14 attached in appendix (D).The growth traits at all
age stages for the three breeds were significantly influenced by variables of sex, year,
and type of birth, with a high level of significance (P < 0.001). The variable pen only
influenced early growth traits; in JA and BA goats, BW and WW were influenced, but
in OS sheep, it was only WW. The age of the dam had a significant impact (P < 0.01)
on the variability in BW and WW in JA goat and in BW, WW, and W6 in BA goat. While
in the OS sheep, it was only significant for the trait of BW. It did not have a significant
impact on post-weaning traits (P > 0.05) for all breeds except for W6 in BA goats (P <

0.01).

Male animals exhibited heavier weight than females at all stages across all three
breeds. The difference between the means of the two sexes increased as animals
grew. The birth year (2008-2020) displayed a changing growth pattern at different
ages, except for W12. Single-born animals exhibited more body weight than twin-born
animals across all three breeds. The lowest difference between the two groups was
reported in terms of BW, but the most significant difference was observed at WW. The
greatest effect of dam’s age was observed on WW in JA (0.19) and BA (0.18) goats,
but it was 0.07, 0.06, and 0.04 on BW for the corresponding breeds of OS, BA, and

JA.
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Figure 17. Influencing of non-genetic factors on growth traits of Omani Jebel
Akhdar goats.

The diagram presents the significant impact of fixed effects (Pen, Year, Sex,
Birth type, and Dam age) on growth variability in Omani Jebel Akhdar goats
at BW, WW, W6, and W12. The effect was considered significant at P < 0.05.
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Figure 18. Influencing of non-genetic factors on growth traits of Omani

Batinah goats.

The diagram presents the significant impact of fixed effects (Pen, Year, Sex,
Birth type, and Dam age) on growth variability in Omani Batinah goats at BW,
WW, W6, and W12. The effect was considered significant at P < 0.05.
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Figure 19. Influencing of non-genetic factors on growth traits of Omani sheep.

The diagram presents the significant impact of fixed effects (Pen, Year, Sex,
Birth type, and Dam age) on growth variability in Omani Batinah goats at BW,
WW, W6, and W12. The effect was considered significant at P < 0.05.
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4.3.2 Estimates of (Co)variance components

4.3.2.1 Models’ comparison

Six various animal mixed models (including or excluding maternal influences)
were utilised to fit the data for the traits of BW, WW, W6, and W12 in JA and BA goats,
as well as OS sheep. The output of these models with the values of LRT and AIC is

shown in tables 12, 13, and 14, with the most suitable model highlighted in bold.

Model (1), which solely accounted for direct additive genetic effects, adequately
explained the variation of the W12 trait in BA goats and OS sheep. The remaining
models did not increase the likelihood significantly. However, in JA goats, model (2)
was found to be the most appropriate for this trait, as confirmed by the likelihood ratio
test and lowest AIC value. Model (2) accounted for both direct and maternal additive
genetic effects. It was also suitable for evaluating BW in both goats’ breeds. This
model significantly enhanced the likelihood of predicting BW weight in both goats’
breeds. Nevertheless, the addition of maternal permanent environmental influences
together with maternal genetic effects, as in model (5) did not result in significant gains

compared to model (2).

Model (4), which considered both direct additive genetic effects and maternal
permanent environmental influences, was the most appropriate for assessing the traits
of WW and W6 in all studied breeds, as well as the trait of BW in OS sheep. It yielded
better results for the WW and W6 traits across all three breeds. This finding was

supported by both the increase in log likelihoods and the lowest AIC values.
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Table 12. Log Likelihood (Log L) and Akaike information criterion (AlC) of the six animal models for the growth traits in Omani Jebel
Akhdar goats.

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight); the best-fit model is in bold.

(No) Models BW Ww W6 W12
Log L AIC Log L AIC Log L AIC Loag L AIC

(1) y=Xb+pBa+e 580.404 -1,156.81 -3,476.647  6,957.294 -2,542.829  5,085.658 -2,287.773  4,579.546

(2) y=Xb+Pa+Zm+e, 615.355 -1,224.71 -3,464.407  6,934.814 -2,538.572  5,083.144 -2,285.418  4,576.836
Cov(a,m)=0

3 y=Xb+PBa+Zm+e, 616.887 -1,225.77 -3,463.003  6,934.006 -2,538.572  5,085.144 -2,285.340  4,578.680
Cov(a,m) = Aoy,

4 y=Xb+Pa+Wc+e 608.342 -1,210.68 -3,461.692  6,929.384 -2,537.187  5,080.374 -2,286.370  4,579.500

(B5) y=Xb+Ba+Zm+Wc+e, 616.896 -1,225.79 -3,460.914  6,929.828 -2,536.957  5,081.914 -2,285.400 4,578.800
Cov(a,m) =0

6) y=Xb+Ba+Zm+Wc+e, 618.247 -1,226.49 -3,459.810  6,929.620 -2,536.956  5,083.912 -2,285.321  4,580.642

Cov(a,m) = Aoy,
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Table 13. Log Likelihood (Log L) and Akaike information criterion (AIC) of the six animal models for the growth traits in Omani
Batinah goats.

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight); the best-fit model is in bold.

(No) Models BW Ww W6 w12
LoalL AIC LogL  AIC logl  AIC LogL  AIC

(1) y=Xb+pPa+e 572.307  -1,140.61 -3,300.792  6,605.584 -2,471.265 4,946.530  -2,137.370 4,278.74

(2) y=Xb+Ba+Zm+e, 591.850  -1,177.70 -3,282.573  6,571.146 -2,461.733  4,929.466  -2,137.312  4,280.624
Cov(a,m)=0

3) y=Xb+Ba+Zm+e, 592.507  -1,177.01 -3,281.400  6,570.800 -2,461.495 4,930.990 -2,137.295 4,282.590
Cov(a,m) = Aoy,

4 y=Xb+Pa+Wc+e 587.562  -1,169.12 -3,272.303  6,550.606 -2,461.609 4,929.218  -2,137.219  4,280.438

(5) y=Xb+Ba+ZIm+Wc+e, 592.374  -1,176.75 -3272.303 6,552.606 -2,460.682 4,929.364  -2,137.219  4,282.438
Cov(a,m) =0

6) y=Xb+Pa+Zm+Wc+e, 592.963  -1,175.93 -3,271.458  6,552.916 -2,460.259  4,930.518  -2,137.212  4,284.424

Cov(a,m) = Ao,y
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Table 14. Log Likelihood (Log L) and Akaike Information Criterion (AIC) of the six animal models for the growth traits in Omani

sheep.

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight); the best-fit model is in bold.

(No) Models BW Ww W6 W12
Loag L AIC Loag L AIC Loa L AIC Loag L AIC

(1) y=Xb+pPa+e 331.124  -658.248 -5,179.624  10,363.25 -4,105.778 8,215.556  -3,476.77 6,957.55

(2) y=Xb+Ba+Zm+e, 383.031 -760.062 -5,140.160  10,286.32 -4,099.191 8,204.382  -3,476.61 6,959.22
Cov(a,m)=0

3) y=Xb+Ba+Zm+e, 384.676 -761.352 -5,139.955  10,287.91 -4,098.805 8,205.61 -3,475.14 6,958.27
Cov(a,m) = Aoy,

4 y=Xb+Ba+Wc+e 393.583 -781.166 -5,132.203  10,270.41 -4,099.095 8,204.19 -3,474.91 6,955.82

(5) y=Xb+Ba+ZIm+Wc+e, 394.759 -781.518 -5,130.302  10,268.6 -4,097.999 8,203.998  -3,474.88 6,957.75
Cov(a,m) =0

6) y=Xb+Pa+Zm+Wc+e, 395.867 -781.734 -5,130.285  10,270.57 -4,097.597  8,205.194  -3,474.21 6,958.43

Cov(a,m) = Aoy,
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4.3.2.2 Heritability estimates

Tables 15, 16, and 17 present the heritability estimates obtained by the six
animal models for the studied growth traits in Jebel Akhdar (JA) and Batinah (BA) goats
and Omani sheep (OS), respectively. The summary of results and discussion will focus
on the results from the best appropriate model (highlighted in bold). Model 1, which
just accounted for direct additive genetic effects, gave the highest estimates of direct
heritability for all studied traits across the three breeds. The estimates for BW, WW,
W6, and W12 were as follows: for JA goats, the estimates were 0.29 + 0.04, 0.19 +
0.04, 0.24 + 0.05, and 0.29 % 0.06; for BA goats, the estimates were 0.29 + 0.04, 0.26
1+ 0.04, 0.23 + 0.05, and 0.24 + 0.04; and for OS sheep, the estimates were 0.26 *
0.03, 0.28 £ 0.04, 0.35 + 0.04, and 0.48 + 0.05. Incorporating maternal effects, either
genetic, environmental, or both, as in the remaining models resulted in a substantial

reduction in the estimates of direct heritability.

The best appropriate model revealed that pre-weaning traits (BW and WW) had
lower estimates of direct heritability than post-weaning traits (W6 and W12). In JA
goats, the estimates were 0.13 £ 0.04 for BW and 0.11 + 0.04 for WW. In BA goats,
they were relatively higher, with 0.17 + 0.04 for BW and 0.16 + 0.04 for WW. In OS
sheep, the estimates were 0.16 + 0.03 for BW and 0.15 + 0.03 for WW. On the other
hand, post-weaning traits showed higher heritability estimates, except for the trait of
W6 in BA goats (constant with pre weaning traits). The direct heritability estimates for
W6 and W12 were 0.19 £ 0.05 and 0.21 £ 0.06 in JA goats, 0.16 £ 0.04 and 0.24 +

0.04 in BA goats, and 0.28 £ 0.05 and 0.48 + 0.05 in OS sheep.

With regards to maternal effects, the expression of body weight at BW in goats

was substantially influenced by maternal genetic effects (17% in JA and 13% in BA),
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whereas in OS sheep, it was primarily influenced by maternal permanent
environmental influences (19%), with no significant contribution from maternal genetic
effects (P > 0.05). Maternal permanent environmental influences exerted an impact on
the traits of both WW and W6 across all breeds (10% and 8% in JA, 16% and 11% in
BA, and 19% and 8% in OS). The yearling weight (W12) was primarily controlled by
only the direct additive genetic effects, with the exception in JA goats, where maternal
genetic influences made some significant contribution (P < 0.05) to approximately 6%

of the total phenotypic variance.
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Table 15. Heritability estimates £+ SE of growth traits in Omani Jebel Akhdar goats estimated from all six animal models, with best

model in bold.

a2, 2, 62, 6%, 02, and oam are animal additive genetic variance, maternal additive genetic variance, maternal permanent

environmental variance, phenotypic variance, error variance, and covariance of animal and maternal additive genetic effects,
respectively; h?q4 (direct heritability), h?m (maternal heritability), pe? (Proportion of phenotypic variance explained by maternal
permanent environmental effects), ram (genetic correlation between animal and maternal additive genetic effects).

Trait oZ, oZm Oam o o2 o?, h%4+ SE h?, £ SE pe? + SE e+ SE Fam

BW

1 0.07 - - - 0.17 0.24 0.29 + 0.04 - - 0.71£0.04 -

2 0.03 0.04 - - 0.17 0.24 0.13 £ 0.04 0.17 £ 0.02 - 0.71 £ 0.04 -

3 0.04 0.05 -0.02 - 0.17 0.26 0.15+0.05 0.191+0.04 - 0.65 % 0.04 -0.35+£0.16
4 0.04 - - 0.03 0.7 0.24 0.17 £ 0.04 - 0.13+0.02 0.71£0.04 -

5 0.03 0.03 - 0.01 0.17 0.24 0.13+0.04 0.13+0.03 0.04 £ 0.03 0.71+£0.03 -

6 0.04 0.04 -0.01 0.01 0.17 0.26 0.15+0.05 0.15%+0.05 0.04 £0.03 0.65+0.04 -0.36 £ 0.18
WwWw

1 1.35 - - - 5.86 7.21 0.191+0.04 - - 0.81 £ 0.04 -

2 0.67 0.71 - - 5.82 7.2 0.09+0.04 0.10 £ 0.02 - 0.81 £ 0.04 -

3 0.93 1.06 -0.45 - 5.64 7.63 0.12+0.05 0.14 £ 0.04 - 0.74 £ 0.04 -0.46 £ 0.20
4 0.81 - - 0.74 5.6 7.15 0.11 £ 0.04 - 0.10 £ 0.02 0.78 £ 0.04 -

5 0.71 0.23 - 055 5.65 7.14 0.10£0.04 0.03+0.03 0.08 £0.03 0.791+0.04 -

6 0.97 0.5 -0.36 0.54 549 7.5 0.13+0.05 0.07 £ 0.04 0.07 £ 0.03 0.73+0.04 -0.51£0.23
W6

1 1.82 - - - 5.67 7.49 0.24 £ 0.05 - - 0.76 £ 0.05 -

2 1.14 0.55 - - 5.74 7.43 0.15+0.05 0.07 £ 0.03 - 0.77 £ 0.05 -

3 1.13 0.55 0.01 - 5.74 7.42 0.15+0.06 0.07£0.04 - 0.77 £ 0.05 0.01 £ 0.039
4 1.43 - - 0.62 5.41 7.46 0.19 £ 0.05 - 0.08 £0.03 0.73%0.05 -

5 1.30 0.17 - 0.48 5.50 7.45 0.17 £0.05 0.02+0.04 0.06 £ 0.04 0.74 £ 0.05 -

6 1.28 0.16 0.02 0.48 5.51 7.43 0.17 £ 0.06 0.02+0.04 0.06 £ 0.04 0.74 £ 0.05 0.03 £ 0.66
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W12

4.23
2.95
2.64
3.71
2.98
2.67

OO0 WN -

0.91
0.76

0.83
0.67

0.69
0.11
0.11

10.18
10.38
10.56
9.94

10.33
10.51

14.41
14.24
13.96
14.34
14.25
13.96

0.29 + 0.06
0.21 £ 0.06
0.19+0.07
0.26 + 0.06
0.21 £ 0.06
0.19 + 0.08

0.06 £ 0.03
0.05 + 0.04

0.06 £ 0.05
0.05 + 0.05

0.05+0.03
0.01 £ 0.04
0.01 + 0.04

0.71 £ 0.06
0.73 £ 0.06
0.76 + 0.06
0.69 + 0.06
0.72 + 0.06
0.75 + 0.06

0.20 + 0.52

0.21 + 0.56

Table 16. Heritability estimates £+ SE of growth traits in Omani Batinah goats estimated from all six animal models, with best model

in bold.

o2, o2, o%, 3%, 0%, and oam are animal additive genetic variance, maternal additive genetic variance, maternal permanent
environmental variance, phenotypic variance, error variance, and covariance of animal and maternal additive genetic effects,
h%2n (maternal heritability), pe? (Proportion of phenotypic variance explained by maternal
permanent environmental effects), ram (genetic correlation between animal and maternal additive genetic effects).

respectively; h2q (direct heritability),

Trait o?, 0% Gam o2 o2 o2, h%,+ SE h?, t SE pe? t SE e?+ SE Fam

BW

1 0.07 - - - 0.17 0.24 0.29 + 0.04 - - 0.71£0.04 -

2 0.04 0.03 - - 0.17 0.24 0.17 £ 0.04 0.13 £ 0.02 - 0.71 £ 0.04 -

3 0.05 0.04 -0.01 - 0.17 0.26 0.19 £ 0.05 0.15+£0.04 - 0.65 + 0.04 -0.23+£0.18
4 0.05 - - 0.02 0.17 0.24 0.21£0.04 - 0.08 £ 0.02 0.71£0.04 -

5 0.03 0.03 - 0.01 0.18 0.25 0.12+0.04 0.12+0.03 0.04 £ 0.03 0.72+0.03 -

6 0.04 0.04 -0.01 0.01 0.17 0.26 0.15+0.05 0.15+ 0.05 0.04 £ 0.03 0.65+0.04 -0.36 £ 0.18
WW

1 2.01 - - - 5.82 7.83 0.26 £ 0.04 - - 0.74 £ 0.04 -

2 1.17 1.16 - - 5.58 7.91 0.15+0.04 0.15+0.03 - 0.71£0.04 -

3 1.46 1.6 -0.55 - 5.39 8.45 0.17 £ 0.05 0.19+£0.05 - 0.64 + 0.04 -0.36 £ 0.18
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1.21
1.21
1.45
6
1.58
0.94
0.84
1.10
0.99
0.84
12
3.16
3.04
2.92
3.06
3.06
2.98

0.01
0.24

0.82
0.66

0.42
0.18

0.13
0.05

0.25

0.12

0.06

1.26
1.25
1.29

0.79
0.44
0.48

0.2
0.2
0.18

5.31
5.31
5.17

5.41
5.24
5.31
5.08
5.13
5.22

9.92
9.9

9.98
9.81
9.81
9.85

7.78
7.78
8.15

6.99

6.81
6.97
6.98
6.72

13.08
13.07
12.95
13.07
13.07
13.01

0.16 £ 0.04
0.16 + 0.04
0.18 +0.05

0.23 +0.05
0.13+0.04
0.12+0.05
0.16 £ 0.04
0.14 +0.05
0.13+0.05

0.24 £ 0.04
0.23 + 0.06
0.23 +0.08
0.23 + 0.06
0.23 + 0.06
0.23 + 0.08

0.00 + 0.03
0.03 +0.05

0.12+0.03
0.10 £ 0.04
0.06 + 0.04
0.03 +0.05

0.01 +0.03
0.00 + 0.04

0.00 + 0.04
0.00 + 0.06

0.16 £ 0.03
0.16 + 0.04
0.16 + 0.04

11 10.03
.06 £ 0.04
.07 £0.04

o o o!

0

0.02 + 0.03
0.02 + 0.04
0.01 + 0.04

0.68 + 0.04
0.68 + 0.04
0.63 +0.04

0.77 £ 0.05
0.75+ 0.04
0.78 + 0.04
0.73 £ 0.04
0.73 +0.04
0.78 + 0.04

0.76 £ 0.05
0.76 + 0.05
0.77 + 0.06
0.75 + 0.06
0.75 + 0.06
0.76 + 0.06

-0.61 £ 0.37

0.27 + 0.42

0.64 + 0.40

0.33+0.40

0.72 + 0.52

Table 17. Heritability estimates + SE of growth traits in Omani sheep estimated from all six animal models, with best model in bold.

2 2 2 2
Oq, Opm, O¢, Op,

respectively; h2q (direct heritability),

o2, and oam are animal additive genetic variance, maternal additive genetic variance, maternal permanent
environmental variance, phenotypic variance, error variance, and covariance of animal and maternal additive genetic effects,
h%n (maternal heritability), pe? (Proportion of phenotypic variance explained by maternal
permanent environmental effects), ram (genetic correlation between animal and maternal additive genetic effects).

o2,

o2

Oam

o

o2

o2,

h24% SE

h?, + SE

pe?  SE

e?+ SE

Fam
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W

6

12

0.08
0.04
0.05
0.05
0.04
0.05

3.00
1.35
1.46
1.56
1.42
1.45

4.39
297
2.68
3.44
3.05
2.73

10.80
10.76
12.36
10.08
10.05
11.48

0.07
0.08

0.01
0.02

213
2.31

0.62
0.66

1.06
0.83

0.57
0.37

0.27
1.18

0.13
0.86

0.06
0.05
0.05

2.00
1.48
1.48

0.98
0.58
0.57

1.01
0.99
0.75

0.23
0.22
0.21
0.21
0.21
0.2

7.73
7.41
7.35
7.06
7.13
7.11

8.27
8.46
8.61
8.07
8.26
8.42

11.81
11.74
10.80
11.40
11.38
10.71

0.31
0.33
0.34
0.32
0.31
0.32

10.73
10.89
11.12
10.62
10.65
10.70

12.66
12.49
12.12
12.49
12.46
12.09

22.61
22.76
22.39
22.49
22.55
22.37

0.26 + 0.03
0.12+0.03
0.15+ 0.04
0.16 £ 0.03
0.13+0.03
0.16 + 0.04

0.28 + 0.04
0.12+0.03
0.13 + 0.04
0.15+0.03
0.13+0.03
0.14 £ 0.04

0.35 + 0.04
0.24 + 0.05
0.22 + 0.05
0.28 £ 0.05
0.24 + 0.05
0.23 +0.05

0.48 £ 0.05
0.47 + 0.05
0.55 + 0.07
0.45+0.05
0.45+0.05
0.51 + 0.08

0.21 £ 0.02
0.24 + 0.04
0.03 +0.03
0.06 + 0.04

0.20 + 0.03
0.21 + 0.04
0.06 + 0.03
0.06 + 0.04

0.08 + 0.03
0.07 £ 0.03
0.05+0.03
0.03 + 0.04

0.01 £ 0.02
0.05+0.03
0.02 + 0.02
0.04 + 0.03

0.19 £ 0.02
0.16 £ 0.03
0.16 £ 0.03

0.19 £ 0.02
0.14 £ 0.03
0.14 +0.03

0.08 £ 0.02
0.05+0.03
0.05+0.03

0.05 + 0.02
0.04 + 0.02
0.03 + 0.03

0.74 + 0.03
0.67 + 0.03
0.62 £ 0.03
0.66 £ 0.03
0.68 £ 0.03
0.63 +£0.03

0.72 £ 0.04
0.68 + 0.03
0.66 + 0.03
0.66 £ 0.03
0.67 + 0.03
0.66 + 0.03

0.65 +0.04
0.68 + 0.04
0.71 £ 0.04
0.65 + 0.04
0.66 + 0.04
0.70 + 0.04

0.52 + 0.04
0.52 + 0.07
0.48 + 0.05
0.51 +0.05
0.50 + 0.05
0.48 £ 0.06

-0.30£0.14

-0.39£0.21

-0.13+£0.19

-0.06 £ 0.30

0.27 £ 0.32

0.38 + 0.53

-0.51+£0.17

-0.46 + 0.22
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4.3.2.3 Genotypic and phenotypic correlations among growth traits

The direct genetic correlations among the four growth traits across the three
breeds typically exhibited positive direction and moderate to strong correlations, as
illustrated in Table 18. The post-weaning trait (W6) demonstrated the highest paired
genetic correlations, with values exceeding 0.90 with W12 and at least 0.85 with WW

across all breeds.

The coefficients between BW and other traits were 0.77 £ 0.11 (BW-WW), 0.55
+ 0.13 (BW-W6), and 0.54 + 0.13 (BW-W12) in JA goats, 0.62 + 0.12 (BW-WW), 0.47
+ 0.14 (BW-W6), and 0.53 + 0.13 (BW-W12) in BA goats, and 0.56 + 0.11 (BW-WW),
0.52 + 0.10 (BW-W6), and 0.47 + 0.10 (BW-W12) in OS sheep. While it was 0.85 +
0.06 (WW-W6), 0.80 £+ 0.06 (WW-W12), and 0.98 + 0.03 (W6-W12) in JA goats, 0.91
+ 0.05 (WW-W6), 0.85 + 0.08 (WW-W12), and 0.98 + 0.05 (W6-W12) in BA goats, and

0.89+0.03 (WW-W6), 0.76 £ 0.06 (WW-W12),and 0.92 + 0.02 (W6-W12) in OS sheep.

The phenotypic correlations between traits were predominantly positive and
relatively strong, with at least a 0.45 coefficient, except for the correlations with BW,
which exhibited smaller magnitudes ranging from 0.15 to 0.25. The remaining
correlations ranged from 0.45 to 0.74. The phenotypic correlation between W6 and
W12 had the greatest magnitude (= 0.70) across all breeds. The coefficients for the
several comparisons in JA goats were as follows: 0.24 + 0.02 (BW-WW), 0.20 + 0.02
(BW-W6), 0.15 £ 0.03 (BW-W12), 0.66 + 0.01 (WW-W6), 0.45 + 0.02 (WW-W12), and
0.71 £ 0.02 (W6-W12). The coefficients in BA goats were as follows: 0.25 + 0.02 (BW-
WW), 0.20 + 0.20 (BW-W6), 0.19 + 0.03 (BW-W12), 0.67 £ 0.01 (WW-W86), 0.50 + 0.02

(WW-W12), and 0.70 £ 0.02 (W6-W12). The coefficients for OS sheep were as follows:
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0.21+0.02 (BW-WW), 0.20 + 0.02 (BW-W8), 0.21 £ 0.02 (BW-W12), 0.70 + 0.01 (WW-

W6), 0.54 + 0.02 (WW-W12), and 0.74 + 0.01 (W6-W12).

Table 18. Genetic correlations + SE in (bold), and phenotypic correlations + SE in
(parenthesis) of growth traits in Jebel Akhdar and Batinah goats and Omani sheep.

Trait BW ww w6 w12

Jebel Akhdar goats

BW 0.77 £ 0.1 0.55%+0.13 0.54 + 0.13
(0.08+0.80)

ww (0.24 £ 0.02) 0.85+0.06 0.80 £ 0.06

w6 (0.20 £ 0.02) (0.66 +0.01) 0.98 £ 0.03

w12 (0.15 £ 0.03) (0.45 £ 0.02) (0.71 £0.02)

Batinah goats BW Ww W6 W12

BW 0.62%+0.12 0.47 £ 0.14 0.53+0.13

ww (0.25 £ 0.02) 0.91 £0.05 0.85%0.08

w6 (0.20 £ 0.02) (0.67 £ 0.01) 0.98 £ 0.05

w12 (0.19 £ 0.03) (0.50 £ 0.02) (0.70 £ 0.02)

Omani sheep BW Ww w6 w12

BW 0.56 + 0.11 0.52+0.10 0.47 £0.10

ww (0.21 £0.02) 0.89£0.03 0.76 £ 0.06

w6 (0.20 £ 0.02) (0.70 £ 0.01) 0.92 £ 0.02

w12 (0.21 £0.02) (0.54 £ 0.02) (0.74 £ 0.01)
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4.3.3 Genetic and phenotypic trends of the growth traits

Starting from 2010 to 2020, there was a fluctuating rise in genetic change
across the traits of WW, W6, and W12 in the three different breeds of JA goats, BA
goats, and OS sheep (Figures 20, 21, and 22, respectively). However, the trait of BW
showed almost a constant trend in all three breeds. Table 19 showed that the average
estimated breeding values for the traits of BW, WW, W6, and W12 increased annually
by 0.01 kg, 0.09 kg, 0.13 kg, and 0.20 kg in JA goats, respectively. In BA goats, the
values increased by 0.01 kg, 0.08 kg, 0.10 kg, and 0.18 kg, respectively. In OS sheep,

the values increased by 0.01 kg, 0.13 kg, 0.22 kg, and 0.39 kg, respectively.

Although genetic changes occurred across the investigated years in all traits of
the three breeds, there were no significant changes in the traits’ phenotypes, except
for the trait of W12, which displayed an annual phenotypic change of 0.93 kg, 0.69 kg,
and 0.66 kg in JA, BA, and OS, respectively (Table 20). All other traits displayed
oscillating patterns of growth and decline throughout the 13-year period (Figures 23,

24, and 25).
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Figure 20. Genetic trend (2008-2020) of various growth traits in Omani JA goats.
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Figure 21. Genetic trend (2008-2020) of various growth traits in Omani BA goats.
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Table 19. Genetic trend of the growth traits in JA and BA goats and OS sheep.

Regression  p yvalue R?
coefficient
JA goats
BW 0.01 0.0000 85.14%
Ww 0.09 0.0000 91.55%
W6 0.13 0.0000 89.65%
W12 0.20 0.0000 88.49%
BA goats
BW 0.01 0.0004 69.43%
WW 0.08 0.0000 86.90%
W6 0.10 0.0000 83.42%
W12 0.18 0.0000 86.88%
OS sheep
BW 0.01 0.0000 86.63%
Ww 0.13 0.0000 87.54%
W6 0.22 0.0000 87.33%
W12 0.39 0.0000 90.96%
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Table 20. Phenotypic trend of the growth traits in JA and BA goats and OS sheep.

Regression b y,)ye R?
coefficient
JA goats
BW -0.01 0.62 2.36%
WwW -0.01 0.88 0.22%
W6 0.07 0.73 1.29%
W12 0.93 0.007 54.38%
BA goats
BW -0.00 0.89 0.19%
WwW 0.11 0.22 13.52%
W6 0.03 0.86 0.31%
W12 0.69 0.04 35.81%
OS sheep
BW -0.02 0.31 9.46%
WwW -0.02 0.76 0.88%
W6 0.14 0.42 6.54%
W12 0.66 0.01 54.38%
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Figure 25. Phenotypic trend (2008-2020) of various growth traits in Omani OS sheep.
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4.4 Discussion

4.4.1 Importance of environmental fixed factors on growth traits

Investigating the environmental fixed factors is important in livestock production
systems as they can impact the estimation of genetic parameters. The impact of these
factors varies depending on the specific traits and breeds being examined. Hence, it is
essential to look at the significance of these factors and correct the data for these
factors to avoid any bias in the estimation of variances (Chauhan et al., 2021; Singh et

al., 2022).

The sex of the animal, type of birth, and year of birth had a highly significant
impact (P < 0.001) on the variation observed in each stage of growth in the three
breeds: Jebel Akhdar (JA) and Batinah (BA) goats, and Omani (OS) sheep. These
findings are supported by other studies conducted by several researchers including Al-
Shorepy et al. (2002), Baneh et al. (2012), Bedhane et al. (2013), Mahala et al. (2019),

Oyieng et al. (2022), Tesema et al. (2022), and Zhang et al. (2009).

Males’ animals exhibited heavier weight in comparison to females across the
four growth traits in the three breeds. The weight difference between the two sexes
continuously increased with age, attaining 0.36 kg, 1.44 kg, 1.68 kg, and 4.31 kg for
BW, WW, W6, and W12, respectively, in JA goats, and 0.71 kg, 1.86 kg, 1.66 kg, and
4.6 kg for BW, WW, W6, and W12, respectively, in BA goats. The weight differences
for BW, WW, W6, and W12 in OS sheep were 0.44 kg, 1.86 kg, 1.66 kg, and 4.6 kg,
respectively. The observed increases suggest that males may exhibit greater efficacy
than females in their response to environmental improvements (Al-Shorepy et al.,

2002; Zhang et al., 2009). Hormonal and genetic differences between males and
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females may be the cause of the variations caused by sex (Bedhane et al., 2013).
Androgens, which are sex hormones, have a greater influence on muscle development
in males compared to females, whereas estrogen limits skeletal growth in females.
Furthermore, it has been reported that dams carrying a male fetus have a greater
number of cotyledons and possess placentas with higher weight compared to those

carrying a female fetus, perhaps influencing this variability (Tesema et al., 2022).

Type of birth was another important source of variation associated with all
studied traits across the three breeds. The primary factor contributing to this difference
may be the competition among multiple-born animals for uterine space and milk
consumption until weaning (Baneh et al., 2012). Consequently, the amount of nutrition
provided during the prenatal stage is lower for twins compared to single births, and the
amount of milk consumed by twins is also reduced. The difference typically decreases
following the weaning stage, thus indicating the animals' decreased dependence on
milk during this period, and the growth potential for twins begins catching up (Bedhane

et al., 2013; Zhang et al., 2009).

The significance of the year can be attributed to climate change, food
availability, and the spread of potential diseases (Mahala et al., 2019; Tesema et al.,
2022). The apparently upward trend observed in weight at W12 compared to other
traits over the last four years suggests that this particular trait may possess a higher

level of heritability and that animals respond more effectively to selective breeding.

Dam's age has been included as a covariate or as a fixed effect with many levels
in linear mixed models according to the literature. It has been considered as a fixed

effect in studies like Baneh et al. (2012), Bahreini Behzadi et al. (2007) and Al-Shorepy
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et al. (2002). However, other research, including those of Hizli et al. (2022) and
Erdogan Atag et al. (2023), included the age of the dam as a covariate. In the current
study, it has been fitted as a covariate because the age of dam is a continuous variable

with so many levels and that it has a linear relationship with body weights.

4.4.2 Importance of maternal effects on growth traits

The dam can affect the performance of its offspring by passing on its direct
additive genetic effects during fertilization and by providing a suitable environment,
including nourishment and maternal care. The ability of a dam to create an appropriate
environment is determined by both genetic factors, referred to as maternal genetic
effects, and environmental factors, referred to as maternal environmental influences.
Maternal effects exert a more significant influence on early growth characteristics, such
as birth weight (BW) and weaning weight (WW), in comparison to other later traits.
(Mrode, 2014). Their impact is expected to diminish from birth to yearling age; as the
animal develops, its need for its dam reduces (Bahreini Behzadi et al., 2007). However,
they may also have an impact later on traits such as W6 and W12, as noticed by
Bahreini Behzadi et al. (2007) in Kermani sheep, Areb et al. (2021) in Bonga sheep,
and Singh et al. (2022) in Barbari goats. Due to carryover from the before-weaning
stage, certain traits may still exhibit maternal influences in adulthood (Bangar et al.,

2020).

The present study found that when maternal effects were excluded, the direct
heritability of all traits in the three breeds was overestimated. This conclusion is

consistent with the results reported by Meyer (1992). Meyer observed that the

147



estimation of additive genetic variance is higher when maternal effects are excluded.
This study revealed that maternal effects had a noteworthy influence on the traits of
BW, WW, and W6 in all breeds. Unexpectedly, maternal influences had a significant
effect on the weight of JA goats at 12 months. This was unexpected, as animals at this
stage should not depend on their dams for any sort of support. Hence, it is important
to consider maternal effects when estimating the genetic parameters of these traits to
avoid inflated parameters and ensure that the genetic potential of animals is not
masked by maternal effects. This matters because it could have an impact on the

selection of superior animals (Oyieng et al., 2022).

The inclusion of maternal genetic effects, as implemented in model 2, was
appropriate for analysing the BW trait among goats' breeds as well as the W12 trait in
JA goats. This is in agreement with the results reported by Tesema et al. (2020) and
Singh et al. (2022). Nevertheless, numerous studies have demonstrated that maternal
permanent environmental effects, either alone or together with maternal genetic
effects, play a substantial influence on the determination of these traits, surpassing the
impact of maternal genetic effects alone (Bangar et al., 2020; Singh et al., 2022; Zhang
et al., 2009). The study found that maternal genetic effects were as important as direct
additive genetic effects in determining body weight at birth in both breeds of goats. In
particular, this factor explained 17% of the total variation in observable traits in the JA
breed and 13% in the BA breed. In W12, it made up 6% of the variation in JA goat

phenotypes.

Across the three breeds, Model 4 presented the most appropriate
representation of WW and W6 traits, plus BW in OS sheep. This model takes into

account the influence of maternal permanent environmental effects. A number of
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investigations have arrived at the same conclusion (Baneh et al., 2012; | et al., 2017,
Tesema et al., 2022). These maternal influences may be reflected by the environment
and capacity of the uterus, as well as by the mothering ability and milk production, all
of which influence the phenotypic differences in these specific traits. For the breeds of
OS sheep, JA goats, and BA goats, they provide an explanation for 10% and 8%, 16%
and 11%, and 19% and 8% of the variability of WW and W6. They were responsible
for 19% of the variation in BW of OS sheep. The significance of maternal influences in
these breeds, in relation to the variability observed in these specific traits, must be
taken into account when estimating genetic parameters and breeding values.

Consequently, the selection programme becomes more effective.

4.4.3 Heritability estimation of growth traits

The estimation of heritability for the desired trait, which measures the
proportionate influence of additive genetic effects on the total variability of observable
traits within a population, is the foundation of animal breeding programmes. It explains
the extent to which the trait can be improved by genetic selection. Therefore, estimating
it is required for predicting how individuals will respond to selection and to calculate
their specific EBVs (Getabalew et al., 2019). The heritability estimation should not be
affected by feed differences, even though the examined breeds were fed concentrate
according to the age and physiological stage of the animals. This is a result of the
animals being grouped and fed similar quantities for every trait that was being studied.
Furthermore, the factors of pens and dam’s age may took account for any variability

resulting from the feeding of the dams.
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In this study, pre-weaning traits exhibited lower direct heritability in comparison
to post-weaning traits. These findings indicate that the way animals are managed
before they are weaned significantly affects how their genetic potential is expressed
(Bedhane et al., 2013). The study found that the direct heritabilities for BW and
WW were 0.13 and 0.11 in JA goats, 0.17 and 0.16 in BA goats, and 0.16 and 0.15 in
OS sheep. In contrast, for W6 and W12 in JA goats, the direct heritabilities were 0.19
and 0.21, for BA goats, they were 0.16 and 0.24, and for OS sheep, they were 0.28
and 0.48. The presence of these heritability estimates suggests that genetic selection
can be implemented to improve these growth traits in the Omani breeds, and the rate

of improvement is determined by their magnitude.

reported low direct heritability values for BW and WW in Nellore sheep (0.08
and 0.03, respectively). Dhakad et al. (2022) found similar results in Malpura sheep,
with heritability values of 0.15 for BW and 0.13 for WW. Chauhan et al. (2021) observed
a heritability value of 0.10 for WW in Harnali sheep. Bangar et al. (2020) reported a
heritability value of 0.09 for BW in Jakhrana goats. However, several studies have
reported higher estimates for these traits. For instance, Baneh et al. (2012) found in
Naeini goats value of 0.25 for BW, Bosso et al. (2007) reported in West African dwarf
goat a value of 0.50 for BW, Areb et al. (2021) observed in Bonga sheep values of
0.56 and 0.36 for BW and WW, respectively, and Singh et al. (2022) recorded in Barbari

goats 0.31 and 0.23 for BW and WW, respectively.

According to Olayemi et al. (1997), the low estimates of direct heritability for pre-

weaning traits suggest that these traits are mostly impacted by environmental factors
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rather than genetics. The inadequate nutrition management of dams may be a
contributing factor to the low estimates of the direct heritability for traits before weaning
in this study, resulting in a significant variation in the environment. In addition, the
inclusion of maternal effects may have contributed to the low estimates of direct
heritability. Tesema et al. (2022) reported that animal selection based on performance
is ineffective when heritability is less than 0.15. Instead, it is recommended to select
animals based on breeding values that are estimated from multiple sources, including
sires, offspring, and their own performance records. Selecting animals based on lowly
heritable traits is expected to result in a slow improvement in genetic merit (Mandal et

al., 2015).

The heritability of the W6 trait was relatively moderate in JA goats (0.19), but a
bit lower in BA goats (0.16). The heritability of this trait had a higher magnitude in OS
sheep, with a value of 0.28. Sharif et al. (2022) reported a heritability of 0.20 in Lohi
sheep; Singh et al. (2016) revealed a heritability of 0.28 in Marwari sheep 0.28,
Chauhan et al. (2021) found a heritability of 0.18 in Harnali sheep; Singh et al. (2022)
observed a heritability of 0.18 in Barbari goats; and Areb et al. (2021) found a
heritability of 0.22 in Bonga sheep. Higher estimates than the current study have been
reported by Bangar et al. (2020) in Jakhrana goat (0.53), and Hassan et al. (2013) in

exotic goat (0.45).

The W12 trait demonstrated the highest estimates of direct heritability in
comparison to other growth traits across all the breeds that were examined. This

indicates that animals at one year of age possess more ability to manifest their genetic
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potential. The OS sheep exhibited the highest estimations, with a value of 0.48, while
the BA and JA goats showed moderate values of 0.24 and 0.21, respectively. The size
of the flock, the twinning rate, and the implementation of a proper culling strategy at
six months of age may have contributed to the less genetic variability in goat breeds
compared to sheep. Estimates of direct heritability, which vary from moderate to high,
suggest the existence of considerable additive genetic variance. This enables
successful selection for additional genetic improvement. Moderate estimates of
heritability for this trait in JA and BA goats were reported by Bedhane et al. (2013) in
Arsi-Bale Ethiopian goats (0.23) and Singh et al. (2022) in Barbari goats (0.21). Kogak
et al. (2023) have found a high estimate of direct heritability in Daglic sheep (0.47),
which is in agreement with the current estimate for OS sheep. Lower estimates were
found in Jakhrana goats (0.16) (Bangar et al., 2020), in Harnali sheep (0.11) (Chauhan
et al., 2021), in Malpura sheep (0.16) (Dhakad et al., 2022) and in Bonga sheep (0.15)

(Areb et al., 2021).

4.4.4 Genetic and phenotypic correlations among growth traits

The growth traits of the Omani goats and sheep breeds showed, in
general, positive and strong genetic correlations among them, indicating that they are
primarily governed by similar genes or genes that are closely linked (Sharif et al.,
2022). The correlations ranged from 0.47 for the correlation between BW and W6 in
BA goats and between BW and W12 in OS sheep to 0.98 and 0.92 for the correlation
between W6 and W12 in JA and BA goats and OS sheep, respectively. This positive
correlation implies that improving any trait would enhance the performance of other

correlated traits, according to the high estimates of genetic correlations between the
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traits (Bangar et al., 2020; Tesema et al., 2022). Robertson (1959) proposed that in
order to mitigate the impact of genotypes and environmental interactions, it is
recommended that there be a minimum genetic correlation threshold of 0.80 between
phenotypes. This suggests that the ranking of animals would be similar across various
traits. The present genetic correlations fell within the range reported in other research,
including (Singh et al., 2022) (0.26-0.85), (Dhakad et al., 2022) (0.18-0.80), and

(Bangar et al., 2020) (0.14-0.99).

Except for the correlations with BW, which showed lower magnitudes ranging
from 0.15 to 0.25, the phenotypic correlations between growth traits across all breeds
were positive and relatively high. The phenotypic correlations observed in JA goats
ranged from 0.20 to 0.71, in BA goats from 0.19 to 0.70, and in OS sheep from 0.20 to
0.74. The phenotypic correlations between W6 and W12 were the largest in magnitude
compared to the other correlations between traits (0.71, 0.70, and 0.74 in JA, BA, and
OS, respectively). The second-strongest correlations were seen between W6 and WW
(0.66, 0.67, and 0.70 in JA, BA, and OS, respectively). The phenotypic correlations
between traits may arise from the common environment exposed to the animals at

different stages of life (Sharif et al., 2022).
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4.4.5 Genetic and phenotypic trends of growth traits

Between 2008 and 2020, the genetic trend in BW traits across all breeds
showed a constant pattern of change, indicating that genetic selection was not
effective in achieving the desired results. The yearly genetic increment associated
with this trait for all breeds was 0.01 kg. The low genetic change might be because
of the low heritability of this trait (0.13, 0.17, and 0.16 in OS sheep, BA goats, and
JA goats, respectively), as well as its exclusion from being a targeted trait. The same
pattern was observed by Bosso et al. (2007) in their research on sheep and goat
breeds. However, Gizaw et al. (2007) reported a greater increase in Menz sheep
compared to the present investigation, with a value of 0.04 kg/year. Lower estimates
have been reported by Shirzeyli et al. (2023) in Markhoz goats (0.001 kg), Areb et
al. (2021) in Bonga sheep (0.002 kg), and Esrafiliand Behmaram (2023) in Moghani
sheep (0.008 kg). A negative genetic trend of -0.02 kg for this trait was reported in
Ettawa-grade goats by Hasan and Gunawan (2014). The differences in the
published findings might be ascribed to changes in breeds, data structure, utilised

statistical methods, and selection criteria.

The remainder of growth traits (WW, W6, and W12) in all three breeds
exhibited a fluctuating and increasing trend in genetic changes starting in 2010.
More consistent trend has been noticed since 2015, notably in the later growth trait
W12. The first two years of the project (2008-2009) exhibited a declining pattern,
possibly due to it being the starting year and the introduction of new strategies and
management methods. The average breeding value for the traits WW and W6
increased annually by 0.09 kg and 0.13 kg, 0.08 kg and 0.10 kg, and 0.13 kg and

0.22 kg for JA goats, BA goats, and OS sheep, respectively. This indicates that
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these traits demonstrated an effective response in comparison to BW, suggesting
that animals at a more mature stage are more responsive to selection. The higher
heritability estimates of the trait W6 in OS sheep compared to goats can explain the
increased value of genetic change at W6. The heritability estimates for W6 were

0.28 in OS sheep, 0.19 in JA goats, and 0.16 in BA goats.

The breeds under investigation showed a more significant genetic change
compared to what has been reported in the literature. This could be attributed to the
selection of sires with higher breeding values and a potentially larger selection
differential. Lower trends for the WW and W6 have been reported by Shirzeyli et al.
(2023) in Markhoz goats (0.03 kg and 0.04 kg, respectively), Areb et al. (2021) in
Moghani sheep (0.03 kg and 0.06 kg, respectively) and Hasan and Gunawan (2014)
in Ettawa Grade goats (-0.02 kg and 0.003 kg, respectively). Nevertheless, higher
estimates have been reported by Esrafili and Behmaram (2023) in Menz sheep
(0.27 kg and 0.39 kg for WW and W6, respectively), and Gholizadeh and Ghafouri-
Kesbi (2015) in Baluchi sheep (0.19 kg for WW). Later, they observed lower

estimates for the W6 traits in the same breed (0.08 kg).

The weight at 12 months (W12) displayed the most substantial genetic
change across the three breeds, which corresponds to the highest heritability
estimate seen across all breeds. The OS sheep displayed the most significant
change in this trait, with a growth rate of 0.39 kg per year, in contrast to rates of 0.20
kg and 0.18 kg in JA and BA goats, respectively. OS sheep exhibited significantly
higher heritability estimates (0.48) in comparison to goat breeds, which might
be responsible for their substantially greater genetic gain. Present genetic changes

of the investigated breeds for this trait were much higher than many other breeds,
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including West African dwarf goats (0.08kg) and Djallonk’e sheep (0.09 kg) (Bosso
et al., 2007), Markhoz goats (0.08 kg) (Gholizadeh & Ghafouri-Kesbi, 2015), Bonga
sheep (0.02 kg) (Areb et al., 2021), and Moghani sheep (0.15 kg) (Esrafili &
Behmaram, 2023). High genetic changes have been reported by Gholizadeh and

Ghafouri-Kesbi (2015) in Baluchi sheep (0.46 kg).

With the exception of the W12 trait, phenotypic changes in growth traits were
not statistically significant across the three breeds. For the trait of W12, the JA
goats, BA goats, and OS sheep breeds experienced an important weight rise, with
annual increases of 0.93 kg, 0.69 kg, and 0.66 kg, respectively. Baba et al. (2020)
did not observe any phenotypic gain in all the studied growth traits in Corriedale
sheep. Mohammadi and Abdollahi-Arpanahi (2015) have only observed significant
phenotypic change with WW and W6 (0.13 kg/year and 0.24 kg/year) in Zandi
sheep. Enhancing phenotypic performance can be achieved by implementing
different management strategies and improving nutrition (Hasan & Gunawan, 2014).
It appears that environmental changes had a greater effect on these breeds' animals
at BW, WW, and W6 than they did at W12. Inadequate nutrition, management
problems, adverse weather conditions, and poor health can hinder animals from

fully manifesting their genetic potential (Esrafili & Behmaram, 2023).
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4.5 Conclusion

The growth traits of the studied breeds were significantly influenced by
environmental fixed effects such as sex, year, and birth type. However, the age of the
dam only had an effect on early growth traits of all breeds, including W6 in Batinah
goats. The present study demonstrates that maternal effects played a significant role
in accounting for the phenotypic variability of all growth traits in Jebel Akhdar goats.
However, in the case of Batinah goats and Omani sheep, maternal influences were
shown to be important for all growth traits except for W12. Considering these effects
in the statistical models is crucial for an accurate estimation of genetic parameters and,
consequently, breeding values. The moderate heritability of W6 and W12 traits in goat
breeds and W6 in Omani sheep and the high heritability of W12 in Omani sheep
suggest the possibility of further genetic improvement for these traits by selection. All
the examined breeds exhibit strong positive genetic and phenotypic correlations
between growth traits, except for the trait of BW. This suggests that selecting for an
improvement of any given trait would also result in the improvement of other correlated
traits. The strongest genetic correlations were seen between W6 and W12, followed
by the correlation between W6 and WW. Therefore, selecting W6 would be desirable
due to its substantial correlation with other growth traits, resulting in time and labour
savings. The positive genetic trend over the course of 13 years indicates that the
breeding programme set up to improve the growth traits of the three breeds was
successful. Yet, it is important to emphasise the improvement of the animals'

environment in order to improve their overall phenotype.
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CHAPTER FIVE

OPPORTUNITIES OF IMPLEMENTING GENOMIC

SELECTION IN OMANI SHEEP: A SIMULATION STUDY
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5.1 Abstract

Genomic selection (GS) is a promising strategy for enhancing genetic
improvement by increasing selection accuracy and decreasing the generation interval.
It has been commonly adopted in dairy cattle and, to a lesser extent, in small
ruminants. The primary advantage of introducing GS in sheep breeding is its potential
to improve the accuracy of candidates’ selection. Traditionally, individuals are selected
based on predicting their estimated breeding values (EBVs) using the pedigree-best
linear unbiased prediction (BLUP) approach. Genomic Best Linear Unbiased
Prediction (GBLUP) and Single Step-Genomic Best Linear Unbiased Prediction
(ssGBLUP) are two prevalent genomic methods used to predict Genomic Estimated
Breeding Values (GEBVs) forimplementing GS. These two methods employ molecular
information throughout the genome to estimate genomic relationships and marker

effects, which are then used to predict the GEBVs of animals.

This study aims to explore the possibility of applying GS to Omani sheep by
comparing the predictive accuracy of the BLUP, GBLUP, and ssGBLUP methods. The
study simulated the genome structure by using 5000 markers and 50 QTLs (with only
additive genetic effects). The simulation employed the estimated genetic parameters
of growth traits birth weight (BW), six-months weight (W6), and yearling weight (W12)
that were obtained from Chapter 4 to represent three distinct levels of heritability: low,
moderate, and high. Three varying sizes of reference animals were examined for every

trait to evaluate the impact of the reference size on the prediction.

159



With an average accuracy of 0.64, ssGBLUP has outperformed BLUP (0.56)
and GBLUP (0.47) in terms of prediction accuracy across all three traits. The accuracy
of the three approaches improved as the heritability level increased. Increasing the
reference size improved the genomic prediction accuracy of GBLUP and ssGBLUP by
an average of 0.43, 0.48, and 0.50, and 0.61, 0.64, and 0.67 for the two methods,
respectively, at reference sizes of 500, 1000, and 2000 animals, respectively. The
largest increase in accuracy achieved by ssGBLUP was observed in the low heritable
trait (BW), averaging 20% across the three reference sizes. However, the gain
difference was minimal (<2%) while transitioning from 1000 to 2000 animals. Thereby,
ssGBLUP could be a valuable technique for improving prediction accuracy in
comparison to BLUP and GBLUP, especially for traits with low heritability. The results
can be used as a theoretical framework for promoting the adoption of genomic

selection in Omani sheep.
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5.2 Introduction

Recent advancements in DNA sequencing and molecular information enabled
the development of high-density SNP chips for livestock and consequently utilised
them in genomic selection (GS) (Bertolini et al., 2017a; Rupp et al., 2016). Genomic
selection is the process by which genomic estimated breeding values (GEBV) of
genotyped candidates are predicted without the use of their phenotypic data, using a
reference group of individuals that are both genotyped and phenotyped (Dekkers et
al., 2021; Meuwissen et al., 2016). It entails evaluating the effects of SNP-markers in
a reference population where individuals have been genotyped and phenotyped for a
certain trait. Following that, selected candidates are only required to be genotyped in

order to estimate their GEBVs (Meuwissen et al., 2016; Mrode, 2014).

Genomic selection offers potential for maximising genetic improvement by
reducing the length of the generation interval (Karimi et al., 2019) and by accurately
estimating breeding values at an early stage of an animal's life (Dekkers et al., 2021).
It proved its effectiveness in dairy cattle by accurately estimating breeding values early
in life and by reducing the generation interval. One key aspect contributing to this
success was the high number of offspring produced by every male due to artificial
insemination techniques, which results in a small effective population size in the
reference group, leading to more accurate estimations of markers’ effects. However,
in sheep breeds, the issue may be more challenging due to the larger variability that
exists among and within sheep breeds, requiring a large number of reference animals

(Van der Werf et al., 2014).

Implementing GS in small ruminants, including sheep and goats, can be

advantageous for improving prediction accuracy more than reducing the generation
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interval. This is especially true for growth traits, as the generation interval is typically
shorter in these animals, and most growth traits can be measured early in life. Accurate
prediction is essential for the successful implementation of GS. The accuracy is
influenced by several factors, such as the size of the reference population, the effective
size of the reference set (Lee et al., 2017), the heritability of the trait, the number of
QTLs affecting the trait (Dekkers et al., 2021), marker density, and the statistical
method of prediction (Karimi et al., 2019). The level of trait’s heritability and number of
animals in the reference population can improve the accurate estimation of markers’
genetic effects. Several studies have demonstrated that the accuracy of genomic
prediction improves as heritability level and reference size rise (Karimi et al., 2019;
Shumbusho et al., 2013; Song et al.,, 2019). While the markers' density and the
effective population size have a role in increasing accuracy by capturing more additive

genetic variation that is caused by QTLs (Pszczola et al., 2012).

The accuracy is determined by the amount of QTL-caused additive genetic
variance that markers can explain, as well as the accurate estimation of markers'
effects (Lee et al., 2017). As the number of QTLs rises, the genetic variance proportion
at each QTL decreases, making it difficult to accurately estimate the effect of markers
surrounding that QTL (Yan et al., 2022). The extent of additive genetic variance at a
QTL that markers capture corresponds with the degree of linkage disequilibrium
between the markers and the QTL; therefore, the number of molecular markers is

critical for accuracy (Dekkers et al., 2021; Lee et al., 2017).

This study aimed to investigate the possibility of adopting GS in Omani sheep,
along with offering an initial theoretical basis for this endeavour. The study evaluated

the accuracy of BLUP, GBLUP, and ssGBLUP in predicting the breeding values of
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animals for the growth traits of birth weight (BW), six-month weight (W6), and yearling
weight (W12). These specific traits were chosen to represent the level of heritability as
low, moderate, and high, respectively. The investigation was conducted using a
simulation technique that properly mimics the real pedigree and genetic parameters of

the target population.
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5.3 Results

5.3.1 Population’s structure of reference and validation animals

Basic statistics of the populations of the reference animals (phenotyped and

genotyped) and validation animals (only genotyped) are summarized in Table 21.

Across the three various sizes of the reference group, the average relationship among

the reference animals was 0.04, literally unrelated individuals. The direct relatives, i.e.,

sires and dams, that existed in the reference group for the animals in the validation

group increased as the reference size increased because more parents were found in

subsequent years. The number of sires and dams in the reference groups was 4 and

60 for a reference size of 500, 9 and 117 for a reference size of 1000, and 13 and 179

for a reference size of 2000.

Table 21. Statistics of populations utilised as reference animals and validating
animals of the Omani sheep.

ltem

Reference size

Year of birth

Average relationships among animals

Total animals in the validation group

Year of birth

No.
No.
No.
No.
No.

No.

of validating animals with known sires
of sires of validating animals
of offspring/sire in the validation group
of validating animals with known dams
of dams of validating animals

of offspring/dam in the validation group

500 1000 2000
animals animals animals
2019-2018 2019-2016 2019-2013
0.04 0.04 0.03
293 293 293
2020 2020 2020

89 200 292

4 9 13
22.25 22.22 22.46
85 181 284

60 117 179
1.41 1.54 1.60
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5.3.2 Accuracy of prediction

The prediction accuracy was determined by calculating the correlation
coefficient between the estimated breeding values and the simulated true breeding
values of the validation animals. Overall, the ssGBLUP approach outperformed the
BLUP and GBLUP methods in predicting animals’ breeding values across the three
studied growth traits. The accuracies were on average 0.64, 0.56, and 0.47, for
ssGBLUP, BLUP, and GBLUP, respectively. Accuracy improved as the number of
animals in the reference population increased, regardless of growth traits. GBLUP
achieved accuracies of 0.43, 0.48, and 0.50, whereas ssGBLUP achieved accuracies

of 0.61, 0.64, and 0.67 for sample sizes of 500, 1000, and 2000 animals.

5.3.2.1 Accuracy at trait of birth weight (BW)

At the BW trait, the mean accuracy of BLUP, GBLUP, and ssGBLUP were 0.44,
0.40, and 0.53 respectively. The accuracy of genomic prediction using ssGBLUP and
GBLUP continuously improves as the number of genotyped animals in the reference
population increases (Figure 26). GBLUP achieved accuracy values of 0.35, 0.41, and
0.45, whereas ssGBLUP achieved higher accuracies with 0.49, 0.54, and 0.55 at

sample sizes of 500, 1000, and 2000 animals, respectively.
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Figure 26. Prediction’s accuracy of estimated breeding values of Omani sheep
animals for the trait of birth weight (BW) with heritability (h? = 0.16) by three methods
of BLUP, GBLUP, and ssGBLUP under three different reference sizes (500, 100, and

2000 animals).

5.3.2.2 Accuracy at trait of six-month weight

(W6)

ssGBLUP demonstrated the highest prediction accuracy across the three sizes

of reference population, averaging 0.65 accuracy. Then it was followed by BLUP, with

an average accuracy of 0.59, and GBLUP had an average accuracy of 0.50 (Figure

27). As the reference size increases, the accuracy of prediction by genomic

approaches also increases in a linear way. At sample sizes of 500, 1000, and 2000,

the accuracy of ssGBLUP was 0.63, 0.65, and 0.68, respectively, compared to 0.46,

0.50, and 0.53 for GBLUP.
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Figure 27. Prediction’s accuracy of estimated breeding values of Omani sheep
animals for the trait of six-month weight (W6) with heritability (h? = 0.28) by three
methods of BLUP, GBLUP, and ssGBLUP under three different reference sizes (500,

100, and 2000 animals).

5.3.2.3 Accuracy at trait of yearling weight (W12)

Figure 28 shows the trend of prediction’s accuracy for the three investigated
methods for the trait of W12 across the three sizes of reference populations. ssGBLUP
showed the highest prediction accuracy, averaging 0.74 across the three reference
population sizes. BLUP achieved an average accuracy of 0.64, whereas GBLUP had
an average accuracy of 0.51. The predictive performance of ssGBLUP improved with
sample sizes of 500 (0.71), 1000 (0.74), and 2000 (0.77), whereas GBLUP achieved

accuracies of 0.49, 0.52, and 0.52 for the same sample size.
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Figure 28. Prediction accuracy of estimated breeding values of Omani sheep animals
for the trait of yearling weight (W12) with heritability (h? = 0.48) by three methods of
BLUP, GBLUP, and ssGBLUP under three different reference sizes (500, 100, and

2000 animals).
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5.4 Discussion

Rather than utilising a specialised simulation software, the study’s simulation
was suggested to be based on self-written Fortran code. This suggestion was taken to
improve my knowledge of simulation methodologies and how they are implemented by
specialised software. The Fortran-based simulation used for this study had some
limitations that might be a potential pitfalls. For example, the array size was limited to
6,000, the thing that prevented simulating larger number of markers, the actual number
of chromosomes, and distribution of markers and QTL effects. Furthermore, some
parameters like linkage disequilibrium, mutation rate and crossover interference were
not simulated. Some specialized simulators such as GPOPSIM (Zhang et al., 2015)
and QMSim (Sargolzaei & Schenkel, 2009) have much flexibility in terms of QTL
numbers, sampling distribution of QTL effects, chromosome numbers and length, and
mutation rate. For this reason, it would be suggested to validate this simulation using
specialised tools to make it more realistic.

The accuracy of genomic prediction of individuals' breeding values relies on
key factors such as the fraction of additive genetic variance at a QTL that can be
captured by the markers. The extent of the explained variance is affected by the level
of linkage disequilibrium between the QTL and the markers. The accuracy also relies
on the precise estimation of the markers' genetic effects (Lee et al., 2017). So,
increasing the marker density may enhance genomic prediction’s accuracy by
increasing the degree of linkage disequilibrium between QTLs and markers (Karimi et
al., 2019), and by capturing more of the genomic relationships among animals (Mrode,
2014). Habier et al. (2007) showed that the number of genetic relationships captured

by the genetic markers is associated with the accuracy of genomic predictions.
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5.4.1 Overall accuracy of predictions

The current simulation study used the real pedigree of the Omani sheep
population and the genetic parameters for the growth traits (BW, W6, and W12) that
were estimated in Chapter 4. The study showed that the ssGBLUP method performed
better than classical BLUP and genomic GBLUP methods in accurately predicting the
breeding values of selection candidates for the three growth traits and across the
different sizes of reference populations. It yielded an average 14% increase in
prediction accuracy compared to BLUP (0.64 vs. 0.56) and a 36% increase compared
to GBLUP (0.47). These results aligned with the findings reported by Karimi et al.
(2019) who found that ssGBLUP outperformed alternative methods, especially in
cases of low heritability traits and low marker density. Also, Song et al. (2019) have
reported that ssGBLUP outperformed GBLUP and BLUP in predicting breeding values
for seven body measurements in a pig population. Yet, the same study reported that
accuracy improvement over the BLUP method was low, averaging only 1%, possibly
due to the limited number of genotyped individuals (400 animals).

ssGBLUP's superiority over other methods may be due to its combined use of
pedigree and genomic relationships. Additionally, ssGBLUP utilises both genotyped
and non-genotyped animal phenotypes, while GBLUP only uses genotyped animal
phenotypes (Valerio-Hernandez et al., 2023). In addition, the effective population size
of the reference population might be small. A smaller effective population size will be
expected to result in fewer independent chromosomal segments, leading to a lower
number of markers and phenotypes that are involved in tracking genetic variability and

estimating SNP effects properly (Pszczola et al., 2012).
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Despite having a reference size of 2,000 genotyped animals, GBLUP predicted
less accurately than traditional BLUP. This could be because the size of the genotyped
animals used for GBLUP estimate differs much from that of the ungenotyped animals
used for BLUP estimation. The reference size should be greater than 2,000 animals
for GBLUP to outperform BLUP, according to Karimi et al. (2019) research. Further,
the animals in the reference set and the validation set may not have close enough
genetic relationships, which may have contributed to GBLUP's inability to correctly
predict breeding values (Fraslin et al., 2022; Lee et al., 2017). Some studies have also
shown that GBLUP was less effective than BLUP in terms of prediction accuracy (Song

et al., 2019; Valerio-Hernandez et al., 2023).

5.4.2 Influence of heritability and reference size on prediction

The accuracy of the prediction improved steadily as the heritability of the trait
increased across all three methods. The accuracy of ssGBLUP was 0.53 for BW, 0.65
for W6, and 0.74 for W12. BLUP obtained values of 0.44, 0.59, and 0.64 for the
respective traits. GBLUP accuracies for the three traits, respectively, were lower with
values of 0.40, 0.50, and 0.51. Further, the accuracy of the genomic prediction by the
ssGBLUP and GBLUP methods improved as the reference size increased. Across the
three traits, the gain in accuracy for ssGBLUP and GBLUP was ~16% and ~12% (from
500 to 1000), and ~5% and ~4% (from 1000 to 2000). The accuracy of genomic
prediction is expected to decrease with smaller reference sizes and lower heritability
and to improve with higher heritability and larger reference populations (Prince &
Gowane, 2017; Pszczola et al.,, 2012). The reason for this might be that for low

heritable traits, the proportion of the additive genetic variance caused by QTLs would
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be very small compared to high heritable traits. This means that more markers and
individuals’ phenotypes are needed in order to capture a greater proportion of the
additive genetic variance and, consequently, effectively estimate the additive genetic
effects of the markers surrounding the QTLs. Additionally, in our study, we found that
when the size of the reference population increased, there was a higher probability of
identifying closer relatives for the selection candidates, potentially leading to improved
accuracy. A number of studies revealed that the accuracy of predicting genomic
breeding values is highest when the target animals are closely related to the reference
animals (Fraslin et al., 2022; Gowane et al., 2018; Pszczola et al., 2012) , and the
relationships among reference animals are minimised (Pszczola et al., 2012), as it is
the case in our study that the average relationships among reference animals were

0.04 (unrelated animals).

By considering the low heritable trait (BW), when comparing ssGBLUP to BLUP,
the increase in accuracy was 11% for a reference size of 500, 23% for a reference size
of 1000, and 25% for a reference size of 2000. The accuracy improvement for the
moderately heritable trait (W6) was 7% with a reference size of 500, 10% with a
reference size of 1000, and 15% with a reference size of 2000. The gain for the high
heritable trait (W12) was 11% (reference size = 500), 16% (reference size = 1000),
and 20% (reference size = 2000). Across every case of reference size and heritability
level, there was an increase in accuracy observed among comparable methods.
However, the comparable gain in accuracy among the genomic methods is higher for
the traits with low heritability, especially when sample sizes are 1000 and 2000.
ssGBLUP appears to be an effective approach for improving prediction accuracy and

enhancing genetic gain, particularly for traits with low heritability, when both BLUP and
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GBLUP had accuracies below 0.50. Using a sample size of 1000 animals may be
sufficient to substantially enhance accuracy, as the increase in accuracy from 1000 to
2000 animals was not large. Practically applying genomic selection to Omani sheep
can be supported theoretically by adopting an appropriate reference population design

that maximises the number of sires, unrelated individuals, and population size.
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5.5 Conclusion

Genomic selection is a promising tool for breeding projects in livestock,
including small ruminants. Genomic selection is expected to improve the
accuracy of predicting breeding values, hence improving genetic progress.
Simulation can be used to theoretically test and assess methodologies, providing
practical guidance for choosing a specific method. The current simulation study
has shown that the ssGBLUP approach outperforms BLUP and GBLUP methods
in reliably estimating breeding values by exploiting both pedigree and genomic
relationships across individuals. The ssGBLUP approach exceeded accuracy
across reference populations of varying sizes and different levels of heritability.
Its greatest improvement was seen with the low heritability trait (BW), attaining a
20% increase over BLUP and around 33% over GBLUP. Genomic predictions
using the ssGBLUP and GBLUP methods improved in accuracy as the reference
size and heritability increased. This could be attributed to the fact that low
heritable traits involve more phenotypes and genotypes to capture a larger
genetic variance. The greater number of direct relatives available for animals in
the validation group might enable the genetic markers to capture more genomic
relationships and consequently improve their accuracy. We can conclude that
ssGBLUP can provide an efficient method for accurately estimating the breeding
values of Omani sheep population animals, especially those with low heritable
traits. A reference size of 1000 animals can also be considered appropriate, as

the difference between 1000 and 2000 animals was not substantial.
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CHAPTER SIX

GENERAL DISCUSSION AND CONCLUSION
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6.1 Genetic improvement of growth traits in goats and sheep in Oman

The economic value of an animal is largely determined by its growth traits,
which can be improved to develop more efficient production systems (Mahala et
al., 2019). The animal's growth potential is indicative of its ability to produce meat
(Bangar et al., 2020). Thus, the production of meat can be increased by improving

growth traits.

Sheep and goats make up almost 81% of the overall livestock population
in Oman, with populations of 642,000 and 2,443,000, respectively (NCSI, 2021).
They are known for their capacity to thrive in arid and hilly regions, where they
can efficiently convert scarce vegetation into nutrients (Mahgoub et al., 2010) and
have a short production cycle for red meat production (Pond & Pond, 2000).
Sheep and goats in Oman are mostly bred for meat (Shaat & Al-Habsi, 2016).
They could therefore be used to contribute significantly to the production of meat

in the country and to food security.

Improving growth traits implies understanding and analysing the factors
that impact them. These traits are quantitative in nature and are impacted by a
combination of environmental and genetic factors, as well as their interactions
(Bahreini Behzadi et al., 2007; Falconer, 1996). Genetic improvement is a viable
and sustainable approach that can be employed to enhance these traits by
selecting animals with superior genetic merit for a certain trait. In order to
effectively implement genetic improvement programmes, it is essential to
accurately estimate some important genetic parameters that characterise the
population, such as the heritability of the desired traits and the genetic

correlations between those traits. The heritability of a characteristic indicates its
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susceptibility to respond to selection, while genetic correlations reflect the extent
and direction of the influence that the selected trait has on other traits under
investigation (Singh et al., 2022; Zishiri et al., 2014). Therefore, the primary
objective of this thesis was to estimate the heritability and genetic correlations of
growth traits, as well as to look into the genetic trend for each trait from 2008 to
2020, targeting the most popular breeds of goats and sheep in Oman: Jebel
Akhdar (JA) and Batinah (BA) goats, and Omani sheep (OS). The growth traits
comprised birth weight (BW), weaning weight (WW), six-month weight (W6), and

yearling weight (W12).

Genetic improvement projects are commonly associated with a rise in
inbreeding levels, especially in closed-population schemes that focus on
selecting within the breed. Inbreeding has adverse effects on genetic variability
(Ceyhan et al., 2011; Mandal et al., 2020) and can lead to inbreeding depression
(Falconer, 1996), both of which can impact the success of a breeding programme.
The second objective of this thesis was to assess the level of inbreeding in the

three populations and monitor its trend from 2008 to 2020.

Genetic improvement efforts in animal breeding rely on the selection of
individuals with higher estimated breeding values (EBVs) for specific traits, which
can be passed on to their offspring. The Best Linear Unbiased Prediction (BLUP)
is the classical method that is frequently used to predict EBVs by utilising the
pedigree-based relationships between animals, their phenotypes, and the ratio of
environmental variance to the additive genetic variance, denoted as alpha (a)
(Mrode, 2014). Since 2001, research has started to look into the possibility of

using genomic selection (GS) to enhance genetic improvement through
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improving the prediction accuracy of breeding values and reducing generation
intervals, benefiting from the advancements in molecular genomics and the
development of single nucleotide polymorphism (SNPs) chips for the majority of
livestock (Meuwissen et al., 2001). The final chapter of results in the present
study has conducted a comparison between the conventional BLUP approach
and the genomic techniques of Genomic Best Linear Unbiased Prediction
(GBLUP) and Single Step Genomic Best Linear Unbiased Prediction (ssGBLUP)
in terms of their ability to reliably predict breeding values. It was based on a
simulation of five chromosomes of the sheep’s genome, which had 5000 markers
and 50 QTLs (with solely additive genetic effects). The simulation used the actual
pedigree and heritability level of growth traits that were obtained in Chapter 4.
Consequently, theoretical guidelines were developed for implementing genomic

selection in sheep and goat populations in Oman.
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6.2 Estimation of genetic parameters of growth traits

Animals’ predicted response to selection and the eventual genetic
improvement of a trait can be inferred from the heritability level of that trait in that
population (Getabalew et al., 2019). As a result, the progress of improving that
trait genetically would be determined by the extent of its heritability within the

specific population.

6.2.1 Heritability of pre-weaning growth traits

In general, the heritability of pre-weaning growth traits in the three breeds
studied was relatively low, measuring less than 0.20. The values for the trait of
BW were 0.13 £ 0.04, 0.17 £ 0.04, and 0.16 £ 0.03 in JA goats, BA goats, and
OS sheep, respectively. Similarly, the values for the trait of WW were 0.11 + 0.04,
0.16 £ 0.04, and 0.15 £ 0.03 in JA goats, BA goats, and OS sheep, respectively.
The heritability estimates suggest that there is a level of genetic variability in pre-
weaning growth traits that can be used for genetic improvement. However, the
rate of improvement is expected to be minimal. Tesema et al. (2022) have
suggested that when the heritability is below 0.15, it is essential to use animals’

EBVs rather than phenotypic selection for the purpose of selection.

The low heritability levels are indicative of the animals' additive genetic
effects contributing less to the variance compared to the increased variance
caused by environmental variables. Pre-weaning improper management such as
dam’s nutrition (Olayemi et al., 1997) and including maternal effects in the models
used to estimate the heritability (Meyer, 1992) may have contributed to the low

levels of heritability for these traits. The importance of maternal effects on these
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particular traits must be taken into account when estimating genetic parameters
and breeding values in order to avoid any bias or inaccurate estimation (Meyer,

1992; Oyieng et al., 2022).

6.2.2 Heritability of post-weaning growth traits

The growth traits W6 and W12 had higher heritability levels than the earlier
growth traits, with values for the corresponding breeds of JA goats, BA goats,
and OS sheep reaching 0.19 £ 0.05 and 0.21 £ 0.06, 0.16 + 0.04 and 0.24 + 0.04,
and 0.28 £ 0.05 and 0.48 £ 0.05, respectively. These values could indicate the
ability of animals in later stages of life to express their genetic potential and be
more adaptable to environmental changes. Thus, the selection of these traits,
especially the W12 trait, is expected to enhance genetic improvement effectively.
It has been observed that OS sheep have higher heritability than JA and BA
goats. This may be due to a number of factors, including a higher twinning rate
and a larger flock size than in goat breeds. In addition, sheep breeds may exhibit

greater genetic diversity compared to goats (Van der Werf et al., 2014).

Usually, the impact of the dam on the animal’s phenotype diminishes as it
grows older, as its dependence on the dam decreases (Bahreini Behzadi et al.,
2007). Nevertheless, our research revealed that maternal influences were
significant for W6 in goats and sheep and W12 in JA goats, but to a lesser extent
compared to early growth traits. The contribution of maternal additive genetic
effects to the phenotypic variance in JA goats was around 6% for W12, whereas
maternal permanent environmental influences accounted for 8% for W6. Maternal
permanent environmental influences accounted for 11% and 8% of the overall
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phenotypic variance of the W6 trait in BA goats and OS sheep, respectively. The
presence of maternal influences in later stages may be attributed to carryover
maternal effects from the pre-weaning stage (Bangar et al., 2020). The absence
of maternal effects on W12 in OS sheep and BA goats may have contributed to
the higher estimates of heritability (0.24 and 0.48, respectively) compared to JA

goats (0.21).

6.2.3 Genetic and phenotypic correlations between growth traits

Strong and positive genetic correlations ranged from 0.47 to 0.98 between
the various growth traits. Among the three breeds, the strongest correlations were
found between W6 and W12 and between W6 and WW. The genetic correlation
between W6 and W12 was 0.98 + 0.03, 0.98 + 0.05, and 0.92 + 0.02 for the JA
goat, BA goat, and OS sheep breeds, respectively. The genetic correlation
between W6 and WW for the corresponding breeds was 0.85 + 0.06, 0.91 £ 0.05,
and 0.89 = 0.03. The findings suggest that these traits may be regulated by the
same genes or by genes that are linked closely (Sharif et al.,, 2022).
Consequently, improving any of these traits would result in the enhancement of

the other growth traits in the same way (Bangar et al., 2020; Tesema et al., 2022).

The phenotypic correlations between the growth traits were also strong
and positive, except for the correlations with BW (< 0.25) in all breeds. Other
correlations ranged from 0.45 to 0.74. Again, the trait of W6 was common, with
the strongest phenotypic correlations across the three breeds. The correlations

between W6 and W12 were 0.71 + 0.02, 0.70 £ 0.02, and 0.74 £ 0.01 for JA
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goats, BA goats, and OS sheep. The values for the comparable breeds between

W6 and WW were 0.66 + 0.01, 0.67 £ 0.01, and 0.70 + 0.01.

Robertson (1959) recommends a minimum threshold of 0.80 for genetic
correlations between traits in order to minimise the influence of genotype-
environment interactions on these traits. This ensures that the ranking of animals
remains consistent across the correlated traits. Given that the trait of W6 has the
strongest genetic and phenotypic correlations with WW and W12, it may therefore
be the best selection criterion for enhancing the growth traits in the examined
breeds. Additionally, because it is recorded earlier than the W12 frait,
management costs can be reduced in terms of manpower, nutrition, and time.
Yet, we suggest that the selection of animals should be based on animals’ EBVs
rather than phenotypic selection, especially when it comes to goat breeds. This
is because the heritability of W6 in goat breeds is lower (0.19 for JA goats and

0.16 for BA goats) compared to OS sheep (0.28).

6.2.4 Genetic and phenotypic trends of growth traits

All three breeds' growth traits exhibited a positive genetic trend, though to
varying extents; W12 exhibited the greatest change and BW the least. In general,
the BW trait exhibited an almost constant pattern of genetic change, with an
increase of 0.01 kg per year observed across the three breeds. The slow progress
of this trait was expected given its lower correlations with other traits in
comparison to the correlations among the remaining various traits, as well as a
low level of heritability for this trait. Despite having a low heritability similar to that
of BW, WW's trait had stronger genetic correlations than BW's, especially with
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W6, which could explain why this trait responded better to selection. The annual
genetic gain for this trait was 0.09 kg, 0.08 kg, and 0.13 kg in the JA goat, BA

goat, and OS sheep breeds, respectively.

Compared to pre-weaning traits, post-weaning traits displayed a stronger
tendency for genetic change across the three breeds, indicating greater
responsiveness to improvement. The highly strong genetic correlations, above
0.90, between post-weaning traits may have played a crucial role in the large
increase, especially considering the higher heritability estimates seen for the W12
trait. The OS sheep breed exhibited the most significant increase in genetic merit,
with a rate of 0.22 kg/year for the W6 trait and 0.39 kg/year for the W12 trait. This
could be due to the traits' higher heritability values when compared to goats. The
annual genetic change for the JA and BA goat breeds was 0.13 kg and 0.10 kg,

respectively, for W6, and 0.20 kg and 0.18 kg, respectively, for W12.

Phenotypically, the growth traits showed a significant performance trend
(P < 0.05) only for the W12 trait. The yearly weight gain for JA goats, BA goats,
and OS sheep was 0.93 kg, 0.69 kg, and 0.66 kg, respectively. No significant
changes were observed in the other traits during the course of the 13-year period.
Even though the genetic merit of animals for these traits changed significantly,
phenotypic improvement was not achievable. It appears that these traits were
more affected by environmental variations, which might be generated by factors
such as nutrition, weather, diseases, and management, compared to the trait of
W12. These effects can restrict the manifestation of animals' genetic capacity
(Esrafili & Behmaram, 2023; Hasan & Gunawan, 2014). In light of this, phenotypic

improvement in tandem with genetic improvement may be achieved by
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enhancing management practices and offering sufficient and consistent nutrition

throughout time.
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6.3 Considerations for improving growth traits

In small ruminants’ production, the live bodyweights, growth rate, and
reproductive efficiency are all economically significant traits (Baneh et al., 2012).
For example, the fast growth rate before weaning may result in heavier animals
at weaning, which would enhance the farmer's daily revenues by producing more
meat (Al-Shorepy et al., 2002). A higher average daily gain (ADG) causes market
weight to be reached more quickly (Mahala et al., 2019). Therefore, ADG can be
added as a target trait in addition to the other traits that have been examined in
this study in order to determine whether it can be used as a selection criterion to

improve growth performance.

When animals are selected based on their live body weights and growth
rates, they may end up having a higher rate of fat deposition, which can cause
problems with lambing and fertility. Additionally, feed intake would go up, which
would be challenging for farmers, especially in dry or semi-arid areas
(Mohammadi et al., 2014). As an alternative to bodyweights, feed conversion
efficiency might be a better selection criteria to enhance animals' growth and
meat production (Arthur et al., 2001). However, the absence of feed intake data
may make it challenging to select animals based on feed conversion efficiency.
Yet, the Kleiber ratio has been utilised as an indicator of feed conversion
efficiency (Arthur et al., 2001; Tesema et al., 2022). The Kleiber ratio enables for
the classification of animals with high growth efficiency relative to body size, and

is defined as growth rate divided by body mass 0.75 (Kleiber, 1947).

Because growth traits and reproductive traits are often correlated, it is also

important to take into account the genetic and phenotypic correlations between
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them. This is because enhancing traits of growth may affect an animal's
reproductive traits, and ultimately would influence the farm productivity and
profitability (Mohammadi et al., 2014; Safari et al., 2007). Accordingly, breeding
programs should aim for a comprehensive selection approach that considers
growth traits and reproductive traits to minimise any possibility for adverse
impacts. Sheep and goat farming may remain sustainable and productive by
using a balanced strategy that makes gains in one area don't come at the

expense of another.
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6.4 Inbreeding level in Jebel Akhdar and Batinah goats, and Omani sheep

Genetic variability has been observed to be in sufficient amount according
to the heritability estimates, especially in post-weaning growth traits, among the
investigated breeds of goats and sheep in Oman. Moreover, the assessments of
inbreeding level were found to be very low across the three examined breeds,
which may suggest the presence of adequate genetic variability among the
animals. The degree of inbreeding can decrease the level of genetic variability by
increasing the occurrence of homozygous genotypes and diminishing the
occurrence of heterozygous genotypes (Hartl, 2020). Excessive inbreeding is
known to have detrimental effects on an animal's productivity, health, and
reproductive capacity via what is termed inbreeding depression (Ceyhan et al.,

2011; Falconer & Mackay, 1996; Weigel, 2001).

6.4.1 Estimation of inbreeding level

The study measured the level of inbreeding by calculating the average
inbreeding coefficients (F) of all individuals over a 13-year period (2008-2020).
Inbreeding levels were found to be 0.67%, 0.65%, and 1.52% in JA goats, BA
goats, and OS sheep, respectively. According to DS Falconer and Mackay
(1996), inbreeding levels below 10% are regarded as acceptable and are not
likely to have harmful impacts. Factors such as the ratio of sires to dams,
population size, and the limitation of males to only two mating seasons may have
contributed to the observed low levels of inbreeding in these breeds (Wakchaure

& Ganguly, 2015).

187



The proportions of inbred individuals within the respective breeds of JA
goats, BA goats, and OS sheep were 17.34%, 19.31%, and 23.48% of the entire
population of animals. The level of inbreeding within the inbred groups for the
respective breeds was 3.88%, 3.39%, and 6.49%. The majority of these animals
had an F value below 6.25%. The findings about the inbred animals assist in
clarifying the lower levels that have been estimated for the average inbreeding

level.

6.4.2 Trend of inbreeding level

Across the three populations studied, the levels of inbreeding generally
exhibited an upward trend from 2008 to 2020. The annual increases were 0.12%,
0.13%, and 0.27% for the JA goat, BA goat, and OS sheep breeds, respectively.
According to Nicholas et al. (1989), animal breeding may accept an annual
inbreeding rate of up to 0.5%. The increment in inbreeding level was associated
with the increased proportions of inbred animals across the years. The number
of inbred animals began to slowly increase in 2010, but in the last three years,
the rate of increase has become more rapid. Yet, the majority of the increases
occurred in animals with a frequency of F < 6.25%, which could contribute to

maintaining a low overall level of inbreeding.

Despite the low levels of inbreeding in these populations, there has been
a noticeable increase, particularly in recent years. This highlights the need to
monitor inbreeding levels and implement efforts to prevent them from reaching
unacceptable levels. Introducing new sires, preventing mating between closely
related individuals, and increasing the population size are key methods that can
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efficiently reduce the accelerated rate of inbreeding (Wakchaure & Ganguly,
2015). Further, it is important to maintain an effective population size of 50 or
more in order to minimise the rate of inbreeding and ensure an adequate level of

genetic variability (de Oliveira et al., 2023; Oldenbroek & van der Waaij, 2014).
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6.5 Potential of implementing genomic selection in Omani sheep

6.5.1 Challenges to implement genomic selection in small ruminants

Practicing genomic selection (GS) in small ruminants is encountered with
several factors, such as genotypic cost, size of the reference population, and
accuracy of prediction. The implementation of GS in small ruminants may be
constrained by the financial aspect, as the expense of single nucleotide
polymorphism (SNP) chips can exceed the cost of the animals themselves.
Utilizing low-density marker chips could serve as a viable option for GS in small
ruminants, as it offers a more cost-effective solution (Habier et al., 2009).
However, they may not be efficient enough to accurately estimate markers’

effects.

Several factors can contribute to determining the accuracy of genomic
prediction, such as the heritability of the trait, the size of the reference population
in terms of the number of genotyped animals, the genomic relationships among
these animals, as well as their relationships with the validating animals, and the
specific statistical method employed. Multiple studies have demonstrated that the
accuracy of predictions improves as the trait’s heritability level and reference size
increase. (Daetwyler et al., 2012; Prince & Gowane, 2017; Pszczola et al., 2012).
According to this, more genotyped animals and phenotypic data are required for
accurate estimations when heritability is low. The accuracy of prediction is
expected to improve when the genetic relationships among the reference animals
are minimized and their relationships with the validation population are

maximised (Pszczola et al., 2012).
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The density of markers plays a crucial role in enhancing genomic
prediction by efficiently explaining a greater proportion of the additive genetic
variance caused by QTLs. Increasing the number of markers increases the
degree of linkage disequilibrium between markers and QTLs, resulting in a
greater capture of variance by these markers (Karimi et al., 2019; Lee et al.,
2017). Consequently, precise estimations would be obtained for the additive
genetic effects. In addition, the higher the number of markers, the greater the

level of captured genomic relationships (Mrode, 2014).

6.5.2 Comparison of prediction accuracy between BLUP, GBLUP, and ssGBLUP

One of the goals of this thesis was to explore the possibility of using GS
on Omani sheep. This was done by simulating five chromosomes of the ovine
genome, employing the real pedigree of the targeted sheep population, and using
the estimated heritability levels for the growth traits mentioned in Chapter 4. The
study conducted a comparison of the accuracy of predictions for breeding values
of animals using three different approaches: BLUP, GBLUP, and ssGBLUP. This
comparison was done across three levels of heritability (low, moderate, and high)

and three different sizes of reference population (500, 1000, and 2000 animals).

In this investigation, ssGBLUP demonstrated a 14% improvement in
prediction accuracy compared to BLUP, and a 36% improvement compared to
GBLUP. The superiority of ssGBLUP may be attributed to its utilisation of both
pedigree and genomic relationships, as well as being able to take into account all
available phenotypic data from both genotyped and non-genotyped animals
(Valerio-Hernandez et al., 2023). The average accuracies for ssGBLUP, BLUP,
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and GBLUP were 0.64, 0.56, and 0.47, respectively. Yet it is important to note

that the marker density was rather high, around 125 per 1 cM (
5000 7’“””11‘975/400 cMm - This high marker density may have also had an impact

on the accuracies (Karimi et al., 2019; Mrode, 2014; Sadan & Valsalan).

The accuracy of prediction increased as the heritability level increased
across the three methods. One possible explanation is that for traits with low
heritability, the contribution of each QTL to the total additive genetic variance is
very minimal compared to traits with high heritability. Therefore, in order to
accurately assess the additive genetic effects of the markers surrounding the
QTLs, it is necessary to have a larger number of markers and individuals'

phenotypes to capture a higher proportion of the additive genetic variance.

The accuracy values for the traits BW (low heritability), W6 (moderate
heritability), and W12 (Yearling weight) in the ssGBLUP method were 0.53, 0.65,
and 0.74, respectively. The accuracy values for the traits BW (low heritability),
W6 (moderate heritability), and W12 (Yearling weight) in the BLUP method were
0.44, 0.59, and 0.64, respectively. The accuracy values for the traits BW (low
heritability), W6 (moderate heritability), and W12 (Yearling weight) in the GBLUP
method were 0.40, 0.50, and 0.51, respectively. The increase in accuracy
achieved by ssGBLUP compared to BLUP is greater for traits with low heritability
(20%). This suggests that ssGBLUP, when compared to classic BLUP, has
potential as a method for enhancing prediction accuracy. As a result, it can lead

to greater improvement gains, particularly for traits with low heritability.
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It was observed that as the number of animals in the reference population
increased, so did the accuracy of the genomic predictions made by ssGBLUP
and GBLUP. However, the increase in accuracy achieved by ssGBLUP,
especially for traits with low heritability, was negligible (1%) when the number of
animals changed from 1000 to 2000. A reference population consisting of 1000
animals may be adequate for genome prediction when using a high marker
density. Our analysis revealed that when the size of the reference population
increased, the probability of identifying closer relatives for the selection
candidates increased, which might potentially result in enhanced accuracy.
Several studies have demonstrated that the precision of predicting genomic
breeding values is greatest when the target animals share close genetic
relationships with the reference animals (Fraslin et al., 2022; Gowane et al., 2018;

Pszczola et al., 2012).

6.5.3 Logistical and economic feasibility of introducing genomic selection in the

local breeding programme

There are economic and logistical challenges when implementing genomic
selection (GS) in the local sheep breeding program, particularly for smaller
populations like Omani sheep. Size of reference population is a major
challenging, because it is essential to have a large size of reference animals for
attaining accurate genomic prediction, and capturing more genetic relationships.
According to the simulation study, the reference size needs to be at minimum
1,000 animals. The study indicated that ssGBLUP yielded considerable accuracy

increases over standard BLUP method, particularly with low heritable traits.
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However, when the heritability of the trait is low, it needs a large number of
genotyped animals and recorded phenotypes to obtain acceptable accuracy

(Daetwyler et al., 2012).

A major obstacle in GS for small ruminants is the cost of genotyping,
particularly SNP chips, which can be more expensive than the animals
themselves. Although it is more cost-effective, using lower-density SNP chips
may result in less accurate predictions (Habier et al., 2009). Low-density marker
chips might offer a more affordable option, but doing so would necessitate

establishing a balance between price and prediction accuracy.

In conclusion, although GS may increase breeding efficiency through
increasing the prediction’s accuracy, its feasibility depends on controlling the high
costs associated with genotyping, and providing a sizable and accurately defined
reference population. Whether GS is a viable long-term investment will depend
on the scale of the breeding program and the traits being targeted (high vs. low

heritability).
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6.6 Implementation of the main findings from the thesis

The findings of the thesis can be exploited for a better breeding strategy

and genetic improvement of growth traits in Omani Jebel Akhdar (JA) and Batinah

(BA) goats, as well as Omani sheep (OS) populations at Wadi Qurayyat Livestock

Research Station (WQLRS) in Oman. This can be achieved using the following:

1.

The three breeds' growth traits—BW, WW, W6, and W12—exhibited
different levels of heritability that can be exploited for an effective genetic

improvement programme.

Post-weaning growth traits should be given priority as selection criteria for
enhancing growth traits, since they have higher heritability levels

compared to pre-weaning traits.

The trait of W12 across the three breeds is expected to show a higher

improvement due to its higher level of heritability compared to other traits.

Improving one growth trait would simultaneously improve other growth

traits, due to the strong and positive genetic correlations among the traits.

The trait of W6 can be used as a selection criterion due to the very strong
genetic correlations observed between W6 and both W12 and WW. As a
result, both time and management costs are reduced since this trait is

measured before the W12 by about six months.

Selecting animals based on the trait of W6 is recommended to be based
on estimated breeding values (EBVs) instead of phenotypic selection,

particularly with goats’ breeds.
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7. When estimating the breeding values of animals for all growth traits except
W12, it is important to take into account the influence of maternal effects.
This is necessary to prevent any overestimation of estimates or biassed

EBVs.

8. The breeding strategy at WQLRS has successfully achieved genetic
improvement in growth traits, as evidenced by the positive trend in the
average breeding values of the animals from 2008 to 2020, particularly in

post-weaning growth traits.

9. Efforts must be undertaken to improve animals’ environments, such as
feeding and management practices, as there has been no significant

change in phenotypes across the growth traits, with the exception of W12.

10. The inbreeding level among the three breeds appeared to be at its lowest
level, suggesting effective control measures. However, there has been a
persistent increase in the inbreeding level over the past few years,

necessitating ongoing monitoring.

11. Introducing new male animals for breeding, limiting mating between
closely related individuals, and expanding the size of the population are

key factors that can limit the rate of inbreeding.

12. The simulation study in Chapter 5 has provided a theoretical basis for the
potential implementation of genomic selection in the examined breeds in

the near future.

13. When exploring the actual implementation of genomic selection (GS), it is

important to take into account marker density, a reference size of 1000
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animals, the use of the ssGBLUP approach, the focus on low heritable
traits, and the consideration of relationships between animals in the

reference and with selection candidates.

1.7 Possible future work

1. ADG and feed conversion efficiency for the investigated breeds should be
examined too for its possibility to be a better selection criterion for
enhancing growth.

2. Investigating the correlations between growth traits and reproductive traits
is key to look at the influence of improving growth on reproductivity
performance.

3. Estimating the genetic parameters and genetic trend of reproductive
traits.

4. Employing molecular markers to evaluate genomic inbreeding level may
offer a more accurate measure compared to pedigree-based inbreeding
level.

5. Utilising specialised software like QMSim for simulation purposes to
validate the current simulation in this study.

6. Working on a second simulation study to evaluate GS in multibreed goats
(JA and BA goats) at varying marker density levels.

7. Conducting genetic parameter estimation and assessing the genetic trend
and the extent of inbreeding levels for different breeds housed at several

breeding stations in Oman.
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APPENDIX

Appendix (A)

Fortran source code for simulating sheep genome, and individuals’ genotypes

and phenotypes

implicit double precision (a-h,0-z) ! Accuracy up to 16 digits.

parameter (mxind=5000,mxloci=6000,mxQTL=5000) ! Constant values for
maximum individuals, maximum loci, and maximum QTLs, respectively.

! dimensions of arrays : recombination frequency, loci genotypes, QTL
locations, individuals’ markers alleles, individuals’ phenotypes, error
terms, true breeding values of individuals, and markers genotypes,
respectively.

dimension freq(mxloci), npgt(mxind,2,mxloci), iqtl(mxQTL)
dimension mkind(mxind,2,mxloci),ptind(mxind),err(mxind),tbv(mxind)

dimension izygoute(mxind,mxloci)

common /seed/ idum

common /simmodel/ iped(mxind,2),mkgtl(mxind,2,mxloci)

! Opening the parameter and output files

open(3,file="par.txt',status='old") IThe genetic parameters file.
open(4.file="out.txt',status='old") IThe output file of individuals markers
allels.

open(7 file="ped.txt', status='old") I The pedigree file.

open(12,file="npgt_f.txt', status="old") ! The loci alleles of founder animals.
open(13,file="zygout.txt', status='old') !The marker genotypes and phenotypes.
open(9,file='error.txt',status="old") ! Error terms
open(10,file="t_breeding.txt',status="old") ! True breeding values

open(14 file="mkqtl.txt',status="old") ! Markers and QTLs

open (20,file='qtl_v.txt', status='old') ! variance caused by each QTL.
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open (21 file="additive.txt', status="old") ! additive genetic effects of QTLs.

! Reading the requested parameters for the simulation process

read(3,”) n,nchr,nqtl,nloci I animals, chromosomes, QTLs, and loci,
respectively.

read(3,) (igtl(i),i=1,nqtl) ! QTLs loci.

read(3,”) (freq(i),i=1,nloci-1) ! recombination frequency between loci.
read(7,*)n

doi=1,n

read(7,”) (iped(i,j),j=1,2) ! Reading the pedigree file

end do

I Calling the subroutines for the output results in the form of genotypes of
markers and phenotypes.

call iseed() ! random seed.
call popgen(n,nloci,nqtl,igtl,freq,mkind,err,tbv,ptind) ! population generation.
call zygoute(n,nloci,mkind,izygoute) I Marker genotypes.
do i=1,n-359
write(4,'(5000i2)") (mkind(i,1,j),j=1,5000)
write(4,'(5000i2)") (mkind(i,2,j),j=1,5000)
write(13,'(5000i2,2x,f8.4)") (izygoute(i,j),j=1,5000),ptind(i)
write(9,'(f8.4)') err(i)
write(10,'(f8.4)") tbv(i)
end do
call iexit()
pause
stop
end
! Writing subroutine for generating alleles for the founders’ genetic loci.

subroutine founder_gntp(nloci,freq,npgt) !To create the genotypes of all loci in
the founders’ animals.

implicit double precision (a-h,0-z)

parameter (mxind=5000,mxloci=6000)
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dimension npgt(mxind,2,mxloci),freq(mxloci) !'All founder animals, diploid, all
genetic loci.

common /seed/ idum
common /simmodel/ iped(mxind,2),mkgtl(mxind,2,mxloci)
npgt=0
do i=1,359
do k=1,nloci
x=unif()
if (x.1e.0.5d0) then
npgt(i,1,k)=1
else
npgt(i,1,k)=0
end if

end do

do k=1,nloci
x=unif()
if (x.le.0.5d0) then
npgt(i,2,k)=1
else
npgt(i,2,k)=0
end if
end do
end do
return

end
P T e e

! Writing a subroutine for generating the formed zygoute from the two
alleles of each marker.

Subroutine zygoute(n,nloci,mkind,izygoute) !To create the zygoute (genotype) of
the two alleles.

implicit double precision (a-h,0-z)

parameter (mxind=5000,mxloci=6000)
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dimension mkind(mxind,2,mxloci), izygoute(mxind,mxloci)

common /simmodel/ iped(mxind,2), mkgtl(mxind,2,mxloci)

doi=1,n

do j=1,nloci

if(mkind(i,1,j).eq.mkind(i,2,j).and.mkind(i,1,j).eq.0)then

izygoute(i,j)=0 'homozygoute for the recessive.
elseif(mkind(i,1,j).eq.mkind(i,2,j).and.mkind(i,1,j).ne.0)then
izygoute(i,j)=2 IHomozygoyte is dominant.
else
izygoute(i,j)=1 IHeterozygoute.
end if

end do

end do

return

end

writing a subroutine for forming the individuals’ gametes.

subroutine gametogenesis(nloci,ngt,freq,gamete)

to generate simulated offspring population from two diploid parental genotypes
at a defined number of linked loci with recombination frequencies freq(i) on

a defined number of chromosomes.

implicit double precision (a-h,0-z)

parameter (mxind=5000,mxloci=6000,mxQTL=5000)
integer gamete(mxloci)

dimension freq(mxloci), ngt(2,mxloci)

common /seed/ idum

common /simmodel/ iped(mxind,2),mkqtl(mxind,2,mxloci)
gamete=0

x=unif()

if (x.le.0.5d0) then
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ic=1

gamete(1)=ngt(1,1)
else

ic=2

gamete(1)=ngt(2,1)
end if

do i=2,nloci

x=unif()

if (x.le.freq(i-1)) then
ic=2%*(2-ic)
gamete(i)=ngt(ic,i)

else
gamete(i)=ngt(ic,i)

end if

end do

return

end
P T e e e

! A subroutine to calculate the additive and dominance genetic effects of
QTLs

subroutine effects(nqtl,v_qtl,h,a,d,se) Ingtl=n0.QTLs, v_gtl=contribution of
each QTL to the total additive genetic variance, d_ratio=dminance degree,
a=additive effect, d=dominance effect, h=d/2, se=environmental standard
deviation.

implicit double precision (a-h,0-z)
parameter (mxind=5000,mxloci=6000,mxQTL=5000)
dimension v_qgtl(mxQTL),h(mxQTL),a(mxQTL),d(mxQTL),vg(mxQTL)

read(20,*)(v_qtl(i),i=1,nqtl) !reading the contributions of each QTL to the total
additive variance.

read(20,*)(h(i),i=1,nqtl)  !reading the degree of dominance at each QTL.
h2=0.480d0 I heritability estimate.
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vg_total=0.0d0 I Set the total genetic variance to zero to initiate the
summation of variances by all QTLs.

do i=1,nqtl

a(i)=dsqart(v_qtl(i)*h2/ ((1-(h(i)/2))**2/4+((h(i)/2)**2/2+(1+(h(i)/2))**2/4)))! to
calculate the additive effect.

d(i)= a(i)*h(i) I to calculate the dominance effect.

vg(i)=a(i)**2* ((1-(h(i)/2))**2/4+((h(i)/2)**2/2+(1+(h(i)/2))**2/4)) I for linear
contrast.

vg(i)=(((a(i)-h(i))**2)/4)+((h(i)**2)/2) +(((a(i)+h(i))**2)/4)! to calculate the
genetic variance for each QTL.

vg_total= vg total+vg(i) ! To sum up all the genetic variances of all the
QTLs,.

end do

ve=(1-h2)*vg_total/h2 IEnvironmental variance considering phenotypic
variance = 1.

se=dsqrt(ve) I The standard deviation of the environmental variance.
return

end
T e e e e

! A subroutine for generating the population’s animals.
subroutine popgen(n,nloci,nqtl,igtl,freq,mkind,err,tbv,ptind)

implicit double precision (a-h,0-z)

parameter (mxind=5000,mxloci=6000,mxQTL=5000)

integer gamete(mxloci),offqtl(2,mxQTL)

dimension freq(mxloci),npgt(mxind,2,mxloci),igtl(mxQTL)

dimension ngt1(2,mxloci),ngt2(2,mxloci)

dimension mkind(mxind,2,mxloci),ptind(mxind),err(mxind),tbv(mxind)

dimension(mxQTL),v_qtl(mxQTL),d_ratio(mxQTL),a(mxQTL),d(mxQTL)
,h(mxQTL)

la = the additive effect of all QTLs; vg = the genetic variance contributed by each
QTL

common /simmodel/ iped(mxind,2),mkqtl(mxind,2,mxloci)

call founder_gntp(nloci,freq,npgt) I calling the alleles of each locus in the
founder animals

U = 32.45d0 Population’s mean
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call effects(nqtl,v_qtl,h,a,d,se) ! calling the genetic effects of QTLs.
mkqtl=0
mkaqtl(:,:,:)=npgt(:,:,:)

DO i= 360,n ! Start generating phenotypes from animal 360, because from
1 to 359 are founder animals without phenotypes.

isir=iped(i,1) ! Determine the animal’s sire.
idam=iped(i,2) ! Determine the animal’s dam.
if(isir.ne.0.and.idam.ne.0)then
ngt1(:,:)=mkaqtl(isir,:,:) ! Pick first allele from sire.
ngt2(:,:)=mkqtl(idam,:,:) ! Pick second allele from dam
else if(isir.eq.0 .and.idam.ne.0)then
ngt1(:,:)=npgt(1,:,:)
ngt2(:,:)=mkqtl(idam,:,:) ! Pick second allele from dam.
else if(isir.ne.0 .and.idam.eq.0)then
ngt1(:,:)=mkqtl(isir,:,:) ! Pick the first allele from sire
ngt2(:,:)=npgt(1,:,:)
else
ngt1(:,:)=npgt(1,:,:)
ngt2(:,:)=npgt(2,:,:)

end if

call gametogenesis(nloci,ngt1,freq,gamete) ! calling the gametes of the sire to
generate the zygoute of offspring.

mkatl(i,1,:)=gamete(:)
ic=0
it=1
do j=1,nloci
if (j.ne.iqtl(it)) then
ic=ic+1
mkind(i-359,1,ic)=gamete(j)
else
offqtl(1,it)}=gamete(j)
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it=it+1
end if

end do

call gametogenesis(nloci,ngt2,freq,gamete) ! calling the gametes of the dam to
generate the zygoute of offspring.

mkaqtl(i,2,:)=gamete(:)
ic=0
it=1
do j=1,nloci
if (j.ne.iqtl(it)) then
ic=ic+1
mkind(i-359,2,ic)=gamete(j)
else
offqtl(2,it)=gamete(j)
it=it+1
end if

end do

! Calculation of QTL effects and breeding values.

eqtl=0.0d0 ! Set the initial value of QTL effects to zero for the summation process
of all QTLs.

bv=0.0d0 ! Set the initial breeding value to zero for the summation process of all
QTLs.

do j=1,nqtl I Summation the effects of all 50 QTLs for all individuals
if(offqtl(1,j).eq.offqtl(2,j).and.offqtl(1,j).gt.0) then  !|AA Homozygoute
eqtl=eqtl+a(j)-d(j)/2 I QTL effect
bv=bv+a(j) I Breeding value

else if(offqtl(1,j).eq.offqtl(2,j).and.offqtl(1,j).eq.0) thenlaa Homozygoute.

eqtl=eqtl-a(j)-d(j)/2 I QTL effect

bv=bv-a(j) I Breeding value

else

eqtl=eqtl I QTL effect I Heterozygoute.
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bv = bv ! Breeding value
end if

end do

e=gauss(0.0d0,se) !Error terms follow normal distribution with mean = 0 and
variance.

ptind(i-359)=u+eqtl+e !Phenotype = population mean deviated by genetic merit
(gtl) and environment.

write(14,'(5050i2,2x,f8.4)")(mkqtl(i,2,j),j=1,nloci),ptind(i-359)
END DO
return

end
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Appendix (B)

Verification of marker alleles and their corresponding genotypes

A screen shot of the simulation output for the marker alleles (0 for recessive and
1 for dominant) for the first 5 animals (each with two rows for the marker alleles,
and 10 columns for the last 10 markers of total 5,000 markers), for the trait of

W12 in Omani sheep.

o OO O OoOkKERFKEREK
oo OoOOoOKEOoOOoOkKEOo
O OOk OOk O
o OoOkKFKKFEOOoOKERKEK
OFEFFEFOFEFOKFERKERRF
o OoORKERKERKERKEOREO
HOoORKEREREORKE O
e OOoOKERKEOOoORKEO
HFEEREOORERERR
o0k OoOOoOKEOoO

A screen shot of the simulation output for the marker genotypes for the first 5
animals, along with their simulated phenotypes (Last column) for the trait of W12
in Omani sheep. It contains the last 10 marker genotypes of the total 5,000
markers. Codes 0, 1, and 2 are for recessive homozygous, heterozygous, and

dominant homozygous.

2 1 1 2 2 1 1 1 2 1 21.8626
2 0 1 1 2 1 1 0 2 1 32.2876
c 1 1 1 1 2 2 2 01 32.8302
1 01 1 1 1 0 2 0 32.5796
1 01 1 1 1 1 2 2 0 32.5813
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For example: for the first animal, the marker alleles from (1) are as follows:

1 011101011
110111011020
And the resulted markers genotypes would be as the first two of (2)
2112211121
The output file shows the proportionate variance contributed by each QTL of the

simulated 50 QTLs to the total genetic variance.

b.@l 8.01 0.01 8.01 0.01 0.01 8.01 0.01 0.01 0.01 0.01
0.01 8.01 0.01 8.01 0.01 0.01 8.01 0.20 0.01 0.01 0.01
0.01 8.01 0.01 8.01 0.01 0.1@ 8.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 9.10 0.02 0.02 0.02 0.02 9.02 0.02 9.02
0.02 9.02 0.02 9.02 0.02 ©.82 !propotional variance explained by the
QTL of total genetic variance

For example, for the trait of W12 (h? = 0.48), the additive genetic effects (a)

caused by the highlighted QTLs would be as follows:

1. a_QTLoo1 = /2(VarL,,,) =+/2(0.01x0.48) =0.0980

2. aQTLozo = /2(Vqriy,,) =+/2(0.20x0.48) =0.4382

3. aQTLg1o = /2(VrL,,,) =+/2(0.10x0.48) =0.3098

These effects match the output of the simulation, as shown in the following:

9.090 0.0900 0.8980 0.0%0 0.0960 0.0980 0.0980 0.0%0 0.0980 0.0980 0.0980 0.0980 0.0980 0.09%0 0.0980 0.0980 0.0960 0.09%0 0.4361
0.0980 0.0980 0.0980 0.0%80 9.0980 0.0980 0.0980 0.0980 0.3098 0.0980 0.9980 .90 0.69%0 0.09%0 0.030 0.0980 0.0980 0.3098 0.1386
0.1386 0.138 0.138 0.138 .13 0.1386 0.1386 0.1386 0.1386 0.1386 0.138 0.1386
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Appendix (C)

Checking simulated heritability of W12 trait by WOMBAT analysis

WOMBAT analysis, which illustrates that it got estimates almost as similar as
those simulated for the trait of W12 by analysing the simulated phenotypes. It

was simulated that heritability equals 0.48, and the WOMBAT estimate was 0.49.

&Rk kR Estimates O-F r-esidual COVar‘ianCeS dkkkkkkkkkkkkkkkRkkkkkkkkkbhhkkhhkkkkkgkkE
Order of fit = 1
Covariance matrix
1 ©.51683
Matrix of correlations and variance ratios
1 ©.5860
Covariances & correlations with approximate sampling errors
1 Covs 2 11 ©.516827 ©.380562E-01 vrat 9.586 9.036
= ok ok ok Estimates for- RE 1 "ANIMAL" Fkckkkkkkkkkokkkokkkokkkkkkkokkkokkk kkdkokkEk ok Rk
No. of levels = 3541
Covariance structure = NRM
Order of fit = 1
Covariance matrix
1 ©.58450
Matrix of correlations and variance ratios
1 9.4940
Covariances & correlations with approximate sampling errors
2 Covs A1 1 9.504498 9.479744E-01 vrat 8.494 8.836

sk ok kR ok Estimates O'F phenotypic COVEI"ianCES seskkkokkkokkkokkkkk R kkkkkkkkkk kkkokkk kkk
Covariance matrix

1 1.8213
Covariances & correlations with approximate sampling errors
3 Covs T 11 1.92133 ©.316496E-01
=—====== and nf Fila =——=—=——————————————————=====17-A3-2024Ad==—========12* IA====
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Appendix (D)

Importance of non-genetic factors along with least square means that influencing growth traits of Omani goats and sheep breeds.

Table D. 1. Significance of non-genetic factors and least squares means (LSM) in kg of growth traits in Omani Jebel Akhdar goats.

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight). R? (Coefficient of model),CV (Coefficient
of variation), Factors that its levels do not share a letter in Group column are significantly different.

Trait BW WW W6 W12

N LSM + SE__Group N LSM+ SE _ Group N LSM+ SE _ Group N LSM+ SE _ Group
Overall 2,826 3.16+ 0.01 2,342 13.27 £ 0.07 1,706 16.30 + 0.09 1,265 26.85+0.17
R? 34.77% 39.94% 44.29% 63.83%
Ccv 18.93% 25.65% 21.59% 21.99%
Pen P-value = 0.000 P-value = 0.04 P-value = 0.09 P-value = 0.07
1 208 3.06 £ 0.03 B 180 13.08 + 0.20 AB 138 16.43 + 0.23 A 98 27.05 + 0.37 AB
2 212 3.12+0.03 AB 177 13.47 £ 0.20 AB 131 16.49 + 0.24 A 100 27.56 + 0.37 AB
3 225 3.19+0.03 AB 182 13.24 + 0.20 AB 123 15.81 £ 0.25 A 89 27.76 + 0.40 AB
4 204 3.19+0.03 AB 149 12.94 + 0.22 AB 107 15.5+0.26 A 62 27.35+0.48 AB
5 216 3.21+0.03 AB 183 13.29 +0.20 AB 132 16.23 + 0.24 A 99 27.17 +0.38 AB
6 182 3.12+0.04 AB 155 13.20 £ 0.22 AB 112 16.32 £ 0.26 A 89 27.47 £ 0.40 AB
7 215 3.22+0.03 AB 170 12.49 + 0.21 B 116 16.36 + 0.25 A 90 28.37 + 0.40 A
8 198 3.29 + 0.04 A 154 13.63 £ 0.22 A 106 16.54 + 0.27 A 71 27.63 +0.45 AB
9 201 3.12+0.03 B 173 13.33 +0.21 AB 135 15.64 + 0.23 A 101 26.27 + 0.37 B
10 214 3.14 + 0.03 AB 181 13.05+0.20 AB 140 16.03 £ 0.23 A 106 27.21 +0.36 AB
11 212 3.11+0.03 B 180 13.05+0.20 AB 119 16.15+0.25 A 87 27.66 + 0.40 AB
12 198 3.22+0.04 AB 173 13.01 £ 0.21 AB 126 16.31 +£0.24 A 96 27.62 +0.38 AB
13 115 3.13+0.05 AB 97 13.40 + 0.28 AB 76 16.42 + 0.32 A 55 27.22 + 0.51 AB
14 92 3.01 +0.06 B 78 12.56 + 0.31 AB 61 16.05 + 0.35 A 52 26.35+0.52 AB
15 99 3.21+£0.05 AB 80 12.90 + 0.31 AB 65 16.58 + 0.34 A 56 27.43 + 0.51 AB
16 35 3.24 + 0.09 AB 30 13.16 + 0.51 AB 19 16.15 + 0.65 A 14 27.79+1.04 AB
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Sex P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000

Male 1,390 3.34 £ 0.01 A 1,142 13.831+0.09 A 819 17.03 £ 0.11 A 578 29.52+0.19 A
Female 1,436 2.98 £ 0.01 B 1,200 12.39+0.09 B 887 15.35 £ 0.11 B 687 25.21+0.17 B
Year P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000

2008 270 3.24 £ 0.03 B 226 13.27 £ 0.20 BCD 129 19.53 £ 0.25 A 79 26.44 + 0.56 EFG
2009 183 3.21+0.04 BC 177 14.13 £0.22 AB 173 17.51 £0.22 B 106 25.72+0.41 FG
2010 185 3.53+0.04 A 180 13.46 £ 0.21 BCD 172 15.96 + 0.21 C 105 23.62+0.38 HI
2011 216 3.08 £ 0.03 CDE 193 13.05+£0.20 CDE 170 13.35+£0.21 F 102 22.41+£0.38 IJ
2012 188 3.02 +0.04 DE 163 12.72 £ 0.23 DEF 146 13.44 £ 0.25 F 107 20.99+0.40 J
2013 229 2.84£0.04 F 181 11.99 £ 0.22 F 166 14.87 £ 0.24 D 165 27.66 £0.33 DE
2014 244 3.28 +0.03 B 201 14.04 £ 0.20 AB 131 14.69 + 0.26 DE 129 24.37 +0.35 GH
2015 251 3.16 £ 0.03 BCD 219 13.76 £ 0.19 ABC 162 16.84 £ 0.22 BC 158 26.74 £ 0.31 EF
2016 225 2.98 £ 0.03 EF 119 10.26 + 0.26 G 54 13.21 £ 0.41 EF 52 29.14 £ 0.57 D
2017 250 3.24 £0.03 B 190 12.59 £ 0.20 DEF 185 16.91 £ 0.21 BC 68 33.78 £0.58 B
2018 189 3.23+0.04 BC 179 14.50 £ 0.22 A 90 20.10+0.29 A 89 36.10 £ 0.41 A
2019 184 3.02+0.04 DE 144 12.07 £ 0.23 EF 128 17.88 £ 0.24 B 105 31.44 £0.37 C
2020 212 3.27 £ 0.04 B 170 14.61 £ 0.25 A

Birth type  P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000

Single 1,446  3.38£0.02 A 1,226 14.8 £0.09 A 985 17.17 £0.10 A 752 28.01+0.18 A
Twin 1,380 2.94 +0.02 B 1,116  11.43 +0.09 B 721 15.21+0.12 B 513 26.73+0.19 B
Dam age P-value = 0.000 P-value = 0.000 P-value = 0.45 P-value = 0.16

Regression  0.07 + 0.02 0.19+0.03 0.03+0.04 -0.09 £ 0.06

coefficient
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Table D. 2. Significance of non-genetic factors and least squares means (LSM) in kg of growth traits in Omani Batinah goats.

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight). R? (Coefficient of model),CV (Coefficient
of variation), Factors that its levels do not share a letter in Group column are significantly different.

Trait BW ww W6 W12

N LSM + SE_Group N LSM+ SE _ Group N LSM+ SE __ Group N LSM + SE Group
Overall 2,609 3.20 £ 0.01 2,186 12.81 £0.07 1,689 15.88+0.08 1,208 25.71£0.15
R? 33.47% 37.79% 44.12% 59.05%
Ccv 18.65% 27.12% 21.56% 20.80%
Pen P-value = 0.04 P-value = 0.000 P-value = 0.19 P-value = 0.35
1 186 3.09 +0.04 A 151 12.09 + 0.23 AB 117 15.43 + 0.26 A 81 25.71£0.40 A
2 202 3.12+0.04 A 176 12.08 £ 0.22 AB 132 15.15+£0.24 A 79 26.19 £ 0.41 A
3 188 3.12+0.04 A 156 11.95+0.24 AB 114 14.90 + 0.28 A 73 26.76 £ 0.43 A
4 190 3.07 £ 0.04 A 157 11.49 £ 0.24 B 111 15.20 £ 0.28 A 79 26.06 + 0.41 A
5 186 3.22+0.04 A 163 12.81 £ 0.23 A 130 15.17 £ 0.25 A 89 25.98 £ 0.39 A
6 191 3.18+£0.04 A 157 12.73 £ 0.23 A 120 15.71 £ 0.25 A 87 26.75 +0.40 A
7 186 3.15+£0.04 A 150 12.01 £ 0.24 AB 112 15.46 + 0.27 A 77 25.91 +0.41 A
8 190 3.17£0.04 A 145 12.33+0.24 AB 114 15.04 £ 0.26 A 79 25.77 £ 0.41 A
9 21 3.12+0.03 A 172 12.18 £ 0.22 AB 121 15.58 £ 0.25 A 83 26.37 £ 0.40 A
10 209 3.12+0.03 A 184 12.60 £ 0.21 A 145 15.56 + 0.23 A 112 25.68 +0.34 A
11 189 3.14 £ 0.04 A 162 12.37 £ 0.24 AB 126 15.84 + 0.26 A 99 26.11 + 0.37 A
12 192 3.19+0.04 A 160 12.76 £ 0.23 A 133 15.68 £ 0.24 A 91 26.79+0.38 A
13 105 3.09+0.05 A 93 12.69 £ 0.35 AB 81 15.58 + 0.36 A 71 26.07 £ 0.44 A
14 106 3.04 £0.05 A 96 12.75 £ 0.33 AB 83 15.33 £ 0.33 A 71 26.24 +0.43 A
15 78 3.25+0.06 A 64 13.48 + 0.40 A 50 16.26 + 0.45 A 37 27.16 £ 0.60 A
Sex P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000
Male 1,302 3.36 £ 0.02 A 1,092 13.35+0.10 A 852 16.29 + 0.11 A 559 28.54 +0.19 A
Female 1,307 2.92 £ 0.02 B 1,094 11.49 +0.09 B 837 14.63 + 0.11 B 649 23.94+0.16 B
Year P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000
2008 270 3.19+0.03 B 231 12.87 £ 0.19 B 133 19.23 +0.24 A 75 28.53+0.45 BC
2009 183 3.14 £ 0.04 BCD 204 11.80+ 0.22 C 195 15.98 + 0.22 C 114  24.23+0.36 EF



2010 185 3.40+0.04 A 180 12.08 £ 0.26 BC 174 14.93 £ 0.25 CDE 114 22.4010.58 FG
2011 216 3.01+£0.04 CDE 172 12.04 £ 0.24 BC 151 13.29 £ 0.25 F 90 2213+ 0.45 G
2012 188 3.04 £ 0.06 BCDE 69 11.71 £ 0.38 BC 59 13.26 £ 0.39 F 47 2149+ 0.58 G
2013 229 2.97 £ 0.06 DE 175 11.75 £ 0.35 BC 149 14.34 £ 0.34 DEF 149 25.790.46 DE
2014 244 3.20+£0.03 B 177 12.52 + 0.23 BC 146 13.31 £0.23 F 137 22.62+0.32 G
2015 251 3.18 £ 0.03 B 224 12.89 £ 0.19 B 175 15.52 £ 0.21 CD 174 2457 £0.27 E
2016 225 2.93+0.04 E 112 9.84 +0.29 D 64 13.83 £ 0.46 EF 64 26.84 + 0.61 CD
2017 250 3.23+0.03 AB 205 13.04 £ 0.20 B 205 17.77 £ 0.19 B 75 33.84+£0.54 A
2018 189 3.22+0.04 AB 158 14.50 £ 0.23 A 89 18.95 + 0.30 A 88 32.85+0.40 A
2019 184 3.09+0.04 BCDE 159 12.23 £ 0.23 BC 149 15.08 £ 0.23 CDE 81 29.55+0.40 B
2020 212 3.20+£0.04 ABC 120 14.20 £ 0.27 A

Birth type  P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000

Single 1,543 3.37 £0.01 A 1,314 14.10+0.09 A 1,084 16.58 £ 0.09 A 798 26.96+0.16 A
Twin 1,066  2.91+0.02 B 872 10.75+£0.12 B 605 14.34 £ 0.14 B 410 25.51+0.22 B
Dam age P-value = 0.000 P-value = 0.000 P-value = 0.001 P-value = 0.63

Regression  0.06 + 0.01 0.18 £0.03 0.11 £0.03 0.03+0.06

coefficient

229



Table D. 3. Significance of non-genetic factors and least squares means (LSM) in kg of growth traits in Omani sheep.

BW (birth weight), WW (weaning weight), W6 (Six-months weight), W12 (Yearling weight). R? (Coefficient of model),CV (Coefficient
of variation), Factors that its levels do not share a letter in Group column are significantly different.

Trait BW WW W6 w12

N LSM+ SE _ Group N LSM+ SE _ Group N LSM+ SE _ Group N LSM + SE Group
Overall 3,530 3.04 £ 0.01 3,120 14.38+£0.07 2,374 20.03+£0.09 1,745 3245+0.14
R? 35.40% 33.91% 34.92% 45.56%
Ccv 22.10% 27.22% 21.12% 18.46%
Pen P-value = 0.13 P-value = 0.04 P-value = 0.46 P-value = 0.35
1 240 2.84 £0.05 A 210 13.61+£0.24 A 145 20.02 £ 0.30 A 101 32.99 £ 0.49 A
2 229 2.86 £ 0.05 A 203 13.71£0.24 A 159 19.58 £ 0.29 A 104 33.14 £0.48 A
3 235 2.94 +£0.05 A 208 13.40+£0.24 A 143 19.21 £ 0.30 A 99 32.18 £ 0.49 A
4 219 2.89+£0.06 A 199 13.26 £ 0.25 A 139 19.38 £ 0.31 A 98 32.88 £ 0.50 A
5 220 2.81+£0.07 A 197 13.51£0.25 A 136 19.70 £ 0.31 A 94 33.16 £ 0.51 A
6 225 2.97 £ 0.06 A 200 13.47 £0.25 A 150 19.35+£0.30 A 116 32.85+047 A
7 229 2.86 £ 0.05 A 199 13.49+£0.25 A 153 19.27 £ 0.29 A 120 32.21 £ 0.46 A
8 232 2.81+£0.06 A 206 13.04 £0.24 A 154 19.20 £ 0.29 A 109 33.13+ 047 A
9 231 2.89 £ 0.06 A 205 13.57 £0.24 A 149 19.40 £ 0.30 A 112 32.96 £ 0.46 A
10 244 2.78 £ 0.06 A 222 13.69+£0.24 A 180 19.31 £0.27 A 139 32.68 +0.43 A
11 234 2.88 £0.05 A 206 13.66 £ 0.24 A 164 18.96 £ 0.28 A 119 31.40+0.46 A
12 240 2.81£0.06 A 208 13.61+£0.24 A 163 19.05+£0.28 A 118 32.06 £0.46 A
13 245 2.88 £ 0.09 A 220 13.37£0.24 A 164 19.09 £ 0.29 A 119  32.91+0.46 A
14 138 3.08 £ 0.07 A 122 13.32 £ 0.31 A 107 18.79+£0.35 A 79 31.62+0.55 A
15 154 3.02+0.10 A 130 14.01 £ 0.31 A 116 19.15+0.34 A 81 31.48 £ 0.55 A
16 95 2.84+£0.12 A 86 14.29 £ 0.36 A 64 19.07 £ 0.44 A 52 31.43+£0.67 A
17 67 2.87 £0.09 A 59 14.58 £ 0.44 A 52 18.87 £ 0.49 A 49 30.48 £ 0.70 A
18 53 2.88+0.10 A 40 14.98 £ 0.53 A 36 18.51 £ 0.60 A 36 31.69 £ 0.81 A

230



Sex P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000

Male 1,845 2.99 + 0.02 A 1,636 14.36 £ 0.14 A 1,232 20.25%0.15 A 843 3495+0.28 A
Female 1,685 2.78 £ 0.02 B 1,484 13.04+0.14 B 1,142 18.19+0.15 B 902 29.63+0.27 B
Year P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000

2008 294 2.98 + 0.06 ABCD 268 14.35+0.33 ABCD 173 21.07 £ 0.28 B 120 32.30+0.58 CD
2009 261 3.1 £0.07 AB 253 13.40 £ 0.41 BCDE 242 19.00 £ 0.24 DE 121 30.82+0.65 DE
2010 219 3.23 £ 0.06 A 219 14.95 + 0.32 AB 210 20.21 £ 0.26 BC 157 29.93+£0.54 DEF
2011 152 2.62+£0.10 DEF 137 13.07 £ 0.38 CDE 133 15.96 £ 0.33 G 81 28.23+0.79 EF
2012 269 3.00 £ 0.07 ABCD 237 12.89 £ 0.35 DE 216 16.43 £ 0.25 G 161  26.98+0.73 F
2013 233 2.35+0.09 F 184 12.54 £ 0.56 CDE 154 18.63 £ 0.31 DEF 152 30.98+1.13 CDEF
2014 327 3.11 £ 0.06 AB 301 13.83 £0.32 BCDE 267 18.17 £ 0.23 EF 261 30.65+0.50 DE
2015 351 3.00 £ 0.05 ABC 335 14.42 £ 0.26 ABC 223 20.73+0.24 BC 219 31.96 £ 0.46 CD
2016 259 2.75+0.06 DE 149 13.37 £ 0.65 ABCDE 70 17.21 £ 0.42 FG 70 37.04 £ 1.16 AB
2017 316 2.94 £ 0.04 BCD 292 14.34 £ 0.22 ABC 288 20.81+£0.22 B 86 37.04 + 0.66 A
2018 270 2.91+0.05 BCD 253 15.41 +£0.28 A 173 22.58 £ 0.28 A 171 37.34+£0.55 A
2019 286 2.70£0.05 E 244 12.61 £ 0.28 E 225 19.78 £ 0.25 CD 146  34.23+0.57 BC
2020 293 2.78 £0.05 CDE 248 12.92 +0.29 DE

Birth type P-value = 0.000 P-value = 0.000 P-value = 0.000 P-value = 0.000

Single 1,396 3.39+0.02 A 1,245 16.57 £ 0.10 A 982 21.37 £0.12 A 732 3427 +0.22 A
Twin 1,867 2.87 £ 0.01 B 1,656 13.05+ 0.09 B 1,224 18.76 £ 0.11 B 904 31.99+0.17 B
Multiple 267 2.40+£0.04 C 219 11.48 £ 0.28 C 168 17.52 £ 0.27 C 104 30.62+0.55 C
Dame age  P-value = 0.000 P-value = 0.81 P-value = 0.34 P-value = 0.06

Regression  0.04 + 0.01 -0.01 £ 0.03 -0.04 £ 0.04 -0.12 £ 0.06

coefficient

231





