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Abstract

This study focuses on tiny marine organisms called coccolithophores, which produce calcium car-
bonate shells that store important information about past ocean conditions. Our research investi-
gates how these shells show vital effects- differences in their carbon isotope composition that are
influenced by the biology of the organism and its environment during the late Miocene, a period of
significant environmental change. Scientists have suggested that these isotopic changes were

driven by declining carbon dioxide (CO>) levels during this time.

We used a new technique to separate coccoliths of different sizes and analyze their carbon and
oxygen isotopic signatures, greatly increasing the amount of data available for this period. This

provided a much more detailed timeline of changes compared to previous studies.

Our findings suggest that the vital effects seen in coccolith carbon isotopes are more closely related
to global productivity trends, particularly during the Late Miocene Biogenic Bloom, rather than to

shifts in CO» levels, which remained relatively stable.
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1 Introduction

1.1 Coccolithophores

Coccolithophores, marine calcifying phytoplankton algae, have thrived since the Jurassic period,
evolving in morphology over millions of years (Bown et al., 2004). They belong to the kingdom
Protista, Phylum Haptophyta, and class Prymnesiophyceae (see discussion in Silva et al., 2007)
exhibiting diverse cell structures and forms (Billard & Inouye, 2004). As autotrophic primary pro-
ducers, coccolithophores utilize photosynthesis in the ocean's photic zone, sometimes forming ex-
tensive blooms (Tyrrell & Merico, 2004) influenced by environmental factors such as nutrient
availability and light intensity. The competition among species for nutrients shapes the composition

and functionality of coccolithophore communities within these blooms (Margalef, 1978).

The soft cell is protected by an exoskeleton known as the coccosphere (Billard & Inouye, 2004),
comprising multiple individual calcium carbonate (CaCOs) coccoliths. Coccoliths exhibit distinct
species-specific morphologies, making changes in their shapes and abundance over time useful
indicators of past marine conditions and ecosystems. These variations serve as valuable proxies for
reconstructing paleoenvironmental changes (Cavaleiro et al., 2020; Marino et al., 2009). These
coccoliths (heterococcoliths) are formed inside the cell and later pushed out onto its surface hence,
the older coccoliths will be towards the outer edge of the coccosphere (Young & Henriksen, 2003),
although this mechanism may vary depending on the type of coccolith being produced within the

coccolith-forming vesicle (Billard & Inouye, 2004). There are four possible ways that coccoliths
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can be arranged to form a coccosphere i.e. when two adjacent coccoliths are overlapping, inter-
locking, non-interlocking, and adjacent coccoliths arranged with edges directly abutting rather than
overlapping (Young, 1997). Some coccospheres exhibit remarkable mechanical resilience, capable
of withstanding hydrostatic pressure through inelastic deformation and controlled crack growth

(Jaya et al., 2016).
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Figure 1.1 This Image, from Young (1997) showing a schematic representation of basic parts and shapes of
coccoliths.

According to Young (1997), coccolith morphology consists of two basic components, a coccolith
rim made of regular cycles, and a central area, which is enclosed by the rim (Figure 1.1). Occa-
sionally, there is outward growth in the central area, forming a structure, including bridges, spines,
processes, and nets (Young, 1997). Coccoliths exhibit diverse sizes and shapes, with a classification

system introduced to streamline their description in the literature. Common shapes include
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murolith, planolith, and placolith, each defined by specific characteristics (Figure 1.1) (Young,
1997). Coccolith shapes in planar view range from perfectly elliptical and symmetrical to irregu-
larly polygonal, lenticular, and asymmetrical (Young, 1997). Coccoliths vary in size from minus-
cule (<1um) to very large (15um), categorized as small (3 um-5 pm), medium (5 pum-8 pum), and

large (8 um-12 pm) based on their length observed under light microscopy (Young, 1997).

Coccolithophores produce two main types of coccoliths: heterococcoliths and holococcoliths. Het-
erococcoliths are formed inside the cell during the diploid stage of the life cycle, within specialized
vesicles, and are then pushed out to the surface (Billard & Inouye, 2004; Rowson et al., 1986). In
contrast, holococcoliths are formed outside the cell during the haploid stage and consist of smaller,
regularly arranged calcite crystals (Young et al., 1992). This difference in biomineralization pro-
cesses leads to distinct structural characteristics for each type, with holococcoliths being more frag-
ile and less likely to be preserved in the fossil record compared to heterococcoliths (Winter, 1994).
Holococcoliths, formed from numerous, minute euhedral calcite crystals, are notably less prevalent
than heterococcoliths in both extant species and the fossil record, likely due to their more rapid
disintegration (Young et al., 1992; Winter, 1994). Unlike heterococcoliths, which consist of a radial
array of variably shaped crystal units, holococcoliths’ minute crystals make them more vulnerable

to dissolution.

Coccolithophores can be further classified based on the types of coccoliths they produce. Mono-
morphic species produce only one type of coccolith throughout their life cycle, while dimorphic
species produce two distinct types, often during different life stages. Polymorphic species, on the
other hand, can produce multiple types of coccoliths, showing significant variation across life

stages or within the population (Bown et al., 2014; Gard, 1987).
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The importance of fossil coccospheres in coccolithophore research is due to their capacity to pre-
serve cellular features and offer valuable palaeobiological data (Bown et al., 2014). Coccospheres
also provide partial protection against microzooplankton predation and viral attacks (Haunost et
al., 2020; Taylor et al., 2017). Culturing experiments reveal shifts in coccosphere size and coccolith
numbers in response to growth phases and nutrient availability, shedding light on species responses
to environmental changes over time (Sheward et al., 2017). Most coccolithophores live in the sur-
face mixed layer above the thermocline, at depths less than 100 — 150 meters, so coccospheres
could also help vertical depth positioning with flotation and accelerated sinking allowing faster
nutrient uptakes (Munk & Riley, 1952). If an autotrophic organism were to stay still in calm water,
it would quickly use up the nearby nutrients. The cell's division rate would then depend on how
fast nutrients could diffuse from the surrounding water into the nutrient-depleted area around it.

However, if the cell sinks, it would keep encountering new nutrient-rich areas (Hutchinson, 1967).

Determining the chemical composition of these coccoliths is very hard due to their minute sizes.
In general, a typical coccolithophore size lies between 2 um — 75 um (Jordan, 2009), and a typical
coccolith size varies between 1 um — 15 pm (Suchéras-Marx et al., 2022; Young, 1997). Early
petrographic analyses have revealed that the elemental composition of coccoliths is composed of
calcium carbonate (CaCOs3) (Miiller et al., 2014). Later rudimentary chemical and X-ray diffraction
studies of bulk nannofossil ooze added further support to this idea (Isenberg et al., 1963), using
better chemical and X-ray diffraction techniques eventually confirmed that the plates produced by

these coccolithophores are made up of the mineral calcite.
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Coccoliths and calcareous nannofossils (Young & Henriksen, 2003) contribute significant amounts
of calcium carbonate to calcareous oozes or chalk deposits at the sea floor (Figure 1.2). The coc-
colithophores as CaCOj3 secreting phytoplankton impact the global carbon cycle via consumption
of CO2 during the photosynthesis and generation of CO> during the calcification (Westbroek et al.,

1993). Coccolithophores are estimated to be responsible for about half of all modern CaCOs3 pre-
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Figure 1.2 . Image taken from de Vargas et al. (2007), The figure illustrates how coccolithophores contribute
to the global carbon cycle. In the photic zone, coccolithophores aid in gas exchange and organic matter
export to deep ocean layers, driving both the carbonate counter-pump (B) and the organic carbon pump (A).

Their coccoliths, resistant to dissolution, eventually settle on the seafloor, forming significant fossil records
over millions of years.

cipitation in the oceans and hence, play an important role in the global carbon cycle (Milliman,

1993).
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At present, the global carbon cycle is the subject of critical examination and global research be-
cause of the anthropogenic carbon input into the atmosphere (Bhatti et al., 2005; Jian, 2003; Orr et
al., 2005; Wang et al., 2001). Oceans are ‘carbon sinks’ because there is a net global absorption of
carbon from the atmosphere to the oceans through downward diffusion processes (Feely et al.,
2005; Raven & Falkowski, 1999), and the removal of dissolved carbon from the surface to the deep
ocean through photosynthesis in planktonic species (Sabine et al., 2004). According to Rost &
Riebesell (2004), © 4 critical part of evaluating global environmental changes related to carbon
dioxide input is a clearer understanding of the process governing the production, fate, and cycle of
biogenic materials in the sea.’ Coccolithophores play a major role in capturing dissolved carbon in
the surface ocean, through the production of coccoliths and the fixation of organic carbon, a pro-
portion of which then sinks and eventually settles at the bottom of the sea floor after death (Rock
et al., 2018) (Figure 1.2). Since coccolithophores are at the base of the food chain, there is a high
chance of being consumed by other higher species such as copepods. Hence, coccolithophores of-
ten do not complete the full life cycle and end up in the gut of predators, and are processed into
fecal pellets (Honjo, 1976). The sedimentation of coccoliths is extremely slow because of their low
mass and large relative surface area, but laboratory experiments have shown that coccoliths or
coccospheres can descend rapidly in fecal pellets or relatively large particles (Honjo, 1976). Upon
reaching the seabed, several physical, chemical, and biological processes act on the sediment via
diagenesis (Winter, 1994) before they eventually form sedimentary rock, in the form of claystone,
marl, and chalks. Coccolithophores distribution in the oceans is influenced by various factors, in-
cluding salinity, temperature, and nutrient availability, leading to distinct biogeographic zones
(Baumann et al., 1999). This adaptability to different marine environments underscores their eco-

logical significance and contributions to oceanic carbon sequestration.
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1.2 Late Miocene Climate and Environment

Having explored the biology and role of coccolithophores in marine ecosystems, it is important to
now consider the environmental context in which they have evolved. The environmental shifts
during the Late Miocene (~11.6 Ma to 5.3 Ma), including notable climatic changes, offer essential
context for exploring how coccolithophores adapted to evolving oceanic conditions and fluctua-

tions in the global carbon cycle

This study is focused on producing new coccolith size-fraction isotope data to better determine the
timing and controls on the divergence in carbon isotope values of large-to-small coccoliths during
the Late Miocene (Bolton & Stoll, 2013). I review the environmental and climate conditions of the
Late Miocene, particularly trends in atmospheric carbon dioxide (CO;) concentrations and changes

in surface ocean productivity, both key drivers of this isotopic divergence.

The late Miocene epoch is a time marked by significant global cooling and the rise of modern
ecosystems (Herbert et al., 2016) (Figure 1.3). During this period, continental conditions and moun-
tain topography transitioned toward modern conditions, and global flora and fauna evolved toward
the modern taxa we know today (Steinthorsdottir et al., 2021b) (Figure 1.5). During the Miocene,
tectonic activities significantly influenced current geographical settings leading to mountain for-
mation in various regions like the circum-Mediterranean, circum-Pacific, and central Asia
(Steinthorsdottir et al., 2021b). Although the proto-Tibetan highland was likely present before the
final collision between the Indian and the Eurasian plate, plateau uplift continued during the late
Miocene in southern and central Tibet (Wang et al., 2014) (Figure 1.6) creating a rain shadow effect

and influencing the intensification of the South Asian Monsoons (Ding et al., 2017). Throughout
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the Neogene period, sedimentary erosion rates rose, as indicated by global sedimentary volume
estimates and oceanic carbonate accumulation rates, and this combined evolution of tectonic uplift,
monsoon climate, and erosion rates may have strongly influenced marine biogeochemical cycles

(Steinthorsdottir et al., 2021b).
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During the Miocene epoch, significant tectonic changes influenced oceanic circulation. The Drake
Passage opened in the Oligocene, allowing the connection between Antarctica and South America

(Lagabrielle et al., 2009). The early Miocene featured an open Tethys gateway connecting the
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Atlantic and Indian oceans, closing by the late Miocene (Rogl, 1999). The Bering Strait was closed
for most of the Miocene, opening possibly in the late Miocene, while the Fram Strait widening and
Greenland-Scotland Ridge subsidence connected the Arctic and North Atlantic (Steinthorsdottir et

al., 2021b). The Messinian Salinity Crisis marked the end of the Miocene (Roveri et al., 2014),
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with closed connections between the Atlantic and the Mediterranean due to tectonic convergence

(Krijgsman et al., 2018).
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Figure 1.5 This figure from Steinthorsdottir et al. (2021a) shows climate, tectonic, and oceanic changes
over the Miocene period, including data on biogenic bloom, CaCOs accumulation rates, and tectonic activity.

The figure also highlights shifts in oceanic circulation patterns and carbonate deposition.
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During the Miocene epoch, the marine ecosystem underwent significant evolutionary changes in-
fluenced by various factors such as plate tectonics, ocean currents, temperature, and chemistry of
the oceans (Steinthorsdottir et al., 2021b). The fossil record of marine plankton provides insights
into these transformations. Calcareous nannoplankton, primarily coccolithophores, played a crucial
role as primary producers, contributing to pelagic carbonate burial in the deep sea (Si & Rosenthal,
2019). The decline in coccolithophore species diversity from the middle Eocene to the Oligocene,
associated with global cooling, led to smaller cell sizes, reflecting decreasing levels of pCO2
(Bolton et al., 2016; Dunkley Jones et al., 2008; Hannisdal et al., 2012). During the Miocene, ma-
rine planktonic siliceous diatoms, essential for ocean carbon cycling, diversified rapidly, particu-
larly in high latitudes (Lewitus et al., 2018; Suto, 2006). The success of marine diatoms, linked to
ocean cooling and increased nutrient availability, contributed to the biological carbon pump, po-
tentially impacting atmospheric pCO: levels and global climate states (Falkowski et al., 2004;

Renaudie, 2016; Tréguer et al., 2018).

Foraminifera, the major group of calcareous zooplankton, experienced turnover, and diversification
during the Miocene, with shell size increases suggesting complex evolutionary patterns influenced
by global environmental changes (Ezard et al., 2011; Schmidt et al., 2004). Deep-sea foraminifera
changes around the Middle Miocene Climate Transition (MMCT; 14.7 Ma - 13.8 Ma) and late
Miocene indicate responses to environmental shifts, such as oxygen minimum zone (OMZ) expan-

sion in the subtropical Indian Ocean (Singh et al., 2012).

After the Mid Miocene Climate Optimum (~17 to 14 Ma), global cooling from approximately 13
Ma reduced the distribution of certain nannoplankton to more tropical latitudes (Haq, 1980) and

contributed to the rise in dominance of reticulofenestrids across high and low latitudes in the
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Atlantic (Henderiks et al., 2020). Overall, the Miocene marine ecosystem witnessed dynamic shifts

driven by a combination of geological, oceanic, and climate factors.

Messinian: 5.3Ma-7.2Ma Tortonian: 7.2Ma-11.6Ma
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Figure 1.6 The image is highlighting the paleogeographic and topographical evolution from the Late Mio-
cene epoch. Colors represent elevation changes relative to sea level, from Steinthorsdottir et al. (2021b).

The Late Miocene and the early Pliocene biogenic bloom (LMBB) is an important event of global
high productivity and mass accumulation of carbonate, from calcareous nannoplankton and foram-
inifera and opal from diatoms in the world oceans (Dickens & Owen, 1999; Farrell et al., 1995;
Lyle & Baldauf, 2015). Increased accumulation rates of both carbonate and biogenic silica were
observed from around 9 Ma in the Indian Ocean and from 8 Ma in the Eastern Equatorial Pacific
region, indicating the start of the event during this period (Dickens & Owen, 1999; Pillot et al.,
2023) (Figure 1.7). The end of the event is placed at the decrease in sedimentation rate observed
between, 4.5 — 4.4 Ma in the Eastern Equatorial Pacific region (Lyle et al., 2019) and ~ 3.5 Ma in

the Indian Ocean (Dickens & Owen, 1999). More recently, Karatsolis et al, (2022), found evidence
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of increased primary productivity in the Atlantic up to 3.5 Ma, but this was limited to a single site
(tropical ODP Site 925) and may not represent the entire Atlantic basin. Other authors also identi-
fied this event, as a high productivity interval, in the South China Sea between 12 and 6 Ma (Zhang
et al., 2009) and the southwestern Pacific Ocean around 9 and 3.8 Ma with maximum productivity
at around 5 Ma (Grant & Dickens, 2002). Diester-Haass et al (2005) identified the LMBB in three
different regions of the Atlantic Ocean between 8.2 and 3.3 Ma. Hermoyian & Owen (2001) iden-
tified the LMBB from the low-productivity regions of the Atlantic and Indian Oceans by measuring
the mass accumulation rate of phosphorus, a limiting nutrient that controls the primary production
in the oceans, which is closely correlated with bulk sediment mass accumulation rates and suggests
that the LMBB’s occurrence was influenced by a global influx of phosphorus rather than by redis-
tribution of nutrients among ocean basins. In these phosphorus accumulation records, the LMBB

reaches a peak of productivity at ~4 Ma — 5 Ma (Hermoyian & Owen, 2001).

Overall, LMBB exhibits a widespread geographical distribution across the Pacific, Atlantic, and
Indian oceans (Dickens & Owen, 1999; Diester-Haass et al., 2005; Farrell et al., 1995; Hermoyian
& Owen, 2001; Lyle et al., 2019) (Figure 1.8). Predominantly concentrated at mid and low lati-
tudes, the LMBB is notably absent or yet to be recovered in the Southern and Arctic oceans (Pillot
et al., 2023). In the Indian Ocean, increased primary productivity was observed in the north and
western parts resulting in the expansion of the OMZ southeastward (Dickens & Owen, 1999). In
the Pacific Ocean, LMBB signatures are present off the coast of Australia, the northern Tasman
Sea, and the northern Pacific, particularly in the eastern equatorial region between 5°N and 5°S

(Pillot et al., 2023).
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Figure 1.7 This figure illustrates mass accumulation rates of CaCOjs in three ocean basins (Atlantic, Pacific,
and Indian), alongside variations in pCO> levels and benthic foraminifera §'°C data. It highlights the con-
nection between carbonate deposition, ocean chemistry, and isotopic signals from 8 Ma to the present, cru-
cial for understanding shifts in marine productivity and the global carbon cycle. From, Pillot et al. (2023).

Conversely, sites without an LMBB signature tend to be a few degrees further north and south.
Sites lacking the LMBB signature, often located less than 2,000 km from coastlines, may be influ-
enced by dissolution effects, potentially related to local depth variations (Pillot et al., 2023) (Figure
1.8). The full distribution of LMBB remains incompletely understood, hindered by limited data

coverage and temporal variations in available datasets (Pillot et al., 2023).
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Figure 1.8 This image is from, Pillot et al. (2023). Sites where LMBB is present are represented as red dots,

blue dots represent the absence of an LMBB event whereas purple and grey are the sites either controversial
or inconclusive.

There are two main hypotheses for the factors contributing to a significant increase in marine

productivity during the LMBB:

1. An increase in nutrient supply from continents to oceans, possibly driven by the Tibetan
Plateau uplift, Andean uplift, intensification of trade winds, and continental aridification
(Bowen et al., 2020; Herbert et al., 2016). Orogenic uplift would have intensified monsoon
rainfall, enhanced continental weathering, and increased sediment transported to the oceans
(Bowen et al., 2020; Curry, 1995). The global spread of C4 plants (Tauxe & Feakins, 2020)

may have introduced siliceous phytoliths into the oceans, contributing to the biogenic
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ii.

bloom (Cortese et al., 2004). The influx of phytoliths could have alleviated silica limitation
and promoted diatom growth, enhancing oceanic productivity.

Redistribution of nutrients in the ocean due to changes in oceanic circulation, influenced
by factors like amplification of North Atlantic Deep Water (NADW) formation (Berger et
al., 1992) and the closure of the Central American Seaway (Farrell et al., 1995; Pisias et al.,
1995). For example, changes in ocean circulation intensified upwelling in the Eastern Equa-
torial Pacific, resulting in increased surface nutrient concentrations and higher primary
productivity (Schneider & Schmittner, 2006). Both events, NADW and the closure of the
American Seaway resulted in intensifying and altering ocean circulation patterns and either
increased or redistributed areas of nutrient-rich upwelling among the ocean basins (Pillot
et al., 2023). Another explanation focuses on the strengthening of global ocean circulation
driven by increased trade winds due to the enhancing of the latitudinal temperature gradient
due to global decreases in pCO; and the growth of polar ice sheets (Diester-Haass et al.,

2005).

According to Dickens and Owen,(1999), high rates of surface productivity at the Indo-Pacific di-

vergence zone induce a significant downward flux of organic carbon. The decomposition of this

sinking organic matter within the water column causes pronounced OMZ that exist at intermediate

water depths beneath all present-day Indo-Pacific divergence zones (Wyrtki, 1971). Oceanographic

models indicate that increased surface productivity will intensify underlying intermediate water

OMZs (Olson et al., 1993) lies in the relationship between surface productivity and oxygen con-

sumption in the deeper ocean layers. When surface productivity increases, more organic matter

sinks to intermediate depths, where it decomposes and consumes oxygen, leading to the formation
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or intensification of OMZs. This process is particularly important in highly productive regions like
the Indo-Pacific, where sinking organic material creates pronounced OMZs. Understanding this
relationship is essential for interpreting past biogeochemical cycles and modern OMZ patterns,

especially as OMZs influence marine biodiversity and nutrient cycling.

The biogenic bloom hypothesis suggests increased primary productivity in the north and western
Indian Ocean during this period, extending the OMZ southeastward by more than 5,000 km
(Dickens & Owen, 1999). According to Pillot et al,(2023) “The spatial heterogeneity of LMBB data
supports the nutrient supply scenario, yet the global nature of the event challenges solely a local
cause.’” Proximity to coastlines and the influence of the East Asian Monsoon do not consistently
align with the presence or absence of the LMBB event (Pillot et al., 2023). From the literature, the
late Miocene holds records of increased dust accumulation in the Pacific and China seas (Hovan,
1995; Molnar, 2005; Rea, 1994; Rea et al., 1998). The data compilation by Pillot et al (2023),
however, does not support the hypothesis of an increase in dust flux during this time interval. Fur-
thermore, if nutrient input were indeed influenced by dust, it would likely be restricted to areas
downwind of arid and desert regions, which does not clearly align with the patterns observed in the
records (Pillot et al., 2023). Therefore, the role of dust as a significant contributor to nutrient input
during the late Miocene biogenic bloom appears to be unsupported by their compiled data (Pillot

et al., 2023).

In summary, LMBB is an important event of high biological productivity in the oceans globally.
The onset and end of the event are not well constrained, but in most records, the intensity of produc-
tivity increase reaches a maximum at around 7 Ma. Both hypotheses discussed above seem plausi-

ble because the event is highly seen in places of upwelling areas. The LMBB event is very
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important in the study of climate control on the global carbon cycle and the origin of the modern

oceans. Further research should explore the mechanisms of this event to enhance understanding.
1.3 Late Miocene Coccolith Isotope Fraction: declining CO- or Productiv-
ity?

Coccolithophores, which produce calcium carbonate (CaCO3) plates called coccoliths, play a key
role in the global carbon cycle. These organisms not only contribute to oceanic carbon sequestration
through calcification, but also impact isotopic records, providing valuable information about past
environmental conditions. Unlike organisms that biomineralize at or outside the cell wall, such as
foraminifera, coccolith calcite reflects the internal physiological processes within the coccolith-
forming vesicle. These processes leave distinct chemical signatures on the coccolith calcite, influ-
enced by both external environmental conditions and the carbon acquisition strategies of the cell

during growth and calcification (Hermoso, 2014).
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Figure 1.9 Image from, Bolton et al. (2016), showing a reduction in the sizes of coccolith approx. around 8 Ma.
the grey bar represents ODP site 925 in the Atlantic Ocean and light blue bar represents NGHP-01-01A site from
Kerala-Konkan basin.
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In a seminal study, Bolton & Stoll (2013) observed significant differences in the carbon isotopic
composition of large versus small coccoliths, which first appeared around 8 million years ago.
These isotopic differences were interpreted to signal the onset of carbon limitation, particularly for
larger coccolithophores, during a late Miocene decline in atmospheric CO; levels. This limitation
in available carbon is thought to have driven the adoption of energetically costlier but more efficient

carbon uptake pathways (Bolton & Stoll, 2013; Hermoso, 2014).

Larger coccolithophores, with their lower surface area-to-volume ratio, are especially sensitive to
changes in CO> levels during the diffusive uptake of Dissolved Inorganic Carbon (DIC) from sea-
water. Under carbon-limited conditions, larger coccolithophores increasingly relied on bicarbonate
(HCOs-) as a carbon source for photosynthesis. This adaptation was crucial because CO> levels
were too low for efficient diffusive uptake. By utilizing more HCOs-, larger coccolithophores could
maintain photosynthesis rates; however, this shift created a trade-off. Bicarbonate is also necessary
for calcification, and using more of it for photosynthesis reduced the amount available for building
coccoliths. As a result, the calcification process was hindered, contributing to the observed isotopic
offset in larger coccolith §'*C values. This response highlights the organism's physiological adap-
tation to maintain productivity at the expense of calcification, which had evolutionary implications

during the late Miocene.

The evolutionary consequences of this carbon limitation during the late Miocene were profound.
As atmospheric CO2 levels declined, the energy required for calcification increased, particularly
for larger, heavily calcifying coccoliths. This shift made the production of smaller coccoliths more
advantageous, leading to the selection of smaller coccolithophores over time. Figure 1.9 clearly

shows a shift toward smaller coccolith sizes during this period.
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Our research aims to investigate whether the observed isotopic offsets in coccolith §'*C values are
more closely related to declining atmospheric CO; levels or changes in marine productivity, par-
ticularly during the Late Miocene Biogenic Bloom (LMBB). The LMBB represents a period of
increased marine productivity, which may have driven changes in carbon cycling and coccolith
isotopic composition. By analyzing §'*C and §'%0 signatures in very coarse (V.C) and very fine
(V.F) coccolith size fractions, this study provides higher temporal resolution data, offering new

insights into the timing and controls of coccolith isotopic fractionation during the late Miocene.
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2 Methodology

2.1 Sampling

The sediment samples used in this study were collected as part of International Ocean Discovery

Program (IODP) Expedition 363, from site U1482 from the Indian Ocean, north-west coast of
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Figure 2.1 This image shows the study area of [ODP Site U1482, located in the northwestern Australian shelf,
represented with a yellow circle, along with Site U1483 from, Rosenthal et al. (2018).

Australia, (see Figure 2.1) at 15°3.32’S, 120°26.10’E and a water depth of 1,466 m (Rosenthal et

al., 2018). The sediment at IODP Site U1482 consists mainly of nannofossil ooze, changing to
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chalk ~375 meters below the seafloor (mbsf), with layers characterized by secondary lithologies
containing different amounts of foraminifers and clay minerals alternating with the primary lithol-

ogy (Figure 2.3), creating submeter-scale cycles where the boundaries between layers are typically

gradual rather than abrupt (Rosenthal et al., 2018).
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Figure 2.2 The age model image is from Rosenthal et al. (2018), the Y-axis represents depth in meters
below sea floor (mbsf),while the X-axis show age. Vertical error bars represent the interval between

the two samples that define the bio-horizons.

The detailed late Miocene analysis, with 42 samples from holes A, B, and C, taken from core depths
between ~200 and 400 mbsf, covers a time frame between 8.13 Ma and 5.88 Ma (Figure 2.2).
Assigned ages are based on an interpolated best-fit third-order polynomial through the shipboard
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biostratigraphic age constraints (Emma Hanson pers. comm.) and use age calibrations updated to

the Geological Timescale (GTS) 2020.
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Figure 2.3 This figure provides a lithological summary of IODP Site U1482 from, Rosenthal et al. (2018),
showing alternating layers of nannofossil ooze, chalk, and other sediment types. These submeter-scale cycles
are critical for understanding sediment deposition and paleoenvironmental conditions during the Late Miocene.
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2.2 Preparation of sediment sample

The aim of bulk sediment preparation is to divide the sample into two coccolith size-fraction cate-
gories: a very coarse (V.C) and very fine (V.F) coccolith fraction. The process of separating the
coccolith fraction (<20 um) from the bulk sediment (> 20 um) is considered straightforward, using
a standard 20 um sieve. However, the task of isolating specific coccolith size fractions within the
(<20 pm) coccolith fraction becomes complex due to their extremely small dimensions. Various
separation techniques have been proposed and effectively used in the past few years (Minoletti et
al., 2009; Paull & Thierstein, 1987; Stoll & Ziveri, 2002; Zhang et al., 2021). These techniques can
broadly be categorized into micro-filtration (Minoletti et al., 2009) and sinking-decanting (Paull &
Thierstein, 1987; Stoll & Ziveri, 2002) techniques. For this study, we have employed a novel tech-

nique (Hanson, 2023) (shown in Figure 2.4) to isolate coccolith fraction from bulk sediment

-

_20um |
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Wi — —

I'_ . —a
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Splitting Owven drying

Figure 2.4 This schematic represents the techniques used to isolate very coarse (V.C) and very fine (V.F)
coccolith fractions from bulk sediment Hanson (2023). The process includes washing, centrifuging, drying,
and separation, which are crucial for generating the distinct size fractions used in isotopic analysis.
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because this procedure is highly replicable and straightforward, demanding minimal specialized
equipment. This technique is categorized into four key steps washing, centrifuging, drying, and

separation (See Figure 2.4).

2.2.1 Washing

Sediment samples measuring two cubic centimeters in volume were taken into a 250 ml glass
beaker while retaining a minuscule amount of sample in the original bag for potential future use.
Sufficient de-ionized (D.I) water was added to the beaker to submerge the sample and it was left
to soak for a duration from 30 minutes to 1 hour to facilitate disaggregation. Subsequently, the
samples were rinsed through a 63 pum sieve using DI water until the water became clear, with the
< 63 pum fraction suspended in a 1-liter glass beaker and the > 63 um fraction discarded. The < 63
um fraction was then subjected to another wash with DI water through a 20 pm sieve until the
water was clear, with the < 20 um fraction suspended and the > 20 um fraction discarded. The
suspended < 20 um sediment fraction was then transferred to 50-milliliter centrifuge tubes (multi-
ple tubes per sample if necessary). The sieves were meticulously cleaned with DI water and sub-

jected to ultrasonic treatment for about 2 minutes after each sample.

2.2.2 Centrifuging

The centrifuge tubes were loaded into the centrifuge machine and spun at 4,000 rpm for approxi-
mately 5 to 6 minutes. After completing the cycle, the clarity of the water was assessed, and if
necessary, the tubes were spun for an additional minute. Once sediment had settled at the bottom,
the clear water above it was carefully poured off, leaving about <0.5 cm of water above the sedi-

ment to avoid disturbing the top layer.
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For samples with multiple tubes, they were combined into one by adding enough DI water, then
the sediment was resuspended either by shaking or using a vortexer. This final sample tube under-
went one last spin at 5,000 rpm for about 6-7 minutes. The clear water was decanted once again,

leaving <0.5 cm of water above the sediment to maintain the integrity of the top layer.

2.2.3 Drying

After centrifugation, the tubes containing each sample were positioned upright in a holder and
placed in an oven without their lids. Subsequently, the tubes were allowed to air dry overnight at
50°C. Upon completion of drying, the samples resembled broadly triangular 'V' shaped sediment

pieces, formed to some extent by the shape of the centrifuge tube's bottom.

I have avoided freeze drying method due to a specific issue and it consumes a lot of time. When
subjected to freeze drying, the coccolith fraction formed a fragile bullet shape that easily crumbled
and mixed, rendering precise separation impossible (Hanson, 2023). Therefore, the decision was

made to utilize the oven drying method instead.

2.2.4 Separation

To initiate the separation process, the bullet-shaped coccolith fraction was delicately removed from
the tube and positioned on a piece of filter paper to facilitate easy transfer to the glass vials. Four
glass vials were designated and labeled according to the targeted size fractions: very fine (V.F),
fine (F), medium (M), and very coarse (V.C). Using a scalpel, the bullet-shaped sample was then
divided into these four categories from bottom to top. There was a noticeable variation in color and
texture across the size fractions; the V.F fraction appeared significantly consolidated and displayed

a darker grey hue, while the V.C fraction exhibited greater friability and lighter grey coloration.
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As these extreme categories were earmarked for isotope analysis, distinguishing between them was
straightforward as they originated from the upper (V.F) and lower (V.C) sections of the centrifuge
tube pellet. The distinct size fractions were then transferred to the appropriately labeled glass vials,

and the material was gently re-separated into a powdered form within each vial by gently crushing.
2.3 Particle Size Separation Analysis

Continuing from the innovative separation method outlined earlier, it was necessary to validate the
efficacy of the separation and characterize the distribution of coccolith sizes. Previous investiga-
tions into separating coccolith size fraction techniques have rarely been conducted through quan-
titative evaluation, with only a limited number of studies undertaking such rigorous analyses (Stoll
& Ziveri, 2002; Zhang et al., 2021). The majority of studies have instead relied on SEM images of

the size fraction to showcase the quality of separation (e.g., Hermoso et al., 2015).

For this late Miocene study, 82 slides, comprising 41 very coarse (V.C) coccolith fractions and 41
Very fine (V.F) coccolith fractions, respectively, were prepared. Following the slide preparation
technique outlined by Flores & Sierro (1997). This specific technique was selected for slide prep-
aration due to the necessity for particles to be dispersed and to prevent contact between particles

that pose a challenge or are impossible to separate in particle size distribution analyses.

2.3.1 Slide Preparation

Sediment samples weighing between 0.005 g and 0.0065 g were transferred into 10.5 ml glass
sample vials. A buffered solution containing 0.15 g I'! of sodium carbonate and 0.2 grams per liter
of sodium bicarbonate mixed with DI water was added to the sample vials. These vials were then

subjected to ultrasonic treatment for 2 minutes at a frequency of 42 kHz. Coverslips were
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positioned at the bottom of the glass petri dishes, and a mixture of buffer solution and gelatin was
poured in until nearly full, close to the dish's edge. The solution in the glass vials was gently agi-
tated, either by shaking or using a vortexer, to resuspend the sediment. After a 2-minute waiting
period, 50 pul of this solution was extracted using a micropipette and dispensed onto the coverslip
inside the petri dish. The solution was then carefully distributed around the petri dish using the
micropipette to achieve a uniform spread over the coverslip and allowed to settle overnight or for
a minimum of 8 hours. The next day, excess water was removed by siphoning with strips of tissue,
and the coverslip was permitted to air dry before being affixed onto a glass slide using Norland

Optical Adhesive.

2.3.2 Microscopy Slide Analysis

The slide samples underwent analysis using a Zeiss Axioscope A.1 microscope at 1,000x magnifi-
cation, employing circular polarization, and a Mérzhauser Wetzlar motorized XYZ stage. Follow-
ing the focusing process, a series of continuous imaging was conducted, capturing 20 fields of view
with a QI Imaging camera. Concurrently, Microvision Cartograph software facilitated the auto-
matic capture and stitching of sequential image tiles into a single comprehensive image then this

image is saved as a tiff file. The resulting exported image encompassed a total area of 0.12 mm?,

2.3.3 Particle Size Analysis

The exported TIFF images underwent processing utilizing the Fiji (Schindelin et al., 2012), a var-
iant of the open-source ImagelJ software specifically tailored for biological-image analysis. Fiji is
particularly adept at facilitating particle size distribution analysis, thereby aiding in the compre-

hensive analysis of the images obtained.
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To begin with, the images were initially converted into an 8-bit greyscale format (Figure 2.5), as
particle analysis and thresholding steps require this format due to their incompatibility with color
images. Additionally, a spatial scale for the images was defined. The images captured using Micro-
vision Cartograph software utilized pixels as their standard unit of measurement, with the slides
scanned at a scale of 0.03458 um/pixel under 1,000x magnification. This scale was inputted into

the image properties in Fiji, utilizing microns as the units (see Figure 2.6).

Figure 2.5 Image (A) shows the original Tiff file loaded into ImageJ software, while image (B) displays the
8-bit greyscale version used for particle analysis. Converting the image to 8-bit is essential for accurate
thresholding and size distribution analysis.
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measuring coccolith particles in the image.

Thresholding detection was then established using the greyscale image to differentiate the objects
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of interest (white pixels) from the background (black pixels) (see Figure 2.7 A). While Fiji offers
automated threshold determinations, these were found to be inconsistent across all images (Hanson,
2023) Instead, thresholds were set using the histograms generated by Fiji. A threshold encompass-
ing the entire histogram curve was chosen to maintain consistency across samples (see Figure 2.7

B).

Following thresholding, a binary image was generated, highlighting particles (in white) against the
background (Dudley et al., 1986). Subsequently, particle size distribution analysis was conducted.
Particles with an area larger than 80 um? or less than 1 pm? were disregarded due to the limitations
of resolving minute coccolith particles with light microscopy and the rarity of very large coccoliths

in the material, making large particles more likely to be other biogenic carbonate fragments.

Each particle's area was determined as the total area within the particle margin, including any holes.
While hole detection and exclusion within ImagelJ are options, for this analysis based on coccolith
size, the total coccolith particle area, including any central area 'hole', was considered (see Figure
2.9). The full range of circularity (0.00-1.00) was included in the analysis to account for the diverse
shapes of coccoliths, as most are not perfectly circular. The output of the analysis consisted of an
image with each particle labeled and numbered, along with a .csv file containing numerical infor-

mation such as each labeled particle's total area and perimeter.
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2.4 Stable Isotope Analysis

Stable isotope analysis was carried out on split samples from the late Miocene study, specifically

targeting the V.F and V.C fractions. These analyses were conducted at the BGS Stable Isotope Fa-
cility in Keyworth, Nottingham, using a VG Optima mass spectrometer with standard reproduci-
bility of <=+ 0.1%. All recorded data were calibrated to the Vienna Pee Dee Belemnite (VPDB)
standards for consistency. Before analysis, the samples underwent a plasma ashing process at BGS,
a widely accepted method for removing organic matter from samples prior to carbonate stable iso-

tope analysis.

The sample material was then powdered to generate enough CO; equivalent to 10 pg of pure cal-
cite. The sample was subsequently reacted with anhydrous phosphoric acid under vacuum condi-
tions at a constant temperature of 25°C overnight. The resulting liberated CO> was separated from

water vapor under vacuum and collected for further analysis.

2.4.1 Carbon Isotope Analysis

Carbon exists naturally in three isotopic forms, with two being stable (!2C and !*C) and one radio-
active ("*C). These isotopes are present in varying concentrations in the natural environment, with
12C dominating at 98.9%, '3C at 1.1%, and trace amounts of *C. The presence of radioactive *C
is utilized in radiocarbon dating of organic materials, a widely employed technique in geological,
archaeological, and paleontological studies. The *C/'?C ratio of a sample, whether it is bulk sedi-
ment or foraminifera, is determined and compared to the '3C/!>C ratio of a known standard, typi-
cally laboratory standard calcite. Carbon isotopes (5!°C) are expressed as a per mill (%o) difference

to the VPDB standard using the equation provided.
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13 12 13 12
C’/ Csample — C/ Cstandard

si3c =
13 C’/ 12 Cstandard

X 1000

2.4.2 Oxygen Isotope Analysis

Oxygen exists naturally in three stable isotopic forms: '°0, 170, and 'O, with varying concentra-
tions in the environment. Specifically, 1°O predominates at 99.763%, followed by 7O at 0.0375%,
and '*0 at 0.1995%. The 80/'%0 ratio of a sample is determined and compared to that of a known
standard, typically a laboratory standard calcite. Oxygen isotopes (8'%0) are expressed as per mill
(%o) relative to this standard, with positive values indicating enrichment of the heavier isotope

compared to the standard, while negative values signify a depletion of the heavier isotope.

18 16 18 16
0/ Osample - 0/ Ostandard

18 16
0/ Ostandard

5180 = x 1000
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3 Results

The sample age range spans from 8.13 Ma to 5.88 Ma, with a total of 84 samples analyzed — the
very coarse and very fine coccolith fractions from 42 original sediment samples. Two samples were
excluded from the size separation analysis because of persistent drying effects observed on the
sample slides that inhibited clear viewing although sample fractions were still analyzed for stable

isotopes study - U1482C-40X-4W-33/36 V.C and U1482B-45F-3W-24/26 V.F.
3.1 Particle Size Separation Analysis Results

In this study a size separation technique was employed on bulk sediment samples to produce very
coarse (V.C) and very fine (V. F) coccolith fractions for coccolith size and isotope analyses. The
particle size distribution for each fraction was analyzed and represented through cumulative per-
centage plots (Figure 3.1) (see Appendix for rest of the plots). See (Figure 3.2) for examples of bad
separation and bad scans. This could be due to the unevenness of the slide or in some cases, uneven

distribution of particles, especially smaller ones.

Our analysis revealed distinct differences between the V.C and V.F coccolith fractions across most
samples. The cumulative distribution curves consistently showed a higher cumulative percentage
for smaller coccoliths in the V.C fractions compared to the V.F fractions, indicating a greater abun-
dance of smaller coccoliths within the V.C samples. The average area of particle size for all V.C
fractions was measured at 6.36 um?, with a range spanning from 3.81 um? to 11.31 pum?. The aver-

age area for all V.F fractions was 4.70 pm?, with a range from 2.17 pm? to 8.72 pm?.
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Figure 3.1 Cumulative percentage versus particle size (um?) distributions for different sediment samples.
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in particle size distribution across samples.
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Figure 3.2 Illustration of good vs bad scan and the threshold image it set. Sample U1482A-37H-3W-82/84
V.C (A & B): Image A shows a circular polarized view, while image B displays the threshold applied using
Fiji software to distinguish between particles. Although there are very few noticeable unusually large parti-
cles, they will be excluded when we set the required size range. This is an example of a high-quality image,
with clear and distinct particles without frosting effect. Sample U1482A-37H-5W-24/26 V.F (C & D): over
here, C represents a circular polarized image, and D shows the threshold set by Fiji software. In this sample,
we can notice that most particles are concentrated closely and produce frosted effect.
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Figure 3.3 This figure shows the mean particle size (um?) of very coarse (V.C) and very fine (V.F) coccolith fractions over
time (Ma). The V.C fraction is represented with larger particle sizes, and the V.F fraction has smaller sizes, with error bars
indicating variability within the samples.

out of 36 samples that are plotted, Cumulative plots of 9 samples show poor size separation (see
Appendix B), this could be due to human-induced error during the physical separation of the bullet-
shaped coccolith (discussed in 2.2.4) or due to imperfect separation with the centrifugation method.

This method does not uniformly separate particles by size but relies on the faster settling of larger
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particles, with the final particle size distribution at the base of the centrifuge tube influenced by
both the settling velocity of each particle (related to size) and the particle's initial distance to the
base. Smaller particles near the base can mix with larger particles due to their shorter travel dis-
tance, leading to a preferential distribution of larger coccoliths at the bottom and smaller ones at

the top, although this separation is not perfect (Hanson, 2023).

The plot of the mean particle size (um?) with Age (Ma) (Figure 3.3), reveals a clear distinction
between the V.C and V.F fractions. The V.C data consistently exhibit higher mean particle sizes
compared to the V.F data across all the samples. The error bars, representing standard deviation,
indicate some variability within each group, with occasional overlap. However, the overall trends
demonstrate successful separation. Moving average lines for both fractions further highlight dis-
tinct trends, with the V.C mean particle size remaining consistently above that of the V.F. This
effective separation is evident from younger sediments to older age groups, confirming the efficacy
of the experimental method in differentiating between very coarse and very fine particles. The
separation is particularly clear in the youngest and oldest sediments, with less variability and over-

lap, showcasing the method's robustness across varying age ranges.
3.2 Carbon Isotope Analysis

We examined the distribution of carbon isotopes within late Miocene samples, dating from 8.13
Ma to 5.88 Ma. The carbon isotope data (5'°C %o VPDB) shows variability over time, with notice-
able trends in the dataset (Figure 3.4).
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Figure 3.4 Carbon isotope composition of planktic foraminifera Trilobatus sacculifer and the two cocco-
lith size fractions (V.C and V.F).

Each sample type (V.C, V.F, and foraminifera) fluctuates across different ages and shows an overall
decreasing trend from 8.13 Ma to 5.88 Ma. The Trilobatus sacculifer (planktic foraminifera) §'3C
foram values are the most positive of the three records, showing a general decreasing trend over
the observed period, starting with values between ~2.0 and 2.5%o at ~7.5 and 8.0 Ma, which then
decline to values consistently below 2.0%o after ~7.4 Ma, before reaching a minimum of 1.50%o at
6.8 Ma. The V.F coccolith fraction 8'3C (8'*Cvi) is offset to lower values from the 7. sacculifer
813C values by ~0.5 to 1.0%o throughout the record, with §'*Cv.c values ranging from ~0.6%o to
1.9%o. The §'*Cvr also shows the general decreasing trend through the study interval, although
with more variability than the planktic foraminifera data, for example, the interval of four low

values between ~7.3 and 7.5 Ma.
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3.3 Oxygen Isotope Analysis

All of the late Miocene oxygen isotope records show more stability over the whole period 8.13 Ma

to 5.88 Ma than the §'3C records, although with small scale fluctuations in the data (Figure 3.5).
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Figure 3.5 Oxygen isotope composition of planktic foraminifera Trilobatus sacculifer and the two coccolith
size fractions V.C and V.F.

There are some gaps within the data across all three sample types, with some analyses failing due
to insufficient cooling in the external cold finger of the isotope gas line. The §'®Ororam records
values are consistently more negative than the coccolith fractions, by ~1%o or more, and vary be-
tween -2.40%o and -1.80%o with a range of 0.59%o, although with no overall trend across the whole
record. The §'®0vr values are the most positive of the three records, with offsets from the §'%0v.c

fraction of up to 0.5%o for most of the record, but in some instances up to ~1%o.
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Overall, '*0vr ranges from ~0 to -1%o, which is a positive offset of ~1 to 1.5%o from §'*Oforam.
The §'80v. data is similar to the §'30vr but with an ~0.5%o positive offset, with value ranging from
-1.35%o at ~7.5 Ma to -0.42%o at ~7.8 Ma. The §'®0v.c values also show significant fluctuations

between 8.1 Ma — ~7 Ma, followed by a slight decreasing overall trend.
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4 Discussion

4.1 Size Changes

The findings of this study indicate that the newly implemented size separation technique has proven
to be effective (Figure 3.3). Throughout the entire dataset, the average particle size of the V.C
fraction (um?) consistently exceeds that of the V.F fraction (um?). Additionally, there is a noticeable
trend in the size variation of larger coccoliths from 8 million years ago (Ma) to the present. Specif-
ically, larger coccolith sizes were prevalent between 8§ Ma and 7 Ma, medium sizes were dominant
from 7 Ma to 3 Ma, and from 3 Ma to the present, smaller coccoliths have been observed. Our
findings are consistent with those of Bolton et al. (2016), who studied two tropical sites — ODP Site
925 in the western Atlantic and NGHP-01-01A in the Kerala-Konkan basin of Arabian sea - also
observed a similar trend in the reduction of coccolith sizes from 8 Ma to 5 Ma. The correlation
between those sites and IODP Site U1482 in the eastern central Indian Ocean, strengthens the evi-
dence for a widespread pattern of coccolith size changes, suggesting a potential common driving

factor influencing different tropical regions.

The selection against coccolithophore species with larger cell sizes — reflected in the coccolith size
records - are interpreted to be driven by constraints on the extent of calcification, influenced by
environmental COz levels. The view of previous studies (Bolton et al., 2016; Bolton & Stoll, 2013;
Suchéras-Marx & Henderiks, 2014) is that CO; levels declined during the late Miocene, and this
was the driver of the onset of differences in the §'*C values of large- to small-coccolith size frac-

tions, indicating different strategies for using carbon.
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Figure 4.1 This figure consists of two sections: (A) the average nannofossil mass (in picograms) over time
from 16 Ma, with error bars representing minimum and maximum values from, Suchéras-Marx and
Henderiks (2014). The rectangle highlights the age range that coincides roughly with the samples from
this study. (B) shows the average particle size for both very coarse (V.C) and very fine (V.F) coccolith
fractions, with error bars indicating variability within the measurements.

In this explanation, larger coccolithophores have a greater surface area-to-volume ratio, making
them more sensitive to changing CO: levels during the diffusive uptake of DIC from seawater.
When carbon availability is limited, these larger species rely more heavily on bicarbonate (HCO:")
for photosynthesis, consequently leaving less bicarbonate available for calcification. The produc-
tion of larger, heavily calcifying coccoliths thus involves spending more energy under low CO>
conditions, and as this energy cost for calcification increases, the production of smaller coccoliths
by smaller cells becomes more advantageous. The evolutionary response of coccolithophores dur-
ing low CO; conditions is a selection for smaller cell sizes (Suchéras-Marx & Henderiks, 2014).

The overall smaller size shift from 8 Ma to 5.5 Ma from our data set coincides with the increase in
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the relative abundance of smaller coccoliths from 9 Ma — 4 Ma ago (Figure 4.1), suggesting that
the evolution of coccolithophores to smaller sizes, for more effective utilization of available carbon
during low CO; conditions, was a successful strategy to maintain higher rates of productivity and

calcification.

4.2 Carbon Isotope Changes

Both the planktic foraminifera isotopes and coccolith isotopes (V.C and V.F) show a decreasing

trend towards more negative values throughout the period from 8 Ma to 5.5 Ma. There is a
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Figure 4.2 This figure shows 8'*C values plotted for three different sites: (A) ODP Site 999 and (B) ODP
Site 1088 from, Bolton and Stoll (2013), and (C) IODP Site U1482 (from this study). The Y-axis represents
813C values (%o VPDB), and the X-axis shows age (Ma). The rectangle shows the approximate age of this
study samples.
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noticeable offset around ~ 8 Ma between the coccolith size fractions, and another offset of ~ 7.2
Ma and from this point, the offset continues to increase. 8'°Cv is always more positive than
8'3Cv.c. The planktic foraminifera isotope values show a decreasing trend until ~6.8 Ma and then

seem to remain stable for the rest of the record.

We have compared our isotopic fractions records against Bolton et al (2016) (Figure 4.2), and our
findings confirm and follow the significant §'*C isotopic offset between large and small coccolith
size fractions from 8.13 Ma to 5.5 Ma, aligning with the trends documented by Bolton and Stoll
(2013) and Bolton et al. (2016) (Figure 4.2). Our high-resolution data fills the gaps between data
points in Bolton et al. (2016). The differences between the expected isotopic values of inorganic
calcite and those of the large and small coccolithophores size fractions are known as ‘vital effects’
(Bolton & Stoll, 2013; Dudley et al., 1986). Larger coccoliths show more isotopic variations due
to their increased dependence on bicarbonate for photosynthesis under low COz levels whereas,
smaller coccoliths typically exhibit more stable isotopic signatures and with values closer to inor-
ganic calcite (/planktic foraminiferal calcite) because they are less affected by CO; limitations due
to their lower surface area to volume ratio. The emergence of a significant isotopic offset in Bolton
and Stoll (2013) is ~7 Ma ago (Figure 4.2) but in our records, the offset begins earlier ~8 Ma
ago. In Figure 4.4, the IODP site U1482 §'3C isotopic data is compared against the Mass Accumu-
lation rates of carbonate from the Atlantic sites (Drury et al., 2021), Pacific (Gastaldello et al.,
2024), and eastern Equatorial Pacific (Lyle et al., 2019) as a marker for the timing of the LMBB.
This comparison shows that the main phase of isotopic divergence in the IODP site U1482 records

matches closely with the onset of biogenic bloom from ~8 to 7 Ma (see Figure 4.4).
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In the modern ocean, IODP Site U1482 in the eastern equatorial Indian Ocean has the lowest
surface ocean DIC, followed by ODP Site 999 in the Caribbean Sea, and then ODP Site 1088 in
the Southern Ocean (Wu et al., 2019) (Figure 4.3). It is likely that the same relative spatial pattern
of surface ocean DIC held in the late Miocene between these sites, which is consistent with a pattern
of inferred carbon limitation from the magnitude and or the timing of the onset of small-to-large

coccolith §'3C offsets. For example, IODP Site U1482 shows the small-to-large coccolith isotope

~
T

2300

)

300 N Ey )
- 22
& A “ ‘ ‘*\"'DBPsite999 w i;
° " T—— ' 200 §
I
) O
2000 =

30°SF
* ODPsite 1088 1900
60° S [ | A A 1500

>

0° 60° E 120°E 180° W 120° W 60° W 0°

Figure 4.3: Dissolved Inorganic Carbon (DIC) concentrations in the global oceans. This map shows modern-
day DIC distribution, with IODP Site U1482, ODP Sites 999 and ODP 1088 marked for reference. The color
gradient represents DIC concentrations in umol/kg, highlighting areas of high and low DIC, which are es-
sential in studying past ocean carbon cycling and productivity changes during the late Miocene. from, Wu
et al. (2019).

offset first at ~8 Ma, followed by ODP Site 999 at ~7 Ma, whilst ODP Site 1088 in the high DIC
surface waters of the Southern Ocean, (see Figure 4.3) still shows relatively little isotope fraction-

ation from small-to-large coccoliths.

The timing of the start of the 8'*Cvr to §"*Cvc offset in IODP Site U1482 and ODP Site 999,

between 8 Ma and 7 Ma, is consistent with the start of the LMBB and does not align well with any
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Figure 4.4 Image from, Gastaldello et al. (2024), compares mass accumulation rates of carbonate (MAR car-

ponate) across the Atlantic and Pacific against the 8"°C values from the IODP site U1482 (Indian Ocean).
significant change in atmospheric CO> concentrations or shift in the global climate from benthic
foraminiferal oxygen isotope data (Steinthorsdottir et al., 2021a). Together with the pattern of the
size of small-to-large coccolith 8'°C offsets with site-specific DIC noted above, it is judged more

likely that the development of §'*Cv to §'*Cy,c offset in the late Miocene is related to increased
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productivity, especially at tropical to sub-tropical ocean locations, a strengthening of carbonate
export — as show with increased carbonate mass accumulation rates — and an increased biological
pump resulting in the lowering of surface ocean DIC (Figure 4.3). In this case, coccolith isotopic
offsets need to be interpreted in terms of global atmospheric CO> concentrations and changes in

surface ocean productivity.
4.3 Changes in Oxygen Isotopes

All of the late Miocene oxygen isotope records show more stability over the whole period 5.88 Ma
to 8.13 Ma than §'3C records, although with small-scale fluctuations in the data. The 8'®Oforam rec-
ords exhibit values that are consistently more negative than the coccolith fractions by ~1%o or
more, with variability of 0.59%o and no overall trend. The 8'30vr values are the most positive
among the three records, with offsets from the §'*Ov,c fraction up to 0.5%o for most of the record,
occasionally reaching around 1%o and from the 8'®Oforam values by 1%o to 1.5%o positive offset
(Figure 3.5). The §'®0vc data closely resembles the §'%0vr but with an ~0.5%o positive offset,

ranging from -1.35%o at ~7.5 Ma to -0.42%o at ~7.8 Ma.

The §'80 offsets between the §'*0vc, 8'*Ovr, and §'®Oforam can be compared against data from
culture studies shown in Figure 4.5 , which also includes data for inorganic calcite and can be used
as an approximation to planktic foraminiferal §'®0. The late Miocene data show that §'®Ov.c is
offset from 8'®Oforam to heavier values by ~1%o, and the §'®Ovr is slightly, but consistently, heavier
than the §'®0v.c Compared to the modern culture data, this would put both the V.C and V.F fraction
as being predominantly composed of the isotopically heavy group dominated by modern species

such as Emiliania huxleyi and Gephyrocapsa oceanica. From unpublished assemblage data of
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IODP Site U1482 (Jones, 2021), more than 50% of coccoliths in the late Miocene of the IODP site
U1482 are reticulofenestrids — part of the same family as modern Emiliania and Gephyrocapsa
species. In the late Miocene, these coccoliths of the genus Reticulofenestra span a larger size range,
of up to 10 um in some cases, and are abundant in both V.F and V.C size fractions. On this basis,
we conclude that the dominant §'30 isotopic signature of both V.F and V.C fractions come from
these Reticulofenestra coccoliths and, like their modern descendants, these coccolith have a distinct
positive 8'80 signature relative to inorganic (planktic foraminifera) calcite. These results show that
the 5'%0 signature of the heavy group is not a recently evolved feature of the dominant, small cell,

Plio-Pleistocene Gephyrocapsa and Emiliania species.
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Figure 4.5 Image from, Hermoso (2014), showing the compilation of existing oxygen isotopic values of
cultured coccoliths against a broad temperature spectrum on the horizontal axis. The Y-axis on the left £'50
represents the oxygen isotope fractionation of coccolith relative to seawater, measured in permil (%o) and
Y-axis to the right represents the difference in 6'*0 between the calcite in coccoliths and seawater, again
measured in permil (%o). The plot includes data for various coccolithophore species, grouped into "Heavy,"
"Light," and "Equilibrium" groups, with inorganic calcite as a reference.
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The slight negative offset of the V.C fraction from the V.F fraction also makes sense, if this V.C
fraction preferentially contains more of the typically large Calcidiscus leptoporous (~5—10um)
coccoliths, which are offset to lighter values than inorganic calcite (Hermoso, 2014). Even though
a small part of the assemblage relative to Reticulofenestra, the concentration of Calcidiscus species
in the large fraction would explain its consistently lighter §'*0 values than the V.F fraction, alt-

hough both V.F and V.C being substantially (~1 to 1.5%o) heavier than the planktic foraminifera.

The finding of such large and consistent offsets between §'®Ororam and both §'*Ovr and 8'%0v.c
during the late Miocene indicates the presence of strong isotopic fractionations towards heavier
values within Reticulofenestra species at this time. Hermoso (2014) proposes that the oxygen iso-
topic composition of both large and smaller coccolithophores is in modern cultures, and should
have been in the past, influenced by the availability of DIC. For instance, the more positive §'30v
values of the heavy group are the result of the efficient use of Carbon Concentrating Mechanisms
(CCMs) to cope with low DIC availability. These smaller modern coccolithophore species in the
heavy group can concentrate CO internally, which leads to a higher §'*O value of coccolith calcite.
On the other hand, taxa like Calcidiscus generally utilize bicarbonate (HCOs3") and have more neg-
ative 8'%0 values. In a nutrient-rich environment, the smaller coccolithophores can dominate be-
cause they can quickly take advantage of the available nutrients and out-compete larger species in
these conditions. Larger coccolithophores, which rely more on bicarbonate and are less efficient at
concentrating CO>, may struggle to calcify in DIC-depleted conditions. Although the nutrient levels
are high, the inability to effectively utilize the available DIC can reduce the abundance of larger
coccolithophores while the smaller coccolithophores thrive in a low DIC and high nutrient envi-
ronment because of their efficient CCM strategies and exhibit more positive §'30 values (Hermoso,

2014).

The convergence of the large and small coccoliths to similar §'30 values is a prediction of modern
culture studies at high DIC concentrations (Hermoso, 2014). The convergence in values should,
however, also approach closer to equilibrium inorganic calcite (~planktic foraminiferal calcite),

with the small coccolithophore, isotopically heavy group, becoming lighter in §'30, and the larger
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coccolithophore, isotopically lighter group, becoming heavier in §'%0 (Hermoso, 2014). In the
IODP site U1482 late Miocene data, the §'%0v;r and §'®0v.c values have converged to some degree
but remain offset by more than 1 %o heavier than planktic foraminiferal §'%0. In assemblages dom-
inated by Reticulofenestra species, this would suggest that even in the late Miocene, the rapid
growth of these species imparts a heavy §'30 isotopic signature from the uptake, conversion to

bicarbonate and use of CO2, and maybe a persistent feature of this family through time.

5 Conclusions

In conclusion, this study aimed to determine whether late Miocene coccolith isotopic
fractionation was driven by declining COz levels or productivity. Using a novel size separation
technique, we have successfully isolated very coarse and very fine coccolith fractions from bulk
sediment. Detailed slide scanning and particle size measurements confirmed the effectiveness of
this technique. Our findings reveal a long-term size reduction of coccoliths from ~8 Ma ago to
the present. We observed a notable offset of 3'*Cvc and §'*Cvr around 7 — 8 Ma ago. This shift
did not correlate with declining CO» levels but was more likely associated with the onset of Late
Miocene Biogenic Bloom (LMBB), increased tropical productivity, and strengthened biological
pump of dissolved inorganic carbon (DIC) from the surface to deep waters.

The §'80 data showed more similarity between very fine and very coarse fractions, with only a
slight offset of fine to coarse. Additionally, both §'0vc and §'®Ovr are showing consistent
offset with '8Ororam data. This pattern is observed in more recent periods, similar to modern
coccolith and inorganic calcite. This finding implies that the §'%0 vital effect of the heavy group-
modern reticulofenestrids were also present in the late Miocene, despite the different and larger

species of reticulofenestrids at that time. Overall, the findings of the study suggests that late
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Miocene isotopic fractionation was more influenced by the productivity changes, particularly
those associated with LMBB rather than declining CO>. These findings contribute to our
knowledge of the complex interactions between biological processes and climatic factors during
the late Miocene. Future research should aim to further investigate the vital effects observed in
coccoliths and foraminifera to enhance our interpretation of past oceanic conditions and the

factors driving them.
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Appendix A: Good Plots

All the charts below are Cumulative percentage versus particle size (um?) distributions for different
sediment samples. Blue circles represent the coarse fraction (V.C), and red circles represent the
fine fraction (V.F). The x-axis shows area of particle size in (um?), and the y-axis represents cumu-

lative percentage, highlighting the variation in particle size distribution across different samples.
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Appendix B: Bad Plots

All the charts below are Cumulative percentage versus particle size (um?) distributions for different
sediment samples. Blue circles represent the coarse fraction (V.C), and red circles represent the
fine fraction (V.F). The x-axis shows area of particle size in (um?), and the y-axis represents cumu-
lative percentage, highlighting the variation in particle size distribution across different samples.
These plots were considered bad because of the inaccurate separation between V.C and V.F particles

either partially or fully in some cases.
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